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Abstract

Since the booming of social networks, network analysis has benefited
greatly from the released data. Meanwhile, the leakage of users’ informa-
tion is getting more and more serious. The users’ personal information
may be compromised even if the data are released after being anonymized.
Adversaries can uniquely re-identify a user in an anonymized social net-
work by the quasi-identifiers as their background knowledge. To measure
the resistance against privacy attacks in anonymized social networks where
the background knowledge of adversaries is the metric representation, R.
Trujillo-Rasua et al. introduced a new measure: (k, l)-anonymity based on
the notions of k-antiresolving set and k-metric antidimension in [TRY16b].

In this thesis, we prove that the problem of computing k-metric antidi-
mension is NP-hard by a polynomial-time reduction from a well-known NP-
complete problem, the exact cover by 3-sets problem (X3C problem), to a
decision version of the problem of computing k-metric antidimension. With
this conclusion, we prove that the (k, l)-anonymity problem is NP-complete.

Also, in the hope to get a general relation between k and l in the
(k, l)-anonymity problem, we study the behaviors of k-antiresolving sets
in Erdős-Rényi random graphs. We establish three bounds on the size of
k-antiresolving sets in Erdős-Rényi random graphs leading to a range of
k-metric antidimension where k is constant.
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Preface

The results contained in this thesis have appeared in [ZG17].
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Chapter 1

Introduction

The Internet and big data analytics bring a significant change to our
lives. We can use the online banking to make our payment conveniently and
efficiently. E-commence applications, such as Taobao and Amazon, give us
a new experience of shopping. Moreover, by social networks, e.g., Facebook,
Twitter, and Linkedin, we can acquaint new friends around the world and
exchange messages instantly. The result extracted from the analysis of big
data brings us the knowledge unknown before.

But these benefits are not free. With the booming of Internet, infor-
mation privacy and secrecy become more and more important. A malicious
hacker can attack web servers and cause damage to the public. For example,
CBC reported on April 14th, 2014, that 900 social insurance numbers were
stolen [SIN]. The attacker accessed the data by exploiting a bug of OpenSSL
- Heartbleed [Hea].

Even though a malicious hacker does not attack servers actively, the
inappropriate leakage of user information can lead a breach of privacy. For
example, A. Tockar shows an example on how to track individuals in New
York using data from the 2013 NYC Taxi data release [Toc].

The concepts of information secrecy and information privacy in com-
puter and information sciences are related, but still with some significant
differences. Information secrecy is a practice of sharing information with a
group of people or a person while hiding it from others, and the challenge
of information privacy is to utilize information while protecting individual’s
information.

To achieve information security, we use many cryptographic techniques.
One of them is cryptosystems. On the other hand, information privacy is
an interdisciplinary topic of studying how to prevent private information
being recovered from released data sets. For example, investers can use the
transaction data of stock market to predict the future of stock market in
order to make a profit. But, they can not extract the personal transaction
information.

In the practice of protecting information privacy, there are two main
frameworks: interactive and non-interactive. In the interactive framework,
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Chapter 1. Introduction

data analysts inquiry data from a trusted data collector; in the non-interactive
framework, the data collector uses anonymization techniques, e.g., the k-
anonymity [Swe02], to get rid of identifies of data and then publishes the
anonymized data.

Although anonymization techniques can get rid of identifiers of data in
social networks, adversaries may compromise the privacy by using quasi-
identifiers as their background knowledge.

In an anonymized network graph, let u be a user vertex and S be a subset
of attacker vertices. Supposing the background knowledge of adversaries is
the metric representation of u with respect to S, R. Trujillo-Rasua et al.
in [TRY16b] introduced a measure of resistance against privacy attacks in
anonymized social networks: (k, l)-anonymity. This notion creats a new
problem in graph theory.

Let G = (V,E) be a simple connected graph, S be a proper subset of
V , and v be a vertex in V \ S. The metric representation of v with respect
to S is a tuple formed by the shortest-path distances from v to vertices in
S. The set S is a k-antiresolving set if k is the greatest integer that for any
vertex v ∈ V \S there are at least k−1 different vertices in V \S having the
same metric representation with respect to S as v. A k-antiresolving basis
is defined to be a k-antiresolving set of minimum cardinality. The k-metric
antidimension is the cardinality of a k-antiresolving basis. We denote the
k-metric antidimension by adimk(G). The graph G meets (k, l)-anonymity
if k is the smallest positive integer that adimk(G) is less than or equal to l.

From the definition of k-antiresolving set, it is clear that, if the set of
controlling nodes by an adversary is a k-antiresolving set, the adversary can
not uniquely re-identify other nodes with the probability that is greater than
1/k. The adimk(G) is the lower bound on the number of vertices controlled
by an adversary to approach this probability.

The main results of this thesis include a proof of the NP-hardness of
the problem of computing adimk(G) and the bounds on the size of k-
antiresolving sets in Erdős-Rényi random graphs. The NP-hardness proof
is based on a reduction from a well-known NP-complete problem: the ex-
act cover by 3-sets problem (X3C problem). The bounds on the size of
k-antiresolving sets are established by making use of an observation under
the case that an Erdős-Rényi random graph has the diameter less than or
equal to 2. This observation helps us to overcome the difficulty brought by
the dependence of the shortest-path distances between different vertices in
Erdős-Rényi random graphs.

In Chapter 2, we give an overview of information privacy and information
secrecy including the origins of these two topics and the development in both
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Chapter 1. Introduction

areas. In Chapter 3, we give the background knowledge of this thesis, as well
as our results and the related works. In Chapter 4, we give a polynomial-
time reduction from X3C problem to a decision version of the problem of
computing adimk(G). With the reduction, we can say the decision version of
the problem of computing adimk(G) is also NP-complete. Thus, the problem
of computing adimk(G) is NP-hard. With this conclusion, we give the proof
of (k, l)-anonymity is NP-complete. In Chapter 5, we give the proofs of the
bounds on the size of k-antiresolving sets in Erdős-Rényi random graphs
G(n, p). With the bounds, we give a range of k-metric antidimension where
k ∈ O(1) when n tends to infinite. In Chapter 6, we summarize our results
and mention the future direction and some open problems.

3



Chapter 2

Information Privacy and
Information Secrecy

The study of information privacy has benefited greatly from the devel-
opment of computer science. For example, graph theory and the study of
social networks have supported the study of information privacy under the
popularity and accessibility of online social networks in recent years.

In Section 2.1, we give an overview of information privacy. Then, we in-
troduce the techniques of how to protect information privacy in the practice
of social networks.

Information secrecy that benefits a lot from Number Theory is often
confused with information privacy. Then, in Section 2.2, we also give a brief
introduction on this topic.

2.1 Information Privacy

Information privacy is an interdisciplinary concept, and its meaning
varies with cultures and historical stages [NHP11, Hol09, BJKL04]. S. War-
ren et al. defined the concept of privacy from the law perspective [WB90].
Because of the advancement of computer technology, such as big data storage
and analytics, the Internet, and social networks, information privacy has be-
come an increasing concern [JS05, CP02]. A potential danger is that most
actions in our daily lives are recorded on computers somewhere, e.g., the
track of what we bought in supermarkets or our medical history. Improper
disclosure of such information can lead harmful effects [And96, WW96].
Another hidden danger arises from the practice of data mining and social
networks analysis [Ale11]. The purposes of these two processes are to fig-
ure out some patterns in large data sets and investigate social structures
in social networks. It requires us to reserve some statistical information
when we do the sanitization on the original information. However, it is a
trade-off between preserving statistical information and hiding personal in-
formation. If we sanitize the original information thoroughly, we will lose
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2.1. Information Privacy

statistical information. On the other hand, if we reserve statistical infor-
mation too much, adversaries may compromise individual privacy just like
the way of breaking deterministic cryptosystems mentioned in Subsection
2.2. Furthermore, the results extracted from the data mining or social net-
works analysis, such as classification rules, may make a breach on individual
privacy. The results may even lead to unfair treatments, e.g., the bias or dis-
crimination on specific groups or races, when being used on decision tasks,
see [PRT08, DL17, CCSZ13].

Interactive and non-interactive frameworks are two models for privacy
mechanisms in the practice of data mining and social networks analytics
[Dwo06]. In the setting of the interactive model, a trusted data collector
provides some interfaces of queries through which users can get data. In
the setting of the non-interfaces model, a data collector publishes the col-
lected data after getting rid of identifiers of data, such as names and social
insurance numbers. The corresponding techniques are called anonymization
techniques or de-identification techniques in the literature.

The results of the interactive case are powerful, see [AS00a, DMNS06].
But the non-interactive case seems to be more difficult [EGS03]. A possible
reason is that it is difficult to supply the utility that has not been specified
when the sanitization is carried out [Dwo06].

T. Dalenius articulated a desideratum for the statistical database in
1977 [Dal77]: nothing about an individual should be learnable from the
database that can not be learned without access to the database. This
desideratum means that anything that an adversary could learn from the
database can also be learned without the database so that accessing to the
database would not compromise individual privacy. This notion was defined
by S. Goldwasser et al. as the semantic security which we will introduce
in Subsection 2.2. C. Dwork proved that this type of privacy could not be
achieved [Dwo06], and then C. Dwork designed a relative guarantee called
differential privacy mechanism: any given disclosure will be, within a small
factor, no matter whether the individual participates in the database. Below
is the formal definition of differential privacy mechanism in [Dwo06].

Definition 2.1. [Dwo06](Differential privacy). A randomized function K
gives ε-differential (ε > 0) if for all data sets D1 and D2 differing on at most
one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S].

The ε-differential privacy mechanism matches the relative guarantee. For
example, an insurance provider consults the database to decide whether to
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2.2. Information Secrecy

insure Tom, and the presence or absence of Tom in the database would
not affect the result significantly. F. McSherry proved that if we query a
ε-differential privacy mechanism t times where each query is independent,
then the result is εt-differential privacy [McS09].

Social networking services are used widely in our lives, such as Facebook
and Linkedin. The popularity of social networks enables governments or
third-party institutions to collect the data of social networks which can be
released for research purposes. The analysis of social networks can help us
uncover previously unknown knowledge, e.g., community-based problems.
In other fields, such as recommended systems, the analysis of social networks
also supports substantially [SANT14].

However, these benefits are not free. An adversary can compromise the
individual privacy from the published data of social networks and make
the sensitive information of individuals disclosure. An approach to solve
this issue is to use anonymization techniques to remove identify attributes
before releasing the data, see a brief survey on anonymization techniques and
anonymized data of some social networks in [ZPL08, Les]. But, due to the
complex structure of social networks, an adversary still can compromise the
individual privacy by the background knowledge of quasi-identifier attributes
of victims, e.g., link relationship, neighborhoods, and embedded subgraphs.

In [BDK07], L. Backstrom et al. described a family of privacy attacks in
anonymized social networks. W. Peng et al. gave another example called the
two-stage deanonymization attack in [PLZW14]. The example shows that an
adversary can first register new users with connections to the targeted users
in a social network. Then the adversary creates edges between the newly
registered users to construct a unique subgraph. After that, the adversary
identifies the subgraph in the anonymized social network that is released so
that the adversary can re-identifies the targeted users.

K. Liu et al. proposed a framework for the identity anonymization on
graphs under the background knowledge of adversaries is vertex degree
[LT08]. Contemporaneously, B. Zhou et al. studied how to protect privacy
in social networks against neighborhood attacks [ZP08].

We refer to [NHP11, WYLC10] for further reading on the privacy-preserving
publication of social graphs.

2.2 Information Secrecy

In the first century, Pliny the Elder described how the milk from a thi-
tymallus plant could be used as invisible ink [Mat]. Unlike hiding the actual
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2.2. Information Secrecy

information, croptography is a class of techniques to hide the meaning of in-
formation. Cryptography makes sure the real meaning of information could
not be revealed to the wrong receiver. Indeed, cryptography is the practice
and study of techniques for guaranteeing information secrecy by secure com-
munications in the presence of the third parties called adversaries [Riv90].
In cryptography, a cryptosystem is a term referring to a set of cryptographic
algorithms used for information security services [MOV01]. A cryptosystem
can hide the real meaning of data from adversaries. People may firstly use
cryptosystems in the military field. Julius Caesar invented the Caesar cipher
to protect messages of military significance around 50 B.C. [LP87]. Another
famous story about cryptosystems is that Alan Turing tackled the problem
of Enigma [Cop04].

