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Abstract 

Modern power systems, from continent-spanning networks down to isolated microgrids, 

are experiencing unprecedented technological changes with broader use of direct current (dc) in 

addition to traditional alternating current (ac). Such integrated ac-dc power systems present notable 

challenges in all aspects of design, analysis, control, and operation, where extensive computer 

simulations play the essential and enabling role. Due to the use of diverse types of signal 

representation and component formulation, state-of-the-art power system simulation tools are 

limited to their distinct time scales of transient phenomena. This thesis considers the dynamic 

phasor (DP) type modelling approaches, where two types of DP theories, namely the shifted-

frequency analysis (SFA) and the generalized averaging method (GAM), are considered. In DP-

type simulations, power systems are modelled using analogous low-pass time-phasor signals, 

thereby offering flexible selection of time-step sizes and superior combination of numerical 

accuracy and efficiency. 

The ultimate goal of this research is to increase the numerical efficiency of DP-type 

simulations for the integrated ac-dc power systems. This is achieved by proposing several new DP 

component models with desirable features and improved numerical properties. First, the constant-

parameter SFA model of synchronous machines is proposed to avoid numerically-costly 

recalculations of the time-varying stator-network matrices. This model is then extended to 

induction machines for modelling in state-variable based (SV-based) simulation tools. Next, we 

propose a new, highly efficient model of line-commutated rectifiers using a parametric DP 

formulation, which is demonstrated as valid for various system operating conditions. Moreover, 

the effect of ac side harmonics is incorporated to improve modelling fidelity. Finally, the interface 

between SFA- and GAM-type DPs is achieved to interconnect the proposed DP models. Rigorous 

case studies demonstrate the superior numerical efficiency of the proposed models, and their 

advantageous accuracy in capturing the desired phenomena of ac-dc power systems. It is 

envisioned that the proposed models will become highly useful to many researchers and engineers 

worldwide, and facilitate the development of next-generation power system simulation tools.   
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Lay Summary  

The emergent ac-dc power systems necessitate a massive number of computer simulations 

to analyze their dynamic behaviour. Several types of simulation tools have been developed 

throughout the years, each targeted for investigation of specific classes of phenomena. This 

research focuses on the dynamic phasor (DP)-type modelling approaches, which are demonstrated 

to provide general-purpose simulations of power system transients with a superior combination of 

numerical accuracy and efficiency. The objective of this thesis is to increase the numerical 

efficiency of DP-type simulations for integrated ac-dc power systems. This is achieved by 

proposing several new DP models of system components, including electric machines and line-

commutated rectifiers, with improved numerical properties and more desirable features over prior 

state-of-the-art models. It is envisioned that the proposed models will become highly useful to 

many researchers and engineers worldwide, and facilitate the development of next-generation 

power system simulation tools.
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to denote the GAM-type DPs [e.g.,  ti
kas ]. The conventional fundamental-frequency phasors 

are also used in Chapter 2 but only at the system fundamental frequency, where they are denoted 

by uppercase letters in italic [e.g.,  sasI  ].  

 Only basic variables are aggregated in this section; all other variables are defined explicitly 

throughout the thesis.  
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de   d-axis subtransient voltage 

''

qe   q-axis subtransient voltage 

xfde  Scaled field winding voltage (synchronous machine) 

H  Combined machine-load moment of inertia (in s) 

abcsi  Stator/network current vector 

dci  dc current 

dsi  d-axis stator current 

qsi  q-axis stator current 
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J  Combined machine-load moment of inertia (in kg∙m2) 

j  Imaginary number 

sK  Park’s transformation matrix 

DL  Inductance of the three-phase branch of the VBR interfacing circuit 

lfdL  Field winding leakage inductance (synchronous machine) 

.,...,1, NjLlkdj   Leakage inductance of the jth d-axis damper winding (synchronous 

machine) 

.,...,1, MjLlkqj   Leakage inductance of the jth q-axis damper winding (synchronous 

machine) 

lrL  Rotor winding leakage inductance (induction machine) 

lsL  Stator leakage inductance (synchronous and induction machines) 

mL  Magnetizing inductance (induction machine) 

mdL  d-axis magnetizing inductance (synchronous machine) 

mqL  q-axis magnetizing inductance (synchronous machine) 

M  Transformation matrix of sequence components 

M  Number of q-axis damper windings (synchronous machine) 

N  Number of d-axis damper windings (synchronous machine) 

P  Number of poles 

Dr  Resistance of the three-phase branch of the VBR interfacing circuit 

fdr  Field winding resistance (synchronous machine) 

.,...,1, Njrkdj   Resistance of the jth d-axis damper winding (synchronous machine) 

.,...,1, Mjrkqj   Resistance of the jth q-axis damper winding (synchronous machine) 

rr  Rotor winding resistance (induction machine) 

sr  Stator winding resistance (synchronous and induction machines) 

s  Laplace variable 

iabcs  Current switch function vector 

vabcs  Voltage switch function vector 

sin  Sine function 
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t  Time 

eT  Electromagnetic torque 

mT  Mechanical torque 

abcv  Stator/network voltage vector 

dcv  dc voltage 

dsv  d-axis stator voltage 

fdv  Field winding voltage (synchronous machine) 

qsv  q-axis stator voltage 

t  Simulation step size (unique step size) 

 x  2-norm relative error of x  

dr  d-axis flux linkage of the rotor circuit (induction machine) 

fd  Field winding flux linkage (synchronous machine) 

.,...,1, Njkdj    Flux linkage of the jth d-axis damper winding (synchronous machine) 

.,...,1, Mjkqj   Flux linkage of the jth q-axis damper winding (synchronous machine) 

qr  q-axis flux linkage of the rotor circuit (induction machine) 

  Commutation angle 

r  Electrical rotor position  

  Angular velocity of the arbitrary reference frame (in rad/s) 

s  System fundamental frequency (in rad/s) 

r  Electrical rotor speed (in rad/s) 
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 Introduction 

 Motivation 

 Modern power systems are evolving quickly, while facing unprecedented technological 

changes in all aspects of energy generation, transmission, distribution, and consumption. The 

traditional alternating current (ac) electrical grid, whose aged infrastructures have long been under 

stressed conditions, is operating close to its physical limits [1]. Direct current (dc) power 

technology, owing to expanding applications of high-voltage direct current (HVDC) [2] and 

flexible ac transmission systems (FACTS) [3], is increasingly seen as a viable option for long-

distance transmission, interconnection of asynchronous ac grids and renewable generation, 

effective power-flow control, and power quality support functions. Over the last 20 years, Europe 

saw the evolution of HVDC systems in voltage levels, converter structures, network topology, 

control strategies, etc. [4]. More recently, China became the world’s leader in installation of new 

power infrastructure with over 40 advanced HVDC projects built or launched by 2015 [5]. At the 

same time, due to economical, ecological, and political factors, renewable energy sources are now 

supplementing or replacing older fossil-fuel and nuclear power plants at a rapid pace. In 2016, 

renewables accounted for nearly 62% of the net addition to the global power generating capacity 

[6]; and as of March 2017, wind and solar, for the first time, exceeded 10% of the total electricity 

generation in the United States [7]. Unlike traditional power plants, these distributed energy 

resources (DERs) are usually interfaced with the ac grid using power electronic converters with 

fast-responding capabilities and extended controllability. Moreover, the advent of smart grid 

technologies [8] has promoted the proliferation of microgrids [9]-[10] to integrate the increasing  
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Figure 1–1. The ac-dc microgrid system presently installed (solid lines) and to be further developed (dashed 

lines) in the Kaiser Building at the University of British Columbia, Vancouver, Canada [11]. 

penetration of DERs by introducing energy storage systems and controllable loads. Figure 1–1 

depicts an example of such envisioned integrated ac-dc microgrid power systems [11], which 

comprises power sources from utility grid and/or a variety of DERs, various types/levels of loads 

and appliances, some form of energy storages for peak shaving of demands, a backup generation 

system supporting medium- to long-term interruptions, bi-directional power converter modules, as 

well as the communication infrastructure that intelligently coordinates and controls all these 

components.   

The aforementioned are but a few examples of today’s power system “electronification”, 

where generation, transmission, distribution and loads are increasingly moved behind the power 
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electronic apparatus. However, reconfiguring the traditional ac grid supplied by reliable generation 

managed by few operators, into the integrated ac-dc systems laden with intermittent energy sources 

while involving more participants introduces a high degree of uncertainty and variability [12]. 

Moreover, numerous challenges arise due to the non-linear properties of power electronic 

components. For instance, conventional line-commutated rectifier loads are known to contribute 

into the grid significant amounts of harmonics, which lead to degraded power quality, increased 

losses, and can cause malfunction of sensitive devices [13]. In addition, these harmonics tend to 

be aggravated by the oscillatory interactions between the switching operation of power converters, 

the dynamics of controller systems, and the impedance of the interconnected systems [14]-[16], 

etc. Unlike large-scale stiff ac grids, power-electronic-based systems may provoke oscillatory 

interactions over a broad range of frequencies, including the sub-synchronous resonances (SSR) 

frequently seen in weak or standalone grids [14], the sub-synchronous control interactions (SSCI) 

between wind farms and HVDC systems [15], and some super-synchronous high-frequency 

resonances (HFR) due to the inductive/capacitive behaviour of converters [16], etc. To investigate 

these phenomena, researchers and engineers worldwide are dependent on a massive number of 

computer simulations. Accurate and efficient modelling of each system component is therefore 

critical in all stages of design, analysis, monitoring, control, and energy management to ensure the 

secure, reliable and optimized operation of the integrated ac-dc power systems. 

The study of power system transients has been an active area of research for many decades, 

and various analysis tools and simulators have been developed for different objectives, time scales, 

types of disturbances, etc. [17]-[19]. Figure 1–2 depicts the time frames of transient phenomena 

frequently seen in power systems, which covers a range from a fraction of a microsecond (lightning 

and wave propagation) to hours and days (mid- and long-term dynamics). In particular, it is seen 

in Figure 1–2 that despite the various causes of disturbance, the power system transients can be 

generally classified into electromagnetic transients and electromechanical transients. This  
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Figure 1–2. Time frame of different power system transient phenomena. 

classification thus leads to the well-known “time-scale modelling” of power systems [18], which 

first describes the complete power system dynamics using several sets of ordinary differential 

equations (ODEs) or differential-algebraic equations (DAEs) with distinct ranges of time constants, 

and then, by focusing on the (electromagnetic transient or electromechanical transient) phenomena 

of interest, selectively models the desired components using proper signal representations based 

on assumed approximations, while neglecting/simplifying the rest of the system.  

The electromagnetic transients may be induced by a perturbation from external causes (e.g., 

lightning), and/or a change in the physical network configuration (e.g., action of breaker, operation 

of power electronic devices, equipment failures, faults, etc.). To study these high-frequency and 

relatively-fast phenomena, the so-called electromagnetic transient (EMT) programs are used, 

which can generally be divided into two categories: the nodal-analysis-based tools derived from 

the original electromagnetic transient program EMTP introduced by H. W. Dommel [20] 
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(hereinafter referred to as EMTP-type [20]−[26]), and the state-variable (SV-based) tools 

[27]−[32]. In EMTP-type programs, the system circuit/components are first discretized at the 

branch level (typically using the trapezoidal rule), and then combined into a system nodal equation 

[20] which is then solved as a difference equation at each time step. In SV-based tools, the system 

components are represented in state-space formulation using ODEs (or DAEs), which are then 

combined using state model generation algorithms [33]-[34] into a first-order system of ODEs (or 

DAEs) and solved at the system level using fixed- or variable-step integration rules [27]−[28]. In 

both categories of the available state-of-the-art EMT simulators, power system components are 

modelled in detail and represented using instantaneous time-domain signals. This endows EMT 

programs with high modelling fidelity, thus making them suitable for studies such as insulation 

coordination, protection scheme calculation, detailed short-circuit analysis, power electronics 

controller design, etc. [20]. However, EMT simulators typically require very small step sizes 

(ranging from a few to hundreds of microseconds) to accommodate for the fast transients, thus 

yielding significant computational cost/simulation time, and limited size of the systems that can 

be practically simulated [35], [40].   

For studying the slower electromechanical dynamics due to the mismatch of the energy 

stored in the rotating machine masses and the electrical network,  the transient stability (TS) 

programs [36]−[39] are commonly used. Therein, the stator-network transients are generally 

neglected [19], and the electric quantities are represented as conventional fundamental-frequency 

phasors. In TS programs, the complete power system is mathematically modelled by a set of DAEs, 

where the differential equations represent dynamics of rotating machines (and their excitations, 

turbine-governor, etc.) and the algebraic equations describe the power network, loads, connected 

devices, etc. As such, the TS programs are typically designed to handle the (multi-machine) system 

transients characterized by mid- to long-term dynamics (e.g., low-frequency oscillations from 1 to 

3 Hz [17]). Moreover, the TS programs usually use additional modelling approximation such as 

the positive-sequence single-phase reduced-order representation [18]−[19], which yield less 

accurate results but permit the use of larger step sizes (up to several milliseconds). It is also known 
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that the TS programs are incapable of accurately representing nonlinear elements in the network 

(e.g., HVDC/FACTS applications, power electronic apparatuses, etc.), or capturing detailed fast 

dynamic events (e.g., line energization) [40]. 

Despite the different time scales of power system transient phenomena, there is not a clear 

distinction between the electromagnetic or electromechanical transients, as the power system 

components may change conditions with time and interact with each other. Furthermore, it is noted 

in Figure 1–2 that state-of-the-art EMT and TS programs, as confined to their distinct time frames, 

are not well suited for the transient phenomena associated with integrated ac-dc power systems, 

which may span the range from high-frequency transients (hundreds of hertz to several kilohertz) 

to sub-synchronous frequencies (a few to tens of hertz). To overcome this limitation, the so-called 

hybrid simulation approaches have been proposed in the literature to interface the EMT and TS 

programs [40], by splitting the network into subsystems and then using either an EMT or TS 

solution for each subsystem, based on the required simulation fidelity. To facilitate the simulation 

process, efforts were made toward simplifying the system models and/or obtaining subsystems 

equivalents, such as multi-area Thevenin equivalent (MATE) [41]−[42], frequency-dependent 

network equivalent (FDNE) [43], or making use of high-performance computing techniques such 

as parallel processing [44], etc. There are also programs that can switch between EMT and TS 

simulations by specifying a time or condition, with the use of proper component models at the 

corresponding stages [39]. Despite various attempts, challenges with using these hybrid simulation 

approaches [39]-[46] include the presence of numerical discontinuities when switching between 

simulation methods [45], and the interfacing between the various subsystems and their solutions 

[40], [46].  

Consequently, there is a significant need for accurate and efficient modelling and 

simulation techniques that will make the simulations as detailed as EMT and as fast as TS 

simulators. New-generation tools with such capabilities will be particularly useful for general-

purpose transient simulations of the integrated ac-dc power systems.  
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 Literature Review 

 Dynamic Phasor (DP) Type Modelling Approaches 

Instead of tracking the detailed but slow-evolving time-domain waveforms (as in EMT 

programs), or dealing with reduced-order fundamental-frequency phasor representations (as in TS 

programs), this thesis considers modelling and simulating general ac-dc power systems in hybrid 

time-phasor signal representations. These conceptually similar approaches are generally referred 

to in the literature as dynamic phasor (DP) type modelling approaches. Both types of DP theories, 

namely the shifted-frequency analysis (SFA) [50]-[51] and the generalized averaging method 

(GAM) [62] are considered in this work. 

In both types of DP-type simulations, the power systems are modelled using analogous 

time-phasor signals, which possess the following advantages/properties: 1) good accuracy in 

capturing both the electromagnetic and electromechanical transients due to the detailed (full-order) 

modelling of power system components, while avoiding the numerical errors that would be present 

from interfacing EMT and TS simulators; and 2) flexible selection of time-step sizes (by variable-

step solvers) which permits using large time steps in steady-states and during electromechanical 

trainsets [47]-[48], thus achieving superior efficiency than the time-domain EMT simulations 

typically requiring small time steps. 

1.2.1.1 Shifted-Frequency Analysis (SFA) 

 The first definition of DP, which stems from signal processing theory, was originally 

applied to power system simulations in [49]. This type of DP represents the envelope of analytic 

(complex) signals [50], where the frequency spectra of power system signals (around the 50/60 Hz 

fundamental frequency) can be down-shifted (to around 0 Hz) to enable flexible selection of step 
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sizes during simulations, thus referred to as the shifted-frequency analysis (SFA) [51]-[52].  The 

concept of SFA-type DPs is first introduced in [50] (therein defined as the envelopes of analytic 

signals), and then systematically described in [51]-[52], where several numerical aspects are 

discussed, including signal representation, integration rule, simulation program structure, and 

models of general system components.  

 However, the generator model in [49] is expressed in reduced-order form (two-axis model, 

[18]) and only the fast dynamics of simple RLC networks are preserved. In [50], the (constant-

parameter) transmission line model is included, and the synchronous machine is modelled in full-

order using analytic signals, which yields an indirect interface of qd0-coordinate model to external 

abc-phase networks that may result in numerical instability. To overcome this limitation, following 

efforts were made toward direct machine-network-interfaced modelling of rotating machines, by 

using the so-called voltage-behind-reactance (VBR) formulation [53]-[54] (referred to as VBR-

SFA models). Nevertheless, the established synchronous machine model [53] has variable-

parameter (rotor-position-dependent) inductance/conductance matrices, which greatly increase 

computation cost and complicity of implementation. Furthermore, as modelled for EMTP-type 

solutions, these conductance matrices (after discretization) are formulated as a function of the step 

size [53]-[54]. Accordingly, varying the step size to reflect the active modes at a given point of 

simulation (as is particularly useful for DPs) requires re-discretizing all components and 

reformulating/re-factorizing the conductance matrix, which gives rise to prohibitive cost 

computations. Other recent work on SFA-type DP simulations include studies validating the SSR 

transient phenomena [51], the inrush dynamics during energization of transformers [55], and 

potential application for increasing speed of large-scale power system simulations [26]. 

A similar concept to the SFA-type DPs, namely the frequency-adaptive simulation of 

transients (FAST) [56]-[57], has also been developed and shown to effectively simulate multi-

scale transients with the carrier frequency shifting techniques. In this method, power system 

electromechanical transients are simulated by shifting the carrier frequency by system fundamental 



   9 

 

frequency (i.e., using SFA-type DPs) [56]; and for electromagnetic transients, the carrier shift 

frequency is set to zero (i.e., using instantaneous time-domain signals). Recent application of the 

FAST method include modelling of rotating machines [58]-[59], transmission lines [60], and 

power-electronic-interfaced systems [61]. Nevertheless, it is noted that due to the frequency shift 

of only one frequency, the SFA-type DPs are mainly applicable to modelling the power system 

transients where the fundamental frequency is dominant. 

1.2.1.2 Generalized Averaging Method (GAM) 

To account for high-order harmonics that may exist in ac-dc power systems, another type 

of DP is proposed based on the generalized averaging method (GAM) [62], and defined as the 

time-varying Fourier coefficients of “sliding-window” waveforms. In this theory, it is observed 

(and assumed) that the time-domain signals in power systems attain near periodical waveforms, 

whose Fourier coefficients thus become constant or slow-varying, and can be handled separately 

with many beneficial numerical features (continuous, time-invariant, etc.) [63]. Moreover, the 

GAM allows the user to retain the desired frequency components of power system signals (i.e., 

flexible modelling accuracy), and can be readily augmented to include higher-order harmonics of 

interest, if so needed. Due to these desirable properties, the GAM-type DPs have been 

comprehensively applied to power system simulations [63]−[65], component modelling of rotating 

machines [63]−[68], FACTS devices [69]−[72], HVDC and high-power converter systems 

[73]−[78], power electronic loads/devices [79]−[80], etc., as well as case studies on unbalanced 

fault conditions [67]-[68], [81], SSR and SSCI phenomena [70],[82],[83]. Recently, there has also 

been a growing interest in extending the GAM-type DPs to simulating medium-/large-scale power 

systems in off-line [21] and real-time [25], [32] industry-grade EMT simulators. 

However, one major limitation of using GAM-type DPs [73]−[78] is the use of the switch 

functions that relate the ac- and dc-side dynamics when modelling power converters. In [73]−[76], 

the switch functions are developed to emulate the switching behaviour of each diode, and are 

expressed as piecewise-linear-approximated waveforms, thus rendering difficulty to derive 
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compact mathematical expressions for high-order DPs. Accordingly, only the fundamental 

frequency dynamics of ac systems are preserved in [73]−[74], where higher-order harmonics are 

truncated. This issue was later addressed by using the Fourier-series-approximated switch 

functions [77], which requires costly computations per time step. Moreover, all these established 

analytical DP models [73]−[77] have been analytically derived considering only the common 

continuous-conduction mode (CCM) of operation (hereafter categorized into ADP-1 [73]−[76] 

and ADP-2 [77] models based on their use of piecewise-linear- and Fourier-series-approximated 

switching functions, respectively). This results in switch functions with predetermined fixed-shape 

waveforms that are not accurate in the other operating modes, thus limiting the model accuracy in 

predicting actual currents and voltages. Another recent attempt proposes to analytically model the 

ac-side DP dynamics in qd reference frame (namely ADP-qd model [78] ), which nevertheless 

considers only the fundamental ac components and the CCM mode of operation limited to diode 

rectifiers.  

 Numerically Efficient Modelling of AC-DC Power System 

Components 

 In addition to modelling approaches, the simulation performance of the integrated ac-dc 

power systems is highly dependent on the proper modelling of each system component. A 

representative unit of an ac-dc energy conversion system is the backup generation unit shown in 

Figure 1–1, which includes the rotating electric machines and some kinds of power electronic 

switching devices, such as the line-commutated rectifiers (LCRs). Such machine-rectifier systems 

are commonly used in many practical power systems and ac-dc energy conversion applications. 

