
Towards automated dynamic scene analysis and augmentation during
image-guided radiological and surgical interventions

Contributions in motion-based segmentation and navigation uncertainty

by

Alborz Amir-Khalili

BASc Systems Design Engineering, University of Waterloo, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

December 2017

c© Alborz Amir-Khalili, 2017



Abstract

This thesis proposes non-invasive automated scene analysis and augmentation techniques to improve

navigation in image-guided therapy (IGT) applications. IGT refers to procedures in which physicians

rely on medical images to plan, perform, and monitor an intervention. In IGT, the tomographic images

acquired before the intervention may not directly correspond to what the physician sees via the intra-

operative imaging. This is due to many factors such as: time-varying changes in the patient’s anatomy

(e.g., patient positioning or changes in pathology), risk of overexposure to ionizing radiation (restricted

use of X-ray imaging), operational costs, and differences in imaging modalities. This inconsistency

often results in a navigational problem that demands substantial additional effort from the physician to

piece together a mental representation of complex correspondences between the preoperative images

and the intraoperative scene.

The first direction explored in this thesis, investigates the application of image-based motion analysis

techniques for vessel segmentation. Specifically, we propose novel motion-based segmentation methods

to enable safe, fast, and automatic localization of vascular structures from dynamic medical image

sequences and demonstrated their efficacy in segmenting vasculature from surgical video and dynamic

medical ultrasound sequences.

The second direction investigates ways in which navigation uncertainties can be computed, prop-

agated, and visualized in the context of IGT navigation systems that target deformable soft-tissues.

Specifically, we present an uncertainty-encoded scene augmentation method for robot-assisted laparo-

scopic surgery, in which we propose visualization techniques for presenting probabilistic tumor margins.

We further present a computationally efficient framework to estimate the uncertainty in deformable im-

age registration and to subsequently propagate the effects of the computed uncertainties through to the

visualizations, organ segmentations, and dosimetric evaluations performed in the context of fractionated

image-guided brachytherapy.

Our contributions constitute a step towards automated and real-time IGT navigation and may, in the

near future, help to improve interventional outcomes for patients (improved targeting of pathologies)

and increase surgical efficiency (less effort required by the physician).
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Lay Summary

In this thesis, we present techniques to assist physicians during complex medical procedures that utilize

medical images, namely cancer surgery and radiation therapy. Our contributions entail the development

and application of advanced computer algorithms that can automatically process and enhance medical

images. To assist physicians in finding the location of hard to see blood vessels, we propose fast, safe,

and fully automatic techniques that can locate blood vessels based solely on how the vessels move

(useful for surgical applications where vessels are covered by a layer of tissue). We also contribute

algorithms and systems that can visualize potential ambiguities that occur during medical procedures,

which include: uncertain location of tumor boundaries during kidney cancer surgery and effects of

erroneous image alignment during radiation therapies.
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Chapter 1

Introduction

Computers have become ubiquitous appliances in the modern world and our dependency on them is in-

controvertible. The impact that computers and computer algorithms have had on medicine and medical

research are equally profound. Computing plays an integral role in modern medicine and it has been

used to address problems spanning a wide gamut of applications that include health informatics, medi-

cal imaging, patient monitoring systems, clinical decision support systems, medical databases, surgical

robotics, biomedical research, and many more. Breakthroughs in computer processing power and novel

algorithms have allowed researchers to acquire, store, and analyze detailed volumes of medical data;

which has led to ground breaking medical discoveries and the development of more advanced and ac-

curate diagnostic and interventional tools. Although research on applications of computing in medicine

has been ongoing for more than 40 years, recent accelerating advancements in medical image analysis

and computer-assisted interventional systems are a testament to the potential of computing in further

revolutionizing current medical practices and research methods [114].

Over the past three decades [85], a growing body of research contributions, promoting the usage

of intraoperative imaging technologies and computer algorithms as guidance tools during both surgical

interventions and interventional radiotherapy, have coalesced to form the exciting and burgeoning field

of image-guided therapy (IGT) [82, 83, 114]. Research into new and improved IGT systems demands

expertise from diverse disciplines that range from medicine to engineering and computer sciences. Such

multidisciplinary collaborations have been shown to be fraught with challenging system design prob-

lems [28, 115]; more so when the system is being developed in a clinical context, where human lives

are at stake. Within the solution to these challenges, however, lies the key to unlocking new paradigms

of interventional techniques and therefore benefits for patients.

1.1 Thesis Motivation
This thesis is motivated by unresolved engineering problems in computer-assisted IGT navigation and

investigates novel automated scene analysis and augmentation methods that can be leveraged to over-

come them. This introductory chapter entails the definition of IGT, explication of associated challenges,

and the rationale behind our scientific contributions proposed to address emerging challenges in IGT.
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1.1.1 Image-Guided Therapy

Image-guided procedures are broadly defined as interventional techniques in which the physician relies

heavily on medical imaging technologies to plan, perform, and monitor an intervention. IGT systems

can therefore be thought of as the integration of three major contributing technologies: imaging, guid-

ance (navigation), and therapy delivery devices [82]. Indeed, the unifying objectives and associated

benefits of IGT within this definition are difficult to encapsulate in just a few sentences due to the broad-

ness of its scope, which encompasses both surgical and radiotherapy applications, and an overlap with

the field of minimally invasive surgery (MIS) research. There is, however, an important distinction to be

made between IGT and MIS techniques. In a recently published book on IGT, Jolesz [82] defines IGT

as systems that leverage medical imaging to both, improve targeting and control over therapy delivery,

and to decrease the invasiveness of a procedure; the latter of which is a shared objective with that of

MIS methods such as laparoscopy, whereas the former is not.

IGT systems that are characterized by the aforementioned objectives may be described using the

time-line based view proposed by Yaniv and Cleary [203], and categorized into three phases: preopera-

tive planning, intraoperative plan execution, and postoperative assessment. Within this time-line based

view, IGT systems generally follow a sequence of constituting steps (Figure 1.1) that was later described

by Cleary and Peters [28].

Naturally, the interest of this thesis lies in the applications of computer-assisted technologies in

IGT, the main involvements of which are in the preoperative and intraoperative phases. Thus, the key

challenges that stand out in this systemic view of IGT are the medical imaging technologies and the ap-

parent need for reconciliation between preoperative and intraoperative imaging modalities. Preoperative

imaging involves the acquisition of tomographic image volumes, typically X-ray computed tomography

(CT) and magnetic resonance (MR) images. These tomographic images enable the physician to peer

through the skin of the patient and view the anatomical, and sometimes functional, state of different

systems within the patient’s body. Tomographic images are therefore essential to the generation of the

Preoperative Intraoperative Postoperative

- Acquisition of tomographic

  medical images

- Analysis of preoperative images 

  and formulation of 

  interventional plan

- Tracking of surgical instruments

- Registration of preoperative

  images to live intraoperative

  acquistitions

- Displaying instruments on the

  registered fusion of images

- Using the display and 

  manipulating the instruments to 

  accomplish the procedure

- Obtaining a confirming image

   upon the completion of the 

   procedure

Figure 1.1: Typical steps in image-guided therapy systems organized in a time-line based view.
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interventional plan, which further implies that the quality of preoperative imaging may have a direct

impact on the effectiveness of the interventional plan and, by extension, the outcome of the therapy.

In addition to the quality of imaging and the interventional plan, it stands to reason that the execution

of interventional plan during the operation also has a notable impact on IGT outcomes. Due to time-

varying changes in the patient’s anatomy, risk of overexposure to ionizing radiation, operational costs,

and incompatibility with therapy delivery devices, the interventional plan may not necessarily represent

the intraoperative state of the patient or, more importantly, the interventional plan may not directly

correspond to what the physician is able to see via the intraoperative imaging modalities.

This inconsistency may complicate the execution of the interventional plan as it often results in a

navigational problem that demands substantial additional cognitive effort from the physician to piece

together a mental representation of complex correspondences between the preoperatively conceived

plan and the intraoperative scene [183]. In lay terms, the navigation problem in IGT is akin to—albeit

a more complicated version of—the common problem of finding one’s way, in first person, from the

current street address to a destination using only a memorized representation of the route from a map

presented in bird’s-eye view. Anyone who has ever been lost can easily appreciate the implications of

this problem in the context of IGT wherein, by extending the metaphor, the path being traversed lies

in 3D space, the map is outdated and is of questionable quality, the streets are not marked, landmarks

move in relation to each other, and a wrong turn may jeopardize the outcome of the intervention.

This intraoperative navigation problem, from a technical perspective, is a decisive issue for IGT

systems and is a suitable candidate for computer-assisted guidance solutions. Hence, we look into the

domain of computer-assisted intraoperative navigation to identify the emerging engineering research

problems in IGT.

1.1.2 Computer-Assisted Intraoperative Navigation

The solution to the computer-assisted navigation problem in IGT is by no means trivial. A one-size-

fits-all computer-assisted solution is impractical because of drastic discrepancies between the imaging

modalities or therapy delivery devices used during the preoperative and intraoperative phases of differ-

ent IGT applications [16]. Nonetheless, existing computer-assisted guidance methods that are currently

employed to address IGT navigation problems may be considered as specialized amalgams of the fol-

lowing established signal processing, control system, and computer vision methodologies [28, 82, 203]:

• Low-level image processing: denoising, enhancement, and augmentation of image information

• Image segmentation: delineation or partitioning of regions/structures of interest

• Registration: alignment of multiple data sets into a single coordinate system

• Tracking: determining location and position of tools and anatomical structures

• Visualization: displaying the fusion of complimentary information from registered images

Among these methodologies, registration and tracking are often considered to be the most integral and

challenging components of the IGT navigation problem [28, 82, 106, 170, 181].
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Challenges in Medical Image Registration

Registration and tracking are difficult in many IGT scenarios, e.g., resection of soft-tissues [12, 185,

206], considering the different reference frames of acquisitions, the heterogeneity of the imaging modal-

ities (in terms of their dimensionality, appearance, and the meaning of the underlying physical measure-

ments), and the likely motion and deformation of anatomical structures. For example, in the context of

robot-assisted laparoscopic surgery, raw intensity information from a preoperative CT scan bears little

visual and structural resemblance to 2.5D color video data acquired intraoperatively by a stereoscopic

endoscope. In such extreme cases, where the intraoperative imaging modalities cannot wholly capture

the deformation of organs, the problem of image-based registration is often considered to be ill-posed.

