
A Model for Thread and Memory Placement on NUMA
Systems

by

Justin Funston

B.Sc. Computer Science, Gonzaga University, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

January 2018

c Justin Funston, 2018

Abstract

The problem of placement of threads, or virtual cores, on physical cores in a mul-

ticore system has been studied for over a decade. Despite this effort, we still do

not know how to assign virtual to physical cores on a non-uniform memory access

(NUMA) system so as to meet a performance target while minimizing resource

consumption. Prior work has made large strides in this area, but these solutions

either addressed hardware with specific properties, leaving us unable to general-

ize the models to other systems, or modeled much simpler effects than the actual

performance in different placements.

An interdependent problem is how to place memory on NUMA systems. Poor

memory placement causes congestion on interconnect links, contention for mem-

ory controllers, and ultimately long memory access times and poor performance.

Commonly used operating system techniques for NUMA memory placement fail

to achieve optimal performance in many cases.

Our contribution is a general framework for reasoning about workload place-

ment and memory placement on machines with shared resources. This framework

enables us to automatically build an accurate performance model for any machine

with a hierarchy of known shared resources. Using our methodology, data center

operators can minimize the number of NUMA (CPU+memory) nodes allocated for

an application or a service, while ensuring that it meets performance objectives.

More broadly, the methodology empowers them to efficiently “pack” virtual con-

tainers on the physical hardware. We also present an effective solution for placing

memory that avoids congestion on interconnects due to memory traffic and addi-

tionally selects the best page size that balances translation lookaside buffer (TLB)

effects against more granular memory placement. The solutions proposed can sig-

ii

nificantly improve performance and work at the operating system level so they do

not require changes to applications.

iii

Lay Summary

Modern server-class computer hardware is becoming increasingly complex as hard-

ware designers scale core counts. This hardware runs important applications like

scientific simulations, databases, and machine learning, and represents a significant

portion of the worlds electricity usage. Software must be carefully designed and

optimized to get the most out of such hardware, otherwise performance can suffer

and energy is wasted. This work presents insights and analysis into how soft-

ware interacts with modern server-class hardware, and proposes techniques and

algorithms to automatically optimize software for it. The solutions proposed can

significantly improve performance and work at the operating system level so they

do not require changes to applications.

iv

Preface

The research chapters of this dissertation (Chapters 2–5) span multiple related

projects done in collaboration, all of which are previously published or currently

under peer-review. Chapter 2 is the culmination of the projects and represents the

bulk of my personal contributions.

At the time of this writing, the work in Chapter 2 is under peer-review as:

� Justin Funston, Maxime Lorrillere, David Vengerov, Baptiste Lepers Jean-

Pierre Lozi, Vivien Quema, and Alexandra Fedorova. A Practical Model for

Placement of Workloads on Multicore NUMA Systems. Submitted to the

13th European Conference on Computer Systems.

I was the lead investigator responsible for research direction, experiment de-

sign, data analysis, and solution design. Maxime Lorrillere conducted the exper-

iments in Section 2.5 and Section A.1, implemented the fast memory migration

mechanism in Section 2.5, and wrote Section 2.5 of the manuscript. I wrote the

majority of the rest of the chapter’s manuscript and conducted all other experi-

ments in the chapter. Other co-authors provided technical and editorial advice.

Chapter 3 is a modified version of previously published work. It is c2012

IEEE, reprinted with permission from:

� Justin R. Funston, Kaoutar El Maghraoui, Joefon Jann, Pratap Pattnaik, and

Alexandra Fedorova. 2012. An SMT-Selection Metric to Improve Multi-

threaded Applications Performance. In Proceedings of the 26th International

Parallel & Distributed Processing Symposium (IPDPS 12). IEEE, Washing-

ton, DC, USA, 1388–1399. https://doi.org/10.1109/IPDPS.2012.125

v

I was the lead investigator responsible for research direction, experiment de-

sign, data analysis, and solution design, and I wrote the majority of the manuscript.

Co-authors provided technical and editorial advice.

Chapter 4 is a modified version of previously published work. It is c2013

ACM, reprinted with permission from:

� Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Re-

naud Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. 2013. Traf-

fic Management: A Holistic Approach to Memory Placement on NUMA

Systems. In Proceedings of the 18th International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS

13). ACM, New York, NY, USA, 381–394.

https://doi.org/10.1145/2451116.2451157

Mohammad Dashti, Fabien Gaud, and I jointly conducted the initial investiga-

tion into NUMA effects, including the discovery of the importance of congestion

over locality (reported in Section 4.1 and Section 4.2). I designed and implemented

the page-level replication mechanism described in Section 4.3.3 with debugging

help from Fabien Gaud. I wrote the sections of the manuscript relevant to my con-

tributions. Fabien Gaud designed and implemented the Carrefour algorithm. All

co-authors including myself provided technical and editorial advice.

Chapter 5 is a modified version of previously published work:

� Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston, Alexan-

dra Fedorova, and Vivien Quema. 2014. Large Pages May Be Harmful on

NUMA Systems. In Proceedings of the 2014 USENIX Annual Technical

Conference (ATC 14). USENIX Association, Berkeley, CA, USA, 231–242.

I conducted the initial investigation into NUMA and large pages, including the

discovery and analysis of the hot page and page-level false sharing problems (re-

ported in Section 5.2 and Section 5.3.1), and wrote the sections of the manuscript

relevant to my contributions. Fabien Gaud and Baptiste Lepers designed and im-

plemented the Carrefour-LP algorithm. All co-authors including myself provided

technical and editorial advice.

vi

Table of Contents

Abstract . ii

Lay Summary . iv

Preface . v

Table of Contents . vii

List of Tables . xi

List of Figures . xii

Glossary . xv

Acknowledgments . xvi

1 Introduction . 1
1.1 Background . 3

2 A Model for Placement of Workloads on Multicore NUMA Systems 6
2.1 Introduction & Motivation . 7

2.2 Background & Related Work . 9

2.2.1 State of the Art . 9

2.2.2 Assumptions and Limitations 12

2.3 Abstract Machine Model . 15

2.4 Performance Predictions . 20

vii

2.4.1 Predicting Performance Categories 22

2.4.2 Predicting Performance with Machine Learning 25

2.4.3 Results . 27

2.5 Using the Model in Practice . 32

2.5.1 A Potential Use Case . 32

2.5.2 Memory Migration Overhead 34

2.6 Summary . 38

3 An SMT-Selection Metric . 39
3.1 Background & Motivation . 40

3.2 The SMT-Selection Metric . 44

3.2.1 SMTsm on IBM’s POWER7 Processor 47

3.2.2 SMTsm on Intel’s Nehalem Processor 48

3.3 Experimental Methodology . 50

3.3.1 System Configuration 50

3.3.2 Benchmarks . 50

3.4 Evaluation . 52

3.4.1 SMT-Selection Metric (SMTsm) Evaluation 52

3.4.2 SMTsm Evaluation at a Lower-SMT Level 56

3.4.3 Metric Evaluation Across Chips 58

3.5 Applying the SMT-Selection Metric 60

3.5.1 Using Gini Impurity to Decide on a Good SMTsm Threshold 61

3.5.2 Using the Average PPI (Percentage Performance Improve-

ment) Method to Decide on a Good SMTsm Threshold . . 62

3.6 Related Work . 64

3.7 Summary . 67

4 NUMA Traffic Management through Memory Placement 68
4.1 Background . 69

4.2 Traffic Congestion on Modern NUMA Systems 70

4.3 Design and Implementation . 74

4.3.1 The Mechanisms . 74

4.3.2 The Algorithm . 76

viii

4.3.3 Implementation . 79

4.4 Evaluation . 83

4.4.1 Testbed . 84

4.4.2 Single-Application Workloads 85

4.4.3 Multi-Application Workloads 90

4.4.4 Overhead . 94

4.4.5 Impact on Energy Consumption 95

4.4.6 Discussion: Hardware Support 95

4.5 Related Work . 97

4.6 Summary . 101

5 Large Pages on NUMA Systems . 102
5.1 Background . 102

5.2 Large Pages and Adverse NUMA Effects 104

5.2.1 Experimental Platform 104

5.2.2 Large Pages on Linux 104

5.3 Solutions . 107

5.3.1 Page Balancing is Not Enough 109

5.3.2 Carrefour-LP . 110

5.4 Evaluation . 115

5.4.1 Performance Evaluation 115

5.4.2 Overhead Assessment 119

5.4.3 Discussion . 120

5.4.4 Very Large Pages . 121

5.5 Related Work . 121

5.5.1 Large Pages and TLB Performance 121

5.5.2 Large Page Support and Optimization 122

5.6 Summary . 123

6 Conclusion . 124

Bibliography . 128

ix

A Supporting Materials . 142
A.1 Non-Interference of Workloads on Separate NUMA Nodes 142

A.2 Performance Prediction Results for the ML Model 143

x

List of Tables

Table 1.1 Summary of related work and their capabilities 3

Table 2.1 Scheduling concerns for the AMD test system 14

Table 2.2 Fast memory migration evaluation 34

Table 4.1 NUMA traffic congestion effects 73

Table 4.2 Statistics used by the Carrefour algorithm 76

Table 4.3 Number of pages replicated, interleaved, and co-located 89

Table 4.4 Carrefour performance improvement over Linux 90

Table 4.5 Carrefour performance improvement for multiple applications . 91

Table 5.1 NUMA and TLB metrics for selected benchmarks 106

Table 5.2 Detailed metrics for workloads using Carrefour-2M 111

Table 5.3 CG.D, UA.B, and UA.C NUMA metrics 117

Table 6.1 Scheduling concerns for an AMD Zen system 125

xi

List of Figures

Figure 1.1 An example NUMA system 4

Figure 2.1 WiredTiger performance for various workload placements . . 8

Figure 2.2 Test systems used . 15

Figure 2.3 Three example performance clusters 23

Figure 2.4 Prediction results for postgres-tpcc on the AMD test system. . 28

Figure 2.5 Prediction results for spark-pr-lj on the Intel test system. . . . 28

Figure 2.6 Prediction results for kmeans on the AMD test system. 28

Figure 2.7 Prediction results for canneal on the Intel test system. 29

Figure 2.8 Prediction results for dc.B on the AMD test system. 29

Figure 2.9 Prediction results for ft.C on the Intel test system. 29

Figure 2.10 Prediction results for freqmine on the Intel test system. 30

Figure 2.11 Prediction results for kmeans on the Intel test system. 30

Figure 2.12 Prediction results for WTbtree on the Intel test system. 30

Figure 2.13 Use-case evaluation, AMD system 35

Figure 2.14 Use-case evaluation, Intel system 36

Figure 3.1 Comparison of performance with SMT1 vs. SMT4 41

Figure 3.2 SMT speedup versus simple metrics 42

Figure 3.3 A generic processor execution engine. 45

Figure 3.4 IBM POWER7 out-of-order execution engine. 47

Figure 3.5 Intel Nehalem out-of-order execution engine. 49

Figure 3.6 SMTsm @SMT4 vs. SMT4/SMT1 on POWER7 53

Figure 3.7 Instruction mix of five benchmarks on POWER7 53

xii

Figure 3.8 SMTsm @SMT4 vs. SMT4/SMT2 on POWER7 54

Figure 3.9 SMTsm @SMT2 vs. SMT2/SMT1 on POWER7 54

Figure 3.10 SMTsm @SMT2 vs. SMT2/SMT1 on Intel Nehalem 56

Figure 3.11 SMTsm @SMT1 vs. SMT4/SMT1 on POWER7 57

Figure 3.12 SMTsm @SMT1 vs. SMT2/SMT1 on Intel Nehalem 57

Figure 3.13 SMTsm @SMT4 vs. SMT4/SMT1 on 2xPOWER7 58

Figure 3.14 SMTsm @SMT4 vs. SMT4/SMT2 on 2xPOWER7 59

Figure 3.15 SMTsm @SMT1 vs. SMT2/SMT1 on 2xPOWER7 59

Figure 3.16 Gini impurity for potential thresholds for the SMTsm 62

Figure 3.17 Average performance improvement vs. SMTsm 64

Figure 4.1 Performance by thread and memory configuration 71

Figure 4.2 Streamcluster IC imbalance by memory configuration 75

Figure 4.3 Global decisions in Carrefour. 77

Figure 4.4 Carrefour evaluation, PARSEC/Metis 86

Figure 4.5 Carrefour evaluation, NAS 87

Figure 4.6 Load imbalance for selected benchmarks 88

Figure 4.7 Latency and locality for selected benchmarks 89

Figure 4.8 Carrefour evaluation, multi-application workloads 92

Figure 4.9 Multi-application memory controller imbalance 93

Figure 4.10 Multi-application interconnect imbalance 93

Figure 4.11 Multi-application memory latency 93

Figure 4.12 Multi-application local memory access ratio 94

Figure 4.13 Effect of Carrefour on energy consumption 96

Figure 5.1 THP performance improvement over Linux 107

Figure 5.2 Carrefour-2M evaluation . 108

Figure 5.3 Carrefour-LP evaluation on selected applications 116

Figure 5.4 Evaluation of Carrefour-LP’s components 117

Figure 5.5 Carrefour-LP evaluation on remaining applications 119

Figure A.1 Slowdown with cg.C as the interfering workload 143

Figure A.2 Slowdown with mg.C as the interfering workload 143

Figure A.3 Slowdown with streamcluster as the interfering workload . . . 144

xiii

Figure A.4 Accuracy of predictions on the AMD system. 147

Figure A.5 Accuracy of predictions on the Intel system. 150

xiv

Glossary

CMP Chip multiprocessing

HPE Hardware performance event, a.k.a. hardware performance counter

IBS Instruction-based sampling

IC Interconnect

IPC Instructions per cycle

ML Machine learning

NUMA Non-uniform memory access

SMP Symmetric multiprocessing

SMT Simultaneous multithreading

THP Transparent huge pages

TLB Translation lookaside buffer

xv

Acknowledgments

I give my warmest thanks to my advisor Dr. Fedorova for her peerless guidance

and for helping me achieve my potential as a researcher. I would also like to thank

all of my collaborators and co-authors for their essential hard work and insight.

I would like to thank my family for all of their love and support.

Lastly I would like to thank IBM for the internship that led to the research

in Chapter 3, and Oracle Labs and the British Columbia Innovation Council for

funding the work of Chapter 4.

xvi

Chapter 1

Introduction

Data centers use 2% of the electricity consumed in the United States [85] and

3% of the world’s [17] electricity. These data centers run important applications

such as scientific simulations, data analytics, web servers, and databases, and the

applications often have strict performance requirements. In order to keep power

consumption under control hardware designers have introduced systems with con-

tinually increasing core counts and power control features to reduce energy usage

when parts of the system are idle. Using a smaller number of larger systems (i.e.

systems with more cores) can be 25%–33% more power efficient than using twice

as many systems of half the size (based on our own experiments, vendor specifica-

tions [3], and previous studies [13]).

Increasing core counts, though, come at the cost of increased hardware com-

plexity and architectural trade-offs made for scalability. Applications and system

software must be designed and optimized with the hardware architecture in mind,

otherwise performance can suffer. This dissertation focuses on how system soft-

ware can optimize the performance of applications running on the large server-

class systems typically used in data centers, and on how data center operators can

make reliable performance trade-offs for better server utilization or reduced power

consumption. The first step in doing so is choosing the level of parallelism an ap-

plication should use (in other words, how many cores it runs on). Due to scalability

limits or load patterns, it is not always beneficial to give all the cores of system to

a single application. Additionally, in cloud environments it is common for cus-

1

tomers to pay for a set number of cores upfront, so the problem of determining

how many cores to use is moot in that case. A comprehensive solution on how

to determine the level of parallelism for an application is beyond the scope of this

dissertation, but the primary contribution of Chapter 3 is a solution for it applicable

to simultaneous multithreading (SMT) hardware.

The second step after the number of cores has been determined is to choose

which cores to use. The choice of cores to use, which we call a placement, affects

what hardware resources are available to the application which in turn affects per-

formance and power usage. Section 1.1 gives an overview of the relevant hardware

resources and how they affect applications. The key complicating factor for se-

lecting a placement is that different applications have different needs for hardware

resources. The primary contribution of Chapter 2 is a practical model for work-

load placement. Our model does not require modifying applications, can be easily

adapted to various architectures, and can be used to predict the performance of dif-

ferent placements. Performance prediction, as opposed to simply finding the best

performing placement, is crucial because it allows trade-offs to be made. Most of

the extensive previous research in the area does not attempt to predict performance,

only handles a single type of hardware resource (for example, only considering

beneficial cache sharing but not taking into account SMT sharing of functional

units or other hardware resource sharing), requires expert knowledge and manual

tweaking to adapt to a new architecture (usually because one would need to write

carefully designed micro-benchmarks for new hardware resources), or is not de-

ployable online because new applications would require several offline profiling

runs. Table 1.1 provides an overview of significant related work and their respec-

tive short-comings compared to our solution described in Chapter 2. A detailed

description of related work is provided in Section 2.2.

Predicting the performance of workload placements allows for one especially

important trade-off. For many applications, using fewer hardware resources will

only have a minimal or moderate effect on performance. If data center operators or

cloud server providers can predict these cases and the performance impact is within

acceptable tolerances, then they can use remaining hardware resources to pack ad-

ditional workloads or applications onto the same server. This increases utilization

and efficiency and ultimately reduces energy usage. Section 2.5 evaluates specific

2

scenarios where our workload placement solution can increase server utilization

while maintaining performance goals.

The final step after workload placement is memory placement. Large multicore

systems often have a non-uniform memory access (NUMA) architecture (described

in more detail in Section 1.1), which means that memory placement can also af-

fect performance. Better memory placement will reduce contention for hardware

resources which in turn reduces memory access times. Chapters 4 and 5 describe

our solution to the memory placement problem, which provides significant perfor-

mance benefits over standard techniques.

Predicts
Performance

Multiple
Hardware
Resources

Easily
Adapted

Deployable
Online

Chapter 2’s
Solution Y Y Y Y

Pandia [49] Y Y N N
SMiTe [105] Y Y N Y
Bubble-Flux [101] Y Y N Y
Asymsched [59] N N Y Y
DINO [107] N N Y Y
Thread
Clustering [93] N N Y Y

Table 1.1: Summary of related work and their capabilities

1.1 Background
Modern server-class systems have a complex hierarchy of shared resources, which

is a necessity to scale them to high core counts. Figure 1.1 shows an example

NUMA system. At the lowest level of the hierarchy is a hardware context (also

known as a hardware thread or, confusingly, as a core on some architectures). The

hardware context contains everything required to track the execution state of a

software thread such as the program counter and registers. When a software thread

is assigned to a hardware context it can execute on the CPU.

At the next level of the hierarchy is the physical core. A physical core en-

3

Memory Node 1 Memory Node 2

Memory Node 3 Memory Node 4

L3 cache
C5

L3 cache
C6

C8C7

L3 cache
C13

L3 cache
C14

C16C15

N
o

d
e

 3
N

o
d

e
 4C9 C10

C12C11

N
o

d
e

 1
N

o
d

e
 2

C1 C2

C4C3

Figure 1.1: A modern NUMA system, with four nodes and four cores per
node. c2013 ACM, reprinted with permission from [36].

compasses data and instruction caches, functional units (the ALU, branch units,

load/store units, etc.), and the instruction decode and dispatch units. Simultaneous

multithreading (SMT) is a feature that places multiple hardware contexts onto a

single physical core. The physical core’s resources are shared between hardware

contexts, although on some architectures some of the resources may be duplicated

for each context (for example, each hardware context might get its own L1 cache

but have to share the L2 cache with other contexts). In general, SMT can improve

the overall throughput of the system but each software thread has lower perfor-

mance than if it is able to execute alone on the physical core because of the com-

petition for core resources. If the application heavily shares data between threads

and benefits from very low latency communication between threads then SMT can

actually improve individual threads’ performance (the kmeans benchmark on our

AMD test system, shown in Figure A.4, is one such instance).

At the highest level of the hierarchy is the non-uniform memory access (NUMA)

node. A NUMA node contains a set of cores and an associated set of locally con-

nected memory. Programs can access memory on any NUMA node from any core

4

transparently without special consideration. The operating system decides which

NUMA node to allocate memory on. Memory accesses to the local memory have

a lower latency. NUMA nodes are connected by interconnect (IC) links, so mem-

ory accesses to remote memory travel over the IC links and have a higher latency.

Cores on the same NUMA node typically share an L3 cache, the memory con-

troller, and the IC links. So, if all the cores on a NUMA node are performing

very memory-intensive computations then the bottleneck will likely be the shared

memory subsystem and performance will suffer.

If software does not take into account all of these shared resources then con-

tention for the resources results in poor performance, sometimes resulting in slow-

downs of 2� or more! The following chapters analyze the performance effects in

detail and propose practical and effective solutions.

5

Chapter 2

A Model for Placement of
Workloads on Multicore NUMA
Systems1

Data center operators balance two objectives: providing a satisfactory experience

for the customer and efficiently allocating the hardware that runs customer virtual

instances or operator services. We believe that hardware provisioning should not

be a guessing game. No one should have to allocate more hardware than needed

just out of the fear that providing less could violate a service-level objective.

Unfortunately, mapping threads, or virtual CPUs (vCPUs), to physical cores on

multicore NUMA systems is still like playing a guessing game. Modern NUMA

systems consist of several nodes that share various resources. Cores within a node

may share SMT pipelines and caches. Nodes themselves share an interconnect,

which may be asymmetric, providing higher bandwidth for some links than for

others and for some directions of communication than for others (e.g., Figure 2.2).

The challenge of placing workloads on a NUMA system has to do with com-

plex interactions between the workload and the hardware. Our solution, presented

in this chapter, consists of two main contributions. First, is an abstract machine
model (Section 2.3) that abstracts hardware resources and provides a practical way

1This chapter is an expanded version of work currently under peer-review as [45]

6

to represent placements. Second, we build on the abstract machine model to build

a performance prediction model (Section 2.4) that predicts the performance of

important placements.

Attribution: Maxime Lorrillere conducted the experiments in Section 2.5 and

Section A.1, implemented the fast memory migration mechanism in Section 2.5,

and wrote Section 2.5 of the manuscript. I wrote the majority of the rest of the

chapter’s manuscript, was responsible for all areas of research, and conducted all

other experiments in the chapter.

2.1 Introduction & Motivation
Consider Figure 2.1a, which shows performance of MongoDB’s WiredTiger key-

value store [4] on a NUMA Intel machine. This workload, which runs a BTree

search using 24 threads, runs almost twice as fast when all of the threads are placed

on a single node, as opposed to being spread across two or more nodes. On Fig-

ure 2.1b, on the other hand, we see that the same workload configured with 16

threads on an AMD NUMA system runs much faster when it has four nodes at its

disposal, rather than two2. On the Intel system, this application prefers having all

of its threads co-located on a single NUMA node and using SMT because it enjoys

lower communication latencies. On the AMD machine, on the other hand, it suf-

fers from contention for shared resources when all of its threads are crowded on a

small number of nodes. How can a data center operator know, save for trying all

possible placements, that to achieve the best possible performance this container

should be placed on a single node on an Intel system but on four nodes (without

SMT) on an AMD system? This is an example of questions that we aim to answer

in this work.

The observations detailed in the previous paragraph are not new and were stud-

ied in our community for more than a decade [21–23, 36, 41, 46, 48, 49, 56, 57,

59, 69, 87, 101, 105, 107, 108]. Yet, as we elaborate in Section 2.2, we still do

not have a method for deciding how a particular placement, a mapping of vCPUs

to physical cores, on an arbitrary multicore system will affect performance of an

2With eight cores/node we could not fit all threads on a single node without creating contention
for CPU cycles.

7

1 node 2 nodes 3 nodes 4 nodes
0

50
0

10
00

15
00

20
00

25
00

Op
er

at
io

ns
/s

 (x
10

00
)

SMT
no-SMT

(a) WiredTiger, Intel

2 nodes 4 nodes 8 nodes
0

20
0

40
0

60
0

Op
er

at
io

ns
/s

 (x
10

00
)

SMT
no-SMT

(b) WiredTiger, AMD

Figure 2.1: Throughput of the WiredTiger key-value store on two NUMA
systems according to the number of nodes.

unknown workload.

We propose a general framework for reasoning about workload placement
on machines with shared resources. Our methodology is not tied to a particular

machine, specific shared resources or certain hardware performance events. We

abstract a multicore machine as a collection of shared resources, called scheduling

concerns, where each concern produces a score indicating how many threads use

the resource in a given placement. Vectors of scores uniquely identify distinct

placements: placements that differ with respect to resource usage. Our abstraction

relies on important simplifications (see Section 2.2.2) that enable us to dramatically

reduce the number of distinct placements from billions of all possible to dozens,

and makes the problem tractable.

8

We develop a methodology to automatically build a model for predicting per-
formance in all distinct Pareto-efficient placements, given a specification of a

machine’s scheduling concerns and observations of the workload at runtime. Our

model predicts performance to within 5% of actual on average. With the resulting

model users can make decisions such as “give application X as few NUMA nodes

as possible while making sure that its throughput remains above Y operations per

second”. Our framework is flexible: a previously unmodeled shared resource can

be added to the model as a new scheduling concern and the model is updated auto-

matically. We do not have to manually redesign the model for every new machine.

Many performance models similar to ours used hardware performance events

(HPE), observed on a single placement as model features [12, 46, 56, 59, 101, 107].

Our results show that single-placements HPEs cannot produce a reliable perfor-
mance model on complex modern systems. Our solution uses actual performance

observations on two different placements as model input features and does not re-

quire selecting hardware performance events that may correlate with performance3.

Our method requires running a workload for a short period of time in two

different placements before it can generate performance predictions, so it can be

used online. Nevertheless, migrating the workload from one placement to another

can be costly, because we may need to migrate memory between NUMA nodes.

To evaluate this effect, we analyze and improve on migration overheads in Linux.
Our results should help potential users decide when our method is viable for an

online deployment.

2.2 Background & Related Work

2.2.1 State of the Art

Workload placement on multicore systems has been explored for over a decade.

Early studies examined contention between single-threaded applications for a spe-

cific resource, such as the SMT instruction pipeline [46, 87], or shared caches and

memory controllers [43, 69, 101, 107]. Later work extended the techniques to

3HPEs, such as instructions/cycle may be used for performance measurements, but any other
application-specific metric is acceptable.

9

multithreaded workloads and to additional resource combinations, such as SMT

and shared caches [105], memory controllers and the shared interconnect [36, 59].

While laying a crucial foundation for our work, these prior techniques did not pro-

vide a general solution for reasoning about such systems.

For instance, the DIO algorithm [107] showed us how to avoid interference for

shared memory controllers. A simplified version of the algorithm is as follows:

monitor the memory-intensiveness of running threads using HPEs for a sampling

period, sort threads by memory-intensiveness, and then place threads on domains

sharing memory resources such that the aggregate memory-intensiveness is bal-

anced on domains. This algorithmic approach returns a new thread placement it

considers to be optimal. In the absence of unaccounted for resources affecting the

performance of the thread placement, the algorithm improves performance. Note

that it does not try to predict how much performance will improve, and only han-

dles one set of shared resources.

The AsymSched algorithm of Lepers et al. [59] showed us how to place ap-

plications on machines with asymmetric interconnects, by using knowledge of the

topology and the application’s traffic patterns to place threads on nodes with good

interconnect connectivity.

Other previous scheduling algorithms pursued a goal of placing threads that

share data near each other (e.g. sharing a cache or on the same NUMA node). Tam

et al. [93] provided a scheduling algorithm aimed at maximizing the benefit of

thread sharing. It is similar in approach to DIO. Thread sharing is measured online

and then the algorithm enacts a new thread placement that optimizes the overall

sharing on the system. As with DIO, it does not attempt to predict performance.

Techniques used in prior work did not allow for automatic combination of sev-

eral models. Every contention model required manual design: careful selection

of hardware performance events [36, 43, 56, 59, 107] or even manual crafting of

artificial “probe” workloads or “Rulers” [101, 105] that must be run side-by-side

with the target workloads to determine their sensitivity to contention.

Most existing scheduling algorithms have a common structure. As inputs, they

take knowledge of the hardware and some online metrics from the application (usu-

ally obtained from HPEs). Then as an output they suggest a thread placement that

should provide optimum performance with respect to the resources they individu-

10

ally account for.

A comprehensive solution should account for all the hardware resources that

matter to thread placement, but combining existing algorithms is difficult. There

is no baseline for comparing the importance of one algorithm over another. If the

algorithms suggest conflicting thread placements, then it is necessary to balance

the performance effect of each algorithm against the other, but as discussed the

algorithms can at best only say whether a given placement is better or worse than

another. They cannot predict the performance effect so the scheduler has no way

to know which algorithm should be followed or if a compromise is best.

One could try to develop a new algorithm that incorporates the ideas of the

original algorithms. It would require extensive manual testing and tuning to deter-

mine the best way to balance the concerns, would likely be sensitive to differing

workloads and hardware, and would require expert knowledge that covers both of

the original algorithms. All of these are serious downsides to the approach.

The state of Linux scheduler exemplifies these difficulties. The Linux sched-

uler attempts to address many thread placement concerns, but it does so in an ad-

hoc way with many heuristics and hacks. In one of our previous works we dis-

covered four major bugs in the Linux scheduler, which resulted in a 22% to 138x

performance impact in extreme cases [61].

System identification is a well-studied area in the field of control systems

[30, 31, 60]. The goal of system identification is to model a system’s outputs given

some number of inputs. For our purposes, the inputs would be the workload place-

ment and the dynamic application behavior and the output we want to model is the

application’s performance. The main difficulty is that system identification gener-

ally assumes that the inputs are easily measurable and real-valued, for example, an

input voltage. This does not apply in our case of workload placement. Deciding

exactly what to use as inputs to our model and how to quantify them is an important

and difficult problem on its own, and is discussed in the following sections. For

this reason we approached the problem with the field of machine learning in mind,

rather than system identification.

Dwyer et al. used an automated model-building methodology, where automati-

cally selected features (from all HPEs available on the machine) were fed into a va-

riety of machine-learning models [41]. However, the model predicted a rather sim-

11

ple outcome: a performance degradation when a target workload was co-scheduled

with an interfering one, and not the performance in different placements. Consis-

tent with our finding that HPEs observed in a single placement are poor model

features, Dwyer’s study reported rather poor prediction accuracy in many cases.

A recent system, Pandia [49], made significant advances. It accurately pre-

dicts relative performance of different workload placements on multicore NUMA

machines. It can also predict relative performance of an application with differ-

ent numbers of threads, but such predictions in Pandia require performance ob-

servations of six runs with different thread counts, which is difficult to do online

because most real applications cannot easily reconfigure their thread count on de-

mand. Despite addressing many limitations of previous work and producing re-

markably accurate performance predictions, fundamentally Pandia still relies on

the machine-specific modelling methodology that prevents easily transferring re-

sults to other systems. Pandia’s authors capture factors that contribute to perfor-

mance, such as cache contention, latency of communication, and load balancing,

in a set of machine-specific equations. If the model had to be adapted to another

machine, for example one with an asymmetric interconnect, the equations would

have to be manually reformulated.

We believe that investing that much effort into designing new models for ev-

ery new type of hardware puts an unreasonable burden on system engineers. Es-

sentially, while there is significant existing theory for scheduling with respect to

time-sharing [86, 100], there is not any developed theory or framework for space-

sharing. Instead, we sought a future-proof methodology that uses easily available

information about a machine’s shared resources and automatically builds an accu-

rate performance model.

2.2.2 Assumptions and Limitations

To make our methodology robust and extensible we make a few simplifying as-

sumptions, which we describe here.

Identically scored placements yield identical performance. As we explain in

Section 2.3, a placement is identified by how many vCPUs share each hardware

resource. We refer to the degree of sharing for a resource as the score; a vector

12

of scores thus identifies a placement. Placements with identical score vectors are

deemed to yield identical performance for a given workload. This statement as-

sumes that our machine model must be aware of all shared resources that might

yield variations in performance. This assumption is made by most solutions in this

space, because one can only model the factors of which one is aware. A radically

different approach would be a statistical technique that searches for an optimally

performing placement by trying a sufficient number of random placements [76].