To study their dynamic behaviour, thousands of researchers and engineers worldwide run 

extensive computer simulations everyday, where higher simulation speed and accuracy can make 

a significant difference and impact. Models of electric machines and power converters are typically 

the bottleneck in most simulation programs [20]−[32], and therefore are considered to be the focus 

of this thesis.   
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1.2.2.1 Modelling of Electric Machines 

 Synchronous machines are present in almost every bulk/islanded power system as the main 

source of electrical energy, as well as being the functional unit for power stability or reactive power 

support [19], [84]. Induction machines account for 60 to 70% of today’s electrical energy 

consumption [19], and are also prevalent in wind generation [85]. To accurately represent the 

dynamics of these rotating machines, full-order general-purpose lumped-parameter models, based 

on magnetically coupled circuits of machine’s stator and rotor windings [84], are widely used in 

power system EMT simulations. 

Depending on the interfacing circuit with the power network, rotating machine models can 

be generally classified into three types: coupled-circuit phase-domain (PD) models [84]; classical 

qd models [19], [84]; and hybrid models known as the VBR models [88]-[97]. Despite their 

algebraic equivalence, these models can possess vastly different numerical properties, thus 

affecting numerical accuracy, efficiency, and stability during simulation [86].  

The PD models [84], as originally derived based on physical variables, use the same set of 

coordinates (i.e., abc phases) that can be directly interfaced with external power systems. 

However, the mutual inductances (and self-inductances for salient-pole synchronous machines) of 

PD models are dependent on the rotor position. These time-varying inductances require costly 

calculations per time step, and greatly complicate the analysis of machine dynamics due to poorly-

scaled eigenvalues [84], [86].  

R. H. Park [87] proposed to transform the stator windings of the PD model to the orthogonal 

quadrature and direct axes fixed on the rotor (thus referred to as qd models [19], [84]). In qd 

models, the circuit parameters are time-invariant and the state variables (voltages, currents, fluxes 

etc.) become constant in steady-states, which make these models highly efficient. As such, qd 

models become the classical default (built-in) models in most state-of-the-art simulators even 

today. However, the qd model can cause a major issue when interfaced with external inductive 



   12 

 

abc-phase networks (e.g., transformers, transmission lines, etc.). In SV-based programs, this issue 

is presented as the incompatibility between the qd models, represented as voltage-input current-

output components, and the external inductive systems that require inputs of voltages [86]. A 

common approach to solve this problem is to use artificial (relatively-large resistive or capacitive) 

snubber circuits [30], which however add to system stiffness decreasing simulation efficiency 

(forcing the use of small step sizes), and can even cause continued numerical instability [86]. In 

EMTP-type simulators, this interfacing issue also exists by requiring prediction of machine state 

variables (speed voltage, stator current, field voltage, etc.), thus leading to limited accuracy and 

requiring small time-steps [86].   

To achieve direct machine-network interface while attaining good numerical efficiency, 

the VBR models [88]-[97] have been proposed with a circuit configuration following the widely 

established machine representation in the power system community − an equivalent voltage source 

behind a reactance [18]−[19]. The VBR modelling of synchronous machines has been first 

proposed in [88], where the stator states (currents) are in abc phases, and the rotor currents/fluxes 

are formulated in qd coordinates. This unique formulation endows the VBR models with better-

scaled eigenvalues, and thus, higher efficiency than the PD models. However, due to the dynamic 

saliency of synchronous machines [89], the interfacing circuit of model [88] still contains rotor-

position-dependent variable-parameter inductances (referred to as the VP-VBR model [88]). 

Consequently, a considerable amount of following research has been done toward eliminating such 

rotor-position-dependency of stator inductances, by adding a fictitious high-frequency damper 

winding [89]−[91], or by re-positioning the time-varying part into the subtransient voltage source 

(followed by numerical approximations) [92]−[93]. In particular, it is shown in [90]−[93] that with 

a constant-parameter stator-network interface (referred to as CP-VBR model [90]−[93]), the VBR 

modelling of synchronous machines can achieve a superior combination of numerical efficiency 

and accuracy. This allows the VBR modelling to be successfully applied to induction machines 

[94], and extended for EMTP-type solutions [95]-[97]. Owing to the numerical advantages, the 

VBR formulation of rotating machines has been used for SFA-based DP modelling [53]-[54]. 
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1.2.2.2 Modelling of Line-Commutated Rectifiers (LCRs) 

The second category of power system components considered in this thesis are the high-

power ac-dc converters. While pulse-width-modulated (PWM) converters are commonly found, 

their applications are usually limited by the power ratings of transistors [98]. Owing to high 

reliability, low cost, and simple configuration, line-commutated rectifiers (LCRs) or converters 

(LCCs) are widely used in a myriad of industrial and commercial applications [99], including the 

input stage of variable frequency drives (VFDs) [98]-[99], DERs [100], electric systems of 

vehicles, ships and aircrafts [101], and over 70% of today’s HVDC systems [4]-[5], etc. However, 

due to the automatic line current commutation, the conventional LCR applications, e.g., three-

phase (six-pulse) diode rectifiers, may work in various operating modes (switching patterns), 

including several CCM modes (CCM-1/2/3, [115]) and the discontinuous-conduction mode (DCM) 

[98], [115]-[116]. These operating modes may contribute considerable ac harmonics into the 

systems, resulting in distorted voltages, degraded power quality, and even adverse impacts on other 

equipment [102]. Numerically accurate and efficient models of LCRs are therefore required to 

predict system-level transients as well as the varying harmonics under different loading conditions.  

The traditional detailed switch-level models of LCRs can be readily established using the 

built-in library of industry-grade EMT simulation tools [21]-[32]. In detailed models, the switching 

of all semiconductor devices is fully included (i.e., high modelling fidelity), which however 

requires small integration step sizes (ranging from tens to hundreds of microseconds) and can 

result in prohibitively long simulation time, especially for studies where multiple runs of 

simulations are required for controller design and tuning [103] . 

Alternatively, a variety of modelling approaches of ac-dc power converters have been 

proposed, including exact linear time varying modelling [104]–[105], sampled-data modelling 

[106], and the average models of various kinds [107]-[108]. In particular, the so-called dynamic 

average-value models (AVMs) [84], [109]–[118], that neglect/average the fast switching of time-

domain dynamic variables (voltages, currents, etc.) over a prototypical switching interval [84], are 



   14 

 

shown to significantly outperform the detailed counterparts in terms of required simulation time. 

Moreover, due to the time-invariant formulation, AVMs can be linearized around any desired 

operating point, and thus are suitable for small-signal analysis (e.g., deriving local transfer 

functions). The AVMs of LCRs can be mainly classified into two categories: analytical AVMs 

(AAVMs) [84], [109]-[110], and parametric AVMs (PAVMs) [111] – [118]. In AAVMs, the 

relationships between the averaged ac and dc variables are derived analytically based on a specific 

switching pattern of diodes/thyristors, thus are valid for only that specific operating mode (i.e., 

CCM-1 as defined in [115]). However, in practice the LCR circuits may become complicated 

including non-idealities, losses and parasitic elements, such that the system dynamics vary 

frequently with operating modes. Due to these limitations, the PAVMs of diode-rectifier systems 

[111]–[116] have been proposed to facilitate the construction of AVMs, which numerically relate 

the rectifier/dc-link dynamics through a set of algebraic parametric functions. The PAVM 

methodology has been proven highly effective for simulations over a wide range of operating 

conditions, and has been extended to (machine-fed) thyristor-controlled rectifiers [117].  

Nevertheless, the established AVMs of LCRs in [109]–[117] have only considered the 

fundamental components of ac variables. To overcome this limitation, a recent work proposed to 

include the main ac harmonics by utilizing multiple reference frames rotating at different 

speeds/directions (referred to as MRF-PAVM [118]). However, this approach formulates the ac 

variables in several qd coordinates. As discussed in Section 1.2.2.1, models developed in qd 

coordinates [109]−[118] also require special consideration for their interfacing with external 

networks represented in physical abc phase variables [86]. Moreover, since double-fundamental 

frequencies may exist in qd coordinates under faulty or unbalanced conditions [63], the simulation 

efficiency with these models can be compromised. Therefore, the GAM methodology, as the 

“generalization” to time-domain AVMs, has attracted a renewed attention with the goal to develop 

LCR models [73]−[78] that possess direct interfacing circuit and include effects of ac harmonics, 

as discussed in Section 1.2.1.2.  
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 Research Objectives and Anticipated Impact 

The properties of state-of-the-art rotating machine models discussed in Section 1.2.1.1 and 

1.2.2.1 are summarized in Table 1–1. It is recalled that for modelling of rotating machines, indirect 

interfacing with external abc-phase networks can add to system stiffness, resulting in degraded 

simulation efficiency or even numerical instabilities. In addition, the machine-network interfacing 

circuit, if containing time-varying (rotor-position-dependent) parameters, will greatly increase the 

computation cost and complicate model implementation. Moreover, to take advantage of flexible 

time-step sizes (i.e., using variable-step solvers), it is desirable to derive DP models of rotating 

machines in state space formulation (for SV-based solution). As can be seen in Table 1–1, there is 

no state-of-the-art DP model of synchronous or induction machines that possess all the following 

desirable properties: direct abc interface, constant-parameter interfacing circuit, and state-space 

formulation for the SV-based solution. However, as seen in Table 1–1 (last two rows), the new 

models developed in this thesis fulfill this gap in research and advance the state of the art. 

Table 1–1. Properties of state-of-the-art and proposed electric machine models.  

Models Signal Types 
Machine 

Type 

Direct abc 

Interface 

Interfacing Circuit 

Parameters 

Solution 

Type 

PD [84] 
Time-Domain 

Signals 
SM/IM Direct Variable SV-based 

qd [19], 

[84] 

Time-Domain 

Signals 
SM/IM Indirect Constant SV-based 

VP-VBR 

[88] 

Time-Domain 

Signals 
SM Direct Variable SV-based  

CP-VBR 

[89]−[94]  

Time-Domain 

Signals 
SM/IM Direct Constant SV-based 

VP-VBR 

[95] 

Time-Domain 

Signals 
SM Direct Variable EMTP-type  

CP-VBR  

[96]−[97] 

Time-Domain 

Signals 
SM/IM Direct Constant EMTP-type  

qd-SFA* 

[50]  

Analytic 

Signals 
SM Indirect Constant EMTP-type 

VBR-SFA 

[53]  

SFA-Type 

DPs 
SM Direct Variable EMTP-type 

VBR-SFA 

[54] 

SFA-Type 

DPs 
IM Direct Constant EMTP-type 
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Models Signal Types 
Machine 

Type 

Direct abc 

Interface 

Interfacing Circuit 

Parameters 

Solution 

Type 

Proposed 

VBR-SFA 

[Sect.3.1] 

SFA-Type 

DPs 
SM Direct Constant SV-based 

Proposed 

VBR-SFA 

[Sect.3.2] 

SFA-Type 

DPs 
IM Direct Constant SV-based 

* The model [50] is derived using analytic signals, while the SFA concept is applied in the integration rule. 

Similarly, the properties of state-of-the-art models of LCR systems discussed in Section 

1.2.1.2 and 1.2.2.2 are summarized in Table 1–2. Therein, in addition to the interfacing issue with 

external networks, it is recalled that the main challenges for accurate modelling of LCRs are: 1) 

the representation of various operating modes (i.e., DCM and CCM-1/2/3 [115]), and 2) the 

inclusion of main ac harmonics. Moreover, it is desirable to include the model of thyristor-

controlled LCR systems. Finally, it is recalled in Section 1.2.2.2 that the use of different modelling 

techniques (detailed, analytical, or parametric) can result in distinct formulations and different 

numerical properties (accuracy, efficiency, etc.) of the models. As seen in Table 1–2, there is no 

state-of-the-art model of LCR systems that uses DPs in abc–phase coordinates, covers all operation 

modes, includes harmonics, and predicts thyristor operation. However, as seen in Table 1–2 (last 

two rows), the new models developed in this thesis combine the desired properties and advance 

the state of the art. 

Table 1–2. Properties of state-of-the-art and proposed models of LCR systems. 

Models 
Signal 

Types 

Modelling 

Technique 

Direct abc 

Interface 

Operation 

Modes 

Harmonics 

Inclusion 

Thyristor 

Operation 

Detailed* 

[21]-[32] 

Time-

Domain 

Signals 

Detailed Direct 
CCM-

1/2/3, DCM 
Yes Yes 

AAVM 

[109]-

[110] 

Time-

Domain 

Signals 

Analytical Indirect CCM-1 No Yes 

PAVM 

[111]-

[116] 

Time-

Domain 

Signals 

Parametric Indirect 
CCM-

1/2/3, DCM 
No No 
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Models 
Signal 

Types 

Modelling 

Technique 

Direct abc 

Interface 

Operation 

Modes 

Harmonics 

Inclusion 

Thyristor 

Operation 

PAVM 

[117] 

Time-

Domain 

Signals 

Parametric Indirect 
CCM-

1/2/3, DCM 
No Yes 

MRF-

PAVM 

[118] 

Time-

Domain 

Signals 

Parametric Indirect 
CCM-

1/2/3, DCM 
Yes No 

ADP-1 

[73]-[74] 

GAM-

Type DPs 
Analytical Direct CCM-1 No Yes 

ADP-1 

[75]-[76] 

GAM-

Type DPs 
Analytical Direct CCM-1 Yes Yes 

ADP-2 

[77] 

GAM-

Type DPs 
Analytical Direct CCM-1 Yes Yes 

ADP-qd 

[78] 

GAM-

Type DPs 
Analytical Indirect CCM-1 No No 

Proposed 

PDP  

[Sect. 4.1] 

GAM-

Type DPs 
Parametric Direct 

CCM-

1/2/3, DCM 
Yes No 

Proposed 

PDP  

[Ch. 4.2] 

GAM-

Type DPs 
Parametric Direct 

CCM-

1/2/3, DCM 
Yes Yes 

* Despite accuracy and relative simplicity, the detailed models are known for being numerically expensive due to 

switching/commutation of all semiconductor devices.  

 

The following objectives are specifically considered to advance the goal of this research:  

Objective 1: Summarize the fundamentals of state-of-the-art DP-type modelling approaches. 

Pinpoint the differences and limitations through analytical and simulation studies, and discuss the 

notable numerical features associated with DP-type simulations.  

Objective 2: Develop an SFA-type DP synchronous machine model with direct stator-network 

interface and constant-parameter interfacing circuit that is suitable for SV-based EMT simulators.  

Objective 3: Extend Objective 2 to developing induction machine models in state-space 

formulation with improved numerical efficiency. 
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Objective 4: Develop a GAM-type DP model of diode LCR systems that possesses abc–phase 

interfacing circuit, accounts for harmonic dynamics, and covers wide range operating modes. 

Objective 5: Extend Objective 4 to numerically efficient modelling of thyristor-controlled rectifier 

systems. 

Objective 6: Develop an interface between the SFA- and GAM-type DPs to connect the proposed 

DP models. 

The ultimate goal of this thesis is to increase the numerical efficiency of DP-type 

simulations of integrated ac-dc power systems, which is achieved by proposing several new DP 

models with improved numerical properties and new desirable features. Rigorous case studies 

demonstrate the advantageous numerical efficiency (i.e., less required CPU simulation time) and 

accuracy (i.e., lower relative error of predicted trajectory against the reference solution) of the 

proposed DP models. The enhanced numerical efficiency of the proposed DP models will greatly 

accelerate the simulations of transient studies, which is highly desirable for simulating dynamics 

of mid- to large-scale ac-dc power systems, or even for real-time simulations. Moreover, with the 

advantageous accuracy in capturing the desired (electromagnetic and/or electromechanical) 

phenomena, it is expected that the proposed DP models will be applied to studying existing and/or 

new transient phenomena (as shown in Figure 1–2) occurring in the emerging integrated ac-dc 

power systems. Finally, as a general-purpose simulation methodology to bridge the gap between 

the traditional EMT and TS simulators, the proposed DP-type modelling and simulation techniques 

will become highly useful to many researchers and engineers worldwide, and facilitate the 

development of next-generation power system simulation tools. 
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 Dynamic Phasor Modelling 

Approaches for Power System Transient 

Simulations 

To set the stage for the derivation of the proposed models, this chapter presents the 

fundamentals of the DP-type modelling approaches. We begin by briefly reviewing the 

conventional signal representations in power system simulations. Next, the fundamentals of DP-

type modelling approaches are set forth, including the shifted frequency analysis (SFA) and the 

generalized averaging method (GAM) types of DP theories. Moreover, for demonstration and 

comparison, we present several case studies of DP modelling for basic power system components 

and phenomena, while discussing the differences and limitations of the approaches.  

 Conventional Signal Representations in Power System Simulations  

Dynamic behaviour of power systems can be studied using various transient simulation 

programs developed for different objectives, time scales, types of disturbances, etc. [17]-[19]. 

Without loss of generality, here the state-space representation of power system models (which is 

used in SV-based tools [27]−[32]) is briefly discussed to illustrate the fundamentals of general-

purpose power system transient simulation. Further details and specific aspects can be found in 

literature [17]-[19]. The EMTP-type modelling of power systems (for EMT simulations) can also 

be found in numerous references [20]−[25].  

Generally, the dynamics of power systems can be represented by a set of first-order ODEs 

in the state-space formulation as: 
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  t
dt

d
,,uxfx  , (2–1) 

  t,,uxgy  . (2–2) 

Here, x is the state vector, u is the input (or control) vector, t  is time, and y is the output vector. 

In some cases, it is also desirable to include algebraic constraints, thus transforming the set of 

ODEs into a system of DAEs [33]-[34]. For dynamic systems that are linear (and/or piecewise-

linear) and time-invariant, (2–1) and (2–2) can be expressed in the well-known matrix-form state-

space representation as 

 BuAxx 
dt

d
, (2–3) 

 DuCxy  , (2–4) 

where  A , B , C , and D  are the state-space matrices. The eigenvalues of matrix A represent the 

system’s dynamic modes [19]. 

 Equations (2–1)–(2–2) [or (2–3)–(2–4)] can be solved using various numerical integration 

methods such as MATLAB/Simulink’s ODE solvers [27]–[28]. Specifically, depending on the 

problem type (continuous/discrete states, stiff/non-stiff) and requirements for accuracy/efficiency, 

etc., the appropriate ODE solvers [27]–[28] may be selected with features such as fixed- or 

variable-step, explicit or implicit, etc. In general, for transient simulation of integrated ac-dc power 

systems with dynamic modes spanning a wide range of time frames (i.e., stiff problem), the 

variable-step implicit solvers (e.g., ode23tb or ode15s [27]–[28]) may offer good numerical 

accuracy and efficiency. 

In addition to the simulation framework and numerical integration methods, another critical 

factor affecting the simulation performance is the selection of proper signal representation for 

modelling of power system components. 
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 Time-Domain Instantaneous Signals 

In industry-grade EMT simulators (both EMTP-type and SV-based categories), power 

system components are typically modelled in detail and represented using instantaneous time-

domain signals. For illustration, the general ac power system electrical variable (voltage or current) 

in steady state can be expressed by a sinusoidal signal  tu as  

      ttu scosU , (2–5) 

where s denotes the system fundamental frequency (hereafter assumed to be 3772  ss f  

rad/s, where 60sf  Hz), and U  and   are the signal magnitude and phase angle, respectively.  

2.1.1.1 abc-Phase Coordinates 

For commonly used three-phase (a-b-c) power systems, the signals in abc-phase 

coordinates can be expressed as  

  

 

 

 

 

 
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














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







csc

bsb

asa

c

b

a

abc

t

t

t

tu

tu

tu

t







cosU

cosU

cosU

u , (2–6) 

where the abc-phase signals may attain arbitrary magnitudes and phase offsets. In particular, when 

the system is balanced and in positive sequence, it satisfies 

 
.

3

2

3

2

,UUU





 



cba

cba

 (2–7) 

However, condition (2–7) may not always hold. Under unbalanced conditions, the 

asymmetrical abc-phase signals in (2–6) can be decomposed into three sets of amplitude-invariant 

symmetrical components [19], as 
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        tttt zabcnabcpabcabc ,,, uuuu  , (2–8) 

where  

 
 
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












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

32cos

32cos

cos

U,




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ps
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ppabc

t

t

t

tu , (2–9) 
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nnabc

t

t

t

tu , (2–10) 

  
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
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






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zzabc

t

t

t

t




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cos

cos

cos

U,u . (2–11) 

Here, pU , nU  and zU  denote the magnitudes of the positive-, negative- and zero-sequence 

components, respectively; and p , n  and z  denote the phase angles of the positive-, negative- 

and zero-sequence components, respectively. 

2.1.1.2 qd0 Coordinates 

The main challenge with using abc-phase representation for power system signals is the 

presence of rotor-position/speed-dependent (i.e., time-varying) parameters when modelling 

electric machines [84]. To simplify the analysis of power systems, the well-known Park’s 

transformation [87] has been widely used, which, in effect, replaces the ac variables associated 

with abc-phase machine stator windings or stationary circuits, with dc-like signals associated with 

fictitious windings/circuits rotating at an arbitrary angular velocity, i.e., in the qd0 reference frame. 

The transformations of power system signals between abc-phase and qd0 coordinates are given by 

    tt abcsqd uKu 0
, (2–12) 

    tt qdsabc 0

1
uKu

 . (2–13) 
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Here, the transformation matrices are defined as [84] 
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1
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sK , (2–15) 

where   denotes the angular displacement of the arbitrary reference frame. For instance, for 

transient and dynamic studies of large-scale power systems, the variables of system components 

(except for synchronous machines) are commonly referred to the reference frame rotating at the 

synchronous speed [18], thus  

   

t

sdt
0

0  , (2–16) 

where  0  is often set as zero for simplicity. Based on (2–16), the time derivatives of the 

transformation matrices are given by  

 )( sss
dt

d
KJK   , (2–17) 

 )( 11 JKK  

sss
dt

d
 , (2–18) 

where  
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Moreover, for unbalanced systems, it is noted that applying (2–14) to (2–8) yields   
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 Conventional Fundamental-Frequency Phasors 

For studying the electromechanical dynamics of power systems (in TS programs), the 

conventional fundamental-frequency phasor is widely used based on the assumption of neglecting 

stator-network transients [19]. For the steady state power system signal  tu  shown in (2–5), its 

fundamental-frequency phasor is defined as 

     UsinUcosUU jeU j

s  , (2–21) 

where  sU   is assumed to rotate at the constant fundamental frequency s with peak (not rms) 

magnitude U  and phase shift  . The time-domain signal is retrieved by  

     ]Re[
tj

s
seUtu

  . (2–22) 

The fundamental-frequency phasor possesses the advantage of using steady-state (i.e., 

algebraic) relationships for representing the machine stator and the interconnecting transmission 

network, thus making it convenient for power flow and short circuit studies [18]. It is also noted 

that for unsymmetrical fault analysis, the unbalanced power systems can be treated as an algebraic 

combination of sequential networks [19]. In particular, the time-domain equation (2–8) can be 

transformed into fundamental-frequency phasors as 
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Other definitions of matrix M  are also possible, e.g., with the scaling factor of 31  for power-

invariant form [67]-[68], which requires adjustment in the inverse transformation.  