Consequently, in IGT applications that target deformable soft-tissue structures, real-time registration

is difficult to achieve without the help of complex hardware solutions involving electromagnetic or

optical tracking systems and the use of fiducial markers. During complex abdominal interventions, e.g.,

kidney cancer surgery [12, 185], some IGT guidance systems also necessitate the use of additional,

potentially harmful, intraoperative imaging systems. Aside from the often considerable operational

costs associated to these hardware tools, the use of such tools in some situations, e.g., aforementioned

abdominal interventions, is arguably antithetical to one of the principles of IGT as they may increase

the invasiveness of the procedure [36, 106]. This trade-off between guidance accuracy and invasiveness

is difficult to quantify and justify in many interventional applications. There is therefore a trend, in

the field of IGT research, towards scene analysis and augmentation solutions that strive to overcome

navigation problems without resorting to the use of invasive tools or harmful imaging techniques.

Intraoperative Image Segmentation

A possible non-invasive solution to facilitate the task of preoperative to intraoperative registration is

to identify corresponding landmarks independently in both preoperative and intraoperative images, i.e.,

segmenting the intraoperative scene independently of preoperative images. Among computer-assisted

approaches to the IGT navigation problem, some automated image analysis and augmentation meth-

ods [64, 113, 124–126, 130, 136, 205] adhere to a more mathematically elegant and holistic perspective

of the navigational problem. Though it is often useful to compartmentalize navigation into different

sub-problems of image segmentation, registration, tracking, and visualization, it is also important to

note and appreciate the fundamental relationships that exist between them. These sub-problems may

be mathematically modelled in such a way that the computational solution to the navigation problem

would jointly produce an optimal solution for the requisite segmentation, registration, and tracking sub-

problems. Such mathematical frameworks cast the problem of navigation as a numerical optimization

problem, the objective of which is deftly formulated in such a way that it corresponds to the true ob-

jective of navigation—and associated sub-problems—as closely as possible. It stands to reason that,

within such mathematical formulations, an insight into improving one sub-problem would likely result

in an improvement to another [64]. The detection of corresponding landmarks, such as location of blood

vessels, between the two intraoperative and preoperative imaging modalities may therefore simplify and

expedite the registration step.
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Automatic localization or segmentation of structures from preoperative data has been thoroughly

researched for many years [155]. Analysis of preoperative image data is also typically not subject to

hard performance constraints as preoperative data can be analyzed and processed prior to the actual

operation. While on the other hand, segmentation of structures from intraoperative imaging modalities

are arguably more challenging; this is due partly to stringent demands on real-time performance [82]

and partly to the limitations of the intraoperative imaging modalities, e.g., poor signal quality or inability

to see through the surface of tissues. But, intraoperative modalities are not as limited as they seem. In

many IGT application, e.g., image-guided surgery, intraoperative imaging modalities are used to provide

real-time information from the interventional scene to the physician and, as a result, are able to capture

dynamic or temporal behavior of the patient’s anatomy. Automatic localization of structures may be

difficult to do in real-time from a single static image, but the dynamic image information acquired by

the intraoperative imaging modality can also be used to improve localization [5–8, 53, 111, 142].

Navigation Uncertainty

In addition to the challenges associated to registration and intraoperative segmentation, a perhaps more

fundamental problem in computer-assisted IGT navigation systems is regarding the inevitable sources

of uncertainty. A perfect navigation system is unattainable in practice due to inherent errors or uncer-

tainties in imaging, segmentation, localization, registration and tracking; which also is precisely why

IGT navigation systems are never fully automated and instead rely on the expertise of a physician in the

final decision making process. Even if a mathematical navigation framework has been established to

align the preoperative plan with the intraoperative frame of reference and associated location of therapy

delivery instruments, it is of critical importance to consider the computational errors and uncertainties

that may rise during this numerical optimization process. It is important—and arguably ethical—to es-

timate and display imprecision of such IGT navigation systems to the physicians such that they are not

forced to make decisions based on false determinations. Though some IGT systems can visualize the

imprecision of the tools using a circle or an ellipse to represent the likely registration and localization

uncertainties [159, 160, 184], the majority of IGT systems are limited by processes or results that do

not encode uncertainty information in one of the navigational tasks (segmentation, tracking, and regis-

tration), none of which is guaranteed to be accurate, especially the paramount registration stage. In this

thesis, we use the adjective ‘crisp’ to refer to such deterministic or non-probabilistic variables, results,

and processes that do not encode uncertainty information. Moreover, without an uncertainty-encoding

visualization or augmentation, physicians are rendered oblivious to the levels of trust that should be

bestowed on the navigational results presented to them. This observation furthermore raises another

important systemic problem in regards to the ergonomic factors of the system, i.e., the level of trust

a physician can bestow on the navigation system in light of the innate uncertainties that exist in the

imaging and computer-assisted navigation solutions [176].
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1.2 Problem Statement

1.2.1 Thesis Objectives

The objective of this thesis is to develop automated scene analysis and augmentation techniques that can

improve intraoperative navigation in IGT procedures without increasing the level of invasiveness to the

patient. In this section, we translate this objective into concise research questions that will guide us to

better understand the limitations of existing solutions and to frame our contributions within the related

prior art associated to computer-assisted navigation methods.

1.2.2 Research Questions Addressed

In Section 1.1.2, we motivated that the independent segmentation of structures in preoperative and in-

traoperative images may improve the difficult task of image registration. We also motivated that the

kinematic behavior of anatomical structures, which is encoded in the dynamic information of medical

image sequences, may be used as an independent source of information for the purpose of segmentation.

In this thesis, we choose to investigate motion-based segmentation of blood vessels because vascular

structures exhibit unique periodic pulsatile radial motion characteristics (they are pulsating tubes) that

may be captured with intraoperative imaging modalities, e.g., dynamic ultrasound (DUS) and endo-

scopic video. Furthermore, as we elaborate later in Section 1.4, automatic vessel localization methods

are applicable to many image-guided medical diagnosis and interventional procedures. Segmentation of

vessels in IGT is however challenging due to (i) low spatial and temporal imaging resolution (motions

may be faint), (ii) presence of occlusions (vessels hidden under tissues), and (iii) spatial and temporal

noise artefacts. The first research question that we seek to address in this thesis is hence:

Research Question #1: How can motion information be used to automatically segment blood vessels

from dynamic medical images during IGT where: there are multiple sources of motion, the data

is noisy, vessels may be occluded by layers of tissues, and observable vascular motions are faint?

Our second research question investigates the systemic problem of navigation uncertainty. In the

context of IGT, the added value of the end-to-end computation of navigation uncertainties has been pre-

viously demonstrated in the context of orthopedic interventions [159, 160]. In image-guided orthopedic

interventions, which involve the alignment of rigid organs (i.e., bones) and rigid surgical tools (e.g.,

plates, screws, and surgical drills), the effects of navigation uncertainties (specifically from tracking,

calibration, and registration) can be gleaned from the imprecision of rigid transformations. In the con-

text of image-guided interventions that target deformable tissues, on the other hand, computation and

propagation of navigation uncertainties are more challenging for two reasons: (i) there are additional

sources of uncertainties (e.g., segmentation and surface reconstruction), and (ii) deformable image reg-

istration uncertainties are more challenging to compute in an efficient manner. As such, the second

research question is:

Research Question #2: How can different sources of navigation uncertainties be computed, propa-

gated, and visualized for image-guided medical interventions that target deformable tissues?
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To address both of these two research questions, it is crucial to first understand the capabilities and

limitations of the imaging modalities that are currently used during IGT. In the following sections we

first provide an overview of three popular medical imaging modalities used in IGT before surveying the

prior art relating to the proposed research questions.

1.3 Medical Imaging Technologies in Image-Guided Therapy
Medical imaging technologies play a central role in IGT. Existing computer-assisted navigational solu-

tions employed during IGT are designed around the capabilities and limitations of these medical imaging

technologies. This section thus provides a general overview of three very different imaging modalities

that are commonly used during IGT: CT, ultrasound, and stereo endoscopy. Among these modalities,

CT is the oldest and most widely used imaging modality, often employed during all three (pre, intra, and

postoperative) stages of IGT interventions. Ultrasound (US) is another well established, although safer

and more portable, imaging modality favored primarily for diagnostic and intraoperative applications.

Stereo endoscopy, commonly used during robot-assisted MIS, is a newer extension of traditional optical

endoscopy that has garnered considerable attention in recent years.

Although this thesis focuses primarily on the three aforementioned modalities, these modalities

and the applications for which we present our contributions are, in essence, effective examples for

the exposition of our proposed mathematical methodologies. By design, the methodologies presented

in this thesis are not explicitly restricted to these modalities and may be extended to other prevalent

imaging modalities used in IGT including MR imaging, single-photon emission computed tomography,

positron emission tomography, X-ray fluoroscopy, diffusion-weighted MR imaging, and various contrast

enhanced specializations of these modalities.

1.3.1 X-ray Computed Tomography Imaging

X-ray imaging has historically played a central role in IGT systems and may be considered as the

original inspiration behind this paradigm of interventional techniques and technologies [114]. Among

existing X-ray-based medical imaging modalities, which essentially are techniques that utilize X-ray

sources and X-ray detectors in different configurations to image a patient, CT is considered to be the

workhorse of all interventional procedures that require cross-sectional imaging [61]. CT imaging is

often preferred over other tomographic imaging techniques, such as MR, for imaging anatomical struc-

tures because of its relatively faster acquisition speeds, finer imaging resolution, superior visualization,

and cheaper operational costs.