A cryptosystem has three types of algorithms: (1) the key generation al-
gorithm; (2) the encryption algorithm; (3) the decryption algorithm. Below
is the formal definition of a cryptosystem.

Definition 2.2. [Buc04](Cryptosystem). A cryptosystem is a tuple

(P, C,K, E ,D)

with the following properties:

1. P is a set. It is called the plaintext space. Its elements are called
plaintexts.

2. C is a set. It is called the ciphertext space. Its elements are called
ciphertexts.

3. K is a set. It is called the key space. Its elements are called keys.

4. E = {Ek|k ∈ K} is a family of functions Ek : P → C. Its elements are
called encryption functions.

5. D = {Dk|k ∈ K} is a family of functions Dk : C → P. Its elements are
called decryption functions.

6. For each e ∈ K, there is a d ∈ K such that Dd(Ee(p)) = p for all p ∈ P.

We assume that an adversary can intercept ciphertexts and compute pos-
terior probabilities for different plaintexts. In 1949, C. Shannon introduced
the definition of perfect secrecy against such adversaries for a cryptosystem
[Sha49]. Informally, we say a cryptography system has perfect secrecy if the
adversary could not get any information by intercepting the ciphertext. To
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2.2. Information Secrecy

formalize this property mathematically, let Pr(X) be the prior probability
for a message X and Pr(X|Y ) be the posterior probability where Y is a
ciphertext. A cryptography system has perfect secrecy if Pr(X|Y ) = Pr(X)
for all plaintexts X and all ciphertexts Y .

In a cryptosystem, if encryption functions and decryption functions use
the same keys, the cryptosystem is symmetric; otherwise, the cryptosys-
tem is asymmetric. Advanced Encryption Standard (AES) and Triple Data
Encryption Standard (3DES) are two well-known symmetric cryptosystems
[Sta05]. In asymmetric cryptosystems, the key e of encryption functions and
the key d of decryption functions are different. If a person wants to receive
the encrypted messages, he could publish an encryption key e and keep the
corresponding decryption key d. Anyone can use e to encrypt messages and
send the ciphertexts to him, and only he could decrypt the ciphertexts by d.
Therefore, asymmetric cryptosystems are also called public key cryptosys-
tems. R. Rivest et al. firstly described a practical public key cryptosystem
RSA [RSA78].

Symmetric cryptosystems are faster than asymmetric cryptosystems.
Moreover, their implementations are not complicated due to their lower
complexity compared to asymmetric cryptosystems. However, a significant
disadvantage of symmetric cryptosystems is that symmetric cryptosystems
require all participants have already been configured well with same keys
through some external security channels.

Both symmetric and asymmetric cryptosystems described above are de-
terministic cryptosystems. We say a cryptosystem is deterministic which
means this cryptosystem always produces the same ciphertext for a given
plaintext and key in separate executions. Deterministic cryptosystem may
leak information to an adversary. An adversary can do a statistical analysis
of ciphertexts by listening to the encrypted channel and then construct a
dictionary of pairs of plaintexts and ciphertexts if they have a close enough
appearance frequency. For example, if plaintexts are English sentences and
the appearance frequency of a ciphertext is close to the appearance fre-
quency of the word the in English sentences, then the adversary could say
this ciphertext corresponding to the plaintext the. This problem is serious
in public key cryptosystems. As any part in public key cryptosystems can
encrypt plaintexts by a public key, an adversary could build the dictionary
of pairs of plaintexts and ciphertexts actively.

To overcome this problem, S. Goldwasser et al. proposed a probabilistic
public key cryptosystem in 1984 [GM84]. The probabilistic public cryp-
tosystem publishes a pair of integers as a public key. The sender can use the
public key to encrypt a plaintext into a random ciphertext, and the receiver
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2.2. Information Secrecy

can decrypt the random ciphertext by the corresponding decryption key. S.
Goldwasser et al. proved that their cryptosystem is polynomial security and
semantic security [GM84]. Informally, we say that a public key cryptosystem
is polynomial security if, for all plaintexts with any probability distribution,
an adversary could not find two plaintexts m1 and m2 whose ciphertexts are
distinguishable in polynomial time of the length of plaintexts. Informally,
we say that a public key cryptosystem is semantic security if the information
that an adversary can compute from a given ciphertext could also be com-
puted without the ciphertext. We use two games1 to illustrate the concept
of semantic security.
Game 1:

Let f be a function defined on all plaintexts. Both us and the adversary
know this function. We randomly choose a plaintext m. Then we ask an
adversary to guess the value of f(m) without being told the value of m.
Game 2:

The adversary choose a function fE defined on all plaintexts, and then
the adversary tells us the function. After that, we randomly choose a plain-
text m and do not tell the adversary this plaintext. We compute the cipher-
text for this plaintext and give this ciphertext to the adversary. Then we
ask the adversary to guess the value of fE(m).

We say a cryptosystem is semantic security if the adversary can not win
Game 2 with higher probability than Game 1.

1These two games also come from [GM84]
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Chapter 3

Background Knowledge and
Results

In Section 3.1, we introduce the complexity classes of P, NP, NP-complete,
and NP-hard. In Section 3.2, we show the random graph model and the
probabilistic method used in Chapter 5. Moreover, in Section 3.3, we in-
troduce the formal definitions of k-antiresolving set, k-antiresolving basis,
k-metric antidimension, and (k, l)-anonymity. In Section 3.4, we show our
results and the related works.

3.1 The Complexity Classes of Problems

If the answer to a problem is yes or no, we say this problems is a deci-
sion problem. On the other hand, if a problem asks us to get a maximum or
minimum solution, we say this problem is an optimization problem. Prob-
lems can also be categorized by the level of their difficulty. To illustrate
the difficulty of problems, we first introduce the concepts of tractable and
intractable problems.

Given an algorithm whose input size is n, if the running time of the
algorithm is bounded by O(nk), where k is a constant, we say the algorithm
is a polynomial-time algorithm. Moreover, if a problem has a polynomial-
time algorithm, we say the problem is tractable, and if a problem has no
polynomial-time algorithm, we say the problem is intractable.

Informally, we define the class of decision problems that can be solved by
a polynomial-time algorithm as the class P [CJW+06]. Therefore, the class
P is tractable. For example, given two integer arrays A and B, the problem
of whether A is the sorted array of B belongs to the class P. We can sort B
in polynomial time of the length of B and then compare the sorted array to
A.

We define the class NP as the class of decision problems that given a
solution whose size is a polynomial of the problem input, we can verify
whether the solution is correct in polynomial time [CLRS09]. If a problem
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3.1. The Complexity Classes of Problems

belongs to the class NP and its hardness is as hard as any problem in the
class NP, we say the problem is NP-complete. In 1971, A. Cook found
the first NP-complete problem: the boolean satisfiability problem [Coo71].
Under the study of NP-complete problems, researchers found many NP-
complete problems, e.g., the clique problem, 3-CNF-SAT problem, and the
exact cover by 3-sets problem (X3C).

Given two problems Q and Q
′
, if any instance of Q can be solved by

an algorithm of a polynomial number of primitive steps and a polynomial
number of calls to an algorithm for Q′, we say that Q can be reduced to Q′

in polynomial-time and denoted by Q ≤P Q
′
.

Below is an example of a polynomial-time reduction in [CLRS09]. Given
an instance of ax+ b = 0, we transform it to 0x2 + ax+ b = 0. The solution
of 0x2 + ax+ b = 0 is also the solution of ax+ b = 0.

By the definition of the polynomial-time reduction, we can explain the
meaning of a problem is as hard as another problem and give the formal
definition of NP-complete and NP-hard. For two NP problems A and B, if
A ≤P B, we say A is no more than a polynomial factor harder than B .

Definition 3.1. [CLRS09](NP-complete). A problem Q is NP-complete if

1. Q ∈ NP, and

2. Q
′ ≤P Q for any Q

′ ∈ NP.

If a problem does not satisfy Property 1, e.g., the problem is an opti-
mization problem, but satisfies Property 2, we say the problem is NP-hard.

If a decision problem can be solved by a polynomial-time algorithm,
obviously a solution to this problem can be verified in polynomial time.
Therefore, the class P is a subset of the class NP. But whether every decision
problem whose solution can be verified in polynomial time can also be solved
in polynomial time is an open question. If the answer is true, it means P =
NP, and the class NP is also tractable.

A possible way to prove P = NP is to find a polynomial-time algorithm
for an NP-complete problem. However, to our best knowledge, there is no
polynomial-time algorithm for any NP-complete problem, and no one has
given the proof of the class NP-complete is intractable.

The problem of whether P = NP is one of seven Millennium Prize Prob-
lems. The prize to the first correct solution to this problem is one million
dollars [Dev02].

Besides the complexity classes we described above, there are other com-
plexity classes, e.g., PSPACE - the class of decision problems can be solved in
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3.1. The Complexity Classes of Problems

polynomial space and PSPACE-complete - the hardest problems in PSPACE
[AB09].

Furthermore, some problems can not be solved by any computer, e.g.,
the halting problem. The halting problem is the problem of determining,
from a description of an arbitrary computer program and an input, whether
the program will stop or run forever. A. Turing proved that there is no
general algorithm to solve the halting problem [Tur36].

In the rest of this section, to illustrate how to reduce an NP-complete
problem to another NP problem, we give a revised NP-completeness proof
of the X3C problem by a reduction from 3-CNF-SAT problem.

Definition 3.2. [CLRS09](3-CNF-SAT problem).
A literal in a boolean formula is an occurrence of a variable or its negation.
A boolean formula is in conjunctive normal form, or CNF, if it is expressed
as an AND of clauses, each of which is the OR of one or more literals. A
boolean formula is in 3-conjunctive normal form, or 3-CNF, if each clause
has exactly three distinct literals.

Below is the definition of X3C problem.

Definition 3.3. [GJ79](X3C problem).
Given a set B = {e1, ..., e3q} and a family S = {S1, ...,Sp} of 3-element
subsets of B, does S contain a subfamily such that every element in B
occurs in exactly one member of the subfamily?

Theorem 3.4. [GJ79] X3C problem is NP-complete.

Proof. Let us suppose that an instance of 3-CNF-SAT problem has n boolean
variables: x1, ..., xn and k clauses: C1, ...Ck. We give a O(n2k2)-time reduc-
tion from this instance to an instance of X3C problem.

Reduction:

1. The elements:

(a) For each variable xi, we create 4k elements:

ai,1, ..., ai,2k and bi,1, ..., bi,2k.

(b) For each clause Cj , we create 2 elements: cj and c′j .

(c) Futhermore, we create 2(n− 1)k elements:

q1, ..., q(n−1)k and q′1, ..., q
′
(n−1)k.

12
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2. The 3-element subsets:

(a) We suppose that a clause Cj contains the variables xn1 , xn2 , and
xn3 . If xn1 appears as a positive literal in Cj , we create a subset
{cj , c′j , bn1,2j−1}; otherwise, we create a subset {cj , c′j , bn1,2j}. xn2

and xn3 apply the same reduction.

(b) We create (n− 1)k subsets: {q1, q′1, bi,j}, ..., {q(n−1)k, q′(n−1)k, bi,j}
for each bi,j .

(c) For ai,1, ..., ai,2k, we create 2k subsets: {ai,j , ai,(j+1), bi,j} where
j ∈

[
1, 2k − 1

]
and {ai,2k, ai,1, bi,2k}.

