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Abstract

Rating curves play a vital part in hydrology for producing streamflow time-series. The derived

streamflow is an integral component to any hydrological study and therefore requires proper quan-

tification of not only a discharge point value, but also an uncertainty measure. Using multivariate

Gaussian distributions as kernels, a probabilistic rating curve was developed from the conditional

distribution as an alternative model for the standard deterministic rating curve. Auxiliary informa-

tion from a run-of-river hydroelectric project, as well as the temporal variability from the gauging

measurements, were used to study the possible reduction in the uncertainty of the developed rating

curve. The temporal information was modeled using an exponential function that updated upon

receiving new gaugings and the sluicing model was a continuously updated kernel distribution that

assigned more weight to gaugings taken after a sluicing event. Four models of varying complex-

ity were created and their performance was evaluated using information theory measures such as

surprise and the Kullback-Leibler divergence measure. The results indicate that probabilistic rating

curves are useful tools for modeling and evaluating the dynamic uncertainty of the curves. The

uncertainty was shown to be reduced by up to 19% by including the temporal information of the

gaugings and sluicing information. Auxiliary information can be beneficial to rating curve devel-

opment and an argument is made for why probabilistic rating curves should become a norm in the

hydrology field.
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Lay Summary

The volume of water (streamflow) flowing through rivers has large applications in engineering de-

sign and modeling. All these applications require that the proper amount of streamflow be quantified

to ensure the best possible design and usage of the water. For this reason, stations that continuously

record streamflow have been placed at various locations along rivers all over the world. Directly

measuring streamflow however is highly expensive and an indirect method must be used. This

method is called a rating curve, but the largest flaw in the method is that it does not properly cap-

ture the uncertainty in the streamflow or give any insight into the probability of the discharge. This

research addresses the flaw by developing a model that highlights the truly probabilistic nature of

the streamflow. Available information impacting the streamflow uncertainty was also introduced to

help reduce the uncertainty of the probabilistic dynamic rating curve.
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Chapter 1

Introduction

This thesis is focused on the one compound that everyone in the world needs for survival—water.

It’s both vast, powerful, and dynamic as well as finite, fragile, and lethargic, all at the same time.

Human life depends on this compound, but its usability is threatened every single day by pollution

and anthropogenic climate change. This makes one wonder how water will play a factor in the future

and/or how much usable water will there be? x m3? y m3? This information is useful, but it leaves a

lingering question of, ”How sure are you?” This question instinctively forces the person providing

the x and y estimates to give a response like—”I’m fairly sure” or, ”About 67% confident.” So when

given a prediction, it is natural to know how certain the answer is. Think about it. What if you

turned on your television and the weather spokesperson said, ”Today it will rain.” This statement

leaves one wondering if the individual meant that it will rain all day, or if the rain will be scattered

with higher probability soon after lunch. Without any further information on the probability of rain

today, one is left to make the judgment of when he/she believes it will rain. So now, one can make

a subjective statement on what the probability of rain will be, most likely determined by looking

outside and examining the gloom in the clouds. However, one is not an expert in weather forecasting

and the probability of rain determined by individual users may be different, and more likely to be

incorrect, from the probability that the expert would assign. The reason for this is that the expert

has all the information available to him/her and is more qualified to be the one making the judgment

on the chances of rain today. The aforementioned is true when trying to predict how much water is

flowing in a river channel.

Today, all around the world the task of quantifying how much water is flowing in any river is dele-

gated to primarily government agencies. Here in North America, the two largest agencies are Water

Survey of Canada (WSC) and the United States Geological Survey (USGS). Hydrographers for WSC

and USGS perform field visits to rivers, and carefully measure water level and discharge values

to develop an empirical relationship between the two variables. The true relationship is grounded

on fundamental hydraulic principles and is known as the rating curve. However, the rating curve

produces a purely deterministic result. Therefore, similar to the scenario described in the prior

paragraph, users of the assembled discharge time series are tasked with the exercise of applying a
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probability to the values, or in many cases, applying no probability and using the time series as is,

causing an ”illusion of certainty” (Krzysztofowicz, 2001). Many hydrologists have come to terms

with the importance of probabilistic models and their importance (Beven, 2010; Liu & Gupta, 2007;

McMillan, Freer, Pappenberger, Krueger, & Clark, 2010; Montanari & Brath, 2004; Weijs, 2011).

Unfortunately, the rating curve has yet to be transformed into a truly probabilistic model and it is

here, where the author argues that a probabilistic rating curve is essential for not only the hydrol-

ogy field, but those that are dependent on discharge time series. The results from a rating curve

are fundamental to accurate depictions of floodplain mapping, emergency and evacuation decisions,

engineering design structures, and more.

The topic of rating curve uncertainty is continuously being studied to develop models that can

produce more accurate values. Again, the author has not found in the literature an explicit proba-

bilistic dynamic rating curve model. The literature does contain probabilistic rating curves in the

sense that the parameters of the rating curve are described by a probability distribution, but no rat-

ing curve has been developed as a pure conditional distribution, like the one in this thesis. The

author’s first objective in this thesis is to develop a probabilistic rating curve model that produces

similar discharge values but with the added benefit of providing a probability distribution with the

discharge point value. The second objective of this thesis is to illustrate to the reader the impor-

tance of adding available information to improve the accuracy of a rating curve model. Available

information in the context of rating curves means information that may help explain the behavior

of rating curves throughout the temporal and spatial domains, as well as any relevant data that may

have also been collected while recording water levels and discharge, such as electrical conductiv-

ity, as done in (Weijs, Mutzner, & Parlange, 2013). Information has the main benefit of possibly

reducing uncertainty. In the context of rating curves, auxiliary information that can be brought into

the model is dependent on what kind of other signals were collected at the hydrometric station, or

nearby. Rivers with high energy, perched in the mountains, tend to have their discharge measured

by electrical conductivity. Weijs et al. (2013) showed that electrical conductivity could be useful in

reducing rating curve uncertainty. Other signals that have a strong correlation with the discharge

may also serve as good side information to include, but they must be independent of the water level.

Thinking about what local information relates to the discharge is a useful exercise that can have

high impacting results on modeling rating curve uncertainty. Caution must be adhered to ensure

that a complex model is not developed as a substitute for the current practical rating curve. Instead,

the ideal model should balance complexity and practicality. Thus, by grounding the rating curve

on hydraulic principles and identifying useful information, one can create a model that meets both

complexity and practicality needs.

More specifically, this thesis will demonstrate a probabilistic rating curve that uses information

available from a run-of-river hydroelectric project in northwestern BC. The thesis is organized as

follows. Chapter 2 will provide the background on the current state of developing rating curves, as

2



well as present a literature review of the current work that has been done on modeling rating curve

uncertainty. The literature review over rating curve uncertainty extrapolates some of the work pre-

sented in the literature review done by Le Coz in 2012, and expands on it by work done since that

manuscript’s publication. Chapter 3 describes the methodology used in producing the probabilistic

rating curve, as well as a description of how the added information was incorporated into the rating

curve. This chapter finishes by introducing a few information theory metrics and measures used to

help evaluate the added information, and the performance of the models. Chapter 4 is a presentation

of the probabilistic rating curve produced, as well as an assessment of the auxiliary information

used in the model. Finally, Chapter 5 provides a discussion on the results, the importance of prob-

abilistic models and using available information, and future work that can be done to expand the

work presented herein this thesis.

3



Chapter 2

Background

2.1 Stage-discharge rating curve
A stage-discharge rating curve is an empirical relationship between water level and discharge along

a cross-section of a river. A rating curve ideally consists of 10 or more points that are time invariant

and supports the hypothesis of a stable relationship between the variables (Ministry of Environment

Science and Information Branch for the Resources Information Standards Committee, 2009). A

power law (Equation 2.1) is often used and forms the one-to-one relationship between the two

variables.

Q = a · (ht −h0)
b (2.1)

Equation 2.1, when plotted on a logarithmic scale, creates a linear relationship (when the true cease-

to-flow water level is known) that can be interpreted in terms of hydraulic principles. The scaling

parameter (a) and exponent (b) have been attributed to the geometry and physical constraints of

the river. In his seminal work, Chow (1959) demonstrated that the scaling parameter is related to

the characteristics of the channel or section control, while the exponent parameter can approximate

the shape of the cross-section. This can provide an indication as to whether the stage-discharge

relationship is controlled by a section or channel control. An exponent less than two would indicate

a channel control while a larger exponent is typical of a section control. This led Chow (1959) to

generalize the following:

• b = 3/2 is typical of a rectangular channel

• b = 2 is typical of a rough parabolic shape

• b = 5/2 is typical of a triangular or semi-circular section

2.1.1 Hydraulic Controls

The stage-discharge relationship at a gauging station is governed by the downstream hydraulic con-

trols of the river (Rantz, 1982). The three types of hydraulic controls are section, channel, and
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Figure 2.1: Compound channel cross-section

compound controls. A section control is either a natural or man-made structure, such as a rock

outcrop or bridge/weir, while a channel control is a function of the channel geometry, slope, and

roughness. Typically, a channel control is more evident in large and wide rivers, while a section

control is more commonly found in small narrow rivers. The third control is the compound con-

trol, a combination of section and channel controls as shown in Figure 2.1. Here, the section control

manages the low end of the rating curve and as the flow increases, the section control is drowned out

and the relationship is dominated by the channel control. In such a hydraulic situation, it is common

to identify a transition region between the two controls. When plotting the rating curve, this can

usually be identified by changes in the slope between low and high flows (Herschy, 1995). It is also

important to note that the hydraulic equation may also be segmented to account for a compound

section. In this case, a segmented hydraulic equation will have unique parameters for the different

sections that correspond to the dominant control. Also when considering hydraulic controls, one

needs to account for the offset value, or h0 in Equation 2.1. This offset value is the height adjust-

ment for the control, and differs if the stage-discharge rating curve is compounded to represent the

different physical characteristics of the channel.

2.2 Development of a rating curve

2.2.1 Criteria

When developing a rating curve, it is pertinent that the location of a rating curve satisfy the following

criteria (when possible) as is mentioned in the Manual of British Columbia Hydrometric Standards.

These criteria include:

• Accurate water level measurements must be available at low and high water levels

• A stable hydraulic control must be available, either natural or artificial

• The station must be accessible year long

• Straight, stable, and aligned banks

• No tributaries between gauge and metering site

• Metering section should have uniform depth and velocity flow lines
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• Accountability for backwater effects

• The station should be able to withstand large peak events and intense rainfall and snow events

• The proper station should be constructed for the type of body of water one wishes to gauge

Unfortunately, not all criteria will always be met, and this could cause a less stable stage-discharge

relationship. If this is the case, one may need to perform more site visits.

2.2.2 Site investigation

Site visits allow the hydrographer to develop an intuition for how the river is behaving at a given

point in time; as well as give an image of changes that may have occurred since the last visit. Careful

observations regarding high flowing rivers should be exercised and evidence of past floods should

be sought out. These include, but are not limited to, water marks, debris deposition, and fragmented

vegetation in the river’s floodplain. It is also important to ensure that if a housing structure, such as

a stilling well, is on site, that it remains intact and fully operational.

A careful observation of the channel cross-section shape (including banks of the river) will help

the hydrographer develop a hypothesis for what a possible exponent value (b) may be in Equation

2.1. Signs of large boulders along the river may indicate high energy and temporal variations of the

controls (Baker, 2009; Kieffer, 1985; Le Coz, Renard, Bonnifait, Branger, & Le Boursicaud, 2014).

It is recommended that during site visits, the controls should be identified to ensure no changes

to the regime that controls the stage-discharge relationship have happened. Gaugings taken during

site investigations should be aggregated to the most current rating curve. This practice allows the

hydrographer to identify if the data collected fall within 5% of the current rating curve, or if a shift

or new curve may be required (Herschy, 1999).

2.2.3 Interpretation of the rating curve

A shift is described as a temporary deviation from the main rating curve. Shifts can be attributed

to a number of reasons, primarily temporary changes in the control, such as a log/debris jam, ice,

and vegetation. Backwater effects may also cause a temporary shift to be implemented. If the shift

persists for a period of months, then this is may be indication that a permanent effect may have

taken place in the stream and a new rating curve is required. It is sometimes possible to predict

when a shift is going to occur based on the temporal patterns of the stream and basin. For exam-

ple, it is possible that through a thorough ecological investigation, a hydrographer may notice that

beavers always build their dams during a specific time period and/or that during spring and sum-

mer months, vegetation tends to grow and a shift in the curve is needed until that time period is over.

