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Abstract

Evolution proceeds through genetic changes to individuals, which are either propagated or disappear over
generations. Adaptation is one of the main mechanisms driving these changes in genetic composition. Spe-
ciation can also result from different, and incompatible, genetic changes occurring in different populations.
This thesis furthers our knowledge of the genetics of adaptation and speciation using the budding yeast Sac-
charomyces cerevisiae. My work on the genetic basis of adaptation to high concentrations of copper, when
contrasted with a similar experiment using the fungicide nystatin, showed that the environment has a strong
influence on both the number of genes that are the targets of selection and the types of potentially beneficial
mutations. These results have implications for the repeatability of genetic evolution. In a second study, I
found that genetic interactions between individually isolated single-step beneficial mutations from the same
selective environment often exhibited the type of epistasis that underlies speciation even though these mu-
tations occurred within a single biosynthetic pathway. These results support the mutation-order model of
speciation by adaptation, where the chance order of mutations in separated populations leads to divergence
and the build-up of reproductive isolation due to genetic incompatibility. Negative genetic interactions be-
came positive when the level of stress was increased, indicating that genetically-based reproductive isolation
can also be environment-dependent. Finally, I found that diploid yeast were generally not able to adapt to
a level of fungicide to which haploid yeast can adapt. Diploids have been found to adapt to a lower con-
centration of the same drug, indicating that the exact environment (type and concentration) and ploidy can
have an impact on the likelihood of genetic rescue. Together, these results have implications for our under-
standing of the genetic basis of adaptation in different types of environments and different levels of the same
environmental stressor.
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Lay Summary

Many aspects of an organism are encoded in their DNA, including their ability to tolerate stressful envi-
ronments. Changes to DNA can therefore change how well suited an organism is to certain conditions, and
better-adapted types have an advantage over others. Throughout this thesis I have studied such changes using
experimentally-evolved populations of the common brewing and baking yeast, Saccharomyces cerevisiae. In
doing so, I have found that the process of adaptation, and the underlying changes involved, can depend on
a variety of factors including the nature of the environment, the level of stress imposed and the genome of
the organism. In addition, I find that different genetic solutions to the same adaptive problem are not always
compatible with each other. This incompatibility can lead to the evolution of new species.
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Preface

A version of Chapter 2 has been published as “Gerstein, A. C., Ono, J., Lo, D. S., Campbell, M. L., Kuzmin,
A., & Otto, S. P. (2015). Too much of a good thing: the unique and repeated paths toward copper adaptation.
Genetics, 199(2), 555-571” with A.C. Gerstein and I listed as co-first authors. A.C. Gerstein and S.P. Otto
conceived the original project, and I conceived and carried out the genetic analyses and subsequent assays
of the lines to determine which mutations caused adaptation. I performed laboratory work in conjunction
with A.C. Gerstein, D.S. Lo, M.L. Campbell and A. Kuzmin. S.P. Otto wrote the scripts to analyze the
Illumina sequence data and determined the expected frequency of mutations causing nonsynonymous and
stop codons. I performed analyses of copper tolerance of deletion lines and of single mutations and A.C.
Gerstein performed other phenotypic analyses, with advice from S.P. Otto. The manuscript was written in
collaboration with A.C. Gerstein and S.P. Otto. I wrote the initial draft of the sections on single mutations
and the discussion and A.C. Gerstein, S.P. Otto and I all contributed major revisions to the manuscript.

A version of Chapter 3 has been published as “Ono, J., Gerstein, A. C., & Otto, S. P. (2017). Widespread
genetic incompatibilities between first-step mutations during parallel adaptation of Saccharomyces cerevisiae
to a common environment. PLoS biology, 15(1), e1002591”. I conceived the project in conjunction with
A.C. Gerstein and S.P. Otto. I performed the laboratory work and performed the analyses with advice from
A.C. Gerstein and S.P. Otto. I prepared the majority of the visualizations, although Fig B.4 was prepared by
A.C. Gerstein. I prepared the majority of the initial draft, with assistance from A.C. Gerstein and S.P. Otto.
We all contributed major revisions to the manuscript.

A version of Chapter 4 is in preparation for publication in collaboration with A. Kuzmin, L. Miller and
S.P. Otto. S.P. Otto and I conceived the original project. I performed laboratory work in conjunction with A.
Kuzmin and L. Miller. S.P. Otto wrote the code to determine the expected number of mutations per site. I
performed all analyses and prepared the initial draft of the manuscript, and S.P. Otto contributed revisions to
the manuscript.
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Chapter 1

Introduction

We have come a long way since the time of Charles Darwin and Alfred Russel Wallace in our understanding
of evolution (DARWIN 1859; DARWIN and WALLACE 1858). During the Modern Synthesis (roughly 1930s-
1940s), ideas were developed about the interplay between genetics and evolution, and we have been testing
and refining those ideas in ways that were unimaginable to those original scientists. Investigations of biolog-
ical systems, both in the wild and in the lab, provide an expanding collection of case studies, which inform
us about what has happened and how it has happened in specific instances. Evolutionary theory helps us to
determine what patterns might arise and explores what might be possible, given a certain set of conditions.
Experimental evolution borrows elements of both and can be found somewhere in between. In experimental
evolution, we collect case studies of what actually happens given a certain set of conditions. Having control
(although imperfect) over these conditions allows us to understand how slight differences in experimental
input can lead to differences in biological output. Importantly, experimental evolution can tell us about the
repeatability of such outcomes when the experiments are performed in replicate. Repeatability speaks to the
inner workings of the evolutionary process, revealing how specific conditions interact with available genetic
variation (whether from standing genetic variation or mutation) to influence the path taken. Data from other
fields, especially molecular biology, can aid in the interpretation of the observed evolutionary paths, allow-
ing us to develop mechanistic models to explain why certain outcomes should occur. Finally, the increasing
abundance of biological data from all fields, and its organization into well-maintained databases, has made
meta analysis an increasingly useful tool for developing, exploring and testing evolutionary hypotheses.

Throughout this thesis, I use experimental evolution with the model yeast Saccharomyces cerevisiae to
study the processes of adaptation and speciation. My primary focus is on the underlying genetic changes,
and that will be the focus of this chapter. Genetic systems are complex, and understanding how a genotype
is translated into a phenotype is a central problem in biology. For this reason, the constraints and limitations
that shape evolution are very difficult to predict or model a priori, and the genetic system is often the source
of many of the surprises when conducting experiments.

The benefits and limitations of experimental evolution have been explored in previous reviews (e.g.,
BAILEY and BATAILLON 2016; BARRICK and LENSKI 2013; KAWECKI et al. 2012; LONG et al. 2015) and
books (GARLAND and ROSE 2009), with some particularly focussed on microbes (ADAMS and ROSEN-
ZWEIG 2014; KASSEN 2014; LENSKI 2017). One major advantage of using a model organism such as S.
cerevisiae for our experiments is that we have the ability to delve deeply into the underlying genetic basis
of the observed outcomes, asking and answering genetic questions about evolution that would otherwise be
very difficult to address. In this thesis, I hope to contribute to our collective understanding of evolution,
especially as it relates to the genes involved in adaptation and how they might act given their specific genetic
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and environmental context. I will explore how different factors can constrain and limit genetic adaptation
and potentially contribute to speciation including: adaptive environment (both the qualitative nature of the
environment and the exact concentration of a stressor), epistasis between adaptive mutations, ploidy level
of an organism, and the interplay between these factors. These insights will help to inform future studies
on organisms with more difficult to decipher genetic systems, including those from natural populations, by
providing candidate explanations for observed phenomena that can be specifically targeted for testing.

In this Introduction chapter, I will first discuss genetic model organisms and their usefulness for the study
of evolution as a backdrop for the rest of the thesis. I will then discuss the repeatability of adaptation and
how genomic breadth (how many potential paths evolution might take) and mutation types (and their relative
rates) might affect repeatability. Genetic interactions between potentially adaptive mutations can further
shape the repeatability of adaptation if early adaptive mutations change the fitness effects of later mutations,
directing evolution down certain paths that depend on those early stochastic events. These interactions
result in lower repeatability than if all mutations had fixed effects, and also have implications for speciation
among populations diverging in separate geographic areas (allopatry). Finally, I will discuss the limits of
adaptation, as determined by the genomic breadth of adaptive mutations in a specific environment and by
the availability of such mutations to the organism in question, before moving on to explore how large-scale
datasets from molecular biology can potentially help us to interpret evolutionary data and hypothesize about
possible evolutionary trajectories.

1.1 Genetic model organisms and the study of evolution

Model organisms are useful in the study of adaptation and speciation, especially when we are specifically
interested in uncovering the genetic and molecular basis. By using the same model organisms for studies
of evolution as for molecular biology, we can take advantage of the information and perspectives gathered
from years of study by hundreds of scientists. For example, many genes have been characterized in these
model organisms, and information about them has been organized into openly-available databases (yeast:
Saccharomyces Genome Database, or SGD, CHERRY et al. 2011; Caenorhabditis elegans: WormBase,
STEIN et al. 2001; Drosophila melanogaster: FlyBase, GRAMATES et al. 2017; Escherichia coli: EcoCyc,
KESELER et al. 2017 and others; Arabidopsis thaliana: The Arabidopsis Information Resource, or TAIR,
HUALA et al. 2001). In addition, these model organisms tend to have small, easily sequenced genomes with
high-quality reference genomes, so candidate causative mutations can be found with relative ease. Because
of the availability of molecular information, it is easier to filter this list of mutations by gene function to find
those that are most likely to be responsible for the phenotype of interest. Finally, the many genetic tools and
tricks that have been developed for these organisms simplify testing of specific genetic hypotheses.

While each organism can be used for a variety of questions, some are better suited for certain interests.
For example, Caenorhabditis species are a good choice for studies about the evolution of sex, because one
can manipulate the amount of outbreeding present (CUTTER 2005). D. melanogaster is well-suited to study
the dynamics of evolution with obligate outcrossing (BURKE et al. 2010). And if an aspect of plant evolution
is of interest, A. thaliana is the natural choice (MAURICIO 1998). Yeast is well-suited for studies where we
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wish to characterize the nature of the genes involved in evolution, including but not limited to their identity.
S. cerevisiae is the best genetically characterized eukaryote and has easily manipulated genetics (BOTSTEIN

and FINK 2011). In yeast, it is standard practice to insert specific mutations into known locations of the
genome by transformation and perform controlled crosses where individual meiotic progeny can be dissected
out and grown separately (SHERMAN 2002). It was for these reasons, and because of their fast generation
time for a eukaryote, that I chose to study yeast.

Yeast is an increasingly popular model system for experimental evolution and evolutionary genetics,
including speciation research. Their rapid generation time (replicating in ~90 minutes under ideal conditions,
SHERMAN 2002) allows for evolution experiments to be conducted efficiently. Yeast primarily reproduce
asexually, either in a haploid or a diploid state, and can do so in either liquid or solid medium. While many
strains of S. cerevisiae form clumps in liquid medium (e.g., brewing strains, SOARES 2011), lab strains have
been selected to have dispersed cells (MORTIMER and JOHNSTON 1986), facilitating the quantification of
abundance through the use of optical density measurements. Fast, asexual growth on agar allows for easy
phenotyping and for bottlenecking of populations down to individual genotypes, the progeny of which can
be used in fitness assays or for DNA extraction. Yeast can also be preserved in a frozen state, allowing
for the long-term storage of strains, and their well-annotated, small genome (12 Mb) is easily sequenced
(SHERMAN 2002). Although the ‘natural’ ecology of yeast is largely unknown, the many advantages of
yeast as a genetic system have prompted studies into the evolution and ecology of natural yeast (as reviewed
in LANDRY et al. 2006, REPLANSKY et al. 2008, LITI 2015). Studies of natural yeast complement lab
investigations, developing yeast into a more complete model for studies of evolution.

1.2 Repeatability of evolution

Stephen Jay Gould proposed a thought experiment in his book Wonderful Life in which we might learn
about the repeatability, and therefore predictability, of evolution by “replaying life’s tape” and looking at the
similarity of the outcomes (GOULD 1989). For natural populations, the closest we can come to replaying
evolution is observing cases of parallel adaptation, where adaptation has “played” multiple times in separate
but similar environments. From these populations, we know of many examples of phenotypic repeatability
including the repeated loss of lateral plates when stickleback move from the marine environment into fresh-
water (SCHLUTER et al. 2004), the evolution of species of Anolis lizards with similar niches, morphology
and behaviour (ecomorphs) on separate islands (LOSOS 1992) and the development of a similar gene expres-
sion pattern among clinical isolates of Pseudomonas aeruginosa from patients with cystic fibrosis (HUSE

et al. 2010). Some cases of parallel phenotypic evolution are also underlain by parallel genotypic evolution,
like wing pigmentation patterns in male Drosophila that involve regulatory changes of the same gene (yel-
low) (PRUD’HOMME et al. 2006) and stickleback morphological trait divergence in species pairs (CONTE

et al. 2015), but others are not, like beach mice adapting to sandy coastal dunes in Florida’s Gulf and Atlantic
coasts (MANCEAU et al. 2010). I will focus the rest of this discussion on genetic repeatability, as that is the
main focus of Chapter 2.

The generality of genetic repeatability in natural systems can be studied using meta-analyses, such as
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that performed by CONTE et al. (2012). In this study, the authors estimated the probability of gene reuse
for natural parallel phenotypic evolution and found that the mean probabilities were relatively high (0.32 for
studies where the whole genome was considered when mapping phenotypes, 0.55 for studies where only can-
didate genes were tested for association with the phenotype). They concluded that the biases and constraints
of evolution were quite strong, restricting the paths available to evolution and resulting in high repeated gene
use. Gene reuse was also higher for more closely related populations, which can be interpreted as either a
similarity in their genomic biases, in the standing genetic variation available to them, or a combination of
the two. Truly parallel environmental conditions are difficult to verify in nature, however, where there are
seemingly endless sources of ecological variation experienced by populations that could all affect the proba-
bility of certain evolutionary outcomes. If a pair of natural populations adapt differently to seemingly similar
conditions, we cannot be sure that there was not a key unmeasured difference between their environments
that caused their divergence, and this problem only increases with increasing numbers of populations (and,
therefore, environments) included.

Experimental evolution allows us to “play life’s tape” multiple times for a single set of conditions, con-
currently, and compare the results. In such studies, different degrees of repeatability have been observed. In
a study by MEYER et al. (2012), phage l, which infect E. coli, were evolved and many developed the ability
to utilize a new receptor, OmpF. All adaptive mutations were in the virus’ J protein, and the phage that were
able to use OmpF all had four mutations in common: two identical mutations across strains, a mutation in one
of two adjacent positions and a mutation within a certain 30-basepair block. Another study by LOURENÇO

et al. (2016) found seven genes targeted in parallel instances of adaptation of E. coli during gut colonization
of mice. In yeast, a study by LANG et al. (2013) found a small subset of genes that drove increases in fitness
in rich medium that were repeated among replicates (observed in 3 - 21 replicate populations out of 40).
Similarly, in yeast adapting to a rich medium, KRYAZHIMSKIY et al. (2014) observed some genes to evolve
repeatedly to varying degrees (each in 3 - 12 out of 104 total populations), and the proportion of gene use
varied among starting genetic backgrounds. Many more examples of repeated evolution from experimental
evolution studies have been reviewed in LOBKOVSKY and KOONIN (2012).

From these studies, we know that repeatability varies, but it is still unclear how it will vary depending on
the environmental conditions. We know that it should vary with the genomic breadth of potentially beneficial
mutations, which is itself tied to the environment in which adaptation occurs (e.g., GRESHAM et al. 2008).
If many mutations are potentially beneficial in an environment, then there are many potential paths that
evolution can follow. If, in contrast, only a few specific mutations will increase fitness of an organism
in an environment, then adaptation will be highly repeatable due to this constraint. Repeatability should
also vary with the types of mutations that are potentially beneficial and their relative mutation rates. For
example, if both additional chromosomal aneuploidy and specific SNPs in a single gene increase fitness in an
environment but aneuploidy occurs more frequently then we expect evolution to use aneuploidy more often
because of the increased opportunity. In Chapter 2, I explore the effects of environment and mutation type on
genetic repeatability in parallel populations adapted to high concentrations of copper. By testing individual
factors (such as environment type) for their role in repeatability as well as considering genetic results within
the context of broader biological knowledge (mutation types, molecular or biochemical characterization), we
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can begin to understand the mechanics of repeated evolution.

1.3 Genetic interactions

Genetic interactions, measured as epistasis between alleles, also shape the outcomes, and therefore repeata-
bility, of evolution. The word “epistasis” has a few different meanings in genetics and evolution, although
these meanings are related (ROTH et al. 2009). Originally coined by BATESON (1909), epistasis was used to
describe the interaction between genes in which the action of one gene was blocked by the action of another.
This is how molecular geneticists still use the word, and they use epistasis analysis to determine the order
of action of genes in regulatory pathways (AVERY and WASSERMAN 1992). Evolutionary geneticists, on
the other hand, use the word to broadly describe any form of gene (or allele) interaction deviating from the
expectation of independent effects (WHITLOCK et al. 1995). Depending on the appropriate scale for the
phenotype being measured, either additive or multiplicative interactions can be the expectation.

In evolutionary biology, the ultimate phenotype of interest is usually fitness. Fitness, and traits often used
as a proxy for fitness such as growth rate, are composite traits, underlain by many other biological processes.
It is easy for epistasis to arise as a consequence of the many potential interactions between these underlying
biological traits in determining the ultimate fitness of the organism. For example, if fitness depends on the
products of a metabolic pathway and flux through that pathway is optimized at an intermediate value, the
fitness effects of mutations in the enzymes of the pathway will depend on the flux rate of the whole pathway
relative to the optimum (SZATHMÁRY 1993). If flux were below the optimum, a small effect mutation that
increases flux would be beneficial. If there were a larger effect mutation that increases flux slightly above the
optimum, this mutation may also be beneficial and spread in the population. But, the second mutation would
make the first flux-increasing mutation deleterious in the new genetic background. This example is similar
to any other trait undergoing stabilizing selection and will result in epistasis for fitness among loci affecting
the trait, even if those loci act additively on the underlying trait (WHITLOCK et al. 1995).

The nature of epistasis between potentially beneficial alleles can determine the speed of adaptation or
constrain evolutionary trajectories. Positive epistasis between beneficial alleles, where the two mutations to-
gether are fitter than the expectation, can theoretically increase the rate of adaptation, but few cases of positive
epistasis have been found for beneficial alleles (BUSKIRK et al. 2017; CHOU et al. 2009). Negative epistasis
is more commonly observed, where new beneficial alleles have smaller effects when in the same genetic
background as other beneficial alleles, slowing the rate of adaptation (CHOU et al. 2011; KRYAZHIMSKIY

et al. 2014). When epistasis becomes so negative that adding the second mutation is actually detrimental in-
stead of beneficial (“sign epistasis”), the evolutionary trajectory of a population can be strongly constrained
(WEINREICH et al. 2005). An example of this was found by TENAILLON et al. (2012) who evolved 115
populations of E. coli to high temperature. They found repeated evolution at the gene level, but there were
at least two distinct pathways available, involving either the RNA polymerase complex or the termination
factor rho. Early adaptive mutations were inferred to have directed later adaptation of the populations into
one of these two paths through negative epistasis between these early mutations and subsequent ones. In this
way, epistasis affects the amount of repeatability observed between populations since repeatability will be
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lower when there are mutually-exclusive solutions for evolution to explore than when all beneficial mutations
maintain their fitness effects regardless of genetic background. In the case of full independence, we would
expect all populations to eventually converge upon the single best genotype, even with initial stochastic
divergence.

1.3.1 Bateson-Dobzhansky-Muller model of speciation

The effects of epistasis not only shape adaptation within a population, but they also influence the outcomes of
hybridization between populations in the main genetic model of speciation, the Bateson-Dobzhansky-Muller
(BDM) model. In the BDM model of speciation, alleles that are beneficial or benign in their normal genetic
background cause sterility or inviability in hybrid individuals (ORR 1995). Such interactions are known as
BDM incompatibilities. The alleles are able to spread in different sub-populations because they do not cause
reductions in fitness in those sub-populations’ genetic backgrounds. Then, when the sub-populations are
brought together and hybrids are formed, the alleles are tested together in novel genetic combinations and
hybrid individuals have lower fitness than either of the parental types, reflecting negative sign epistasis. Low
hybrid fitness results in decreased gene flow between sub-populations and, therefore, reproductive isolation.

Despite interest in BDM incompatibilities, only a few examples have been characterized at the molecular
level (PRESGRAVES 2010). Most of these are found between species adapted to different local environments
and the causative alleles are presumably beneficial in those separate environments (documented in NOSIL and
SCHLUTER 2011). Other genetic incompatibilities depend on the environment in which they are measured,
as have been found in natural populations of yeast (including one characterized two-locus BDM, HOU et al.
2015), but it is unknown whether the evolution of these alleles is linked to the external environment since
we have no concrete knowledge of the evolutionary history. Additionally, some cases of incompatibility
between natural populations have no clear connection to the external selective environment (see examples in
MAHESHWARI and BARBASH 2011).

Experimental evolution studies allow direct control over the environment, and incompatible mutations
have been found in some cases. DETTMAN et al. (2008) found reduced reproductive success in matings
of lineages adapted to different environments compared to matings between lineages adapted to the same
environment in Neurospora crassa, consistent with the action of BDM incompatibilities. They found similar
results when mating populations of S. cerevisiae that had adapted to different environments (DETTMAN et al.
2007). In the latter case, the underlying BDM incompatibility was subsequently mapped (ANDERSON et al.
2010) and was the first reported BDM interaction among known genes that was isolated from experimentally
evolved strains, to my knowledge. An incompatibility has also been found among experimentally evolved
populations adapting to the same environment in S. cerevisiae (KVITEK and SHERLOCK 2011). There is
another case of an experimentally evolved incompatibility arising from parallel selection in Methylobac-
terium extorquens (CHOU et al. 2014), but the nature of species (and reproductive isolation) is less clear for
organisms without meiosis thus making it difficult to classify this interaction as a BDM incompatibility.

The relatively rapid (within 448 mitotic generations in the case of KVITEK and SHERLOCK 2011) es-
tablishment of alleles leading to BDM incompatibilities in the above experiments can be attributed to the
accumulation of alleles driven to high frequency by selection. There are two main mechanisms of speciation
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by selection, referred to as ecological and mutation-order speciation (SCHLUTER 2009). Ecological specia-
tion occurs when the divergence between groups is driven by divergent selection in different environments
(SCHLUTER 2009). Since selection is divergent, it drives the fixation of different alleles in each group, each
advantageous in the local environment but not necessarily in the other. This process can lead to the evolu-
tion of any type of reproductive isolation, including premating isolation, hybrid sterility and intrinsic hybrid
inviability as well as extrinsic, ecologically based pre- and postzygotic isolation (SCHLUTER 2009). In con-
trast, mutation-order speciation involves divergence between groups that occurs as a by-product of different
mutations arising and fixing in separate groups adapting to similar selection pressures (SCHLUTER 2009).
The evolution of reproductive isolation occurs by the chance fixation of different advantageous mutations
in different groups, even though the same mutations would be initially favoured in both (SCHLUTER 2009).
Early divergent adaptive mutations lead to increased divergence between groups due to the effects of epistasis
influencing the evolutionary trajectories. It is important to emphasize that, even in identical environments,
selection can become divergent between groups when the genetic background changes, thereby changing the
mutations that confer a fitness benefit. Intrinsic reproductive isolation can then arise as a consequence of
incompatible genetic solutions.

The aforementioned studies demonstrate that BDM-type interactions can establish over the course of
hundreds of generations in experimental evolution studies by either mechanism of speciation by selection.
What remains unknown thus far from long-term experiments of populations evolved under the same selective
pressure is how frequently first-step adaptive mutations themselves could contribute to reproductive isolation.
It is possible that incompatibility starts at the first steps of divergence in populations adapting in parallel, but
it is also possible that those early stage mutations only change the selective environment of future mutations.
I investigate epistasis between first-step adaptive mutations in Chapter 3 using fungicide-adapted mutations.
I find that BDM incompatibilities are fairly common between these different, large effect adaptive mutations,
demonstrating that mutation-order speciation may arise even at the very first step of adaptation.

1.4 Limits to adaptation

In extreme cases of evolutionary constraint, populations will not be able to respond genetically to the en-
vironment and will have reached their adaptive limit. Such adaptive limits are thought to contribute to the
limited geographic distribution of species, and have been suggested by observed trade-offs between traits
important for adaptation to different edges of a species’ range (for example, ANGERT et al. 2008). The lim-
its to adaptation include not only whether a beneficial mutation is possible, but also whether it will be able
to successfully rise in frequency. This depends on a host of population genetic factors, most of which I will
not address here, but have been well reviewed in BARTON and PARTRIDGE (2000). In this section, I will
primarily focus on the availability of genetic variation for selection to act upon. Lack of genetic variation
in the trait of interest is a common explanation for the observation of a limit to evolutionary change (BELL

2013; BLOWS and HOFFMANN 2005). Most papers on the topic are primarily concerned with natural pop-
ulations, in which standing genetic variation is the primary source of variability. In experimental evolution
studies, unless standing genetic variation is of explicit interest, the populations are typically started with as
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little variation as possible, coming from either inbred lines or originating from single clones. In these exper-
iments, genetic variation still determines the rate of initial response to selection (BARTON and PARTRIDGE

2000), but it is limited by the input of spontaneous mutation (DE VISSER and ROZEN 2005).
When considering a specific trait under selection, or a specific environment to which a population is

trying to adapt, the beneficial input of mutation can be limited in a few different ways. One well-discussed
limit is imposed by mechanistic, physiological or developmental constraints of the organism, where certain
types of variation are not possible (BLOWS and HOFFMANN 2005; SMITH et al. 1985). The same epistatic
relationships that constrain evolution to follow certain trajectories dependent upon initial beneficial mutations
can also limit further evolution entirely in extreme cases (SMITH et al. 1985). This arises as a result of
sign epistasis between the current genetic background and all potential beneficial mutations, making these
mutations inaccessible. These factors affect the mutational target size for adaptation. In a given environment,
if the genomic breadth of potentially beneficial mutations is non-existent, the organism in question will not be
able to adapt and will have met its adaptive limits. Another possibility is that a population is instead limited
by the mutation rate (BLOWS and HOFFMANN 2005). If potentially beneficial mutations are possible but are
exceedingly rare due to very low mutation rates for those specific genomic changes, it is very unlikely that a
population will be able to adapt. It will have effectively met its adaptive limits and, if it has a negative growth
rate, will go extinct before being rescued by evolution. Because the genomic breadth of adaptation and the
rate of beneficial mutation are decided by the environment in question and the biology of the organism,
changing either can cause an organism to reach its adaptive limit. In Chapter 4, I look at ploidy as an intrinsic
biological feature that can affect the accessibility of beneficial mutations. Ploidy is not often considered
among the factors thought to influence the limits of adaptation, but both the effects of mutations (related to
genomic breadth) and the rates of certain mutations (especially certain mutation types) can differ by ploidy,
even in otherwise identical genomic backgrounds. It is thus important to determine how ploidy can affect
evolutionary dynamics, especially when considering the evolution of antibiotic resistance, for which both
haploids and diploids are common targets.

1.5 What can large-scale datasets tell us about evolution?

Forward genetic screens have been used to determine the genetic basis of phenotypes since the 1940s (BEA-
DLE and TATUM 1941). In these studies, collections of mutants, usually generated by a mutagen, are screened
for a phenotype of interest thought to be related to a particular biological process. All mutants displaying the
phenotype of interest are characterized, both genetically and phenotypically. Genetic characterization can
involve sorting the mutants into complementation groups (where each group is likely to represent a single
gene), genetic mapping of causative mutations, and sequencing of those mutations. Phenotypic character-
ization depends on the biological process of interest, but could involve morphological measurements, de-
termination of cellular localization patterns, and biochemical measurements of underlying reactions. Much
of our knowledge about the functions of individual genes was collected in this way. Then, to order these
genes into genetic pathways leading to the phenotype of interest, double mutants were created and epistatic
analysis was performed. In molecular genetics, this type of work has been complemented by the use of
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mutation collections and large-scale screens, which has greatly expedited the collection of biological data.
In this section, I would like to explore what we, as evolutionary biologists, might learn from these large-
scale datasets. This data has been primarily applied to models predicting the evolution of microbial systems
and has been reviewed elsewhere (PAPP et al. 2011), but I would like to broaden the view to include other
natural systems. Specifically, I am interested in the genetic interaction datasets, which tell us about epistasis
between large collections of mutations. I see there being three major barriers to using this kind of data to
understand evolution. First, these experiments are often performed with knockout mutations, but does this
kind of mutation reflect common natural mutations? Second, how generalizable are the specific interaction
results across different levels of biology (different populations, genetic backgrounds, species, genera, etc.)?
And third, how do these genetic interactions depend on the environment in which they are measured? In the
following sections, I consider different data sets that provide insight into the answers to these questions.

1.5.1 How well do mutation collections represent natural mutations?

Each of the model genetic organisms explored above has a large-scale mutation collection (yeast: deletion
collection, GIAEVER et al. 2002; C. elegans: deletion collection, C. ELEGANS DELETION MUTANT CON-
SORTIUM AND OTHERS 2012, and million mutation project, THOMPSON et al. 2013; D. melanogaster: gene
disruption project, BELLEN et al. 2011; E. coli: Keio deletion collection, BABA et al. 2006; A. thaliana:
T-DNA insertion collection, ALONSO et al. 2003). The collections differ in scope (proportion of the genes
covered) and mutation type, but perhaps the best collection is in yeast. The large-scale whole-gene deletion
collection in S. cerevisiae includes all viable gene deletions and all essential genes deleted in a heterozygous
state (GIAEVER et al. 2002), as well as temperature-sensitive alleles for the essential genes (COSTANZO

et al. 2016). In addition, there are collections of plasmids available in yeast for overexpression studies (high
copy plasmids) (JONES et al. 2008) and complementation mapping of genes (low copy plasmids) (HO et al.
2009; HVORECNY and PRELICH 2010). Together, these collections have been used to characterize general
properties of the cell (e.g., finding the number of essential genes) as well as the functions of individual
proteins and their interactions, but how well do these mutations represent naturally occurring mutations?

A study by DOWELL et al. (2010) found that, even for whole-gene deletions, the effect of some mutations
can depend on their genetic background. When they systematically deleted genes in a second strain of S.
cerevisiae, 57 genes were only essential in one of the two backgrounds (DOWELL et al. 2010), indicating
that results from large-scale deletion collections may not be universally applicable, especially for less severe
phenotypes. However, a study by PAYEN et al. (2016) used single-gene deletions and amplifications to
identify potentially beneficial mutations in three environments (limitation of phosphate, glucose or sulfate)
by their fitness effects in pooled competitions. When comparing the results to sets of mutations found during
experimental evolution in the same conditions, they found that, on average, ~35% of the mutations that
occurred during experimental evolution were predicted to be beneficial by the systematic screen (PAYEN

et al. 2016). In addition, a study by JELIER et al. (2011) found that they were generally able to predict the
phenotypes of a variety of yeast strains based on their genome sequences. They first predicted the impact
of individual mutations within genes on protein function, focussing on loss-of-function mutations. Then,
utilizing high-throughput data sets containing the growth rates of the deletion collection under different
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environmental conditions acquired from the SGD (CHERRY et al. 2011), they estimated the relevance of
each protein perturbation to growth in each condition. From this, they predicted the growth of each strain in
each condition based on the strain’s mutated genes, and they assessed the performance of their predictions
by measuring growth across 20 conditions.

The ability to predict the potential fitness effects of loss-of-function type mutations en masse is amazing
in and of itself, but can we do the same kind of analysis without limiting it to predicted loss-of-function
mutations? I have attempted to begin to investigate this question by taking sets of genes found to impact
resistance to chemicals from EHRENREICH et al. (2012) and determining whether these genes also impact
fitness, on average, when deleted as either a heterozygote or homozygote, in a study by LEE et al. (2014).
EHRENREICH et al. (2012) used a technique that they termed “extreme QTL mapping” to identify the genetic
basis of resistance to 13 chemicals in segregants of all pairwise crosses of four ecologically and genetically
diverse yeast strains. In doing so, they detected more than 800 loci with an effect in at least one of the drugs.
From their set of 13 chemicals, I identified five chemicals that were also tested in the screens of LEE et al.
(2014), one of which had been tested twice at two different concentrations. LEE et al. (2014) tested ~1,100
yeast strains heterozygous for a deletion in an essential gene and ~4,800 yeast strains homozygous for a
deletion in a nonessential gene for their response to 3,250 chemicals that inhibit wild-type growth.

If both natural mutations and gene deletions uncover roles for genes in certain environmental conditions,
then we would expect the same genes to be implicated in fitness deviations in both studies. I will use the
candidate genes from EHRENREICH et al. (2012) to determine which genes out of the deletion set of LEE

et al. (2014) are predicted to have large fitness deviations in certain chemicals. For all chemicals that were
tested in both experiments, I retrieved the list of candidate genes that putatively affect resistance to that
chemical from EHRENREICH et al. (2012). I then downloaded all of the fitness data from LEE et al. (2014)
for those chemicals. Because fitness data was reported as either negative or positive (having a growth defect
or growth advantage in the chemical when compared to the control), I took the absolute value of all fitness
deviations to test only whether the genes had an effect, ignoring the direction of that effect. This should
include cases where the deletion of a gene has a negative effect on fitness but an overexpression allele of the
same gene (which is possibly present among the natural variants) has a positive effect. In order to determine
whether candidate genes had, on average, a larger effect on fitness than expected in a certain chemical, I
took 10,000 random samples (without replacement) of the same size as the number of candidate genes from
the full dataset for that chemical. I then compared the mean fitness deviation of the candidate genes to the
distribution of means calculated from the samples. I found that the candidate genes only had a larger average
effect than expected by chance (>95% of samples) in two cases: in 4-nitroquinoline 1-oxide (4-NQO) and in
one of the two experiments run with tunicamycin (Fig. 1.1). Of the two concentrations of tunicamycin tested
in LEE et al. (2014) (25 nM and 200.47 nM), the candidate genes had a larger fitness effect compared to the
average in the higher one (200.47 nM), which is closer to the concentrations used by EHRENREICH et al.
(2012) for their selective plates (between 2.5 mM and 3.5 mM).

From this analysis, we conclude that genes responsible for natural variation in an environment do not
correspond well with those whose deletions show the largest fitness response in that environment. This
lack of correspondence can be partially attributed to the differences in methods between the two studies
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Figure 1.1: Histograms of the distributions of absolute fitness deviations in each chemical investigated (data
from LEE et al. 2014). X-axes are cut off to exclude extreme values but include at least 99% of the data.
Above each histogram, the means of the whole dataset (in grey) and the candidate genes for that chemical
from EHRENREICH et al. (2012) (in black) are shown. P-values are calculated as the proportion of randomly
sampled means (out of 10,000 samples) that are greater than the mean of the candidate genes in that chemical
(one-tailed test). Significant p-values are in bold with an asterisk (*).
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being compared. Fitness was assayed differently in the two experiments, where EHRENREICH et al. (2012)
used plates containing chemicals to select for highly resistant segregants and LEE et al. (2014) extracted
fitness data from yeast growing in liquid medium. LEE et al. (2014) grew pooled samples of yeast in liquid
medium that contained the chemical of interest, where each pool consisted of either all heterozygous or all
homozygous strains. Because each deletion is uniquely barcoded, the fitness defect of each strain in the
pool was measured by the relative abundance of its barcode in sequenced pools from the treatment samples
compared to control samples (without chemicals), allowing for a quantitative measurement of fitness. The
different types of medium used between studies, in addition to differing concentrations of chemical used
both within the study done by EHRENREICH et al. (2012) (different selective concentrations were used for
different crosses) and between the two studies, could potentially select for mutations in different genes. This
will be a persistent problem in using molecular biological data to interpret evolution, however, because we
cannot expect methods to be the same unless the studies are conducted for the purpose of comparison.

In addition, due to the nature of QTL mapping, EHRENREICH et al. (2012) could not identify the
causative gene in most cases, but instead mapped the phenotypes to small windows containing up to 14
candidate genes, after excluding genes that contained no segregating polymorphisms. This means that the
genes included in our analysis may not be causative in the original crosses of EHRENREICH et al. (2012).
Again, this will be a persistent problem with QTL analyses, where we might have to restrict ourselves to
using large-scale data to help narrow down candidate gene sets to those most likely to be involved. The
candidate genes from EHRENREICH et al. (2012) were also mapped based on naturally-occurring variation,
as opposed to the deletion mutations used in LEE et al. (2014). This was the key comparison that I was
interested in making because evolutionary data will consist of these naturally-occurring mutations, but we
expect some types of natural mutations (like gain-of-function alleles) to be especially poorly represented by
deletion mutations. The mutations from EHRENREICH et al. (2012) were also mapped in haploid popula-
tions, as opposed to the diploids used in LEE et al. (2014). If mutations only have an affect on the phenotype
in one of the two ploidies, they will only be observed in one of the two screens. Additionally, for all essential
genes (those that cannot be fully knocked out), only heterozygous mutants were tested in LEE et al. (2014),
while haploid mutations in these genes could exist among the set screened by EHRENREICH et al. (2012),
if non-knockout mutations are tolerated. I also included candidate genes found in any genetic background
by EHRENREICH et al. (2012), not limiting the set to those found in the BY background, which is shared
by the deletion mutants of LEE et al. (2014). Based on the poor predictive power observed in our compari-
son within a single species, it seems unlikely that we can currently use single large-scale datasets to predict
phenotype-causing alleles in other, more phylogenetically distant, organisms.

Regardless, it is encouraging that I found any correspondence at all in this small comparison, and the
results of JELIER et al. (2011) give me confidence that collecting more of these large-scale datasets and
performing more of these kinds of comparisons will lead to a better ability to infer phenotypic causality
from genomic data of phenotyped individuals in the future. Although, in this analysis, I have used mapped,
natural variants to predict the phenotypes of deletion mutants, I imagine that this kind of comparison could
be done in the opposite direction to identify candidate natural variants involved in producing a phenotype of
interest. If, for example, we were trying to determine the alleles involved in copper tolerance of an organism
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and we had the relevant genomic data, we might look at a dataset of deletion mutant phenotypes in copper,
like those produced by LEE et al. (2014), and identify the deletions with the highest fitness deviations. If any
of the corresponding genes are mutated in our organism’s genomic data (especially when compared with a
close relative that differs in its copper tolerance), then those genes might be implicated in copper tolerance
for this organism. This method could be used as a supplement to QTL mapping or to inform candidate gene
analysis. We only based our results on one set of data, unlike JELIER et al. (2011) who had multiple datasets
available to them per environment in some cases. For these environments, they were able to choose the more
reliable dataset, based on the connectivity of the implicated genes in a predicted functional gene network for
yeast (YeastNet, LEE et al. 2007). By continuing to collect high-throughput datasets, we can improve on the
quality of information available for the phenotypic effects of genic mutations. It would be especially useful
if future high-throughput studies collected data from other types of mutations (such as using overexpression
plasmids) to get a sense for how different mutations within a single gene can differ in their effects. In
addition, a deeper understanding of the nature of the proteins underlying a trait, and the domains of which
those proteins are composed, may help inferential power in the future. Mutations that are not likely to cause
loss-of-function of the whole protein may instead only affect a single protein domain and may have specific,
as opposed to general, effects on protein function, interactions and phenotype (RYAN et al. 2013). While
current tools do not have the ability to predict the effects of such mutations for proteins as a whole (RYAN

et al. 2013), future advances in functional protein prediction used in conjunction with information from a
variety of large-scale assays may enable better mapping of mutations to phenotype.

1.5.2 How consistent are genetic interactions across levels of biological diversity?

In evolution, genetic interactions (or epistasis) determine the outcome and pace of adaptation, as well as
the potential for genetic reproductive incompatibilities and speciation. From experimental work, we know
that beneficial mutations often behave non-additively, at least for fitness (e.g., my Chapter 3, BUSKIRK

et al. 2017; CHOU et al. 2009, 2011; KRYAZHIMSKIY et al. 2014). Molecular biologists also have a long
history of studying genetic interactions, traditionally by using suppressor screens. Now, large-scale genetic
interaction studies are being performed that measure epistasis on a genome-wide scale. In organisms where
it is feasible, like S. cerevisiae (COSTANZO et al. 2016) and Schizosaccharomyces pombe (ROGUEV et al.
2008), interactions are measured by assessing the growth of double mutant strains. These double mutants
are generated in high-throughput experiments using genetic systems developed specifically for this purpose,
allowing for the simultaneous generation and measurement of thousands of strains. In other organisms,
like C. elegans (TISCHLER et al. 2008), RNA interference (RNAi) is used to knock down expression of a
gene, simulating the effect of a null mutation. RNAi can either be used combinatorially (where two genes
are simultaneously targeted), or in combination with a homozygous mutant animal. I will refer to these
as double mutants throughout to simplify explanation. Once double mutant organisms have been created,
genetic interactions are detected by deviations of the double mutant phenotype from that which is expected
based on the effects of the two mutations in isolation. The phenotype being measured is usually a proxy
for viability or growth and negative interactions are referred to as either synthetic sick (where the double
mutant is less fit than expected, but still viable) or synthetic lethal (where the double mutant is inviable
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despite both single mutants being viable). These studies have elucidated some general patterns about gene
interaction networks, such as the existence of ‘hub’ genes, which interact with many more genes than average
in the network, and that functionally related genes can be predicted based on the similarity of their interaction
profiles (DIXON et al. 2009). Can evolutionary biologists take advantage of this wealth of genetic interaction
data to learn about the nature of epistasis in shaping evolutionary trajectories and make predictions about
possibly interacting alleles in wild populations or in other species?

Large-scale genetic interaction screens have been performed in a few model organisms, but the largest
and best-described dataset is for budding yeast, S. cerevisiae (COSTANZO et al. 2016). When large-scale
interaction studies have been performed in other eukaryotic systems, such as the fission yeast S. pombe
and nematode worm C. elegans, the results are often compared with those from S. cerevisiae. In those
comparisons, the global genetic network properties such as degree of interconnectedness and amount of
crosstalk between specific biological processes tend to be well-conserved but individual genetic interactions
are less conserved (DIXON et al. 2009; RYAN et al. 2012). In S. pombe, ~17-30% of negative interactions
are conserved with S. cerevisiae in any individual experimental study (when ignoring gene function, see
below) (DIXON et al. 2008; ROGUEV et al. 2008). DIXON et al. (2008), along with performing a large-
scale interaction experiment, also curated the literature at the time for reported S. pombe genetic interactions
(note that this set excludes the two previously mentioned experimental studies) and found that 18-23% of
those interactions were conserved with S. cerevisiae (DIXON et al. 2008). In C. elegans, less than 5% of
interactions are found to be conserved with S. cerevisiae (BYRNE et al. 2007; TISCHLER et al. 2008).