Unfortunately, the best known techniques require trying thousands of placements

and assumes that performance in all placements fits a Generalized Pareto distribu-

tion — an assumption that does not hold in our case.

A workload is encapsulated in a virtual container. This assumption sits well

with many data centers that use virtualization for a variety of reasons. In our case,

it makes the problem easier to solve than if we viewed a workload as an amor-

phous collection of threads. With a thread-centric view, the degree of concurrency

can unpredictably change, either because of application logic or because of OS

scheduling decisions. When it changes, performance can be affected because of

intra-application scaling issues or because of the change in pressure on shared re-

sources. Combining both effects in a single model is cumbersome: we concluded

that for robustly accurate predictions that do not require offline runs we need to

train a separate model for each feasible number of vCPUs in a container. Managed

cloud environments present their offerings as a menu of virtual instances with a

fixed number of vCPUs per instance. For example, AWS offers a dozen instances

with the number of different core counts limited to ten [5]. So we can feasibly train

a separate model for each machine and each vCPU count. We are not interested in

finding the optimal number of threads or vCPUs for the workload; for that, users

can leverage other tools [49, 90].

We also assume that each vCPU of the container is performing roughly the

same type of work. This assumption is not very strict though; we have workloads

in our test set that have database maintenance threads or garbage collection threads

in addition to worker threads and these workloads still work well with our model.

A NUMA node is a unit of resource allocation. We assume that vCPUs are

allocated to containers in units of entire NUMA nodes. That is, given a virtual

13

Concern Score Resources Cost? Inverse
Perf?

L2/SMT
Number of L2
caches in use

L2 cache, instruc-
tion fetch and de-
code, and floating
point units

Y Y

L3
Number of L3
caches in use

L3 cache, memory
controller, and band-
width to DRAM

Y Y

Interconnect
Aggregate band-
width between
nodes in use

Interconnect band-
width

N N

Table 2.1: Scheduling concerns used on our AMD test system (shown in Fig-
ure 2.2).

container the goal is to decide across how many NUMA nodes to spread the con-

tainer; we do not co-locate different containers on the same node. We rely on this

observation to make the problem tractable. Modelling contention among different

containers on the same NUMA node is much more difficult. On the other hand, if

multiple containers on the same machine are mapped to different NUMA nodes,

they can co-exist without interference if the nodes used for different containers do

not share interconnect links, which is a configuration easy to enforce. We con-

firmed that this property holds experimentally and the results are shown in A.1.

We consider only balanced placements. A balanced placement is one where

the number of vCPUs is evenly divisible by any number of shared resource units

considered for placement. For instance, if we have shared L3 caches on the system,

we will only consider placements where the number of vCPUs sharing each L3

cache is equal. Uneven sharing can cause unpredictable performance effects on

the workload, for example by creating stragglers, so we choose to not model these

effects. Since we are already assuming that resources will be allocated to containers

in multiples of NUMA nodes the balance assumption is not very limiting.

14

(a) AMD Opteron 6272
node

Node 0

Node 6

Node 5

Node 3

Node 4

Node 2

Node 1

Node 7

(b) AMD interconnect

(c) Intel Xeon E7-4830
v3 node

Figure 2.2: The two systems used in this chapter. The first is a quad AMD
Opteron 6272. It has eight NUMA nodes (schematically shown in Fig-
ure 2.2a) connected with an asymmetric interconnect (Figure 2.2b) and a
total of 64 cores. Pairs of cores share the instruction front-end, L2 cache,
and floating point units. The second system is a quad Intel Xeon E7-
4830 v3 with four NUMA nodes (Figure 2.2c) and 96 hardware threads
(12 physical cores per node with SMT). The interconnect (not shown)
is symmetric.

2.3 Abstract Machine Model
A major obstacle to a solution to the virtual core placement problem is the sheer

number of possible placements. For 16 virtual cores on a 64 core system the num-

ber of possible placements is the combinations of 16 objects chosen from a set of

15

64, which is on the order of 1014.

It is essential to exploit the symmetry in the system to reduce the number of

placements to a manageable number. By this we mean that for most types of shared

resources it does not matter which shared resources are being used but how much of

the shared resources is available to the workload, and having a way to quantify this

would allow us to eliminate the vast majority of placements by only considering

those that are actually relevant with respect to performance.

We tackle this with the concept of scheduling concerns. A single schedul-

ing concern is responsible for a single hardware resource, or an inseparable set

of hardware resources that affect the performance of thread placements. The pri-

mary purpose of a scheduling concern is to provide a numerical score when given

a thread placement as input. The score represents the utilization of the particular

resource and it only depends on the vCPU placement, not the dynamic behavior

of a workload. A simple example is an “L2 cache” resource. The scheduling con-

cern for the L2 cache measures the utilization of L2 caches on a system where

there are multiple L2 caches shared by sets of cores, so the score would simply be

the number of L2 caches in-use by vCPUs. The score remains constant with re-

spect to the symmetry of the hardware resource the concern encompasses. So, two

placements might use completely different NUMA nodes but if they use the same

number of L2 caches then they will both have the same L2 cache score. A vector

of numeric scores for all scheduling concerns uniquely identifies each placement

that is distinct with respect to sharing of resources.

There are two additional pieces of information a scheduling concern needs in

order to identify the important placements. The first is whether the concern’s score

is proportional to the user’s cost, which is the case for resources like NUMA nodes

because fewer nodes (lower score) means more containers can be packed onto a

system. If a lower score for a resource only meant worse performance, we could

simply discard placements with a lower score for that resource (all other scores

being equal) from our list of important placements. But since we want users to

be able to make cost-performance trade-offs, placements with lower scores but

potentially lower cost could still be relevant. The second piece of information

needed by a scheduling concern is whether the resource encompassed by a concern

can ever have an inverse relationship with performance. For some resources, like

16

the L2 cache, a higher score is usually better, but for some workloads such as those

showing cooperative cache sharing, a smaller score (using fewer L2 caches) may

actually improve performance. For other resources, like the shared interconnect

described below, a lower score will never improve performance and would not

result in a lower cost for the user, so we can safely ignore placements with lower

scores when everything else is equal.

In practice, a single scheduling concern may cover multiple shared resources

because some resources are inseparable with respect to thread placement. Threads

sharing a physical core via SMT typically share a cache, the instruction front-end,

and functional units. In cases like this, a single scheduling concern is still sufficient.

Our AMD test system (shown in Figure 2.2) has multiple NUMA nodes, an

asymmetric interconnect, and a form of SMT. For this system we developed the

scheduling concerns shown in Table 2.1. For the L2/SMT and L3 concerns, the

score for a particular placement can be calculated directly from information pro-

vided by the operating system. The OS also provides information on the inter-

connect topology, but it is simpler and more accurate to measure the aggregate

bandwidth with a benchmark for each possible combination of nodes (we use

stream [67] for our measurements). Each concern is relatively simple, easy to

implement, and can be developed independently. Since it does not require a perfor-

mance expert, we envision the specification of scheduling concerns being provided

as part of system BIOS.

It is easy to see how scheduling concerns could be developed for other hard-

ware resources. For example, a system with asymmetric CPUs could have a CPU

concern where the score is the frequency of the CPUs in use, or a concern that

accounts for some nodes being closer to I/O links, where the score is 1 if the nodes

in use are near I/O links and 0 otherwise.

Next, from the concerns and hardware topology we need to derive the impor-

tant placements. An important placement must have three properties: (1) conform

to our balanced assumption, (2) be feasible: i.e., not assign more than one vCPU to

a single hardware thread, and (3) not be superseded by a strictly better placement.

Given a score s and the number of vCPUs v, the balance property is encoded

as v mod s = 0, and the feasibility property is encoded as v=s �Capacity, where

capacity is the number of hardware threads available in a single instance of the re-

17

source: e.g. there are eight hardware threads per L3 cache on our AMD test system.

We also define the Count of a concern as the total number of that resource on the

system, so our AMD test system has an L2Count of 32 for example. The first step

in generating important placements is generating the possible scores that satisfy the

balance and feasibility requirements individually. This is done for each scheduling

concern that can affect cost or have an inverse relationship with performance. For

our AMD test system this step is shown in Algorithm 1.

The next step is computing possible packings of the system, i.e. combina-

tions of placements that fill the entire machine. Recall that we already know how

many vCPUs each instance/container will use (based on our assumptions in Sec-

tion 2.2.2). Depending on the specific placement used, a container may or may

not use all available NUMA nodes. If it does not use all available NUMA nodes,

then more containers can be packed onto the system. This step computes the pack-

ings based on the possible scores generating in the previous step. Specifically, we

are using the score of the scheduling concern that corresponds to the highest level

of the hierarchy and our unit of resource allocation, which in our case is the L3

scheduling concern. The packings are generated with a recursive method shown in

Algorithm 2.

Next, as shown in Algorithm 3, packings that are duplicates and packings that

are not Pareto-efficient with respect to the interconnect score are filtered out (since

the interconnect concern does not affect cost and cannot have an inverse relation-

ship with performance). Because the L2 and L3 scores can affect cost or have an

inverse relationship with performance, placements are not filtered based on them.

Lastly, the placements that make up the remaining packings are “expanded” by

calculating which L2 scores are feasible for the number of nodes in use, and then

the complete placement is added to the list of important placements. If the sys-

tem in question has a deeper hierarchy, with another scheduling concern below

the L2 concern, for example, then the L2 scores would be expanded first and then

the scheduling concern below it would be expanded based on the expanded and

feasible L2 scores. In general, “score expansion” starts at the highest level of the

hierarchy not including the scheduling concern used in generating packings, and

then goes downward to the lowest level.

As an example of Pareto-efficient packing, on our AMD test system we know

18

Algorithm 1 Generating possible L2 and L3 scores
L3Scores = List()
for i 1;L3Count do

if v=i� L3Capacity^ v mod i = 0 then
L3Scores.append(i)

end if
end for
L2Scores = List()
for i 1;L2Count do

if v=i� L2Capacity^ v mod i = 0 then
L2Scores.append(i)

end if
end for
return L3Scores, L2Scores

we need to keep the four-node placement that uses nodes f2;3;4;5g because it

is the four-node placement with the highest interconnect score. Therefore the

placement using nodes f0;1;6;7g is also an important placement and will be kept

because it is the placement that can be packed with the best four-node place-

ment. Continuing, suppose that we consider a four-node placement that uses nodes

f0;1;4;5g. If we were to use this placement at runtime, the remaining set of four

nodes, potentially used for another workload, is f2;3;6;7g. Both of these place-

ments have poor interconnect scores, in part because there is a two-hop distance

between nodes f0;5g and nodes f3;6g. Instead, we can pack the machine with a

better combination of four-node placements: f0;2;4;6g and f1;3;5;7g. Using this

observation, the vectors for placements f0;2;4;6g and f1;3;5;7g will be kept over

the worse pair of four-node placements.

After this process is complete, we are left with the important placements. For

our AMD system we have 12 of them: two 8-node placements (one sharing L2

caches and one not), two 2-node placements (with the best and second-best in-

terconnect score), and eight 4-node placements (half sharing L2 caches, half not,

and various interconnect scores relevant for packing). Our Intel test system (Fig-

ure 2.2), on the other hand, only uses an L2/SMT concern and an L3 concern.

With 24 virtual cores per container, it has seven important placements which are

all of the placements that satisfy the balance and feasibility constraints: a one node

19

Algorithm 2 Generating packings of placements
Packings = List()
procedure MAKEPACKINGS(L3Scores, NodesLeft, CurrentPacking)

for all L3S in L3Scores do
if L3S > len(NodesLeft) then

continue
end if
for all n in Combinations(NodesLeft, L3S) do

Remaining = NodesLeft - n
NewPacking = CurrentPacking.append(n)
if len(Remaining) > 0 then

MakePackings(L3Scores, Remaining, NewPacking)
else

Packings.append(NewPacking)
end if

end for
end for

end procedure
return Packings

placement sharing L2 caches, two 2-node placements, two 3-node placements, and

two 4-node placements.

2.4 Performance Predictions
Automatic model-building techniques learn how to map a set of features describing

data to a predicted outcome. The outcome we would like to model is a vector of

performance values in all important placements, relative to a baseline placement.

For example, if there are three important placements, and the performance in the

second and third is 20% and 30% better than that in the first baseline placement,

the performance vector will be: [1:0;0:8;0:7]. Our data elements are executions

of workloads in different placements, and the features are some metrics describing

the execution.

One way to frame the problem is to predict a performance category. That is,

assuming that our target workloads can be categorized according to their perfor-

mance vectors, we can train the model to predict the category and then use the

20

Algorithm 3 Generating important placements
Nodes = range(0, L3Count)
Packings = MakePackings(L3Scores, Nodes, List())
Remove duplicates from Packings
for all (a,b) in Permutations(Packings, 2) do

if L3 Scores in a 6= L3 Scores in b then
continue

end if
aIC = Sorted interconnect scores of a placements
bIC = Sorted interconnect scores of b placements
ToRemove = True
for i in range(0, len(aIC)) do

if aIC[i]> bIC[i] then
ToRemove = False

end if
end for
if ToRemove then

Remove a from Packings
end if

end for
ImportantPlacements = List()
for all Placements p in Packings do

n L2Count=L3Count
L3S = L3 Score of p
for all L2S in L2Scores do

if n �L3S� L2S then
ImportantPlacements.append(p)

end if
end for

end for
return ImportantPlacements

category’s average vector as the predicted outcome.

We begin by presenting an implementation of this idea (Section 2.4.1). Our first

method runs a workload in two or three configurations in order to narrow down the

performance category to which it belongs. Although this is not the final method we

use, it demonstrates the fundamental benefits of using actual observations of perfor-

mance as predictive features of the model. Our final method (Section 2.4.2) uses

21

performance observations in two configurations as input features into a machine

learning (ML) model. Section 4.4 shows that relying only on hardware perfor-

mance events (HPE) that may correlate with performance is not nearly as effective

as using the measurements of actual performance.

2.4.1 Predicting Performance Categories

Although there is an infinite number of possible workloads and a complex interac-

tion between scheduling concerns, we observed that workloads fall into a relatively

small number of categories where each category has very similar performance vec-

tors and is representative of a specific relationship to scheduling concerns. For

example, workloads that are not memory intensive and are not adversely affected

by sharing SMT contexts would belong to the same category (where thread place-

ment does not matter). Another category would be one where using fewer NUMA

nodes and fewer physical cores greatly hurts performance, and so on.

To discover these categories, we use the clustering algorithm k-means, which

uses performance vectors as the elements. It partitions the elements into k clusters

so as to minimize the within-cluster sum of squares (i.e., Euclidean distance) be-

tween the vectors. We select the value of k that maximizes the average Silhouette

coefficient [6, 79] over all data points, which is the standard practice in the field.

The set of applications we experimented with are drawn from the NAS Parallel

Benchmark suite [11], Parsec suite [20], the Metis map-reduce benchmarks [65],

and BLAST [7]. Also included are the Linux kernel compile gcc benchmark, two

Spark graph workloads, TPC-C [95] and TPC-H [96] on Postgres and a WiredTiger [4]

BTree benchmark. Workloads were run using lxc containers and configured to

use 16 vCPUs on the AMD system and 24 vCPUs on the Intel system (Fig. 2.2).

Within containers, the number of application threads is set so as to achieve >70%

CPU utilization on each core, typical of what is done in practice.

The workloads on our Intel test system were clustered into six groups. Figure

2.3 shows the performance by placement for the workloads found in three example

clusters. Considering the similarity of performance curves in each cluster, it is

clear that clustering has worked well in this case. An inspection of the remaining

clusters and the clusters produced on our AMD test system showed similar results.

22

Figure 2.3: Performance by placement for workloads in three example clus-
ters on Intel. The x-axis shows the placement ID. The y-axis shows
performance relative to the baseline placement (#2).

This procedure helps to determine the quality and completeness of the training

workloads. If k-means cannot create good clusters, then the training set could be

incomplete. In our case the quality of clusters is good overall, but some clusters,

e.g., the one with kmeans and WTbtree, contains only two elements and could

benefit from adding other workloads.

It also leads to an intuitive method for making performance predictions: run

the workload in several placements by trying them during the first few seconds of

the execution without interrupting the workload, measure the performance in each,

23

and based on those results use the process of elimination to determine the category

to which it belongs. Once we know the category we can use category’s average

performance per-placement as the predictions.

The workload must first be run on the baseline placement; our performance

measurements are all normalized to this placement so it is required but does not

provide any information about the workload. Every placement tried thereafter

helps narrow down the category to which the workload belongs (if the performance

is outside of the range of performance values seen during training for a particular

category then we can conclude it does not belong to that category) until only the

workload’s predicted category remains. The full algorithm for determining a work-

load’s category, which we call the iterative method, is shown in Algorithm 4.

For an arbitrary system, the worst-case number of measurement placements

needed to complete Algorithm 4 is min(n�1;k) where n is the number of impor-

tant placements and k is the number of clusters. This worst-case happens when

only a single cluster can be eliminated per measurement placement. Real-world

systems are likely to have a much better worst-case though, such as our test systems

which only require three placements in the worst-case. This is because there are

likely to be some correlations between clusters and correlations between schedul-

ing concerns. For example consider a system that has cluster A, cluster B, and

some number of other clusters. Cluster A prefers having more L3 caches and more

L2 caches, and because memory intensiveness affects both L2 and L3 cache prefer-

ences there is no cluster that prefers more L3 caches and prefers fewer L2 caches.

Cluster B prefers more L2 caches but does not care how many L3 caches it has. A

single measurement placement showing that a workload prefers fewer L2 caches

eliminates both cluster A and cluster B. Similarly a single placement could elimi-

nate both cluster A or B and clusters that prefer fewer L2 caches. In this way we

are likely to avoid the theoretical worst-case on real systems.

On our test systems the iterative method requires trying only two or three place-

ments (including the baseline) to determine a workload’s category and produces

fairly accurate predictions. For example, 29 out of the 41 workloads on our Intel

test system have predictions within 6% of the actual performance, but the other

workloads have at least one placement that has a prediction error around 20%.

The key insight we draw from the iterative method is that performance mea-

24

surements from multiple placements have very high predictive power due to the

fact that workloads tend to belong to distinct categories with respect to their perfor-

mance behavior. This motivates our approach of using performance measurements

as inputs into a ML model, which is described in the next section.

Algorithm 4 Iterative method for determining performance category
for all Cluster c in Clusters do

for each Placement p do
min = min. performance within Cluster for p
max = max. performance within Cluster for p
Interval of c for placement = [min, max]

end for
end for
Excluded = List()
Run baseline placement and measure performance
while len(excluded) < len(c)-1 do

Pop next placement from p
Run next placement and measure performance
for each Interval for placement do

if Performance is outside interval then
Append cluster belonging to interval to excluded

end if
end for
if Performance is outside all intervals then

Find closest interval and exclude all other clusters
end if
if All clusters excluded then

Return no cluster
end if

end while
return cluster not in excluded

2.4.2 Predicting Performance with Machine Learning

While the method of predicting performance categories using the process of elimi-

nation is intuitive and robust, it uses a category’s average as the predicted outcome,

which is a rather rough measure. We found that we can achieve higher accuracy

with a more refined modeling technique. Our final approach directly predicts per-

25

formance vectors using a machine learning model, a multi-output Random Forest

regressor. In other words, the model produces one predicted output per placement.

As inputs, the model uses performance measurements observed in two different

placements: a baseline and one additional. These placements were selected during

the model training as those yielding the highest accuracy.

The random forest model has significantly better accuracy for this problem

than other regression models like neural networks, support vector machines, and

nonlinear regression. Many regression models rely on an assumption that the data

fits a particular shape (for example, logarithmic or polynomial) but the data in our

case has many instances of step-function and piece-wise behavior. A random forest

requires no assumption of the shape of the data. Neural networks do not have this

assumption either but they tend to require much more training data to be effective.

An alternative to regression is a search-based machine learning approach. In

this case, a machine learning algorithm could continually try placements until the

goal is reached. The benefit of this approach is that potentially it would not need

to rely on training workloads. A major downside though is that it would require

many more placements to be tried which requires migrating memory and would

have a prohibitive performance cost. For this reason we focused on the regression

approach.

Finally, to evaluate our new approach relative to the best known practices we

also train a multi-output Random Forest regressor using HPEs observed in a single

baseline placement as input features. The best baseline placement was identified

during training.

Modern machines have many hundreds of HPEs, some more than 1000 [103].

Sampling that many online cannot be done without large sampling errors. One

option is to include the list of important HPEs in the specification of each schedul-

ing concern. This assumes that the engineer providing the specification somehow

knows which counters would work best — an assumption we found to be not in

the spirit of maximally automating the prediction process. Another approach is to

obtain measurements with all possible HPEs during training and use feature se-

lection methods to identify the best predictors, similarly to [41]. This approach is

automatic, but increases the training time from hours to weeks. For example on our

Intel machine with nearly 1000 performance events, the time to measure all coun-

26

ters for our training set while ensuring acceptable sampling error would amount to

66 days.

Instead we used a combination of the manual and automatic approaches. We

started with a set of plausible features (41 HPE derived metrics on our Intel test

system and 25 on our AMD test system) covering cache, memory, TLB, intercon-

nect, and pipeline behavior, which are metrics commonly used in similar work.

We then used Sequential Forward Selection [39, 54] (SFS) to pick the best ones.

SFS involves iterating over all potential features, selecting the one that improves

prediction accuracy the most, and then repeating this process until prediction accu-

racy no longer improves. On the AMD test system the SFS process results in four

features: the L3 cache misses per cycle, the L1 cache miss rate per instruction, the

TLB misses per cycle, and the cache sharing percentage (calculated from the states

of cache lines as they are evicted). On the Intel test system, three features were

selected: the percentage of stall cycles where at least one memory request was

pending, the cache sharing percentage (calculated from the states of cache lines as

they are inserted), and the L2 cache misses per instruction caused by the prefetcher.

We also tried adding both performance measurements and HPEs as model

inputs, but this did not improve accuracy at all on our AMD system and only

marginally improved accuracy for two workloads on our Intel system. In the end

we had two model variants to compare: the first one used as inputs the actual per-

formance measurements observed in two placements, and the second one used only

the HPEs observed in a single placement.

2.4.3 Results

The full per-benchmark performance prediction results for the AMD test system

are provided in the appendix in Figure A.4 and for the Intel test system in Figure

A.5. The figures for the benchmarks discussed in this section are also provided

here for ease of reference.

The results are per-application cross-validated. For example, when training

the model that will be used for predicting a Spark workload neither the data from

spark-cc (a Spark connected components algorithm run on the LiveJournal database)

nor spark-pr-lj (a PageRank algorithm run on the LiveJournal database) is included

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

Placement

Actual
Predicted: HPEs

Predicted: Perf Measurements

Figure 2.4: Prediction results for postgres-tpcc on the AMD test system.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

Placement

Actual
Predicted: HPEs

Predicted: Perf Measurements

Figure 2.5: Prediction results for spark-pr-lj on the Intel test system.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

Placement

Actual
Predicted: HPEs

Predicted: Perf Measurements

Figure 2.6: Prediction results for kmeans on the AMD test system.

28

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

Placement

Actual
Predicted: HPEs

Predicted: Perf Measurements

Figure 2.7: Prediction results for canneal on the Intel test system.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6 7 8 9 10 11

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

Placement

Actual
Predicted: HPEs

Predicted: Perf Measurements

Figure 2.8: Prediction results for dc.B on the AMD test system.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

Placement

Actual
Predicted: HPEs

Predicted: Perf Measurements

Figure 2.9: Prediction results for ft.C on the Intel test system.

29

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

Placement

Actual
Predicted: HPEs

Predicted: Perf Measurements

Figure 2.10: Prediction results for freqmine on the Intel test system.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

Placement

Actual
Predicted: HPEs

Predicted: Perf Measurements

Figure 2.11: Prediction results for kmeans on the Intel test system.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1 2 3 4 5 6

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

Placement

Actual
Predicted: HPEs

Predicted: Perf Measurements

Figure 2.12: Prediction results for WTbtree on the Intel test system.

30

in the training.

Overall the accuracy when using only the actual performance measurements

as model features is high. The predicted performance is within 4.4% of actual

on average on the AMD system, and within 6.6% on Intel. Postgres running the

TPCC benchmark (postgres-tpcc) on the AMD test system (Figure 2.4) and spark-

pr-lj on the Intel test system (Figure 2.5) are examples where the predictions are

very accurate.

There are a few cases where the training set did not include any workloads that

behaved similarly to the predicted benchmark, which results in poor predictions.

For example kmeans on the AMD system (Figure 2.6), which was the only bench-

mark in our training set that preferred SMT, or canneal on the Intel system (Figure

2.7). As explained in Section 2.4, we can identify weaknesses in the training set

using the performance clusters, so it is straightforward to figure out where extra

time and effort could be spent on adding new training workloads.

Prediction accuracy when using only the HPEs from a single placement was

a lot less reliable. On the AMD system it produced good results overall, but the

accuracy was still noticeably worse for dc.B (Figure 2.8) compared to the model

variant that relied only on actual performance measurement. The real shocker is

the results on Intel, where the model relying only on HPEs produced many poor

predictions. It completely missed the performance trend for ft.C (Figure 2.9) and

freqmine (Figure 2.10), produced errors of over 40% for kmeans (Figure 2.11)

and WTbtree (Figure 2.12), and is noticeably worse for several other workloads.

Using both the actual performance measurements and HPEs yielded small accuracy

improvements on the Intel system, but made no difference on the AMD system.

An example of why HPEs observed in a single placement could have poor

predictive power, and one of the reasons why the Intel system produced worse pre-

dictions, is predicting the effect of inter-thread communication latency. There is a

huge latency difference for communication between a single-node placement and

placements including more than one node. For some applications, reduced inter-

thread communication latency when all threads are running on a single node has a

major performance impact, as is the case for WTbtree. Separating the sensitivity to

latency from overall memory intensiveness (which can be measured by the cache

miss rate) is difficult to do with HPEs. Similarly, it is also very difficult to deter-

31

mine if a workload’s working set will fit in a given number of L3 caches by only

measuring HPEs on a single placement. We conclude that, contrary to prior be-
lief, single-placement HPE observations are not reliable features for modelling
performance on multicore NUMA systems.

2.5 Using the Model in Practice
There are many ways in which data center operators can use our model. To il-

lustrate one potential use case we set up a scenario where the user would like to

pack as many instances of a given virtual container into a physical server while

respecting a performance target. To assess the overheads, we measure the costs

of container migration on our test systems (the overhead of prediction inference is

negligible).

2.5.1 A Potential Use Case

In our experiment we use virtual containers of three types: one running WiredTiger

with a B-tree search workload, another running Postgres with the TPC-H workload,

and another running Spark with the PageRank workload on a LiveJournal database.

We have many containers of each type, and our goal is to pack as many of them as

we can per physical server without violating a performance goal.

The performance goal can be specified in terms of an application-level metric

such as transactions per second or a generic metric such as instructions-per-cycle.

The placement policy is agnostic to the metric used and only requires that the

application make this metric available at runtime. For clarity of presentation, we

simply set the performance goals to correspond to 90%, 100% and 110% of the

performance observed in the baseline placement.

We compare four hypothetical container placement policies. The first policy,

referred to as ML, is based on our techniques. It decides how many nodes to allo-

cate to the container based on performance observations in two placements and the

model presented in the previous section. It runs the workload in two placements

during the first few seconds of the execution without interrupting the workload,

and then migrates it into the best predicted placement. To separate various aspects

of performance, the results shown here do not include the migration overhead; it

32

is studied separately in the next section. The second policy, Conservative, is a

naı̈ve policy that allocates the entire machine to each instance, allowing only one

instance per machine. The third policy, Aggressive, is another simple policy that

fills the system with as many instances as possible, maximizing machine utilization

at the risk of performance violations. For example, our AMD system allows up to

four 16-core instances and our Intel system up to four 24-core instances. Neither

Conservative nor Aggressive pin vCPUs to cores, allowing Linux to perform the

mapping in the way it wishes, and possibly creating unneeded contention. As an al-

ternative, we also evaluate a more sophisticated fourth policy, Smart-Aggressive.

This policy is similar to Aggressive, except each instance is pinned to the best min-

imum set of nodes, which we define as having the highest interconnect bandwidth.

This policy requires an analysis of the interconnect topology in order to find the

correct set of nodes.

We could not make a fair comparison to any other method presented in earlier

work. As we explained in Section 2.2, most earlier models targeted very different

systems and most did not predict performance vectors, so we could not apply them

directly.

We evaluate the policies by measuring how many instances of the same work-

load they were able to pack per machine (higher is better) and the degree of vi-

olation of the performance goal as the percent of the target (lower is better). All

workloads were run using lxc containers and configured to use 16 vCPUs on the

AMD system and 24 vCPUs on the Intel system. Figures 2.13 and 2.14 show the re-

sults for the three container types. The bars show the number of instances packed

(left y-axis), while the “stars” shows the deviation from the target performance

goal, expressed as percentage (right y-axis).

The ML policy always meets the performance goal while in most cases packing

more instances per machine than the conservative scheduler. The conservative pol-

icy not only wastes resources, but also, surprisingly, may cause performance target

violations (Figs. 2.13a and 2.14b), because the Linux scheduler may map vCPUs

unevenly to shared resources, causing contention where it could be avoided.

The aggressive policy packs a maximum possible number of containers per

machine, at the cost of performance target violations, up to 46% with WiredTiger

on AMD, and 43% with Spark on Intel. It is surprising that even when the aggres-

33

Benchmark Memory
(GB)

Fast
Migration (s)

Default
Linux (s)

BLAST 18.5 3.0 5.9
canneal 1.1 0.3 3.9

fluidanimate 0.7 0.3 2.3
freqmine 1.3 0.3 4.2

gcc 1.4 0.3 2.8
kmeans 7.2 1.5 6.5

pca 12.0 2.8 10.0
postgres-tpch 26.8 5.8 117.1
postgres-tpcc 37.7 14.9 431.0

spark-cc 17.0 3.7 139.9
spark-pr-lj 17.1 3.8 137.0

streamcluster 0.1 0.1 0.4
swaptions 0.01 0.1 0.0

ft.C 5.0 1.3 19.4
dc.B 27.3 5.4 51.7

wc 15.4 3.4 19.5
wr 17.1 3.6 18.9

WTbtree 36.3 6.3 43.8

Table 2.2: Migration performance on the AMD system, compared to the de-
fault Linux migration method. The amount of memory includes pro-
cesses’ memory and the page cache associated with the container.

sive policy packs the same number of containers per machine as the model-based

policy, it still often reports a higher violation percent. That is because this pol-

icy allows virtual containers to share NUMA nodes. Smart-aggressive addresses

this shortcoming, but even that policy can cause performance violations (e.g., 20%

for WiredTiger on AMD), because it does not take into account all ways in which

workload placement might affect performance.

2.5.2 Memory Migration Overhead

Memory migration in Linux is known to be inefficient [59]. Our migration tech-

nique is based on that proposed by Lepers et al. [59]. Their method freezes the

application, parses its memory map and migrates pages in parallel using a collec-

34

Model
Predictions

Conservative Aggressive Aggressive
(Smart)

0

1

2

3

4

in
st

an
ce

s/
m

ac
hi

ne

Performance goal
90%
100%
110%

0

10

20

30

40

%
 o

f v
io

la
tio

ns
 (*

)

(a) WiredTiger

Model
Predictions

Conservative Aggressive Aggressive
(Smart)

0

1

2

3

4

in
st

an
ce

s/
m

ac
hi

ne

Performance goal
90%
100%
110%

0

3

6

9

12

%
 o

f v
io

la
tio

ns
 (*

)

(b) Postgres (TPC-H)

Model
Predictions

Conservative Aggressive Aggressive
(Smart)

0

1

2

3

4

in
st

an
ce

s/
m

ac
hi

ne

Performance goal
90%
100%
110%

0

6

12

18

24

%
 o

f v
io

la
tio

ns
 (*

)

(c) Spark (PageRank)

Figure 2.13: Instances packed per machine (left y-axis) and performance goal
violation (as %, right y-axis) on the AMD system.