 DP-Type Modelling Approaches 

Regardless of the signal representations in Section 2.1, it is noted that there exist certain 

limitations to their application in power system simulations. For time-domain instantaneous 

signals, the major drawback is the maximum integration step size limited by the signal bandwidth 

(i.e., maxmax 21 ft  , [120]). Specifically, abc-phase signals attain a band-pass bandwidth around 

the fundamental frequency [as noted in (2–8)]. In qd0 coordinates, under unbalanced conditions, 

the signal bandwidth is expanded due to the negative-sequence components at double the 

fundamental frequency [as noted in (2–20)]. In contrast, the conventional fundamental-frequency 

phasors, by neglecting stator-network transients of power systems (i.e., reduced-order 

representation [18]−[19]), simply cannot predict the fast dynamic phenomena associated with 

integrated ac-dc power systems.  

To overcome these challenges, instead of tracking the detailed but slow-evolving time-

domain waveforms, or dealing with reduced-order fundamental-frequency phasors, this thesis 

considers modelling general ac-dc power systems using hybrid time-phasor signal representations, 

i.e., using the SFA- and GAM-type DP approaches.   
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 Shifted-Frequency Analysis (SFA) 

The concept of SFA-type DPs stems from the modulation techniques in signal processing 

theory, by investigating the analytic representation of band-pass signals [50]. Typically, for the 

power system signal  tu  with a frequency spectrum as depicted in Figure 2–1, it can be 

represented as a band-pass signal formed by the sum of closely-spaced sine waves, as 

     






i

isi tiatu 


coslim
0

. (2–26) 

Equation (2–26) can then be written as  

       ttuttutu sQsI  sincos  , (2–27) 

where     

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, (2–28) 
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
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


i

iiQ tiatu 


sinlim
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. (2–29) 

The instantaneous band-pass signal  tu  can thus be considered as the combination of two 

low-pass signals  tuI and  tuQ , modulated by the carrier signals tscos and tssin , 

respectively. Since the two carrier signals have the same frequency and are out of phase by 90°, 

 tuI and  tuQ  are often referred to as the in-phase and quadrature components of  tu , 

respectively. The SFA-type DP of the instantaneous signal  tu  is then defined as [49]-[50] 

      tjututU QI  . (2–30) 

In signal processing,  tU  is also called the complex envelope of the signal  tu , which excludes 

the fundamental frequency carrier but preserves the neighboring frequencies.  
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Another commonly used representation of the instantaneous signal  tu  is the analytic 

signal [50], [119], defined as 

 

      
        
         tj

ssQI

sQsIsQsI

setUtjttjutu

ttuttujttuttu

tujHtutU











sincos

cossinsincos

ˆ

 (2–31) 

where  H  denotes the Hilbert transform defined as [119] 

   
 







  
1




d
t

tu
tuH . (2–32) 

Manipulating (2–31), the relationship between the instantaneous signal  tu  and its SFA-type DP 

 tU  can be obtained as 

           tjtj ss etujHtuetUtU
 

 ˆ , (2–33) 

        tj setUtUtu


 ReˆRe . (2–34) 

As seen in (2–33) and (2–34), the SFA-type DP  tU  can be considered as the analytic 

signal  tÛ  after frequency modulation, i.e., shifted by s  from the original frequency. The 

instantaneous signal  tu , as retained in the real part of the analytic signal  tÛ , can also be 

readily retrieved from the DP  tU . This process is commonly referred to as the shifted-frequency 

analysis (SFA) [51]-[52], and can be visualized in Figure 2–2, where it is seen that the SFA-type 

DP is obtained as an analogous low-pass representation of the original band-pass instantaneous 

signal. 



   28 

 

 

Figure 2–1. Frequency spectrum of a band-pass power system signal  tu  represented by the sum of closely 

spaced sine waves. 

 

Figure 2–2. Frequency spectra of the band-pass signal in different representations during the process of SFA: 

a) instantaneous signal  tu ; b) analytic signal  tÛ ; and c) SFA-type DP  tU . 

 Generalized Averaging Method (GAM) 

 The SFA assumes that power system signals are within a band-pass spectrum, i.e., with 

frequency content condensed around the fundamental frequency. However, this low-pass signal 

representation (and its resulting numerical advantages) can be compromised when considering 

power systems where harmonics may exist, since the frequency shift applied to the analytic signal 

is limited to only s  [as noted in (2–33) and Figure 2–2]. This limitation thus necessitates a new 

modelling theory that can account for wide-band signals with high-frequency components. 

In the considered ac-dc power system, the power system signal  tu  is assumed to be 

quasi-periodic and possess a wide-band frequency spectrum as depicted in Figure 2–3 (a), which 

comprises the fundamental frequency and potential high-order harmonic components. The GAM 
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then views the time-domain waveform as  u  over a “sliding window” with period ssT 2  

as depicted in Figure 2–4, which can be expressed using Fourier series [62] as 

    





k

jk

k

setuu
 , (2–35) 

where  tTt s , . Here, since  u  may not attain periodicity (as shown in Figure 2–4), the kth 

Fourier coefficient  tu
k

 is time-varying, and therefore defined as the kth order GAM-type DP, 

which is given by 

      
deu

T
tu s

s

jk

t

Tts
k





 
1

. (2–36) 

Similar to SFA, in frequency domain the Fourier coefficient, i.e., GAM-type DP  tu
k

, 

can be viewed as the low-pass representation of the instantaneous signal  tu , which is visualized 

in Figure 2–3, except that for GAM-type DPs, the frequency content of each high-frequency 

component has also been shifted accordingly (by its harmonic frequency). In addition, based on 

the definition of (2–36), it can be derived that the magnitude of 1st order GAM-type DP (i.e., k =1 

for fundamental frequency) is half of the magnitude of the SFA-type DP, as also noted in Figure 

2–2 and Figure 2–3. This magnitude definition of GAM-type DPs [(2–35) and (2–36)] will be used 

consistently throughout this thesis. 

As seen in (2–35) and (2–36), the GAM enables to select a number of DPs of interest (i.e., 

selection of k), to construct an adequate approximation of the original time-domain waveform. 

Specifically, this approximation yields the instantaneous reconstruction [124] as 
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    



Kk

tjk

k

setutu


, (2–37) 

where K={1, 2, 3, …} denotes the set of selected orders of GAM-type DPs. However, it is noted 

that the inclusion of higher-order DPs also adds to the modelling complexity and computational 

costs. Moreover, several operation features of GAM-type DPs, which are also used in the following 

sections, can be obtained as [62] 

 
*

kk
uu 


, (2–38) 

  


i
iikk

vuuv , (2–39) 

 
ksk

k

ujku
dt

d

dt

du
 , (2–40) 

where the superscript * refers to conjugate operation. 

 

Figure 2–3. Frequency spectra of the power system signal in different representations during the process of 

GAM: a) instantaneous signal, and b) GAM-type DP.  

 

Figure 2–4. Illustrated “sliding window” of the signal moving along the time axis.  
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 Discussions and Computer Studies 

As shown in Figure 2–2 and Figure 2–3, both the SFA-type DP  tU  and GAM-type DP 

 tu
k

 are obtained as the analogous low-pass representation of the instantaneous signal  tu . 

From the power system simulation perspective, the use of DPs can be particularly helpful to 

achieve a significant reduction of the number of necessary time-steps [51]-[52], since many fewer 

samples are required to accurately represent such low-pass DPs than the original instantaneous 

signals according to the Nyquist sampling theorem (i.e., maxmax 21 ft   , [120]).  

Several aspects of the aforementioned representations of power system signals are 

summarized in Table 1–1. Therein, it is noted that as hybrid time-phasor signals, the DPs are 

complex-value variables, which require real and imaginary parts (i.e., increased system order) in 

the state-space formulation [as (2–1)–(2–2) or (2–3)–(2–4)] for using regular ODE solvers. 

Moreover, with the approximated expression (2–37) of GAM-type DPs (i.e., selection of K), one 

should anticipate a trade-off between the simulation accuracy and modelling complexity. Typically, 

it is advised that the fundamental component and/or the first few dominant harmonics are 

considered for common system-level modelling and analysis with GAM-type DPs [62]−[83]. 

It is worth noting that in the respective literature, the concept of “dynamic phasor” may 

refer to different methodologies (e.g., for dynamic estimation in phasor measurement unit (PMU) 

applications [128]), or be named using other terminologies (e.g., “dynamic harmonics” [124], 

[126]-[127], “time-varying harmonics” [108], etc.). Throughout this thesis, the terminology 

“dynamic phasor” refers to the SFA- and GAM-type DP modelling approaches. 
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Table 2–1. Properties of different representations of power system signals. 

Representation Notation Signal Types Assumption Accuracy 

Instantaneous 

Signal 
 tu  Time-Domain Signal n/a Accurate 

Conventional 

Phasor 
 sU   

Fundamental-Frequency 

Phasor 

Neglecting Stator-

Network 

Transients 

Low 

SFA-Type DP  tU  
Hybrid Time-Phasor 

Signals 
Band-pass Signal Accurate 

GAM-Type DP  tu
k

 
Hybrid Time-Phasor 

Signals 

Quasi-Periodical 

(Wideband) Signal 
Approximated 

 Modelling Basic RLC Components 

To demonstrate the application of DP-type modelling approaches to power circuits, the 

examples of basic RLC components are presented here. In general, the procedure of developing 

power system component models in the DP domain can be summarized as follows:  

1) Obtain the dynamic equations in the time-domain using instantaneous signal representation 

[in state-space formulation as (2–1)–(2–2) or (2–3)–(2–4)] ; 

2) Follow the definition of the corresponding type of DPs to transform the time-domain 

equations. Specifically, for the SFA-type DPs, one should first rewrite the instantaneous signals 

(voltages, currents, etc.) in the form of (2–27), and then follow the procedure of (2–33) (i.e., Hilbert 

transform, analytic signal formulation, and frequency shift) [51]-[52]. For the GAM-type DPs, one 

should first select the set of desired frequencies (i.e., K) based on the properties of non-linear 

components in the system, and then derive the corresponding DP model based on (2–36) [63]; 

3) Manipulate and simplify the DP models derived in 2) [e.g., using the operation features (2–

38)-(2–40)] into a compact state-space formulation; 

4) Decompose the complex-valued DP dynamic equations into real and imaginary parts to 

facilitate the numerical integration using regular ODE solvers [27]–[28]. 
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For better illustration of the above procedure, the equations in different signal 

representations governing the basic RLC components are derived and summarized in Table 2–2. 

As shown in Table 2–2, both the equations in SFA- and GAM-type DPs closely resemble those 

formed using the conventional phasors [19], with the difference being the time-derivative terms. 

In steady state, the SFA-type DP (which is two times the magnitude of the 1st order GAM-type 

DP) should yield identical solution to those of conventional phasor, thus allowing for potential 

interfacing between DP models and TS programs [63]. Moreover, for EMT simulations where the 

sinusoidal signals are simulated, the magnitudes of such DPs essentially represent the envelopes 

of the time-domain waveforms [51]. Therefore, the DP models may also find potential application 

in the EMT simulations [75]-[76], by providing straightforward information about the dynamics 

of the power systems. 

Table 2–2. Dynamic equations governing the basic RLC components using different signal representations.  

Representation Resistor R Inductor L Capacitor C 

Instantaneous 

Signal 
   tRitv RR      ti

dt

d
Ltv LL      tv

dt

d
Cti CC   

Conventional 

Phasor 
   sRsR RIV       sLssL LIjV       sCssC CVjI    

SFA-Type DP    tRItV RR        tI
dt

d
LtLIjωtV LLsL        tV

dt

d
CtCVjωtI CCsC   

GAM-Type DP    tiRtv
kRkR        ti

dt

d
LtiLjktv

kLkLskL         tv
dt

d
CtvCjkti

kCkCskC    

 Modelling System Transients at Different Frequencies 

To demonstrate the effectiveness and limitations of DP-type modelling approaches, here a 

single-phase series RLC circuit is considered as shown in Figure 2–5 (a). Depending on the system 

parameters, this circuit is able to exhibit resonant transients from sub- to super-synchronous 

frequencies.  
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Figure 2–5. The example single-phase series RLC circuit in different signal representations: a) instantaneous 

signal; b) conventional phasor; c) SFA-type DP; and d) GAM-type DP. 

2.3.2.1 Analytical Modelling and Eigenvalue Analysis  

This single-phase series RLC circuit can be represented by the state-space model in time-

domain instantaneous signal representation as 
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Neglecting dynamics, the conventional algebraic phasor representation for this circuit is 
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Following the equations derived in Table 2–2, the SFA-type DP model is   
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, (2–43) 

and GAM-type DP model is  
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In summary, the RLC circuits in different signal representations as shown in Figure 2–5 

can be represented by (2–41)-(2–44). It is noted that the conventional phasor yields pure algebraic 

relationships (2–42) by neglecting system dynamics. As also noted in Figure 2–5, compared with 

the time-domain equation (2–41), the complex-valued terms in the diagonal elements of the DP 

state matrices [i.e., sj  in (2–43) and sjk in (2–44)] can be interpreted as the additional voltage 

source (in series) and current source (in parallel) for inductive and capacitive elements, 

respectively [e.g.,  tLIj Ls  and  tiLjk
kLs  as shown in Figure 2–5 (c) and (d), respectively]. 

This circuit representation may find particular use for power system modelling in EMTP-type 

solutions where the system components are discretized and formulated at branch level [75]-[76]. 

Moreover, to operate with complex variables using regular ODE solvers [27]–[28], the SFA-type 

DP model (2–43) and GAM-type DP model (2–44) have to be further decomposed into real and 

imaginary components, which yield the decomposed SFA- and GAM-type DP models as   
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where the additional subscripts “r” and “i” denote the real and imaginary parts, respectively. 

To investigate the system transients/dynamics at different frequencies, the eigenvalue 

studies are usually performed in the power system community [19]. The eigenvalues (i.e., system 

modes) of the time-domain model (2–41) are given by 

 12   nnTD
, (2–47) 

where n  and   denote the resonant frequency and damping factor of the series RLC circuit, 

respectively, as defined by  

 
L

CR

LC
n

2
 ,

1
  . (2–48) 

Similarly, the eigenvalues of the decomposed SFA-type and GAM-type DP models (2–45) 

and (2–46) (which use real and imaginary components of DPs as state variables) are respectively 

obtained as 
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  22

_ 1 snnDPSFA jω  , (2–49) 

  22

_ 1 snnDPGAM jkω  . (2–50) 

To better observe the resonant transients as predicted by the subject models, the 

underdamped series RLC circuit can be considered. Specifically, with a small value of damping 

factor   that j12 , the eigenvalues (2–47) and (2–49)-(2–50) are approximated as 

 nnTD j  , (2–51) 
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The subject system models and their corresponding properties for a series RLC circuit 

based on different signal representations are summarized in Table 2–3. Therein, it is noted that the 

conventional phasor results in an algebraic model (thus no state variables or system eigenvalues), 

and the SFA- and GAM-type DPs yield dynamic models with increased system orders due to the 

decomposed real and imaginary representation of complex state variables. Moreover, based on the 

eigenvalues of the subject models (see last column in Table 2–3), several conclusions can be 

drawn:  

1) Compared with the eigenvalues of the original time-domain model (2–51), the 

resonance/oscillation modes of the DP models are obtained at complemented frequencies where 

the original resonant frequency is shifted by the fundamental or harmonic-order frequencies, as 
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shown in (2–52)-(2–53). This is due to the additional elements in the state matrices [i.e., additional 

off-diagonal elements s in (2–45) and sk in (2–46)].  

2) During simulations, these complemented modes (frequencies) may become excited with 

the additional ringing in the dynamics of the states (i.e., the real and imaginary components of 

DPs) after a system input/configuration change. For the considered underdamped series RLC 

circuit, the additional ringing is introduced at sn    and sn k  for the decomposed SFA- 

and GAM-type DP models (2–45) and (2–46), respectively. Moreover, since the selection of 

integration step sizes in variable-step ODE solvers depends on the signals [27]–[28], these ringing 

dynamics of DPs may force the ODE solvers to use small-step sizes to track system transients.  

3) Despite the additional ringing in DPs, it is noted in (2–51)-(2–53) that the real parts of 

eigenvalues are identical for different signal representations, i.e., DP modelling approaches do not 

affect the time constants of the system. Therefore, as the system transients/dynamics die out, the 

variable-step ODE solver is able to use large time-steps for simulating (quasi-) steady-state 

conditions.  

Table 2–3. Properties of system models for the series RLC circuit using different signal representations. 

Representation System Model State Variables Eigenvalues 

Instantaneous Signal (2–41)     TCL tvti  ,  nn j   

Conventional Phasor (2–42) N/A N/A 

SFA-Type DP (2–45)         TiCrCiLrL tVtVtItI ,,,,  , , ,  










snn

snn

j

j




 

GAM-Type DP (2–46) 
   

   

T

ikCrkC

ikLrkL

tvtv

titi















,,

,,

 ,

... , ,
 











snn

snn

kj

kj




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2.3.2.2 Computer Studies 

To facilitate the previous discussions, computer studies are conducted on the series RLC 

circuit shown in Figure 2–5 with system parameters summarized in Table 2–4. To demonstrate the 

capability of predicting system transients at different frequencies, the system parameters are tuned 

[based on (2–48)] to excite resonant transients at 10 Hz (sub-synchronous frequency) and 300 Hz 

(super-synchronous frequency). The system is assumed to have zero initial conditions. At 1.0t

s, the voltage source is turned on (with magnitude V 6.11V s  and frequency Hz 60sf ) to 

excite the dynamic modes of the series RLC circuit.  

The system response with resonant frequency nf   at 10 Hz and at 300 Hz are shown in 

Figure 2–6 and Figure 2–7, respectively, where the solutions predicted by the time-domain (TD) 

model (2–41), the conventional steady-state Phasor model (2–42), the SFA-type DP model (2–45), 

and the GAM-type DP model (2–46) (with K={1}) are shown. For the DP models, the trajectories 

of the DP magnitudes [calculated using the real and imaginary parts of DPs, and specifically, line 

d-1) is two times the magnitude of 1st order GAM-type DPs, e.g., 
1

2 Li ] and the reconstructed 

time-domain values [using (2–34) and (2–37) for SFA- and GAM-type DPs, respectively] are 

included to compare with the other solutions.  

As seen in Figure 2–6 and Figure 2–7, for the trajectories of time-domain values, both the 

SFA and GAM models produce results that accurately match the TD model [see lines a), c-2), and 

d-2)]. This validates the accuracy of DP models (i.e., full-order modelling) in capturing the 

resonance transients of the RLC circuit at frequencies ranging from sub-synchronous to high-order 

harmonic frequencies.  
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It is also observed in Figure 2–6 and Figure 2–7 that the trajectories of DP magnitudes [see 

lines c-1) and d-1)] represent the dynamic envelopes of the time-domain waveforms. Specifically, 

it is seen in Figure 2–7 (and in Figure 2–6 provided that the simulation time is long enough) that 

when the resonance transients die out (in quasi-steady-state conditions), the DP models yield 

identical trajectories [see lines c-1) and d-1)] to the classical Phasor model solution [see lines b)], 

which simply neglects the system dynamics. 

Moreover, it is noted in Figure 2–6 and Figure 2–7 that during the resonance transients, 

some ringing is presented in the trajectories of the magnitudes of DPs [see lines c-1) and d-1)]. As 

explained in Section 2.3.2.1, the additional elements in the state matrices [i.e., the additional 

diagonal elements sj  in (2–43) and sjk  in (2–44), and the additional off-diagonal elements s

in (2–45) and sk in (2–46)] can introduce complemented modes in the dynamics of the states (i.e., 

the real and imaginary components of DPs), which thus result in additional ringing in the DP 

magnitudes. Such ringing in the DPs has also been noticed in respective literature [124]-[125], 

where the authors explain that a direct step change in the DP domain can in fact introduce 

additional dynamics/oscillations into the associated DPs during transients, while precisely 

reproducing the correct time-domain results. Basically, when mapping a step change of a time-

domain signal into the DP domain, two different approaches can be employed [124], i.e., 

implementing: 1) a set of continuous time-varying changes of DP inputs; or 2) a direct step change 

in the DPs, which is simpler and more widely used [124], and has been considered throughout this 

thesis. However, the direct step change in the DP domain can cause inconsistency between 

responses of the DP systems before and after the input change [125], and provoke oscillations in 

the DPs that are damped according to the time constants of the system [as also concluded from (2–
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51)-(2–53), Section 2.3.2.1]. Finally, it is important to mention that, despite the ringing during 

transients, both the SFA- and GAM-type DP models reproduce accurate time-domain simulation 

results that are well matched with the TD model, as validated in Figure 2–6 and Figure 2–7 [lines 

a), c-2), and d-2)]. This validates the DP models in predicting system responses at different 

frequencies.   

Table 2–4. Parameters of the series RLC circuit for different resonant frequencies. 

System Parameters Resonant Frequency nf  Damping Factor   

 1 =R , H 0.1 =L ,  F 2533 C  10 Hz 0.0796 

 10 =R , H 0.1 =L , F 815.2 C  300 Hz 0.0265 

 

   

Figure 2–6.  System response of the RLC circuit with resonant frequency Hz 10nf . 
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Figure 2–7.  System response of the RLC circuit with resonant frequency Hz 300nf . 