Determining shifts can be an art, as stage and discharge have natural scatter due to the volatility

of the cross-section as impacted by erosion/deposition, vegetation, and/or ice. Gaugings that devi-

ate from the adopted threshold (typically ± 5%) may indicate a possible shift in the stage-discharge
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Figure 2.2: Illustrates a shift correction. The red line represents the baseline rating curve with
triangular markers used to construct linear lines. The purple line is a temporary shift that
occurred during the active period of the rating curve.

Figure 2.3: Variable-shift diagram displaying a negative shift.

relationship, but a well-grounded physical reason must justify the decision on when to apply a shift,

and where the shift should occur on the rating curve. Figure 2.2 presents a shift for the active

rating curve of a gauging station between September 2008 and September 2009. A variable shift

diagram (V-SHIFT) diagram is often used to help identify shifts and their location. A sample shift

diagram is shown in Figure 2.3 The V-shift diagram plots the water level of the gaugings on the

ordinate, and the distance between the measured water level and that from the baseline rating curve

on the abscissa. When the data are plotted, the gaugings should resemble a Gaussian distribution

around the zero shift reference line. If not, this could indicate a bias and supports the notion that
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a shift may be necessary. A negative shift will cause the temporary aberration in the rating curve

to be to the left of the baseline curve, and the opposite for a positive shift. Shifts are meant to be

temporary and should always yield back to the baseline curve. If over time, gaugings systematically

plot above or below the baseline curve, a new rating curve should be considered.

Typically, rating curves can exhibit a pattern of moving to the left or right of the previous rating

curve. A simple sensitivity analysis was performed by Rantz (1982) in which he stated that by plot-

ting the rating curve on log paper, changes in the control are identifiable. For example, an increase

in the width of the channel control causes the new rating curve to plot parallel and to the right of

the original, while the opposite indicates a decrease in control width. Scouring and deposition are

also possible to detect and Rantz proposes that scouring will cause a new curve to plot to the right

but will be concave downward, rather than parallel, while deposition will plot to the left and will be

concave upward.

2.3 Uncertainties in rating curve
As one can see, the stage-discharge relationship thus far is affected by the hydraulic controls and

their variability over time. However, there are many more factors that can affect the stability of a

rating curve. The following is a list outlining some of the most common factors affecting a rating

curve as shown in Di Baldassarre and Montanari (2009); Hamilton and Moore (2012); Herschy

(1999); Turnipseed and Sauer (2010):

• Scour and fill sand-bed channel

• Aquatic vegetation

• Ice cover

• Variable backwater

• Changing discharge

Understanding how these factors play a role in modeling the rating curve is crucial for ensuring an

accurate discharge time series. For example, during the summer when vegetation is higher than the

rest of the year, a shift may be probable until the end of the summer when the vegetation no longer

has a strong influence on the river’s discharge. Ice plays a unique role in measuring streamflow, and

in many cases, forces hydrographers to have to remove water level sensors to prevent cold weather

damage to the instruments. This poses a challenge in trying to recreate the discharge time series.

In many cases, WSC will interpolate their winter discharge time series with as few as two gaugings

(Moore, Hamilton, & Scibek, 2002). Variable backwater effects in streams are usually caused by

an obstruction in the river downstream that causes the water to propagate upstream, such as when

a river tributary enters the main stem. Changing discharge is typically seen during passing flood

waves where the rising slope of the wave is steeper than the falling. This phenomenon creates a

hysteresis effect where the discharge has two different water levels for the same discharge. In a
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stage-discharge plot, this is usually identifiable by a loop around the main rating curve.

One other source of uncertainty in a rating curve, is the one associated with extrapolation. High

flows can make it dangerous for hydrographers to visit the site, and safely record water level and

discharge. At sites with permanent measuring devices, high flows can cause the instruments to be

washed away. Extrapolation is required for an array of purposes, but special care should be taken

to ensure that the extrapolation is confined to the physical constraints of the channel cross-section.

It is best practice to plot stage vs area on arithmetic or logarithmic axes to identify the relationship

of the two variables. Ideally, both variables will exhibit a linear relationship until a break in the

cross-section is observed, similar to the break in a rating curve when a compound cross-section is

used. Typically, one can extrapolate until the point where the stage-area curve is outside the bounds

of the channel area. This however is still an assumption, and is never guaranteed to give the true

relationship, but can provide a reasonable approximation in some cases.

The first published work on modeling rating curve uncertainty was done by Venetis (1970), in which

residual variance was used to determine the bounds of the uncertainty in a power law rating curve.

The data was log transformed and a least square regression was performed on the log-transformed

discharge. Venetis however did not account for measurement uncertainty. The work done by Rantz

(1982) and Herschy (1999) really grounded the hydrometry field and provided a foundation for the

work that follows.

Di Baldassarre and Montanari (2009) presented a general uncertainty framework that assumes a

global uncertainty accounting for the discharge measurement technique, interpolation and extrap-

olation errors, the presence of unsteady flow conditions, and seasonal changes. They performed

a one-dimensional hydraulic model on the Po River in Italy to carry out their estimation of rating

curve uncertainty. Their results found that discharge uncertainty could be well over 40% and have

high implications on hydrological models such as rainfall-runoff models that are dependent on the

results of a rating curve to calibrate the models. However, Di Baldassarre and Montanari also made

an exhaustive list of assumptions, primarily that the cross-section of the river is time invariant and

that the uncertainties affecting the discharge values are independent, implying that the measuring

technique used, velocity-area method, is independent of the flow conditions and vegetation.

Heteroscedasticity is a common problem observed in rating curve modeling in which discharge

uncertainty increases as the magnitude increases (Sorooshian & Dracup, 1980). Using least square

regression on a power law function, however, violates this assumption, unless log-transformed.

Petersen-Øverleir (2004) pointed out this common error of unaccounted heteroscedasticity uncer-

tainty affecting rating curve parameters and estimated discharge. Petersen-Øverleir suggested a

maximum likelihood method that better accounts for the natural uncertainty exhibited in the stage-

discharge relationship. However, in that manuscript, only the uncertainty associated between stage
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and discharge was examined, and not the individual gauging errors. The same author has also in-

vestigated the impact of hysteresis (Petersen-Øverleir, 2006) and overbank flow in rivers (Petersen-

Øverleir, 2008). In the first paper, the Jones Formula was used to identify a change of stage rate.

In the latter paper, the author discussed issues with modeling multi-segmented rating curves, in

which the range of the parameter estimates might be incorrect and the location of the breakpoint

may also not have strong physical meaning. The author also made simplifying assumptions about

channel characteristics and hydraulic controls. Some of the numerical challenges were also not ad-

dressed by the author in his 2005 manuscript (Petersen-Øverleir & Reitan, 2005), but were in later

publications.

2.3.1 Bayesian and MCMC methods

As computation power has increased in recent years, so has the number of works using Bayesian

and Markov Chain Monte Carlo (MCMC) methods. In Bayesian analyses, hydraulic knowledge can

be incorporated into the modeling process via prior distributions. As the model receives new data, it

updates its beliefs, via a likelihood function, and creates a posterior distribution (Reitan & Petersen-

Øverleir, 2008). It is most common to use Gaussian distributions as priors and posteriors because

of the closed form solution. However, if the prior and posterior are not conjugate to each other, a

closed form solution does not exist and MCMC methods must be used to sample from the posterior

(Godsill, 2001). The usage of these methods naturally allows the modeler to sample from a proba-

bility distribution, and therefore assess the uncertainty associated with the parameters of Equation

2.1 and the predicted discharge. Incorporating hydraulic knowledge into the model via priors allows

the modeler to use more information, rather than the gaugings alone.

The segmented rating curve problem by Petersen-Øverleir (2008) was improved using Bayesian

and MCMC methods, and further helped with modeling the uncertainty of the rating curve (Reitan

& Petersen-Øverleir, 2009). A compounded channel was evaluated using Bayesian methods to es-

timate the parameters in each power law segment, as well as the breakpoints in the stage-discharge

relationship. The posterior distribution that resulted from the Markov Chain Monte Carlo sampling

was then used to determine the uncertainty of the rating curve. The authors acknowledged that their

model was time invariant and assumed that their rating curves were not affected by changes in the

river geomorphology, hysteresis, or variable backwater. For backwater effects, Petersen-Øverleir

and Reitan used two gauging stations to determine the slope of the reach and the correct discharge

in their 2009 publication. While this solution does help with estimating a more correct discharge,

it is considered impractical in many situations to include more than one gauging station. Multi-

segmented rating curves were also looked at in McMillan and Westerberg (2015). Here, the authors

created a new likelihood function called the ”Voting Point likelihood.” Their model assumed a lo-

gistic distribution for the discharge gaugings and prior distributions for the parameters of the power

law function. A rating curve was then created from sampling the prior distributions of the param-

eters, and the curve is assigned a likelihood weight, dependent on the logistic distributions it has
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intersected with, as well as the range of stage and discharge that the rating curve spans. This proce-

dure was then repeated using a MCMC method to create a posterior distribution of possible rating

curves. The results of this method allowed to explicitly model aleatory and epistemic uncertainty.

The authors treated all gaugings as equal, and do not account for permanent changes that may occur

in the river after larger altering rainfall events.

Le Coz et al. (2014) also showed the value of adding hydraulic knowledge to the development

of the rating curve, as well as the importance of properly classifying the gauging error. The uncer-

tainty in this study was divided into the uncertainty associated with the gaugings, the location of

the gaugings, and the remnant uncertainty. Since the remnant uncertainty was unknown, a MCMC

simulation was used to estimate the value. What the authors show is that when the uncertainty in

the gaugings was assumed to be 5%, as suggested by (Herschy, 1995; Rantz, 1982; Turnipseed &

Sauer, 2010), the remnant uncertainty increases. When the actual (true) uncertainty in the gaugings

was used, the remnant uncertainty was lower. These results indicate the importance of capturing

the correct discharge uncertainty, rather than assuming a standard value for all. The work done by

Le Coz et al. in 2014 helped the community acknowledge the importance of Bayesian and MCMC

usage in rating curve development, through their incorporation of the techniques into their user

friendly developed method called, BaRatin. However, a major limitation of the work is its station-

ary assumption.

2.3.2 Time variance in rating curves

It is accepted that river characteristics naturally change over time and therefore the controls which

affect the stage-discharge relationship are also evolving temporally (Di Baldassarre & Montanari,

2009; Hamilton & Moore, 2012; Leonard, Mietton, Najib, & Gourbesville, 2000; Schmidt, 2002).

Common practice is to apply time-varying shifts and/or increase the frequency of gaugings. How-

ever, the latter option is often highly expensive. A few studies have tackled the task of time-variant

rating curves. In Reitan and Petersen-Øverleir (2011), the authors transformed the assumed time

invariant parameters to time dependent through the combination of a Bayesian hierarchy approach

and the Ornstein-Uhlenbeck (OU) process. For those interested in the OU process, please refer to

Reitan and Petersen-Øverleir (2011) for further information. The OU process serves as the con-

tinuous time-varying function for the power law and the parameters are estimated by updating the

models with information as it is received. The results produced 95% credibility bands around the

estimated parameters in the power law function, and the rating curve. The uncertainty bands around

the parameters, however, have sharp changes in the uncertainty due to the OU process, implying no

gradual change in the uncertainty over time. It can be argued this sharp increase in uncertainty is not

always observable in nature. Measurement errors were also not considered by the authors. The cred-

ible bands around the rating curve are purely Bayesian and uniform in shape, rather than dynamic

uncertainty bands that illustrate regions of high and low confidence with respect to the gaugings

and their date of measurement. Guerrero, Westerberg, Halldin, Xu, and Lundin (2012) studied the
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dynamic relationship of stage and discharge on six hydrometric stations in Honduras through the

usage of topographic surveys and Manning’s equation to develop their rating curve model. The

uncertainty in their model was evaluated using Monte Carlo analysis on a moving window of 30

data points using the Generalized Likelihood Uncertainty Estimation (GLUE) method. Their results

indicated a temporal variability in the scaling, offset, and exponent parameters of Equation 2.1. The

scaling exponent appeared to be the most sensitive to time and was the focus of their conclusions.