To see how well-conserved interactions might be over multiple species comparisons, I have downloaded
the most recent version of the Biological General Repository for Interaction Datasets (BioGRID) genetic
interaction dataset (release 3.4.151, CHATR-ARYAMONTRI et al. 2017) and chosen the species with the
most non-redundant genetic interactions (>1500; C. elegans, D. melanogaster, E. coli, Homo sapiens, S.
cerevisiae, and S. pombe) curated from large-scale screens as well as small-scale experiments. For these
organisms, I found all available pairwise orthologs using Ensembl’s BioMart tool (Ensembl release 90,
AKEN et al. 2017, BioMart: KINSELLA et al. 2011), which didn’t include E. coli or S. pombe. I excluded
E. coli from analysis but, for S. pombe, I downloaded the set of manually curated orthologs between S.
pombe and S. cerevisiae from PomBase (MCDOWALL et al. 2014). For all other species except S. cerevisiae,
the fission yeast orthologs were determined by taking the list of budding yeast orthologs with that species
and finding the fission yeast ortholog for the budding yeast gene. Note that I did not exclude orthologs that
corresponded to sets of paralogs in the other species, so the total number of orthologous genes considered was
not equal between both species of a pair. Only genetic interactions were considered for this analysis, but both
positive and negative interactions were included. For each species pair, I first determined all (non-redundant)
pairwise genetic interactions in each species between genes that had orthologs in the other species. I then
compared these lists of interactions between the two species of a pair, checking for overlap where both
interacting genes were orthologous to interacting genes in the other species. The results are plotted in
Fig. 1.2.

Assuming that interactions are tested randomly with respect to gene identity and to the existence of an
ortholog in another species, we can determine the proportion of interactions that we expect to be conserved
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Figure 1.2: Conserved genetic interactions between pairs of species. Each pairwise combination of species
is represented by a single box, found in the corresponding row and column to the species names. Below the
species name is the percentage of total possible pairwise gene combinations that have been shown to have
a significant interaction. The data for each species is coloured by the colour of the species name. Within
each box, for each species, the number of conserved genetic interactions is above the line with the number of
genetic interactions between genes of that species that have orthologs with the other species below the line.
This is followed by the enrichment of conserved interactions observed compared to expected in parentheses
and the p-value of a Binomial test where the null probability is the proportion of total possible gene pairs
that are known to interact in the comparison species. Note that because we included paralogous genes, the
number of conserved interactions does not necessarily match between the two species in the pair. Below the
diagonal is a representation of the phylogenetic relationships between species (not to scale, created using
phyloT: http://phylot.biobyte.de/index.html).
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between species. For species A, we expect the conserved proportion of its interactions between its genes
that have orthologs in species B to be the proportion of all possible pairs of genes for which a significant
interaction has been found in species B (number of gene pairs tested and determined to interact signifi-
cantly/total number of gene pairs = p). Data on the number of non-redundant gene pairs found to have a
significant interaction comes from BioGRID (CHATR-ARYAMONTRI et al. 2017). The total number of gene
pairs was calculated as the square of the total number of protein-coding genes. We excluded dubious genes
from these numbers, which gave: C. elegans: 20,222 (release WS260, STEIN et al. 2001), D. melanogaster:
13,931 (release R6.17, GRAMATES et al. 2017), H. sapiens: 19,836 (GENCODE release v27, HARROW

et al. 2012), S. pombe: 5,064 (release version 30th Jan 2017, MCDOWALL et al. 2014), and S. cerevisiae:
5,892 (genome inventory as of 1/18/2017, CHERRY et al. 2011). I used the expected proportions to perform
Binomial tests to determine whether there were more conserved interactions than expected for each species
in each species pair. For example, in the C. elegans - D. melanogaster comparison, I first found all significant
interactions between genes in C. elegans that have orthologs in D. melanogaster (a total of n interactions). I
then determined how many of these interactions were conserved (X conserved interactions where orthologs
of both genes interact in D. melanogaster). The Binomial test was then performed using the total number of
interactions (n) as the number of trials, the number of conserved interactions (X) as the number of successes
and the expected proportion of conserved interactions in D. melanogaster (p) as the probability of success.
I found that there were significantly more interactions conserved than expected in all cases (Fig. 1.2), even
among the distantly related species.

I find that, when searching for orthologous genetic interactions, there is low conservation between species
in general. Even in comparisons with S. cerevisiae, where most interactions have been studied, only 14.7 -
23.9% of interactions are conserved. When I attempt to account for sampling effort by dividing the fraction of
conserved interactions by the expected proportion based on the total number of significant interactions known
in the other species to get the enrichment of conserved interactions, however, I find that the conservation is
much higher than what is expected by chance (Fig. 1.2, numbers in parentheses; all Binomial tests are
significant). Conservation generally shows a pattern of decreasing enrichment with increasing phylogenetic
distance and is very high between the animals (C. elegans, D. melanogaster, and H. sapiens). The enrichment
between the yeasts, however, is much lower than the enrichment found between the animals or between each
yeast species and each of the animals. It is possible that interactions found within multicellular animals
are more likely to be conserved with other multicellular animals because of conserved specialization of
orthologous genes’ functions in developmentally complex organisms. In the yeasts, however, the genes may
be less specialized and have more redundancy in function, leading to fewer specific (and therefore conserved)
genetic interactions.

There are some important caveats to this analysis, however, that may lead to systematic overestima-
tion of enrichment and underestimation of p-values. If there is a bias towards testing interactions between
conserved genes (i.e., those most likely to have orthologs in other species) then we may be biased towards
finding conserved interactions. We know that interactions are not tested randomly, with some studies fo-
cussing on particular biological processes (e.g., BYRNE et al. 2007 targeted genes in signal transduction
pathways), and it is common practice to test a smaller number of ‘query’ mutations in combination with a
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larger array of mutations, thus biasing the information gathered in favour of the chosen query genes. Such
a bias could explain the difference in enrichment observed between the animals and the yeasts. Because
fewer interactions have been tested in the animals, they are more biased towards interactions that are more
likely to be conserved. There is a much greater number of interactions that are known in the yeast species,
however, with almost all possible interactions having been tested in S. cerevisiae (COSTANZO et al. 2016),
although many essential or nearly essential genes remain to be tested. Thus, there is less bias and a number
of conserved interactions that is closer to the expectation. Additionally, we allowed each gene in our anal-
ysis to have multiple orthologs in the other species, but we have not accounted for these additional chances
of finding a match in our Binomial test. By restricting our analyses to gene sets that have orthologs in all
species being compared and that have been tested for interaction in those species, in addition to either using
only orthologs with a single match in the other species or using probabilities weighted by the homology
relationships, we could improve our ability to compare conservation between species pairs. Further, more
studies covering larger, and less-biased, portions of the genome will allow for better estimates of the true
enrichment of conserved interactions. An additional complication in using sequence-based homology rela-
tionships to assess conservation is that they do not always correspond to functional homology. For example,
KACHROO et al. (2017) found that two genes in yeast can be replaced by non-orthologous genes from E. coli.
If anything, these types of mismatches between sequence and functional orthology should make estimates of
conservation more conservative when based on sequence data alone.

In addition to caveats to the analysis, there are other potential problems in using this kind of data for
evolutionary interpretations. Most of the interaction data, and especially data from large-scale interaction
studies, comes from loss-of-function mutations (either gene deletions or RNAi knockdown), which may not
represent all natural mutations (see Section 1.5.1). In addition, the resulting alleles are generally either mildly
deleterious or neutral. Interactions between deleterious mutations may differ in a biologically significant way
from interactions between beneficial mutations. Also, because most large-scale genetic interaction mapping
studies have used proxies for growth rate as the phenotype of interest (DIXON et al. 2009), there is not a
lot of information about how interactions may differ in kind depending on the phenotype being measured.
However, the focus on growth rate enables us to interpret the results in terms of fitness. Because of these
issues and those of incomplete and biased data, the presence of an interaction in curated data may be used as
evidence that epistasis is occurring between mutations in two different genes but the absence of interaction
data should not be similarly taken as evidence of no epistasis. These datasets could be especially useful for
mapping BDM incompatibilities between species where candidate genes could be found that are known to
have synthetic sick or synthetic lethal interactions in a closely related model organism.

Despite low conservation of individual connections, larger-scale conservation can be useful in predict-
ing functional evolution. Between S. cerevisiae and S. pombe, RYAN et al. (2012) found that, within protein
complexes, interactions were well conserved (positive interactions: 70%, negative interactions: 68%). In this
same comparison, as the level of biological association between the genes decreased, they found decreas-
ing conservation of specific interactions (same biological process, positive: 58%, negative: 38%; separate
processes, positive: 19%, negative: 15%) (RYAN et al. 2012). Also in comparisons between S. pombe and
S. cerevisiae, similar percentages of conserved interactions were found by ROGUEV et al. (2008), and the
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general patterns were supported by FROST et al. (2012). The frequency of interaction between biological
processes is highly conserved, however, even if the exact connections are not (RYAN et al. 2012). In addi-
tion, highly connected hub genes found in C. elegans are also highly connected in other animals, suggesting
conservation of certain genes as hubs across species (LEHNER et al. 2006). In light of these results, if we
knew the biological processes underlying adaptation to a given environment, we may be able to predict the
amount of epistasis that would be found between potentially adaptive alleles in that environment by us-
ing data on genetic interactions within and between those processes. This information could indicate how
quickly evolution might be expected to proceed as well as whether it might be constrained to certain genetic
trajectories. Similarly, we might be able to hypothesize about the amount of negative epistasis expected
to be present between populations adapted to different environments based on the processes important for
those environments. Further developments and increased data in this field will help to inform hypotheses
about specific interacting alleles and determine the general patterns that we can expect to hold true for all
organisms, elucidating how this knowledge can be applied to natural systems.

1.5.3 How do genetic interactions depend on the environment?

If we want to use large-scale genetic interaction data to help us understand evolution, an important con-
sideration is how the observations are dependent upon the environment. Experimental studies are gener-
ally performed under a single set of standard laboratory conditions, thus not providing information about
environment-dependence. In Chapter 3, I give an example of epistatic relationships changing with chang-
ing concentrations of a single stressor. These kinds of changes may be somewhat predictable, but probably
only in the special case of changing severity of the evolutionary environment in which the mutations were
selected (see Discussion). Another study on reproductive isolation in yeast (HOU et al. 2015) tested many
intraspecific crosses on different culture conditions. All offspring were chosen to have high viability in the
rich lab medium (YPD), but the authors found that the hybrid viability was environment-specific and varied
among crosses. These results indicated that the underlying genetic incompatibilities were dependent upon
the test conditions. Other evolution-based studies provide case studies showing that epistasis can depend
on the environment in which it is measured (e.g., REMOLD and LENSKI 2004; WANG et al. 2009), but few
directed investigations of the large-scale generality of the phenomenon have been performed.

A few studies have attempted to address this issue, primarily in S. cerevisiae. JASNOS et al. (2008)
measured the maximum growth rate of single and double gene deletion strains in a benign environment
and several stressful environments, finding that epistasis became positive (alleviating), on average, in more
stressful environments. They attributed this change to the general properties of decreasing growth rate in
stressful environments; when growth rate is impaired, other defects caused by mutations have less of an
impact. They did not focus on how individual interactions changed with the environment, however, or
whether individual interactions changed in a predictable way. While alleviation of deleterious effects may
be the overall pattern, it is possible that individual interactions will differ, potentially in an important way. In
addition, JASNOS et al. (2008) specifically chose to investigate deleterious mutations, but it is possible that
neutral or beneficial mutations could show altogether different patterns. In addition, both targeted (ST ONGE

et al. 2007) and broad (BANDYOPADHYAY et al. 2010) surveys of genetic interactomes in the presence and
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absence of DNA-damaging agent methyl methanesulfonate (MMS) in yeast indicate that interactions can be
environment-dependent. These studies indicate that changes in interactions may be somewhat predictable
because the genes that had many changes in their interactions were often ones that were known to be sensitive
to MMS when knocked out or genes with a role in DNA repair (BANDYOPADHYAY et al. 2010), and similar
results were found in E. coli (KUMAR et al. 2016). Again in yeast, deletion mutations of paralogs from a
whole genome duplication were also found to have altered patterns of epistasis under different experimental
conditions (MUSSO et al. 2008). Paralog double mutants that were sensitive to certain stressful conditions
were generally found to have functions related to that condition (MUSSO et al. 2008). Finally, condition-
dependent epistasis is also predicted from models of metabolic networks in yeast (BARKER et al. 2015;
HARRISON et al. 2007) and other microbes (JOSHI and PRASAD 2014), and a small number of the predicted
interactions in yeast from HARRISON et al. (2007) were verified in vivo.

Further information is needed in this field, especially from experimental data. It would be relatively
simple and worthwhile to test double mutant strains made in rich medium conditions in a variety of other
conditions, as long as the mutants are viable in the original conditions. One generally ecologically-relevant
trait that would be useful to test is temperature-dependence. There is a lot of interest in the effects of
temperature right now as it relates to climate change and varies both geographically and temporally. For
lab-reared organisms, testing for the effect of temperature on a mutant phenotype could be as simple as
rearing the organism in a temperature-controlled incubator. I would generally expect growth to worsen
in temperatures that are increasingly divergent from the optimum (due to the instability of the underlying
proteins or slowing of enzymatic reactions), but especially large changes in phenotype could be examined to
determine the underlying causes. From these kinds of experiments, I would hope to find out whether network
properties remain stable, in general, and whether changes in environment have predictable and/or consistent
effects on epistasis. These results would again have implications for how adaptation might proceed after an
environmental change.

Changing epistasis in changing environmental conditions also has implications for how we conceptual-
ize reproductive isolation in speciation. Reproductive isolation builds up from a combination of isolating
barriers, which have been traditionally categorized as either extrinsic or intrinsic. Extrinsic barriers arise as
a mismatch of the organism’s phenotype to the environment in which it is found. Common examples include
immigrant inviability and hybrid partial inviability due to intermediacy of phenotype in one of the selective
environments. Genetic incompatibilities, on the other hand, have been traditionally classified as intrinsic
barriers, independent of the environment. If the incompatibility of alleles often depends on the environment
in which it is measured, then these ‘intrinsic’ isolating factors will have an extrinsic basis and we will have
to include these kinds of cases in our models of speciation. If hybrids between species are likely to find
themselves in qualitatively different environments from their parents, knowing how epistasis changes with
environmental conditions will be especially important for the stability of a reproductive barrier.
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1.6 Summary

Despite the many recent advances in our knowledge about the genetic basis of evolution, there is still much
to be discovered. Experimental evolution using model organisms is helping to lead the way in the molecular
dissection of evolution, informing us about the repeatability of evolution under different circumstances, and
how that repeatability depends on the genetic properties of the organism and their capacity for adaptation.
In addition, we have gathered evidence on the profound effects that epistasis can have on both adaptation
and speciation. These insights have allowed us to begin to interpret the abundant genomic data accumulating
in natural systems, but I believe that there is still more to be gained by utilizing knowledge acquired from
large-scale molecular studies of model organisms. These studies have informed us about the nature of many
genes in a few model organisms, and how these genes are organized into complexes, pathways and different
levels of biological processes. Further, these datasets have uncovered general properties of genetic interac-
tion networks, and which of these are well-conserved among species. Unfortunately, these large datasets are
often collected using gene knockout mutants, or other loss of function mutations, and these mutations tend
to be deleterious. Relatively little is known about how natural mutations or beneficial mutations might differ,
and we might expect these types of mutations to be categorically different in their properties and epistatic
relationships. In addition, there is still relatively little known about how epistatic relationships change with
changing environments, especially for mutations that were beneficial in the original environment. By con-
sidering the data produced by large-scale studies when making evolutionary hypotheses and utilizing the
biological tools developed by molecular biologists to perform directed experiments when the necessary in-
formation is lacking, I believe that we can greatly improve our ability to interpret evolutionary genetic data
and our predictions for evolutionary trajectories.
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Chapter 2

Too much of a good thing: The unique and
repeated paths toward copper adaptation

2.1 Introduction

In his book, Wonderful Life (GOULD 1989, p. 51), Stephen J. Gould famously opined that evolution is a
historical and contingent process, so much so that “any replay of the tape would lead evolution down a path-
way radically different from the road actually taken.” While this is undoubtedly true when one considers the
full complexity of an organism, refrains are often observed in evolution at the trait level. Repeated evolu-
tion, defined as ‘the independent appearance of similar phenotypic traits in distinct evolutionary lineages’
(GOMPEL and PRUD’HOMME 2009) has been documented in both ecological and clinical environments at
all taxonomic levels, e.g., repeated loss of stickleback lateral plates in freshwater (SCHLUTER et al. 2004),
ecomorphs of Anolis lizards (LOSOS 1992), the acquisition of “cystic fibrosis lung” phenotypes in Pseu-
domonas aeruginosa in cystic fibrosis patients (HUSE et al. 2010), to name but a few. The development
of sequencing technologies has recently allowed biologists to ask whether parallel genetic changes underlie
observations of parallel phenotypic change. In some cases, parallel phenotypic evolution has been attributed
to parallel genotypic evolution, for example, repeated changes to cis-regulatory regions of the same gene—
the pigmentation gene yellow—underlie changes in wing pigmentation in male Drosophila (PRUD’HOMME

et al. 2006). At the other extreme are cases where different genetic targets underlie similar phenotypic
shifts; for example, yeast adapting to rich media converged in fitness via a variety of genetic mechanisms
(KRYAZHIMSKIY et al. 2014), and beach mice adapting to sandy coastal dunes from the Gulf and Atlantic
coasts of Florida converged in coat coloration via different mutations (MANCEAU et al. 2010). In such cases,
unique evolutionary trajectories at the genetic level appear repeatable at the phenotypic level.

The degree of phenotypic repeatability is inherently linked with the genomic target size of appropriate
mutations, with single-locus Mendelian traits with fewer target sites (and hence higher repeatability) at one
extreme and quantitative traits at the other extreme. Even when multiple genes underlie a selected trait,
however, there may be relatively few sites that, when mutated, have the magnitude of effect and sufficiently
minor deleterious side effects to improve fitness overall (STERN 2013). Such pleiotropic constraints are
thought to explain why cis-regulatory sites more often contribute to adaptation than trans-regulatory changes
(GOMPEL et al. 2005; STERN 2000). The size of the population and the manner in which it reproduces are
also critical. Large populations have access to rarer mutations, particularly those of large effect (BURCH and
CHAO 1999), increasing the chance that the best of these mutations will fix in independent evolutionary trials
(BELL and COLLINS 2008). Mutations with particularly high fitness are also more likely to fix in asexual
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populations, because clonal interference reduces the chance that minor-effect mutations establish (ROZEN

et al. 2002), unless adaptive mutations are so common that coalitions of mutations establish together (FOGLE

et al. 2008; LANG et al. 2013).
The nature and severity of environmental challenge will also affect the degree of repeatability at both the

genotypic and phenotypic levels. If the environmental change is so severe that the population cannot replace
itself and there are only a small fraction of mutations whose benefits are large enough to bring absolute
fitness above one (BELL and COLLINS 2008), then adaptation would be more repeatable. On the other
hand, if an organism is adapting via mutations whose effects are small relative to the distance to the fitness
optimum, nearly half of mutations are predicted to be beneficial (FISHER 1930), and adaptation would be less
repeatable. The genomic target size must also depend on the nature of mutations required: when adaptation
can be accomplished by the loss of a function, adaptive mutations can potentially arise in any step along
the pathway leading to that function via a variety of mechanisms (e.g., single base pair changes leading to
premature stop codons early within a gene, movement of transposable elements within a gene, mutations in
the promoter that alter transcription factor binding sites, etc.). In contrast, if the environmental challenge
requires the appearance of a novel trait, or an alteration of an existing trait, the number of genomic targets
is likely diminished. Despite these long-standing theoretical predictions, empirical data have only recently
been catching up, largely due to breakthroughs in sequencing technology (e.g, SCHNEEBERGER 2014).

In this study, we set out to determine the repeatability of adaptive evolution at the genotypic and phe-
notypic levels using short-term experiments with the yeast, Saccharomyces cerevisiae. We purposefully
employed a short-term experimental design in an attempt to avoid the potential influence of epistasis limit-
ing the mutations that are sampled (CHOU et al. 2011; KVITEK and SHERLOCK 2011). The design of the
experiment was similar to a previous study in our group where we examined adaptation to the fungicide
nystatin (GERSTEIN et al. 2012). In both cases, multiple isogenic lines of yeast were exposed to inhibitory
levels of either nystatin or copper, with levels chosen to be slightly higher than those in which growth oc-
curred reliably. Lines that showed growth were isolated and analyzed. Through whole-genome sequencing
of 35 lines that evolved tolerance in the nystatin experiment, we found that adaptation repeatedly involved
the same four genes in a single pathway leading to the production of ergosterol (GERSTEIN et al. 2012),
the membrane-bound target of nystatin (WOODS 1971). Indeed, of the 20 unique mutations identified, 18
involved the same two genes (11 different sites in ERG3 and 7 in ERG6). In hindsight, the highly repeated
nature of this adaptation may well be explained by the narrowness of the environmental challenge: the cells
can survive by blocking the production of ergosterol, and this can be accomplished through loss-of-function
mutations in the ergosterol biosynthesis pathway (particularly in ERG3 or ERG6). We thus set out to as-
sess the degree of repeatability in the face of an entirely different environmental challenge: high copper
concentrations, where loss-of-function mutations are less expected.

Copper is a micro-nutrient that is essential for several different enzymatic processes in yeast (cytochrome
oxidase involved in respiration, superoxide dismutase involved in defense against oxidative damage, and the
Fet3p ferro-oxidase involved in iron uptake, GRADEN and WINGE 1997). Thus, unlike nystatin, cells can-
not entirely block copper uptake. On the other hand, copper is extremely toxic at high concentrations, both
because it displaces other metal co-factors from proteins and because it produces highly reactive oxygen
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species, including damaging hydroxyl radicals (PEÑA et al. 1999). The fact that multiple cellular processes
require copper, that multiple cellular compartments are involved in copper sequestration (especially vacuoles
and mitochondria), and that multiple processes are impacted negatively by copper (PEÑA et al. 1999) sug-
gests that adaptation to high copper concentrations may occur through a variety of mechanisms. Here we
report the results of a short-term adaptation experiment to this toxic but essential metal. Through whole
genome sequencing, we identify the nature of the genetic changes that underlay the evolutionary rescue of
34 lines of S. cerevisiae exposed to inhibitory copper concentrations.

2.2 Materials and Methods

2.2.1 Evolution of haploid mutation lines

Mutations were acquired in haploid lines of the common lab strain, BY4741 (MATa his341 leu240 met1540
ura340), obtained from Open Biosystems in 2009. Preliminary experiments determined that BY4741 grown
in liquid YPD + 12.5mM CuSO4 does not show consistent growth, but that some populations begin growing
at different times, a stochastic pattern of growth we have previously shown to be consistent with benefi-
cial mutations in other environments (GERSTEIN et al. 2012). To initiate mutation acquisition, we streaked
BY4741 from frozen onto a YPD plate and randomly chose a single colony to grow overnight in 10mL
YPD, shaking at 30�C. We added 4.5mL of this common wild type stock to 185.5mL YPD + 12.5mM
CuSO4 (hereafter referred to as ‘copper12 medium’). We placed 1mL aliquots into 180 inner wells of three
96 deep-well boxes, with 1mL of dH2O in the outer wells. Inner wells were used, with dH2O in the outer
wells, in an effort to reduce evaporation. Boxes were maintained shaking on a platform shaker at 30�C. All
boxes were checked daily by visual examination of the bottom of the wells. Growth was recorded when
we saw precipitate on the bottom of a well and was first observed after 7 days of incubation (Table A.1).
Twenty-four hours after growth was first seen, we manually mixed the well and froze 500µL of culture in
15% glycerol. In this way we isolated 56 ‘putative mutation lines’ within 14 days, post-inoculation.

At the end of the mutation-accumulation phase we struck each putative mutation line from the freezer
stock onto a single YPD plate and grew them at 30�C. Two of the putative mutation lines did not grow within
72 hours and were excluded from this point forward. Fourteen lines exhibited very small colonies, typical
of petite colonies that have lost mitochondrial function. One of our initial goals in acquiring these mutation
lines was to measure their fitness in heterozygous form; to avoid assaying non-nuclear mutations, these lines
were also excluded from the set of lines we genotyped and phenotyped. From each remaining line we hap-
hazardly chose eight colonies and inoculated each colony into 1mL copper12 medium and 1mL YPD (by
using the same pipette tip) and incubated them at 30�C with shaking. In six cases, none of the eight colonies
grew in copper12 medium within 72 hours, leaving us with 34 copper-adapted mutation lines (CBM: ‘Cop-
per beneficial mutation’ lines, Table 2.1). From the paired YPD culture descended from the same colony
(limiting exposure of our stocks to copper), 500µL was added to 500µL 30% glycerol and frozen.

23



2
.
2
.

M
a
t
e
r
i
a
l
s

a
n
d

M
e
t
h
o
d
s

Table 2.1: Mutations identified in the CBM lines. CUP1 coverage for each line is provided in the second column and does not account for additional
copies via chrVIII aneuploidy.

CUP1 Genome Position Mutation Position Amino acid
CBM line coverage (chr.bp) Gene (Watson strand) (from 5’ end) change Exchangeability

CBM1 1.61 X.412600 VTC4 C>T 800 Trp>Stop
XI.105507 FAS1 G>T 4837 Val>Phe 0.207

XVI.420661 intergenic A>T
CBM2 2.00 chrII aneuploidy
CBM3 2.48 VII.150650 intergenic G>T

chrII aneuploidy
CBM4 3.26 mito.24277a COX1b 1D indel (GG C/- CC) 10460 intron
CBM5 3.78 X.413174 VTC4 C>A 226 Glu>Stop

X.654261 intergenicc T>C
XIV.284255 intergenic T>G

CBM6 3.69 III.100061 BUD3 G>A 3781 Gly>Arg 0.178
IV.319466 VAM6 T>A 655 Lys>Stop
mito.59168 21S_RRNA A>G 1160 Lys>Arg 0.440
mito.69322 tRNA-Arg C>G 34 Arg>Gly 0.251

CBM7 0.91 II.365359 TRM7 C>T 361 Val>Ile 0.537
III.306327 intergenic G>T
IV.143017 YDL176W G>T 921 Ser>Ser
IV.177435 CLB3 T>G 663 Thr>Thr
V.392908 BOI2 C>T 805 Glu>Lys 0.323

VII.949946 SMI1 C>A 954 Lys>Asn 0.457
IX.370383 intergenic C>G
XV.215888 MAM3 C>G 250 Gly>Arg 0.178

chrVIII aneuploidy
chrXVI aneuploidy

CBM11 2.46 X.413020 VTC4 1D indel (GG A/- AA) 380 Phe>Ser+frameshift
XI.566200 CCP1 A>G 999 Phe>Phe
XII.605283 intergenic 1D indel (TT A/- AA)

chrII aneuploidy
CBM13 4.02 X.412247 VTC4 C>A 1153 Glu>Stop

X.654261 intergenicc T>C
CBM14 2.15 XV.215018 MAM3 C>T 1120 Val>Ile 0.537
CBM16 0.28 VII.480836 PMA1 A>T 1831 Phe>Ile 0.181

chrII aneuploidy
Continued on next page24
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Table 2.1 – continued from previous page

CUP1 Genome Position Mutation Position Amino acid
CBM line coverage (chr.bp) Gene (Watson strand) (from 5’ end) change Exchangeability
CBM17 0.98 X.412325 VTC4 A>G 1075 Tyr>His 0.197

XIII.711207 ESC1 C>T 4075 Leu>Phe 0.336
XIII.821262 FCP1 T>C 1007 Leu>Ser 0.212

chrVIII aneuploidy
chrXVI aneuploidy

CBM18 2.80 V.303094 VTC1 G>T 289 Asp>Tyr 0.227
VII.548326 GSC2 C>T 63 Asp>Asp

XI.646356-onwards FLO10d A>G
CBM20 1.82 VII.480463 PMA1e G>T 2204 Ala>Asp 0.193

XV.215332 MAM3 C>T 806 Ser>Asn 0.390
XVI.84024 YPL247C C>T 173 Gly>Asp 0.188

chrII aneuploidy
CBM21 1.12 VII.971165 PFK1 G>C 2570 Pro>Arg 0.254

X.654261 intergenicc T>C
chrII aneuploidy
chrIII aneuploidy

chrVIII aneuploidy
CBM22 0.78 V.302818 VTC1 1D indel (CA C/- CA) 13 Pro>His+frameshift

chrVIII aneuploidy
chrXVI aneuploidy

CBM24 0.77 IV.805485 intergenic A>G
IV.805517 intergenic G>A

CBM25 2.28 IV.530697-onwards ENA5f A>G
IX.621992 MLP1 G>T 2188 Glu>Stop

CBM26 0.66 VII.480470 PMA1 T>G 2197 Thr>Pro 0.164
chrI aneuploidy
chrV aneuploidy

chrVIII aneuploidy
CBM29 1.08 VII.1376 intergenic A>G

VII.480463 PMA1e G>T 2204 Ala>Asp 0.193
XV.566240 intergenic G>C

chrII aneuploidy
CBM30 3.30 chrII aneuploidy
CBM33 2.40 VII.618173 VHT1 G>C 1686 Ile>Met 0.279

VIII.321332 SBE22 A>T 919 Met>Leu 0.513
X.412080 VTC4g C>T 1320 Trp>Stop

Continued on next page25
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Table 2.1 – continued from previous page

CUP1 Genome Position Mutation Position Amino acid
CBM line coverage (chr.bp) Gene (Watson strand) (from 5’ end) change Exchangeability

mito.24277a COX1b 1D indel (GG C/- CC) 10460 intron
CBM34 2.92 X.412080 VTC4g C>T 1320 Trp>Stop

XI.364518 intergenic complex 1I indel (GA>AAT)
mito.24277a COX1b 1D indel (GG C/- CC) 10460 intron

CBM36 2.15 X.412080 VTC4g C>T 1320 Trp>Stop
mito.24277a COX1b 1D indel (GG C/- CC) 10460 intron

CBM37 2.04 X.412080 VTC4g C>T 1320 Trp>Stop
mito.24277a COX1b 1D indel (GG C/- CC) 10460 intron

CBM44h 1.39 X.412080 VTC4g C>T 1320 Trp>Stop
mito.24277a COX1b 1D indel (GG C/- CC) 10460 intron

CBM45 2.68 X.412080 VTC4g C>T 1320 Trp>Stop
mito.24277a COX1b 1D indel (GG C/- CC) 10460 intron

CBM46 2.74 X.412643 VTC4 T>A 757 Arg>Stop
XI.438478 DID4 A>G 701 Gln>Arg 0.366

CBM47 2.34 V.302909 VTC1 C>A 104 Ser>Stop
CBM49 3.14 V.438349 intergenic G>C

XII.1034221 HMG2 C>T 1595 Pro>Leu 0.258
XIII.420239 intergenic A>C
XIV.265933 GCR2 T>A 598 Lys>Stop

CBM51 2.50 II.444465 FES1 C>T 229 Asp>Asn 0.201
IV.310552 intergenic A>G

CBM53 2.88 V.180433 PRP22 C>T 1593 Ile>Ile
CBM54 1.98 VII.1077964 MAL12 G>T 1366 Gly>Stop
CBM55 2.25 (no mutations except to CUP1)

a This mutation falls in an intron of COX1 but causes a frameshift in an overlapping predicted gene, A15_Beta.
b Identical COX1 mutation observed in seven different lines.
c Identical intergenic mutation observed in three different lines.
d The alignment formed a 100% match to the beginning of FLO10 until XI.647464, at which point the alignment switched to a perfect match to a similar region downstream, starting at XI.648031. In
silico qPCR confirmed the absence of unique intervening sites (CACCAGCTCTTCCTGGTCGT and CACCAGCTCTTCCTGGTCGT) within the FASTQ files for CBM18 (but present in other CBM lines),
indicating a deletion in this region.
e Identical PMA1 mutation observed in two different lines.
f The alignment within this region exhibited a 100% match to the beginning of ENA5 but switched to a 100% match to ENA1 from approximately site IV.527743, suggesting a deletion. Because of the
highly repetitive nature of this array, in silico qPCR was unable to uniquely identify the missing positions.
g Identical VTC4 mutation observed in six different lines.
h CBM44 was sequenced from the original population, not the representative colony.
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2.2.2 Sequencing of haploid mutation lines

Freezer culture from each CBM line was streaked onto YPD plates and grown for 48 hours at 30�C. We
haphazardly picked a single colony for each line and grew it for 24 hours in 50mL of YPD at 30�C with
shaking. Genomic DNA was extracted using standard protocols (SAMBROOK and RUSSELL 2001). Proto-
cols supplied by Illumina were followed to create barcoded libraries for each line (2011 Illumina, Inc., all
rights reserved). We sequenced 100bp single-end fragments for each line, pooling 12 uniquely barcoded
strains in each lane on an Illumina HighSeq 2000. Twelve samples were rerun to obtain sufficient depth of
coverage using 100bp paired-end fragments: CBM18, 20, 21, 22, 24, 25, 26, 29, 30, 34, 36, 44.

The resulting genomic sequence data was processed using Illumina’s CASAVA-1.8.0 as in GERSTEIN

et al. (2012). We called SNPs and small insertions and deletions using configure-Build.pl and parsed the
output files with custom UNIX and perl scripts. We took advantage of Illumina data from the previous set
of experiments with nystatin (GERSTEIN et al. 2012), which were initiated from the same BY4741 cul-
ture, to determine the mutations that are common to our strain background yet different from the S288C
reference genome (scergenome.fasta downloaded from the Saccharomyces Genome Database, http://
downloads.yeastgenome.org/genome_release/r64/); all such differences were removed from
the dataset. Given that our lines were haploid, mutations called as heterozygous were discarded (likely align-
ment errors), as were SNP and indel calls of low quality (Q < 20). Remaining variants were checked in
the alignments, using tview in samtools-0.1.7a (LI et al. 2009). SNPs were independently called using the
bwa software package to perform the alignment along with samtools-0.1.7a to identify SNPs, using the -bq
1 option to limit data to reliable alignments (LI et al. 2009), confirming all SNPs found by CASAVA (Table
2.1).

To assess chromosomal aneuploidy events, the total depth of coverage for each chromosome was calcu-
lated as the proportion of sequenced sites mapping to a particular chromosome, relative to the proportion of
known mapped sites located on that chromosome within the yeast reference genome (as reported by config-
ureBuild.pl in Illumina’s CASAVA-1.8.0 package).

Intergenic mutations were analyzed for gains and losses of predicted TF binding sites using Cis-BP,
a tool offered by the online Catalog of Direct and Inferred Sequence Binding Preferences (available at
http://cisbp.ccbr.utoronto.ca/TFTools.php). Cis-BP compares two sequences (i.e., one
wildtype and one mutant allele) for differential transcription factor binding inferred based on the rela-
tionship between similarity in DNA binding domain amino acid sequence and DNA sequence preferences
(WEIRAUCH et al. 2014).

2.2.3 Expected frequency of mutations causing non-synonymous and stop codons

The expected frequency of mutations that would generate a particular type of amino acid change (synony-
mous, non-synonymous, or stop) was calculated from the observed codon frequency in S. cerevisiae (http:
//downloads.yeastgenome.org/unpublished_data/codon/ysc.gene.cod; produced by
J. Michael Cherry based on the 6216 ORFs within the “Saccharomyces Genome Database” (SGD) as of Jan-
uary 1999). For each position in each codon, the frequency of all possible mutations was calculated according
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to the observed spectrum of mutations reported by LYNCH et al. (2008) based on previous studies in yeast.
(Similar results were obtained using other mutation spectra, including a uniform distribution, the spectrum
observed by LYNCH et al. (2008) in their mutation-accumulation study, and the observed mutation spectrum
in this study.)

Summing over the whole genome, the expected frequency of mutations leading to stop codons is 5.78%.
The expected frequency of non-synonymous mutations is 73.0% among all possible codon changes or 77.6%
among only the synonymous and non-synonymous changes (excluding those going to or from a stop codon).
The expected frequency of mutations causing any change to the amino acid sequence is 78.9%, which is
similar to the expectation used previously (78.7%) based on a uniform frequency of mutations (WENGER

et al. 2011). Because mutations are biased towards transitions and away from G/C, we recommend using the
estimates reported here, which are based on the greatest amount of data regarding the mutational spectrum
(LYNCH et al. 2008).

2.2.4 Determination of CUP1 copy number

Using samtools-0.1.7a, the alignments of all CBM lines were manually checked at genes that are known or
suspected to be important for acclimation to high levels of copper in S. cerevisiae, with a particular focus on
genes that were previously identified to be up-regulated under high levels of copper: BSD2, CCC2, COX23,
CTR2, CUP1-1, CUP1-2, CUP2, FET3, FMP23, GEF1, HAA1, PCA1, SCO1, SCO2, SLF1, VMA3. The
alignments were normal for all of these genes (including 500bp up and downstream), except CUP1-1 and
CUP1-2 on chromosome VIII. In this region, large gaps were consistently found spanning the duplicated
copies of these genes, caused by alignment ambiguities in this tandem repeat region.

To measure CUP1 copy number without having to rely on alignments, we carried out the bioinformatics
equivalent of a qPCR analysis (in silico qPCR; GERSTEIN et al. 2014) by using the unix command “grep”
to directly count the number of fastq fragments containing “primers” in the CUP1 region. Specifically, we
summed the number of fragments containing the 16 bp fragment from the very beginning and from the
very end of CUP1, plus two 16 bp fragments between CUP1-1 and CUP1-2 (TTTCAAGAGAACATTT and
GGGTGGTGAAGTAATA), searching for all four in the forward and reverse directions (e.g., using “zgrep
TTTCAAGAGAACATTT *fastq*”). We then repeated this in silico qPCR procedure for three unique genes
on chromosome VIII as controls (using the first 16 bp of DED81, DUR3, RIX1 in both the forward and reverse
direction). A BLAST search was used to confirm that these fragments aligned only to the appropriate genes
(http://www.yeastgenome.org/cgi-bin/blast-sgd.pl). We also conducted this procedure
with the 35 BMN lines isolated in nystatin (‘beneficial mutation nystatin’; GERSTEIN et al. (2012)), which
we initiated from the same ancestral genetic background, providing a baseline for comparison. Relative to
the three control genes, the BMN lines had an average of 18.13 copies of CUP1 (range: 12.40 – 30.45). Note
that although the S288C reference genome on the Saccharomyces Genome Database (SGD) reports only two
CUP1 copies, an isolate of S288C was recently found to contain about 14 copies by Southern analysis (ZHAO

et al. 2014). Our data are thus consistent with our ancestral BY4741 strain having undergone amplification
in this region, and we report the number of CUP1 copies in our copper adaptation strains relative to the
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Table 2.2: Oligonucleotides employed for real time PCR (RT), Southern blot analysis (SB), and genotyping
(GT) in the forward (F) and reverse (R) directions.

Primer name Sequence Experiment
CUP1-F AGCTGCAAAAATAATGAACAATGC RT
CUP1-R GCATTTGTCGTCGCTGTTACA RT
TAF10-F AAGTTGTTCTGACGGTGAACGA RT
TAF10-R GCGACCTATATTGAGCCCGTATT RT
CUP1-F 5Biosg/TTAATTAACTTCCAAAATGAAGGTCA SB
CUP1-R 5Biosg/AGACTATTCGTTTCATTTCCCAGAG SB
MAM3-F AATGAGTGCCGATACCATCC GT
MAM3-R GATTCGTCCCAATCTTTTGC GT
VTC4-F GTTCATGATCTAGCAAAGTTTTCG GT
VTC4-R GGTAACCAAAATGGGATTGAA GT
LYS2-F TCAAGGGCTGAAAAGACAATCAA GT
LYS2-R CGACGCAAAGAGATGAAACCA GT

average across the BMN lines.
To test whether levels of CUP1 inferred from in silico qPCR were consistent with levels of CUP1 tran-

scription, we assayed RNA levels using quantitative real-time PCR (qPCR). Detailed methods are provided
in Section A.1.1. Briefly, we chose 10 CBM lines that spanned the range of CUP1 copy number. A single
colony of each CBM line and two colonies of BY4741 were inoculated into 1mL YPD + 5.5mM CuSO4

(a lower concentration was used to allow growth of all lines, including BY4741) and grown for 12 hours at
30�C with shaking, at which point RNA was isolated using the RNEasy Mini Kit from Qiagen, following the
yeast protocol. Oligonucleotides for qPCR (Table 2.2) were designed using Primer Express (ABI). mRNA
levels of TAF10 were used for normalization, because TAF10 exhibits stable expression across strains and
conditions (TESTE et al. 2009).

2.2.5 Phenotypic assays of CBM lines

To determine the extent of copper tolerance acquired, we conducted dose-response experiments in deep-well
boxes. Each CBM line was struck from frozen onto YPD and grown for 48 hours at 30�C. A single colony
was then haphazardly chosen from each line and inoculated into 10mL YPD, shaking overnight at 30�C. The
optical density of all lines was standardized to the least dense line and 200µL of standardized culture was
added to 400µL YPD; 15µL was then inoculated into 1mL of 8 different levels of YPD + CuSO4 (0mM,
4mM, 8mM, 9mM, 10mM, 11mM, 12mM, 14mM). Four replicates were grown for each line in each level of
copper. Boxes were maintained shaking on a bench top shaker at 30�C. After 72 hours we manually mixed
each well and the optical density (OD) of 200µL of culture was measured on a BioTek plate reader. With this
data, we determined the IC50 (half-maximal inhibitory concentration) of copper using a maximum likelihood
fitting procedure, as previously described (GERSTEIN et al. 2012).
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To assess whether there was a correlation between the ability to grow in elevated levels of copper and
fitness in other environments, we conducted a series of growth rate experiments using the Bioscreen C
Microbiological Workstation (Thermo Labsystems) to automate OD readings. From the rise in OD, growth
rates were estimated under multiple environmental conditions: YPD + 8mM CuSO4 (‘copper8’); YPD,
a standard laboratory rich medium; YPG, a medium that requires yeast cells to respire; and YPD + iron
(ferric citrate). The latter environment was of particular interest because of copper’s role in iron uptake via
the Fet3p ferro-oxidase, so growth was assayed at three levels of ferric citrate: 10mM, 40mM and 60mM;
we only present the 40mM results in the main text because results were highly correlated across the iron
concentrations (Table A.2). Copper (0.2M Cu(II)SO4·5H2O) and iron (1M C6H5FeO7) stocks were made
in distilled water. Iron stock was made at least three days prior to use with occasional vortexing and mild
heating to keep the ferric citrate in solution. In both cases, copper or iron stock was added after YPD was
autoclaved, roughly one hour before the addition of yeast culture.

Each growth rate assay was initiated in a similar manner to the IC50 assays. Cultures from BY4741 and
all CBM lines were struck from frozen and grown on YPD plates incubated at 30�C for 2-3 days. Four or
five colonies from BY4741 and a single colony from each CBM line was then inoculated into 10mL YPD,
shaking overnight at 30�C. Optical density from overnight culture was standardized, and a 1:101 dilution was
conducted into the appropriate medium. For each line, five random wells spanning two 100-well honeycomb
plates were filled with 150µL of diluted culture. Plates were incubated at 30�C with maximum shaking for
24 hours on a Bioscreen C, with automated OD readings every 30 minutes. From the raw data, we extracted
the maximum growth rate using a non-parametric spline fit performed by a custom R script (GERSTEIN

et al. 2012). The maximum growth rates from the replicates of each CBM line were statistically compared
against all replicates initiated from BY4741 using a t-test (replicates involving separate wells from a single
Bioscreen C plate).