The origin of the ringing in DPs can also be verified by investigating system frequency-

domain characteristics and eigenvalues of the subject models. For the TD model (2–41), the input 

admittance of the RLC circuit [i.e., the transfer function from input Sv to output Li ] is depicted in 

Figure 2–8 and Figure 2–10 for the system with resonant frequencies at 10 Hz and 300 Hz, 

respectively. For DP models, since with K = {1} the GAM model (2–46) and SFA model  (2–45) 

yield identical formulation, only the results from the SFA model are included. It is also noted that 

due to the decomposed real and imaginary components of DPs, the input admittance is now 

represented as a matrix of 2×2 transfer functions from input T

iSrS VV ] ,[ ,, to output T

iSrS II ] ,[ ,, . The 
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DP model results are depicted in Figure 2–9 and Figure 2–11, each corresponds to the results 

shown in Figure 2–8 and Figure 2–10, respectively.  

As seen in Figure 2–8 and Figure 2–9, compared with the TD model with Hz 10nf  (sub-

synchronous resonance), the SFA model attains resonant frequencies at 50 Hz and 70 Hz [see the 

double peaks f admittance magnitudes], which matches the complemented frequencies at sn  

( sn ff  ) as concluded in Table 2–3. Similarly, for the super-synchronous resonances seen in 

Figure 2–10 and Figure 2–11, the SFA model is shown to shift the resonant frequency from the 

original Hz 300nf  by the fundamental frequency sf , thus resulting in the two complementary 

resonances at 240 and 360 Hz [i.e., sn ff  ]. These complemented resonances of the SFA model 

are also verified by the eigenvalues as summarized in Table 2–5, where it is seen that the 

frequencies of system modes (i.e., the imaginary components of the eigenvalues, in rad/s) match 

well with the previous frequency-domain analysis.  

Table 2–5. Eigenvalues of the subject models for the series RLC circuit with different resonant frequencies. 

Model 
System 

Equation 

Resonant Frequency

Hzfn 10  

Resonant Frequency

Hzfn 300  

TD (2–41) 63.625 j  28.18845 j  

SFA (2–45) 








36.3145

62.4395

j

j
 









29.15075

28.22615

j

j
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Figure 2–8.  Transfer function from input Sv  to output Li  as predicted by the TD model for the series RLC 

circuit with resonant frequency Hz 10nf . 

 

Figure 2–9.  Transfer function from input 
T

iSrS VV ] ,[ ,, to output 
T

iSrS II ] ,[ ,, as predicted by the SFA model 

for the series RLC circuit with resonant frequency Hz 10nf . 
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Figure 2–10.  Transfer function from input Sv  to output Li  as predicted by the TD model for the series RLC 

circuit with resonant frequency Hz 300nf . 

 

Figure 2–11.  Transfer function from input 
T

iSrS VV ] ,[ ,, to output 
T

iSrS II ] ,[ ,, as predicted by the SFA model 

for the series RLC circuit with resonant frequency Hz 300nf . 
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 Modelling Power Systems under Unbalanced Conditions 

As demonstrated in Section 2.3.2, the SFA- and GAM-type DP models are shown to 

accurately predict the system transients at different frequencies. However, it is reminded that the 

superior numerical efficiency of DP simulations is achieved through the low-pass representation 

of power system signals, e.g., the dc-like trajectories of envelopes/states in quasi-steady state as 

shown in Figure 2–7. 

As also noted in (2–8) and (2–20), the time-domain waveforms of power system signals 

may attain different frequencies in the abc-phase and qd0 coordinates, especially under unbalanced 

conditions. To achieve numerically efficient simulation, it is therefore crucial to select the proper 

coordinates for DP representation of power system signals. For this purpose, in this section the 

SFA- and GAM-type DPs for representing the symmetrical components of unbalanced power 

systems are set forth.  

2.3.3.1 SFA-Type DPs of Three-Phase Power System Signals 

For SFA-type DPs, it is recalled in (2–8) that under unbalanced conditions the abc-phase 

power system signals attain a band-pass bandwidth for all symmetrical components. Taking phase 

b as an example, it is recalled in (2–8) that the time-domain signal is 

        zsznsnpspb ttttu   cosU32cosU32cosU , (2–54) 

Applying (2–31) then yields the analytic signal as 

 
      

     zsnsps tj

z

tj

n

tj

p

bbb

eee

tujHtutU

 




UUU

ˆ

3232
, (2–55) 

and the SFA-type DPs are then obtained after shifting the frequency as 



   47 

 

 
   
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
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ˆ
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







. (2–56) 

Therefore, following the procedure in Section 2.3.1, the SFA-type DPs of abc-phase power system 

signals under unbalanced conditions are expressed as 
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Moreover, it is convenient to define the SFA-type DPs for symmetrical components  tpnzU  as 
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Therefore, (2–57) can be manipulated into 

  
 
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





 , (2–59) 

where M  is defined in (2–24). It is noted that (2–59) is identical to the fundamental-frequency 

phasor expression of symmetrical components (2–23), which infers the potential interfacing 

between SFA-type DP models and TS programs [63]. 

However, for the qd0 coordinates, it is noted that under unbalanced conditions, the power 

system signals are no longer of band-pass due to the zero- and negative-sequence components at 

fundamental and double-fundamental frequencies, respectively [as noted in (2–20)]. In this case, 

it becomes impractical to use the SFA-type DPs for transformed qd0 signals, since low-pass 

representation will no longer be achieved. Specifically, applying (2–31) to (2–20) yields  
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where it is noted that the Hilbert transform of a constant value is zero. Therefore, after shifting the 

frequency (2–33), the SFA-type DPs of qd0-coordinate signals are obtained as  
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2.3.3.2 GAM-Type DPs of Three-Phase Power System Signals 

Similarly, following the procedure in Section 2.3.1, the GAM-type DPs of abc-phase 

signals can be derived by selecting the fundamental frequency components (i.e., K={1}) and then 

applying (2–36) to (2–8), which yields  
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For the qd0 coordinates under unbalanced conditions, the order of GAM-type DPs should 

be selected as K = {0, 1, 2} to adequately represent the positive-, zero- and negative-sequence 

components as dc, fundamental, and double-the-fundamental frequencies, respectively. Therefore, 

the GAM-type DPs of qd0-coordinate signals are obtained by applying (2–36) to (2–20) as 
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Table 2–6. Properties of different signal representations for the three-phase power systems under 

balanced/unbalanced conditions. 

Representation Coordinates Equation 

Balanced ( pU ) Unbalanced ( znp U;U;U ) 

Signal 

Freq. 

No. of State 

Variables 
Signal Freq. 

No. of State 

Variables 

Instantaneous 

Signal 

abc  (2–8) s  3 sss   ; ;  3 

qd0  (2–20) dc 3 ssdc   ;2 ;  3 

Conventional 

Phasor 
abc  (2–23) dc N/A dc N/A 

SFA-Type DP 

abc  (2–57) dc 
 3 complex  

(6 total)  
dc 

3 complex  

(6 total) 

qd0* (2–61) s  3 complex  

(6 total) 
dc ; ; ss   3 complex  

(6 total) 

GAM-Type DP 

abc  (2–62)  dc   
3 complex  

(6 total) 
dc  

3 complex  

(6 total) 

qd0 
(2–63)- 

(2–65) 
dc 3 real dc  

3 real 

  6 complex  

(15 total) 

* While deriving the SFA-Type DPs for qd0-coordinate signals is possible, it is impractical since the low-pass signal 

representation vanishes and no numerical benefit has been gained. 
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In summary, the properties of different signal representations for the three-phase power 

systems under balanced/unbalanced conditions are summarized in Table 2–6. Therein, the signal 

frequencies are given assuming that the system enters (quasi-) steady state (i.e., not during 

transients), where pU , nU  and zU  are constant or slow-varying values. As seen in Table 2–6, the 

low-pass (dc) representation of power system signals (superior numerical efficiency) can be 

achieved with the SFA-type DPs of abc-phase signals, and the GAM-type DPs of both abc-phase 

variables and transformed qd0 signals. Moreover, to operate with complex variables using regular 
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ODE solvers [27]–[28], the SFA- and GAM-type DPs have to be further expanded into real and 

imaginary components, thus increasing the number of system order (as shown in Table 2–6). For 

example, to adequately represent the unbalanced/faulty power systems, the order of GAM-type 

DPs should be selected as K = {0, 1, 2}, which requires a total of 15 variables (i.e., 

T

iqdrqdiqdrqdqd ],,,,[
,20,20,10,1000 uuuuu ) that significantly adds to model complexity and 

associated computation costs. Therefore, it can be concluded that the abc-phase coordinates are 

the most numerically efficient for DP modelling of power system signals.  

2.3.3.3 Computer Studies 

To validate the previous discussions, computer studies are conducted on a simplified 230 

kV three-phase transmission system as shown in Figure 2–12. Therein, the power grid is modelled 

by the Thevenin voltage source with an impedance corresponding to a 2000 MVA short circuit 

level and X/R = 10. The 50-km transmission line is modelled by a three-phase coupled π section 

RLC circuit (short line model) [20], the detailed parameters of which can be found in Appendix A. 

The load (75 MW, 20 Mvar per phase) is modelled by the parallel RL loads. This system is assumed 

to be three-phase symmetrical with parameters summarized in Table 2–7. 

 

Figure 2–12. Circuit diagram of the considered 230 kV three-phase transmission system.   
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Table 2–7. Parameters of the considered three-phase transmission system. 

System Component Parameters 

Power Grid 
peak kV 187.8 =Vphase

, Hz 60sf ,  

 2.645 =sR , mH 70.2 =sL  

  Transmission line  

 5.667 =_ stlR ,  3.667 =_ mtlR ,  

mH 73 =_ stlL , mH 30.8 =_ mtlL ,  

F0.2615  =_ stlC , F0.035- =_ mtlC  

System Load  235.111 =loadR , H 2.339 =loadL  

 

To emulate an unbalanced situation, the system (initially assumed in the rated steady state) 

is subjected to a single-phase-ground fault in the phase c voltage source at t = 0.1s, and the 

simulation is run until t = 5s. For comparison, the subject models have been implemented in 

MATLAB/Simulink [27]–[28], including the conventional phasor model [a) Phasor], the time-

domain model represented in abc-phase [b) TD - abc] and qd0 coordinates [c) TD - qd0], the 

GAM-type DP model in abc-phase [d) DP- abc, with K ={1}] and qd0 coordinates [e) DP- qd0, 

with K ={0, 1, 2}]. Here, only the GAM-type DP models have been implemented, since the SFA- 

and GAM-type DPs (with K={1}) yield the same model formulation for abc-phase signals (with 

the only difference being the phasor magnitudes).  

To verify the numerical accuracy of the subject models, the system is first solved with 

small time step sizes using the ODE23tb solver [27] and the following settings: relative and 

absolute error tolerances of 10−3, and maximum and minimum step sizes of 10µs and 0.1 µs, 

respectively. For the purpose of discussion, only the responses of phase c current csi  is depicted in 

Figure 2–13. As can be seen in Figure 2–13, all of the TD and DP models can accurately predict 

the time-domain trajectories of current csi  [see lines b) to e)], except for the reduced-order Phasor 

model [see line a)]. In particular, it is observed that the current csi , after the fault, has oscillatory 
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behaviour at three frequencies: 1) the 60 Hz system fundamental frequency, 2) the high-frequency 

RLC resonant transients that decays rapidly, and 3) the dc offset that decays exponentially in a few 

seconds. It is noted that such dc offset essentially represents the stator-network dynamics of power 

systems (Section 3.7.2, [19]), which is generally neglected in classical phasor models and TS 

programs. Therefore, Figure 2–13 confirms the validity and numerical consistency of the DP 

models in capturing the details of fast transients similarly to TD models, provided that simulation 

step sizes are sufficiently small. 

Next, to investigate the numerical efficiency of the subject models, it is desirable to study 

the behaviour of the system state variables during and after the fault transient, as shown in Figure 

2–14 and Figure 2–15, respectively. As can be seen in Figure 2–14 and Figure 2–15, in the initial 

steady state, the state variables of the subject models (except for the TD-abc model) are dc signals, 

which is consistent with Table 2–6. However, as the single-phase-ground fault occurs at t = 0.1s 

(i.e., unbalanced condition), the trajectories of state variables for the subject models differ greatly. 

As seen in  Figure 2–14, the Phasor algebraic model yields state trajectories as magnitude step 

change, and the TD-abc model yields time-domain waveforms that are same as those shown in 

Figure 2–13(b). For the TD-qd0 model, in addition to the rapidly-damped transients (due to RLC 

resonances), it is seen that the unbalanced fault introduces negative- and zero-sequence 

components into the system and the waveforms oscillate at s2 and s , respectively [even in the 

post-transient condition shown in Figure 2–15 (c)]. Nevertheless, this loss of low-pass 

representation does not occur with the DP models: for both the DP- abc and DP- qd0 models, the 

system state variables become the dc values (low-pass representation) as the system enters close 

to the quasi-steady state, as shown in Figure 2–15 and Table 2–6.  
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The numerical advantages of DP models are further demonstrated by solving this case 

study using the same ODE23tb solver and error tolerances, but increasing the maximum step size 

to 16.67 ms (i.e., one cycle at 60 Hz). This allows the solver to adaptively select the step sizes in 

a wide range (even at step sizes comparable with TS programs). Figure 2–16 depicts the step size 

Δt as chosen by the subject models, where it is seen that in the initial steady state the maximum 

step sizes are used (except for the TD-abc model). When the fault occurs at t = 0.1s, the system 

state variables vary accordingly, which results in a drop of Δt to very small values in order to trace 

the transient response with good accuracy. Moreover, after the transient, it is noted in Figure 2–16 

that the step sizes of DP models increase rapidly due to the low-pass representation of system 

states. In contrast, Δt remains fairly small with the TD model, which validates the superior 

numerical efficiency of the DP models.  

 

Figure 2–13.  System response of csi  as predicted by the subject models for the single-phase-ground fault in 

phase-c voltage source. 
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Figure 2–14.  Trajectories of system states during the fault transient for the subject models: (a) Phasor; (b) 

TD-abc; (c) TD-qd0; (d) DP-abc; and (e) DP-qd0. 

 

Figure 2–15.  Trajectories of system states after the fault transient for the subject models: (a) Phasor;          

(b) TD-abc; (c) TD-qd0; (d) DP-abc; and (e) DP-qd0. 



   55 

 

 

Figure 2–16.  Step size Δt as chosen by the subject models. 

To conclude this chapter, several remarks are made: 

1) Both the SFA- and GAM-type DP models are shown to yield time-domain results that 

match well to the reference solution produced by the TD model. This is particularly favorable for 

investigating the transient phenomena associated with integrated ac-dc power systems (at 

sub/super-synchronous frequencies), as the DP solutions can accurately capture both the fast and 

slow transients/dynamics (provided that the time step is sufficient).  

2) As system transients/dynamics die out (in quasi steady states), the DPs (and their real and 

imaginary components) become constant or slow-changing variables, which allow the variable-

step ODE solver to adaptively use flexible (large) time-step sizes sufficient for accurate capturing 
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of the active modes of the systems. It is also noted that the additional ringing with DP models does 

not affect the system’s natural time constants.  

3) For general power system dynamics around the fundamental 50/60 Hz frequency (e.g., 

transient stability studies), the abc-coordinate SFA- and GAM-type DPs (K={1}) yield equivalent 

solutions (except for the factor of 1/2 scaling in magnitude for GAM-type DPs). For qd0-

coordinates, only the GAM-type DPs can obtain the low-pass representation of signals (i.e., use of 

large time-step sizes). It is also noted that when simulating unbalanced system conditions, the 

GAM-type DPs in qd0-coordinates do require higher system orders (K = {0, 1, 2}), which come 

at additional associated computation costs. 

4) For modelling the major/dominant harmonics (not transients) in the system, the SFA-type 

DP approach gains no additional numerical benefits, since it only shifts the signal by the 

fundamental frequency. In this case, the GAM-type DPs are preferred, which however increases 

the modelling complexity by requiring more terms.  
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 Numerically Efficient Modelling 

of Electric Machines Based on the Shifted 

Frequency Analysis 

This chapter presents numerically efficient modelling of electric rotating machines based 

on the SFA-type DPs. Owing to the advantageous numerical properties discussed in Section 1.2.2.1, 

the VBR formulation of electric machines has been used for the state-of-the-art SFA-based models 

[53]-[54], and is considered in this chapter. 

We begin by proposing a new VBR synchronous machine model based on SFA. By re-

formulating the machine equations, a constant-parameter DP stator-network interface is achieved 

with this model, which is simple to implement and numerically-free from the rotor-position-

dependent inductances owned by the prior state-of-the-art model [53]. Next, this DP modelling 

approach is extended to obtain a SFA-based VBR model of induction machines in state-space 

formulation. Case studies in conjunction with error and efficiency analysis are presented to 

highlight the superior combination of numerical accuracy and efficiency of the proposed models. 
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 Constant-Parameter VBR Modelling of Synchronous Machines 

Based on SFA-Type DPs 

Without loss of generality, a three-phase synchronous machine model with a field winding 

fd and one damper winding kd in the d-axis, and two damper windings kq1 and kq2 in the q-axis, 

is considered for this section. Motor sign convention is used, and all parameters are referred to the 

stator side. It is assumed that the machine is magnetically linear, and that the q-axis leads the d-

axis by 90° [84].  

 Time-domain VBR Synchronous Machine Models 

 Before deriving the SFA models, the time-domain equations of VBR synchronous machine 

models are first reviewed [88], [92]. The mechanical subsystem is represented by a single rigid 

body with its dynamics represented by the following equations 

 
rr

dt

d
  , (3–1) 

  mer TT
J

P

dt

d


2
 . (3–2) 

Here, P is the number of poles and J is the combined rotor-load inertia. The rotor position and 

angular electrical speed are respectively denoted by r  and r . Variables mT  and eT  denote the 

mechanical and electromagnetic torque, respectively.  

3.1.1.1 Variable-Parameter Time-Domain VBR Model (VP-TD) 

The stator voltage equation of the variable-parameter time-domain (VP-TD) VBR model 

can be expressed as [88] 



   59 

 

 '''' ])([ abcsabcsrabcsabcssabcs
dt

d
eiLiRv   . (3–3) 

Here, the stator resistance matrix sR is 

  ssss rrrdiag  , ,R , (3–4) 

and the subtransient inductance matrix  rabcs 
"L  is  
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where the entries are  

   cosbalss LLLL ,     cos
2

b
a

M L
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L , (3–6) 
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The inductances ''

mdL  and ''

mqL  are 
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mq
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The subtransient voltages ''

abcse  in (3–3) are 

 T

dq

r

sabcs ee ]0[][ ''''1''  Ke , (3–9) 

where r

sK is Park’s transformation matrix referred to the rotor reference frame [84] and 
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The subtransient flux linkages are  

 )(
2

2

1

1''''
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and the magnetizing flux linkages are 

 ''''

qqsmqmq iL   , ''''

ddsmdmd iL   . (3–13) 

The rotor dynamics are represented by the following state equations 

 2,1);( kqkqj
L

r

dt

d
mqj

lj

j

j   , (3–14) 

 kdfdjv
L

r

dt

d
jmdj

lj

j

j ,;)(   . (3–15) 

Here, j  denotes rotor flux linkages. Finally, the electromagnetic torque is calculated as  

 )(
4

3
dsmqqsmde ii

P
T   . (3–16) 

3.1.1.2 Constant-Parameter Time-Domain VBR Model (CP-TD) 

For general synchronous machines, ''

mdL  and ''

mqL  are not equal – a property known as 

dynamic saliency [89]. In such cases, the subtransient inductance matrix  rabcs 
"L  in (3–3) 
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becomes rotor-position-dependent [see (3–5)–(3–8)]. Consequently, numerically expensive 

recalculation of the state matrices is required at every time step. In order to obtain a constant-

parameter stator interface and thus a much more efficient solution, one approach is to add an 

artificial damper winding, which requires specific tuning of its parameters [89]-[91]. Another 

approach proposed in [92] is to first derive an implicit constant-parameter VBR formulation, and 

then use numerical approximations to break the algebraic loop. This approach is simple to 

implement and has good numerical accuracy [91]-[92], and is therefore considered for this section. 

The stator voltage equation of the constant-parameter time-domain (CP-TD) VBR model 

is given as 

 ''

abcsabcsabcssabcs
dt

d
eiLiRv  , (3–17) 

where the inductance matrix becomes constant as 
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L
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The new subtransient voltages in qd coordinates in (3–17) and (3–9) are modified as 
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where the subtransient inductances "

dL  and "

qL are 

 ''''

mdlsd LLL  , ''''

mqlsq LLL  . (3–22) 

It is noted that in general cases where the machine is connected to an inductive network, 

the voltages abcsv  are unknown (i.e., neither states nor inputs). Therefore, the presence of qsv  in 

(3–20) results in an algebraic loop (i.e., an implicit model). To achieve an explicit formulation, 

qsv  is herein approximated by a first-order low-pass filter as [92] 

 qsqs v
ps

p
v

0

0~


 , (3–23) 

where qsv~ indicates the approximated value. It is worth noting that, depending on the required 

approximation accuracy, the pole(s) of such a low-pass filter can be properly selected following 

the procedure in [91] by investigating its impact on the machine’s operational impedances. 

In summary, the CP-TD VBR model is comprised of the stator interfacing equation (3–17), 

the subtransient voltages (3–9), (3–20), and (3–21), the voltage approximation (3–23), the rotor 

state model (3–14), (3–15), and the electromagnetic torque (3–16).  