The uncertainty, however, did not account for the uncertainty in each individual gauging and the

other parameters were not discussed. In Westerberg, Guerrero, Seibert, Beven, and Halldin (2011),

time variability of the rating curve and its uncertainty was derived through a weighted fuzzy re-

gression, but some of the assumptions are too subjective. For example, their inclusion of the top

three largest discharge values in the time series into each 30 data point window, and the usage of

what appears to be an arbitrary window does not account for anything related to changes in the

geomorphology of the river or vegetation growth. McMillan et al. (2010) divided the window of

gaugings used in the uncertainty analysis of rating curves as being dependent on a 0.5 year return

period. This return period is used as a threshold to classify major flood events and is subjective.

In this study, the authors looked into discharge errors stemming from rating curve uncertainty and

the impact that they had on rainfall-runoff models. They provided a methodology to quantify the

uncertainty in discharge as a probability density function conditioned on errors in stage and veloc-

ity measurements, assumptions about the stage-discharge relationship, extrapolation of the rating

curve, and changes to the cross-section due to vegetation growth and bed movement. Coxon et al.

(2015) showed that there are regional differences in the stage-discharge relationship of 500 gauging

stations in the UK, but that local conditions such as weed growth and channel instability typically

dominated the magnitude of discharge uncertainty.

2.3.3 Machine learning

In this day and age, it would not give justice to this thesis to not briefly mention machine learning

and its impact on hydrology and rating curves. There are also similarities between the Gaussian

kernels used in this thesis, and those in Gaussian Processes. At its core, machine learning is about

learning and adapting, as most notability seen in nature (Goldberg & Holland, 1988). Machine

learning reduces the burden of having to code every rule, and instead lets the machine learn the

rules via the data. This however puts a large emphasis on data driven models and can cause er-

roneous estimates when the physical constraints of the model and system being investigated are

ignored. The reader is referred to Solomatine and Ostfeld (2008) to learn more about the common

pitfalls in data driven models using machine learning, as well as interesting new avenues that this

exciting field can take hydrology and water resources. For a more practical overview, the reader

may find Hsieh (2009) to be useful.

Bhattacharya and Solomatine (2005) used an artificial neural network (ANN) in combination with an

M5 model tree to develop a stage-discharge relationship. ANN, as of 2013, is the most common used
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machine learning algorithm in water resources research (Govindaraju & Rao, 2013). ANN works as

a collection of nodes, or neurons, that transmit information from neuron to neuron as received from

the input-ouput data. Weights are assigned, by learning, to each neuron and are used to develop a

function that explains the relationship between input and outputs (Hsieh, 2009). The M5 model tree

used is a type of tree like regression where the algorithm splits the parameter space (into subspaces)

and estimates a local regression for each subspace. The machine learning model proved to be more

effective and had a lower root mean square error in training and verification modes. However, each

traditional rating curve is fundamentally connected to the physical constraints of the river, which

helps in modeling and predicting values past the highest measured discharge. The extrapolation

of rating curves was looked at by Sivapragasam and Muttil (2005) but again, no connection to the

physical constraints of the river were investigated, although having mentioned a few of the most

common methods in hydrometry. In Guven, Aytek, and Azamathulla (2013), the authors used the

stage and discharge time series to teach an explicit neural network formulation (ENNF) model. The

authors state the performance of their model is better than the traditional rating curve. Using the

time series over the gaugings forces the uncertainty associated with the original rating curve model

to propagate into their machine learning model. This therefore suggests overfitting by the ENNF.

While machine learning does provide a good alternative for models with sparse data, caution should

be exercised to ensure modeling within the confinements of the natural system, and using local

conditions to drive the model. This notion that local conditions impact rating curve uncertainty the

most (Coxon et al., 2015) triggers an interesting question of, ”What local information is most useful

in quantifying and reducing rating curve uncertainty?”

2.3.4 Information is informative

Information can be defined as the particular arrangement of signals that can provide a change in

belief about the current state (Schement & Ruben, 1993). This belief, or better yet, the current state

of our knowledge, changes over time as one receives information (Nearing et al., 2016). If we can

provide information to our current state of knowledge, we implicitly can increase how much more

we know. This gives rise to the idea that information has value and can lead to better decisions

(Weijs, 2011). But information does not arise out of nothing, it is simply a matter of extracting

all the available information. A classic example in hydrometry is shown in Figure 2.4. The gaug-

ings provide more information than the relationship between stage and discharge alone, but also

describe what is causing the change. Therefore, providing more information to the hydrographer

and an example of increasing our knowledge, by updating our belief about the state. But just like

you can extract more information from the data, one can also include new sources of information to

the model.

Hamlet, Huppert, and Lettenmaier (2002) showed that the inclusion of El Niño Southern Oscil-

lation (ENSO) and Pacific Decadal Oscillation (PDO) signals into their streamflow prediction model
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Figure 2.4: Different physical processes that are common in rating curve and an example
of extracting more information than stage and discharge relationship (from Herschy
(1995)).

increased the lead time of their model by six months, and improved the operating systems of a

hydroelectric power plant in the Columbia River basin. It can be argued that the hydroelectric

stakeholders may have found high value in including this exogenous information into the model. In

terms of rating curves, Weijs et al. (2013) found that by using electricial conductivity (EC) signals,

the uncertainty in the rating curve of an alpine stream in Switzerland was reduced by over 40%. The

predictive power of the EC in the stream was found to be of similar magnitude to that of the water

level. This manuscript is the only example known to the author, in which auxillary information

has been used to improve the rating curve and its associated uncertainty, and raises an interesting

question of, ”what other auxiliary information can be used to improve rating curve uncertainty?”

In British Columbia (BC) hydroelectric power plants are a common mean of producing electric-

ity because of the advantageous geographical attributes in the province. As of 2014, there were 56

independent run-of-river (ROR) projects in BC, with 25 others expected to be operational by 2018

(Clean Energy BC, 2015). Each run-of-river hydroelectric plant must ensure compliance with the
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regulatory authorities and meet an instream flow requirement (IFR) downstream of their stream in-

take. An IFR is placed to ensure the livelihood of aquatic and terrestrial life. To comply with IFR

requirements, a rating curve may be used to predict the discharge. Depending on the location of

the ROR project, a rating curve may be volatile due to the sediment load and energy of the river.

These dynamics can create high uncertainty in the predicted discharge and can have high econom-

ical impact on the profit of a ROR project. This scenario sets up an interesting research landscape

to identify the information available from a ROR project to be utilized in the development and im-

provement of a rating curve and its uncertainty.

This research will address the current gaps in the literature and develop a probabilistic dynamic

rating curve that highlights regions of high and low conditional probability. The new rating curve

will be described using conditional distributions that are updated as new gaugings are added to the

model thus forcing the uncertainty bands to by dynamic. The new model will also allows users

to produce continuous discharge time series, as well as identify the conditional probability of dis-

charge occurring, given a water level measurement. The research will further explore the notion of

identifying and utilizing available information towards uncertainty reduction as seen in the Weijs et

al. (2013). In addressing these two gaps, the author hopes to convince the audience the necessity for

transitioning into a more probabilistic mindset, as well as the importance of assessing, quantifying,

and modeling rating curve uncertainty.

2.4 Research objectives
This thesis will focus on exploring the data/information available from a run-of-river hydroelectric

project in northwestern BC to model a probabilistic dynamic rating curve. The central research

questions to be addressed at the end of this journey are the following:

1. Can a rating curve be developed using probability distributions to produce similar results such

as from a deterministic model?

2. Can the inclusion of auxiliary information from a run-of-river hydroelectric plant reduce the

uncertainty in the IFR rating curve?

The thesis will also examine big picture ideas such as:

• The importance of utilizing available information to reduce model uncertainty

• Probabilistic versus deterministic models

• Dynamic uncertainty bands for hydrographs

• Economic considerations of modeling rating curve uncertainty

A handful of information theory measures and metrics will also be considered when evaluating the

developed probabilistic rating curve and the auxiliary information used. Employing an information
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theory framework becomes a natural choice when analyzing problems concerned with information

and uncertainty.
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Chapter 3

Data and methods for fitting rating
curves

3.1 Site description
The data used in this project is from a hydrometric stations located on the Iskut River between the

confluence with the Forrest Kerr Creek (FKC) and the braided reach of the Iskut River, a distance of

about 20 km (Figure 3.1). The net drainage area of the watershed is approximately 9,500 km2, but

the watershed affecting the project is a fraction of the net drainage area, an estimated area of 6,978

km2. The watershed includes a high plateau with broad valleys to the east and glaciated mountains

to the west. The maximum elevation in the watershed is 2,558 m with a minimum of 244 m down-

stream at the FKC intake. The region around the Iskut River includes high glacial landforms that

covers approximately 10.2% of the Iskut watershed (Northwest Hydraulic Consultants, 2016).

The area has a volcanic history that has helped form the geology of the region. Heavy volcanic

rock is found directly upstream of the confluence on the Iskut River, that is transported through

deep narrow volcanic bedrock valleys. The sediment enters the reach of the Iskut River where the

project is located and is fed by small tributaries that originate from meltwater and precipitation. Due

to the location of the project, the climate of the watershed is influenced by its mountainous terrain

and its proximity to the Pacific Ocean. The annual precipitation of the watershed exceeds 2,500

mm/year (Northwest Hydraulic Consultants, 2016).

All the hydrometric stations have stage-discharge rating curves that are commonly altered by the

unique characteristics of the Iskut Watershed. The high sediment load of the Iskut is a driving force

for the production of new rating curves. The Iskut River is a highly active river that transports large

amounts of sediment. It is estimated that the river caries over six million tonnes of fine sediment per

year. Such high quantity of particles and boulders traversing the reach in which the six hydrometric

stations are located is a cause for the volatile relationship between stage and discharge at each sta-
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Figure 3.1: Location of Forrest Kerr Hydroelectric project. The Iskut river flows from east to
west.

tion. To mitigate the impact of the sediment on the intake of the hydroelectric project, a box culvert

was designed upstream of the intake, with a sluiceway and radial gate to facilitate the passage of

sediment (refer to Figure 3.2). The sediment, however, does aggregate over time and as a result, the

radial gate is opened to flush the sediment out (sluicing). This has an impact on the downstream

hydrometric station that is used to ensure IFR compliance of 10 m3/s since the large sediment loads

typically alter the stage-discharge relationship.

Due to the altering effects that sluicing may have on the geomorphology of the river, new gaug-

ings must be recorded immediately after a sluicing event to ensure an accurate discharge estimate.

Altering events like this also imply that prior gaugings are probably not representative of the new

stage-discharge relationship and therefore, older gaugings should have less weight in the estimation

of the most recent rating curve.

Current practice involves utilizing only the most recent gaugings, and sometimes a subset of older

gaugings, to create a rating curve. Unfortunately, it may not always be possible to measure a new

full range of stage and discharge values to form a new rating curve, and so previously recorded

gaugings are selected based on how the hydrographer believes the rating curve has changed. Al-

though the modeler may have a strong intuition for how to select the gaugings, information on how

the rating curve is changing may be lost due to selecting only a subsample of gaugings. Instead,

this author argues that all the gaugings should be used with a weighted coefficient that gives more
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Figure 3.2: A schematic of the intake structure just upstream of the IFR hydrometric station.
Courtesy of Tim Argast of NHC.

weight to the most recent values, as well as those after a sluicing event. This allows the rating curve

to include all information from the gaugings, as well as the new sluicing and time information.

3.2 Data availability
The data used to establish the rating curve originate from the IFR hydrometric station, while the

added information is from the intake structure upstream of the IFR station shown in Figure 3.1. The

hydrometric station has a record between April 2013 to July 2017 for a total of 105 gaugings. The

first 19 gaugings were used to develop the initial rating curve on which the remaining gaugings were

added. The reasoning for this is that a subset of gaugings is required to develop any rating curve,

and it would not make sense, nor is it practical, to develop a rating curve with a small set of gaugings

as it is unsure what the true relationship will be. The first 19 gaugings were selected as the initial

points to develop the rating curve as this was the first curve created by NHC during their analysis.
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The offset value (cease-to-flow water level) was determined to be 234 m using only the initial 19

gaugings. This offset value was carried into all the rating curve analyses and was not updated to

reflect changes in the controls. A discussion on the decision for selecting 234 m is presented in the

discussion section of this thesis. Lastly, all the data have undergone a natural log transformation to

better fit the assumptions of normality. A bias does occur when the variables are log-transformed,

used in linear regression by applying least-squares regression, and then back-transformed without

accounting for the error term in the regression. When working with log-transformed variables, the

error term in the regression has a mean of zero in logarithmic units, but the mean parameter of the

error changes when the variables are back-transformed, and the error must be properly compensated

for to ensure accurate predictions of the discharge. Readers should take note of this and can further

read on the issue found in Newman (1993). However, in this thesis, the author is concerned more

with producing probability distributions for the discharges, rather than mean values, but mean values

can be calculated, and if back-transformed, the necessary corrections should be applied.

