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Abstract

Model-based controllers such as model-predictive control (MPC) have become dominated control strategies

for various industrial applications including sheet and film processes such as the machine-directional (MD)

and cross-directional (CD) processes of paper machines. However, many industrial processes may have vary-

ing dynamics over time and consequently model-based controllers may experience significant performance

loss under such circumstances, due to the presence of model-plant mismatch (MPM). We propose an adap-

tive control scheme for sheet and film processes, consisting of performance assessment, MPM detection,

optimal input design, closed-loop identification and controller adaptive tuning.

In this work, four problems are addressed for the above adaptive control strategy. First, we extend con-

ventional performance assessment techniques based on minimum-variance control (MVC) to the CD process,

accounting for both spatial and temporal performance limitations. A computationally efficient algorithm is

provided for large-scale CD processes. Second, we propose a novel closed-loop identification algorithm

for the MD process and then extend it to the CD process. This identification algorithm can give consistent

parameter estimates asymptotically even when true noise model structure is not known. Third, we propose a

novel MPM detection method for MD processes and then further extend it to the CD process. This approach

is based on routine closed-loop identifications with moving windows and process model classifications. A

one-class support vector machine (SVM) is used to characterize normal process models from training data

and detect the MPM by predicting the classification of models from test data. Fourth, an optimal closed-

loop input design is proposed for the CD process based on noncausal modeling to address the complexity

from high-dimensional inputs and outputs. Causal-equivalent models can be obtained for the CD noncausal

models and thus closed-loop optimal input design can be performed based on the causal-equivalent models.

The effectiveness of the proposed algorithms are verified by industrial examples from paper machines. It

is shown that the developed adaptive controllers can automatically tune controller parameters to account for

process dynamic changes, without the interventions from users or recommissioning the process. Therefore,

the proposed methodology can greatly reduce the costs on the controller maintenance in the process industry.
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Lay Summary

A good model of an industrial process is an important prerequisite for high-quality products since most

industrial controllers depend on the model. When the quality of the model degrades due to the changes of

process characteristics, a new model has to be identified to improve the control performance. In this research,

we develop data-based performance metrics to assess the control performance and quality of employed mod-

els online. Once the degradation in the quality of process model is detected, an experiment is designed to

trigger the identification of underlying process models. This experiment is designed in an optimal way such

that the subsequent identification can yield a model as accurate as possible. Based on the updated model, the

controller is retuned to improve the control performance. With this scheme, the controller can account for

process changes automatically without user interventions and this can significantly reduce the maintenance

cost of model-based controllers.

iii



Preface

The results presented in this thesis are based on a close collaboration with Mr. Johan Backstrom and Dr.

Michael Forbes from Honeywell Process Solutions at North Vancouver, BC, Canada. Besides, routine

closed-loop identification for MD processes in Chapter 2 is collaborated with Lee Rippon from the Uni-

versity of British Columbia. The main algorithms, theoretical verifications, simulations and literature review

in Chapter 3-6 are based on my original ideas and joint discussions with my supervisors Prof. Bhushan

Gopaluni, Prof. Philip Loewen from University of British Columbia as well as our industrial partners.

• The results in Chapter 2 have been submitted as a US patent: Q. Lu, L. Rippon, B. Gopaluni, M.

Forbes, P. Loewen, J. Backstrom and G. Dumont, “Closed-loop model parameter identification for

industrial model-based process controllers,” Application number H0057287-0108, 2016. This work

is also summarized into a paper and to be submitted to the peer reviewed journal: Q. Lu, L. Rippon,

B. Gopaluni, M. Forbes, P. Loewen, J. Backstrom and G. Dumont, “A closed-loop ARX output-error

identification method for industrial routine operating data”.

• The results in Chapter 3 have been submitted as a US patent: Q. Lu, B. Gopaluni, M. Forbes, P.

Loewen, J. Backstrom and G. Dumont, “Model-plant mismatch detection using model parameter data

clustering for paper machines or other processes”, Application number H0057510-0108. This work

also has been published as a conference paper: Q. Lu, B. Gopaluni, M. Forbes, P. Loewen, J. Back-

strom and G. Dumont, “Model-plant mismatch detection with support vector machines”, in Proceed-

ings of the IFAC World Congress, 50(1): 7993-7998, 2017.

• The results in Chapter 4 have been published as a journal paper: Q. Lu, M. Forbes, B. Gopaluni, P.

Loewen, J. Backstrom and G. Dumont, “Performance assessment of cross-directional control for paper

machines”, IEEE Transactions on Control Systems Technology, 25(1): 208-221, 2017.

• The results in Chapter 5 have been submitted as a US patent: Q. Lu, B. Gopaluni, M. Forbes, P.

iv



Preface

Loewen, J. Backstrom and G. Dumont, “Model-plant mismatch detection with support vector ma-

chines for cross- directional process behavior monitoring”, Application number H0059870-0108. This

work is also summarized into a paper and to be submitted to the peer reviewed journal: Q. Lu, B.

Gopaluni, M. Forbes, P. Loewen, J. Backstrom and G. Dumont, “Model-plant mismatch detection

with support vector machines: An application to cross-directional processes”.

• The results in Chapter 6 have been published as a US patent: Q. Lu, B. Gopaluni, M. Forbes, P.

Loewen, J. Backstrom and G. Dumont, “Optimal closed-loop input design for identification of flat

sheet process models”, Application number 62305412. It has also been published as a conference

paper: Q. Lu, B. Gopaluni, M. Forbes, P. Loewen, J. Backstrom and G. Dumont, “Noncausal modeling

and closed-loop optimal input design for cross-directional processes of paper machines”, in Americal

Control Conference, pp. 2837-2842, 2017.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The paper machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Process models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Performance assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Model-plant mismatch detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.3 Optimal input design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.4 Closed-loop identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Significance of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vi



Table of Contents

2 Routine Closed-loop Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 The closed-loop ARX-OE identification method . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 First step: high-order ARX identification . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Second step: OE modeling with filtered input and output data . . . . . . . . . . . . 23

2.4 Asymptotic analysis of the ARX-OE method . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Consistency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Asymptotic distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Identification based on routine operating data . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Estimate of the controller inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Sufficient excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 The role of noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 Case I: univariate MD control of the paper machine . . . . . . . . . . . . . . . . . 30

2.6.2 Case II: multivariate MD control of the paper machine . . . . . . . . . . . . . . . . 32

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Model-plant Mismatch Detection for MD Processes . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Drawbacks of several MPM detection methods . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 The MPM detection idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Closed-loop identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 MPM detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 One-class learning support vector machines . . . . . . . . . . . . . . . . . . . . . . 46

3.5.2 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.3 MPM detection with SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Examples of MPM detections for MD processes . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



Table of Contents

4 Control Performance Assessment for CD Processes . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Variance partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 The MVC benchmark for CD processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 MVC benchmark for the steady-state profile . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 MVC benchmark for the residual profile . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 User-specified benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Performance monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.1 Vector autoregressive modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.2 Performance monitoring algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.2 Industrial example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Model-plant Mismatch Detection for CD Processes . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 CD process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2 CD noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.3 High-order ARX approximation of the CD process model . . . . . . . . . . . . . . 82

5.2.4 The presence of feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Routine CD closed-loop identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Model parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.3 Convergence and consistency analysis . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Application of one-class SVM to CD mismatch detection . . . . . . . . . . . . . . . . . . . 90

5.4.1 SVM training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



Table of Contents

5.4.2 SVM prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.1 Example 1: Iterative CD closed-loop routine identification . . . . . . . . . . . . . . 93

5.5.2 Example 2: One-class SVM model-plant mismatch detection . . . . . . . . . . . . 95

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Closed-loop Optimal Input Design for CD Processes . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Open-loop CD process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.2 Closed-loop steady-state CD process model . . . . . . . . . . . . . . . . . . . . . . 102

6.2.3 Spatial optimal input design for the CD process . . . . . . . . . . . . . . . . . . . 103

6.3 Causal scalar transfer function representation of the CD process . . . . . . . . . . . . . . . 103

6.3.1 Noncausal scalar model of the closed-loop CD process . . . . . . . . . . . . . . . . 103

6.3.2 Causal equivalent closed-loop models . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.3 Covariance matrix equivalence of the causal and noncausal model parameter esti-

mates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Closed-loop optimal input design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 CD Iterative Identification and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1 Case I: No model-plant mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Case II: Gain mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Case III: Width, divergence, and attenuation mismatches . . . . . . . . . . . . . . . . . . . 119

7.4 Case IV: Time constant mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 Discussion of the simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

ix



Table of Contents

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Appendix A Proofs for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.1 Proof of Theorem 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.2 Proof of Theorem 2.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Appendix B Derivations for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.1 Variance partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.2 Derivation of (4.12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Appendix C Proofs for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C.1 Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

x



List of Tables

2.1 Tuning parameters of the SISO MD MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Tuning parameters of the MIMO MD MPC . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Parameters setup of the MPM detection algorithm . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Variance partition for each simulated case . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 The implementation of routine CD closed-loop iterative identification . . . . . . . . . . . . 88

5.2 Tuning parameters of the CD MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Simulation and MPM detection parameters for Example 1 and Example 2 . . . . . . . . . . 94

7.1 Summary of parameters setup in adaptive control simulation . . . . . . . . . . . . . . . . . 115

xi



List of Figures

1.1 Diagram of a typical paper machine [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The overall adaptive control structure applicable to both MD and CD processes. . . . . . . . 5

1.3 Two-dimensional response of a CD actuator under bump signal . . . . . . . . . . . . . . . . 6

1.4 Temporal step response and spatial impulse response of a CD actuator. . . . . . . . . . . . . 7

2.1 Simulated input and output data for the closed-loop MD process . . . . . . . . . . . . . . . 33

2.2 IR coefficients of the estimated noise model inverse with different ARX orders . . . . . . . 33

2.3 Step response of the estimated process model with different ARX orders . . . . . . . . . . . 33

2.4 Histogram of parameter b estimates in 1000 Monte-Carlo simulations. Green: direct iden-

tification method with wrong noise model structure. Red: direct identification method with

correct noise model structure. Blue: closed-loop ARX-OE method. Red dashed line: the

true parameter value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Histogram of parameter a estimates in 1000 Monte-Carlo simulations. Green: direct iden-

tification method with wrong noise model structure. Red: direct identification method with

correct noise model structure. Blue: closed-loop ARX-OE method. Red dashed line: the

true parameter value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 The simulated output profiles (CVs) for the MIMO MD process of a paper machine . . . . . 37

2.7 The simulated input profiles (MVs) for the MIMO MD process of a paper machine . . . . . 37

2.8 IR coefficients of the true and estimated inverse noise model for each output channel. . . . . 37

2.9 Step response of the true (red solid line) and estimated (blue dashed line) process models. . . 37

3.1 The IMC structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Illustration of the training and testing data (ID stands for identification). . . . . . . . . . . . 43

xii



List of Figures

3.3 Illustration of the SVM training. Each curve shows the IR coefficients of the estimated

models from training data. The upper and lower bounds define the width of the cluster. . . . 44

3.4 Illustration of the MPM detection idea. Here the training and testing models refer to the

process model estimates from training and testing data sets. . . . . . . . . . . . . . . . . . . 44

3.5 Flow chart of MPM detection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Simulated input and output profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 MPM and noise change detection results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Illustration of the variation separation. (a): The steady-state profile plot. Note that the

steady-state profile is replicated to have the same scan number as the residual profile and

CD profile; (b): The residual profile plot. Each CD bin has zero mean; (c): The overall CD

profile. Note that the CD profile is combined by the steady-state and the residual profile. . . 57

4.2 Spatial impulse steady-state response and the temporal step response of a single actuator.

The negative peak of the spatial response is due to the negative gain of the actuator spatial

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Performance indices for different levels of gain mismatch. Note that γ0 is the nominal gain

value used by the controller, γ is the actual gain value of the process plant. . . . . . . . . . . 71

4.4 Performance indices for different levels of width mismatch. Note that ξ0 is the nominal width

value used by the controller, ξ is the actual width value of the process plant. . . . . . . . . . 72

4.5 Performance indices for different levels of divergence mismatch. Note that β0 is the nominal

divergence value used by the controller, β is the actual divergence value of the process plant. 72

4.6 Performance indices for different levels of attenuation mismatch. Note that α0 is the nominal

attenuation value used by the controller, α is the actual attenuation value of the process plant. 72

4.7 Performance indices for different levels of time constant and time delay mismatch. Note that

τ0 and τd0 are the nominal time constant and time delay value used by the controller, τ and

τd are the actual time constant and time delay value of the process plant. . . . . . . . . . . 73

4.8 Comparison of performance index η1 and η2 with high frequency spatial disturbance . . . . 75

4.9 Three-dimensional plot of input-output profiles from industrial data set. (a): The dry weight

profile (g/m2) with 376 measurement bins with MD trend removed; (b): The actuator profile

(%) of 114 actuator zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xiii



List of Figures

4.10 The analysis of the industrial data. (a): The moving window performance indices for the

measured data. Blue solid line: η2,user; Red dash-dotted line: η2; Black dashed line: η1; (b):

The steady-state of the entire dry weight profile; (c): The steady-state of the entire actuator

profile with lower bound and upper bound (red dash-dotted line); (d): The spectrum of the

averaged dry weight profile and the approximated spatial bandwidth (red dash-dotted line). . 78

5.1 Simulated input-output data for the closed-loop CD process . . . . . . . . . . . . . . . . . . 95

5.2 CD closed-loop iterative identification results: noise model is a high-pass filter (left); noise

model is a low-pass filter (right); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 The colormap of simulated input-output data for CD MPM detection . . . . . . . . . . . . . 96

5.4 Process parameter estimates over moving windows . . . . . . . . . . . . . . . . . . . . . . 98

5.5 MPM and noise model change detection results . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 The closed-loop optimal input design configuration . . . . . . . . . . . . . . . . . . . . . . 101

6.2 The impulse response of a single actuator (red solid line) and the impulse response of the

estimated noncausal transfer function (blue dash-dotted line). . . . . . . . . . . . . . . . . . 113

6.3 Spectrum of the optimal input based on causal-equivalent model of the CD process. . . . . . 113

6.4 The impulse responses of the estimated process model in the closed-loop under the opti-

mally designed input (upper plot), the bumped input (middle plot), and the white noise input

(bottom plot) in 100 Monte-Carlo simulations. . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 No mismatch: The collected output and input profiles . . . . . . . . . . . . . . . . . . . . . 117

7.2 No mismatch: Estimates of parameters in each moving window . . . . . . . . . . . . . . . . 117

7.3 No mismatch: Adaptive CD MPC control results . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 Gain mismatch: simulated output and input profile . . . . . . . . . . . . . . . . . . . . . . 119

7.5 Gain mismatch: Estimates of parameters in each moving window . . . . . . . . . . . . . . . 119

7.6 Gain mismatch: Adaptive CD MPC control results . . . . . . . . . . . . . . . . . . . . . . 120

7.7 Width mismatch: The collected output and input profiles . . . . . . . . . . . . . . . . . . . 122

7.8 Width mismatch: Estimates of parameters in each moving window . . . . . . . . . . . . . . 122

7.9 Width mismatch: Adaptive CD MPC control results . . . . . . . . . . . . . . . . . . . . . . 123

7.10 Divergence mismatch: The collected output and input profiles . . . . . . . . . . . . . . . . 123

xiv



List of Figures

7.11 Divergence mismatch: Estimates of parameters in each moving window . . . . . . . . . . . 123

7.12 Divergence mismatch: Adaptive CD MPC control results . . . . . . . . . . . . . . . . . . . 124

7.13 Attenuation mismatch: The collected output and input profiles . . . . . . . . . . . . . . . . 124

7.14 Attenuation mismatch: Estimates of parameters in each moving window . . . . . . . . . . . 124

7.15 Attenuation mismatch: Adaptive CD MPC control results . . . . . . . . . . . . . . . . . . . 125

7.16 Time constant mismatch: The collected output and input profiles . . . . . . . . . . . . . . . 125

7.17 Time constant mismatch: Estimates of parameters in each moving window . . . . . . . . . . 125

7.18 Time constant mismatch: Adaptive CD MPC control results . . . . . . . . . . . . . . . . . 126

xv



Nomenclature

ARX Autoregressive exogenous

AsN Asymptotically normal

CD Cross Direction

CV Controlled Variable

⊕ Direct sum between sets

δ (·) Dirichlet function

E Expectation of a random variable

E Generalized expectation of a random variable

Ei The i-th basis matrix

FIR Finite impulse response

FOPTD First-order plus time-delay

G† Pseudo-inverse of matrix G

i.i.d Independent and identically distributed

IMC Internal model control

IR Impulse response

κ(x,y) Kernel function between two vectors x, y

LQG Linear quadratic Gaussian

λ−1 Unit backward shift operator in spatial direction

LMI Linear matrix inequality

MD Machine Direction

MIMO Multi-input-multi-output

MISO Multi-input single-output

MPC Model-predictive control

MPM Model-plant mismatch

xvi



Nomenclature

MV Manipulated Variable

MVC Minimum-variance control

N(µ,P) Multivariate Gaussian distribution with mean µ and covariance P

OE Output-error

PDF Probability density function

PEM Prediction-error method

PRBS Pseudorandom binary sequence

q−1 Unit backward shift operator in temporal direction

SISO Single-input-single-output

sup Supremum of a set

SVM Support vector machine

→ Convergence of a sequence of numbers or functions

w.p.1 With probability one

xvii



Acknowledgments

I would like to first express my sincere gratitude to my supervisor Professor Bhushan Gopaluni. He intro-

duced me to this university-industry collaborative research project and gave me invaluable guidance towards

addressing practical problems arising from the industry. This work would not be possible without his sup-

port, patience and inspiring discussions throughout my PhD study. Working with Prof. Gopaluni and his

group is one of the most enjoyable experiences in my life.

I am greatly thankful to my co-supervisor, Professor Philip Loewen. He helped a lot in my studies from

the initial literature review all the way to the paper writing. I received extensive training on mathematics

from working with him on the proofs for our ideas and I believe that I would benefit enormously in my

future career from being rigorous, in both research and life.

My sincere appreciation also goes to my industrial supervisors, Dr. Michael Forbes and Mr. Johan Back-

ström. Michael gave me numerous assistances in realizing our algorithms in the real industry. I appreciate

those hundreds of productive weekly meetings organized by Michael to implement our algorithms into the

real paper machine. These meetings are one of the most important reasons for the success of this project. I

also acknowledge Johan for his insightful feedback on our progress to make our work practically significant.

Completing this project would have been more difficult without his guidance and steering.

I am also thankful to Prof. Richard Braatz for hosting me at the Department of Chemical Engineering at

MIT. He introduced me to a new research area on fault detection and data analytics. I benefited a lot from

his broad knowledge and great expertise in control and optimization. I would also like to thank Prof. Benben

Jiang from Beijing University of Chemical Technology, China, who was visiting Prof. Richard Braatz’s lab

at the same time, for his help during my visit at MIT and the fruitful discussions on the new research area.

I would also like to thank all the collaborators and colleagues in my PhD project and study: Lee Rippon,

Cristian Gheorghe, Greg Stewart, Yiting Tsai, Mahdi Yousefi, Prof. Guy Dumont. I have been fortunate

enough to work with you over the last four years.

xviii



Acknowledgments

Finally, I offer special thanks to my parents and my wife, Hui Tian, for their unyielding support, uncon-

ditional love and tolerance in my life. To them I dedicate this dissertation.

xix



Chapter 1

Introduction

The stiff competition globally on the reduction of energy and improvement of quality has exerted extensive

pressure on the increasing of all-around efficiency of pulp and paper industry. As one of the major sectors in

pulp and paper industry, sheet and film processes are facing strong demands for highly efficient, autonomous,

and environmentally sustainable operations to enhance their competitive edge. In this work, we focus on de-

velopment of novel methods to improve efficiency through automation and adaptive information processing

for paper machine that is a typical sheet and film process.

1.1 The paper machine

Paper machines transform with high efficiency a slurry of water and wood cellulose fibres into sheets of

paper. The diagram of a typical Fourdrinier paper machine is illustrated in Figure 1.1. A paper machine

contains four sections: wet end section, press section, dryer section and post drying section. In the wet end

section, diluted fibre (mixture of water and fibre with about 0.5% fibre concentration) is bumped into the

headbox. The array of actuators controlling the opening of slice lips at the headbox across the paper sheet

are used to adjust the amount of pulp distributed on the drainage belt. The drainage belt moves at a high

speed with various suction devices underneath to remove most water in the fibre. In the press section, steam

boxes and pressing rolls are used to further dewater the paper sheet, ending with approximate 40% fibre

concentration. A series of steam-heated cans further evaporate the water content in the fibres in the dryer

section, reducing the water concentration to about 5-9% [1]. In the post drying section paper properties, such

as paper sheet thickness (caliper) and surface properties (gloss), are controlled by calendar stacks and finally

the paper sheets are wounded up on the reel at the end.

The most important paper properties are sheet weight, moisture content and thickness. These properties

are measured by traversing scanners located at the end of paper machine, as shown in Figure 1.1. These scan-

ning sensors travel back and forth across the paper sheet to measure paper properties and thus the scanned
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1.1. The paper machine

points on the paper product form a zig-zag trajectory due to the movement of paper sheet. The objective

in controlling paper machines is to reduce variations in paper properties due to disturbances by increasing

controllable bandwidth such that disturbances with frequency less than the bandwidth will be attenuated.

For the control of paper machines, there are two important directions that divide paper machines into two

parts. The first direction is known as the machine direction (MD) and it refers to the direction in which the

paper sheet moves. The other direction is called cross direction (CD) and it is perpendicular to the MD. The

primary objective in the control of a paper machine is to make the actual paper properties as close to desired

as possible by adjusting the manipulation of actuators [2].

MD control is concerned with controlling the average values of measurement points and MD processes

are usually represented as single-input-single-output (SISO) or low-dimensional multi-input-multi-output

(MIMO) systems. For example, MD basis weight is controlled by adjusting the fibre concentration of the

pulp in the headbox. The overall moisture is controlled by the average amount of steam pumped into the

dryer section. Note that Figure 1.1 only shows the structure of CD processes afterwards.

Cross-directional control is a finer-resolution control on the top of MD control. Five types of common

CD actuators are shown in Figure 1.1. An array of slice lip actuators are mounted after the headbox and

controlling the opening of each slice lip actuator locally can affect the amount of pulp pumped out from the

slice lip, thus impacting the local basis weight of fibres on the sheet. Note that slice lip actuators can also

influence other properties such as moisture and caliper of the paper sheet. In the press section, an array of

steam box actuators are used to facilitate the dewatering by spraying hot steams onto the paper sheet. Rewet

showers spray water drops onto the paper sheet to prevent over-drying. Similarly, the calendar stacks, an

array of induction heating rolls, are used to change the thickness of paper sheet. All these arrays of actuators

can be manipulated individually to modify local properties. Although there exist strong interactions between

different arrays of actuators and controlled variables (CVs), in this work, for the cross direction, we mainly

focus on the single-array CD process since the methods developed can be easily extended to multiple-array

cases.

Compared with MD control, CD control is much more complex due to the characteristics associated with

CD processes [3, 4]. First, a typical industrial paper machine may be as wide as 10 meters with hundreds

of actuator and measurement bins. If modeled as a multivariable system, the large dimension will make

the controller design a challenging problem [5]. Second, due to the spatially-distributed nature, most CD

process models are often ill-conditioned, and consequently, a large portion of eigenvector directions with
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1.2. Research objectives

small eigenvalues are indeed uncontrollable [6]. Third, model uncertainty especially the gain sign uncertainty

associated with the uncontrollable eigenvector directions make robust stability difficult to achieve [7, 8].

Figure 1.1: Diagram of a typical paper machine [1]

1.2 Research objectives

With the development of model-based control, especially model-predictive control (MPC), most MD and

CD controllers are based on models identified a priori from experiments such as bump tests [9, 10]. Taking

CD processes as an example, classical CD control strategies include two dimensional loop shaping [11],

CD model predictive control (MPC) [12], and robust CD control [13]. In these conventional CD control

techniques, the quality of CD process model plays a vital role in determining the closed-loop performance.

However, as the process operating conditions may change, the quality of the process model may deteriorate

and consequently the control performance will degrade [14]. In this case, a new model must be identified for

the process. Therefore, it is of great interest to develop techniques to evaluate the control performance by

using input-output data. A straightforward idea is to find benchmarks that represent satisfactory control per-

formance against which we can assess the currently implemented controller. Some performance indices can

be put forward to quantitatively measure the closeness of the current control performance to the benchmark.

As various factors may lead to the control performance deterioration such as poor model quality, inappro-

priate controller tuning, disturbance change, etc., the process model re-identification is necessary only when

the root cause is diagnosed as the model quality degradation. Hence it is attractive to find techniques which

are able to detect the existence of significant model-plant mismatches. Since we would like to perform the
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1.2. Research objectives

mismatch detection task online, it is desirable that the proposed technique can be applied to daily routine

operating data. The problem here is that routine industrial data generally lacks excitation signals and thus

it is difficult to precisely identify the process model in real-time. In this work, we will propose an effective

method to resolve the mismatch detection problem.

Once the poor model quality has been diagnosed as the root cause for performance degradation, a model

identification scheme can be initiated to obtain an updated model of the process. A typical model identifi-

cation scheme involves three stages: optimal input design, model identification and model validation [15].

Among these stages, the optimal input signal (or dithering signal) plays an important role in determining the

quality of process model estimates. For a parametric model, the least requirement on the dithering signal

is that it should contain enough frequency components so as to excite all necessary modes. Furthermore, a

good input signal shall also guarantee a small variance associated with the identified parameters. It is desir-

able that the perturbation to the process from excitation signals is minimal so as to prevent economic losses

and to meet physical process constraints. The objective of optimal input design can be formulated as that of

minimizing a scalar function of the covariance matrix of parameter estimates with respect to input sequence

(spectrum) subject to a set of constraints. The literature is replete with algorithms for optimal input design

in both time and frequency domains, and for both open and closed-loop data [16]. Most current optimal

input design techniques can be applied to MD processes. However, for CD processes, the literature on input

design focuses only on the open-loop case, where the controller has to be turned off which would result in

profit loss for paper mills. In this work, the optimal input signal will be designed in closed-loop, and the

large input-output dimensions for CD processes will be taken into account.

Model identification has been a mature research area where a variety of techniques have been developed

and applied in the industry. Specifically, model identifications can be roughly grouped into open-loop iden-

tifications and closed-loop identifications. Open-loop identifications are known to be simple and flexible

as there is no feedback or controller that correlate manipulated variables (MVs) with output noise. For the

closed-loop identification, its main advantage is that the system identification is performed during closed-

loop operations and this is particularly important for open-loop unstable systems. However, the strong cor-

relation between the input signal and the output disturbance complicates the closed-loop identification and

it often leads to biased model estimates [15]. For the MD process, a novel closed-loop identification method

will be proposed in this work, aiming at providing unbiased process model estimates. This method will then

be extended to the CD process. For the high-dimensional inputs and outputs associated with CD processes,
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1.3. Process models

we will present an iterative approach to simplify the identification of CD processes.

In particular, we will develop (a) a performance monitoring mechanism to evaluate the quality of MD

and CD process models by using routine operating data; (b) a model-plant mismatch detection scheme

to examine the occurrence of mismatch in real-time; (c) a closed-loop optimal input method particular to

the papermaking process; (d) a closed-loop system identification technique. The outcome of this project

will be a “quasi” adaptive control scheme 1, as shown in Figure 1.2, which will automatically monitor the

performance, identify new models, and re-tune controllers online without user intervention, for both MD and

CD processes.

Research Objectives

• Adaptive control scheme

Output
ProcessController

Reference

Monitoring

Identification

Switch

Input

Adaptive
tuning

Feedback

+ _

5
Figure 1.2: The overall adaptive control structure applicable to both MD and CD processes.

1.3 Process models

In this section, we demonstrate typical process models employed in the industry for MD and CD processes.

As mentioned in previous sections, single-array MD processes can be well represented by using SISO mod-

els. For example, a typical MD process can be modeled as

y(t) = G(q)u(t)+H(q)e(t), (1.1)

where G(q) is a scalar transfer function, usually with a first-order-plus-time-delay (FOPTD) structure. H(q)

is a stable, inversely stable and monic transfer function showing the dynamics of measurement noise e(t).

{e(t)} is usually assumed to be a Gaussian sequence. u(t) and y(t) are input (e.g., stock flow) and output
1Here the adaptive control is in a general sense that resembles iterative identification and control, in contrast to the conventional

adaptive control. Thus standard problems related to stability of traditional adaptive control do not occur in the proposed scheme.
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(e.g., dry weight) profiles. It shall be pointed out that a multiple-array MD process is usually represented as

a lower triangular MIMO system to represent the coupling between different arrays of actuators and paper

properties.

Figure 1.3: Two-dimensional response of a CD actuator under bump signal

Compared with MD, CD processes are much more complicated due to the large number of input-output

dimensions. Typical CD processes involve hundreds of actuators and measurement boxes in an array. Es-

sentially, the responses of CD actuators are two-dimensional, in both spatial and temporal directions. Fig.

1.3 shows the response (spatial and temporal) curve of a single actuator under bump signal. Note that the

temporal response is similar to that of a first-order model while the spatial response is highly-nonlinear that

is modeled by a parameterized nonlinear function. CD measurement sensors are viewed as discretization of

the nonlinear response curve. When modeling a CD process, a widely used assumption is the separability

between spatial and temporal responses. Under such assumption, the temporal response is described by a

FOPTD model with time constant and time-delay as the parameters. The spatial response is depicted by a

nonlinear function parameterized by several spatial parameters:

b(x) =
γ

2

{
e
− α(x+βξ )2

ξ 2 cos
[

π(x+βξ )

ξ

]
+ e
− α(x−βξ )2

ξ 2 cos
[

π(x−βξ )

ξ

]}
, (1.2)

where x is the spatial coordinate and b(x) is the spatial response curve. Gain γ , width ξ , divergence β

and attenuation α are four parameters associated with the nonlinear function. The temporal step response

and spatial steady-state impulse response of a single actuator are demonstrated in Fig. 1.4. Four spatial

parameters, together with two temporal parameters, form the parameter vector that we wish to estimate in
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CD model identification.

The nonlinear model (1.2) is not convenient for CD controller design. An additional assumption is placed

stating that all actuators are supposed to have identical spatial and temporal response behaviors. Substantial

facts from industry have revealed the validity of this assumption for CD actuators in an array except those

near the edge. With this assumption, the spatial model is simplified as a highly-structured gain matrix and

all actuators share the same temporal model. A generic CD process model is represented as

y(t) = g(q)Gu(t)+v(t), (1.3)

where y(t) ∈Rm stands for the measured CD profile, such as basis weight, and u(t) ∈Rn is the manipulated

variable such as the opening of slice lip actuators. m and n are respectively the output and input dimensions.

v(t) ∈ Rm represents the output measurement noise. g(q) is a scalar FOPTD transfer function showing the

common dynamics of all actuators in the array in temporal direction. G is a Toeplitz-structured gain repre-

senting the spatial responses of actuators at steady-state. In particular, the (i, j)-th entry of G is determined

by the value b(dsi−c j) in (1.2), where ds is the spatial distance between neighboring measurement bins and

c j is the spatial response center of actuator j.

Note that in the following chapters, we will elaborate the MD and CD models in different aspects ac-

cording to the specific needs in the context.

Figure 1.4: Temporal step response and spatial impulse response of a CD actuator.

7



1.4. Literature review

1.4 Literature review

1.4.1 Performance assessment

Controller performance assessment for univariate systems have been extensively studied in the literature.

Excellent surveys on performance assessment for univariate and multivariate processes can be referred to

[17–19] and the references therein. Most performance assessment techniques aim at finding a benchmark

which characterizes a theoretically best control performance and compare it with the actual performance

achieved by the implemented controllers. For a typical control system, there exist a variety of factors that

prevent the controller from achieving ‘ideal’ control performance. For example, we cannot expect the con-

troller to track a setpoint change perfectly without any tracking error since the inherent lag of a physical

system in response to any abrupt setpoint change cannot be overcome by any controller. Such constraints on

the achievable performance of a controller are called performance limitations, including time-delays, time

constants, non-minimum-phase zeros, etc [20]. Thus the performance of a controller cannot be evaluated

simply by comparing it with the ideal control performance, but rather, it should be assessed by taking into

account the corresponding performance limitations existing in the underlying system.

Among these performance limitations time-delays are the most fundamental and have the most direct

influence on the controller performance. Harris [21] first proposed the minimum variance control (MVC)

benchmark which specifies the minimum variance that a closed-loop system can achieve when time delay

is the fundamental performance limitation. Due to its straightforward intuition and easy deployment, this

benchmark has become the most popular tool in the process monitoring area. A time series model is fitted

into the measured output data and the first few coefficients are the controller-invariant part (benchmark).