 VBR Synchronous Machine Models Based on SFA 

The SFA VBR models can now be derived by transforming the electrical signals of the 

time-domain VBR models in Section 3.1.1 into SFA-type DPs following the approach set forth in 

Section 2.2.1.  
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3.1.2.1 Variable-Parameter Stator Interface Based on SFA 

The variable-parameter SFA-based VBR synchronous machine model was proposed in 

[53]. The corresponding stator interfacing equation using SFA-type DPs is 
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where *

abcsI refers to the complex conjugate of abcsI , and the stator inductances are comprised of 

two parts: 
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To obtain a compact formulation and facilitate complex variable operations using regular 

SV-based simulation programs, (3–24) is decomposed into real and imaginary parts as 
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where the additional subscripts “r” and “i” denote the real and imaginary parts, respectively. The 

equivalent inductance and resistance matrices  trSFAVP ," L  and  trSFAVP ,R  are  
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where the entries are 
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3.1.2.2 Constant-Parameter Stator Interface Based on SFA 

As can be seen from (3–27)–(3–29), in order to evaluate  trSFAVP ," L  and  trSFAVP ,R   

in (3–26), the rotor-position-dependent complex matrices A1, A2, B1, and B2 must be recalculated, 

decoupled, and manipulated at every time step, which significantly increases the computational 

burden. To achieve a constant-parameter stator interface in DP form, the SFA approach is applied 

to the CP-TD VBR model. First, (3–17) is rewritten in the form of (2–27) as 
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Applying the Hilbert transform to (3-30) then yields 
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Combining (3-30) and (3-31) into the form of (2–33), the stator equation in the SFA-type DP form 

becomes 

   ''

abcsabcsssabcsabcs j
dt

d
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Finally, (3–32) is decoupled into real and imaginary components, yielding 
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where the constant-parameter equivalent subtransient inductance and resistance matrices "

SFACPL  

and SFACPR are given as 
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3.1.2.3 Rotor Subsystem and Its Interface 

In time-domain VBR models, the rotor dynamics are expressed in qd coordinates, and 

included in the subtransient voltage source ''

abcse  through the inverse Park’s transformation. For 

SFA VBR models, it is convenient to keep the rotor subsystem in time-domain qd coordinates as 

in (3–14)–(3–16), since these rotor variables also change slowly during electromechanical 

transients. This requires transforming the time-domain q- and d-axis subtransient voltages in the 

rotor reference frame into abc-coordinate DPs in order to construct the equivalent DP subtransient 

voltage source "

abcsE . 

In order to obtain such a transformation, the time-domain subtransient voltage "

ase  is 

recalled from (3–9) as 

 rdrqas eee  sincos ''''''  , (3–36) 
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which can be interpreted as the combination of two orthogonal low-pass signals ''

qe  and ''

de

modulated by rcos  and rsin , respectively. In particular, it is observed that this formulation is 

identical to (2–27). Applying the Hilbert transform to (3-36) then yields 

 rdrqas eeeH  cossin][ ''''''  . (3–37) 

Combining (3-36) and (3-37) into the form of (2–33), the subtransient voltage "

asE  in DP form can 

be expressed as 
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Using the same approach for "

bse  and "

cse , the subtransient voltage source "

abcsE  in SFA-type DP 

form is thus given as  
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To compute the rotor equations and the electromagnetic torque, the DP variables from the 

stator interfacing equation must be transformed into qd0-coordinates. The transformation from 

abc-phase DPs to instantaneous signals in qd0-coordinates, i.e., from abcsF  to sqd 0f  (  ivf , ), 

can be readily obtained by combining (2–34) and Park’s transformation as 

 . ][0

tj

abcs

r

ssqd
se


FKf   (3–41) 
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Figure 3–1. Implementation of the proposed CP-SFA VBR model. 

In summary, the proposed constant-parameter model based on SFA (herein referred to as 

CP-SFA) consists of the stator interfacing equation (3–33), the subtransient voltages (3–20)-(3–

21), the voltage approximation (3–23), the transformations between rotor and stator variables (3–

39) and (3–41), and the rotor dynamics and electromagnetic torque (3–14)–(3–16). A block 

diagram depicting the implementation of this CP-SFA VBR model in a SV-based simulation 

environment is shown in Figure 3–1. Therein, the machine stator and network dynamics [(3–33), 

etc.] are represented by DPs using a constant-parameter state-space formulation, while the rotor 

dynamics [(3–14)–(3–16)] are expressed in time-domain instantaneous signals. The stator and 

rotor variables are interfaced using (3–39) and (3–41), and are solved simultaneously within the 

overall SV-based program. Moreover, to achieve an explicit formulation, it is noted that qsv , 

obtained by applying (3–41) to abcsV , is fed into the voltage approximation (3–23). This 

approximation can be fine tuned (i.e., pole(s) of the low-pass filter) based on the required accuracy 
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[91]. The implementation of the variable-parameter SFA-based VBR model (VP-SFA) is similar. 

However, the stator equation is replaced by (3–26) [i.e., with variable-parameter state matrices], 

and the subtransient voltages are replaced by (3–10) and (3–11). Additionally, the VP-SFA model 

does not require the approximation of qsv . 

 Computer Studies 

To analyze the aforementioned numerical properties of the models, a single-machine 

infinite-bus (SMIB) system is considered. This allows focusing the investigation on the numerical 

accuracy and efficiency of each individual machine model. Synchronous machine parameters are 

obtained from [84] (pp 220, Steam Turbine Generator) and are shown in Appendix B. To take 

advantage of existing variable-step solvers, all four state-space VBR models (i.e., the time-domain 

models VP-TD and CP-TD, and the SFA-based models VP-SFA and CP-SFA) have been 

implemented in MATLAB/Simulink [27]-[28]. Despite the machine being connected to an infinite 

bus, the voltage filter (3–23) is used in the CP models as to emulate a general scenario. The 

reference solutions are obtained by solving the conventional qd model with the explicit Runge-

Kutta 4th order solver (ode4 in MATLAB) using a very small integration step size of 1 μs. For 

evaluating the numerical accuracy of all subject models, the 2-norm cumulative relative error [121] 

of the predicted solution trajectory is used 

 100%

~

)(

2

2 



f

ff
f . (3–42) 

Here, f denotes the solution trajectory obtained from the subject model, and f
~

 denotes the 

reference solution, obtained over the duration of the study. In this thesis, the 2-norm [129] is 
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selected to evaluate the numerical accuracy of the subject models (i.e., yielding the cumulative 

error). Other norms, e.g., the one norm 
1

f or the infinity norm 


f , can also be used. However, 

since all norms are equivalent on finite-dimensional vector spaces [121], [129], they will yield 

equivalent assessment of numerical accuracy of the subject models. For consistency, all case 

studies are conducted on a personal computer (PC) with a 3.40GHz Intel i7-2600 CPU.  

3.1.3.1 Transition from Fast Transient to Steady State 

To validate the numerical accuracy of the proposed CP-SFA VBR model while also 

illustrating its computational efficiency, a case study comprising the transition between fast 

transient and steady-state conditions is considered first. The system is assumed to initially operate 

in a steady-state condition with mechanical torque mT = 0.85 pu and field excitation voltage xfdE

= 2.48 pu. At t = 1.0 s, a symmetric three-phase fault is applied to the stator terminals. The fault is 

subsequently cleared at t = 1.3 s, and the simulation is run until t = 8.0 s with the purpose of 

covering both fast transient and steady-state conditions.   

Since the selection of step sizes by explicit solvers (such as ode45) is limited by stability 

requirements [27], here the implicit ode23tb solver is chosen. The relative and absolute error 

tolerances are set to 10−4, and the maximum and minimum step sizes are set to 0.2 s (i.e., twelve 

cycles at 60 Hz) and 0.1 µs, respectively. 

The resulting transients of the stator current asi , the electromagnetic torque eT , and the 

field current fdi  as predicted by the four subject models are depicted in Figure 3–2. Magnified 

fragments of Figure 3–2 showing asi  during fast transient and steady-state conditions are also 

shown in Figure 3–3 and Figure 3–4, respectively. The SFA models yield stator currents in SFA-
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type DP form asI  (i.e., the envelope of the time-domain waveform). These are shown using 

dashed-dotted lines [see lines e) and g) in Figure 3–3 and Figure 3–4], and are labeled as VP-SFA 

(DP) and CP-SFA (DP). To adequately compare the SFA models with the reference solution and 

the time-domain models, the resulting trajectory of asI  has also been converted to time-domain 

instantaneous values asi  using (2–34) at the points where the DP solution exists. These converted 

solutions are shown using circles and asterisks in Figure 3–3 and Figure 3–4 [see lines d) and f)], 

and labeled as VP-SFA and CP-SFA. The current asi  predicted by the time-domain VP-TD and 

CP-TD models are shown in dotted and dashed lines [i.e., lines b) and c)].  

As can be observed in Figure 3–3, during the fast transient, the models of both types, TD 

and SFA, all use relatively small step sizes and produce results very close to the reference solution. 

This observation confirms the validity and numerical consistency of these models. Moreover, it 

shows that the SFA models are able to capture the details of fast transients similarly to the TD 

models, provided that the simulation step sizes are sufficiently small.  

After the fault has been cleared and the fast transient has vanished, i.e., at approximately 

t = 3.5 s [see Figure 3–2], the system reaches a steady state. From this time on, the SFA and TD 

models choose very different step sizes as shown in Figure 3–4. On the one hand, despite being in 

steady state, the TD models still require relatively small step sizes to accurately capture the 60 Hz 

sinusoidal waveform of the instantaneous signal asi  within the specified error tolerance. On the 

other hand, since the envelope of asi  is constant in steady state, the SFA models compute the DP 

asI with the same specified error tolerance but using significantly larger step sizes. 
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To further investigate the behaviour of the SFA and TD models during the transient 

simulation, the step size Δt for each model is depicted in Figure 3–5 as a function of time. As can 

be seen in Figure 3–5 (b), the step sizes of the TD models remain relatively small even when the 

system enters the steady state. At the same time, as shown in Figure 3–5, when the fast transient 

and oscillations have essentially damped out (i.e., starting from around t = 3.5 s), the step sizes of 

the SFA models begin to increase rapidly.  In this scenario, near t = 8.0 s, the SFA models use step 

sizes of approximately 0.2 s, whereas Δt does not grow larger than 0.5ms with the TD models. 

The number of simulation time steps and the CPU time for the considered fault study are 

summarized in Table 3–1 for each subject model. As shown in Table 3–1, the SFA models require 

approximately six times fewer time steps than the TD models (4903 and 4871 steps for the SFA 

models vs. 29707 and 30412 steps for the TD models). Consequently, the CPU time of the VP-

SFA model is about 4.05 times smaller than that of the VP-TD model (547.49 vs. 2217.93 ms). 

Moreover, the models with constant parameters significantly outperform their variable-parameter 

counterparts in terms of CPU time. Specifically, due to its constant-parameter stator interface, the 

proposed CP-SFA model is about twice as fast as the VP-SFA model, and it runs about 4.72 times 

faster than the CP-TD model (272.68 vs. 1287.99 ms).  

To compare the numerical accuracy of the considered models, the 2-norm relative error of 

the stator current asi  is summarized in the last column of Table 3–1. Only the accuracy of asi  is 

considered here, since the errors of the other variables are comparatively smaller. For the SFA 

models, the values of stator current asi are calculated from the corresponding DP asI  according to 

(2–34). It is shown that despite requiring six times fewer time steps than the TD models, the SFA 

models have acceptable errors (1.13% and 1.39% for the VP-SFA and CP-SFA models, 

respectively). Moreover, the errors of the CP-TD and CP-SFA models are only slightly increased 
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compared to their variable-parameter counterparts, which is due to the approximation of qsv  using 

the low-pass filter (3–23) with p0 = 1000. Additional information about the accuracy of the filters 

can be found in [91], [92]. 

   

Figure 3–2. Fast transient and steady-state responses to a three-phase fault as predicted by the subject 

models. 
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Figure 3–3. Detailed view of current asi during the three-phase fault: (a) magnified view during fast transient; 

(b) further magnified view of the portion in part (a). 

 

Figure 3–4. Detailed view of current asi  after removal of the three-phase fault when the system enters steady 

state. 
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Figure 3–5. Step size Δt as chosen by the subject models: (a) during the entire fault study; and (b) magnified 

view from part (a).  

Table 3–1. Simulation Efficiency and Accuracy for the Fast-transient-to-steady-state Study. 

Model No. of Time Steps CPU Time, ms 2-Norm Error of asi , % 

VP-TD 29,707 2,217.93 0.0601 

CP-TD 30,412 1,287.99 1.0549 

VP-SFA 4,903 547.49 1.1383 

CP-SFA 4,871 272.68 1.3914 

 

3.1.3.2 Slow Transient 

To further demonstrate the advantageous numerical properties of the proposed CP-SFA 

model, a slower electromechanical transient on the same system is considered. The system is 
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assumed to initially operate in the same steady-state condition. At t = 0.1 s, the load torque is 

changed to mT  = 1.35 pu and the simulation is run until t = 4.0 s. The same solver, error tolerances, 

and step size settings as the study in Section 3.1.3.1 are used here. 

The predicted trajectories of asi , eT , and fdi  by the four subject models are shown in Figure 

3–6. For a better comparison, a magnified view of asi
 is also shown in Figure 3–7. As can be 

observed in Figure 3–6 and Figure 3–7, all models accurately predict the solution of asi , and 

produce visibly indistinguishable trajectories of eT  and fdi . Since the inertia constant of the 

machine is relatively large (H = 5.6 s), the response of the system to this electromechanical 

disturbance is fairly slow. The step size Δt as chosen by each model is depicted in Figure 3–8 as a 

function of time, where it is observed that the SFA models use considerably larger step sizes.  

The numerical performance of the subject models for this slow-transient study is 

summarized in Table 3–2. As it can be seen in Table 3–2, the numbers of time steps taken by the 

SFA and TD models differ by two orders of magnitude (157 and 155 steps vs. 16,781 and 16,801 

steps). As a result, the average step size utilized by the new CP-SFA model is 25.8 ms, which is 

over one hundred times larger than that of the TD models (about 0.24 ms). The CPU times also 

demonstrate that the SFA models are about 39 to 50 times faster than their corresponding TD 

models. Moreover, in each case, the model with constant-parameter stator interface is about two 

times faster than its variable-parameter counterpart. Specifically, the proposed CP-SFA model 

took 13.09 ms, which demonstrates its computational advantage over the previously established 

VP-SFA model (which took 31.88 ms) as well as the conventional time-domain models (655.01 

and 1251.73 ms). Finally, as seen in Table 3–2, the current asi  is predicted with very little error 

by all models (less than 0.1%). 
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Figure 3–6. Slow transient response of the system to a torque change as predicted by the subject models. 

 

Figure 3–7. Magnified view of current asi  for the slow transient study depicted in Figure 3–6. 
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Figure 3–8. Step size Δt as chosen by the subject models for the slow transient study. 

Table 3–2. Simulation Efficiency and Accuracy for the Slow-transient Study. 

Model No. of Time Steps CPU Time, ms 2-Norm Error of asi , % 

VP-TD 16,781 1,251.73 0.0193 

CP-TD 16,801 655.01 0.0272 

VP-SFA 157 31.88 0.0899 

CP-SFA 155 13.09 0.0869 
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 State-Space VBR Modelling of Induction Machines Based on SFA-

Type DPs 

Similar to synchronous machines, an SFA-based model of induction machines [54] has 

been proposed for EMTP-type solution using the so-called dimension reduction technique. A 

major constraint of SFA application in EMTP-type modelling, however, is that the main 

conductance matrix is directly formulated with the step size. Accordingly, varying the step size to 

reflect the active modes at a given point of simulation (as is particularly useful with DPs) requires 

re-discretizing all components and reformulating/re-factorizing the conductance matrix, which 

gives rise to very costly computations. 

This section proposes an SFA-based VBR modelling of induction machines using a state-

space formulation. This proposed model is a complement to the prior EMTP-type model [54], and 

can be readily implemented in SV-based programs and solved using built-in variable-step solvers. 

Consequently, the step size is adjusted automatically “on-the-fly”, reflecting the active modes 

without additional inputs from the user.  

 Time-Domain VBR Induction Machine Model (VBR-TD-IM) 

Without loss of generality, a general-purpose lumped-parameter three-phase symmetrical 

induction machine model is considered here. All rotor variables are referred to the stator side and 

motor sign convention is used; the dynamics of the mechanical system are similar to (3–1) and (3–

2) as used for synchronous machines. The VBR formulation of the induction machine ([94], see 

model VBR-III) is considered, which assumes ungrounded stator windings and results in an 

advantageous structure with diagonal stator resistance and inductance matrices. Additional 

information regarding other VBR formulations considering grounded stator windings can be found 

in [94]. Herein, the stator voltage equation is represented as 



   79 

 

 
''

abcsabcsDabcsDabcs
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d
eiLiRv  , (3–43) 

where  DDDD rrrdiag  , ,R , (3–44) 
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The subtransient voltages abce  in (3–43) are defined as 

  Tdqsabcs ee 01  Ke , (3–48) 

where sK is Park’s transformation matrix [84] and 
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The rotor state equations are expressed as 

     drrmqqr
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r
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r

dt
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d
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where   is the speed of the reference frame and  
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The electromagnetic torque is calculated the same way as (3–16) 

 VBR Induction Machine Model Based on SFA 

3.2.2.1 SFA-Type DP Stator Interface 

The VBR-TD-IM model formulates the stator circuit with abc-phase variables – an 

advantageous property for direct interfacing with external inductive networks. This special 

structure also allows the stator-network interface to be formulated in SFA-type DP form. First, the 

stator variables in (3–43) are rewritten in the form of (2–27) as 

 tωtω sabcsQsabcsIabcs sincos fff  , (3–55) 

where the variable “ f  ” may represent stator voltages or currents, or subtransient voltages. This 

transforms (3–43) into 
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The Hilbert transform is then applied to (3-56), which yields 
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Finally, combining (3-56) and (3-57) into the form of (2–33), the VBR stator equation in DP form 

can be expressed as 

 ''

abcsabcsDabcsDsDabcs
dt

d
j EILILRV  ][  . (3–58) 

To facilitate complex variable operations using regular SV-based simulation programs, (3–58) can 

be further decomposed into real and imaginary parts as 
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and the SFA-based equivalent subtransient inductance and resistance matrices SFAL  and SFAR  

are 
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3.2.2.2 Rotor Subsystem and Its Interface 

As can be observed from (3–51) and (3–52), the qd-coordinate rotor variables (rotor flux 

linkages, field currents, etc.) in the VBR-TD-IM model vary slowly during electromechanical 

transients if the synchronous reference frame is used. It is therefore convenient to keep the rotor 
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subsystem in qd coordinates (using the synchronous reference frame), since no frequency shifting 

is required. However, the VBR model structure requires transforming the time-domain qd-

coordinate rotor variables to abc-phase DPs. 

To obtain such transformation, the time-domain subtransient voltage ''

ase  is first recalled 

from (3-48) as 

 tetee sdsqas  sincos ''''''  , (3–62) 

Where sst   is the angle between the synchronous reference frame qd0 and the stationary 

reference frame abc. It is observed that (3-62) is identical to (2–27) as the combination of two 

orthogonal low-pass signals ''

qe  and ''

de modulated by tscos  and tssin , respectively. The 

Hilbert transform is then applied to (3-62), which yields 

 teteeH sdsqas  cossin][ ''''''  . (3–63) 

Combining (3-62) and (3-63) into the form of (2–33), the subtransient voltage ''

asE in DP form is 

obtained as 

 ''''''

dqas jeeE  . (3–64) 

Applying the same approach to ''

bse  and ''

cse , the subtransient voltage source ''

abcsE in DPs can be 

obtained as  

 T

dq

abcU

qdsuabcs ee ][ '''',

,

''
KE  , (3–65) 

where the transformation matrix abcU

qdsu

,

,K  is 
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Figure 3–9. Block diagram for implementation of the VBR-SFA-IM model. 
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It is noted that the synchronous reference frame is considered here, which renders (3-66) to be 

constant. The same approach, however, can be applied to an arbitrary reference frame, at the 

expense of making (3-66) time-dependent [e.g., see (3–39) and (3-40)].  

Conversely, the transformation for stator current from SFA-type DPs abcsI  to 

instantaneous signals abcsi , can be readily obtained by applying (2–34) as 

 . ][0

tj

abcsssqd
se


IKi   (3–67) 

In summary, the proposed SFA-based VBR induction machine model (herein referred to 

as VBR-SFA-IM) consists of the SFA-type DP form stator-network interface (3–59), the rotor-

stator variable transformations (3–65) and (3–67), the subtransient voltages (3–49) and (3–50), 

and the rotor subsystem equations (3–51) and (3–52). The detailed implementation of the proposed 

VBR-SFA-IM model is depicted using a block diagram in Figure 3–9.  
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 Computer Studies 

The induction machine is interfaced to an infinite bus to focus the investigation on the 

numerical properties of the subject models. The machine parameters are summarized in the 

Appendix C. The subject models (i.e., the VBR-TD-IM and VBR-SFA-IM models) have been 

implemented in MATLAB/Simulink [27]-[28] and the synchronous reference frame is used for all 

models. The simulation is executed on a PC with a 3.40GHz Intel i7-2600 CPU and 8 GB of RAM. 

To emulate a general-purpose electromechanical transient situation which spans the entire 

speed range (from zero to synchronous speed), a case study comprising the start-up and load-

change transients is considered. The induction machine is initially freely accelerated from stall; 

then, at t = 3.0 s, a load torque mT  = 1980 N·m is applied; the simulation is then run until t = 5.0 s 

to reach a steady-state condition. A reference solution is produced by the conventional qd model 

solved using the ODE4 solver with a very small integration step of 1 μs.  

Due to the numerical stability limitations of explicit solvers (such as ode45) for the 

selection of step size [28], the implicit ode23tb solver is herein used with the following settings: 

relative and absolute error tolerances of 10−4, and maximum and minimum step sizes of 0.2 s (i.e., 

twelve cycles at 60 Hz) and 0.1 µs, respectively.  

Due to space constraints, only the transient responses of the stator current asi , the 

electromagnetic torque eT , and the rotor speed r  by the subject models are depicted in Figure 

3–10, where no visual difference is observed for eT  and r . Two fragments of Figure 3–10 

showing asi  during the start-up and torque-change transients are magnified and shown in Figure 

3–11. As can be seen in Figure 3–10 and Figure 3–11, the VBR-SFA-IM model yields the DP 

solution asI  [VBR-SFA-IM (DP), see line c)], i.e., the envelope of the time-domain waveform asi . 
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To adequately compare the details, the trajectory of asI  has also been converted using (7) to the 

time-domain values asi  as shown using circles in Figure 3–11 [VBR-SFA-IM, see line d)].  