3.2.1 Sluicing data

Although sluicing events were not explicitly recorded, they were inferred by evaluating certain pat-

terns from four other signals at the intake structure of the FKC project (Figure 3.3). High sediment

build-up necessitates sluicing, and to prevent damage to the turbines and structures downstream of

the intake pipeline, the power tunnel must be turned off (or reduced significantly). Less water is

now diverted through the power tunnel and the radial gate must be opened to allow the water to flow

downstream. The radial gate causes the water levels at the forebay and the sluiceway to decrease—

forcing a higher discharge downstream at the IFR hydrometric station. This pattern is not perfect,

and the water level at the sluiceway may not always drop when sluicing occurs. The reason for this

is a combination of how fast the intake to the power tunnel is closed, how fast the radial gate opens,

and the discharge of the Iskut River coming in. The four time series used in the identification of the

sluicing events are on a one minute interval with records for each beginning at different stages of

the project. The overlap between the time series begins in 2015 with each time series having over

1,500,000 values. A manual inspection of how the four time series change in relation to each other

would be a laborious task. To aid in identifying sluicing events, a MATLAB code was written to

find the location of the sharp changes in three of the four time series. The time series of the sluice-

way water level was not used since it was identified by NHC employees to not always follow the

pattern. Each time series is constrained with a threshold that was characterized by a sluicing event

in October 2016. This sluicing event and its pattern is the only sluicing event that was used as an

illustration to the author for what the general pattern in the other time series are during sluicing. The

threshold was relaxed slightly to ensure the algorithm did not miss events. The dates extracted from

each time series when the power tunnel discharge decreased, IFR increased, and forebay level de-

creased were found by the findpeaks MATLAB algorithm and then analyzed. The sluiceway signal

was not used in the analysis because NHC employees found that the signal did not always behave

as expected. Since the changes of all time series were not expected to align perfectly, a window of
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Figure 3.3: Time series of stage and discharge at two two different locations. A clear pattern
for when sluicing was identified as having occurred. The forebay stage is located right
before the power tunnel intake in the desander basin.

2 hours was selected as a possible period of overlap. The window was selected to try and ensure a

greater overlap in dates between the time series, but the selection of the window was an arbitrary

decision.

The algorithm identified over 70 possible events that shared the pattern described above. The events

were then used to perform a second round of inspection by visually scanning through the time series

more efficiently, and verifying if the identified events were sluicing episodes, or not. The second

round of inspection done manually found a few sluicing events that the algorithm missed, as well as

a few misclassified patterns. After filtering, 25 possible sluicing events were identified and verified.

The reason that many of the original sluicing events identified by the algorithm were not selected

as possible sluicing events is due to 1) characteristics and unpredictable behavior of the sluiceway

and 2) storm events. The latter made it difficult to assess with certainty if sluicing occurred or not,

since the pattern would display high variability in the signals. Although one could argue that sluic-

ing is possible during heavy rain events, it may not always be the case, and for this reason, these

dates from the original set identified by the algorithm, were not used. The estimated time for each

sluicing event was also identified. This was done by measuring the average time that it took the

forebay water level and discharge from the power tunnel to go back to the level prior to dropping.

The forebay and powertunnel were used since they proved to be the most consistent and stable time
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Figure 3.4: Time series of stage and discharge at two different locations. Changes in the time
series with identified sluicing events detailed as red vertical lines. The colored patches
represent time periods in which new NHC rating curves were developed.

series. Figure 3.4 presents the four time series with red lines indicating periods where sluicing was

presumed to occur. The colored patches represent different rating curves created by NHC and the

duration the curves were active. Figure 3.4 shows the relationship that the duration of some of the

rating curves had with the number of sluicing events. Although not every new curve was a con-

sequence of a sluice event, there were a few that appeared to be. To better illustrate the sluicing

events, a histogram of the events was created (Figure 3.5). The months with the largest events were

May, June, and October, which coincided with the behavior of the Iskut watershed. May and June

are typical months when snow and ice melt and force an increase in discharge on the Iskut River

(Figure 3.6). With an increased discharge and steep valleys near the confluence, large sediments

and boulders can be carried and deposited at the intake structure. The reason for a high number of

sluicing events in October may be due to a partial combination of the amount of precipitation that

the region receives from the Pacific Ocean, the volcanic geology, and the high glacial concentration

in the watershed. High rainfall can cause sediment from across the watershed, including glacial

sediment, to be transported downstream through the Iskut and into the sluiceway.

3.3 Rating Curve Model
The rating curve model developed in this thesis is purely probabilistic and can operate in forecast

mode, which uses real-time data to develop the most recent rating curve. This mode is desirable

for operators needing to monitor IFR to ensure compliance. The model predicts the next discharge
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Figure 3.5: A bar graph showing which months experienced the most sluicing events between
January 2015 and July 2017.
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Figure 3.6: Hydrograph at IFR hydrometric station between January 2015 and July 2017.
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Figure 3.7: A bar graph showing which months experienced the most precipitation between
January 2015 and July 2017.

gauging by propagating the information used (i.e. time/sluicing weights) to update the Gaussian

kernels to the most up-to-date model, prior to the next gauging being added.

3.3.1 Forecast model

The forecast model operates by updating the rating curve with gaugings as they are observed and

makes a prediction for the next gauging. The model uses a special case of the leave-one-out cross

validation (LOOCV) method, in which the time and sluicing models are propagated to the period in

which the next gauging is observed, and then makes a prediction for that value without using that

gauging in the subset of data. Once the prediction is made, the observed gauging is added, and a

prediction for the next gauging is made using the same process. The LOOCV method was preferred

for the validation of the rating curve due to the limited dataset, and is a realistic evaluation of un-

certainty in the way rating curves would be used without using data from the future. Unfortunately,

dividing the dataset into training and test sets would not provide enough data in either set.

Time model

The time model used in the forecast option of the rating curve resembles an exponential distribution

y = f (x|µ) = 1
µ

e
−x
µ (3.1)
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where y represents the weight, x is the time difference between the current time step and previously

observed gaugings, and µ is the expected value of the exponentially distributed variable—its in-

verse, λ , is the rate at which the weights of the gaugings change. Equation 3.1 is typically used

in financial models for monitoring future market prices (Longerstaey & Spencer, 1996; Pafka &

Kondor, 2001). Recent data are assigned larger weights than the older data that may not necessarily

represent the present. In hydrometry, rivers of high energy carrying large sediment can generate

new cross-sections and invalidate prior gaugings.

The variable µ was selected to be 365 so as to make the time weights change at a rate of 1
365 .

A sensitivity analysis was performed and results showed minimal variability between the final re-

sults and the value of µ chosen. An illustration of the process is shown in Figure 3.8. As time

Figure 3.8: More weight from the exponential function (dotted line) is assigned to the gaug-
ings (colored boxes) that are closer to the current time step, Ti.

progresses towards the next observed gauging, the exponential distribution is updated to reassign

weights to the already observed gaugings.

Sluicing model

To create a probabilistic model of the sluicing information, a Gaussian kernel was drawn around

each event and then summed to create a kernel distribution. The weights of the individual kernels

were determined by the time duration of the sluicing events. As sluicing information becomes

available in time, the kernel distribution is updated to eventually span between May 2015 and July

2017 (Figure 3.9). In the forecast mode, only the observed sluicing events are used to develop the

kernel distribution. The cumulative distribution function (CDF) is then obtained and used to assign

weights to the observed gaugings. Gaugings after the last recorded sluicing event are assigned

higher weight than those that occurred prior to sluicing. Figure 3.10 shows the evolution of the

normalized weights taken from the updated CDFs, while Figure 3.11 shows the final sluicing weight

assignment when all the gaugings were observed. A comparison of Figures 3.10 and 3.11 show a

sharp change in the value of the weights when the weight for the 52nd gauging is evaluated. This

was done since sluicing information was unfortunately only available post May 2015 and there were
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Figure 3.9: The kernel PDF and CDF are updated as more information on possible sluicing
events enter the model. The first panel shows the PDF and CDF of the first sluicing
event, the second panel shows and updated version, and the final panel shows the model
with all the sluicing information.

Figure 3.10: An evolution of how the sluicing weights change as new gaugings are observed
(x-axis) in time. Each row is a vector of the sluicing weights

51 gaugings that were recorded prior to the first sluicing event available to the model. Using the

current distribution model would assign a significantly smaller weight to those values and would not

be a fair weight assignment. Instead, gaugings prior to the first sluicing event were assigned equal

weight of one, which after normalization the weights would be lowered as more sluicing events

enter the model.

3.3.2 Hindcast model

In hindcast mode, the probabilistic rating curve can be tested to evaluate how accurate the predicted

discharge output is with the known value, given all the information. The predicted gauging is re-
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Figure 3.11: An equal weight assignment for the gaugings prior to sluicing information and
then the weights increase in magnitude for values later in time. The figure is a snapshot
if Figure 3.10 at the time of the last added gauging.

Figure 3.12: Evolution of the time model at different time period.

moved from the dataset so as to eliminate any bias, prevent overfitting, and keep testing independent

of predictors. This procedure is repeated for every gauging, and therein utilizes a LOOCV method.

Time model

To perform the time model in hindcast mode, the exponential function was modified into a Laplace

function so as to assign the greatest weight to the gaugings closest in time to the one being predicted,

and less to those further out (Figure 3.12. The weights were computed as follows:

y = f (x|ζ ,b) = 1
2b

e−
ζ−x

b , if x < ζ

e
x−ζ

b , if x > ζ

(3.2)

where the parameter ζ is the location parameter which is set as the current timestamp of the gauging

under evaluation and the parameter b was set to 365, equivalent to the µ parameter in Equation 3.1.

An example of what the distribution looks like is shown in Figure 3.12.
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Sluicing model

The sluicing model was modified slightly to more accurately echo the effect of sluicing events. The

model follows a similar pattern as the time model, where the effect of sluicing events decreases the

further the gaugings are from the gauging that the hindcast model is evaluating. However, since

the first 51 gaugings did not have any sluicing information available, those gaugings remained with

a uniform distribution. Then, once sluicing information became available for the remaining gaug-

ings, the weighted CDF described earlier was used to produce the function necessary to assign the

remaining weights. The negative of the function was taken so as to have the function vary from

zero to negative one and then a value of one was added to the function to align it with the equal

weights of the first 51 gaugings. This was necessary to again ensure that the later gaugings had less

influence on the first 51 gaugings. The function was then normalized and the sluicing model for the

first 51 gaugings in hindcast mode is shown in the top left panel of Figure 3.13. As the hindcast

model propagated towards the later gaugings, the model had to be altered to ensure highest weight

is assigned to the gaugings closest to the gauging being predicted. For this, three discrete functions

had to be appended together. The first function described the uniform weight for the first 51 gaug-

ings, and the second and third functions were CDFs. The first CDF used all the gaugings starting

at the 52nd gauging, up to the gauging being evaluated, while the second CDF used the remaining

gaugings. The second CDF was negatively transformed, and a value of one was added to translate it

up and align it with the first CDF. This then produced a function as shown in the bottom left panel

of Figure 3.13. The CDF was chosen because of its natural curve, and because of its feasibility to

add the time duration of the sluicing events.

A few changes had to be made to the sluicing model when the hindcast model was evaluating

the 52nd , 53rd , and the last two gaugings since producing a CDF using the ksdensity function in

MATLAB produced undesirable results when appending all three functions. Instead, the 52nd and

53rd gaugings were assigned the highest weight of the CDF using the remaining gaugings (aka a

value of one), and then normalized. This produced a function that looks like the top right panel in

Figure 3.13. For the last two gaugings, the same was done in which the 104th and 105th gauging

were assigned values of one (bottom right panel in Figure 3.13).