35

Model
Predictions

Conservative Aggressive Aggressive
(Smart)

0

1

2

3

4

in
st

an
ce

s/
m

ac
hi

ne

Performance goal
90%
100%
110%

0

5

10

15

20

%
 o

f v
io

la
tio

ns
 (*

)

(a) WiredTiger

Model
Predictions

Conservative Aggressive Aggressive
(Smart)

0

1

2

3

4

in
st

an
ce

s/
m

ac
hi

ne

Performance goal
90%
100%
110%

0

4

8

12

16

%
 o

f v
io

la
tio

ns
 (*

)

(b) Postgres (TPC-H)

Model
Predictions

Conservative Aggressive Aggressive
(Smart)

0

1

2

3

4

in
st

an
ce

s/
m

ac
hi

ne

Performance goal
90%
100%
110%

0

10

20

30

40

%
 o

f v
io

la
tio

ns
 (*

)

(c) Spark (PageRank)

Figure 2.14: Instances packed per machine (left y-axis) and performance goal
violation (as %, right y-axis) on the Intel system.

36

tion of worker threads. We improve on the method in [59] by reducing the locking

overhead when migrating shared pages and by creating mechanisms for migrating

a page cache, which is not migrated at all by either Leper’s method or by default

Linux. Table 2.2 show the total time needed to migrate the workloads used in x2.4.

Note that Default Linux migration time does not include the time needed to migrate

the page cache, because this is not supported, and yet this can be a very large frac-

tion of migration overhead (93% with BLAST, 75% with TPC-C and 62% on TPC-

H). The overhead of migration highly depends on the workload: a few big files in

the page cache are more likely to generate contention during migration than many

small files, because each file has its own memory map. Processes sharing memory

will incur a higher per-page migration cost, as is the case with Postgres. Overall,

we found that migrating a large amount of memory can be done in a few seconds,

and is order of magnitude faster than default Linux migration method (38� faster

for Spark). One exception is Postgres TPC-C, whose migration takes 14.9 sec-

onds. This benchmark has an atypically large number of processes and threads:

167 and 33067 respectively! Linux’s mechanism for updating the cpuset, which

changes when migration is performed, has per-task overhead and is very slow for

an application with such an extreme task count.

A drawback of this method is that it requires freezing the container during

migration in order to reduce contention on some critical kernel locks. As a result, it

is not suitable for interactive latency-sensitive workloads. In this case, we have the

option of not freezing the container and instead throttling the bandwidth given to

the migration process so as to reduce the impact on the running application. Thus,

the migration takes more time but with a smaller impact on the running container.

Using this method, the overhead of migration for the WiredTiger workload was

between 3% and 6%, and the migration took 60 seconds4.

Overall, we observe that the migration overhead is proportional to the amount

of memory used by the container, except in cases with extremely high thread

counts. Using the container’s memory footprint, the user can estimate whether the

cost of migration would permit an online deployment of the container placement

algorithm, or if it is preferable to use the model offline for placement of recurring

4WiredTiger is the only workload we could evaluate in the interactive mode because it is the only
one able to report performance during the execution.

37

jobs.

2.6 Summary
Modern multicore systems have a complex hierarchy of shared resources and per-

formance can vary wildly depending on how virtual CPUs are mapped to hardware

contexts. Operators waste resources and money by using conservative and sub-

optimal placement policies.

We have shown a solution to this problem using a methodology to abstract a

system’s shared resources, identify important placements, and predict their perfor-

mance. We presented a method for predicting performance based on multi-output

regression. The best accuracy is achieved when observations of actual performance

on two placements are used as model features. Hardware performance events, con-

ventionally used as features for predictive models, turned out to be not as predictive

as previously thought. Our method can lead to very significant advantages in ma-

chine utilization while keeping performance guarantees.

CPU architecture is continually changing, often by sharing resources between

cores in new ways, in order to continue scaling the core count. AMD’s newly

introduced Zen architecture [32] has L3 cache sharing separate from sharing the

memory controller. Intel’s Haswell-E architecture has asymmetric links between

NUMA nodes through its cluster-on-die feature [71], which has unique perfor-

mance implications different from other asymmetric architectures. The flexibility

of our methods means that they can be used on systems like these or future archi-

tectures without significant retooling by an expert.

38

Chapter 3

An SMT-Selection Metric1

SMT is an architectural technique used to improve the overall performance of a

wide range of applications [97]. It is designed to improve CPU utilization by ex-

ploiting both instruction-level parallelism and thread-level parallelism. Chapter 2

addressed scheduling with respect to SMT in conjunction with other scheduling

concerns, but it assumed that the number of vCPUs a workload uses is already

known beforehand. This chapter, on the other hand, focuses on how to choose the

level of parallelism of an application running on an SMT system. In other words,

Given a multithreaded application, will performance improve if additional hard-

ware contexts are available via SMT as we increase the number of threads? Pre-

cisely, we are considering situations where the number of physical cores is fixed,

the number of hardware threads/contexts used per physical core varies (that is,

different SMT-levels), and the number of software threads is set to the number

of available hardware threads. Because some applications scale poorly to higher

thread counts and because the utilization benefit of SMT is application dependent,

using SMT can sometimes hurt performance significantly in this scenario.

We propose an SMT-selection metric (SMTsm) to answer this question, and

it is the primary contribution of this chapter. It does not require any changes to

applications or operating systems and incurs low overhead. The metric is mea-

sured online while applications are being run. Our metric-based approach relies

on HPEs and measures the tendency of a workload to run better or worse in more

1This chapter is a modified version of work previously published in [46]

39

hardware contexts. SMTsm can be easily integrated in any user-level scheduler or

even kernel schedulers to provide insights and intelligent decisions about the right

SMT level to be used by a workload. SMTsm can be measured periodically and

hence allows adaptively choosing the optimal SMT level for a workload as it goes

through different phases. We also show how this metric can be used in a scheduler

or a user-level optimizer to help guide scheduling decisions.

The rest of the chapter is organized as follows: Section 3.1 provides back-

ground information and motivating examples, Section 3.2 describes the SMT-selection

metric and its rationale. Section 3.3 presents the experimental methodology adopted

using two processor architectures. Performance evaluation is presented in Sec-

tion 3.4. Section 3.5 describes ways the SMT-selection metric can be used. Finally,

related work is examined in Section 3.6 and concluding remarks and future work

are discussed in Section 3.7.

3.1 Background & Motivation
With SMT, the processor handles a number of instruction streams from different

threads in the same cycle. The execution context, like the program counter, is

duplicated for each hardware thread, while most CPU resources, such as the exe-

cution units, the branch prediction resources, the instruction fetch and decode units

and the cache, are shared competitively among hardware threads. In general the

processor utilization increases because there are more instructions available to fill

execution units and because instructions from other hardware threads can be exe-

cuted while another instruction is stalled on a cache miss. Since the threads share

some of the key resources, it is performance-efficient to schedule threads with anti-

correlated resource requirements.

Several studies have shown that SMT does not always improve the performance

of applications [51, 66, 81]. The performance gains from SMT vary depending on

a number of factors: The scalability of the workload, the CPU resources used

by the workload, the instruction mix of the workload, the cache footprint of the

workload, the degree of sharing among the software threads, etc. Figure 3.1 shows

the performance of three benchmarks with and without SMT (4-way SMT) on the

8-core POWER7 microprocessor. We first run the application with eight threads at

40

SMT1. Then we quadruple the number of threads and enable SMT4. Note that for

Equake, SMT4 degraded the performance of the application, while it improved the

performance of EP. MG’s performance was oblivious to whatever SMT level was

used.

Equake MG EP
0

0.5

1

1.5

2

2.5

3

SMT1
SMT4

Applications

Pe
rf

or
m

an
ce

 N
or

m
al

iz
ed

 to
 S

M
T1

Figure 3.1: Comparison of performance with SMT1 vs. SMT4 for three
applications on an 8-core POWER7 system. Each application is run
alone in a separate experiment. The application uses eight threads un-
der SMT1 and 32 threads under SMT4 and threads are bound to their
own hardware contexts.

In general, workloads that benefit from SMT contain threads that under-utilize

certain processor resources as well as threads are able to make use of those re-

sources. Reasons why such ”symbiotic” situations occur include:

1. A large number of cache misses: For a non-SMT processor, when an instruc-

tion miss occurs, no more instructions are issued to the pipeline until more

instructions have been brought to the instruction cache. A similar situation

happens in the case of a data cache miss, the stream of instructions ceases ex-

ecution until the missing data is brought to the cache. Such situations could

result in delays ranging from tens to hundreds of cycles. SMT enables one or

more other hardware threads to execute their instruction streams when such

delays occur; hence, maximizing the use of the processor pipeline.

2. Long chains of instruction dependencies: Inter-instruction dependencies limit

the instruction-level parallelism of applications. Based on the layout of the

41

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

L1 misses/1000 instructions

S
M

T4
/S

M
T1

 S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

CPI

S
M

T4
/S

M
T1

 S
pe

ed
up

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

Branch Mispredictions/1000 instructions

S
M

T4
/S

M
T1

 S
pe

ed
up

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

% of VSU Instructions
S

M
T4

/S
M

T1
 S

pe
ed

up

Figure 3.2: Speedup on SMT4/SMT1 plotted against cache misses, CPI,
branch-mispredictions, and fraction-of-floating-point/vector instruc-
tions for 27 benchmarks on the POWER7 processor. Eight threads are
used under SMT1 (on eight cores), 32 threads are used under SMT4,
and threads are bound to their own hardware contexts.

multiple pipeline stages, compilers attempt to generate independent instruc-

tions that can be executed in parallel. When dependencies exist, the next

instruction ceases execution until it can receive the results of the previous

instruction. So if the workload exhibits very long chains of instruction de-

pendencies, SMT could help to fill the gaps by allowing other independent

instruction streams from other threads to execute in the otherwise idle exe-

cution units.

3. A large number of branch mis-predictions: When the branch history table

and the branch target buffer are not large enough to service a large number of

branch mis-predictions, the execution units remain idle. This is again another

opportunity for SMT to allow other hardware threads to use the execution

units while the branch mis-prediction is being resolved.

The workloads in these examples are expected to benefit from SMT, because

one or more threads leave resources idle, but other threads have sufficient diversity

in the instruction mix to put these resources to use. At the same time, if a workload

42

consists of threads that are individually well optimized for a super-scalar processor

(e.g., they do not leave resources idle), this workload is not expected to benefit

from SMT, because there are no resource gaps to fill.

While SMT allows executing multiple streams of instructions in the same cycle,

it also introduces more resource contention among the hardware threads that are co-

scheduled on the same core. If any of the shared resources becomes a bottleneck,

all threads contending for the resource will suffer, and SMT will not be beneficial.

Properties of workloads that create contention for resources include:

1. A homogeneous instruction mix: If one or few types of instruction are more

common than others, the workload may create contention for the functional

unit responsible for this type of instruction. For example, workloads that

are floating-point intensive are likely to gain little from simultaneous multi-

threading.

2. Intensive use of the memory system: Irrespective of instruction mix, a work-

load stressing the memory system (e.g., because of poor cache locality) may

cause memory-related stalls to become even longer and more frequent on an

SMT processor due to increased contention for the memory bandwidth. As

a result, processor resource utilization could decrease instead of increasing.

In summary, we intuitively understand that workloads that benefit from SMT

have threads that under-use resources, which other threads are able to use, while at

the same time not creating contention for these resources. At the same time, being

able to predict what is the right SMT level to use for a given workload is not a

trivial task. This requires a thorough knowledge of both the internals of the work-

loads and the internals of the hardware they run on. The complexity of predicting

the right SMT level increases as the number of supported SMT levels increases.

For instance, IBM’s POWER7 processor [55] has 4-way SMT multithreading and

exposes to applications three different levels: SMT disabled or SMT1 level, 2-way

SMT or SMT2 level, and 4-way SMT or SMT4 level. Although this technology

provides more flexibility, it also introduces more complexity since the user needs

to decide what is the right SMT level for their running application.

43

In an attempt to see if it is possible to predict performance improvements from

SMT by just looking at applications’ characteristics, we plotted the speedup ob-

tained at SMT4 vs. SMT1 against four main application metrics on a POWER7

machine: L1 cache misses, branch mispredictions, cycles per instruction (CPI),

and fraction of floating point operations. The experiment was conducted using

27 representative multithreaded benchmarks on a POWER7 system (more details

about the benchmarks used will be presented in subsequent sections). Figure 3.2,

shows that there is no correlation between any of the four metrics and the SMT

speedup.

One option for SMT tuning is to compare application performance with and

without SMT offline and then use the configuration resulting in better performance

in the field. However, this method is not effective if the hardware used in the field

is not the same as that used for original testing, and if the application behavior sig-

nificantly changes depending on the input. Another option is to vary the SMT level

online and observe changes in the instructions-per-cycle (IPC), but this method has

limited applicability, because not all systems allow changing the SMT level online.

Furthermore, IPC is not always an accurate indicator of application performance

(e.g., in case of spin-lock contention).

3.2 The SMT-Selection Metric
The rationale behind the SMT-selection metric is based on how well the instruc-

tions of a workload can utilize the various pipelines of a processor during each

cycle. An ideal workload for SMT would have a good mix of instructions that

are capable of filling all available functional units at each cycle. Figure 3.3 shows

the pipeline of a generic processor core. In each cycle, the processor fetches from

the instruction cache a fixed number of instructions. These instructions are then

decoded and buffered. As resources become available, instructions can be dis-

patched/issued to the various execution/functional units in an out-of-order manner.

Issue ports are the pathways through which instructions are issued to the various

functional units, which can operate independently. If the instructions that are is-

sued consist of a mix of load, store, branch, integer, and floating point instructions

and there are little data dependencies between them, then all functional units will

44

Fetch Logic

Decode Logic

Dispatch, Reorder Buffer & Issue Logic

E
xecution U

nit

Load / S
tore

Load / S
tore

Data Cache

Data Translation

B
ranch

Instruction Cache

E
xecution U

nit

E
xecution U

nit

Issue Ports

Figure 3.3: A generic processor execution engine.

be able to be used concurrently, hence increasing the utilization of the processor.

We define the term ideal SMT instruction mix to mean a mix of instructions that

is proportional to the number and types of the processor’s issue ports and functional

units. With an ideal mix, the processor is able to execute the maximum number of

instructions supported. In order for SMT to increase utilization there needs to be

instructions available from all the hardware contexts to use as many issue ports as

possible. Consider a multithreaded application whose vast majority of instructions

are fixed point (integer) instructions. Running the application with more hardware

contexts will not help because the fixed point units were already occupied most of

the time with one hardware context. On the other hand, if we have an application

with an ideal SMT instruction mix, then SMT should improve performance since

the processor will have more opportunities to fill all the execution units.

Since SMTsm must be able to predict whether an application benefits from

additional SMT resources as we increase the number of threads, it must also in-

clude some measure of scalability within the application itself. After all, if there

are software-related scalability bottlenecks, the application will not run better with

increased number of threads irrespective of hardware. We observe that instruction

mix, which is crucial for predicting hardware resource utilization in SMTsm, is

45

also a good indicator of software scalability. An application that spends significant

time spinning on locks will have a large percentrage of branch instructions and a

high deviation from the ideal SMT mix.

Equation 3.1 shows how to calculate the SMTsm metric for the generic proces-

sor discussed above, where Pi denotes a unique issue port, N is the total number of

issue ports, DispHeld is the fraction of cycles the dispatcher was held due to lack

of resources, TotalTime is the wall-clock time elapsed, and AvgT hrdTime is the

average time spent by each hardware thread. Smaller metric values indicate greater

preference for a higher SMT. The metric consists of three factors: i) the instruction

mix’s deviation from an ideal SMT instruction mix, ii) the fraction of cycles that

the dispatcher was held due to lack of resources, and iii) the ratio of the wall-clock

time elapsed to the average CPU time elapsed across all threads. fPi is the fraction

of instructions that are issued to Pi. For example, to calculate fP1, the number of

instructions issued through port 1 is divided by the total number of instructions.

SMT sm = (
N�1

∑
i=0

(fPi�1=N)2)1=2

�DispHeld

� (TotalTime=AvgT hrdTime)

(3.1)

The second factor of the SMT-selection metric is the fraction of cycles that

the dispatcher was held due to lack of resources. The meaning of resources is

architecture dependent and may include many items but it should primarily refer

to the issue queues of the execution units. If the issue queues are filling up to the

point where the dispatcher is held, then having additional instruction streams to

dispatch from is not going to be useful. This factor is important to have in addition

to the instruction mix because it indirectly captures the effect of instruction-level

parallelism and cache misses. The number of cycles the dispatcher is held due to

resources is easily obtained through HPEs in many modern processors.

The final factor of the metric is the ratio of the wall-clock time elapsed to the

average CPU time elapsed per hardware thread. This measures scalability limi-

tations manifested through sleeping or Amdahl’s law as opposed to busy waiting.

46

This factor does not have a direct relationship with SMT preference, but scalability

is an important factor to consider since additional software threads are needed to

use the available SMT hardware contexts.

In the following subsections, we illustrate how SMTsm metric is measured for

two different processor architectures: IBM’s POWER7 and Intel’s Nehalem Core

i7.

3.2.1 SMTsm on IBM’s POWER7 Processor

In a given cycle, the POWER7 [55] core can fetch up to eight instructions, decode

and dispatch up to six instructions, and issue and execute up to eight instructions.

The core has 12 execution units: two fixed point units, two load/store units, four

double-precision floating-point pipelines, one vector unit, one branch unit, one

condition register (CR) unit, and one decimal floating point pipeline. POWER7

processors support up to 4-way SMT. In other words, up to four hardware contexts

can concurrently use the core. If there is only a single software thread running on a

core, the processor automatically runs the core at SMT1 which gives the hardware

thread access to resources that would be partitioned or disabled at higher SMT

levels. Similarly, if there are only two software threads on a core then the core runs

at SMT2.

Instruction Fetch Unit (IFU)

Instruction Dispatch Unit

CR Issue

Queue

Branch Issue

Queue

Unified Queue 0

(UQ 0)

Fixed Point (FP0)

Load/Store (LS0)

Vector Scalar (VS0)

Basic FP,

VSX FP, VMX FP,

VMX Complex,

VMX Simple,

64-Byte Store

Unified Queue 1

(UQ 1)

Fixed Point (FP1)

Load/Store (LS1)

Vector Scalar (VS1)

Basic FP, VSX FP,

Decimal FP,

Permute,

64–byte Store,

128–byte Store

CR Unit Branch Unit

Issue Ports

Figure 3.4: IBM POWER7 out-of-order execution engine.

Figure 3.4 shows that an issue port in POWER7 is tied to a type of instruc-

47

tion. For instance, a fixed point instruction always uses a fixed point issue port.

There are a total of eight issue ports: 1 port corresponds to a conditional register

(CR) instruction, 1 port corresponds to a branch instruction, the remaining 6 issue

ports are divided equally between the two unified issue queues, UQ0 and UQ1.

Through each UQ, up to one load/store instruction, one fixed point instruction (FP)

and one vector scalar (VS) instruction can be issued concurrently. It is important

to note here that the CR unit is a special unit. It is tightly tied to the branch unit.

It is also not heavily used in general. This unit has been mainly designed to avoid

sending the compare instructions through the FP unit to avoid tying branch predic-

tion to the FP unit. Therefore, we consider in our metric both the CR and branch

units as one execution unit. So, an ideal SMT instruction mix for the POWER7

architecture would consist of 1/7 loads, 1/7 stores, 1/7 branches, 2/7 FP instruc-

tions, and 2/7 VS instructions. The loads and stores are separated because they

rely on separate resources like the load and store buffers. To measure the sec-

ond term of the equation (dispatcher held) in POWER7, the hardware performance

event PM DISP CLB HELD RES can be used. The SMT-selection metric for the

POWER7 processor is shown in Equation 3.2.

P7SMT sm = ((fL�1=7)2 +(fS�1=7)2

+(fBR�1=7)2

+(fV S�2=7)2 +(fFP�2=7)2)1=2

�DispHeld

� (TotalTime=AvgT hrdTime)

(3.2)

3.2.2 SMTsm on Intel’s Nehalem Processor

On the Nehalem Core i7, the number of issue ports equals the maximum number of

instructions that can be issued in a cycle (see Figure 3.5). In contrast to POWER7,

each of the six issue ports is used for a variety of unrelated instructions [94]. The

unified reservation station serves as a single scheduler for all the execution units.

It is responsible for assigning instructions to the different execution units. The

48

Unified Reservation Stations (36 Entries)

Integer ALU &
Shift

Integer ALU &
LEA

Integer ALU &
ShiftLoad Store

Address
Store
Data

FP Multiply

FP Divide

SSE Integer ALU
Integer Shuffles

FP AddInteger ALU &
Shift

Integer ALU &
Shift

SSE Integer
Multiply

Branch

FP Shuffle

SSE Integer ALU
Integer Shuffles

Port 1

Data Cache

Port 0

Port 2

Port 3

Port 4

Port 5

Figure 3.5: Intel Nehalem out-of-order execution engine.

core can issue up to 6 instructions per cycle. Three of them are memory opera-

tions (load, store address and store data), and the other three are computational

instructions (floating point, branch, and integer operations). Intel’s Nehalem core

supports 2-way SMT.

Equation 3.3 shows the SMT-selection metric for Intel’s Nehalem Core i7 pro-

cessor. The term fPi refers to the fraction of instructions that have been issued

through port i (i 2 [0;1;2;3;4;5]). Since the issue ports on Nehalem are not re-

lated to a single type of instruction, we simply measure the number of instructions

issued to each port. All instructions map to a single issue port, except for integer

ALU instructions which map to three ports, so the mix of instructions sent to each

issue port is sufficient for calculating the SMT-selection metric. Dispatch held can

be obtained using RAT STALLS event with the rob read port unit mask [52].

Ci7SMT sm = (
5

∑
i=0

(fPi�1=6)2)1=2

�DispHeld

� (TotalTime=AvgT hrdTime)

(3.3)

49

3.3 Experimental Methodology

3.3.1 System Configuration

Experiments were conducted on an AIX/POWER7 system and a Linux/Core i7

(Nehalem) system.

The AIX/POWER7 system uses AIX 6.1.5 and two 8-core POWER7 chips.

For the single-chip experiments, the benchmarks were restricted to run on one

8-core chip. The POWER7 CPU is clocked at 3.8 GHz and the system has 64

GB of RAM. The C, C++, and Fortran benchmarks were compiled with IBM XL

compiler 11.1.0.6 using these flags: -O3 -qstrict -qarch=auto -qsimd=auto -q64

and -qsmp=omp. The MPI programs use the IBM Parallel Operating Environment

version 5.2.2.3. the Java benchmarks use the 64-bit IBM JVM version 1.6.0. The

SMT levels on POWER7 can be changed without rebooting the system by running

the smtctl command with privileged access.

The Linux/Core i7 system uses Linux kernel 2.6.34 with 3GB of RAM and a

four cores Intel Core i7 965 clocked at 3.2 GHz with two SMT threads per core.

GCC 4.4.5 was used to compile the benchmarks with the flags -O3 -march=native

and -fopenmp where appropriate. Unlike POWER7, the SMT level can only be

changed by rebooting and modifying a BIOS setting. In our experiments SMT2 is

always enabled in the BIOS. Therefore to simulate SMT1 we only use one soft-

ware thread per core. This better represents typical use cases because SMTsm is

designed to be used dynamically at run-time.

3.3.2 Benchmarks

The experiments use a diverse set of benchmarks to capture the variations in char-

acteristics of various workloads. The benchmarks are drawn from the NAS Parallel

Benchmarks (NPB) v3.3.1, the PARSEC Benchmark Suite v2.1, the SSCA2 bench-

mark, the STREAM synthetic benchmark, the SPEC OMP2001 benchmark suite

v3.2 and two commercial benchmarks. Due to compatibility issues we were not

able to run all of the benchmarks on the POWER7 system. Due to time constraints,

we focused mostly on the POWER7 system, because it supports a higher SMT

level than Nehalem; as a result we did not run all of the benchmarks on Nehalem.

50

A brief description of the benchmarks used is outlined below.

� The NAS parallel benchmark Suite [11] is a set of programs that have been

initially designed to evaluate the performance of supercomputers. Both the

MPI and OpenMP versions were used on AIX/POWER7 but only the OpenMP

versions were used on Linux/Core i7.

� PARSEC benchmarks [20]: PARSEC stands for Princeton Application Repos-

itory for Shared-Memory Computers. It is a set of programs designed to

evaluate the performance of Chip-Multiprocessors (CMPs). PARSEC bench-

marks mimic multithreaded applications from different fields such as recog-

nition, mining, and large-scale commercial applications. PARSEC does not

officially support the AIX operating system, so only a handful of the bench-

marks were able to be used on the AIX/POWER7 system.

� SSCA2 benchmarks [10]: SSCA, which stands for the Scalable Synthetic

Compact Applications, is a computational graph theory benchmark that uses

OpenMP. It consists of four kernels with irregular access to a large, directed,

and weighted multi-graph. This benchmark is characterized by integer oper-

ations, a large memory footprint, and irregular memory access patterns.

� STREAM [67] is a synthetic benchmark designed to measure memory band-

width and also uses OpenMP. To obtain reasonable running times for our

experiments, we have increased the the default array size and number of it-

erations to 4577.6 MB and 1000 respectively.

� SPEC OMP benchmark Suite [82] is adapted from the SPEC CPU2000 bench-

marks. Its goal is to evaluate the performance of openMP applications on

shared memory multi-processors. We have used the SPEC OMP experiments

only on the AIX/POWER7 system.

� DayTrader [1] is a Websphere benchmark application that emulates an on-

line stock trading system. The application simulates typical trading opera-

tions such as login, viewing portfolios, looking up stock quotes, and buying

or selling stock shares. The benchmark consists of a websphere front-end, a

DB2 database, and a load generator. The DayTrader client is a Linux Intel

51

Xeon machine running the JIBE (Websphere Studio Workload Simulator),

which simulates a specifiable number of concurrent browser clients. We

simulated 500 clients for stressing the DayTrader application running on the

DayTrader server. This number of clients was sufficient to keep the server

continuously busy with waiting requests to be processed.

� SPECjbb2005 is a Java server benchmark from the Standard Performance

Evaluation Corporation [2] based on the TPC-C benchmark specifications.

It simulates a 3-tier system in a JVM with emphasis on the middle tier.

� SPECjbb05-contention is a custom benchmark derived from SPECjbb2005.

The primary change introduced in SPECjbb05-contention is that all worker

threads operate on a single warehouse instance instead of each worker thread

operating on its own warehouse instance. This introduces synchronization

contention that is not present in SPECjbb2005.

3.4 Evaluation
In all of the experiments conducted, the number of software threads used is cho-

sen to be the same as the number of available hardware threads/contexts in the

OS instance. For example, in the AIX instance on one 8-core POWER7 chip, 32

software threads were used at SMT4, 16 software threads were used at SMT2, and

8 software threads were used at SMT1. Similarly, on the Linux instance on the

4-core Core i7 machine, 8 software threads were used at SMT2, and 4 software

threads were used at SMT1.

The metric was originally developed and tested on the POWER7 system. After

finalizing the metric, it was evaluated on the Core i7 machine.

3.4.1 SMT-Selection Metric (SMTsm) Evaluation

Figure 3.6 shows the relationship between the SMT-selection metric measured at

SMT4 and the speedup obtained on SMT4 relative to SMT1 on the AIX/POWER7

system. We can see a clear correlation between the metric value and the speedup,

and the correlation is strong enough to predict the optimum SMT level in most

cases. If we set a threshold close to the value of 0.07 then we can be confident that

52

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25
0

0.5

1

1.5

2

2.5

3

Ammp

Applu

Apsi

Equake

Fma3d

Gafort

Mgrid

Swim

Wupwise

Blackscholes

BT

CG_MPI

Dedup

EP

EP_MPI

Fluidanimate

FT_MPI

IS

IS_MPI

LU_MPI

MG

MG_MPI SSCA2
Stream

Streamcluster

SPECjbb

SPECjbb_contention

Daytrader

SMT-selection Metric @ SMT4

S
M

T
4

/S
M

T
1

 S
p

e
e

d
u

p

← Threshold Line

Figure 3.6: SMT4/SMT1 speedup vs. metric evaluated @SMT4 – AIX in-
stance on an 8-core POWER7 chip.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

blacksholes fluidanimate dedup SSAC2 specjbb_contention idealP7SMTmix

% Loads % Stores % Branches % FXU %VSU

1.82 1.35 0.86 0.78 0.25

SMT4/SMT1 Speedup

Figure 3.7: Instruction mix of five benchmarks – AIX instance on an 8-core
POWER7 chip.

53

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ammp Applu
Apsi

Equake

Fma3d
Gafort

Mgrid

Swim

Wupwise

Blackscholes

BT

CG_MPI

Dedup

EP

EP_MPI

FT_MPI

IS
IS_MPI

LU_MPI

MG
MG_MPI

SSCA2

Stream

Streamcluster

SPECjbb

SPECjbb_contention

Daytrader

SMT-selection Metric @ SMT4

S
M

T
4
/S

M
T

2
 S

p
e
e
d

u
p

← Threshold Line

Figure 3.8: SMT4/SMT2 speedup vs. metric evaluated @SMT4 – AIX in-
stance on an 8-core POWER7 chip.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ammp

AppluApsi

Equake

Fma3d

Gafort

Mgrid
Swim

Wupwise

Blackscholes

BT
CG_MPI

Dedup

EP

EP_MPI

Fluidanimate

FT_MPI

IS

IS_MPI

LU_MPI

MG

MG_MPI

SSCA2
Stream

Streamcluster

SPECjbb

SPECjbb_contention

Daytrader

SMT-selection Metric @ SMT2

S
M

T
2
/S

M
T

1
 S

p
e
e
d

u
p

Figure 3.9: SMT2/SMT1 speedup vs. metric evaluated @SMT2 – AIX in-
stance on an 8-core POWER7 chip.

54

any application with a metric greater than the threshold will perform better or the

same at SMT1 than SMT4, and applications with a metric less than the threshold

benefit or are not harmed by using SMT4. This is true for 93% of the benchmarks

evaluated. Applications that fall to the left of the threshold are likely to prefer

SMT4, with only two of the evaluated benchmarks having a metric less than the

threshold and performing slightly worse at SMT4.

In Figure 3.7, we clearly see a correlation between the instruction mix and

the SMT4/SMT1 speedup. We have selected representative benchmarks from the

set of benchmarks studied. As we move from the left of the figure to the right,

the speedup going from SMT1 to SMT4 decreases from 1.82 to 0.25, while the

instruction mix tends to be more and more dominated by one or two functional

units.

The metric versus SMT4/SMT2 speedup on AIX/POWER7 is shown in Fig-

ure 3.8. Once again a threshold of 0.07 provides good separation. All of the

benchmarks with a metric greater than the threshold prefer SMT2. Three bench-

marks have a metric less than the threshold and a speedup less than 1 but greater

than 0.9. All of the remaining benchmarks have a metric below the threshold and

a speedup greater than 1.

The experiment shown in Figure 3.9 is the same as the previous experiments

except it uses the SMT2 over SMT1 speedup. In this case, the SMT-selection

metric is not capable of always making an accurate prediction. For metric values

below 0.07 or above 0.19, we can predict the optimum SMT level. However, for

metric values between 0.07 and 0.19, it is not possible to predict the application’s

SMT preference.