The filtering and correlating (FCOR) algorithm was proposed in [18] in which only the output data and time

delay are required to calculate the minimum variance benchmark. Furthermore, the MVC benchmark was

extended from SISO systems to MIMO systems [19, 22, 23]. Note that for MIMO systems, the interactor

matrix has to be factored out as an analogy of the time-delay for the SISO case in order to apply the MVC

benchmark. Moreover, it has been proved that the multivariate MVC is able to achieve minimal variance in

each individual output channel provided that the interactor matrix is simple or diagonal [18]. A variety of

industrial applications using MVC benchmark have emerged afterwards [24], such as paper machine [25]

and refinery process [26].

Due to the aggressiveness of the MVC benchmark, a generalized minimum variance controller (GMVC)
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benchmark was proposed in [27] which enables the incorporation of input signals into the benchmark. The

weight selection strategy was presented in [28] for the GMVC benchmark. The LQG benchmark for per-

formance monitoring was proposed and investigated in [18, 29, 30], where a trade-off curve between the

output variance and input variance was obtained and the performance of implemented controllers was eval-

uated against this curve. Furthermore, due to the wide use of MPC in the industry, performance assessment

techniques specific to MPC systems were investigated in [31, 32]. However, most MIMO systems under con-

sideration have small input and output dimensions. A suitable extension of the MVC benchmark to spatially

distributed systems, such as the cross direction of paper machines, has received relatively little attention.

The high dimensionality of measurements as well as the poorly conditioned nature of the CD process model

presents significant challenges for performance monitoring [14].

For CD performance monitoring, in [33], the deviation of an implemented controller from the MVC was

estimated in terms of actual input-output data as well as the plant model (known a priori). More practical

considerations such as actuator constraints were taken into account in the monitoring process. In [34],

the original CD model was decoupled into a family of SISO systems and Harris’ MVC benchmark was

applied to each subsystem. The minimum variance performance index for CD processes was proposed

in [35] which accounts for both time-delay performance limitations in the temporal direction and spatial

bandwidth performance limitations in the cross (spatial) direction. A Bayesian method was employed to

impose Toeplitz structure to the coefficient matrices in estimating the time series model. However, it is not

straightforward to obtain a quantitative assessment of the CD processes from the proposed methods. Thus

it is desirable to develop an intuitive performance index which directly measures the control performance

for the CD process. Moreover, the performance index must be reasonably easy to compute so as to be

implemented on-line. Note that the process monitoring for MD processes, with MVC-based benchmark and

user-specified benchmark, has been thoroughly studied in [36]. In this work, our focus would be on the

performance assessment for CD processes.

1.4.2 Model-plant mismatch detection

Although process monitoring provides a quantitative way of measuring the control performance, control

loop performance may deteriorate for various reasons such as model-plant mismatch (poor-quality model),

changes in disturbance characteristics, improper tuning of controllers [30]. Among these factors the model-

plant mismatch (MPM) is vital since when the mismatch degrades the control performance, system re-
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identification will be required to produce an updated model and deploy it to the controller. Note that it

is not necessary to perform model re-identification for the other causes of performance degradation. Thus

there is an increasing demand on an automated and highly-reliable scheme to directly detect the presence of

significant mismatches.

MPM often arises from the susceptibility of industrial processes to changes of operating conditions over

time, such as a drift to the chemical process caused by catalyst deactivation [37]. Significant MPM can lead

to suboptimal control decisions, production loss, or even closed-loop instability, in which case a process

model re-identification procedure is necessary [38]. Traditionally, the MPM detection problem is considered

as a component in the diagnostic part of the overall process monitoring hierarchy [39]. A correlation-based

method was proposed in [40] which relies on examining the significance of cross-correlations between set-

point and model error to separate MPM from other causes of performance degradation. Multivariate chi-

squared test on the output and prediction error was proposed to diagnose the presence of MPM in [41]. A

hypothesis test method was proposed in [42] to distinguish the effects of changes in process and distur-

bance on control performance drop. As pointed on in [39], during this early stage of research on MPM

detection, most efforts concentrated on the performance monitoring and little endeavors were reported to

separate the MPM from other causes. Another category of methods on MPM detection during that period

constructs statistics to detect the abrupt changes in the process parameters. A variety of statistical tools such

as time series modeling, principal component analysis (PCA), generalized likelihood ratio test and several

new statistics were presented in [43–46]. The issue of deciding when to perform the model re-identification,

based on PCA and Akaike information criterion, was investigated in [47]. Periodic injection of external exci-

tation signals was required to perform simple tests to detect the model degradation. More recently, attempts

on directly identifying the presence or even the model of MPM have become the mainstream in the litera-

ture. A method based on partial correlation was illustrated in [48] to address the correlations among MVs.

The correlation between each MV and each model residual, after de-correlating the MVs, was employed

to examine the occurrence of MPM. In [49], an important method was proposed to discriminate the noise

covariance mismatch and process model mismatches. It was shown that both mismatches affect the Kalman

filter design, leading to non-white innovations. These two mismatches differ in the order of innovation se-

quences and from this the MPM can be separated from noise model changes. The impacts of MPM on the

sensitivity function was thoroughly explored in [50] and a resultant performance index was put forward for

the diagnosis.
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Over the last few years, interests on MPM detection have grown significantly, pushing the frontiers

towards realistic industrial contexts with closed-loop routine operating data. Several approaches have been

reported based on model residual analysis [51], output autocovariance function [37], plant-model ratio [52]

and the nominal sensitivity function [52]. Despite these achievements, the MPM detection problem is not

yet completely solved. The remaining key issues on this topic can be summarized into two categories: the

separability between MPM and noise model change [38, 51], and the usage of external excitations [48, 50].

First, most MPCs perform predictions based solely on a process model or together with a presumed simple

noise model, e.g. a step or random-walk disturbance. Despite that changes in true noise model may cause

drifts in the variance of process variables, the resultant degradation in control performance shall not be

attributed to the MPC. In other words, operators in the industry are more concerned with the quality drop

in the underlying process model instead of that of the noise model. An ideal MPM detection approach shall

not mistake the changes in noise model as MPM and be robust to such noise changes [38]. Most approaches

built on variance-based metrics are susceptible to this issue, such as the minimum-variance benchmark [21].

Second, most present approaches to directly identify the MPM depend on certain external excitations, such

as dither signals or setpoint changes. Nevertheless, external excitations bring additional perturbations to the

system and inevitably cause profit loss to the industry. Although it is possible to identify the MPM during

the setpoint change (e.g. grade changes for paper machines), we prefer to monitor MPM during the routine

operation stage, given that most of the time the system operates at steady-state that may be free of any type

of external excitations. In terms of CD processes, the problem of MPM detection still remains open. It

can be expected that extending previous approaches to CD processes faces extensive difficulties due to the

complexity from large-scale inputs and outputs.

1.4.3 Optimal input design

The input design answers the question on how to design an excitation signal optimally to excite the system

so that the identified system model is as accurate as possible. For an input design problem, the objective

is often formulated as minimizing the variance of parameter estimates by carefully choosing the excitation

signal [15]. A default assumption that is often made is that the employed estimator is consistent or unbiased,

so that the covariance of the estimator is the only concern that we have. So far, a number of approaches have

been put forward, including time-domain, frequency-domain, open-loop and closed-loop approaches.

The optimal input design problem has been extensively investigated since 1970s. During that period, the
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research focused on open-loop input design and the design variable was selected as the input signal. Both

time domain and frequency domain approaches were explored [53]. In the time domain approaches, the

problem was formulated as that of maximizing some scalar function of the Fisher Information Matrix by

selecting the input sequence from an admissible compact set. The time domain approaches suffered from

the complexity of nonlinear optimizations [54]. In the frequency domain approach, the information matrix

was replaced by an asymptotic per sample information matrix, which can be expressed as an affine function

of the input spectrum [53]. The optimal input spectrum can be obtained by optimizing a scalar function

(e.g. A-optimal, D-optimal, E-optimal, etc.) of the asymptotic per sample covariance matrix subject to

constraints [55]. Later on, the results on parameter covariance were extended directly to transfer function

estimates, where the asymptotic variance formulas were derived under the assumption that both model order

and sample number tend to infinity [56, 57]. The results have been shown to be effective not only for

high order models but also for model orders that do not exceed that of the true system. In the nineties,

the concept of identification for control emerged where the identification focus was more on the intended

use of the model [58]. The identification criteria were chosen to be as close to the control performance

as possible. The iterative identification and control design scheme was proposed to achieve these goals

[59]. More recently, the focus shifted to the influence of variance error of the estimated model on the

set of robust stabilizing controllers. Semidefinite programming with linear matrix inequality (LMI) [60]

constraints makes the problem solvable. More specifically, during this period, the research has significantly

expanded into the realm of optimal design criteria and constraints. For instance, the design criteria were

no longer restricted to be the classical criteria or the variance of transfer function estimates [61]. More

practical constraints such as the frequency-by-frequency constraints can be included as well in addition to

the conventional power constraints [62]. In conjunction with these new results are the developments of

optimization and parameterization techniques associated with the input design problem. It has been shown

that most input design problems can be recast as LMI optimization problems, and some parameterization

techniques have been proposed to reduce the infinite dimensional LMI into finite dimensions. Two well-

known parameterizations are the finite dimensional parameterization and partial correlation parameterization

[63]. More recent advances include using graph theory to address the input design problem for closed-loop

MPC systems in time domain with probabilistic bound constraints on input and output [64, 65].

With regard to optimal input design for MIMO and ill-conditioned systems, classical results are referred

to [66–70]. However, for the CD process, a high-dimensional MIMO and ill-conditioned process, most
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existing input design methods were developed for the open-loop case, see [71]. The main drawback of open

loop input design is the resultant production loss as normal operations of process risk being interrupted.

Results on closed-loop optimal input design for CD processes are scarce, with the current industrial practice

of using spatial-bump-temporal-PRBS signals as excitations for closed-loop identification (termed as “bump

excitations” in this work) [72]. How to design optimal input excitation signal in the closed-loop for large-

scale spatially distributed systems is still an unsolved problem.

1.4.4 Closed-loop identification

Identifying process models using closed-loop data has received extensive attention in the last few decades

[73]. There are a number of occasions where open-loop identifications may not be suitable and closed-

loop identifications are more desirable. For example, when the underlying system is unstable, the controller

has to be in the loop in order to perform identification experiments [59]. Furthermore, if the objective of

the identification is to supply a model for the robust controller design, it has been revealed that closed-

loop identification is advantageous relative to open-loop identification [74]. A more recent but important

application of closed-loop identification is in process performance monitoring, particularly for industrially

relevant model-based controllers (e.g., MPC). Many industrial processes collect a large amount of routine

operating data and an important aspect of industrial process assessment is to extract metrics in real-time

to monitor the performance of control loops. Most of these data are collected in the closed-loop and thus

closed-loop system identification becomes one of the most powerful tools in industrial data analytics [75].

One important feature of such closed-loop identification is that the data are collected during the routine

operation stage where external excitations (e.g., setpoint change or dither signal) may not exist and no a

priori knowledge of the noise model is available.

Over the past few decades, closed-loop identification has become a well-established area of research

where a number of effective techniques, such the prediction error method (PEM), have been proposed and

widely used [15]. Broadly speaking, current closed-loop identification methods can be categorized as fol-

lows: direct identification, indirect identification, joint input-output identification method, the two-stage

method and the projection method. The direct identification method treats closed-loop data as if they were

generated in the open-loop and therefore neglects the correlation between input and noise [76, 77]. How-

ever, for this method complete knowledge of the noise model is required to generate an unbiased estimate

of process model. To avoid significant bias, the direct identification method is restricted to situations where
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the feedback effect is weak (e.g., the controller is highly detuned or the signal-to-noise ratio is high). The

indirect identification method proceeds by identifying a closed-loop transfer function (e.g., the sensitivity

function) and then factoring out the open-loop process model by assuming that the regulator model is avail-

able and accurate [73]. The joint input-output method [78], the two-stage method [79] and the projection

method [80] share the same idea, i.e., identifying the closed-loop transfer functions from the dither signal to

the process input and output, respectively. The open-loop process model can then be determined from these

two closed-loop transfer functions, although the resultant model is often of high order. An additional model

order reduction process is necessary to acquire a parsimonious model for further model-based controller

design [73]. The latter four closed-loop identification methods require injection of a dither signal into the

closed-loop system and in general the dither is independent of the noise. As a consequence, identification

of the closed-loop transfer function with these methods is essentially reduced to identification of “open-loop

processes”. Additionally, the latter four methods are generally developed for linear controllers and applying

them when the controller is nonlinear may cause erroneous results. In this case, the direct identification

method becomes favorable [75]. These aforementioned closed-loop identification methods can be applied to

MD processes. However, the lack of a noise model in MD processes poses a barrier in achieving unbiased

estimates of process models. In this work, we propose a novel closed-loop identification method for SISO or

low-dimensional MIMO systems, which is applicable to both experimental data and routine operating data.

For CD processes, the large-dimensional nature brings significant challenges for even open-loop iden-

tification. A traditional way of dealing with open-loop CD identification is estimating the finite impulse

response (FIR) coefficients along the cross direction [81]. Apparently, the parameters estimated from this

method have large uncertainty due to the large number of free parameters [82]. Other identification tools

use nonlinear least squares to estimate the parameters in determining the spatial response curve [83]. Due to

the noncausal nature of spatial response of CD actuators, noncausal parsimonious models are put forward to

represent CD processes [82, 84]. However, these methods only consider open-loop data. Their extensions

to closed-loop data have not been reported in the literature. In this work, we will present a closed-loop CD

identification algorithm, which can be applied to both CD experimental data and routine operation data.
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1.5 Outline of this thesis

This thesis covers the entire adaptive control for CD processes and part of adaptive control for MD processes.

Note that each process contains components as shown in Fig. 1.2. For the MD process, our focus would

be on the model-plant mismatch and closed-loop identification. Detailed simulations on adaptive control

for MD processes can be referred to [85]. The performance assessment and optimal input design for MD

processes can be referred to the work of a colleague [36].

Chapter 2 is devoted to the development of a novel closed-loop identification scheme. This closed-loop

identification contains two steps and it can supply an unbiased estimate for the process model even when

the knowledge on the true noise model structure is not available. Moreover, it can operate with closed-loop

data collected during an experiment in which a dither signal is injected or the data obtained from routine

operating stage in which no external signal is present. Note that this closed-loop identification approach will

be employed both in MPM detection stage and final closed-loop identification stage.

Chapter 3 introduces a novel MPM detection scheme based on support vector machines (SVM). This

method consists of two steps: routine closed-loop identification and SVM classification for the obtained

model estimates. This method can be applied to routine operating data that are free of external excitation

signals, and can avoid the issue of being sensitive to noise model changes. This MPM detection scheme will

run in parallel with the performance assessment to reduce false alarms for MPM detection.

Chapter 4 demonstrates the extension of classical performance assessment techniques based on MVC

benchmark to the CD process. Detailed analysis with regard to performance limitations associated with CD

process is provided, based on which a practical CD MVC benchmark is derived. Moreover, to account for

the actual tuning status of CD controllers, a user-specified benchmark is proposed to reflect the performance

of current controllers. A computationally efficient algorithm is put forward to address the difficulties in

computation due to the large number of dimensions in CD processes.

Chapter 5 gives an SVM-based MPM detection method for CD processes, which can be viewed as

an extension of the idea from Chapter 3. In particular, a novel iterative CD closed-loop identification is

proposed, inspired by the identification of Hammerstein models. Convergence and consistency analysis are

performed for this novel CD closed-loop identification approach. SVM-based MPM detection is then applied

to the identified CD process models and noise models to monitor the occurrence of model-plant mismatches.

With this method, we can detect the MPM with only routine operating data and can discriminate MPM from
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noise model changes.

Chapter 6 presents a novel closed-loop input design method for single-array CD processes. The contri-

bution lies in that traditional closed-loop input design, either time-domain approaches or frequency-domain

approaches, can not be implemented to CD processes due to the large dimensions of inputs and outputs.

Inspired by the noncausal modeling for CD processes, we propose a closed-loop input design idea based on

noncausal models. The advantage of this idea is that CD spatial model can be effectively represented by

low-order noncausal models, reducing the complexity associated with the input design.

Chapter 7 provides several examples on the adaptive control (more precisely, iterative identification and

controller re-tuning) for CD processes. These simulations are performed on a simulator from Honeywell

Process Solutions. Specifically, we demonstrate the procedures in detail from introducing a MPM, detecting

the existence of MPM, performing closed-loop input design and identification to the adaptive tuning of CD

controllers. Various spatial and temporal parametric mismatches are provided to verify the effectiveness of

this entire adaptive control scheme.

1.6 Significance of the research

The above adaptive control scheme is proposed based on the stringent requirement in practice for passive

performance monitoring and minimal user intervention during the entire monitoring, identification and con-

troller re-tuning loop. Both control performance assessment and MPM detection do not need the injection of

external excitations or even setpoint changes to avoid the resultant production loss. Optimal input design and

system re-identification are performed in closed-loop to prevent the continuous operation of the process from

being interrupted. To enhance of the robustness during the monitoring procedure and reduce false alarms on

process deterioration, we combine control performance assessment and MPM detection to make decisions

on whether it is necessary to trigger the identification procedures. Although the entire framework is proposed

for paper machines, it can easily be extended to other sheet and film processes such as coating, metal rolling

and polymer film extrusion. For generic processes that are not spatially distributed, the above scheme is also

applicable with minor modifications. With this scheme, industrial manufactures can greatly take advantage

of advanced control methods to promote the production efficiency and dramatically reduce the expense on

the associated controller maintenance.
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Chapter 2

Routine Closed-loop Identification

2.1 Introduction

Over the last few decades, model-based controllers (especially MPC) have become the dominant controllers

in most industrial processes. One typical task of process monitoring is to assess the quality of process

models used by the controller. This work often involves real-time estimation of the process model based on

routine industrial data, which may lack any type of external excitations [86]. Moreover, most industrial MPC

may display nonlinear dynamics and thus those closed-loop identification methods relying on external dither

signals or linear regulators may not be suitable in this scenario. The direct identification method appears to

be appropriate, however, the lack of knowledge of true noise model structure may create biased estimates

of the process models [87]. Therefore, it is of great significance to develop a new closed-loop identification

method which can be applied to the process monitoring situation, i.e., with or without excitation signals and

without knowing the noise model structure.

With the above motivation in mind, we propose a novel closed-loop identification technique. The goal of

this method is to overcome the bias issue associated with the direct identification method while preserving its

versatility and simplicity in dealing closed-loop data under linear or nonlinear control. A major advantage

of the proposed method is its applicability to situations both with and without external excitations. The

proposed identification method is referred to as the closed-loop (autoregressive with exogenous input, output

error) ARX-OE method. It consists of two steps: high-order ARX modeling in the first step and the OE

identification in the second step. In the second step, the OE identification is applied to input and output data

that have been filtered by the inverse of estimated noise model from the first step. Some preliminaries and

assumptions are presented in the next section followed by a detailed description of the ARX-OE method

in Section 2.3 and discussions of the asymptotic properties in Section 2.4. An explanation of the usage of

this method for routine industrial operating data is provided in Section 2.5. Two examples validating the

effectiveness of the ARX-OE method are presented in Section 2.6 with conclusions given in Section 2.7.
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2.2 Preliminaries

Consider the following SISO true system with Box-Jenkins structure

S : y(t) = G0(q)u(t−d)+H0(q)e0(t), (2.1)

where y(t) and u(t) represent the measured output signal (CV) and input signal (MV), respectively. The true

process model, G0, is a stable minimum-phase rational transfer function that is assumed to have at least one

sample delay. The noise model H0 is a monic, stable and inversely stable filter. The sequence {e0(t)} is

independent and identically distributed (i.i.d.) Gaussian white noise with zero mean and variance σ2
e .

In closed-loop, the input signal u(t) is determined by the following nonlinear mapping

u(t) = k(t,ut−1,yt−1,r(t)), (2.2)

where ut−1 = {u(t−1),u(t−2), . . . ,u(1)} and yt−1 is defined analogously. The external excitation signal,

r(t), can be either the dither signal (normally added to the actuator site) or the setpoint signal. Note that

(2.2) is a general representation of the controller and it includes both linear and nonlinear cases. A typical

example of a nonlinear controller is MPC with varying active constraints. From the perspective of system

identification, a nonlinear controller could be more conducive to closed-loop identification as it is likely to

break the correlation between input and noise through the feedback path [15].

Assumption 2.2.1. We assume that all relevant signals in (2.1)-(2.2) are quasi-stationary, i.e., the following

conditions hold [15]

E[s(t)] = m(t), |m(t)| ≤C, ∀t,

E[s(t)s(t− τ)] = Rs(τ), |Rs(τ)| ≤C, ∀τ,

where s(t) is a signal in (2.1)-(2.2), C is some constant and E is the conventional expectation operator for

random variables. The generalized expectation operator, E, is applicable to the signals consisting of both

stochastic and deterministic components

E[s(t)] = lim
N→∞

1
N

N

∑
t=1

E[s(t)].
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Furthermore, we define

ZN = {u(1),y(1), . . . ,u(N),y(N)},

to be a collection of sampled closed-loop data. To facilitate derivations, the following assumption is default

unless otherwise explicitly stated.

Assumption 2.2.2. The collected closed-loop input-output data ZN is informative enough for the selected

model structures in the relevant closed-loop identification.

Remark 2.2.1. When external excitation exists, Assumption 2.2.2 holds if the external excitation signal r(t)

is persistently exciting of sufficient orders. For the case without external excitation, we assume that the linear

or nonlinear controller is complex enough to make this assumption hold, see Section 2.5.2. Note that for the

theoretical derivation, in the sequel we assume that r(t) exists. The corresponding results without external

excitation can be easily derived by setting r(t) = 0.

For the prediction-error method (PEM), a class of model structures are constructed to fit into the data set,

parameterized by θ = [ρT γT ]T ∈Ωθ ⊆ Rnθ ,

M : y(t) = G(q,ρ)u(t)+H(q,γ)e(t),

where q ∈Ωρ ⊆ Rnρ and γ ∈Ωγ ⊆ Rnγ are parameter vectors of the process and noise models, respectively.

Define Ωθ , Ωρ , and Ωγ to be the corresponding convex and compact sets of parameters θ , ρ and γ . First we

introduce the definition of uniform stability for a model structure [15].

Definition 2.2.1. Let G(q,θ) = ∑
∞
k=1 gk(θ)q−k be a transfer function depending on parameter θ ∈Ωθ . The

model structure G(q,θ),θ ∈ Ωθ , is said to be uniformly stable on Ωθ if there exists a sequence {g(k)}

independent of θ such that ∑
∞
k=1 g(k)< ∞ and |gk(θ)| ≤ g(k) for each k and every θ ∈Ωθ .

We further suppose that the selected model structures G(q,ρ) and H(q,γ) are uniformly stable (‘uni-

formly’ is with respect to the parameter θ and ρ) and H(q,γ) is also inversely uniformly stable. Note that in

what follows we may use Gρ , Gρ(q) and G(q,ρ) interchangeably if there is no risk of confusion.

Assumption 2.2.3. It is assumed that the true process model is contained in the set of selected process model

structures, i.e.,

G0 ∈ G
∆
= {G(q,ρ)|ρ ∈Ωρ}.
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Further, we assume that all relevant closed-loop transfer functions formed by the selected family of model

structures are uniformly stable under the controller in (2.2). Note that this condition also guarantees closed-

loop stability of the true system since the true system is contained in the selected model structure.

We further stress that Assumption 2.2.3 is valid from a practical point of view since for most industrial

processes the required a priori knowledge of the process is often available. It is well-known that if the

selected noise structure also contains the true noise model, then the direct identification method provides

consistent estimates for both the process and noise model parameters, regardless of whether the experiment

is conducted in closed-loop or open-loop [15]. However, in practice this statement is too stringent to hold

since in general, the characteristics of noise are too complex to analyze or come up with an appropriate

model structure. Thus discrepancy between the true noise model and the selected noise model structure

is inevitable. Moreover, for process control engineers, reliability of the identified process model is more

important than that of the noise model for controller design.

A direct consequence of this noise model mismatch is a biased estimate of the process model if the PEM

is applied to closed-loop data (we only consider the direct closed-loop identification method for now). To be

more specific, taking the fixed noise model, H∗(q), as an example, the process model parameter estimate is

shown to be [15]

ρ
∗ = arg min

ρ∈Ωρ

1
2π

∫
π

−π

∣∣G0(e jω)+B(e jω)−Gρ(e jω)
∣∣2 Φu(ω)

|H∗(e jω)|2
dω, (2.3)

where B(e jω) is the bias term and

B(e jω) =

(
H0(e jω)−H∗(e jω)

)
Φue(ω)

Φu(ω)
, (2.4)

where Φue(ω) is the cross-spectrum between the input and noise. It is obvious that for open-loop data

Φue(ω) = 0 and thus the OE structure with a fixed noise model can give an unbiased process model esti-

mate. In this work, we propose to use a two-step approach to resolve the bias issue while maintaining other

advantages of the direct identification method.
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2.3 The closed-loop ARX-OE identification method

In this section we describe the proposed closed-loop ARX-OE identification method in detail. The proposed

closed-loop identification method, as mentioned above, consists of two consecutive steps: high-order ARX

identification followed by closed-loop OE identification using filtered input-output data.

2.3.1 First step: high-order ARX identification

Let us first re-write (2.1) in an equivalent form

A0(q)y(t) = B0(q)u(t)+ e0(t), (2.5)

where

A0(q) =
1

H0(q)
, B0(q) =

G0(q)
H0(q)

.

Since H0(q) is assumed to be inversely stable, it is clear that A0(q) and B0(q) are also stable. It is worth

pointing out that in most cases, the impulse response (IR) coefficients of A0(q) and B0(q) contain infinite

terms, i.e.,

A0(q) = 1+
∞

∑
k=1

a0
kq−k, B0(q) =

∞

∑
k=1

b0
kq−k. (2.6)

Thus the original Box-Jenkins model can be represented by an ARX model but with an infinite number of

parameters. Here we propose to use a high-order ARX model to fit the closed-loop data

A(q,ηn)y(t) = B(q,ηn)u(t)+ e(t), (2.7)

where n is the selected order and

A(q,ηn) = 1+
n

∑
k=1

akq−k, B(q,ηn) =
n

∑
k=1

bkq−k, (2.8)

with

ηn = [a1 . . . ,an,b1, . . . ,bn]
T .

The basic idea is that the IR coefficients may converge to zero after sufficient lags and the high-order ARX

model will capture the first few significant coefficients. Based on (2.7) and (2.8), the parameter estimates
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of the ARX model can be readily achieved by solving a least-squares problem. The estimate of parameter

vector is defined as

η̂n = [â1 . . . , ân, b̂1, . . . , b̂n]
T . (2.9)

It is evident that the parameter estimate η̂n under (2.7) and (2.8) will suffer from large variance due to the

large number of parameters. In fact, the accuracy of parameter estimates from the first step is consequential

to the second step. One remedy to this issue is to add regularizations to the least-squares problem. For

theoretical derivations in this work, we employ the regularization with a form shown in [88]: for small

δ > 0,

Rn
reg(N) =

 Rn(N), if ‖Rn(N)−1‖2 < 2/δ

Rn(N)+ δ

2 I, otherwise

where Rn(N) = 1
N ∑

N
t=n+1 ϕn(t)ϕn(t)T with the regressor ϕn(t) = [−y(t) u(t) . . . − y(t− n) u(t− n)]T . N

is the sample size. It has been proved in that paper that asymptotically, the first and second order properties

of the parameter estimate will not depend on the regularization term. Another important point is that the

IR coefficients of most practical noise models tend to decay rapidly and a priori information can be used to

choose a reasonable model order for the ARX identification in the first step. For theoretical convenience, we

make the following assumption which states that as the sample size N tends to infinity, the order n(N) (as

a function of N) of the selected ARX structure (2.7) is allowed to tend to infinity but with a much slower

increase rate than N.

Assumption 2.3.1. For the high-order ARX model (2.7), it holds that

n(N)→ ∞, n(N)3+δ/N→ 0, as N→ ∞, (2.10)

where δ > 0 is some constant.

It is straightforward that the parameters in (2.7) can be estimated with ordinary least-squares. Denote

η̂N = η̂n(N), (2.11)

to represent the least-squares estimates of the parameter ηn when n is allowed to tend to infinity as a function

of N. We also define η0 as a vector stacking the infinite number of true parameters in the high-order ARX
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model, i.e.,

η0 = [a0
1 . . . ,a

0
n, . . . ,b

0
1, . . . ,b

0
n, . . .]

T . (2.12)

In the following sections, we use A0(q) and A(q,η0) interchangeably as well as B0(q) and B(q,η0).

Before proceeding to the second step of the ARX-OE method, we present the following lemma [88].

Lemma 2.3.1. Consider the true high-order ARX model in (2.5) and the selected model structure in (2.7). If

the previous assumptions hold, then for the least-squares estimate η̂N , we have

sup
ω

∣∣A(e jω , η̂N)−A0(e jω)
∣∣→ 0, w.p.1, as N→ ∞. (2.13)

Note that we can acquire a similar statement for B(e jω , η̂N). However, as will be explained below, we

are only interested in A(e jω , η̂N). Lemma 2.3.1 asserts that, asymptotically, in both the sample number and

the order of ARX model, the estimate A(q, η̂N) of A0(q) converges almost surely to the true value. Notice

that this lemma holds regardless of whether the data are gathered in open-loop or closed-loop, as long as

the corresponding assumptions are satisfied. As will be seen later, this lemma plays an essential role in the

asymptotic analysis of the proposed ARX-OE method.

2.3.2 Second step: OE modeling with filtered input and output data

In the second step of the proposed approach, we perform an OE model identification on the filtered input and

output signals. Here the filter is chosen as the estimated A(q, η̂N) from the first step. For ease of notation,

from now on we define the operation of filtering a signal s(t) using A(q, η̂N) as

s(t, η̂N) = A(q, η̂N)s(t),

to show this explicit dependence. With this notation, the filtered input and output signals are as follows

y(t, η̂N) = A(q, η̂N)y(t), u(t, η̂N) = A(q, η̂N)u(t).

To estimate the process model, we fit the following OE model to filtered input-output data, i.e.,

y(t, η̂N) = G(q,ρ)u(t, η̂N)+ e(t), ρ ∈Ωρ , (2.14)
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2.4. Asymptotic analysis of the ARX-OE method

where a priori information on the process model can be imposed, e.g., a FOPTD model for the paper machine

example in the simulation section. The one-step-ahead predictor of the above OE model is

ŷ(t|t−1,ρ, η̂N) = G(q,ρ)u(t, η̂N), (2.15)

and the resulting prediction error is

ε(t,ρ, η̂N) = y(t, η̂N)− ŷ(t|t−1,ρ, η̂N) = [G0−G(q,ρ)]u(t, η̂N)+
A(q, η̂N)

A0(q)
e(t). (2.16)

For the prediction error method, the optimal parameter is obtained by minimizing the following objective

function

ρ̂N = arg min
ρ∈Ωρ

VN(ρ, η̂N) =
1
N

N

∑
t=1

1
2

ε
2(t,ρ, η̂N). (2.17)

Note that solving the OE model identification in (2.16)-(2.17) often involves nonconvex optimization and

thus the global minima in general cannot be guaranteed. However, in this work we do not intend to develop

techniques to overcome this issue. For details on this topic, see [89].

2.4 Asymptotic analysis of the ARX-OE method

In this section, we will analyze the consistency and asymptotic distribution of the proposed closed-loop

ARX-OE identification method.

2.4.1 Consistency analysis

We show that the estimate of process model approaches the true model as the sample size N tends to infinity.

First, by replacing A(q, η̂N) in (2.16) using A(q,η0), let us define the prediction error under the ideal filter

A(q,η0) as

ε(t,ρ,η0) = y(t)− ŷ(t|t−1,η0) = [G0−G(q,ρ)]u(t,η0)+ e(t), (2.18)

and the corresponding loss function as

VN(ρ,η0) =
1
N

N

∑
t=1

1
2

ε
2(t,ρ,η0).
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2.4. Asymptotic analysis of the ARX-OE method

Defining

V (ρ,η0)
∆
= E

1
2

ε
2(t,ρ,η0), (2.19)

the following theorem shows that for large sample size the loss function (2.17) coincides with (2.19) almost

surely.

Theorem 2.4.1. Suppose that Assumptions 2.2.1–2.3.1 hold and consider the loss functions under prefilters

A(q, η̂N) and A(q,η0) as shown in (2.17) and (2.19), respectively. If follows that

sup
ρ∈Ωρ

∣∣VN(ρ, η̂N)−V (ρ,η0)
∣∣→ 0, w.p.1, as N→ ∞, (2.20)

where V (ρ,η0) is defined as in (2.19).