2.2.6 Copper tolerance of deletion lines

To assess whether intragenic mutations that arose within our CBM lines are phenotypically similar to knock-
out mutations, we measured copper tolerance (IC50) of 21 gene deletion lines (GIAEVER et al. 2002), repre-
senting all of the available knockouts for the characterized genes that had mutated in our study (excluding the
uncharacterized YPL247C and YDL176W). BY4741 is the progenitor of both the deletion collection and our
ancestral strain background, allowing a direct comparison of the impact of deleting these genes. Tolerance
(IC50) was determined as above from OD measurements taken across an array of copper concentrations at
24 hours. Tolerance assays were conducted in the Bioscreen C and replicated twice, running simultaneously
on two different machines.

2.2.7 Tetrad dissections to isolate single mutations

To separate the effects of single mutations from other mutations present in the evolved lines (including
extra copies of CUP1), we crossed all of the CBM lines with BY4739, which has a common genotype
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yet opposite mating type and different auxotrophies than BY4741, the progenitor of our lines. We then
attempted to sporulate the resulting diploid lines, focusing on a subset that contained each common mutation
or aneuploidy and the fewest number of additional mutations (⇠1/3 of the lines). Detailed methods are
provided in Section A.1.2.

We encountered substantial difficulties in obtaining tetrads from our strains; BY4741, a derivative of
S288c, is known to be a poor sporulator (BEN-ARI et al. 2006; DEUTSCHBAUER and DAVIS 2005). In
particular, despite many attempts, no tetrads were obtained for CBM16 (PMA1 mutation plus chrII aneu-
ploidy), CBM26 (PMA1 mutation plus chrI, chrV and chrVIII aneuploidy), CBM29 (PMA1 mutation plus
chrII aneuploidy), CBM47 (VTC1 mutation), or CBM55 (no mutation identified other than extra copies of
CUP1).

We were able to sporulate CBM2 (chrII aneuploidy), CBM14 (MAM3 mutation), CBM25 (MLP1 and
ENA5 mutations), and CBM34 (VTC4 mutation). CBM25 was not initially chosen for tetrad dissection but
was dissected as a contaminate of CBM22 (VTC1 plus chrVIII and chrXVI aneuploidy), as detected by
subsequent sequencing. CBM25 contaminating cells were likely positively selected during the sporulation
procedure given that the aneuploid lines in our experiment, like CBM22, had very low sporulation rates.

The genotype of resulting spores was then determined (see Section A.1.2; PCR primer information in
Table 2.2). In brief, for CBM14 and CBM34 tetrad lines, MAM3 and VTC4, respectively, were amplified
by PCR. All SNPs showed the expected 2:2 segregation pattern in the four spores of each dissected tetrad.
CBM25 spores were sequenced on Illumina HiSeq 2000, which is when the strain was discovered to be
CBM25 (bearing a mutation in MLP1 and ENA5), not CBM22. The segregation pattern for the additional
copy of chrII in CBM2 spores was determined by the segregation patterns of LYS2 alleles. To quantify the
segregation patterns of CUP1 among the spores, Southern blots with CUP1 specific probes were performed.
We isolated genomic DNA and ran a Southern blot on three separate occasions for each spore. Band inten-
sity was quantified in ImageJ (ABRAMOFF et al. 2004) using the “background corrected density" macro to
estimate CUP1 copy number.

2.2.8 Fitness effect of single mutations on growth rate and copper tolerance

To measure the fitness effects of the mutations isolated by tetrad dissection, growth rate assays were con-
ducted within the Bioscreen C using either YPD + 9mM CuSO4 (‘copper9’) or YPD, as described above
with the following exceptions. Yeast was occasionally taken from a lawn plated from frozen cells rather than
from single colonies (the sporulated lines had been bottlenecked to a single colony just prior to freezing,
and so a second bottleneck at this stage was less essential). Optical density was not standardized for the
copper9 experiments as this was deemed to have little effect on inferred growth rates. For each line, two
(copper9) or four (YPD) non-adjacent wells were filled with 150µL of diluted culture and allowed to grow
for 24 hours. This procedure was performed three times in the copper9 environment, and once in YPD to
determine whether these lines were affected in their ability to grow in the nutrient-rich environment. The
mean maximum growth rate was determined for each Bioscreen C assay in the copper9 environment, and
statistics were performed using these means as data points.

31



2.3. Results

Copper tolerance was determined for a subset of spores through dose-response experiments as described
for the knock-out lines except that two separate Bioscreen C runs were performed, with two replicate wells
per run (Figure A.1). Specifically, we assayed IC50 for two spores (among all of the tetrads for each line)
that carried mutations of interest but had low CUP1 copy number.

2.2.9 Data Accessibility

To facilitate data reuse, all genomic fastq files have been deposited in the NCBI-SRA database under the
accession code PRJNA261735. The remaining raw data and statistical analyses have been deposited in the
Dryad Digital Repository (doi:10.5061/dryad.5gp25).

2.3 Results

We recovered a broad spectrum of genetic changes across 34 lines exposed to initially inhibitory levels of
copper (Figure 2.1, Table 2.1). Most lines contained multiple mutations, in contrast to our previous results
in nystatin (GERSTEIN et al. 2012), which is consistent with the longer waiting period before growth was
observed (4-7 days with nystatin, 7-14 days with copper). All lines except for two (CBM2, one of the five
lines isolated on the first day, and CBM55, one of the eleven lines isolated on the last day) contained one
or more single base-pair mutations. In total, there were 57 unique base-pair changes, including four single
base-pair deletions and one single base-pair insertion that also resulted in a basepair change. Beyond changes
to single sites, there were several large-scale mutations. Twelve lines exhibited chromosomal aneuploidy
(Figure 2.1B), and three lines (CBM6, CBM7, CBM17) appeared to have low mtDNA coverage, outside of
the range of lines from our previous study with nystatin (Figure 2.1C). In addition, two changes involved
deletions within repetitive regions, one in CBM25 involving the tandem array of P-type ATPase sodium
pumps (ENA5, ENA2, and ENA1) and the second in CBM18 involving the flocculation gene FLO10 (see
details in Table 2.1).

The most frequent mutation across all lines was copy number alteration of the CUP1 locus. Based on in
silico qPCR, CUP1 estimates were, on average, 2.17 times higher than estimates from the 35 lines obtained
in nystatin. CUP1 copy number was estimated to be above the entire range of nystatin lines for 24 of the 34
CBM lines, while two lines (CBM16 and 26) both exhibited CUP1 levels lower than the range of nystatin
lines (Figure 2.1C). CUP1 is a metallothionein protein that binds copper in S. cerevisiae. It is present as a
tandem duplication on chrVIII in the S288C reference strain, and amplification of this locus is known to be
a common mutation that confers increased resistance to copper (ADAMO et al. 2012; FOGEL and WELCH

1982; FOGEL et al. 1983). Disomy for chrVIII has also been shown to increase copper tolerance (FOGEL

and WELCH 1982). Indeed, including cases with chrVIII aneuploidy, 27 out of the 34 CBM lines have
increased CUP1 copy number above the range of BMN lines (one of the exceptions, CBM24, is the least
copper-tolerant of our CBM lines).

When expression level of CUP1 was investigated by qPCR in a subset of lines and compared with the in
silico qPCR estimates, it was found that the slope was positive and significant when forced through the point
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Figure 2.1: Observed mutations in copper-adaptation lines. A. Genes mutated within the CBM lines (see
Table 2.1 for specific mutations) illustrated based on previous localization studies of the genes involved
(references in Table 2.1). The colour of line names reflects the type of mutation; black for a nonsynonymous
amino acid change, red for a premature stop codon, and blue for an indel or rearrangement (synonymous
changes and RNA genes not shown). Genes that localized to more than one location are listed multiply
and identified by (*). CBM lines 33, 34, 36, 37 and 45 contained the same VTC4 mutation, indicated by
($). B. Chromosomal aneuploidy was prevalent, appearing in 11 of 34 lines. Coverage is determined by the
average number of reads across the chromosome, compared to the reference strain. C. CUP1 copy number
(green line) and mitochondrial coverage (orange line) for each CBM line. CUP1 copy number is measured
relative to the average level observed in our parallel nystatin study, which showed negligible variation in
copy number (range of the 35 BMN lines shown as dashed green lines). Mitochondrial depth of coverage in
the CBM lines was divided by ten and is presented relative to the average depth of coverage from mapped
nuclear DNA (the equivalent range for the 35 BMN lines shown as dashed orange lines). Lines are ordered
according to increasing copper tolerance (Figure 2.2).
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(1,1), which assumes that both axes are scaled to the ancestor (even though, technically, the derived nystatin
lines and not BY4741 were used as the control in the in silico qPCR assays; p = 0.02, Figure A.2A). The
slope was still positive, but not significant, otherwise (p = 0.27).

2.3.1 Single base-pair changes

Of the 57 unique single base-pair changes (Table 2.1), 15 were present in intergenic regions (two of which
were indels), and one single base-pair deletion was present in the intron of COX1. The remaining 41 unique
single base-pair mutations were found within 29 different genes, whose products localize to many different
cellular structures (Figure 2.1A). Five of these mutations were synonymous changes, 24 were nonsynony-
mous changes, 10 were premature stop codons, and two were frameshift mutations caused by single base-pair
deletions.

Four sites were altered in the exact same way in multiple lines (a mutation at the intergenic site X.654261
in three lines, mito.24277 within an intron of COX1 in seven lines, VII.480463 causing an amino acid change
in PMA1 in two lines, and X.412080 causing a stop codon in VTC4 in six lines). As discussed previously
(GERSTEIN et al. 2012), we cannot distinguish between repeated mutational hits and either a single ancestral
mutation that amplified during the growth of the strain prior to being separated into lines (i.e., during growth
of the ancestral colony, followed by overnight growth in 10mL YPD) or contamination during the sampling
of lines on previous days. To be conservative, we consider the same mutation in multiple lines to be non-
independent and count them as having arisen only once in the statistical analyses below.

Four genes acquired multiple independent mutations, involving different positions in different strains.
Fourteen lines acquired mutations in one of two subunits of the vacuolar transporter chaperone complex,
VTC1 (3 unique mutations in 3 lines) or VTC4 (7 unique mutations in 12 lines); four lines acquired mutations
in the plasma membrane H+-ATPase PMA1 (3 unique mutations); and three lines acquired unique mutations
in MAM3, a protein required for normal mitochondrial morphology (ENTIAN et al. 1999).

Given the 6607 ORFs within the S. cerevisiae genome (http://www.yeastgenome.org/cache/
genomeSnapshot.html), the data are enriched for multiply hit genes. Specifically, there is a 99% chance
that the 41 genic mutations would either hit different genes (first line in equation 2.1) or would hit one gene
twice but no more (second line in equation 2.1):
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assuming that ORFs are roughly equal in length. Thus, seeing even one gene bearing mutations at three or
more independent sites is highly unlikely, and we conclude that positive selection acted upon the mutations
in VTC1, VTC4, PMA1, and MAM3.

Excluding the indels, the single base-pair mutations that occurred within exons generated a stop codon
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much more often than predicted by chance (10/39 = 25.6%, p = 0.00006, exact one-tailed binomial test with
expectation of 5.78% based on the mutational spectrum in yeast, see Materials and Methods). This result
remains marginally significant when we focus only on genes hit once and exclude the four multiply hit genes
(4/25 = 16%, p = 0.053, expectation of 5.78%).

On the other hand, the fraction of unique mutations that fall within an exon rather than a non-coding
region is not significantly greater than the expected fraction in S. cerevisiae (41/57 = 72.0%, p = 0.63, ex-
pectation of 72.9% from ALEXANDER et al. 2010). Similarly, among the synonymous and non-synonymous
mutations, non-synonymous changes did not occur more often than expected (including all changes: 24/29
= 82.8%, p = 0.34; excluding multiply hit genes: 16/21 = 76.2%, p = 0.67; both exact one-tailed binomial
tests with an expected fraction of 77.6%). Furthermore, the mean exchangeability score (an empirically-
based measure of the change in protein function following a particular amino acid change, YAMPOLSKY

and STOLTZFUS 2005) of our observed amino acid changes (0.294) was within one standard error of the
grand mean for mutations in yeast (0.31, calculated based on the mutational spectrum reported in LYNCH

et al. 2008). These tests are likely conservative, however, because selection against deleterious amino acid
changes would have eliminated non-synonymous mutations from our dataset, making it difficult to detect an
enrichment of amino acid changes due to positive selection.

The set of genes whose protein products were altered is not enriched for either a specific GO term
or a particular pathway (based on YeastMine analysis, BALAKRISHNAN et al. 2012), although a significant
number of mutated genes localize to the plasma membrane (PMA1, ENA5, and VHT1), the nuclear membrane
(ESC1, HMG2, MLP1, and YPL247C), and the vacuolar membrane (MAM3, VAM6, VTC1, and VTC4). The
set of genes is also enriched for three of the MIPS functional classification groups: vacuole or lysosome
(VAM6, VTC1, and VTC4), cation transport (ENA5, PMA1, and VTC1), and protein synthesis (TRM7 and
FES1) (identified using Funspec, ROBINSON et al. 2002).

Of the characterized genes that bore mutations, 21 were available from the yeast knockout collection
(GIAEVER et al. 2002). Relative to BY4741, 13 lines showed a significant increase in copper tolerance,
and two showed a significant decrease in copper tolerance (Figure A.3). This assay supports the idea that a
number of the singly-hit genes might contain mutations that influenced copper tolerance.

To identify potential regulatory changes caused by the 15 intergenic mutations we found, we assessed
whether predicted transcription factor (TF) binding sites were gained or lost using Cis-BP (WEIRAUCH et al.
2014) (Table A.3). One of the positions (in CBM1) is not predicted to be at a TF binding site, while the re-
maining 14 were split among changes that caused both gains and losses (five mutations), only gains (four
mutations), and only losses (five mutations). We identified a number of commonalities among the muta-
tions, including two sets of transcription factor binding sites that were each lost together three times (one set
involved members of the Forkhead family, FKH2 and HCM1; and a second set involved NHP6A, NHP6B,
and PHO2), two that were gained together three times (GAT1 and GLN3, members of the GATA family),
and some that were both gained and lost (particularly ORC2 and SUM1). Among TF binding site mutations
that were within 500bp and 5’ of the start site of a gene, only one gene (RPP1A) was listed in the “Sac-
charomyces Genome Database” (SGD) as having an effect on metal tolerance, although two others affected
vacuolar functioning (MUK1 and YIR007W) and one affected mitochondrial functioning (COX4). We did
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not, however, directly measure the effects of the intergenic mutations.

2.3.2 Aneuploidies

Chromosomal aneuploidy was common, appearing in one-third of all CBM lines (Figure 2.1B). All aneu-
ploid lines had an extra copy of either chrII or chrVIII (one line had both). chrII aneuploidy was generally
found by itself, only one of the eight lines with chrII aneuploidy carried additional aneuploid chromosomes
(chrIII and chrVIII). In contrast, chrVIII aneuploidy never appeared in isolation. Three of the five cases of
chrVIII aneuploidy also contained an extra copy of chrXVI and one line contained additional copies of chrI
and chrV (in addition to the aforementioned line containing chrII and chrIII).

2.3.3 Mutagenic effects of copper

While selection must underlie the repeated spread of mutations affecting the genes that were multiply hit,
it is possible that copper exposure directly altered the rate and nature of mutations that arose during the
experiment. Indeed, exposure to high concentrations of copper is known to be mutagenic in experiments
that directly expose DNA to copper (TKESHELASHVILI et al. 1991). There is no evidence, however, for an
elevated base-pair mutation rate in our experiment. Focusing only on nucleotide changes (not indels), we
observed 52 unique single base-pair changes across the 34 lines isolated over the course of 7-14 days (average
11.0 days until isolation, Table A.1). By comparison, in our previous study where the same ancestral strain
was exposed to nystatin, we observed 35 mutations among 35 lines isolated over the course of 4-7 days
(average 4.7 days until isolation). Thus, if anything, slightly more mutations accumulated per line per day in
nystatin (0.21) than in copper (0.14), although the difference is not significant (p = 0.076, two-tailed exact
binomial test with n = 52 + 35 mutation events and a proportion expected in copper given by 0.693 given
that there were 34 lines ⇥ 11.0 days in copper and 35 ⇥ 4.7 in nystatin). Furthermore, while previous in
vitro work indicates that copper should induce an excess of G:C ! A:T mutations (TKESHELASHVILI et al.
1991), the spectrum of single base-pair mutations observed within this study (8 A:T ! G:C, 14 G:C ! A:T,
6 A:T ! T:A, 12 G:C ! T:A, 5 A:T ! C:G, 7 G:C ! C:G) is not significantly different from the mutational
spectra for yeast reported by LYNCH et al. (2008) (see their Table 1), either based on prior studies (�2= 6.76,
df = 5, p = 0.239) or based on their mutation-accumulation experiment (�2= 1.48, df = 5, p = 0.915) .

We did, however, observe many more aneuploid events with copper (affecting 12/34 lines) than with
nystatin (affecting 1/35 lines, GERSTEIN et al. 2012), but this is only marginally significant if we account
for the greater number of days until isolation (p = 0.11, two-tailed exact binomial test with n = 12 + 1

aneuploid lines, where the proportion expected in copper is 0.693). Here, we have treated multiple aneu-
ploid chromosomes within a line as a single event, in the absence of information about their independence;
if they were independent, the excess of aneuploid events in the presence of copper would be very significant
(p = 0.013, two-tailed exact binomial test with n = 19 + 1 aneuploid chromosomes). An enrichment of
aneuploid events in copper may well be due to selection for aneuploidy rather than an increased mutation
rate, consistent with the frequent occurrence of additional copies of chrVIII, bearing CUP1. Nevertheless,
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previous studies with mice have found copper to be mutagenic using a micronuclei assay that is sensitive to
errors in chromosome segregation during mitosis (PRÁ et al. 2008). We thus consider it plausible that the
high frequency of aneuploidy observed in this study may have been directly due to copper exposure.

2.3.4 Phenotypic assays of CBM lines

Copper tolerance (measured as IC50 in deep-well boxes grown for 72 hours) was fairly similar across the
34 copper-adapted CBM lines, ranging from 8.5mM – 11.2mM (Figure 2.2A). The date that mutations were
isolated does not correlate with copper tolerance (mutations are numbered based on the date of isolation;
Table A.1). The number of copies of CUP1 inferred from in silico qPCR (Figure 2.1C, corrected to include
chrVIII aneuploidy) does not directly correlate with copper tolerance (Figure 2.2B; r = 0.16, t32 = 0.92, p
= 0.36), yet this is likely due to the confounding effects of the other genetic changes. For example, three
of the lines with the lowest CUP1 copy number carried mutations in PMA1 (excluding CBM24, which had
low tolerance; Figure 2.2B). To tease apart the effects of these mutations, we both statistically analyzed the
tolerance data collected for all lines and physically dissected the mutations via tetrad analysis in a subsample
of four CBM lines (see below). A linear model with the four multiply-hit genes as well as CUP1 copy number
and chrII aneuploidy as factors indicated that CUP1 copy number (adjusted to include chrVIII aneuploidy)
as well as the presence of a mutation in MAM3, PMA1, VTC1, or VTC4 were all significant predictors of
copper tolerance, while chrII aneuploidy was not (CUP1 coverage: t27 = 2.58, p = 0.016; VTC1: t27 = 3.73,
p = 0.0009; PMA1: t27 = 2.99, p = 0.0060; MAM3: t27 = 3.11, p = 0.0044; VTC4: t27 = 6.66, p < 0.001;
chrII: t27 = 1.67, p = 0.11).

In addition to copper tolerance, we assayed maximum growth rates in copper, as well as YPD, YPG,
and iron, using the Bioscreen C plate reader (Figure 2.3). Copper tended to be more inhibitory in the small
volume plates used in the Bioscreen, so we reduced copper levels to 8mM CuSO4 (‘copper8’). Growth rate in
copper8 (Figure 2.3A) was significantly correlated with copper tolerance (Figure 2.2A , r = 0.69, t32 = 5.40,
p < 0.0001). All lines except CBM24 grew significantly faster in copper8 than did BY4741, the ancestor (p
< 0.05, Table A.4). Copper tolerance did not correlate with growth in any of the three other environments
examined (Figure 2.3B-D; YPD: r = -0.31, t32 = -1.83, p = 0.077; YPG: r = -0.06, t32 = -0.34, p = 0.73; iron:
r = -0.09, t31 = -0.52, p = 0.61). No lines exhibited significantly increased growth in the rich medium, YPD,
while about half had significantly decreased growth (Table A.5). There was a negative, but not significant
correlation between growth in YPD and growth in copper or copper tolerance (IC50). Three of the four
slowest growing lines in YPD carried multiple aneuploid chromosomes (CBM17, 22, 26), but otherwise the
slow growing lines spanned a range of genotypes and CUP1 copy numbers. There was greater variation in
growth rates observed in YPG and in iron, with growth in these two environments being strongly correlated
(r = 0.58, t31 = 3.98, p = 0.0004, YPG statistical results in Table A.6, iron results in Table A.2). The fifteen
CBM lines that grew significantly slower in YPG and iron included all lines with PMA1 mutations (CBM16,
20, 26, 29), chrXVI aneuploidy (CBM7, 17 and 22), and chrII aneuploidy (CBM2, 3, 11, 16, 20, 21, 29, 30),
as well as all lines that lacked mtDNA (CBM16, 20, 29).
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Figure 2.2: Copper tolerance across 34 copper-adapted lines (‘CBM lines’). A. Lines are numbered based on
the date the mutant line was isolated following exposure to copper. The order of CBM lines in other graphs
is based on the order of copper tolerance depicted here, which gives the IC50 after 72 hours of growth in
deep-well boxes (bars represent 95% confidence intervals). Tolerance of BY4741 (the ancestor) is indicated
by the horizontal red line with its confidence interval indicated by dashed grey lines. B. Copper tolerance of
each CBM line is generally high, regardless of the CUP1 copy number (x-axis, accounting for duplication
of chrVIII). The absence of a correlation between CUP1 level and copper tolerance is due to the existence
of additional mutations in the CBM lines, particularly in the four genes that were mutated independently
(colors). Grey shading shows the range of CUP1 observed among the BMN lines (see Methods and Figure
2.1C).
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Figure 2.3: CBM lines have variable growth rates under different environmental conditions. Maximum
growth rate (±1 SE) was assayed within the Bioscreen C in four different environments, each on a single
day: A. YPD + 8mM CuSO4, B. YPD, a standard laboratory rich medium, C. YPG, a medium that forces
respiration, and D. YPD + 40 mM ferric citrate. Closed circles are lines that are significantly different from
the wildtype, BY4741 (red dashed line; see Supplementary Tables A.2, A.4-A.6 for statistical information).
Vertical grey dashed lines are for ease of comparison among the panels.
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2.3.5 Tetrad dissections to isolate single mutations

To examine the specific effect of common mutations, we crossed CBM2 (chrII aneuploidy), CBM14 (MAM3),
CBM25 (MLP1 and ENA5), and CBM34 (VTC4) to BY4739 and dissected the resulting tetrads. As indi-
cated above each panel in Figure 2.4, the four mutations and chrII aneuploidy segregated according to a 2:2
pattern (+/�), but segregation of CUP1 copy number was more variable (shown by coloured circles). The
variability in CUP1 inheritance may reflect noise in the assay (band densities on Southern blots, even though
measured in triplicate, Figure A.2B), or it may indicate changes in CUP1 over the course of the tetrad line
construction. Indeed, previous work has shown copy number alterations were frequent (20%) during meiosis
in lines heterozygous for CUP1 (WELCH et al. 1991).

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ●

●
●

●

●

●

●

● ●

● ●

3:c(length(range) + 2)

0.00

0.05

0.10

0.15

●

●

+chrII
CUP1

ï + ï + ï + + ï ï + ï + + + ï ï+ï

BY4739 CBM2 t1 t2 t3 t5

A

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

3:c(length(range) + 2)

0.00

0.05

0.10

0.15

●

●

mam3
CUP1

ï + + ï ï ï + + ï + ï + ï + ï + + ï ï + + ï + ï+ï

BY4739 CBM14 t1 t2 t8 t9 t10 t11

B

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ●

●

●

●

●

●

●

●

● ●

●

3:c(length(range) + 2)

0.00

0.05

0.10

0.15

●

mlp1
ena5
CUP1

ï + + ï + + ï ï + + ï ï + ï + ï
ï ï + + + ï ï + ï ï + + ï ï + +

+ï
+ï

BY4739 CBM25 t1 t2 t6 t7

C

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

0.00

0.05

0.10

0.15

●

●

vtc4
CUP1

+ ï + ï ï + ï + ï ï + + ï ï + + + ï ï + ï + ï ++ï

BY4739 CBM34 t2 t3 t4 t6 t10 t11

D

M
ax

im
um

 g
ro

w
th

 ra
te

 in
 9

m
M

 c
op

pe
r (

/h
)

min CUP1

max CUP1

Figure 2.4: Maximum growth rates of tetrad lines in YPD+9mM CuSO4. Tetrads were derived from four
different CBM lines: A. CBM2, B. CBM14, C. CBM25, and D. CBM34. For each line, maximum growth
rate was assayed within the Bioscreen C, with bars representing ±1 SE across three days. The darkness of
the circle represents the line’s relative number of copies of CUP1, as assayed by Southern blot. Presence
(+) or absence (�) of a segregating mutation is also noted. The maximum growth rate is shown for all tetrad
lines, as well as for their two parents, BY4739, and the relevant CBM parent (red lines), except for the tetrads
derived from CBM25 for which parental growth rate was not assayed (due to its initially being considered
CBM22, see Materials and Methods).

Maximum growth rate in copper9 exhibited considerable variation among different spores from the same
tetrad and rarely followed a strict 2:2 pattern (Figure 2.4), as expected when multiple mutations contribute to
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copper tolerance. The effect of each mutation on growth in copper is more easily seen in Figure 2.5, which
shows linear fits through all of the tetrad data for a given CBM line (using the mean maximum growth rate
across all replicates as a single data point for each spore). The interaction terms (seen as a difference in slope)
were not significant, except for a marginally significant interaction between VTC4 and CUP1 (t20 = 2.044, p
= 0.054, panel D), and thus interactions were excluded from the main statistical analyses. For CBM14 and
CBM34, the presence of a mutation in MAM3 and VTC4 (respectively), as well as CUP1 copy number, had
significant positive effects on growth rate (CBM14, CUP1: t21 = 6.16, p < 0.0001, MAM3: t21 = 2.27, p
= 0.034; CBM34, CUP1: t21 = 6.16, p < 0.0001, VTC4: t21 = 4.41, p = 0.0002). By contrast, only CUP1
copy number had a significant effect on growth rate for CBM2 and CBM25 (CBM2, CUP1: t13 = 2.66, p =
0.020, +chrII: t13 = 1.73, p = 0.11; CBM25, CUP1: t12 = 3.37, p = 0.0056, MLP1: t12 = �0.30, p = 0.77,
ENA5: t12 = �0.018, p = 0.99).
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Figure 2.5: Impact of mutations on growth of tetrad lines in YPD+9mM CuSO4. Dots indicate maximum
growth rates for tetrad lines carrying (red) or lacking (black) the mutation of interest: A. chrII aneuploidy in
CBM2, B. MAM3 in CBM14, C. MLP1 in CBM25, and D. VTC4 in CBM34. For each line, linear model fits
were performed with maximum growth rate as the response variable and CUP1 copy number and the allele
status of the other mutation(s) as the predictors. All fits are plotted including interaction terms between
CUP1 copy number and the other gene of interest, where MLP1 was used as the gene of interest for CBM25
in panel C (no difference is seen when using ENA5).

The growth rate in copper9 may reflect an overall growth impact caused by the mutations, rather than a
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specific effect on growth in copper per se, interfering with our ability to detect improvement. To assess this
possibility, we measured growth in the rich medium, YPD, and reran the models performed above, using
growth rate in YPD as the response variable. The models for CBM14, CBM25 and CBM34 contained no
significant terms (Table A.7). However, the model for CBM2 indicated that the presence of an extra copy
of chrII contributed to a significant decrease in growth rate in YPD (Table A.7, Figure A.4). We thus reran
the copper9 linear growth models for CBM2, adjusting for growth rate in YPD by taking the difference.
This model indicated that chrII aneuploidy indeed has a significant positive effect on growth in copper when
controlling for its negative effect on growth in YPD (Table A.8).

Together, these tetrad analyses indicate that CUP1 has a significant impact on growth in copper, as do
the mutations in MAM3 and VTC4. In addition, chrII aneuploidy has a significantly more positive impact on
growth in copper than expected based on its negative effect on growth in YPD.

Finally, from among all tetrads available for each line, we measured copper tolerance (IC50) for two
spores that carried the mutation of interest (chrII aneuploidy, MAM3, MLP1, VTC4) yet exhibited low CUP1
copy number (Figure A.1). All mutants were found to have a significantly higher copper tolerance than
either the BY4741 ancestor or BY4739 parent (Figure A.5), despite their low CUP1 copy number. IC50 is
likely to be a more sensitive assay of resistance to copper than maximum growth rate in a single copper level,
suggesting that all of these mutations increase copper tolerance.

2.3.6 Reexamining the petite mutations

After the above analyses were conducted, we reexamined the lines that displayed small colonies on YPD
plates (Table A.1). To confirm that they were incapable of respiration, we assayed their growth on YPG
plates. While 11 lines showed no growth, three lines (CBM9, 27, and 28) formed colonies, indicating that
their mitochondria were still functional. These three lines were then whole-genome sequenced using pop-
ulation samples (Table A.9). Line CBM9 carried a high-frequency SNP in PMA1, CBM27 carried a three
base pair deletion in PMA1, and CBM28 was aneuploid for chrIII, V, and VIII (a combination not seen in
any other line). Levels of CUP1 were assayed as in Figure 2.1C and fell within the range of the BMN lines
(CBM9: 0.69; CBM27: 0.83; CBM28: 1.25), except for CBM28 once we account for its extra copy of
chrVIII. Altogether, these lines provide additional confirmation of the role of PMA1 and chrVIII aneuploidy
in the evolution of copper tolerance, although we infer that the mutational routes taken by these three lines
were particularly deleterious in the absence of copper, given their small colony size on YPD plates.

2.4 Discussion

Depending on the different possible directions in which the environment may change, how rapidly can evo-
lution happen and via how many different possible pathways? The advent of rapid sequencing technology
has led to an increase in studies examining the repeatability of evolution at the level of the genotype, find-
ing that the same genes often underlie parallel and convergent evolution in natural populations and during
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experimental evolution studies (CONTE et al. 2012; MARTIN and ORGOGOZO 2013, see references within).
Whether this repeatability reflects convergence over time to fitter genotypes or a limited scope of adaptive
mutations along the way remains unknown. Also unknown is the relationship between the type of evolution-
ary challenge and the likelihood of parallel genetic changes (STERN 2013). This study aimed to contribute
to our understanding of how the type of environmental challenge influences the genomic target size of the
mutations selected during the very first steps of adaptation. We used the same mutation acquisition protocol
as in our previous study on nystatin resistance (GERSTEIN et al. 2012) to obtain mutations in the presence of
an inhibitory level of copper. We predicted that a broader range of genetic solutions would underlie copper
adaptation, in contrast to the nystatin study that identified a narrow genetic solution (all 35 lines had muta-
tions within four genes in the same pathway). Previous studies have suggested that xenobiotic environments
(such as antimicrobial drugs) select for repeated genetic solutions (MARTIN and ORGOGOZO 2013). By con-
trast, copper is a very different kind of environmental stressor—it is essential for several different enzymatic
processes in yeast (GRADEN and WINGE 1997) and therefore cannot be blocked entirely from entering the
cell. Copper is, however, toxic at high concentrations (PEÑA et al. 1999), and thus its concentration in the
cell must be held in a delicate balance. As predicted, we identified a large number of mutations among our
copper adaptation lines, with the level of genetic parallelism highly dependent on the type of mutation under
investigation.

Increased copy number of the CUP1 locus through tandem duplication or aneuploidy of chrVIII was
by far the most common mutation, seen in 27 of the 34 copper adaptation lines. CUP1 exists as a tandem
repeat in the S288C genome, and adaptation under copper stress has previously been shown to select for
amplification of this locus (ADAMO et al. 2012; FOGEL and WELCH 1982). Indeed, COVO et al. (2014)
demonstrated that moving CUP1 onto other chromosomes can efficiently select for disomy under copper
stress. The number of CUP1 copies varies among naturally-isolated wild and vineyard strains (between
1 and 18 copies among 14 wild strains, ZHAO et al. 2014, and 4 and 18 copies among 15 Italian vineyard
strains, STROOBANTS et al. 2008). As CUP1 is present in the ancestral genome as a tandem repeat, it is likely
prone to alterations in copy number as a consequence of unequal crossover, gene conversion, or single-strand
annealing (ZHANG et al. 2013). Furthermore, CUP1 amplification seems to incur few pleiotropic costs, as
seen by the lack of an observed effect of CUP1 copy number on growth rate in YPD among our tetrad lines
(Table A.7).

Chromosomal aneuploidy also repeatedly arose within our lines. Twelve of the 34 lines were aneuploid,
and each of these 12 lines contained either chrVIII aneuploidy (five lines) or chrII aneuploidy (eight lines).
Chromosomal aneuploidy seems to be a common route to adaptation for fungal species reproducing asexually
in a diverse array of environmental stressors such as drug resistance (SELMECKI et al. 2009; SIONOV et al.
2010), high temperature (YONA et al. 2012), and salt (DHAR et al. 2011). Aneuploidy is an intriguing
beneficial mutation, as it has the potential to affect many genes simultaneously, yet has a much higher
reversion rate than other types of mutations. Whether such a high degree of aneuploidy would have been
seen had our strains evolved for longer remains an open question. It may be that aneuploidy serves primarily
as a stop-gap adaptation until other beneficial mutations appear in the genome with fewer costs (YONA et al.
2012). In our experiment, chrVIII aneuploidy may have been positively selected for its effect on CUP1
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copy number, as seen by FOGEL and WELCH (1982). Similarly, chrII aneuploidy had a more beneficial
effect in copper (Figure 2.5, Table A.8) than expected based on its low growth in YPD (Table A.7), perhaps
because it amplified genes contributing to copper tolerance, such as SCO1 and SCO2 (non-adjacent gene
duplicates on chrII), which function in the delivery of copper to cytochrome c oxidase in the mitochondrial
inner membrane. ChrII aneuploidy was also repeatedly observed by COVO et al. (2014) when investigating
chromosomes gained in response to copper stress. Whether the other aneuploid chromosomes had an effect
on copper tolerance remains unknown. Repeated attempts to sporulate CBM22 (aneuploid for chrVIII and
chrXVI) and CBM26 (aneuploid for chrI, chrV, and chrVIII) failed to yield tetrads.

The major genetic contributors to copper tolerance besides CUP1 were four genes involved in maintain-
ing plasma membrane potential (PMA1), vacuolar transport (VTC1, VTC4), and mitochondrial morphology
(MAM3). These genes each bore several independent protein-coding mutations in different lines, which is
highly unlikely in the absence of selection. Indeed, of the seven lines that did not exhibit CUP1 amplification
(relative to the range of BMN lines), six involved mutations in these genes (three in PMA1, one in VTC1,
two in VTC4), with the remaining low-CUP1 line exhibiting little copper tolerance (CBM24).

The types of mutations observed in VTC4 and VTC1 point to selection for loss of function in these genes,
with several mutations inducing stop codons or frame shifts (Table 2.1). Furthermore, deletion of VTC1
and VTC4, as well as MAM3, significantly increases copper tolerance (Figure A.3). By contrast, PMA1
codes for a plasma membrane H+-ATPase that regulates cytoplasmic pH, and yeast are inviable when this
gene is deleted. High levels of copper have previously been shown to have a deleterious effect on plasma
membrane organization (FERNANDES et al. 2000), while strongly stimulating plasma membrane ATPase
activity (FERNANDES and SÁ-CORREIA 2001). It thus seems likely that the mutations identified in PMA1
alter, rather than inactivate, this protein, suggesting a gain (or fine-tuning) of function. Consistent with this
view, none of the PMA1 mutations involved stop codons or frame shifts (neither the four listed in Table 2.1,
nor the two additional PMA1 mutations among the lines initially categorized as petites, Table A.9).

In addition, 25 genes bore a single mutation in a single line in our experiment (Table 2.1). These unique
mutations were no more likely to be nonsynonymous than expected based on the mutational spectrum and
no more likely to occur within exons than expected. That said, several of the unique mutations caused
stop codons (4/25), a marginally significant excess. Furthermore, 12/18 of the deletion lines tested for this
subset of genes were found to have significantly altered copper tolerance when compared to BY4741 (Figure
A.3), suggesting that at least some of the uniquely hit genes may be playing a role in copper tolerance.
Alternatively, many of the mutations in singly-hit genes may have been neutral but spread via hitchhiking, a
pervasive phenomenon in other batch culture experiments (LANG et al. 2013).

Beyond genetic changes, epigenetic changes may have contributed to copper adaptation. This possibility
was not formally investigated in our study. We can, however, conclude that epigenetic change was not the
primary cause of adaptation, given that plausible causative mutations, involving either CUP1 or the four
multiply-hit genes, occurred in every line except one (Table 2.1, Figure 2.2B). The exception, CBM24,
was the least copper tolerant line and remains a possible candidate for epigenetic adaptation, although our
genomic analysis may not have found all rearrangements or changes in hard-to-align regions.

One question of interest is why our copper-adapted lines carried so many more mutations, on average,
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than the nystatin-adapted lines studied previously (GERSTEIN et al. 2012). In no case did we see a BMN
line that carried two mutations thought to be adaptive; all lines carried one and only one mutation in an ERG
gene. By contrast, 21 out of the 34 CBM lines carried more than one mutation for which we have evidence of
a beneficial effect in copper (including the four multiply-hit genes, chrII aneuploidy, and CUP1 levels above
the BMN range when including chrVIII aneuploidy; 15 out of 34 lines if we exclude chrII aneuploidy). The
greater contribution of multiple beneficial changes to copper adaptation cannot be explained by a larger pool
of large-effect beneficial mutations or a higher mutation rate, because it took longer to observe growth in
copper (7-14 days) than in nystatin (4-7 days). One possibility is that many of the adaptive mutations may
not have been beneficial enough on their own to generate detectable growth; instead, they may have allowed
a line to persist for longer or to expand slightly in population size, facilitating the appearance of subsequent
large-effect mutations. An alternative possibility is that positive epistasis among mutations more strongly
favoured the spread of secondary mutations. Our tetrad analysis provides some evidence for this possibility.
Figure 2.5 shows that the effect of VTC4 on growth rate rises with CUP1 copy number among tetrads of
CBM34, a marginally significant positive interaction (t20 = 2.044, p = 0.054). Similarly, the benefits of chrII
aneuploidy also appear mild at low CUP1 levels and rise with increasing CUP1 copy number among CBM2
tetrads, although this interaction is not significant (t12 = 1.61, p = 0.13). In accordance with either of these
explanations (mutations facilitating subsequent adaptation or positive epistasis), VTC4 mutations occurred
more often among the CBM lines with higher CUP1 copy numbers (Table 2.1, Figure 2.2B).

This study provides an in depth analysis of how a eukaryotic organism, like yeast, takes its first few
evolutionary steps towards tolerating an inhibitory but essential element, copper. Our genome-wide analysis
of 34 strains found that adaptation often involved a common step (especially amplification of CUP1), but
that routes less taken were also available. These alternate routes often involved chromosomal aneuploidy of
chrII or chrVIII and four genes with roles in a wide variety of cellular functions – vacuolar transporters, mito-
chondrial morphology, and cytoplasmic pH regulation. Compared to our previous study of nystatin resistance
(GERSTEIN et al. 2012), the variety of genes allowing growth in copper suggests that altered environments
with more widespread effects on a cell may also provide a broader genetic basis for evolutionary recovery.
Previous longer-term experimental evolution studies with microbes (e.g., CONRAD et al. 2009; HERRON

and DOEBELI 2013; KRYAZHIMSKIY et al. 2014; LANG et al. 2013; MILLER et al. 2011; TENAILLON et al.
2012; WONG et al. 2012) have found a high degree of parallel evolution at the gene level, and our results
suggest that this can be the case even among the very first mutations selected. Whether adaptive mutations
are likely to recur depends, in theory, on the effect size of the mutations as well as their mutation rate. In our
case, amplification of CUP1 is both a relatively large effect mutation and easily acquired, contributing to its
highly repeated nature, but it was also aided by the beneficial effects of many other less repeated mutations.
In short, adaptation to copper is both more and less repeatable than adaptation to nystatin, with adaptation via
CUP1 representing the route most commonly taken, but with mutations affecting a variety of other cellular
processes providing a diversity of less travelled paths toward copper adaptation.
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Chapter 3

Widespread Genetic Incompatibilities
Between First-Step Mutations During
Parallel Adaptation of Saccharomyces
cerevisiae to a Common Environment

3.1 Introduction

The number of different evolutionary pathways available to populations adapting to a new environment
depends on the range and characteristics of possible genetic solutions. Even populations adapting to the same
environmental challenge can diverge genetically from each other if different mutations happen to establish.
The long-term impact of this initial divergence depends on the fitness interactions between the available
alleles that underlie adaptation to a given environment (“epistasis”). Epistasis can run the gamut from alleles
that interact positively and augment each others’ fitness (“positive epistasis") to those that have negative
effects on fitness in the presence of each other (“sign epistasis” WEINREICH et al. 2005) (Fig 3.1).

3.1.1 Epistasis and its role in evolution

The nature of epistasis is critical to broad-scale evolutionary phenomena. If all possible alleles have the same
effect in all genetic backgrounds, we might expect populations that diverge initially to converge to a similar
genotype and/or phenotype over time at the fitness optimum. In contrast, if some alleles are beneficial only
in certain backgrounds, early genetic changes will limit future genetic options, and populations may diverge
genotypically and phenotypically. Thus, the shape and ‘ruggedness’ of the fitness landscape is directly
determined by the prevalence of sign epistasis (DE VISSER et al. 2011; POELWIJK et al. 2007, 2011).

The type of epistasis can also shape the rate of adaptation. In the case of positive epistasis, when early
mutations increase the beneficial fitness effects of subsequent mutations, adaptive evolution can accelerate
over time. In contrast, when epistasis is negative, i.e., when first-step mutations reduce or oppose the ad-
vantage of subsequent mutations, evolution will decelerate. The deceleration of adaptation over time has
been previously found in a number of experimental evolution studies (CHOU et al. 2011; KHAN et al. 2011;
KRYAZHIMSKIY et al. 2014; SCHENK et al. 2013).

Even the formation of new species rests upon epistasis between alleles present in different nascent
species. A major driver of postzygotic reproductive isolation between species is the build up of Bateson-
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Figure 3.1: Types of epistatic relationships between mutations. (a) The type of epistasis is observed as the
fitness of the single beneficial mutations (A and B) relative to the double mutant (AB). No epistasis occurs
when log fitness effects are additive, as shown here (growth rate, our primary fitness measure, is calculated
on a log scale). (b) Example plot showing the method used in this paper to illustrate epistatic relationships.
The y-axis gives maximum growth rate over 24 hours. Point colours indicate strain genotype, where the
double mutant is black, the ancestor is grey, and each single mutant has a unique colour. Lines are drawn
between genotypes that are a single mutational step apart. Without epistasis, the lines form a parallelogram.
Epistasis is observed as a double mutant with increased fitness (positive epistasis, higher hollow circle) or
decreased fitness (negative epistasis, lower hollow circle).