As the number of elements created is

4kn+ 2k + 2(n− 1)k

and the number of 3-element subsets is

3k + 2n(n− 1)k2 + 2nk,

the reduction can finish in O(n2k2)-time. For example, let us consider a
3-CNF-SAT problem instance of 4 variables and 2 clauses where C1 =

(
x1∨

x2 ∨ x3
)

and C2 =
(
x2 ∨ x3 ∨ x4

)
. After the reduction, we have a set B of

elements:

B = {c1, c′1, c2, c′2,
a1,1, a1,2, a1,3, a1,4,

b1,1, b1,2, b1,3, b1,4,

a2,1, a2,2, a2,3, a2,4,

b2,1, b2,2, b2,3, b2,4,

a3,1, a3,2, a3,3, a3,4,

b3,1, b3,2, b3,3, b3,4,

a4,1, a4,2, a4,3, a4,4,

b4,1, b4,2, b4,3, b4,4,

q1, q2, q3, q4, q5, q6,

q′1, q
′
2, q
′
3, q
′
4, q
′
5, q
′
6}

13



3.1. The Complexity Classes of Problems

and a family S of 3-element subsets of B:

S =
{
{c1, c′1, b1,1}, {c1, c′1, b2,2}, {c1, c′1, b3,1},

{c2, c′2, b2,3}, {c2, c′2, b3,4}, {c1, c′1, b4,3},
{a1,1, a1,2, b1,1}, {a1,2, a1,3, b1,2}, {a1,3, a1,4, b1,3}, {a1,4, a1,1, b1,4},
...,

{a4,1, a4,2, b4,1}, {a4,2, a4,3, b4,2}, {a4,3, a4,4, b4,3}, {a4,4, a4,1, b4,4},
{q1, q′1, b1,1}, {q1, q′1, b1,2}, {q1, q′1, b1,3}, {q1, q′1, b1,4},
{q1, q′1, b2,1}, {q1, q′1, b2,2}, {q1, q′1, b2,3}, {q1, q′1, b2,4},
{q1, q′1, b3,1}, {q1, q′1, b3,2}, {q1, q′1, b3,3}, {q1, q′1, b3,4},
{q1, q′1, b4,1}, {q1, q′1, b4,2}, {q1, q′1, b4,3}, {q1, q′1, b4,4},
...,

{q6, q′6, b1,1}, {q6, q′6, b1,2}, {q6, q′6, b1,3}, {q6, q′6, b1,4},
{q6, q′6, b2,1}, {q6, q′6, b2,2}, {q6, q′6, b2,3}, {q6, q′6, b2,4},
{q6, q′6, b3,1}, {q6, q′6, b3,2}, {q6, q′6, b3,3}, {q6, q′6, b3,4},
{q6, q′6, b4,1}, {q6, q′6, b4,2}, {q6, q′6, b4,3}, {q6, q′6, b4,4}

}
.

Now we show that a 3-CNF-SAT problem is satisfiable if and only if the
reduced X3C problem has an exact cover.

Lemma 3.5. Given a 3-CNF-SAT problem instance, if the problem is sat-
isfiable, the reduced X3C problem has an exact cover.

Proof. As the 3-CNF-SAT problem is satisfiable, there is such an assignment
of variables that makes each clause is true. If the assignment of a variable
xi is true and xi appears as a positive literal in a clause Cj , the elements
cj , c

′
j can be exactly covered by the subsets {cj , c′j , bi,2j−1}.
Similarly, if the assignment of xi is false and xi appears as a negative

literal in a clause Cj , the elements cj , c
′
j can be exactly covered by the subsets

{cj , c′j , bi,2j}.
For the same i, the values of j of the covered elements bi,j above are all

even or odd, depending on the assignment of xi.
After applying the above procedure for all variables, we have that all

elements cj , cj′ are exactly covered. If not, there exists such a clause that
the assignments of its variables appearing as positive literals are false, and
the assignments of its variables appearing as negative literals are true. Thus,
the clause is not satisfiable which is a contradiction.

14
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Now, let us consider how to exactly cover the elements ai,1, ..., ai,2k. If bi,j
of an even number j have been covered, ai,1, ..., ai,2k can be exactly covered
by the subsets

{ai,1, ai,2, bi,1}, {ai,3, ai,4, bi,3}, ..., {ai,2k−1, ai,2k, bi,2k−1}.

Otherwise, ai,1, ..., ai,2k can be exactly covered by the subsets

{ai,2, ai,3, bi,2}, {ai,4, ai,5, bi,4}, ..., {ai,2k, ai,1, bi,2k}.

After covering ai,1, ..., ai,2k, we know that k elements bi,j are also covered
where j are all even or odd. Then, there are (n−1)k elements bi,j and (n−1)k
pairs of qi and q′i uncovered.

These elements can be exactly covered by the subsets {qi, q′i, bi′,j′}. As
shown in the reduction, there are exactly (n−1)k pairs of qi and q′i; for each
pair of qi and q′i, there are 2nk subsets {qi, q′i, bi′,j′}. Therefore, there is an
exact cover for the reduced X3C problem.

Lemma 3.6. Given a 3-CNF-SAT problem instance, if the reduced X3C
problem has an exact cover, the 3-CNF-SAT problem is satisfiable.

Proof. For a variable xi, we suppose that two clauses Cj and C ′j both contain
xi with different literals. Without loss of generality, we suppose that xi
appears as a positive literal in Cj and a negative literal in Cj′ . Then, we
can prove that the case of {cj , c′j , bi,2j−1} and {cj′ , c′j′ , bi,2j′} are in the exact
cover does not exist.

By the reduction, the elements ai,1, ..., ai,2k can only be exactly covered
by

{ai,1, ai,2, bi,1}, {ai,3, ai,4, bi,3}, ..., {ai,2k−1, ai,2k, bi,2k−1}

or
{ai,2, ai,3, bi,2}, {ai,4, ai,5, bi,4}, ..., {ai,2k, ai,1, bi,2k},

which means that we need k elements bi,j where j are all even or odd to
exactly cover ai,1, ..., ai,2k.

If {cj , c′j , bi,2j−1} and {cj′ , c′j′ , bi,2j′} are in the exact cover, there are at
most k − 1 uncovered elements bi,j where j are all even or odd. Then, this
observation leads to a contradiction that the elements ai,1, ..., ai,2k can not
be exactly covered.

Therefore, if the pair of cj , c
′
j is covered by {cj , c′j , bi,2j−1}, the pair of

cj′ , c
′
j′ would not be covered by {cj′ , c′j′ , bi,2j′}, and vice versa.

Now we show that there exists an assignment of variables such that makes
each clause is true. Let xi be true, if a pair of cj , c

′
j is covered by the subset
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{cj , c′j , bi,2j−1}; otherwise, let xi be false if the pair is covered by the subset
{cj , c′j , bi,2j}. By the reduction, the existing of subset {cj , c′j , bi,2j−1} means
that xi appears as a positive literal in Cj . Therefore, the true assignment of
xi makes the clause Cj is true. Similarly, the existing of subset {cj , c′j , bi,2j}
means that xi appears as a negative literal in Cj , and the assignment of xi
be false makes the clause Cj is true.

As 3-CNF-SAT problem is NP-complete [CLRS09], Lemma 3.5 and 3.6
lead to Theorem 3.4.

3.2 Erdős-Rényi Random Graphs and the
Probabilistic Method

In this section, we introduce the Erdős-Rényi random graphs. Moreover,
we list the main inequalities used in the probabilistic method.

In 1959, P. Erdős and A. Rényi introduced the random graph model
now named after them [ER59]. Contemporaneously, E. Gilbert introduced
a closely related random graph model independently [Gil59].

Definition 3.7. [ER59, Gil59] (G(n,M) model and G(n, p) model). In the
G(n,M) model, a graph with n vertices and M edges is chosen uniformly
at random from the collection of all graphs with n vertices and M edges. In
the G(n, p) model, a graph with n vertices is built by connecting any two
vertices with the same probability independently.

In this thesis, we analyze the properties of k-antiresolving sets in the
graph built by the G(n, p) model.

In the following section, we introduce some inequalities in the probabilis-
tic method. The first one is Markov’s inequality [Als11].

Theorem 3.8. [Als11] (Markov’s inequality). If X(integrable) is a nonneg-
ative random variable, then for any real number a > 0,

Pr{X ≥ a} ≤ E(X)

a
.
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Proof.

E(X) =

∫ ∞
0

x · dF (X)

≥
∫ ∞
a

x · dF (X)

≥
∫ ∞
a

a · dF (X)

= a ·
∫ ∞
a

dF (X)

= a · Pr{X ≥ a}

If X is a nonnegative integral valued random variable, then we know

Pr{X ≥ 1} = Pr{X > 0}.

By plugging a = 1 into Markov’s inequality, we get a special case of Markov’s
inequality.

Proposition 3.9. [AS00b] If X is a nonnegative integral valued random
variable, then

E(X) ≥ Pr{X > 0}.

By using Markov’s inequality, we can get Chebyshev’s inequality.

Theorem 3.10. [AS00b] (Chebyshev’s inequality). If X(integrable) is a
random variable with finite expected value µ and finite non-zero variance
σ2, then for any real number k > 0

Pr{|X − µ| ≥ kσ} ≤ 1

k2
.

Proof.

Pr{|X − µ| ≥ kσ} = Pr{|X − µ|2 ≥ k2σ2}

≤ E(|X − µ|2)
k2σ2

(by Markov’s inequality)

=
σ2

k2σ2

=
1

k2

17
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By setting kσ = µ, we can prove Theorem 4.3.1 in [AS00b].

Theorem 3.11. [AS00b]

Pr{X = 0} ≤ σ2

µ2

Proof.

Pr{X = 0} ≤ Pr{|X − µ| ≥ kσ} ≤ 1

k2
=
σ2

µ2
.

We suppose that X is a random variable can be decomposed by

n∑
i=1

Xi

where Xi is the indicator random variable for an event Ai. We say X1, ..., Xn

are symmetric if for every i 6= j there is an automorphism of the underlying
probability space that sends the event Ai to the event Aj . For indices i, j,
i ∼ j means the events Ai and Aj are not independent. Then we have the
following theorem.

Theorem 3.12. [AS00b] Let X is a random variable can be decomposed

by
n∑
i=1

Xi where Xi is the indicator random variable for an event Ai, and

X1, ..., Xn are symmetric. Let

∆∗ =
∑
i∼j

Pr{Aj |Ai}.

Then,
Var(X) ≤ E(X) · (1 + ∆∗).

Proof. Note that

Var(X) =
∑
i

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj)

where
Cov(Xi, Xj) = E(XiXj)− E(Xi) · E(Xj).

As Xi is the indicator random variable for the event Ai, then

Var(Xi) = Pr{Ai} · (1− Pr{Ai}).
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Clearly,
Var(Xi) ≤ Pr{Ai} = E(Xi).

Thus, ∑
i

Var(Xi) ≤ E(X).

As

Cov(Xi, Xj) = Pr{AiAj} − Pr{Ai}Pr{Aj}
= Pr{Ai} ·

(
Pr{Aj |Ai} − Pr{Aj}

)
,

if Ai and Aj are independent, then

Cov(Xi, Xj) = 0.

Otherwise,
Cov(Xi, Xj) ≤ Pr{Ai} · Pr{Aj |Ai}.

Therefore, ∑
i 6=j

Cov(Xi, Xj) ≤ ∆∗ ·
(∑

i

Pr{Ai}
)

= ∆∗ · E(X).

Moreover, in Chapter 5, we will apply Boole’s inequality (also called as
the union bound in discrete mathematics) and Fréchet inequalities (or called
as Boole-Fréchet inequalities).

Theorem 3.13. [LB11] (Boole’s inequality). For a finite set of events
A1, A2, ..., An,

Pr
{ n⋃
i=1

Ai

}
≤

n∑
i=1

Pr{Ai}.

Theorem 3.14. [LB11] (Fréchet inequalities). For a finite set of events
A1, A2, ..., An,

Pr
{ n⋂
i=1

Ai

}
≤ min

i∈[1,n]

(
Pr{Ai}

)
≤ max

i∈[1,n]

(
Pr{Ai}

)
.

Besides the above introduced inequalities, we also use Chernoff Bound
and Azuma-Hoeffding inequality. We will show their descriptions and proofs
in Appendix B.
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3.3 k-Metric Antidimension and (k, l)-Anonymity

The definition of k-metric antidimension comes from the concept of met-
ric dimension in graph theory. To illustrate the metric dimension, we first
introduce the concept of metric representation. Below is the formal defini-
tion of metric representation in [TRY16b].