As a preoperative imaging modality, X-ray imaging modalities are primarily used during image-

guided orthopedic interventions, in the context of which CT imaging is used to plan for the treatment

of complex fractures and implant placements [60]. CT is also often considered to be the gold standard

for diagnosing and staging of different types of cancers including lung carcinomas [121], renal cell

carcinoma [146], pancreatic carcinoma [50], and colorectal cancers [129]. By extension, CT has proven

to be a suitable modality to use during the planning stages of many different image-guided surgical and

radiotherapy interventions.
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X-ray imaging technologies, however, cannot differentiate between certain soft-tissues as effectively

as MR imaging techniques. Therefore, the utility of CT in diagnosing certain types of cancers such as

early detection of prostate cancer [32] is limited. Another critical downside of X-ray imaging—and

by extension CT imaging—is in regards to the use of harmful ionizing radiation. As a consequence

of the potential for adverse health effects to patients and clinicians, the use of CT imaging during the

intraoperative stages of IGT is reserved strictly for interventions where the benefits of CT imaging

outweigh its adverse effects.

Despite associated health risks, CT imaging is currently used as an intraoperative imaging modality

during many sensitive IGT procedures including: image-guided external beam radiotherapy, brachyther-

apy, CT-guided needle biopsy or radio frequency ablation, vascular procedures, orthopedics and neuro-

surgery; with many more applications to emerge with future developments in CT-guided surgical robotic

technologies [173, 189].

1.3.2 Dynamic Ultrasound

US imaging, or ultrasonography, is an imaging technology that is also ubiquitous and well established

in clinical practice and medical research. The prevalence of US in the medical imaging community

is primarily due to its ability to acquire images of soft-tissue structures located beneath the surface of

the skin (e.g., tendons, muscles, joints, vessels and internal organs) in real-time without exposing the

patient or the physician to harmful ionizing radiation. Medical US is predominately used during clinical

diagnostic procedures but many advocate for its use within image-guided surgical interventions in part

due to the aforementioned benefits and also because medical US machines are inexpensive and portable

compared to some of the other existing medical imaging technologies.

Though the affordances associated to US in an interventional context are fairly obvious, the draw-

backs of US have in past limited its use to rather rudimentary procedures, e.g., catheterization and needle

biopsies. US imaging is impeded by various limits on its field of view [45] and a low signal-to-noise

ratio. Due to the physics of US, image quality is highly dependent on the size, orientation, and acoustic

properties of structures being imaged. As a result, US image quality depends on the expertise of the

US operator; and even with a highly skilled operator, it is often impossible to image structures behind

bone and air pockets. Moreover, US image quality is also degraded by the presence of signal dependent

speckle noise [139], which further necessitates the need for an expert to interpret the acquired images.

This need for expertise, or specialization, in US image acquisition and interpretation has been an in-

sidious barrier to the adoption of US as the primary intraoperative imaging modality during surgical

interventions.

The capabilities of US imaging technologies have been improving steadily since its introduction,

overcoming the associated drawbacks with the help of breakthroughs in hardware and software. There

have been marked advancements in US hardware in terms of transducer sensitivity, beam-forming, and

image processing speed, which have improved the trade-off between image quality versus acquisition

speed. Other hardware-based solutions such as tracking systems and 3D volumetric US probes [45] have

also been developed to overcome the field-of-view limitations. Concurrent with the advancements in
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hardware, countless automated algorithms have been proposed by the research community to reduce the

reliance on an expert for analysis and interpretation of the images. Additionally, advanced technologies

such as Doppler US, US elastography [208], high-intensity focused US, and contrast-enhanced US have

also been developed to extend the capabilities of US devices beyond imaging of soft-tissues.

The steady and incremental improvements in US capabilities have paved the way for the prolifera-

tion of US imaging into formerly unconventional surgical applications such as orthopedic surgery [62]

and cancer treatment [116]; with more applications emerging on the horizon. Coupled with the height-

ened level of projected growth and competitiveness among manufacturers of US equipment, as well

as the trend towards open-software US platforms [96], medical US imaging is poised to remain as a

dominant modality of intraoperative imaging during image-guided interventions.

1.3.3 Stereo Endoscopic Video

Recently, robot-assisted MIS techniques have emerged as viable alternatives to traditional abdominal

laparoscopic surgery techniques; providing surgeons with the added benefits of superior ergonomics,

advanced vision systems, intuitive control over wristed instruments, scaling or miniaturization of move-

ments, and filtering of hand tremor; which have led to increased dexterity and higher precision [95].

The purpose of such robots is not to replace the surgeon, but to effectively augment and enhance the

dexterity and perceptual capabilities of the surgeon instead by overcoming the ergonomic ambiguities

that exist in laparoscopic surgery. Surgical laparoscopic robots such as the da Vinci Surgical System are

thus designed in a unidirectional master-slave configuration. In such configuration, the surgeon inter-

acts with the patient by directly controlling the robot via a surgical console that in turn provides visual

feedback from the surgical site to the surgeon via the high-definition stereo endoscopic camera.

The stereo endoscope of the da Vinci Surgical System, is regarded as one of its greatest advan-

tages over traditional laparoscopic methods. The stereo cameras provide the surgeon with added depth

perception, which has been shown to improve surgical performance for both novice and experiences

operators [21]. Furthermore, the video processing pipelines used within the da Vinci Surgical System

and other similar robot-assisted systems create a natural and practical platform for the deployment of

advanced computer-assisted algorithms for automated scene analysis and augmentation [135]. As a di-

rect result, research into endoscopic video analysis has gained considerable momentum in recent years

and many novel imaged-based computer-assisted systems have been proposed to leverage endoscopic

video as a primary intraoperative imaging modality for automated guidance. A timely survey by Bern-

hardt et al. [16] identified 279 academic publications relating to surgical endoscopic scene augmentation

published between 2000 to June 2016, more than half of which were published after 2011.

Most of image-based laparoscopic guidance systems proposed to date are motivated by a common

objective: to compensate for the loss of tactile or haptic feedback incurred with the transition from

traditional open style to laparoscopic methods of surgery. The importance of tactile sensations in context

of surgery is patently evident as, in open surgeries, surgeons rely on manual palpation of tissues to

identify important structures hidden beneath the surface. The location of these important structures are

often directly tied to surgical outcomes as they include: blood vessels, nerves, and pathologies such
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Figure 1.2: Examples of challenging noise artefacts present in video sequences acquired by one of
the stereo-endoscopic cameras of the da Vinci Surgical System during a partial nephrectomy
procedure. These artefacts, caused by the presence of blood (red), white specular highlights
(green), smooth organ surfaces (blue), and smoke (gray), pose unique challenges to automatic
localization of anatomical landmarks.

as tumors and cysts. The dominant trend in laparoscopic guidance has therefore been to compensate

for the loss of the ability to perceive hidden or occluded structures by augmenting the intraoperative

endoscopic video with patient-specific models extracted from preoperative CT and MR image volumes.

The trend of image-based surgical guidance is however not free controversy and criticism by advo-

cates of hardware based solutions, which instead aim to integrate haptic feedback directly into the next

generation of surgical robots [37]. Admittedly, the field of image-based laparoscopic guidance has yet

to reach maturity and automated augmentation of endoscopic video still remains an open problem partly

due to the presence of challenging conditions such as deformable tissue motion, limited field-of-view,

presence of non-Lambertian specular highlights, smoke, blood, and tissue surfaces that are smooth (Fig-

ure 1.2). The haptics-based approach to this problem, on the other hand, is perhaps more challenging

as the development of a true-to-life haptics feedback system is contingent on: (i) the development of

complex sensors to measure instrument interactions and (ii) interfaces to convey force/tactile sensations

back to the surgeon; both of which are far from being justifiable in terms of cost despite the push towards

improved haptic displays and force/tactile sensors that are high-performance, low-cost, biocompatible,

and sterilizable.

Indeed, advantages can be achieved in robotic surgery by employing the underutilized haptic sensory

channel but such advantages will arguably not surpass that of traditional open surgery; whereas image-

based guidance methods that leverage advanced computer vision techniques possess the potential to

improve the surgical practice beyond what is currently possible [16].

1.4 Segmentation of Vasculature from Dynamic Medical Image
Sequences

The three medical imaging modalities presented in the previous section provide an exemplary repre-

sentation of just how different medical images can be; CT images measure the radiodensity of tissues,

B-mode US measures the differences in acoustic impedance, and stereo endoscopy captures sequences
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of color images of the surfaces of organs inside of the patient at two different viewpoints. Automatic

localization of corresponding landmarks is challenging as the static appearance of tissues and organs

does indeed vary across these imaging modalities. However, the underlying temporal behavior and ap-

parent motions of some anatomical structures remains unchanged despite the difference in appearance.

We propose that these dynamic characteristics are a missing piece to the large puzzle that is the IGT

navigation problem.

Within the scope of this thesis, we aim to improve IGT guidance by investigating non-invasive

automated scene analysis and augmentation techniques that can localize anatomical landmarks, i.e.,

blood vessels, from dynamic intraoperative imaging modalities. Specifically, we aim to establish that

an understanding of the temporal anatomical behavior of blood vessels can be mathematically modelled

and leveraged to facilitate automatic localization of these vessels in a computationally efficient manner.

Fortunately, blood vessels in particular have unique shape and motion characteristics, i.e., they are

essentially pulsating tubes that periodically pulsate with a frequency that is predominantly governed by

the heart-rate. These pulsatile motion characteristics, once computed, can be utilized as novel features

for vessel segmentation and may be incorporated alongside other complimentary static visual features

such as color, intensity, shape, and texture.