Dobzhansky-Muller (BDM) genetic incompatibilities. These incompatibilities represent reciprocal sign epis-
tasis, where alleles that work well together within a species perform poorly when combined with alleles from
the other species in a hybrid individual, leading to hybrid inviability or sterility (COYNE and ORR 2004).
Sign epistasis between hybrids and their more fit parental population can also contribute to speciation by
reducing gene flow in one direction. With enough such asymmetric barriers acting in opposite directions,
gene flow may cease entirely between populations.

All models of speciation agree that sign epistasis, and particularly reciprocal sign epistasis, is important
for speciation, but they differ on why species carry different alleles. Among the models of speciation by nat-
ural selection, the classic explanation, proposed by DARWIN (1859), is that populations diverge into species
because they experience different environments and so adapt in ways that often do not work well together.
Because of the focus on environmental differences, this explanation has become known as “ecological spe-
ciation” (SCHLUTER 2009). A contrasting hypothesis, known as “mutation-order speciation” (SCHLUTER

2009), focuses on the chance order in which mutations arise and spread in different populations when fac-
ing the same selective environment. Even if the mutational steps that have occurred in each population are
independently beneficial, combining mutations across populations need not be.

3.1.2 Determinants of epistasis

The specifics of the selective environment(s) likely have a major influence on the nature of epistasis between
beneficial mutations. In environments where adaptation can occur via the elimination of a single biosynthetic
pathway, complete loss-of-function mutations at one step in the pathway may lead mutations in downstream
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genes to become irrelevant to fitness. Indeed, BATESON (1909) originally coined the term ‘epistasis’ in
1909 to describe this type of interaction, in which the action of one gene was blocked by that of another,
and this is primarily how molecular geneticists continue to define the word (AVERY and WASSERMAN

1992). Considering instead partial loss-of-function mutations, genotypes combining multiple mutations may
be more fit than single mutations if flow through the biosynthetic pathway is reduced by each additional
mutation. In either case, we would expect double mutants to have equal or greater fitness than single mutants
if knocking out a pathway is beneficial (as long as there are no pleiotropic effects beyond the pathway), and
consequently sign epistasis and reproductive isolation should not arise.

On the other hand, if an intermediate phenotype is optimal in a particular environment, mutations that
are beneficial on their own may overshoot the optimum when combined, causing a reduction in fitness. In
this type of environment, theoretical work predicts that sign epistasis should be particularly frequent between
independently selected mutations that have relatively large effects on the phenotype (FRAÏSSE et al. 2016).

There is also increasing evidence that epistasis is more often negative for mutations in functionally-
related genes. In a large-scale screen for genetic interactions where mutations in most of the 6000 genes in
the yeast Saccharomyces cerevisiae were tested pairwise in 23 million double mutants (including mutations
in both non-essential and essential genes, although excluding ~1000 genes), COSTANZO et al. (2016) found
that combinations of genes involved in the same biological process were enriched for negative interactions.
This enrichment suggests, counter to intuition, that strongly negative fitness interactions, of the form that give
rise to reproductive incompatibilities, may be more likely to accumulate between populations experiencing
the same selective environment compared to those experiencing different environments.

3.1.3 Reproductive incompatibilities in nature and in the lab

To date, few incompatibilities between or within species have been genetically characterized, although re-
cent advances in genomic sequencing technology have greatly aided the discovery of the genetic basis of
speciation. For natural populations, the majority of incompatible alleles (‘speciation genes’) that have been
characterized are found between species adapted to different local environments, presumably representing
cases of ecological selection (documented in NOSIL and SCHLUTER 2011 Tables S1 and S2). For example,
the build-up of a suite of plant-specific traits has allowed one species of Drosophila to utilize a different,
normally toxic, host plant (MATSUO et al. 2007), and selection on soils of different salinity has caused the
accumulation of QTL associated with salt tolerance in a hybrid species of Helianthus sunflowers beyond
what is found in its parental species (LEXER et al. 2004). In other cases, genetic incompatibilities between
natural populations have been identified where there is no clear connection to the external selective environ-
ment, including BDMs caused by the reciprocal silencing of alternative duplicate gene copies (BIKARD et al.
2009) or the differential accumulation of selfish genes and suppressors (see examples in MAHESHWARI and
BARBASH 2011). The exact history of selection is unknown in natural populations, thus it is difficult to know
whether these cases represent mutation-order or ecological selection. Natural populations of yeast also show
environment-specific genetic incompatibility (including one characterized two-locus BDM HOU et al. 2015)
though, as in other taxa, we have no knowledge of the evolutionary history that led to these interactions.

Experimental evolution studies allow direct control over the form of environmental selection, and sign
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epistasis has been found in some studies that combined mutations from populations adapted to both different
and similar selective environments. DETTMAN et al. (2008) evolved different populations of Neurospora
crassa to high salinity and low temperature. When the evolved strains were mated, lineages adapted to dif-
ferent environments exhibited reduced reproductive success relative to matings between lineages adapted
to the same environment, and this reduction was consistent with the action of BDM incompatibilities. A
parallel study that examined populations of S. cerevisiae evolved to high-salinity and low-glucose for 500
generations found very similar results (DETTMAN et al. 2007). Follow-up work identified a BDM incom-
patibility between an allele of PMA1 (a proton efflux pump) that arose under high salt adaptation and an
allele of MKT1 (a global regulator of mRNAs encoding mitochondrial proteins) that evolved in low glucose
(ANDERSON et al. 2010). This was the first reported BDM interaction among known genes isolated from
experimentally evolved strains, to our knowledge.

Sign epistasis has also been documented when combining mutations between experimentally-evolved
populations adapting to the same environment. KVITEK and SHERLOCK (2011) investigated populations of
asexually-propagated haploid S. cerevisiae evolved under glucose limitation in continuous culture for 448
generations (KAO and SHERLOCK 2008). Mutations in two genes, MTH1 and HXT6/HXT7, appeared several
times in independent lineages during the experiment, but never together. These mutations were shown to be
individually beneficial, but they had lower competitive fitness when combined in a double mutant than either
single mutant or the ancestor, showing reciprocal sign epistasis (KVITEK and SHERLOCK 2011). Negative
epistasis was also prevalent among five additional strains constructed to bear two adaptive mutations that
arose in different lineages, with significant negative epistasis in four out of the five comparisons, including
one example of sign epistasis (KVITEK and SHERLOCK 2011). CHOU et al. (2014) similarly investigated
epistasis using an engineered strain of Methylobacterium extorquens with a modified central metabolism that
was dependent on a foreign pathway artificially introduced on a plasmid. These bacteria were evolved for
900 generations under conditions that utilized this pathway. All adaptive mutations decreased expression of
the introduced pathway. Combining mutations, the authors found that expression levels were well predicted
by the independent effects of each mutation but that expression mapped nonlinearly onto fitness, leading to
sign epistasis in many cases. Collectively, these experiments demonstrate that BDMs can arise rapidly in
experimental evolution studies, either when populations experience different or similar selective pressures,
providing support for both ecological and mutation-order speciation.

3.1.4 Investigation of epistasis between first-step mutations

What remains unknown from long-term experiments evolved under the same selective pressure is how fre-
quently early adaptive mutations could contribute to reproductive isolation. This raises the question of
whether mutation-order speciation occurs because of incompatibilities among mutations that would be bene-
ficial in either population or because the fixation of different initial mutations alters the subsequent selective
environment experienced in different populations (i.e. divergent selection due to differences in genetic back-
ground).

We investigate, for the first time, fitness interactions among all pairwise combinations of genes bear-
ing first-step adaptive mutations to a common selective environment. Specifically, we measured epistasis
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between beneficial mutations acquired in the yeast Saccharomyces cerevisiae grown in the presence of the
fungicide nystatin (GERSTEIN et al. 2012). Briefly, GERSTEIN et al. (2012) isolated 35 first-step mutations
in 4 mM nystatin, performed genome-wide sequencing, and found that all strains carried a single mutation
in one of four genes in the ergosterol biosynthesis pathway (Fig 3.2; genomic analysis revealed either no or
only one other mutation present in the strains used herein, details below). We focused on one mutation in
each gene and investigated the fitnesses of all six pairwise double mutants between these four mutations.

For two of these genes (ERG6 (SGD ID: S000004467) and ERG3 (SGD ID: S000004046)), many of the
mutations found by GERSTEIN et al. (2012) were consistent with a complete loss of function (e.g., early stop
codons, similar sterol phenotype to the whole gene knockout). The mutations occurring in the most upstream
(ERG7 (SGD ID: S000001114)) and downstream (ERG5 (SGD ID: S000004617)) genes in the pathway,
however, were not (GERSTEIN et al. 2012). The erg7 mutation is a nonsynonymous change close to the end
of the gene, and deletion of ERG7 is inviable. The erg5 mutation is an in-frame deletion and is unlikely to
be a null mutation because the full gene deletion is respiratory deficient (MERZ and WESTERMANN 2009),
which is not observed for this mutant (BMN35 in GERSTEIN et al. 2012). Thus, we also assessed whether
upstream mutations in the biosynthetic pathway generally mask the effects of downstream mutations or if
masking is limited to complete loss-of-function mutations.

Figure 3.2: An abbreviated version of the ergosterol biosynthesis pathway. For each gene used in this study,
we highlight its position in the ergosterol pathway, with gene names coloured according to the scheme used
in subsequent figures. Pathway adapted from LEES et al. (1995).

Overall, we found that strong negative epistasis, of the type that causes some degree of reproductive
isolation, between strains fixed for different mutations was surprisingly common among these first-step mu-
tations. Indeed, the interactions were so negative that they reversed the direction of effect in over half of
the double mutants, causing beneficial mutations to become deleterious when in combination and double
mutants to be less fit than at least one of the two single mutants (sign epistasis) (Fig 3.1). Furthermore,
in one-third of the comparisons, the double mutants were less fit than both single mutants (reciprocal sign
epistasis). We assayed mutational effects in both haploid and diploid backgrounds, finding similar results re-
gardless of ploidy, indicating that these epistatic relationships are likely to hold across stages of the yeast life
cycle. Epistatic relationships for fitness were not well predicted by sterol profiles or pathway position of the
mutants, however, suggesting that selection does not simply act via flux through the pathway to ergosterol.

Finally, we investigated epistasis in different concentrations of nystatin to determine how epistatic rela-
tionships, and therefore reproductive isolation, might change under different levels of environmental stress.
Previous work with antibiotic resistance in bacteria has shown that the shape of fitness landscapes can be
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strongly dependent on antibiotic concentrations (MIRA et al. 2015). Interestingly, we found that the nega-
tive interactions observed between beneficial mutations at lower concentrations of nystatin reversed sign and
became increasingly positive at higher concentrations of nystatin. Indeed, only the double mutants exhibited
substantial growth in the higher concentrations of nystatin tested. Thus, while combining single-step muta-
tions generally reduced fitness in the historical nystatin environment, these same combinations were more
likely than the individual mutations to allow colonization of even harsher environments.

3.2 Materials and Methods

3.2.1 Strain construction

We assayed all pairwise interactions in both haploids and diploids between four beneficial mutations acquired
in the fungicide nystatin, one in each of ERG3, ERG5, ERG6 and ERG7 (Table 3.1). Each mutation was
initially isolated in the BY4741 haploid background (MATa his3�1 leu2�0 met15�0 ura3�0, derived from
S288C) and struck down to a single colony to remove standing variation. Mutations were detected by whole
genome sequencing on an Illumina HighSeq 2000, followed by alignments to the S288C reference strain
(GERSTEIN et al. 2012); few other mutations were detected besides those in the ERG genes. For the strains
used here, only the strain containing the mutation in ERG7 also carried a secondary mutation (in DSC2 (SGD
ID: S000005434)), whose presence or absence did not substantially alter the presented results (see details
in Section B.1.2). For a complete description of the isolation of these initial strains, see GERSTEIN et al.
(2012). All possible haploid and diploid genotypes for each pair of ERG genes were created via mating and
sporulation. A brief overview of strain construction will be given here but for a detailed description, see
Section B.1.1.

Table 3.1: Beneficial mutations in the strains used for the study of epistasis in the presence of nystatin
(GERSTEIN et al. 2012).

Strain Gene Genome Position Position in Mutation Amino Acid Change
(Chr.Bp) Gene (nt)

BMN1 ERG7 VIII.241194 2097 C->G Phe699Leu
DSC2 XV.193885 916 G->A Asp306Asna

BMN9 ERG6 XIII.252612 379 G->C Gly127Arg
BMN32 ERG3 XII.254758 898 G->C Gly300Arg
BMN35 ERG5 XIII.302174 - 302233 253 - 312 60-bp deletion

a Not known to affect fitness. Encodes a multi-transmembrane subunit of the DSC ubiquitin ligase complex
(RYAN et al. 2012; TONG et al. 2014). Null mutant has decreased competitive fitness (BRESLOW et al. 2008)
and decreased resistance to glycolaldehyde (JAYAKODY et al. 2011).

To create singly heterozygous strains, each original single mutant strain was mated to BY4739 (MAT↵
leu2�0 lys2�0 ura3�0) (Open Biosystems), which is isogenic with BY4741 except for the auxotrophies.
MAT↵ single mutant strains were isolated by sporulation of the heterozygous diploids followed by dissection

51



3.2. Materials and Methods

and testing of the resulting tetrads. Throughout strain construction, histidine and lysine auxotrophies were
consistently kept with the same mating types so that all haploid strains were either MATa his3�1 or MAT↵
lys2�0. Plates lacking methionine did not efficiently select against the met15�0 mutation carried by the
original single mutant strains, suggesting a weak effect of this mutation, and the methionine auxotrophy was
not tracked.

The MAT↵ single mutant strains were then mated to the original MATa single mutant strains to create
strains that were either homozygous for one mutation or heterozygous for two mutations. The haploid
double mutant strains were created through sporulation and dissection of the doubly heterozygous strains.
All haploid double mutant strains were confirmed by Sanger sequencing.

We failed to obtain the MATa erg5 erg6 double mutant haploid strain through crossing and sporulation
because the two genes are linked (within 48 kb and flanking the centromere of chr XIII). For this strain,
a transformation was performed by electroporation using a protocol based on CREGG (2007) to insert the
mutation within ERG6 into the MATa erg5 genetic background; this insertion was then checked by Sanger
sequencing.

Strains with one heterozygous and one homozygous mutant locus as well as double homozygous mutant
strains were created by mating the MATa single mutant and double mutant strains to the MAT↵ double mutant
strains.

A representative of the diploid ancestral strain was created by mating BY4741 and BY4739.

3.2.2 Growth rate assays

We conducted a set of growth rate (fitness) assays under nystatin stress and in rich medium (YPD). The
experimental design sought to ensure that data was gathered for each combination of wildtype and mutant
strains across batches performed on different days. Specifically, within a batch, for a given pair of mutations
in haploids and for each mating type, each ancestral strain and each single mutant was assayed twice, while
each double mutant was assayed four times (the double mutant was assayed more often because it was
the only genotype unique to that pair of mutations). For each pair of mutations in diploids, all possible
combinations of the two genes in both heterozygous and homozygous forms (including the non-mutant)
were present twice within a batch.

We measured growth in YPD and YPD + 2 mM nystatin (‘nystatin2’) using the Bioscreen C Microbio-
logical Workstation (Thermo Labsystems), which measures OD in 100-well honeycomb plates. Nystatin2
was used to assay fitness because previous studies with these mutants found that 2 mM nystatin inhibits
the growth of the ancestral strains while also allowing the growth of all mutant strains (GERSTEIN 2013).
OD was measured automatically using the wideband filter at 30 minute intervals for 24 hours from cultures
growing at 30°C with maximum continuous shaking. Longer assays were avoided because mutations and
loss of heterozygosity events begin to accumulate (GERSTEIN et al. 2014). The maximum growth rate over
24 hours was determined by the spline with the highest slope from a loess fit through natural log transformed
OD data, using a custom R script written by Richard Fitzjohn (R CORE TEAM 2015) (see ONO et al. 2016
for code).

For complete details on how strains were initially grown from frozen and standardized (“pre-assays”)
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before measuring growth (“assays”), see Section B.1.3. Briefly, each yeast replicate was grown from frozen
in YPD + 0.5 mM nystatin in 100-well honeycomb plates for 72 hours in the pre-assays, unless very poor
growth of the strain required otherwise, and OD was then determined. YPD + 0.5 mM nystatin was used to
help prevent reversion of strains with severe growth defects in YPD and was not found to affect subsequent
measures of growth, compared to a pre-assay in YPD (the first pre-assay was conducted in YPD, see details
in Section B.1.3). For the main assays, honeycomb plate wells were filled with 148.5 mL of YPD or nystatin2.
The yeast were then transferred from the pre-assay plates into one well each of YPD and of nystatin2, with
the volume transferred determined by the maximum pre-assay OD reading (the minimum volume transferred
was 1.5 mL while the maximum was 7.5 mL). Note that these transfers decreased the concentration of nystatin
in the individual wells, but never by more than 0.1 mM. Strains were randomized within plates using the same
map for the pre-assays and assays in a given batch.

There were not equivalent numbers of replicates for all strains after omitting some data due to low
growth (if the volume to be transferred to the assay plate exceeded 7.5 mL), lack of growth, mechanical error,
or because some strains had to be re-run (for details, see Table B.2). Nevertheless, at least two replicates
per day on at least two days were measured for all strains in each medium (with the exception of erg5/erg5
erg6/erg6 for which 14 replicates were all run on a single day, Table B.2; for exact numbers and days
the replicates were run on, see ONO et al. 2016). Although the different numbers of replicates led some
crosses to have less power than others, the cross with the least amount of data (erg6 by erg7) was also the
one where the double mutant was particularly unfit, which contributed to the difficulties in assaying fitness
but also meant that epistasis was readily detected. In all cases, data for each double mutant was collected
simultaneously with data on the ancestor and single mutants, allowing day effects to be factored out in the
analysis.

3.2.3 Tolerance across a range of nystatin

Growth at different concentrations of nystatin was assessed following similar procedures to the growth rate
assays. To prepare the strains for tolerance assays, pre-assays were again conducted to standardize initial
cell concentrations. Stocks were first grown from frozen in four 96-well plates filled with 198 mL of YPD +
0.5 mM nystatin and inoculated with 2 mL of frozen culture. Strains were distributed among the four plates
so that there was one replicate of the entire balanced design per plate, randomized within plate. In order to
fit all strains on a single plate, some strains were excluded (MATa erg5 erg6 and MATa erg3 erg5). These
strains were chosen because initial assays indicated that these double mutants most closely resembled the
stronger (non-erg5) single mutant. The plates were covered with aluminum lids and incubated at 30°C with
continuous shaking at 200 rpm in a container with wet paper towels to minimize evaporative water loss. Prior
to removal of the aluminum lid, plates were always spun for 1 min at 3700 rpm to ensure that all liquid was
collected at the bottom.

After 72 hours, all wells were manually mixed and OD was measured on a BioTek plate reader at 630 nm.
The well with the minimum OD value among the four pre-assay plates was identified and used to calculate
the amount of YPD to add to each pre-assay well to standardize cell density across cultures. Wells containing
only medium, those containing erg6/erg6 erg7/erg7 (see below) and one well that appeared not to have been
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inoculated were excluded from standardization. 2 mL from each well was used to inoculate the assay plates.
Assay plates were prepared with 198 mL of YPD + 0, 1, 2, 4, 8, 16, 32, 64, 128, and 256 mM nystatin, with
four plates per concentration. The assay plates were covered with aluminum lids and incubated at 30°C in
containers with wet paper towels, shaking at 150 rpm.

Exceptions to the pre-assay protocol had to be made for strains with slower growth. 10 ml of 0.5 mM
nystatin was inoculated with 15 mL of erg6/erg6 erg7/erg7 from frozen two days before all other strains
were inoculated, allowing additional growth time for this unfit strain. On the day that all other strains were
inoculated from frozen, the erg6/erg6 erg7/erg7 culture was concentrated into ⇠900 mL (although growth
was not observable), and 200 mL of this culture was used to replace the medium from the appropriate wells
in the pre-assay plates. In addition, erg6 erg7 (both MATa and MAT↵) and erg6/erg6 were inoculated with
2.67 mL of frozen culture (as opposed to the 2 mL used for all other strains) to compensate for their lower
growth rate from frozen.

Twenty-four hours after inoculation, the aluminum lids were removed, wells were manually mixed, and
the OD of each assay plate was read on a BioTek plate reader at 630 nm. Some wells had lost volume due
to cracks that had developed in the plates, and these wells were omitted from analysis. Prior to analysis, the
OD of the medium itself was subtracted from the final OD measurements.

3.2.4 Sterol Assay

To determine whether the sterol profiles of the single mutants, along with their position within the ergosterol
pathway, predict the sterol profiles of the double mutants and whether differences in sterol profiles predict
differences in fitness, a spectrophotometry-based assay was used to compare the sterol profiles of the ances-
tral, mutant and double mutant MATa strains. Sterols were extracted using the alcoholic potassium hydroxide
method (ARTHINGTON-SKAGGS et al. 1999), as previously performed on the single mutation strains (GER-
STEIN et al. 2012). MATa strains were struck from frozen onto YPD plates and grown for 65 hours. Three
colonies for each strain were inoculated into two separate tubes filled with 10 mL of YPD (total of 20 mL
per replicate) and incubated at 30°C on a rotor for 48 hours.

After growth, cells were harvested by centrifugation at 2700 rpm for 5 minutes, combining culture from
the two tubes by performing two successive spins. The pellets were washed twice with sterile distilled water.
1.2 mL of 25% alcoholic potassium hydroxide was added to each pellet, and the tubes were vortexed for
1 minute. The tubes were then incubated in an 80°C water bath for 1 hour. After cooling the samples to
room temperature, 0.4 mL of sterile distilled water and 1.2 mL of n-heptane were added to each sample,
and the tubes were vortexed for 3 minutes. Samples were collected by taking 220 mL of the heptane layer
and adding it to 880 mL of 95% ethanol in a 1.5 mL tube. These tubes were stored at -20°C for two days
before reading the absorbance every 3 nm between 200 and 300 nm in a quartz microcuvette using a Thermo
BioMate 3 spectrophotometer. Due to a posteriori observations that different heptane/ethanol mixtures led
to different peak heights near 220 nm, we chose to use one replicate of the erg6 erg7 strain that showed no
evidence of growth (suggesting an inoculation failure), but was otherwise identically treated, as a control for
standardization. As a result, only two replicates of erg6 erg7 are presented.
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3.2.5 Outlier detection and removal

Outliers in microbial fitness assays often represent either contamination by a different strain or evolution
over the course of the fitness assay. In order to prevent these events from having undue influence on our
analyses, we detected outliers for maximum growth rate after omitting some wells due to lack of growth and
mechanical error (see details in Section B.1.3). For outlier detection, we first normalized for plate within
each day. We did so by finding the global mean maximal growth rate for all ancestral strains over all days
and calculating the difference between this and the mean of all ancestral strains on a given plate, yielding a
plate correction value. This correction value was added to each strain from the corresponding plate. Outliers
were detected by performing a two-sided Grubbs test, allowing us to detect a maximum of one outlier per
strain and medium, using the R package outliers and the method grubbs.test (KOMSTA 2011; R CORE TEAM

2015). A total of eight replicates in nystatin2 and six replicates in YPD were marked as outliers and removed
from all presented statistical and graphical analyses.

All qualitative relationships between strains and the main statistical conclusions were insensitive to the
exclusion or inclusion of the identified outliers, with two main exceptions for the haploids in nystatin2 (see
Fig B.6 and Fig B.7 for versions of Fig 3.3 and Fig 3.4 that include all outliers). These exceptions are noted
in the Results and described in detail in Section B.1.4.

3.2.6 Statistical analyses

Epistasis for maximum growth rate was assessed with mixed-effects models run on either all haploid or all
diploid strains together, including the genotype at each gene, their pairwise interactions, and mating type
(for the haploids) as fixed effects and plate within day as a random effect, fit using restricted maximum
likelihood with the lmer function from the lme4 package in R (BATES et al. 2015; R CORE TEAM 2015).
For diploids, the models were first run using only strains that were homozygous (either mutant or ancestral)
for comparison to the haploid data. Significance of interaction terms (and mating type) was determined by
performing an ANOVA between the full model and a model dropping that term using the anova function in
R and fitting models using maximum likelihood.

To determine the type of epistasis present for each pair of genes, the package lsmeans (LENTH 2016) was
used to both determine the least-squares mean for each strain in the model and to make comparisons between
strains using the contrast function. The type of epistasis was determined by comparing the double mutant
to each single mutant and each single mutant to the ancestor, and only these planned comparisons were
performed. The P-value was adjusted for the number of tests performed using the multivariate t distribution
(mvt method) in lsmeans. To be conservative, we based our categorization of epistasis solely on statistically
significant differences. For example, if the double mutant had a lower growth rate than both single mutants
but this difference was only significant in one of the two cases, it was considered an example of sign epistasis
(significantly lower than one single mutant but not the other) rather than reciprocal sign epistasis.

A similar procedure was then undertaken including heterozygous diploid strains. A model was run using
the lmer function including all diploid strains together, with plate within day as a random effect. Least-
squares means were determined for all diploid genotypes from this model, and comparisons were performed
between each diploid genotype and all other diploid genotypes that were one mutational step away. The
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double heterozygous strains were compared to all other strains for that pair of genes because the potential
progeny of the double heterozygote includes all possible genotypes and these comparisons are therefore of
biological interest.

For the tolerance assay assessed across a range of concentrations of nystatin, we performed Welch’s t-
tests of OD after 24 hours between each double mutant and its single mutant parents (day effects were not
estimated as all measurements were gathered on the same day). Because we were focused on the changing
nature of epistasis, rather than any particular pairwise comparison, a correction for multiple comparisons
was not performed.

Data and analyses deposited in the Dryad repository: http://dx.doi.org/10.5061/dryad.
vs370 ONO et al. (2016).

3.3 Results

3.3.1 Epistasis of haploids in nystatin

We characterized the epistatic interactions between pairs of mutations that act in the ergosterol biosynthesis
pathway and individually confer increased fitness when exposed to the antifungal drug nystatin. Maximum
growth rate of ancestral, single mutant, and double mutant genotypes was characterized in haploid strains
of both mating types in YPD + 2 mM nystatin (‘nystatin2’). Outlier data points were detected statistically
and removed from further analyses, although we note where inclusion of outliers would have affected the
results (for further details, see Section 3.2.5). The effect of mating type (and its associated auxotrophy) was
not significant (P = 0.19), and the data for the two haploid mating types will be considered together, except
where noted (see ONO et al. 2016 for additional statistical methods and results).

Using a mixed-effects model, all main effects of individual mutations were positive, confirming that the
mutations improved growth in nystatin (Table 3.2). Double mutants were never significantly more fit than
the best of the single mutants (top right panels in Fig 3.3), and all pairwise interactions exhibited significant
negative (antagonistic) epistasis (Table 3.2). To assess epistasis, least-square means of maximum growth
rates were inferred from the model and compared between double and single mutants and between single
mutants and ancestral strains, correcting for multiple comparisons. The double mutant was significantly less
fit than the fittest single mutant in four cases (“sign epistasis”: erg3 erg5, erg3 erg6, erg3 erg7 and erg6
erg7) and significantly less fit than both single mutants in two cases (“reciprocal sign epistasis”: erg3 erg6
and erg6 erg7, Table 3.2, Fig 3.3). The results are similar when fitness is measured by optical density after 24
hours of growth instead of maximum growth rate over 24 hours (Fig B.1). The strong negative interactions
indicate that these alleles, when combined, confer genetic incompatibilities between the strains.

3.3.2 Comparison of epistasis between haploids and diploids

We characterized epistatic interactions of maximum growth rate for the homozygous diploid strains in nys-
tatin2 and compared them to the haploid results to determine whether the interactions were ploidy-dependent.
As in haploids, single mutations generally improved the growth of diploid homozygotes in nystatin2, al-
though the erg5 mutation did not do so significantly in a pairwise comparison with the ancestral strain
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Figure 3.3: Maximum growth rate of haploid strains in nystatin2 (above diagonal) and YPD (below diago-
nal). Points are the fitted least-squares means of the maximum growth rates, determined in the mixed-effects
model. ⇥’s denote the additive fitness null expectation for the double mutant, i.e., with no epistasis. Each
single mutant is coloured differently, the double mutant is black, and the ancestor is grey. Vertical bars
represent 95% confidence intervals of the fitted least-squares mean. Solid lines indicate significant contrasts
between the fitted means, while dotted lines are non-significant. Combinations showing significant sign (S)
and reciprocal sign (RS) epistasis are indicated by the presence of the abbreviation at the top of the panel. In
nystatin2, the comparison between erg3 erg5 and erg3 is not significant when outliers are included, and the
erg3 erg6 vs. erg6 comparison is only marginally significant (P = 0.083). In YPD, comparisons erg3 erg6
vs. erg6 and erg6 erg7 vs. erg7 are not significant when outliers are included. All underlying raw data and
analyses can be found in ONO et al. (2016).
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Table 3.2: Results from a mixed-effects model run on all genes using the haploid maximum growth rate
data in nystatin2. Coefficients of main effects are the differences in mean maximum growth rate between
the single mutant strains and the ancestral strain (difference between MAT↵ and MATa in the case of mating
type). Coefficients of interaction terms are the differences in mean maximum growth rate between the double
mutant strains and the sum of the two single mutant coefficients added to the ancestral value. P-values are the
result of an ANOVA between the full model and one lacking that term; significant P-values are in bold. The
last three columns refer to the type of epistasis present (Fig 3.1). “Epistasis” indicates a significant departure
from an additive model of growth rates, which can be either negative or positive. “Sign” and “Reciprocal
sign” refer to cases where the double mutant grows significantly less well than one or both single mutants,
respectively.

Term Coefficient SE P Epistasis Sign Reciprocal sign
mating type -0.0034 0.0026 0.19

erg3 0.18 0.0057
erg5 0.030 0.0049
erg6 0.15 0.0049
erg7 0.10 0.0049

erg3*erg5 -0.054 0.0090 3.1 ⇥ 10�9 negative a

erg3*erg6 -0.20 0.0090 < 10�15 negative a

erg3*erg7 -0.18 0.0090 < 10�15 negative
erg5*erg6 -0.031 0.0076 4.6 ⇥ 10�5 negative
erg5*erg7 -0.046 0.0078 5.1 ⇥ 10�9 negative
erg6*erg7 -0.18 0.0083 < 10�15 negative

aNot significant when outliers are included.

(Fig 3.4). Qualitatively, epistatic interactions were also similar to the haploids (Table 3.3, Fig 3.4), whether
fitness was measured by maximum growth rate or optical density after 24 hours of growth (Fig B.2).

When we categorized the type of epistasis statistically for maximum growth rate, most interactions were
of the same type (sign epistasis: erg3 erg5; reciprocal sign epistasis: erg3 erg6 and erg6 erg7; negative
epistasis: erg5 erg7). There were, however, several quantitative differences. The erg6 erg7 double mutant
was so unfit in diploids that we were often not able to standardize it properly in the growth assays (low
growth, as measured by optical density, was observed in all concentrations of nystatin tested, Fig B.3).
Furthermore, in two cases, epistasis was qualitatively similar, but the differences were no longer statistically
significant (sign epistasis: erg3 erg7; negative epistasis: erg5 erg6).

To visualize the full diploid fitness landscape, we repeated the analysis including all heterozygous strains
(open symbols in Fig 3.4, pairwise comparisons in Fig B.4). Low F1 hybrid fitness was typical; double het-
erozygous strains (open diamonds) were uniformly low in fitness when compared to the homozygous single
mutants (not significantly so when compared with the weak erg5/erg5 mutant). Mutations were generally
partially to fully recessive and did not have a large effect on fitness when comparing heterozygotes to wild-
type at a gene, either when the other gene was wildtype (open triangles) or homozygous mutant (open
circles).
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Figure 3.4: Maximum growth rate of diploid strains in nystatin2 (above diagonal) and YPD (below diagonal).
Points are the fitted least-squares means of the maximum growth rates, with closed circles determined in the
mixed-effects model including only homozygous strains and open symbols from the model that includes
heterozygous strains (open diamonds: double heterozygotes; open triangles: single heterozygotes that are
wildtype at the other gene; open circles: single heterozygotes that are homozygous mutants at the other
gene). Points and bars are otherwise as in Fig 3.3. All symbols are coloured intermediately according to
genotype and arrayed along the x-axis so as to lie between the two strains that are genotypically most similar
to it. Solid lines indicate significant comparisons in tests run including only homozygous strains while dotted
lines are non-significant comparisons. See Fig B.4 for statistical comparisons including heterozygous strains
and Fig 3.3 for further graphical details. In YPD, the homozygous comparison erg3 erg5 vs. erg3 is not
significant when outliers are included. Note that the point for erg5/ERG5 erg6/erg6 was removed because it
was later found to have lost heterozygosity at ERG5. All underlying raw data and analyses can be found in
ONO et al. (2016).
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Table 3.3: Results from a mixed-effects model run on all genes using the homozygous diploid maximum
growth rate data in nystatin2. For statistical and column details, see Table 3.2.

Term Coefficient SE P Epistasis Sign Reciprocal sign
erg3 0.18 0.0065
erg5 0.0028 0.0058
erg6 0.16 0.0060
erg7 0.088 0.0057

erg3*erg5 -0.043 0.012 0.00037 negative
erg3*erg6 -0.22 0.012 < 10�15 negative
erg3*erg7 -0.12 0.012 < 10�15 negative
erg5*erg6 -0.015 0.012 0.19
erg5*erg7 -0.025 0.010 0.015 negative
erg6*erg7 -0.26 0.014 < 10�15 negative

3.3.3 Epistasis for growth in YPD

To determine the extent to which epistasis reflected gross fitness defects not specific to nystatin resistance,
we repeated the analysis on maximum growth rate in YPD, a rich growth medium. As in nystatin2, mating
type (and its associated auxotrophy) had no significant effect (P = 0.98), and results were averaged over
mating types.

The single mutations were generally deleterious in YPD (note the negative coefficients for the individual
mutations, Table 3.4 and Table 3.5), consistent with previous characterization of these mutations (GERSTEIN

et al. 2012). The exception is the haploid erg5 mutant, which is not significantly less fit than the ancestor
in a pairwise comparison of maximum growth rates (bottom left panels in Fig 3.3, Fig 3.4). As observed in
nystatin2, the double mutant often had lower fitness than the single mutants in YPD, although the strength of
epistasis was generally weak (most interactions resemble a parallelogram, Fig 3.3 and Fig 3.4). Significant
sign epistasis was only observed in a single diploid case (erg3 erg7).

Epistatic interactions in YPD were qualitatively different from those observed in nystatin2 and often
differed between haploids and diploids (Table 3.4 and Table 3.5). In contrast to the prevalence of negative
epistasis in nystatin2, significant positive epistasis was observed in some cases (the double mutant is more
fit than expected under the additive model). The poor growth in YPD of most double mutant strains suggests
that the negative relationships observed in nystatin2 may, in part, be due to intrinsic growth defects, perhaps
due to the instability of the cell membrane without proper ergosterol synthesis.

3.3.4 Tolerance across a range of nystatin

To see whether the genetic interactions depended on the concentration of drug, growth was measured as
optical density (OD) after 24 hours over a range of nystatin concentrations (0, 1, 2, 4, 8, 16, 32, 64, 128, 256
µM). We focused here on OD to assess the range of environments in which the yeast strain could grow, even if
slowly, and because of the massive replication required. While OD is thought to reflect the efficiency of cells’
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Table 3.4: Results from a mixed-effects model run on all genes using the haploid maximum growth rate data
in YPD. For statistical and column details, see Table 3.2. There were no cases of sign epistasis.

Term Coefficient SE P Epistasis
mating type 0.000042 0.0027 0.98

erg3 -0.029 0.0057
erg5 -0.0051 0.0049
erg6 -0.065 0.0049
erg7 -0.12 0.0050

erg3*erg5 -0.026 0.0091 0.0034 negative
erg3*erg6 0.0030 0.0090 0.74
erg3*erg7 0.018 0.0091 0.041a positive
erg5*erg6 0.0018 0.0077 0.81
erg5*erg7 -0.0065b 0.0079 0.41
erg6*erg7 0.040 0.0084 1.77 ⇥ 10�6 positive

aNot significant when outliers are included.
bPositive when outliers are included.

Table 3.5: Results from a mixed-effects model run on all genes using the homozygous diploid maximum
growth rate data in YPD. For statistical and column details, see Table 3.2. There were no cases of reciprocal
sign epistasis.

Term Coefficient SE P Epistasis Sign
erg3 -0.057 0.011
erg5 -0.076 0.010
erg6 -0.14 0.010
erg7 -0.19 0.010

erg3*erg5 0.020 0.022 0.36
erg3*erg6 0.032 0.022 0.14
erg3*erg7 0.15 0.022 8.5 ⇥ 10�11 positive
erg5*erg6 0.079 0.020 5.6 ⇥ 10�5 positive
erg5*erg7 0.056 0.018 0.0021 positive
erg6*erg7 0.016 0.025 0.53
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ability to turn nutrients into cellular material rather than the rate of growth, OD and maximum growth rate
were correlated for the single mutants analysed here (GERSTEIN et al. 2012), and the interactions observed
were qualitatively similar for the concentrations of nystatin used in both the maximum growth rate and OD
assays (0 mM and 2 mM).

As before, mating type was not found to have a significant effect on OD in the haploid data (linear model
that included mating type, concentration of nystatin and strain identity as fixed effects; mating type: F =
0.23, df = 1, P = 0.63; concentration of nystatin: F = 600.12, df = 1, P < 10�15; strain: F = 31.95, df = 10,
P < 10�15), and data were pooled across mating types.

Figure 3.5: Optical density after 24 hours of growth for haploid strains in a range of concentrations of
nystatin. Colours go from red to purple, through blues, from lowest to highest concentrations of nystatin.
Lines connect different mutants in the same concentration of nystatin. Lines are solid when the difference in
OD is significant in a Welch’s t-test and dotted when non-significant (not adjusted for multiple comparisons).
Arrows on the y-axes indicate the OD of the ancestral strain. Error bars denote the standard error across
replicates. All underlying raw data and analyses can be found in ONO et al. (2016).

We found that the form of gene interactions changed when measured over a range of concentrations
of nystatin (haploid results: Fig 3.5). As observed previously, the double mutant generally had equivalent
or lower growth than the two parent mutants at low concentrations of nystatin (0-4 µM), but at high con-
centrations (32-64 mM), the double mutant strains became the only strains able to grow well. That is, a
preponderance of negative epistasis shifted towards a preponderance of positive epistasis as nystatin con-
centrations rose. This dependence of the sign of epistasis on the concentration of the drug (not only on the
presence or absence of the drug) indicates that the outcome of mutation or hybridization will depend heavily
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on the specifics of the environment in which the yeast is found.
Homozygous diploid strains showed qualitatively similar patterns of growth to the haploid strains, with

the exception of the erg6/erg6 erg7/erg7 double mutant (Fig B.3). When we compared all diploid strains (in-
cluding heterozygous strains), interesting patterns emerge (Fig B.5). In many cases, the double heterozygous
strain exhibited more growth than either single heterozygous strain (as observed by a ‘bump’ in the middle
of the figure), particularly at higher concentrations of nystatin. This may indicate a net beneficial effect of
carrying two heterozygous mutations or may reflect an increased potential for loss of heterozygosity (LOH).
LOH, in which a locus that is initially heterozygous for a mutant allele becomes homozygous, would be
beneficial in our fitness assay because being homozygous for either mutant allele increases growth in nys-
tatin (compare middle point in Fig B.5 to those second from either end). This may have occurred during
the course of the fitness assay, affecting our final measures of fitness. LOH was previously observed for
the single heterozygous mutants over a 72-hour time scale (GERSTEIN et al. 2014), and being heterozygous
for two mutations may increase the chance of LOH for at least one of the two. The unexpected increase in
fitness in the double heterozygotes may also be indicative of an epistatic interaction providing some benefit
to having two heterozygous mutations within the ergosterol pathway compared to full recessivity (i.e., no
benefit) with only a single heterozygous mutation (GERSTEIN et al. 2014).

3.3.5 Ergosterol phenotypes and map to fitness

To determine whether epistasis for fitness was consistent with the sterol phenotypes exhibited by the strains,
we extracted and measured the sterol profile of all MATa strains. In ancestral samples, we see the characteris-
tic four-peaked curve between 240 and 300 nm that is produced by ergosterol and the late sterol intermediate
24(28)dehydroergosterol (ARTHINGTON-SKAGGS et al. 1999). Only the latter sterol shows an absorption
band at 230 nm, allowing quantification of ergosterol, but we found the peak between 200 and 230 nm to be
very sensitive to the standard used (e.g., newly mixed heptane and ethanol vs. heptane layer from extraction
performed with no yeast cells and ethanol) and thus limit ourselves to a qualitative description of the results.

All of our single mutants show similar results to those presented by GERSTEIN et al. (2012) for these
same mutants (Fig 3.6). The two potential loss-of-function mutants (erg3 and erg6) also have similar sterol
profiles to knockout mutants of these genes (JENSEN-PERGAKES et al. 1998; MUKHOPADHYAY et al. 2002).
Double mutants show a variety of profiles, as can be seen in Fig 3.6. Notably, most double mutants resemble
one of the two parent single mutants, with the exception of the erg6 erg7 double mutant, which is interme-
diate between the two single mutants in absorbance over much of the measured range (suggesting a mixture
of sterols present). All double mutants that include the mutation in ERG3 tend to show similar profiles
to the erg3 single mutant. Thus, the sterol profiles were not predicted by gene position in the ergosterol
biosynthesis pathway (as ERG6 is upstream of ERG3). Furthermore, the similarity in sterol profiles between
double and single mutants did not generally predict the patterns observed for maximum growth rate (with the
exception of the erg5 erg7 haploid and diploid, which behaved like erg7, and the erg3 erg7 diploids, which
behaved like erg3), indicative of a disconnect between sterol profile and fitness.
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Figure 3.6: Sterol profiles of all MATa haploid strains as measured using a spectrophotometry-based assay.
The colour scheme is the same as in Fig 3.3, with the double mutant in black and the ancestral strain in grey.
Error bars depict the standard error of three replicates with the exception of erg6 erg7 (2 replicates). The
same ancestral and single mutant assays are represented in multiple panels. All underlying raw data and
analyses can be found in ONO et al. (2016).