Definition 3.15. [TRY16b] (Metric representation). Let G = (V,E) be
a simple connected graph and dG(u, v) be the length of a shortest path
between the vertices u and v in G. For a set S = {u1, ..., ut} of vertices in
V and a vertex v, we call the t-tuple r(v|S) := (dG(v, u1), ..., dG(v, ut)) the
metric representation of v with respect to S.

Given a simple connected graph G, let S be a set of vertices in G. For
any two vertices u, v /∈ S, if they have different metric representations with
respect to S, then we call S as a resolving set. The metric dimension of G
is the minimum cardinality of a resolving set.

In [KRR96], S. Khuller et al. showed a proof of that the problem of find-
ing the metric dimension of an arbitrary graph is NP-hard. In [EMRVY13],
A. Estrada-Moreno et al. generalized the metric dimension by k-metric di-
mension. A vertex set S is a k-metric generator if for any two vertices
u, v /∈ S, they are distinguished by at least k vertices in S. The minimum
cardinality of a k-metric generator is the k-metric dimension. They proved
that the problem of finding k-metric dimension is NP-hard.

A resolving set is what an adversary wants to plant in a social net-
work graph. To measure the resistance against adversaries’ privacy attacks
on anonymized social network graphs whose background knowledge is the
metric representation, R. Trujillo-Rasua et al. introduced the concept of
k-antiresolving set. Below is the formal definition of k-antiresolving set in
[TRY16b].

Definition 3.16. [TRY16b] (k-antiresolving set). Let G = (V,E) be a
simple connected graph and let S = {u1, ..., ut} be a subset of vertices of G.
The set S is called a k-antiresolving set if k is the greatest positive integer
such that for every vertex v ∈ V \ S, there exist at least k − 1 different
vertices v1, ..., vk−1 ∈ V \ S with r(v|S) = r(v1|S) = ... = r(vk−1|S), i.e., v
and v1 , ..., vk−1 have the same metric representation with respect to S.

With the k-antiresolving set, R. Trujillo-Rasua et al. also defined the
k-metric antidimension and k-antiresolving basis in [TRY16b].

Definition 3.17. [TRY16b] (k-metric antidimension and k-antiresolving
basis). The k-metric antidimension of a simple connected graph G = (V,E)
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is the minimum cardinality amongst the k-antiresolving sets in G and is
denoted by adimk(G). A k-antiresolving set of cardinality adimk(G) is called
a k-antiresolving basis for G.

If an adversary controls some vertices in an anonymized network graph,
the maximum probability that the adversary can distinguish others users by
their metric representations with respect to the adversary’s controlled ver-
tices is an important measure of privacy in the graph. The formal definition
of this measure is called (k, l)-anonymity [TRY16b].

Definition 3.18. [TRY16b] ((k, l)-anonymity). A graph G meets (k, l)-
anonymity with respect to active attacks if k is the smallest positive integer
such that the k-metric antidimension of G is lower than or equal to l.

3.4 Results and Related Works

We first studied the computational complexity of adimk(G) and (k, l)-
anonymity. Also, we studied the behavior of k-antiresolving sets in G(n, p)
where k and p are constants. Our main results are: (1) a reduction from
X3C problem to a decision version of the problem of computing adimk(G);
(2) three bounds on the size of k-antiresolving sets in G(n, p) with constant
p.

The reduction proves that the decision version of the problem of comput-
ing adimk(G) is NP-complete. Thus, the problem of computing adimk(G) is
NP-hard. From this conclusion, we show that the (k, l)-anonymity problem
is NP-complete.

For G(n, p) random graphs, we use w.h.p. as the abbreviation of with
high probability to mean that the occurrence probability of an event tends
to 1 when n tends to infinity. Then, we establish the following three bounds
of the size of k-antiresolving sets in G(n, p).

The first bound on the size of k-antiresolving sets is such an upper bound
that w.h.p. there is no k-antiresolving set where k ∈ O(1). The second
bound is such a lower bound that w.h.p. there is no k-antiresolving set
where k ∈ ω(1). The last bound is such a lower bound that w.h.p. there is
at least one k-antiresolving set where k ∈ O(1).

By the first and the last bound, we establish a range of the k-metric
antidimension where k ∈ O(1) in random graphs G(n, p).

In [CDM+16], T. Chatterjee et al. also proved that the problem of com-
puting adimk(G) is NP-hard independently. Moreover, they gave a O(n3)-
time (1 + ln(n− 1))-approximation algorithm for 1-antiresolving basis.
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In [MTRX16], S. Mauw et al. provided an efficient method to transform
a graph G into another graph G′ such that G′ is not (1,1)-anonymity. The
method is only based on the edge addition operation.

In [TRY16a], R. Trujillo-Rasua et al. studied how to decide whether a
graph is 1-metric antidimensional. They provided characterizations for 1-
metric antidimensional trees and unicyclic graphs. Futhermore, they gave
efficient algorithms to decide whether these two types of graphs are 1-metric
antidimensional.
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Chapter 4

The Complexity of
Computing adimk(G) and
(k, l)-Anonymity

In this chapter, we prove that the problem of computing adimk(G) in
an arbitrary simple connected graph is NP-hard. We prove this result by a
polynomial-time reduction from X3C problem to a decision version of the
problem of computing adimk(G). Then, we show that the (k, l)-anonymity
is also NP-complete.

4.1 The Complexity of Computing k-Metric
Antidimension

We first introduce some notations used in the proof. Let G = (V,E) be
a simple connected graph, S be a subset of V , and v be a vertex in V \ S.
We define

NS (v) = {u : u ∈ S, u and v are neighbors}.

For two vertices u, v in V \S, we use u =S v to mean r(u|S) = r(v|S) where
r(u|S) and r(v|S) are the metric representations of u and v with respect to
S (see Definition 3.15). Moreover, we denote

{v : v ∈ V \ S, r(v|S) = r′}

by VS [r′] for a metric representation r′ with respect to S. Then, we show
two properties of k-antiresolving sets in simple connected graphs.

Proposition 4.1. Let S′ be a subset of a k-antiresolving set S in a simple
connected graph G. If there is such a metric representation r with respect to
S′ that 0 < |V

S′ [r]| < k, then V
S′ [r] ⊂ S.

By the definition of k-antiresolving set, we know this proposition is true.
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Proposition 4.2. Let G be a simple connected graph, S be a k-antiresolving
set in G with k ≥ 3, and Pn = {vp1 , ..., vpn} be a path in G satisfying : (1)
the degree of the vertex vpn is equal to 1; (2) the degree of the vertex vpi is
equal to 2 where i ∈ [2, n−1]. Then, Pn ⊆ S, if any vpi ∈ S where i ∈ [2, n].

Proof. By the definition of k-antiresolving set, for a vertex v in S,

|N
V \S (v)| = 0

or
|N

V \S (v)| ≥ k.
Therefore, if a vertex vpi ∈ S where i ∈ [2, n], its neighborhood

{vpi−1 , vpi+1} ⊂ S.

Similarly, the neighborhood of vpi−1 is a subset of S if i − 1 > 1, and the
neighborhood of vpi+1 is a subset of S if i + 1 < n. By repeating this
observation, we get that Pn ⊆ S.

We prove that the following decision version of the problem of com-
puting adimk(G) is NP-complete: given two integers k and m, is there a
k-antiresolving set of the cardinality is less than or equal to m in a simple
connected graph G = (V,E)?

Given a subset of vertices in V , in polynomial time of |V |, we can verify
that whether the cardinality of the subset is less than or equal to m, and
whether the subset is a k-antiresolving set. Therefore, this decision problem
belongs to the class NP.

We prove the NP-completeness by a reduction from the X3C problem.

4.1.1 A Reduction from the X3C Problem

Given an instance of the X3C problem: a set B = {e1, ..., e3q} and a
family S = {S1, ...,Sp} of 3-element subsets of B, we suppose p − q ≥ 12.
If not, we create such a set B′ = {e3q+1, ..., e3q+36} and a family S ′ =
{Sp+1, ...,Sp+24} of 3-element subsets of B′ that S ′ contains an exact cover
for B′. Then, we get a new instance of X3C with B ∪ B′ and S ∪ S ′ that
satisfies our assumption. Clearly, S ∪ S ′ contains an exact cover for B ∪B′
if and only if S contains an exact cover for B.

Let n be such an integer that b(p − q)/3c < n < b(p − q)/2c. We
construct a simple connected graph G = (V,E) with |V | = 3qn(q + 2) + p
from an instance of X3C with 3q elements and p subsets as follows. Note
that n < b(p − q)/2c. Thus, we can get G in polynomial time of p and q.
Fig. 4.1 shows the gadget corresponding to a subset Si = {ea, eb, ec}.
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1. Vertices

(a) For each Si, we create a vertex vSi .

(b) For each ei, we create n vertices vei,1 , ..., vei,n .

(c) For each vei,j , we create q + 1 vertices vpi,j,1 , ..., vpi,j,q+1 .

2. Edges

(a) We create edges {vSi , vSj} where i 6= j.

(b) We create edges {vei,j , vei′,j′} where i 6= i′ or j 6= j′.

(c) For each vpi,j,1 , ..., vpi,j,q+1 , we create a path = {vpi,j,1 , ..., vpi,j,q+1}.
(d) For each vei,j , we create edges {vei,j , vpi′,j′,1} where i 6= i′ or j 6= j′.

(e) If a subset Si = {ea, eb, ec}, we create edges {vSi , vea,j}, {vSi , veb,j},
and {vSi , vec,j} for all j ∈ [1, n].

vea,1 .... vea,n veb,1 .... veb,n vec,1 .... vec,n

vSi

vpa,1,1

.

.
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.

.

.

.

.

.

.
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.
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.
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.

vpc,1,q+1
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.

.

.

.
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.
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. vpc,n,1

.
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.

.

vpc,n,q+1

Figure 4.1: A gadget for a subset Si = {ea, eb, ec}
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4.1.2 The NP-completeness Proof: Sufficient Condition

Lemma 4.3. If the X3C problem has an exact cover Sc, there exists such a
(p− q)-antiresolving set S in G that |S| ≤ q.

Proof. Let VSc and VS be the sets of vertices corresponding to the subsets in
Sc and S. Then, there are three types of metric representations with respect
to VSc :

1. the q-tuple (1, ..., 1) for the vertex in VS \ VSc ;

2. a q-tuple where only one element is 1 and the remaining elements are
2 for the vertex vei,j ;

3. the q-tuple (`+ 1, ..., `+ 1) for the vertex vpi,j,` .

As Sc is an exact cover, then

|VSc | = q and |VS \ VSc | = p− q.

Thus, the number of vertices having the first type of metric representations
with respect to VSc is p− q.

Clearly, for a vertex vei,j , there are 3n− 1 different vertices vei′,j′ where
vei′,j′ =VSc

vei,j . Moreover, for a vertex vpi,j,l , there are 3qn − 1 different

vertices vpi′,j′,l where vpi′,j′,l =VSc
vpi,j,l .

As 3qn > 3n > p− q, then VSc is a (p− q)-antiresolving set.

4.1.3 The NP-completeness Proof: Necessary Condition

Lemma 4.4. If there is such a (p−q)-antiresolving set S in G that |S| ≤ q,
the X3C problem has an exact cover.

Proof. We claim three facts:

1. the vertex vei,j /∈ S and the vertex vpi,j,l /∈ S;

2. |S| = q;

3. the metric representation of vei,j with respect to S has one element
valued 1 and the remaining |S| − 1 elements valued 2.

The vertex vpi,j,l where l ∈ [2, q + 1] is not in S. If not, by Proposition 4.2,
the path {vpi,j,1 , ..., vpi,j,q+1} ⊆ S due to that p − q ≥ 12. But, the length
of the path {vpi,j,1 , ..., vpi,j,q+1} is q + 1 which leads to a contradiction that
|S| ≥ q + 1.
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4.1. The Complexity of Computing k-Metric Antidimension

Similarly, the vertex vei,j is not in S. If not, we suppose that a vertex
vei,j is in S. The metric representation of the corresponding vpi,j,q+1 with
respect to {vei,j} is (q+2), and only this vertex has the metric representation
(q + 2) with respect to {vei,j}. Then, by Proposition 4.1, the vertex vpi,j,q+1

should be in S which is a contradiction.
Now, we consider two cases for the vertex vpi,j,1 :

1. more than two vertices vpi,j,1 and vpi′,j′,1 are in S;

2. only one vertex vpi,j,1 is in S.