As shown in Figure 3–11 (a), during the start-up transient both the VBR-TD-IM and VBR-

SFA-IM models use relatively small step sizes and closely match the reference, which validates 

the numerical consistency of the subject models. The trajectory of asI exhibit 60 Hz oscillations, 

which result from the decaying DC component in stator current asi . It is verified that when 

deviating largely from nominal speed, the VBR-SFA-IM model is able to give an accurate solution 

similar to the VBR-TD-IM model, provided that the simulation step sizes are sufficiently small. 

After the induction machine has reached close to nominal speed, the subject models choose 

distinct step sizes during the load-change transient as shown in Figure 3–11 (b). In particular, the 

VBR-SFA-IM model is able to correctly simulate the DP asI with noticeably large time step sizes, 

since the envelope of asi  varies slowly. This is unlike the VBR-TD-IM model, for which small 

step sizes are still required to accurately track the fundamental 60 Hz sinusoidal waveforms of asi .  

To give a more comprehensive insight into the simulation behaviour of the subject models, 

the step size Δt is depicted in Figure 3–12 as a function of time. As can be seen in Figure 3–12, 

the step sizes of the VBR-TD-IM model remain relatively small during the whole simulation 

period. In contrast, the step sizes of the VBR-SFA-IM model begin to increase rapidly when the 

induction machine has reached close to nominal speed [Figure 3–12, see after t = 2 s]. In particular, 

it is observed that the VBR-SFA-IM model uses a maximum step size of 0.2 s in steady-state 

conditions, whereas with the VBR-TD-IM model the step sizes remain fairly small (less than 0.5 

ms). 
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A quantitative assessment of the numerical performance of the subject models is 

summarized in Table 3–3. As can be seen in Table 3–3, the VBR-SFA-IM model requires almost 

9 times fewer time steps than the VBR-TD-IM model (2216 vs. 19846 steps) due to the use of DPs. 

Consequently, the VBR-SFA-IM model outperforms the VBR-TD-IM model in terms of CPU time 

by about 7.76 times (84.1 vs. 652.9 ms). To better quantify numerical accuracy, the 2-norm relative 

error [121] of the stator current  asi  is calculated using  (3–42) as 

 100%~

~

)(

2

2 



as

asas

as
i

ii
i , (3–68) 

where asi
~

 denotes the reference solution trajectory. For the VBR-SFA-IM model, the 

instantaneous values of asi  are converted from the corresponding DP asI  using (2–34). It is shown 

that despite requiring noticeably fewer time steps and less CPU time, the VBR-SFA-IM model has 

a slightly larger error than the VBR-TD-IM model (0.26% vs. 0.12%), which does remain in a 

highly acceptable range (less than 0.5%).  
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Figure 3–10. Start-up and load-change transient responses as predicted by the subject models. 
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Figure 3–11. Magnified view of stator current asi  as depicted in Figure 3–10 during: (a) start-up transient; 

(b) torque-change transient.  

   

Figure 3–12. Step size Δt as chosen by the subject models. 

Table 3–3. Simulation Efficiency and Accuracy of the Subject Models  

Model No. of Time Steps CPU Time, ms 2-Norm Error of asi , % 

VBR-TD-IM 19846 652.9 0.1168 

VBR-SFA-IM 2216 84.1 0.2579 
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 Modelling Line-Commutated 

Rectifier Systems Including Harmonics for 

Various Operating Modes Based on the 

Generalized Average Method 

This chapter presents the numerically accurate and efficient modelling of LCR systems 

based on the GAM-type DPs. It is recalled in Section 1.2.2.2 that the bottleneck for accurate 

modelling of LCR systems is threefold: 1) the existence of various system operating modes, 2) the 

representation of harmonic dynamics, and 3) the inclusion of thyristor-controlled operation. 

Moreover, the use of (detailed, analytical, or parametric) modelling techniques can result in 

distinct formulations and thus different numerical properties (accuracy, efficiency, etc.). 

We begin by reviewing the state-of-the-art analytical DP (ADP) models of LCRs, which 

relate the ac/dc subsystems through complicated switch functions. Then, we propose a new 

parametric DP (PDP) model of diode LCRs, where the DP dynamics of rectifier/dc-link are 

represented using a set of explicit algebraic functions that are numerically established. Next, this 

PDP modelling is extended to thyristor-controlled LCR systems. Computer studies validate the 

proposed PDP methodology in accurately predicting the steady-state and transient responses of 

LCR systems under a wide range of operating modes, while highlighting its computational 

advantages over the conventional detailed model and the established ADP models.  
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 GAM-Type DP Modelling of Diode LCR Systems with Harmonics 

Using Analytical and Parametric Approaches 

For consistency with previous publications [115]−[116], the same benchmark diode LCR 

system as depicted in Figure 4–1 is considered in this section. This system has been validated with 

detailed models, dynamic average-value models, and hardware [109]−[117]. Therein, the three-

phase diode rectifier is assumed to be supplied by the ac network as represented by its Thevenin 

equivalent voltages abcse , series resistance thr  and inductance thL , respectively. Since the presence 

of shunt filters does not significantly affect the modelling of such rectifier systems [115]−[116], 

only series filters are considered. The optional ac-side series filter is denoted by acr  and acL ; and 

the optional dc filter consists of dcr , dcL  and dcC . Similar to [115]−[118], the dc subsystem can 

be represented by an equivalent resistive load loadR  that consumes the needed amount of real 

power. Finally, the combined equivalent series impedance of the ac network can be further 

simplified as sr  and sL , respectively. 

 

Figure 4–1. Typical configuration of the three-phase six-pulse LCR system. 
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Depending on the application, this LCR benchmark system can be readily 

modified/extended to represent various ac/dc energy conversion systems. For example, if 

representing a synchronous-machine-rectifier configuration, the benchmark system of Figure 4–1 

can be fed from a machine represented in the VBR formulation [86] (with possible 

coupled/variable inductances in the equivalent ac network) or as a constant-parameter interfacing 

circuit [117]. In other low-power applications, such as variable frequency drives [97]-[99] or 

battery charging systems [100], the dc filter is typically simplified to only the dc capacitor for 

voltage smoothing. 

On the basis of loading condition (from open circuit to short circuit) and resulting switching 

patterns, one discontinuous conduction mode (DCM) and three continuous conduction modes 

(CCM-1, CCM-2, and CCM-3) can be defined for the LCR system [115]. In particular, when the 

LCR is in the DCM, which can be frequently encountered at light load conditions [97]−[99], the 

phase current waveforms (see Fig. 2, [118]) can be highly distorted with considerable harmonics 

(5th, 7th, etc.). Thereafter, for DP modelling of LCR systems, it is desirable to include the dominant 

1st, 5th, and 7th order DPs for ac system variables; and for the dc subsystem, the 0th order DP is 

typically sufficient due to existence of the dc filter.  

 Time-Domain Dynamics of LCR Systems and Switch Functions 

To develop the GAM-type DP models of power converters, the modulation theory has been 

traditionally used [73]−[77], which regards the LCR as a modulator of voltages/currents. Using 

switch functions [122]−[123], the time-domain currents on the ac- and dc-sides are related as  

 iabcdcabcs i si  . (4–1) 

Similarly, the voltages are related as 
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Figure 4–2. Time-domain waveforms of phase a voltage and current switch functions: (a) vas  of SF-1, (b) 

vas  of SF-2, (c) ias  of SF-1, and (d) ias  of SF-2. 

 vabc

T

abcsvccsvbbsvaasdc svsvsvv sv  . (4–2) 

Here, the vectors abcsv , abcsi  denote the voltages and currents of the ac-side; and dcv  , dci  are the 

dc-side voltages and currents, respectively, as shown in Figure 4–1. Also, vabcs  and iabcs  are the 

time-domain voltage and current switch functions, respectively.  

Despite the general modulation form (4–1)−(4–2), the switch functions vabcs  and iabcs  can 

be developed exploiting different approximation approaches. Two types of switch functions, i.e., 

the piecewise-linear- and Fourier-series-approximated switch functions (herein referred to as SF-
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1 and SF-2, respectively) have been investigated in the literature [73]−[77], [122]−[123]. For 

illustration, the time-domain waveforms of phase a voltage/current switch functions using SF-1 

and SF-2 are depicted in Figure 4–2. The switch functions of phase b and c can be obtained by 

shifting phase a waveforms by 32 . 

4.1.1.1 Piecewise-Linear-Approximated Switch Functions (SF-1) 

Traditionally, the switch functions have been developed to emulate the switching of each 

diode [73]−[74]. When the commutating inductance is considered, the dc voltage waveform will 

have steps, while currents can only commutate from one phase to the other gradually [122]−[123], 

which yields 
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Here,  mvs ,  and  mis ,  (m=1, 2, … 6) are the time-domain voltage and current switch 

functions corresponding to the rectifier diodes S1 ~ S6 as shown in Figure 4–1. The starting instance 

of the commutation is denoted by 0  [See Figure 4–2, 230   when compared to SF-

2]. To include the effect of the commutating inductance, the commutation angle μ (in both SF-1 

and SF-2) is calculated as 

 )
2

1(cos 1

line

dcss

V

iL
  

. (4–5) 

Also, the patterns in (4–3)−(4–4)  are periodical for every switching period sT . Based on the switch 

functions for each diode, the SF-1 for the LCR are obtained as [73]−[76] 
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4.1.1.2 Fourier-Series-Approximated Switch Functions (SF-2) 

In contrast to SF-1, an alternative type of switch functions can be expressed as the 

summation of a number of Fourier series as [77], [123] 
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Here, the highest order of Fourier series is selected as maxn ( maxn  ≥ 7) in order to adequately 

represent the system dynamics, and 
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 Analytical DP Modelling 

Next, the analytical DP models of LCRs can be derived by transforming the time-domain 

ac-dc relationships (4–1)−(4–2) into DPs following the GAM method, which yields 

 Kkii
kiabcdckiabcdckabcs   ,

0
ssi , (4–10) 
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 (4–11) 

where K={1, 5, 7, …} denotes the order of corresponding DPs. 

4.1.2.1 Analytical DP Model Using SF-1 (ADP-1) 

Nevertheless, due to the piecewise-linear properties of SF-1, developing the respective DPs 

of (4–3)−(4–4) can be highly complicated. For example, the 1st order DPs of the diode switch 

functions are obtained as [74] 
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Accordingly, in [73]−[76] only the 1st order DPs using SF-1 have been derived, and (4–6) is 

transformed into 
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4.1.2.2 Analytical DP Model Using SF-2 (ADP-2) 

As seen from (4–12)−(4–13), the ADP-1 model yields complicated expressions even for 

the fundamental ac components. Moreover, truncating high-order harmonics may not be sufficient 

for the purpose of system-level transient studies or power quality analysis. Alternatively, the 

Fourier-series-approximated SF-2 allows to transform (4–7)−(4–8) into DPs as [77] 
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In summary, for analytical DP modelling of LCRs, both the ADP-1 and ADP-2 models 

share the same ac-dc equations (4–10)–(4–11), with the difference being the DP-form switch 

functions, i.e., (4–12)–(4–13) for the ADP-1 model, and (4–14)–(4–15) for the ADP-2 model, 

respectively. 

 Parametric DP Modelling (PDP) 

As shown in Section 4.1.2, in order to analytically capture the ac- and dc-side dynamics of 

LCRs, complicated expressions are inevitably used in both the ADP-1 and ADP-2 models, which 

degrade the numerical efficiency of simulations. Moreover, since the switch functions SF-1 and 

SF-2 were derived upon a single switching pattern, the established ADP models are valid for only 

one mode of operation, i.e., the CCM-1 mode. A possible solution is to derive several ADP models, 

and to switch between them as the system operating condition evolves, which however adds to the 

modelling complexity. 

To overcome these challenges, this paper extends the parametric approach [112]−[113] to 

effectively model the ac and dc DP dynamics of the LCR system under various operating 

conditions. In traditional PAVMs [112]−[118], the average values of ac variables (expressed in 

the qd synchronous reference frame) and dc variables are related through algebraic parametric 

functions that are numerically established from detailed simulations over a range of operating 

conditions. Similarly, assuming a balanced system where the magnitudes of three-phase DPs are 

identical (i.e., 
kcskbskas fff  , where f = {v, i}), the ac- and dc-side DPs can be related 



   98 

 

through a set of non-linear algebraic functions. Specifically, this yields the ac- and dc-side DP 

relations as  

 Kkvv dckkas   ,)(
0

 , (4–16) 

 
110

)( asdc ii   . (4–17) 

Here,  kα  and 
 1  denote the parametric functions describing the switching behaviour of the 

LCR system that are determined by the present operating condition. To simplify the modelling, it 

is assumed that only the fundamental ac currents affect the predicted dc current waveform. To 

account for the phase values of DPs, the angular differences between the phase a voltages and its 

fundamental current are expressed as 

 Kkiv askask   ),ang()ang()(
1

 . (4–18) 

Similarly, the DP angles for phase b and c can be obtained by a phase shift of 32 k , 

respectively. Therefore, combining (4-16) and (4-18), the three-phase ac voltage DPs are obtained 

as 
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Finally, to formulate the input of the parametric look-up tables of  kα , 
 1 , and  kφ , 

the operating condition is defined in terms of the dynamic impedance of the LCR as   

 .
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v
z   (4–20) 
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In summary, the proposed parametric DP model (herein referred to as PDP) consists of the 

algebraic equations (4–17), (4–19), and (4–20) that relate the ac- and dc-side DPs, and the 

parametric functions of  zkα , 
 z1 , and  zkφ .  

 Constructing Parametric Functions 

The parametric functions  zkα ,  z1 , and  zkφ  can be readily established using the 

detailed simulation of the LCR system under study, using approaches similar to those in 

[112]−[113]. Specifically, this is done by examining the desired Fourier series of the system ac/dc 

variables corresponding to a wide range of operating conditions. 

Since in steady state the GAM-type DPs become constant values [62], a straightforward 

approach is to run detailed simulations in multiple steady-state conditions corresponding to the 

operating points of interest, and then tabulate the fast Fourier transform (FFT) results of the time-

domain waveforms of system variables. Typically [115]−[110], a few data points at different 

operating conditions with subsequent proper curve fitting will suffice for decent accuracy, which 

however requires multiple runs of detailed simulations. This method of constructing parametric 

functions is herein referred to as the multi-steady-states (MSS) approach. 

Alternatively, a faster procedure can be used to generate the desired parametric functions 

using a single large-signal transient study that spans a wide range of operating conditions [113]. 

To apply this approach for the purpose of GAM-type DPs, the sliding window FFT of time-domain 

waveforms is used. To emulate a wide range of loading conditions, it is possible to employ a 

variable load resistance that increases exponentially as  

 t

load rRtR )1()( 0  , (4–21) 
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Here, 0R  is the initial load of a small value, and r  denotes the exponential growth rate. To better 

illustrate this, for the considered LCR system with parameters summarized in Appendix C, the 

large-signal transient response to an exponential increase of load resistance ( 0R  = 1 , r  = 85) 

is shown in Figure 4–3. The corresponding DPs are extracted by running the SWFFT of the time-

domain waveforms from detailed simulation using MATLAB [27]. This method is herein referred 

to as the large-signal-transient (LST) approach. 

For comparison purposes, the parametric functions  zkα ,  z1 , and  zkφ   (K={1, 5, 

7}) extracted using the MSS and the LST approaches are depicted in Figure 4–4 and Figure 4–5. 

To achieve a reasonable representation of parametric functions, the MSS approach with 32 steady-

state solution points has been used. It is noted that the data points are more tightly-spaced in the 

region where parametric functions are highly nonlinear. These data points are then stored in a look-

up table, where interpolation/extrapolation may be needed if necessary. Alternatively, it is shown 

in Figure 4–4 and Figure 4–5 that the LST approach yields parametric functions that match 

perfectly with the steady-state solution points, which validates their mathematical equivalence to 

the MSS-generated parametric functions.  

Despite featuring similar accuracy in various operation modes, the MSS and LST 

approaches can differ greatly in terms of computations required to generate the parametric 

functions. The MSS approach can be implemented by running detailed simulations in a loop to 

calculate the steady state solutions for the desired number of points, which can take several minutes 

of total CPU time overall. In contrast, the LST approach only requires a one-run simulation to 

produce the desired parametric functions, which may take only a few seconds.   
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Figure 4–3. The large-signal transient response to an exponential increase of load resistance for calculating 

parametric functions. 
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Figure 4–4. Numerically calculated functions )(1 z , )(1 z , and )(1 z  as obtained from detailed simulations 

using (a) the MSS approach; and (b) the LST approach. 

 

Figure 4–5. Numerically calculated functions )(7,5 zα  and )(7,5 zφ as obtained from detailed simulations 

using (a) the MSS approach; and (b) the LST approach. 
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 Implementation 

The ADP-1, ADP-2 and the proposed PDP models can be implemented using the block 

diagrams depicted in  Figure 4–6. As shown in  Figure 4–6, the overall system consists of three 

parts: the ac system comprising a number of subsystems for the fundamental frequency and each 

of the desired harmonics; the LCR model; and the dc subsystem. For ADP models, the ac 

subsystems can be formulated as an algebraic equation, since the combined network inductance 

sL  has been included into the commutation angle μ [see (4–5)]. For the PDP model, the ac network 

shown in Figure 4–1 has a convenient voltage-behind-impedance formulation that is governed by 

the time-domain equation  

 abcsabcsabcssabcss r
dt

d
L evii  . (4–22) 

Therefore, applying the GAM and (5) yields the kth order DP equation as 

 
kabcskabcskabcsssskabcss Ljkr

dt

d
L evii  )(  , (4–23) 

which is then implemented in each of the ac subsystems as shown in  Figure 4–6 (b). For the dc 

subsystem, since the considered 0th order DP is equivalent to averaging time-domain signals [i.e., 

k = 0], the DP model is directly interfaced with the dc subsystem expressed in the time domain. It 

is also noted that, compared with ADP models, the PDP model possesses reversed inputs and 

outputs as shown in  Figure 4–6 (b), which is preferable for interfacing considerations [112]. In 

this case, the dc filter with the PDP model can be modelled using a proper transfer function [112].   

Here the control of the LCR system has not been considered since only passive diodes are 

used. However, many applications of integrated ac/dc systems will include feedback control such 

as speed and voltage regulation of rotating machines, active and reactive power control in 



   104 

 

distributed generation, etc. In the DP modelling of control systems, one can choose: 1) to directly 

model all control signals in DPs; or 2) to selectively model some control signals in the time domain 

[75], since many control reference signals (magnitudes, angles, etc.) may be close to dc in steady 

state (e.g., voltage regulation in HVDC systems [75]-[77]).  

It is also worth noting that for the ADP-1, ADP-2, and the proposed PDP models, only the 

balanced system configuration and symmetric (healthy) operations of LCRs are considered. For 

unbalanced and/or fault conditions of the LCR system (e.g., due to unbalanced loads, asymmetric 

faults on ac lines, internal faults of LCRs, etc.), there will exist some non-characteristic ac 

harmonics (2nd, 3rd, 4th, etc.) [98], [102], [130], which requires additional order of DPs for accurate 

modelling. Moreover, since the unbalanced system and/or severe harmonics can also affect 

switching patterns of LCRs [130], the proposed PDP model, which assumes only symmetric 

operations, may have limited accuracy in predicting the actual waveforms. It has been shown in 

the literature that the parametric modelling approach can achieve a decent accuracy even for LCRs 

with unbalanced ac network [115], [131]. However, to consider severe asymmetric conditions 

(e.g., internal fault), it would be required to first decompose the system variables into both positive 

and negative sequences [131], [132], and then properly use switch/parametric functions to relate 

the ac-dc harmonic dynamics. However, for the scope of research in this thesis, the balanced 

system conditions are deemed acceptable.  
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 Figure 4–6. Implementation of the DP models: (a) ADP-1 and ADP-2 models, (b) the proposed PDP model. 

 Computer Studies 

To analyze the models discussed in this section, computer studies are carried out on the 

benchmark LCR system shown in Figure 4–1, with parameters summarized in Appendix D. The 

DP models (i.e., the ADP-1 [73]−[74], ADP-2 [77], and the proposed PDP model) have been 

implemented in MATLAB/Simulink [27]−[28]. For the purpose of reference, the detailed switch-

level model has been implemented using PLECS Blockset [29] within the Simulink Environment. 

To demonstrate the proposed approach, only the 1st, 5th, and 7th order DPs of the ac-side are 



   106 

 

considered in this paper. However, with its simple structure, the proposed PDP model can be 

readily augmented to include higher-order (11th, 13th, etc.) harmonics of interest, provided that the 

dynamics of these harmonics are desired.  

To emulate a situation when the LCR spans various operation modes, a case study 

comprising the transition from the normal operation in CCM-1 to a light load in DCM is 

investigated here. The system is assumed to initially operate in CCM-1 with a dc load 

150loadR . At t = 2.0 s, the system is switched to a very light load  950loadR ; and the 

simulation is run until t = 4.0 s. To investigate the numerical accuracy of the subject models in 

different operation modes, the models are first solved with small step sizes using the ode23tb solver 

and the following settings: relative and absolute error tolerances of 10−3, and maximum and 

minimum step sizes of 100µs and 0.1 µs, respectively. For consistency, all case studies are 

conducted on a PC with a 3.40 GHz Intel i7-2600 CPU. 

4.1.6.1 Steady State Analysis in CCM-1 and DCM 

To evaluate the properties of the subject models in terms of capturing harmonics, it is 

instructive to consider their performance in steady states first in CCM-1 and DCM. Due to space 

constraints, only the responses of the phase a and dc voltages and currents, as predicted by the 

subject models, are depicted in Figure 4–7 and Figure 4–9. The corresponding harmonic contents 

are shown in Figure 4–8 and Figure 4–10, respectively. Since the simulations of DP models are 

carried out in the DP domains, to adequately compare with the detailed reference solution, the 

resulting DP trajectories 
kasi  have been converted back into time-domain instantaneous values 

asi  using (2–37) (the instantaneous reconstruction, [124]). As can be seen in Figure 4–7, in CCM-

1 all DP models produce reasonably accurate results on the dc-side compared to the detailed 
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solution. For the ac side, the ADP-1 model only predicts the fundamental frequency response, and 

the ADP-2 model yields the asi  trajectory similar to the SF-2 waveform shown in Figure 4–2. 