When the functions were all appended, it produced a discrete function of length L, that was 151

(100 from the ksdensity function and 51 from the first gaugings) when the hindcast model was eval-

uating the first 51 gaugings, and then had a max of 251 when evaluating the other gaugings. Using

the function and the timestamps of the gaugings, the proper weights were then selected.

3.3.3 Development of rating curve

Using the information provided above, four different models per rating curve mode (forecast and

hindsight) can be developed and evaluated. The four models are:

1. Rating curve that utilizes both sluicing and time information
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Figure 3.13: Evolution of the sluicing model when applied in hindcast mode. An evolution of
how the sluicing model changes in the hindcast mode of the rating curve. The top left
panel shows the function typical for the first 51 gaugings. The top right panel shows the
function for the 53rd gauging. The bottom left is the typical function for the gaugings
between 53rd and 104th gauging, with the peak of the function centered around the
gauging being evaluated during the hindcast model. The bottom right function is the
function for the last gauging.

2. Rating curve that utilizes only time information

3. Rating curve that utilizes only sluicing information

4. Rating curve with no extra information added

Note that the model where no extra information is used assumes that all the gaugings have equal

weight. The foundation of how the model operates is based on a weighted joint distribution between

all the gaugings. The joint distribution for the rating curve was calculated using two dimensional

kernel density estimations for the gaugings, with weights that give more, or less, importance to

some gaugings than others. The kernel for each gauging was a multivariate normal probability
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distribution:

y = f (x,µ,Σ) =
1√

|Σ|(2π)d
e−

1
2 (x−µ)Σ−1(x−µ)′ (3.3)

where y is the probability distribution, µ in the multivariate distribution equation is a 1-by-d vector

that describes the location, or center, of the observed gauging and Σ is a d-by-d symmetric posi-

tive definite covariance matrix that describes the spread and scale between the two variables. The

value d in Equation 3.3 is two since only stage and discharge are evaluated. The summation of

each Gaussian distribution, and the weights, create the joint distribution for the stage and discharge

relationship.

Covariance function

The covariance matrix in Equation 3.3 helps describe the geometry of the Gaussian kernel. The

covariance function is written as such:

Σ =

[
σ2

H σHQ

σQH σ2
Q

]
(3.4)

Here, the parameters σH and σQ explain the standard deviation, or spread, in the x and y direction

of the kernel, which are related to the marginal distributions, while σHQ represent how the two pa-

rameters change with respect to each other. Note that H represents h-h0.

In Equation 3.4, the parameters are unknown but can be solved for using the measurement un-

certainty. In Figure 3.14, the measurement uncertainties are used to represent the uncertainty in the

gaugings. These uncertainties are related to the conditional probability of the kernel at the gaugings,

and can be used to solve for the parameters in Equation 3.4. The relationship connecting the un-

certainties in the conditional and marginal distributions are shown in Equation 3.5 and Equation 3.6.

The parameters σH∗ and σQ∗ in Figure 3.14 represent the standard deviations of the conditional

distributions at the gaugings, and are related to the marginal distributions via Equations 3.5 and 3.6.

σH =

√
σ2

H∗

(1−ρ2)
(3.5)

σQ =

√
σ2

Q∗

(1−ρ2)
(3.6)

σH∗ =
ρ ∗σQ∗

S
(3.7)

The parameter ρ , a weighted correlation coefficient, was found by using only the gaugings observed

thus far by the rating curve model and their assigned weights, and every time a new gauging was

observed, a new correlation coefficient was calculated. However, as shown in Equation 3.7, there
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Figure 3.14: A multivariate Gaussian kernel with its marginal distributions and a conditional
distribution. Note that only the scaling parameters are shown for illustrative purposes.
The location parameters per kernel are fixed to the value of the gaugings.

exists a relationship between the uncertainty parameters of a Gaussian multivariate distribution, its

slope, and the correlation coefficient, so therefore, all four parameters cannot be fixed without en-

suring Equation 3.7 is satisfied. In this thesis, the slope (S) of each kernel was fixed to a value θ

that was found by using the same subset of data as described in the correlation analysis, and per-

forming a weighted linear regression. Ensuring that all the slopes of the kernels are aligned aids in

interpolation and extrapolation of discharge values, as well as produces a model that resembles the

shape of a deterministic rating curve. To ensure that Equation 3.7 was met, the slope and correlation

factors were fixed by the described methods, and σQ∗ was assumed to be 5% of the magnitude of the

discharge gaugings. This left σH∗ , the conditional uncertainty of Q given Hgauging as the unknown

parameter. This was done because it was assumed that the original assumption of 2 mm for σH∗

would limit the ability to correctly identify σQ∗ , and might underestimate the uncertainty in the dis-

charge. Given that if real measurement uncertainty data were available, the correct numbers could

be used to determine the shortcomings in the parameters. The assumption of 5% of the discharge

magnitude as ΣQ∗ was shown to be a reasonable value in the literature (Di Baldassarre & Montanari,
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2009; Herschy, 1995; Rantz, 1982). The author does recognize that this assumption could have an

influence on evaluating the uncertainty of a rating curve, but due to the lack of data on how dis-

charge was measured, this assumption had to be made, but can be improved on, if the true discharge

measurement uncertainties are available.

Solving for all the parameters in Equation 3.4, the individual covariance matrices per gauging were

calculated and Equation 3.3 was used to develop the Gaussian kernels. The summation of all the

individual kernels produced a joint distribution for the gaugings numerically evaluated on a discrete

grid of size 500x500 with a resolution of 0.0123 logarithm units that is based on the minimum

and maximum values for the gaugings. From the joint distribution, the conditional distribution was

calculated by normalizing every column in the joint distribution to one—therefore producing the

probabilistic dynamic rating curve. The conditional distribution is then useful for extracting the

conditional distributions of Q given a water level measurement from the continuous logger. To

obtain a point value estimate, the mean or mode of the distribution can be taken. For this thesis,

the weighted mean of the distributions were used. From the rating curve, the conditional distribu-

tion of Q given the continuous water level measurement can be extracted and appended to create a

hydrograph with dynamic uncertainty bands, as shown in the results.

3.4 Metrics for evaluating rating curve
To understand the accuracy of the probabilistic rating curve model, an evaluation of its performance

must be undertaken. In hydraulic and hydrologic models, one of the most commonly used methods

is the root mean square error (RMSE) where O represents observations, P predicted values, and n is

the sample size:

RMSE =

√
∑

n
i=1(Oi−Pi)2

n
(3.8)

RMSE spans between 0 and ∞, and a value of 0 indicates a perfect fit. Many local and federal au-

thorities designated with standardizing and ensuring quality projects grade the nature of the rating

curve based on the RMSE. In this thesis, the RMSE was performed on the logarithmic discharge.

When in forecast mode, the RMSE is calculated prior to adding the gauging and after. The results

only show the RMSE before the gauging is added to the model, only otherwise stated. The RMSE

after the gauging was added always decreased.

Since the model developed is centralized around probability, it makes sense to use metrics that

do justice to the probabilistic nature.

3.5 Information theory metrics
In 1948, Claude Shannon published his seminal paper on the quantification of information from

messages and signals. In it, he introduces the concept of entropy as a measure of uncertainty and
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developed a mathematical form to quantify the uncertainty in bits as shown in Equation 3.9:

He(x) =−
n

∑
i=1

P(xi)log2(P(xi)) (3.9)

where He is the entropy of the discrete probability distribution and P is the probability of the event

xi. Uncertainty is defined as the information that is unknown and is a function of the current state

of knowledge as defined by a probability distribution. So as one receives more information, the

probability distribution can change to reflect a better outcome of the model. When evaluating the

surprise of the models, the conditional probability for a given water level and expected discharge

was used.

3.5.1 The model that is less surprised is better

Take the example of a coin toss. It is known that a fair coin has a 50-50 chance of landing on either

heads or tails. However, after many tosses, the coin flies through the air and instead of landing on

one of the faces, it lands on the edge of the coin. An event like this has such a small probability

of occurring that it causes a huge surprise for you. Using information theory, surprise can also be

quantified:

Sx =−log2(P(xi)) (3.10)

where S represents surprise. What Equation 3.10 says is that an event with a small probability of

occurrence will have a much larger surprise. This principle of surprise can be extremely useful

when evaluating how good a predictive model is. When thinking about surprise in terms of the

rating curve, a predicted discharge significantly higher than the largest gauging in the model, will

tend to surprise the modeler. But in current applications, rating curves only use a subset of the data,

rather than the historical set. So although a higher gauging may exist in the set of gaugings, the

rating curve may not be using that gauging and the higher discharge value then becomes more of a

surprise than if having used the gauging from the historical dataset.

There is of course a trade-off between robustness and accuracy when considering using all the

gaugings, and the decision for this is dependent on the purpose for which the model serves. In this

thesis, the robustness of the rating curve is improved by the inclusion of all the gaugings, rather

than selecting a subset of the data, and as will be shown in the results section, the accuracy can also

improve by including more information.

The surprise of all four models will be evaluated and compared for every predicted gauging in

forecast and hindsight mode. The results will provide an indication as to which model was sur-

prised the least, and help identify which out of the four, might be a better predictive model. The

surprise will also be measured before and after an observation (when a gauging is added) to compare

how the gauging impacts the surprise of the model.
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3.5.2 Information gain

Information gain of individual gaugings can also be quantified through the usage of information

theory by evaluating the divergence of the prior PDF and the posterior PDF when a gauging is

added. The gaugings with the highest information gain, could prove beneficial to the modeler, and

might provide insights to any shortcomings of the rating curve. The measure of information is

determined by using the Kullback-Leibler divergence measure:

DKL(P||Q) = ∑
i

P(i)log2(
P(i)
Q(i)

) (3.11)

Equation 3.11 measures how far the discrete probability distribution Q is from the true distribu-

tion P. A DKL of 0 would indicate that the two distributions are equal and that no information was

gained, while a larger value means a difference is observed. There are two considerations to using

the Kullback-Leibler divergence that should always be accounted for. The first is that the Kullback-

Leibler divergence is not symmetric and so DKL(P||Q) 6= DKL(Q||P) and the second is that although

information gain was observed, the DKL(P||Q) will not provide details on the quality of the informa-

tion (i.e. good or bad). Inferences must be made using other available data to determine, if possible,

that the information was beneficial.

If the true probability distributions for the gaugings were available, rather than the 5% assump-

tion, the information gain from the forecast to the gaugings, could be evaluated. The results would

help indicate which model most closely resembles the true probability distribution of the gauging

(DKL(Obs||Forecastmodel). Given that the true data were not available, this analysis was not per-

formed since the results may not necessarily portray what is actually happening.

In this thesis, the information gain for each gauging will be evaluated while in forecast mode where

the ”true” distribution will be the probability distribution function given to the gauging, after the

gauging was added to the model. The prior distribution will be the probability function assigned by

the models prior to seeing the gauging. In other words DKL(Gauginga f ter)||(Gaugingbe f ore). The

information between models will also be examined, where it is assumed that the true distribution is

equal to the models using weights, and the prior distribution comes from the Equal Weights model.

This is done by taking the probability distributions of each gauging during forecast mode for the All

Weights, Only Time, and Only Sluicing models, and comparing it with the probability distribution

from the Equal Weights.
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Chapter 4

Results of probabilistic rating curves

4.1 Forecast mode

4.1.1 Probabilistic dynamic rating curve

To compare all four models, the probabilistic dynamic rating curves are plotted together in Figure

4.1. Note that a rating curve was produced every day during the simulation and Figure 4.1 is only

showing the rating curve for May 15, 2016. Immediately, a few observations become apparent, one

of them being what appears to be a linear relationship between stage and discharge, and the other

being a fragment in the model around a logarithmic discharge of -1.5. The linear relationship is

as expected due to the properties of log transforming a power law. Also, since the slope of all the

kernels were fixed to be identical, it was expected that all the kernels would be oriented in the same

direction. The fragment in the linear relationship is a possible consequence of how the slopes for

the kernels were calculated, and assumed to be equal to the slope of the all the gaugings seen up

to the time period at which the rating curve was produced. This implies that if a new observed

gauging does not reside near the existing linear relationship, its slope will be parallel to all the other

gaugings, and therefore create a parallel kernel as seen in Figure 4.1.