Proof. See Appendix A.1. �

Based on the arguments in Theorem 2.4.1, we are ready to show that the estimate of process model is

consistent through the following theorem.

Theorem 2.4.2. Consider the Box-Jenkins model (2.1) and the equivalent ARX model (2.5). Assume that

the output-error model in (2.14) is uniformly stable. Then under Assumptions 2.2.1–2.3.1, the parameter

estimate from the ARX-OE method in (2.17) is consistent, i.e.,

ρ̂N → ρ
∗ = arg min

ρ∈Ωρ

1
2π

∫
π

−π

∣∣G0(e jω)−G(e jω ,ρ)
∣∣2 Φu(ω)

|H0(e jω)|2
dω, w.p.1, as N→ ∞. (2.21)

Proof. Notice that due to the delay in G0 and G(q,ρ), the term [G0−G(q,ρ)]u(t,η0) in (2.18) contains

only e(t− s),s≥ 1, and thus is not correlated with e(t). From the Parseval’s theorem, it follows that

V (ρ,η0) =
1

4π

∫
π

−π

∣∣G0(e jω)−G(e jω ,ρ)
∣∣2 ∣∣A0(e jω)

∣∣2 Φu(ω)+σ
2
e .

Thus based on Theorem 2.4.1, we conclude that (2.21) in Theorem 2.4.2 holds. �

Remark 2.4.1. Theorem 2.4.1 and Theorem 2.4.2 verify the consistency of process model estimate from the

proposed ARX-OE method. It should be pointed out that in practice, proper selection of the ARX model may

require trial and error or be based on a priori knowledge of the process. Although above results are derived

under the assumption that the ARX model order tends to infinity, our experience shows that sufficiently high
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2.4. Asymptotic analysis of the ARX-OE method

order is enough to give high-quality estimates of the noise model. However, in practice, the regularization

is vital in the first step to reduce the variance associated with the parameter estimate in high-order ARX

identification.

2.4.2 Asymptotic distribution

In this section, for simplicity, we restrict our asymptotic distribution analysis for the proposed ARX-OE

algorithm to linear feedback case, i.e., the controller in (2.2) is reduced to (suppose r(t) is at the process

input site)

u(t) =−K(q)y(t)+ r(t), (2.22)

where K(q) is the linear feedback controller. We assume, without loss of generality, that r(t) is an excitation

signal independent of e(t). Let us suppose that all relevant closed-loop transfer functions are exponentially

stable under (2.22). The closed-loop system is denoted as

y(t) = S0G0r(t)+S0H0e(t), (2.23)

u(t) = S0r(t)−S0KH0e(t), (2.24)

where S0 is the sensitivity function, i.e.,

S0 =
1

1+G0K
. (2.25)

Before proceeding to the main results, the following lemma is necessary for the analysis of asymptotic

covariance of high-order ARX model parameter estimates [88].

Lemma 2.4.1. Assume that polynomials A0(q) and B0(q) in the ARX representation (2.5)-(2.6) of the Box-

Jenkins model (2.1) are stable. Suppose that Assumption 2.3.1 holds, then

∥∥∥E[N(η̂N− η̄n(N))(η̂N− η̄n(N))
T ]−σ

2
e [R

n(N)
]−1
∥∥∥

2
→ 0, as N→ ∞, (2.26)

where η̄n(N) is the expected value of η̂N and

Rn
= E[ϕn

t (ϕ
n
t )

T ], ϕ
n
t = [−y(t−1) . . . − y(t−n) u(t−1) . . . u(t−n)]T . (2.27)
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2.4. Asymptotic analysis of the ARX-OE method

The above lemma explicitly shows the asymptotic covariance of parameter estimates. It will be utilized

in the following theorem to derive the asymptotic distribution of parameter estimates from the closed-loop

ARX-OE algorithm. Note that in the following theorem we denote G′ρ(ρ0) = dG/dρ|ρ=ρ0 and so on to

reduce the notational burden. First we need the following lemma.

Lemma 2.4.2. Let {e(t)} be a sequence of independent random variables with zero mean and constant

variance. Suppose that z(t) is a function of {e(k), k ≤ t−1}, then the following relation holds

E[z(t)e(t) · e(s)z(s)] = E[z(t)z(s)] ·E[e(t)e(s)] = σ
2
e E[z2(t)]. (2.28)

Proof. Given the condition in this lemma, the signal z(t) can be expressed as, z(t) = f (e(t− 1),e(t−

2), . . .), where f (·) is some nonlinear function. Then it is straightforward that z(t) is independent of e(t) and

similarly z(s) is independent of e(s). If t ≤ s−1, then e(s) is independent of the other three terms and as a

result, (2.28) will be zero. Analogously, if s ≤ t− 1, then (2.28) is also zero. Thus (2.28) is nonzero only

when t = s, and the right-hand side of (2.28) is obtained. �

Lemma 2.4.2 is useful in the derivation of asymptotic distribution of the ARX-OE method. Before

presenting the relevant results, first we may notice from (2.27) that

ϕ
n
t =

 −G0Γn

Γn

u(t)+

 − 1
A0

Γn

0

e(t)

=

 −G0ΓnS0

ΓnS0

r(t)+

 G0ΓnS0KH0− Γn
A0

−ΓnKH0S0

e(t)

=

 −G0ΓnS0 −ΓnH0S0

ΓnS0 −ΓnKH0S0


 r(t)

e(t)

 , (2.29)

where Γn = [1 q . . . q−n]T . Note that the second equality follows by substituting u(t) with (2.24). The

third equality uses A0H0 = 1, as well as (2.25). Now let us establish the main theorem on the asymptotic

distribution of parameters estimates.

Theorem 2.4.3. Suppose that assumptions 1-4 hold and the feedback controller is linear as in (2.22). Con-

sider the parameter estimates ρ̂N in (2.17) from the closed-loop ARX-OE method. We assume that ρ̂N → ρ0,
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2.4. Asymptotic analysis of the ARX-OE method

w.p.1 as N→ ∞, then
√

N(ρ̂N−ρ0)∼ AsN(0,Pθ ), (2.30)

where

Pθ =
[
E
[
ψ(t,ρ,η0)ψ

T (t,ρ,η0)
]]−1 Q

[
E
[
ψ(t,ρ,η0)ψ

T (t,ρ,η0)
]]−1

,

and E
[
ψ(t,ρ,η0)ψ

T (t,ρ,η0)
]

is the derivative of the predictor in (2.15) w.r.t. parameter ρ , evaluated at ρ

and η0 (see (A.3)). The term Q is

Q = σ
2
e E[ψ(t,ρ0,η0)ψ

T (t,ρ0,η0)]+Zn(N)
2 [Rn(N)

]−1(Zn(N)
2 )T +Zn(N)

2 [Rn(N)
]−1

σ
2
e

·E
[
ϕ

n(N)
t ψ

T (t,ρ0,η0)
]
+σ

2
e E
[
ψ(t,ρ0,η0)(ϕ

n(N)
t )T

]
[Rn(N)

]−1(Zn(N)
2 )T , (2.31)

where

Zn(N)
2 = −

[
E[G′ρ(ρ0)S0Ke(t) ·ΓT

n(N)H0e(t)] 01×n(N)

]
,

and Rn(N) is defined in (2.27) with ϕn
t defined in (2.29).

Proof. See Appendix A.2. �

Remark 2.4.2. Unlike open-loop case [89], the proposed closed-loop ARX-OE method cannot supply effi-

cient estimates for the system. Specifically, the parameter covariance of the OE step will be dependent on

the parameter covariance Rn from the first high-order ARX modeling step. However, this method provides

consistent estimates and is applicable to routine operating data. Although the ARX-OE method is similar

to the asymptotic method (ASYM) approach proposed by Zhu [90], our approach mainly applies to routine

closed-loop data without external excitations, since for process monitoring such data are the most common

type in practice. These scenarios have certain unique problems, such as the informativeness of closed-loop

data, that will be discussed in the next section.

Remark 2.4.3. A similar result is reported in Corollary 10 in [73] on asymptotic distribution of the parameter

estimates under direct identification with orders of noise model tend to infinity. It is shown that direct

identification with current noise model yields minimal covariance on parameter estimates. Investigations

on the possible links between these two results will be a promising future direction and this will provide
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2.5. Identification based on routine operating data

valuable insights to the interpretation of (2.31).

2.5 Identification based on routine operating data

Most on-line process monitoring tasks, e.g., MPM detection for MPC, require closed-loop identification

based on routine operating data where external excitation signals may not exist. In this section, we discuss

several important aspects of applying the above ARX-OE method in this situation.

2.5.1 Estimate of the controller inverse

It is well-known that if there are no external excitations, nonparametric closed-loop identifications (e.g.,

spectral analysis method) may result in an estimate of the inverse of controller. This is due to the possibility

of relating input-output data through the feedback instead of through the process and noise models. In

particular, when r(t) = 0, (2.23)-(2.24) are equivalent to

y(t) = G0(q)u(t)+H0(q)e(t), (2.32)

u(t) = −K(q)y(t). (2.33)

The modeling error of estimating G0 is always larger than zero, while the modeling error of estimating

−1/K(q) between y(t) and u(t) is zero. Thus nonparametric methods will take the controller inverse as

an estimate of the process since the corresponding prediction error is the minimum. One solution to this

issue is to impose time-delay to the identification method where a large time-delay will help prevent yielding

the inverse of controller as the process model estimate. A number of delay estimation approaches using

closed-loop data are available in the literature (refer to [91], [92]). Time-delay estimation is a necessary step

before performing the closed-loop ARX-OE identification method. For our paper machine examples in the

simulation section, time-delay is assumed to be available and large enough to avoid estimating controller

inverse as the process model estimate.

2.5.2 Sufficient excitation

It has been shown in the literature (e.g., [93]) that for a linear closed-loop system without any external

excitations, its identifiability is related to the order of regulator and time-delay. Specific conditions on the
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closed-loop identifiability are investigated in [93] and [94]. It is concluded that a complicated controller and

a large time-delay will enrich the informativeness of closed-loop data. Thus nonlinear controllers are favored

from this perspective. Fortunately, for most industrial processes (e.g., the paper machine) controlled by MPC,

routine input-output data is generally sufficiently exciting (i.e., contains sufficiently many nonzero frequency

components in the spectra) to apply the above ARX-OE method, especially when the MPC operates with

active constraints.

2.5.3 The role of noise

For most closed-loop identification methods relying on external excitations, such as the indirect identification

method, two-stage method and projection method, the presence of noise inflates the variance of the associated

parameter estimates. However, for the direct identification method, it is proved in [73] that the noise can

indeed reduce the variance of parameter estimates (refer to Corollary 10 in [73]). This argument also applies

to the situation of implementing our ARX-OE identification method to the routine operating data in which

noise is the only external signal. Moreover, in this case, large noise may trigger the constraints in MPC and

thus renders the controller to be nonlinear, which in general enriches the informativeness of closed-loop data.

2.6 Examples

In this section, we provide one SISO example and one MIMO example from a paper machine to verify the

proposed closed-loop ARX-OE identification method.

2.6.1 Case I: univariate MD control of the paper machine

We begin by studying a SISO process from the machine direction. For this particular MD process, the

valve of thick stock pump is manipulated to alter the amount of pulp slurry provided to the headbox, which

ultimately is used to control the basis weight of the paper sheet being produced. The true process has the

following first-order model

G0(s) =
1.0545
50s+1

e−80s.

The sampling interval is 5 seconds and the discretized process model is shown to be

G0(q) =
b

1+aq−1 q−17,
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Table 2.1: Tuning parameters of the SISO MD MPC
Tuning parameters Values Tuning parameters Values

Actuator movement weight 0.01 Actuator deviation weight 0
CV target value 23.75 lbs/3000 f t2 MV target value 131 gpm

Prediction horizon 40 Control horizon 4
CV target weight 1 MV target weight 1

CV min-max weight 1 MV min-max weight 1
Bounds of MV [0 3000] Limit of MV movement 0.1667

where b = 0.1003, a = −0.9048. The controller employed is MPC with tuning parameter specifications

shown in Table 2.1. The true noise model is chosen as

H0(q) =
1−0.9q−1

1+0.9q−1 e(t),

where e(t) is white noise with zero mean and variance σ2
e = 0.01. In this simulation, we assume that

there is no MPM. To verify the effectiveness of the proposed closed-loop ARX-OE algorithm with routine

operating data, we leave the setpoint unchanged during the entire simulation, i.e., the noise is the only

external signal into the system. To avoid obtaining the inverse of controller, we assume that the true process

delay is available and has been specified to the identification algorithm. With above settings, the simulation

of closed-loop system lasts for 15 hours (10800 samples of input-output data). Input and output data from

the simulation is shown in Figure 2.1 below.

To more accurately identify the noise model we test scenarios with different ARX model orders in the

first step of the ARX-OE algorithm. Note that here we use na and nb to denote the orders of A(q,ηn) and

B(q,ηn) in (2.8), respectively. Figure 2.2 shows the comparison between true and estimated IR coefficients

of the inverse noise model. We can see clearly that for this slow decaying inverse noise model, high-order

ARX can better capture those IR coefficients. Figure 2.3 demonstrates the step responses of our estimated

process model under different ARX orders. All three situations give high-quality process model estimates

from their comparison with the true step response. The estimated gain and time constant pairs from these

three cases are [0.0975 −0.9114], [0.1033 −0.907], and [0.1036 −0.9084], respectively. We can see that

the estimated parameters from the scenario with na = 30, nb = 30 are closer to the true values, even though

the step responses in these three situations are almost identical. Notice that in order to acquire smoothly

decaying IR coefficients in the first step, we added a regularization term to the least-squares estimation.

Another benefit of using the regularization term is that it can avoid overfitting caused by the large number of
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parameters in the first step.

To further illustrate the effectiveness of the proposed closed-loop identification method, we perform 1000

Monte-Carlo simulations with the closed-loop MD process above. For simplicity, we only consider the case

na = 30, nb = 30. In each Monte-Carlo simulation we collect 15 hours of data. The proposed closed-loop

ARX-OE method is applied to each data set and the estimates of parameters b and a are recorded. The

histograms of estimates for b and a are demonstrated in blue bars in Figure 2.4 and Figure 2.5, respectively.

The corresponding fitted normal curves are shown in the blue line. We can see that both parameter estimates

have an approximate normal distribution. The mean values in both histogram plots are close to the true

parameter values and this indicates that the proposed method can give consistent estimates. Furthermore, as

a comparison, we apply the closed-loop direct identification method with correct and wrong specifications of

the noise model order. For the latter case, we choose the noise model to have first order in the denominator

and zero order in the numerator (and thus we expect biased estimates in a and b). In Figures 2.4 and 2.5,

the green and red bars illustrate the histograms of parameter estimates from direct identification method

with correct and wrong noise model structure, respectively. The green and red curves are the corresponding

fitted normal curves from the histograms. As expected, the direct identification with correct noise model

structure gives an unbiased estimate whereas with wrong noise model specification it gives a biased estimate.

In practice, a priori knowledge of the noise model structure is often unavailable and thus the proposed

closed-loop ARX-OE method shows great advantages under this circumstance compared with the direct

identification method. Note that in this Monte-Carlo simulation we did not introduce any external excitation

and thus it resembles the routine operating stage of industrial processes.

2.6.2 Case II: multivariate MD control of the paper machine

In this example, we consider a MIMO MD process in the paper machine. For this process, one stock flow

and two steam flows (Steam4 and Steam3) are manipulated to control three properties of the paper sheet,

i.e., weight, press moisture and reel moisture. It is important to note that there exist extensive interactions

among these variables. Specifically, changing the stockflow will affect all three CVs. Also, the two steam

variables have a coupling effect on the press and reel moisture. However, the influence on the weight caused

by two steam flows can be considered negligible and thus the internal interactions among these variables can
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Figure 2.1: Simulated input and output data for the closed-loop MD process
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Figure 2.2: IR coefficients of the estimated noise
model inverse with different ARX orders
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Figure 2.3: Step response of the estimated process
model with different ARX orders
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Figure 2.4: Histogram of parameter b estimates in
1000 Monte-Carlo simulations. Green: direct iden-
tification method with wrong noise model struc-
ture. Red: direct identification method with correct
noise model structure. Blue: closed-loop ARX-OE
method. Red dashed line: the true parameter value.
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Figure 2.5: Histogram of parameter a estimates in
1000 Monte-Carlo simulations. Green: direct iden-
tification method with wrong noise model struc-
ture. Red: direct identification method with correct
noise model structure. Blue: closed-loop ARX-OE
method. Red dashed line: the true parameter value.

be modeled by a lower triangular transfer function matrix. We have the following MIMO MD process model


y1(t)

y2(t)

y3(t)

=


1.0545

66.66s+1 e−72s 0 0

0.2960
46.02s+1 e−90s −0.14

270.00s+1 e−114s 0

0.7530
154.80s+1 e−42s −0.2380

211.20s+1 e−30s −0.0555
24.84s+1 e−90s




u1(t)

u2(t)

u3(t)

 ,

where the three CVs y1(t), y2(t) and y3(t), are weight, press moisture and reel moisture, respectively. The

three MVs u1(t), u2(t) and u3(t), correspond to stockflow, Steam4 and Steam3, respectively. In this simu-

lation, the selected sampling interval is 5 seconds and the above process model is discretized for controller

design. We have the discretized process model (denoting G0(q) as the transfer matrix)

G0(q) =


0.07627

1−0.9277q−1 q−15 0 0

0.03047
1−0.897q−1 q−19 −0.002569

1−0.9817q−1 q−23 0

0.02393
1−0.9682q−1 q−9 −0.005568

1−0.9766q−1 q−7 −0.01012
1−0.8177q−1 q−19

 .
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For the noise model, we suppose that the noise sequences in three output channels are mutually independent,

with the noise model as

d(t) =


1−0.5q−1

1+0.5q−1 0 0

0 1−0.3q−1

1+0.6q−1 0

0 0 1+0.2q−1

1+0.7q−1




e1(t)

e2(t)

e3(t)

 ,

where three noise sequences have the same variance, σ2
e = 0.1. For the ensuing discussion, we use Gi j(q) and

Hi j(q) to represent the scalar transfer function located at the (i, j)-th position of G0(q) and H(q), respectively.

In this example, a multivariate MPC is used to control this MIMO process. The specific tuning parameters

of the controller are illustrated in Table 2.2 above. The simulation duration of closed-loop MIMO MD

system is set to 1150 minutes (13800 samples). The setpoint stays constant throughout the simulation and

no external excitation is introduced. With current setup, the controller is very likely to work in a nonlinear

mode. Therefore, closed-loop identification methods requiring a linear regulator will not be suitable in this

situation. In the following content, we examine the effectiveness of our proposed method with MIMO closed-

loop data, assuming that we have no a priori knowledge on the true noise model structure. To identify the

process model, we apply the proposed method channel by channel. Each output channel is considered as a

closed-loop multi-input single-output (MISO) system. A MISO high-order ARX model is first estimated by

Ai(q)yi(t) =
i

∑
j=1

Bi, j(q)u j(t)+ ei(t), i = 1,2,3, (2.34)

where

Ai(q) = 1+ai,1q−1 + . . .+ai,nq−n, Bi, j(q) = 1+bi, j,1q−1 + . . .+bi, j,nq−n,

giving rise to an estimate of the inverse noise model in the i-th output channel. Define Âi(q), B̂i, j(q) as the

respective estimate of Ai(q) and Bi, j(q) from the above high-order ARX modeling step. We then apply the

MISO OE identification after filtering the input and output signals using the obtained noise model estimate.

Specifically, it follows that

y f
i (t) =

i

∑
j=1

Gi, j(q,ρ)u
f
j (t)+ ei(t), i = 1,2,3,
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Table 2.2: Tuning parameters of the MIMO MD MPC
Tuning parameters Values Tuning parameters Values

Actuator movement weight [0.01 0.01 0.01] Actuator deviation weight [0 0 0]
CVs target weight [1 1 1] MVs target weight [1 1 1]

CVs min-max weight [1 1 1] MVs min-max weight [1 1 1]
Actuator movement weight [0.01 0.01 0.01] Actuator deviation weight [0 0 0]

Target value for CV1 174 lbs/3000 f t2 Target value for MV1 165 gpm
Target value for CV2 2.3 % Target value for MV2 115 psi
Target value for CV3 6.2 % Target value for MV3 35 psi

Prediction horizon 20 Control horizon 2
Upper bounds of MVs [250 180 180] Lower bounds of MVs [0 0 0]

Limits of CV movement [0.1 0.1 0.1] Limits of MV movement [0.2 1 1]

where

y f
i (t) = Âi(q)yi(t), u f

j (t) = Âi(q)u j(t).

The classic PEM can be applied to identify above MISO system. As before, we assume that the true time-

delay for each channel is available. This assumption can be relaxed if external excitation signals are injected

into the system or if the objective is not pursing a precise model estimate (e.g., MPM detection).

Figure 2.6 and Figure 2.7 show the simulated CV and MV profiles of the closed-loop MD process,

respectively. The estimated and true IR coefficients of the inverse noise model are given in Figure 2.8.

Clearly, the estimated coefficients are very close to true values, ensuring the reliability of using the estimated

noise model for subsequent filtering operations. Figure 2.9 shows the step response comparison between the

estimated and true process models. It is obvious from Figure 2.9 that the estimated process models are very

close to the true ones. Specifically, we demonstrate explicitly the estimated process model Ĝ(q) for further

comparison as follows

Ĝ(q) =


0.0769

1−0.9270q−1 q−15 0 0

0.03062
1−0.8916q−1 q−19 −0.002467

1−0.9819q−1 q−23 0

0.02375
1−0.9679q−1 q−9 −0.005639

1−0.9760q−1 q−7 −0.009975
1−0.0.8206q−1 q−19

 .

Comparing Ĝ(q) with the true process model G0(q) one can see that the closed-loop ARX-OE identifica-

tion provides accurate parameter estimates with routine operating data even though there are no external

excitation signals. Therefore, the proposed method can be used for routine process monitoring purposes

(e.g., real-time controller performance monitoring and MPM detection) that require online estimation of the
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2.7. Conclusion

Figure 2.6: The simulated output profiles (CVs) for
the MIMO MD process of a paper machine

Figure 2.7: The simulated input profiles (MVs) for
the MIMO MD process of a paper machine
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Figure 2.8: IR coefficients of the true and estimated
inverse noise model for each output channel.
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process model during routine operation.

2.7 Conclusion

This chapter presents a novel closed-loop identification method that can correct the bias inherent in the

direct identification method due to insufficient specification of the noise model. First, a high-order ARX is

identified to obtain an estimate of the noise model. In the second step, we filter input and output data by

using the estimated inverse of noise model, and then perform an OE identification with filtered input-output

data to obtain the process model estimate. It is shown that this closed-loop ARX-OE identification approach
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2.7. Conclusion

can give consistent estimates and that the parameter estimator is asymptotically normally distributed. This

method is applicable not only when the controller is nonlinear but also for the case where closed-loop data

contain no external excitations. Therefore, this method exhibits great potential for purposes such as controller

performance monitoring and MPM detection that require process model identifications based on routine

operating data.

38



Chapter 3

Model-plant Mismatch Detection for MD

Processes

3.1 Introduction

Model-plant mismatch (MPM) is the main source of control performance degradation in industrial MPCs. As

mentioned in the previous chapters, an MPM detection scheme must not be sensitive to changes in the noise

models since it may result in increased false alarms, and it should not require external perturbations as they

will disturb normal operations of industrial processes. In this chapter, we propose a novel MPM detection

approach that addresses these two challenges. Our idea is inspired by the historical data based benchmarks

used in controller performance monitoring [95]. In those methods, to assess the control performance, process

variable metrics under actual data are compared with those under a set of historical data which are collected

during a period with satisfactory performance. Similarly, in our method, we partition routine operating data

into a “training” stage (that we believe is generated with no MPM) and a “testing” stage. The training data

serves as a benchmark against which we evaluate the presence of MPM in the test data. Specifically, we pro-

pose a novel method, based on closed-loop identification and support vector machine (SVM) classification,

that can monitor MPM and noise change independently and thus can directly discriminate MPM from noise

model change. The most striking benefit of our method is that it is suitable for situations where external

excitations may not exist.

This chapter is outlined as follows. We begin in Section 3.2 by analyzing the drawbacks of several current

methods for MPM detection. In Section 3.3, we elucidate the framework of the proposed MPM detection

approach. Section 3.4 is devoted to developing a new closed-loop identification method that can provide

consistent parameter estimates for the plant model based on the ARX-OE method in Chapter 2. In Section

3.5 we elaborate detailed procedures on training an SVM model based on the training data and implementing
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3.2. Drawbacks of several MPM detection methods

it in the test data to examine the MPM and noise model change. An industrial example from the MD process

of paper machines is provided to verify the proposed approach in Section 3.6, followed by conclusions in

Section 3.7.

3.2 Drawbacks of several MPM detection methods

The minimum variance controller (MVC) benchmark has become one of the most popular tools in assessing

controller performance due to its simplicity in computation and less required prior knowledge (only time-

delay) of the process. However, as pointed out in previous sections, one pitfall of using MVC benchmark to

detect MPM is that not only MPM but also disturbance changes can affect the performance metrics. It seems

impossible to separate MPM from disturbance change by using the MVC benchmark. The rationale behind

this conclusion is briefly outlined as follows.

Consider a SISO process under regulatory control (the setpoint is constant), where the process is denoted

as G(q) = q−dG̃(q). Notice that d is the time delay and G̃(q) is the delay-free plant. Define the controller

to be K(q). Suppose that the output noise is a filtered white noise with a noise model H(q) and that e(t) is a

Gaussian white noise. The closed-loop transfer function from the noise e(t) to the output y(t) is then

y(t) =
H(q)

1+q−dG̃(q)K(q)
e(t). (3.1)

From the Diophantine decomposition of H(q) we have

H(q) = h0 +h1q−1 + . . .+hd−1q−(d−1)︸ ︷︷ ︸
F(q)

+Rq−d , (3.2)

then the closed-loop transfer function (3.1) is further written as

y(t) = F(q)e(t)+L(q)e(t−d), (3.3)

where L(q) = R−FG̃K
1+q−dG̃K is a proper transfer function, dependent on the controller. Here the argument q

is omitted for simplicity of notations. The basic idea of the MVC benchmark is to consider F(q)e(t) as

a controller-invariant part and the minimum output variance is achieved by choosing a suitable controller

(which is MVC) such that the second term L(q)e(t − d) vanishes. Thus the theoretically minimal output
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Figure 3.1: The IMC structure

variance will be the same, regardless of the implemented controller, as long as the disturbance model is

unchanged. The actual controller performance is evaluated by the ratio

η =
var[F(q)e(t)]

var[y(t)]
. (3.4)

If η is close to 1 then it indicates good control performance as the underlying controller is acting to achieve

the minimal output variance. From (3.3) and (3.4) it is straightforward to find that if the disturbance model

H(q) changes, then η will be affected and will be no longer valid for the performance monitoring. Therefore,

using the MVC benchmark (3.3) to detect MPM might be misleading and a more reliable approach insensitive

to disturbance changes is necessary.

Another family of methods in detecting model-plant mismatch is based on system identification theory.

A straightforward idea is to directly identify the process model online and compare it with the initial model

used by the controller. Any significant discrepancy between them is then regarded as a model-plant mis-

match. This idea requires that the identification method give a reliable estimate of the process model with

the presence of feedback and with routine operating data in which external dither signals may not exist.

Among all well-developed system identification methods the direct identification can fulfill this demand.

But the condition for a consistent estimate is that the closed-loop data has to be informative enough and

the selected process and disturbance model structures are flexible enough to contain the true model. The

informativeness issue might be resolved if the controller is complex enough and most actual MPCs in indus-

trial processes generally can satisfy this requirement. However, the noise model structure issue is difficult

to address since it is not straightforward to acquire a priori information on the structure of a practical noise

model and misspecification of the noise model often leads to a biased estimate of the process model.

Another approach is to use process variables in the internal model control (IMC) structure (see Figure
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3.3. The MPM detection idea

3.1) to identify the mismatch model ∆(q) = G(q)− Ĝ(q). From IMC, one can easily verify the following

closed-loop relationships among process variables (considering SISO case):

ε(t) =
∆K

1+∆K
r(t)+

1
1+∆K

v(t), (3.5)

u(t) =
K

1+∆K
r(t)− K

1+∆K
v(t), (3.6)

where ε(t) is the output error (or model residual), u(t) is the process input, r(t) is the dither signal and v(t)

is the output disturbance. Note that v(t) is assumed to be filtered white noise, v(t) = H(q)e(t) and e(t) is

Gaussian white noise. H(q) is assumed to be stable, monic and of minimum phase. It is obvious that if dither

signal is sufficiently exciting (notice that {r(t)} and {v(t)} are independent), the mismatch ∆(q) can always

be factored out from (3.5)-(3.6). If there is no dither signal, i.e., r(t) = 0, the transfer function between ε(t)

and u(t) is further shown to be

u(t) =− 1
K

ε(t). (3.7)

Thus without external excitation it is impossible to determine the mismatch model by identifying the transfer

function between u(t) and ε(t). Indeed the identified result is always the inverse of the controller. In this

work we propose a novel closed-loop identification method that is able to identify the process and noise

models using routine operating data. These models are further used by the proposed mismatch detection

scheme.

3.3 The MPM detection idea

We mention first that the noise model change detection follows the same course as the MPM detection in

our method. So in subsequent sections, our attention is mainly on introducing the MPM detection approach.

The proposed method is based on a novel closed-loop identification algorithm which is capable of provid-

ing unbiased estimates for the process models with routine operating data, albeit with large variance. The

inevitable variance associated with process model estimates impedes us from directly comparing our results

with nominal models to identify the mismatch. In other words, discrepancies between the model estimates

and the true plant can not always be blamed on the MPM and they may simply be an artifact of the variance in

the estimates. Thus we have to form a reasonable uncertainty bound around the estimated process model due

to the variance of parameter estimates. Models outside this uncertainty range are regarded as mismatched
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3.3. The MPM detection idea

Figure 3.2: Illustration of the training and testing data (ID stands for identification).

models. Such an uncertainty range can be naturally captured by using the SVM technique. Note that to syn-

thesize all possible mismatch situations (e.g., gain mismatch and time constant mismatch) with an overall

metric, we would represent process model estimates in the FIR form. With a high order FIR model we can

capture the process dynamics of any order model. Now the problem of detecting MPM can be reduced to

that of checking if the estimated FIR coefficients are “equal to” the FIR coefficients of the current model.

However, comparing the high dimensional FIR coefficient vectors is non-trivial and it forms the motivation

for using SVMs.

Fig. 3.2 demonstrates the proposed approach to detect the MPM. The industrial data is split into training

data and testing data. The training data is collected during a time interval in which the MPM is absent, e.g.,

the period during or right after the identification stage, as shown in the above figure. Notice that our algorithm

is in the form of moving windows and the amount of training data can be properly selected according to the

window size. For each window, we apply closed-loop ARX-OE identifications to obtain an estimate of the

process model. With a set of estimated process models from moving windows in the training data, a one-

class SVM is trained which can be interpreted as an appropriate boundary encompassing this set (see blue

curves in Fig. 3.3- 3.4). Any model inside this boundary is considered as normal, indicating the absence of

MPM. For the testing data, a similar moving window is applied and each process model estimate obtained

is examined by the SVM model to predict whether it is located inside the boundary. If so, the SVM returns

a positive score, implying no MPM and otherwise, it returns a negative score to indicate the presence of

MPM in the current moving window. To be cautious in triggering an identification experiment, the MPM

alarm is not raised until we gather a large number of negative scores. Note that the entire training and testing

operations are carried out with routine operating data free of external excitations. In the following sections

we focus on the closed-loop identification as well as SVM training and testing.
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3.4 Closed-loop identification

From the explanations above we can see that closed-loop identification plays a fundamental role in deter-

mining the performance of our proposed MPM detection algorithm. In this section, we apply the proposed

ARX-OE method in Chapter 2 to routine operating data to obtain process and noise model estimates. Suffi-

cient conditions guaranteeing the informativeness of routine closed-loop data are provided.