In Case 1, the metric representation of the corresponding vpi,j,2 with
respect to {vpi,j,1 , vpi′,j′,1} is (1, 3). Only this vertex has the metric represen-
tation (1, 3) with respect to {vpi,j,1 , vpi′,j′,1}. Thus, by Proposition 4.1 again,
the vertex vpi,j,2 should be in S which is a contradiction.

In Case 2, as {vpi,j,1} is not a (p − q)-antiresolving set, there is at least
a vertex vSi′ in S. Similarly, only the corresponding vertex vpi,j,2 has the
metric representation (1, 3) with respect to {vpi,j,1 , vSi′} which leads to the
same contradiction as Case 1.

To prove |S| = q, we first suppose |S| < q. Then more than p−q vertices
vSi /∈ S have

r(vSi |S) = (1, ..., 1).

Moreover, 3qn vertices vpi,j,l where l ∈ [1, q + 1] have

r(vpi,j,l |S) = (l + 1, ..., l + 1).

Only vertices vei,j may have the metric representations with respect to S dif-
ferent from the above two metric representations with respect to S. However,
for any vei,j , the number of vertices having the same metric representation
of vei,j with respect to S is an integer multiple of n. Note that

bp− q
3
c < n < bp− q

2
c

which means an integer multiple of n is not equal to p− q. Hence, S is not a
(p− q)-antiresolving set that is a contradiction. Therefore, we have |S| ≥ q.
As |S| ≤ q, then |S| = q.

By the discussion in the above proof, the metric representation of vei,j
with respect to S should not be (1, ..., 1). Futhermore, if

r(vei,j |S) 6= (2, ..., 2),

we can prove that there is only one element valued 1 in r(vei,j |S).

27
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If not, there are such three vertices va, vb, and vc in S that

r(vei,j |{va, vb, vc}) = (1, 1, 2).

As S is a (p − q)-antiresolving set, there should be such 3n − 1 different
vertices vei′,j′ that

r(vei′,j′ |{va, vb, vc}) = (1, 1, 2).

Because by the assumption of n, only 3n is greater than p − q. Let Sa
and Sb be the 3-element subsets in S corresponding to va and vb. By the
construction of G, we get Sa = Sb which contradicts that no subsets in S
are equal.

Also, we prove that r(vei,j |S) 6= (2, ..., 2). If not, let Ve be the set of
vertices vei,j that are adjacent to at least one vertex in S. For a vertex
v ∈ Ve, r(v|S) has only one element valued 1, and there should be such
3n − 1 different vertices v′ ∈ Ve that v′ =S v. As |Ve| < 3qn, at least one
vertex in S is not adjacent to any vertex vei,j . Let S ′ be the 3-element subset
in S corresponding to this vertex in S that has no connection to any vei,j .
Then, we have that S ′ = ∅ which contradicts that S ′ is a 3-element subsets.

Let Sc be the subfamily of 3-element subsets in S corresponding to the
vertices in S. By the three claims, we know that Sc is an exact cover for
B.

4.1.4 The Problem of Computing k-Metric Antidimension
is NP-hard

Theorem 4.5. The problem of computing adimk(G) is NP-hard.

Proof. Lemma 4.3 and 4.4 complete a polynomial-time reduction from the
X3C problem to the decision version of the problem of computing adimk(G).
As the X3C problem is NP-complete, the decision version of the problem of
computing adimk(G) is also NP-complete.

Clearly, the answer of the decision version problem is true if and only
if adimk(G) ≤ m. Therefore, the problem of computing adimk(G) is NP-
hard.

4.2 The Computational Complexity of the
(k, l)-Anonymity Problem

Corollary 4.6. The (k, l)-anonymity problem is NP-complete.

28



4.2. The Computational Complexity of the (k, l)-Anonymity Problem

Proof. [CDM+16] shows that computing adim1(G) is NP-hard. Then, we
give an algorithm that can compute adim1(G) in O(|V |)-time of calling
(k, l)-anonymity.

Let L initialize by 1. Then, the algorithm does the following loop until
L = |V | − 1. In the loop, the algorithm checks whether G meets (1,L)-
anonymity. If the answer is true, the algorithm stops the loop. Otherwise,
the algorithm increases L by 1 and repeats the loop. After the loop, the
algorithm returns L.

By the definition of the (k, l)-anonymity problem, the return value of this
algorithm is adim1(G). Thus, the (k, l)-anonymity problem is NP-complete.

29



Chapter 5

The k-Metric Antidimension
in Random Graphs

As shown in Corollary 4.6, it is hard to get an exact relationship between
k and l. To estimate the relationship between these two parameters, we
study the k-metric antidimension in random graphs. We wish this study
could help us characterize the trade-off between the level of anonymity and
the minimum cost of achieving such level of anonymity. For k ∈ O(1) and
k ∈ ω(1), we establish three bounds on the size of k-antiresolving sets in
G(n, p) where p is constant.

5.1 The Definition of Relaxed Metric
Representation

Clearly, the shortest-path distance between different pairs of vertices are
not mutually independent in G(n, p). Thus, the analysis of k-metric antidi-
mension is much more difficult than the analysis of the size of cliques and
independent sets in [JLR00]. To overcome the difficulty from the correlation
among distances, we introduce the concept of a relaxed metric representation
and establish bounds on the size of k-antiresolving sets under the relaxed
metric representation. Then, we convert these bounds to the bounds on the
size of k-antiresolving sets under the standard metric representation, by tak-
ing into the consideration of an observation on the diameter of the random
graph G(n, p).

In the relaxed metric representation, we use the relaxed shortest-path
distance instead of the shortest-path distance.

Definition 5.1. Given two vertices vi, vj in G(n, p), we define the relaxed
shortest-path distance dij as

dij =

{
1 : vi and vj are adjacent,
∗ : otherwise.
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5.2 The First Bound on the Size of
k-Antiresolving Sets

For a set S of vertices and a vertex v /∈ S, we denote the relaxed metric
representation of v with respect to S by r∗(v|S). Also, we denote the family
of metric representations and relaxed metric representations with respect to
S by RS and R∗S .

Given a G(n, p) where p is constant, let

pm = min(p, 1− p),

Cα = min
[α2

2
, (1 + α) ln(1 + α)− α

]
,

ε = ln
[ (2 + β)

Cα ln( 1
pm

)
ln2(n)

]
· [ln(n)]−1

where α, β are arbitrary positive constants. We have the following theorem.

Theorem 5.2. Given a random graph G(n, p) where p is constant, w.h.p.
there is no k-antiresolving set S where k ∈ O(1) satisfying

|S| ≤ (1− ε) log 1
pm

(n)

where pm = min(p, 1− p).

Proof. Let S be such a subset of vetices in G(n, p) that

|S| ≤ (1− ε) log 1
pm

(n).

Given a vertex v /∈ S and a relaxed metric representation r′∗ ∈ R∗S , we define

I∗v (r′∗, S) =

{
1 : r∗(v|S) = r′∗,
0 : otherwise

and
X∗r′∗(S) =

∑
v/∈S

I∗v (r′∗, S).

By the definition of G(n, p), the relaxed shortest-path distances between v
and vertices in S are mutually independent. Therefore,

E(I∗v (r′∗, S)) = pβ1(r
′
∗) · (1− p)|S|−β1(r′∗),

E(X∗r′∗(S)) ≥ (n− |S|) · p|S|m
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5.2. The First Bound on the Size of k-Antiresolving Sets

where β1(r
′
∗) is the number of 1 in r′∗. By the assumptions of α and ε,

(n− |S|) · p|S|m ≥ nε − |S| · nε−1,

nε =
(2 + β)

Cα ln( 1
pm

)
ln2(n).

Thus,
min(E(X∗r′∗(S))) ∈ Ω(ln2(n)).

We define E∗(r′∗, S) as the event

|X∗r′∗(S)− E(X∗r′∗(S))| ≤ αE(X∗r′∗(S)).

By Chernoff Bound, see Corollary A.1.14 in [JLR00],

Pr{∼E∗(r′∗, S)} = Pr{|X∗r′∗(S)− E(X∗r′∗(S))| ≥ αE(X∗r′∗(S))}

≤ 2e
−CαE(X∗

r′∗
(S))

.

Let r′ be a metric representation with respect to S where the corresponding
relaxed representation of r′ is r′∗. We define

Iv(r
′, S) =

{
1 : r(v|S) = r′,
0 : otherwise

and
Xr′(S) =

∑
v/∈S

Iv(r
′, S).

Let E(r′, S) be the event

|Xr′(S)− E(X∗r′∗(S))| ≤ αE(X∗r′∗(S)).

Let D≤2 be such the event that the diameter of G(n, p) is less than or equal
to 2. We can rewrite the event

∼
E(r′, S) as

(
∼
E(r′, S) ∩D≤2) ∪ (

∼
E(r′, S) ∩∼ D≤2).

Note that the event
∼
E(r′, S) ∩D≤2 is exactly the event

∼
E∗(r′∗, S) ∩D≤2.

Therefore,

Pr{∼E(r′, S)} = Pr{∼E∗(r′∗, S) ∩D≤2}+ Pr{∼E(r′, S) ∩∼ D≤2}
≤ Pr{∼E∗(r′∗, S)}+ Pr{∼D≤2}.
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Note that two vertices have the shortest-path distance greater than 2 if
and only if they have no common neighbor. Let X be the number of pairs
of vertices in G(n, p) that they have no common neighbor. By Markov’s
inequality,

Pr{∼D≤2} = Pr{X > 0} ≤ E(X) =

(
n

2

)
(1− p2)n−2.

Let E(S) be the event ⋂
r′∈RS

E(r′, S).

By the union bound,

Pr{E(S)} ≥ 1− n|S| ·
[
2e−Cα(n−|S|)·p

|S|
m +

(
n

2

)
(1− p2)n−2

]
.

Note that (
n

k

)
≤ nk

k!
≤ nk√

2πk(k/e)k
≤ nk

(k/e)k
= (

en

k
)k.

Let
A = |{S : S ⊂ V (G), |S| ≤ (1− ε) log 1

pm

(n),
∼
E(S)}|.

Then,

lim
n→∞

E(A) = lim
n→∞

(
n

|S|

)
Pr{∼E(S)}

≤ lim
n→∞

(
en

|S|
)|S| · n|S| ·

[
2e−Cα(n−|S|)·p

|S|
m +

(
n

2

)
(1− p2)n−2

]
≤ lim

n→∞
2 ·
{
en2

|S|
·
[
eCαn

ε−1

n2+β
+

((
n

2

)
(1− p2)n−2

) 1
|S|
]}|S|

= 0.

By Markov’s inequality, we get that lim
n→∞

Pr{A = 0} = 1.

5.3 The Second Bound on the Size of
k-Antiresolving Sets

Theorem 5.3. Given a random graph G(n, p) with constant p, w.h.p. there
is no k-antiresolving set S where k ∈ ω(1) satisfying

|S| ≥ log 1
2p2−2p+1

(n).
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5.3. The Second Bound on the Size of k-Antiresolving Sets

Proof. We use Iv(r
′, S) as the definition in the above theorem, as well as

pm. Let S be such a subset of vetices in G(n, p) that

|S| ≥ log 1
2p2−2p+1

(n).

We consider two cases of |S|:

1. |S| ∈ Θ(n);

2. |S| ∈ o(n).

In Case 1,
Pr{Iv(r′, S) = 1} ≤ (1− pm)|S|.

Let E(r′, S) be the event ∑
v/∈S

Iv(r
′, S) ∈ ω(1).

Thus,

Pr{E(r′, S)} ≤
(

n

ω(1)

)
(1− pm)|S|ω(1).

Let E(S) be the event that S is a k-antiresolving set where k ∈ ω(1). By
Fréhet inequalities,

Pr{E(S)} = Pr{
⋂

r′∈RS

E(r′, S)} ≤
(

n

ω(1)

)
(1− pm)|S|ω(1).