Furthermore, it is observed that the proposed PDP model, by including both 5th and 7th 

harmonics, is capable of producing results that match well to the detailed model. This is validated 

in Figure 4–9, which shows the steady-state responses in DCM. As shown in Figure 4–9, in DCM 

the dc current drops to zero and thus causes significant distortions in the asi  waveform (see the 

double peaks with zero in between). However, due to the analytical derivation based on a single 

switching pattern, both the ADP-1 and ADP-2 models fail to reproduce the distorted waveforms 

in DCM [see Figure 4–9, lines b) and c)]. Nevertheless, the PDP model still matches the detailed 

simulation very well.  

To provide a comprehensive insight into the accuracy of harmonic prediction by the subject 

models, the extracted harmonic contents of the phase a voltage and current in CCM-1 (Figure 4–

7) and in DCM (Figure 4–9) are shown in Figure 4–8 and Figure 4–10, respectively. As seen in 

Figure 4–8 and Figure 4–10, the ADP models result in less accurate predictions for the considered 

harmonics in both CCM-1 and DCM. Specifically, the ADP-1 model captures only the 

fundamental frequency component; and the ADP-2 model predicts 5th and 7th harmonics of current 

asi  with noticeable error even in CCM-1. This error is due to the switch function ias [see Figure 

4–2 (d)] being different from the actual current waveform, which is another limitation of the ADP 

methods. In contrast, it is observed that harmonics predicted by the PDP model match the detailed 

simulation very well. 
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Figure 4–7.  Ac and dc system variables for steady-state in CCM-1 as predicted by the subject models. 

 

Figure 4–8.  Harmonic content of the ac-side phase a current and voltage for the considered operating point 

in CCM-1. 
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Figure 4–9.  Ac and dc system variables for steady-state response in DCM as predicted by the subject models. 

 

Figure 4–10.  Harmonic content of the ac-side phase a current and voltage for the considered operating point 

in DCM. 
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4.1.6.2 Transient Response from CCM-1 to DCM 

Next, a fragment of study is shown in Figure 4–11 to demonstrate the predicted trajectories 

of asv , asi , dcv  , and dci by the subject models during the load-change transient. On one hand, it is 

shown in Figure 4–11 that the ADP-1 and ADP-2 models do not trace the dynamics very well and 

predict lower dc voltage in the new DCM steady state (which is expected since they have been 

derived for only CCM-1). On the other hand, the transient response predicted by the PDP model 

is highly consistent with the detailed solution. This large-signal transient response verifies the 

superior accuracy of the proposed PDP model over the established ADP models.  

 

Figure 4–11.  Ac and dc system variables for the load-change transient as predicted by the subject models.  

4.1.6.3 Predicting THD in Wide Range of Operating Conditions 

To investigate the modelling accuracy of LCRs under a wide range of operating conditions, 

the total harmonic distortion (THD) level is considered [97], which is defined as  
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Figure 4–12.  THD of the phase a voltage and current as predicted by the subject models over a wide range of 

operating conditions. 

 
1

,1

2

%
F

F

THD
Kkk

k


 , (4–24) 

where kF  denotes the rms value of the k th order harmonic of voltage or current. The THD of phase 

a voltage and current, as predicted by the subject models for the load ranging from open circuit to 

short circuit, is calculated and plotted in Figure 4–12.  

As can be seen in Figure 4–12, high current distortion is observed at light loads due to the 

discontinuous conduction, and the voltage is more distorted at heavy loads when the current 

waveform is close to sinusoidal. The ADP-1 model is not included here since it only predicts the 

fundamental frequency response. The THD results predicted by the ADP-2 model are considerably 

less accurate due to its analytical derivation and fixed waveform of the switching functions, 

especially at light loading conditions (which correspond to DCM). Whereas, the PDP model yields 

THD results very close to the detailed simulation over a wide region of operating conditions.  
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4.1.6.4 Flexible Step Size Study 

To further demonstrate the advantageous properties of the proposed PDP model, the same 

4-second transient study is solved using the same error tolerances, but the maximum step size is 

increased to 0.1s (six cycles at 60Hz), which allows the solver to adaptively select step sizes “on-

the-fly” in a wider range.  

To study the numerical efficiency, the step size Δt as chosen by each model is depicted in 

Figure 4–13 as a function of time. As seen in Figure 4–13, the step size of the detailed model 

changes (due to switching events) but remains fairly small during the entire simulation period. In 

contrast, the DP models operate at much larger steps Δt (with the maximum step size of 0.1s in 

steady states). When the load is changed, the system states vary accordingly, which results in the 

use of small time steps to trace the transient response until the LCR system reaches a new steady 

state. 

These observations are verified in Figure 4–14 and Figure 4–15(a), where the responses of 

asi  as predicted by the subject models are shown in steady state CCM-1 and during the load-change 

transient, respectively. Therein, the trajectory of current asi converted from DP solutions are shown 

using circles and asterisks [see lines b), d) and f)]. Additionally, two times the magnitude of the 

1st order DPs, i.e., 
1

2 asi  is shown using the dashed-dotted lines and labeled as 1st order DPs [see 

lines c), e) and g)]. As can be seen in Figure 4–14 and Figure 4–15(a), the trajectories of 
1

2 asi  

essentially represent the envelopes of the fundamental frequency waveforms, and thus can be 

simulated using larger step sizes.  

It is also noted in Figure 4–13 that after the load-change instance, the step sizes of the ADP 

models increase more quickly than those of the PDP model. This is due to the different 
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representations of ac systems by the ADP and PDP models. Specifically, for ADP models the ac 

network inductance Ls is only included into the commutation angle μ [see (4–5)], which simplifies 

the ac subsystems [as shown in  Figure 4–6 (a)] to be purely algebraic (i.e., resulting in a reduced-

order representation of the ac network), thus omitting the detailed fast transients. Whereas, the 

PDP model represents each of the ac DPs as a dynamic state using (21). To better illustrate this 

point, the trajectories of 
5

2 asi and 
7

2 asi during the load-change transient, i.e., the envelopes of 

the 5th and 7th harmonics, are plotted in Figure 4–15 (b) and (c), respectively. As can be seen in 

Figure 4–15 (b) and (c), the ADP-2 model gives the damped dynamics of the 5th and 7th DPs, since 

it formulates the ac network in algebraic equations (reduced-order representations). In contrast, as 

observed after the load change, the response predicted by the PDP model has some ringing in the 

5th and 7th DPs, which causes the variable-step solver to use small step sizes during the transient. 

This DP response with ringing, however, reproduces the accurate time-domain simulation results, 

as verified in Figure 4–15 (d), which depicts a magnified view of current asi  during the load-step-

change transient. As shown in Figure 4–15 (d), the ADP models yield inaccurate transient results 

[see lines b) and c)], while the PDP model reproduces time-domain simulation results that precisely 

match the detailed solutions [see lines a) and d)]. The origin of the ringing in harmonic DPs is 

discussed in Section 4.1.6.5.  

Next, the quantitative assessment of simulation efficiency is summarized in Table 4–1, 

wherein it is seen that all DP models show time steps at least three orders of magnitude less than 

the detailed model, which results in the drastic reduction of total CPU time. Due to this difference 

in time steps (modelling accuracy) by the subject models, the CPU time per step is also included 

in the last column of Table 4–1 to allow a more thorough comparison. Therein, it is seen that the 

proposed PDP model yields significantly less computational time per steps than the ADP models. 
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Figure 4–13.  Step size Δt as chosen by each model for the flexible step sizes study using a step change of load 

resistance. 

 

Figure 4–14.  Current asi  as predicted by the subject models using flexible step sizes for steady-state response 

in CCM-1. 
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Figure 4–15.  System transient response to the step change of load resistance as predicted by the subject 

models using flexible time steps: (a) current asi , (b) 5th order DP 
5

2 asi , (c) 7th order DP 
7

2 asi , and (d) 

magnified view from subplot (a). 
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Table 4–1. Models Simulation Efficiency of the Subject Models for the Flexible Step Size Case Study Using a 

Step Change of Load Resistance. 

Model No. of Time Steps Total CPU Time, ms CPU Time per Step, µs 

Detailed 146925 3521.2 23.97 

ADP-1 80 15.4 192.5 

ADP-2 80 10.5 131.25 

PDP 388 23.9 61.60 

4.1.6.5 Discussions of the Ringing of Harmonic DPs 

As noted in Section 4.1.6.4, some ringing is presented in the harmonic envelops/DPs during 

the fast load transient. Such oscillations have been noticed and meticulously analyzed in literature 

[124]-[125]. The authors of [124]-[125] explain that a direct step change in the DP domain can in 

fact introduce additional dynamics/oscillations into the associated harmonic DPs during transients, 

while precisely reproducing the correct time-domain simulation results.  When mapping a step 

change of a time-domain signal into the DP domain, two different approaches are employed in the 

literature, i.e., implementing: 1) a set of continuous time-varying changes of DP inputs; or 2) a 

direct step change in the harmonic DPs [124], which is simpler and has been considered for the 

purpose of this thesis. However, the direct step changes in the DP domain can cause inconsistency 

between responses of the DP systems before and after the input change [125], and can provoke 

oscillations in the harmonic DPs that are damped according to the system’s time constants. This 

can also be demonstrated by examining the time-domain and DP equations of the ac subsystems, 

i.e., (4–22)-(4–23). Specifically, with some simplifications, it can be shown that the eigenvalues 

of (4–23) for the kth order DPs are related to the modes defined by sss jkLr  / , which can 

become excited as shown in Figure 4–15. Finally, it is noted that despite the transient ringing of 
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harmonic DPs, the PDP model reproduces accurate time-domain simulation results as shown in 

Figure 4–15 (d) (which is also explained in [124]). 

To verify the possibility of avoiding excitement of the harmonic DP ringing modes, the 

same case study is performed with the load step change at t = 2s being replaced by a sigmoid 

function   

 )(1

1
)(

ctae
tS


 , (4–25) 

where the parameters a = 50 and c = 2s are chosen to implement a smooth transition. The resulting 

step sizes Δt and the system response as produced by the subject models are shown in Figure 4–

16 and Figure 4–17, respectively. As can be seen in Figure 4–17, since the sigmoid function 

implements a smoother “S” shape change in load, the ringing in the 5th and 7th DPs has been 

removed. This slower transient also allows both the ADP and PDP models to use large step sizes 

as shown in Figure 4–16. The quantitative assessment of this case study is also summarized in 

Table 4–2. Therein, it is noted that all DP models yield a similar number of time steps, which is 

much smaller compared to the detailed switching model. At the same time, the total CPU time 

taken by the PDP model is now only 5.4 ms (as opposed to 23.9 ms reported in Table 4–1). The 

results of Table 4–1 and Table 4–2 also suggest that the advantages of the PDP model should be 

noticeable in fixed time step solution. 
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Figure 4–16. Step size Δt as chosen by each model for the flexible step sizes study using a sigmoid change of 

load resistance. 

 

Figure 4–17. System transient response to the sigmoid change of load resistance as predicted by the subject 

models using flexible time steps: (a) current asi , (b) 5th order DP 
5

2 asi , and (c) 7th order DP 
7

2 asi .   
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Table 4–2. Simulation Efficiency of the Subject Models for the Flexible Step Size Case Study Using a Sigmoid 

Change of Load Resistance. 

Model No. of Time Steps Total CPU Time, ms CPU Time per Step, µs 

Detailed 142390 3481.3 24.45 

ADP-1 55 11.5 209.09 

ADP-2 56 9.5 169.64 

PDP 59 5.4 91.53 

4.1.6.6 Fixed Step Size Study 

To fairly compare the efficiency of the considered DP models, the same transient study is 

performed using the fixed step trapezoidal rule (that is widely used in commercial EMTP-type 

simulation tools [20]−[25]). To demonstrate a sample of results, Figure 4–18 depicts the fragment 

of current asi  transient response to the load step change as predicted by the subject models using 

a fixed step size Δt = 1 ms. As can be seen in Figure 4–18, the simulation results of the PDP model 

match the detailed solution very well, even at large time steps, while the ADP models do not 

capture the details of this transient. This is expected since the ADP models have less accuracy in 

predicting the transients of harmonics (see Figure 4–15 and Figure 4–18). In addition, Table 4–3 

summarizes the total CPU time (in seconds) taken by the subject models using different step sizes 

ranging from 10 µs to 1ms. As can be seen in Table 4–3, the computational performance of the 

PDP model is consistent with its CPU time per step observed in Table 4–1 and Table 4–2, and is 

noticeably faster than the ADP models. 
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Figure 4–18.  Current asi transient response to the load step-change as predicted by the subject models using 

fixed step size Δt = 1ms. 

Table 4–3. Total CPU Time (in Sec) Taken by the Subject Models Solved Using Fixed Step Trapezoidal Rule   

Step size Δt, µs  10 100 1,000 

ADP-1 58.3539 5.9496 0.5878 

ADP-2 44.5843 4.5444 0.4632 

PDP 24.3828 2.4981 0.2554 
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 Parametric DP Modelling of Thyristor-Controlled LCR Systems 

Including Harmonics for Various Operating Modes 

As shown in Section 4.1, the proposed PDP modelling methodology is effective for 

accurate modelling of diode LCR systems (including ac harmonics) in various operating modes, 

while providing significant numerical advantages. Therefore, it is desirable to extend this PDP 

modelling methodology [see Section 4.1.3] to the thyristor-controlled LCR systems that are 

utilized in many industrial applications [98]-[101]. For this section, the benchmark thyristor-

controlled LCR system is depicted in Figure 4–19 [117], where the rectifier can be fed from two 

cases of ac source: I) a rotating machine, or II) a distribution feeder/transformer (represented in its 

Thevenin equivalent circuit). In particular, for Case I, the CP-VBR formulation [89]−[93] of 

rotating machines is preferred, which possesses a direct machine-network interfacing circuit 

represented as decoupled constant-parameter RL branches. Such an interfacing circuit can be 

achieved even for salient pole rotor machines [89]−[93]. Accordingly, the thyristor firing pulses 

can be generated based on the filtered terminal voltages or the sensed rotor position, respectively 

[117]. Without loss of generality, the thyristor firing control via the filtered terminal voltages 

abcsv  and a firing angle   (i.e., Case II) is considered here [117]. 

   

Figure 4–19. Benchmark configuration of the thyristor-controlled LCR systems. 
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 Relating the AC-DC DP Dynamics 

As addressed in Section 4.1, the rectifier switching cell in Figure 4–19 can be represented 

by an algebraic block depicted in Figure 4–20. Therein, assuming a balance system, the ac-dc 

voltage and current DPs are related through parametric functions  kv,ω , 
 iω , and  kφ ,  where 

kK, and K={1, 5, 7, …} denotes the order of desired DPs. These parametric functions are defined 

in (4–26)-(4–28), which are determined by the present system operating mode using two inputs: 

1) the dynamic impedance dz defined in (4–20) which indicates the loading condition; and 2) the 

thyristor firing angle  . 

 
0, ),( dckasdkv vvz  , Kk   (4–26) 

 
10

),( asdcdi iiz  , (4–27) 

 )ang()ang(),(
1askasdk ivz  , Kk   (4–28) 

 
10 asdcd ivz  . (4–29) 

 

 

Figure 4–20. Implementation of the PDP model of thyristor-controlled rectifiers. 
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 Constructing Parametric Functions 

The procedure of finding the algebraic relations between ac and dc DPs of the thyristor 

rectifier are as follows: 

1) Select the set of desired harmonics, i.e., K, based on the properties of non-linear 

components in the system; 

2) Run detailed simulations of the subject system for a range of operating conditions, which 

can be achieved using a myriad of steady-state points at different dz  and α, or several large-signal 

transients that span various modes [see Section 4.1.4]; 

3) Extract desired Fourier coefficients (i.e., DPs) from the time-domain waveforms of the 

system’s ac/dc variables, and establish the parametric functions at each operating point using (4–

26)-(4–28) ; 

4) Store these functions in two-dimensional look-up tables, and use proper curve fitting or 

inter/extrapolation if needed. 

 Computer Studies 

The system of Figure 4–19 with parameters identical to Appendix D and the ac filter same 

as Eq.(11)  [117], is considered for study, wherein the dominant 1st, 5th, and 7th order DPs for ac 

variables and the 0th order DP for dc subsystem are considered. The detailed model implemented 

using PLECS Blockset [29] and the analytical DP (ADP-2) model [77] are used for comparison. 

For the PDP model, the parametric functions (4–26)-(4–28) are constructed following the steps in 

Section 4.2.2, and are depicted in Figure 4–21. Therein, 2520 steady-state solution points have 

been used, which are more tightly-spaced in the region where the parametric functions become 

nonlinear. 
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Figure 4–21. Parametric functions as numerically calculated from detailed simulations: (a)   ,1, dv z ; (b) 

  ,di z ; (c)   ,1 dz ; (d)   ,5, dv z ; (e)   ,5 dz ; (f)   ,7, dv z ; and (g)   ,7 dz . 

4.2.3.1 Steady-State Response 

To consider a wide range of steady state operating conditions, the computed THD [See (4–

24)] of ac current asi  for different thyristor firing angles with a dc load resistance  25lR  is 

shown in Figure 4–22. As shown in Figure 4–22, the ADP-2 model gives inaccurate THD results  
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Figure 4–22.   Steady-state responses: THD % of asi for different thyristor firing angles. 

at conditions with 
40 , which is due to the fixed-shape switch functions [See Section 4.1.1] 

that are different from the actual current waveforms. In contrast, the THD results are well predicted 

by the PDP model for the entire firing angle range, which verifies its accuracy in steady state 

conditions. 

4.2.3.2 Large-Signal Transient Response 

To emulate various large-signal transients, the system (assumed initially in steady-state 

with 150lR  and 
10 ) is subjected to several load and firing angle changes: i) at t=0.05s, 

step change of lR ; ii) at t=0.15s, ramp change of lR ; iii) at t=0.35s, step change of  ; and iv) at 

t=0.45s, ramp change of  . In addition, to illustrate the close-loop dynamic responses of the 

subject models, two thyristor firing control events are included: v) at t=0.65s, activation of the dc 

voltage controller; and vi) at t=0.75s, step change of the reference voltage. The details of these 

large-signal transients are also shown in Figure 4–23(a)(b), and the close-loop thyristor firing 

controller is depicted in Figure 4–26 with parameters summarized in Table 4–4. 
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The resulting system response of dc variables is depicted in Figure 4–23 (c)(d), which 

shows noticeable error with the ADP-2 model yet excellent agreement between the PDP and 

detailed model results. This is further confirmed with the magnified views of ac variables asv and 

asi  shown in Figure 4–24. Specifically, it is noted in Figure 4–24 (a) and (d) that as the system 

enters DCM due to increase of lR  or  , the ADP-2 model fails to reproduce the distorted current 

waveforms (dips between double peaks), while the PDP model yields accurate waveforms as the 

system operating condition evolves [see lines a) and c)]. It is also seen in Figure 4–24 (a) and (c) 

that during the step-change transients the ADP-2 model can result in dynamic errors due to the 

reduced-order representation of the ac network [see Section 4.1.6.5]. These errors, however, do 

not occur with the PDP model. Moreover, Figure 4–25 shows magnified views of system response 

to the activation/change of the dc voltage controller, which again demonstrates significant error 

with the ADP-2 model [see line b)] and verifies the conformity between the PDP and detailed 

models in close-loop dynamic responses. 

Table 4–4. Parameters of the close-loop thyristor firing controller for dc voltage regulation. 

Controller Parameters 

PI Controller 1.0PK , 10IK  

Low-Pass Filter 

1

1
)(

2 


bsas
sH  

61045 a , 
31014 b  
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Figure 4–23.   System response to the large-signal transients: (a) profile of lR ; (b) profile of  ; (c) resulting 

dc voltage dcv ; and (d) resulting dc current dci . 
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Figure 4–24.   Magnified views of ac variables asv  and asi  response to: (a) step change of lR  ; (b) ramp 

change of lR  ; (c) step change of  ; (d) ramp change of  .  
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Figure 4–25.   Magnified views of system close-loop dynamic response to: (a) activation of the dc voltage 

controller; (b) step change of the reference voltage. 

 

Figure 4–26.   The close-loop thyristor firing controller for dc voltage regulation. 
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4.2.3.3 Frequency-Domain Study 

Finally, to portray the frequency-domain characteristics of the system, a small-signal 

analysis is performed around the same initial steady-state operating point as in Section 4.2.3.2. 

The open-loop transfer function )(sF  is considered as 

 
)(~
)(~

)(
s

sv
sF dc


 . (4–30) 

where )(~ svdc  is the change in the output dc voltage due to the small-signal perturbation in the input 

firing angle )(~ s . The transfer functions as predicted by the subject models are depicted in Figure 

4–27, where a frequency-sweep technique has been used for the detailed model. As shown in 

Figure 4–27, the ADP-2 model shows inaccurate results for frequencies higher than 20 Hz, while 

the transfer functions evaluated by the detailed and PDP models are well matched, especially in 

the range from 1 to 200 Hz. In general, due to the Fourier transformation of system variables [i.e., 

averaging of frequency components, as shown in (2–36)], the DP models should yield accurate 

frequency-domain response up to about the system switching frequency, e.g., 360 Hz for the 

considered six-pulse rectifier system. When the frequency approaches close to or beyond the 

switching frequency, it would be expectant to observe deviation of results between the detailed 

and DP models, since the switching patterns of detailed model may be changed and the basic 

assumption of generalized averaging is no longer valid. However, since the input is the firing angle 

command, lower frequency dynamics are of more significant importance for studying stability and 

designing the controller of the system. 
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Figure 4–27.   Transfer function from the input firing angle to the output dc voltage as predicted by the 

subject models. 
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 Interfacing SFA- and GAM-Type 

DPs for Modelling the Synchronous 

Machine-Rectifier Systems 

As shown in Figure 1–1 and discussed in Section 1.2.2, the synchronous-machine rectifier 

system is used as a representative sub-circuit/unit of many integrated ac-dc power systems. This 

chapter presents a possible interface between the SFA- and GAM-type DPs, by interconnecting 

the previous DP models of synchronous machines and LCRs proposed in Sections 3.1 and 4.1, 

respectively. Computer studies validate the accuracy of the proposed DP interface in predicting 

the ac and dc response of the synchronous machine-rectifier system in all desired operating modes, 

as well as during large-signal transients.  