Due to the sheer breadth of associated applications, which extend beyond IGT into clinical diag-

nostic assessment, automatic vessel segmentation from medical images has been a popular subject of

research for many years and has resulted in many notable contributions. Common applications of vas-

cular imaging range from routine non-invasive diagnostic procedures to complex surgical interventions.

Vascular imaging is routinely used to assess the risk for cardiovascular morbidity by (i) directly imaging

and analyzing the coronary arteries with intravascular US, MR, or CT imaging; (ii) quantifying arte-

riosclerosis from color images of the retina [128]; (iii) segmenting atherosclerotic plaque from US [17],

MR [34], or CT images [105] of the common carotid artery (CCA); or (iv) monitoring changes in vas-

cular distensibility from MR images of the aorta [23] and CT angiography images of the CCA [65]—all

of which have been identified as independent predictors of stroke [24, 66, 84, 97, 201]. In the domain

of IGT, the real-time acquisition speed and noninvasive nature of US imaging have popularized its util-

ity for guidance during commonly performed, yet laborious, vascular access (cannulation) procedures

such as insertion of central venous and arterial pressure catheters [104]. Moreover, vascular imaging

is used regularly during preoperative planning and screening of surgical interventions like kidney and

liver transplants [63, 86]. Finally, in addition to the traditional applications of X-ray fluoroscopy and

CT angiography during image-guided cardiac catheterization [59] and aneurysm surgery [138], vascular

imaging is finding new applications in intraoperative guidance during robot-assisted prostate and kidney

cancer surgeries [5, 7, 110, 187].

Extraction of vascular structures are of such importance that many acquisition techniques and imag-

ing modalities have been specifically developed to enhance the appearance of vasculature in medi-

cal images. Such techniques include contrast enhanced CT or MR angiography, laser speckle imag-

ing [118], near infrared fluorescence imaging [187], color Doppler US and optical coherence tomog-

raphy (OCT) [80]. Although these modalities and techniques enhance the appearance of the imaged
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Table 1.1: Categorization and comparison between state-of-the-art methods for automatic vessel
segmentation.

Modality Application Method

M
ul

ti-
Sc

al
e

M
ot

io
n

M
od

el

Frangi et al. [49] 2D DSA &
3D MRA

Vessel enhancement Vesselness Y N

Lorigo et al. [101] 3D MRA &
3D CT

Vessel segmentation Active contours N N

Staal et al. [171] RGB image Segment retinal vessels Vesselness Y N

Vermeer et al. [193] 2D image Segment retinal vessels AM N N

McIntosh and Hamarneh [107] 3D MRA &
3D CT

Vessel segmentation Vesselness+
TSMT

Y N

Law and Chung [98] 3D MRA Detect curvilinear structures OOF Y N

Řı́ha and Beneš [142] DUS Segment carotid artery OF+MO+HT N Y

Schaap et al. [152] 3D CT Segment coronary artery Supervised AM Y N

Rigamonti and Lepetit [141] 2D RGB Segment retinal vessels Random forests Y N

Becker et al. [13] 2D RGB &
3D BM

Vessel segmentation CNN Y N

Amir-Khalili et al. [5, 7] EV Segment renal vessels PBMS Y Y

Hennersperger et al. [71] 2D US Segment carotid artery Vesselness+
AM+USCM

Y N

McLeod et al. [111] DUS Detect dural pulsation EKF+FS N Y

Gastounioti et al. [53] DUS Segment plaque GWIR+GBS N Y

Gao et al. [52] 3D MR Segment carotid artery
and abdominal aorta

HT + NURBS Y N

Amir-Khalili et al. [6, 8] DUS Segment carotid artery MF+PRMM Y Y
AM: Appearance Model MF: Monogenic Flow
BM: Brightfield Microscopy MO: Morphological Operations
CNN: Convolutional Neural Network MRA: Magnetic resonance angiography
CT: Computed tomography NURBS: Non-uniform rational B-spline
DSA: Digital Subtraction Angiography OF: Optical Flow
DUS: Dynamic Ultrasound OOF: Optimally Oriented Flux
EKF: Extended Kalman Filter PBMS: Phase-Based Motion Segmentation
EV: Endoscopic Video PRMM: Pulsatile Radial Motion Model
FS: Frequency Smoothing TSMT: Tubular Spring-Mass Tracker
GBS: Graph-Based Segmentation US: Ultrasound
GWIR: Group-Wise Image Registration USCM: Ultrasound Confidence Maps
HT: Hough Transform

vasculature, many of the aforementioned clinical applications stand to benefit from a fully automatic

vessel localization algorithm. The need for automated vessel localization, or segmentation, has in-

spired novel contributions in the field of medical image analysis. In the next subsection, we provide an

overview of important contributions made in this field and survey the emerging trend of incorporating

temporal information (kinematics) into automatic vessel segmentation algorithms.

1.4.1 Related Works

In Table 1.1, we have summarized notable contributions made towards fully automatic segmentation

of vascular structures with an emphasis on seminal techniques and recent approaches that incorporate

temporal motion models. The reader is referred to comprehensive surveys of vessel segmentation tech-
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niques [89, 90, 99, 179] for more information on other existing methods.

The early attempts at automatic vessel segmentation focus on applying advanced low-level pixel

based image analysis techniques to static intensity information acquired from the aforementioned imag-

ing modalities. Such attempts include the exploitation of ridge-like features in the image [171], Hessian-

based vesselness features [49, 71, 98], and model/physics based approaches [71, 193]. Other high-

level techniques have also been proposed by embedding these low-level features in broader frame-

works, which include: vessel trackers [107], deformable 3D cylindrical non-uniform rational B-spline

(NURBS) surfaces [52], a combination of wavelet-based features and machine learning [168], active

contours [101], and supervised machine learning techniques [13, 141, 152]. With the exception of

Doppler US and OCT, the techniques listed above and in cited survey papers [89, 90, 99, 179] focus on

extracting low- and high-level features from static information alone, ignoring the most characteristic

feature of a pulsating vessel, i.e., its kinematics or temporal behavior.

On the other hand, US and OCT can exploit the pulsatile flow kinematics of blood inside the vessels

to facilitate localization. Such modalities are capable of measuring the directionality and relative veloc-

ity of structures (usually blood) by leveraging the Doppler effect. The flow of blood, however, is not

the only temporal characteristic of vascular structures. The pulsatile radial distension and compression

of the vascular walls (from the lumen to tunica externa) is another characteristic that can be observed

and measured using almost any imaging modality so long as the temporal and spatial resolutions are

adequate.

The first use of temporal features for the purpose of vessel segmentation did not explicitly model

the kinematics [142]. In their paper, the authors simply assumed that the only meaningful movement in

DUS scan of the CCA imaged along the transverse axis is the pulsatile movement of a circular pattern.

Based on this assumption the authors propose to use an optical flow (OF) sequence and simply average

the absolute value (magnitude) of motion across the entire sequence to generate features. These features

are then processed with median filtering and morphological operations (MO) to generate a binary mask.

High-level features are finally extracted from the Hough transform (HT) of the binary mask and the

resulting features, along with the last frame of the sequence, are fed into a Bayesian classifier to compute

the center and radius of the CCA.

We initially proposed to exploit the kinematics of pulsating vessels in the context of kidney cancer

surgery to identify major vessels that are hidden under layers of connective tissues [5, 7]. Rather than

a simple computation of the average magnitude of motion using OF, we proposed the use of a temporal

bandpass filter to isolate features that are in sync with the heart-rate. In our approach, we reformulated

the Eulerian video magnification (EVM) [195] pipeline into a multi-scale phase-based motion segmen-

tation (PBMS) algorithm to detect the motion of renal vessels by analyzing the magnitude of temporal

change in the local phase information of an endoscopic video (EV) sequence. Our PBMS method,

although novel in application, only operates on the magnitude of local pulsatile motion and is conse-

quently prone to false positives when tested on other applications and imaging modalities, failing to

differentiate between the motions specific to vasculature versus neighboring structures that happen to

move at the same frequency as blood vessels. In more recent publications [6, 8], to reduce the number
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of false positives and to extend the application of our method to more challenging imaging modalities,

such as DUS sequences of the CCA, we proposed a novel kinematic model-based vessel segmentation

(KMVS) pipeline that couples a pulsatile radial motion model (PRMM) with a more detailed computa-

tion of motion characteristics that entails an estimation of the local magnitude and orientation of motion.

We showed that this updated pipeline increases the accuracy of kinematics-based vessel segmentation

and that by reconstructing the monogenic signal [43] and computing the motion vectors using a mono-

genic flow (MF) technique, the local orientation of motion may be estimated in a more computationally

efficient manner compared to the previous PBMS method.

Concurrent with our efforts, other novel methods have been proposed to address similar challenges

with the help of pulsatile kinematics models. In a recent publication, it was demonstrated that a

kinematic model of periodic low velocity out-of-plane motion of structures in DUS using extended

Kalman filter (EKF) and frequency smoothing (FS) can localize dural pulsation for spine needle inter-

ventions [111]. The proposed method operates in real-time and is capable of detecting subtle motions

that are imperceptible in Doppler US. Furthermore, the proposed visualizations were shown to reduce

the normalizing path length and number of attempts required to perform a mock epidural procedure on

a spinal phantom model. Although this method was shown to be effective in the novel application pre-

sented, similar to our PBMS method, it will likely not be able to distinguish between vascular structures

and others that happen to translate at the same frequency as vessels. The FS aspect of the proposed

method may allow the EKF approach to perform better than PBMS, but this method cannot benefit from

an advanced kinematic model of vasculature due to the lack of a mechanism to account for the spatial

orientation of motion.