Let
A = |{S : S ⊂ V (G), |S| ∈ Θ(n), E(S)}|.

By the notation of Θ, there are such a n0 and a positive constant c1 that
when n > n0, then c1n ≤ |S|. Thus,

lim
n→∞

E(A) = lim
n→∞

(
n

|S|

)
Pr{E(S)}

≤ lim
n→∞

[
ne

ω(1)( 1
1−pm )

|S|
2

]ω(1)
·
[

ne

|S|( 1
1−pm )

ω(1)
2

]|S|

≤ lim
n→∞

[ 1
c1
e

( 1
1−pm )

ω(1)
2

]|S|
= 0

which leads to lim
n→∞

Pr{A = 0} = 1.
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5.3. The Second Bound on the Size of k-Antiresolving Sets

In Case 2, we claim the following fact: if |RS | ∈ Θ(n− |S|), then S is a
k-antiresolving set of constant k. If not, for any r′ ∈ RS , we have∑

v/∈S

Iv(r
′, S) ∈ ω(1).

Therefore, by Proposition A.7, the number of vertices /∈ S belongs to

ω(1) ·Θ(n− |S|) ∈ ω(n− |S|).

This conclusion contradicts that the number of vertices /∈ S is exactly n−|S|.
In Case 2, we can prove that E(|R∗S |) ∈ Θ(n− |S|)). Let r′∗ be a relaxed

metric representation in R∗S . We define IS(r′∗) as

IS(r′∗) =

{
1 : ∃v /∈ S where r∗(v|S) = r′∗,
0 : otherwise.

Then,

Pr{IS(r′∗) = 1} = 1−
[
1− pβ1(r′∗)(1− p)|S|−β1(r′∗)

]n−|S|
. (5.1)

We denote
pβ1(r

′
∗)(1− p)|S|−β1(r′∗)

by Φ. By ex ≥ 1 + x, we have

(1− x)n ≤ e−nx

for n > 0. By e−x ≤ 1− x+ x2/2 for x > 0, we have

1− (1− x)n ≥ nx− (nx)2

2

for x, n > 0. Applying this inequality to (5.1), we get

Pr{IS(r′∗) = 1} ≥ [Φ · (n− |S|)]− [Φ · (n− |S|)]2

2

which leads to

E(|R∗S |) ≥
|S|∑

β1(r′∗)=0

(
|S|

β1(r′∗)

){
[Φ · (n− |S|)]− [Φ · (n− |S|)]2

2

}

≥ (n− |S|) ·
( |S|∑
β1(r′∗)=0

Φ
)
− (n− |S|)2

2
·
( |S|∑
β1(r′∗)=0

Φ2
)

= (n− |S|)− (n− |S|)2

2
(2p2 − 2p+ 1)|S|

≥ (n− |S|)− 1

2
n2(2p2 − 2p+ 1)|S| − 1

2
|S|2(2p2 − 2p+ 1)|S|.
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5.3. The Second Bound on the Size of k-Antiresolving Sets

As the assumption
|S| ≥ log 1

2p2−2p+1
(n),

we get
E(|R∗S |) ∈ Ω(n− |S|).

Obviously,
|R∗S | ≤ n− |S|.

Then,
E(|R∗S |) ∈ Θ(n− |S|)).

To follow Azuma-Hoeffding inequality, we define mutually independent
random variables

Zv1 , ..., Zvn−|S|

where v1, ..., vn−|S| /∈ S and Zvi = r∗(vi|S). Also, we define a function

f(Zv1 , ..., Zvn−|S|) = |R∗S |.

If two vectors z, z′ ∈
∏n−|S|
i=1 r∗(vi|S) are different with only one coordinate,

|f(z)− f(z′)| ≤ 1.

Let α be an arbitary positive constant. By Azuma-Hoeffding inequality, see
Corollary 2.27 in [JLR00],

Pr{
∣∣|R∗S | − E(|R∗S |)

∣∣ ≥ αE(|R∗S |)} ≤ 2e
− (αE(|R∗S |))

2

2(n−|S|) .

As
E(|R∗S |) ∈ Θ(n− |S|),

there are such a n0 and a positive constant c1 that when n > n0, then

c1(n− |S|) ≤ E(|R∗S |).

Let E(S) be the event
|RS | ∈ Θ(n− |S|)

and E∗(S) be the event
|R∗S | ∈ Θ(n− |S|).

Clearly,
|RS | ≥ |R∗S |.
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Thus,
Pr{∼E(S)} ≤ Pr{∼E∗(S)}

which means
lim
n→∞

Pr{∼E(S)} ≤ 2e−Cα(n−|S|)

where Cα = (αc1)
2/2. Let

A = |{S : S ⊂ V (G), |S| ≥ log 1
2p2−2p+1

(n), |S| ∈ o(n),
∼
E(S)}|.

Then,

lim
n→∞

E(A) = lim
n→∞

(
n

|S|

)
Pr{∼E(S)}

≤ lim
n→∞

2 ·
( ne
|S|
)|S|

e−Cα(n−|S|)

= lim
n→∞

2 ·
[ e · n|S|
e
Cα(

n
|S|−1)

]|S|
= 0.

Thus, we have that lim
n→∞

Pr{A = 0} = 1.

5.4 The Third Bound on the Size of
k-Antiresolving Sets

Theorem 5.4. Given a random graph G(n, p) with constant p, w.h.p. there
is at least one k-antiresolving set S where k ∈ O(1) satisfying

|S| ≥ log 1
pm

(n)

where pm = min(p, 1− p).

Proof. As shown in the above theorem, we only need to consider the case

|S| ∈ Θ(log 1
pm

(n)).

We define rS∗ as such the relaxed metric representation with respect to S
that

Pr{I∗v (rS∗ , S) = 1} = p|S|m .

Let E(S) be the event that S is a k-antiresolving set where k ∈ O(1) and
E′(S) be the event that ∑

v/∈S

I∗v (rS∗ , S) = c
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5.4. The Third Bound on the Size of k-Antiresolving Sets

where c is constant. Clearly,

E′(S) ⊆ E(S).

Let

A = |{S : S ⊂ V (G), |S| ≥ log 1
pm

(n), |S| ∈ Θ(log 1
pm

(n)), E′(S)}|.

Then,

E(A) =

(
n

|S|

)
Pr{E′(S)} =

(
n

|S|+ c

)
p|S|cm (1− p|S|m )n−|S|−c.

Note that
n

k
≤ n− 1

k − 1

for n ≥ k that leads to (
n

k

)
≥
(n
k

)k
.

As the assumption that p
|S|
m ≤ 1/n, then

(1− p|S|m )n−|S|−c ≥ (1− 1

n
)n−|S|−c ≥ (1− 1

n
)n ≥ 1

4

for n ≥ 2 due to (1− 1
n)n increases as n increases. Thus,

E(A) ≥ 1

4
·
( npc

|S|+ c

)|S|
·
( n

|S|+ c

)c
.

Then,
lim
n→∞

E(A) =∞.

To prove
lim
n→∞

Pr{A = 0} = 0,

we first prove
Var(A) ∈ o((E(A))2).

Let

dm =

{
1 : p = pm,
∗ : otherwise.

To apply Theorem 3.16, for two subsets of vertices S and S′, we consider
two cases:
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5.4. The Third Bound on the Size of k-Antiresolving Sets

1. |S| = |S′|, S 6= S′, S ∩ S′ 6= ∅;

2. |S| = |S′|, S 6= S′, S ∩ S′ = ∅.

In Case 1, let y = |S∩S′|, vu be a vertex /∈ S′\S, and vt be a vertex ∈ S′\S,
then

Pr{dut = dm|E′(S)} = Pr{dut = dm, vu ∈ S|E′(S)}
+ Pr{dut = dm, vu /∈ S|E′(S)}

≤ |S|
n− |S|+ y

+ pm.

Thus,

Pr{r∗(v|S′) = rS
′
∗ |E′(S)} ≤ Pr{r∗(v|(S′ \ S)) = r

(S′\S)
∗ |E′(S)}

≤ (
|S|

n− |S|+ y
+ pm)|S

′|−y.

Let

fm(y) =
|S|

n− |S|+ y
+ pm

and z be the number of such vertices v /∈ S ∪ S′ that

r∗(v|S) = rS∗ and r∗(v|S′) = rS
′
∗ .

Then,

Pr{E′(S′)|E′(S)} ≤
(

n

c− z

)
[fm(y)]c(|S

′|−y).

Thus,

∑
S,S′

Pr{E′(S′)|E′(S)} ≤
c∑

z=0

|S|−1∑
y=1

(
n

c− z

)(
n

|S| − y

)
[fm(y)]c(|S|−y).

By changing variables z to c− z, y to |S| − y, we have

fm(y) =
|S|
n− y

+ pm,

∑
S,S′

Pr{E′(S′)|E′(S)} ≤
c∑

z=0

|S|−1∑
y=1

(
n

z

)(
n

y

)
[fm(y)]cy.
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As y ∈ O(ln(n)), there exists such a n0 that when n > n0, then(
n

y

)
[fm(y)]cy increases as y increases.

Thus,

lim
n→∞

max
y

[(
n

y

)
[fm(y)]cy

]
= lim

n→∞

(
n

|S| − 1

)
[fm(|S| − 1)]c(|S|−1).

Then, as the argument preceding in Theorem 3.16, we know∑
S,S′

Cov(S, S′) ≤ E(A) ·
{
c · nc · |S| ·

(
n

|S| − 1

)
· [fm(|S| − 1)]c(|S|−1)

}
.

Note that (
n

k

)
=
nk

k!
· (1− 1

n
) · · · (1− k − 1

n
)

≥ nk

k!
(1− k − 1

n
)k−1.

As (1− (k − 1)/n)k−1 decreases as k increases, if k ≤
√
n, then

(1− k − 1

n
)k−1 ≥ (1− 1√

n
)
√
n ≥ 1

4
.

Thus, for k ≤
√
n, we have (

n

k

)
≥ nk

4k!
.

Therefore,

E(A) ≥ n|S|+c

16(|S|+ c)!
· pc|S|m .

Then,

lim
n→∞

∑
S,S′ Cov(S, S′)

[E(A)]2
≤ lim

n→∞

16 · c · |S| · (|S|+ c)1+c · (1 + |S|
n−|S|+1 ·

1
pm

)c(|S|−1)

pcm · n
= 0.

In Case 2, let V ′ be the set of vertices v /∈ S′ where r∗(v|S′) = rS
′
∗ . Under

the case V ′ ∩ S = ∅, E′(S) and E′(S′) are independent events. Thus, the
corresponding covariance of E′(S) and E′(S′) is 0. If V ′ ∩ S 6= ∅, we define

z = |V ′ ∩ S|.

40



5.5. A Range of k-Metric Antidimension Where k ∈ O(1)

Then,

Pr{E′(S′)|E′(S)} ≤
c∑

z=1

(
|S|
z

)(
n− 2|S|
c− z

)
[fm(0)]c|S|.

Therefore, in Case 2,∑
S,S′

Cov(S, S′) ≤ E(A) ·
{( n

|S|

)
· c · |S|c · nc−1 · [fm(0)]c|S|

}
.

Hence,

lim
n→∞

∑
S,S′ Cov(S, S′)

[E(A)]2
≤ lim

n→∞

n|S|

|S|! · c · |S|
c · nc−1 · [fm(0)]c|S|

n|S|+c

16(|S|+c)! · p
c|S|
m

≤ lim
n→∞

16c · |S|c · (|S|+ c)c · [1 + |S|
n−|S| ·

1
pm

]c|S|

n
= 0.

The observations from Case 1 and 2 lead to the following conclusion:

Var(A) ∈ o([E(A)]2).

Thus, by Theorem 3.15,

lim
n→∞

Pr{A = 0} = 0.

As E′(S) ⊆ E(S), we know

lim
n→∞

Pr
{⋃

S

E(S)
}
≥ lim

n→∞
Pr
{⋃

S

E′(S)
}

= lim
n→∞

Pr{A > 0}

= 1.