Figure 3.10 shows the SMT-selection metric compared to the SMT2/SMT1

speedup on the Linux/Core i7 system. In this experiment, a stronger correlation

than in any of the AIX/POWER7 experiments is observed, but there is one outlier

on the far right which is Streamcluster from PARSEC. With only eight software

threads running at SMT2, there is less synchronization contention so only a few of

the benchmarks prefer SMT1 over SMT2. In this case there is not much motivation

for SMT optimization but the experiment does show that the SMT-selection metric

can be adapted to other architectures.

55

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

blackscholes_pthreads

bodytrack

bodytrack_pthreads

BT CGdedup

EP

facesimferret

fluidanimate

freqmine

FT
LU

raytrace

SP

streamcluster

swaptions

UA

vips

SSCA2

x264

SMT-selection Metric @ SMT2

S
M

T
2
/S

M
T

1
 S

p
e
e
d

u
p

← Threshold Line

Figure 3.10: SMT2/SMT1 speedup vs. metric evaluated @SMT2 – Linux
instance on a quad-core Core i7 system.

3.4.2 SMTsm Evaluation at a Lower-SMT Level

The previous subsection evaluated how well the SMTsm estimated performance

speedup is, when the SMTsm is measured at the highest supported SMT level

(SMT4). In this subsection, we evaluate the metric when the application is running

at a lower SMT level, and the metric is used to predict the speedup at a higher SMT

level.

Figures 3.11 and 3.12 show the same experiments presented in subsection 3.4.1

but with the SMTsm measured at the lowest supported SMT level. The experiments

did not show a good correlation between the metric and the speedup. This is not

surprising, as the metric is not able to foresee scalability limitations caused by more

threads at a higher SMT level; the metric is only capable of detecting a slowdown

when it is happening. At SMT1 we are not able to accurately capture contention

as it was the case at SMT4, so the metric breaks down at SMT1. Therefore, it is

important to use the metric at the highest SMT-level available. Moreover, in all

SMT-capable processors, the highest SMT-level is always used as the default since

many multi-threaded applications benefit from SMT. This motivates further the use

of the metric at higher SMT-levels to predict whether going to a lower SMT-level

56

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5

1

1.5

2

2.5

3

Ammp

Applu

Apsi

Equake

Fma3d

Gafort

Mgrid

Swim

Wupwise

Blackscholes

BT

CG_MPI

Dedup

EP

EP_MPI

Fluidanimate

FT_MPI

IS

IS_MPI

LU_MPI

MG
MG_MPI

SSCA2
Stream Streamcluster

SPECjbb

SPECjbb_contention

SMT-selection Metric @ SMT1

S
M

T
4

/S
M

T
1

 S
p

e
e
d

u
p

Figure 3.11: SMT4/SMT1 speedup vs. metric evaluated @SMT1 – AIX in-
stance on an 8-core POWER7 chip.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

bodytrack

bodytrack_pthreads

BT

canneal

CG
dedup

EP

facesim

fluidanimate

freqmine

FT

LU
raytrace

SP

streamcluster

swaptions

UA

SMT-selection Metric @ SMT1

S
M

T
2
/S

M
T

1
 S

p
e
e
d

u
p

Figure 3.12: SMT2/SMT1 speedup vs. metric evaluated @SMT1 – Linux
instance on a quad-core i7 system.

57

benefits the running workload.

3.4.3 Metric Evaluation Across Chips

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

EP

BT

MG

IS

Dedup
Fluidanimate

Blacksholes

SSCA2
Streamcluster

Stream

SPECjbb_contention

SPECjbb

CG_MPI

FT_MPI

EP_MPI

IS_MPI

Ammp

AppluApsi

Equake

Fma3d

Gafort

Mgrid

Swim

Wupwise

SMT-selection Metric @ SMT4

S
M

T
4

/S
M

T
1
 S

p
e
e
d

u
p

← Threshold Line

Figure 3.13: SMT4/SMT1 speedup vs. metric evaluated @SMT4 – AIX in-
stance on two 8-core POWER7 chips.

Figures 3.13, 3.14, and 3.15 give the results for the SMTsm prediction experi-

ments on an AIX instance running on a two-chip POWER7 system. For these ex-

periments there are 16 cores, which means 64 software threads are used at SMT4,

32 threads are used at SMT2, and 16 threads are used at SMT1. Using two chips in-

troduces two new variables that the metric must compensate for to remain accurate.

First, there is a performance penalty for cross-chip communication, so applications

that are more sensitive to NUMA effects may affect the metric differently. Second,

the number of running software threads is doubled at all SMT levels compared to

the single chip case, so the effect of scalability is amplified.

For the SMT4/SMT1 case presented in Figure 3.13, the results are similar to

the SMT4/SMT1 experiment with only one chip. However, there are more bench-

marks that are mis-predicted. We also notice, that applications that have a metric

near the threshold are more likely to be mispredicted. Another difference with the

single chip experiment is that more applications prefer SMT1 over SMT4. This is

58

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

EP

BT

MG

IS

Dedup

Fluidanimate

Blacksholes

SSCA2

Streamcluster

Stream

SPECjbb_contention

CG_MPI

EP_MPI

MG_MPI

Ammp

AppluApsi

Equake

Fma3d

Gafort

Mgrid

Swim
Wupwise

SMT-selection Metric @ SMT4

S
M

T
4
/S

M
T

2
 S

p
e
e
d

u
p

← Threshold Line

Figure 3.14: SMT4/SMT2 speedup vs. metric evaluated @SMT4 – AIX in-
stance on two 8-core POWER7 chips.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Blackscholes

BT
CG_MPI

Dedup

EP

EP_MPI

Fluidanimate

FT_MPI

IS

IS_MPI

LU_MPI

MG
MG_MPI

SSCA2

Stream

Streamcluster

Ammp

Applu

Apsi

Equake

Fma3d

Gafort

Mgrid

Swim

Wupwise

SPECjbb_contention

SPECjbb

SMT-selection Metric @ SMT2

S
M

T
2
/S

M
T

1
 S

p
e
e
d

u
p

Figure 3.15: SMT2/SMT1 speedup vs. metric evaluated @SMT1 – AIX in-
stance on two 8-core POWER7 chips.

59

expected since with more software threads, more contention for synchronization

resources will be introduced, and hence more scalability limitations.

The SMT4/SMT2 results (Figure 3.14) look better than the SMT4/SMT1 re-

sults, but there is still only a small difference in metric values between SMT4-

preferring applications and SMT1-preferring applications. Figure 3.15 demon-

strates that SMT2/SMT1 prediction is ineffective, the same as in the single chip

case.

SMT preference prediction is important for large systems with many cores be-

cause more applications will be hindered by SMT as synchronization overhead

and contention over CPU resources overtake the benefits of SMT. The results show

that the SMT-selection metric is still useful at 16 cores, but more work needs to be

done since the metric is less accurate at 16 cores than at 8 cores. One possibility is

that the scalability detection aspect of the metric starts to break down with a large

number of threads. This is supported by the fact that the metric works better at

SMT4/SMT2 prediction with 16 cores, since the change in the number of software

threads is smaller than when predicting SMT4/SMT1 speedup.

3.5 Applying the SMT-Selection Metric
The SMT-selection metric can be used by operating systems to guide scheduling

decisions. It can also be used by user-level optimizers or application tuners to

dynamically adjust the SMT level of the underlying system to improve the perfor-

mance of running applications.

To use the SMT-selection metric, the formula must first be adapted to the target

architecture. In section 3.2, we presented the metric for the IBM POWER7 and

Intel Nehalem architectures. The metric can be ported to other architectures in

similar ways. The threshold for changing the SMT level needs to be determined

for each new system. This can be achieved by running a representative set of

workloads, recording the SMT speedups and the observed SMTsm metric values

for each workload, as we did in section 3.4. Once the (metric, speedup) values are

gathered, the threshold can be obtained automatically using statistical techniques.

We describe two methods to obtain a good SMTsm threshold for deciding when a

change in SMT level would benefit the performance of a given application.

60

3.5.1 Using Gini Impurity to Decide on a Good SMTsm Threshold

Gini impurity [77] is a measure of how well separated or clustered a set is. We look

for a separator (potential threshold) that leads to the lowest overall Gini impurity

as follows:

1. Re-label the (metric, speedup) tuples into the form (metric, i) with (i 2

f0;1g), setting i=0 if the speedup is less than 1, and i=1 if the speedup is

greater than or equal to 1.

2. Divide the tuples into 2 sets fL=Left-set, R=Right-setg based on whether the

metric value is to the left or to the right of the separator value.

3. Calculate the Gini impurity of the left-set (IL) and the right-set (IR) as shown

in equations 3.4 and 3.5, where jL0j denotes the size of the left-set with

i = 0 (i.e., speedup < 1), jL1j denotes the size of the left-set with i = 1 (i.e.,

speedup � 1), and jLj is the size of the entire left set (jLj = jL0j+ jL1j).

Similar notation is used with the right set.

IL = 1�
�
jL1j

jLj

�2

�

�
jL0j

jLj

�2
(3.4)

IR = 1�
�
jR1j

jRj

�2

�

�
jR0j

jRj

�2
(3.5)

4. Calculate the overall Gini impurity using equation 3.6.

Impurity =
jLj
jL+Rj

� IL +
jRj
jL+Rj

� IR (3.6)

An impurity of 0 indicates that the set is perfectly separated, i.e. all of the

sample points to one side of the separator have a speedup greater than or equal

to 1, and all of the remaining points are on the other side. A high impurity value

means that the selected separator is not a good classifier, and vice versa.

61

Figure 3.16 shows the results of using Gini impurity to provide a suitable metric

threshold value at which to decide on performing a change in SMT level to improve

performance, when using SMT4/SMT1 speedup data on POWER7. The dotted

vertical lines mark the range of optimal thresholds. The figure also displays two

easy ways to observe the qualitative fitness of the SMT-selection metric on a given

system and a set of benchmarks. First, is how low the impurity is at its lowest

point, which represents how good a prediction can be made. In the figure, the

lowest impurity is 0.23 which is good, as verified by the fact that only four of the

benchmarks were misclassified with the threshold obtained by this method (refer

to Figure 3.6 which has four points to the left of the separator with a speedup

below 1). Second, is how large the range of optimal thresholds is. If the range is

very small, then a new application with a metric beyond that range is likely to be

mispredicted.

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

Separator

Im
p

u
ri

ty

Figure 3.16: Total overall Gini impurity for potential thresholds of the
SMTsm metric for SMT4/SMT1 speedup on POWER7.

3.5.2 Using the Average PPI (Percentage Performance Improvement)
Method to Decide on a Good SMTsm Threshold

With this method we are trying to estimate how much performance improvement

we would obtain if we switched from the default SMT level (e.g., SMT4) to a lower

62

one (e.g., SMT1) as dictated by different thresholds. The threshold with the highest

estimated Percentage Performance Improvement (PPI) is deemed the best. In order

to do this, for each potential SMTsm threshold value, and for each benchmark, we

estimate a PPI value as follows:

� If the benchmark’s measured SMTsm value is less than the threshold in ques-

tion, then its PPI is set to 0. Essentially, this means that the benchmark is

not expected to benefit from a lower SMT setting, so its expected PPI from

switching to lower SMT level is zero.

� If the benchmark’s measured metric value is greater than the threshold value

in question, then the PPI is set to ((1
SMT 4=SMT 1 speedup � 1) � 100. In other

words, if the benchmark is expected to benefit from a lower SMT setting

based on the current threshold, we calculate PPI as the performance im-

provement at SMT1 relative to SMT4 (expressed in percent).

Then, we take the average of the PPIs over the whole set of benchmarks as the

Y-value to plot against that threshold value. This gives us the average expected

performance improvement at each threshold level. Examining this data, we can

choose the best threshold – the one that gives us the highest PPI.

Figure 3.17 shows an example of using this method for SMT4/SMT1 perfor-

mance improvement prediction on POWER7. The results are similar to those using

Gini impurity, but this methods provides the following additional benefits:

1. It can be used to easily show how much performance improvement the SMTsm

metric can provide. The Gini impurity method only shows that the metric is

working, but cannot show potential improvements.

2. It also gives a view of potential PPIs over a range of threshold values. Even

though the range of optimal metric thresholds is relatively small in both

methods, we can see from Figure 3.17 that there is actually a large range

of potential threshold values where we have an average PPI that is greater

than 15%. This means that a new application whose metric value falls into

this range is not likely to experience a severe negative effect from using this

metric value as a threshold for deciding on a change in SMT level.

63

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

Threshold

A
ve

ra
ge

 Im
pr

ov
em

en
t o

ve
r

D
ef

au
lt

(%
)

Figure 3.17: Average SMT4/SMT1 percentage performance improvement of
all the benchmarks vs. SMTsm values – AIX instance on POWER7.

3. This method can also provide a better threshold than the Gini impurity method

in some cases, because Gini impurity does not consider the amount of speedup.

For example, there could be a few benchmarks with speedup values just be-

low one, and a benchmark with a very large speedup just to the right of them.

In this case Gini impurity would suggest putting the threshold to the left of

all the mentioned benchmarks so as to classify more benchmarks correctly,

whereas this method would suggest putting the threshold to the right, thereby

preserving the large speedup in return for minimal slow-downs in the other

benchmarks.

3.6 Related Work
SMT job schedulers and SMT performance characterization comprise the majority

of related work. The SMT job schedulers are designed to find high performing

(often referred to as symbiotic) co-schedules from a larger selection of running

applications. They do not attempt to optimize the SMT level itself like our SMT-

selection metric. The SMT performance characterizations do investigate the effect

of the SMT level but none of them propose a general metric or algorithm for op-

timizing it. Additionally, most of the previous work focuses on single-threaded

64

applications while our work studies multi-threaded applications.

Mathis et al [66] evaluate and analyze the effect of SMT2 on the POWER5 CPU

with single-threaded applications. To measure the SMT2 gain of an application,

they simply run one copy of the application per available hardware thread/context

with and without SMT. The authors found that most of the tested applications have

a moderate performance improvement with SMT. They also found that applications

with the smallest improvement have more cache misses when using SMT. This

result is less applicable to multi-threaded applications because the total amount of

work and data does not increase as the number of threads increases, like it does

when you run more copies of a single-threaded application and because threads of

a multi-threaded application may share data.

Ruan et al [80] evaluate and analyze the effect of SMT on network servers but

do not attempt any optimization. They found that the overhead of using an SMP-

capable kernel sometimes outweighs the benefit of SMT, but this is irrelevant today

since all modern server CPUs are at least dual-core. The authors also discovered

that SMT can sometimes hurt performance when there is more than one CPU which

supports our claim that the SMT level should be optimized.

Snavely and Tullsen [87] describe a job scheduler for SMT systems called

SOS (Sample, Optimize, Symbios). The goal of SOS is to choose an effective

co-schedule of applications from a pool of ready-to-run applications. SOS has a

sampling phase where it tries many different co-schedules and measures a perfor-

mance predictor metric from hardware counters. Then, it has a symbiotic phase

where it runs the co-schedules with the best predicted performance. The authors

evaluated several different predictors and found that a high IPC and a low L1 data

cache miss rate are both good predictors. They did try a predictor based on the

instruction mix, but it only looked at integer and floating point instructions and it

did not take into account the mix of execution units. Snavel et al [88] extended

SOS to support application priorities. Overall, SOS is effective for finding good

co-schedules among many single-threaded applications, but it is not designed to

choose the best SMT level for a multi-threaded application.

Settle et al [84] designed a job scheduler similar to SOS in its goals: find

optimal co-schedules from a set of single-threaded applications. They use custom

hardware performance counters to create a fine-grained view of the cache access

65

patterns of the applications, from which they derive co-schedules with an average

of 7% improvement over the default scheduler.

Eyerman and Eeckhout [42] propose an SMT job scheduler that is meant to

surmount the shortcomings of SOS. They use a probabilistic model to co-schedule

applications without the need for a sampling phase, and it can be configured to

optimize for throughput or turn-around time. The major downside of their approach

is that it requires specialized CPU counters that are not available on commercial

hardware.

Tam et al [93] present a solution for scheduling threads on SMP-CMP-SMT

systems. Their goal is to reduce remote cache accesses by scheduling threads to-

gether that access the same data. The authors approach this problem by using hard-

ware performance counters to monitor the addresses of memory that cause remote

cache accesses and then scheduling together (on the same chip or on the same core)

threads that access the same memory. They achieve 5-7% performance improve-

ments for a handful of applications, but their system is not meant to determine the

optimal SMT level.

Parallel scalability prediction is also related to our work, since the SMT-selection

metric must estimate the effect of scalability when changing the SMT level. Pre-

vious work in the area requires many sample data points [37][14] or access to the

source code of the application [68], so it is not suited to our purpose. Our approach

only uses information available at run-time to detect scalability limitations and is

accurate enough for SMT-selection prediction for most applications. Unlike other

works, we only attempt to determine if an application is experiencing slowdown

due to scalability limitations, i.e. we do not try to predict the upward scalability of

an application.

The WASH AMP scheduler [53] is one recent work that predicts application

scalability online. It does so by instrumenting locks and measuring the relative

time of waiting for locks against total run time. The downside is that instrumenta-

tion must be implemented for each parallel environment (WASH AMP specifically

targets the Java VM), and for some environments the instrumentation may incur

overhead.

66

3.7 Summary
Simultaneous multithreading can provide substantial benefits in the utilization of

CPU resources. However, automatically predicting when SMT fails to provide

the expected increase in performance for many applications is still not a well-

understood area of research.

This chapter examines a methodology for SMT-level selection. At the heart of

our methodology is the SMT-selection metric that is capable of predicting poten-

tial change in application performance when the SMT-level is changed. We have

shown that it is very difficult to predict SMT preference by just relying on cer-

tain parameters like cache misses, branch mispredictions, number of floating point

instructions, or CPI.

Our performance evaluation used a large number of multithreaded standard

benchmarks that represent a wide range of applications behavior. Our results have

shown that the SMT-selection metric was able to predict the correct SMT speedup

in 93% of the cases on the IBM POWER7 processor, and in 86% of the cases on the

Intel Nehalem processor. The metric can easily be adapted to other architectures

once we have a good understanding of the issue ports and functional units used

by the target architecture. We have also presented an algorithm based on the Gini

impurity that can be used to accurately obtain a range of SMT-selection metric

thresholds that can be used by schedulers or application optimizers.

While we tried to capture most of the factors that could impact SMT perfor-

mance for a general microprocessor, the SMTsm still does not address directly

some issues like instruction-level dependencies and relative execution speeds of

various instruction types. SMTsm attempts to approximate such effects indirectly

through the dispatch-held factor. Studying such effects is the subject of our future

investigations. More future work needs to be done to increase the accuracy of pre-

diction, to test the metric on other architectures, to improve the scalability of the

metric when applied to a much larger number of cores.

67

Chapter 4

NUMA Traffic Management
through Memory Placement1

As we have seen in Chapter 2, NUMA can have a huge effect on performance,

and careful thread placement is crucial for performance. By choosing the correct

number of nodes and the correct interconnect links, one can balance the latency

and bandwidth requirements of an application. The other side of the coin to thread

placement is memory placement. A complete solution must both place threads and

place memory correctly. We envision that the placement algorithm in Chapter 2

would be used to place threads first, and then our algorithm for memory placement

described in this chapter would be used to place memory intelligently.

Optimal performance on NUMA systems can be achieved only if we place

memory in consideration of the system’s physical layout and the application’s char-

acteristics. How to achieve this on modern systems with acceptable overhead is the

primary research question of this chapter, and the solution to the problem, de-

scribed in Section 4.3, is the main contribution.

Attribution: Mohammad Dashti, Fabien Gaud, and I jointly conducted the

initial investigation into NUMA effects, including the discovery of the importance

of congestion over locality (reported in Section 4.1 and Section 4.2). I designed

and implemented the page-level replication mechanism described in Section 4.3.3

1This chapter is a modified version of work previously published in [36]

68

with debugging help from Fabien Gaud. Fabien Gaud designed and implemented

the Carrefour algorithm.

4.1 Background
Previous work on NUMA-aware memory placement focused on maximizing local-

ity of accesses, that is, placing memory pages such that data accesses are satisfied

from a local node whenever possible. That was done to avoid very high costs of

remote memory accesses. Contrary to insights from previous work, we discover

that on modern NUMA systems remote wire delays, that is, delays resulting from

traversing a greater physical distance to reach a remote node, are not the most

important source of performance overhead. On the other hand, congestion on in-

terconnect links and in memory controllers, which results from high volume of data

flowing across the system, can dramatically hurt performance. This motivates the

design of new NUMA-aware memory placement policies.

To make these statements concrete, consider the following facts. On NUMA

systems circa 1990s, the time to access data from a remote node took 4-10 times

longer than from a local node [98]. On NUMA systems that are built today, re-

mote wire delays add at most 30% to the cost of a memory access [25]. For most

programs, this latency differential alone would not have a substantial impact on

performance. However, fast modern CPUs are able to generate memory requests

at very high rates. Massive data traffic creates congestion in memory controller

queues and on interconnects. When this happens, memory access latencies can be-

come as large as 1000 cycles, from a normal latency of only around 200. Such a

dramatic increase in latencies can slow down data-intensive applications by more

than a factor of three. Fortunately, high latencies can be avoided or substantially

reduced if we carefully place memory pages on nodes so as to avoid traffic conges-

tion.

In response to the changes in hardware bottlenecks, we approach the problem

of thread and memory placement on NUMA systems from an entirely new per-

spective. We look at it as the problem of traffic management. Our algorithm, called

Carrefour2, places threads and memory so as to avoid traffic hotspots and prevent

2Carrefour– (French) intersection, crossroads.

69

congestion in memory controllers and on interconnect links. This is akin to traffic

management in the context of city planning: popular residential and business hubs

must be placed so as to avoid congestion on the roads leading to these destinations.

The mechanisms used in our algorithm: e.g., migration and replication of mem-

ory pages, are well understood, but the algorithm itself is new. Our algorithm

makes decisions based on global observations of traffic congestion. Previous algo-

rithms optimized for locality, and relied on local information, e.g., access pattern

of individual pages. We found that in order to effectively manage congestion on

modern systems we need an arsenal of techniques that go beyond optimizing local-

ity. While locality plays a role in managing congestion (when we reduce remote

accesses, we reduce interconnect traffic), alone it is not sufficient to achieve the

best performance. The challenge in designing Carrefour was to understand how to

combine different mechanisms in an effective solution for modern hardware.

Implementing an effective NUMA-aware algorithm on modern systems presents

several challenges. Modern systems do not have the same performance monitoring

hardware that was present (or assumed) on earlier systems. Existing instruction

sampling hardware cannot gather the profiling data needed for the algorithm with

the desired accuracy and speed. We had to navigate around this problem in our

design. Furthermore, the memory latencies that we are optimizing are lower than

on older systems, so we can tolerate less overhead in the algorithm.

We implemented Carrefour in Linux and evaluated it with several data-centric

applications: k-means clustering, face recognition, map/reduce, and others. Car-

refour improves performance of these applications, with the largest gain of 3.6�

speedup. When memory placement cannot be improved Carrefour never hurts per-

formance by more than 4%. Existing NUMA-aware patches for the Linux kernel

perform less reliably and in general fall short of improvements achieved with Car-

refour.

4.2 Traffic Congestion on Modern NUMA Systems
In this section, we demonstrate that the effects of traffic congestion are more sub-

stantial than those of wire delays, and motivate why memory placement algorithms

must be redesigned. To that end, we report data from two sets of experiments. In

70

 0

 20

 40

 60

 80

 100

B
T

C
G

D
C

E
P

F
T

IS

L
U

M
G

S
P

U
A

b
o
d
y
tra

c
k

fa
c
e
s
im

flu
id

a
n
im

a
te

s
tre

a
m

c
lu

s
te

r

s
w

a
p
tio

n
s

x
2
6
4

k
m

e
a
n
s

m
a
trix

m
u
lt

P
C

A

w
rm

e
m

P

e
rf

o
rm

a
n
c
e
 d

if
fe

re
n
c
e
 (

%
)

(a) Performance difference for single-thread versions of applications between local and
remote memory configurations.

 0

 20

 40

 60

 80

 100
B

T
 (F

)

C
G

 (F
)

D
C

 (F
)

E
P

 (-)

F
T

 (F
)

IS
 (I)

L
U

 (F
)

M
G

 (F
)

S
P

 (F
)

U
A

 (F
)

b
o
d
y
tra

c
k
 (-)

fa
c
e
s
im

 (I)

flu
id

a
n
im

a
te

 (-)

s
tre

a
m

c
lu

s
te

r (I)

s
w

a
p
tio

n
s
 (-)

x
2
6
4
 (I)

k
m

e
a
n
s
 (I)

m
a
trix

m
u
lt (-)

P
C

A
 (I)

w
rm

e
m

 (F
)

P
e
rf

o
rm

a
n
c
e
 d

if
fe

re
n
c
e
 (

%
)

(b) Absolute performance difference for multi-thread versions of applications between
First-touch (F) and interleaving (I).

Figure 4.1: Performance difference of applications depending on the thread
and memory configuration.

71

the first set, our goal is to measure the effects of wire delays only. We run ap-

plications in two configurations: local-memory and remote-memory. Under local-

memory, the thread and its data are co-located on the same NUMA node; under

remote-memory, the thread runs on a different node than its data. To ensure that

wire delay is the dominant performance factor, we had to avoid congestion on

memory controllers and interconnects, so we run one application at a time and use

only one thread in each application. We do not include applications with CPU

utilization less than 30%, because memory performance is not their main bottle-

neck. The experiments are run on a system described in Section 4.4 as Machine

A. We use applications from the NAS, PARSEC and map/reduce Metis suites, also

described in Section 4.4.

Figure 4.1(a) shows relative completion time under remote-memory vs. local-

memory configuration. The performance degrades by at most 20% under remote-

memory, which is consistent with at most 30% difference in local-vs-remote mem-

ory latencies measured in microbenchmarks [25].

In the second set of experiments, we want to observe traffic congestion, so we

run each application with as many threads as there are cores. Threads are bound

to their own cores and threads may access memory from any of the four NUMA

nodes. We demonstrate how performance varies under two memory placement

policies on Linux, as they induce different degrees of traffic congestion. The first

policy is First-touch (F): the default policy where the memory pages are placed

on the node where they are first accessed. The second policy is Interleaving (I),

where memory pages are spread evenly across all nodes. Although these are not

the only possible and not necessarily the best policies, comparing them illustrates

the salient effects of traffic congestion.

Figure 4.1(b) shows the absolute difference in completion time achieved un-

der first-touch and interleaving. The policy that performed the best is indicated

in parenthesis next to the application name; a “-” is shown when the application

performs equally well with either policy. We observe that the differences are often

much larger than what we can expect from wire delays alone. For Streamcluster, a

k-means clustering application from PARSEC, the performance varies by a factor

of two depending on the memory placement policy!

To illustrate that these differences are due to traffic congestion, we show in Ta-

72

Streamcluster PCA
Best (I) Worst (F) Best (I) Worst (F)

Local access ratio 25% 25% 25% 33%
Memory latency 476 1197 465 660
Mem-ctrl. imbalance 8% 170% 5% 130%
IC: imbalance, (avg) 22% (59%) 85% (33%) 20% (48%) 68% (31%)
L3MPKI 16.85 16.89 7.35 7.4
IPC 0.29 0.15 0.52 0.36

Table 4.1: NUMA traffic congestion effects

ble 4.1 some supporting data for the two applications, Streamcluster and PCA (a

map/reduce application):

Local access ratio: The percent of all memory accesses sourced from a local node.

Memory latency: The average number of cycles to satisfy a memory request from

any node.

Memory controller imbalance: The standard deviation of the load across all

memory controllers, expressed as percent of the mean. Load is measured as the

number of requests per time unit.

Average interconnect (IC) usage: The utilized interconnect bandwidth as percent

of total, averaged across all links.

Interconnect (IC) imbalance: The standard deviation of utilization across the

links as percent of mean utilization.

L3MPKI: The number of last-level (L3) cache misses per thousand instructions.

IPC: The number of instructions per cycle.

The data in Table 4.1 leads to several curious observations. First, we see that

locality of memory accesses either does not change regardless of the memory man-

agement policy, or decreases under the better performing policy. For Streamclus-

ter, most of the memory pages happen to be placed on a single node under first-

touch (because a single thread initializes them at the beginning of the program).

Under interleaving the pages are spread across all nodes, but since the threads ac-

cess data from all four nodes, the overall access ratio is about the same in both

configurations. For PCA, interleaving decreases the local access ratio and yet in-

creases performance. So the first surprising conclusion is that better locality does

73

not necessarily improve performance!

And yet, the IPC substantially improves (2� for Streamcluster and 41% for

PCA), while the L3 miss rate, as well as L1 and L2 miss rates, remain unchanged.

The explanation emerges if we look at the memory latency. Under interleaving, the

memory latency reduces by a factor of 2.48 for Streamcluster and 1.39 for PCA.

This effect is entirely responsible for performance improvement under the better

policy. The question is, what is responsible for memory latency improvements? It

turns out that interleaving dramatically reduces memory controller and intercon-

nect congestion by alleviating the load imbalance and mitigating traffic hotspots.

Rows 5, 6 in Table 4.1 show significant reductions in imbalance under interleaving,

and Figure 4.2 illustrates these effects visually for Streamcluster. So even without

improving locality (we even reduce it for PCA), we are able to substantially im-

prove performance. And yet, existing NUMA-aware algorithms disregarded traffic

congestion, optimizing for locality only. Our work addresses this shortcoming.

Although the two selected applications performed significantly better under in-

terleaving, this does not mean that interleaving is the only desired policy on modern

NUMA hardware. In fact, as Figure 4.1(b) shows, many NAS applications fared a

lot worse with interleaving. In the process of designing the algorithm we learned

that a range of techniques — interleaving, page replication and co-location — must

be judiciously applied to different parts of the address space depending on global

traffic conditions and page access patterns. So the challenge in designing a good

algorithm is understanding when to apply each technique, while navigating around

the challenges of obtaining accurate performance data and limiting the overhead.

4.3 Design and Implementation
We begin by describing the mechanisms composing the algorithm: page co-location,

interleaving, and replication. Then we explain how they fit together.

4.3.1 The Mechanisms

Page co-location is when we re-locate the physical page to the same node as the

thread that accesses it. Co-location works well for pages that are accessed by a

single thread or by threads co-located on the same node.

74

1%

1%1%

97%
25% 25%

25% 25%

Figure 4.2: Traffic imbalance under first-touch (left) and interleaving (right)
for Streamcluster. Nodes and links bearing the majority of the traffic
are shown proportionately larger in size and in brighter colors. The
percentage values show the fraction of memory requests destined for
each node. The figure is drawn to scale.

Page interleaving is about evenly distributing physical pages across nodes.

Interleaving is useful when we have imbalance on memory controllers and inter-

connect links, and when pages are accessed by many threads. Operating systems

usually provide an interleaving allocation policy, but only give an option to enable

or disable it globally for the entire application. We found that interleaving works

best when judiciously applied to parts of the address space that will benefit from it.

Page replication is about placing a copy of a page on several memory nodes.

Replication distributes the pressure across memory controllers, alleviating traffic

hotspots. An added bonus is eliminating remote accesses on replicated pages.

When done right, replication can bring very large performance improvements. Un-

fortunately, replication also has costs. Since we keep multiple copies of the same

page, we must synchronize their contents, which is like running a cache coherency

protocol in software. The costs can be very significant if there is a lot of fine-

grained read/write sharing. Another potential source of overhead is the synchro-

nization of page tables. Since modern hardware walks page tables automatically,

page tables themselves must be replicated across nodes and kept in sync. Finally,

replication increases the memory footprint. We should avoid it for workloads with

large memory footprints for fear of increasing the rate of hard page faults.