In the context of CCA atherosclerosis assessment, another method was proposed to learn the kine-

matic dependencies between atherosclerotic and healthy vascular tissue in DUS by combining group-

wise image registration (GWIR) with a graph-based segmentation (GBS) scheme [53]. Rather than

implementing a physics-based kinematic model, the authors proposed a data-driven approach to learn a

complex discriminative model. To do this, the magnitude of total vertical and horizontal displacements

(MTD) are first computed for every pixel throughout the sequence using GWIR. Then, independent

component analysis is used to identify the dominant and independent motion classes, which are used as

a basis to which the MTD of each pixel is mapped using mutual information. A final mutual informa-

tion value is assigned to a given pixel through majority voting. The likelihood of a pixel belonging to

a binary class (healthy or atherosclerotic) given the final map is first learned and then used as the data

term to perform GBS and generate contiguous contours around the atherosclerotic regions. Segmenting

atherosclerotic plaque from DUS is challenging and the proposed pipeline performs well. It can be ar-

gued that the pipeline may be modified to segment vascular structures in addition to the plaque regions.

Even though real-time performance is not a strict requirement for diagnostic clinical applications, the

speed of the algorithm is of clinical value. The authors do not mention the runtime of their pipeline and

the GWIR method used in the paper was projected to take minutes to complete, at best, if optimized and

implemented in C++ [169]. It is thus unlikely that the proposed method would be able to perform in

real-time.
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We introduce our contributions in intraoperative segmentation of blood vessels from dynamic medi-

cal image data starting with Chapter 2, in which we present our automatic phase-based motion segmen-

tation technique. Our proposed PBMS method can localize blood vessels that are hidden under layers

of tissues (visually occluded) by estimating the magnitude of apparent motion via the change in local

(spatial) phase information and measuring this change over multiple spatial scales and orientations to

encode the motion information from neighboring pixels. In Chapter 3, we follow with the evolution of

our methodologies that result in improved accuracy, increased computational performance, and broad-

ened applicability to other medical imaging modalities. Our next-generation kinematic model-based

vessel segmentation methods extend the computation of motion to include the orientation of motion,

in addition to the magnitude of motion, and take advantage of a mathematical pulsatile radial motion

model to localize vasculature.

1.5 Navigation Uncertainty in Image-Guided Therapy
In comparison to vessel segmentation, the computation and visualization of intraoperative guidance

uncertainty during IGT is a relatively new topic of research that has recently found applications in

orthopedic surgery [159, 160], image-guided neurosurgery [147], longitudinal studies of Alzheimer’s

disease [162], as well as pharyngeal [148] and prostate [119] radiotherapy. A method for visualizing

the influence of propagated non-rigid registration uncertainties onto probabilistic segmentation has also

been presented [163]. Similar visualizations are currently being explored in radiotherapy for brain

tumors [148] and also for probabilistic extrapolation of glioma invasion with variable margins [92].

1.5.1 Sources of Navigation Uncertainty

Sources of uncertainties in computer-assisted navigation emanate from both preoperative and intra-

operative stages of IGT. Among the contributing sources to navigation uncertainty, the uncertainties

associated with the image segmentation stage of IGT are well known. Probabilistic segmentation of

image data is not novel and many automated segmentation techniques are capable of producing fuzzy

or probabilistic labels that represent the underlying uncertainties in the resulting segmentation output;

more so now that statistical atlas-based [78] and machine learning [156] techniques for medical image

segmentation are gaining in popularity. It is also possible to estimate segmentation uncertainties within

semi-automated image segmentation frameworks that are intended for accurate segmentation of preop-

erative data [58]. Despite the availability of probabilistic segmentation methodologies, the segmented

models produced for the purpose of IGT navigation are often converted to determinate or crisp labels

during the preoperative planning and intraoperative scene augmentation.

Another important, and often ignored, source of uncertainty in many of the emerging image-guided

surgical navigation frameworks stems from the extraction of 3D surface geometry from stereo endo-

scopic video. In the past, attempts have been made to model the encoding of 3D geometry in a pair

of 2D images using Bayesian frameworks [14], probabilistic stereo reconstruction methods have been

proposed [74, 87], and probabilistic scene analysis has also been used to detect smooth problem areas

prior to matching [172]. These approaches merely leverage a probabilistic model to arrive at a globally
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optimal depth reconstruction and, surprisingly, none of these approaches attempted to propagate the

computed uncertainties to create a probabilistic representation of the extracted geometry.

We explore methods to estimate and visualize sources of uncertainties in Chapter 4, in which we

present our preliminary phantom experimentation using an uncertainty-encoded navigation framework

designed for image-guided minimally invasive robot-assisted partial nephrectomy (RAPN). The pre-

sented framework encodes uncertainties through the computation and visualization of uncertainties that

may occur during preoperative CT segmentation and computational stereopsis steps of navigation.

Although the computation of segmentation and geometric uncertainties are important, the combined

effects from these separate sources of error cannot be quantified in many IGT applications without

their integration within a probabilistic registration framework. In fact, the lack of research into the

propagation of uncertainty in IGT can be attributed in part to the need for an effective mathematical

framework for computing and propagating the effects of uncertainty during the registration stage of

IGT [159].

1.5.2 Uncertainty in Deformable Image Registration

Deformable image registration (DIR) algorithms are arguably the most important source of uncertainty

in IGT navigation systems and, in such contexts, registration uncertainty (RU) is challenging to compute

and visualize. Unlike simpler rigid and affine transformation models, DIR is fraught with challenges

stemming from the complexity of parameter optimization, choice of similarity metric, and evaluation of

accuracy and precision of resulting transformations [81, 170, 181]. Such challenges are exacerbated as

transformation models become more complex to accommodate for more realistic deformations.

Despite the challenges associated with DIR, deformable models generally outperform simpler reg-

istration models since most organs inside the human body undergo complex elastic deformations. In-

evitably, however, errors that occur during DIR would propagate through to all subsequent analyses per-

formed post-registration. Examples include errors in augmented reality visualization during computer-

assisted surgery [72], biased estimation of head movement in fMRI time-series analysis [51], and geo-

metric uncertainties in localizing organ shape or motion during image-guided radiotherapy [30]. Addi-

tionally, DIR uncertainties also affect the decisions made by the end-users of DIR, which include both

image analysts and physicians. An erroneous DIR may result in catastrophic outcomes for a patient

during image guided therapies where DIR is often used for the purpose of guidance [40]. Furthermore,

established methods for estimating the overall accuracy of registration processes from fiducial or target

registration errors cannot be simply generalized from rigid to deformable transformation models [204].

Instead, in order to calculate the accuracy of DIR, the ground truth (GT) transformation, a dense 3D-3D

mapping, is required.

Unfortunately, GT data for DIR are either scarce, non-existent, or impossible to obtain for most

clinical applications. Obtaining GT data is particularly difficult in clinical applications where volumet-

ric medical images from complementary imaging modalities are fused for the purpose of image-guided

interventions or therapies. Such applications widely vary from multimodal imaging for radiation treat-

ment [30] to computer assisted surgery [106]. The lack of a GT thus restricts the validation process to
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testing on synthetically generated data or simplified approximations of DIR errors [19, 181].

Even though errors cannot be equated to uncertainty, the two have been found to be strongly cor-

related [75, 102] and RU thus remains as a valuable measure of quality for DIR. The importance of

understanding and communicating the uncertainty associated with DIR software is a timely issue. Re-

cently, the Therapy Physics Committee of the American Association of Physicists in Medicine (AAPM)

commissioned a task group to review the current approaches and solutions for image registration in

radiotherapy. Among their clinical recommendations, Brock et al. [19] advocated for a better under-

standing of the basic components of the registration algorithm; end-to-end tests of imaging, registration,

and treatment systems using a physical phantom; and comprehensive commissioning of image regis-

tration using digital phantom data. Although we support these recommendations, we emphasize that

phantom-based studies shed limited insights on the validity of DIR software, primarily due to the fact

that phantom-based analyses are often an oversimplification of real world situations where noise, dis-

tortion, and complex anatomical variations typically occur.

1.5.3 Related Works

Our survey of the prior works relating to computation and propagation of RU is naturally divided into

two parts. In the first part of this section, we survey and outline the limitations of current mathematical

methods for estimating RU and, in the second part, we discuss notable works that propose application

specific end-to-end frameworks for propagating the effects RU.

Registration uncertainty computation:

Current approaches to estimating RU may be divided into three groups: (i) characterizing uncertainty

from contextual image information [182, 196], (ii) frequentist approaches involving multiple registra-

tions [75, 76, 94, 199], and (iii) Bayesian approaches involving model inference on the posterior of

the deformation parameters [147] and at the regularization level [161]. Among these methods, Watan-

abe and Scott [199] stands out as a suitable base for a solution in the context of IGT since: it can be

implemented on top of existing DIR software; it is computationally more efficient than the Bayesian

approach of Risholm et al. [148]; and it is capable of representing RU through ellipsoidal spatial con-

fidence regions in the pixel-domain of the target image, which facilitates intuitive visualization and RU

propagation. Despite these important advantages, some associated limitations exist which we address

below.

It may be argued that a notable limitation of the cited frequentist methods, in contrast to the Bayesian

approach of Simpson et al. [161], is that the computation of RU is evaluated from changes in image sim-

ilarity subject to local random deformations without an explicit consideration for the global influence of

regularization. Though the effects of regularization on RU have been shown to be significant, e.g., es-

pecially the case for complex intra-subject brain registration [164], the amount of computation required

for inference on regularization parameters is costly. This cost hinders the applicability of such Bayesian

methods in intraoperative applications. On the other hand, the frequentist RU computation methods are

often pleasingly parallel and extendable to commonly used medical image registration software such as
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elastix [91]. We elaborate on this point further in Section 5.3.5.