5.5 A Range of k-Metric Antidimension Where
k ∈ O(1)

By Theorem 5.2 and 5.4, we get the following corollary.
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Corollary 5.5. Given a random graph G(n, p) with constant p, w.h.p.
adimk(G) where k ∈ O(1) is between

(1− ε) log 1
pm

(n) and log 1
pm

(n)

where

pm = min(p, 1− p),

ε = ln
[ (2 + β)

Cα ln( 1
pm

)
ln2(n)

]
· [ln(n)]−1,

Cα = min
[α2

2
, (1 + α) ln(1 + α)− α

]
,

α, β are arbitary positive constants.
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Chapter 6

Conclusion

In this thesis, we prove that the problem of computing adimk(G) is NP-
hard and the (k, l)-anonymity problem is NP-complete. Also, to study the
relationship between k and l, we establish three bounds on the size of k-
antiresolving sets in G(n, p) with constant p. With the bounds, we establish
a range of k-metric antidimension where k ∈ O(1) in random graphs G(n, p)
with constant p when n tends to infinity. To some extent, Corollary 5.5
shows that, when the size of an anonymized social network increases, an
adversary can keep a probability which is independent on the network size to
re-identify other anonymized users by adding only a few controlled vertices.

Futhermore, for applications of checking whether an anonymized social
network has the potential danger to leak user’s privacy, the three bounds
can be seen as indicators if an adversary controls such many vertices.

For the future study, we are looking for an exact algorithm better than
the brute force algorithm to find a k-antiresolving basis in a simple connected
graph. Besides that, a gap of Θ(ln(ln(n))) exists between the first bound
and the third bound. We conjecture that log 1

pm

(n) is the sharp threshold

for the appearance of k-antiresolving sets with constant k in G(n, p). For
the second bound, we also conjecture that it has a lower value.

Moreover, how to efficiently add noise (e.g., fake vertices and edges) into
anonymized social networks to against privacy attacks is another interesting
topic.
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Appendix A

The Asymptotic Notations

The asymptotic notations describe different sets of functions which help
abstract away some details of functions. We use the asymptotic notations
to analyze the worst-case running time of algorithms or the behavior of
functions. For example, we say an2+bn and cn2 belong to the same set where
a, b, and c are constants. Because when n is big enough, n2 becomes the
dominated factor of these two polynomials. Below is the formal definitions
of asymptotic notations in Chapter 3 of [CLRS09].

A.1 Θ-Notation

Definition A.1. [CLRS09](Θ-notation). For a given function g(n), we
denote the set of funcions by Θ(g(n)) where

Θ(g(n)) = {f(n) : there exist such positive constants c1, c2, and n0 that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}.

Because Θ(g(n)) is a set, we could use f(n) ∈ Θ(g(n)) to indicate a
function f(n) belongs to the set Θ(g(n)). If f(n) ∈ Θ(g(n)), we know there
exist such c1, c2, and n0 that f(n) is sandwiched between c1g(n) and c2g(n).
Then we can say g(n) is an asymptotically tight bound for f(n). Moreover,
Θ-notation has the symmetry property:

f(n) ∈ Θ(g(n)) if and only if g(n) ∈ Θ(f(n)).

This property can be proved directly from the definition of Θ-notation.

Proof. If f(n) ∈ Θ(g(n)), there exist such positive constants c1, c2, and n0
that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

when n ≥ n0. Then when n ≥ n0, we have

0 ≤ 1

c2
f(n) ≤ g(n) ≤ 1

c1
f(n).

As c1 and c2 are constants, 1/c1 and 1/c2 are also constants. Based on the
definition of Θ-notation, we know g(n) ∈ Θ(f(n)).
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A.2. O-Notation and Ω-Notation

A.2 O-Notation and Ω-Notation

When describing an asymptotic upper bound, we use O-notation.

Definition A.2. [CLRS09](O-notation). For a given function g(n), we
denote the set of funcions by O(g(n)) where

O(g(n)) = {f(n) : there exist such positive constants c and n0 that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.

Just like an asymptotic upper bound, we denote an asymptotic lower
bound by Ω-notation.

Definition A.3. [CLRS09](Ω-notation). For a given function g(n), we de-
note the set of funcions by Ω(g(n)) where

Ω(g(n)) = {f(n) : there exist such positive constants c and n0 that

0 ≤ cg(n) ≤ f(n) for all n ≥ n0}.

From the definitions of asymptotic notations Θ, O, and Ω, we can prove
the following theorem in [CLRS09].

Theorem A.4. [CLRS09] For two functions f(n) and g(n), we have f(n) ∈
Θ(g(n)) if and only if f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

Proof. If f(n) ∈ Θ(g(n)), we know there exist such positive constants c1, c2,
and n0 that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

when n ≥ n0. Then we have f(n) ∈ O(g(n)) because there exist such
positive constants c2 and n0 that

0 ≤ f(n) ≤ c2g(n)

when n ≥ n0. Similarly, as there exist such positive constants c1 and n0
that

0 ≤ c1g(n) ≤ f(n)

when n ≥ n0, we know f(n) ∈ Ω(g(n)).
If f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)), there exist such positive constants

c2 and n2 that
0 ≤ f(n) ≤ c2g(n)
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when n ≥ n2, and there exist such positive constants c1 and n1 that

0 ≤ c1g(n) ≤ f(n)

when n ≥ n1. Let n0 = max(n1, n2), then

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

when n ≥ n0.

A.3 o-Notation and ω-Notation

In some cases, O-notation may be not asymptotically tight. As the
example in [CLRS09], O(n2) is asymptotically tight for 2n2, but it is not
asymptotically tight for 2n. We denote an upper bound but not an asymp-
totically upper bound by o-notation.

Definition A.5. [CLRS09](o-notation). For a given function g(n), we de-
note the set of funcions by o(g(n)) where

o(g(n)) = {f(n) : for any positive constant c, there exists such a positive

constant n0 that 0 ≤ f(n) < cg(n) for all n ≥ n0}.

If f(n) ∈ o(g(n)), the function f(n) becomes insignificant compared with
g(n) when n tends to infinity. By the definition of a limit in preliminary
calculus, we get

lim
n→∞

f(n)

g(n)
= 0.

Similarly, we use ω-notation to denote a lower bound but not an asymptot-
ically lower bound.

Definition A.6. [CLRS09](ω-notation). For a given function g(n), we de-
note the set of funcions by ω(g(n)) where

ω(g(n)) = {f(n) : for any positive constant c, there exists such a positive

constant n0 such that 0 ≤ cg(n) < f(n) for all n ≥ n0}.

If f(n) ∈ ω(g(n)), we know

lim
n→∞

f(n)

g(n)
=∞.

The asymptotical notations have the following property.
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Proposition A.7. If a function f(n) = f1(n) · f2(n) where f1(n) ∈ ω(1)
and f2(n) ∈ Θ(g(n)), then f(n) ∈ ω(g(n)).

Proof. By f2(n) ∈ Θ(g(n)), we have that there exist such positive constants
c1 and n1 that when n ≥ n1, f2(n) ≥ c1 · g(n). For any positive constant
c, we can get a new constant c2 = c/c1. Then by f1(n) ∈ ω(1), there exists
such a positive constant n2 that when n ≥ n2, f1(n) > c2.

Let n0 = max(n1, n2). Then, for any positive constant c there exists
such a positive constant n0 that when n ≥ n0,

f(n) = f1(n) · f2(n) > c · g(n).

By the definition of ω-notation, we have f(n) ∈ ω(g(n)).
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Appendix B

The Probabilistic Method

In this chapter, we introduce Chernoff Bound and Azuma-Hoeffding In-
equality and give the proofs.

B.1 Chernoff Bound

We suppose that the distribution X follows the following assumption:
X1, ..., Xn are mutually independent indicator random variable with

Pr[Xi = 1− pi] = pi

Pr[Xi = −pi] = 1− pi
where

p1, ..., pn ∈ [0, 1].

We set

p =
p1 + ...+ pn

n

X = X1 + ...+Xn.

Lemma B.1. [AS00b] For real numbers α, β where |α| ≤ 1,

cosh(β) + α sinh(β) ≤ eβ2/2+αβ.

Proof. Clearly, if α = 1 or α = −1, the above inequality is true. Note that

eβ
2/2−|β| ≤ eβ2/2+αβ

and
cosh(β) + α sinh(β) ≤ 2e|β|.

Thus, if
|β| ≥ 100,

the inequality is true.
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Also, we know that
f(0, β) ≤ 0,

f(α, 0) = 0

where
f(α, β) = cosh(β) + α sinh(β)− eβ2/2+αβ.

We suppose that when |α| ≤ 1, α 6= 0 and |β| ≤ 100, β 6= 0, there exist such
α, β that f(α, β) > 0. Therefore, f(α, β) has a positive global maximum in
the range

R = {(α, β)||α| ≤ 1, α 6= 0, |β| ≤ 100, β 6= 0}.

Setting the partial derivatives equal to zero, we get

∂f(α, β)

∂α
= sinh(β)− βeβ2/2+αβ = 0

∂f(α, β)

∂β
= sinh(β) + α cosh(β)− (α+ β)eβ

2/2+αβ = 0.

Thus,
tanh(β) = β

that means
β = 0

which is a contradiction.

Corollary B.2. [AS00b] For real numbers θ, λ where θ ∈ [0, 1],

θeλ(1−θ) + (1− θ)e−λθ ≤ eλ2/8.

Proof. Setting

θ =
1 + α

2

and
λ = 2β,

we get Corollary B.2 from Lemma B.1.

Theorem B.3. [AS00b] For positive real numbers a,

Pr{|X| ≥ a} ≤ 2e−2a
2/n.
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Proof. From Corollary B.2, we know

E(eλXi) = pie
λ(1−pi) + (1− pi)e−λpi ≤ eλ

2/8.

Thus,

E(eλX) =
n∏
i=1

E(eλXi) ≤ eλ2n/8.

For λ > 0, we know

Pr{X ≥ a} = Pr{eλX ≥ eλa}.

Applying Markov’s inequality, we get

Pr{eλX ≥ eλa} ≤ E(eλX)

eλa
≤ eλ2n/8−λa.

Setting λ = 4a/n to optimize the inequality, we get

Pr{X ≥ a} ≤ e−2a2/n.

By symmetry, we get
Pr{X ≤ −a} ≤ e−2a2/n.

Lemma B.4. [AS00b]

E(eλX) ≤ e−λpn[peλ + (1− p)]n.

Proof.

E(eλX) =

n∏
i=1

E(eλXi) =
n∏
i=1

[pie
λ(1−pi) + (1− pi)e−λpi ]

= e−λpn
n∏
i=1

[pie
λ + (1− pi)].

With λ fixed, the function

f(x) = ln(xeλ + 1− x) = ln[x(eλ − 1) + 1]

is concave. Thus, by Jensen’s Inequality,

n∑
i=1

f(pi) ≤ nf(p).
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Exponentiating both sides, we have

n∏
i=1

[pie
λ + (1− pi)] ≤ [peλ + (1− p)]n.

Corollary B.5. [AS00b] For positive real numbers a, λ,

Pr{X ≥ a} ≤ e−λpn[peλ + (1− p)]ne−λa.

Proof.
Pr{X ≥ a} = Pr{eλX ≥ eλa}.

By Markov’s inequality,

Pr{eλX ≥ eλa} ≤ E(eλX)

eλa
.

Now applying Lemma B.4, we get Corollary B.5.

Setting
λ = ln(1 + a/pn),

we get Corollary B.6 by using the fact that

ea = e(a/n)n ≥ (1 + a/n)n,

Corollary B.6.

Pr{X ≥ a} ≤ ea−pn ln(1+a/pn)−a ln(1+a/pn).

Plugging a = (β − 1)pn into Corollary B.6, we get

Corollary B.7.

Pr{X ≥ (β − 1)pn} ≤ (eβ−1β−β)pn.

Lemma B.8. For positive real numbers a,

Pr{X ≤ −a} ≤ e−a2/2pn.
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B.1. Chernoff Bound

Proof. Let λ > 0. By the argument preceding in Lemma B.4, we get

E(e−λX) ≤ eλpn[pe−λ + (1− p)]n.