A closer inspection of Figure 4.1 demonstrates the differences in the models. For example, looking

at the high end of the probabilistic dynamic rating curve for all four models shows that the Equal

Weights and Only Sluicing model have more similar conditional distributions than the Only Time

and All Weights models. The latter two models appear to have more regions of higher probability

which are caused by the influence of the assigned weights decreasing the surface area of the kernels

on the two dimensional space, and increasing it in the third dimension (probability) centered at the

gauging. From Figure 4.1 it can be seen that the Only Sluicing model resembles the Equal Weights

rating curve more than the Only Time rating curve. Prior to May 15, 2016 (date of the rating curve

in Figure 4.1), there were 14 sluicing events of varying magnitudes that influenced the shape of the

rating curve kernels and are the reason for the distinctions between the Equal Weights and the Only

35



Figure 4.1: The conditional probabilistic rating curve for all four models at a snapshot in time.
May 15, 2016.

Sluicing rating curves. Finally, the All Weights rating curve, which is a product of the time and

sluicing weights, seems to have more concentrations of higher conditional distribution peaks than

the other models. This is possible in the event where gaugings were taken after a sluicing event and

were also the latest observed gaugings.

To better understand how the models differ, the conditional distributions of Q given an arbitrary

logarithmic water level measurement of 1.3686 are compared in Figure 4.2. The results display that

all four conditional distributions appear to have two large peaks which indicates two unique points

of high conditional probability. The reason for this is due to the influence of two discharge gaugings

with values centered around the peaks of the conditional distributions and their assigned weight.

The results of Figure 4.2 are taken from the rating curve shown in Figure 4.1. Zooming into the

rating curves, a better inspection of the kernels can be performed. The kernels from Figure 4.3 align

with what is seen in Figure 4.2, where two regions of high conditional distribution are influencing

the conditional distributions. The fact that the conditional distributions can be multi-modal, is the

reason why a weighted mean is used to calculate the expected point value discharge rather than
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Figure 4.2: A comparison of the conditional distributions for a give logarithmic water level
measurement.

using the mode.

4.1.2 Dynamic conditional uncertainty bands for hydrograph

Using the conditional distributions for a given water level measurement, a hydrograph with condi-

tional uncertainty bands can be produced (Figure 4.4). The figure shows how the uncertainty in the

hydrograph varies in time and also illustrates areas where the conditional density is highest. Also

shown in Figure 4.4, are the predicted continuous discharges from the NHC deterministic rating

curves, as well as the predicted discharges from the probabilistic dynamic rating curves. Taking

a closer examination at the hydrograph, one can get a better understanding at how the conditional

uncertainty is varying in time. Figure 4.5 also compares the predicted continuous discharge values

from the deterministic and the probabilistic rating curves. Figure 4.5 shows the area of highest

probability in the dynamic uncertainty band follows the same pattern as the predicted discharge

values from the deterministic and probabilistic rating curves for the All Weights rating curve. The

hydrographs for the other three models are attached in the Appendix.

An important take-away from the probabilistic dynamic rating curves is that the answer to an impor-

tant question that could not have been asked in a deterministic rating curve is now possible. Prior to

a probabilistic rating curve, one could not receive a response to, ”What is the probability distribution

of a discharge, given a specific water level measurement?” This central question helped motivate

the research undergone thus far and is to be considered by the author, an important question that

presumably does not get asked often when dealing with deterministic rating curves. However, it is a

question that should be considered highly, by not only those who produce rating curves, but anyone
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Figure 4.3: A zoomed in version of Figure 4.1 used to understand the bimodal conditional
distribution shown in Figure 4.2.

Figure 4.4: A hydrograph with dynamic conditional uncertainty bands for the All Weights
model.
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Figure 4.5: A zoomed in version of Figure 4.4

using a discharge time series.

4.1.3 Evaluation of rating curves

RMSE

When comparing the continuous discharge measurements in Figure 4.4 for the All Weights model

and the deterministic rating curve predictions, it was seen that both values were closely aligned. To

better understand how well the probabilistic model is performing, a scatter plot was created to com-

pare the predicted discharge from the probabilistic model with the measured discharge gaugings

(Figure 4.6). Immediately, one can identify the lower discharge values were both over and under

estimated, and that higher discharge values tended to be well predicted. It was expected that gaug-

ings taken later in time (darker colored markers) would reside closer to the one-to-one line in Figure

4.6 as the model would learn from previously observed gaugings. A possible reason for not seeing

this result could be due to the small width of the kernels, but this makes sense since the influence

of gaugings should only be felt along the slope of the kernel and not necessarily along the width.

Figure 4.6 also has the RMSE values for the four models. Both the Only Sluicing and Only Time

models had lower RMSE values than the Equal Weights model. These results serve as an indication

that the added information was useful in reducing the uncertainty. When using both signals, the

RMSE decreased to 0.42, and helped reduce the uncertainty by a percent difference of 19% when

compared to the Equal Weights model.

Surprise

An analysis of the surprise about the observed value before, and after, a gauging is added to the

rating curve is helpful to identify gaugings that can improve the performance of the model. To

better investigate and compare the results of surprise per model, the data were categorized into the

total surprise per month per model (Figure 4.7). The light colored bars represent the surprise before
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Figure 4.6: Scatter plot describing the differences between the predicted discharge from the
four models and the observed values.

the gauging was added, while the darker colored bars are the surprise after adding the gauging. As

expected, the surprise decreased for all when the gauging was added to the rating curve. No clear

pattern is shown in the figure as to which model is best. What can be seen is that surprise results for

April before the gaugings are added are not visible in Figure 4.7—this is due to two surprise values

equal to infinity. The magnitude of the discharge gaugings were identified as logarithmic discharge

2.17 and 2.35, but because these gaugings fell significantly outside the linear relationship observed

thus far, the rating curve models had assigned a small conditional probability. This small probability

is also a consequence of the numerical limitations by the computer used in which the probability is

small enough to round to zero, and therefore produces a default value of infinity. If the computation

precision was not limiting, a real number would be achievable, but nonetheless, the surprise would

still be of a large magnitude.

Since the infinity values prevented the remainder of the surprise for April to be seen, they were

removed, and the total surprise per model were recalculated (Table 4.1). The total surprise prior to

adding the gauging was highest for Equal Weights, followed by the Only Sluicing, Only Time, and
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Figure 4.7: Total surprise per month. The translucent bars represent the surprise before the
gauging is added (during prediction) and the opaque bars are the surprise after.

Table 4.1: Total surprise per model

Model name Total surprise before Total surprise after

All Weights 1194 274
Equal Weights 1414 344
Only Sluicing 1306 307

Only Time 1260 292

the All Weights model. Another observation from Figure 4.7 is that the total surprise per month

appears highest in March and October. March had a total of four gaugings, with the first three of

four taken in 2015, all within a week of each other. October had a total of 14 gaugings, 10 of which

were taken in 2016. When the infinity values were removed for April, the results showed that the

month had a total of 534 bits of surprise. The heatmap in Figure 4.8 shows that all months recorded

predominantly low valued discharges, and as Figure 4.9 displays, low values tended to have a higher

surprise since low probability was assigned by the rating curve. The first three discharges recorded

in March 2015 were values that had not been observed by the rating curve and as the results show,
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Figure 4.8: Cumulative gaugings per month are shown in the figure to the left and the range
of values recorded per month and their frequency are shown in the heatmap to the right.

high surprise was achieved. In October 2016, the relationship between discharge and water level

had changed, and therefore a handful of gaugings were designated a low probability. From Figure

4.9, a decrease in surprise and magnitude can be observed. A possible hypothesis for this could

be that lower discharge values are more sensitive to minor changes in the channel characteristics,

which is why more scatter is observed at the lower discharge gaugings. This scatter in the gaugings

can have an influence on the probability that the rating curve assigns to the localized region.

A reason for why the surprise of large discharge values was low may be due to the influence that the

first 19 gaugings had on the rating curve. A look at the first 19 gaugings show that NHC had done

a good job at collecting a wide range of discharge values for their first rating curve, especially in

collecting large discharges. Aside from the probabilistic rating curve having already observed these

large discharges, Figure 4.10 shows that the large discharges have minimal scatter and all tend to

follow a linear path. Therefore, the rating curve can do a decent job at extrapolating, and the condi-

tional distribution of gaugings along this line tends to be high—meaning low surprise. However, in

the case where a new gauging is recorded, is much larger than the rest, and falls outside the expected

linear path, the model will assign a large surprise value to the gauging. If the gauging falls on the

linear path of the previous gaugings, the conditional distribution at that point is influenced by the

other gaugings and so the probabilistic rating curve should not be as surprised.

Kullback-Leibler Divergence

Probability distributions can be extracted and used to analyze the information gain from incorpo-

rating the gaugings, for the different models. Figure 4.11 shows the Kullback-Leibler divergence
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Figure 4.11: The lines represent the information gain from the Kullback-Leibler divergence
measure between the probability distribution prior to a prediction being made for the
gauging and the probability distribution after adding the gauging (”true” distribution).
The black bars represent the discharge values of the gaugings used in the model. The
light gray bars are the initial 19 gaugings used to develop the rating curve.

(colored time series) between the probability distributions of the predicted gauging before it was

added to the model, and after. The black bars represent all the added gaugings for all four models.

Immediately one notices numerous large spikes in the information gain for all the models. These

large spikes represent an infinite amount of information gain and implies that having observed these

gaugings was valuable to the probabilistic rating curve. However, what it also means is that prior

to observing the gaugings, none of the models had assigned a large enough nonzero probability to

that gauging (combination of Q and H) occurring. This can be attributed to several reasons. One

of the reasons is that since the widths of the kernels are small, the influence of one kernel does not

increase the probability space in the direction of its second principal component and so therefore,

even if a gauging of similar value does occur, if it is parallel to a previous gauging, it is possible for

the model to assign it a low conditional probability. The effect can be seen in Figure 4.5 where the

kernels are stretched primarily along its first principal component and the width of the kernel (sec-

ond principal component) is marginally small and until a new kernel is added, that probability space

will remain with low values close to zero. A second possible reason for the large spikes could be due

to the grid size chosen for the analysis. A 500x500 mesh was used to define the probability space.

Such a fine grid would cause more areas of low probability than if a coarser mesh (i.e. 50x50) was

used. Although the size of the mesh does affect the probabilities, as long as the grid size remains

constant throughout the analysis, the results are meaningful. While Figure 4.11 showed the infor-

mation gain of adding a gauging to a model, the Kullback-Leibler divergence can also be used to

examine the information added going from one model to another. For example, it may be desirable

to compare the probability distributions before a gauging is added to the All Weights model and the

Equal Weights model to examine how much information was gained by using one model over the

other. For this analysis, the models that are assumed to be the correct, or true, are the All Weights,

the Only Time, and Only Sluicing models. These models were selected as such since the auxiliary

information being brought into the rating curves better describes what is actually happening. The
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results of the information gain between models showed similar infinity values as those previously

described in Figure 4.11. The All Weights and Only Time models had many more infinity values (47

and 50, respectively) than the Only Sluicing model, which had 24, when calculating the information

gain assuming the Equal Weights model was not the true model. Due to the large difference in the

number of infinity values, it did not seem appropriate to neglect the values and do a summation of

the information gain. Instead, the number of infinity values are being interpreted as an indication of

how far the models were to the Equal Weights model. Since the Only Sluicing model had the least

amount of infinity models, it was concluded that in general, this model was closer than the other

two. This conclusion is similar to what has been seen so far in the results.

4.2 Hindcast mode
The RMSE and surprise are calculated for each gauging when the model operates in hindcast mode.

Rating curves at each gauging in hindcast can also be produced, but are not shown since they all

look and behave as the ones in Figures 4.1. The average of all 105 RMSE values and the total

surprise are presented in Table 4.2. During hindcast mode, the surprise of the Only Sluicing model

Table 4.2: RMSE and surprise during hindcast evaluation of rating curve model

Model name RMSE Total surprise (bits)

All Weights 0.27 453
Equal Weights 0.34 456
Only Sluicing 0.29 433

Only Time 0.30 442

was the lowest, followed by the Only Time, All Weights, and Equal Weights. When comparing

the results with the RMSE, the lowest value is from the All Weights model, preceded by the Only

Sluicing, Only Time, and the Equal Weights model. The pattern of the surprise results are different

from those reported in Table 4.1, while the RMSE values continue to follow the pattern found in

the forecast mode of the probabilistic dynamic rating curve. What the RMSE values show is that

the auxiliary information does help with improving the predictive capabilities of the rating curve.