Another limitation of the frequentist approach of Watanabe and Scott [199], the context-based

method of Wang et al. [196], and the generative Bayesian approaches of Risholm et al. [147] and Simp-

son et al. [161] is that they are designed for unimodal registration tasks; wherein two images from the

same modality, or even from the same patient, are registered together. In Watanabe and Scott [199] for

example, RU is estimated from intensity information of the moving image alone, which may not be rep-

resentative of the true RU. Extending the generative Bayesian RU estimation approaches to multimodal

DIR is also challenging as doing so would essentially require a model for generating the target imaging

modality from the moving imaging modality.

Registration uncertainty propagation:

Compared to the amount of literature on RU estimation methodologies, research into RU propagation

in an end-to-end fashion is surprisingly scarce. Within the broad context of fractionated radiotherapy,

which also includes external beam radiotherapy, the effects of DIR error propagation have been mainly

studied on dose accumulation. Most notably, the Bayesian RU estimation method of Risholm et al.

[147] was applied to oropharyngeal radiotherapy in Risholm et al. [148], while Murphy et al. [119]

and Tilly et al. [186] implemented a frequentist approach to quantify RU during radiotherapy of the

prostate. In Murphy et al. [119], principal component analysis was applied to multiple registrations

of CT image pairs to obtain decorrelated modes of error, from which sample deformations (used to

compute RU) were drawn. In Tilly et al. [186], a synthetic simulation framework was used to study

the sensitivity of planning parameters to DIR. Radiation planning parameters are typically derived from

dose-volume histogram (DVH) that provide a summary of absorbed radiation over the entire volume

of a structure, which include the target volume and the organs at risk (OAR) [120, 133]. Cumulative

DVH is important for planning and postoperative analysis as it has been shown to correlate with patient

toxicity outcomes [55]. For hollow elastic OAR, in addition to DVH parameters, it is also important to

study the spatial distribution of the accumulated doses as it is indicative of the formation of radiation

hot spots and, thus, potential resulting complications [209]. To the best of our knowledge, the effects of

RU have only been studied on the entire dose volume [147] or the resulting DVH. There is still a need

for planning parameters that can capture the spatial distribution of total radiation dose while accounting

for the quality of DIR.

Given the challenges described above, there remains a need for a RU estimation and propagation so-

lution that is supported by mathematical formalism while being implementable as an end-to-end frame-

work in real world applications. To address the need for RU-encoding methodology, in Chapter 5, we

present a mathematical framework for estimating RU and propagating the effects of the computed uncer-

tainties from the registration stage through to the proceeding dosimetric evaluations and visualizations.

1.6 Thesis Contributions
Our peer-reviewed contributions presented in this thesis are organized into four chapters; the first two

of which pertain to our first research question, the latter two to the second.
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1.6.1 Motion-Based Localization of Vasculature

Our methods presented in Chapter 2 and Chapter 3 demonstrate how motion cues may be extracted and

used to locate blood vessels in IGT applications. In support of our contributions, we provide publicly

available MATLAB executables1 of our PBMS and KMVS methods to allow our fellow researchers to

evaluate and incorporate our proposed methodologies within other application domains.

Phased-Based Motion Segmentation of Occluded Vasculature

We propose an automatic PBMS method, which leverages subtle motion cues from medical video data

to localize blood vessels that are hidden under layers of connective tissues [5, 7]. We also present:

• Evaluations of our PBMS method on a retrospective study of fifteen clinical RAPN procedures. To

the best of our knowledge, we are the first to attempt the task of localizing occluded vasculature in

endoscopic video without the use of additional hardware or preoperative scans. In this challenging

context, we demonstrate quantitatively promising vessel localization performance, i.e., a mean

area under the receiver operating characteristics curve (AUC) of 0.72.

• Evaluations of our high-level variational scene segmentation method [126] (which integrates our

PBMS alongside other image-based cues and patient-specific priors, i.e., shape and deformation)

and demonstrate a 45% increase in pixel-wise accuracy (for localizing renal vasculature in context

of RAPN) compared to our original PBMS method.

• A preliminary clinical user study involving four surgeons and our findings regarding how our

PBMS visualization techniques may be improved in the future.

Kinematic Model-Based Motion Segmentation

We propose KMVS [7, 8], an extension of PBMS, that is designed to localize vasculature from dynamic

medical image sequences by leveraging: (i) the estimation of local motion vectors and (ii) a novel

PRMM that enables the modelling of divergent (radially moving) motion patterns. We also present:

• Implementation of a parallelizable technique for the computation of motion vectors, which esti-

mates motion via the changes in the monogenic representation of image information.

• Four alternative implementations of our KMVS method using different motion computation tech-

niques and discussions regarding the advantages of the different implementations.

• Evaluations of the four implementations of our KMVS method on a synthetic dataset and two

real DUS datasets of the CCA and report differences in performance, in terms of segmentation

accuracy and computation time, compared to the PBMS method. Compared to PBMS, our fast

tuned optical flow implementation increases the average AUC from 0.82 to 0.99 on our in-house

data and from 0.83 to 0.98 on a publicly available dataset.
1MATLAB executables are available for download from https://bisicl.ece.ubc.ca/software/radialDistension.html
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1.6.2 Computation, Propagation, and Visualization of Navigation Uncertainties

In Chapter 4 and Chapter 5, we present our contributions towards automatic augmentation of intraop-

erative data through the computation, propagation, and visualization of different sources uncertainties

that result from the use of computer-assisted surgical and radiological guidance tools.

Uncertainty-Encoded Augmentation of the Surgical Scene

We propose an endoscopic scene augmentation method for facilitating the registration of probabilistic

preoperative CT segmentations with stereo endoscopic video data [4]. We also propose:

• An uncertainty-encoded computational stereopsis technique for extracting probabilistic surface

information from stereo endoscopic data.

• Application of our framework to an ex vivo lamb kidney phantom to simulate the tumor demarca-

tion stage of RAPN interventions.

• Uncertainty-encoded visualization techniques for depicting probabilistic tumor margins onto the

endoscopic scene and discussions regarding the potential advantages of our proposed visualiza-

tions compared to existing crisp (deterministic) techniques.

Encoding Deformable Image Registration Uncertainties for Scene Augmentation

We propose a mathematical framework for estimating RU from DIR and subsequently propagating the

effects of the computed uncertainties from the registration stage through to the visualizations, organ

segmentations, and dosimetric evaluations [9]. We also propose:

• A method for computing RU that is designed to: (i) interface with existing multimodal DIR

software, which we deploy using elastix, and (ii) represent RU in a parametric manner using

structure tensors.

• A weighted averaging technique for propagating the effects of RU, onto volumetric segmenta-

tion and dose data, to produce a probabilistic map of aligned segmentation and dose information

subject to the estimated RU.

• Evaluation of our framework on a retrospective study consisting of 37 multi-fraction cervical

cancer brachytherapy (MFCCB) patients, in context of which we present preliminary evidence

that our proposed framework may be advantageous. Specifically, we show that (i) the effect of

RU on dose accumulation provide useful insights for quality control and post-treatment analysis;

(ii) RU propagation improves the transfer of delineations from one fraction to the next; and (iii)

RU can be used to generate visualizations that reflect the quality of DIR that may prove to assist

physicians in making decisions based on registered image data.
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Chapter 2

Phase-Based Motion Segmentation of
Occluded Vasculature

“We, on the other hand, must take for granted that the things that exist by nature are,
either all or some of them, in motion.”

— Aristotle

In this chapter, we present our contributions towards automatic segmentation of visually occluded

vasculature from video data. The methodology presented herein was originally published in Amir-

Khalili et al. [5, 7], Nosrati et al. [126]. To aid in vessel discovery, in Amir-Khalili et al. [5, 7], we

proposed a novel automatic method to segment hidden vasculature by labeling minute pulsatile motion

that is otherwise imperceptible to the naked eye. Our segmentation technique extracts subtle tissue

motions using a technique adapted from phase-based video magnification [195], in which we measure

motion from periodic changes in local phase information. Based on measuring local phase through

spatial decomposition of each frame of the endoscopic video using complex wavelet pairs, our approach

assigns segmentation labels by detecting regions exhibiting temporal local phase changes matching the

heart rate. Our proposed phase-based motion segmentation (PBMS) method presented in this chapter is

extended in Chapter 3 to increase its specificity to outliers.

2.1 Localizing Vasculature using Temporal Information
Periodic pulsations of major blood vessels are within a narrow temporal passband centered around the

heart rate of the patient. With high definition surgical video data, one can observe the pulsations of

the vessels as faint movements on the surface of the connective tissue that covers them. Our goal is to

automatically process every frame in the surgical video and label pixels that exhibit this characteristic

motion. We denote our labels

L(x, t) : R2×R+→ l ∈ [0,1], (2.1)

where l is a normalized fuzzy value that is proportional to the magnitude of pulsatile motion measured at

the pixel x = (x1,x2)
ᵀ,x∈Ω in the 2D spatial domain Ω⊂R2 at a given point in time t ⊂R+. Similarly,
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Figure 2.1: Overview of our proposed method: (a) a synthetic input video composed of one circle
that pulsates (top) and another that remains stationary (bottom). (b) Steerable filter bank
with illustrated impulse responses decompose the information inside each frame into (c)
magnitude and local phase at different scales and orientations. (d) The phase information
of all frames of the video is temporally filtered using an ideal bandpass filter centered on
the frequency of the pulsating circle. (f) A median filter is applied to (e) the magnitude
weighted response of the filtered phases to remove phase noise. (g) The results are then
combined to generate the fuzzy labels L and (h) added back to the input video as an overlay.
A spatiotemporal cross section of the video (lower right) illustrates four pulsations across 30
frames of the synthetic video. High resolution images are available in the digital copy.

the color endoscopic video signal is defined as

V(x, t) : R2×R+→ v⊂ R3, (2.2)

in the continuous time domain, where v = (vr,vg,vb)
ᵀ represents the vector encoded values of red vr,

green vg, and blue vb color channels at every pixel x. In the discrete time domain, each jth frame j ⊂ N
of a video recorded at 1/T frames per second is defined as V(x, jT ) = V(x, t). The motion estimation

techniques presented in this thesis, extract motion from the scalar valued (grayscale) representation of

the video defined hereby as a function

f : (x⊂ R2, j ⊂ N)→ R, (2.3)

mapping a pixel x in the 2D spatial domain of each frame j to an intensity value f = 0.299vr+0.587vg+

0.114vb. In the remainder of this section, we elaborate on our methodology for generating segmentation

labels L from local phase measurements, starting with the relationship between phase and motion.