3.4 Discussion

We investigated the types of genetic interactions present between pairs of first-step beneficial mutations that
arose independently in the presence of the fungicide nystatin. We focused on four mutations, representing
each gene found to carry a beneficial mutation among 35 strains evolved in 4 mM nystatin (GERSTEIN et al.
2012). All of these genes are in the biosynthesis pathway leading to the production of ergosterol (the pri-
mary sterol in the yeast cell membrane, Fig 3.2). When ergosterol is bound by nystatin, the cell membrane
becomes permeable to ions, sugars, and metabolites (CARRILLO-MUÑOZ et al. 2006), and cell death results.
When assayed at 2 mM nystatin, the interactions found among these beneficial mutations were predominantly
negative, with double mutants exhibiting a lower growth rate in nystatin than expected based on the com-
bined benefits of the single mutations. This negative epistasis was observed in both haploids (Fig 3.3) and
homozygous diploids (Fig 3.4), supporting previous findings that interactions between mutations in func-
tionally related genes are often negative (COSTANZO et al. 2016).

3.4.1 Prevalence of sign epistasis

We find that the interactions were so negative that the double mutant grew less well than at least one of
the parent single mutants (sign epistasis) in four of the six gene combinations assayed in haploids. In half
of these cases, the double mutant grew significantly less well than both single mutants (reciprocal sign
epistasis). Similar interactions were observed in diploids (three cases of sign epistasis, two of which were
reciprocal). The observation of reciprocal sign epistasis is of particular interest, as this type of BDM in-
compatibility underlies postzygotic reproductive isolation among speciating lineages. The high frequency of
reciprocal sign epistasis observed, even among first-step beneficial mutations acquired in the same environ-
ment, confirms the possibility that isolated populations experiencing similar selective pressures can diverge
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and eventually speciate simply through the order of mutations that happen to arise and fix (mutation-order
speciation).

3.4.2 Maximum growth rate in one environment does not predict sterol phenotype or
growth in other environments

The prevalence of sign epistasis among our specific set of beneficial mutations is somewhat surprising given
the linearity of the biosynthetic pathway in which all of the affected ergosterol genes act (Fig 3.2). Our
results were not consistent with the expectation that the phenotype and fitness of double mutants would be
determined by the upstream mutation. In terms of phenotype, the sterol profile of the double mutant was
similar to that of the most upstream mutant in only two cases (the erg5 erg7 and erg3 erg5 double mutants,
Fig 3.6). In terms of fitness, the growth rate of the double mutant differed significantly from that of the most
upstream single mutant in three (haploids) and four (diploids) out of six pairwise comparisons (Figs 3.3 and
3.4).

In the combination of two loss-of-function type mutations (erg3 erg6), neither sterol phenotype nor fit-
ness matches that of the upstream mutation. These results indicate that there remain substantial interactions
between the mutations in the ergosterol pathway, potentially due to partial activity of the upstream genes cre-
ating low levels of substrate for the remainder of the pathway, due to downstream genes acting on alternative
sterol substrates, or due to interactions among the intermediate sterols themselves. From previous work in
the yeasts S. cerevisiae and Candida albicans, it has been shown that ERG6 plays a role in offshoot sterol
synthesis in mutants of ERG3 (SANGLARD et al. 2003), and it is known that intermediate sterols are found at
different levels in different compartments of the cell (ZINSER et al. 1993) and may impact fitness in a variety
of ways (e.g., altering temperature tolerance CASPETA et al. 2014 and virulence MCCOURT et al. 2016).

There was also no clear relationship between sterol phenotype and fitness in these strains. Sterol pheno-
type for most double mutants resembles one of the two single mutants (Fig 3.6), but this similarity in sterol
phenotype did not generally predict maximum growth rate in nystatin2 (with the possible exception of erg5
erg7 in haploids and diploids and erg3 erg7 in diploids, Figs 3.3 and 3.4). Future analyses that determine
the processing of sterols in the single and double mutants, as well as their pleiotropic effects, would further
elucidate these genetic interactions.

Interestingly, the type of epistasis depended strongly on the concentration of nystatin. At lower concen-
trations of nystatin, similar to those used to acquire the mutations (4 mM nystatin), epistatic interactions
were typically negative (Fig 3.5), with the double mutant showing similar or lower densities after 24 hours
of growth than the single mutants. By contrast, at higher concentrations of nystatin, the interactions were
often positive, with double mutants typically able to outgrow both single mutants. Emblematic of this phe-
nomenon, the best growing haploid double mutant strains at 32 mM nystatin (erg3 erg6, erg3 erg7, erg6 erg7)
were also those that exhibited the most negative epistasis at lower concentrations. This implies a tradeoff
between growth in a lower concentration of the fungicide and tolerance to high concentrations of the drug.
Conceptually, this tradeoff suggests that the double mutant initially overshoots the optimum when nystatin
concentrations are low, because the costs associated with each ergosterol mutation are combined (perhaps
destabilizing the plasma membrane); by contrast, when nystatin concentrations are high, the optimum is
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shifted even further away, and extreme reductions in ergosterol and potentially other sterols are needed for
the yeast to survive, at which point the double mutant is most fit (see, e.g., BLANQUART et al. 2014 for a
theoretical exploration of this phenomenon). Because membrane damage can trigger cell cycle arrest in yeast
(KONO et al. 2016), another possible explanation for the results observed at high concentrations of nystatin
is that single mutants experience cell cycle arrest, reducing growth rate, whereas the additional stress caused
by the combination of two mutations and high concentrations of nystatin may cause a checkpoint failure in
double mutants, allowing the cells to bypass arrest and continue dividing (C. Nislow, pers. comm.).

The shifting nature of epistasis as a function of the severity of the environment also has implications for
speciation and has not been widely discussed (but see KISHONY and LEIBLER 2003 for discussion about
environment-dependent epistasis and ARNEGARD et al. 2014 for an example of an environment-dependent
negative epistatic interaction on feeding and growth performance in F2 hybrid stickleback). Our results show
that BDMs can be environment-specific, and thus gene flow between species might vary according to the
environment in which secondary contact occurs (BORDENSTEIN and DRAPEAU 2001). Counterintuitively,
our results further suggest that harsher environments may be more conducive to gene flow because of the
possible benefit of combining adaptive mutations from different populations. Indeed, environments that
are so harsh that only strains combining mutations can survive (as we observed at high concentrations of
nystatin) might promote hybridization and potentially lead to hybrid speciation (reviewed in MALLET 2007).
For example, extreme desert environments have selected for combinations of traits that improve drought
tolerance, allowing hybrid Helianthus sunflowers to colonize and proliferate (GROSS and RIESEBERG 2005).

3.4.3 Fitness landscapes in haploids and diploids

Because cell volume to surface area ratios are different for haploids and diploids (MABLE 2001), we might
expect differences in growth and epistasis between haploids and diploids, particularly in the face of a selec-
tive pressure like nystatin that impacts the cell membrane. By and large, however, our results were consistent
regardless of ploidy, with diploid homozygous mutants and haploid mutants showing similar patterns of epis-
tasis. One exception was the erg6/erg6 erg7/erg7 double mutant, which was so unfit in diploids that yields
were often too low to obtain initial cell densities similar to other strains in our growth rate assays, even
after extended incubation. The haploid version of this same double mutant, however, also showed very low
fitness. During the initial isolation of the haploids from spores, the double mutant colonies were identifiable
by their noticeably smaller size compared to those produced by single mutant and ancestral genotypes. A
haploid double mutant strain also exhibited reversion in one instance during growth in 10 mL YPD (Sanger
sequencing revealed a secondary mutation in the same codon as the original mutation, reverting the amino
acid).

Considering the various diploid heterozygotes, we confirmed that the ergosterol mutations were largely
recessive, as found previously for the single heterozygous mutant strains (GERSTEIN et al. 2014). There
were more signs of nystatin resistance in the double mutant strains than in the single mutants, however. One
indication of this was the double heterozygous strains showing a slight increase in biomass produced (as
measured by optical density) compared to the single heterozygous strains across a range of concentrations
of nystatin (Fig B.5). Despite this, the double heterozygous strains were uniformly of low growth rate in
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nystatin2 (open diamonds in Fig 3.4), with similar sensitivity as found in the ancestor. The generally poor
performance of the double heterozygous diploid is of particular interest because this genotype would be the
first hybrid product of crosses between strains fixed for different beneficial mutations (see also Fig B.4).
Thus, F1 hybrid inviability in the double heterozygotes, as well as reciprocal sign epistasis, contributes to
reproductive isolation between these strains.

3.4.4 Implications for speciation

Overall, we find that the very earliest stages of divergence within a common selective environment can gen-
erate postzygotic reproductive isolation, observing sign epistasis, reciprocal sign epistasis, and F1 hybrid
inviability in double heterozygotes among the first-step adaptive mutations isolated in the presence of nys-
tatin. Although we did not assay incompatibilities at other stages (e.g., meiotic incompatibilities), we expect
that further BDMs might be revealed by analyzing other stages in the life cycle (indeed, it was very difficult
to sporulate some double mutant strains, particularly erg5/ERG5 erg7/ERG7). We speculate that genetic
incompatibilities may be especially likely in scenarios such as the one investigated here, where selection
favours large effect mutations. In the initial experiment in which mutations were acquired, the concentration
of nystatin was chosen to inhibit growth, so that only mutations capable of rescuing fitness were isolated
(GERSTEIN et al. 2012). Such large effect mutations might have more costly pleiotropic effects and/or be
more likely to overshoot the fitness optimum when combined, showing negative epistasis for fitness even if
their effects are multiplicative or additive on the underlying trait. If large effect mutations are more likely
to interact negatively, which is consistent with our results and others (CHOU et al. 2011; KHAN et al. 2011;
KRYAZHIMSKIY et al. 2014; SCHENK et al. 2013), short periods of severe selection might be more likely
to lead to speciation than longer periods of mild selection. Future experiments comparing genetic incom-
patibilities among strains with similar levels of divergence but consisting of a few large effect or several
small effect genetic differences would be extremely valuable. We also speculate that independent popula-
tions experiencing directional selection to the same environmental change might be more likely to speciate
than those experiencing directional selection to different environments because the beneficial mutations that
accumulate in the former case may be more likely to involve similar pathways and thus more likely to in-
teract negatively (as has been shown in interaction studies, see COSTANZO et al. 2016; HARTMAN et al.
2001). Indeed, even though the beneficial mutations that we assayed were all in the same ‘linear’ pathway
and acquired in the same selective environment, we found that the type of epistasis that underlies speciation
was common, providing experimental support for the mutation-order speciation hypothesis.
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Chapter 4

The limit to evolutionary rescue depends on
ploidy in yeast exposed to nystatin

4.1 Introduction

As their environment changes, species must adapt to persist. By knowing the factors that affect population
size and adaptation, we can begin to predict or influence a population’s likelihood of survival. Evolutionary
rescue occurs when a population is saved from eventual extinction in response to an environmental change
by genetic adaptation to this new environment (CARLSON et al. 2014). Broadly, evolutionary rescue is im-
portant to understand from two main standpoints. The first is conservation - where the question is whether
a species will be able to survive current and future environmental changes. The second is related to human
health - where the question is whether pests and pathogens are able to evolve to overcome human interven-
tion. In evolutionary rescue, populations increase their growth rate either using existing standing genetic
variation, new alleles introduced by gene flow, or new mutation. Populations reach their adaptive limit when
they are not able to acquire the genetic changes necessary for rescue before going extinct. In this paper,
we focus on the case of evolutionary rescue from new mutation, asking: Does ploidy influence the limits to
adaptation?

The genomic characteristics of the organism may influence the potential for evolutionary rescue in a pop-
ulation. For example, epistasis between potential adaptive mutations and the genetic background can affect
which mutations are actually beneficial. Here, we focus on ploidy as a major genomic factor that can impact
the outcome of evolution. For a variety of reasons, diploid and higher ploidy populations are expected to have
different rates of evolutionary rescue from haploid populations (OTTO and WHITTON 2000). With diploidy,
the dominance of adaptive mutations can strongly influence the likelihood of rescue because recessive mu-
tations will not be ‘seen’ by selection when they initially arise in heterozygous form. Recessive mutations
will then have a smaller chance of rising to high frequency in the population and will take longer to do so
compared to partially dominant or fully dominant mutations (ORR and OTTO 1994). However, many pests
and pathogens are either haploid (for example, infectious bacteria), alternate between haploid and diploid
phases or have haploid and diploid individuals (for example, the spider mite pest Tetranychus urticae has
haploid males and diploid females). For these organisms, recessive mutations can be immediately beneficial
if they have a positive selection coefficient in the haploid individuals/phase and can aid in the evolution of
antibiotic or pesticide resistance. On the other hand, diploids should acquire twice the number of mutations,
if haploids and diploids have the same per basepair mutation rate, which may allow diploids to be rescued
when mutations are sufficiently dominant (e.g., OTTO and WHITTON 2000), especially when adaptation is
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limited by mutational availability (ORR and OTTO 1994). Experiments performed using yeast support this
prediction. In large populations, adaptation is faster in haploids because mutations are not limiting, but when
population sizes are decreased, the haploid advantage is lost (ZEYL et al. 2003).

The type of environmental change also determines the ease of evolutionary rescue from new mutation. If
a higher fraction of possible mutations are adaptive in the new environment, evolutionary rescue should occur
more frequently because any individual mutation will have a higher chance of being beneficial. A related
factor may be the rate of environmental change. In experimental populations of Escherichia coli adapting
to the antibiotic rifampicin, LINDSEY et al. (2013) determined that rapidly changing environments not only
limit the number of available mutations by lowering population size but also make certain evolutionary
trajectories inaccessible because multiple mutations are required, and these mutations are not all individually
beneficial in high concentrations of the drug. As a result, there is a much smaller fraction of surviving
populations when there are faster rates of environmental change.

Little is known about the effect of ploidy on evolutionary rescue from new mutations and the topic has
not been well-discussed in the theoretical literature (reviewed in ALEXANDER et al. 2014), thus making
it an interesting avenue of exploration. Most investigations have focussed instead on factors such as the
rate of population size decline with environmental stress and the relative contribution of new mutations vs.
standing genetic variation. Some models of evolutionary rescue are designed with or can be extended to
diploid populations but they tend to assume that the dominance of rescuing mutations is relatively high,
giving the heterozygote a fitness advantage over the ancestral type (e.g., GOMULKIEWICZ and HOLT 1995,
ORR and UNCKLESS 2008). When evolutionary rescue is allowed to occur from standing genetic variation,
as opposed to new mutations, dominance is not as important because the necessary mutation may already
be present at a high enough frequency to make homozygotes common (ORR and UNCKLESS 2008). In
fact, if the rescue mutation was deleterious prior to the change in environment and populations are started
from mutation-selection balance, a recessive allele is as likely to fix as a dominant allele because more
copies of the recessive allele will already be present in the population (ORR and BETANCOURT 2001).
If standing genetic variation is produced through hybridization between the focal population and either a
divergent population or a closely related species, diploidy may even be favoured if beneficial mutations
are often dominant or overdominant (as observed between species of yeast, BERNARDES et al. 2017) and
deleterious mutations or incompatible alleles between groups are recessive (predicted to be the case between
yeast species based on STELKENS et al. 2014). Less is known about the dominance of beneficial mutations
in general, however, which is important for populations of a diploid organism relying on new mutations for
evolutionary rescue. Much of the relevant experimental work has been done with bacteria (e.g., studies of
antibiotic resistance evolution reviewed in MACLEAN et al. 2010) or haploid eukaryotes (e.g., haploid yeast
in BELL and GONZALEZ 2009 or primarily haploid Chlamydomonas reinhardtii in LACHAPELLE and BELL

2012), thus a study of the effects of ploidy on evolutionary rescue will bring novel insights.
We investigate the ability of yeast, Saccharomyces cerevisiae, to undergo evolutionary rescue in response

to a high concentration of the fungicide nystatin and how the ploidy of the yeast affects this ability. We model
our design after a previous experiment in this system performed exclusively with haploids (GERSTEIN et al.
2012), which found that the adaptive alleles acquired by haploid yeast were all recessive in the diploid state
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(GERSTEIN et al. 2014). These recessive alleles will not be sufficient to rescue diploid populations of yeast,
as they will appear in heterozygotes, but the mutations found by GERSTEIN et al. (2012) are unlikely to be
the only possible beneficial mutations in this environment, potentially missing dominant beneficial alleles.
Diploids, aided by their larger genome size and therefore higher number of mutations per cell, may explore
a wider range of potentially adaptive mutations, finding some that are at least partially dominant. For these
reasons, we expected diploid yeast to access alternative evolutionary paths to the haploids, albeit diploids
would likely undergo evolutionary rescue less frequently due to the apparently low availability of dominant
beneficial mutations in this environment. Supporting this idea is a similar study performed by ANDERSON

et al. (2004) that evolved both haploid and diploid yeast to the drug fluconazole, for which candidate path-
ways to drug resistance are known. At low concentrations of the drug, mutations in PDR1 and PDR3 were
favoured, and diploids were able to adapt faster than haploids due to increased mutation availability and
therefore decreased waiting time. All mutations found in diploids were dominant (29/29) while only about
half of those found in haploids were dominant when tested in a heterozygous diploid background (12/29) de-
spite almost all being found in one of those two genes. At high concentrations of the drug, however, recessive
mutations in ERG3 (one of the genes also implicated in nystatin resistance) are favoured, and diploids were
found to evolve slower than haploids (ANDERSON et al. 2004). The authors concluded that diploids likely
required two mutational events to occur (a mutation in ERG3 followed by a second mutation that rendered
the first mutation in ERG3 homozygous) in order to acquire resistance, slowing their adaptation. In the cur-
rent study, we set out to determine the mutations involved in the evolutionary rescue of diploid populations
to a high concentration of nystatin and found that, by and large, diploid populations did not genetically adapt
within our short time course evolution experiments, even though we observed hundreds of cases of rescue in
haploid populations over this same time period. These results have implications for the efficacy of nystatin
when applied to fungal pathogens, which include Candida albicans, a common human fungal pathogen that
is predominantly diploid (HICKMAN et al. 2013), and S. cerevisiae, for which clinical strains are mostly
either diploid or of higher ploidy (ZHU et al. 2016) .

4.2 Methods

4.2.1 Strains

In total, three mutant acquisition experiments, similar to GERSTEIN et al. (2012), were performed, plus
one flask experiment conducted at large population size. Except where noted, we used the S288C back-
ground, using the strains BY4741 (MATa his3�1 leu2�0 met15�0 ura3�0), BY4739 (MAT↵ leu2�0
lys2�0 ura3�0) (Open Biosystems) and a diploid produced by mating the two (BY4741xBY4739, mat-
ing described in ONO et al. 2017). To assess the sensitivity of the results to strain background, Acquisi-
tion Experiment 3 was performed using a different background (W303), using the haploid strains MJM64
(MATa-YCR043C::KANMX STE5pr-URA3 ade2-1 his3�::3xHA leu2�::3xHA trp1-1 can1::STE2pr-HIS3
STE3pr-LEU2) and MJM36 (MAT↵-YCR043C::HPHB STE5pr-URA3 ade2-1 his3�::3xHA leu2�::3xHA
trp1-1 can1::STE2pr-HIS3 STE3pr-LEU2) constructed by MCDONALD et al. (2016), and a diploid produced
by mating (OLY075). The diploid was generated following the procedures of MCDONALD et al. (2016) with
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Figure 4.1: Visual representation of all mutant acquisition experiments. The first two experiments were
performed in 96-well deep well boxes using the BY strains (BY4741, BY4739 and BY4741xBY4739) and
YPDnystatin4 as the medium. For two wells from Acquisition Experiment 1 and three wells from Acqui-
sition Experiment 2, the protocol was not followed correctly, and these wells are excluded from the paper
entirely. The third acquisition experiment was performed similarly except that it used W303 strains (MJM64,
MJM36 and OLY075) and SCnystatin4. In this experiment, due to space constraints, 80 wells were inocu-
lated from the same pre-growth culture as another well in the experiment (all MAT↵). In the analysis, we
restrict ourselves to considering only one of these two replicates because they are not independent. If neither
replicate grew, we counted that as no growth (63 cases). If one of the two replicates grew, we counted that
as growth and performed further assays on the population that grew (13 cases). If both replicates grew, we
chose one at random to analyze and discarded the other (4 cases). The final acquisition experiment inves-
tigated a much larger population size (roughly 100-fold greater), being performed in flasks instead of deep
well boxes and again using the BY strains and YPDnystatin4.

slight modifications; using YPAD in place of YPD (YPD + 40 mg/L adenine sulfate), incubating the matings
overnight, excluding the PBS buffer step, and performing the selection step twice. The growth of all strains
was inhibited under the treatment conditions, with no observable positive growth in the absence of a resistant
mutant within 48 hours (Fig. C.2).

4.2.2 Mutant acquisition in deep well boxes

For an overview of all acquisition experiments performed, see Fig. 4.1. For Acquistion Experiments 1 and
2, the strains were first struck from frozen on YPD plates and grown at 30°C. After three days of growth,
100-well honeycomb plates used with the Bioscreen C Microbiological Workstation (Thermo Labsystems)
were filled with 150 mL of YPD per well, and each well was inoculated with a separate colony to produce
stationary phase cultures for use in the mutation acquisition phase. The plates were grown for 24 hours in the
Bioscreen machine at 30°C with maximum, continuous shaking. Note that all liquid medium throughout this
paper was supplemented with ampicillin at a final concentration of 0.04 mg/mL to prevent bacterial growth.
In Acquisition Experiment 1, we used 191 colonies of the diploid strain and 191 colonies of the haploid
strains, split between mating types (MATa: 96, MAT↵: 95), alternating between diploid and haploid strains
throughout the plates. In Acquisition Experiment 2, we used 286 colonies of the diploid strain, 47 colonies
of MATa, and 48 colonies of MAT↵, with any given plate containing either all diploids (three plates) or half
MATa and half MAT↵ (one plate).
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The following day, the honeycomb plates were visually assessed to confirm full growth in each well
within YPD. 10 mL from each well was used to inoculate 990 mL of YPD + 4 mM nystatin (‘YPDnystatin4’)
in deep well boxes, after mixing the culture by pipetting up and down. We estimate this inoculum to contain
~7.0⇥ 105 cells per well (based on hemacytometer counts). The same general map was used for the boxes
as for the honeycomb plates. The boxes were covered with aluminum lids to prevent cross-contamination
while sampling and plastic lids were added on top to protect the aluminum lids. They were incubated at
30°C, shaking at 200 rpm.

The wells were checked every 24 hours for growth by visual examination. Clumps were typically ob-
served at the bottom of the well prior to the yeast covering a larger, circular area, so a well was considered
to have growth if the bottom was covered with enough yeast cells to form two small clumps, about 2 mm
long and 1 mm wide. On the first day that growth was observed in a well, the growth was recorded, the
aluminum lid was sterilized with 70% ethanol and punctured with a pipet tip, and the culture was frozen
in 15% glycerol at -80°C. In Acquisition Experiment 1, 42 MATa strains, 86 MAT↵ strains and 90 diploid
strains were collected over the course of 12 days. In Acquisition Experiment 2, 16 MATa strains, 48 MAT↵
strains and 100 diploid strains were collected over the course of 10 days.

Acquisition Experiment 3, performed in the W303 background, used similar methods to Acquisition
Experiment 1, with exceptions described here. The strains were originally struck from frozen on YPAD
plates and grown for only two days. SC (supplemented with adenine) was used instead of YPD for growth in
the honeycomb plates. SC was formulated using 20 g/L of dextrose, drop-out mix complete (US Biological,
D9515), and yeast nitrogen base including ammonium sulfate, according to the manufacturer’s instructions.
This medium was supplemented with an additional 57 mg/L of adenine sulfate. There were 155 colonies of
the diploid strain, 80 colonies of the MATa strain and 165 colonies of the MAT↵ strain used for the growth
in the honeycomb plates, alternating between strains throughout. SC + 4 mM nystatin (‘SCnystatin4’) was
used in place of YPDnystatin4 in the deep well boxes. Initial inoculum was estimated as 7.4⇥ 105 cells per
well. Pilot experiments indicated that mutants would be difficult to isolate in the MAT↵ background (the
initial stock was later found to be respiratory-deficient), so 80 additional wells of this strain were added to
the deep well boxes, using the same pre-growth culture as for one other well. A total of 245 wells of the
MAT↵ strain were included in the experiment, so the map of the deep well boxes was slightly modified from
that of the honeycomb plates, although still alternating between strains. Over the course of seven days, 77
MATa strains, 34 MAT↵ strains and 121 diploid strains were collected.

4.2.3 Confirming nystatin resistance

All populations frozen from the acquisition experiments were tested for resistance to nystatin. Populations
were pre-grown from frozen by inoculating 975 mL of 0.5 mM nystatin (in YPD for Acquisition Experiments
1 and 2, SC for Acquisition Experiment 3) with 25 mL of frozen culture in deep well boxes according to a
randomized map. Aluminum lids were added to the boxes, and they were incubated at 30°C, shaking at 200
rpm for 72 hours, after which almost all wells had full growth as judged by visual inspection. From these
pre-growth cultures, 200 mL was transferred to a 1.5 mL tube and stored at 4°C.

We measured growth in YPDnystatin4 (for Acquisition Experiments 1 and 2) or SCnystatin4 (for Acqui-
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sition Experiment 3) of all populations on three different days using the Bioscreen C, which automatically
measures optical density (‘OD’) in 100-well honeycomb plates. For each growth assay, honeycomb plates
filled with 148.6 mL of nystatin medium were inoculated with the cultures kept at 4°C according to a new
random map for each day. The culture tubes were vortexed until fully resuspended, and 1.5 mL was trans-
ferred to the appropriate well. All tubes were returned to 4°C when inoculation was completed. OD was
measured automatically using the wideband filter at 30-min intervals for 72 hours from cultures growing at
30°C with medium continuous shaking.

Lines were considered potentially mutant when the well had an OD after 72 hours of growth (‘OD72’)
that was greater than the halfway point between the well with the lowest OD and that with the highest OD,
including the ancestral controls, in the majority of assays (at least two out of three). We consider these to be
‘potentially’ mutant because growth of the yeast can depend on the exact conditions of the assay (including
plate type and volume of medium), thus they are not necessarily fully resistant to the original evolutionary
conditions (deep well box, 1 mL of medium). Based on initial testing, we knew that our collection of haploid
populations included some nystatin-resistant mutants, so the highest OD reflected a truly resistant strain. A
single cutoff was used for both Acquisition Experiment 1 and 2 for each assay day since they were tested in
the same medium and always assayed together. Because Acquisition Experiment 3 used a different medium
and the assays were conducted on different days, the cutoffs were recalculated.

4.2.4 Mutant acquisition with larger population sizes

Because we had such difficulty finding diploid mutant strains using relatively small population sizes (roughly
7⇥ 105 cells inoculated) in our original acquisition experiments, we conducted a mutant acquisition experi-
ment with a higher population size (Fig. 4.1). To do so, we first struck BY4741, BY4739 and BY4741xBY4739
from frozen onto YPD plates and allowed them to grow for three days at 30°C. We then inoculated 10 mL
of YPD in separate test tubes for colonies from 10 diploid colonies and one of each haploid mating type.
These tubes were allowed to grow for 24 hours in a rotor at 30°C. The next day, we inoculated 250 mL flasks
filled with 99 mL of YPDnystatin4 with 1 mL of the overnight culture (12 flasks in total). We estimate this
inoculum to contain ~7.0⇥ 107 cells (based on counts in a hemacytometer).

The flasks were covered with aluminum foil and incubated at 30°C, shaking at 200 rpm. The flasks
were checked every 24 hours by visual examination for growth. When growth was observed (as a noticeable
lightening of the culture colour and loss of clarity when compared to a flask containing no yeast), 500
mL of culture was sampled and frozen at -80°C in 15% glycerol. All flasks showed growth by Day 10.
Resistance to nystatin was then assayed as described for the first two acquisition experiments with cutoffs
being recalculated because these assays were performed on different days.

4.2.5 Further testing of potential diploid mutants

All 13 diploid populations that consistently showed growth in nystatin and underwent further testing had
the BY genetic background since all were from Acquisition Experiments 1 or 2. Because initial results
indicated that some ‘diploid’ mutants were actually haploid contaminants, all potential diploid mutants were
verified by replica plating. Haploids of this background carry auxotrophies and can thus be detected both
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by their ability to mate with haploids of the opposite mating type (tested by mating with haploid strains
carrying different auxotrophic mutations and testing for complementation) and by their inability to grow on
either SC lacking histidine (MATa) or SC lacking lysine (MATa). In this way, we determined that nine of
the populations were primarily composed of haploid contaminants, and these were excluded from further
analyses. Four diploid potential mutant populations remained after these tests.

These four diploids, along with ancestor and haploid mutant controls, were further tested for growth in
YPDnystatin4. Yeast were struck from frozen on YPD plates and incubated at 30°C for three days. Between
six and eight colonies per population were chosen haphazardly, picked into 1 mL of YPD in deep well boxes,
and incubated at 30°C, shaking at 200 rpm overnight. From this culture, 10 mL was used to inoculate 990
mL of YPD and another 10 mL was used to inoculate 990 mL of YPDnystatin4, both in deep well boxes.
Aluminum lids were added to these boxes to minimize evaporation. The boxes were incubated at 30°C,
shaking at 200 rpm for 72 hours and visually inspected for growth every 24 hours. Growth was scored on
a scale from zero (no growth) to three, where one is barely recognizable growth (a light dusting of cells
or a circle of roughly 1 mm diameter), two is recognizable but not full growth (a patchy covering of cells
or a circle up to roughly 3 mm diameter) and three is full growth (a circle of greater than roughly 3 mm
diameter up to a full covering of the bottom of the well). Wells were chosen for freezing based on their
growth after the 72 hour incubation. For the populations that showed full growth in YPDnystatin4, one well
was chosen randomly for freezing (coming from a single colony). If a population showed variable growth
across colonies, the colony showing the best growth was chosen for freezing, or one of the colonies showing
the best growth was chosen randomly. Colonies were frozen from the first YPD box in 15% glycerol at
-80°C.

A growth assay was performed using the Bioscreen C machine on the colonies chosen for freezing, along
with randomly chosen colonies from the strains that did not show growth in YPDnystatin4, using culture from
the second YPD box (inoculated on the same day as the YPDnystatin4 box). 1.5 mL of culture was used to
inoculate 148.6 mL of both YPD and YPDnystatin4 in four wells each, using freshly diluted nystatin stocks.
OD was measured automatically using the wideband filter at 30-min intervals for 72 hours from cultures
growing at 30°C with medium continuous shaking. No diploid colony showed growth in this growth assay,
and it was later determined that these four diploid populations also harboured haploid contaminants at very
low frequencies. This was determined by testing the culture from the end of the original growth assays as
described at the beginning of this section.

4.2.6 Nystatin efficacy over time

While many diploid cultures appeared to undergo evolutionary rescue in nystatin, growth was typically
only observed late in the acquisition experiment, and most of these populations did not exhibit resistance
when regrown in nystatin. We thus tested the ability of nystatin to inhibit yeast growth over a time course to
investigate whether the effective concentration of the drug was decreasing over the duration of the acquisition
experiments. We also tested whether the presence of dead yeast cells altered the efficacy of nystatin. Dead
cells were obtained by growing cultures of BY4741xBY4739 in 1 mL of YPD in 1.5 mL tubes overnight at
30°C, shaking at 200 rpm. The next day, these tubes were placed in a heat block at 95°C for 10 minutes to
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kill the cells. Preliminary tests indicated that this amount of time was sufficient to kill all of the cells. On the
first day of the experiment (Day 0), 990 mL of YPD, YPDnystatin4, SC and SCnystatin4 were placed in deep
well boxes, with half of all nystatin-containing wells also receiving 10 mL of heat treated cells, giving a total
of 16 wells per type (base medium, base medium with nystatin, and base medium with nystatin and dead
cells) per box. Ten mL of live BY4741xBY4739, grown overnight in 1 mL of YPD, was used to inoculate
120 wells on each of Day 0, 4, and 8 of the experiment, split evenly across boxes and medium types. On
Day 12, there was not enough live culture to inoculate all wells. Many control (YPD or SC) wells were not
inoculated. One SCnystatin4 + dead cells well was not inoculated and excluded from the analysis. The other
wells were inoculated with as much as possible, ranging from 2 mL to 10 mL of culture (the fact that fewer
cells were used on Day 12 is conservative with respect to our results below). Between inoculation days, the
stocks were stored at 4°C while the deep well boxes were incubated at 30°C, shaking at 200 rpm. The boxes
were visually inspected for growth every 24 hours for 16 days, excluding Days 10 and 11, using the same
scoring system from zero to three as described in Section 4.2.5.

4.3 Results

Including all four acquisition experiments, we found that none of the 619 inoculated diploid wells (excluding
those found to have haploid contamination) or flasks underwent evolutionary rescue, compared with 116 out
of 223 MATa wells (52%) and 100 out of 308 MAT↵ wells (32%) (Fig 4.2). These numbers are based on tests
of resistance to nystatin performed by following the growth of the populations for 72 hours in their original
medium type (either YPDnystatin4 or SCnystatin4) in the Bioscreen C. We conclude that ploidy played
a substantial role in the likelihood of evolutionary rescue. For each of the three acquisition experiments
in deep well boxes, strain type influenced the proportion of tested populations that were determined to be
putatively resistant (�2 contingency test, Acquisition Experiment 1: �2 = 53.14, df = 2, p-value = 3⇥ 10�12;
Acquisition Experiment 2: �2 = 119.36, df = 2, p-value < 10�15; Acquisition Experiment 3: �2 = 193.98,
df = 2, p-value < 10�15). MATa consistently had the highest proportion of putative mutants among the wells
that grew in the original acquisition experiments (1: 26/42 = 0.62; 2: 14/16 = 0.88, 3: 76/77 = 0.99), followed
by MAT↵ (1: 42/86 = 0.49; 2: 38/48 = 0.79, 3: 20/34 = 0.59). Only four of the 81 diploid populations tested
from Acquisition Experiment 1 were deemed to be putative mutants, and none from Acquisition Experiments
2 or 3 (Fig 4.2 and Fig C.2). These four potential mutant populations may be weakly resistant (allowing them
to grow in lower concentrations of nystatin), but they were also determined to harbour haploid contaminants
at low frequencies, explaining the growth observed in YPDnystatin4. These results indicate that ploidy
restricts the ability of yeast populations to undergo evolutionary rescue under these conditions.

The relative absence of adaptive evolution among diploids is unlikely to be due to a small number of
replicates tested. We modelled the growth of a population from a single cell established on a plate to the
portion of liquid that is used in the inocula for the acquisition experiments and expect 0.82 nucleotide-
changing mutations to have occurred in at least one cell per site within the genome, combining all deep well
acquisition experiments and the flask experiment (Section C.2). When we multiply this over the average
length of an ORF, we expect to have sampled ~888 different non-synonymous or nonsense mutations for
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Figure 4.2: Plot indicating the number of potential mutants found in all wells over all three acquisition
experiments in the deep well boxes. The area of the lightest coloured circle is proportional to the total
number of wells inoculated of each type. The intermediately coloured circle is proportional to the total
number of wells that showed some growth in the initial acquisition experiments. The darkest coloured
circle is proportional to the number of wells considered to carry potential mutants based on the follow-
up growth assays. Very few of the diploid populations grew in the follow-up assays (green; 4/302/623;
putative mutants/wells that grew/wells inoculated), while the majority of haploid populations that grew in the
acquisition experiments were reliable mutants (red: MATa 116/135/223; blue: MAT↵ 100/168/308). Further
testing indicated that these four diploid populations harboured haploid contamination at a low frequency.

each gene within the genome over the course of the experiment. Based on these numbers, we believe that
if a one-step dominant rescue mutation were available in the diploids, we should have seen full resistance
evolve. If a secondary mutation is required in the same gene (either a second mutation in the same ORF
or a loss of heterozygosity of the first mutation), there is a <0.0003 chance that such a secondary mutant
cell would have been sampled over the course of the experiment (Section C.2). Thus, this experiment tests
primarily for single-step rescue mutations and not for the potential effects of homozygous mutations.

4.3.1 Further testing of potential diploid mutants

Four diploid populations that grew in Acquisition Experiment 1 were considered to potentially carry rescue
mutations (DR1-4 for “Diploid Rescue”). Two of these (DR1, 2) grew in all three replicate Bioscreen C
runs when testing to confirm resistance, while the other two (DR3, 4) grew in only two of the three follow-
up assays. When colonies from these populations were retested under the original acquisition conditions
(YPDnystatin4 in a deep well box), only a small amount of growth was observed for DR1-3 and no growth
was observed for DR4 in 72 hours. One colony from each of these populations (chosen among those that
grew for DR1-3) was then assayed for growth in the Bioscreen, this time using freshly diluted nystatin, and no
growth was observed for any of these strains in YPDnystatin4 while all had full growth in YPD. The nystatin
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used in the previous assays was older and possibly slightly degraded, potentially explaining the observed
growth of DR1-4. These results indicate that the populations may harbour weakly resistant or higher fitness
mutants, but not mutations that are fully resistant to 4 mM nystatin. Further, follow-up investigation of these
populations from the end of the original growth assays indicated that low frequency haploid contamination
was present in the original populations.

4.3.2 Nystatin efficacy over time

Based on the observation that many populations grew in the initial acquisition experiments but were not
resistant when re-tested in nystatin (see Section C.1), we hypothesized that nystatin was losing efficacy over
the course of the acquisition experiments (lasting seven to twelve days). Both YPDnystatin4 and SCnystatin4
showed significant degradation of nystatin efficacy over time (Fig 4.3). This was observed as a loss of the
ability to inhibit the growth of BY diploids within four days. The presence or absence of dead yeast cells
in the medium did not have a significant effect on this loss of efficacy but the base medium did, with SC
allowing more growth overall than YPD (generalized linear model with a binomial error distribution and
logit link function performed using the glm function in the package stats in R [R CORE TEAM 2016], p-
values determined based on sequential likelihood ratio tests run using the anova function in the order: day of
inoculation: df = 3, p < 10�15; base medium: df = 1, p = 0.0048; presence of dead cells: df = 1, p = 0.056).

4.3.3 Rescue in larger populations

One reason for a population to fail to undergo evolutionary rescue is that potentially adaptive mutations
are rare and do not occur in that population. To help determine whether mutational opportunity was a
limiting factor preventing evolutionary rescue in diploids, we conducted a mutant acquisition experiment
with roughly 100-fold more initial cells (inoculation used 1 mL of overnight culture compared to 10 mL used
in the main box acquisition experiments). Ten diploid populations, as well as one population of each haploid
type, were exposed to 100 mL of YPDnystatin4 in 250 mL flasks. All populations grew within 10 days of
inoculation, with the MATa and MATa populations growing on Day 3, and the diploid populations growing
on Days 8-10. Despite this growth, no diploid population grew when tested in YPDnystatin4 in the follow-
up growth assay (Fig C.1). On the other hand, haploid populations generally showed reliable rescue as
demonstrated by growth in follow-up assays, consistent with the smaller volume experiments. These results
indicate that increasing initial population size roughly 100-fold was not sufficient to allow for beneficial
mutations to occur in diploids during this short adaptation experiment.

4.4 Discussion

In this study, we have provided an example where ploidy alters the probability of evolutionary rescue.
Diploids were generally not able to adapt to a high concentration of nystatin in the short time course given
with none of 619 inoculated wells (excluding those found to have haploid contamination) showing evolu-
tionary rescue, as compared with 216 out of 531 haploid wells. Although we expected rescue to be less
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Figure 4.3: Plot of the percentage of wells inoculated on each day that showed growth within four days
of inoculation in the nystatin efficacy experiment. Vertical bars represent 95% confidence intervals of the
proportions. No wells grew within four days of the beginning of the experiment (when the nystatin was
fresh). When four day-old nystatin was inoculated with yeast, many wells grew within four days, and all
eight-day old nystatin wells grew within four days. The increased variability in growth observed among
wells inoculated on Day 12 is likely due to the varying amounts of culture used to inoculate these wells
(ranging from 2 mL to 10 mL). These results confirm that the nystatin may have been losing efficacy over the
course of the initial acquisition experiments.
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common in diploids, given previous work demonstrating that mutations accumulated in haploids were reces-
sive (GERSTEIN et al. 2014), it was possible that diploids would explore beneficial mutations not observed
in the haploids. We conclude that there is a genetic limit to adaptation in diploids with no simple one-step
dominant rescue mutations available.

There are many differences between haploids and diploids that may cause the observed difference in their
ability to undergo evolutionary rescue. Factors that may favour haploid rescue include larger population size,
differing effect sizes of mutations depending on ploidy background (if mutations tend to be more beneficial
in haploids), and low dominance of potentially beneficial mutations (OTTO and WHITTON 2000). These
differences will be discussed in more detail below.

In yeast, haploids have smaller cells and therefore larger population sizes for the same volume of in-
oculum (MABLE 2001), with a less than two-fold difference. Larger population sizes in haploids should
correspond to a larger number of mutations in these populations, but this is not the case because diploids
have twice the genome (and therefore twice the number of mutational targets) when compared to haploids.
To determine whether our starting population sizes were too small to allow diploid evolution, we exposed
ten diploid populations to nystatin in flasks containing 100-fold more medium and initial inoculum. None of
these populations underwent evolutionary rescue (Fig C.1). At this population size (roughly 7⇥ 107 cells),
we expect 38% of sites to mutate within at least one of the flasks, with over 600 mutations per gene expected
across the flasks, leading us to conclude that initial population size is not the problem (Section C.2).

The effect of potentially beneficial mutations may differ between haploids and diploids, even between
haploids and homozygous diploids, which are often treated as equivalent. Previous work in this system has
found that the effect sizes of beneficial mutations were not equal between haploids and homozygous diploids,
for those mutations acquired in a haploid background, with haploids outperforming diploids (GERSTEIN

2013). In nystatin, these effect size differences may arise as a consequence of the geometrical differences
between haploid and diploid cells. Nystatin acts by binding to ergosterol in the yeast membrane, making
the membrane more permeable to ions, sugars and metabolites, resulting in cell death (CARRILLO-MUÑOZ

et al. 2006). Because surface areas are higher for diploids than haploids (MABLE 2001), their sensitivity
to nystatin may differ. In addition, the primary path to resistance to nystatin is through mutations in the
ergosterol biosynthesis pathway, which affects the sterol composition of the cell membrane (GERSTEIN et al.
2012). Due to their larger surface area, diploids may suffer more of a fitness cost from these mutations due
to decreased stability of the membrane, thus impacting the effective fitness benefit conferred. Nevertheless,
ergosterol mutations still confer a large fitness benefit to diploids in nystatin when present in homozygous
form (GERSTEIN 2013), suggesting that the difference in rescue probability between haploids and diploids
is not due to differences in the effect of mutations when homozygous.

Another way in which the effect of potentially beneficial mutations can differ between ploidies is through
their dominance. Many new mutations are recessive and therefore are only ‘seen’ by selection when rare in
a haploid. Recessive beneficial alleles, especially those originating from new mutations, are unlikely to
rescue a diploid population because they will not often spread to high enough frequency for homozygotes
to be common (ORR and UNCKLESS 2008). Sex by random assortment is very unlikely to combine rare,
potentially beneficial recessive alleles. Natural yeast perform a version of selfing wherein mating is most
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common between gametes from a single diploid individual. This mechanism could produce an adapted,
homozygous individual, but sex cannot be induced in our experimental setup, due to the short time frame and
strong selection. Because reproduction is strictly asexual in our experiment, diploids must acquire a second
mutation (either another new mutation or a loss-of-heterozygosity event) in order to gain any advantage from
a recessive allele (MANDEGAR and OTTO 2007). Surprisingly, based on our results, we infer that there are
no dominant or semi-dominant rescue mutations in this environment. This places a limit to evolutionary
rescue on diploids at a lower concentration of the drug than for haploids. These results will not necessarily
generalize to other environments because they depend on the nature of available adaptive mutations and the
exact effects of the environment on the ancestral type.