However, the model with the best RMSE, had the second largest total surprise. What this could

imply is that the All Weights model is over confident about the precision of the discharge estimates,

and so the surface area of the kernel decreases (since over confident implies a more ”peakier” PDF)

and therefore, the probability decreases in the surrounding area. Individually, the Only Sluicing and

Only Time models are not as over confident as the All Weights model, and the surface of their PDFs

is larger (more spread out), hence a lower surprise. The Equal Weights model behaved as expected

when examining the results of both metrics.

45



4.3 Sensitivity analysis
There were a few assumptions used in the development of the probabilistic dynamic rating curve.

The most notable one is σQ∗ in Equation 3.5 where 5% was assumed for the uncertainty in discharge

gaugings. However, it is possible for gauging measurements to have more than the assumed error,

and in fact, it is expected that the extreme ends of the discharge gaugings will have more uncertainty.

The data used in the analysis unfortunately did not have any uncertainty values attached to it and

therefore the 5% assumption had to be used. The author notes that this is a bit hypocritical to what

was stated in earlier sections of the manuscript where the author argues that uncertainty assignment

should not be done by the end-users, but rather the experts. Yet this contradiction serves to ignite

fuel to the idea that the experts should be transparent with the uncertainty in the data, and that

this important detail should be available to anyone who is interested in using the data for further

modeling. If the uncertainty had been provided for each of the gaugings, this study would have

used those uncertainty readings as direct inputs into the geometry of each individual multivariate

Gaussian distribution. This information would have created kernels that better represent the actual

uncertainty, thus forcing the global uncertainty of the rating curve and its dynamic probability bands

to be more accurate. A sensitivity analysis using the forecast mode of the rating curve on this

assumed uncertainty value is provided to better examine the results of the rating curve and identify

the robustness in the model.

4.3.1 Discharge uncertainty

In this analysis, the water level uncertainty continued to be solved for using Equation 3.5 but the

discharge uncertainty was varied between 10% and 20%, with the results from the original 5%

assumption also shown for comparison purposes. The higher uncertainty values are more repre-

sentative in stream gauging methods than anything lower than the originally assumed 5%. It was

expected that as the discharge uncertainty increased to 10%, the kernels would also increase in

width, in the ordinate direction. The results from Table 4.3 show that the RMSE stayed roughly the

same, and that the surprise explodes. An example of the probabilistic dynamic rating curve, and

its joint distribution, with an assumed 10% discharge measurement uncertainty is shown in Figure

4.12. By causing larger kernels, the rating curve becomes less confident and the multivariate dis-

tribution increases its surface area in the x and y direction to accommodate for the fixed slope and

correlation, and decreases in the z direction. As the discharge uncertainty continues to increase, the

kernels expand, and the rating curve continues to lose it confidence. Appendix C compares the joint

and conditional distributions for kernels assuming a 20% discharge measurement uncertainty. The

results from Table 4.3 show that in general, the RMSE stays relatively the same as the uncertainty in

the discharge changes. A constant RMSE means that although the geometry of the kernels change,

the mean of the kernels remains roughly the same.
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Figure 4.12: A comparison of how the joint and conditional distributions change when using
a 10% discharge uncertainty.

Table 4.3: Sensitivity analysis of discharge uncertainty used in the conditional distribution of
the kernels.

StdQ (%Q) Metrics AllWeights EqualWeights OnlySluicing OnlyTime

5
RMSE 0.42 0.50 0.46 0.45

Surprise (bits) 1194 1414 1306 1260

10
RMSE 0.40 0.47 0.44 0.43

Surprise (bits) 858 1120 1005 959

20
RMSE 0.40 0.50 0.45 0.43

Surprise (bits) 575 653 618 605

4.3.2 Time model parameter (µ)

The other assumed parameter in the probabilistic rating curve was the rate parameter of the expo-

nential function (Equation 3.1) used for assigning the time weights. In the equation, a rate parameter

of 1
365 was used. Various other values were examined to understand the impact of the parameter on

the model and the results are shown in Table 4.4. The results of varying the parameter show that

the model’s surprise is more sensitive than the RMSE. However, there is not a general pattern that

emerges when varying µ . What is occurring is that as the rate of the exponential function increases,

the most recent gauging is receiving a larger weight than when assuming a value of 365 days, while

previous gaugings are losing their weights at a faster rate. This can create a push-pull effect where

different combinations of kernel influence can occur depending on the weights. A further analysis

should be performed to better understand the impact of µ on the rating curve.
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Table 4.4: Sensitivity analysis of µ parameter in the exponential function used for the time
weights while in forecast mode. Note that the Equal Weights and the Only Sluicing models
are not shown since they are not effected by the time weights. AW = All Weights and OT
= Only Time.

µ = 365 days µ = 180 days µ = 90 days µ = 30 days

Metrics AW OT AW OT AW OT AW OT

RMSE 0.42 0.45 0.39 0.41 0.35 0.36 0.44 0.42
Surprise (bits) 1194 1260 1830 1193 1465 1559 1201 1191

The exponential function used in the development of the time weights has a memoryless prop-

erty. This property states that the probability between events stays constant, and only when a new

event is observed, will the weights update. This property is desirable, because it states that the

weights of the gaugings should only change when a new gauging is observed. If sufficient time

from the last measured gauging has occurred, an idea could be to let the exponential distribution

converge to a theoretical equilibrium that could potentially relate to the river’s natural equilibrium.

Leopold, Wolman, and Miller (2012) presented the idea that rivers are always seeking to be in a

state of lowest energy, and so after an event has occurred that disrupts the current state, the river

will slowly transition back to its natural equilibrium. Applying this similar idea to the exponential

function will imply that the weights of the gaugings that previously had little weight will now be

set to an equilibrium. In a river like the Iskut that is constantly changing because of the upstream

intake, this idea may not work, but could be interesting to explore in other river systems.

The parameter µ in this thesis was assumed, but it is possible for the performance of the probabilis-

tic dynamic rating curve to be improved if the parameter learns from the data. Using a Bayesian

approach is a possible alternative to optimizing the parameter. A prior probability on the param-

eter could be selected based on the characteristics of the river and/or watershed. As gaugings are

observed, and added to the rating curve model, the posterior distribution that best describes the

parameter can be determined.
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Chapter 5

Discussion

5.1 Cease-to-flow water level (h0)
The h0 parameter is important because it helps establish the relationship between discharge and the

river’s water level, but also because it helps identify the height of the control. In practice, sometimes

the height of the control is not known, and so this parameter is typically calibrated in hindsight, in

combination with field knowledge, such as possible physical limitations to the exponential param-

eter in Equation 2.1. For calibration, the gaugings are often log transformed, as done in this thesis,

to ensure a straight line. The value of 234 m for the h0 water level was selected by plotting all the

first 19 gaugings used in the development of the first rating curve, independent of the simulations

performed on the remaining gaugings, and identifying how well the data fell on a linear relationship.

The value was then fixed for the duration of all the simulations in producing the new rating curves.

The h0 parameter could be fixed by producing a moving parameter, similar to µ , that is optimized

every time a new gauging is observed. More accurate cease-to-flow water levels were available to

the author from NHC, but were not used, because again, the value of their h0s was calculated in

hindsight, and the author felt that using their values would be more unfair than fixing the data to the

assumed value.

A consequence of the assumed 234 m for h0 can be seen in the final probabilistic rating curve

(Figure 5.1). It is known that the log transformation of data following a power law function pro-

duces a linear relationship. However, Figure 5.1 shows otherwise. The reason for this is attributed

to two gaugings that occurred on April 29th and 30th of 2017 with low water level measurements

that did not conform to a linear relationship with the other data. This error was discovered when

deciding which value for h0 to assume, and since the gaugings occurred near the end of the dataset

(4th and 5th from the last gauging), it was decided that 234 m would work for the other gaugings.

A much better calibration could have been done, but again, this would produce an even more unfair

forecast.
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Figure 5.1: Last dynamic probabilistic rating curve produced in simulations.

5.2 The effect of fixing the slope of all kernels to be equal
As described in the data and methods section, the slopes of the kernels were all fixed to be the same

by using the observed gaugings and performing a weighted linear regression to obtain the slope.

A consequence of such method is that there is a chance that gaugings that do not fall exactly on

the linear function, risk forming parallel lines as shown in Figure 5.2, and producing a fragmented

rating curve. The example shown is from May 2016 in which only five gaugings with low water

level measurements had been recorded up to that point. These five gaugings were on the lower end

of the original linear regression and slightly away from all the other data points and so therefore, a

parallel line was formed when their slopes were fixed. This causes a similar bimodal distribution,

as seen in Figure 4.2 and is a reason for why the weighted mean of the conditional PDF was used,

rather than the mode. A possible fix to this problem is to use localized regression on the ’k’ nearest

gaugings. In doing so, the original gauging of the five gaugings, highlighted within the red box in

Figure 5.2, would have had its slope fixed with gaugings that fell closer to the linear regression, and

as more gaugings entered the model, the slopes would update locally. For a proper linear function to

be produced, it would be important to ensure that the ’k’ nearest gaugings selected would produce

a monotonic function.

50



Figure 5.2: A display of how parallel rating curves can emerge using the described linear
regression for fixing the slope of all the kernels.

5.3 Extrapolation of the rating curve
Extrapolation of the probabilistic rating curve works by the influence of the kernels and the ori-

entation at which they are facing. Since the kernels in theory ”stretch-out” to infinity along their

primary principal component, there will always be a probability assigned to the extreme ends of the

rating curve where extrapolation might be desired. The conditional would then be taken, and the

PDF would be renormalized to a sum of one. An exception to this could be that if the extrapolation

region is far enough, computational limitations might take over and assign values of zeros for the

probability due to limited computer precision. In this case, a correct conditional PDF might not be

guaranteed.

Similar to extrapolating in a deterministic rating curve plotted on log-log space, caution should

always be adhered to ensure that extrapolation is only occurring within the bounds of the linear

relationship between the physical constraints of the river (i.e. stage and cross-sectional area). If a

shift in the stage-area relationship occurs, then a shift in the orientation of the kernels should also

occur to ensure proper extrapolation. This is one way to ensure that the physical characteristics of

the river are also observed in the probabilistic model. These shifts in the stage-area relationship are

also easily adoptable in the probabilistic rating curve if a multi-segmented rating curve in the de-

terministic domain is known to exist. The weighted linear regression would have to be altered into

possibly a piecewise function with the nodes being influenced by the height of the corresponding

controls.

5.4 Maximizing what is known to help solve the unknown
In the development of the probabilistic rating curve, time and sluicing information were brought

in to help reduce model uncertainty. It was argued that gaugings after sluicing, and those most

recent in time, were more representative of the current stage-discharge relationship than those prior
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to sluicing, and taken earlier. The results showed that both the time and sluicing models did help

reduce the uncertainty of a probabilistic rating curve when compared to a model using no auxiliary

information, by up to a maximum of 19%, when in forecast mode. This shows that the information

used to building the rating curves can become of practical importance for hydroelectric companies

that rely on a rating curve downstream of their intake to ensure an accurate estimate of the IFR

compliance. Operators of the intake plant can use the probabilistic results to make better informed

decisions on whether more water should be released downstream to help ensure IFR compliance,

within a degree of certainty, or, to stay business-as-usual because enough confidence is assigned to

the predicted discharges. What can also be done is the inclusion of operator knowledge on expected

sluicing events. By giving an approximate date and duration of the event, the model can evaluate

how a near future sluicing event could affect the probability of ensuring the IFR after the expected

sluicing event.

The model can also be used to help plan gaugings. For example, it could be possible to opti-

mize the dynamic probabilistic rating curve to ensure that a minimum conditional uncertainty is

always met. In doing so, it could help identify when to best take gaugings. Similar to how in the

financial sector different portfolios are built, evaluated, and then the best one is selected, the same

can be done with gaugings. Different scenarios can be used to train the dynamic probabilistic rating

curve, and once calibrated and validated, an optimal plan for when to take gaugings may be possible.

Studies evaluating the usefulness of adding/collecting different information signals in conjunction

with a cost-benefit analysis, may be performed. This analysis can also be used to define the value of

added information to the rating curve to making better informed decisions. This idea was explored

by Raso, Weijs, and Werner (2017) in their recent manuscript, in which they used the Optimal

Design (OD) problem to evaluate the value of adding extra gaugings to the rating curve.