75

Global statistics
MC-IMB Memory controller imbalance (as defined in Section 4.2)
LAR Local access ratio (as defined in Section 4.2)
MAPTU Memory (DRAM) accesses per time unit (microsecond)

Per-application statistics
MRR Memory read ratio. Fraction of DRAM accesses that are reads
CPU% Percent CPU utilization

Per-page statistics
Number of accesses The number of sampled data loads that fell in that page
Access type Read-only or read-write

Table 4.2: Statistics collected for the algorithm.

4.3.2 The Algorithm

Our memory management algorithm has three components: measurement, global

decisions and page-local decisions. The measurement component continuously

gathers various metrics (Table 4.2) that later drive page placement decisions. Global

and per-application metrics are collected using HPEs with very low overhead. Per-

page statistics are collected via instruction-based sampling (IBS) [40], which can

introduce significant overheads at high sampling rates. Section 4.3.3 describes

how we keep the overheads at bay. Global decisions are based on system-wide

traffic congestion and workload properties which determine what mechanisms to

use. Page-local decisions examine access patterns of individual pages to decide

their fate.

Global Decisions

The global decision-making process is outlined in Figure 4.3.

Step 1: We decide whether to enable Carrefour. We only want to run Car-

refour for applications that generate substantial memory traffic. Other applications

would not be affected by memory placement policies, so there is no reason to

subject them to sampling overhead. This decision is driven by the application’s

memory access rate (MAPTU – see Table 4.2). Carrefour is enabled for applica-

tions with the MAPTU above a certain threshold. The MAPTU threshold is to be

determined experimentally and the right setting may vary from system to system.

76

MAPTU > 50 ?

Enable

Carrefour

Disable

Carrefour

Yes

No

Step 1

MRR > 95%

&&

Free RAM ≥

1 −
�

���_��	
�
?

Enable

replication

Disable

replication

Yes

No

Step 2

MC_IMB > 35% ?

Enable

interleaving

Disable

interleaving

Yes

No

Step 3

LAR < 80% ?

Enable

co-location

Disable

co-location

Yes

No

Step 4

Figure 4.3: Global decisions in Carrefour.

We found the threshold of 50 MAPTU worked well on all hardware we evaluated,

and the performance was not very sensitive to its choice. To determine the right

MAPTU threshold on a system very different from ours, we recommend running

a benchmark suite under different NUMA policies, noting which applications are

affected and using the lowest observed MAPTU from those experiments.

Once we decided whether there is sufficient memory traffic to justify running

Carrefour, we need to decide which of the available mechanisms, replication, inter-

leaving and co-location, should be enabled for each application given its memory

access patterns. The goal here is to choose the most beneficial techniques and avoid

any associated overhead. The next three steps take care of this decision.

Step 2: We decide whether it is worthwhile to use replication. Replication risks

introducing significant overheads if it forces us to run out of RAM (and causes

additional hard page faults) or requires frequent synchronization of pages across

nodes (see more discussion in Section 4.3.3). To avoid the first peril, we conserva-

tively enable replication only if there is sufficient free RAM to replicate the entire

resident set. That is, the fraction of free RAM must be at least 1� 1
NUM NODES . This

is a conservative threshold, because not all pages will be replicated, and not all res-

ident pages will be accessed frequently enough to generate significant page fault

overhead if evicted. Evaluating the trade-off between replication benefit and po-

tentially increased page-fault rate was outside the scope of the work. This requires

workloads that both benefit from replication and have very large memory-resident

sets, which we did not encounter in our experiments.

To avoid the overhead associated with the synchronization of page content

77

across nodes, we do not replicate pages that are frequently written. An application

must have the memory read ratio (MRR) of at least 95% in order for its memory

pages to be considered for replication3. The setting of this parameter can have a

very significant effect on performance. While we found that the performance was

not sensitive when we varied the parameter in the range of 90-99%, it is always

safe to err on the high side.

Step 3: We decide whether to use interleaving. Interleaving improves perfor-

mance if we have large memory controller imbalance. We enable interleaving if

memory controller imbalance is above 35%, but found that the performance was

not highly sensitive to this parameter. Applications that benefit from interleaving

usually begin with a very large imbalance.

Step 4: We decide whether or not to enable co-location. Co-location will be

triggered only for pages that are accessed from a single node, and so it will not

exacerbate the imbalance if memory-intensive threads are evenly spread across

nodes. Therefore, we enable co-location if the local access rate is slightly less than

ideal (LAR < 80%). Performance is not highly sensitive to this parameter; we

observed that if this parameter is completely eliminated from the algorithm and

co-location is always enabled then the largest performance impact is only a few

percent.

Although we expect that optimal settings for the parameters used in the algo-

rithm would vary from one system to another, we found that we did not need to

adjust the settings when we moved between the two experimental systems used in

our evaluation. Although our systems had the same number of nodes and both used

AMD CPUs, they differed in the number of cores per node, the cache-coherency

protocol (broadcast vs. directory-based), and one had a higher interconnect through-

put than the other. Therefore, it is possible that the algorithm parameters settings

are rather stable across all but drastically different systems.

3MRR is approximated as fraction of L1 refills from DRAM in modified state, because there is
no HPE that provides this quantity precisely per core, as opposed to per-node. Similarly, due to HPE
limitations described in Section 4.3.3, it is very difficult to measure the MRR per page. That is why
we use the MRR for the entire application.

78

Page-local Decisions

Carrefour makes page-local decisions depending on the mechanisms enabled: e.g.,

pages are only considered for replication if replication is enabled for that applica-

tion. The following explanation assumes that all three mechanisms are enabled.

To decide the fate of each page, we need at least two memory-access samples

for that page. If the page was accessed from only a single node we migrate it to that

node. If the page is accessed from two or more nodes, it is a candidate for either

interleaving or replication. If the accesses are read-only, the page is replicated.

Otherwise it is marked for interleaving. To decide where to place a page marked

for interleaving, we use two probabilities: Pmigrate and Pnode. Pmigrate determines

the likelihood of migrating the page away from the current node. Pmigrate is the

MAPTU of the current node as the fraction of MAPTU on all nodes, so the higher

the load on the current node relative to others, the higher the chance that we will

migrate a page. Pnode gives us the probability of migrating a page to a particular

node, and it is the complement of Pmigrate for that node, so Carrefour will migrate

the page to the least loaded node.

4.3.3 Implementation

We implemented Carrefour in the Linux kernel 3.6.0. Carrefour measures the se-

lected performance indicators, and with periodicity of one second makes decisions

regarding page placement and resets statistic counters. To a large extent, Car-

refour relies on well-understood mechanisms in the Linux kernel, such as physical

page migration. The non-trivial aspects of the implementation were understanding

how to accomplish fast and accurate sampling of memory accesses and navigating

around the overheads of replication. We describe how we overcame these chal-

lenges in the two sections that follow.

Fast and Accurate Memory Access Sampling

A crucial goal of the algorithm is to quickly and accurately detect memory pages

that cause the most DRAM accesses, and accurately estimate the read/write ratio

of those pages. To that end, we used Instruction-Based Sampling (IBS): hardware-

supported sampling of instructions available in AMD processors. Intel processors

79

support similar functionality in the form of PEBS: Precise Event-Based Sampling.

IBS can be configured to deliver instruction samples at a desired interval, e.g., af-

ter expiration of a certain number of cycles or micro-ops. Each sample contains

detailed information about the sampled instruction, such as the address of the ac-

cessed data (if the instruction is a load or a store), whether or not it missed in

the cache and how long it took to fetch the data. Unfortunately, every delivered

sample generates an interrupt, so processing samples at a high rate becomes very

costly. Other systems that relied on IBS performed off-line profiling [57, 75], so

they could tolerate much higher overhead than what would be acceptable in our

online algorithm.

After experimenting with IBS on our systems, we found that for most appli-

cations the sampling interval of 130,000 cycles incurs a reasonable overhead of

less than 5%. The desired sampling rate can be trivially derived for new systems:

it amounts to experimenting with different sampling rates and settling for the one

that generates acceptable runtime overhead.

Our initial decision was to filter out all the samples that did not generate a

DRAM access. However, we found that the resulting number of samples was ex-

tremely low. Even very memory-intensive workloads access DRAM only a few

times for every thousand instructions. That, combined with a low IBS sampling

frequency, gave us the sampling rate of less than one hundred thousandth of a per-

cent, and made it very difficult to generate a sufficient number of samples. Further-

more, filtering samples that did not access DRAM caused us to miss the accesses

generated by the hardware prefetcher. These accesses are not part of any instruction

so they will not be tagged by IBS. For prefetch-intensive applications, we obtain a

very small number of samples and a very distorted read-write ratio.

To address this problem, we used two solutions. First, is the adaptive sampling

rate. When the program begins to run, we sample it at a relatively high rate of

1/65,000 cycles. If after this measurement phase we take fewer than ten actions

in the algorithm (an action is any change in page placement) we switch to a much

lower rate of 1/260,000 cycles, which has a negligible performance impact. Other-

wise we continue sampling at the high rate.

The second solution was, when filtering IBS samples, to retain not just the data

samples that accessed the DRAM, but those that hit in the first-level cache as well.

80

First-level cache loads include accesses to prefetched data, so we avoid prefetcher-

related inaccuracy. On the one hand, considering cache accesses can introduce

“noise” in the data, because we could be sampling pages that never access DRAM.

On the other hand, Carrefour is only activated for memory-intensive applications,

and for them there is a higher correlation between the accesses that hit in the cache

and those that access DRAM.

With these two solutions combined, we were able to successfully identify the

pages that are worth replicating, while this was nearly impossible prior to intro-

ducing these solutions. For example, for Streamcluster we used to be able to detect

only a few percent of the pages that are worth replicating, but with these solutions

in place, we were able to identify 100% of them4.

However, even though performance became much better (we were able to speed

up Streamcluster by 26% relative to the default kernel), we were still far from the

“ideal” manual replication, which sped it up by more than 2.5�. To approach ideal

performance, we had to mitigate the overheads of replication, which we describe

next.

Replication

Replication has overhead from the following three sources. First, there is the initial

set-up cost and slightly more expensive page faults. Modern hardware walks page

tables automatically, so a separate copy of a page table must be created for each

node. Page faults become slightly more costly, because a new page table entry

must be installed on every node. To avoid these costs when we are not likely to

benefit from replication, we avoid replication unless the applications has at least a

few hundred pages marked for replication5.

The second source of overhead comes from additional hard page faults if we

exceed the physical RAM capacity by replicating pages. As explained earlier, we

avoided this overhead by conservatively setting the free memory threshold when

enabling replication.

The final and most significant source of overhead stems from the need to syn-

4Streamcluster holds shared data in a single large array, so it is trivial to detect which data is
worth replicating and implement a manual solution to use as the performance upper-bound.

5We use the threshold of at least 500 pages. Performance is not highly sensitive to this parameter.

81

chronize the contents of replicated pages when they are written. This involves a

physical page copy and is very costly. Before explaining how we avoid this over-

head we provide a brief overview of our implementation of replication.

In Linux, a process address space is represented by a mm struct, which keeps

track of valid address space segments and holds a pointer to the page table, which

is stored as a hierarchical array. Since modern hardware walks page tables au-

tomatically, we cannot modify the structure of the page table to point to several

physical locations (one for each node) for a given virtual page. Instead, we must

maintain a separate copy of the page table for each node and synchronize the page

tables when they are modified, even for virtual pages that are not replicated. Linux

dictates that the page table entry (PTE) be locked when it is being modified. We

do not make any changes to this locking protocol. The only difference is that we

designate one copy of the page table as the master copy, and only lock the PTE in

the master copy while installing the corresponding PTEs into all other replicas.

When a page is replicated, we create a physical copy on every memory node

that runs threads from the corresponding application. We install a different virtual-

to-physical translation in each node’s page table. We write-protect the replicated

page, so when any node writes that page we receive a page protection fault. To

handle this fault, we read-protect the page on all nodes except the faulting one, and

enable writing on the faulting node. If another node accesses that page, we must

copy the new version of the page to that node, enable the page for reading and

protect it from writing.

We refer to all the actions needed to keep the pages synchronized as page col-

lapses. Collapses are extremely costly, and would occur if we replicate a page that

is write-shared. Even with very infrequent writes (e.g., one in 1000 accesses), the

collapse overhead could be prohibitively high. With limited capabilities of IBS,

we are unable to detect read/write ratio on individual pages with sufficient accu-

racy. That is why we use the application-wide MRR and disable replication for the

entire application if the MRR is low. Furthermore, we monitor collapse statistics

of individual pages and disable replication for any page that generated more than

five collapses. We allow five collapses because this enables applications to per-

form some writes for initialization or a phase-change without losing the benefits of

replication, but any page with regular (even if infrequent) writes will have replica-

82

tion disabled because the cost of page collapses will almost always outweigh the

benefits of replication.

With these optimizations, as well as those described in Section 4.3.3, we were

able to avoid replication costs for the applications we tested and approached within

10% the performance of manual replication for Streamcluster.

4.4 Evaluation
In this section, we study the performance of Carrefour on a set of benchmarks.

The main questions that we address are the following:

1. How does Carrefour impact the performance of applications, including

those that cannot benefit from its heuristics?

2. How does Carrefour compare against existing heuristics for modern NUMA

hardware?

3. How well does Carrefour leverage the different memory placement mecha-

nisms?

4. What is the overhead of Carrefour?

To assess the performance of Carrefour, we compare it against three other con-

figurations:

Linux: A standard Linux kernel with the default first-touch memory allocation

policy.

Manual interleaving: A standard Linux kernel with the interleaving policy man-

ually enabled for the application.

AutoNUMA: A recent Linux patchset [34] considered as the best thread and mem-

ory management algorithm available for Linux.

The rest of the section is organized as follows: we first describe our experi-

mental testbed. Next, we study single-application scenarios, followed by work-

loads with multiple co-scheduled applications. We then detail the overhead of Car-

refour and conclude with a discussion on additional hardware support that would

improve Carrefour’s operation.

83

4.4.1 Testbed

We used two different machines for the experiments:

Machine A has four 2.3GHz AMD Opteron 8385 processors with 4 cores in each

(16 cores in total) and 64GB of RAM. It features 4 nodes (i.e., 4 cores and 16GB

of RAM per node) interconnected with HyperTransport 1.0 links.

Machine B has four 2.6GHz AMD Opteron 8435 processors with 6 cores in each

(24 cores in total) and 64GB of RAM. It features 4 nodes (i.e., 6 cores and 16GB

of RAM per node) interconnected with HyperTransport 3.0 links.

We used Linux kernel v3.6 for all experiments. For the AutoNUMA configu-

ration, we used AutoNUMA v27 and disabled PMD scan because we it decreases

performance on all applications we measured6.

Workloads were configured to use one thread per core available on the test

system and threads were bound to their own cores.

We used the following set of applications: the PARSEC benchmark suite

v2.1 [20], the FaceRec facial recognition engine v5.0 [18], the Metis MapReduce

benchmark suite [65] and the NAS parallel benchmark suite v3.3 [11]. PARSEC

applications run with the native workload. From the available workloads in NAS

we chose those with the running time of at least ten seconds. We excluded appli-

cations whose CPU utilization was below 33%, because they were not affected by

memory management policies. We also excluded applications using shared mem-

ory across processes (as opposed to threads) or memory-mapped files, because our

replication mechanism does not yet support this behaviour. For FaceRec, we used

two kinds of workloads: a short-running one and a long running one (named Fac-

eRecLong in the remainder of the paper). The reason why we present two different

workloads is to show that Carrefour is able to successfully handle very short work-

loads (less than 4s on machine B when running with Carrefour). Each experiment

was run ten times. Overall, we observed a standard deviation between 1% and 2%

for the Linux, Manual interleaving and Carrefour configurations. AutoNUMA has a

more significant standard deviation, up to 9% on machine A and 13% on machine

B.
6We also tested AutoNUMA v28. The performance results are very similar. However, we ob-

served a significantly higher standard deviation (up to 18% on machine A and 23% on machine B)
which makes profiling very difficult.

84

4.4.2 Single-Application Workloads

Performance comparison. Figures 4.4 and 4.5 show the performance improve-

ment relative to default Linux obtained under all configurations for machine A and

machine B. Performance improvement is computed as:

De f aultLinuxtime�Systemtime

Systemtime
�100%;

where System can be either Carrefour, Manual interleaving or AutoNUMA.

We can make two main observations. First, Carrefour almost systematically

outperforms default Linux, AutoNUMA, and Manual interleaving, sometimes

quite substantially. For instance, when running Streamcluster or FaceRecLong, we

observe that Carrefour is up to 58% faster than Manual interleaving, up to 165%

faster than AutoNUMA, and up to 263% faster than default Linux on machine B.

Second, we observe that, unlike other techniques, Carrefour never performs sig-

nificantly worse than default Linux: the maximum performance degradation over

Linux is below 4%. In contrast, AutoNUMA and Manual interleaving cause per-

formance degradations of up to 25% and 38% respectively. Additionally, Manual

Interleaving has a very irregular impact on performance. While it does fairly well

for PARSEC, NAS applications suffer significant performance degradation (up to

38%) when run with manual interleaving.

IS is an exception among the NAS benchmarks: Manual interleaving improves

its performance, while Carrefour does no better than default Linux. This is because

IS suffers from very short imbalance bursts that we are not able to correct due

to limited sampling accuracy achievable with low overhead using existing HPEs.

Section 4.4.6 discusses hardware support that would help us address this problem.

In order to understand the reasons for the performance impact of the different

policies, we study in detail a set of applications whose performance is improved

the most by Carrefour. To that end, we present several metrics: the load imbalance

on memory controllers (Figure 4.6(a)), the load imbalance on interconnect links

(Figure 4.6(b)), the average memory latency (Figure 4.7(a)) and the local access

ratio (Figure 4.7(b)).

We draw the following observations. First, Carrefour much better balances

85

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Bodytrack

Facesim

Fluidanim
ate

Stream
cluster

Sw
aptions

x264
FaceR

ec

FaceR
ecLong

Km
eans

M
atrixm

ultiply

PC
A

W
rm

em

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

 w
it
h
 r

e
s
p
e
c
t
to

 L
in

u
x
 (

%
) AutoNUMA

Manual interleaving
Carrefour

Machine A

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

Bodytrack

Facesim

Fluidanim
ate

Stream
cluster

Sw
aptions

x264
FaceR

ec

FaceR
ecLong

Km
eans

M
atrixm

ultiply

PC
A

W
rm

em

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

 w
it
h
 r

e
s
p
e
c
t
to

 L
in

u
x
 (

%
) AutoNUMA

Manual interleaving
Carrefour

Machine B

Figure 4.4: PARSEC/Metis: AutoNUMA, Manual interleaving and Car-
refour vs.Default Linux.

the load on both memory controllers and interconnect links than Linux and Au-

toNUMA. Not surprisingly, Manual interleaving is also very good at balancing

the load. Nevertheless, we observe in Figure 4.7(a) that Carrefour induces lower

average memory latencies than Manual interleaving, which explains its better per-

formance. To understand why Carrefour reduces memory latencies we refer to

Figure 4.7(b), which shows that Carrefour not only balances the load on memory

controllers and interconnect links, but also often induces a much higher ratio of

local memory accesses than other techniques. This is a consequence of Carrefour’s

judiciously applying the right techniques (interleaving, replication or co-location)

in places where they are beneficial. Interleaving mostly balances the load; repli-

cation and co-location in addition to balancing the load improve the local access

ratio. Better locality improves latencies in two ways: it avoids remote wire delays

86

-40

-30

-20

-10

 0

 10

BT CG DC EP FT IS LU MG SP UA

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

 w
it
h
 r

e
s
p
e
c
t
to

 L
in

u
x
 (

%
) AutoNUMA

Manual interleaving
Carrefour

Machine A

-40

-20

 0

 20

 40

 60

BT CG DC EP FT IS LU MG SP UA

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

 w
it
h
 r

e
s
p
e
c
t
to

 L
in

u
x
 (

%
) AutoNUMA

Manual interleaving
Carrefour

Machine B

Figure 4.5: NAS: AutoNUMA, Manual interleaving and Carrefour vs. De-
fault Linux.

and, most importantly, decreases congestion on the interconnect links.

We also study MG as a representative example of the NAS applications, for

which Carrefour does not bring significant improvements over default Linux

(but still performs better than AutoNUMA and Manual interleaving in most

cases). MG has a low imbalance and a very good local access ratio to begin with.

That is why Manual interleaving has a very bad impact on such workloads, sig-

nificantly decreasing the local access ratio and as a result stressing the interconnect.

Looking inside Carrefour. To better understand the behavior of Carrefour, we

show in Table 4.3 the number of replicated pages, the number of interleaved pages,

and the number of co-located pages for the chosen benchmarks. These numbers

provide a better insight into how Carrefour manages the memory. We observe that

all three memory placement mechanisms are in use, and that most applications

rely on two or three techniques. As discussed previously, MG does not suffer from

87

 0

 20

 40

 60

 80

 100

 120

 140

 160

Facesim Streamcluster FaceRec FaceRecLong PCA MG SP

L
o

a
d

 i
m

b
a

la
n

c
e

o
n

 m
e

m
o

ry
 c

o
n

tr
o

lle
rs

 (
%

)
Linux

AutoNUMA
Manual interleaving

Carrefour

(a) Memory controllers

 0

 20

 40

 60

 80

Facesim Streamcluster FaceRec FaceRecLong PCA MG SP

L
o

a
d

 i
m

b
a

la
n

c
e

o
n

 i
n

te
rc

o
n

n
e

c
t

lin
k
s
 (

%
)

Linux
AutoNUMA

Manual interleaving
Carrefour

(b) Interconnect links

Figure 4.6: Load imbalance for selected single-application benchmarks (ma-
chine A).

traffic congestion, so Carrefour does not enable any technique for this application.

A legitimate question we can ask is whether Carrefour always selects the best

technique. In Table 4.4, we report the performance improvement over Linux ob-

tained when running a full-fledged Carrefour and when running a reduced version

of Carrefour enabling only one technique at a time. We observe that Carrefour sys-

tematically selects the best technique. It is also interesting to remark how different

techniques work together and how the numbers provided here echo those in Ta-

ble 4.3. We notice that, for all the studied applications except MG and SP, the

combination of several techniques employed by Carrefour outperforms any single

technique, even when a given technique has a dominant impact (e.g., for Stream-

cluster). The slight performance degradation for MG corresponds to the monitoring

overhead of Carrefour.

88

 0

 200

 400

 600

 800

 1000

 1200

Facesim Streamcluster FaceRec FaceRecLong PCA MG SP

A
v
g

 l
a

te
n

c
y

 (
n

b
C

y
c
le

s
/r

e
q

)

Linux
AutoNUMA

Manual interleaving
Carrefour

(a) Average memory latency

 0

 20

 40

 60

 80

 100

 120

Facesim Streamcluster FaceRec FaceRecLong PCA MG SP

R
a

ti
o

 o
f

lo
c
a

l
m

e
m

o
ry

 a
c
c
e

s
s
e

s
 (

%
) Linux

AutoNUMA
Manual interleaving

Carrefour

(b) Local memory access ratio

Figure 4.7: DRAM latency and locality for selected single-application
benchmarks (machine A).

No. replicated pages No. interleaved pages No. migrated pages
Facesim 0 431 10.1k
Streamcluster 25.4k 14.5k 858
FaceRec 4k 3 1.3k
FaceRecLong 4.1k 5 1.4k
PCA 31k 33 41.3k
MG 0 0 1
SP 0 305 1.7k

Table 4.3: Number of memory pages that are replicated, interleaved and co-
located on single-application workloads (machine A).

89

Carrefour Replication Interleaving Co-location
Facesim 74% -4% 0% 65%
Streamcluster 184% 176% 94% 51%
FaceRec 66% 61% 32% 1%
FaceRecLong 117% 113% 51% 1%
PCA 46% 45% 29% 24%
MG -2% -2% -2% -2%
SP 8% -1% -7% 8%

Table 4.4: Performance improvement over Linux when running Car-
refour and the three different techniques individually on single-
application workloads (machine A).

4.4.3 Multi-Application Workloads

In this section, we study how Carrefour behaves in the context of workloads with

multiple applications that are co-scheduled on the same machine. The goal is to

assess that Carrefour is able to work on complex access patterns and to make the

distinction between the diverse requirements of different applications. We con-

sider several scenarios based on some of the applications previously studied in

Section 4.4.2: (i) MG + Streamcluster, (ii) PCA + Streamcluster, and (iii) FaceRe-

cLong + Streamcluster. We chose these scenarios because they exhibit interesting

patterns, which require combining several memory placement techniques in order

to achieve good performance.

Each application is run with half as many threads as the number of cores (i.e.,

8 threads on machine A, 12 on machine B). With two applications, the workload

occupies all the available cores. The threads of each application are clustered on

the same node, so each application uses all the cores on two of the four nodes on a

machine.

Figure 4.8 shows, for each workload, the performance improvement with re-

spect to Linux for AutoNUMA, Manual interleaving and Carrefour on machine A

and machine B. We observe that Carrefour always outperforms AutoNUMA and

Manual interleaving, by up to 62% and 36% respectively. Besides, Carrefour also

outperforms default Linux, while Manual interleaving hurts MG with a 25% slow-

down. Overall, the results obtained with Manual interleaving are closer to the ones

90

Carrefour Replication Interleaving Co-location
MG

2% / 71% 2% / 73% -5% / 17% -1% / 6%
+ Streamcluster
PCA

24% / 57% 18% / 57% 8% / 5% 14% / 1%
+ Streamcluster
FaceRecLong

53% / 71% 53% / 71% 12% / 9% 12% / 4%
+ Streamcluster

Table 4.5: Multi-application workloads: performance improvement over
Linux when running Carrefour and the three different techniques indi-
vidually (machine A).

of Carrefour compared to the other setups.

The reason why Manual interleaving performs relatively well in these scenar-

ios is because, with each application using two domains, there is a lot less cross-

domain traffic than in the single-application case. Hence there are fewer problems

that need to be fixed and there is a smaller discrepancy between the performance

of different memory management algorithms.

To explain the results, we show the same detailed metrics as in Section 4.4.2:

load imbalance on memory controllers, load imbalance on interconnect links, av-

erage DRAM latency and ratio of local DRAM accesses in Figures 4.9, 4.10, 4.11

and 4.12 respectively. The metrics are aggregated for the two applications of each

workload. As was the case with the single-application workloads, we see that

Carrefour systematically improves the latency of the studied workloads for two

reasons: a more balanced load on memory controllers and interconnect links as

well as an improved locality for DRAM accesses. Note that, for each workload,

the depicted latencies are averaged over the two applications. This explains the

small latency variations between Linux, AutoNUMA and Manual Interleaving in

the case of MG + Streamcluster.

Finally, we show in Table 4.5 the performance improvement for each applica-

tion when the effects of only one of the techniques are enabled. We observe that

the multi-applications workloads perform as well or better with an arsenal of tech-

niques used in Carrefour rather than with any single technique alone (especially

for PCA + Streamcluster).

91

-20

 0

 20

 40

 60

 80

MG
+ Streamcluster

PCA
+ Streamcluster

FaceRecLong
+ Streamcluster

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

 w
it
h
 r

e
s
p
e
c
t
to

 L
in

u
x
 (

%
)

MG Streamcluster PCA Streamcluster FaceRecLong Streamcluster

AutoNUMA
Manual interleaving

Carrefour

Machine A

-20

 0

 20

 40

 60

 80

MG
+ Streamcluster

PCA
+ Streamcluster

FaceRecLong
+ Streamcluster

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

 w
it
h
 r

e
s
p
e
c
t
to

 L
in

u
x
 (

%
)

MG Streamcluster PCA Streamcluster FaceRecLong Streamcluster

AutoNUMA
Manual interleaving

Carrefour

Machine B

Figure 4.8: Multi-application workloads: AutoNUMA, Manual interleaving
and Carrefour vs. Default Linux.

92

 0

 20

 40

 60

 80

 100

MG
+ Streamcluster

PCA
+ Streamcluster

FaceRecLong
+ Streamcluster

L
o

a
d

 i
m

b
a

la
n

c
e

o
n

 m
e

m
o

ry
 c

o
n

tr
o

lle
rs

 (
%

)
Linux

AutoNUMA
Manual interleaving

Carrefour

Figure 4.9: Multi-application workloads: load imbalance on memory con-
trollers (machine A).

 0

 20

 40

 60

 80

MG
+ Streamcluster

PCA
+ Streamcluster

FaceRecLong
+ Streamcluster

L
o

a
d

 i
m

b
a

la
n

c
e

o
n

 i
n

te
rc

o
n

n
e

c
t

lin
k
s
 (

%
)

Linux
AutoNUMA

Manual interleaving
Carrefour

Figure 4.10: Multi-application workloads: load imbalance on interconnect
links (machine A).

 0

 100

 200

 300

 400

 500

 600

 700

MG
+ Streamcluster

PCA
+ Streamcluster

FaceRecLong
+ Streamcluster

A
v
g

 l
a

te
n

c
y

 (
n

b
C

y
c
le

s
/r

e
q

)

Linux
AutoNUMA

Manual interleaving
Carrefour

Figure 4.11: Multi-application workloads: average memory latency (ma-
chine A).

93

 0

 20

 40

 60

 80

 100

MG
+ Streamcluster

PCA
+ Streamcluster

FaceRecLong
+ Streamcluster

R
a

ti
o

 o
f

lo
c
a

l
m

e
m

o
ry

 a
c
c
e

s
s
e

s
 (

%
)

Linux
AutoNUMA

Manual interleaving
Carrefour

Figure 4.12: Multi-application workloads: local memory access ratio (ma-
chine A).

4.4.4 Overhead

Carrefour incurs CPU and memory overhead. The first source of CPU overhead is

the periodic IBS profiling. To measure CPU overhead, we compared performance

of Carrefour with Linux on those applications where Carrefour does not yield any

performance benefits. We observed the overhead between 0.2% and 3.2%. The

adaptive sampling rate in Carrefour is crucial to keeping this overhead low. A

second and potentially significant source of CPU overhead is replication, if we

perform a lot of collapses. A single collapse costs a few hundred microseconds

when it occurs in isolation. Parallel collapses can take a few milliseconds because

of lock contention. That is why it is crucial to avoid collapses and other synchro-

nization events by disabling replication for write-intensive workloads, as is done in

Carrefour.

The first source of memory overhead is the allocation of data structures to keep

track of profiling data. This overhead is negligible: e.g., 5MB on Machine A with

64GB of RAM. Carrefour’s data structures are pre-allocated on startup to avoid

memory allocation during the runtime. We limit the number of profiled pages to

30,000 to avoid the cost of managing dynamically sized structures. The second

source of memory overhead is memory replication. When enabled, replication in-

troduces a memory footprint overhead of 400MB (353%), 60MB (210%), 60MB

(126%) and 614MB (5%) for Streamcluster, FaceRec, FacerecLong and PCA re-

spectively.

94

4.4.5 Impact on Energy Consumption

It was observed that remote memory accesses require significantly more energy

than local ones [35]. Since Carrefour may both decrease and increase the num-

ber of remote memory accesses, we were interested in evaluating its impact on

energy consumption7. We show the results for selected applications from single-

application workloads on Machine A. We report the increase in energy consump-

tion as well as the increase in completion time of all configurations compared to

default Linux in Figure 4.13. Completion time increase is computed here as:

Systemtime�De f aultLinuxtime

De f aultLinuxtime
�100%:

There is a strong relationship between the completion time and the energy con-

sumption: if the completion time is decreased, the energy consumption is also

decreased proportionally. As a result, Carrefour saves up to 58% of energy. When

no traffic management is needed, Carrefour on its own has a low impact on energy

consumption (e.g., 2% on MG).

More generally, we found that the increase of remote memory accesses has

little or no impact on the global energy consumption of the machine. For example,

Manual interleaving drops the local access ratio of MG from 97% to 25% and

thus proportionally increases the number of remote accesses. However, the energy

consumption increase is slightly lower that the completion time increase, which

indicates that the extra energy overhead of remote memory accesses have no strong

impact on overall energy consumption.