Thus,
Pr{X ≤ −a} ≤ eλpn[pe−λ + (1− p)]ne−λa.

We apply the inequality
1 + µ ≤ eµ

valid for all µ, and then we get

pe−λ + (1− p) = 1 + p(e−λ − 1) ≤ ep(e−λ−1).

Thus,

Pr{X ≤ −a} ≤ eλpn+np(e−λ−1)−λa = enp(e
−λ−1+λ)−λa.

We employ the inequality

e−λ ≤ 1− λ+ λ2/2

for λ > 0. Therefore,

Pr{X ≤ −a} ≤ e
npλ2

2
−λa.

We set λ = a/np to optimize the above inequality and get

Pr{X ≤ −a} ≤ e−a2/2pn

as claimed.

Note that Y = X + pn can be interpreted as the number of successes in
n independent trials when the probability of success in the i-th trial is pi.
Clearly,

E(Xi) = E(X) = 0.

Thus,
E(Y ) = E(X) + np = np.

Then, we can get the following result.

Theorem B.9. [AS00b] Let Y be the sum of mutually independent indicator
random variables, µ = E(Y ). For all constants ε > 0,

Pr{|Y − µ| > εµ} < 2e−cεµ,

where cε is a constant only depending on ε.

Proof. Applying Corollary B.7 and Lemma B.8 with

cε = min(− ln(eε(1 + ε)−(1+ε)), ε2/2),

we get Theorem B.9.
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B.2. Azuma-Hoeffding Inequality

B.2 Azuma-Hoeffding Inequality

Given a probability space (Ω,F , P ), we define G as a subset of F and
suppose X as a random variable on F . There are two equivalent versions
of the definition of the conditional expectation of X with respect to G and
denoted by E(X|G).

Definition B.10. [SRN] If

1. Y is measurable to G and

2. E(Y IA) = E(XIA) for all A ∈ G,

then
Y = E(X|G).

Definition B.11. [McL05] Assume E(X2) < ∞. Then, a G-measurable
random variable Y is the conditional expectation of X with respect to G if

E[(X − Y )2] = inf
Z

E(X − Z)2

where the infimum (infimum=greatest lower bound) is over all G-measurable
random variables.

Theorem B.12. [McL05] There exists an almost surely unique E(X|G).

We do not show the proof of the above theorem in here; in the following
Appendix B.2, we show some properties of E(X|G).

Proposition B.13. [McL05] If X is G-measurable, then E(X|G) = X.

Proof. Note that
E(X − Z)2 ≥ E(X −X)2 = 0.

Then, the minimizing Z is X.

Proposition B.14. [McL05] If G = {∅,Ω}, then E(X|G) = E(X).

Proof. As G = {∅,Ω}, we know that only a constant random variable is
measurable with respect to G. Let c be a constant, minimizing

E[(X − c)2] = Var(X) + [E(X)− c]2

leads to c = E(X).
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B.2. Azuma-Hoeffding Inequality

Proposition B.15. [McL05] For any square integrable G-measurable ran-
dom variable Z,

E(ZX) = E(ZE(X|G)).

Proof. We define a function of λ by

g(λ) = E[(X − E(X|G)− λZ)2].

By Definition B.11, at λ = 0, g(λ) is minimized at all real values of λ. Thus,
g′(0) = 0. Plugging λ = 0 into the equation g′(λ) = 0, we get

E[Z(X − E(X|G)] = 0

which leads to
E(ZX) = E[ZE(X|G)].

Setting Z = 1, we get

Proposition B.16. [McL05]

E(X) = E(E(X|G)).

Proposition B.17. [McL05] If a G-measurable random variable Z satisfies
E[(X − Z)Y ] = 0 for all other G-measurable random variables Y , then

Z = E(X|G).

Proof. As Z satisfies E[(X − Z)Y ] = 0 for all other G-measurable random
variables Y , we consider Y = E(X|G)− Z.

We define a function of λ

g(λ) = E[(X − Z − λY )2]

= E[(X − Z)2 − 2λE[(X − Z)Y ] + λ2E(Y 2)]

= E((X − Z)2) + λ2E(Y 2)

≥ E((X − Z)2) = g(0).

We know
g(1) = E[(X − E(X|G))2]

should be the minimum of g(λ) which means g(0) = g(1). The uniqueness
shown in Theorem B.12 leads to Z = E(X|G).
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B.2. Azuma-Hoeffding Inequality

Proposition B.18. [McL05] If Z is G-measurable, then

E(ZX|G) = ZE(X|G).

Proof. Let Y be an arbitary G-measurable random variable. As Y and Z
are G-measurable random variables, ZY is G-measurable. By Proposition
B.15,

E(ZY X) = E[ZY E(X|G))]

which means
E[(ZX − ZE(X|G))Y ] = 0.

Thus, by Proposition B.17,

E(ZX|G) = ZE(X|G).

Proposition B.19. [McL05]

E(X + Y |G) = E(X|G) + E(Y |G),

E(cX + d|G) = cE(X|G) + d where c and d are constants .

Proof. Let Z be an arbitary G-measurable random variable. By Proposition
B.15,

E[Z(X + Y − E(X|G)− E(Y |G))] = E[Z(X − E(X|G))]− E[Z(Y − E(Y |G))]

= 0− 0 = 0

Then, by Proposition B.17,

E(X + Y |G) = E(X|G) + E(Y |G).

With the similar argument, we can prove

E(cX + d|G) = cE(X|G) + d.

Proposition B.20. [McL05] If H ⊂ G, then

E[E(X|G)|H] = E(X|H).
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B.2. Azuma-Hoeffding Inequality

Proof. Let Z be an arbitary H-measurable random variable. As H ⊂ G,
then Z, E(X|H), and E[E(X|G)|H] are G-measurable.

E[Z(E(X|H)− E[E(X|G)|H])] = E[ZE(X|H)− ZE[E(X|G)|H]]

= E[E(ZX|H)− E[ZE(X|G)|H]]

= E[E(ZX − ZE(X|G)|H)]

= E(ZX − ZE(X|G))

= 0.

Then, by Proposition B.13 and B.17,

E[E(X|H)|G] = E[E(X|G)|H],

E[E(X|H)|G] = E(X|H).

Proposition B.21. [McL05] If X ≤ Y , then E(X|G) ≤ E(Y |G).

Proof. We suppose that there exist such ω ∈ Ω that

{ω : E(Y (ω)−X(ω)|G) < 0} ⊂ G.

Let
ε > max

ω
(E(Y (ω)−X(ω)|G))

where
ω ∈ {ω : E(Y (ω)−X(ω)|G) < 0}

be a negative constant. Then, for those ω, we give a new assignment of
E(Y (ω)−X(ω)|G) where

E(Y (ω)−X(ω)|G) = ε.

Note that E(Y (ω)−X(ω)|G) is still G-measurable. Then, we get a lower

E[(Y −X)− E(Y −X|G)]2

which is a contradiction.

In the rest of Appendix B.2, we introduce Azuma-Hoeffding inequality.
We begin by the definition of a martingale.
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Definition B.22. [JLR00] Given a probability space (Ω,F ,P) and an in-
creasing sequence of sub-ω-fields

F0 = {∅, ω} ⊆ F1 ⊆ ... ⊆ Fn,

a sequence of random variables X0, X1, ..., Xn (with finite expections) is
called a martingale if for each k = 0, 1, ..., n− 1,E(Xk+1|Fk) = Xk.

Proposition B.23. [JLR00] E(Xk+1) = E(Xk).

Proof. Note that Xk is Fk-measurable,

E(Xk) = E[E(Xk|Fk)].

As E(Xk+1|Fk) = Xk,

E(Xk) = E[E(Xk+1|Fk)].

Thus,
E[E(Xk+1 −Xk|Fk)] = 0.

By Proposition B.16, we get

E(Xk+1 −Xk) = 0.

Theorem B.24. [JLR00] If (Xk)
n
0 is a martingale with Xn = X and X0 =

E(X), and there exist such constants ck > 0 that

|Xk −Xk−1| ≤ ck

for each k ≤ n, then, for every t > 0,

Pr{X ≥ E(X) + t} ≤ exp(− t2

2
∑n

k=1 c
2
k

),

Pr{X ≤ E(X)− t} ≤ exp(− t2

2
∑n

k=1 c
2
k

).

Proof. We set

Yk = Xk −Xk−1,

Sk =

k∑
i=1

Yi = Xk −X0.
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B.2. Azuma-Hoeffding Inequality

For any u > 0, by Markov’s inequality,

Pr{X ≥ E(X) + t} = Pr{Sn ≥ t} ≤ e−utE(euSn).

Because Sn−1 is a Fn−1-measurable random variable,

E(euSn) = E[E(euSn |Fn−1)] = E[euSn−1E(euYn |Fn−1)]. (B.1)

Now we use the fact: if a random variable Y satisfies |Y | ≤ a for some
positive a, then, for any u, by the convexity of euY ,

euY ≤ a+ Y

2a
eua +

a− Y
2a

e−ua = cosh(ua) +
Y

a
sinh(ua).

Hence, by cosh(β) ≤ eβ2/2,

euY ≤ eu2a2/2 +
Y

a
sinh(ua).

Thus,

E(euYn |Fn−1) ≤ eu
2cn2/2 +

E(Yn|Fn−1)
cn

sinh(ucn).

By the definition of a martingale,

E(Yn|Fn−1) = E(Xn −Xn−1|Fn−1)
= E(Xn|Fn−1)− E(Xn−1|Fn−1)
= E(Xn|Fn−1)−Xn−1

= 0.

Thus,
E(euYn |Fn−1) ≤ eu

2cn2/2.

Plugging it back to (B.1), we get

E(euSn) ≤ eu2cn2/2E(euSn−1).

Iterating this inequality n times, we get

E(euSn) ≤ eu2
∑n
i=1 ci

2/2.

Thus,
Pr{X ≥ E(X) + t} ≤ e−uteu2

∑n
i=1 ci

2/2.
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B.2. Azuma-Hoeffding Inequality

Setting u = t/
∑n

i=1 ci
2, we get

Pr{X ≥ E(X) + t} ≤ exp(− t2

2
∑n

k=1 c
2
k

).

By the symmetry, we get

Pr{X ≤ E(X)− t} ≤ exp(− t2

2
∑n

k=1 c
2
k

).

Corollary B.25. [JLR00] Let Z1, ..., ZN be independent random variables,
with Zk taking values in a set Λk. Assume a function f :

Λ1 × Λ2 × ...× ΛN → R

satisfies the following condition for some constants ck :

if two vectors z, z′ ∈
N∏
i=1

Λi differ only in the kth coordinate, then

|f(z)− f(z′)| ≤ ck.

Then, the random variable X = f(Z1, ...ZN ) satisfies, for any t ≥ 0,

Pr{X ≥ E(X) + t} ≤ exp(− t2

2
∑n

k=1 c
2
k

),

Pr{X ≤ E(X)− t} ≤ exp(− t2

2
∑n

k=1 c
2
k

).

Proof. Let Fk be the σ-fields generated by Z1, ...ZK . We define Xk =
E(f(Z1, ...ZN )|Fk), k = 0, 1, ..., N . Then,

E(Xk+1|Fk) = E(E(f(Z1, ...ZN )|Fk+1)|Fk)
= E(E(f(Z1, ...ZN )|Fk)|Fk+1)

= E(Xk|Fk+1)

= Xk.

Thus, (Xk)
N
0 is a martingale, and X0 = E(X), XN = X. To apply Theorem

B.24, we should prove that |Xk+1−Xk| ≤ ck+1. Let Z ′k+1 be an independent
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copy of Zk+1 and X ′ = f(Z1, ..., Z
′
k+1, ..., ZN ). Then,

|Xk+1 −Xk| = |E(X|Fk+1)− E(X|Fk)|
= |E(X|Fk+1)− E(X ′|Fk)| (by E(X|Fk) = E(X ′|Fk))
= |E(X|Fk+1)− E(X ′|Fk+1)| (by E(X ′|Fk) = E(X ′|Fk+1))

= |E(X −X ′|Fk+1)|
≤ ck+1 (by |X −X ′| ≤ ck+1)

The corollary now follows Theorem B.24.
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