5.5 Dynamic uncertainty bands
The dynamic uncertainty bands are a beneficial product of the produced rating curve and could po-

tentially serve as a good incentive for producing probabilistic dynamic rating curves. Figure 5.3

shows a closer examination at how the conditional probabilities change when a gauging is added

while in forecast mode. The figure illustrates that the column where the gauging is found (green

dot) has a flatter conditional PDF than after the gauging is added, column where the vertex in the

predicted continuous discharge value begins. The conditional PDF becomes ”peakier” and is shown

by the change in color in the column only after the gauging. This result is important because it

provides an answer to a question that maybe does not get frequently asked when looking at dis-

charge time series because of how the deterministic rating curve shows its results. The fact that

the conditional PDF is changing when the data are added, helps answer the question of, ”What is

the probability distribution of the discharge, given a water level measurement of hi when a gauging

is recorded?” Or another question that could be interesting, ”What is the probaiblity distribution
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Figure 5.3: A closeup as to how the conditional uncertainty bands change when a gauging is
added.

of the discharge, given a water level, prior to adding a gauging to the rating curve?” Both these

questions help set up a canvas where the data are now more useful than they were when analyzed in

a deterministic domain. When working outside a stochastic framework, 95% confidence intervals

are typically appended to rating curves. However, the answers from these intervals are to different

questions because the interval does not imply that the result has a 95% confidence of occurring

within the interval, but rather, it states that if the samples were to be repeated, and the 95% con-

fidence intervals recalculated, that 95% of the intervals would capture the population mean. So

really, the 95% confidence interval is useful, but it answers a question that is not necessarily the

immediate question that someone using predicted discharges is truly concerned with. This method

for displaying the uncertainty around a rating curve gives no valuation to knowing prior information

that may be useful in the design of rating curve uncertainty. For this reason, Bayesian methods have

gained traction as a valuable tool in modeling rating curves (Le Coz et al., 2014; Moyeed & Clarke,

2005; Petersen-Øverleir & Reitan, 2009). Within a Bayesian framework, prior knowledge may be

used to bound the limits of the possible parameters in the power law function (Equation 2.1), and

as new data enter the framework, a likelihood function is used to determine the posterior that best

describes the parameters. The method used in the development of the probabilistic rating curve in

this thesis incorporates a similar approach where the probabilities are continuously updated as new

data is observed. The method used for updating the priors is not formally defined as Bayesian, but

implicitly, it is of a similar nature.

5.6 The need for probabilistic rating curves
In many cases when one downloads discharge time series data from WSC or USGS, there is no in-

formation on the probability distribution of the values. WSC does provide the percent deviation that
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the last gauging measured is from the current rating curve. WSC and USGS will also sometimes

provide categorical uncertainty measures that inform the users about any possible anomalies with

the data. A categorical value of ”B” for WSC indicates that the data were collected under the influ-

ence of ice coverage (Hamilton & Moore, 2012). However, this is not a true measure of uncertainty

and is not a pragmatic approach to data uncertainty.

With the probabilistic rating curve developed in this thesis, a conditional probability value, or func-

tion, can easily be included with the predicted discharge and give a much more transparent, and

informative, result. This is shown in Figure 4.4 where the conditional PDFs are extracted and a dy-

namic uncertainty band showcasing the conditional uncertainty of the discharge given the recorded

water level is produced. For decision makers who depend on the discharge time series, having this

extra information can help in making more informed decisions. For example, operators who use the

predicted discharge from a hydrometric station to ensure IFR compliance can use the conditional

distributions to better assess the decision to release more water downstream to ensure that the IFR

is met, or to take in more water for energy production/profit. The scenario described earlier about

optimizing the rating curve to better plan out when to take gaugings can also be applied for IFR

rating curves. The results of such a scenario could imply a larger up front cost by having to send

people out to the field, but the decision could potentially save money in the long run by preventing

the streamflow to fall under the IFR, and force a hydroelectric company to pay a large monetary

sum due to infraction fees.

Probabilistic rating curves allow for better decision-making processes in which decision makers can

have more, or less, confidence in their actions as a result of the probability from the rating curve.

In this thesis, an example of decision makers from a hydroelectric ROR project has been used, but

what has not been discussed are the other factors influencing the decision on river withdrawals (i.e.

electricity market demands) as well as the other stakeholders involved. In British Columbia, salmon

have economic, ecological, and cultural value. To ensure that salmon keep coming back to their

spawning grounds, sufficient water and the proper conditions must be available for the salmon to

swim upstream. The amount of water flowing downstream can fluctuate due to the local climate

and this can have an impact on water licenses. One now enters a multiobjective decision making

problem in which enough water must be supplied downstream so that salmon can swim upstream,

while trying to maximize economic benefit for the hydroelectric company. Decisions as these can

be improved by having a sense of the uncertainty in the predicted discharge and can aid in taking

either more conservative or liberal actions, as well as reduce the risk associated with these decisions.

What is also beneficial from probabilistic rating curves is that one can condition the probabilities on

all available information. This is to say that the probability of a discharge value is conditioned on not

only the recorded water level, but also time and sluicing, and possibly electrical conductivity. These

conditional probabilities are derived from a probability function—in our case a mixture model of
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multivariate Gaussians. Therefore, one can present much more information to the end users of a

discharge series by not only including the point value conditional probability, but also the distri-

bution function from which it stems. Krzysztofowicz (2001) identified four potential benefits for

probabilistic predictions/forecasts. These equally apply to measurements of discharge, which are in

fact also predictions. They have all have been discussed in this section, but are worth summarizing

below:

1. Probabilistic models tend to be more scientifically honest and eliminate the illusion of cer-

tainty

2. Risk-based criteria can be established for example in flood forecasting

3. Rational decisions can be enhanced by knowing the true uncertainty of the data

4. There is a potential for economic benefit by using probabilistic models

These four points help promote accountability for the research, and decisions, that are taken by

experts and leaders and have large benefits to society. Engineers are entrusted with the lives of

thousands, and even millions, of people every single day and better ethical decisions and designs

can be developed by knowing the uncertainty in the data that is used. However, for this notion

of uncertainty transparency to kickstart, a shift in how data is collected and viewed must occur.

Those collecting the data (i.e. streamflow) must be conscientious of how the data is recorded and an

effort to calculate/estimate the uncertainty should be made so that the collecting authorities (water

agencies like WSC and USGS) can publicly publish these results. Water agencies may be hesitant

to do such a move, because it may show flaws in their data, but again, only through this can honest

science progress and rational decisions be made.
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Chapter 6

Conclusion and future work

The primary objectives laid out at the beginning of this thesis were to develop a probabilistic dy-

namic rating curve, and to explore the usability of auxiliary information from a run-of-river hydro-

electric project to reduce model uncertainty. The data and methods section of this thesis highlight

the development of the probabilistic dynamic rating curve. For a probabilistic model to be devel-

oped, the gaugings were converted into multivariate Gaussian distributions (kernels). The geometry

of the kernel was shown to be important to control to ensure that all the kernels were aligned in the

proper orientation so that interpolation and extrapolation of discharge values could be accurately

predicted. Had the slope of the kernels not been fixed, they would be free to align themselves ac-

cording to the variables used in Equation 3.6. While although the gaugings would align along a

straight line as expected because of the log transformation, the kernels would not have followed

that line. This would cause less accurate conditional distribution functions, and using a weighted

mean of the function would have produced erroneous predictions. Although the method used for

the kernel orientation was, per say, not the best (Figure 5.2), it is possible to improve it by using a

local regression approach, which would be expected to produce better results.

The conditional distribution of the kernel was used to assign the measurement uncertainty of the

discharge, and hence control the spread of the (Q|h) distribution. The combination of using the

marginal and conditional distributions served as the primary method to fully controlling the kernels.

A value of 5% of the discharge magnitude was assumed for every kernel’s discharge conditional

distribution uncertainty. Under this assumption, reasonable results were produced and it is expected

that in events where the discharge uncertainty is known, those values could be substituted in. The

effect would be that the produced kernels would vary more than what are seen in this thesis, but

would be a better representation of the actual uncertainty.

With the kernels constructed, their summation was taken to develop a mixture model of multivariate

Gaussian distributions that represented the joint distribution. Using this finely discretized density

grid, the conditional distributions (P(Q|h = hi)) were calculated and normalized to one. These con-

ditional distributionsm when appended together as shown in Figure 4.1, represent the probabilistic

56



dynamic rating curve. Using this model, the continuous discharge predictions could be extracted

by using the continuous water level time series. What is more is that the conditional distributions

can also be displayed in conjunction with the discharge time series to show a continuous discharge

time series with dynamic uncertainty bands (Figure 4.5). These uncertainty bands were discussed

and an argument was provided as to why these bands are more relevant to users than 95% confi-

dence intervals. Using these conditional uncertainty bands also helps in improving models that use

the discharge time series as inputs since the uncertainty in the time series is now transparent to the

user. This helps reduce the ambiguity that modelers use to assign the uncertainty to the discharge

and helps improve the overall performance of hydrological models and promotes better decision-

making.

The probabilistic dynamic rating curve model developed is also simple enough to be adopted by

engineering practitioners who develop rating curves for clients. In combination with current meth-

ods for developing deterministic rating curves, the slopes could be extracted after manual calibration

of a linear regression through the gaugings. A simple graphic user interface could be created where

the user inputs the measurement uncertainty and grid size, and the probabilistic rating curve could

be produced instantly. Calibration of the curve could be done by changing a few of the assumed

parameters measured to minimize the RMSE. Predictions from the deterministic and probabilistic

results could be easily compared and dynamic uncertainty bands can be extracted for the probabilis-

tic model.

An exploration into reducing the uncertainty was undergone by assessing the usage of auxiliary

information. The information used in this thesis were sluicing signals from a ROR hydroelec-

tric project and the timestamps of gaugings. The sluicing signal was inferred by referencing four

unique signals in the intake structure of the hydroelectric project. Weighted normal CDFs were

used to derive a function that was believed to help best describe the change in sluicing weights. The

weights used were taken from the duration of the individual sluicing events, where large events were

given more weight than short sluicing events. For the time weights, an exponential model was used

to assign more weight to the recent gaugings and less to those that were taken in the past. Three

unique models were created that utilized different combinations of the weights and one model was

produced that used no weights, which implies that all the gaugings had an equal weight assignment

of 1
n where n is the number of gaugings observed. The results show that using the auxiliary infor-

mation helped reduce the RMSE of the model that used an equal weight distribution by up to 19%.

The surprise of the model that used both the time and sluicing weights (All Weights model) was

also shown to be that smallest of the four. This implies that its ability to predict future gaugings was

the best. For hindcast mode, the results of the surprise varied and it showed that the All Weights

model was over confident, which is possibly why that model had the largest total surprise. In all, it

was shown that when used in forecast mode, the probabilistic dynamic rating curve proved to be a

useful model with auxiliary information being capable of reducing the model’s uncertainty.
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There are many opportunities in which the work presented in this thesis can be taken further. The

first would be an improvement on the assumed value for the exponential distribution parameter. As

described, it may be possible to train this parameter using a Bayesian approach. In doing so, the

model will adapt to the data and theoretically provide even better results then what were shown. It

would also be interesting to explore how the model behaves when working with segmented rating

curves. It is anticipated that as long as the individual slopes are extracted from the deterministic

weighted linear regression, that a reasonable rating curve should be produced. The probabilistic

dynamic rating curve can also be optimized to minimize RMSE, or any other performance metric,

like maximizing entropy. In doing so, different scenarios can be studied to better understand when

to best take gaugings. Lastly, in this thesis, multivariate Gaussian distributions were used. These

same distributions are also used in Gaussian Processes and a further exploration of how to tie the re-

sults of this thesis with machine learning could be of high value, especially at a time when machine

learning is currently undergoing a lot of development.
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Appendix A

Snapshots of the rating curve in time

Figure A.1: November 28, 2013

63



Figure A.2: January 1, 2015
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Figure A.3: June 20, 2017
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Appendix B

Hydrographs

Figure B.1: Hydrograph for Only Time model

Figure B.2: Hydrograph for Only Sluicing model
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Figure B.3: Hydrograph for Equal Weights model
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Appendix C

20% assumed discharge uncertainty

Figure C.1: A comparison of how the joint and conditional distributions change when using a
20% discharge uncertainty.
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