Consider the SISO Box-Jenkins model (2.1) and the controller in (2.2). It should be noted that a persis-

tently exciting dither signal can always guarantee that the closed-loop data is informative, regardless of the

controller orders. However, without external excitations, for linear controller to achieve the informativeness

requirement, the following relationship must be satisfied for Box-Jenkins models [93]:

max(nx−n f ,ny−nb)≥ nd +min(nx,n f ), (3.8)

where nx and ny are numerator and denominator orders of the linear controller, respectively. nb and n f stand

for the orders of polynomials in the process model numerator and denominator, respectively. nd denotes

the order of numerator polynomial in the noise model. One observation from (3.8) is that more complex

controllers and a larger time-delay often imply richer information in the closed-loop data [86]. Additionally,

if the controller is nonlinear, as is the case of MPC, the closed-loop data is generally sufficiently exciting

for relevant system identifications [15]. Another benefit of a nonlinear controller is that it can prevent the
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3.4. Closed-loop identification

identification algorithm from returning an estimate of controller inverse. Moreover, we assume that the true

time-delay is known a priori and is specified to the identification algorithm 2.

Following the main closed-loop ARX-OE identification algorithm presented in Chapter 2, we have the

following theorem regarding the parameter estimate ρ̂N .

Theorem 3.4.1. Consider the true Box-Jenkins model for the plant (2.1) as well as the equivalent high-

order ARX form (2.6). Assume that conditions in Theorem 2.4.1 hold and that the plant model is correctly

parameterized. Then the parameter estimate ρ̂N from the closed-loop ARX-OE identification method is

consistent, i.e., we have

ρ̂N → ρ0, w.p.1, as N→ ∞, (3.9)

where ρ0 is the true parameter value of G0 if the condition (3.8) is satisfied for high-order ARX model (2.6).

Moreover, the estimated parameter value ρ̂N is asymptotically Gaussian distributed with mean value ρ0.

Proof. (Outline) Define

ε(t,ρ) := [G0−G(q,ρ)]u(t)+
1

A(q,η0)
e(t),

and

VN(ρ, η̂N) :=
1
N

N

∑
t=1

1
2
[A(q, η̂N)ε(t,ρ)]2,

VN(ρ,η0) :=
1
N

N

∑
t=1

1
2
[A(q,η0)ε(t,ρ)]2.

Due to Theorem 2B.1 in [15] and Lemma 2.3.1, we have

VN(ρ, η̂N)→V (ρ,η0), w.p.1, as N→ ∞,

where V (ρ,η0) := E 1
2 [A(q,η0)ε(t,ρ)]2. Applying Parseval’s theorem yields

V (ρ,η0) =
1

4π

∫
π

−π

|G0(e jω)−G(e jω ,ρ)|2 Φu(ω)

|H0(e jω)|2
dω +σ

2.

2It will be shown shortly that knowing the true time-delay is an excessively strong requirement for the proposed MPM detection
method. In fact, a prior knowledge for time-delay (might be wrong) is enough for the purpose of MPM detection.
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3.5. MPM detection

Therefore, if G(q,ρ) is correctly parameterized and closed-loop data is informative enough for selected

model structures, we can conclude that (3.9) is valid. The proof for the Gaussian distribution of η̂N follows

the lines of Theorem 9.1 in [15] and is thus omitted here. �

Remark 3.4.1. Despite the premise on the correct parameterization of G0(q) in Theorem 3.4.1, it is not

supposed to be a restrictive limitation on the proposed closed-loop identification method. As will be shown

in the following section, the SVM in MPM detection is trained and tested on the FIR form of G(q, ρ̂N). Thus

using an FIR model in the OE identification step, if a priori information about G0(q) is not accessible, is

suggested in such cases to eliminate the bias.

Note that the explicit expression of the variance of ρ̂N is non-trivial. It is thus recommended to use a set

of training data from which we can obtain a collection of process model estimates as an approximation to

the variance of transfer function estimates.

3.5 MPM detection

Before delving into the MPM detection algorithm, let us briefly review the SVM technique.

3.5.1 One-class learning support vector machines

SVM is a well-known binary classification technique. The idea behind a two-class SVM is to choose a

hyperplane in the data space to separate two distinct classes of data. However, for linearly separable data,

there are typically infinitely many hyperplanes that are able to discriminate the two classes. The SVM seeks

the one that not only separates the two groups but also maximizes its geometric distance (known as the

margin) to either class [96]. Therefore, the SVM is essentially an optimal separating hyperplane in the sense

of robustness by significantly reducing the false classifications if other separating hyperplanes were used.

Suppose we are given a set of training data

{x1, . . . ,xl}, xi ∈X ⊂ Rr, (3.10)

and the corresponding (binary) labels {y1, . . . ,yl}, where l stands for the number of data points. r is the

dimension of input space X that the training data are located in. As the data are grouped into two classes,

for convenience, we use yi = 1 to denote the first class and yi = −1 to denote the second class. A generic
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3.5. MPM detection

two-class SVM training problem is formulated as [97]

min
w,b,ζ

1
2
‖w‖2 +C

n

∑
i=1

ζi (3.11)

s.t. yi(wT xi +b)≥ 1−ζi, i = 1, . . . , l, (3.12)

ζi ≥ 0, i = 1, . . . , l, (3.13)

where w ∈ Rr and b ∈ R are two parameters (slope and offset) characterizing a hyperplane. ζi, i = 1, . . . ,n,

are nonnegative slack variables and C is a weight parameter to compromise between maximizing the margin

and minimizing the training errors. Note that the presence of slack variables allows local violations of

separating boundary determined by the hyperplane. This dramatically enhances the SVM’s flexibility in

treating nonseparable data sets. A major advantage of SVM in classifications, relative to other techniques,

is the ease of generalization to incorporate kernel tricks. This operation is achieved by solving the dual

problem,

min
α

l

∑
i=1

αi−
1
2

l

∑
i=1

l

∑
j=1

αiα jyiy jκ(xi,x j) (3.14)

s.t. 0≤ αi ≤C, i = 1, . . . , l, (3.15)
l

∑
i=1

αiyi = 0, (3.16)

where αi is the Lagrangian multiplier, and κ(·, ·) is the kernel function that will be explained in (3.18). The

corresponding prediction function is shown as

p(x) =
l

∑
i=1

α̂iyiκ(xi,x)+ b̂, (3.17)

where α̂ and b̂ are respectively the obtained Lagrangian multiplier and offset. It is easy to verify that the

solution α̂ is sparse from KKT conditions. Those xi corresponding to nonzero α̂i are known as support

vectors. The sparsity of α̂ can significantly simplify the predictions in (3.17) as the summation only involves

very few terms. The inclusion of a kernel function enables SVM to deal with nonlinear classifications.

As a convention, the SVM is developed particularly for binary classification problem. However, for the

specific MPM detection problem, we use the set of process models from the training data as a reference group

representing the behaviors of “no mismatch” process model cluster. The other group of data is ordinarily not
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accessible since abnormal situations may occur in a variety of ways such as various parametric mismatches,

irregular disturbances and so on. Thus the MPM detection is a one-class learning problem, which is also

known as the “novelty detection problem”.

The one-class learning SVM is depicted in the feature space, i.e., a space the data is mapped into.

Consider the set of training data samples in (3.10). Prior to one-class SVM training it is necessary to map the

data through Φ : X 7→ F into a (higher-dimensional) feature space F . The kernel function κ(x,y) is such

that the inner product in the feature space can be evaluated in the input space as

κ(x,y) =< Φ(x),Φ(y)>, ∀x,y ∈X . (3.18)

A well-known kernel function that will be used hereafter is the Gaussian kernel

κ(x,y) = e−‖x−y‖2/c, (3.19)

where c is a parameter that is used to tune the sharpness of the Gaussian kernel function. It should be pointed

out that with the Gaussian kernel function all data points in the feature space are located in the same orthant

since κ(x,y)> 0, ∀x,y ∈X . Thus it is possible to find a hyperplane to separate the origin from the training

data in the feature space with maximized margin. With this idea the one-class SVM training problem is

formulated as [98]

min
w,ξ ,b

1
2
‖w‖2 +

1
vl

l

∑
i=1

ξi−b (3.20)

s.t. wT
Φ(xi)≥ b−ξi, ξi ≥ 0, (3.21)

where w and b represent the slope and offset of the hyperplane in feature space. The term v ∈ (0,1] is

a parameter tuning the upper bound of the fraction of outliers and lower bound of the fraction of support

vectors. ξ is a slack variable allowing for local violations of the hard boundary determined by the hyperplane.

Solving the optimization problem (3.20)-(3.21) can be converted into solving the following dual problem,

min
α

1
2

l

∑
i, j=1

αiα jκ(xi,x j) (3.22)

s.t. 0≤ αi ≤
1
vl
,

l

∑
i=1

αi = 1. (3.23)
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It is obvious that while the primal problem is formulated in the feature space, its dual problem can be resolved

in the input space by resorting to the kernel function. Thus we can avoid the intense computation arising

from large dimensions of the feature space. Efficient algorithms are available in the literature to solve this

dual problem. In the simulations presented in Section 3.6, we used sequential minimal optimization (SMQ)

[98] to solve the dual problem above. A feature associated with the solution α̂ of dual problem is its sparsity,

with most optimal dual variables α̂i valued at 0. Data points corresponding to nonzero optimal dual variables

are known as support vectors and it is revealed that the optimal w and b (denoted as ŵ and b̂, respectively)

are completely determined by those nonzero optimal dual variables. Furthermore, with kernel function, the

decision (or score value) function is also represented in the input space, instead of in the high-dimensional

feature space, by the following,

p(x) =
l

∑
i=1

α̂iκ(xi,x)− b̂ (3.24)

where x is a test example. Note that the sum in (3.24) typically involves nα << l nonzero terms, where nα

is the number of nonzero dual variables. This allows for efficient evaluation. For a given test example x, the

value |p(x)| represents the distance of x to the separating hyperplane. If p(x) > 0, it means that x can be

classified into the initial class. Otherwise x does not belong to that class. We note that the introduction of

kernel functions significantly expands the flexibility of SVM in constructing separating boundaries, enabling

it to generate a nonlinear classifier in the input space.

A critical issue in applying one-class SVM training strategy to MPM detection is the limited amount

of training data available in industrial processes. Taking the paper machine as an example, grade changes

(setpoint changes) often take place on a daily basis and thus training data has to be collected after each grade

change to represent the current operating condition before carrying out MPM detection. Consequently, only

a few process model estimates from training data are available to build an SVM model. In order to overcome

this issue we use a resampling technique to enlarge the cluster of no mismatch models estimated from training

data before performing the SVM training.

3.5.2 Resampling

The main principle we adopt here is to fit a probability density function (PDF) to each impulse response

coefficient of the estimated process model. Then a large number of samples can be generated by sampling

randomly from the estimated density function. More specifically, denote the FIR form of the estimated
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process model G(q, ρ̂N) in the k-th moving window as

G(q, ρ̂k
N) = ĝk

0q−d + ĝk
1q−d−1 + . . .+ ĝk

mq−d−m, (3.25)

where m is a pre-specified number. Here k = 1,2, . . . ,Nk, are the indices of moving windows in the training

data. It is straightforward that FIR coefficients ĝk
i , i = 0, . . . ,m, are asymptotically Gaussian distributed,

given that ρ̂k
N has an asymptotically Gaussian distribution (cf. Theorem 3.4.1). For each coefficient ĝk

i ,

several estimated values are obtained from moving windows in the training data. Then we can construct

rough estimators for the mean and variance of each IR coefficient

µ̂i = µ(ĝ1
i , ĝ

2
i , . . . , ĝ

Nk
i ), i = 0, . . . ,m,

σ̂
2
i = σ(ĝ1

i , ĝ
2
i , . . . , ĝ

Nk
i ), i = 0, . . . ,m,

where µ(·) and σ(·) are some functions. One choice of these two functions is sample mean and sample

variance. Due to the limited amount of training data (Nk normally is small), the estimated PDF for each FIR

coefficient is much more conservative than the true PDF. Thus we use a parameter α to tune the width of the

PDF to avoid this problem. The guidelines for selecting α are:

• If we have plenty of training data, α is small;

• If we have very few training data, α is large.

The rationale behind these guidelines is that more training data may give us a more precise and reliable

estimate of the PDF and vice versa. The next step is to use the resampling idea to randomly generate a large

number of samples of each FIR coefficient subject to the corresponding estimated PDF. Then a one-class

SVM model can be developed from these enhanced samples for the initial cluster of “good” process models.

Remark 3.5.1. Note that the proposed SVM MPM detection approach relies on the training data and then

detecting changes on the testing data. In practice, there is no prior knowledge on how severe an MPM might

be. Thus determining the value of tuning parameter α shall be based on the anticipated sensitivity from

practical demands. For example, if we require our approach to be able to detect only significant MPM but be

robust to minor MPM, α shall be specified to a relatively large value and vice versa. Moreover, our approach

can detect both abrupt and slowly drifting mismatches since our training data will be fixed once they are

selected.
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3.5.3 MPM detection with SVM

With the trained one-class SVM, we first need to estimate FIR coefficients of the process model identified

from each moving window in the testing data, following the same procedures as previous sections. For

estimated FIR coefficients, we apply the SVM model to predict whether they belong to the initial cluster. If

so, the SVM returns a positive score value indicating that the current testing window does not display any

sign of mismatch. Otherwise the SVM returns a negative score to signify the mismatch. However, to be

cautious to start an identification experiment, the MPM alarm is not triggered until we have accumulated

a sufficiently large number of mismatch reports. Specifically, define It as the sign of score value for time

instant t

It = sign(p(xt)), (3.26)

with xt being the FIR coefficient vector of the plant model estimate for the window data at time t. Denote

Tt = {t−nT , . . . , t−1, t}where nT is a detection interval, i.e., the number of previous moving windows under

inspection to determine the existence of MPM. We further define an MPM indicator

s =
|I−|
nT

, (3.27)

where I− := {Ii = −1 : i ∈ Tt} and |I−| is the number of elements in the set |I−|. The user can specify a

threshold sT for the MPM indicator to raise an MPM alarm. We suggest a conservative sT (e.g., sT = 0.95)

to be circumspect in raising the MPM alarm.

Remark 3.5.2. Note that the MPM detection method presented above can also be applied to the noise model

estimate A(q, η̂n) from the ARX-OE method to find the noise mismatch. In this manner we can monitor

the process and noise models separately to distinguish MPM from noise model changes. We comment that

while the controllers considered in this chapter are assumed to be tuned based solely on the plant model,

in cases where controller tuning also depends on noise model (such as minimum variance control and some

MPCs), detection of a noise model change can also be used to trigger an identification experiment. Moreover,

if a priori information about the true process model structure is not available, we can specify it with an

FIR structure to acquire consistent model estimates and the subsequent mismatch detection scheme is still

applicable. The entire logic flow of MPM detection is shown in 3.5.
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Figure 3.5: Flow chart of MPM detection scheme

3.6 Examples of MPM detections for MD processes

In this section we demonstrate the MPM detection algorithm through a SISO example in the MD process of

paper machines. The CV is dry weight and the MV is stockflow. The sampling interval is set as 5 seconds.

After discretization we obtain the true plant model

G0 =
0.1003

1−0.9048q−1 q−17.

In the simulation of MD process the true noise model is selected as

H0 =
1−0.3q−1

1+0.6q−1 .

We use an MPC as the MD controller. To reflect the reality of a paper machine’s operating condition we set

the standard deviation of noise to be σ = 0.05. The entire simulation lasts 15 hours without any setpoint

change. During this simulation, initially there is no mismatch between the true plant and process model

employed in MPC. After 7 hours we change the true noise model into

H0 =
1+0.3q−1

1−0.6q−1 ,

52



3.6. Examples of MPM detections for MD processes

Table 3.1: Parameters setup of the MPM detection algorithm
Parameters Values Note

Wsize 2 hours Moving window size
Wstep 5 min Moving window step size

n 9 Order of ARX model
Ttrain 3 hours Duration of training stage
nT 2 hours Mismatch inspection interval
sT 0.95 Mismatch threshold
α 1.5 Tuning the width of estimated PDF

to create a noise mismatch. Furthermore, we double the plant gain to introduce an MPM after 11 hours.

The objective is to examine whether the proposed MPM detection algorithm is able to detect the process and

noise model changes separately, with the collected routine operating data. We summarize configurations of

parameters relevant to the MPM detection algorithm in Table 3.1. Note that we use the same window size

and step size for both training and testing stages.

Fig. 3.6 depicts the simulated CV and MV profiles. Note that the first vertical red dash-dotted line

indicates the time instant at which the noise change is introduced to the process. The second vertical line

shows the time when we create an MPM. In plotting this graph we have removed the mean from the profiles.

It is obvious that both the noise change and MPM bring significant variations to the profiles which are not

favored since the control objective is to keep CV profiles as flat as possible. However, it is stressed that poor

control performance from merely noise change should not trigger an identification experiment. We use the

first 180 minutes of data as training data and the rest as testing data.

Fig. 3.7 demonstrates the detection results for both noise model change and MPM. Specifically, the

first and third figures display the predicted SVM scores (cf. (3.24)) for noise and process model estimates,

respectively. Clearly, the SVM scores drop to negative values after the corresponding noise model change

occurs. The second and fourth plots track the mismatch indicator values s in (3.27) for both noise and

process models. The red dash-dotted line highlights the specified threshold to raise an alarm. Ideally, a

system identification experiment is triggered once the s value of the process model exceeds the threshold

sT . However, in this example we neglect the subsequent identification part and it will be more explicitly

demonstrated in the following adaptive control chapters. From Figure 3.7 it is clear that the noise change at

the 420th minute does not affect the prediction of MPM. Thus we may conclude that the proposed mismatch

detection scheme is capable of monitoring the noise model change and MPM separately and thus is able to

discriminate MPM from noise model change by using only routine operating data.
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Figure 3.6: Simulated input and output profiles

3.7 Conclusion

This chapter presents a novel MPM detection algorithm that can separate MPM from noise model changes,

relying only on routine operating data. To this end, we proposed a new closed-loop identification method that

can give consistent parameter estimates for the process model without the need for any a priori information

about the noise model. We split the mismatch detection problem into a training stage and a testing stage,

and in the training stage an SVM model is developed based on the process model estimates. The trained

SVM model is then used to detect MPM in the testing data. With the same procedures we can train another

SVM model for noise models to detect noise model changes. This technique is tailored well enough to

meet industrial demands on MPM monitoring. An example on paper machines is presented to illustrate the

effectiveness of the proposed method.
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Figure 3.7: MPM and noise change detection results
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Chapter 4

Control Performance Assessment for CD

Processes

4.1 Introduction

Similarly to typical control loops, the CD process also suffers from the performance limitation due to time-

delay in the dynamic model in temporal direction. In addition, the CD process has its unique performance

limitations in the spatial direction which arise from the spatially-distributed nature of this large-scale process.

An obvious fact regarding CD control is that the number of CD measurement bins is much greater than that

of CD actuators, and this makes the CD process model matrix non-square. As a result, it becomes plausible

that we are not able to find a CD controller to let the actuator array completely control all CD measurement

bins. This non-square nature of CD process models forms the fundamental spatial performance limitation.

Moreover, most CD process are ill-conditioned and the gains corresponding to high spatial frequency modes

are small [12]. Thus for the sake of robust stability when model uncertainty is present, the controller nor-

mally does not exert any control action to compensate for high-frequency spatial disturbances, leaving them

uncontrolled. In this sense it is appropriate to select the benchmarking CD controller as the one that allows

for these CD performance limitations.

In this chapter we first derive the MVC benchmark for the CD process by studying both spatial and

temporal fundamental performance limitations. However, MVC benchmark is rather aggressive since it

represents an ideal performance limit for attenuating variations. In order to better reflect the performance

of a practical controller, our next step is to build up a user-specified benchmark that not only accounts for

above physical performance constraints but also considers the tuning status of implemented controllers. We

may expect such user-specified benchmark to be a more suitable choice in monitoring the health of industrial

processes.
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Figure 4.1: Illustration of the variation separation. (a): The steady-state profile plot. Note that the steady-
state profile is replicated to have the same scan number as the residual profile and CD profile; (b): The
residual profile plot. Each CD bin has zero mean; (c): The overall CD profile. Note that the CD profile is
combined by the steady-state and the residual profile.

4.2 Preliminaries

4.2.1 Variance partition

A given data set Y ∈ Rm×N from a paper machine can always be separated into machine direction (MD),

cross direction and residual components, where m is the number of measurement bins, and N is the number

of scans in the data set. For details on the calculation and partitioning of variance, see Appendix B.1. In

terms of CD control and CD performance monitoring, the MD variation is not taken into account. The data

set without MD variation at time t is denoted as y(t) ∈ Rm (CD profile), and we have

y(t) = yss +yr(t), (4.1)

where yss ∈ Rm is the steady-state profile, which is constant over all scans. yr(t) ∈ Rm is the residual

profile and is changing over time. Figure 4.1 shows typical graphs of steady-state, residual and CD profiles.

The process models for steady-state and residual profiles will be given in the following subsection, and the

motivation to treat them separately will be presented in Section 4.5.

4.2.2 Process model

In traditional CD control, the steady-state performance is of great importance since most paper machines

operate in regulatory mode at steady-state. The static steady-state model of a CD process is expressed as

yss = Guss +vss, (4.2)
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where uss ∈ Rn is the steady-state manipulated variable, and n is the number of actuator zones. G ∈ Rm×n

is the steady-state gain matrix. vss is the steady-state disturbance which refers to a deterministic disturbance

persistently acting on the output, e.g., a spatial sinusoidal disturbance which is not changing over time. For

the CD process, the overall disturbance is assumed to be a combination of the steady-state disturbance vss

and a filtered white noise vr(t), as shown in (4.3) below.

When considering only the residual profile, we have the following model,

yr(t) = g(q)Gur(t)+vr(t), (4.3)

where yr(t) = y(t)−yss can be considered as the deviation of process output from the steady-state value due

to stochastic disturbances. Similarly, ur(t) = u(t)−uss,vr(t) = v(t)−vss are the deviations of manipulated

variable and disturbance from their steady-state values, respectively. The output disturbance, vr(t) ∈ Rm, is

generally assumed to be filtered white noise. Note that the subscripts r in (4.3) stand for the residual. The

scalar transfer function g(q) in (4.3) can further be expressed as

g(q) = z−d B(q)
A(q)

, (4.4)

where d stands for the time-delay and B(q) and A(q) are scalar polynomials. Similarly, the stochastic dis-

turbance vr(t) in (4.3) is filtered white noise assumed to be temporally and spatially separable, denoted

as

vr(t) =
C(q)
A(q)

φe(t), (4.5)

where C(q) and A(q) are scalar polynomials describing the temporal filter while the constant matrix, φ , is

used to represent the spatial filtering of the white noise vector e(t). The covariance matrix of white noise

vector e(t) is assumed to be E[e(t)eT (t0)] = Σeδ (t − t0), where E is the expectation operator, Σe is the

covariance matrix and δ is the Dirac delta function.

Remark 4.2.1. From the above description on steady-state and residual profiles, one can interpret each entry

of the steady-state profile yss as the mean of the corresponding output channel (measurement bin). Each

entry of the residual profile yr(t) is the deviation of the profile from corresponding mean values.
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4.3 The MVC benchmark for CD processes

In this section, the performance limitations for both steady-state model (4.2) and residual dynamic model

(4.3) are illustrated. The MVC benchmarks for both models are developed analogously, and new performance

indices are proposed based on these benchmarks.

4.3.1 MVC benchmark for the steady-state profile

For the steady-state model (4.2), the optimal control input uss which minimizes the output variance has the

structure

uss =−(GT G)−1GT vss, (4.6)

involving the pseudo-inverse of the G matrix. It has been proved in [2] that if a controller has the structure

(4.6) and an integrator in the dynamic part, then the steady-state output profile yss will contain no components

in the column space of G, which is regarded as the controllable subspace. If the G matrix is square and

invertible, then the optimal input is able to achieve zero steady-state output. Therefore, the structure of the

G matrix limits the performance of steady-state model (4.2). For a non-square G matrix with full rank, i.e.,

rank{G}= min{m,n}, the output yss with minimal variance is

yss = [I−G(GT G)−1GT ]vss. (4.7)

In order to demonstrate the controller form which is able to achieve minimal steady-state variance, we assume

that the controller K(q) has the following structure (refer to [2])

K(q) = k(q)(GT G)−1GT . (4.8)

where k(q) is the scalar dynamic part of K(q). From (4.8), the closed-loop sensitivity function is obtained as

y(t) = [1+g(q)GK(q)]−1v(t). (4.9)
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Using the singular value decomposition (SVD) of G, (4.9) is further simplified as

 yc(t)

yu(t)

=

 1
1+g(q)k(q) 0

0 I(m−n)×(m−n)


 vc(t)

vu(t)

 , (4.10)

where the subscripts c and u refer to spatially controllable and spatially uncontrollable signals, respectively.

If k(q) has an integrator, at steady-state, (4.10) will become

 yss,c

yss,u

=

 0 0

0 I(m−n)×(m−n)


 vss,c

vss,u

 . (4.11)

It is clear that the MVC for the steady-state model (4.2) will completely remove all disturbance components

within the controllable subspace. However, those disturbance components within the uncontrollable sub-

space will not be affected by the controller. Therefore, the spatially uncontrollable components yss,u can be

used to develop the MVC benchmark. Note that the actual steady-state profile under a CD controller such as

CD-MPC (not spatial MVC) may have components left in the controllable subspace.

4.3.2 MVC benchmark for the residual profile

For the residual profile, in the spatial direction, as with the steady-state case, due to there being more CD bins

than actuator zones, i.e., G is not square, not all of the directions of G are controllable. This means that it

is impossible to design a controller to reach zero error for a given disturbance. Therefore, the structure of G

matrix contributes to the spatial performance limitation in the CD controller. In addition, the residual profile

(4.3) also suffers temporal performance limitation due to the actuator dynamics. In the temporal direction,

the time-delay forms a fundamental limitation on the controller design, upon which various types of delay

compensators arise such as dead-beat controller, minimum variance controller, Dahlin controller, and so on.

For the disturbance model (4.5), from the Diophantine identity, we can decompose the prediction for

time t +d (at time t) as

yr(t +d|t) = ŷr,c(t +d|t)+ ŷr,u(t +d|t)+F(q)φe(t +d)︸ ︷︷ ︸
controller-invariant

, (4.12)

where the subscript c and u stand for spatially controllable and uncontrollable parts of yr(t + d|t), respec-
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tively. Here the controllable subspace is defined as the column space of G, as for the steady-state case. F(q)

is the first d terms after decomposition of C(q)
A(q) . The derivation of (4.12) is referred to Appendix B.2. It can be

observed in (4.12) that the last two terms are controller-invariant, both spatially and temporally, parts of the

profile, and hence can be used to define a benchmark for performance assessment. If the current controller

being implemented is MVC, then the first term on the right hand side of (4.12) disappears.

Based on the proposed MVC benchmarks for both steady-state profile in (4.7) and residual profile in

(4.12), a new MVC performance index for the CD process can be defined as

η1 =

trace
[

d−1
∑

i=0
FiΣeFT

i +Σŷr,u +diag(yss,uyT
ss,u)

]
trace(Σy,mse)

, (4.13)

where Fi = fiφ , Σŷr,u is the covariance matrix of the uncontrollable predicted profile ŷr,u, and diag(·) is a

matrix formed by diagonal elements. The term in the denominator Σy,mse is defined as

Σy,mse = Σyr +diag(yssyT
ss), (4.14)

where Σyr is the covariance matrix of the residual profile, each element on the diagonal represents the variance

of an individual output channel of yr. diag(·) represents the operator of extracting the diagonal entries of a

matrix into a diagonal matrix. For the term diag(yssyT
ss), each element stands for the corresponding mean

deviation from zero of each individual output channel. In (4.13), the first term ∑
d−1
i=0 FiΣeFT

i in the numerator

represents the covariance of unpredictable components in the residual profile. The second term Σŷr,u indicates

the covariance of spatially uncontrollable predicted residual profile. The third term diag(yssyT
ss) stands for the

spatially uncontrollable portion of steady-state profile. Thus the numerator of (4.13) specifies the measure

of both residual MVC benchmark (4.12) and steady-state MVC benchmark (4.7). On the other hand, the

denominator of (4.13) represents the overall mean square error (MSE) of the output profile. Hence, the new

MVC performance index η1 is the ratio between the covariance of benchmark of y(t) and its total variance

(see Appendix B.1). If the implemented controller is MVC, the index η1 will be equal to 1 as the measured

output y only contains uncontrollable components, which are exactly the terms shown in the denominator of

(4.13). Otherwise, η1 will be less than 1. In general, a smaller value of η1 implies worse control performance.

From the performance index in (4.13), we can see that one has to separate the spatially uncontrollable

components ŷu(t) from ŷ(t) in (4.12) in order to evaluate the benchmark. Besides, this performance index
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takes the spatially uncontrollable components into account. In industrial CD control systems, the spatially

uncontrollable components of disturbances almost remain untouched. Therefore, we expect the performance

index (4.13) to be sensitive to high-frequency spatial disturbances. If there is a great amount of spatially

high-frequency disturbances (beyond the spatial bandwidth) present, the performance index (4.13) will be

inflated by these high-frequency components, and therefore the performance index will be always close

to one (this will be illustrated in the simulation part). In this case, the performance index η1 becomes

incapable of detecting the performance drop. An alternative is to separate the white noise e(t) into spatially

uncontrollable components eu(t) and controllable components ec(t). Then (4.12) can be rewritten as

yr(t +d|t) = ŷr,c(t +d|t)+F(q)φec(t +d)+F(q)φeu(t +d)+ ŷr,u(t +d|t)︸ ︷︷ ︸
yr,u(t+d|t)

, (4.15)

where F(q)φeu(t +d|t) and ŷr,u(t +d|t) are combined as yr,u(t +d|t), the uncontrollable parts of yr(t +d|t).

Specifically, define the projection operators Pc and Pu which project the profile into spatially controllable

and uncontrollable subspaces, respectively. For the column space framework, Pc and Pu are defined as

Pc = (GT G)−1GT , Pu = I− (GT G)−1GT . (4.16)

Then we have

yr,u(t +d|t) = Puyr(t +d|t), yss,u = Puyss. (4.17)

From (4.17) one can see that the spatially uncontrollable components of both steady-state and residual pro-

file can be extracted by using the operator Pu. In order to solve the problem with the performance index

(4.13) being sensitive to spatially high-frequency disturbances, the following modified performance index is

suggested,

η2 =

trace
[

d−1
∑

i=0
FiΣecFT

i

]
trace(Σyc,mse)

, (4.18)

where Σec = E[eceT
c ] is the covariance matrix of the white noise within the spatially controllable subspace.

The covariance matrix in the denominator is further expressed to be

Σyc,mse = Σyr,c +diag(yss,cyT
ss,c), (4.19)
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where Σyr,c is the covariance matrix of spatially controllable residual profile. The performance index (4.18)

compares the covariance of unpredictable disturbance within the controllable subspace with the mean square

error of the overall spatially controllable output profile. This performance index is not sensitive to high-

frequency spatial disturbances since the spatially uncontrollable components have been removed before cal-

culating the performance index.

Remark 4.3.1. Note that the numerator of (4.18) includes only the residual part, which makes sense since

if the implemented controller has the spatial MVC structure (4.6) and an integrator, then the components of

the steady-state profile within the controllable subspace (the steady-state benchmark) will be zero. However,

since most implemented controllers are not MVC, there will be components left in the spatially controllable

subspace, which explains the steady-state terms in (4.19).

4.4 User-specified benchmark

It is well known that for control loops MVC gives aggressive control actions and lacks robustness to model

uncertainties. Consequently, MVC is not widely used in the process industry. In practice, to guarantee

robust stability and performance, the actually implemented controllers are much more sluggish than MVC.

If the MVC is still used as the benchmark, then most industrial controllers will show a very low performance

index even though the underlying control loop is indeed operating with satisfactory performance. In such

cases, the observation of low performance index based on the MVC benchmark does not necessarily imply

poor controller design. Therefore, it is important to develop practical benchmarks based on the specific

controller that is implemented in the process. The user-specified benchmark is an outcome of this idea, where

a filter is defined as the desired closed-loop behavior and a parameter in the filter can be tuned to change the

aggressiveness and conservativeness of the benchmark. In this section, the user-specified benchmark will be

adapted to the CD process to make our benchmark more realistic.

For the CD process, we note that the spatial part of the MVC, G† in (B.12), removes the components of

disturbance profile within the subspace spanned by columns of G. However, due to the spatially-distributed

nature, the G matrix for most CD processes has a large condition number. The ill-conditioned property

of G implies that some of the singular values are vanishing. Therefore, the corresponding singular vector

directions are considered uncontrollable and avoided in the CD controller so as to ensure robust stability and

acceptable actuator action. It is therefore more realistic to select those (pseudo) singular vector directions (or
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spatial frequencies, in the perspective of Fourier matrix transform) with significant mode gains and without

wrong signs as controllable directions [99], which typically corresponds to the low spatial frequency range

(specified by spatial bandwidth in this work).