2.1.1 Extracting Motion-Based Cues from Time Varying Local-Phase Information

The shift property of the Fourier transform, f (t − t0)⇔ F(ω)e−iωt0 , states that motion is related to

the change in phase, however the explicit computation of motion vectors from phase with techniques
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like Gautama and Van Hulle [54] is computationally expensive. To avoid this cost, we aim to exploit

the relationship between phase and motion to segment the pulsating regions of interest in the video

sequence. The overview of our method is shown in Figure 2.1 and it is described in the following

1D intuitive manner, without loss of generality. First, consider a video, a simplified version of the

one shown in Figure 2.1a, denoted as f (x, t) representing a function mapping given pixel x ⊂ R at

time t to an intensity value. Suppose that this video is a sequence composed of the 1D image f (x)

that is translated by a displacement vector dx(t) along the x direction as a function of time t such that

f (x, t) = f (x+ dx(t)). To extract this motion, we decompose each frame of the video into spatial sub-

bands

f (x, t) = f (x+dx(t)) =
∞

∑
ω=−∞

Aωeiω(x+dx(t)) (2.4)

with each sub-band representing a complex sinusoid Sω(x, t) = Aωeiω(x+dx(t)) at spatial frequency ω .

The phase of each sub-band is defined as φω(x, t) = arg(Sω) = ω(x+ dx(t)). Since ωdx(t) is the only

motion related component of the phase that varies with time, we can isolate it from the DC component

ωx by applying a DC-balanced temporal bandpass filter with a wide enough passband to capture all

temporal variations in dx(t).

Multi-Scale Steerable Analytic Decomposition

Generally, motions in a video are not merely a simple global translation. The displacement vector

dx(t) is, in fact, dx(x, t) since it varies as a function of both time and space. In 1D, local phase can be

measured by constructing the analytic signal. The analytic signal is constructed from quadrature filters,

i.e., 1D Hilbert pair of bandpass filters. The estimation of local phase is more complex in 2D images and

there are thus many approaches to extend the analytic signal to 2D. One approach is to use a steerable

complex pyramid decomposition [132] to extract local motion information from a sequence of grayscale

images. To measure these spatially localized variations, rather than using a Fourier series expansion,

we decompose each frame of the video using a spatial filter bank (pyramid) consisting of a cascade

of Gabor odd and even symmetric filter pairs (analogous to Hilbert transform filter pairs in 1D) with

limited spatial support (note that the impulse responses of these wavelets have been enlarged for clarity

in Figure 2.1b). In the steerable pyramid, the spatial extent of each filter is determined by the scale or

spatial passband of the Gabor wavelets and, at each scale, the filters are designed to measure motion

along a certain direction or orientation in 2D space (note that in Figure 2.1b, a pyramid consisting of

two scales and two orientations is used). In the 1D example, if the local motion is from a single sinusoid

with spatial frequency ω along the x direction, we would only need a single pair of Gabor wavelets to

extract the motion from the change in local phase.

With the complex steerable pyramid, the analytic signal is estimated at different scales s= {1, ...,S},
along n = {1, ...,N} different orientations from the complex response h(x, j;s,n)|s,n : R3→ C to a set

of steerable filters b(x;s,n). The real and imaginary parts of h(x, j;s,n) correspond to a pair of even-

and odd-symmetric filter responses that are analogous to a one dimensional Hilbert transform along the

given orientation. The orientations are sampled evenly such that the local orientation θn (where ]x =
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(cosθn,sinθn)
ᵀ) is determined by θn = πn/N, where N is the total number of orientations used in the

pyramid. This steerable method measures the magnitude of local phase φ(x, j;s,n) = arg(h(x, j;s,n))

projected onto N different angles θn,n = {1, ...,N}.

Spatiotemporal Filtering

Local, or instantaneous, phase is calculated from the argument of the response to the wavelet pair (Fig-

ure 2.1c). We then estimate local motion dx(x, t) from the change in local phase by applying a DC

gain-balanced temporal bandpass filter to the obtained local phase values. We filter the local phase

measurements using an ideal bandpass filter:

z( j) = 2τHsinc(2τH j)−2τLsinc(2τL j), (2.5)

where τL is the temporal low frequency cut-off and τH is the high frequency cutoff and the sinc func-

tions are the time domain representations of rect functions in the temporal frequency domain that con-

struct an ideal bandpass. The response of the temporal bandpass filter is φz(x, j;s,n) = φ(x, j;s,n)∗z( j).

We tune the passband of the filter to the typical heart rate of a patient so that we then can simply and

effectively isolate components of the local motion that are synchronous with the heart rate and hence to

vascular pulsation. In this work we have set the passband of the temporal filter wide enough such that

it can separate pulsatile motion from breathing motion in all of the fifteen cases. Future development

should involve a tighter estimate of the patient’s heart rate to improve the results. Such estimates may

be recorded directly from the patient’s heart rate monitor or obtained from the anesthetist.

To generate fuzzy segmentation labels from the computed local motion, φz is first attenuated in

regions where the magnitude response (Aω in the 1D case) of the spatial sub-band is weak. This is done

by computing the product between the bandpassed phases and the normalized magnitude of the spatial

filter response vectors |h(x, j;s,n)| to obtain φ̂z(x, j;s,n) = |h(x, j;s,n)|φz(x, j;s,n) (Figure 2.1e). Since

local phase measurements φω are wrapped between the interval (−π,π], and since z in Equation 2.5

acts as a derivative, the jumps in wrapped phase become impulse noise in φ̂z. We remove this noise

from the product Qω using a spatiotemporal median filter (Figure 2.1f). For faster performance, the

spatiotemporal median filter is replaced with a spatial pseudo-median filtering process using efficient

2D morphological opening ◦ and closing • operations as follows

φ̃z = φ̂z ◦E + φ̂z •E− φ̂z, (2.6)

where E is a 2×2 square structuring element.
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Multi-Scale Motion-Based Segmentation

The denoised product φ̃z(x, j;s,n) is averaged across all spatial sub-bands (Figure 2.1g) and all filter

orientations to obtain our final fuzzy labels

L =
1
M ∑
∀s,n

|φ̂z(x, j;s,n)|
2πωs

, (2.7)

where ωs is the spatial frequency of scale s and M is a normalizing factor to fix the range of phase-

based motion segmentation (PBMS) labels L ∈ [0,1]. The resulting sequence of fuzzy labels L may

be displayed as an overlay or separately to highlight this pulsatile motion (Figure 2.1h). In a real-time

application, the ideal temporal filter z may be replaced with an infinite impulse response filter.

2.2 Automatic Vessel Localization during Robot Assisted Partial
Nephrectomy

Approximately 64,000 new cases of kidney cancer, commonly renal cell carcinoma, were projected to

occur in the U.S. in 2017 [158]. This constitutes double the number of cases reported in 2005 and has

not changed since 2014 [157]. Kidney resection, also known as a nephrectomy, remains the only known

effective treatment for this type of localized cancer [33]. Robot-assisted partial nephrectomy (RAPN)

refers to nephron-sparing techniques performed with surgical robots in which only the cancerous cells

are excised and the kidney is reconstructed to retain functionality.

The RAPN procedure is organized into five main stages according to Gill et al. [57]: (i) Bowel

mobilization; (ii) Hilar dissection and control; (iii) Identification and demarcation of tumor margins;

(iv) Resection of tumor; and (v) Reconstruction of the kidney (renorrhaphy). Hilar dissection stands out

as a daunting stage requiring significant expertise since improper clamping due to overlooked accessory

renal vessels can cause significant bleeding during resection [165].

55.3% 14.3% 7.9% 6.8% 5.3% 3.4% 2.6% 1.9% 1.1% 0.7% 0.4% 0.4%

Figure 2.2: Variation of renal artery structure and corresponding percentage of occurrence in 266
kidneys adapted from [151]. In each case all vessels that cross the dotted line must be
clamped or ligated to minimize intraoperative hemorrhaging.

Hilar dissection is a delicate procedure during which the surgeon dissects through the Gerota’s

fascia and removes the connective tissue that surrounds the renal artery (RA) and renal vein (RV).

This task is complex due to substantial natural variability in patient vasculature (Figure 2.2) and the

amount of perinephric fat surrounding the kidney. Access to the hilum grants the surgeon control over

the flow of blood into and out of the kidney, which is critical as warm ischemia is required during

the excision of the tumor to minimize internal hemorrhaging. In some cases, accessory vessels that

25



branch off from the RA or the abdominal aorta (AA) are accidentally missed as they lie hidden behind

a thick layer of perinephric fat. In one study of 200 laparoscopic partial nephrectomy cases by world

leading surgeons [140], seven incidents of intraoperative bleeding were reported as a result of inadequate

hilar control, two of which were directly caused by missed accessory vessels. Although the number

of incidents is relatively low, other studies by [151, 192] observed the existence of accessory vessels

in more than 35% of patients. These accessory vessels also prolong the hilar dissection stage as the

surgeon must locate them prior to resection. If the surgeon’s level of experience is limited, the incidence

of bleeding and overall dissection time may be much higher. The implications are many, aside from

obvious complications that would arise from internal hemorrhaging, as bleeding may also jeopardize

the surgical outcome by occluding the surgeon’s view while the tumor is being resected.