ANDERSON et al. (2004) performed a similar experiment at high concentrations of another antifungal
drug (64 and 128 mg/mL fluconazole), in which the initial lines were able to undergo seven to nine doublings
but were unable to proliferate further. In their experiment, diploids evolved resistance more slowly than
haploids but eventually all replicate diploid lines evolved heritable resistance (minimum inhibitory concen-
trations of 256 mg/mL fluconazole). Thus, diploids were not limited in their ability to undergo evolutionary
rescue under their experimental conditions. Importantly, we have similar total numbers of cells in our inocula
(accounting for the initial growth that was observed in fluconazole), so that the contrast between observing
100% rescue (ANDERSON et al. 2004) and our result of 0% rescue (for levels of drug used in the acquisition
phase) must reflect a difference in limits to evolutionary rescue and not a difference in experimental power.
While certain two-step mutations would rescue diploid populations in our experiment (such as mutations in
both copies of an ergosterol pathway gene), they would require much larger populations than those used.
We calculate a <0.0003 probability that a cell containing a secondary mutation in the same gene would be
sampled across any of the deep wells or flasks in the experiment, assuming a relatively high rate of either
secondary mutation or loss of heterozygosity (~10�4) and assuming that any second mutation in the same
ORF and/or mitotic recombination event would generate resistance, to be conservative (Section C.2). In con-
trast, ANDERSON et al. (2004) observed patterns consistent with such two-step mutations. The difference in
observed two-step mutations likely reflects a difference in the selective environment. Because yeast undergo
several generations in fluconazole before arresting growth, there is the opportunity for weakly resistant het-
erozygous mutations to increase in frequency in the populations, and therefore a higher probability of loss
of heterozygosity for one of these mutations.

It may be the case that deterioration of the nystatin environment allows diploids to grow in our ex-
periments sooner than they are able to adapt genetically. Phenotypic heterogeneity (without an underlying
genetic basis) in the ability to persist in the presence of antibiotics has been observed in bacterial populations
(e.g., BALABAN et al. 2004). These “persister” types remain sensitive to the antibiotic, however, when re-
tested. Such persistence could explain the presence of nystatin-sensitive populations among those that grew
in the initial acquisition experiments. The populations may persist at low numbers while the concentration
of nystatin is high enough to be inhibitory and then show growth once the efficacy of nystatin has dropped
below some threshold. This is consistent with the observation that diploids tend to grow on the later days
of the acquisition experiments, which is when we also observe growth of non-resistant haploid populations
(Fig. C.2). Follow up experiments evaluating the efficacy of nystatin over time indicate that nystatin likely
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lost efficacy by this time (Fig. 4.3), allowing the growth of lower tolerance strains. While we conclude that
full resistance to 4 mM nystatin was not exhibited by any of the diploid lines assayed, it remains possible that
the diploids did evolve low levels of resistance that improved their ability to persist or to grow once nystatin
became less effective.

In our study, we appear to have exceeded the limit of genetic adaptation possible in diploids, but not in
haploids, by using a high concentration of the fungicide nystatin and a short time frame. A previous study
found that diploids were able to adapt at the same rate as haploids to a lower concentration of nystatin (0.6
mM) over a longer period of time (140 generations) (GERSTEIN et al. 2011) under conditions that allowed
growth of the initial strains (i.e., not an evolutionary rescue experiment). It is possible that the larger number
of generations in that experiment provided the opportunity for strains to get the kinds of two-step mutations
that seem to be necessary for resistance to high concentrations of the drug. However, initial whole-genome
sequence data from these strains found no mutations in either ERG3 or ERG6 (data not shown), the most
commonly used genes in haploids at high concentrations of nystatin (GERSTEIN et al. 2012). Instead, the
ability of the diploids to evolve in GERSTEIN et al. (2011) suggests that different, and potentially more
dominant, mutations may be available at lower concentrations of nystatin that are not sufficient to provide
resistance to higher concentrations.

We find that evolutionary rescue is not always possible and that the limits can depend strongly on the
ploidy of the organism in question. These results have implications for conservation. For example, among
algae, we might expect evolutionary rescue in the face of climate change to change the relative proportions of
species with a haploid phase (haplonts or haploid-diploid species) relative to those with only a diploid phase
(diplonts). As another example, higher standards may be needed for pollutants/toxins that require exposed
organisms to adapt using recessive mutations, because of the risk that evolutionary rescue will fail. There
are also implications for disease management. By investigating the genetic basis of potential resistance to
our treatments of choice (antibiotics, pesticides), we can make informed decisions about timing and dosage.
In this way, we can endeavour to minimize potentially harmful evolutionary rescue in the organisms that we
are attempting to control.
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Chapter 5

Discussion

In this thesis, I have broadly addressed questions about the genetics of adaptation and speciation using the
yeast Saccharomyces cerevisiae as a model system. I have used the tools of experimental design and statistics
along with laboratory techniques for yeast manipulation and assessment to investigate the genetic basis of
evolution, taking advantage of the fast generation time of yeast and its genetic tractability. By allowing the
organism to explore possible mutations naturally and then sequencing to discover the utilized mutations, we
can begin to understand why evolution proceeded the way that it did. The use of experimental evolution
greatly facilitated this process, as studies of natural systems are often limited by the precision with which
they can map causative mutations, usually only able to narrow down the genome to large blocks of interest.
For many species, these studies can often be restricted by either having relatively little knowledge available
about the underlying genes or only having the ability to investigate candidate genes. I found that the genetic
details of evolution are sometimes surprising, and they force us to expand our thinking about how evolution
‘typically’ proceeds. Theoretical models of evolution must, by their nature, make certain assumptions about
the underlying genetic system, and I hope that results from these experiments will inform theoreticians about
interesting aspects of genetics that warrant further investigation. The chapters of my thesis have investigated
the repeatability of adaptation in experimental strains of yeast adapted to high concentrations of copper
(Chapter 2), tested genetic interactions between first-step adaptive mutations (Chapter 3), and explored the
limits of genetic adaptation of haploid and diploid yeast in a fungicide (Chapter 4). I will discuss the main
conclusions of these chapters in turn and then use Fisher’s geometric model as a theoretical framework to
revisit some of the data from two of these chapters.

5.1 Thesis summary

5.1.1 Chapter 2: Repeatability of adaptation

In Chapter 2, I explore the repeatability of adaptation to high concentrations of copper. I find that the level of
repeatability depends on what one defines as repeatable. The same gene (CUP1) was involved in increases in
copy number in almost all replicates (27/34), as expected from previous work on copper resistance in yeast
(ADAMO et al. 2012; FOGEL and WELCH 1982; FOGEL et al. 1983), so we might conclude that evolution
was highly repeatable. The mechanism of copy number increase varied between strains, however, with
some strains utilizing whole-chromosome aneuploidy (an additional copy of the relevant chromosome) and
others increasing copy number of the already tandemly repeated region. Thus, at the level of mutation type,
adaptation was slightly less repeatable. Finally, many strains also carried secondary genic mutations. Of the
affected genes, some were mutated in a few different strains (highly unlikely by chance alone), while some
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genes were mutant in only one. These genes had a variety of functions and cellular localizations. When
also considering these genic mutations, the level of repeatability was quite low. These results highlight an
important contribution of experimental evolution to evolutionary theory. Observations like this force us to
consider what is meant by the term ‘repeated’, both in terms of the gene involved and the mutation type,
highlighting the importance of the varying genetic mechanisms available to evolution.

By comparing the results of Chapter 2 with those of GERSTEIN et al. (2012), which uses the same ex-
perimental setup and same starting yeast strain but a different selective environment (a high concentration of
the fungicide nystatin), we can observe how genomic breadth, and therefore repeatability, changes with the
agent of selection. Few studies have directly compared the repeatability of adaptation between environments
in this way (but see GRESHAM et al. 2008), but it is difficult to draw conclusions about the effects of a sin-
gle factor (environment) when comparing studies that have been performed with many other varying factors
(e.g., population size, population dynamics, organism of study). In our comparison, I find a variety of mu-
tation types in copper (copy number variation, aneuploidy, genic mutations) while GERSTEIN et al. (2012)
only find genic mutations in nystatin. Considering the biological pathways targetted, evolution in copper in-
volved many different pathways and biological functions, while adaptation to nystatin was acquired through
mutations in genes of a single biosynthetic pathway. Finally, at the level of individual genes implicated in
adaptation, increased copy number of a single gene, CUP1, was almost uniformly observed in evolution in
copper. It is likely that amplification of this locus had a high mutation rate because it is already present in a
tandemly repeated region, which is prone to unequal crossover, gene conversion or single-strand annealing
(ZHANG et al. 2013). Other genes were repeatedly involved in copper adaptation, but much less frequently.
In contrast, adaptation to nystatin involved one of four genes, and most adapted strains carried mutations in
one of the two repeatedly used genes (ERG3 or ERG6). Overall, adaptation to nystatin was more repeatable
than adaptation to copper at both the level of mutation type and biological pathway. At the level of individual
gene, adaptation to copper was simultaneously more repeatable, due to the almost uniform observation of
CUP1 amplification, and less repeatable, due to the observation of a variety of other genic mutations involved
in multiple cellular processes.

Unfortunately, due to the high mutability of the tandemly repeated CUP1 region, it was difficult to
determine the effects of genic mutations that co-occurred with high CUP1 copy numbers since lines with
high CUP1 copy number were unstable (did not segregate 2:2 in cross progeny). For repeatedly hit genes,
the benefit of these mutations was supported by many lines of evidence, including their presence in multiple
independently adapted strains, but it would have been much more difficult to characterize all of the other
genic mutations observed, and this was not done. Most studies that focus on genetic repeatability mainly
refer to repeatably used genes. Going forward, it would be insightful to characterize the rarely-used genes
in evolution to determine whether they are rare because the mutations have small fitness benefits or because
the mutations themselves are rare, or whether it is often a combination of the two.

5.1.2 Chapter 3: Evolution of BDM incompatibilities between first-step adaptive mutations

In Chapter 3, I investigate epistasis between first-step adaptive mutations in the fungicide nystatin. Epistasis
between beneficial mutations from the same environment can have implications for evolutionary trajectories,
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affecting both the speed and direction of evolutionary change, and is relevant for speciation. Independently
evolving populations may adapt to similar selection pressures via different genetic changes, even if they are
exposed to an identical environmental challenge. How these genetic changes interact in hybrids between the
populations may determine whether or not the populations evolve to become new species. I used mutations
from an initial study of haploid adaptation to nystatin (GERSTEIN et al. 2012), focusing on one mutation in
each of four genes in the ergosterol biosynthesis pathway. I found that genetic interactions were prevalent and
predominantly negative, with the majority of mutations causing lower growth when combined in a double
mutant than when alone in a single mutant and, in one third of cases, the growth of the double mutant was
lower than either single mutant. Thus, BDM incompatibilities evolved readily, even among populations
adapting to identical conditions. The prevalence of these kinds of interactions is surprising given the small
number of mutations tested and demonstrated that postzygotic reproductive isolation could evolve between
populations differing by only a single genetic change each. These results lend support to the mutation-order
model of speciation where populations accumulate reproductive isolation due to the chance order in which
mutations arise in each. This model is difficult to prove in nature due to the requirement of known parallel
selection histories and has not been thoroughly investigated in the lab. Further, the observation of isolating
epistasis between first-step mutations may drive the evolution of further divergence if one considers that these
early mutations will potentially constrain future evolutionary paths to become increasingly incompatible.

The observation of sign epistasis runs counter to expectations for mutations arising in a single biosyn-
thetic pathway in the face of a simple selective pressure. We would expect these mutations to mask each
other (the upstream mutation masking the effects of the downstream one) (AVERY and WASSERMAN 1992).
Similarly, if we use metabolic network theory to predict the epistasis between different genes in a linear
pathway (SZATHMÁRY 1993), we would expect that if two genes independently reduce flux through a path-
way then the double mutant should reduce flux more than either one alone but less than the combined effects
(diminishing returns epistasis, not sign epistasis). The prevalence of BDM incompatibility-type interactions
indicates that the situation is not simply described by the linear biosynthetic pathway. Along these lines, we
also found that the phenotype of the double mutants was not reflected by the pathway position of the single
mutations, with sterol profiles of double mutants often matching one of the two single mutants but not always
the upstream one. The sterol profile relationships did not match the fitness relationships either, implying that
genes are deviating from the described pathway and that the mutations are changing something about the
cell other than just the sterol profile in order to affect fitness.

The nature of the genetic interactions depended not only on the mutations involved but also the concen-
tration of drug in the assay conditions. When two strongly beneficial mutations were combined, I found
that all double mutants had equivalent or lower fitness than the two parent single mutants in a non-stressful
or mildly-stressful environment, resulting in negative genetic interactions. When the stress (concentration
of nystatin) was increased, performance of the double mutants reversed; they were often the most fit strain
and, at very high drug concentrations, were the only ones able to survive and grow, resulting in very positive
genetic interactions. This result is not initially intuitive but has theoretical grounding in Fisher’s geometric
model of adaptation, as will be explored in Section 5.2.1, below. This was an especially interesting finding
to make as I am not aware of many other similar examples, especially among BDM incompatibility-type
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interactors, and demonstrates the sensitivity of reproductive isolation to the environment in which hybrids
are formed.

The scope of this study was limited, however, and investigated only six pairwise combinations of alleles.
In addition, these results may be specific to the nature of the mutations involved. The prevalence of negative
epistasis might come from the fact that all mutations investigated were in the ergosterol biosynthesis pathway.
Negative epistasis can be observed as a result of two partial loss of function mutations in an essential pathway
if each decreases flux through the pathway (BOONE et al. 2007), which could explain our observations
because ergosterol is the main sterol in the yeast membrane and is therefore ostensibly essential. In order
to determine the generality of these conclusions, similar studies should be performed for a larger set of
beneficial mutations across a variety of environmental conditions.

5.1.3 Chapter 4: Limits to adaptation

In Chapter 4, I compare adaptation of haploids and diploids in the fungicide nystatin. I set out to investigate
the different genetic paths taken by haploid and diploid yeast evolving in a concentration of nystatin that
inhibits growth. As described briefly above, previous work in the lab (GERSTEIN et al. 2012) found that
haploid strains adapt to this environment by acquiring mutations in one of four genes of the ergosterol
biosynthesis pathway. To determine how diploid evolution might differ, we repeated the experiment using
haploids of both mating types and diploids. There are many reasons why adaptation might proceed differently
in haploid and diploid yeast including differences in number, distribution and types of mutations (due to
genome size), dominance of adaptive mutations, fewer diploid cells in the same volume of culture due to
cell size (MABLE 2001), and the same mutations having different effects or effect sizes in haploids vs.
homozygous diploids (as found for some nystatin-resistance mutations by GERSTEIN 2013).

Instead, I appear to have found the limit for diploid genetic adaptation through one-step mutations. We
found no cases in which a diploid population evolved full resistance to the original evolutionary conditions.
I do not believe that sampling effort was limiting in this case. We found no diploid mutants after testing over
600 wells, compared with finding 216 haploid mutants out of 531 wells tested. In addition, I did not find a
diploid mutant in any of the ten flasks tested, compared with both haploid flasks exhibiting genetic rescue. It
seems that diploid yeast are not able to obtain single mutations of large enough effect to allow growth. There
is previous evidence that diploids are able to adapt at the same rate as haploids to a lower concentration of
nystatin (0.6 mM, which does not fully inhibit growth), over a longer time course (GERSTEIN et al. 2011),
but the same is not true at this higher concentration (4 mM). All adaptive mutations previously found in this
inhibitory concentration of nystatin in haploids were recessive (GERSTEIN et al. 2014). Likely, the only
single-step mutations that have a large enough effect to genetically rescue a population in this environment
are recessive, and two mutational events at a single resistance-conferring gene are too rare to rescue the
tested populations. This chapter provides an example of how the adaptive limit of an organism can depend on
both the exact environment in question (concentration of nystatin) and the biology of the organism (ploidy),
having implications for the role of ploidy in evolutionary rescue in the face of a strong selective pressure
such as an antibiotic.

Interpretation of the results of this experiment was difficult because, in many instances, growth was
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observed without the evolution of heritable resistance to the original environmental conditions. In order
to isolate first-step, large-effect mutations, we used a concentration of nystatin that inhibited the growth of
wild-type yeast. In this environment, if yeast were to be serially transferred into fresh medium, they may be
driven to extinction by dilution before being given the opportunity to adapt. That is why we did not transfer
yeast over the course of the experiment but instead allowed them to remain in the original medium until
growth was observed. Unfortunately, because nystatin is not stable over long periods of time in 30°C, the
efficacy of the drug decreased over the course of the experiment, leading to the growth of many non-resistant
or partially-resistant yeast populations. Deciding on a cutoff for evolutionary rescue was therefore difficult,
because some populations appear to be at their borderline for growth under the test conditions. In addition,
we could not allow diploids more time to adapt because the environment was not stable for longer periods
of time. I would suggest that this experiment be repeated in other environments that are more likely to be
stable for extended periods of time, or using careful addition of drugs over time, to test the generality of
these conclusions.

5.2 Putting adaptive mutations in the context of Fisher’s geometric model
over environmental gradients

In this section, I would like to revisit some of the results from Chapter 2 and Chapter 3 in the context of
Fisher’s geometric model (FISHER 1930). Fisher’s geometric model has been used to describe theoretical
reasons for epistasis between adaptive mutations (BLANQUART et al. 2014) and for patterns observed in
speciation (FRAÏSSE et al. 2016). It has also been combined with experimental work to describe patterns in
the mutations that arise in different concentrations of an antibiotic and how the optimum shifts between those
concentrations in Escherichia coli (HARMAND et al. 2017), as well as to test diminishing-returns epistasis
in a multicellular fungus, Aspergillus nidulans (SCHOUSTRA et al. 2016). I will take a less formal approach
than the above-mentioned papers and use Fisher’s geometric model as a framework to think about patterns
of epistasis and how the fitness of mutants might change in different levels of the same stressor.

In Fisher’s geometric model, the fitness of a genotype is determined by its distance in phenotype space
from the optimal phenotype for that environment as well as a function that describes how fitness drops
off with increasing distance from the optimum. Let’s imagine a population starting some distance from
the fitness optimum in an environment. If it gains a beneficial mutation, we can imagine the mutation as
a vector in n-dimensional phenotype space that brings the population closer to the fitness optimum. This
mutation fixes and now, when a second mutation arises, it is determined to be beneficial if it again brings
the population closer to the fitness optimum. An important point to consider, however, is that this mutation
would not necessarily have been beneficial in the original genetic background, depending on the direction
and size of the first mutation vector. For the same reason, two independently adaptive mutations (both
beneficial in the original genetic background) may not be compatible with each other if, when combined,
they cause the organism to overshoot the optimum (adding both vectors together results in a phenotype
that is further from the fitness optimum than either vector alone, Fig. 5.1). This is one example of how
epistasis for fitness can arise in this model despite additivity of the underlying mutations and phenotypes,
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Figure 5.1: Optimum overshooting (sign epistasis) in Fisher’s geometric model. Using Fisher’s geometric
model of adaptation (FISHER 1930), we can imagine two genotypes (red and blue yeast) that are adapting
from a common ancestor (yellow yeast) to one optimum (the centre of the grey target). The initial beneficial
mutations (red and blue arrows), represented as vectors in 2-dimensional space, put the genotypes in different
locations in phenotype space. Later mutations will be beneficial or deleterious depending on the genetic
background in which they arise and whether they bring the genotype closer to the fitness optimum. The two
initial beneficial mutations are mutually exclusive, not conferring a fitness benefit in each other’s background,
resulting in a less fit hybrid combination (purple yeast) that overshoots the phenotypic optimum.

and we observe the outcome as sign epistasis in fitness between independently adaptive mutations. In this
way, evolutionary trajectories can be constrained by the size and direction of mutation vectors in phenotype
space, and reproductive isolation due to genetic incompatibility can arise between independently evolving
populations.

I will attempt to describe two datasets using a simple form of Fisher’s geometric model. First, I will
investigate the single and double mutant fitness data in different concentrations of nystatin from Chapter 3,
to see whether the patterns of epistasis for fitness are consistent with underlying phenotypic additivity. Sec-
ond, I will use the data measuring tolerance to copper from Chapter 2 to see whether fitness in a range of
concentrations of copper can be predicted from a strain’s fitness in a single concentration of copper given
information about how other strains react across the range. Both of these analyses will utilize data from a set
of genotypes measured in a series of concentrations of the stressor to which they have adapted. In Fisher’s
geometric model, changing environments are described by changing optima, and there are two main ways in
which I will discuss an optimum changing (Fig. 5.2). The first is a shifting of the optimum as environments
change. In this case, the optimum shifts in multidimensional phenotypic space, making different phenotypes
either beneficial or deleterious depending on their location in that space. The second is a narrowing (or
widening) of the optimum. In this case, the most fit phenotypes will remain the most fit, but relative and
absolute fitness values change.

In order to see how well Fisher’s geometric model describes the observed data, we will need to place our
mutants in phenotype space. We will use fitness data for each strain, preferably in their adaptive environment,
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Figure 5.2: Optima change with changing environments. In Fisher’s geometric model, different environ-
ments are described by different positions and distributions of the phenotypic optimum. There are two main
ways in which I might expect the optimum to change. First, as illustrated on the left, the optimum might
shift in location in different environmental conditions. Second, as illustrated on the right, the optimum might
narrow (or widen) with changing conditions, making certain genotypes more or less fit without changing
their distance to the optimum. In both cases, the initial fitness surface is represented by a light blue target
and the dark blue target is the fitness surface after an environmental change.

to determine the relative positions of the strains. Imagine a one-dimensional line drawn between the ancestor
and the fitness optimum. All first-step adaptive mutations will be vectors that originate from the ancestor,
but they may point in any number of directions and cover any amount of distance, as long as they end closer
to the optimum. However, the projection of those (potentially multi-dimensional) vectors onto the one-
dimensional line drawn between the ancestor and the optimum will determine the fitness benefit conferred
by each mutation (Fig. 5.3). I will therefore use differences in fitness measurements as proxies for distance
from the ancestor towards the optimum in one-dimensional space. While it is possible to overshoot the
optimum (while still ending closer to the optimum than where the ancestor started), I will assume that this
has not occurred in the adaptive environment. This assumption is supported by the fact that the ancestor
cannot grow in the selective environment and is therefore likely to be initially far from the optimum. I will
also assume linear mapping of fitness differences onto distance travelled in this one dimension, which does
not have to be the case. I will use this technique to map mutants onto phenotype space. I will then keep
phenotypic distances between strains constant as I investigate what occurs when the concentration of the
stressor is changed.

5.2.1 Can changing epistasis be explained by a shifting optimum? Revisiting Chapter 3

In Chapter 3, we observed changing epistasis for optical density (OD) after 24 hours of growth with changing
concentrations of nystatin. When no nystatin was present in the medium, the ancestor was most fit but all
strains grew well. When low to moderate concentrations of nystatin were present, the single and double
mutants all had relatively high growth, indicating negative epistasis because double mutants were less fit
than expected. Finally, as the concentration of nystatin was increased, double mutants were often the only
strains capable of growth. These observations led us to conclude that incompatibilities (as determined by
sign epistasis) for growth rate that were present at moderate concentrations of nystatin (2 mM) were not stable
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Figure 5.3: Projecting mutational effects into one dimension. If we were to draw a straight line connecting
the ancestral genotype (yellow yeast) and the fitness optimum (centre of the grey target), we could then
project all of the mutational effects onto this dimension. This is shown for the red mutation (solid line). By
projecting the red mutation onto the black line by way of the small dashed arrow, we can obtain the distance
travelled by that mutation in only the dimension of interest (red dashed arrow). The distance travelled along
this one dimension is the relevant distance for fitness benefits conferred by the mutation.

across different concentrations of the drug.
I have replotted the OD data using the method described in the previous section in order to determine

whether these fitness measurements are consistent with underlying additivity at the phenotypic level and
a shifting optimum with changing concentrations of the drug. First, to place the single mutants along the
x-axis dimension, the difference in OD after 24 hours of growth between the single mutants and the ancestor
was found for 4 mM nystatin, the adaptive environment. Then, I placed the double mutant strains a distance
from the ancestor that was the sum of the distances from the ancestor of the two single mutants of which
the double mutant is composed. For example, the geneX geneY double mutant would be found at a distance
of 10 ‘units’ from the ancestor if geneX were 2 ‘units’ from the ancestor and geneY were 8 ‘units’ from the
ancestor. Once strains were positioned along the x-axis, I plotted the OD after 24 hours of growth for all
concentrations of nystatin (Fig. 5.4).

When we look at the data, we notice that the method of placing strains along a single dimension works
relatively well to produce interpretable results under Fisher’s geometric model. For each concentration of
nystatin, we can imagine a single fitness peak, and the fitness of the strains drops off roughly consistently
with their distance from this peak along the x-axis. Because this remains true for each concentration of
nystatin without changing the positions of the strains along the x-axis, the data is broadly consistent with a
peak changing in this one dimensional space. In contrast, we might have found that the strains needed to
change relative positions along the x-axis in order to find a single fitness peak, which would be interpreted
as the relevant one-dimensional axis itself shifting in phenotype space (if the target in Fig. 5.3 were to move
off of the black line, the projection of the red mutation onto the black line would no longer be useful for
ordering mutations relative to the optimum). There are two main implications of the consistency of the data
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Figure 5.4: Changing epistasis in OD after 24 hours of growth in an environmental gradient. Mean OD after
24 hours of growth in different concentrations of nystatin is plotted by strain. First-step adaptive mutations
in nystatin are plotted along the x-axis according to their proportional fitness benefit in 4 mM nystatin (the
original evolutionary environment, olive green) when compared with the ancestor (grey box). Double mutant
strains are plotted a distance from the ancestor equal to the sum of the distance travelled by each of their
composite single mutations along the x-axis. Strains are represented by coloured boxes indicating their
mutations, with single mutants represented by a single coloured box (green: erg5, yellow: erg3, blue: erg7
and red: erg6) and double mutants represented by two coloured boxes stacked together. Each concentration
of nystatin is plotted with a unique colour (see key on the right). On the bottom is a visual representation
of how the optimum may be changing in different concentrations of nystatin. Only three optima are shown,
for simplicity, and each is coloured according to the concentration that they represent. Both shifting and
narrowing are represented as the concentration of nystatin increases.
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with Fisher’s geometric model. First, our results are broadly consistent with an underlying additive basis
for double mutant phenotypes. The phenotypic trait could arise from both single mutations decreasing flux
through the ergosterol biosynthesis pathway. We would expect two flux-reducing mutations to further reduce
flux when combined as a double mutant, and this relationship could be additive on the one-dimensional phe-
notype axis. Second, the changes in fitness of the different strains as the concentration of nystatin increases
seem to result from a combination of both shifting and narrowing of the fitness optimum. At very high con-
centrations of nystatin (e.g., 64 mM), narrowing of the optimum is most obviously observed centred near the
erg3 erg6 double mutant strain (yellow and red box in Fig. 5.4), which retains its ability to grow despite all
other strains failing to do so. Shifting of the optimum is observed as only strains on the right-hand side of
the plot maintaining their ability to grow in moderate to high concentrations of nystatin. If we again focus on
the erg3 erg6 double mutant, despite its high fitness at high concentrations of nystatin, there is no evidence
of this same strain being the most fit at low and moderate concentrations of nystatin, which is consistent
with an optimum that is shifting. The epistatic relationships between mutations arise as a consequence of the
combination of additivity on the phenotype axis (x-axis) and the position of the fitness optimum.

From the plotted data, it seems likely that the sign epistasis observed for growth rate in 2 mM nystatin
was due to overshooting of the optimum in double mutant strains. This overshooting is difficult to observe
from the OD data in 2 mM nystatin, but growth rate is probably a more sensitive measure of fitness, which
allows better discrimination of fitness differences. Especially at lower concentrations of nystatin, where
most strains are still capable of some growth, by waiting 24 hours until taking the OD measurement, we are
leaving time for slower strains to ‘catch up’ in growth. Unfortunately, due to space constraints, we were
not able to perform growth rate analyses in a large number of concentrations of nystatin (the plotted data is
underlain by 3,840 measured wells, while only 400 wells can be simultaneously measured for growth rate).
Similarly, the growth rate data presented in Chapter 3 includes more replicates per strain than this OD data,
so we have greater confidence in each data point.

5.2.2 Can the fitness of a strain in an environmental gradient be predicted from its fitness
in a single environment? Revisiting Chapter 2

Inspired by the results of Section 5.2.1, I wanted to find out whether we could generally order adapted
strains along a one-dimensional phenotypic axis by knowing their evolutionary environment and determine
how the optimum phenotype changes over an environmental gradient. If this were possible, then we could
theoretically place newly discovered strains along that axis based on their fitness in one environment, and
potentially infer their relative fitness in the rest of the gradient. In order to determine whether this would be
plausible, I revisited the dataset from Chapter 2 where copper tolerance was measured for all adapted ‘Copper
Beneficial Mutation’ (CBM) lines. In this chapter, tolerance was calculated as the inhibitory concentration 50
(IC50), which was determined by the OD of all strains after 72 hours of growth over a range of concentrations
of copper.

I plotted the underlying OD data as described above with one important exception. I could not use the
original evolutionary environment (12.5 mM copper) to order the strains because many strains did not have
higher fitness than the ancestor in this environment. All strains have increased copper tolerance relative to
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Figure 5.5: OD of copper beneficial mutation lines after 72 hours of growth in a gradient of copper con-
centrations. Mean OD measured after 72 hours of growth in different concentrations of copper is plotted
by strain. CBM lines are plotted along the x-axis according to their proportional fitness benefit in 8 mM
copper (olive green) when compared with the ancestor (left hand side). Note that the original evolutionary
environment (12.5 mM copper) could not be used in this case because many strains did not have a higher OD
than the ancestor in this environment. 8 mM was chosen as the environment closest to the ancestor’s IC50.
Each concentration of copper is represented by a unique colour (see key on the right).

the ancestor (Fig. 2.2), but none have tolerance to 12.5 mM when measured after 72 hours. Their ability
to grow in the initial acquisition experiment under these conditions was likely due to a prolonged period of
sequestration of copper by tolerant cells, which might have decreased the effective concentration of copper
in the medium and allowed for rapid proliferation. Indeed, the first copper-adapted lines were only isolated
seven days after inoculation, which is much later than the similarly acquired nystatin-adapted lines from
GERSTEIN et al. (2012) that were all isolated within seven days of incubation. Because I could not use
the data from 12.5 mM copper to order the strains, I instead used the data from 8 mM copper, as this
concentration was the closest to the ancestor’s IC50 (Fig. 2.2). The results are plotted in Fig. 5.5.

Based on Fig. 5.5, I would expect the predictive power of this dataset to be quite low. There is no clear
single-peaked optimum at most concentrations of copper, and it does not shift or narrow in any broadly
observable way. There are many reasons why this might be the case. First, as mentioned above, I could
not use the adaptive environment to order the mutants. By using a lower concentration of copper, I might
have chosen an environment where the actual optimum is somewhere intermediate compared to the true
distribution of the strains, thus breaking the assumption that we can determine the length of each mutation
along the single dimension by the difference in fitness between that strain and the ancestor. In fact, even if
we did know the ‘true’ underlying fitness optimum in the original adaptive environment, we may have strains
that have overshot the optimum (while still remaining fitter than the ancestor) in the original set. Many more
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mutations were observed per strain in copper than in nystatin, and the nature of the CUP1 mutation is such
that it may actually change over time in the strain while we are measuring it (placing progeny of a single test
at different positions along the axis). Additionally, our assumption that one phenotypic dimension should
be able to order mutants in relation to the optimum may not hold for this set of lines as there are many
more types of mutations (copy number variation in CUP1, chromosomal aneuploidy) in addition to genic
mutations among these strains, and many more biological processes involved. The complexity observed may
necessitate the use of multiple dimensions to properly map the mutations in phenotype space.

The nature of the selective environment may also be an important difference between the two datasets
explored. While nystatin only has negative effects on the cells, copper does not. Cells require some amount
of copper to survive. In fact, strains perform better in 4 mM copper than 0 mM (including the ancestor; note
that this is copper addition on top of what is normally present in rich YPD medium) and many strains are
even more fit in higher concentrations (compare Fig. 5.5 with Fig. 5.4 where growth is generally best in 0
mM nystatin, and does not show large improvements in higher concentrations). The main mutation confer-
ring copper tolerance is amplification of CUP1, which is a metallothionein protein that binds copper. It is
possible that having many copies of CUP1 in the cell is resulting in too many copper ions being sequestered
away in lower concentrations of copper, but allowing for better utilization of copper in high concentrations
(even better than in ‘non-stressful’ conditions). The complicated relationship between environmental con-
centration and fitness is making fitness unpredictable in the one-dimensional case. We might have success
by partitioning mutations along two axes, depending on whether or not they are in the CUP1 locus (similar
to what was done in HARMAND et al. 2017 for gyrA and non-gyrA mutants). Finally, because OD was mea-
sured after 72 hours of growth in this assay, it is possible that early fitness benefits/deficits in these strains
that would be better described by Fisher’s geometric model are being masked by later growth. The lack
of generality of this method of placing mutant strains in phenotype space that can be translated into fitness
by a singular phenotypic optimum indicates that there is still much to learn about the relationships between
genotype, phenotype and fitness and how they are affected by evolution.

5.3 Conclusions

My work has implications for understanding of the genetic basis of adaptation in different types of en-
vironments, levels of the same environment, and genetic backgrounds or ploidies. I find that the genetic
repeatability of adaptation depends on the genomic target size in the adaptive environment and that this tar-
get size can also be influenced by the ploidy of the organism. I also investigate genetic interactions between
adaptive mutations and find that different mutations adapting populations to the same environment might
often lead to BDM-type incompatibilities, with consequences for the likelihood of mutation-order specia-
tion. Finally, I find that the nature of those genetic interactions depends on the environment in which they
are measured, with negative interactions in the fungicide nystatin becoming positive in higher concentra-
tions of the drug. The observed changes in interactions are consistent with a shifting and narrowing fitness
optimum under Fisher’s geometric model in a one-dimensional phenotype space. When attempting to simi-
larly place copper-adapted strains in a one-dimensional phenotype space, I found that simple fitness optima
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were not readily apparent. The usage of Fisher’s geometric model for predicting the changes in fitness of
adapted strains over environmental gradients may be limited by the biological nature of the interaction of the
organism with the environment in question, as mediated by the adaptive mutations.

I believe that future investigations into the links between genotype, phenotype and fitness are important
for progressing our models of evolution. Determining how mutations can lead to specific changes to pheno-
type and fitness may depend on understanding these links at the molecular or biochemical level. We have
made great strides in our ability to broadly predict genes involved in adaptation (e.g., ergosterol pathway
genes in nystatin resistance and CUP1 in copper resistance), but our ability to predict specific aspects of
adaptation (e.g., precise fitness effects of mutations, the type of epistasis between them, and their sensitivity
to concentrations of a stressor) remains poor. By integrating molecular and biochemical information about
adaptive mutations, including whether they act in biochemical pathways or protein complexes and their reg-
ulatory relationships, we may improve our ability to map genotype onto phenotype. Generalities in these
principles would inform theoretical models of evolution, such as Fisher’s geometric model. As our ability to
determine the genetic basis of evolution grows with the increasing ease of genomic studies, the next step is
to improve our mechanistic understanding of how those genetic changes lead to changes in fitness.
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Appendix A

Appendix for Chapter 2: Too much of a
good thing: The unique and repeated paths
toward copper adaptation

A.1 Supplementary Methods

A.1.1 Quantitative real-time PCR (qPCR)

To test whether levels of CUP1 inferred from in silico qPCR were consistent with levels of CUP1 transcrip-
tion, we assayed RNA levels using quantitative real-time PCR (qPCR). We chose 10 CBM lines that spanned
the range of CUP1 copy number (from lowest to highest): CBM16, CBM22, CBM24, CBM37, CBM2,
CBM14, CBM51, CBM4, CBM34, and CBM13. For each line and BY4741, culture was struck from frozen
onto a YPD plate and grown at 30�C for 48h. A single colony of each CBM line and two colonies of BY4741
were inoculated into 1mL YPD + 5.5mM copper (a lower concentration was used to allow growth of all lines,
including BY4741) and grown for 12 hours at 30�C with shaking, at which point RNA was isolated using
the RNEasy Mini Kit from Qiagen, following the yeast protocol. cDNA was reverse transcribed from 500ng
of RNA using MultiScribe reverse transcriptase (Life Technologies) and oligo d(T) primers.

Oligonucleotides for qPCR (Table 2.2) were designed using Primer Express (ABI). mRNA levels of
TAF10 were used for normalization because TAF10 has stable expression across strains and conditions
(TESTE et al. 2009). cDNA was diluted 100-fold for CUP1, but not TAF10, to account for differences
in their abundance in the samples. All qPCR reactions were performed using an ABI7000 sequence detec-
tion system (Applied Biosystems, Inc.). The reaction volume was 22µL containing 10pmol of each primer
and 2µL of each sample with 10µL of 2X SYBR Green Master Mix (Applied Biosystems Inc.). Reaction
conditions were 1 cycle of 50�C for 2 min., 1 cycle of 94�C for 10 min., and 40 cycles of 95�C for 15 sec.,
60�C for 1 min.

To generate standard curves against which cDNA concentrations could be measured, we obtained cDNA
from BY4741, which was then diluted five times, each time using a five-fold dilution, followed by qPCR us-
ing the primers for TAF10 and CUP1. Standard curves for BY4741 were plotted such that a 1:1 relationship
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between fluorescence and sample concentration yields an expected slope of log2(10) = �3.32. All standard
curves fit the data well (r2 >0.99), with slopes between �3.1 and �3.3. TAF10 and CUP1 expression levels
for every other strain were then measured against their respective standard curves, and then CUP1 levels
were divided by TAF10 levels to control for variation among samples in total cDNA concentrations. All
qPCR experiments were performed with two technical replicates.

A.1.2 Tetrad analyses

To separate the effects of single mutations from other mutations present in the evolved lines (including extra
copies of CUP1), we crossed all of the CBM lines with BY4739 (MAT↵ leu240 lys240 ura340), which
has a common genotype yet opposite mating type and different auxotrophies than BY4741, the progenitor
of our lines. Cells of both mating types were allowed time to mate overnight on a YPD plate before being
struck onto plates lacking histidine and lysine, selecting for diploids. Single colonies were then struck onto
selection plates a second time to ensure they were diploids. Culture was taken directly from these plates and
frozen in 15% glycerol.

To isolate single mutations, we attempted to sporulate the CBM⇥BY4739 lines that contained each
common mutation or aneuploidy and the fewest number of additional mutations (⇠1/3 of the lines). We
encountered substantial difficulties in obtaining tetrads from our strains; BY4741, a derivative of S288c, is
known to be a poor sporulator (BEN-ARI et al. 2006; DEUTSCHBAUER and DAVIS 2005). With a subset
of the lines, we attempted to maximize sporulation rates using a variety of different protocols including all
combinations of YPD, 1% YPA or 6% YEPD for pre-sporulation, liquid or plates, and PSP2, 1% KAc, or
CSHSPO as the sporulation medium, all in liquid (see ELROD et al. 2009 for media details). Most combina-
tions were tried at 30�C, but the CSHSPO combinations were also attempted at 25�C and 37�C. In all cases,
frozen culture was struck onto YPD plates and grown for 48 hours at 30�C to isolate a single colony for
sporulation. Ultimately, we obtained the most success using YPD liquid as a pre-sporulation medium fol-
lowed by washing 100µL of overnight culture with dH2O and then plating on 1% KAc at 20�C or 25�C for up
to 30 days. Unfortunately, however, we remained unable to sporulate the majority of lines. In particular, de-
spite many attempts, no tetrads were obtained for CBM16 (PMA1 mutation plus chrII aneuploidy), CBM26
(PMA1 mutation plus chrI, chrV and chrVIII aneuploidy), CBM29 (PMA1 mutation plus chrII aneuploidy),
CBM47 (VTC1 mutation), or CBM55 (no mutation identified other than extra copies of CUP1).

We were able to sporule CBM2 (chrII aneuploidy), CBM14 (MAM3 mutation), CBM25 (MLP1 and
ENA5 mutations), and CBM34 (VTC4 mutation). CBM25 was not initially chosen for tetrad dissection but
was dissected as a contaminate of CBM22 (VTC1 plus chrVIII and chrXVI aneuploidy), as detected by
subsequent sequencing. CBM25 contaminating cells were likely positively selected during the sporulation
procedure given that the aneuploid lines in our experiment, like CBM22, had very low sporulation rates. The
resulting tetrads were dissected by micromanipulation on YPD plates. The spores were allowed to germinate
and grow at 30�C for 3 days before each dissection plate was replica plated to test for mating types and
auxotrophies. All tetrads were verified for 2:2 segregation of auxotrophies (except the aneuploid CBM2 -
see below) and mating type. Once confirmed, the colonies obtained from each spore were frozen in 15%
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glycerol. We numbered the dissected tetrads (t1 up to t11) and lettered each haploid spore (a-d).
The genotype of resulting spores was then determined. For CBM14 tetrad lines, MAM3 was amplified

by PCR (primers in Table 2.2), and the product was digested with EcoRV (Fermentas), which specifically
cuts the mutant allele at GATATC. The results (one band versus two) were visualized on a 2% agarose
gel. CBM25 spores were sequenced on Illumina HiSeq 2000, which is when the strain was discovered to
be CBM25 (bearing a mutation in MLP1 and ENA5), not CBM22. For CBM34 spores, VTC4 was PCR
amplified (Table 2.2) from genomic DNA and the fragment was Sanger sequenced using the forward primer
and aligned to the reference sequence using ClustalW at EMBL-EBI (LARKIN et al. 2007). All SNPs showed
the expected 2:2 segregation pattern.

The segregation pattern for the additional copy of chrII in CBM2 spores was determined for three of the
tetrads (t1, t2 and t5) by the presence of the LYS2 alleles, as detected by PCR. The LYS2 gene is located
on chrII, and the mated diploid from CBM2 carried two functioning copies of the gene (from CBM2) and
one copy of the lys240 allele (from BY4739). Primers were designed to flank the LYS2 gene. The forward
primer was designed 538bp upstream of the start site and the reverse primer was designed 487bp downstream
of the stop codon in order to easily detect the deletion by band size (full gene = 5199bp, deletion allele =
708bp) (primers in Table 2.2). For t1 and t2, the two functional copies were inferred to be in the same cell
due to the 2:2 segregation of the deletion and wild type alleles. For t5, one functional allele had segregated
to each cell and the two aneuploid cells were determined based on PCR detection of the presence of the
deletion. Corresponding phenotypes were verified by plating on medium lacking lysine. The segregation
pattern for the additional copy of chrII in t3 was determined by Illumina sequencing, followed by calculating
the total depth of coverage for each chromosome, as described above.