The selection of desired spatial benchmark is not fixed depending on the specific CD controller that is

being used. For instance, if we are using CD MPC, we may choose a spatial frequency dependent sensitivity

function as the benchmark, which can be obtained from the steady-state weighting matrices in the objective

function when there are no active constraints. In this thesis, for simplicity, we choose the estimated (closed-

loop) spatial bandwidth as the spatial benchmark, which can be approximated from the width of the spatial

response [100].

For the spatial bandwidth, the mathematical operators separating the spatially controllable and uncon-

trollable components Pc,user and Pu,user are constructed as

Pc,user = PT
c Pc, Pu,user = I−PT

c Pc, (4.20)

where 3 Pc = [P(1 : r, :) 0 P(m− r+ 2 : m, :)], P is the m-dimensional Fourier matrix and in Matlab it can

be defined as P = f f t(eye(m))/sqrt(m). r is the selected spatial bandwidth. Notice that the selection of P

can affect the performance index but this effect will be so small that the decision (e.g., as to the presence or

absence of MPM) based on the performance index will not be influenced. Choosing P as the Fourier matrix

is for the sake of being consistent with the definition of spatial bandwidth which is used in the tuning of

CD controllers and expressed in the frequency domain. Moreover, it is more intuitive for users to specify

the desired spatial bandwidth by choosing the Fourier matrix. According to the rule-of-thumb proposed in

[101], r can be determined directly with the knowledge of spatial response width. The spatially controllable

components, for both residual and steady-state profiles, are

yss,user = Pc,useryss, yr,user(t) = Pc,useryr(t). (4.21)

In the temporal direction, when the implemented controller is not MVC, the controllable (either from

3Note that the colon follows Matlab’s notation. P(1 : r, :) represents the first r rows of P, and P(m− r+ 2 : m, :) represents the
last r−1 rows of P.
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(4.16) or (4.20)) residual profile yr,c(t) can be expressed as the impulse response form,

yr,c(t) = f0ec(t)+ f1ec(t−1)+ . . .+ fd−1ec(t−d +1)+

fdec(t−d)+ fd+1ec(t−d−1)+ . . . . (4.22)

For the temporal MVC, there will be no terms remaining after the first d terms in the time series model

(4.22). The temporal user-specified term (scalar) GR(q) can be used to define a desirable form for the

remaining terms such that,

yr,c(t) = f0ec(t)+ . . .+ fd−1ec(t−d +1)+GR(q)ec(t−d). (4.23)

The user-specified term GR(q) can be selected as [18],

GR(q) = [1−GF(q)]R(q), (4.24)

where GF(q) is the desired complementary sensitivity function with the first order form,

GF(q) =
1−αR

1−αRq
, (4.25)

and αR is calculated via the desired closed-loop time constant τdes,

αR = e−
Ts

τdes , (4.26)

where Ts is the sampling time. R(q) is from the dynamic part of the disturbance model (4.5) via the Dio-

phantine decomposition (B.7), R(q) = H(q)/A(q).

By combining the spatial operators (4.21) and temporal term (4.24), the user-specified counterpart of η2

can be obtained as follows,

η2,user =

trace
[

d−1
∑

i=0
FiΣeuser FT

i +Σuser

]
trace(Σyuser,mse)

, (4.27)

where Σeuser =E[euser(t)eT
user(t)], euser(t)=Pc,usere(t), Σuser =Var[GR(q)euser(t)]. The denominator of η2,user
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is,

Σyuser,mse = Σyr,user +diag(yss,useryT
ss,user), (4.28)

where Σyr,user = E[yr,user(t)yT
r,user(t)]. It can be seen that compared with η2, in the spatial direction, the only

difference in η2,user is that the controllable projector is replaced by a user-specified projector Pc,user, which is

applied to both steady-state and residual profiles. In the temporal direction, an additional term GR(q) which

represents the desired sensitivity function is included to the residual benchmark. Note that this term is not

applicable to the steady-state profile.

Remark 4.4.1. Note that (4.24) implies that in order to obtain a user-specified benchmark, the disturbance

model has to be available, which is not realistic as the disturbance model may change from time to time.

However, for simplicity, we assume the disturbance model to be known. This assumption is valid since

there have been extensive methods proposed on the identification of disturbance models using closed-loop

input-output data [51, 102].

Remark 4.4.2. If the user-specified term is selected to be the same as the nominal closed-loop response (when

the tuning parameters of controller are available), then the highest achievable user-specified performance

index will be 1. In this case, the value of user-specified performance index will make more sense and

provide better indication of the control performance.

4.5 Performance monitoring

In order to compute previous performance indices, the residual profile has to be fitted into a moving average

model (refer to (4.15) and (4.22)) to obtain the estimates of impulse response coefficient matrices and white

noise covariance. However, due to the high input-output dimensions of CD processes, the computational

burden plays an essential role in multivariate time series estimation. In this section, a novel technique is

proposed to reduce the computations in performance monitoring.

4.5.1 Vector autoregressive modeling

As illustrated in previous sections, to proceed with performance monitoring, we need to perform the follow-

ing multivariate time series identification,

yr(t) = Θ1yr(t−1)+ . . .+Θpyr(t− p)+ e(t), (4.29)
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where e(t) ∈ Rm is the white noise vector. The Θi ∈ Rm×m, i = 1,2, . . . , p, are the coefficient matrices to be

estimated for the vector autoregressive (VAR) process, where p is the temporal order selected by the user. If

Θi, i = 1,2, . . . , p, are chosen to be full matrices, estimating the VAR model (4.29) will be computationally

expensive. However, we can assume that Θi, i = 1,2, . . . , p, are Toeplitz-structured, because in industry

most CD controllers have limited spatial response width, which means that the CD multivariate controller

will be band-diagonal [11, 103, 104]. Furthermore, the plant G in general is Toeplitz-structured, and as a

result the closed-loop sensitivity function will be approximately band-diagonal [105]. By taking advantage

of the special structure of Θi, the estimation problem can be greatly simplified through basis matrices method

described below.

We construct basis matrices to decompose each Toeplitz-structured coefficient as the sum of a series

of scalars multiplied by simple basis matrices. Each Toeplitz-structured VAR coefficient Θi matrix has the

form,

Θi = toeplitz{θi,1, . . . ,θi,q, . . .}m×m, (4.30)

where q is the spatial order selected by the user. There are only q unknown scalars to be estimated in

each coefficient matrix. The unknown scalars θi, j, j = 1, . . . ,q, are extracted from Θi by rewriting the large

dimensional matrix as the sum of simple terms,

Θi =
q

∑
j=1

θi, jE j, (4.31)

where E j, j = 1, . . . ,q are basis matrices with the jth superdiagonal and − jth subdiagonal entries as 1, while

the other entries are all 0. Thus the i-th term of the VAR model (4.29) can be written as,

Θiyr(t− i) =
q

∑
j=1

θi, jE jyr(t− i) =
q

∑
j=1

θi, jỹr,i j(t− i),

where ỹr,i j(t− i) = E jyr(t− i). The overall VAR model becomes

yr(t) = θ11ỹr,11(t−1)+ . . .+θ1qỹr,1q(t−1)+θ21ỹr,21(t−2)+ . . .+θ2qỹr,2q(t−2)+

. . .+θp1ỹr,p1(t− p)+ . . .+θpqỹr,pq(t− p)+ e(t)

4
= Ỹr(t−1)θ + e(t), (4.32)
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where

Ỹr(t−1) =
[

ỹr,11(t−1) ỹr,12(t−1) . . . ỹr,pq(t− p)

]
,

θ =

[
θ11 θ12 . . . θpq

]T

.

The following steps for identification are similar to the scalar autoregressive model identification. There are

various well-developed techniques for this problem, e.g., the least-squares method. The residuals ê(t) result-

ing from the identification are considered to be estimates of the innovations e(t). The estimate of coefficients

θ is denoted as θ̂ . Then the Toeplitz coefficients Θ̂i, i = 1, . . . , p, can be determined by reconstructing θ̂ . By

using the basis matrices, the estimation of the VAR model (4.29) can be significantly simplified.

In order to calculate the performance indices, the VAR model above is transformed into the following

vector moving average (VMA) model by using the technique in [106],

yr(t) = Φ̂0ê(t)+ . . .+ Φ̂d−1ê(t−d +1)+ Φ̂d ê(t−d)+ . . . , (4.33)

where

Φ̂0 = I, (4.34)

Φ̂i =
i

∑
j=1

Φ̂i− jΘ̂ j, i = 1, . . . ,d, . . . . (4.35)

Although the order of the VMA model (4.33) will be infinite, we are only interested in the first d terms

since they are the coefficients required in evaluating the benchmark. When applying this algorithm, d can be

selected to be the time delay in the model as an approximation of the true time delay in the process. On the

other hand, due to the spatial performance limitation resulting from the structure of G, only the controllable

components of estimated residuals êc(t) and the output profile yr,c(t) are considered. The covariance matrix

of the output under temporal MVC within the column space of G matrix is thus expressed as,

Σ̂mv =
d−1

∑
i=0

Φ̂iΣêcΦ̂
T
i , (4.36)

where Σêc = E[êc(t)êT
c (t)] is the covariance of spatially controllable residual, êc(t). The overall estimated
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performance index η̂2 is obtained as,

η̂2 =
trace(Σ̂mv)

trace(Σyc,mse)
, (4.37)

where η̂2 is the estimate of performance index η2.

4.5.2 Performance monitoring algorithm

As illustrated in previous sections, any given CD data set (without MD variations) can be separated into a sum

of steady-state and residual profiles. The steady-state profile is obtained by averaging the data for each CD

bin over all scans. In order to calculate performance indices (4.13), (4.18) or (4.27), the steady-state profile

yss has to be separated into controllable parts yss,c and uncontrollable parts yss,u according to the column

space of G or the spatial bandwidth. A VAR model (4.29) is applied to the residual profile yr(t) to obtain the

controller-invariant variation due to time-delay and spatial bandwidth limitations. The uncontrollable parts

of the steady-state variation, yss,u, and the controller-invariant variations of the residuals, yr,u, are combined

to obtain the overall benchmark in (4.13). The algorithm we propose to calculate (4.18) is as follows:

1. For a given data set, Y, remove the MD variations (i.e., mean value of each scan).

2. Calculate the average CD profile by averaging the data set across all scans, record it as yss. Remove

the mean of each CD bin to obtain the residual profile yr(t).

3. Perform Toeplitz-structure VAR estimation (4.29) using the residual profile yr(t) with the selected

spatial order q and temporal order p. Check the whiteness of noise estimate ê(t). If the residual is not

white, one can increase the orders of VAR model to allow more flexible model structures.

4. Transform the VAR model into a VMA model (4.33) and obtain the coefficient matrices Φ̂i, i =

0, . . . ,d−1.

5. Construct the operator Pc based on the column space (4.16), and get the following controllable com-

ponents: êc = Pcê(t), yr,c = Pcyr, yss,c = Pcyss,c.

6. Calculate the estimated minimum covariance Σ̂mv in (4.36), Σyc,mse in (4.37) and PI in (4.37).

For the user-specified benchmark η2,user, in Step 5, the operator Pc can be constructed based on the se-

lected spatial bandwidth (4.20). Besides, the temporal user-specified term can be obtained from the knowl-

edge of desired closed-loop time constant together with (4.24) and (4.26).
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Remark 4.5.1. In order to obtain the performance index, one has to fit the CD profile to the VAR model

(4.29), which requires each output channel to be zero-mean. Otherwise, there will be an offset term showing

up in (4.29), as illustrated in [106]. This fact motivates the profile partition in Section 4.2 and 4.3. After

splitting the output measurements into steady-state profile and residual profile, we can simply fit only the

residual profile into (4.29).

4.6 Examples

It has been mentioned that various factors such as a poorly tuned controller, model-plant mismatch, change

of disturbance dynamics, etc., can cause a drop in the performance index. From the perspective of industry

engineers, when the model quality deteriorates, a new model has to be identified. Therefore, it is of interest

to determine whether the proposed performance benchmarks are sensitive to model-plant mismatches. In

this section, the validity of the proposed performance benchmark for the CD process is tested using data sets

from both paper machine simulators and paper mills.

4.6.1 Simulation results

In this subsection, scenarios with various types of model-plant mismatch are created to test the sensitivity

of performance index. In this simulation, the employed control strategy is the two-dimensional loopshaping

technique. The number of actuators in the CD array is 238, and the number of CD bins downstream at the

scanner side is 714.

The continuous steady-state spatial response shape of a single actuator is determined by four parameters,

gain γ , width ξ , divergence β and attenuation α in (1.2) (see [12] for more details). In the temporal direction,

the actuator dynamic model g(s) is assumed to be FOPTD with unit steady-state gain,

g(s) =
1

τs+1
e−τds, (4.38)

where τ the time constant τ and τd is the time delay. In the simulator, the nominal values of these parameters

on both plant and process model are set initially as γ0 = −0.03,ξ0 = 164mm,β0 = 0.15,α0 = 7.0,τ0 =

17.34s,τd0 = 21s. Figure 4.2 illustrates the spatial steady-state impulse response and the temporal step

response of one actuator with these nominal parameter values. This process is relatively easy to control
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Figure 4.2: Spatial impulse steady-state response and the temporal step response of a single actuator. The
negative peak of the spatial response is due to the negative gain of the actuator spatial model.
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Figure 4.3: Performance indices for different levels of gain mismatch. Note that γ0 is the nominal gain value
used by the controller, γ is the actual gain value of the process plant.

since there are no negative side lobes in the spatial response shape. The controllers are properly tuned by

using the two-dimensional loop shaping technique based on the nominal process model.

In order to investigate the sensitivity of proposed performance index in detecting the model-plant para-

metric mismatch, scenarios with different levels of mismatch for these spatial and temporal parameters are

created. For convenience, we manually increase and decrease the parameter values in the plant while the

parameter values in the process model used by the controller remain unchanged. In the following simula-

tions, we denote γ,ξ ,β ,α,τ,τd without subscripts as the plant parameters. In addition, positive mismatches

indicate that the plant parameters are greater than those in the model. For instance, positive gain mismatch

means the plant gain is greater than the model gain used by the controller.

Figures 4.3-4.6 illustrate the simulation results with respect to various levels of parametric mismatch for

each parameter in the spatial model. Note that in this simulation, the sampling time is 20 seconds and the
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Figure 4.4: Performance indices for different levels of width mismatch. Note that ξ0 is the nominal width
value used by the controller, ξ is the actual width value of the process plant.
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Figure 4.5: Performance indices for different levels of divergence mismatch. Note that β0 is the nominal
divergence value used by the controller, β is the actual divergence value of the process plant.
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Figure 4.6: Performance indices for different levels of attenuation mismatch. Note that α0 is the nominal
attenuation value used by the controller, α is the actual attenuation value of the process plant.
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Figure 4.7: Performance indices for different levels of time constant and time delay mismatch. Note that τ0
and τd0 are the nominal time constant and time delay value used by the controller, τ and τd are the actual
time constant and time delay value of the process plant.

data is selected after the initial transient behavior. The number of scans in the selected portion of data is 500.

The left graph in each figure shows the comparison of spatial response shape of each mismatched plant with

that of the nominal case, from which we can know the significance of distortion the corresponding parametric

mismatch can cause. The right graph of each figure shows the corresponding calculated performance index

for each case based on both MVC benchmark η2 and user-specified benchmark η2,user. One can see that in

general the user-specified performance indices are higher than that based on the MVC benchmark, which

agrees well with the previous analysis as the user-specified benchmark is more practical and less aggressive.

These figures show that for most MPM, the performance indices based on both MVC benchmark and user-

specified benchmark decrease as the degree of MPM increases. However, the performance indices with gain

and width mismatches with γ = 0.75γ0 and ξ = 0.75ξ0 show better performance than the case without MPM.

It can be explained that the degree of mismatch is not severe and within the tolerance of implemented robust

controller and these mismatched processes are more close to the models used by the controller. However, for

the cases with large mismatches, all performance indices drop. Besides, the performance index is sensitive to

the divergence mismatch but not so sensitive to the attenuation mismatch. Figure 4.7 shows the performance

indices for the time constant and time delay mismatches. One can see that the performance indices are able

to detect the drop in performance due to the time constant or delay mismatch as well, but not so sensitive as

the spatial parameters. Note that for some cases (e.g. width mismatch with ξ = 0.75ξ0), the indices show a

slightly better performance compared with the nominal case. Table I shows the partitioned variances for each

simulated case, in which σT , σCD, σRes refer to the total variance, CD variance (variance of the steady-state
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Table 4.1: Variance partition for each simulated case
γ MPM σT σCD σRes ξ MPM σT σCD σRes

γ = 0.50γ0 0.2575 0.0687 0.1888 ξ = 0.50ξ0 0.3715 0.1812 0.1903
γ = 0.75γ0 0.2454 0.0523 0.1930 ξ = 0.75ξ0 0.2391 0.0453 0.1937
γ = 1.50γ0 0.2511 0.0453 0.2059 ξ = 1.50ξ0 0.2621 0.0643 0.1979
γ = 2.00γ0 0.2739 0.0485 0.2253 ξ = 2.00ξ0 0.2979 0.1017 0.1961

β MPM σT σCD σRes α MPM σT σCD σRes

β = 0.50β0 0.3804 0.1861 0.1943 α = 2.3 0.2496 0.0505 0.1991
β = 0.75β0 0.2434 0.0459 0.1975 α = 1.5 0.2595 0.0543 0.2052
β = 1.50β0 0.2571 0.0459 0.1975 α = 1.0 0.2756 0.0594 0.2162
β = 2.00β0 0.3497 0.1579 0.1918 α = 0.5 1.8128 0.2307 1.5758

τ MPM σT σCD σRes τd MPM σT σCD σRes

τ = 0.5τ0 0.2428 0.0480 0.1948 τd = 41 0.2448 0.0473 0.1976
τ = 2.0τ0 0.2406 0.0472 0.1933 τd = 61 0.2480 0.0491 0.1989
τ = 2.5τ0 0.2447 0.0480 0.1967 τd = 81 0.3093 0.1060 0.2033
τ = 3.0τ0 0.3007 0.1059 0.1948 τd = 101 0.4271 0.2224 0.2047
Note: For the normal case, σT = 0.2439, σCD = 0.0476, σRes = 0.1962.

profile) and residual variance. Note that there is no MD variance since the MD profile has been removed

beforehand. By comparing these results with the previous performance indices one can see, mostly, the

larger variance in either CD or residual than the nominal case will correspond to worse control performance.

Therefore we can conclude that the proposed performance indices are not only affected by the CD variance,

but also the residual variance.

To demonstrate the advantage of performance index η2 over η1, another simulation is carried out with

gain mismatch γ = 2.0γ0 and a spatial sinusoidal disturbance (with frequency greater than the closed-loop

spatial bandwidth) added to the output. Sinusoidal disturbance is commonly encountered in practice when

there are malfunctions in process devices. The performance index is expected to drop relative to the normal

case due to the presence of gain mismatch, however, it is desirable for the high frequency spatial disturbance

to affect the index as little as possible. Simulation results under this situation are illustrated in Figure 4.8.

The performance index η1 with both positive gain mismatch and high frequency spatial disturbance remains

almost the same as the normal case, while it drops a little for the case with gain mismatch only. Thus it

is not straightforward to observe the performance deterioration in the presence of high frequency spatial

disturbance if we are using performance index η1. However, for performance index η2, the presence of high

frequency spatial disturbance has almost no affect, and the drop in the performance index is due to the gain

mismatch. Moreover, one may find from Figure 4.8 that the performance index η1 is not so sensitive to the

mismatch as the index η2 since the drop due to gain mismatch is much smaller compared with η2. Therefore,
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Figure 4.8: Comparison of performance index η1 and η2 with high frequency spatial disturbance

we can achieve reliable assessment based on performance index η2. As mentioned in the previous section,

the misleading conclusion from η1 is a result of the deterministic high frequency disturbance inflating both

the covariance of the benchmark and the actual output in (4.13). The ratio between the two covariance

matrices will be very close to one.

4.6.2 Industrial example

In this subsection, data sets from a paper mill are used to validate the effectiveness of the proposed tech-

niques. The number of actuators and CD bins in this example are 114 and 402, respectively. The width of

each actuator zone is 60 mm and the width of each CD bin is 16.79 mm. Figure 4.9a illustrates the measured

dry weight profile without MD variations. Note that the edges of the profile that were not controlled have

been removed. Figure 4.9b shows the corresponding actuator (ProFlow) profile with lower bound 10% and

upper bound 90%. The sampling interval is 16 seconds with time-delay 45 seconds and the number of scans

is 551. The implemented controller is a multivariate CD-MPC. In this data set, an unknown spatial distur-

bance is acting on the output profile and is attenuated by the controller through manipulating the actuators.

Performance monitoring with a moving window of size 200 scans is applied to the measured output profile,

and the corresponding performance indices over moving windows is demonstrated in Figure 4.10a. Both

user-specified benchmark (η2,user in the blue solid line) and MVC benchmark (η2 in the red dash-dotted line

and η1 in the black dashed line) are used in the calculation of these performance indices. The VMA model
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proposed in Section 4.5 is estimated repeatedly for each window in order to the compute those performance

indices. For each window, on average, it takes only 1.68 seconds to identify the VMA model, which is much

less than the sampling interval and thus fast enough for online monitoring. Note that performance indices

are calculated only after the 200th scan since the width of each window is 200 scans. It can be observed that

all these performance indices show consistent patterns except their levels. The performance index η2 shows

the worst performance since it is based on the aggressive MVC benchmark. The high level of η1 is due to

that the spatially uncontrollable components in the denominator and numerator of (4.13) are the majority.

The user-specified benchmark η2,user also shows higher performance index than η2, which makes sense since

η2,user is based on a more practical and less aggressive benchmark.

For this industrial example, the user-specified benchmark is specified based on the implemented con-

troller. Thus good control performance is expected to have η2,user close to one. However, from Figure 4.10a

we find that all these performance indices are less than 0.7, which is not satisfactory. In order to investigate

the root causes, we generated the steady-state profile of both the dry weight and actuator as well as the power

spectrum of averaged dry weight profile, which are shown in Figure 4.10b-d. From the spectrum plot, it is

obvious that some low-frequency components are left in the controllable range which contributes to the poor

performance. These low frequency components are due to the large fluctuations of the dry weight profile

in the first 60 bins and those around the 280th bin. From the averaged actuator profile, we find that the

actuator saturation in the first few zones and around the 85th zone explains the reason that those fluctuations

in the output profile were not rejected. Therefore, the actuator saturation due to the spatial disturbance is one

root cause of the low performance index. However, further diagnosis or data pre-processing techniques are

required to know if the model-plant mismatch is also one of the root causes. For instance, in order to reduce

the false positives on the model-plant mismatch diagnosis, we may select a portion of data in which there are

no severe actuator saturation, irregular disturbances or poorly tuned control to apply the performance mon-

itoring algorithm. Alternatively, approaches on deriving performance lower bounds for constrained control

(such as the work by Wang and Boyd [107]) could potentially be used to improve the MVC and user-specified

benchmarks. In this work, we combine the MVC and user-specified benchmarks with our MPM detection

approach to address this issue.

Note that the computational complexity associated with the performance index is an important concern

for online performance monitoring. For both simulator and industrial examples studied in this work, the

computation speed is fast enough (less than 3 seconds for each window), compared with the sampling in-

76



4.7. Summary

Figure 4.9: Three-dimensional plot of input-output profiles from industrial data set. (a): The dry weight
profile (g/m2) with 376 measurement bins with MD trend removed; (b): The actuator profile (%) of 114
actuator zones.

terval (more than 15 seconds for most paper machines). Thus the proposed algorithms for computing the

performance indices are efficient enough for online performance monitoring.

4.7 Summary

In this chapter, a spatial and temporal MVC benchmark for both steady-state and residual profiles are an-

alyzed for the CD process of paper machines. Performance indices are proposed based on the steady-state

and residual MVC benchmark. The sensitivity of these performance indices with respect to large spatial

high-frequency disturbances are analyzed and compared. Furthermore, the corresponding user-specified

benchmark is put forward by taking into account the desirable closed-loop dynamics in both temporal and

spatial directions. A novel technique is employed to improve the efficiency of computations associated with

the multivariate time series model identification. The proposed technique decomposes the coefficient ma-

trices into a series of simple multiplications between scalars and basis matrices. These basis matrices are

constructed based on the special structure of coefficient matrices. Data sets from a CD simulator are used

to test the sensitivity of proposed performance indices with respect to various types of mismatch existing

in the CD process as well as to spatial high-frequency disturbances. Finally, an industrial data set is intro-

duced to test the effectiveness of proposed performance monitoring technique. It is observed that in this data

set, the actuator saturation due to the large amplitude of spatial disturbances is a cause for the low control

performance.
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Figure 4.10: The analysis of the industrial data. (a): The moving window performance indices for the
measured data. Blue solid line: η2,user; Red dash-dotted line: η2; Black dashed line: η1; (b): The steady-state
of the entire dry weight profile; (c): The steady-state of the entire actuator profile with lower bound and upper
bound (red dash-dotted line); (d): The spectrum of the averaged dry weight profile and the approximated
spatial bandwidth (red dash-dotted line).
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Chapter 5

Model-plant Mismatch Detection for CD

Processes

5.1 Introduction

In this chapter, we focus on extending the MD MPM detection method to CD processes. As shown in Chapter

3, routine closed-loop identification forms one of the main building blocks for the proposed MPM detection

algorithm. Due to the large number of actuators and measurement sensors, closed-loop identifications of

CD processes have not been extensively explored. However, two assumptions widely employed by the

industry, separability between spatial and temporal responses and identical models for all CD actuators, can

greatly facilitate the CD identifications. Under the first assumption, a CD process model is essentially a

high-dimensional (linear version of) Hammerstein model with a static (spatial) part in connection with a

dynamic part [108]. Various identification toolboxes developed for Hammerstein models would be inspiring

for the CD process identification. With the second assumption, the spatial static model is further simplified

as a sparse Toeplitz-structured matrix. Based on these two observations, we will present a closed-loop

identification method for CD processes, by extending our previous ARX-OE method to high-dimensional

models. In addition, we will show a CD MPM detection framework that is based on routine operating data

and can discriminate the MPM (we use MPM exclusively to refer to the mismatches in spatial and temporal

models) from changes in unmeasured disturbance models. The MPM idea is similar to that for MD processes,

differing in that for CD processes we have more models to monitor.

This chapter is organized as follows. A preliminary description of the closed-loop CD process is given

in Section 5.2. Section 5.3 is devoted to the development of routine CD closed-loop identification method,

which includes convergence and consistency analysis of the proposed algorithm. We demonstrate the pro-

cedures of implementing one-class SVM to MPM detection in Section 5.4. Two illustrative examples are
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provided in Section 5.5 to show the effectiveness of the proposed CD closed-loop identification approach, as

well as the advantage of our MPM detection scheme. This chapter ends with a conclusion in Section 5.6.

5.2 Preliminaries

5.2.1 CD process model

We focus on the following single-array CD process that is widely employed in paper machine control,

S1 : y(t) = go(q)Gou(t−d)+v(t), (5.1)

where y(t) ∈ Rm and u(t) ∈ Rn represent the CV and MV profiles, respectively. v(t) ∈ Rm is a colored

measurement noise vector. go(q) is a FOPTD filter with unit gain, i.e.,

go(q) =
1− f o

1− f oq
, (5.2)

where f o = exp(−Ts/Tp) with Tp and Ts being the time constant and sampling interval, respectively. Go ∈

Rm×n is a steady-state gain matrix which represents the spatial responses of actuator array at steady state. d

is the discrete time-delay. Note that in (5.1) we use a superscript “o” to denote the true process. The spatial

model Go is assumed to be Toeplitz-structured. As a result, Go is decomposed as follows,

Go =
po

∑
k=1

co
kEk, (5.3)

where co
k is a scalar standing for the k-th elements in Go and Ek is the corresponding k-th basis matrix. Taking

m = 6,n = 3, po = 2 as an example, we have

Go =



co
1 co

3 0

co
2 co

2 0

co
3 co

1 co
3

0 co
2 co

2

0 co
3 co

1

0 0 co
2


, E1 =



1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0


, E2 =



0 0 0

1 1 0

0 0 0

0 1 1

0 0 0

0 0 1


, E3 =



0 1 0

0 0 0

1 0 1

0 0 0

0 1 0

0 0 0


.

With above decomposition we can identify the spatial model Go by estimating the parameters co = [co
1 . . . co

qo ]T

instead of those in the nonlinear function (1.2). Note that the separability between temporal dynamic model
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go(q) and spatial static model Go connects the typical CD process with Hammerstein models [109], which

inspires the closed-loop identification method proposed in this chapter.

5.2.2 CD noise model

Most literature on CD system identification only considers the situations with v(t) being Gaussian white

noise [83]. However, in practice, the physical nature of measurement devices (e.g. traveling back and forth

in the cross direction) makes v(t) a colored noise in both spatial and temporal directions. Researchers have

made a few attempts to model the CD measurement noise in certain ways so as to reflect the correlations

in these two directions [81, 110, 111]. Several noise models, varying from simple to complex, have been

available in the literature to precisely represent the realistic noise encountered in the industry. A common

practice is to use a multivariate band-diagonal AR or ARMA structure so that the temporal correlation is

modeled through each filter on the diagonal and the spatial correlation is represented by interactions among

off-diagonal entries [111]. An alternative is to choose the noise model as diagonal while enforcing the inno-

vation sequence to have non-diagonal covariance matrix [81]. For the latter method, the spatial correlation

of colored noise v(t) is reflected by the covariance matrix. From the viewpoint of system identification pro-

posed in this chapter, the latter method is favored since it admits inversing the noise model matrix without

concerning the issue of invertability of the noise matrix that often arises in the former method. Moreover,

analogous to the temporal dynamic model, we assume that all output channels possess the same noise model

in the temporal direction4. In this manner,

v(t) = Ho(q)Ieo(t), (5.4)

where Ho(q) is a scalar monic transfer function that is stable and inversely stable, I ∈ Rm×m is an identity

matrix, and eo(t) ∈ Rm is a zero-mean Gaussian white noise vector with covariance

E[eo(t)eo(t− s)T ] = δs,tΣ ∈ Rm×m. (5.5)

Note that here Σ can be non-diagonal and structured to represent the spatial correlations of CD measurement

noise. In general, it is difficult to acquire prior information about the true noise model structure Ho(q) in

4This assumption can be easily relaxed to allow for different noise models in each output channel and the identification method
presented here is still applicable with slight modifications.
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(5.4). For closed-loop identification especially the direct identification approach, incorrect specification of

the noise model often leads to bias in the process model estimate [15]. In this chapter, we propose a novel

closed-loop identification method for the CD process model to address this issue.

5.2.3 High-order ARX approximation of the CD process model

It is well-known that any stable linear transfer function can be approximated arbitrarily well by a high-

order FIR model [15, 112]. Inspired by this fact we can represent the CD process model (5.1)-(5.4) with

a sufficiently high-order ARX structure, in order to avoid the bias issue in direct closed-loop identification

stemming from misspecification of the noise model structure. Specifically, we can re-write the CD model as

follows, given the particular diagonal noise model in (5.4) and the decomposition of Go in (5.3),

S2 : Ao(q,ao)y(t) = Bo(q,bo)
qo

∑
k=1

co
kEku(t−d)+ eo(t), (5.6)

where Ao(q,ao) = 1/Ho(q) is a scalar polynomial showing the FIR representation of the inverse of noise

model. We have

Ao(q,ao) = 1+
no

a

∑
k=1

ao
kq−k, ao = [ao

1 . . . ao
no

a
]T . (5.7)

The polynomial Bo(q,bo) = Ao(q,ao)go(q) is also parameterized with a FIR form,

Bo(q,bo) =
no

b

∑
k=0

bo
kq−k, bo = [bo

1 . . . bo
no

b
]T . (5.8)

We further define the parameter vector, θ
oT = [aoT boT coT ] ∈ Rno

a+no
b+1+qo

. Strictly speaking, Ao(q,ao) and

Bo(q,bo) shall be of infinite orders as they are the infinite series expansions of rational functions. How-

ever, under the stability assumption of Ao(q,ao) and Bo(q,bo), their coefficients decay to be negligible after

sufficient lags. Therefore, in practice, it makes sense to use a finitely truncated form to perform the corre-

sponding identifications. One can refer to [88, 89] for a rigorous treatment of the more general case with

infinite impulse response coefficients. With above manipulations the CD process model is transformed into

an ARX-Hammerstein structure, which is much easier to handle than the original Box-Jenkins-Hammerstein

structure. However, the price to pay is the increased number of parameters to estimate in the high-order

representation, which places more stringent requirements on the informativeness of closed-loop data.
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5.2.4 The presence of feedback

The current optimization method is based on quadratic programming proposed in [12]. Typical constraints in

the MPC algorithm include actuator limits, maximum change between successive control actions, constraints

on the averaged actuator profile in an array and bounds for bending limits. According to [113], when some of

these constraints are active and varying, the MPC will display a piecewise linear or even nonlinear behavior,

depending on the formulation of objective functions. Hence, we denote the feedback as

u(t) = k(ut−1,yt , t), (5.9)

where ut−1 = {u(1), . . . ,u(t−1)} and yt is defined in an analogous way. Note that for closed-loop identifi-

cation with routine operating data where external excitations and setpoint changes are absent, nonparametric

identification methods often yield the controller inverse as a process model estimate [94]. One remedy to

prevent this is to impose the true time-delay to (5.6) when performing the high-order ARX identification.