4.4.6 Discussion: Hardware Support

We have shown that a traffic management system like Carrefour can bring signif-

icant performance benefits. However, the challenge in building Carrefour was the

need to navigate around the limitations of the performance monitoring units of our

hardware as well as the costs of replicating pages. In this section, we draw some

insights on the features that could be integrated into future machines in order to

further mitigate the overhead and improve accuracy, efficiency and performance of

7We used IPMI which gives access to the current global power consumption on our servers.

95

-70
-60
-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70

A
u
to

n
u
m

a

M
a
n
u
a
l In

t.

C
a
rre

fo
u
r

A
u
to

n
u
m

a

M
a
n
u
a
l In

t.

C
a
rre

fo
u
r

A
u
to

n
u
m

a

M
a
n
u
a
l In

t.

C
a
rre

fo
u
r

A
u
to

n
u
m

a

M
a
n
u
a
l In

t.

C
a
rre

fo
u
r

A
u
to

n
u
m

a

M
a
n
u
a
l In

t.

C
a
rre

fo
u
r

A
u
to

n
u
m

a

M
a
n
u
a
l In

t.

C
a
rre

fo
u
r

A
u
to

n
u
m

a

M
a
n
u
a
l In

t.

C
a
rre

fo
u
r

In
c
re

a
s
e
 i
n

 w
it
h
 r

e
s
p
e
c
t
to

 L
in

u
x
 (

%
)

Energy consumption
Completion time

SPMGPCAFaceRecLongFaceRecStreamclusterFacesim

Figure 4.13: Increase in completion time and energy consumption for se-
lected single-application benchmarks with respect to Linux (machine
A). Lower is better.

traffic management algorithms.

First, Carrefour would benefit from hardware profiling mechanisms that sam-

ple memory accesses with high precision and low overhead. For instance, it would

be useful to have a profiling mechanism that accumulates and aggregates page ac-

cess statistics in an internal buffer before triggering an interrupt. In this regard, the

AMD Lightweight Profiling [38] facility seems a promising evolution of profiling

hardware8, but we believe the hardware should go even further, and not only accu-

mulate the samples but be configured to aggregate them according to user needs,

to reduce the number of interrupts even further.

Second, Carrefour would benefit from dedicated hardware support for memory

replication. We believe that there should be interfaces allowing the operating sys-

tem to indicate to the processor which pages to replicate. The processor would then

be in charge of replicating the pages on the nodes accessing it and maintaining con-

sistency between the various replicas (in the same way as it maintains consistency

for cache lines). Given that maintaining consistency between frequently written

pages is costly, we believe that such processors should also be able to trigger an

interrupt when a page is written too frequently. The OS would then decide to keep

the page replicated or to revert the replication decision.

8Unfortunately, Lightweight Profiling is only available on recent AMD processors and we were
not able to evaluate it in this work.

96

This hardware support can be made a lot more scalable than cache coherency

protocols, because it is controlled by the OS, which, armed with better hardware

profiling, will only invoke it for pages that perform very little write sharing. So the

actual synchronization protocol would be triggered infrequently.

4.5 Related Work
In this section, we explain how Carrefour relates to different works on multicore

systems. First, we review systems aimed at maximizing data locality. Second, we

contrast Carrefour with previous contention-aware systems. Third, we consider

application-level techniques to mitigate contention on data-sharing applications.

Finally, we discuss traffic characterization observations for modern NUMA sys-

tems.

NUMA-aware thread and memory management policies were proposed for ear-

lier research systems [24, 28, 58, 98] as well as in commercial OS. Their main

difference from our work is that their goal was to optimize locality. However,

on modern systems, the main performance problems are due to traffic congestion.

Our algorithm is the first one that meets the goal of mitigating traffic congestion.

Among the above-mentioned works, the one most related to Carrefour is the system

by Verghese et al. [98] for early cache-coherent NUMA machines, which leverages

page replication and migration mechanisms. Their system relies on assumptions

about hardware support that do not hold on currently available machines (e.g., pre-

cise per-page access statistics). Thus, Carrefour’s logic is more involved, as it is

more difficult to amortize the costs of the monitoring and memory page placement

mechanisms. The authors noticed that locality-driven optimizations could, as a side

effect, reduce the overall contention in the system. However, their system does not

systematically address contention issues. For instance, shared written pages are not

taken into account, whereas Carrefour uses memory interleaving techniques when

there is contention on such pages. Moreover, the load on memory controllers is

ignored when making page replication/migration decisions.

Similarly to earlier NUMA-aware policies, Solaris and Linux focus primarily

on co-location of threads and data, but to the disadvantage of data-sharing work-

loads, replication is not supported. Linux provides the option to interleave parts

97

of the address space across all memory nodes, but the decision when to invoke the

interleaving is left to the programmer or the administrator. Solaris supports the

notion of a home load group, such that the thread’s memory is always allocated in

its home group and the thread is preferentially scheduled in its home group. This,

again, favours locality, but does not necessarily address traffic congestion.

The recent AutoNUMA patches for Linux also implement locality-driven opti-

mizations, using two main heuristics. First, threads migrate toward nodes holding

the majority of the pages accessed by these threads. Memory residence is deter-

mined by page fault statistics. Second, pages are periodically unmapped from a

process address space and, upon the next page fault, migrated to the requesting

node. As shown in the evaluation section, this approach yields irregular results.

We attribute this limitation to the following sources of overhead: local thread/page

migration decisions that do not take data sharing patterns nor access frequencies

into account (thus leading to page bouncing or useless migrations) nor memory

controller or interconnect load (thus leading to memory load imbalance/conges-

tion), continuous overhead due to the scanning/unmapping of page-table entries

and the corresponding soft page faults. In contrast, Carrefour makes global data

placement decisions based on precise traffic patterns and adjusts the monitoring

overhead based on the observed contention level.

Locality-driven optimizations for data-sharing applications were addressed in

a study that dynamically identified data-sharing thread groups and co-located them

on the same node [93]. However, that solution was for a system with a centralized

(UMA) memory architecture. Thus, it only studied the benefits of thread placement

for improved cache locality and did not address the placement of memory pages

on multiple memory nodes.

Zhou and Demsky [106] investigated how to distribute memory pages to caches

on a many-core Tilera processor, in order to implement an efficient garbage collec-

tor. The authors tried various policies but found that maximizing locality was the

best approach for their system. This is in contrast to the systems Carrefour is tar-

geting, where reducing congestion is more important than just improving locality.

Also, the authors used a very different method for monitoring page access patterns

that relies on software-serviced TLB misses, which is not possible on x86.

Several recent studies addressed contention issues in the memory hierarchy.

98

Some of these works were designed for UMA systems [56, 69, 107] and are in-

efficient on NUMA systems because they fail to address or even accentuate is-

sues such as remote access latencies and contention on memory controllers and

on the interconnect links [23]. Other works have been specifically designed for

NUMA systems but only partially address contention issues. The N-Mass thread

placement algorithm [63] attempts to achieve good DRAM locality while avoiding

cache contention. However, it does not address contention issues at the level of

memory controllers and interconnect links. Two studies [9, 64] have shown the

importance of taking memory controller congestion into account for data place-

ment decisions, but they did not provide a complete solution to address multi-level

resource contention. The most comprehensive work to date on NUMA-aware con-

tention management is the DINO scheduler [23], which spreads memory intensive

threads across memory domains and accordingly migrates the corresponding mem-

ory pages. However, DINO does not address workloads with data sharing between

threads or processes, which require identifying per-page memory access patterns

and making the appropriate data placement decisions.

When introducing a new resource-management policy in the OS, it is worth

asking whether a similar or better effect could be achieved by restructuring the

application. In our context, it is important to consider the so-called no-sharing

principle of application design. The key idea behind no-sharing is that the data

must be partitioned or replicated between memory nodes, and a thread needing to

access data in a different domain than its own either migrates to the target domain

or asks the thread running in that domain to perform the work on its behalf, instead

of fetching the data over the memory channels [16, 27, 47, 70, 74, 83, 89]. While

the no-sharing architecture was primarily motivated by the need to avoid locking, it

could similarly help reduce the amount of traffic sent across the interconnect, and

thus alleviate the traffic congestion problem.

Unfortunately, no-sharing architectures are not a universal remedy. First of all,

they trade-off data accesses for messages or thread migration; the trade-off is only

worth making if the size of the data used in a single operation is much larger than

the size of the message or the state of the migrated thread [27]. Second, adopting

a no-sharing architecture often requires very significant changes to the application

(and to the OS, if the application is OS-intensive). A good illustration of the poten-

99

tial challenges can be gleaned from two studies that converted a database system

to the no-sharing design. The first study took the path of least resistance and sim-

ply replicated and/or partitioned the database among domains, adding a message-

routing layer on top [83]. While this worked well for small read-mostly workloads,

for large workloads replication had very significant memory overhead (unaccept-

able because of increased paging), and partitioning required a priori knowledge

of query-to-data mapping, which is not a reasonable assumption in a general case.

A solution that overcame these limitations, DORA [74], required a very signifi-

cant restructuring of the database system, which could easily amount to millions of

dollars in development costs for a commercial database.

Our goal was to address scenarios where adopting a no-sharing architecture is

not feasible either for technical reasons or for practical considerations. Providing

an OS-level, rather than an application-level, solution allows us to address many

applications at once. Understanding the limitations of the OS-level solution and

determining what optimizations can be done only at the level of an application is

an open research question.

A recent study characterized the performance of emerging “scale-out” work-

loads on modern hardware [44]. The authors observed that there is little inter-

thread data sharing, and the utilization of the off-chip memory bandwidth is low.

As a result, they argue that memory bandwidth on existing processors is unneces-

sarily high. Our findings do not agree with this observation. Although it is also true

that the workloads we consider perform very little fine-grained data sharing, they

still stress the cross-chip interconnect, because they access a large working set,

which is spread across the entire NUMA memory space. The authors of the scale-

out study reported a very low bandwidth utilization (<10%), even for database

workloads. In contrast, our measurements show utilizations higher than 45% in

most cases. These differences could be because the authors of [44] used a system

with only two chips and 12 cores in their experiments. On larger systems, more

threads are making requests to remote memories and so there is greater pressure on

bandwidth. Further, we found that low bandwidth utilization is not necessarily a

healthy symptom. In our experiments, performance dropped steeply even as band-

width utilization went from 10% to 30%. The interconnect became the bottleneck

even at a fraction of the total available bandwidth! The reason is that memory re-

100

quests are not spread evenly in time; they are bursty. Burstiness causes requests

to clash on the link even if the overall bandwidth is not exceeded. In summary,

we conclude that contrary to the suggestion made in [44], it is too early to reduce

the bandwidth of cross-chip interconnects on large multicore systems, especially if

they are used for running large data-centric workloads.

4.6 Summary
Carrefour is a memory management algorithm for NUMA systems that manages

traffic on memory controllers and interconnects. Earlier NUMA-aware memory

management policies aimed to mitigate the cost of remote wire delays, which is no

longer the main bottleneck on modern systems. Carrefour’s design was motivated

by the evolution of modern NUMA hardware, where traffic congestion plays a

much larger role in performance than wire delays.

System design principles embodied in Carrefour are important not only for

today’s systems, but also for future hardware. The amount of memory bandwidth

per core is projected to decrease in the future [27], so managing traffic congestion

will be as crucial as ever.

Smart memory placement, as achieved by Carrefour, is only part of the equa-

tion. If there is only one application using all of the cores of a machine, then

good memory placement is sufficient for optimizing memory traffic and there-

fore performance. But, if an application does not fill the whole machine, then

thread placement becomes equally important. The strategy described in Chap-

ter 2 addresses this side of the equation. It can be used to decide which NUMA

nodes and interconnect links to use while considering all other relevant shared re-

sources. The workload placement algorithm in Chapter 2 complements Carrefour,

and when working in tandem they can optimize multi-application workloads and

under-utilized systems.

101

Chapter 5

Large Pages on NUMA Systems1

The previous chapter showed that to achieve good performance on NUMA systems

we need to place memory such that interconnect contention is minimized and local

accesses are maximized. In this chapter we show that large pages sometimes make

optimal memory placement impossible, and specifically that large pages can hurt
performance on NUMA systems. This observation, the analysis of the causes, and

the solution in the form of an extension to the Carrefour algorithm of Chapter 4,

constitute the primary contributions of this chapter.

Attribution: I conducted the initial investigation into NUMA and large pages,

including the discovery and analysis of the hot page and page-level false sharing

problems (reported in Section 5.2 and Section 5.3.1). Fabien Gaud and Baptiste

Lepers designed and implemented the Carrefour-LP algorithm.

5.1 Background
Applications with large memory working sets require many virtual-to-physical ad-

dress translations in page tables and TLBs. This drives up physical RAM con-

sumption, increases TLB miss rate, and hurts performance [15, 19, 73]. According

to one report, a large Oracle DBMS installation with 500 concurrent connections

consumed 7GB of RAM for page tables alone! [33]. To address this problem, most

modern hardware and operating systems introduced support for large pages. On

1This work is a modified version of work previously published in [48]

102

x86 systems large pages are typically 2MB (512 times larger than regularly-sized

4KB pages), and support for 1GB pages is on the way2. Using larger pages re-

quires fewer translations to cover the address space and diminishes the pressure on

the TLB and physical memory.

While large pages are crucial for performance of large-memory systems, they,

unfortunately, also have downsides. Previous work reported and addressed in-

creased memory footprints and physical memory fragmentation [92]. In this chap-

ter, we report on a new problem: large pages can exacerbate harmful NUMA
effects, such as poor locality and imbalance. Using large pages makes the unit of

memory management (a page) more coarse. As a result, it is more likely that many

frequently accessed memory addresses happen to map to the same physical page

and overload the memory node hosting it — the hot-page effect. The hot-page ef-

fect cannot be addressed by page migration and balancing; page splitting must be

performed prior to any attempts to rebalance memory. Likewise, large pages lead

to more frequent page-level false sharing among threads, where threads access dif-

ferent data on the same page. False sharing leads to poor locality, which cannot be

addressed by page migration alone.

Even though hot pages and false sharing touched only a couple of bench-

marks in our set, these effects will become pervasive on systems with much larger

pages (e.g., 1GB), which are becoming common. Therefore, we implemented

Carrefour-LP which addresses these problems by dynamically splitting large pages

as needed. For applications affected by hot pages and false sharing, Carrefour-LP

improves performance by 10%-80% relative to Carrefour alone. Carrefour together

with Carrefour-LP significantly diminish or completely eliminate the performance

degradation introduced by large pages and improve performance of some applica-

tions by 2-3� relative to Linux with large pages.

21GB pages are already supported by the hardware; support by the OS is still nascent, so few
applications are able to use them at the time of this writing.

103

5.2 Large Pages and Adverse NUMA Effects

5.2.1 Experimental Platform

For our experiments, we used two different server-class machines:

Machine C has two 1.7GHz AMD Opteron 6164 HE processors, with 12 cores

per processor, and 64GB of RAM. The system is equally divided into four NUMA

nodes (i.e., six cores and 12GB of RAM per node).

Machine D has four AMD Opteron 6272 processors, each with 16 cores (64 cores

in total), and 512GB of RAM. It has eight NUMA nodes with 8 cores and 64GB

of RAM per node.

Both machines have HyperTransport 3.0 interconnect links.

We are running on Linux 3.9 and are using Transparent Huge Pages (THP) for

large page allocation3. THP works by backing allocations of anonymous memory

with 2MB pages whenever possible. Other kinds of memory, such as memory

mapped files, are unaffected by THP and use 4KB pages. THP also uses a kernel

thread to periodically scan for free memory regions that are at least 2MB in size,

which are then used to replace groups of existing 4KB pages.

We used several benchmark suites representing a variety of different work-

loads: the NAS Parallel Benchmarks suite [11] which is comprised of numeric

kernels, MapReduce benchmarks from Metis [65], SSCA v2.2 (a graph process-

ing benchmark) [10] with a problem size of 20, and SPECjbb [2]. From the NAS

benchmark suite we picked the benchmarks that ran for at least 15 seconds. The

memory usage of the benchmarks ranges from 518MB for EP from the NAS suite

to 34,291MB for IS from NAS.

5.2.2 Large Pages on Linux

Figure 5.1 compares the performance of 4KB pages and 2MB pages using THP. We

can see that THP increases performance (by up to 109%) for several benchmarks

on both machines (e.g. WC, WR, WRMEM, and SSCA), but also significantly de-

3Linux also allows using large pages via libhugetlbfs, but the latter required recompiling appli-
cations and pre-allocating memory for large pages, which was inconvenient, and, moreover, did not
perform better than THP in our experiments.

104

creases performance by as much as 43% in some cases. CG, UA, and SPECjbb are

all negatively affected by THP. Therefore, 2MB pages are not universally beneficial

and neither are 4KB pages, so there is no “one size fits all.”

To understand this phenomenon, we recorded two metrics that represent the

potential benefits of large pages: the number of L2 cache misses caused by page

table walks (obtainable from HPEs), and the maximum time spent in the page fault

handler by any core. L2 misses due to page table walks is a good indicator for the

effect of TLB misses on performance. We expect large pages to increase the TLB

coverage and reduce page table sizes. As a result, we expect the number L2 cache

misses due to page table walks to drop when we use large pages. Similarly, large

pages will reduce the number of page faults for allocations and thus the time spent

in the page fault handler.

We also monitored two metrics related to NUMA efficiency: the local access

ratio (LAR), which is the percentage of accesses to local memory, and the traffic

imbalance on the memory controllers. Traffic imbalance is defined as the stan-

dard deviation of the memory request rate across the controllers, expressed as the

percent of the mean. For memory intensive applications, a low LAR and a high

imbalance signify a NUMA issue.

Table 5.1 shows the profiling results for a subset of interesting applications.

As expected, applications that benefited from 2MB pages in Figure 5.1 (WC and

SSCA) have fewer L2 misses due to page table walks, and for WC significantly

less time spent in the page fault handler. The effects can be dramatic. For example,

with SSCA on machine C the percentage of L2 misses due to page table walks

is decreased from 15% to 2% when using 2MB pages, which results in a 17%

performance increase. WC, which experiences a similar decrease in L2 misses but

also a large decrease in time spent on page faults, has its performance increased

more than two-fold on machine D.

The two other profiled benchmarks, CG and UA, perform much worse with

2MB pages. The profiling reveals that the degradation is caused by NUMA effects.

With CG and 4KB pages, the load on the memory controllers is almost perfectly

balanced, but with 2MB pages the imbalance is 20% on machine C and 59% on

machine D. For UA, the problem is that the LAR decreases when using large pages,

from about 88% to around 66%.

105

CG.D (D) UA.C (D) WC (D)
Perf. incr. THP/4k (%) -43 -15 109

Time in page fault
handler
(% of total time)

Linux
2182ms
(0.1%)

102ms
(0.2%)

8731ms
(37.6%)

THP
445ms
(0%)

53ms
(0.1%)

3682ms
(32.3%)

% L2 misses due
to page table walks

Linux 0 0 10
THP 0 0 1

Local access ratio (%) Linux 40 88 50
THP 36 66 55

Imbalance (%) Linux 1 14 147
THP 59 12 136

SSCA.20 (C) SPECjbb (C)
Perf. incr. THP/4k (%) 17 -6

Time in page fault
handler
(% of total time)

Linux
90ms
(0%)

8369ms
(2.1%)

THP
147ms
(0.1%)

5905ms
(1.5%)

% L2 misses due
to page table walks

Linux 15 7
THP 2 0

Local access ratio (%) Linux 25 12
THP 26 15

Imbalance (%) Linux 8 16
THP 52 39

Table 5.1: Detailed analysis of various application on machine C and D. The
machine type is indicated in parentheses next to the name of the bench-
mark.

106

-30
-20
-10

 0
 10
 20
 30

BT.B
CG.D

DC.A
EP.C

FT.C
IS.D

LU.B
M

G.D
SP.B

UA.B
UA.C

W
C

W
R

Km
eans

M
atrixM

ultiply

pca
wrm

em

SSCA.20

SPECjbb

P
e
rf

.
im

p
ro

v
e
m

e
n
t
re

la
ti
v
e

to
 d

e
fa

u
lt
 L

in
u
x
 (

%
)

THP

Machine C

-30
-20
-10

 0
 10
 20
 30

BT.B
CG.D

DC.A
EP.C

FT.C
IS.D

LU.B
M

G.D
SP.B

UA.B
UA.C

W
C

W
R

Km
eans

M
atrixM

ultiply

pca
wrm

em

SSCA.20

SPECjbb

P
e
rf

.
im

p
ro

v
e
m

e
n
t
re

la
ti
v
e

to
 d

e
fa

u
lt
 L

in
u
x
 (

%
)

THP-43

109 70 51

Machine D

Figure 5.1: THP performance improvement over Linux on machine C and
machine D. THP sometimes performs better than Linux, sometimes
worse.

SPECjbb presents an interesting case. While the data in Figure 5.1 suggests

that it does not benefit from large pages, profiling reveals that using large pages

actually decreases the percent of L2 misses due to page table walks. At the same

time, SPECjbb suffers from NUMA issues: the imbalance rises from 16% to 39%

with large pages. Therefore, SPECjbb could benefit from large pages if NUMA

effects were reduced.

5.3 Solutions
The previous section demonstrated that using large pages may introduce NUMA

issues, which may either degrade performance relative to small pages (as they did

for CG and UA) or leave the performance unchanged but prevent an application

from enjoying the benefits of large pages (as they did for SPECjbb). In this section

107

-30
-20
-10

 0
 10
 20
 30

CG.D
LU.B

UA.B
UA.C

M
atrixM

ultiply

wrm
em

SSCA.20

SPECjbb

P
e
rf

.
im

p
ro

v
e
m

e
n
t
re

la
ti
v
e

to
 d

e
fa

u
lt
 L

in
u
x
 (

%
)

THP
Carrefour-2M

Machine C

-30
-20
-10

 0
 10
 20
 30

CG.D
LU.B

UA.B
UA.C

M
atrixM

ultiply

wrm
em

SSCA.20

SPECjbb

P
e
rf

.
im

p
ro

v
e
m

e
n
t
re

la
ti
v
e

to
 d

e
fa

u
lt
 L

in
u
x
 (

%
)

THP
Carrefour-2M-43 -40

51 46

Machine D

Figure 5.2: Performance improvement of Carrefour-2M and THP over Linux
on applications whose NUMA metrics are affected by THP (2MB
pages). Carrefour-2M is not always able to solve the problems for ap-
plications that suffer from THP.

we first demonstrate that using a NUMA-aware page placement algorithm elimi-

nates the NUMA issues for some applications, motivating the use of NUMA-aware

page placement with large pages.

We then identify two new problems that a placement algorithm unaware of

large pages does not address: the hot-page effect and the page-level false sharing.

These effects, while affecting only two applications in our experiments, will be-

come especially important as much larger pages (e.g., 1GB) come into use. To

address them, we introduce large-page extensions (LP) to the Carrefour algorithm

from the previous chapter (all experiments shown in Chapter 4 used 4KB pages).

For clarity of presentation, from now on we will focus on those applications

that experience NUMA issues when large pages are used. Specifically, if the LAR

or the imbalance is made worse by more than 15% by using large pages as op-

108

posed to small ones on either machine, the application is selected for presentation,

otherwise it is omitted. The selected applications are: CG.D, LU.B, UA.B, UA.C,

matrixmultiply, wrmem, SSCA, SPECjbb. For completeness, and to demonstrate

that our solutions do not hurt the applications they cannot help, we do include

performance results for the excluded applications at the end of Section 5.4.

5.3.1 Page Balancing is Not Enough

We ran Carrefour in the kernel configured with 2M pages (Carrefour-2M). Figure

5.2 shows the performance of Carrefour-2M compared to Linux with 2M pages

(labeled as THP) relative to Linux with 4K pages (labeled as Linux). We observe

that while Carrefour-2M does improve performance for some applications, it fails

to solve the problem across the board. For SPECjbb, Carrefour-2M addresses the

NUMA issue; as shown in Table 5.2 it restores the balance on memory controllers

that was introduced by large pages and improves the LAR.

At the same time, Carrefour-2M fails to improve performance for UA and CG.

To understand why, we show profiling data for these applications in Table 5.2.

We report five metrics: the percentage of total accesses to the most used page

(PAMUP), the number of hot pages (NHP) defined as pages comprising more than

6% of the total accesses4, the percentage of memory accesses to pages shared by

at least two threads (PSP), the percentage of accesses to local memory (LAR), and

the traffic imbalance on the memory controllers.

The results for CG reveal that there is a hot page problem. Large pages cause

the heavily accessed regions of the address space to be coalesced into a small num-

ber of hot pages (the PAMUP significantly increases), and because there are fewer

hot pages than NUMA nodes it is impossible to balance them.

UA does not have a hot page issue, but it does have more pages that are shared

among threads when large pages are used (the PSP significantly increases). This

happens because each page holds more data and is thus more likely to contain data

used by multiple threads. Since the threads do not share data, but share the page,

we refer to this problem as page-level false sharing. Carrefour-2M is then forced

4In order to perfectly balance the load on a 8-node NUMA machine, each node must be the target
of 12.5% of the total memory accesses. Thus, we consider that if a page represents more than half of
this amount, it is likely to create imbalance.

109

to interleave these pages whereas if there were less sharing the pages could be

placed on the nodes where they are most heavily used for maximum locality. As a

result, Carrefour-2M delivers a lower LAR than Linux with small pages.

In summary, Carrefour-2M is only able to address NUMA issues induced by

large pages in cases where they are not caused by the hot-page effect and page-level

false-sharing.

While these problems affected only two applications in our experiments, they

will become pervasive as pages much larger than 2MB come into use. 1GB pages

are already supported by the hardware; applications like large DBMS clearly mo-

tivate their use [33]. We did not evaluate 1GB pages, because they are poorly

supported in Linux. 1GB pages are not compatible with THP, and while in theory

it is possible to use them with lighugetlbfs, that has many challenges. First of all,

the implementation is unreliable. We were not able to enforce the use of 1GB pages

with NAS applications and observed many crashes with the Metis suite (because

the latter uses a custom memory allocator). Second, the splitting of large pages,

which is crucial to our solution, is not supported by libhugetlbfs and implementing

it would require a significant effort.

However, since the use-case for very large pages is definitely there, they will

become more common as the OS support improves. Then, the hot-page effect and

page-level false sharing will become more common (Section 5.4.4 provides some

preliminary data). To address these problems, we propose large-page extensions to

Carrefour.

5.3.2 Carrefour-LP

Intuition suggests two basic solutions to the problem: conservative — prevent the

problem by only creating large pages when necessary, or reactive — start with

large pages and fix NUMA problems when they are observed. Each approach has

potential benefits and drawbacks. The conservative approach can avoid NUMA re-

lated performance degradation but can also miss out on the benefits of large pages.

On the other hand, the reactive approach will benefit from large pages, but must be

able to quickly and accurately detect NUMA issues and must pay the overhead of

fixing them.

110

Linux THP Carrefour
2M

SPECjbb

PAMUP 2% 6% 6%
NHP 0 0 0
PSP 10% 36% 36%
Imbalance 16% 39% 19%
LAR 26% 28% 27%

CG.D

PAMUP 0% 8% 8%
NHP 0 3 3
PSP 18% 34% 34%
Imbalance 0% 20% 20%
LAR 45% 45% 45%

UA.B

PAMUP 6% 6% 6%
NHP 0 0 0
PSP 16% 70% 70%
Imbalance 9% 15% 17%
LAR 90% 61% 58%

Table 5.2: Proportion of accesses to the most-used page (PAMUP) in %,
number of hot pages (NHP), proportion of memory accesses to shared
pages (PSP) in %, Imbalance in % and local access ratio (LAR) in % for
Linux, THP and Carrefour-2M, on machine C (24 cores).

We found that a good algorithm must be a combination of these approaches.

The reactive component of our algorithm continuously monitors HPEs looking

for the presence of NUMA effects under large pages, applies the page balancing

techniques of Carrefour and splits the large pages if the latter are ineffective. The

conservative component of the algorithm continuously monitors the virtual mem-

ory metrics and re-enables large pages if they are expected to deliver benefit but

were previously disabled.

We also found that it is more practical and involves less overhead to enable

large pages in the beginning and disable them later if they are deemed harmful. In

particular, many applications have intensive memory-allocation phases at the very

beginning of the program that suffer from lock contention if small pages are used.

Our full algorithm is presented in Algorithm 5. The algorithm also details the

HPEs that are being monitored. Since the monitoring is done continuously, the

111

algorithm caters to phase changes in applications. Below we describe the rationale

behind the decisions made in the algorithm.

Reactive Component

The job of the reactive component is to disable large pages when they are harmful

to the extent that even Carrefour-2M’s page-balancing techniques cannot address

the performance degradation. To that end, it estimates the local access ratio (LAR),

a vital metric for detecting NUMA issues, with and without Carrefour and large

pages.

We use AMD’s instruction-based sampling (IBS)5 to sample memory accesses

to pages, and to learn whether the access was made from a local or a remote node.

We only consider pages that have at least one sample where the access was serviced

from DRAM, so that our decisions are not affected by pages that are easily cached.

From the IBS samples, we estimate the LAR that would be obtained if the shared

pages were migrated to a random node and if non-shared pages were migrated to

the local node (i.e. interleaving and migrating pages with the Carrefour-2M algo-

rithm). We also calculate the LAR that would be obtained if the same technique

were used but with all of the 2MB pages split into 4KB pages.

Estimating the LAR for various what-if scenarios (e.g., if a page were migrated

or if large pages were split into regular-sized) is trivial with IBS samples. IBS

gives us data addresses and the node from which they were accessed. So we can

compute the current LAR as well as the LAR that would be obtained if the pages

where placed on different nodes. Similarly, we can map the data addresses to 4KB

pages and compute the same metrics for the scenario if the large pages were split.

If, based on our estimates, the LAR can be improved by 15% with Carrefour-

2M only and without splitting the pages, we simply run Carrefour-2M. Otherwise,

if splitting pages would improve the LAR by at least 5%, then all shared 2MB

pages are demoted into 4KB pages. Note that we are being cautious here: we try

to address NUMA issues by page migration first, and split pages only if absolutely

necessary. Splitting pages has overhead and may hurt applications that benefit

from large pages. In addition, large pages with more than 6% of the total accesses

5Intel systems have a similar facility called PEBS (Precise Event-Based Sampling).

112

(hot pages, as defined in Section 5.3.1) are split and the constituent 4KB pages are

interleaved.

This part of the algorithm relies on two thresholds. The first one is the 15%

threshold used to decide whether we can improve the LAR simply by rearranging

memory pages, without having to split large pages. That threshold was relatively

easy to set across applications: the key is to use a relatively large number, since

we want to be rather confident that we can improve performance without having

to split pages. The second threshold, the 5% performance gain that we expect

from splitting pages, needs to be any non-negligible number that would justify the

splitting. Again, that threshold was relatively easy to tune across applications.

In the algorithm, we use the LAR computed per-application. Another option

would be to use the LAR computed per-page, however this was difficult to do,

because existing hardware monitoring facilities prevent us from obtaining enough

samples to accurately compute per-page LAR (and even per-application LAR as

explained in the next section). This is why the algorithm splits all 2MB pages

when it detects the LAR can be improved.

Conservative Component

The job of the conservative component is to re-enable large pages when they have

been disabled but monitoring shows that they would be beneficial again. The con-

servative component uses two criteria to determine the benefit of large pages: the

performance impact of TLB misses (based on the fraction of L2 misses caused by

page table walks) and the maximum percentage of time any core spends processing

page faults. The reason why we consider the time spent processing page faults is

that large pages improve performance by decreasing this time. Indeed, soft page

faults not only take CPU time, but also incur costly synchronization [26]. The lat-

ter is the reason why we use the maximum fraction as opposed to the average: lock

contention will be determined by the slowest core that holds page table locks.