Southern blots with CUP1 specific probes were performed to quantify the segregation patterns of CUP1
among the spores. DNA concentration of genomic DNA isolated from each analyzed spore was measured in
triplicate with the Qubit fluorometer (Invitrogen). Based on the average concentration, 2µg of each sample
was loaded into a 1% agarose gel and run at 120V. DNA in the gel was denatured in a NaOH buffer and
transferred to a nylon membrane (Hybond N+, GE Healthcare) using capillary transfer in 20x SSC buffer,
affixing the DNA to the membrane by baking at 80�C for 2 hours. The membrane was incubated overnight at
57�C, with two biotin labelled probes (Table 2.2). The membrane was then washed in 2x SSC + 0.1% SDS
buffer at 56�C 3 times for 15min. Probe binding was visualized using the North2South chemiluminescent
detection kit (Thermo Scientific). Blots were exposed onto CL-XPosure Film (Thermo Scientific) for 30sec.
to 1min. and developed in a Kodak X-ray film processor. We isolated genomic DNA and ran a Southern blot
on three separate occasions for each spore. Controls (BY4741, BY4739, original CBM line) were always run
in duplicate on the same gel as related spores. Band intensity was quantified in ImageJ (ABRAMOFF et al.
2004) using the “background corrected density" macro (http://rsb.info.nih.gov/ij/macros/
BackgroundCorrectedDensity.txt).

113

http://rsb.info.nih.gov/ij/macros/BackgroundCorrectedDensity.txt
http://rsb.info.nih.gov/ij/macros/BackgroundCorrectedDensity.txt


A.2. Supporting Tables

A.2 Supporting Tables

Table A.1: Date of isolation for CBM lines. 56 putative mutation lines were isolated from three deep-well
boxes (A-C) following exposure to copper (started on 19 Jan 2011). Culture from each well showing growth
was streaked onto a YPD plate and assessed for colony size. Eight colonies were randomly chosen from all
lines that grew normally on the YPD plates and assayed for growth in copper12. A single copper-resistant
colony was chosen from each of the 34 remaining putative mutation lines. All lines were subsequently
streaked onto YPG plates to assay respiratory capacity.

Date of isolation CBM Line Box copper12 growth (# of 8) YPG growth
27 Jan 2011 CBM1 A 7
27 Jan 2011 CBM2 B 6
27 Jan 2011 CBM3 B 3
27 Jan 2011 CBM4 B 7
27 Jan 2011 CBM5 C 5
28 Jan 2011 CBM6 A 4
28 Jan 2011 CBM7 A 6
28 Jan 2011 CBM8 A 0† petite
28 Jan 2011 CBM9 B -‡

28 Jan 2011 CBM10 B - petite
28 Jan 2011 CBM11 B 8
28 Jan 2011 CBM12 B - petite
28 Jan 2011 CBM13 B 8
28 Jan 2011 CBM14 C 7
28 Jan 2011 CBM15 C - petite
28 Jan 2011 CBM16 C 7⇤ petite
28 Jan 2011 CBM17 C 6
28 Jan 2011 CBM18 C 7
29 Jan 2011 CBM19 A - petite
29 Jan 2011 CBM20 B 8⇤ petite
29 Jan 2011 CBM21 B 7
29 Jan 2011 CBM22 C 6
29 Jan 2011 CBM23 C no growth on YPD -
29 Jan 2011 CBM24 C 8
30 Jan 2011 CBM25 A 4
30 Jan 2011 CBM26 A 6
30 Jan 2011 CBM27 A -‡

30 Jan 2011 CBM28 A -‡

30 Jan 2011 CBM29 A 8⇤ petite
Continued on next page
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Table A.1 – continued from previous page

Date of isolation CBM Line Box copper12 growth (# of 8) YPG growth
30 Jan 2011 CBM30 B 5
30 Jan 2011 CBM31 B - petite
31 Jan 2011 CBM32 B - petite
31 Jan 2011 CBM33 B 8
31 Jan 2011 CBM34 B 8
31 Jan 2011 CBM35 B 0
31 Jan 2011 CBM36 B 8
31 Jan 2011 CBM37 B 8
31 Jan 2011 CBM38 C - petite
31 Jan 2011 CBM39 C 0
2 Feb 2011 CBM40 A - petite
2 Feb 2011 CBM41 A 0
2 Feb 2011 CBM42 A - petite
2 Feb 2011 CBM43 A - petite
2 Feb 2011 CBM44 B 8
2 Feb 2011 CBM45 B 8
3 Feb 2011 CBM46 A 4
3 Feb 2011 CBM47 A 7
3 Feb 2011 CBM48 A - petite
3 Feb 2011 CBM49 B 8
3 Feb 2011 CBM50 B 0
3 Feb 2011 CBM51 B 5
3 Feb 2011 CBM52 B 0
3 Feb 2011 CBM53 B 6
3 Feb 2011 CBM54 B 3
3 Feb 2011 CBM55 B 4
3 Feb 2011 CBM56 C no growth on YPD -

⇤ These lines were included in our study because colonies were not noticeably petite on YPD. Whole-genome
sequencing indicated very little depth of coverage for mitochondrial genes for the copper resistant colonies
analysed. These were subsequently shown to be incapable of growth on YPG plates (respiration deficient).
† Because colonies on YPD plates were not noticeably petite, this line was assayed for copper tolerance. As
none of the 8 colonies grew, this line was dropped.
‡ These colonies were small on YPD but later shown to be capable of respiration (growth on YPG). Whole-
genome sequencing was then conducted to determine the genetic basis of copper resistance.
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Table A.2: T-test results comparing maximum growth rates of the CBM lines to growth of BY4741 in YPD
+ ferric citrate. Maximum growth rates were highly correlated among iron concentrations (10mM vs 40mM:
r = 0.89, t = 11.00, df = 31, p < 0.001; 60mM vs 40mM: r = 0.56, t = 3.72, df = 31, p = 0.0008), so
only 40mM results are presented in the text. Growth was assayed by automated OD readings over a 24 hour
period in the Bioscreen C.

10 mM ferric citrate 40 mM ferric citrate 60 mM ferric citrate
Line t df p-value t df p-value t df p-value

CBM1 -0.14 6.09 0.89 -0.34 7.80 0.74 -0.83 6.35 0.44
CBM2 -1.23 4.64 0.28 -5.47 6.78 0.001 1.8 4.83 0.13
CBM3 -0.04 5.75 0.97 -7.01 7.81 0.0001 2.81 6.6 0.03
CBM4 1.03 6.97 0.34 -2.16 5.43 0.078 0.32 6.23 0.76
CBM5 -1.86 4.69 0.13 -0.03 6.16 0.98 0.89 11.04 0.39
CBM6 -4.09 6.01 0.01 -8.48 5.86 0.0002 -2.59 9.58 0.03
CBM7 -10.42 5.64 0 -12.66 5.49 < 0.0001 -0.67 6.12 0.53

CBM11 -0.58 5.26 0.59 -9.81 4.99 0.0002 3.27 5.79 0.02
CBM13 -0.19 7.99 0.86 -0.22 5.80 0.83 1.89 4.67 0.12
CBM14 2.51 7.27 0.04 -0.0001 5.23 1.00 1.42 4.69 0.22
CBM16 -2.76 7.88 0.03 -27.41 7.61 < 0.0001 -2.58 8.05 0.03
CBM17 -8.88 4.52 0 -16.51 7.24 < 0.0001 -4.86 18.19 0
CBM18 -1.41 4.85 0.22 -3.42 6.07 0.01 1.31 4.5 0.25
CBM20 -6.3 4.42 0 -33.61 4.64 < 0.0001 -2.1 6.95 0.07
CBM21 -9.09 4.96 0 -11.87 9.00 < 0.0001 0.29 6.68 0.78
CBM22 -2.85 7.91 0.02 -11.10 5.11 0.0001 -3.74 8.64 0
CBM24 1.32 4.79 0.25 -1.17 5.32 0.29 0.34 6.71 0.75
CBM25 0.5 7.28 0.63 3.67 5.19 0.01 1.24 25 0.23
CBM26 -15.22 7.59 0 -36.20 5.11 < 0.0001 -3.01 12.37 0.01
CBM29 -4.92 7.69 0 -28.54 7.87 < 0.0001 -1.91 18.92 0.07
CBM30 -0.41 5.85 0.7 -6.37 7.97 0.0002 4.36 6.03 0
CBM33 -1.28 7.96 0.24 -1.49 4.83 0.20 1.59 6.38 0.16
CBM34 -3.07 7.92 0.02 -2.14 5.72 0.08 1.45 6.84 0.19
CBM36 -1.42 6.01 0.21 0.26 5.31 0.81 0.01 5.78 1
CBM37 0.06 5.45 0.96 -0.38 5.22 0.72 -1.37 8.43 0.21
CBM45 -0.26 5.69 0.8 -0.13 5.10 0.90 1.31 6.04 0.24
CBM46 -0.3 7.67 0.77 -0.90 4.69 0.41 0.89 6.23 0.41
CBM47 0.05 5.99 0.96 -0.82 4.95 0.45 2.45 13.5 0.03
CBM49 -11.04 4.48 0 -7.83 4.72 0.0007 -0.38 5.16 0.72
CBM51 0.44 7.68 0.67 -0.21 5.74 0.84 0.52 10.86 0.61
CBM53 -0.01 7.97 0.99 -0.93 5.36 0.39 0.44 5.54 0.68
CBM54 0.14 7.6 0.89 1.18 7.28 0.27 1.09 6.95 0.31
CBM55 1.38 4.5 0.23 1.54 7.84 0.16 2.12 7.33 0.07
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Table A.3: Predicted transcription factor binding site gains and losses from intergenic mutations. The nearest ORFs upstream (5’ on the Watson strand)
or downstream (3’) are given, as well as the distances to the start sites (brackets) and the orientation of the binding site (S: binding site precedes start
of ORF; E: binding site after end of ORF). In bold are binding sites within 500 bp of the start of a gene on the coding strand. Neighbouring repeat
elements, multi-copy tRNAs, or dubious ORFs were ignored.

Line Position Upstream ORF Downstream ORF Mutation TF lost TF gained

CBM1 XVI.420661 YPL071C [143] (S) MUK1 [287] (S) A>T n/a n/a

CBM3 VII.150650 COX4 [479] (S) TPN1 [2126] (E) G>T FKH2, FKH1, HCM1 ORC2, SFP1, SPT15

CBM5 XIV.284255 YNL190W [1860] (E) SRP1 [5] (S) T>G FKH2, HCM1, SUM1 n/a
NHP6A, NHP6B, ORC2

PHO2, SMP1, SPT15, YAP1

CMB5,13,21 X.654261 YJR124C [23] (S) ENT3 [1702] (E) T>C SUM1, ORC2, STB3 n/a

CBM7 III.306327 YCR102C [860] (S) PAU3 [1474] (S) G>T n/a GAT1, GLN3

CBM7 IX.370383 PAN1 [475] (S) YIR007W [321] (S) C>G n/a GAT1, GLN3, GZF3,
ECM23, SRD1

CBM11 XII.605283 CDC42 [496] (S) BNA5 [1836] (E) 1D indel n/a ORC2, SFP1, YGR067C

CBM24 IV.805517 SEC7 [3295] (S) HSP42 [1104] (S) G>A STP4 UME6

CBM24 IV.805485 SEC7 [3263] (S) HSP42 [1136] (S) A>G LYS14, YKL222C, YRR1 AR080, CEP3, PUT3,
RDS2, TBS1

CBM29 XV.566240 ADE2 [49] (S) AFI1 [3318] (E) G>C RAP1 n/a

CBM29 VII.1376 (telomere) COS12 [1414] (S) A>C NHP6B, NHP6A, ORC2 n/a
PHO2, SPT15, YOX1

CBM34 XI.364516 PTM1 [1894] (S) SNR69 [260] (S) complex n/a GAT1, GLN3, GZF3,
1I indel NHP6B, PHO2, SFP1

CBM49 V.438349 YER134C [546] (S) GDI1 [1267] (S) G>C SKN7 n/a

CBM49 XIII.420239 PDS5 [210] (S) VPS20 [1910] (E) A>C DOT6 ERT1

CBM51 IV.310552 RPP1A [430] (S) THI3 [1919] (E) A>G FKH2, HCM1, NHP6A, ORC2, SUM1
NHP6B, PHO2, SPT15
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Table A.4: T-test results comparing maximum growth rate in copper8 between CBM lines and BY4741.
Growth was assayed by automated OD readings over a 24 hour period in the Bioscreen C.

Maximum growth rate
Line t df p-value

CBM1 13.65 25.16 < 0.0001
CBM2 11.41 24.19 < 0.0001
CBM3 10.60 25.60 < 0.0001
CBM4 9.32 25.73 < 0.0001
CBM5 14.47 24.05 < 0.0001
CBM6 13.25 24.39 < 0.0001
CBM7 8.80 24.11 < 0.0001
CBM11 12.78 24.79 < 0.0001
CBM13 14.36 24.56 < 0.0001
CBM14 11.09 25.54 < 0.0001
CBM16 11.44 24.71 < 0.0001
CBM17 12.09 24.68 < 0.0001
CBM18 15.29 25.43 < 0.0001
CBM20 11.56 24.36 < 0.0001
CBM21 8.12 24.19 < 0.0001
CBM22 12.21 25.66 < 0.0001
CBM24 0.43 5.49 0.68
CBM25 9.93 25.85 < 0.001
CBM26 3.81 27.14 0.0007
CBM28 6.73 25.66 < 0.0001
CBM29 11.02 24.65 < 0.0001
CBM30 10.72 25.89 < 0.0001
CBM33 14.71 24.24 < 0.0001
CBM34 11.10 26.13 < 0.0001
CBM36 12.53 21.12 < 0.0001
CBM37 14.89 27.70 < 0.0001
CBM44 14.02 26.02 < 0.0001
CBM45 13.05 25.99 < 0.0001
CBM46 13.78 26.47 < 0.0001
CBM47 14.37 27.20 < 0.0001
CBM49 7.88 26.01 < 0.0001
CBM51 7.32 25.05 < 0.0001
CBM53 10.24 25.84 < 0.0001
CBM54 4.54 24.60 0.0001
CBM55 11.30 26.39 < 0.0001
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Table A.5: T-test results comparing maximum growth rate in YPD between CBM lines and BY4741. Growth
was assayed by automated OD readings over a 24 hour period in the Bioscreen C.

Maximum growth rate
Line t df p-value

CBM1 -2.62 27.98 0.014
CBM2 -1.50 6.89 0.18
CBM3 -4.72 26.93 <0.0001
CBM4 0.90 5.96 0.40
CBM5 -1.44 18.46 0.17
CBM6 -5.86 26.06 <0.0001
CBM7 -2.20 5.95 0.07

CBM11 -3.86 14.88 0.002
CBM13 -2.31 27.00 0.028
CBM14 0.0004 7.30 1.00
CBM16 -6.69 25.79 <0.0001
CBM17 -8.63 26.77 <0.0001
CBM18 -0.66 7.18 0.53
CBM20 -0.48 5.34 0.65
CBM21 -0.22 5.02 0.84
CBM22 -8.88 26.52 <0.0001
CBM24 1.86 8.33 0.10
CBM25 1.69 6.10 0.14
CBM26 -19.28 26.76 <0.0001
CBM28 -7.63 24.87 <0.0001
CBM29 0.24 5.65 0.82
CBM30 -1.80 6.04 0.12
CBM33 -1.63 9.12 0.14
CBM34 -3.89 26.23 0.0006
CBM36 -5.19 24.35 <0.0001
CBM37 -1.54 6.94 0.17
CBM44 -1.50 9.98 0.17
CBM45 -4.23 26.70 0.0002
CBM46 -4.47 25.03 0.0001
CBM47 -1.51 9.90 0.16
CBM49 -9.68 25.53 <0.0001
CBM51 0.20 6.21 0.85
CBM53 0.30 9.01 0.77
CBM54 0.46 6.10 0.66
CBM55 1.96 5.78 0.10
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Table A.6: T-test results comparing maximum growth rate in YPG between CBM lines and BY4741. Growth
was assayed by automated OD readings over a 24 hour period in the Bioscreen C.

Maximum growth rate
Line t df p-value

CBM1 0.25 13.04 0.81
CBM2 -5.33 16.19 0.0001
CBM3 -6.68 18.30 < 0.0001
CBM4 1.01 17.52 0.33
CBM5 -0.30 14.22 0.77
CBM6 -56.27 17.09 < 0.0001
CBM7 -5.78 16.03 < 0.0001
CBM11 -8.83 15.96 < 0.0001
CBM13 -1.03 11.74 0.32
CBM14 0.84 13.59 0.42
CBM16 -59.60 18.40 < 0.0001
CBM17 -12.32 12.62 < 0.0001
CBM18 -0.41 21.13 0.69
CBM20 -69.59 24.25 < 0.0001
CBM21 -21.28 13.39 < 0.0001
CBM22 -31.41 20.28 < 0.0001
CBM24 -1.58 23.14 0.13
CBM25 1.94 19.23 0.07
CBM26 -21.35 20.68 < 0.0001
CBM28 -39.78 36.21 < 0.0001
CBM29 -91.71 45.36 < 0.0001
CBM30 -5.56 21.67 < 0.0001
CBM33 -1.64 26.01 0.11
CBM34 -0.75 15.98 0.46
CBM36 -0.20 13.43 0.85
CBM37 -1.33 14.82 0.20
CBM44 -1.71 15.21 0.11
CBM45 -2.14 12.96 0.05
CBM46 -1.04 16.19 0.31
CBM47 -0.35 13.78 0.73
CBM49 -7.57 13.07 < 0.0001
CBM51 0.27 14.87 0.79
CBM53 0.18 13.44 0.86
CBM54 -0.61 13.69 0.55
CBM55 -0.77 18.51 0.45
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Table A.7: Summary of linear model analyses of the maximum growth rate of tetrads, assayed in YPD within
the Bioscreen C. For each line, we show the analysis of a full model accounting for the genes listed below.
Thus, CBM2 shows evidence for an effect of an additional copy of chrII on growth in YPD. Significant
p-values are in bold.

Line Term Estimate t df p-value
CBM2 CUP1 -4.66E-08 -0.48 13 0.64

+chrII -7.37E-02 -3.39 13 0.0048
CBM14 CUP1 8.20E-08 1.60 21 0.12

MAM3 -3.61E-02 -1.75 21 0.095
CBM25 CUP1 2.71E-08 0.62 12 0.54

MLP1 -2.67E-02 -1.086 12 0.30
ENA5 5.62E-03 0.26 12 0.80

CBM34 CUP1 -1.58E-08 -0.48 21 0.63
VTC4 2.17E-02 1.29 21 0.21

Table A.8: Summary of linear model analyses of the maximum growth rate of tetrads assayed in copper9,
after correcting for growth in YPD (maximum growth rate in copper9 minus maximum growth rate in YPD),
both measured within the Bioscreen C. For each line, we show the analysis of a full model accounting for the
genes listed below. Only CBM2 showed evidence for an effect of a mutation on growth in YPD (see Table
A.7). Significant p-values are in bold.

Line Term Estimate t df p-value
CBM2 CUP1 2.96E-07 3.18 13 0.0072

chrII 1.10E-01 5.30 13 0.00015
CBM14 CUP1 4.40E-08 0.80 21 0.43

MAM3 5.49E-02 2.48 21 0.022
CBM25 CUP1 8.50E-08 1.53 12 0.15

MLP1 2.11E-02 0.67 12 0.51
ENA5 -5.93E-03 -0.21 12 0.84

CBM34 CUP1 1.70E-07 4.12 21 0.00049
VTC4 3.48E-02 1.65 21 0.11
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Table A.9: Additional mutations identified in the small-colony forming CBM lines. CUP1 coverage for each line is provided in the second column
and does not account for additional copies via chrVIII aneuploidy.

CUP1 Genome Position Mutation Position Amino acid
CBM line coverage (chr.bp) Gene (Watson strand) (from 5’ end) change Exchangeability

CBM9 0.69 VII.481622 PMA1a C>T 1045 Gly>Ser 0.304
CBM27 0.83 VII.482121 PMA1 3D indel (AAC/—) 544 Val> �

mito.83071 intergenic A>G
CBM28 1.25 IV.43829&IV.43830 intergenic CA>AT

chrIII aneuploidy
chrV aneuploidy

chrVIII aneuploidy

a As a sample from the population was sequenced, this mutation was not fixed but was called as a "heterozygote" (43.4% of reads).
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Figure A.1: Optical density after 24 hours of growth in the Bioscreen C for specific spores over a range of
copper concentrations. Spores were chosen that had lower CUP1 copy number and carried either an extra
copy of chrII (CBM2 lines), a SNP in MAM3 (CBM14 lines), a SNP in MLP1 (CBM25 lines) or a SNP
in VTC4 (CBM34 lines). Grey and black circles represent data points collected on two separate days, with
two replicates per day. Curves drawn in red are maximum likelihood fits using the methods described in
GERSTEIN et al. (2012), with the estimated IC50 represented by a vertical black line and its corresponding
95% confidence interval shown by the grey dashed lines.
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Figure A.2: Comparison of CUP1 copy number assays. A. CUP1 expression level was determined via qPCR
and compared with the in silico qPCR estimates based on the fastq Illumina files for ten CBM lines. Expres-
sion levels for CUP1 (normalized to TAF10) were obtained by qPCR, with the y-axis giving expression levels
relative to the BY4741 ancestral line. The slope is significant when forced through the (1,1) point, which
assumes that both axes are scaled to the ancestor (even though the derived BMN lines and not BY4741 were
used as the control in the in silico qPCR assays; p = 0.02, solid), but the slope is not significant otherwise (p
= 0.27, dashed). B. CUP1 copy number was estimated by band brightness from Southern blots and compared
with in silico qPCR estimates for the lines established from tetrads. Band brightness from the Southerns was
normalized to the average of two BY4739 bands run on the same gels (recall that the CBM lines had been
crossed to BY4739 to generate the tetrads; normalizing to the two BY4741 bands yielded similar results).
Only those tetrads for which whole-genome sequencing was performed are included (e.g., “25:t1a” refers to
“CBM25, tetrad 1, colony a”). The slope is significant when forced through the (1,1) point (p = 0.02; solid)
and marginally significant otherwise (p = 0.08, dashed).
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Figure A.3: Copper tolerance of S. cerevisiae knockout lines for genes identified in our experiment. Solid
circles identify lines that have significantly different tolerance than BY4741, measured as IC50 (bars repre-
sent 95% confidence intervals). The horizontal lines are for illustrative purposes to indicate the mean (solid
line) and confidence interval (dashed lines) for BY4741.
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Figure A.4: Maximum growth rate of tetrads in YPD, as measured by the Bioscreen C. Tetrads were derived
from four different CBM lines: A. CBM2, B. CBM14, C. CBM25, and D. CBM34. For each line, maximum
growth rate was assayed within the Bioscreen C on a single day (±1 SE across replicate wells). The darkness
of the circle represents the relative number of copies of CUP1, as assayed from Southern blots. Presence
(+) or absence (�) of a segregating mutation is also noted. All lines are compared to the growth rate of the
two parents, BY4739, and the relevant CBM parent (red lines), except for the tetrads derived from CBM25
for which parental growth rate was not assayed (due to its initially being considered CBM22, see Materials
and Methods).
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Figure A.5: Copper tolerance, as measured by IC50 after 24 hours of growth in the Bioscreen C for specific
spores. Lines were chosen because they had low CUP1 copy number and carried either an extra copy of
chrII (CBM2 lines), a mutation in MAM3 (CBM14 lines), a mutation in MLP1 (CBM25 lines), or a mutation
in VTC4 (CBM34 lines). All mutant lines had a significantly higher IC50 than either of the BY controls,
and all spores had a significantly lower IC50 than their CBM parent. Horizontal bars indicate statistical
comparisons, where an asterisk (*) above a bar indicates statistical significance (p < 0.05). Among the
spores carrying the same allele, only the CBM25 spores differed significantly from one another in IC50, and
only marginally so if corrected for multiple comparisons. Note that CBM25 t1c also carries the mutation in
ENA5. Vertical bars represent 95% confidence intervals.
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Appendix B

Appendix for Chapter 3: Widespread
Genetic Incompatibilities Between
First-Step Mutations During Parallel
Adaptation of Saccharomyces cerevisiae to a
Common Environment

B.1 Supplementary Methods

B.1.1 Strain construction details

All possible haploid and diploid genotypes were created for each pair of four beneficial mutations (one in
each of ERG3, ERG5, ERG6 and ERG7, Table 3.1). Each mutation was initially isolated in the BY4741
haploid background (MATa his3D1 leu2D0 met15D0 ura3D0) and given a Beneficial Mutation Nystatin
(BMN) strain number (GERSTEIN et al. 2012). Each BMN strain was mated to BY4739 (MATa leu2D0
lys2D0 ura3D0) (Open Biosystems) to create strains heterozygous for a single ERG mutation, and diploids
were positively selected on plates lacking both histidine and lysine. Similarly, diploid non-mutant strains
were created by mating BY4741 and BY4739. In each case, single colonies were then grown up on a second
selection plate and frozen at -80°C in 15% glycerol.

MATa single mutant strains were isolated by sporulation of the heterozygous diploids. Diploid stock
grown on a YPD plate was used to inoculate 10 mL of YPD and grown overnight on a rotor at 30°C. 200
µL of culture was then washed, spread on potassium acetate plates (1% KOAc, 2% agar) and sporulated
at 25°C until a sufficient number of tetrads could be observed. The resulting tetrads were dissected by
micromanipulation on YPD plates. The spores were allowed to germinate and grown at 30°C for three
days before replica plating to test for auxotrophies, mating type, and nystatin growth ability. Auxotrophy
was assessed on SC plates lacking the appropriate amino acid. Mating type was tested by replica plating
tetrads onto plates containing a lawn of MATa or MATa yeast carrying a histidine (his1-123) auxotrophy,
allowing them to mate, and subsequently testing for mating on a plate lacking arginine, histidine, leucine,
lysine, methionine, tryptophan, adenine and uracil (i.e., a plate on which no original haploid strain could
grow). Nystatin growth was assessed on YPD + 8 mM nystatin because growth of ancestral strains was
not noticeably inhibited on plates with a lower concentration of nystatin. YPD + 8 mM nystatin plates
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were made by preparing YPD medium with agar as usual, subsequently adding the appropriate amount
of 2.7 mM nystatin stock, and mixing by inversion immediately before pouring. All tetrads were verified
for 2:2 segregation of auxotrophies and mating type. Once this was confirmed, the spores that showed
growth on the nystatin plate and contained the desired MATa lys2D0 mutation were frozen at -80°C in 15%
glycerol. Throughout strain construction, histidine and lysine auxotrophies were consistently kept with the
same mating types so that all haploid strains were either MATa his3D1 or MATa lys2D0. The methionine
auxotrophy (met15D0) did not show strong selection on plates lacking methionine and was not tracked.

The haploid MATa strains were then mated to the original MATa strains to create strains that were either
homozygous for one mutation or heterozygous for two mutations. Diploids were selected and frozen as
described for the singly heterozygous strains.

The haploid double mutant strains were created through sporulation and dissection of the double het-
erozygous strains. Three strains (erg3/ERG3 erg6/ERG6, erg3/ERG3 erg7/ERG7, and erg6/ERG6 erg7/ERG7)
were struck from frozen on YPD plates and grown at 30°C for 2-3 days. They were sporulated, dissected and
checked as described above except that they were moved to 20°C after three days of sporulation. This proto-
col was repeated for erg3/ERG3 erg5/ERG5, except that it was kept at 20°C from the beginning. erg5/ERG5
erg7/ERG7 would not sporulate under these conditions. To obtain the MATa double mutant strain it was
sporulated in 10 mL 1% KOAc + amino acids liquid medium at 20°C. In order to obtain the MATa double
mutant strain, it was sporulated by streaking a patch of cells onto a GNA pre-sporulation plate (5% dextrose,
3% nutrient broth, 1% yeast extract, 2% agar) and growing at 30°C overnight, repeating the streaking and
growth on another GNA pre-sporulation plate, and finally sporulating in 2 mL of supplemented sporulation
medium (1% potassium acetate, 0.005% zinc sulphate, 2 mg/100 ml uracil, 10 mg/100 ml leucine) on a
rotor at 25°C for five days, then moving to 30°C until a sufficient number of tetrads were found. The same
procedure was applied to erg5/ERG5 erg6/ERG6 to obtain the MATa double mutant strain. Tetrads were cho-
sen that showed 2:2 segregation of the nystatin resistance (assessed either on YPD + 8 mM nystatin plates,
YPD + 10 mM nystatin plates or in a liquid assay), indicative of two double mutant spores and two wildtype
spores. Double mutant strains were frozen at -80°C in 15% glycerol. All haploid double mutant strains were
confirmed by Sanger sequencing.

We failed to obtain the MATa erg5 erg6 double mutant strain through crossing and sporulation because
the two genes are linked (they are 48 kb apart but flank the centromere of chr XIII). For this strain, trans-
formations were performed using a protocol based on CREGG (2007). MATa erg5 yeast were grown from a
single colony in 10 mL YPD at 30°C. The next day, two new 10 mL YPD tubes were inoculated with 500 mL
of yeast from the overnight culture and grown at 30°C until reaching an OD600 between 0.5 and 0.6. One tube
was used for the transformation, and one was used as a negative control. Cells were collected by spinning
the cultures down for 5 minutes at 4500 rpm and were washed twice with water using a spin of 10 minutes
at 4500 rpm. The yeast were resuspended in 2 mL of cold 1 M sorbitol, spun at 5000 rpm long enough to
pellet the cells, the supernatant was removed, and the yeast were resuspended in 1 mL of cold 1 M sorbitol.
80 mL of these cultures were then electroporated, along with either 8 mg of an oligonucleotide designed to
contain the ERG6 SNP of interest (sequence: TTCAAAGAGGCGATTTAGTTCTCGACGTTCGTTGTG-
GTGTTGGGGGCCCAGCAAG) or an equal volume of water, using a BioRad Gene Pulser Xcell and the
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parameters defined in CREGG (2007). Immediately after electroporation, 1 mL of YPD was added to the
yeast and the cells were incubated for 1 hour at 30°C to recover. The cells were then plated on YPD + 10
mM nystatin plates and incubated at 30°C until colonies were visible. The insertion of the mutation in erg6
was verified by Sanger sequencing.

Strains with one heterozygous and one homozygous locus as well as double homozygous strains were
created by mating the corresponding single mutant strains or MATa double mutant strains to the MATa double
mutant strains, as described above.

B.1.2 Segregating mutation in DSC2

The original strain with a mutation in ERG7 also carried a second mutation in the gene DSC2 (Table 3.1).
This mutation was not originally tracked when constructing the strains and it was later identified by Sanger
sequencing in all haploid strains constructed from the original strain carrying a mutation in ERG7 (Ta-
ble B.1). Two combinations of strains that differed in their status at DSC2 between the mating types (erg7
and erg5 erg7) and were tested for differences in maximum growth. No significant difference was found for
growth rate in nystatin whether we treat each replicate as independent or average data points collected on the
same day (Welch two sample t-tests with replicates treated as independent, erg7: t = -0.38, df = 49.56, P =
0.71; erg5 erg7: t = -1.01, df = 37.66, P = 0.32). In YPD, a significant difference was found only for the gene
combination erg5 erg7 and only when all replicates were treated as independent (Welch two sample t-tests,
erg7: t = 0.27, df = 50, P = 0.79; erg5 erg7: t = -2.32, df = 35.97, P = 0.026). The test was not significant
when data points for each day were averaged (erg5 erg7: t = -1.90, df = 7.87, P = 0.094). Furthermore, the
difference between mutant and wildtype DSC2 growth rates was in each case minor and did not substantially
alter the data points illustrated in main text Fig 3.3 or the conclusions drawn.

Table B.1: DSC2 allele status in haploid strains constructed from the original strain carrying a mutation in
ERG7.

Strain Mating Type Allele status at DSC2
erg7 a mutant
erg7 alpha wildtype

erg3 erg7 a mutant
erg3 erg7 alpha mutant
erg5 erg7 a mutant
erg5 erg7 alpha wildtype
erg6 erg7 a wildtype
erg6 erg7 alpha wildtype

B.1.3 Preparing stocks for growth rate assays

A total of seven growth rate assays were conducted for our analysis of epistasis. We had originally intended
to perform three assays, but four more were performed to maintain the intended level of replication after
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encountering problems with growth and strain construction. For an overview of which lines were included in
which fitness assays, see S1 Table and for complete information about the growth assays, see files deposited
at Dryad. Many of the lines involved in this study had poor growth even in a rich medium. Because of this,
care was taken to standardize initial cell densities (“pre-assays”) for use in subsequent growth rate assays.
General methods will be explained first, with exceptions to these methods explained subsequently.

The pre-assay took place in 100-well honeycomb Bioscreen plates using a permissive medium of 148.5
mL of YPD + 0.5 mM nystatin (except for the first assay, which used only YPD). YPD + 0.5 mM nystatin was
used to help prevent reversion of strains with severe growth defects in YPD while still permitting the growth
of all strains. The wells were inoculated with 1.5 mL of frozen culture. Replicates were randomized within
plates, always including all lines on the same plate for a given pair of mutations. The plates were incubated
in the Bioscreen C Microbiological Workstation at 30°C with maximum continuous shaking, measuring the
optical density (OD) of the cultures every 30 minutes using the wideband filter.The cultures were incubated in
this way for 72 hours, which was enough time for most strains to obtain clear growth (defined as a maximum
OD of about two times the initial OD); anything below this threshold was excluded from analysis unless
otherwise noted. Maximum OD was used to determine the volume to transfer for the growth rate assays. If it
was above 1, we transferred 1.5 mL into one plate containing 148.5 mL of YPD and one plate containing 148.5
mL of nystatin2 (using the same randomized well map). If the maximum OD was below 1, it was rounded to
the nearest 0.05, and the transferred volume was scaled accordingly (giving final volumes ranging between
150 mL and 156 mL).

To investigate whether the pre-growth medium influenced growth rate, we ran a sign test comparing the
mean maximum growth rates in the nystatin2 assay between Assay 1 (in which all strains were pre-grown
in YPD) and Assay 2 (in which all strains were pre-grown in 0.5 mM nystatin). All 47 strains that were
included in both assays (and not omitted due to growth problems) were included in the sign test, which was
run using the function binom.test in the package stats by counting the number of strains for which maximum
growth rate was higher in Assay 2 and comparing that to what is expected by chance (p = 0.5). No significant
difference was found (P = 0.56; similar results were obtained with a paired t-test: P = 0.24).

The erg6/erg6 erg7/erg7 diploid strain showed consistently poor growth, and all of the data for this strain
comes from the fourth and sixth assays where the pre-assay was conducted over a longer period of time in a
larger volume of liquid in an attempt to initiate the assays with the same number of cells. Briefly, 10 mL of
0.5 mM nystatin in a test tube was inoculated with 15 mL of erg6/erg6 erg7/erg7 from frozen two days before
all other lines were inoculated from frozen. The tube was incubated at 30°C on a rotor for this time. On the
day when all other strains were being inoculated from frozen, the 10 mL tube of erg6/erg6 erg7/erg7 was
spun down in multiple 1.5 mL tubes and concentrated into 500 mL in one tube. 150 mL of this concentrated
culture was used to fill the appropriate wells of the pre-assay plate. Despite this extra growth time and
concentrating of cells, erg6/erg6 erg7/erg7 still did not grow to an OD above the threshold at the end of the
pre-assay in one of the two cases where growth rate was measured for this line and only barely did so in the
other. Yeast was added to the assay plates from these wells according to their measured OD after the growth
phase even though the OD was below the threshold (up to 7.5 mL was transferred).

We also modified growth conditions for three other strains that showed poor growth in early pre-assays
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(MATa erg6 erg7, MAT↵ erg6 erg7, and erg6/erg6). Once low growth from frozen was established, 2 mL
(rather than 1.5 mL) of frozen stock was used to inoculate the wells in the pre-assay plates. Backup tubes
were also grown for these strains and described when used. In all cases, backup tubes that contained YPD +
0.5 mM nystatin as the growth medium were inoculated from frozen at the same time as the pre-assay plates
and were incubated at 30 °C, shaking at 200 rpm.

In the pre-assay for the second growth rate assay, two out of four replicates of MAT↵ erg6 erg7 had still
not grown to an OD above the threshold by 72 hours. One well was omitted. For the other well, 1 mL from
a 10 mL backup tube (originally inoculated with 10 mL of frozen culture) was spun down at 3000 rpm for 3
minutes, and this concentrated culture was used to replace the 150 mL on the growth plate. New OD readings
were taken, and the new OD was within the range measured for the other strains.

In the third pre-assay, four out of four MAT↵ erg6 erg7 wells were below the threshold for detecting
growth after 72 hours. The liquid from the wells was replaced with culture from four 10 mL backup tubes
(originally inoculated with 10 mL of frozen culture). After measuring the OD of these wells, one well was
still not above the threshold; to ensure that enough cells were transferred for that one line, we concentrated
the cells found in 1 mL of the culture from the corresponding tube by spinning them down using a tabletop
centrifuge and removing most of the supernatant, leaving ~200 mL of concentrated culture. 1.5 mL of this
culture was transferred directly to the honeycomb plate for the growth assay.

In the sixth pre-assay, one replicate of MAT↵ erg6 erg7 remained below the threshold for growth after
72 hours. The liquid from the well was replaced with culture from a 1.5 mL backup tube containing 500 mL
of culture (originally inoculated with 5 mL of frozen culture). A new OD reading was taken of that well and
was within the range measured for the other strains.

Following each pre-assay, growth rate assays were conducted in both YPD and YPD + 2 mM nystatin
(‘nystatin2’), as described in the main text.

B.1.4 Analysis including outliers

All qualitative relationships between strains and the main conclusions were insensitive to the exclusion or
inclusion of the identified outliers, with two exceptions for the haploids in nystatin2 (see Fig B.6 and Fig
B.7 for versions of Fig 3.3 and Fig 3.4 that include all outliers). One exception is that the erg3 erg5 strain
no longer had a significantly lower maximum growth rate than the erg3 strain in nystatin2. This was due to
one large outlier in the MATa erg3 data, which exhibited almost no growth (maximum growth rate of 0.038),
while all remaining wells (including both mating types) showed substantial growth (maximal growth rate
ranged from 0.16 to 0.25 across 35 wells). The exclusion of this single outlier leads to the observation of a
significant difference between the aforementioned strains.

A similar failure of one well to show substantial growth was observed in erg6/erg6 and erg3/erg3
erg6/ERG6. In addition, two wells of erg6/ERG6 showed substantially higher growth (0.17 and 0.19), com-
pared to all remaining wells (0.0022 to 0.072 across 22 wells), although our outlier exclusion algorithm only
allowed one point to be excluded per strain. These other examples did not affect the statistical results but
suggest either occasional contamination or mutation.

The other statistical difference is that the erg3 erg6 strain no longer had a significantly lower maximum
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growth rate than the erg6 strain in nystatin2. The difference between these strains is only slightly significant
in the model excluding all outliers (P = 0.047) and becomes marginal when either including all outliers (P =
0.083) or excluding only the one outlier replicate of erg3 (P = 0.058). We believe that this represents a lack
of power to detect a true, small difference in the haploids as this relationship is supported in the homozygous
diploids (excluding outliers: P = 0.0069; including outliers: P = 0.041). For the full alternative analysis
without outlier removal, see ONO et al. (2016).

B.2 Supporting Table

Table B.2: Experimental design of the growth rate assays. In each epistasis assay, growth rate was
measured in a Bioscreen C over a 24 hour period for a pair of ergosterol mutations (first column) using
two replicate wells for each genotype (ancestral, single mutant, double mutant for haploids, including
those heterozygous or homozygous for diploids), with the exception of double mutant haploids, which
were measured in four replicate wells. Checkmarks indicate that all data from this assay was used while
bullets indicate that some strains were omitted (see footnotes).