Therefore, we assume that the true time-delay is available throughout the derivations in this chapter. How-

ever, we stress that in practice, this stringent assumption can be relaxed and our mismatch detection scheme

works even when the true time-delay is not available. In that case we just incorporate a priori knowledge of

the true time-delay into the identification algorithm.

Another important concern in routine closed-loop identification is the identifiability. It has been discov-

ered in [86, 93, 94] and in previous chapters that for linear feedback control, higher orders in the regulator

and larger time-delay in the process generally enhance the informativeness of closed-loop data. The specific

relationships among these factors have been fully investigated in these references. However, as commented

in [15] (p. 432), time-varying or nonlinear regulators in (5.9) are usually enough to guarantee the informa-

tiveness of routine closed-loop data. The detailed conditions ensuring CD closed-loop identifiability will be

presented later in this chapter.

5.3 Routine CD closed-loop identification

In this section we present a novel closed-loop routine CD identification approach that gives convergent and

consistent estimates with routine closed-loop data. Our stress in this section is on the high-order ARX rep-

resentation (5.6) of the original CD process. The basic techniques here adopt a similar idea as the separable
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least-squares [114]: alternately identifying the spatial model G0 and temporal model {A0(q), B0(q)}, until

the parameters converge. When identifying the spatial (or temporal) parameters, we fix the temporal (or

spatial) parameters to the latest values.

5.3.1 Model parameterization

Based on previous analysis on go(q), we parameterize the temporal model with a first-order model structure

in the following form

g(q,θ T ) =
h

1− f q
, θ T ∈ΩT , (5.10)

where θ T = [h f ]T is the temporal parameter and ΩT is a compact set. Note that the time-delay d is absorbed

into the input signal in (5.1). For the iterative identification algorithm in this work we mostly deal with the

high-order ARX representation (5.6) of the original CD process. This model is parameterized as

M : A(q,a)y(t) = B(q,b)G(c)u(t−d)+ e(t), (5.11)

with

A(q,a) = 1+
na

∑
k=1

akq−k, B(q,b) =
nb

∑
k=0

bkq−k, G(c) =
p

∑
k=1

ckEk, (5.12)

where a = [a1 . . . ana ]
T , b = [b0 . . . bnb ]

T and c = [c1 . . . cp]
T . na and nb are the orders of the ARX model.

q is the selected spatial order. The temporal model {A(q,a), B(q,b)} are assumed to be scalar transfer

functions.

Now let us derive the predictor form of (5.11). We start with the i-th output channel yi(t) and then

generalize the results to the overall output. Define ūk(t) = Eku(t) ∈ Rm, k = 1, . . . , p. With the high-order

ARX parameterization (5.11), the one-step-ahead prediction for the i-th output is

ŷi(t|t−1) =−[A(q,a)−1]yi(t)+B(q,b)
p

∑
k=1

ckūk
i (t−d), i = 1, . . . ,m. (5.13)

Straightforward calculations yield

ŷi(t|t−1) = ψyi
(t)a+ψ ūi

(t−d)Cb, i = 1, . . . ,m, (5.14)
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where

C = diag{c,c, . . . ,c},

ψyi
(t) = [−yi(t−1) . . . −yi(t−na)] ,

ψ ūi
(t) =

[
ū1

i (t) . . . ūq
i (t)| . . . |ū

1
i (t−nb) . . . ūq

i (t−nb)
]
.

It then follows that the predictor form of overall output is

ŷ(t|t−1) =
[
ψy(t) ψ ū(t−d)

] a

Cb

 , (5.15)

where

ψy(t) =


ψy1

(t)
...

ψym
(t)

 , ψ ū(t) =


ψ ū1

(t)
...

ψ ūm
(t)

 .

5.3.2 Parameter Estimation

Consider a set of input-output data generated according to S2 under the controller (5.9),

ZN = {y(1),u(1), . . . ,y(N),u(N)}. (5.16)

Denote θ
T = [aT bT cT ] ∈ Rna+nb+1+p stacking all temporal and spatial parameters. We can formulate the

loss function of parameter estimation as,

VN(θ) =
1
N

N

∑
t=1

ε
T (t,θ)ε(t,θ), (5.17)

where ε(t,θ) ∈ Rm is the prediction error,

ε(t,θ) = y(t)− ŷ(t|t−1). (5.18)
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The optimal parameter estimate θ̂ N is obtained by

θ̂ N = argmin
θ∈Ω

VN(θ), (5.19)

where Ω = Ωa⊕Ωb⊕Ωc is a compact and convex set. Ωa, Ωb and Ωc are respectively compact and convex

sets containing a, b and c. Note that solving the optimization problem (5.19) directly is not straightforward

due to the coupling Cb in (5.15) which results in a nonconvex optimization. However, the separable structure

of C and b motivates the usage of the separable least-squares technique. Fixing one parameter of Cb, solving

optimization with respect to the other is convex and this scheme leads to the iterative optimization approach.

We will show later that under weak conditions this iterative identification scheme is convergent.

Another important observation of (5.18)-(5.19) is the non-identifiability issue featured for Hammerstein

models. This is due to the fact that any pair (b/l, lc) yields the same model, ∀l 6= 0. In order to address this

problem, a normalization of b or c has to be in place. In fact, for open-loop Hammerstein models that can be

transformed into separable linear least-squares forms, the iterative identification algorithm can guarantee the

convergence to stationary points, provided that a normalization is performed after each iteration [115]. This

statement, with modifications, holds in our situation if certain conditions are satisfied. We will elaborate this

argument in Theorem 5.3.1.

Our iterative identification algorithm to solve (5.19) is as follows. Denote the intial values of a and b as

âi and b̂i, respectively. We use âk to denote the estimate of a in the k-th iteration. It also holds true for the

estimates of b and c. Define the maximum iteration number as K. In each iteration k, k = 1, . . . ,K, first fix

the spatial parameter to ĉk−1 and perform a high-order ARX identification to (5.11) by solving

{âk, b̂k}= arg min
a∈Ωa,b∈Ωb

VN(a,b, ĉk−1). (5.20)

Note that the above optimization is an ordinary least-squares problem which is easy to solve. Before identi-

fying spatial parameters, we choose to normalize b̂k after solving (5.20) by

ρk = sign
(

b̂k(1)
)
, b̂k = ρk

b̂k

‖b̂k‖
, (5.21)

to eliminate the parameter non-identifiability due to the coupling of b and c. Then fix the temporal parameters
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to {âk, b̂k} and estimate the spatial parameter in (5.11) with another linear least-squares,

ĉk = arg min
c∈Ωc

VN(âk, b̂k,c). (5.22)

We then move forward to next iteration and carry out the same procedures as above. The estimated param-

eters after K iterations are defined as â = âK , b̂ = b̂K , ĉ = ĉK and denote θ̂ N = [âT b̂T ĉT ]T . Note that to

obtain an estimate for true temporal and spatial parameters, some extra identifications have to follow up. To

this end, we first filter the input-output data by

ỹ(t) = A(q, â)y(t), ũ(t) = A(q, â)G(ĉ)u(t). (5.23)

One can see that ideally, i.e., if A(q, â) = Ao(q) and G(ĉ) = Go, from (5.1), (5.6), (5.11), it follows that,

ỹ(t) = go(q)ũ(t− d)+ eo(t). As will be shown in Theorem 5.3.1, â and ĉ converge to the true parameter

values asymptotically in the sample number N. Thus it is reasonable to estimate the temporal model go(q)

with filtered input ũ(t) and output ỹ(t). We stress that if a priori information about the true temporal model

structure is available, as in the CD process, a parsimonious model in (5.10) can be efficiently estimated by an

output-error identification. Otherwise, we can estimate an FIR structure for the temporal model to eliminate

the bias. For the CD process, we perform a multiple-experiment output-error identification to g(q,θ T ) in

(5.10),

ỹ(t) = g(q,θ T )ũ(t−d)+ e(t), (5.24)

and denote the parameter estimate as θ̂ T = [ĥ f̂ ]T . The next procedure is to re-scale the spatial and temporal

parameters by

ĉ = ĉ f̂/(1− ĝ). (5.25)

The rational behind the re-scaling step (5.25) is that g(q,θ T ) is discretized from a continuous first-order

transfer function and shall have a unit step response at steady-state (cf. (5.2)). With the acquired ĉ, we can

easily identify the spatial parameter θ S in (1.2) by standard nonlinear least-squares. The entire algorithm is

summarized in Table 5.1.
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Table 5.1: The implementation of routine CD closed-loop iterative identification
Algorithm of routine CD closed-loop identification

Input: Set â0← ai, b̂0← bi and ĉ0← ci. K← maximum iteration number.
Loop: for k = 1, . . . , K, do

1: Fix the spatial parameter ĉk−1, and estimate parameters of the high-order
ARX part in (5.11) by solving the least-squares problem (5.20);

2: Normalize b̂k as in (5.21);
3: Fix the temporal parameter {âk, b̂k}, and estimate the spatial parameter

in (5.11) by solving the nonlinear least-squares problem (5.22);
End for

4: â = âK , b̂ = b̂K , ĉ = ĉK . Filter the input-output data as in (5.23);
5: Estimate the temporal model g(q,θ T ) with ỹ(t) and ũ(t) by an

output-error identification (5.24);
6: Re-scale ĉ based on (5.25) and identify the spatial parameter θ S in (1.2);

Output: Parameter estimates θ̂ S, θ̂ T , â and noise covariance.

5.3.3 Convergence and consistency analysis

Now let us consider the convergence and consistency of the proposed iterative identification algorithm. Be-

fore presenting the main results, we need certain restrictions on the quality of closed-loop data. We have

discussed the closed-loop identifiability problem in Section 5.2 for a generic process that is free of any ex-

ternal excitations. It shows that high-order linear, time-varying or nonlinear regulators are beneficial for

direct identification by enriching the information content in routine operating data. Now we are in a place

to explore the detailed requirements on CD closed-loop data arising from these conditions. Specifically, we

have the following assumptions.

Assumption 5.3.1. The input-output data ZN is bounded and generated according to the stable closed-loop

system S1 (or equivalently S2) and (5.9), where N >> no
a +no

b and eo(t) is Gaussian white noise vector. In

addition, it is assumed that the model structure (5.11)-(5.12) is uniformly stable ∀θ ∈Ω.

Assumption 5.3.2. The parameterized model (5.11)-(5.12) has the same structure as the true model (5.6)-

(5.8), i.e., na = no
a, nb = no

b and q = qo, and the true model is contained in the selected model structure

θ
o ∈Ω. Moreover, we assume the polynomial pairs {Ao(q),Bo(q)} and {A(q,a),B(q,b)} are coprime.

Assumption 5.3.3. Assume that the closed-loop data ZN is informative enough for the relevant closed-loop

identification. This assumption involves the following aspects:

(a). The closed-loop input data uN is strongly persistently exciting with orders at least nb over the basis
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matrices Ek,k = 1, . . . , p. In other words,

rank Φu = p(nb +1), Φu =


ψ ū(1)

...

ψ ū(N)

 , (5.26)

that is, Φu has full column rank for any large N. This is similar to the persistent excitation requirement

for input signals in open-loop identification.

(b). There does not exist a common linear time-invariant feedback relationship between inputs and outputs

over all channels. It is formally stated as

E‖R(q)G(c)u(t−d)+S(q)y(t)‖2 > 0, ∀c ∈Ωc, (5.27)

where R(q) and S(q) are arbitrary scalar linear filters, and E is the generalized expectation operator.

Note that this condition is equivalently stating that all output channels do not share the same feedback

regulator.

Note that the above assumptions are fairly loose. In particular, for Assumption 3a, it is easy to meet

the persistent exciting requirement (5.26) since in closed-loop the input signal is filtered white noise that

contains enough excitations to make Φu full column rank, especially when N is large. For Assumption 3b,

all input-output channels have to share the same regulator in order to make (5.27) invalid. This assumption

becomes more convincing given that most CD MPC has complex dynamics due to the complexity in the

associated optimization and constraints [112].

We present the following theorem showing the convergence of proposed iterative CD closed-loop iden-

tification and asymptotic properties of the parameter estimator.

Theorem 5.3.1. Consider the data ZN generated according to the stable closed-loop system (5.6) and (5.9).

Suppose that Assumptions (5.3.1)-(5.3.3) are true. We further assume that the parameter estimates âk 6= 0,

b̂k 6= 0, ĉk 6= 0 during all iterations. Then the following statements on the algorithm 5.1 of routine CD

closed-loop identification hold:

(i) For the iterative identification algorithm 5.1 with normalization (5.20)-(5.22), the parameter estimate

sequence {θ̂ k
N} is convergent to stationary points of VN(θ) for any large N >> na +nb if it converges,
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5.4. Application of one-class SVM to CD mismatch detection

i.e.,

θ̂
k
N → θ̂ N , as k→ ∞, (5.28)

where ∇VN(θ̂ N) = 0.

(ii) The loss function VN(θ) converges uniformly to the limit function V (θ) asymptotically in the sample

number, namely,

sup
θ∈Ω

|VN(θ)−V (θ)| → 0, w.p.1 as N→ ∞, (5.29)

where V (θ) = E[εT (t,θ)ε(t,θ)]. As a result,

θ̂ N → θ
∗, w.p.1 as N→ ∞, (5.30)

where θ
∗ = argminθ∈Ω V (θ).

(iii) The parameter estimate θ̂ N is consistent, that is,

θ̂ N → θ
o, w.p.1 as N→ ∞, (5.31)

where θ
o is the true parameter value.

Proof. Please see C.1.

Remark 5.3.1. Note that the convergence in (i) of Theorem 5.3.1 the iterative identification algorithm still

holds even when the assumptions on the informativeness of closed-loop data are not satisfied [116]. More-

over, it is shown in [115] that the accumulated points of {θ̂ k
N} are stationary points of VN(θ̂) if a general

convergence on the sequence {θ̂ k
N} cannot be achieved.

5.4 Application of one-class SVM to CD mismatch detection

We can attain consistent parameter estimates for the spatial, temporal and noise models with the iterative

closed-loop identification approach presented previously. This serves as the major building block for our

SVM based mismatch detection framework. Specifically, we will implement the mismatch detection method

simultaneously to each of these models to examine the corresponding model changes. With this in mind, the

following presentation is exclusively devoted to showing the detection of mismatch for the temporal model.
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5.4. Application of one-class SVM to CD mismatch detection

All procedures below apply to the detection of mismatch for noise model and spatial model as well. In

practice, we have to monitor these three models in parallel so as to distinguish the noise model change from

MPM and raise mismatch alarms appropriately.

5.4.1 SVM training

We use the temporal models estimated from moving windows in the training data as the training models,

denoted as {x1, . . . ,xl}. l is the number of moving windows in the training data set. Each xi stands for an

FIR coefficient vector of one estimated temporal model from the i-th moving window,

xi = [x̂1
i . . . x̂ng

i ]T , (5.32)

where x̂k
i , k = 1, . . . ,ng, is the k-th FIR coefficient and ng is the order. Applying (3.20)-(3.21) to the training

data {x1, . . . ,xl} yields a one-class SVM prediction model (3.24). Notice that in principle, larger training

data set provides better descriptions of the boundary of the nominal cluster. However, in practice, we may

encounter situations where only very limited training data sets are available, as in the MD MPM detection

case. One remedy to overcome this issue is to use historical data. However, this idea would fail if the

historical data is not accessible or was not saved, which is not uncommon in the industry. Another solution

to this problem is enlarging the training data by re-sampling according to the probability distribution of

parameter estimates. To this end, here we propose a simple re-sampling technique. It has been shown in

[117] that parameter estimates from the separable nonlinear least-squares method are Gaussian distributed

(if the noise is Gaussian) and this arguments can also be extended to our iterative closed-loop identification

algorithm with minor modifications. Based on this statement, we can construct rough estimators for the

mean µk and variance σk of each FIR coefficient x̂k,

µ̂k = µ(x̂k
1, . . . , x̂

k
l ), σ̂k = σ(x̂k

1, . . . , x̂
k
l ), k = 1, . . . ,ng, (5.33)

where a common choice for µ(·) and σ(·) are the sample mean and sample variance. It is apparent that

if the number of training models is small due to limited training data, the variance estimator in (5.33) is

conservative relative to the true variance. A proper scaling factor αT (subscript T means temporal) of σ̂k

is necessary. The rule of thumb in selecting αT is: if we have a large set of training data, αT is small;
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otherwise, αT is large. One can also expect that larger scaling factor makes the mismatch detection algorithm

less sensitive to mismatch and vice versa. After scaling the variance estimator, we can re-sample from the

obtained density function to generate a large number of training models and then train a one-class SVM based

on these augmented data. Note that in the case where plenty of historical data are available, the re-sampling

strategy may not be necessary.

5.4.2 SVM prediction

Similar to the SVM training stage, we slide moving windows along the test data and perform a closed-loop

identification in each window. Then use the trained SVM model to predict whether the currently estimated

model can be classified into the initial cluster of normal model estimates. Given the test data point x (a FIR

coefficient vector), p(x) in (3.24) computes the functional distance of this point to the initial cluster and

such distance is known as a score. We can use the sign of this score to classify x. Positive scores mean the

underlying test points can be grouped into the initial cluster and thus show no mismatch. Otherwise, they

are seen as indications of mismatches. Define It as the sign of score for the test moving window at time t.

The users, in practice, tend to be very cautious in raising the MPM alarm since the subsequent closed-loop

identification is expensive. Therefore, the accumulated number of negative scores over last few moving

windows is a more reasonable metric to indicate the occurrence of MPM. This accumulated metric is defined

as

sMPM :=
I−
nT

, (5.34)

where I− := {Ii =−1 : i ∈ Tt} with Tt := {t−nT , . . . , t−1, t}. Here the user-defined term nT means that the

last nT moving windows will be used to compute sMPM. The users can specify a conservative threshold on

sMPM, e.g, 0.95, to be circumspect on raising MPM alarms.

5.5 Examples

In this section, we will provide examples from a single-array CD process of paper machines to verify the pro-

posed iterative CD closed-loop routine identification algorithm and the one-class SVM mismatch detection

approach. These examples are conducted on Honeywell paper machine simulators which highly resemble

practical paper machines.
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Table 5.2: Tuning parameters of the CD MPC
Tuning parameters Values Tuning parameters Values
CV target weight 0.40 MV temporal movement weight 0.25
MV target weight 0.17 MV spatial picketing weight 0.14
CV target value 42 MV target value 0

Prediction horizon 25 Control horizon 4
Actuator bend limit 30 Actuator upper/lower average ±1

Actuator change rate limit 15 Actuator upper/lower limit ±20

5.5.1 Example 1: Iterative CD closed-loop routine identification

For this particular CD process, the opening of autoslice (MV) is manipulated to alter the amount of pulp

slurry distributed across the sheet, which ultimately affects the dry weight (CV) of the paper sheet being

produced. There are 222 measurement boxes and 74 actuators along the cross direction. The selected

sampling interval is 12 seconds and the continuous time constant is 126.4352 seconds. After discretization,

the true CD process has temporal and spatial parameters as follows:

f o = 0.9095, θ
o
S = [0.3802 268.6414 0.10 1.5]T , d = 2.

The controller that is being used in the simulation is CD MPC. Please refer to [12] for details on the explicit

formulation of this MPC. Note that there are four types of constraints involved in the adopted MPC: bend

limits for neighboring actuators, bound limits for the actuator average profile, upper and lower limits for the

actuator profile, and limits of the change rate of actuators. Tuning parameters specified for the MPC are

demonstrated in Table 5.2. The true noise is chosen as a high-pass filter

vo(t) =
1−0.6q−1 +0.3q−2−0.1q−3

1+0.4q−1 +0.1q−2 +0.05q−3 Ieo(t),

where eo(t) is Gaussian white noise with zero mean and non-diagonal covariance matrix Σ. The variance

at each output channel is 0.01. The relevant simulation parameters are demonstrated in Table 5.3 (note that

Table 5.3 also contains several MPM detection parameters that will be used in Example 5.5.2). We further

assume that there is no MPM in this simulation. To verify the effectiveness of the proposed closed-loop

CD identification algorithm with routine operating data, we leave the setpoint unchanged during the entire

simulation, i.e., the noise is the only external signal to the system. We also suppose that the true process delay

is available and is incorporated into the identification algorithm to avoid estimating the inverse of controller
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Table 5.3: Simulation and MPM detection parameters for Example 1 and Example 2
Parameters Values Parameters Values

Actuator zone width 62.5194 mm CD bin windth 20.8398 mm
Sampling interval 12 seconds Iteration number 5

Initial temporal θ
i
T [0.82 0.18] Initial spatial θ

i
S [0.3 200 0.2 4.0]

Window size 80 min Window step size 20 min
Training data size 800 min Temporal αT 3

Spatial αS 1.5 Noise αN 3
Time noise model changes 1200th min Time MPM occurs 1600th min

as the process model. With the above setting, the simulation of closed-loop system lasts for 120 minutes

(600 samples of input-output data). Plots of input and output data from simulation are shown in Figure 5.1

below. Initially, the controller manipulates the actuator array to attenuate the steady-state disturbances acting

on the output. After this transient part the whole closed-loop system enters a steady-state mode and thus we

select the last 400 samples of data to perform the closed-loop identification.

The initial spatial and temporal parameters for the identification algorithm are shown in Table 5.3. We

find that similar to most open-loop Hammerstein model identifications, our algorithm converges very fast to

the local minimum in just a few iterations. The maximum iteration number is set to K = 5. For the tem-

poral model, we choose na = 20, nb = 50. The spatial order is selected as p = 30. The users may require

trial-and-error in implementing our algorithm in practice and empirical insights into the noise characteristics

are valuable in choosing these orders. In addition, proper regularizations are necessary in executing this

algorithm in order to smooth the estimated FIR coefficients. The regularization can also ensure the numer-

ical stability incurred with the high-order least-squares problem (5.20) when the regressor matrix has large

condition number. Table 5.3 summarizes relevant parameters chosen for these two examples studied in this

section.

The top-left plot of Fig. 5.2 demonstrates the impulse response of the estimated inverse of noise model

versus that of the true inverse of noise model. As expected, these two lines are fairly close to each other

which indicates that the estimated noise model is accurate. After steps 4-6 in Algorithm 5.1, the estimated

values of temporal and spatial parameters are

f̂ = 0.9060, θ̂ S = [0.3442 277.0566 0.0694 1.7889]T .

One can see that these parameter estimates are very precise. In the SVM-based mismatch detection, we
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Figure 5.1: Simulated input-output data for the closed-loop CD process

are more interested in the FIR coefficients of these models. The next two plots on the left side of Fig. 5.2

demonstrate the computed impulse responses of both spatial and temporal models against those of the true

models. It is apparent that all these estimated impulse responses coefficients approximate the true ones with

high accuracy. More importantly, the noise model and process model can be independently estimated, which

paves a way to discriminate the MPM from noise model change. As an additional test, we change the noise

model into a low-pass filter

vo(t) =
1+0.7q−1 +0.4q−2

1−0.5q−1 +0.1q−2 Ieo(t),

and repeat the closed-loop identification procedures above. The corresponding identification results are

shown in the right plot of Fig. 5.2. Once again, the estimated impulse responses are very close to the true

responses. These results verify the effectiveness of our proposed CD closed-loop identification method.

5.5.2 Example 2: One-class SVM model-plant mismatch detection

In this example, we continue studying the previous closed-loop CD simulation but shift our attention to

the mismatch detection. The main simulation parameters stay the same as those in Example 5.5.1. Table

5.3 also lists other parameters that are specific to the CD MPM detection algorithm. It is worth pointing

out that here we choose a relatively small spatial scaling factor αS to increase the sensitivity of our MPM

detection algorithm in detecting spatial mismatches. During the steady-state operation, the spatial mismatch

is relatively important as it directly determines the steady-state control performance. In this example, we put

our emphasis on the spatial mismatch detection.

The simulation logic for this example is elaborated as follows. Initially there is neither MPM nor noise
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Figure 5.2: CD closed-loop iterative identification results: noise model is a high-pass filter (left); noise
model is a low-pass filter (right);
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Figure 5.3: The colormap of simulated input-output data for CD MPM detection
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model change and the noise model is chosen as Ho(q) = (1− 0.6q−1)/(1+ 0.4q−1). After disposing the

initial transient part due to attenuating the steady-state disturbance, we use the first 4000 samples of data (cf.

Table 5.3) as the training data. Apply moving windows to the training data and identify spatial, temporal and

noise models from each moving window. Each of these moving windows contain 400 samples and a step

size of 100 samples. Once this step is complete we train one-class SVMs separately to these models and

obtain the corresponding prediction functions. Notice that this procedure involves scaling the initial cluster

and re-sampling. From then on, the SVMs start to predict mismatches. After 6000 samples, we gradually

switch the noise model into Ho(q) = (1+0.7q−1)/(1−0.5q−1). At the 8000th sample, the width parameter

of true plant begins to increase, gradually to 1.5 times of the original value after 300 samples. Then the

true width parameter settles at the new value thereafter. As a comparison, we add an online user-specified

performance index to monitor the output variance [118]. Note that throughout this simulation there is no

setpoint change or any other external excitation.

The colormaps of simulated input and output data are shown in Fig. 5.3. We highlight the time at which

we begin to introduce the noise model change and spatial MPM. It is clear that the output variance inflates

after introducing the noise model change and increases furthermore after adding the MPM. Fig. 5.4 illustrates

the spatial and temporal parameter estimates over all moving windows where the red dash-dotted line in each

plot shows the true parameter value over time. The blue lines display the estimated parameter values in each

moving window. Although these parameter estimates are subject to large variance due to low excitation levels

in the routine closed-loop data, it still provides valuable insights for the operators on which parameter may

have drifted. Moreover, this closed-loop identification algorithm can easily carry over to the data collected

during closed-loop identification experiment. This means that if a closed-loop identification is necessary, we

only need to start injecting external excitations to the system, with the closed-loop identification algorithm

operating continuously.

Fig. 5.5 displays the detailed mismatch detection results. As expected, the user-specified performance

index is extremely sensitive to the changes in output variance, whether they are caused by noise model change

or by MPM. It starts to drop obviously after the noise change even before the MPM is added. This is the

main drawback of using user-specified or other variance-based performance index to examine the happening

of MPM: they are not able to distinguish noise model change from MPM. In contrast, the scores obtained

from SVM predictions can clearly indicate whether it is a noise model change or a MPM. Since it monitors

three models independently, we can significantly reduce the number of false alarms on MPM due to noise

97



5.6. Summary

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

0.5

1

Gain estimates

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

200

400

600
Width estimates

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

0.2

0.4

0.6
Divergence estimates

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
1

1.5

2
Attenuation estimates

Time in samples
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

0

100

200

300
Time constant estimates

Figure 5.4: Process parameter estimates over mov-
ing windows

Noise change →

MPM →

Colormap of dry weight data

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

50

100

150

200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0.4

0.6

0.8

1
User-specified performance index

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
-200

0

200
SVM scores for noise model estimates

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

50

100

150
SVM scores for temporal model estimates

Time in samples
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

-200

0

200
SVM scores for spatial model estimates

Figure 5.5: MPM and noise model change detection
results

model changes. Notice that occasionally there may be several negative scores which implies a mismatch in

the underlying moving window. These outliers shall not affect our decisions regarding the MPM. As pointed

out in Section 3.5.3 and Section 5.4.2, we shall use the accumulated score metric (5.34) to raise the mismatch

alarm, instead of any single negative score observed occasionally.

5.6 Summary

In this chapter, we present a novel closed-loop identification method that can provide consistent parameter

estimates for the CD process. It is applicable to the routine operating data that lack external excitations, given

that a set of weak conditions on the informativeness of closed-loop data are satisfied. For the CD MPM

detection, we split the routine operating data into training and test stages. The closed-loop identification
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method is implemented in moving windows continuously over both stages. We then develop one-class SVM

models based on the clusters of model estimates from the training data. Such SVM models are then used to

predict classifications of models estimated from the test data. From the predictions, we are able to detect the

presence of MPM. Moreover, this approach enables us to monitor the changes in process and noise models

separately, thus our detection results on MPM are robust to noise model changes. Two simulation examples

are presented to validate the effectiveness of the proposed methods.
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Chapter 6

Closed-loop Optimal Input Design for CD

Processes

6.1 Introduction

For CD processes, most existing input design results focus on the open-loop case, see [71]. The main draw-

back of open loop input design is the resultant production loss as the normal operations of the process risk

being interrupted. Results on closed-loop optimal input design for CD processes are scarce, with current

industrial practice of using spatial-bump-temporal-PRBS signals as excitation signals for closed-loop iden-

tification (denoted as “bump excitation” in this work) [72].

In this chapter, we design excitation signals for the CD process with optimal input design techniques.

In particular, we focus primarily on input design for the steady-state CD process model, in light of the fact

that mostly the CD process operates at steady-state. The major challenge lies in how to represent the closed-

loop CD process with a parsimonious parametric model to avoid large input-output dimensions. Inspired

by [82], we propose to develop a scalar noncausal model for the closed-loop CD process to resolve this

issue. Furthermore, we demonstrate that a causal model can be obtained and it is equivalent to the noncausal

model in the sense of same output spectrum. It is further shown that the maximum likelihood estimate

and parameter covariance matrix of the causal-equivalent model converge to those of the noncausal model

asymptotically with probability one. In this sense, the optimal excitation signal can be designed based solely

on the causal model.

This chapter is outlined as follows. In Section 6.2, we present the CD steady-state model. In Section 6.3,

we illustrate detailed procedures to develop a scalar causal-equivalent model for the closed-loop CD process.

In Section 6.4, the optimal input design procedures are demonstrated based on the causal-equivalent model,

followed by a simulation example in Section 6.5 to verify the proposed results.
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Figure 6.1: The closed-loop optimal input design configuration

6.2 Preliminaries

6.2.1 Open-loop CD process model

In this work, we consider the following classical CD process model,

y(t) = g(q)Gu(t)+v(t), (6.1)

where y(t) ∈ Rm and u(t) ∈ Rm are the CV and MV profiles. Note that here we assume, without loss of

generality, that the dimensions of output and input profiles are equal. The results in this chapter can be easily

extended to the more general case in which theirs dimensions are different. v(t) is the colored measurement

noise. G ∈ Rm×m is the steady-state gain matrix. In this chapter, we pose the following assumptions on the

structure of G matrix. The diagram of closed-loop optimal input design for steady-state CD processes is

shown in Fig. 6.1.

Assumption 6.2.1. All actuators of the CD process have the same symmetric impulse response in the spatial

direction at steady-state. The columns of G matrix are indeed sampled version of these responses. Thus G

matrix is Toeplitz-structured.

For the purpose of spatial optimal excitation signal design, the following steady-state CD process model

is of interest,

yss = Gssuss +vss, (6.2)

where yss ∈Rm is the steady-state measured CV profile, and uss ∈Rm is the steady-state MV profile. Gss =G

is the steady-state process gain. vss = φe ∈ Rm is the steady-state output disturbance, where e ∈ Rm is the

spatial noise. For convenience, we suppose that the spatial filter φ is also Toeplitz-structured and sparse as

Gss.
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6.2.2 Closed-loop steady-state CD process model

Designing closed-loop dither signals requires an explicit expression of the controller to formulate the objec-

tive function of input design. It is well-known that CD MPC may display time-varying or even nonlinear

dynamics if any constraint is active. Thus input design for closed-loop MPC systems involving active con-

straints is non-trivial. In this work, to simplify this problem we introduce the following assumption.

Assumption 6.2.2. The MPC is assumed to operate in a linear mode with no active constraints.

A typical MPC cost for CD process is expressed as [12]

min
∆u(k)

J(k) = min
∆u(k)

{
Hp

∑
j=1

[ŷ(k+ j)−ysp(k+ j)]T Q1 [ŷ(k+ j)−ysp(k+ j)]+

Hu−1

∑
j=0

[
∆u(k+ j)T Q2∆u(k+ j)+u(k+ j)T Q3u(k+ j)

]}
, (6.3)

where Hp and Hu are the prediction and control horizons. ysp(k) is the target value for output at time k. ŷ(k)

is the predicted output value at time k. ∆u(k) is the changes in actuator profile at time k and u(k) is the input

profile. Q1, Q2 and Q3 are diagonal weighting matrices for controlled properties, changes in actuator array

and the actuator array, respectively.