The conservative component works as follows. If the impact of TLB misses

is estimated to be greater than a threshold of 5%, then 2MB page allocation and

2MB page promotion6 are both enabled via THP. Similarly, if the time spent in the

6Page promotion refers to dynamic consolidation of regular-sized pages into large pages. It is
supported by the default Linux kernel. We set the frequency for page promotion checks to every

113

Algorithm 5 Large-page Extensions to Carrefour
Enable 2MB page allocation and promotion
while true do

Gather HPEs and IBS samples for 1 sec
if L2 misses due to page table walks > 5% then

Enable 2MB page allocation
Enable 2MB page promotion

else if Max time spent on page faults > 5% then
Enable 2MB page allocation

end if
if Estimated LAR improvement with only Carrefour > 15% then

SPLIT PAGES = false
else if Estimated LAR improvement with Carrefour and splitting pages >

5% then
SPLIT PAGES = true

end if
if SPLIT PAGES = true or 2MB page allocation is disabled then

Split all shared 2MB pages into 4KB pages
Disable 2MB page allocation

end if
Split and interleave 2MB hot pages
Interleave and migrate pages with Carrefour

end while

page fault handler was more than a threshold of 5%, then 2MB page allocation is

enabled but not 2MB page promotion, since there is little benefit in promoting the

pages on which we had already paid the cost of page faults.

In order to estimate the impact of TLB misses on performance, we use the

fraction of L2 cache misses due to page table walks. This assumes that TLB misses

primarily degrade performance when a page table traversal causes an L2-cache

miss (in that case, the miss is satisfied either from the L3 cache or from the DRAM,

both of which are costly), and that the application’s performance is dominated by

L2 cache misses. Although this is a coarse approximation, it works well because

applications that experience a lot of cache misses due to page table walks are those

with large page tables. This implies that they have large memory footprints, and so

10ms.

114

they are memory-intensive. Therefore, it is safe to assume, for these applications,

that variations in performance can be primarily explained by the number of L2

cache misses. Conversely, applications with a very small fraction of L2 cache

misses resulting from page table walks are not memory-intensive, so for them the

impact of TLB misses is negligible.

5.4 Evaluation

5.4.1 Performance Evaluation

Figure 5.3 shows performance of Carrefour-LP and THP relative to Linux with 4K

pages. We continue focusing only on the applications affected by NUMA issues;

the remaining applications are presented for completeness in Figure 5.5. Figure 5.3

shows that Carrefour-LP:

� Restores performance of applications that suffered under large pages and do

not stand to benefit from them: CG.D, UA.B, UA.C.

� Improves performance of applications that were expected to benefit from

THP but did not (or did not benefit fully): SSCA and SPECjbb, both on

machine C.

� Does not significantly hurt performance of the applications where NUMA

effects did not cause performance degradation under large pages and where

no performance improvements from large pages were expected (the remain-

ing applications).

We next provide the detailed analysis of Carrefour-LP. We analyze the con-

tribution to performance improvements of its three components: Carrefour-2M,

conservative and reactive. We demonstrate when and why it is sufficient to just use

Carrefour-2M alone and explain how both conservative and reactive components

contribute to the solution. The performance breakdown is shown in Figure 5.4.

Workloads other than CG.C, UA.B and UA.C are not affected by the hot-page

effect and page-level false sharing, so in these cases Carrefour-LP performs simi-

larly to Carrefour-2M alone. It is able to meet the performance of Carrefour-2M

with minimal overhead (at most 3.7% on machine C and 2.1% on machine D).

115

-30
-20
-10

 0
 10
 20
 30

CG.D
LU.B

UA.B
UA.C

M
atrixM

ultiply

wrm
em

SSCA.20

SPECjbb

P
e
rf

.
im

p
ro

v
e
m

e
n
t
re

la
ti
v
e

to
 d

e
fa

u
lt
 L

in
u
x
 (

%
)

THP
Carrefour-LP

Machine C

-30
-20
-10

 0
 10
 20
 30

CG.D
LU.B

UA.B
UA.C

M
atrixM

ultiply

wrm
em

SSCA.20

SPECjbb

P
e
rf

.
im

p
ro

v
e
m

e
n
t
re

la
ti
v
e

to
 d

e
fa

u
lt
 L

in
u
x
 (

%
)

THP
Carrefour-LP-43

51 46

Machine D

Figure 5.3: Performance improvement on a reduced set of applications of
THP and Carrefour-LP over Linux, on machine C and machine D.

Table 5.3 demonstrates that Carrefour-LP eliminates the hot-page effect and

page-level false sharing and improves NUMA metrics where Carrefour-2M fails.

For UA, the LAR drops from about 90% to roughly 60% under THP and remains

at that low level under Carrefour-2M. Carrefour-LP is able to restore it almost to

the previous level by dynamically splitting pages.

For CG.D, enabling large pages disturbs the perfect memory-controller balance

enjoyed under small pages. Carrefour-2M is unable to restore it, while Carrefour-

LP restores it almost entirely.

We now analyze the importance of the two components in Carrefour-LP. Fig-

ure 5.4 presents the performance obtained when running Carrefour-2M alone (la-

beled as Carrefour-2M), Carrefour-2M with the reactive component designed for

Carrefour-LP (labeled as Reactive), the original Carrefour runtime (working on

4kB pages) together with the conservative component (labeled as Conservative),

and Carrefour-LP (labeled as Carrefour-LP). Figure 5.4 shows that in all cases, en-

116

-30
-20
-10

 0
 10
 20
 30

CG.D
LU.B

UA.B
UA.C

M
atrixM

ultiply

wrm
em

SSCA.20

SPECjbb

P
e
rf

.
im

p
ro

v
e
m

e
n
t
re

la
ti
v
e

to
 d

e
fa

u
lt
 L

in
u
x
 (

%
)

Carrefour-2M
 Conservative

Reactive
Carrefour-LP

Machine C

-30
-20
-10

 0
 10
 20
 30

CG.D
LU.B

UA.B
UA.C

M
atrixM

ultiply

wrm
em

SSCA.20

SPECjbb

P
e
rf

.
im

p
ro

v
e
m

e
n
t
re

la
ti
v
e

to
 d

e
fa

u
lt
 L

in
u
x
 (

%
)

Carrefour-2M
Conservative

Reactive
Carrefour-LP-40

46
32

45
46

Machine D

Figure 5.4: Performance improvement on a reduced set of applications of
Carrefour-2M, the conservative component, the reactive component and
Carrefour-LP over Linux with THP, on machine C and machine D.

Local Access ratio (%) Imbalance (%)
Default THP Carr. Carr. LP Default THP Carr. Carr. LP
Linux 2M Linux 2M

CG.D (B) 40 36 38 39 1 59 69 3
UA.B (A) 90 61 58 85 9 15 17 10
UA.C (B) 88 66 68 82 14 12 9 14

Table 5.3: NUMA metrics for CG.D on machine D, UA.B on machine C, and
UA.C on machine D.

abling the two components (as done in Carrefour-LP) is always the best choice (or

close to the best). The conservative component alone does not solve the problem,

because it begins with 4K pages. For SPECjbb, for example, it does not detect the

need for large pages soon enough, so the performance is not as good as it could be.

We similarly observed that using the conservative component alone hurts perfor-

117

mance of many applications that were not included in this analysis (but shown in

Figure 5.5) for the same reason: large pages were not enabled soon enough. These

applications have an intense memory allocation phase at startup, which can benefit

greatly from large pages due to fewer page faults, but the conservative component

does not enable large pages soon enough.

Using the reactive component alone works well on some applications. For

CG.D, it is able to detect the hot page and split it. Similarly, it is also able to split

the falsely shared pages for UA.B and UA.C. However, on some applications, it

fails to bring the maximum performance improvement that can be achieved with

2M pages (e.g. SSCA on machine C and SPECjbb on machine D). The reason is

that the LAR is sometimes misestimated, and this results in 2M pages being split

in applications that do not suffer from NUMA issues. For instance, on SSCA,

the algorithm predicts a LAR of 59% if large pages were all split into 4k pages,

whereas the actual LAR obtained after splitting is equal to 25%.

The problem is, in order to estimate the LAR under regular-sized pages given

the data samples collected under large pages, we need to have enough samples

on the constituent sub-pages. Unfortunately, we found it to be very difficult to

gather enough samples; increasing the sampling rate results in unacceptably high

overhead. A promising solution would be to use Lightweight Profiling (LWP).

LWP is an extension of AMD processors that aims at providing the same level of

details as IBS with less overhead. To reduce the overhead, LWP stores samples in a

ring buffer and only interrupts the processor when the buffer is full. Unfortunately,

on available AMD processors, LWP is only partially implemented: LWP samples

only contain the instruction pointer of the sampled instruction and a timestamp.

This information is not sufficient to predict LAR. Another potential solution is the

Shim profiler [102], but only if the application leaves some cores unused for the

profiler.

Because of these deficiencies in hardware profiling, the reactive component

may make mistakes in deciding when to split large pages. This is where the con-

servative component comes to the rescue and re-creates the large pages when they

are expected to help.

We conclude this section by explaining some performance results in Figure 5.5,

which contains applications where THP did not create any NUMA issues. The

118

-30

-20

-10

 0

 10

 20

 30

BT.B
DC.A

EP.C
FT.C

IS.D
M

G.D
SP.B

W
C

W
R

Km
eans

pca

P
e
rf

.
im

p
ro

v
e
m

e
n
t
re

la
ti
v
e

to
 d

e
fa

u
lt
 L

in
u
x
 (

%
)

THP
Carrefour-LP

89 74

Machine C

-30

-20

-10

 0

 10

 20

 30

BT.B
DC.A

EP.C
FT.C

IS.D
M

G.D
SP.B

W
C

W
R

Km
eans

pca

P
e
rf

.
im

p
ro

v
e
m

e
n
t
re

la
ti
v
e

to
 d

e
fa

u
lt
 L

in
u
x
 (

%
)

THP
Carrefour-LP

78 217 109
100

70
63

66

Machine D

Figure 5.5: Performance improvement of THP and Carrefour-LP over Linux
on applications whose NUMA metrics are not affected by THP, on ma-
chine C and machine D.

key observation is that the overhead of Carrefour-LP does not significantly hurt

these applications. Moreover, EP.C, SP.B and pca enjoy better (sometimes much

better) performance with Carrefour-LP than with THP. That is because they had

NUMA issues to begin with (which were not exacerbated by large pages), and so

the Carrefour-2M component of the algorithm helped to address them.

5.4.2 Overhead Assessment

Overhead in Carrefour-LP comes from collecting and storing IBS samples, com-

puting the metrics based on these samples, migrating and splitting pages. Overall,

the overhead of Carrefour-LP compared to the reactive approach is negligible: be-

tween 1% and 2% on all applications (on all machines) except CG (3.2%) and IS

119

(2.1%) on machine D. Even on these two applications, the overhead is still within

the standard deviation.

Compared to Carrefour-2M, the overhead is also small. The maximum over-

head observed is 3.7% on machine C (SP.B) and 3.2% on machine D (LU.B), but

on average it is below 2%.

Compared to Linux with 4k pages, Carrefour-LP has an overhead of less than

3%, except on FT, IS (machine C) and LU (machine D). This overhead is not

specific to Carrefour-LP but is rather caused by Carrefour-2M, which spends too

much time migrating large pages. Since our solution is built on top of Carrefour-

2M, it also suffers from the same overhead.

5.4.3 Discussion

The solution could be much improved if we had a more accurate way of estimating

the LAR. Currently, with inaccurate estimates, the solution may split and migrate

pages when there is no benefit to be gained, which is why Carrefour-LP degrades

performance of LU by 3.5% compared to Carrefour-2M. We believe that the LAR

could be predicted more accurately if we could collect more data samples without

additional overhead. A complete implementation of LWP (i.e., if LWP provided

the same kind of samples as IBS) would solve this problem.

Our earlier implementation had scalability issues on the system with 64 cores.

The reason was that the centralized data structure where we stored IBS samples

had to be accessed and locked from multiple nodes. We addressed this problem by

maintaining a data structure per node. The per-node structures are still accessed

by multiple cores, so we may need to revisit this scaling issue on larger machines.

Overall, the algorithm is likely to scale well because all work generated by an

interrupt is performed independently on each node, so the number of nodes can

grow without creating scalability bottlenecks.

Splitting pages did not create too much overhead, but the use of the page table

lock for THP operations is clearly a scalability concern. Linux developers are

working on finer grain locks at the time of this writing, so we hope that this problem

will be avoided.

We did not observe many oscillations, where we go back and forth between

120

splitting and enabling large pages. Overall, Carrefour-LP seems to be more robust

than the conservative and the reactive components used independently, because it

naturally supports transient states and phase changes by continuously re-examining

its decisions.

5.4.4 Very Large Pages

Although accessing the very large 1GB pages via libhugetlbfs proved challenging

for most applications, we were able to enable them in SSCA and in streamclus-

ter (an application from PARSEC)7. We immediately observed the hot-page and

page-level false-sharing problems. With 1GB pages, lots of hot small pages were

coalesced on a single NUMA node, and the performance dropped dramatically. For

SSCA it degraded by 34%; for streamcluster by a factor of 4. Neither of these ap-

plications suffered performance degradation when 2M pages were used. Although

preliminary, these data suggest a much more pervasive presence of NUMA issues

when very large pages are used, and so Carrefour-LP will become even more im-

portant in the future.

5.5 Related Work

5.5.1 Large Pages and TLB Performance

Several studies have characterized the effect of TLB misses and large pages [19,

50, 73, 99, 104]. Battacharjee and Martonosi [19] specifically looked at the effect

of TLB misses on multicore systems with multithreaded workloads. They found

that some applications, such as Canneal from the PARSEC benchmark suite, spend

up to 0.7 cycles per instruction on servicing D-TLB misses. Another study [73]

showed performance improvements of up to 25% in the NAS benchmark suite due

to using large pages. For large-scale HPC applications, Zhang et al. [104] found

that large pages improve communication performance significantly.

Weisberg and Wiseman [99] used the SPEC CPU2000 benchmarks to evaluate

the relationship between page size and the number of TLB misses. They argue that

7The PARSEC suite was not included in our study, because its applications did not experience
performance differences under THP with 2M pages.

121

a 4KB page size is much too small for most applications, and conclude that a page

size of 256KB and a 64-entry TLB is sufficient to drastically reduce the number of

TLB misses.

Sudan et al. [91] motivate the need for small pages. They show that using 1KB

pages allows optimizing the usage of the DRAM row-buffer, yielding substantial

energy savings and decreasing the average latency of memory accesses.

All these works motivate the use of different page sizes, but none of them

highlight or quantify the impact of NUMA on the performance obtained when

using different page sizes.

5.5.2 Large Page Support and Optimization

Many software systems have been designed that make large pages easier to use or

more effective.

Navarro et al. [72] described an algorithm for operating system support of large

pages that reduces fragmentation and does not require memory copies to create

large pages. Using their algorithm, a page fault reserves a physical memory region

of the size of a large page, but it initially only allocates and maps a small page.

Subsequent page faults use the reserved space until it has been completely allo-

cated, at which point the region is promoted to a large page. The algorithm does

not attempt to optimize the placement of large pages.

Cascaval et al. [29] developed a model to predict the benefit of using large

pages on individual data structures of applications, based on the predicted num-

ber of TLB misses and page faults. The predictions are computed using HPEs

throughout multiple runs of the application. The data structures that are predicted

to benefit the most from large pages are backed by large pages. A similar method

is described in [78], with the major difference being that large page promotions are

performed at runtime.

Magee and Qasem [62] also devised a system for restricting the usage of

large pages to applications that benefit the most from them. At compile-time, the

working-set size is estimated through static analysis. If the estimated working-set

size is greater than the coverage of the target CPU’s TLB, then large pages are

used.

122

A different approach is explored by Basu et al. [15]. Instead of managing

the use of large pages at the OS level, they propose a hardware extension that

allows applications to directly map memory segments. Addresses within directly

mapped segments bypass the TLB and so translation is nearly free. The segments

are conceptually similar to very large pages and provide similar benefits, but the

authors do not analyze the potential NUMA effects which would be exacerbated

by the large size of the segments.

In summary, previous works mostly focused on the limited availability of large

pages and on reducing memory fragmentation. Several systems have been designed

to ensure that applications that benefit from large pages actually use them, but no

existing work has revealed and addressed the NUMA issues raised by large pages.

5.6 Summary
We demonstrated that using large pages can create or exacerbate NUMA issues like

reduced locality or imbalance. We showed that these problems can be in some cases

addressed by using a NUMA-aware page placement algorithm, but the latter stum-

bles upon two problems: the hot-page effect and page-level false sharing, which

cannot be addressed via page migration. To address these problems, we imple-

mented Carrefour-LP: large-page extensions to the NUMA-aware page placement

algorithm described in Chapter 4. Our results show that Carrefour-LP restores the

performance when it was lost due to large pages and makes their benefits accessible

to applications.

Solutions like Carrefour-LP will be even more important in the future, when

very large pages (1GB in size) will be in widespread use.

123

Chapter 6

Conclusion

A reoccurring theme throughout Chapters 2–5 is the continual increase in hardware

complexity and the burden it places on system software to get the most out of it.

Due to physical limitations, hardware architects must improve chip performance

by increasing core counts and adding features to improve utilization rather than

increasing frequency as has been done in the past. This leads to a multitude of

shared resources such as core functional units when using SMT, caches at various

levels, interconnects, and memory controllers. As we have seen, this resource

sharing can cause significant performance effects, and reducing the contention for

the shared resources is essential for optimizing performance.

And yet modern operating systems rely on simple and usually insufficient

mechanisms to address shared resource contention. For example, Linux’s default

NUMA memory allocation policy is first-touch, meaning that memory is allocated

on the NUMA node it is first accessed from. This can lead to extensive contention

for memory controllers and interconnect bandwidth, as shown in Chapter 4. An-

other example is the Linux thread scheduler which generally tries to spread threads

apart in an effort to give the threads as much resources as possible. Again, this

relatively simple strategy does not provide good performance for every application

as seen in Section 2.5. In general, the simple solutions employed by operating

systems are not optimal for all applications but only a subset of them.

The first step towards a comprehensive solution is insight into the problem it-

self, specifically how applications interact with the hardware and the effects on per-

124

Concern Score Resources Cost? Inverse
Perf?

L2/SMT
Number of L2
caches in use

L2 cache, L1 cache,
instruction front-
end, and functional
units

Y Y

L3
Number of L3
caches in use

L3 cache Y Y

Mem. Controller
Number of mem-
ory controller
pairs in use

Memory controllers,
DRAM bandwidth,
I/O

Y Y

Table 6.1: Scheduling concerns for an AMD Zen system.

formance. The insights are important research contributions on their own. Chap-

ter 2 showed the predictive power of performance measurements and relative lack

of predictive power of HPEs, Chapter 3 demonstrated the importance of the in-

struction mix with respect to SMT preference, Chapter 4 proved the importance of

managing NUMA traffic congestion over focusing solely on locality, and Chapter

5 identified the hot page and page-level false sharing issues with NUMA and large

pages.

From these observations we built a complete and practical solution to the prob-

lem of NUMA and multicore resource contention. The first step is workload place-

ment, described in Chapter 2. Our approach relies on an offline training phase that

runs a training set of benchmarks and builds a machine learning model to predict

the performance of applications at different thread placement configurations. At

runtime, a new, previously unseen application requires only two performance mea-

surements in two different placements as inputs into the machine learning model,

and then accurate predictions for other placements can be made. In our exper-

iments the average prediction error was 6.6% and 4.4% on our two test systems,

and in Section 2.5 we showed how this translates into more efficient machine pack-

ing while maintaining performance targets.

An important aspect of the solution to workload placement in Chapter 2 is that

it is flexible and easy to adapt to future architectures. As long as new hardware ar-

chitectures conform to the basic structure of having a hierarchy of shared resources,

125

scheduling concerns can be developed for them easily. To demonstrate this, Table

6.1 shows the scheduling concerns that would be used for AMD’s recently released

Zen architecture [8, 32]. The Zen architecture is significantly different from the

Bulldozer architecture used in Chapter 2 (Table 2.1). Many more resources are

shared at the SMT level on the Zen architecture, including all the functional units

rather than just the floating point units, and the L1 cache is shared as well. In addi-

tion it has another level of hierarchy because the L3 cache is shared at a lower level

than the memory controllers. Despite these differences it is still simple to derive

the scheduling concerns in Table 6.1 (current Zen platforms have symmetric inter-

connects, but it would also be simple to add an asymmetric interconnect concern if

it is required in the future).

The second step after thread placement is memory placement. The Carrefour-

LP algorithm (Chapter 5) places memory pages on NUMA nodes so that inter-

connect congestion is minimized and additionally it manages the size of memory

pages so that TLB and page fault effects are weighed against the needs of balancing

interconnect traffic. By measuring HPEs and utilizing instruction-based sampling,

Carrefour-LP monitors NUMA statistics and per-page access patterns which it uses

to make its decisions. This is done at runtime with low overhead and without re-

quiring changes to the application. In extreme cases Carrefour-LP can improve

performance by 3� compared to default Linux and it consistently improves perfor-

mance over other standard techniques in other cases.

The practicality of our approach is what sets this work apart from other re-

cent research in the field, such as Pandia [49]. Current research in the field tends

to require burdensome offline profiling for new applications, or extensive expert

knowledge to adapt the techniques to new hardware architectures. Neither is the

case for our solution.

Still, there is much work to be done in the area. The workload placement al-

gorithm of Chapter 2 assumes that the level of parallelism of the workload (i.e.

the number of vCPUs the workload uses) is known beforehand. While this is a

reasonable assumption in many use-cases such as clients of a cloud environment,

it would still be quite helpful to be able to predict the effect of increasing or de-

creasing the level of parallelism. The results reported in Chapter 3 are a start to this

problem but they only apply SMT systems, so more work could be done to extend

126

the technique to a broader context. A second area of future work is studying the

precise relationship between thread placement and memory placement. Our solu-

tion places threads first and then places memory, but it is possible that if thread

and memory placement is considered at the same time then further performance

gains could be obtained. Lastly, our workload placement method makes some as-

sumptions. For example, it assumes that workloads will not interfere with each

other which can lead to cores being left idle in some cases. Another example is

that it only considers balanced placements. If these assumptions can be loosened

or removed through further research then the method would be able to increase

efficiency to an even greater extent. One avenue of complementary research would

be to leverage application-specific data from the compiler or run-time system to

improve predictions or help remove the assumptions and limits of the solution.

For example compiler and run-time information can be used to determine how the

load is balanced among workers (and the likelihood of stranglers), which could be

useful for removing the assumption of balanced placements.

127

Bibliography

[1] 2011. Apache DayTrader Benchmark. (2011). Retrieved May 30th 2017
from http://geronimo.apache.org/GMOxDOC22/daytrader-a-more-complex-
application.html. ! pages 51

[2] 2013. SPECjbb2005. (2013). Retrieved May 30th 2017 from
http://www.spec.org/jbb2005/. ! pages 52, 104

[3] 2016. Dell EMC Enterprise Infrastructure Planning Tool. (2016). Retrieved
May 30th 2017 from http://dell-ui-eipt.azurewebsites.net. ! pages 1

[4] 2016. The WiredTiger key-value store. (2016). Retrieved May 30th 2017
from http://source.wiredtiger.com. ! pages 7, 22

[5] 2017. Amazon EC2 Instance Types. (2017). Retrieved May 30th 2017 from
https://aws.amazon.com/ec2/instance-types. ! pages 13

[6] 2017. Selecting the number of clusters with silhouette analysis on KMeans
clustering. http://scikit-learn.org/stable/auto examples/cluster/
plot kmeans silhouette analysis.html. (2017). ! pages 22

[7] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and
David J. Lipman. 1990. Basic local alignment search tool. Journal of
molecular biology 215, 3 (1990), 403–410.
https://doi.org/10.1016/S0022-2836(05)80360-2 ! pages 22

[8] AMD. 2017. Processor Programming Reference PPR for AMD Family 17h
Model 01h, Revision B1 Processors. Sunnyvale, CA, USA. ! pages 126

[9] Manu Awasthi, David W. Nellans, Kshitij Sudan, Rajeev Balasubramonian,
and Al Davis. 2010. Handling the Problems and Opportunities Posed by
Multiple On-chip Memory Controllers. In Proceedings of the 19th
International Conference on Parallel Architectures and Compilation

128

http://geronimo.apache.org/GMOxDOC22/daytrader-a-more-complex-application.html
http://geronimo.apache.org/GMOxDOC22/daytrader-a-more-complex-application.html
http://www.spec.org/jbb2005/
http://dell-ui-eipt.azurewebsites.net
http://source.wiredtiger.com
https://aws.amazon.com/ec2/instance-types
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
https://doi.org/10.1016/S0022-2836(05)80360-2

Techniques (PACT ’10). ACM, New York, NY, USA, 319–330.
https://doi.org/10.1145/1854273.1854314 ! pages 99

[10] David A. Bader, John Feo, John Gilbert, Jeremy Kepner, David Koester,
Eugene Loh, Kamesh Madduri, Bill Mann, and Theresa Meuse. 2007. HPCS
Scalable Synthetic Compact Applications #2 Graph Analysis. ! pages 51,
104

[11] David H. Bailey, Eric Barszcz, John T. Barton, David S. Browning,
Robert L. Carter, Leonardo Dagum, Rod A. Fatoohi, P. O. Frederickson,
T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. 1991. The NAS Parallel Benchmarks - Summary and
Preliminary Results. In Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing (SC ’91). ACM, New York, NY, USA, 158–165.
https://doi.org/10.1145/125826.125925 ! pages 22, 51, 84, 104

[12] Mohammad Banikazemi, Dan Poff, and Bulent Abali. 2008. PAM: A Novel
Performance/Power Aware Meta-scheduler for Multi-core Systems. In
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (SC
’08). IEEE Press, Piscataway, NJ, USA, Article 39, 12 pages.
http://dl.acm.org/citation.cfm?id=1413370.1413410 ! pages 9

[13] Scott Barielle. 2011. Calculating TCO for energy. IBM Systems Magazine:
Power (2011), 38–40. ! pages 1

[14] Bradley J. Barnes, Barry Rountree, David K. Lowenthal, Jaxk Reeves,
Bronis de Supinski, and Martin Schulz. 2008. A Regression-based
Approach to Scalability Prediction. In Proceedings of the 22nd Annual
International Conference on Supercomputing (ICS ’08). ACM, New York,
NY, USA, 368–377. https://doi.org/10.1145/1375527.1375580 ! pages 66

[15] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and
Michael M. Swift. 2013. Efficient Virtual Memory for Big Memory Servers.
In Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA ’13). ACM, New York, NY, USA, 237–248.
https://doi.org/10.1145/2485922.2485943 ! pages 102, 123

[16] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture for
Scalable Multicore Systems. In Proceedings of the 22nd ACM SIGOPS
Symposium on Operating Systems Principles (SOSP ’09). ACM, New York,
NY, USA, 29–44. https://doi.org/10.1145/1629575.1629579 ! pages 99

129

https://doi.org/10.1145/1854273.1854314
https://doi.org/10.1145/125826.125925
http://dl.acm.org/citation.cfm?id=1413370.1413410
https://doi.org/10.1145/1375527.1375580
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/1629575.1629579

[17] Tom Bawden. 2016. Global warming: Data centres to consume three times
as much energy in next decade, experts warn. (2016). Retrieved September
16th 2017 from https://www.independent.co.uk/environment/global-
warming-data-centres-to-consume-three-times-as-much-energy-in-next-
decade-experts-warn-a6830086.html. ! pages 1

[18] J. Ross Beveridge, David Bolme, Bruce A. Draper, and Marcio Teixeira.
2005. The CSU Face Identification Evaluation System. Machine Vision and
Applications 16, 2 (2005), 128–138.
https://doi.org/10.1007/s00138-004-0144-7 ! pages 84

[19] Abhishek Bhattacharjee and Margaret Martonosi. 2009. Characterizing the
TLB Behavior of Emerging Parallel Workloads on Chip Multiprocessors. In
Proceedings of the 18th International Conference on Parallel Architectures
and Compilation Techniques (PACT ’09). IEEE, Washington, DC, USA,
29–40. https://doi.org/10.1109/PACT.2009.26 ! pages 102, 121

[20] Christian Bienia and Kai Li. 2009. PARSEC 2.0: A New Benchmark Suite
for Chip-Multiprocessors. In Proceedings of the 5th Annual Workshop on
Modeling, Benchmarking and Simulation. ! pages 22, 51, 84

[21] Sergey Blagodurov and Alexandra Fedorova. 2011. In Search for
Contention-descriptive Metrics in HPC Cluster Environment. In Proceedings
of the 2nd ACM/SPEC International Conference on Performance
Engineering (ICPE ’11). ACM, New York, NY, USA, 457–462.
https://doi.org/10.1145/1958746.1958815 ! pages 7

[22] Sergey Blagodurov, Alexandra Fedorova, Evgeny Vinnik, Tyler Dwyer, and
Fabien Hermenier. 2015. Multi-objective Job Placement in Clusters. In
Proceedings of the 27th International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’15). ACM, New York,
NY, USA, Article 66, 12 pages. https://doi.org/10.1145/2807591.2807636
! pages

[23] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexandra
Fedorova. 2011. A Case for NUMA-aware Contention Management on
Multicore Systems. In Proceedings of the 2011 USENIX Annual Technical
Conference (ATC ’11). USENIX Association, Berkeley, CA, USA. ! pages
7, 99

[24] William Bolosky, Robert Fitzgerald, and Michael Scott. 1989. Simple but
Effective Techniques for NUMA Memory Management. In Proceedings of

130

https://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
https://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
https://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
https://doi.org/10.1007/s00138-004-0144-7
https://doi.org/10.1109/PACT.2009.26
https://doi.org/10.1145/1958746.1958815
https://doi.org/10.1145/2807591.2807636

the 12th ACM Symposium on Operating Systems Principles (SOSP ’89).
ACM, New York, NY, USA, 19–31. https://doi.org/10.1145/74850.74854
! pages 97

[25] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans
Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua
Dai, Yang Zhang, and Zheng Zhang. 2008. Corey: An Operating System for
Many Cores. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation (OSDI’08). USENIX Association,
Berkeley, CA, USA, 43–57. ! pages 69, 72

[26] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. 2010. An
Analysis of Linux Scalability to Many Cores. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation
(OSDI ’10). USENIX Association, Berkeley, CA, USA, 1–16. ! pages 113

[27] Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai
Zeldovich. 2011. A Software Approach to Unifying Multicore Caches.
Technical Report MIT-CSAIL-TR-2011-032. MIT. ! pages 99, 101

[28] Timothy Brecht. 1993. On the Importance of Parallel Application Placement
in NUMA Multiprocessors. In USENIX Experiences with Distributed and
Multiprocessor Systems (SEDMS ’93), Vol. 4. USENIX Association,
Berkeley, CA, USA, 1–18. ! pages 97

[29] Calin Cascaval, Evelyn Duesterwald, Peter F Sweeney, and Robert W
Wisniewski. 2005. Multiple page size modeling and optimization. In
Proceedings of the 14th International Conference on Parallel Architectures
and Compilation Techniques (PACT ’05). IEEE, Washington, DC, USA,
339–349. https://doi.org/10.1109/PACT.2005.32 ! pages 122

[30] Sheng Chen, SA Billings, and PM Grant. 1990. Non-linear system
identification using neural networks. International journal of control 51, 6
(1990), 1191–1214. ! pages 11

[31] Sheng Chen, Stephen A Billings, and Wan Luo. 1989. Orthogonal least
squares methods and their application to non-linear system identification.
International Journal of control 50, 5 (1989), 1873–1896. ! pages 11

[32] Michael Clark. 2016. A New, High Performance x86 Core Design from
AMD. Video. In Proceedings of the 28th Symposium on High Performance