Mutation
Pair Assay 1 Assay 2a Assay 3 Assay 4 Assay 5 Assay 6 Assay 7

erg3 & erg5
erg3 & erg6
erg3 & erg7
erg5 & erg6 MATa onlyb

MATa onlyb
MATa onlyb •c •c •c d

erg5 & erg7 •e •e •e f

erg6 & erg7 •g •g •g h

a The Bioscreen bulb burned out during the pre-assay; OD readings taken after replacing the bulb were used to estimate
the final cell densities for inoculation of the growth rate assays.

b Others not assayed because MATa erg5 erg6 was unavailable.
c

erg5/erg5 erg6/erg6 data from this assay were omitted from final analyses (see d).
d Because the double homozygous mutant displayed high levels of growth in both YPD and nystatin, we were concerned

that the stock might contain a mixture of resistant and non-resistant cells. We thus struck this stock down to colonies
on a YPD plate, picked five colonies, and used the resulting five stocks to assay growth. Each stock was confirmed
to be erg5/erg5 erg6/erg6 by Sanger sequencing. For each of these stocks, two replicate wells (1 stock) or three wells
(4 stocks) were used to measure growth. All mutant and non-mutant combinations of erg5 and erg6 (haploid and
diploid) were also regrown in two replicate wells in this assay. The growth rates of the diploid double mutants did not
differ qualitatively from previous assays in nystatin but were substantially lower in YPD, consistent with the population
analyzed in previous assays having been polymorphic (allowing non-resistant cells to proliferate). Thus, only data from
Assay 7 was used for the growth rate of erg5/erg5 erg6/erg6, although the qualitative results in nystatin are unaffected
if all data were used. Data from each well were treated independently in the analysis, given that each was grown
separately from frozen.

e
erg5/erg5 erg7/ERG7 data from this assay were omitted from final analyses due to an error in the creation of the original
line (identified by Sanger sequencing).

f Data not collected due to Bioscreen machine error resulting in lower replication for the line erg5/erg5 erg7/ERG7.
g

erg6/erg6 erg7/erg7 and some erg6 erg7 haploid data could not be used due to insufficient starting cell densities of the
double mutant lines from the pre-assays so that appreciable growth was never observed.

h Data not collected due to machine error. Epistasis was large and easy to detect for this gene pair, despite the lower
replication.
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B.3 Supporting Figures

Figure B.1: Optical density after 24 hours of growth for haploid strains in nystatin2 (above diagonal) and
YPD (below diagonal), plotted on a log scale. Points are the fitted least-squares means of the ODs, deter-
mined in the mixed-effects model run using log(OD). ⇥’s denote the additive fitness null expectation for the
double mutant, i.e., with no epistasis. Each single mutant is coloured differently, the double mutant is shown
in black, and the ancestor is grey. Vertical bars represent 95% confidence intervals of the fitted least-squares
mean. Solid lines indicate significant comparisons, while dotted lines are non-significant comparisons. Com-
binations showing significant sign (S) and reciprocal sign (RS) epistasis are indicated by the presence of the
abbreviation at the top of the panel. The same outliers were removed as in the analysis of maximum growth
rate because their growth rates indicate a potential problem with the replicate. Sign epistasis is less often
detected in this analysis of log(OD) in nystatin, likely because even slower growing strains are given time
to catch up in cell density over 24 hours. All underlying raw data and analyses can be found in ONO et al.
(2016).
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Figure B.2: Optical density after 24 hours of growth for diploid strains in nystatin2 (above diagonal) and
YPD (below diagonal), plotted on a log scale. Points are the fitted least-squares means of the ODs, with
closed circles determined in the mixed-effects model run using log(OD) including only homozygous strains
and open symbols from the model that includes heterozygous strains (open diamonds: double heterozygotes;
open triangles: single heterozygotes that are wildtype at the other gene; open circles: single heterozygotes
that are homozygous mutants at the other gene). Points and bars are otherwise as in Fig B.1. All symbols
are coloured intermediately according to genotype and arrayed along the x-axis so as to lie between the
two strains that are genotypically most similar to it. Solid lines indicate significant comparisons in tests
run including only homozygous strains while dotted lines are non-significant comparisons. See Fig B.1 for
further graphical details. The same outliers were removed as in the analysis of maximum growth rate because
their growth rates indicate a potential problem with the replicate. Sign epistasis is less often detected in this
analysis of log(OD) in nystatin, likely because even slower growing strains are given time to catch up in cell
density over 24 hours. Note that the strain erg5/ERG5 erg6/erg6 was later found to be homozygous for the
mutation in ERG5, likely due to a loss of heterozygosity event. All underlying raw data and analyses can be
found in ONO et al. (2016).
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Figure B.3: Optical density after 24 hours of growth for homozygous diploids in a range of concentrations
of nystatin. These results are qualitatively similar to the haploid strains with the exception of the erg6/erg6
erg7/erg7 double mutant, which has very low growth in all concentrations of nystatin. Colours go from red to
purple, through blues, from lowest to highest concentrations of nystatin. Lines connect different mutants in
the same concentration of nystatin. Differences in OD between mutants were not tested statistically and are
all represented by solid lines (in contrast to Fig 3.5). Arrows on the y-axes indicate the OD of the ancestral
strain. All replicates were averaged, and error bars denote the standard error. Note that tolerance was assayed
in the erg5/erg5 erg6/erg6 homozygous double mutant before we determined that it was likely polymorphic;
these points may thus be underestimates (see Table B.2 for details). All underlying raw data and analyses
can be found in ONO et al. (2016).
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Figure B.4: Maximum growth rate of diploid strains for each gene combination in nystatin2. Genotype
at each of the two genes combined is represented along the x- and y-axes, with the ancestral genotype in
the lower left corner and the homozygous double mutant genotype in the upper right corner. Least-squares
means of maximum growth rates, as determined from a model including all possible diploid genotypes, are
represented by the darkness of the boxes. Arrows indicate significant differences between genotypes, with
arrowheads pointing to the significantly higher growth rate as determined by pairwise comparisons corrected
for multiple comparisons using the multivariate t distribution in lsmeans, as was done for the haploids and
homozygous diploids. Only adjacent genotypes on the grid (horizontal and vertical) were compared, with
the exception of the double heterozygous strain (centre), which was compared to all other genotypes. Note
that the strain erg5/ERG5 erg6/erg6 was later found to be homozygous for the mutation in ERG5, likely due
to a loss of heterozygosity event. All underlying raw data and analyses can be found in ONO et al. (2016).
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Figure B.5: Optical density after 24 hours of growth for diploid strains in a range of concentrations of nys-
tatin. Colours go from red to purple, through blues, from lowest to highest concentrations of nystatin. Lines
connect different mutants in the same concentration of nystatin. Mutant strains are ordered one mutational
step apart along the x-axis, with the homozygous double mutant at both ends. Sections shaded in grey rep-
resent mutants carrying at least one homozygous mutation. Differences in OD between mutants were not
tested statistically and are all represented by solid lines (in contrast to Fig 3.5). Arrows on the y-axes indicate
the OD of the ancestral strain. All replicates were averaged, and error bars denote the standard error. Note
that tolerance was assayed in the erg5/erg5 erg6/erg6 homozygous double mutant before we determined that
it was likely polymorphic; these points may thus be underestimates (see Table B.2 for details). Also note
that the strain erg5/ERG5 erg6/erg6 was later found to be homozygous for the mutation in ERG5, likely due
to a loss of heterozygosity event. All underlying raw data and analyses can be found in ONO et al. (2016).
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Figure B.6: Maximum growth rate of haploid strains in nystatin2 (above diagonal) and YPD (below diagonal)
when including outliers. Points are the fitted least-squares means of the maximum growth rates, determined
in the mixed-effects model. ⇥’s denote the additive fitness null expectation for the double mutant, i.e., with
no epistasis. Each single mutant is coloured differently, the double mutant is black, and the ancestor is grey.
Vertical bars represent 95% confidence intervals of the fitted least-squares mean. Solid lines indicate sig-
nificant comparisons, while dotted lines are non-significant comparisons. Combinations showing significant
sign (S) and reciprocal sign (RS) epistasis are indicated by the presence of the abbreviation at the top of the
panel. All underlying raw data and analyses can be found in ONO et al. (2016).
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Figure B.7: Maximum growth rate of diploid strains in nystatin2 (above diagonal) and YPD (below diagonal)
when including outliers. Points are the fitted least-squares means of the maximum growth rates, with closed
circles determined in the mixed-effects model including only homozygous strains and open symbols from
the model that includes heterozygous strains (open diamonds: double heterozygotes; open triangles: single
heterozygotes that are wildtype at the other gene; open circles: single heterozygotes that are homozygous
mutants at the other gene). Points and bars are otherwise as in Fig 3.3 and Fig B.6. All symbols are coloured
intermediately according to genotype and arrayed along the x-axis so as to lie between the two strains that
are genotypically most similar to it. Solid lines indicate significant comparisons in tests run including only
homozygous strains while dotted lines are non-significant comparisons. See Fig 3.3 or Fig B.6 for further
graphical details. Note that the strain erg5/ERG5 erg6/erg6 was later found to be homozygous for the
mutation in ERG5, likely due to a loss of heterozygosity event. All underlying raw data and analyses can be
found in ONO et al. (2016).

140



Appendix C

Appendix for Chapter 4: The limit to
evolutionary rescue depends on ploidy in
yeast exposed to nystatin

C.1 Strain Differences

Despite not being judged as putative mutants, many diploid wells did show growth in the initial acquisition
experiments. There was a significant association between the identity of a strain and whether or not it grew
in the acquisition experiments (�2 contingency test using chisq.test in the R package stats [R CORE TEAM

2016]: Acquisition Experiment 1: �

2 = 61.58, df = 2, p-value = 4.26⇥ 10�14; Acquisition Experiment 2:
�

2 = 72.7, df = 2, p-value < 10�15; Acquisition Experiment 3: �

2 = 168.38, df = 2, p-value < 10�15). In
the first two acquisition experiments (performed in the BY strains and YPDnystatin4), MAT↵ grew the most,
proportionally, followed by MATa and the diploids, which had similar growth. In Acquisition Experiment 3
(performed in the W303 strains and SCnystatin4), MATa grew the most followed by the diploids and both
grew much more than the MAT↵ wells. This difference in growth was observed despite the additional oppor-
tunity given to 80 of the MAT↵ wells that were sampled and run in duplicate in the acquisition experiment.
The difference in growth of the MAT↵ wells was the main observed inconsistency between the two genetic
backgrounds used (BY vs. W303), and can be accounted for by the respiratory-deficiency of our copy of the
MJM36 strain. The associations remained significant when we grouped all strains of a single ploidy, with
haploids growing more often than diploids in the first two acquisition experiments but not the third (because
of the poor growth of MAT↵).

However, there was a difference in the distribution of days until growth between strains (�2 contingency
test using ‘chisq.test’ with a simulated p-value based on 10,000 replicates: Acquisition Experiment 1: �2 =
49.82, p-value < 1.00⇥ 10�4; Acquisition Experiment 2: �2 = 90.69, p-value < 1.00⇥ 10�4; Acquisition
Experiment 3: �2 = 159.86, p-value < 1.00⇥ 10�4) (Fig. C.2), and these associations remained significant
when we grouped all strains of a single ploidy. MATa populations had the lowest mean number of days until
growth, followed by MAT↵ and then the diploids (details of comparisons in Table C.1). In the follow-up
growth assays, OD72 (and therefore whether a population was judged to be putatively nystatin-resistant) was
correlated with number of days until growth, decreasing with increasingly later day of acquisition (Kendall’s
rank correlation using cor.test in the R package stats [R CORE TEAM 2016], Experiment 1: ⌧ = -0.29, z =
-5.90, p-value = 3.62⇥ 10�9; Experiment 2: ⌧ = -0.45, z = -7.80, p-value = 6.04⇥ 10�15; Experiment 3:
⌧ = -0.46, z = -9.52, p-value < 10�15, Fig C.2). We conclude that later-growing strains are less likely to be
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true mutants. These wells may instead be growing due to the degradation or inactivation of nystatin in the
medium over time (see Section 4.3.2).

C.2 Mutant Coverage

The following Mathematica package was used to carry out the calculations and is available upon request.
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Diploidy limits evolutionary rescue in yeast exposed to nystatin
Supplementary Mathematica file for Ono et al.

Chance that a mutation was sampled across the acquisition 
experiments

ü Deep Well Boxes
Here we model the growth of a population from a single cell established on an agar plate (rich medium), picked as a
colony, and grown to saturation in 150uL rich medium, where cell densities were estimated by hemacytometer to be
~7.03 µ 107cells/mL for the BY “source” population (~7.42 µ 107cells/mL for the W303 “source” population), from
which a sample of 10uL is taken to establish the population in each deep well.

We then calculate the expected number of mutations that would occur within at least one diploid cell within each deep
well and across the entire experiment. To be conservative, we use the lower reported mutation rate per basebair of 1.67
× 10-10 from Zhu et al. (2014, PNAS), rather than the higher 3.3 × 10-10 from Lynch et al. (2008, PNAS).
Parameters:

m = mutation rate per basepair per cell division
N1 = population size at saturation in 150uL rich medium for growth in bioscreen
f = fraction of population sampled to found a lineage (0.0667 = 10 ul/150 uL)
L = # diploid deep wells (619: {191-13,286,155} in the three acquisition experiments in deep well boxes)
ORF = average length of an ORF (1385 from Hurowitz, E. H., & Brown, P. O. 2003 Genome Biology)

trymZHU = 1.67 µ 10-10;
trymLYNCH = 3.3 µ 10-10;
tryNBY = 7.03 * 107 * 0.15;
H*Estimated population density per mL for BY and scaling to 150uL YPD.*L
tryN303 = 7.42 * 107 * 0.15;
H*Estimated population density per mL for W303 and scaling to 150uL SC.*L
tryf = 0.0667;
tryL = 8191 - 13, 286, 155<; H*Number of diploid wells per acquisition experiment,
excluding ones later found to have been haploid contaminated*L
tryORF = 1385;

Number of cell cycles required to produce source population of N1 cells:
cycles = Log@2, N1D

Log@N1D

Log@2D

In cases where we are performing numerical sums and require an integer number, we round down the number of cycles
(rounding down is slightly conservative):
tryc = Floor@cycles ê. N1 Ø tryNBYD

23

This is the same integer number of cycles for the W303 strain:
Floor@cycles ê. N1 Ø tryN303D

23

Total number of cell divisions involved (1 cell division from 1 Ø 2 cells, 2 cell divisions from 2 Ø 4 cells, etc):



divisions = Sum@2^i, 8i, 0, cycles - 1<D

-1 + N1

For example, to go from 1 Ø 4 cells involves a total of 3 divisions (Ø 8 cells would involve 7 dividing cells: one 1Ø2,
two 2Ø4, and four 4Ø8):
divisions ê. N1 Ø 84, 8<

83, 7<

For the first two acquisition experiments:
divisions ê. N1 Ø tryNBY êê N

1.0545 µ 107

The chance that NONE of these cell divisions produced a mutation at a particular site in a diploid (bearing 2m muta-
tions per cell division across the two homologues) is:
H1 - 2 mLdivisions;

Given that m is small, this is very nearly:

nomutantsinsource@m_, N1_D = ‰-2 m*N1;

Using a per-basepair mutation rate of 1.67 × 10-10 (Zhu et al. 2014), the chance of no mutations at a single site within
the source pool for a single well would be:
nomutantsinsource@trymZHU, tryNBYD

0.996484

The distribution of mutant cell numbers in the source population is broad and very skewed (a “jackpot distribution”),
and it is possible that the mutation hit early and generated many mutant cells.  To account for this mutational distribu-
tion, the probability that a mutation at one specific site occurs in the jth cell cycle (going from m = 2j-1  cells to 2j
cells)  is:
prob@j_, m_D = 1 - H1 - 2 mLm ê. m Ø 2j-1;

based on one minus the probability that no mutation hits.  (Technically, this allows for the possibility that more than
one hit would occur at the exact same site in different cells in the same cell cycle, but the chance is exceedingly
unlikely.)

If a mutation does occur in the jth cycle (i.e., among the 2j cells that result in this cycle, where one is a new mutant),
the fraction of the source population that will be mutant (assumed to be unaffected by selection prior to placement in
nystatin) is:

frac@j_D = 1 ë 2j;

Thus, prob[j,m] gives us the probability distribution for the fraction, frac[j], of mutant cells in the source population
(amounting to a number of mutant cells N1 ë 2j), with the probability of at least one mutant cell at a particular site
equalling:
mutantprob@m_, N1_D = Sum@prob@j, mD, 8j, 1, cycles<D

‚
j=1

Log@N1D

Log@2D

I1 - H1 - 2 mL2
-1+j

M

For the mutation rate of Zhu et al. and the population size estimated for BY, the probability of at least one mutant cell
in the source population is:
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mutantprob@trymZHU, tryNBYD

0.00280049

The expected number of mutant cells is the chance of a mutation occurring at cycle j and the number of cells that result
(N1*frac[j]), summed over all cell cycles:
Sum@prob@j, trymZHUD * tryNBY * frac@jD, 8j, 1, tryc<D

0.0405009

Finally, we calculate the probability that one or more mutant cells will be placed in a well of a deep well box, given
that a fraction, f, of the N1 cells were sampled:
probhit@m_, N1_, f_, c_D =

1 - H1 - mutantprob@m, N1DL - SumAprob@j, mD * H1 - frac@jDLf*N1 , 8j, 1, c<E
H*We calculate the probability of sampling some mutant
cells as one minus the probability of sampling none,

either because no mutations occur H1-mutantprob@m,N1DL or because
mutations occur in cycle c but are not sampled Hthe sumL*L

‚
j=1

Log@N1D

Log@2D

I1 - H1 - 2 mL2
-1+j

M - ‚
j=1

c
I1 - 2-jM

f N1
I1 - H1 - 2 mL2

-1+j
M

probhit@trymZHU, tryNBY, tryf, trycD

0.000555156

Given L independent deep wells (each started from a different colony), where each lineage is started with a fraction, f,
of its own source population,  the probability that at least one mutant cell will be sampled into at least one of the deep
well populations would be:
1 - H1 - probhit@m, N1, f, cDLL

1 - 1 - ‚
j=1

Log@N1D

Log@2D

I1 - H1 - 2 mL2
-1+j

M + ‚
j=1

c
I1 - 2-jM

f N1
I1 - H1 - 2 mL2

-1+j
M

L

1 - H1 - probhit@trymZHU, tryNBY, tryf, trycDLTotal@tryLD

0.290885

The expected number of deep wells with at least one mutant cell bearing a mutation at the focal site is then:
Total@tryLD * probhit@trymZHU, tryNBY, tryf, trycD
H*Expected number of wells with mutations.*L

0.343642

This is only slightly larger if we account for the higher estimated population size for W303:
Sum@tryL@@iDD * probhit@trymZHU, tryNBY, tryf, trycD, 8i, 1, 2<D +
tryL@@3DD * probhit@trymZHU, tryN303, tryf, trycD

0.346963

But the estimate would almost double if the mutation rate were closer to that inferred by Lynch et al. (2008):
Total@tryLD * probhit@trymLYNCH, tryNBY, tryf, trycD
H*Expected number of wells with mutations.*L

0.678879

Returning to our defaults, if we multiply by the average ORF length, we would expect 479 mutations per ORF to have
arisen across all of the deep wells:
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Total@tryLD * probhit@trymZHU, tryNBY, tryf, trycD * tryORF

475.944

Of these mutations per ORF, we expect each gene would have, on average, 23 premature stop codons somewhere in
one  of  the  wells  (fraction  of  non-sense  mutations  in  a  gene  estimated  in  Gerstein  et  al.  (2015)’s  Supplementary
Mathematica package, available on DRYAD, DOI: https://doi.org/10.5061/dryad.5gp25):
Total@tryLD * probhit@trymZHU, tryNBY, tryf, trycD * tryORF * 0.048831111111111124`

23.2409

Similarly,  Each gene would have,  on average,  350 AA changes somewhere in one of  the wells  (fraction of  non-
synonymous mutations in a gene estimated in Gerstein et al. (2015)’s Supplementary Mathematica package, available
on DRYAD, DOI: https://doi.org/10.5061/dryad.5gp25):
Total@tryLD * probhit@trymZHU, tryNBY, tryf, trycD * tryORF * 0.7363755555555553`

350.473

ü Flasks
Here we model the growth of a population from a single cell established on an agar plate (YPD), picked as a colony,
and grown to saturation in 10mL YPD, which corresponds to a population size of ~7µ108cells (“source” population),
from which a sample of 1mL is taken to establish each individual lineage (the “founding” population).

Other parameters as above.
trymZHU = 1.67 µ 10-10;
tryNBY = 7.03 * 107 * 10;
H*Using estimated population density per mL and scaling up to 10mL*L
tryf = 0.1; H*1mL into 10mL*L
tryL = 10;H*Number of diploid flasks*L
tryORF = 1385;

Number of cell cycles required to produce source population of N1 cells:
cycles = Log@2, N1D

Log@N1D

Log@2D

In cases where we are performing numerical sums and require an integer number, we round down the number of cycles
(rounding down is slightly conservative):
tryc = Floor@cycles ê. N1 Ø tryNBYD

29

Total number of cell divisions involved (1 cell division from 1 -> 2 cells, 2 cell divisions from 2 -> 4 cells, etc):
divisions = Sum@2^i, 8i, 0, cycles - 1<D

-1 + N1

The chance that NONE of these cell divisions produced a mutation at a particular site in a diploid (bearing 2m muta-
tions per cell division across the two homologues) is:
H1 - 2 mLdivisions;

The distribution of mutant cell numbers in the source population is broad and very skewed (a “jackpot distribution”),
and it is possible that the mutation hit early and generated a lot of mutant cells.  To account for this mutational distribu-
tion, the probability that a mutation at one specific site occurs in the jth cell cycle (going from m = 2j-1  cells to 2j
cells)  is:
prob@j_, m_D = 1 - H1 - 2 mLm ê. m Ø 2j-1;

based on one minus the probability that no mutation hits.  (Technically, this allows for the possibility that more than
one hit would occur at the exact same site in different cells in the same cell cycle, but the chance is exceedingly
unlikely.)

If a mutation does occur in the jth cycle (i.e., among the 2j cells that result in this cycle, where one is a new mutant),
the fraction of the source population that will be mutant (assumed to be unaffected by selection prior to placement in
nystatin) is:
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based on one minus the probability that no mutation hits.  (Technically, this allows for the possibility that more than
one hit would occur at the exact same site in different cells in the same cell cycle, but the chance is exceedingly
unlikely.)

If a mutation does occur in the jth cycle (i.e., among the 2j cells that result in this cycle, where one is a new mutant),
the fraction of the source population that will be mutant (assumed to be unaffected by selection prior to placement in
nystatin) is:

frac@j_D = 1 ë 2j;

Thus, prob[j,m] gives us the probability distribution for the fraction, frac[j], of mutant cells in the source population
(amounting to a number of mutant cells N1 ë 2j), with the probability of at least one mutant cell at a particular site
equalling:
mutantprob@m_, N1_D = Sum@prob@j, mD, 8j, 1, cycles<D

‚
j=1

Log@N1D

Log@2D

I1 - H1 - 2 mL2
-1+j

M

For the mutation rate of Zhu et al. and the population size estimated for BY, the probability of at least one mutant cell
in the source population is:
mutantprob@trymZHU, tryNBYD

0.17409

The expected number of mutant cells is the chance of a mutation occurring at cycle j and the number of cells that result
(N1*frac[j]), summed over all cell divisions:
Sum@prob@j, trymZHUD * tryNBY * frac@jD, 8j, 1, tryc<D

3.39431

Finally, we calculate the probability that one or more mutant cells will be placed in the flask, given that a fraction, f, of
the N1 cells were sampled:
probhit@m_, N1_, f_, c_D =

1 - H1 - mutantprob@m, N1DL - SumAprob@j, mD * H1 - frac@jDLf*N1 , 8j, 1, c<E
H*We calculate the probability of sampling some mutant
cells as one minus the probability of sampling none,

either because no mutations occur H1-mutantprob@m,N1DL or because
mutations occur in cycle c but are not sampled Hthe sumL*L

‚
j=1

Log@N1D

Log@2D

I1 - H1 - 2 mL2
-1+j

M - ‚
j=1

c
I1 - 2-jM

f N1
I1 - H1 - 2 mL2

-1+j
M

probhit@trymZHU, tryNBY, tryf, trycD

0.0473538

Given L independent flasks (each started from a different colony), where each lineage is started with a fraction, f, of its
own source population,  the probability that at least one mutant cell will be sampled into at least one of the flask
populations would be:
1 - H1 - probhit@m, N1, f, cDLL

1 - 1 - ‚
j=1

Log@N1D

Log@2D

I1 - H1 - 2 mL2
-1+j

M + ‚
j=1

c
I1 - 2-jM

f N1
I1 - H1 - 2 mL2

-1+j
M

L
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1 - H1 - probhit@trymZHU, tryNBY, tryf, trycDLtryL

0.384375

The expected number of flasks with at least one mutant cells bearing a mutation at the focal site is then:
tryL * probhit@trymZHU, tryNBY, tryf, trycDH*Expected number of flasks with mutations.*L

0.473538

If we multiply by the average ORF length, we would expect 656 mutations per ORF to have arisen across the 10 flasks:
tryL * probhit@trymZHU, tryNBY, tryf, trycD * tryORF

655.851

Of these mutations per ORF, we expect each gene would have, on average, 32 premature stop codons somewhere in
one of  the  flasks  (fraction of  non-sense mutations  in  a  gene estimated in  Gerstein  et  al.  (2015)’s  Supplementary
Mathematica package, available on DRYAD, DOI: https://doi.org/10.5061/dryad.5gp25):
tryL * probhit@trymZHU, tryNBY, tryf, trycD * tryORF * 0.048831111111111124`

32.0259

Similarly,  Each gene would have, on average, 483 AA changes somewhere in one of the flasks (fraction of non-
synonymous mutations in a gene estimated in Gerstein et al. (2015)’s Supplementary Mathematica package, available
on DRYAD, DOI: https://doi.org/10.5061/dryad.5gp25):
tryL * probhit@trymZHU, tryNBY, tryf, trycD * tryORF * 0.7363755555555553`

482.952

ü Conclusion
The above calculations inform us that each site within the genome is likely to have been hit by a nucleotide changing
mutation (expected number of deep well hits = 0.35; expected number of flask hits = 0.47; expected number of total
hits = 0.82).  As a consequence, we are likely to have sampled ~888 non-synonymous or non-sense mutations for each
gene within the genome over the course of the experiment.

Caveats:  Of course, the fact that a single cell of the right genotype is sampled into one of the wells doesn’t mean that
it will necessarily establish; it may die before dividing.  Plus, the above calculations used the average mutation rate;
sites with lower mutation rates are less likely to have been sampled.  Furthermore, we only calculate the chance that a
site mutates, not the chance of having sampled all three possible alternative nucleotides (which would require account-
ing for differences in transition and transversion mutation rates).  Finally, the above calculations are only for SNPs and
ignore more complex mutations (indels, rearrangements, LOH, etc.)

Nevertheless, the above calculations demonstrate that the acquisition experiments had a reasonable chance of explor-
ing SNP mutations at most sites within the genome.

Chance that a two-step mutation would arise
ü Deep Well Boxes

Here we modify the above to calculate the chance of observing two mutations within the same gene within a well,
providing resistance even if only recessive mutations are available.  We consider two cases, either where the secondary
mutation can occur anywhere within the same ORF (in the homologue) or where the secondary mutation is a loss-of-
heterozygosity event (estimated to occur by mitotic recombination at a rate of ~0.8 µ 10-4; Mandegar & Otto, 2007,
Proc Roy Soc B; only half of which is assumed to lead to the homozygous recessive mutant).
Additional parameters:

m2 = secondary mutation rate (assumed to be either m × ORF or 0.8 µ 10-4 ë 2 )
N1 = population size at saturation in 150uL rich medium for growth in bioscreen
f = fraction of population sampled to found a lineage (0.0667 = 10 ul/150 uL)
L = # diploid deep wells (619: {191-13,286,155} in the three acquisition experiments in deep well boxes)
ORF = average length of an ORF (1385 from Hurowitz, E. H., & Brown, P. O. 2003 Genome biology, 5(1),

R2.)
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Additional parameters:
m2 = secondary mutation rate (assumed to be either m × ORF or 0.8 µ 10-4 ë 2 )
N1 = population size at saturation in 150uL rich medium for growth in bioscreen
f = fraction of population sampled to found a lineage (0.0667 = 10 ul/150 uL)
L = # diploid deep wells (619: {191-13,286,155} in the three acquisition experiments in deep well boxes)
ORF = average length of an ORF (1385 from Hurowitz, E. H., & Brown, P. O. 2003 Genome biology, 5(1),

R2.)
trymZHU = 1.67 µ 10-10;
trymLYNCH = 3.3 µ 10-10;
tryNBY = 7.03 * 107 * 0.15;
H*Estimated population density per mL for BY and scaling to 150uL YPD.*L
tryN303 = 7.42 * 107 * 0.15;
H*Estimated population density per mL for W303 and scaling to 150uL SC.*L
tryf = 0.0667;
tryL = 8191 - 13, 286, 155<; H*Number of diploid wells per acquisition experiment,
excluding ones later found to have been haploid contaminated*L
tryORF = 1385;

trym2a = trymZHU * tryORF;
H*Assuming that any other mutation in the same gene would inactivate,
a conservative assumption.*L
trym2b = 0.8 µ 10-4 ë 2; H*Assuming a secondary LOH event,
half of which lead to the homozygous recessive mutant.*L

Number of cell cycles required to produce source population of N1 cells:
cycles = Log@2, N1D

Log@N1D

Log@2D

In cases where we are performing numerical sums and require an integer number, we round down the number of cycles
(rounding down is slightly conservative):
tryc = Floor@cycles ê. N1 Ø tryNBYD

23

Total number of cell divisions involved (1 cell division from 1 Ø 2 cells, 2 cell divisions from 2 Ø 4 cells, etc):
divisions = Sum@2^i, 8i, 0, cycles - 1<D

-1 + N1

The chance that NONE of these cell divisions produced a mutation at a particular site in a diploid (bearing 2m muta-
tions per cell division across the two homologues) is:
H1 - 2 mLdivisions;

The distribution of mutant cell numbers in the source population is broad and very skewed (a “jackpot distribution”),
and it is possible that the mutation hit early and generated a lot of mutant cells.  To account for this mutational distribu-
tion, the probability that a mutation at one specific site occurs in the jth cell cycle (going from m = 2j-1  cells to 2j
cells)  is:
prob@j_, m_D = 1 - H1 - 2 mLm ê. m Ø 2j-1;

based on one minus the probability that no mutation hits.  (Technically, this allows for the possibility that more than
one hit would occur at the exact same site in different cells in the same cell cycle, but the chance is exceedingly
unlikely.)

If a mutation does occur in the jth cycle (i.e., among the 2j cells that result in this cycle, where one is a new mutant),
the fraction of the source population that will be mutant (assumed to be unaffected by selection prior to placement in
nystatin) is:

frac@j_D = 1 ë 2j;

The number of remaining cell cycles is “cycles-j”, during which there will be 2Hcycles-jL - 1  divisions among the
cells that already carry the first mutation (using the same logic used above to get “divisions”), so that the chance that a
mutation occurs and then bears a secondary mutation is:
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The number of remaining cell cycles is “cycles-j”, during which there will be 2Hcycles-jL - 1  divisions among the
cells that already carry the first mutation (using the same logic used above to get “divisions”), so that the chance that a
mutation occurs and then bears a secondary mutation is:
SumAprob@j, mD * m2 * I2Hcycles-jL - 1M, 8j, 1, cycles<E

‚
j=1

Log@N1D

Log@2D

I-1 + 2-j N1M I1 - H1 - 2 mL2
-1+j

M m2

For a secondary mutation in the same ORF:

SumAprob@j, trymZHUD * trym2a * I2Htryc-jL - 1M, 8j, 1, tryc<E

6.80428 µ 10-9

For a secondary LOH event:

SumAprob@j, trymZHUD * trym2b * I2Htryc-jL - 1M, 8j, 1, tryc<E

1.17673 µ 10-6

The above just calculates the chance that a two-step mutation is in the source population.  The chance that it will be
sampled requires that we first calculate the expected number of two-step mutant cells in the source population.

The chance that a first mutation occurs in the jth cell cycle (going from m = 2j-1  cells to 2j   cells) and then a sec-
ondary mutation occurs in the kth cell  cycle among the cells that bear the first  mutation (going from n = 2k-j-1

mutant cells to 2k-j mutant cells) is:
prob2@j_, k_, m_, m2_D = H1 - H1 - 2 mLmL H1 - H1 - m2LnL ê. m Ø 2j-1 ê. n Ø 2k-j-1;

(this assumes that the chance of both mutations happening in the same cell division is negligible and assumes that only
mutations in the homologue can generate resistance).

If a secondary mutation does occur in the kth cycle after the first one in the jth cycle (when there are 2k  cells), the
fraction of the source population that will be mutant (assumed to be unaffected by selection prior to placement in
nystatin) is:

frac2@j_, k_D = 1 ë 2k;

Thus, prob2 gives us the probability distribution for the fraction, frac2, of secondary mutant cells in the source popula-
tion (amounting to a number of mutant cells N1 ë 2k), with the probability of at least one two-step mutant cell at a
particular site equalling:
mutantprob@m_, m2_, N1_D = Sum@prob2@j, k, m, m2D, 8j, 1, cycles - 1<, 8k, j + 1, cycles<D

‚
j=1

-1+ Log@N1D

Log@2D

‚
k=1+j

Log@N1D

Log@2D

I1 - H1 - 2 mL2
-1+j

M I1 - H1 - m2L2
-1-j+k

M

For a secondary mutation in the same ORF:
mutantprob@trymZHU, trym2a, tryNBYD

6.70832 µ 10-9

For a secondary LOH event:
mutantprob@trymZHU, trym2b, tryNBYD

8.77605 µ 10-7

Finally, we calculate the probability that one or more secondary mutant cells will be placed in the deep well box, given
that a fraction, f, of the N1 cells were sampled:
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probhit2@m_, m2_, N1_, f_, c_D = 1 - H1 - mutantprob@m, m2, N1DL -

SumAprob2@j, k, m, m2D * H1 - frac2@j, kDLf*N1 , 8j, 1, c - 1<, 8k, j + 1, c<E
H*We calculate the probability of sampling some two-
step mutant cells as one minus the probability of sampling none,

either because no two-step mutations occur H1-mutantprob@m,m2,N1DL or because two-
step mutations occur but are not sampled Hthe sumL*L

‚
j=1

-1+ Log@N1D

Log@2D

‚
k=1+j

Log@N1D

Log@2D

I1 - H1 - 2 mL2
-1+j

M I1 - H1 - m2L2
-1-j+k

M -

‚
j=1

-1+c

‚
k=1+j

c
I1 - 2-kM

f N1
I1 - H1 - 2 mL2

-1+j
M I1 - H1 - m2L2

-1-j+k
M

For a secondary mutation in the same ORF:
probhit2@trymZHU, trym2a, tryNBY, tryf, trycD

1.24781 µ 10-9

For a secondary LOH event:
probhit2@trymZHU, trym2b, tryNBY, tryf, trycD

1.72446 µ 10-7

Given L independent deep wells (each started from a different colony), where each lineage is started with a fraction, f,
of its own source population,  the probability that at least one secondary mutant cell will be sampled into at least one of
the deep well populations would be:
1 - H1 - probhit2@m, m2, N1, f, cDLL

1 - 1 - ‚
j=1

-1+ Log@N1D

Log@2D

‚
k=1+j

Log@N1D

Log@2D

I1 - H1 - 2 mL2
-1+j

M I1 - H1 - m2L2
-1-j+k

M +

‚
j=1

-1+c

‚
k=1+j

c
I1 - 2-kM

f N1
I1 - H1 - 2 mL2

-1+j
M I1 - H1 - m2L2

-1-j+k
M

L

For a secondary mutation in the same ORF:

1 - H1 - probhit2@trymZHU, trym2a, tryNBY, tryf, trycDLTotal@tryLD

7.72393 µ 10-7

For a secondary LOH event:

1 - H1 - probhit2@trymZHU, trym2b, tryNBY, tryf, trycDLTotal@tryLD

0.000106739

ü Flasks
Here we modify the above to calculate the chance of observing two mutations within the same gene within a flask,
providing resistance even if only recessive mutations are available.  We consider two cases, either where the secondary
mutation can occur anywhere within the same ORF or where the secondary mutation is a loss-of-heterozygosity event
(estimated to occur by mitotic recombination at a rate of ~0.8 µ 10-4; Mandegar & Otto, 2007, Proc Roy Soc B; only
half of which is assumed to lead to the homozygous recessive mutant).
Additional parameters:

m2 = secondary mutation rate (assumed to be either m × ORF or 0.8 µ 10-4 ë 2)
N1 = population size at saturation in 10mL YPD
f = fraction of population sampled to found a lineage (0.1 = 1 mL/10 mL)
L = # diploid flasks in expt (10)
ORF = average length of an ORF (1385 from Hurowitz, E. H., & Brown, P. O. 2003 Genome biology, 5(1),

R2.)
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Additional parameters:
m2 = secondary mutation rate (assumed to be either m × ORF or 0.8 µ 10-4 ë 2)
N1 = population size at saturation in 10mL YPD
f = fraction of population sampled to found a lineage (0.1 = 1 mL/10 mL)
L = # diploid flasks in expt (10)
ORF = average length of an ORF (1385 from Hurowitz, E. H., & Brown, P. O. 2003 Genome biology, 5(1),

R2.)
trymZHU = 1.67 µ 10-10;
tryNBY = 7.03 * 107 * 10;
H*Using estimated population density per mL and scaling up to 10mL*L
tryf = 0.1; H*1mL into 10mL*L
tryL = 10;
tryORF = 1385;

trym2a = trymZHU * tryORF;
H*Assuming that any other mutation in the same gene would inactivate,
a conservative assumption.*L
trym2b = 0.8 µ 10-4 ë 2; H*Assuming a secondary LOH event,
half of which lead to the homozygous recessive mutant.*L

Number of cell cycles required to produce source population of N1 cells:
cycles = Log@2, N1D

Log@N1D

Log@2D

In cases where we are performing numerical sums and require an integer number, we round down the number of cycles
(rounding down is slightly conservative):
tryc = Floor@cycles ê. N1 Ø tryNBYD

29

Total number of cell divisions involved (1 cell division from 1 Ø 2 cells, 2 cell divisions from 2 Ø 4 cells, etc):
divisions = Sum@2^i, 8i, 0, cycles - 1<D

-1 + N1

The chance that NONE of these cell divisions produced a mutation at a particular site in a diploid (bearing 2m muta-
tions per cell division across the two homologues) is:
H1 - 2 mLdivisions;

The distribution of mutant cell numbers in the source population is broad and very skewed (a “jackpot distribution”),
and it is possible that the mutation hit early and generated a lot of mutant cells.  To account for this mutational distribu-
tion, the probability that a mutation at one specific site occurs in the jth cell cycle (going from m = 2j-1  cells to 2j
cells)  is:
prob@j_, m_D = 1 - H1 - 2 mLm ê. m Ø 2j-1;

based on one minus the probability that no mutation hits.  (Technically, this allows for the possibility that more than
one hit would occur at the exact same site in different cells in the same cell cycle, but the chance is exceedingly
unlikely.)

If a mutation does occur in the jth cycle (i.e., among the 2j cells that result in this cycle, where one is a new mutant),
the fraction of the source population that will be mutant (assumed to be unaffected by selection prior to placement in
nystatin) is:

frac@j_D = 1 ë 2j;

The number of remaining cell cycles is “cycles-j”, during which there will be 2Hcycles-jL - 1  divisions among the
cells that already carry the first mutation (using the same logic used above to get “divisions”), so that the chance that a
mutation occurs and then bears a secondary mutation is:
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SumAprob@j, mD * m2 * I2Hcycles-jL - 1M, 8j, 1, cycles<E

‚
j=1

Log@N1D

Log@2D

I-1 + 2-j N1M I1 - H1 - 2 mL2
-1+j

M m2

For a secondary mutation in the same ORF:

SumAprob@j, trymZHUD * trym2a * I2Htryc-jL - 1M, 8j, 1, tryc<E

5.59293 µ 10-7

For a secondary LOH event:

SumAprob@j, trymZHUD * trym2b * I2Htryc-jL - 1M, 8j, 1, tryc<E

0.0000967238

The above just calculates the chance that a two-step mutation is in the source population.  The chance that it will be
sampled requires that we first calculate the expected number of two-step mutant cells in the source population.

The chance that a first mutation occurs in the jth cell cycle (going from m = 2j-1  cells to 2j   cells) and then a sec-
ondary mutation occurs in the kth cell cycle among the cells that bear the first mutation (going from n = 2k-j-1 cells
to 2k-j mutant cells) is:
prob2@j_, k_, m_, m2_D = H1 - H1 - 2 mLmL H1 - H1 - m2LnL ê. m Ø 2j-1 ê. n Ø 2k-j-1;

(this assumes that the chance of both mutations happening in the same cell division is negligible and assumes that only
mutations in the homologue can generate resistance).

If a secondary mutation does occur in the kth cycle after the first one in the jth cycle (when there are 2k  cells), the
fraction of the source population that will be mutant (assumed to be unaffected by selection prior to placement in
nystatin) is:

frac2@j_, k_D = 1 ë 2k;

Thus, prob2 gives us the probability distribution for the fraction, frac2, of secondary mutant cells in the source popula-
tion (amounting to a number of mutant cells N1 ë 2k), with the probability of at least one two-step mutant cell at a
particular site equalling:
mutantprob@m_, m2_, N1_D = Sum@prob2@j, k, m, m2D, 8j, 1, cycles - 1<, 8k, j + 1, cycles<D

‚
j=1

-1+ Log@N1D

Log@2D

‚
k=1+j

Log@N1D

Log@2D

I1 - H1 - 2 mL2
-1+j

M I1 - H1 - m2L2
-1-j+k

M

For a secondary mutation in the same ORF:
mutantprob@trymZHU, trym2a, tryNBYD

4.76763 µ 10-7

For a secondary LOH event:
mutantprob@trymZHU, trym2b, tryNBYD

0.0000562647

Finally, we calculate the probability that one or more secondary mutant cells will be placed in a flask, given that a
fraction, f, of the N1 cells were sampled:
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probhit2@m_, m2_, N1_, f_, c_D = 1 - H1 - mutantprob@m, m2, N1DL -

SumAprob2@j, k, m, m2D * H1 - frac2@j, kDLf*N1 , 8j, 1, c - 1<, 8k, j + 1, c<E
H*We calculate the probability of sampling some two-
step mutant cells as one minus the probability of sampling none,

either because no two-step mutations occur H1-mutantprob@m,m2,N1DL or because two-
step mutations occur but are not sampled Hthe sumL*L

‚
j=1

-1+ Log@N1D

Log@2D

‚
k=1+j

Log@N1D

Log@2D

I1 - H1 - 2 mL2
-1+j

M I1 - H1 - m2L2
-1-j+k

M -

‚
j=1

-1+c

‚
k=1+j

c
I1 - 2-kM

f N1
I1 - H1 - 2 mL2

-1+j
M I1 - H1 - m2L2

-1-j+k
M

For a secondary mutation in the same ORF:
probhit2@trymZHU, trym2a, tryNBY, tryf, trycD

1.27163 µ 10-7

For a secondary LOH event:
probhit2@trymZHU, trym2b, tryNBY, tryf, trycD

0.0000151389

Given L independent deep wells (each started from a different colony), where each lineage is started with a fraction, f,
of its own source population,  the probability that at least one secondary mutant cell will be sampled into at least one of
the deep well populations would be:
1 - H1 - probhit2@m, m2, N1, f, cDLL

1 - 1 - ‚
j=1

-1+ Log@N1D

Log@2D

‚
k=1+j

Log@N1D

Log@2D

I1 - H1 - 2 mL2
-1+j

M I1 - H1 - m2L2
-1-j+k

M +

‚
j=1

-1+c

‚
k=1+j

c
I1 - 2-kM

f N1
I1 - H1 - 2 mL2

-1+j
M I1 - H1 - m2L2

-1-j+k
M

L

For a secondary mutation in the same ORF:

1 - H1 - probhit2@trymZHU, trym2a, tryNBY, tryf, trycDLtryL

1.27163 µ 10-6

For a secondary LOH event:

1 - H1 - probhit2@trymZHU, trym2b, tryNBY, tryf, trycDLtryL

0.000151379

ü Conclusion
Allowing secondary mutations to occur among the diploid cells that bear a first mutation, there is <0.0003 chance that
a secondary mutant cell will be sampled in any of the deep wells or flasks in the experiment, assuming that the sec-
ondary mutation rate or LOH rate is <~10-4.  We consider this to be a conservative estimate of the secondary muta-
tion rate because we have assumed that any mutation in the same ORF on the homologue would generate resistance, as
would mitotic recombination whenever it creates a homozygous mutant.
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C.3. Supporting Table

C.3 Supporting Table

Table C.1: Results of ANOVA and post-hoc Tukey tests comparing mean number of days until growth
between the different strain types in each experiment. For the Tukey tests, estimates are reported with p-
values in parentheses. Estimates are negative when the second group has a higher mean. Significant p-values
are in bold.

Acquisition Experiment 1 Acquisition Experiment 2 Acquisition Experiment 3
ANOVA

F 14.45 61.25 97.55
df 2, 206 2, 161 2, 229

p-value 1.35 ⇥ 10�6 < 10�15 < 10�15

Pairwise comparisons (Tukey)
MATa - diploid -2.26 (< .0001) -2.86 (< .0001) -1.87 (< .0001)
MAT↵ - diploid -1.13 (0.0043) -2.54 (< .0001) -0.27 (0.29)
MATa - MAT↵ -1.13 (0.023) -0.31 (0.75) -1.60 (< .0001)

155
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Figure C.1: Growth curves of all populations from larger volume flasks. All populations grew in the original
acquisition experiment by Day 10, but only the haploid populations show reliable growth when re-tested in
YPDnystatin4. No diploid populations grew over the 72 hour assay.
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C.4. Supporting Figures
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Figure C.2: Plot of mean OD72 when populations are re-tested in nystatin versus the number of days until
growth was observed in the original acquisition experiments in deep well boxes. Black dashed lines indicate
the range of cutoff values used for judging a potential mutant strain when growth was re-tested. Solid
lines indicate the fitted regression lines from linear regressions (black: all populations considered together,
coloured: model run using only the populations of that type). Note that the x-axis changes depending on the
length of the acquisition experiment.
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