 DP Modelling of Synchronous Machine-Rectifier System 

Components 

Synchronous machine fed line-commutated converters are commonly found in many ac-

dc energy conversion applications, including high-power dc supplies, excitation systems of large 

electric generators, variable-speed electric drive systems, power systems for aircrafts, vehicles and 

ships [109]-[110]. In particular, as shown in Figure 1–1 the synchronous machine-rectifier system 

can be used as the backup generation unit for supporting medium- to long-term interruptions in 

integrated ac-dc power systems. 

Without loss of generality, the synchronous machine-rectifier system is depicted by the 

circuit diagram shown in Figure 5–1. Therein, the synchronous machine is considered in the  
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Figure 5–1. Circuit diagram of the synchronous machine–rectifier system for ac-dc backup generation. 

CP-VBR formulation (as shown in Section 3.1.1.2) assuming ungrounded stator windings, M 

damper windings in q-axis, and N damper windings plus a field winding in the d-axis; the three-

phase six-pulse diode LCR is connected directly to the synchronous machine; the dc subsystem is 

represented by filter with fr , fL , and fC , and appropriate dc load. Similar to [109]-[112], the dc 

subsystem can be represented by an equivalent resistor dcr  that consumes the needed amount of 

real power. This basic configuration (with possible modifications) is used in many industrial 

applications, and has been validated with different models [109]-[112].  

Various operating modes (as discussed in Section 4.1) may exist for such a machine-

rectifier system depending on the loading conditions [115]-[116], where high current distortion is 

observed at light loads (CCM-1), and more distorted voltages at heavy loads when the current is 

close to sinusoidal waveform (CCM-2). The DCM is typically not observed in this system due to 

the existence of relatively large machine stator inductances. 

 Synchronous Machine Model in SFA-Type DPs 

With the use of finely distributed stator/rotor winding and short-/fractional-pitched 

winding, the synchronous machine can be generally assumed to attain uniformly sinusoidal 
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distributed air gap flux (assuming magnetic linearity), thus inducing sinusoidal emf and can be 

viewed as a fundamental frequency power source [84]. Moreover, as seen in Figure 5–1, the 

synchronous machine is directly connected to the diode rectifier in the physical abc-phases. To 

take advantage of existing DP models of synchronous machines with direct abc-phase stator 

interface, the CP-SFA model as discussed in Section 3.1.2.2 is considered here, which gives the 

DP equation of the stator circuit in Figure 5–1 as 

 
''

abcsabcsDsDabcsDabcs j
dt

d
EILRILV  ][ ""  , (5–1) 

where abcsV  and abcsI   are the SFA-type DPs of stator voltages and currents, respectively; and 

  DDDD rrrdiag ,,R ;  DDDD LLLdiag ,,L , (5–2) 

where sD rr  ; 
"

mdlsD LLL  . (5–3) 

The subtransient voltage sources "

abcsE  in (5–1) is recalled as  
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where abcU

qdru

,

,K is defined in (3–39) and 
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In addition, due to the relatively slow electromechanical dynamics, the rotor state equations can 

be retained in qd coordinates in the time domain as shown in (3–14)–(3–15). 
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 Diode LCR Model in GAM-Type DPs 

Next, it is recalled in Section 4.1 that the diode LCR can be modelled in GAM-type DPs 

using the analytical or parametric modelling approaches. For comparison, the ADP-2 model [77] 

in Section 4.1.2.2 is chosen here due to its relatively-higher accuracy, which can be implemented 

using the ac-dc equations (4–10)–(4–11) and the switch functions (4–14)–(4–15). It is also recalled 

that the switch functions of fixed-shape waveforms are based on a single mode of operation, i.e., 

CCM-1. Moreover, since the stator-network inductance has been included in the commutation 

angle μ [see (4–5)], the ac subsystems of ADP-2 models are formulated as algebraic equations (i.e., 

reduced-order representation). 

Alternatively, the PDP modelling approach proposed in Section 4.1.3 is extended to the 

considered synchronous machine-rectifier system. Specifically, assuming a balanced system and 

that diode LCR does not contain energy-storing elements, it is recalled that the ac- and dc-side 

GAM-type DPs can be related through a set of non-linear algebraic functions as   
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110

)( asdc ii   . (5–8) 

Here,  k  and 
 1  are the parametric functions that are determined by the present system 

operating condition, and the dc current in (5-8) is assumed to be affected by only the fundamental 

ac currents. Also, the angular differences of phase a GAM-type DPs are recorded as 

 Kkiv askask  ),ang()ang()(
1

 , (5–9) 
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Finally, the system operating condition, i.e., the input of the parametric functions of  kα , 

 1 , and  kφ  is defined as the dynamic impedance given by   

 

1

0

as

dc

i

v
z  . (5–10) 

 DC Subsystem Model in the Time Domain 

It is noted that similar to qd-coordinate rotor variables (in the rotor reference frame), the 

dynamics of dc subsystems are slow-changing. Considering (2–35) and (2–36), when k = 0, the 0th 

order GAM-type DP [i.e., )(
0

tu  ], in effect, degrades to the dynamic averaging in the time 

domain, as is widely used in power electronic converter modelling [107]. Therefore, it is 

convenient for the dc subsystems to be modelled directly in the time domain. 

 SFA- and GAM-Type DP Interface and System Implementation 

As discussed in 5.1, the DP modelling of the considered synchronous machine-rectifier 

system can be summarized into three subsystems: 1) the synchronous machine model represented 

by SFA-type DPs as a 60Hz VBR source with stator equations (5-1)-(5-4)  [and stator-rotor 

interface (5-5)-(5-6) and rotor dynamics (3–14)–(3–15)]; 2) the GAM-type PDP model of diode 

LCR comprising the algebraic equations (5-7)-(5-10) and the parametric functions of  zkα ,

 z1 , and  zkφ ;  and 3) the dc subsystem modelled in time-domain signals, which is equivalent 

to averaging the 0th order GAM-type DPs. 
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To interconnect these subsystems, the synchronous machine-rectifier can be implemented 

by considering the DP interface as depicted in Figure 5–2. For the considered six-pulse diode LCR, 

the 5th and 7th harmonics are dominant, and are therefore modelled for this section, i.e., K = {1, 5, 

7}. As shown in Figure 5–2, the PDP model can be interfaced to the ac system comprising a 

number of subsystems for the fundamental frequency and each of the harmonics. In particular, in 

the 1st order DP subsystem the CP-SFA model of the synchronous machine is viewed as a 

controlled VBR power source (with adjustment in the magnitude); for 5th and 7th order DPs, it is 

assumed that a zero voltage source is provided. Finally, the dc subsystem is modelled directly in 

the time domain [k = 0 in (2–35) and (2–36)]. It is also noted that such a proposed DP interface 

can be readily augmented to include higher-order harmonics of interest, provided that the dynamics 

at these frequencies are significant or desired. 

 

Figure 5–2.    Block diagram of the DP modelling of synchronous machine-rectifier systems. 

 Constructing Parametric Functions 

For PDP modelling of the considered synchronous machine-rectifier system, the 

parametric functions of  zkα ,  z1 , and  zkφ  (K={1, 5, 7}) are established from detailed 
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simulations of the benchmark system as shown in Figure 5–3. Specifically, this is done by running 

the detailed simulations into multiple steady-states corresponding to a wide range of operating 

conditions (i.e., the MSS method in Section 4.1.4), and then tabulating the FFT results of the time-

domain waveforms of system variables according to (5-7)-(5-10). As seen in Figure 5–3, these 

parametric functions can become highly nonlinear in the region of heavy loading, where more 

tightly-spaced data points are typically required. For the considered synchronous machine-rectifier 

systems [109]-[110], 53 steady-state solution points suffice for modelling accuracy. 

  

Figure 5–3.    Parametric functions as obtained from detailed simulations: (a)(b)(c) )(1 z , )(1 z , and )(1 z

, and (d)(e) )(7,5 zα  and )(7,5 zφ . 
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 Computer Studies 

Computer studies are carried out on the benchmark synchronous machine-rectifier system 

shown in Figure 5–1 with parameters as in [109], [112]. The prior ADP-2 and PDP models have 

been implemented in MATLAB/Simulink [27]−[28] based on the block diagram shown in Figure 

5–2, and the detailed switch-level model is implemented in PLECS [29] for reference.  

To validate the accuracy of subject models, a case study spanning different operating 

modes is investigated. The system initially operates in the common CCM-1 mode with a excitation 

xfdE  =19.5 V and an equivalent dc load dcr  = 21 ; at t = 0.1 s, a large-signal transient occurs by 

switching the rectifier to a very heavy load dcr  = 0.5, and the simulation is run until t = 0.4s for 

the system to reach a new steady state in the uncommon CCM-2 mode.  

 Small Step Size Study 

The system is first solved using small step sizes with the ode23tb solver [27] and the 

following settings: relative and absolute error tolerances of 10−3, and maximum and minimum step 

sizes of 100 µs and 0.1 µs, respectively. The system responses of phase a and dc voltages and 

currents as predicted by the subject models are shown in Figure 5–4. The fragments of Figure 5–

4 showing the system responses pre-, post- and during the load change are magnified and shown 

in Figure 5–5 (in steady states) and Figure 5–6 (in the transient), respectively. From Figure 5–4 to 

Figure 5–6, the trajectories of asv  and asi  of DP models are converted from the corresponding DPs 

kasv  and 
kasi  using  (2–37).  

As seen in Figure 5–5 (a)(b), all subject models yield consistent results when the rectifier 

is in the CCM-1 mode. However, in the new CCM-2 mode, where voltages are highly distorted 
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and currents are close to sinusoidal as shown in Figure 5–5(c)(d), the ADP-2 model fails to 

reproduce the accurate voltage waveforms [see line b)], while the PDP model results still match 

the detailed solution very well. Furthermore, this advantageous accuracy of the PDP model can be 

highlighted in Figure 5–6, which shows the ac and dc responses during the load-change transient. 

In particular, it is seen in Figure 5–6 that the ADP-2 model renders an inaccurate but quickly 

converged transient solution (which is due to the inclusion of stator inductance DL  into the 

commutation angle μ [see (4–5) ], thus simplifying the ac system representation). Whereas, the 

PDP model, by including full-order modelling of harmonic dynamics, can produce large-signal 

transient results that match well to those predicted by the detailed model [see a) and c)].  

 

Figure 5–4.    System response to the load change as predicted by the subject models. 
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Figure 5–5.    Magnified view of the ac variables in steady states as depicted in Figure 5–4: (a)(b) asv  and asi

in the original CCM-1 mode; and (c)(d) asv and asi  in the new CCM-2 mode.       
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Figure 5–6.    Magnified view of the ac and dc variables during the load-change transient as depicted in 

Figure 5–4. 

 Flexible Step Size Study 

Next, the case study in Section 5.4.1 is solved using flexible step sizes [by setting the 

maximum step size to 0.1s], which yields the step size Δt depicted in Figure 5–7 as a function of 

time. Therein, very small Δt is used by the detailed model during the entire simulation due to fast 

switching [see line a)]. In contrast, the Δt curves of DP models start at large values, drop at the 

load-change instance, and then begin to increase rapidly, which reflects the system operating mode 

as it starts in steady state, encounters and recovers from a disturbance. The system responses of 

this case study are similar to Figure 5–4 to Figure 5–6 (except at much larger time steps), and 

therefore are not included here. 
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Finally, Table 5–1 summarizes the numerical efficiency of the subject models. As can be 

seen in Table 5–1, the DP models require at least three orders of magnitude fewer time steps than 

the detailed model and thus significantly outperform the detailed model in terms of CPU time. It 

is also noted that due to the full-order representation of harmonic dynamics, the PDP model uses 

more time steps compared to the ADP-2 model, which however does not require much longer CPU 

time due to its simple structure. 

 

Figure 5–7. Step size Δt as chosen by the subject models.  

Table 5–1. Simulation Efficiency of the Subject Models. 

Model No. of Time Steps CPU Time, ms 

Detailed 22763 2234.3 

ADP-2 130 65.5 

PDP 272 88.7 
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 Conclusions and Future Work 

 Conclusions and Contributions 

 Technical challenges resulting from the newly emergent integrated ac-dc power systems 

necessitate increasing need and reliance on computer simulations to study and understand the 

system’s dynamic behaviour, and to ensure the system’s operation in an optimal, stable, and secure 

manner. Several types of simulation programs/tools have been developed throughout the years, 

each targeted for the investigation of specific classes of transient phenomena. This thesis focuses 

on the so-called DP-type modelling and simulation techniques, namely the SFA and GAM, which 

permit general-purpose simulation of both electromagnetic and electromechanical transients. The 

DP-type modelling approaches represent the power systems using low-pass time-phasor signals, 

thus offering flexible selection of integration step sizes and a superior combination of numerical 

accuracy and efficiency. Due to these desirable features, DP-type simulations are particularly 

suitable for studying the existing and/or new transient phenomena occurring in integrated ac-dc 

power systems (as highlighted in Figure 1–2).  

 The global objective of this thesis is to increase the numerical efficiency of DP-type 

simulations for integrated ac-dc power systems, where models of electric machines and power 

converters are typically the bottleneck in most simulation programs. This thesis addresses these 

challenges by proposing several new DP component models of electric machines and LCRs with 

improved numerical properties and more desirable features over the state-of-the-art DP models. 

Specifically, with respect to the initial objectives of this research, the contributions of this thesis 

can be summarized as follows: 

 The initial Objective 1 was addressed in Chapter 2, which summarized the fundamentals 

of DP-type modelling approaches, while pinpointing the limitations of different power system 
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signal representations and the notable numerical features associated with DP-type simulations. The 

computer studies presented in Section 2.3.2 demonstrated that DP models are numerically accurate 

in predicting power system transients at different frequencies. Furthermore, it was shown in 

Section 2.3.3 that the DP models can obtain superior numerical efficiency than the TD models by 

enabling flexible selection of time step sizes during the simulations. Several important 

observations on the increased number of state variables, the additional oscillatory modes of DPs, 

and the signal representation for unbalanced power systems had also been discussed. 

 The initial Objectives 2 and 3 were achieved in Chapter 3, which presented numerically 

efficient modelling of electric machines based on the SFA. Specifically, a new SFA VBR model 

of synchronous machines (CP-SFA) was first proposed. This new model achieves a constant-

parameter abc-phase stator-network interface, thus avoiding the time-varying terms in the prior 

variable-parameter SFA model (VP-SFA). The computer studies presented in Section 3.1.3 

showed that the CP-SFA model accelerates the simulation speed by at least a factor or two when 

compared with the VP-SFA model, and reduces the number of required time steps by up to two 

orders of magnitude compared with classical TD models. This technique was extended to induction 

machines to achieve a SFA-based VBR model (VBR-SFA-IM) in state-space formulation. The 

computer studies presented in Section 3.2.3 validated that the VBR-SFA-IM model yields accurate 

solutions for both fast and slow transients and greatly improved numerical efficiency compared 

with classical TD models. As highlighted in Table 1–1, this thesis for the first time proposed the 

SFA-type DP models of synchronous and induction machines that possess direct abc interface, a 

constant-parameter interfacing circuit, and state-space formulation for SV-based solution. These 

models represent my contribution and advance the state of the art in this area, as can be seen in 

Table 1–1 (last two rows). 

In Chapter 4, the initial Objectives 4 and 5 were achieved by presenting a new highly-

efficient parametric DP (PDP) modelling of LCRs based on the GAM. This PDP model for the 

first time combines the parametric modelling technique with GAM-type DPs in the abc-phase 
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coordinates, and features: 1) simple formulations of ac-dc dynamic subsystems, 2) easy numerical 

construction of parametric functions, and 3) accurate representations of desired harmonics in all 

operating modes. Rigorous computer studies presented in Section 4.1.6 demonstrated that the PDP 

model is capable of accurately capturing the LCR harmonics over a wide range of loading 

conditions, while providing considerable computational advantages over the detailed model as 

well as previous ADP models. This PDP methodology was also extended to include the thyristor 

firing control, which was validated by case studies presented in Section 4.2.3. As highlighted in 

Table 1–2, this thesis for the first time proposed the GAM-type DP modelling of LCR systems that 

uses DPs in abc–phase coordinates, covers all operation modes, includes harmonics, and predicts 

thyristor operation. These models represent my contribution and advance the state of the art in this 

area, as can be seen in Table 1–2 (last two rows). 

The initial Objective 6 was achieved in Chapter 5, which for the first time presented the 

interface between SFA- and GAM-type DPs. By interconnecting the previous DP models proposed 

in Sections 3.1 and 4.1, the proposed interface obtains a new DP model of the synchronous 

machine-rectifiers systems, which also contributes to the state-of-the-art DP modelling. Computer 

studies presented in Section 5.4 validated the accuracy of the proposed DP interface in predicting 

the ac and dc response in all desired operating modes, as well as during large-signal transients.  

 Future Work 

 To conclude this thesis, several areas for potential extension of the proposed work are 

discussed below: 

• Inclusion of Magnetic Saturation into DP Modelling of Rotating Machines 

  Magnetic linearity is assumed for modelling of electric rotating machines in this thesis. 

However, it is noted that magnetic saturation in rotating machines is a very common phenomenon, 
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which results in changes of effective inductances as the magnetizing flux changes [84]. This 

requires dedicated consideration and modelling technique to adequately incorporate the effect of 

magnetic saturation into general-purpose lump-parameter models [133]. A future research task 

would be to derive SFA-based DP models of rotating machines with the inclusion of magnetic 

saturations, which will facilitate more accurate prediction of power system transients. 

• Interfacing DP Models with EMT and/or TS Programs 

 As shown in Chapter 2, the solutions of DP models essentially represent the dynamic 

envelopes of time-domain signal waveforms, which in steady states can go to constant values as 

obtained from the conventional phasors. These desirable features infer the potential of the 

proposed DP models being interfaced with EMT and/or TS programs to provide a straightforward 

but effective vision into the dynamics of power systems. Several research-based and industry-

grade simulation tools [21], [25], [26], [32] have expressed a growing interest in applying DP-type 

modelling into their simulation for mid- to large-scale ac-dc power systems, and even for real-time 

simulations [25], [32]. Developing the advanced interfacing techniques between the SFA- and 

GAM-type DP models and EMT/TS programs is a much-needed research topic that is currently 

being considered by other students at UBC’s Electric Power and Energy Systems research group. 

• Combining DP Models and Impedance-Based Stability Criterion for Analyzing Sub-

/Super-Synchronous Resonances in Power Electronic Systems 

The oscillatory interactions between the power electronic component/subsystem and the 

grid have emerged as a notable practical problem that has gained much attention in recent years 

[14]-[16]. Unlike the large-scale stiff ac grid, power-electronic-based systems may provoke 

electrical resonances ranging from the sub- to super-synchronous frequencies, as depicted in 

Figure 1–2. To analyze and mitigate such resonance problems, the impedance-based stability 

theory has been proposed [14] based on the Nyquist stability criterion. As shown in Chapter 2, 

compared with conventional phasor models that neglect dynamics, the DP models yield accuracy 



   148 

 

simulation results at various frequencies (due to their full-order modelling), which thus permit the 

investigation of sub-/super-synchronous resonances from the phasor perspective. Therefore, a 

future research task would be to combine DP models with impedance-based stability criterion for 

analyzing the sub-/super-synchronous resonances in power electronic based systems. 
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Appendix A:    Transmission Line Parameters for the Case Study of Section 2.3.3.3 

Transmission line parameters:  

 Positive Sequence Zero Sequence  

Resistances km/ 0.01273 = posr  km/ 0.3864 = zeror  

Inductances km/mH 0.9937 =posl   km/mH  .12644 =zerol  

Capacitances km/nF 12.74  =posc  km/nF 7.751  =zeroc  

 

For the 50 km transmission line ( km50linel ), the parameters of the lumped-parameter π 

section model (short line model) are calculated as (excluding hyperbolic corrections) [20] 
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The three-phase coupled π section RLC matrices are formulated as [20]  
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where the diagonal and off-diagonal elements are calculated as 

 )2(
3

1
_ zeroposstl RRR   , )(

3

1
_ poszeromtl RRR   (A-5) 



   163 

 

 )2(
3

1
_ zeroposstl LLL   , )(

3

1
_ poszeromtl LLL   (A-6) 

 )2(
3

1
_ zeroposstl CCC   , )(

3

1
_ poszeromtl CCC  . (A-7) 

 

  



   164 

 

Appendix B:    Parameters for the Case Study of Section 3.1.3 

Synchronous machine parameters [84]:  

835 MVA, 26 kV, 0.85 power factor, 2 poles, 3600 r/min, J = 0.0658×106 J·s2, rs = 0.00243Ω, Xls 

= 0.1538Ω, Xmq = 1.3032Ω, rkq1 = 0.00144Ω, Xlkq1 = 0.6578Ω, rkq2 = 0.0068Ω, Xlkq2 = 0.07602Ω, 

Xmd = 1.3032Ω, rfd = 0.0075Ω, Xlfd = 0.1145Ω, rkd = 0.0108Ω, Xlkd = 0.06577Ω. 
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Appendix C:    Parameters for the Case Study of Section 3.2.3 

Induction machine parameters [84]:  

500 HP, 2300 V, 4 poles, 1773 rpm, J = 11.06 kg·m2, Tb = 1980 N·m, rs = 0.262Ω, rr = 0.187Ω, 

Xls = 1.206Ω, Xlr = 1.206Ω, XM = 54.02Ω. 
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Appendix D:    Parameters for the Case Study of Sections 4.1.6 and 4.2.3 

Testing System Parameters [118]:  

Vline = 480 V, fs = 60 Hz, rs =0.2Ω, Ls = 10 mH, rdc = 0.5 Ω, Ldc = 1.33 mH, Cdc = 500 µF. 

 