131

https://doi.org/10.1145/74850.74854
https://doi.org/10.1109/PACT.2005.32

Chips (HC ’16). Retrieved May 30th 2017 from
https://www.hotchips.org/archives/2010s/hc28/ ! pages 38, 126

[33] Kevin Closson. 2009. Quantifying Hugepages Memory Savings with Oracle
Database 11g. (July 2009). Retrieved May 30th 2017 from
http://kevinclosson.wordpress.com/2009/07/28/quantifying-hugepages-
memory-savings-with-oracle-database-11g/. ! pages 102, 110

[34] Jonathan Corbet. 2012. AutoNUMA: the other approach to NUMA
scheduling. LWN (March 2012). ! pages 83

[35] Bill Dally. 2011. Power, Programmability, and Granularity: The Challenges
of ExaScale Computing. In Proceedings of the 25th International Parallel &
Distributed Processing Symposium (IPDPS ’11). IEEE, Washington, DC,
USA, 878–. https://doi.org/10.1109/IPDPS.2011.420 ! pages 95

[36] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud,
Renaud Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. 2013.
Traffic Management: A Holistic Approach to Memory Placement on NUMA
Systems. In Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’13). ACM, New York, NY, USA, 381–394.
https://doi.org/10.1145/2451116.2451157 ! pages 4, 7, 10, 68

[37] Arash Deshmeh, Jacob Machina, and Angela Sodan. 2010. ADEPT
scalability predictor in support of adaptive resource allocation. In
Proceedings of the 24th International Parallel & Distributed Processing
Symposium (IPDPS ’10). IEEE, Washington, DC, USA, 1–12.
https://doi.org/10.1109/IPDPS.2010.5470430 ! pages 66

[38] Advanced Micro Devices. 2010. AMD64 Technology Lightweight Profiling
Specification. Sunnyvale, CA, USA. ! pages 96

[39] Norman Richard Draper and H Smith. 1966. Applied regression analysis.
John Wiley & Sons. ! pages 27

[40] P.J Drongowski and B.D. Center. 2007. Instruction-based sampling: A new
performance analysis technique for AMD family 10h processors. Sunnyvale,
CA, USA. ! pages 76

[41] Tyler Dwyer, Alexandra Fedorova, Sergey Blagodurov, Mark Roth, Fabien
Gaud, and Jian Pei. 2012. A Practical Method for Estimating Performance
Degradation on Multicore Processors, and Its Application to HPC

132

https://www.hotchips.org/archives/2010s/hc28/
http://kevinclosson.wordpress.com/2009/07/28/quantifying-hugepages-memory-savings-with-oracle-database-11g/
http://kevinclosson.wordpress.com/2009/07/28/quantifying-hugepages-memory-savings-with-oracle-database-11g/
https://doi.org/10.1109/IPDPS.2011.420
https://doi.org/10.1145/2451116.2451157
https://doi.org/10.1109/IPDPS.2010.5470430

Workloads. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC ’12). IEEE,
Los Alamitos, CA, USA, Article 83, 11 pages.
https://doi.org/10.1109/SC.2012.11 ! pages 7, 11, 26

[42] Stijn Eyerman and Lieven Eeckhout. 2010. Probabilistic Job Symbiosis
Modeling for SMT Processor Scheduling. In Proceedings of the 15th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’10). ACM, New York, NY,
USA, 91–102. https://doi.org/10.1145/1736020.1736033 ! pages 66

[43] Alexandra Fedorova, Margo Seltzer, and Michael D. Smith. 2007.
Improving Performance Isolation on Chip Multiprocessors via an Operating
System Scheduler. In Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques (PACT ’07). IEEE,
Washington, DC, USA, 25–38. https://doi.org/10.1109/PACT.2007.40 !
pages 9, 10

[44] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds:
A Study of Emerging Scale-out Workloads on Modern Hardware. In
Proceedings of the 17th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’12). ACM,
New York, NY, USA, 37–48. https://doi.org/10.1145/2150976.2150982 !
pages 100, 101

[45] Justin Funston, Maxime Lorrillere, David Vengerov, Baptiste Lepers
Jean-Pierre Lozi, Vivien Quema, and Alexandra Fedorova. 2018. A Practical
Model for Placement of Workloads on Multicore NUMA Systems. In
Submitted to the 13th European Conference on Computer Systems (EuroSys
’18). ! pages 6

[46] Justin R. Funston, Kaoutar El Maghraoui, Joefon Jann, Pratap Pattnaik, and
Alexandra Fedorova. 2012. An SMT-Selection Metric to Improve
Multithreaded Applications’ Performance. In Proceedings of the 26th
International Parallel & Distributed Processing Symposium (IPDPS ’12).
IEEE, Washington, DC, USA, 1388–1399.
https://doi.org/10.1109/IPDPS.2012.125 ! pages 7, 9, 39

[47] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. 1999.
Tornado: Maximizing Locality and Concurrency in a Shared Memory

133

https://doi.org/10.1109/SC.2012.11
https://doi.org/10.1145/1736020.1736033
https://doi.org/10.1109/PACT.2007.40
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1109/IPDPS.2012.125

Multiprocessor Operating System. In Proceedings of the 3rd Symposium on
Operating Systems Design and Implementation (OSDI ’99). USENIX
Association, Berkeley, CA, USA, 87–100. ! pages 99

[48] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston,
Alexandra Fedorova, and Vivien Quéma. 2014. Large Pages May Be
Harmful on NUMA Systems. In Proceedings of the 2014 USENIX Annual
Technical Conference (ATC ’14). USENIX Association, Berkeley, CA, USA,
231–242. ! pages 7, 102

[49] Daniel Goodman, Georgios Varisteas, and Tim Harris. 2017. Pandia:
Comprehensive Contention-sensitive Thread Placement. In Proceedings of
the 12th European Conference on Computer Systems (EuroSys ’17). ACM,
New York, NY, USA, 254–269. https://doi.org/10.1145/3064176.3064177
! pages 3, 7, 12, 13, 126

[50] Mel Gorman and Patrick Healy. 2010. Performance Characteristics of
Explicit Superpage Support. In Proceedings of the 6th Annual Workshorp on
the Interaction between Operating Systems and Computer Architecture
(WIOSCA ’10). Springer-Verlag, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-24322-6 24 ! pages 121

[51] Wei Huang, Jiang Lin, Zhao Zhang, and J. Morris Chang. 2005.
Performance Characterization of Java Applications on SMT Processors. In
Proceedings of the 2005 International Symposium on Performance Analysis
of Systems and Software (ISPASS ’05). 102–111.
https://doi.org/10.1109/ISPASS.2005.1430565 ! pages 40

[52] Intel. 2011. Intel 64 and IA-32 Architectures Software Developer’s Manual.
Santa Clara, CA, USA. ! pages 49

[53] Ivan Jibaja, Ting Cao, Stephen M. Blackburn, and Kathryn S. McKinley.
2016. Portable Performance on Asymmetric Multicore Processors. In
Proceedings of the 2016 International Symposium on Code Generation and
Optimization (CGO ’16). ACM, New York, NY, USA, 24–35.
https://doi.org/10.1145/2854038.2854047 ! pages 66

[54] George H John, Ron Kohavi, and Karl Pfleger. 1994. Irrelevant features and
the subset selection problem. In Machine learning: proceedings of the
eleventh international conference. 121–129. ! pages 27

134

https://doi.org/10.1145/3064176.3064177
https://doi.org/10.1007/978-3-642-24322-6_24
https://doi.org/10.1109/ISPASS.2005.1430565
https://doi.org/10.1145/2854038.2854047

[55] Ron Kalla, Balaram Sinharoy, William J. Starke, and Michael Floyd. 2010.
POWER7: IBM’s Next-Generation Server Processor. IEEE Micro 30, 2
(March 2010), 7–15. https://doi.org/10.1109/MM.2010.38 ! pages 43, 47

[56] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and Scott Hahn. 2008.
Using OS Observations to Improve Performance in Multicore Systems.
IEEE Micro 28, 3 (May 2008), 54–66. https://doi.org/10.1109/MM.2008.48
! pages 7, 9, 10, 99

[57] Renaud Lachaize, Baptiste Lepers, and Vivien Quéma. 2012. MemProf: A
Memory Profiler for NUMA Multicore Systems. In Proceedings of the 2012
USENIX Annual Technical Conference (ATC ’12). USENIX Association,
Berkeley, CA, USA, 53–64. ! pages 7, 80

[58] R. P. LaRowe, Carla S. Ellis, and Mark A. Holliday. 1992. Evaluation of
NUMA memory management through modeling and measurements. IEEE
Transactions on Parallel and Distributed Systems 3, 6 (Nov 1992), 686–701.
https://doi.org/10.1109/71.180624 ! pages 97

[59] Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. 2015. Thread and
Memory Placement on NUMA Systems: Asymmetry Matters. In
Proceedings of the 2015 USENIX Annual Technical Conference (ATC ’15).
USENIX Association, Berkeley, CA, USA, 277–289. ! pages 3, 7, 9, 10,
34, 37

[60] Lennart Ljung. 1998. System identification. In Signal analysis and
prediction. Springer, 163–173. ! pages 11

[61] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien
Quéma, and Alexandra Fedorova. 2016. The Linux Scheduler: A Decade of
Wasted Cores. In Proceedings of the 11th European Conference on
Computer Systems (EuroSys ’16). ACM, New York, NY, USA, Article 1,
16 pages. https://doi.org/10.1145/2901318.2901326 ! pages 11

[62] Joshua Magee and Apan Qasem. 2009. A Case for Compiler-driven
Superpage Allocation. In Proceedings of the 47th Annual Southeast
Regional Conference (ACM-SE 47). ACM, New York, NY, USA, Article 82,
4 pages. https://doi.org/10.1145/1566445.1566553 ! pages 122

[63] Zoltan Majo and Thomas R. Gross. 2011. Memory Management in NUMA
Multicore Systems: Trapped Between Cache Contention and Interconnect
Overhead. In Proceedings of the 2011 International Symposium on Memory

135

https://doi.org/10.1109/MM.2010.38
https://doi.org/10.1109/MM.2008.48
https://doi.org/10.1109/71.180624
https://doi.org/10.1145/2901318.2901326
https://doi.org/10.1145/1566445.1566553

Management (ISMM ’11). ACM, New York, NY, USA, 11–20.
https://doi.org/10.1145/1993478.1993481 ! pages 99

[64] Zoltan Majo and Thomas R. Gross. 2011. Memory System Performance in a
NUMA Multicore Multiprocessor. In Proceedings of the 4th Annual
International Conference on Systems and Storage (SYSTOR ’11). ACM,
New York, NY, USA, Article 12, 10 pages.
https://doi.org/10.1145/1987816.1987832 ! pages 99

[65] Yandong Mao, Robert Morris, and Frans Kaashoek. 2010. Optimizing
MapReduce for multicore architectures. Technical Report. MIT. ! pages
22, 84, 104

[66] Harry M. Mathis, Alex E. Mericas, John D. McCalpin, Richard J.
Eickemeyer, and Steven R. Kunkel. 2005. Characterization of simultaneous
multithreading (SMT) efficiency in POWER5. IBM Journal Research and
Development 49 (July 2005), 555–564. Issue 4/5. ! pages 40, 65

[67] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in
Current High Performance Computers. IEEE Computer Society Technical
Committee on Computer Architecture (TCCA) Newsletter (December 1995),
19–25. ! pages 17, 51

[68] Celso L. Mendes, Jhy chun Wang, and Daniel A. Reed. 1995. Automatic
Performance Prediction and Scalability Analysis for Data Parallel Programs.
In In Proceedings of the CRPC Workshop on Data Layout and Performance
Prediction. 45–51. ! pages 66

[69] Andreas Merkel, Jan Stoess, and Frank Bellosa. 2010. Resource-conscious
Scheduling for Energy Efficiency on Multicore Processors. In Proceedings
of the 5th European Conference on Computer Systems (EuroSys ’10). ACM,
New York, NY, USA, 153–166. https://doi.org/10.1145/1755913.1755930
! pages 7, 9, 99

[70] Zviad Metreveli, Nickolai Zeldovich, and M. Frans Kaashoek. 2012.
CPHASH: A Cache-partitioned Hash Table. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’12). ACM, New York, NY, USA, 319–320.
https://doi.org/10.1145/2145816.2145874 ! pages 99

[71] Daniel Molka, Daniel Hackenberg, Robert Schöne, and Wolfgang E. Nagel.
2015. Cache Coherence Protocol and Memory Performance of the Intel
Haswell-EP Architecture. In Proceedings of the 44th International

136

https://doi.org/10.1145/1993478.1993481
https://doi.org/10.1145/1987816.1987832
https://doi.org/10.1145/1755913.1755930
https://doi.org/10.1145/2145816.2145874

Conference on Parallel Processing (ICPP ’15). IEEE, 739–748.
https://doi.org/10.1109/ICPP.2015.83 ! pages 38

[72] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan Cox. 2002. Practical,
Transparent Operating System Support for Superpages. In Proceedings of
the 5th Symposium on Operating Systems Design and Implementation (OSDI
’02). USENIX Association, Berkeley, CA, USA, 89–104. ! pages 122

[73] Ranjit Noronha and Dhabaleswar K Panda. 2007. Improving scalability of
OpenMP applications on multi-core systems using large page support. In
Proceedings of the 21st International Parallel and Distributed Processing
Symposium (IPDPS ’07). IEEE, Washington, DC, USA, 1–8.
https://doi.org/10.1109/IPDPS.2007.370683 ! pages 102, 121

[74] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia
Ailamaki. 2010. Data-oriented Transaction Execution. Proc. VLDB Endow.
3, 1-2 (Sept. 2010), 928–939. https://doi.org/10.14778/1920841.1920959
! pages 99, 100

[75] Aleksey Pesterev, Nickolai Zeldovich, and Robert T. Morris. 2010. Locating
Cache Performance Bottlenecks Using Data Profiling. In Proceedings of the
5th European Conference on Computer Systems (EuroSys ’10). ACM, New
York, NY, USA, 335–348. https://doi.org/10.1145/1755913.1755947 !
pages 80

[76] Petar Radojkovic, Paul M. Carpenter, Miquel Moretó, Vladimir Cakarevic,
Javier Verdú, Alex Pajuelo, Francisco J. Cazorla, Mario Nemirovsky, and
Mateo Valero. 2016. Thread Assignment in Multicore/Multithreaded
Processors: A Statistical Approach. IEEE Trans. Computers 65, 1 (2016),
256–269. https://doi.org/10.1109/TC.2015.2417533 ! pages 13

[77] Lior Rokach and Oded Maimon. 2005. Top-down induction of decision trees
classifiers - a survey. IEEE Transactions 35, 4 (Nov 2005), 476–487.
https://doi.org/10.1109/TSMCC.2004.843247 ! pages 61

[78] Theodore H Romer, Wayne H Ohlrich, Anna R Karlin, and Brian N Bershad.
1995. Reducing TLB and memory overhead using online superpage
promotion. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture. IEEE, Washington, DC, USA, 176–187.
https://doi.org/10.1145/223982.224419 ! pages 122

137

https://doi.org/10.1109/ICPP.2015.83
https://doi.org/10.1109/IPDPS.2007.370683
https://doi.org/10.14778/1920841.1920959
https://doi.org/10.1145/1755913.1755947
https://doi.org/10.1109/TC.2015.2417533
https://doi.org/10.1109/TSMCC.2004.843247
https://doi.org/10.1145/223982.224419

[79] Peter J Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. Journal of computational and applied
mathematics 20 (1987), 53–65. ! pages 22

[80] Yaoping Ruan, Vivek S. Pai, Erich Nahum, and John M. Tracey. 2005.
Evaluating the Impact of Simultaneous Multithreading on Network Servers
Using Real Hardware. In Proceedings of the 2005 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’05). ACM, New York, NY, USA, 315–326.
https://doi.org/10.1145/1064212.1064254 ! pages 65

[81] Satish Kumar Sadasivam and Prathiba Kumar. 2011. SPECfp2006 CPI
Stack and SMT Benefits Analysis on POWER7 Systems. In Proceedings of
the 17th Meeting of the IBM HPC Systems Scientific Computing User Group
(ScicomP ’11). Paris, France. ! pages 40

[82] Hideki Saito, Greg Gaertner, Wesley Jones, Rudolf Eigenmann, Hidetoshi
Iwashita, Ron Lieberman, Matthijs Waveren, and Brian Whitney. 2002.
Large System Performance of SPEC OMP2001 Benchmarks. In
Proceedings of the 4th International Symposium on High Performance
Computing (ISHPC ’02). Springer-Verlag, Berlin, Heidelberg, 370–379.
https://doi.org/10.1007/3-540-47847-7 34 ! pages 51

[83] Tudor-Ioan Salomie, Ionut Emanuel Subasu, Jana Giceva, and Gustavo
Alonso. 2011. Database Engines on Multicores, Why Parallelize when You
Can Distribute?. In Proceedings of the 6th European Conference on
Computer Systems (EuroSys ’11). ACM, New York, NY, USA, 17–30.
https://doi.org/10.1145/1966445.1966448 ! pages 99, 100

[84] Alex Settle, Joshua Kihm, Andrew Janiszewski, and Dan Connors. 2004.
Architectural Support for Enhanced SMT Job Scheduling. In Proceedings of
the 13th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’04). IEEE, Washington, DC, USA, 63–73.
https://doi.org/10.1109/PACT.2004.7 ! pages 65

[85] Arman Shehabi, Sarah Smith, Dale Sartor, Richard Brown, Magnus Herrlin,
Jonathan Koomey, Eric Masanet, Nathaniel Horner, Inês Azevedo, and
William Lintner. 2016. United States data center energy usage report.
Technical Report LBNL-1005775. Lawrence Berkeley National Laboratory.
! pages 1

[86] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. 2009. Operating
System Concepts, Eighth Edition. Wiley, Hoboken, NJ, USA. ! pages 12

138

https://doi.org/10.1145/1064212.1064254
https://doi.org/10.1007/3-540-47847-7_34
https://doi.org/10.1145/1966445.1966448
https://doi.org/10.1109/PACT.2004.7

[87] Allan Snavely and Dean M. Tullsen. 2000. Symbiotic Jobscheduling for a
Simultaneous Multithreaded Processor. In Proceedings of the 9th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’00). ACM, New York, NY,
USA, 234–244. https://doi.org/10.1145/378993.379244 ! pages 7, 9, 65

[88] Allan Snavely, Dean M. Tullsen, and Geoff Voelker. 2002. Symbiotic
Jobscheduling with Priorities for a Simultaneous Multithreading Processor.
In Proceedings of the 2002 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS ’02).
ACM, New York, NY, USA, 66–76. https://doi.org/10.1145/511334.511343
! pages 65

[89] Xiang Song, Haibo Chen, Rong Chen, Yuanxuan Wang, and Binyu Zang.
2011. A Case for Scaling Applications to Many-core with OS Clustering. In
Proceedings of the 6th European Conference on Computer Systems (EuroSys
’11). ACM, New York, NY, USA, 61–76.
https://doi.org/10.1145/1966445.1966452 ! pages 99

[90] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. 2014. Adaptive,
Efficient, Parallel Execution of Parallel Programs. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’14). ACM, New York, NY, USA, 169–180.
https://doi.org/10.1145/2594291.2594292 ! pages 13

[91] Kshitij Sudan, Niladrish Chatterjee, David Nellans, Manu Awasthi, Rajeev
Balasubramonian, and Al Davis. 2010. Micro-pages: Increasing DRAM
Efficiency with Locality-aware Data Placement. In Proceedings of the 15th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’10). ACM, New York, NY,
USA, 219–230. https://doi.org/10.1145/1736020.1736045 ! pages 122

[92] Madhusudhan Talluri, Shing Kong, Mark D. Hill, and David A. Patterson.
1992. Tradeoffs in Supporting Two Page Sizes. In Proceedings of the 19th
Annual International Symposium on Computer Architecture (ISCA ’92).
ACM, New York, NY, USA, 415–424.
https://doi.org/10.1145/139669.140406 ! pages 103

[93] David Tam, Reza Azimi, and Michael Stumm. 2007. Thread Clustering:
Sharing-aware Scheduling on SMP-CMP-SMT Multiprocessors. In
Proceedings of the 2nd ACM SIGOPS European Conference on Computer

139

https://doi.org/10.1145/378993.379244
https://doi.org/10.1145/511334.511343
https://doi.org/10.1145/1966445.1966452
https://doi.org/10.1145/2594291.2594292
https://doi.org/10.1145/1736020.1736045
https://doi.org/10.1145/139669.140406

Systems (EuroSys ’07). ACM, New York, NY, USA, 47–58.
https://doi.org/10.1145/1272996.1273004 ! pages 3, 10, 66, 98

[94] Michael E. Thomadakis. 2011. The Architecture of the Nehalem Processor
and Nehalem-EP SMP Platforms. Technical Report. Texas A&M
University. ! pages 48

[95] Transaction Processing Performance Council (TPC). 2010. TPC Benchmark
C Standard Specification. San Francisco, CA, USA. ! pages 22

[96] Transaction Processing Performance Council (TPC). 2014. TPC Benchmark
H Standard Specification. San Francisco, CA, USA. ! pages 22

[97] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. 1998. Simultaneous
multithreading: maximizing on-chip parallelism. In 25 Years of the
International Symposia on Computer Architecture (selected papers) (ISCA
’98). ACM, New York, NY, USA, 533–544. ! pages 39

[98] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. 1996.
Operating System Support for Improving Data Locality on CC-NUMA
Compute Servers. In Proceedings of the 7th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’96). ACM, New York, NY, USA, 279–289.
https://doi.org/10.1145/237090.237205 ! pages 69, 97

[99] Pinchas Weisberg and Yair Wiseman. 2009. Using 4KB page size for virtual
memory is obsolete. In 2009 IEEE International Conference on Information
Reuse & Integration (IRI ’09). IEEE, Washington, DC, USA, 262–265.
https://doi.org/10.1109/IRI.2009.5211562 ! pages 121

[100] Chee Siang Wong, Ian K. T. Tan, Rosalind Deena Kumari, and Fun Wey.
2008. Towards achieving fairness in the Linux scheduler. Operating Systems
Review 42, 5 (2008), 34–43. https://doi.org/10.1145/1400097.1400102 !
pages 12

[101] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013.
Bubble-flux: Precise Online QoS Management for Increased Utilization in
Warehouse Scale Computers. In Proceedings of the 40th Annual
International Symposium on Computer Architecture (ISCA ’13). ACM, New
York, NY, USA, 607–618. https://doi.org/10.1145/2485922.2485974 !
pages 3, 7, 9, 10

140

https://doi.org/10.1145/1272996.1273004
https://doi.org/10.1145/237090.237205
https://doi.org/10.1109/IRI.2009.5211562
https://doi.org/10.1145/1400097.1400102
https://doi.org/10.1145/2485922.2485974

[102] Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley. 2015.
Computer Performance Microscopy with Shim. SIGARCH Comput. Archit.
News 43, 3 (June 2015), 170–184.
https://doi.org/10.1145/2872887.2750401 ! pages 118

[103] Gerd Zellweger, Denny Lin, and Timothy Roscoe. 2016. So Many
Performance Events, So Little Time. In Proceedings of the 7th ACM SIGOPS
Asia-Pacific Workshop on Systems (APSys ’16). ACM, New York, NY, USA,
Article 14, 9 pages. https://doi.org/10.1145/2967360.2967375 ! pages 26

[104] Panyong Zhang, Bo Li, Zhigang Huo, and Dan Meng. 2009. Evaluating the
Effect of Huge Page on Large Scale Applications. In Proceedings of the
2009 International Conference on Networking, Architecture, and Storage
(NAS ’09). IEEE, Washington, DC, USA, 74–81.
https://doi.org/10.1109/NAS.2009.18 ! pages 121

[105] Yunqi Zhang, Michael A Laurenzano, Jason Mars, and Lingjia Tang. 2014.
SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve
Utilization in Warehouse Scale Computers. In Proceedings of the 47th
Annual International Symposium on Microarchitecture (MICRO ’14). IEEE,
Washington, DC, USA, 406–418. https://doi.org/10.1109/MICRO.2014.53
! pages 3, 7, 10

[106] Jin Zhou and Brian Demsky. 2012. Memory Management for Many-core
Processors with Software Configurable Locality Policies. In Proceedings of
the 2012 International Symposium on Memory Management (ISMM ’12).
ACM, New York, NY, USA, 3–14.
https://doi.org/10.1145/2258996.2259000 ! pages 98

[107] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. 2010.
Addressing Shared Resource Contention in Multicore Processors via
Scheduling. In Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’10). ACM, New York, NY, USA, 129–142.
https://doi.org/10.1145/1736020.1736036 ! pages 3, 7, 9, 10, 99

[108] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra
Fedorova, and Manuel Prieto. 2012. Survey of Scheduling Techniques for
Addressing Shared Resources in Multicore Processors. ACM Comput. Surv.
45, 1, Article 4 (Dec. 2012), 28 pages.
https://doi.org/10.1145/2379776.2379780 ! pages 7

141

https://doi.org/10.1145/2872887.2750401
https://doi.org/10.1145/2967360.2967375
https://doi.org/10.1109/NAS.2009.18
https://doi.org/10.1109/MICRO.2014.53
https://doi.org/10.1145/2258996.2259000
https://doi.org/10.1145/1736020.1736036
https://doi.org/10.1145/2379776.2379780

Appendix A

Supporting Materials

A.1 Non-Interference of Workloads on Separate NUMA
Nodes

One of the assumptions of our workload placement solution stated in Section 2.2.2

is that workloads placed on separate NUMA nodes and not sharing interconnect

links will not interfere with one another. Figures A.1–A.3 show the results of

experiments (conducted on the AMD test system shown in Figure 2.2). The exper-

iments run two workloads at a time: one potentially interfering workload and one

workload where the performance change relative to running alone is reported. The

slowdown observed is always less than 5% and usually less than 2%, confirming

our assumption that co-scheduled workloads placed on separate NUMA nodes and

not sharing interconnect links will not significantly interfere with one another.

142

Figure A.1: Performance slowdown with cg.C as the interfering workload

Figure A.2: Performance slowdown with mg.C as the interfering workload

A.2 Performance Prediction Results for the ML Model
This section contains the full performance prediction results for the ML model

described in Section 2.4.2. Figures A.4 and A.5 show the actual and predicted

performance for each workload for important placements on the AMD and Intel

systems. The x-axis shows the IDs of the important placements, numbered 0–11 on

the AMD system and 0–6 on the Intel system. The y-axis shows the performance

in the placements relative to the baseline. Placement #2 was chosen as the baseline

for the AMD system, and placement #1 for the Intel system.

143

Figure A.3: Performance slowdown with streamcluster as the interfering
workload

144

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

BLAST

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6 7 8 9 10 11

bt.B

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

canneal

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5 6 7 8 9 10 11

cg.C

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11

CommDB-tpch

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6 7 8 9 10 11

dc.B

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11

ep.C

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11

fluidanimate

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11

freqmine

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6 7 8 9 10 11

ft.C

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

gcc

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11

kmeans-15M

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11

kmeans

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

lu.B

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11

matrixmultiply

Actual
Predicted: HPE

Predicted: Perf Measurements

Figure A.4

145

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6 7 8 9 10 11

mg.B

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5 6 7 8 9 10 11

mg.C

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11

pca

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

postgres-tpch

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

postgres-tpcc

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

spark-cc

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

spark-pr-lj

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

spark-pr-wp

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6 7 8 9 10 11

sp.B

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5 6 7 8 9 10 11

sp.C

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11

streamcluster-125K

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1 2 3 4 5 6 7 8 9 10 11

streamcluster

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11

swaptions

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6 7 8 9 10 11

ua.B

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

vips

Actual
Predicted: HPE

Predicted: Perf Measurements

Figure A.4

146

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

wc

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

wr

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

WTbtree

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10 11

x264

Actual
Predicted: HPE

Predicted: Perf Measurements

Figure A.4: Accuracy of predictions on the AMD system.

147

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

BLAST

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

bodytrack

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6

bt.B

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6

bt.C

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6

canneal

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6

cg.B

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6

cg.C

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6

dc.A

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6

dc.B

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

dedup

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

ep.C

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

ep.D

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

ferret

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

fluidanimate

Actual
Predicted: HPE

Predicted: Perf Measurements

Figure A.5

148

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

freqmine

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6

ft.C

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

gcc

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1 2 3 4 5 6

is.D

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6

kmeans

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6

lu.B

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6

lu.C

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

matrixmultiply

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6

mg.C

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6

mg.D

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

pca

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

postgres-tpch

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

postgres-tpcc

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6

raytrace

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

spark-cc

Actual
Predicted: HPE

Predicted: Perf Measurements

Figure A.5

149

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

spark-pr-lj

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6

sp.B

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5 6

sp.C

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6

streamcluster

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

swaptions

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6

ua.B

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6

ua.C

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

vips

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6

wc

Actual
Predicted: HPE

Predicted: Perf Measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

wr

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1 2 3 4 5 6

WTbtree

Actual
Predicted: HPE

Predicted: Perf Measurements
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

x264

Actual
Predicted: HPE

Predicted: Perf Measurements

Figure A.5: Accuracy of predictions on the Intel system.

150

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	1.1 Background

	2 A Model for Placement of Workloads on Multicore NUMA Systems
	2.1 Introduction & Motivation
	2.2 Background & Related Work
	2.2.1 State of the Art
	2.2.2 Assumptions and Limitations

	2.3 Abstract Machine Model
	2.4 Performance Predictions
	2.4.1 Predicting Performance Categories
	2.4.2 Predicting Performance with Machine Learning
	2.4.3 Results

	2.5 Using the Model in Practice
	2.5.1 A Potential Use Case
	2.5.2 Memory Migration Overhead

	2.6 Summary

	3 An SMT-Selection Metric
	3.1 Background & Motivation
	3.2 The SMT-Selection Metric
	3.2.1 SMTsm on IBM's POWER7 Processor
	3.2.2 SMTsm on Intel's Nehalem Processor

	3.3 Experimental Methodology
	3.3.1 System Configuration
	3.3.2 Benchmarks

	3.4 Evaluation
	3.4.1 SMT-Selection Metric (SMTsm) Evaluation
	3.4.2 SMTsm Evaluation at a Lower-SMT Level
	3.4.3 Metric Evaluation Across Chips

	3.5 Applying the SMT-Selection Metric
	3.5.1 Using Gini Impurity to Decide on a Good SMTsm Threshold
	3.5.2 Using the Average PPI (Percentage Performance Improvement) Method to Decide on a Good SMTsm Threshold

	3.6 Related Work
	3.7 Summary

	4 NUMA Traffic Management through Memory Placement
	4.1 Background
	4.2 Traffic Congestion on Modern NUMA Systems
	4.3 Design and Implementation
	4.3.1 The Mechanisms
	4.3.2 The Algorithm
	4.3.3 Implementation

	4.4 Evaluation
	4.4.1 Testbed
	4.4.2 Single-Application Workloads
	4.4.3 Multi-Application Workloads
	4.4.4 Overhead
	4.4.5 Impact on Energy Consumption
	4.4.6 Discussion: Hardware Support

	4.5 Related Work
	4.6 Summary

	5 Large Pages on NUMA Systems
	5.1 Background
	5.2 Large Pages and Adverse NUMA Effects
	5.2.1 Experimental Platform
	5.2.2 Large Pages on Linux

	5.3 Solutions
	5.3.1 Page Balancing is Not Enough
	5.3.2 Carrefour-LP

	5.4 Evaluation
	5.4.1 Performance Evaluation
	5.4.2 Overhead Assessment
	5.4.3 Discussion
	5.4.4 Very Large Pages

	5.5 Related Work
	5.5.1 Large Pages and TLB Performance
	5.5.2 Large Page Support and Optimization

	5.6 Summary

	6 Conclusion
	Bibliography
	A Supporting Materials
	A.1 Non-Interference of Workloads on Separate NUMA Nodes
	A.2 Performance Prediction Results for the ML Model