With Assumption 6.2.2, the closed expression of MPC is shown to be [12]

Kss =−Q−1
3 αKGssQ1, (6.4)

where Q1 is the weight matrix in MPC objective function penalizing the deviation of CV profile from its

setpoint. Q3 is the corresponding weight matrix to penalize the offset of steady-state MV from its target. αK

is a constant determined from the dynamic model of actuators. In practice the weighting matrices Q1 and Q3

are often chosen to be diagonal. Assuming that Q1 and Q3 are diagonal, the controller Kss then has a matrix

structure similar to that of gain matrix Gss. The structural similarity between Kss and Gss will be used in the

derivations below.

Remark 6.2.1. While Assumption 6.2.2 seems to be a restrictive assumption in practical implementation of

our algorithm, industrial experience reveals that a well-tuned CD MPC normally operates without active

constraints. Extension of our study to incorporate active constraints will be a consideration in our future

work.
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Combining (6.2) and (6.4), we can easily arrive at the following closed-loop CD process (cf. Fig. 6.1)

yss = (I+GssKss)
−1 GssKssr+(I+GssKss)

−1 vss, (6.5)

uss = (I+KssGss)
−1 r− (I+KssGss)

−1 Kssvss, (6.6)

where r ∈ Rm is the spatial excitation signal to be designed.

6.2.3 Spatial optimal input design for the CD process

When it comes to spatial optimal input design, the parameters of interest here are those in the gain matrix

Gss (or more specifically, the parameters in a column of Gss). However, optimal input design directly based

on the closed-loop model (6.5)-(6.6) is non-trivial due to the large input-output dimensions as well as the

large number of parameters in Gss. To circumvent this problem, we propose to use a scalar transfer function

along the spatial coordinate to represent the steady-state response of CD actuators. In this sense, the original

optimal input design aimed for the MIMO CD model can be re-formulated into that for the scalar spatial

model, which significantly reduces the complexity. However, the disadvantage is that this scalar spatial

transfer function has to be noncausal to capture the responses of actuators on both sides (see Fig. 6.2),

analogous to the ‘past’ and ‘future’ in the conventional time coordinate. We provide theoretical basis showing

that the noncausal model can be further converted to a causal-equivalent model such that the input design

can be performed based on this causal model.

6.3 Causal scalar transfer function representation of the CD process

6.3.1 Noncausal scalar model of the closed-loop CD process

From the aforementioned structure of Gss as well as Assumption 6.2.1, one is readily able to extract a scalar

noncausal FIR model from any single column of Gss to represent the spatial impulse response of an actuator

g(λ ,λ−1) = g−nλ
−n + . . .+g0 + . . .+gnλ

n, (6.7)

where n < m is a truncated index representing significant coefficients. The positive and negative powers of

λ denote the anti-causal and causal shifts, respectively. The gi, i = −n, . . . ,n, are spatial impulse response
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coefficients and in general symmetry of these coefficients is enforced, i.e., gi = g−i. Since in most cases the

noncausal FIR model (6.7) has a high order (i.e., n is large), a parsimonious noncausal transfer function is

necessary to simplify this model. First the following assumption is present.

Assumption 6.3.1. The complex trigonometric polynomial (6.7) has real and symmetric coefficients. More-

over, this polynomial is positive at any points on the unit circle |λ |= 1.

Remark 6.3.1. Assumption 6.3.1 is posed to facilitate the conversion of the noncausal model into a causal

equivalent model in the following sections. Although this assumption does not admit a physical motivation

or interpretation, it is a fairly loose condition as most practical actuator impulse response shapes in spatial

direction can satisfy this condition or be approximated by a curve satisfying such requirement.

With this assumption it follows from the Fejér-Riesz Theorem that we can factorize g(λ ,λ−1) as

g−nλ
−n + . . .+g0 + . . .+gnλ

n = M(λ )M(λ−1), ∀ω, (6.8)

where λ = e jω . Here M(λ−1) has the following expression

M(λ−1) = m0 +m1λ
−1 + . . .+mnλ

−n,

where mi, i = 1, . . . ,n, are the coefficients. An immediate observation is that the frequency response of the

left-hand side of (6.8) is real and non-negative at any frequency, which places certain restrictions on the

scope of possible spatial impulse response shapes that we may investigate. However, as commented in 6.3.1,

industrial experience shows that most actual actuator response shapes are able to satisfy or approximately

satisfy this condition. The relationship between Gss and Kss from (6.4) affirms that if Gss satisfies (6.8) then

so does Kss.

After obtaining the causal FIR model M(λ−1), the next step would be to find a parsimonious transfer

function model (e.g., output-error model) to represent M(λ−1). This process can be accomplished from the

system identification toolbox in Matlab and the original noncausal g(λ ,λ−1) is approximated by ḡ(λ ,λ−1)
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as follows

ḡ(λ ,λ−1) =
B(λ )B(λ−1)

A(λ )A(λ−1)
, (6.9)

B(λ−1) = b0 +b1λ
−1 + . . .+bnbλ

−nb , (6.10)

A(λ−1) = 1+a1λ
−1 + . . .+anaλ

−na , (6.11)

where na and nb are the orders of B(λ−1) and A(λ−1), respectively. In a similar fashion, the noncausal

transfer function form of the controller is assumed to be

k̄(λ ,λ−1) =
F(λ )F(λ−1)

E(λ )E(λ−1)
, (6.12)

F(λ−1) = f0 + f1λ
−1 + . . .+ fn f λ

−n f , (6.13)

E(λ−1) = 1+ e1λ
−1 + . . .+ eneλ

−ne , (6.14)

where ne and n f are the orders of E(λ−1) and F(λ−1), respectively. From (6.9)-(6.14), the original high-

dimensional MIMO steady-state closed-loop model (6.5)-(6.6) can be replaced by scalar but noncausal trans-

fer functions5

y(x) =
ḡ

1+ ḡk̄
r(x)+

1
1+ ḡk̄

v(x), (6.15)

u(x) =
1

1+ ḡk̄
r(x)− k̄

1+ ḡk̄
v(x), (6.16)

where x stands for the spatial coordinate. Note that the input and output sensitivity functions have the same

noncausal transfer function representation as shown above.

6.3.2 Causal equivalent closed-loop models

The closed-loop scalar noncausal model of the CD process (6.15)-(6.16) is still not in a form convenient for

traditional optimal input design algorithms. In this subsection we develop a method to find causal-equivalent

models for the noncausal transfer functions such as ḡ(λ ,λ−1). First, the following Lemma is necessary.

Lemma 6.3.1. Suppose that ḡ1(λ ,λ
−1) and ḡ2(λ ,λ

−1) satisfy the conditions in Assumption 6.3.1. Then the

sum ḡ1(λ ,λ
−1)+ ḡ2(λ ,λ

−1) also has a factorization as (6.8).

5In the sequel, we will omit the subscript and use the argument x to indicate the steady-state input and output sequence.
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6.3. Causal scalar transfer function representation of the CD process

Proof. Since the conditions in Assumption 6.3.1 apply to polynomials ḡ1(λ ,λ
−1) and ḡ2(λ ,λ

−1), we

have

ḡ1(e jω ,e− jω) ≥ 0, ∀ω,

ḡ2(e jω ,e− jω) ≥ 0, ∀ω,

Thus it follows that

ḡ1(e jω ,e− jω)+ ḡ2(e jω ,e− jω) ≥ 0, ∀ω. (6.17)

Besides, the coefficient sequence of (6.17) is real and symmetric. From the Fejér-Riesz Theorem there

always exists an M(λ ) such that (6.8) is satisfied. �

Defining S̄ = 1
1+ḡk̄ , from (6.15)-(6.16), we have

S̄ =
A(λ )A(λ−1)E(λ )E(λ−1)

A(λ )A(λ−1)E(λ )E(λ−1)+B(λ )B(λ−1)F(λ )F(λ−1)
. (6.18)

From Lemma 6.3.1, it follows that the denominator of (6.18) can be factorized to be the product of a causal

FIR filter and its anti-causal form. Therefore, the closed-loop transfer functions (6.15)-(6.16) can be simpli-

fied as

y(x) = S̄1(λ ,λ
−1)r(x)+ S̄2(λ ,λ

−1)v(x), (6.19)

u(x) = S̄2(λ ,λ
−1)r(x)− S̄3(λ ,λ

−1)v(x), (6.20)

where S̄i(λ ,λ
−1), i = 1,2,3, has a structure similar to that of (6.9) and (6.12). Further notice that φ can also

be represented by a noncausal transfer function as is assumed in previous sections. In other words, the spatial

noise vss has the following expression

v(x) = h̄(λ ,λ−1)e(x) =
D(λ )D(λ−1)

C(λ )C(λ−1)
e(x), (6.21)

where {e(x)} is a spatial white noise sequence. To find a causal-equivalent transfer function for (6.19)-(6.21),

we establish the following theorem.
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6.3. Causal scalar transfer function representation of the CD process

Theorem 6.3.1. Consider a stochastic process with the output sequence {y(x),x = 1, . . . ,m} generated ac-

cording to the following noncausal Box-Jenkins model

y(x) =
M(λ )M(λ−1)

N(λ )N(λ−1)
r(x)+

R(λ )R(λ−1)

S(λ )S(λ−1)
e(x), (6.22)

where {e(x),x = 1, . . . ,m} is a Gaussian white noise sequence. The polynomials with arguments λ−1 and

λ are the causal and anti-causal parts, respectively. Assume that all polynomials have no zeros on the unit

circle and are minimum phase. Then there exist causal polynomials M̃y(λ
−1), Ñy(λ

−1), R̃y(λ
−1), S̃y(λ

−1)

and a white noise sequence {ẽy(x)} as well as a stochastic sequence {ỹ(x)} which has the same spectra as

{y(x)} such that,

ỹ(x) =
M̃y(λ

−1)

Ñy(λ−1)
r(x)+

R̃y(λ
−1)

S̃y(λ−1)
ẽy(x). (6.23)

Proof. Multiplying both sides of (6.22) by using N(λ )N(λ−1)S(λ )S(λ−1), we obtain

N(λ )N(λ−1)S(λ−1)S(λ )y(x) = M(λ )M(λ−1)S(λ )

S(λ−1)r(x)+N(λ )N(λ−1)R(λ )R(λ−1)e(x).
(6.24)

Define the roots of causal polynomials M(λ−1), N(λ−1), R(λ−1), S(λ−1) to be, respectively, αi, βi, γi and

δi. Let

πM = ∏
i

λ−1−αi

λ −αi
, πN = ∏

i

λ−1−βi

λ −βi
, πR = ∏

i

λ−1− γi

λ − γi
, πS = ∏

i

λ−1−δi

λ −δi
.

Notice that N(λ )N(λ−1)πN = N2(λ−1) and the same also holds for M(λ ), R(λ ), and S(λ ). Multiplying

both sides of (6.24) by πMπS, after some manipulations, we have

N2(λ−1)S2(λ−1)ỹ(x) = M2(λ−1)S2(λ−1)r(x)+R2(λ−1)ẽy(x), (6.25)

where ỹ(x) = πM
πN

y(x), ẽy(x) = πMπS
πNπR

e(x). Since πM, πN , πR and πS are all-pass filters, {ẽy(x)} is a Gaussian

white noise sequence with the same spectra as {e(x)} but may correspond to different realizations. Besides,

{ỹ(x)} has the same spectra as {y(x)}. Therefore, (6.23) is verified by pairing M̃(λ−1) = M2(λ−1) and so

on with (6.25). �

Remark 6.3.2. From Theorem 6.3.1 one may interpret the equivalence between {ỹ(x)} and {y(x)} in terms
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6.3. Causal scalar transfer function representation of the CD process

of the spectra, although realizations might be different. However, this equivalence greatly facilitates the

maximum likelihood estimation for the original noncausal model by reducing it into a causal-equivalent

form. The rationale for performing identification in this manner has been explained in [82] for an ARX

model. The conclusion is that the log-likelihood function of the noncausal model converges to that of the

causal model with probability one as the sample number tends to infinity. This result can also be extended to

the noncausal Box-Jenkins model in (6.22).

Similarly, the input signal u(x) in (6.20) can also be represented through causal filters

ũ(x) =
M̃u(λ

−1)

Ñu(λ−1)
r(x)+

R̃u(λ
−1)

S̃u(λ−1)
ẽu(x), (6.26)

where {ũ(x)} and {u(x)} have the same spectra. The equations (6.23) and (6.26) are necessary for the

optimal input design in the sequel.

6.3.3 Covariance matrix equivalence of the causal and noncausal model parameter

estimates

It is well-known that if the white noise is Gaussian distributed, the prediction error method with properly cho-

sen criterion coincides with the maximum likelihood estimation. In [82], it is shown that the log-likelihood

function of the noncausal ARX model and that of the corresponding causal ARX model converge to the same

value as the sample number tends to infinity. In this subsection we will demonstrate a similar statement for

Box-Jenkins models with closed-loop data.

Theorem 6.3.2. Consider the following noncausal process model (θ is the parameter in a compact set Ω)

y(x) = ḡ(λ ,λ−1,θ)u(x)+ h̄(λ ,λ−1,θ)e(x), (6.27)

where ḡ is defined in (6.9)-(6.11) and h̄ is defined in (6.21). e(x) is Gaussian white noise. Suppose that

the data is generated in closed-loop with controller (6.12)-(6.14) and that all relevant transfer functions are

uniformly stable. Denote L m
y (y) as the log-likelihood function of the noncausal model (6.27) and L m

ỹ (ỹ) as

the log-likelihood function of the causal-equivalent model of (6.27) obtained similarly as (6.23). Then, as
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m→ ∞ (m is the spatial sample number, i.e., the number of measurement bins),

sup
θ∈Ω

|L m
y (y)−L m

ỹ (ỹ)| w.p.1−−→ 0, (6.28)

sup
θ∈Ω

∥∥∥∥dL m
y (y)

dθ
−

dL m
ỹ (ỹ)

dθ

∥∥∥∥ w.p.1−−→ 0. (6.29)

Proof. The proof of (6.28) follows along Proposition 3 in [82] and the proof for (6.29). �

We outline the proof for (6.29) in Theorem 6.3.2. First the following lemma is necessary.

Lemma 6.3.2. Consider a set of uniformly stable causal or noncausal filters G(λ ,θ),θ ∈Ω, and H(λ ,θ),θ ∈

Ω. Define u(x), x = 1, . . . ,m, as a bounded signal sequence, and e(x), x = 1, . . . ,m, as a sequence of Gaus-

sian white noise with zero mean and variance σ2. The signal s(x), x = 1, . . . ,m, is generated via

sθ (x) = G(λ ,θ)u(x)+H(λ ,θ)e(x). (6.30)

Then as m→ ∞, the sample variance of sx(θ) converges uniformly in probability to the ensemble variance

sup
θ∈Ω

∥∥∥∥∥ 1
m

m

∑
x=1

sθ (x)sT
θ (x)−

1
m

m

∑
x=1

Esθ (x)sT
θ (x)

∥∥∥∥∥→ 0,w.p.1. (6.31)

Note that (6.31) is an extension of Theorem 2B.1 in [15] to noncausal models. The proof follows a

similar line and is thus omitted here. Based on Lemma 6.3.2, as m→ ∞, the following statements hold

• dL m
y (y,θ)
dθ

converges uniformly w.r.t. θ in probability;

• dL m
ỹ (ỹ,θ)
dθ

converges uniformly w.r.t. θ in probability.

The reason is that both dL m
y (y)

dθ
and

L m
ỹ (ỹ,θ)
dθ

can similarly be considered as generated from uniformly stable

filters. Thus from Lemma 6.3.2 the above statements hold. On the other hand, from the proof of (6.28) in

[82], one can see that both L m
y (y) and L m

ỹ (ỹ,θ) converge uniformly to the same value, denoted as σ2(θ).

Based on Theorem 7.17 in [119], with the above statements, we have, as m→ ∞,

sup
θ∈Ω

∥∥∥∥dL m
y (y,θ)
dθ

− dσ2(θ)

dθ

∥∥∥∥→ 0, w.p.1, (6.32)

sup
θ∈Ω

∥∥∥∥dL m
ỹ (ỹ,θ)
dθ

− dσ2(θ)

dθ

∥∥∥∥→ 0, w.p.1. (6.33)
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From the Triangle Inequality, the result (6.29) follows. It should be pointed out that in this proof the ‘unifor-

mity’ of the convergence in probability is a necessary condition for the results to hold.

Remark 6.3.3. Theorem 6.3.2 implies that both the log-likelihood function and its derivative with respect

parameter θ obtained from the noncausal and causal-equivalent models are identical asymptotically. There-

fore, we can conclude that the parameter covariances from these two schemes coincide, and hence we may

perform the optimal input design based solely on the causal-equivalent model.

6.4 Closed-loop optimal input design

In this section closed-loop optimal input design for the steady-state CD process is investigated. As mentioned

above we can accomplish this task with the causal-equivalent representation of CD process. Note that in

practice the noise model parameters are of less interest and thus we split the parameter θ as θ = [ρT ηT ]T ,

where ρ is the process model parameter and η is the noise model parameter. For optimal input design our

objective is to minimize the covariance of ρ by selecting the optimal excitation signal. From Theorem 6.3.2

the parameter covariance of ρ , Pρ , is expressed as

Pρ ∼
1
m

[
1

2πλ0

∫
π

−π

1
|h̃(e jω ,η0)|2

∂ g̃(e jω ,ρ0)

∂ρ
Φũ(ω)

∂ g̃T (e− jω ,ρ0)

∂ρ
dω

]−1

, (6.34)

where λ0 is the variance of noise ẽy(x). g̃ and h̃ are the causal equivalent forms of ḡ and h̄, respectively. The

input spectrum Φũ(ω), according to (6.26), is related to the excitation spectrum Φr(ω) via

Φũ(ω) =

∣∣∣∣M̃u(e− jω)

Ñu(e− jω)

∣∣∣∣2 Φr(ω)+

∣∣∣∣ R̃u(e− jω)

S̃u(e− jω)

∣∣∣∣2 λ0. (6.35)

The closed-loop optimal input design can be formulated as minimizing a function of the parameter co-

variance Pρ subject to a set of constraints, e.g., input and output power constraints,

min
Φr(ω)

f0(Pρ(Φr(ω))) (6.36)

s.t.
1

2π

∫
π

−π

Φu(ω)dω ≤ cu, (6.37)

1
2π

∫
π

−π

Φy(ω)dω ≤ cy, (6.38)
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where cu and cy are the power limits on input and output signals. The constraints (6.37)-(6.38) can be written

in terms of the design variable Φr(ω) by (6.35) and (6.23), respectively. As this optimization problem is still

infinite-dimensional (since Φr(ω) is a continuous function of ω), a technique known as finite dimensional

parameterization [62] can be employed to reduce it into finite-dimensional. Specifically, Φr(ω) can be

parameterized by the definition of a spectrum

Φr(ω) = ∑
mc

k=−mc
cke− jωk ≥ 0, ∀ω, (6.39)

where ck, k = −mc, . . . ,mc, are the parameters, and mc is the selected number of parameters. With (6.39)

the original optimization problem can be cast into one with finite number of parameters. Note that the

non-negativity constraint on the parameterized spectrum (6.39) at any frequency has to be satisfied while

searching for the optimal ck. This requirement can be fulfilled by using the KYP lemma and constructing

a controllable and observable state-space realization for the spectrum [62]. After these modifications the

resulting optimization problem is convex (choose f0(·) to be a convex function, such as the trace of inverse

function, negative log determinant function and negative maximum eigenvalue function) and can be readily

solved by off-the-shelf solvers such as the CVX toolbox. In Example 6.5 below, we choose the negative log

determinant function as f0(·).

Remark 6.4.1. Note that the aforementioned optimal input design only considers the power constraints on

the input and output (6.37)-(6.38). However, in practice, the hard constraints on CVs and MVs make more

sense and this is still an open problem for frequency-domain optimal input design. Besides, specific to the

CD process, the second-order bending constraints preventing ‘picketing’ on actuators are also important.

These practical constraints are beyond the scope of this paper and will be investigated in future work.

Remark 6.4.2. A common issue for optimal input design is that the covariance matrix depends on the true

parameter values, as shown in (6.34), which may not be accessible in practice. One remedy is the adaptive

input design scheme: specifying an initial parameter value to design an optimal input signal, updating pa-

rameter estimates via identifications and using the updated parameter value to design a new optimal input.

This process is performed iteratively until it converges.

Remark 6.4.3. The optimal input design approach proposed above is only meant for the CD steady-state

model. In fact, the practically implemented input design for CD identification is two-dimensional involving

both spatial and temporal variations. For the design of optimal input in the temporal direction, the mature
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techniques developed in recent years for traditional dynamic systems can be applied directly. In this work, for

simplicity, in the next chapter for integrated simulations, we use temporal PRBS signal as the time-domain

variations and spatial optimal signal obtained above to composite the actual CD excitation signal.

6.5 Example

In this section we use a simulation example to validate the proposed CD process modeling and closed-loop

optimal input design methods. In particular, we would compare the effect of optimally designed input on

parameter estimates with that of bump excitation signal that is currently employed in the industry [72].

In practice, the spatial response shape of a single actuator is assumed to satisfy the nonlinear equation

in (1.2) with four spatial parameters [12]. In this example, these parameters are specified with values,

respectively, γ = 0.3802, ξ = 268.6414, β = 0.10, α = 3.5. The response shape under impulse signal of

amplitude 5 is illustrated as the red curve (upper plot) in Fig. 6.2. For convenience we assume that the CD

process has 222 actuators and measurement bins. The controller is chosen to be CD-MPC with prediction

horizon 25 samples and control horizon 5 samples (sampling interval is 12 seconds). The weighting matrices

in the cost function is selected to be Q1 = 0.4I and Q3 = 0.1667I. The parameter αK in (6.4) is computed

to be 12.3212. From Section 6.3 one is able to obtain noncausal scalar models for the CD process and the

controller, respectively. The impulse response curves of these noncausal models are shown in Fig. 6.2 in the

blue dash-dotted curves. Note that for simplicity we have chosen nb = n f = 1, na = ne = 2. Higher order

models improve the quality of estimates but also increase the computational cost in designing the optimal

input. The noise variance is chosen to be 0.1 with noise model φ = I (output-error structure). Fig. 6.3 shows

the optimal spectrum based on causal-equivalent models with cu = 50. Notice that small process gain (the

causal-equivalent model has even smaller gain) as in this case requires a large excitation signal to achieve a

good signal-to-noise ratio.

To make a fair comparison between the optimal and bump excitations, we set a hard constraint ±10 on

the amplitude of excitation signals. For the optimally designed input, if any part of its amplitude violates

this constraint, we set that part at the corresponding bound. For the bumped signal, the amplitudes of bumps

alternate between −10 and 10. In order to further show the optimality of designed input, we generate

another excitation signal that is a white noise sequence with the same variance as the optimal input. For

each excitation signal we perform 100 Monte-Carlo simulations and a process model is identified in each
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Figure 6.2: The impulse response of a single actuator (red solid line) and the impulse response of the esti-
mated noncausal transfer function (blue dash-dotted line).

simulation. Fig. 6.4 shows the impulse responses of estimated models under these three excitation signals.

It can been observed that estimates under the optimal input have the smallest variance while estimates under

the bumped signal show the largest variance. Specifically, the averaged errors of estimated impulse responses

relative to the true response are shown to be 0.0643, 1.3344 and 0.4479, respectively, for the optimal input,

bumped input and white noise input. Thus we can conclude that our optimal input outperforms the bump

excitation signal and white noise signal (with the same variance) in terms of the identification performance.
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Spectrum of Optimal Input based on Causal Model

Figure 6.3: Spectrum of the optimal input based on causal-equivalent model of the CD process.
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Figure 6.4: The impulse responses of the estimated process model in the closed-loop under the optimally
designed input (upper plot), the bumped input (middle plot), and the white noise input (bottom plot) in 100
Monte-Carlo simulations.

6.6 Summary

We developed an approach to represent the closed-loop steady-state CD process model with noncausal scalar

transfer functions. The advantage of using noncausal models is that it circumvents the problem of large

dimensions associated with MIMO representations of CD processes. We then show that these noncausal

transfer functions can be further represented by spectrally equivalent causal transfer functions. A closed-

loop optimal input design framework is proposed based on these causal-equivalent models. An example is

provided to validate the proposed approaches and demonstrate the advantage of optimal input in system iden-

tification performance over the industrial practice of using bump excitation as well as white noise excitation.
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Chapter 7

CD Iterative Identification and Control

In this section we integrate controller performance assessment, model-plant mismatch detection, optimal

input design and closed-loop identification together. The controller performance assessment and mismatch

detection combine as the monitoring block and users can make overall decisions by observing the respective

detection results. Notice that not all model-plant mismatches can significantly degrade the controller per-

formance and also that the controller performance assessment technique is only applicable to steady-state

data. In other words, the performance index from the controller performance assessment may not give much

information about the transient performance. Therefore, our strategy is to use the diagnosis results from

the MPM detection as the main factor in considering whether we inject closed-loop excitations. The con-

troller performance assessment results serve as a side metric on how good the controller is performing at

steady-state. The users can modify this strategy based on their own preference or demand.

The process in this example is a single-array CD process with dry weight as the measured profile and

autoslice as the actuators. There are 222 measurement bins in the cross direction and 74 actuator zones.

Parameters selected in this simulation example are shown in Table 7.1.

Table 7.1: Summary of parameters setup in adaptive control simulation
Parameters Values Parameters Values

Moving window size 40 min Actuator zone width 62.5194 mm
Window step size 5 min Measurement bin width 20.8398 mm
Sampling interval 12 seconds # of measurement bins 222

Training stage duration 4.17 hours # of actuator zones 74
Identification duration 1.67 hours Nominal spatial parameters [0.38 268 0.1 1.5]

MPM inspection interval 1 hour Nominal temporal parameters [126 35.98]
Mismatch threshold 0.8 Spatial alpha ratio 1.3∼ 4

# of ID iterations 10 Temporal alpha ratio 3

Note that the MPM inspection interval determines how many of last few SVM scores are used to discover

the existence of mismatch. If the percentage of negative SVM scores is greater than the mismatch threshold,
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then we would raise a mismatch alarm. The parameter spatial/temporal alpha ratio shows the extent to which

we would like to enlarge the initial cluster of process model estimates from the training data. At the beginning

of simulation we choose the initial parameters as θ i
C = [0.3 200 0.2 4.0]T , θ i

T = [60 2]T . In the case with

mismatch and subsequent closed-loop identification we will update the initial values after identification into

those obtained from the identification stage. Note also that our simulation is based on the assumption that

the output noise is white. However, the underlying idea can be extended to the case where process output is

affected by colored noise (cf. Section 5.3).

7.1 Case I: No model-plant mismatch

In this case study we examine our controller performance assessment, mismatch detection and closed-loop

identification algorithms when there is no discrepancy between the true plant and plant model used by CD

MPC. Initially there is a steady-state disturbance acting on the CD output profile and it is rapidly attenuated

by the CD controller. We apply the whole adaptive control algorithm since the beginning of the simula-

tion, however, the first few parameter estimates are discarded since they may not be reliable due to the

non-stationary transient behavior during the rejection of steady-state disturbance. This logic is performed

similarly for the following case studies when there exist model-plant mismatches. Fig. 7.1 demonstrates the

sampled output and input data during the normal operation free of mismatches. Obviously the system enters

into a steady-state mode after the initial transient part in compensating for the steady-state disturbance and

there is no significant increase in the variations of output and input at steady-state. Fig. 7.2 displays the ex-

plicit parameter estimates at each moving windows, for both spatial and temporal models, from which we do

not observe apparent trend of a parameter drifting away from the true parameter (shown in red dash-dotted

line). There are some biases in several parameter estimates such as the gain and time constant and they come

from the ridge regularization in the high-order ARX modeling step of iterative identifications. However, as

remarked above regarding our mismatch detection method, the changes in parameter estimates are of impor-

tance rather than the accuracy of these parameter estimates relative to the true values. The adaptive control

simulation results are illustrated in Fig. 7.3. One can see that the user-specified benchmark stays close to

one all the time, and SVM scores for both spatial and temporal models are positive most of the time which

implies that there is no mismatch existing in the profiles. The 2σ values for output and input are almost flat

at a level after initial drops due to the rejection of steady-state disturbance.
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Figure 7.1: No mismatch: The collected output and input profiles
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Figure 7.2: No mismatch: Estimates of parameters in each moving window

7.2 Case II: Gain mismatch

In this case study we concentrate on the effects of gain model-plant mismatch. For such purpose we let

the simulator run for a while without any mismatch and then we manually introduce a gain mismatch to

the simulation after 2000 samples. To be specific, initially both true plant gain and model gain are set to

be equal, i.e., γp = γm, where γp is the gain of true plant, and γm = 0.38 is the process model gain. After

obtaining 2000 samples (approximately 6.67 hours) of input-output data we create a model-plant mismatch

by altering the true plant gain to γp = 2γm gradually while keeping the model gain unchanged. The gathered

input-output data and parameter estimates from moving windows are shown in Fig. 7.4 and Fig. 7.5, respec-

tively. From the input-output profile plot we can see that the mismatch detection algorithm successfully finds

the mismatch shortly after we introduce the mismatch. The identification experiment starts with injecting
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Figure 7.3: No mismatch: Adaptive CD MPC control results

excitation signals into the system and ends with identifying a new process model. The mismatch is more

clearly shown in the gain parameter estimates plot Fig. 7.5 in which gain estimates move up to a new level

after we create the mismatch. Fig. 7.6 presents some key metrics over the entire adaptive control simulation.

One can find that the user-specified benchmark starts to drop after the mismatch takes place until the mov-

ing window does not cover non-stationary data after the closed-loop identification. Note that if a moving

window contains portions of data from both excitation and routine operation periods, then one expects that

the performance index is low since stationary data is required for the performance assessment algorithm to

perform well. However, the closed-loop identification is still applicable as long as the data meets the require-

ments of quasi stationarity. After the mismatch is introduced both temporal and spatial SVMs return negative

scores showing the possibility of mismatch. In fact, we obtain a series of negative scores especially from the

spatial SVM reports and the percentage of negative scores in the last one hour of moving windows exceeds

the threshold. Therefore, a decision is made stating that a mismatch indeed occurs and we then trigger an

identification experiment. Note that after the identification experiment we collect an extra portion of routine

operation data in order to resume a new SVM training. The updated process model is acquired by averaging

the parameter estimates over the moving windows within the identification stage and is then deployed to the

CD MPC (termed as controller retuning). We can compare the 2σ of input and output before identification

experiment and after controller retuning to find the improvement of control performance of using updated

CD controller.
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7.3. Case III: Width, divergence, and attenuation mismatches

Figure 7.4: Gain mismatch: simulated output and input profile
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Figure 7.5: Gain mismatch: Estimates of parameters in each moving window

7.3 Case III: Width, divergence, and attenuation mismatches

Similar to the gain mismatch case, in this subsection we study the influences of the other three parametric

mismatches on CD MPC performance. For the width mismatch we set ξp = 1.3ξm after 2000 samples and

remain ξm unchanged. The input-output data under this scenario is demonstrated in Fig. 7.7. Clearly these

plots show the same pattern as the gain mismatch case, i.e., the adaptive control scheme consists of five

stages: monitoring, mismatch detected, closed-loop identification, controller retuning and monitoring again

at a new operation condition. The parameter estimates and adaptive control simulation results are shown in

Fig. 7.8 and Fig. 7.9, respectively. For the divergence mismatch, we set βp = 3βm after 2000 sample. The

input-output data, parameter estimation results and adaptive control metrics are shown in Fig. 7.10, Fig. 7.11

and Fig. 7.12, respectively. Again, for the scenario of attenuation mismatch, we change αp = 0.2αm. Note
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Figure 7.6: Gain mismatch: Adaptive CD MPC control results

that the effect of attenuation parameter is not significant in producing CD MPM, and thus we create a large

mismatch here for an illustrative purpose. The corresponding simulation results are shown in Fig. 7.13, Fig.

7.14 and Fig. 7.15, respectively. In summary, for these three scenarios, our adaptive control algorithm is

able to detect the mismatch even with routine operating data. Closed-loop excitation signals are injected into

the system once the mismatch is observed. Careful examination of parameter estimates reveals that during

the identification stage parameters can be accurately identified due to the high-quality excitation signal. We

average the parameters within that period to attain a relatively reliable estimate of the true parameter and

deploy it to the CD controller. Most of the time the input and output variations are reduced after retuning

which implies a better control performance.

7.4 Case IV: Time constant mismatch

In the last case study we focus on the temporal parametric mismatch, i.e., time constant mismatch. Through-

out the entire study we assume that the time delay is known a priori and is specified to the identification

algorithm. The true time constant of plant remains unchanged in the first 2000 samples. After that we in-

crease it to two times of the true parameter value but remain the time constant of process model unchanged.

Fig. 7.16, Fig. 7.17 and Fig. 7.18 demonstrate the corresponding simulation results. Analogous to other

simulations above we can see here that the mismatch detection algorithm is able to detect the mismatch and

then correct it afterwards. Increase in the performance index and reduction of input and output variance show

that the re-tuned control can improve the control performance.
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7.5. Discussion of the simulation results

7.5 Discussion of the simulation results

From the case studies above, one can see that for the normal case, both user-specified benchmark and SVM

MPM detection method give consistent indications of good control performance without any false alarms

on MPM. For the gain mismatch case, as the mismatch is significant, user-specified benchmark manages to

detect the deterioration in control performance. Correspondingly, the MPM detection method also finds the

changes in the process gain. Both indications suggest the triggering of an identification experiment, during

which the output shows large fluctuations. Thus closed-loop identification is destructive to the continuous

operation but fortunately, with our adaptive control scheme, the operator do not need to intentionally initiate a

batch identification but rather just introduce the dither signal. With this method, we can thus avoid the cost on

performing batch identification experiment. After ru-tuning the controller, the control performance recovers

to an excellent level. For the other three spatial mismatches, one can see that the SVM MPM detection

approach is rather sensitive to mismatches, while the performance index is not affected evidently. This

suggests that despite of the presence of these mismatches, the inherent robustness of CD MPC can handle

them to a great extent and thus the control performance is still satisfactory. For illustrative purposes, in our

examples, we let these mismatches trigger the subsequent identifications. However, in practice, as the control

performance is still high, it is not necessary to start the identification experiment under such scenarios. These

examples imply that a combination of performance index and MPM detection results is more advisable in

practice. For the last case study on time constant mismatch, notice that we intentionally introduce a large

mismatch, and the control performance index still remains high. This coincides with the observations in the

literature than the impact of time constant mismatch on control performance is much less compared with the

impacts of other mismatches. A plausible explanation on this is that the performance index is proposed based

on steady-state operating data where the effect of time constant on control performance is not significant.

7.6 Summary

This chapter presents several examples from CD and MD paper machine simulators to demonstrate the adap-

tive control framework. It is observed that the proposed control performance assessment and MPM detection

approaches are applicable to routine operating data. Specifically, the user-specified performance index can

detect significant mismatches while the SVM technique is sensitive to parametric mismatches. Therefore,

a combination of these two techniques are recommended to raise alarms and trigger the subsequent closed-
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7.6. Summary

loop identification experiment. In addition, it is shown that the proposed closed-loop identification can be

continuously applied to both routine operating stage and experimental stage. The control performance can

be recovered after re-tuning the MPC based on updated process models.

Figure 7.7: Width mismatch: The collected output and input profiles
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Figure 7.8: Width mismatch: Estimates of parameters in each moving window
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DW12 Profile
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Figure 7.9: Width mismatch: Adaptive CD MPC control results

Figure 7.10: Divergence mismatch: The collected output and input profiles
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Figure 7.11: Divergence mismatch: Estimates of parameters in each moving window
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DW12 Profile
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Figure 7.12: Divergence mismatch: Adaptive CD MPC control results

Figure 7.13: Attenuation mismatch: The collected output and input profiles
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Figure 7.14: Attenuation mismatch: Estimates of parameters in each moving window
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DW12 Profile

500 1000 1500 2000 2500 3000 3500 4000

50
100
150
200

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1
User-specified Performance Index

Time in Samples
0 500 1000 1500 2000 2500 3000 3500 4000

-200

0

200
SVM Scores for Temporal Dynamic Model

DW12 Profile

500 1000 1500 2000 2500 3000 3500 4000

50
100
150
200

0 500 1000 1500 2000 2500 3000 3500 4000
-200

0

200
SVM Scores for Steady-State Model

0 500 1000 1500 2000 2500 3000 3500 4000

0.5

1

2  of DW12

0 500 1000 1500 2000 2500 3000 3500 4000
Time in Samples

2
3
4

2  of Autoslice

Figure 7.15: Attenuation mismatch: Adaptive CD MPC control results

Figure 7.16: Time constant mismatch: The collected output and input profiles
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Figure 7.17: Time constant mismatch: Estimates of parameters in each moving window
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DW12 Profile
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Figure 7.18: Time constant mismatch: Adaptive CD MPC control results
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Chapter 8

Conclusions

This dissertation has detailed an adaptive MPC framework for both MD and CD processes. This entire

adaptive control scheme consists of four building blocks, namely performance assessment, MPM detection,

optimal input design and closed-loop identification. For MD processes, which can be represented by SISO

or low-dimensional models, we mainly concentrate on the presentation of the proposed MPM detection and

closed-loop identification methods. For CD processes, we extend the closed-loop identification and MPM

detection method by accounting for high dimensions and structural features associated with the CD process.

Besides, we propose a novel performance assessment technique and optimal input design approach that are

computationally friendly and effective for adaptive control.

Specifically, for the closed-loop identification of MD processes, we present a novel ARX-OE method

that is suitable for both routine operating data and experimental data. The proposed ARX-OE method avoids

the bias issue due to the misspecification of noise model in direct identification method. There are two

major steps in the proposed method. In the first step, the original model is approximated with a high-order

ARX model and closed-loop identification is performed for the ARX model. In the second step, an OE

identification is conducted with filtered input-output data based on the estimated ARX model from the first

step. Theoretical analysis shows that the proposed ARX-OE method can provide consistent estimates for the

parameters. We also present a thorough analysis on the informativeness of closed-loop data for this method.

For MD MPM detection, we apply the proposed ARX-OE method to routine operating data (split in to

training and test sections) to obtain rough estimates for process and noise models. Model estimates from the

training section are regarded as the normal cluster without MPM and a one-class SVM model is formed to

depict this cluster. Model estimates from test data are examined by the SVM model to forecast the occurrence

of MPM. This scheme can not only apply to routine data, but also discriminant the MPM from noise model

changes, thus reducing the false alarms significantly. A resampling technique is proposed prior to performing

the one-class SVM training to solve the small sample problem associated with the training data.
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Chapter 8. Conclusions

As for the CD process, we first demonstrate a practical approach for controller performance assessment

as an extension of the MVC benchmark to large-scale systems. This CD MVC approach takes account of

both spatial and temporal performance limitations associated with CD processes. Furthermore, to overcome

the aggressiveness of this benchmark, we incorporate the information about tuning status of the CD con-

troller, both in spatial and temporal directions, into a user-specified benchmark. An algorithm based on

structured multivariate time series modeling is put forward to estimate the proposed CD performance index.

Simple computation involved in this algorithm ensures the applicability of the proposed method for online

performance monitoring.

We further extend the technique of MD MPM detection to CD processes. The main contribution is that

we propose a novel CD closed-loop identification method based on separable least-squares and the closed-

loop ARX-OE method. Conditions on the informativeness of closed-loop data are illustrated and it shows

that most practical situations (e.g., complicated MPC constraints, presence of various disturbances and large

time-delays) can provide informative enough data during routine operating stage. Furthermore, asymptotic

analysis of the CD closed-loop identification shows that the proposed identification algorithm can converge

to local minima and supply consistent estimates for the parameters. The SVM-based CD MPM detection

method is then proposed that can monitoring spatial, temporal and noise models separately and operate with

routine data that is absent of external excitations.

In terms of CD closed-loop optimal input design, we propose a noncausal method that is based on

noncausal modeling of CD processes. This method can effectively address the complexity of input design

for spatially distributed systems due to the large number of parameters. With noncausal modeling, a low-

order scalar noncausal transfer function can be used to approximate the original high-dimensional CD model.

It is shown that the covariance matrix of parameter estimates for this noncausal model is equivalent to that of

a causal model. With this observation, a framework of closed-loop optimal input design is proposed based

on the causal-equivalent model, which greatly reduces the difficulties in this process.

Finally, the proposed performance assessment, MPM detection, optimal input design and closed-loop

identification methods are extensively tested on the CD and MD simulators. These simulators can provide

high-fidelity simulations of practical operations of paper machines. The overall adaptive control scheme is

also examined through examples by simulating various spatial and temporal parametric mismatches. These

simulation results illustrate that the proposed framework can automatically account for process changes with-

out human interventions. Thus with this adaptive control scheme, the industry can save enormous costs on
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the maintenance of model-based controls. It is noted that the proposed scheme can also be easily transferred

to other industrial processes.

Recommendations for future studies include further improvements on the closed-loop identification tech-

niques for routine operating data especially when the controller is simple, e.g., PID controllers. A promising

direction is to find more advanced and succinct representations than high-order ARX models to alleviate

the requirements for the informativeness of closed-loop data. For example, the generalized orthonormal ba-

sis filter (GOBF) ARX models can serve as a better alternative than high-order ARX. Practical tricks such

as using faster sampling rate to increase the time-delay can also enhance the quality of routine data. For

closed-loop input design of noncausal CD processes, time domain approaches, especially the recent tech-

niques developed based on graph theory, can be explored to meet physical constraints on inputs and outputs.

Although there is potential for further improvement, our adaptive control scheme has reached to the stage of

automatically monitoring the process and re-tuning controllers with feedback control in the loop and without

user interruption.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Theorem 2.4.1

Let us begin by defining an auxiliary term, ε(t,ρ), as follows

ε(t,ρ) = [G0−G(q,ρ)]u(t)+
1

A(q,η0)
e(t).

Notice that with the presence of feedback, one may consider u(t) to be generated by passing the reference

signal r(t) and external noise e(t) through a set of uniformly stable filters. Note, from Assumptions 2.2.2

and 2.2.3, that A(q,η0) is inversely stable and thus ε(t,ρ) meets the conditions of Theorem 2B.1 in [15].

Therefore,

ε(t,ρ, η̂N) = A(q, η̂N)ε(t,ρ), ε(t,ρ,η0) = A(q,η0)ε(t,ρ),

and

VN(ρ, η̂N) =
1
N

N

∑
t=1

1
2
[A(q, η̂N)ε(t,ρ)]

2 , VN(ρ,η0) =
1
N

N

∑
t=1

1
2
[A(q,η0)ε(t,ρ)]

2 .

Furthermore, we can decompose the loss function as

VN(ρ, η̂N) =
1
N

N

∑
t=1

{
1
2
[A(q,η0)ε(t,ρ)]

2 +
1
2
[(A(q, η̂N)−A(q,η0))ε(t,ρ)]

· [A(q,η0)ε(t,ρ)]+
1
2
[(A(q, η̂N)−A(q,η0))ε(t,ρ)] [A(q, η̂N)ε(t,ρ)]

}
.

Due to the Theorem 2B.1 in [15], we have

sup
ρ∈Ωρ

∥∥∥∥∥ 1
N

N

∑
t=1

1
2
[A(q,η0)ε(t,ρ)]

2−V (ρ,η0)

∥∥∥∥∥→ 0, w.p.1, as N→ ∞,
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where

V (ρ,η0) = E
1
2
[A(q,η0)ε(t,ρ)]

2 .

Since ε(t,ρ) is bounded uniformly, from Lemma 2.3.1, it follows that

sup
ρ∈Ωρ

∥∥∥∥∥ 1
N

N

∑
t=1

[(A(q, η̂N)−A(q,η0))ε(t,ρ)][A(q,η0)ε(t,ρ)]

∥∥∥∥∥→ 0, w.p.1, as N→ ∞,

sup
ρ∈Ωρ

∥∥∥∥∥ 1
N

N

∑
t=1

[(A(q, η̂N)−A(q,η0))ε(t,ρ)][A(q, η̂N)ε(t,ρ)]

∥∥∥∥∥→ 0, w.p.1, as N→ ∞.

Applying the triangular inequality yields,

sup
ρ∈Ωρ

∥∥VN(ρ, η̂N)−V (ρ,η0)
∥∥≤ sup

ρ∈Ωρ

∥∥∥∥∥ 1
N

N

∑
t=1

1
2
[A(q,η0)ε(t,ρ)]

2−E
1
2
[A(q,η0)ε(t,ρ)]

2

∥∥∥∥∥
+ sup

ρ∈Ωρ

∥∥∥∥∥ 1
2N

N

∑
t=1

[(A(q, η̂N)−A(q,η0))ε(t,ρ)][A(q,η0)ε(t,ρ)]

∥∥∥∥∥
+ sup

ρ∈Ωρ

∥∥∥∥∥ 1
2N

N

∑
t=1

[(A(q, η̂N)−A(q,η0))ε(t,ρ)][A(q, η̂N)ε(t,ρ)]

∥∥∥∥∥
→ 0, w.p.1, as N→ ∞.

Hence the conclusion of Theorem 2.4.1 in (2.20) can be achieved.

A.2 Proof of Theorem 2.4.3

Assume that in (2.14) the model structure G(q,ρ) contains the true process model G0(q). Following a similar

line of the proof for Theorem 9.1 in [15], the optimum ρ̂N in (2.17) satisfies

V′N(ρ̂N , η̂N) = 0.

Re-writing the above equation using a first-order Taylor expansion at ρ0, we have

0 = V′N(ρ0, η̂N)+V′′N(ξN , η̂N)(ρ̂N−ρ0), ξN ∈ [ρ̂N , ρ0].
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Thus the asymptotic distribution
√

N(ρ̂N−ρ0) can be determined by

√
N(ρ̂N−ρ0) =−[V′′N(ξN , η̂N)]

−1
√

NV′N(ρ0, η̂N). (A.1)

In what follows we will study the distribution
√

NV′N(ρ0, η̂N) first, followed by an analysis on the asymp-

totic behavior of V′′N(ξN , η̂N).

(1) Asymptotic Analysis of
√

NV′N(ρ0, η̂N)

From the definition (2.17) we have

−V′N(ρ0, η̂N) =
1
N

N

∑
t=1

ψ(t,ρ0, η̂N)ε(t,ρ0, η̂N), (A.2)

where ψ(t,ρ, η̂N) is the derivative of the predictor (2.15) with respect to the parameter ρ , i.e.,

ψ(t,ρ0, η̂N) = G′ρ(ρ0)u(t, η̂N). (A.3)

The specific expression of ε(t,ρ0, η̂N) in (A.2) is

ε(t,ρ0, η̂N) =
A(q, η̂N)

A0(q)
e(t). (A.4)

Instead of studying −
√

NV′N(ρ0, η̂N) in (A.2), we can analyze its asymptotic distribution by studying

1√
N

N

∑
t=1

ψ(t,ρ0,η0)ε(t,ρ0, η̂N), (A.5)

since the mean-squared error between them approaches zero as N goes to infinity. This can be verified based

on Lemma 2.3.1. From (2.24), the signal u(t,η0) can be represented by

u(t,η0) = A0(q)S0(q)r(t)−S0(q)K(q)e(t), (A.6)

where {r(t)} and {e(t)} are independent sequences. It can be observed from (A.3) and (A.4) that

1√
N

N

∑
t=1

ψ(t,ρ0,η0)ε(t,ρ0, η̂N) = Z1(N)+Z2(N),
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where

Z1(N) =
1√
N

N

∑
t=1

ψ(t,ρ0,η0)e(t),

Z2(N) =
1√
N

N

∑
t=1

ψ(t,ρ0,η0)
A(q, η̂N)−A0(q)

A0(q)
e(t).

Note that the derivation of (9A.25) in [15] applies to both open-loop and closed-loop data. Thus we have

Cov[
√

NV′N(ρ0, η̂N)] = Q,

where

Q = lim
N→∞

N ·E{V′N(ρ0, η̂N)[V′N(ρ0, η̂N)]
T}. (A.7)

With the above notions, the Q in (A.7) is shown to be

Q = lim
N→∞

E[Z1(N)+Z2(N)][Z1(N)+Z2(N)]T

= lim
N→∞

E[Z1(N)ZT
1 (N)]+E[Z2(N)ZT

2 (N)]+E[Z1(N)ZT
2 (N)]+E[Z2(N)ZT

1 (N)]. (A.8)

For the first term of (A.8), by substituting (A.6) into (A.3) we have

ψ(t,ρ0,η0) = φr(t)−φe(t), (A.9)

where

φr(t) = G′ρ(ρ0)S0A(η0)r(t), (A.10)

φe(t) = G′ρ(ρ0)KS0e(t). (A.11)

Notice that φr(t) is a deterministic signal. Furthermore from our previous assumption, the process model G0

always contains at least one delay and so does G′ρ(ρ0). Therefore, ψ(t,ρ0,η0) is independent of e(t). From
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Lemma 2.4.2, it is easy to see that

lim
N→∞

E[Z1(N)ZT
1 (N)] = lim

N→∞

1
N

σ
2
e

N

∑
t=1

E[ψ(t,ρ0,η0)ψ
T (t,ρ0,η0)]

= σ
2
e E[ψ(t,ρ0,η0)ψ

T (t,ρ0,η0)]

= σ
2
e Eφr(t)φ T

r (t)+σ
2
e E[φe(t)φ T

e (t)]. (A.12)

For the second term of (A.8), based on a similar argument as that in [89], we consider the auto-covariance

of

Z̃2(N) = Zn(N)
2

√
N(η̂N− η̄n(N)), (A.13)

where

Zn(N)
2 = E

[
ψ(t,ρ0,η0) · [ΓT

n(N) 01×n(N)]
1

A0(q)
e(t)
]
,

and

η̂N → η̄n(N), w.p.1, as N→ ∞,

since the mean-squared error between (A.13) and Z2(N) tends to zero as N → 0. Note that the matrix

Zn(N)
2 ∈ Rnρ×n(N) is deterministic and satisfies the condition of Theorem D.3 in [89], thus theorem D.3 can

be immediately applied to (A.13). Before demonstrating the main result, let us first explore the specific

expression of Zn(N)
2 . From (A.9) we have

Zn(N)
2 = E

[
(φr(t)−φe(t)) · [ΓT

n(N) 01×n(N)]
1

A0(q)
e(t)
]

= −E
[

φe(t) · [ΓT
n(N) 01×n(N)]

1
A0(q)

e(t)
]

= −
[
E[G′ρ(ρ0)S0Ke(t) ·ΓT

n(N)H0e(t)] 01×n(N)

]
. (A.14)

Then from Theorem D.3 in [89], the asymptotic auto-covariance of Z2(N) is

lim
N→∞

E[Z2(N)ZT
2 (N)] = lim

N→∞
Zn(N)

2 [Rn(N)
]−1(Zn(N)

2 )T , (A.15)

where R̄n was defined in (2.27).

For the third term of (A.8), to simplify the analysis, we consider the cross-covariance between Z1(N)
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and

Z2(N) = Zn(N)
2 [Rn(N)

]−1 1√
N

N

∑
t=1

ϕ
n(N)
t e(t),

where ϕ
n(N)
t was defined in (2.29). Therefore, the cross-covariance between Z2(N) and ZT

1 (N) gives

lim
N→∞

E[Z2(N)ZT
1 (N)] = lim

N→∞
Zn(N)

2 [Rn(N)
]−1 1

N

N

∑
t=1

N

∑
s=1

E[ϕn(N)
t e(t) · e(s)ψT (s,ρ0,η0)]

= Zn(N)
2 [Rn(N)

]−1
σ

2
e E
[
ϕ

n(N)
t ψ

T (t,ρ0,η0)
]
. (A.16)

For the last term of (A.8), following the same line of above derivations we have

lim
N→∞

E[Z1(N)ZT
2 (N)] = lim

N→∞

1
N

N

∑
t=1

N

∑
s=1

E[ψ(t,ρ0,η0)e(t) · e(t)(ϕn(N)
t )T ][Rn(N)

]−1(Zn(N)
2 )T

= σ
2
e E
[
ψ(t,ρ0,η0)(ϕ

n(N)
t )T

]
[Rn(N)

]−1(Zn(N)
2 )T . (A.17)

Adding the results of (A.12), (A.15), (A.16) and (A.17) yields the expression for Q in (2.31). Following

the procedure in proving Theorem 9.1 in [15], it can be observed that asymptotically,
√

NV′N(ρ0, η̂N) is

normally distributed, i.e.,
√

NV′N(ρ0, η̂N)∼ AsN(0,Q). (A.18)

(2) Asymptotic Analysis of [V′′N(ξN , η̂N)]

From (A.2)-(A.3) we have the following expression

V′′N(ρ, η̂N) =
1
N

N

∑
t=1

ψ(t,ρ, η̂N)ψ
T (t,ρ, η̂N)−

1
N

N

∑
t=1

∂

∂ρ
ψ(t,ρ, η̂N)ε(t,ρ, η̂N). (A.19)

Expanding the first term in the above equation at η0, similar to the proof of Theorem 2.4.1, we obtain

1
N

N

∑
t=1

ψ(t,ρ, η̂N)ψ
T (t,ρ, η̂N) =

1
N

N

∑
t=1

ψ(t,ρ,η0)ψ
T (t,ρ,η0)+

1
N

N

∑
t=1
{[A(η̂N)−A(η0)]ψ(t,ρ)}

·
{

ψ
T (t,ρ,η0)

}
+

1
N

N

∑
t=1
{ψ(t,ρ,η0)}

{
[A(η̂N)−A(η0)]ψ

T (t,ρ)
}
.

It follows that

sup
ρ∈Ωρ

∥∥∥∥∥ 1
N

N

∑
t=1

ψ(t,ρ, η̂N)ψ
T (t,ρ, η̂N)−Eψ(t,ρ,η0)ψ

T (t,ρ,η0)

∥∥∥∥∥→ 0, w.p.1, as N→ ∞. (A.20)
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In an analogous way we have

sup
ρ∈Ωρ

∥∥∥∥∥ 1
N

N

∑
t=1

∂

∂ρ
ψ(t,ρ, η̂N)ε(t,ρ, η̂N)−E

∂

∂ρ
ψ(t,ρ,η0)ε(t,ρ,η0)

∥∥∥∥∥→ 0, w.p.1, as N→ ∞, (A.21)

since ξN ∈ [ρ̂N ,ρ0] and ρ̂N → ρ0, w.p.1, as N→ 0 if the selected model structure G(q,ρ) in (2.14) contains

the true model G0(q). Therefore, we may conclude that ξN → ρ0 almost surely as sample number tends to

infinity. Combining (A.19)-(A.21) and noticing that ε(t,ρ,η0) = e(t) (thus E ∂

∂ρ
ψ(t,ρ,η0)ε(t,ρ,η0) = 0),

we have

V′′N(ρ, η̂N)→ E
[
ψ(t,ρ,η0)ψ

T (t,ρ,η0)
]
, w.p.1, as N→ ∞. (A.22)

Combining the results of (A.1), (A.18) and (A.22), we can obtain (2.30), where Q(η̂N) is given by (2.31),

and thus this theorem is proved.
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Appendix B

Derivations for Chapter 4

B.1 Variance partition

For the measured two-dimensional data set Y ∈ Rm×N , it has the following structure:

Y =

1 · · · j · · · N

1
...

i
...

m



y11

...

yi1

...

ym1

· · ·
. . .

· · ·
. . .

· · ·

y1 j

...

yi j

...

ym j

· · ·
. . .

· · ·
. . .

· · ·

y1N

...

yiN

...

ymN


, (B.1)

where each row of Y refers to the N measurements of one data box, while each column of Y represents the

measured profile at each scan across all the data boxes. The overall sample mean of the data set Y is defined

as,

Ȳ =
m

∑
i=1

N

∑
j=1

yi j

Nm
. (B.2)

The total sample variance σ2
T can be calculated as,

σ
2
T =

m

∑
i=1

N

∑
j=1

(yi j− Ȳ )2

Nm−1
. (B.3)

The CD sample variance σ2
CD can be calculated as,

σ
2
CD =

m

∑
i=1

(Ỹi− Ȳ )2

m−1
, (B.4)
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where Ỹi = ∑
N
j=1

yi j
N . The MD sample variance σ2

MD can be calculated as,

σ
2
MD =

N

∑
j=1

(Ỹj− Ȳ )2

N−1
, (B.5)

where Ỹj = ∑
m
i=1

yi j
m . The residual sample variance σ2

Res is calculated as,

σ
2
Res = σ

2
T −σ

2
CD−σ

2
MD. (B.6)

B.2 Derivation of (4.12)

For the disturbance model (4.5), from the Diophantine identity, we have

C(q)
A(q)

= F(q)+q−d H(q)
A(q)

, (B.7)

where F(q) and H(q) are scalar polynomials, i.e.,

F(q) = f0 + f1q+ . . .+ fd−1q−d+1, (B.8)

H(q) = h0 +h1q+ . . .+hnhq−nh . (B.9)

Considering the profile at time t +d (supposing the current time is t), from (B.7) we have

yr(t +d|t) = ŷr(t +d|t)+F(q)φe(t +d), (B.10)

where ŷr(t +d|t) represents the d-step-ahead prediction [120] at t, namely,

ŷr(t +d|t) = B(q)F(q)
C(q)

Gur(t)+
H(q)
C(q)

yr(t). (B.11)

Note that the second term in (B.10) is the unpredictable future profile due to the time-delay, which is con-

troller invariant. The first term of (B.10) is controller-dependent and by minimizing E[ŷr(t +d|t)ŷT
r (t +d|t)]

we will achieve the minimum variance of the residual profile. If the transfer matrix G in (B.11) is square

and invertible, it is possible to find an input sequence such that ŷr(t +d|t) = 0. However, due to the special
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structure, G is often non-square, and hence the minimum variance of ŷr(t +d|t) is achieved by setting

ur(t) =−G† H(q)
B(q)F(q)

yr(t), (B.12)

where G† = (GT G)−1GT is the pseudo-inverse of G. It should be noted that G† indeed represents the MVC

in the spatial direction due to the special structure of G (refer to (4.6) and (4.11)) while H(q)
B(q)F(q) denotes the

temporal MVC due to time delay. Therefore, (B.12) stands for the temporal and spatial MVC for the residual

model (4.3).
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Appendix C

Proofs for Chapter 5

C.1 Proof of Theorem 5.3.1

Defining

Φy =


ψ ȳ(1)

...

ψ ȳ(N)

 ,
it then follows from (5.15) that

Ŷ = [Φy Φu]

 a

Cb

=
[
Φ̃y Φ̃u

] a

Bc

 , (C.1)

where B = diag{b, . . . ,b}. Φ̃y and Φ̃u are easily obtained by rearranging Φy and Φy, respectively. The loss

function (5.17) is expressed in a more compact form,

VN(θ) = ‖Y− Ŷ‖2
2 =

∥∥∥∥∥∥∥Y− [Φy Φu]

 a

Cb


∥∥∥∥∥∥∥

2

2

. (C.2)

(i) The proof is an extension of Theorem IV.1 in [115]. Note that to ease the notation we will drop

the hat in the parameter estimates from (5.20)-(5.22), but add a subscript “N” to stress the fact that these

estimates are obtained from N samples of data. It is easy to see that through the iterative identification steps

(5.20)-(5.22),

VN(θ
k
N) =VN(ak

N ,b
k
N ,c

k
N)≤VN(ak

N ,b
k
N ,c

k−1
N )≤VN(ak−1

N ,bk−1
N ,ck−1

N ) =VN(θ
k−1
N ).

In other words, VN(θ
k
N) is nonincreasing. Despite of the nonincreasing VN(θ

k
N), without normalization (5.21),
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it is possible that bk
N → ∞, ck

N → 0, as k→ ∞, or vice versa, but as a product, Ck
Nbk

N remains finite. The

presence of normalization step in (5.21) eliminates the above disfavored scenario. As a result, the sequence

{bk
N} is bounded due to the normalization and thus {ck

N} is bounded. Since otherwise, VN(θ
k
N) will become

unbounded which contradicts the facts that ZN is bounded, all model structures in Ω are stable, and that

VN(θ) is continuous in θ and nonincreasing.

Now let us concentrate on the convergence analysis of the iterative identification algorithms for large

N. First we will establish a statement that when fixing the spatial parameter c, VN(θ) is convex in temporal

parameters {a,b} and vice versa. Based on (C.2), we have

VN(a,b,c) = YT Y−2YT
Φ

 a

Cb

+
 a

Cb


T

Φ
T

Φ

 a

Cb

 , Φ = [Φy Φu] . (C.3)

When the parameter c is fixed, it is easy to derive that for λ ∈ [0,1],

VN(λa1 +(1−λ )a2,λb1 +(1−λ )b2,c) = λVN(a1,b1,c)+(1−λ )VN(a2,b2,c)

−λ (1−λ )


 a1

Cb1

−
 a1

Cb1




T

Φ
T

Φ


 a2

Cb2

−
 a2

Cb2


 . (C.4)

We mention that due to Assumption 3, for any large N, Φ has full column rank, which renders Φ
T

Φ > 0.

Therefore, with the fact that a 6= 0, b 6= 0, c 6= 0, (C.4) implies that

VN(λa1 +(1−λ )a2,λb1 +(1−λ )b2,c)≥ λVN(a1,b1,c)+(1−λ )VN(a2,b2,c).

This verifies the convexity of VN(a,b,c) with respect to a,b. A similar conclusion can be achieved for the

convexity of VN(a,b,c) with respect to c. An immediate consequence of these statements is that in each

optimization of the iterative identification algorithm, we have a unique and closed-form solution. It will be

shown below that even though VN(θ) may not be convex in θ , our algorithm can always converge to its local

minimum.

Now define θ
k to be the parameter estimate at k-th iteration. When the iterative identification algorithm

(5.20)-(5.22) converges, i.e., θ
k→ θ for some θ , we need to show that ∇VN(θ) = 0. Suppose that ∇VN(θ) 6=

0, then there always exists a direction (e.g. negative gradient) along which VN(θ) decreases. Because the
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solution to (5.20) and to (5.22) is unique, we can always minimize VN(θ) sequentially to achieve another

point θ
′, such that VN(θ

′)≤VN(θ). This contradicts the facts that VN(θ) is nonincreasing and θ
k converges

to θ . Thus the statement in (i) holds.

(ii) Combining (5.6) and (5.9), one can see that the closed-loop system has the form

y(t) = fS
(
t,yt−1,ut−1)+ eo(t). (C.5)

According to Assumption 1, the nonlinear closed-loop system (C.5) is exponentially stable, which satisfies

S1-S3 in [121]. Moreover, with the parameterizations (5.12), the one-step-ahead predictor (5.15) of the

model is differentiable with respect to parameter θ , which implies the condition M1 in [121]. Our selected

quadratic criterion also meets the regularity condition C1 in that paper. As a result, Lemma 3.1 in [121]

applies to our scenario, which indicates the validity of (5.29). As the convergence in (5.29) is uniform in

θ ∈Ω, (5.30) follows directly from (5.29).

(iii) From Assumptions 1 and 2, it follows that ε(t,θ o) = eo(t). Therefore,

V (θ)−V (θ o) = E[ε(t,θ)− ε(t,θ o)]T ε(t,θ o)

+E[ε(t,θ)− ε(t,θ o)]T [ε(t,θ)− ε(t,θ o)]. (C.6)

Note that ε(t,θ)− ε(t,θ o) = ŷ(t|θ)− ŷ(t|θ o) which only depends on past input-output data and thus is not

correlated with current noise ε(t,θ o). Hence, the first term in (C.6) is zero. The second term is always

nonnegative which means that V (θ) is always greater than V (θ o) unless ŷ(t|t− 1,θ) = ŷ(t|t− 1,θ o). We

now show that under the informativeness condition of closed-loop data as in Assumption 3, ŷ(t|θ ∗) = ŷ(t|θ o)

implies that θ
∗ = θ

o. From Assumption 2 and (5.15) we know

ŷ(t|θ ∗)− ŷ(t|θ o) = ψ(t)

 a∗−ao

Cb∗−Cbo

 , ψ(t) =
[
ψy(t) ψ ū(t−d)

]
. (C.7)

Plugging this into the limit loss function (C.6) yields

E[ŷ(t|θ ∗)− ŷ(t|θ o)] =

 a∗−ao

Cb∗−Cbo


T

E[ψT (t)ψ(t)]

 a∗−ao

Cb∗−Cbo

 . (C.8)
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From Assumption 3a, we know that (5.26) holds for any large N. Thus asymptotically, E[ψ ū(t)] has full

column rank. Moreover, according to (5.27), columns of E[ψ ū(t− d)] are linearly independent of those in

E[ψ ȳ(t)]. This leads to the statement that E[ψT (t)ψ(t)] has full column rank. Therefore, the only situation

making V (θ ∗)−V (θ o) = 0 is a∗ = ao, Cb∗ = Cbo. Note that from the rescaling (step 6) of the algorithm,

we can arrive at C∗ = Co, b∗ = bo, which ends the proof of (5.31).
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