Nephrogenesis and Kidney Migration: Development of Accessory Renal Arteries

Kidneys are primary retroperitoneal organs developed from intermediate mesoderm. Kidney develop-

ment, also called nephrogenesis, proceeds through a series of three successive mesenchyme-to-epithelial

transformation phases: pronephros, mesonephros, and metanephros. These three phases follow a cranio-

caudal developmental cascade starting with the development of the pronephros in the neck region of the

embryo. The pronephros extends from the sixth to the fourteenth somites and consists of 6-10 pairs of

tubules [31]. These tubules spill into a pair of primary ducts that are formed at the same level and ex-

tend caudally into the cloaca. The pronephros is a vestigial structure that is nonfunctional in mammals

and disappears completely by the fourth week of human embryonic life as the mesonephros develops.

Mesonephros develops by the formation of mesonephric tubules from the intermediate mesoderm and it

is the principal excretory organ during early four to eight weeks of embryonic life. It gradually degen-

erates, although parts of its duct system (Wolffian duct) become associated with the male reproductive

organs [180]. Metanephros arises caudal to the mesonephros at five weeks of development and it ulti-

mately serves as the permanent and functional filtration components of the kidneys. The ureteric bud

arises as a diverticulum from the Wolffian duct, close to the entrance to the cloaca and grows towards

the metanephric mesenchyme. As the cephalic end of the ureteral bud grows inside metanephric mes-

enchyme, it expands within the growing mass of metanephrogenic tissue to form the renal pelvis and

the primary collecting ducts of the kidney [180].

As the kidney develops in the elongating fetus, it moves cephalad relative to the bladder to its

mature location (in the retroperitoneum just caudal to the diaphragm). During its migration, the kidney

takes new arterial supply from the aorta and new venous drainage into the inferior vena cava (IVC).

Occasionally, caudal branches of these vessels persist as the kidney ascends. These persisting branches

form accessory renal arteries (Figure 2.2). Accessory renal arteries may arise from the aorta adjacent to

the main RA, distal to the ostium of the main RA, or even from the iliac artery.

According to Chavan et. al. [26], when multiple arteries occur, each artery supplies a distinct seg-

ment of the kidney. As there is no collateral perfusion, occlusion of one artery will result in infarction

of the associated kidney segment. Multiple renal veins, draining into the IVC, are almost as frequent

as multiple renal arteries on the right side and are infrequent on the left side. Unlike the arteries, how-
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ever, the renal veins interconnect (anastomose) within the kidney. If one renal vein is occluded, the

remaining renal veins will continue to drain the entire kidney. Because of this fact, aside from the con-

text of RAPN, the identification of accessory renal arteries is extremely important to kidney transplant

procedures [22, 67].

Locating the Renal Hilum and Accessory Renal Arteries

Similar to the kidneys, the AA, IVC, and branching renal vessels are also primary retroperitoneal struc-

tures. Depending on the patient’s amount of visceral adiposity, the vasculature at the renal hilum may be

difficult to locate as all of the associated structures lie behind the peritoneum on the posterior abdominal

wall.

There are two established approaches to perform RAPN interventions [57], the choice between

which depends on location of the cancerous mass. Posterior or posterolateral tumors are approached

retroperitoneoscopically, while anterior, anterolateral or lateral tumors are approached transperitoneally.

Additionally, upper pole apical tumors are better approached by transperitoneal laparoscopy. In RAPN

interventions, the transperitoneal approach is more common than the retroperitoneal approach [41].

Locating the renal hilum retroperitoneoscopically is further complicated by the fact that the retroperi-

toneal space is relatively small during the hilar dissection stage of the intervention. If the renal hilum

cannot be located during the retroperitoneal approach, the scope is reinserted to identify the psoas mus-

cle. The psoas muscle is then crossed from lateral-to-medial in a cephalad direction and a search is

conducted for arterial pulsation near its medial border. Pulsations of the fat-covered RA is usually

identifiable on the surface of the peritoneum [122]. While performing this search, some of the more

prominent accessory arteries (such as aberrant branches from the aorta, superior messnteric or iliac

arteries) may be identified.

In comparison, locating the hilar vessels transperitoneally is relatively easier. If RAPN is being

performed on the left kidney, the dissection is pursued cephalad along the gonadal vein and the ureter,

which run parallel and anterior to the psoas major muscle. By following them cephalad, the renal hilum

can be identified by the deep pulsations of its artery under the renal pole. The gonadal vein typically

drains directly into the left renal vein, further aiding with localization and dissection. On the right, the

IVC is first identified and the dissection is then pursued cephalad until either the ureter or the right renal

vein is exposed. The right renal hilum can then be identified from the pulsations.

As neither approach guarantees localization of accessory vessels, surgeons often make use of pre-

operative medical images for identifying troublesome accessory vessels [117]. Contrast enhanced an-

giography images are usually required as part of surgical planning for kidney transplant procedures, but

are very rarely acquired prior to RAPN.

Even with high-resolution scans and segmented preoperative plans available to them, surgeons are

still burdened with the complex and error-prone task of mentally transferring these abstractions onto the

surgical site during the operation. Reducing the difficulty of navigation has been attempted by various

approaches that rely on multi-modal registration to align the preoperative surgical map of the vessels

onto the surgeon’s endoscopic view, e.g., Amir-Khalili et al. [4], Estépar and Vosburgh [38], Hamarneh
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et al. [64], Nosrati et al. [124], Pratt et al. [135], Puerto-Souza et al. [137], Su et al. [177], Teber et al.

[185]. Registering and augmenting preoperative segmentations into intraoperative video is an excellent

idea. However, such techniques have major limitations including selection of sensitive parameters [124],

manual alignments [135, 177], use of invasive fiducials [185], and high computational complexity that

prohibits practical real-time operation [4, 38, 64, 137]. These limitations stem from the difficulty of

registering intraoperative video data with 3D anatomy that deforms and changes due to factors such as

cutting, retraction, and breathing. Furthermore, these methods do not specifically focus on augmenting

the location of vasculature.

Recent methods that focus more specifically on the detection of vasculature include the use of hard-

ware solutions such as near infrared fluorescence imaging [187] or algorithmic methods that only use

color intensity information from the endoscope to highlight vasculature based on perfusion models [29].

Solutions that use near infrared fluorescence are not widely accessible as they are cost restrictive, re-

quiring additional equipment and expert clinicians to control the dosage of fluorescent agents. On the

other hand, simple algorithmic methods fail to identify vessels that are hidden under a layer of fat.

Intraoperative ultrasound (US) imaging is another hardware solution employed during the tumor

demarcation and excision stages of RAPN; mainly to resolve uncertainties in the location of tumor

boundary [57]. Recent advancements in the field of US imaging, i.e., ‘pick-up’ transducers [153], moti-

vate the use of US during hilar dissection, but such US guidance techniques also incur additional costs

in terms of an increase in required personnel (as some robotic surgeons are not trained to operate and in-

terpret US), operating time, and equipment upkeep. Even with Doppler US imaging, the localization of

complex vascular structures is further ameliorated by the fact that the laparoscopic US probes currently

available in the market can only acquire 2D images and, depending on the availability of picture-in-

picture visualization, the surgeon may have to look at a separate screen to view the US images.

In summary, we have established that hilar dissection is a critical stage during RAPN, often compli-

cated by the presence of accessory renal vasculature. The presence of accessory renal vessels is common

as they are caused by natural variations during fetal development. Current laparoscopic hilar dissection

techniques employed during RAPN interventions do not focus on the localization of these accessory

vessels. Furthermore, existing vascular imaging techniques are rarely used due to prohibitive costs and

additional risks to patients. There remains a need for cost effective alternatives to current methods of

imaging and locating renal vasculature. As a result, the application of vessel localization during the hilar

dissection stage of RAPN is a suitable and challenging application for the evaluation of our proposed

phase-based motion segmentation (PBMS) methodologies.

2.3 Experiments
In this section, we detail the in vivo dataset and the parameters used for the qualitative, quantitative,

and clinical evaluation of our method. Results are illustrated in situ following the description of the

experiments in each subsection. Extended discussions of all experimental findings are carried out in the

next section.
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2.3.1 Experimental Setup and Data Acquisition

Video sequences from fifteen clinical RAPN interventions were used for validation. All endoscopic

video data were acquired by a da Vinci Si Surgical System. High-definition (1080i) videos were down-

sampled to 480× 270 pixels, to reduce computation times and memory requirements of the overcom-

plete wavelet representation. The publicly available code from Portilla and Simoncelli [132] was used

to generate sixteen complex steerable filter pairs (four orientations at four scales). The number of scales

was set to four since, at the downsampled resolution, this number restricts the spatial extent of the

wavelets such that most of the large structures in the videos are detected without blurring the motion

of the smaller structures. In Section 2.3.2, we point to cases where the detection can be improved with

a higher number of scales. The number of orientations was chosen such that diagonal motion is de-

tected more accurately without increasing the computational and memory complexity of the algorithm.

Increasing the orientations would improve the detection but it would increase the over completeness of

the pyramid representation at a faster rate than an increase in number of scales. Readers are referred

to Wadhwa et al. [195] for more details regarding over completeness.

The passband of the temporal filter was set between τL = 60 to τH = 120 beats per minute. Aver-

age runtime of our unoptimized MATLAB code to process these four second clips (120 frames) was

45 seconds (35 seconds with the pseudo-median filter). All results shown were obtained using the

spatiotemporal median filter with a window size of 3×3×3.

To provide an objective framework for validation, we compared the segmentations obtained through

our guidance system against the manually obtained ground truth vasculature. To generate the ground

truth, we segmented the kidney, tumor/cyst, AA, IVC, RA, RV, and accessory vessels (Figure 2.3)

from the preoperative CT data using the publicly available ITK-SNAP semi-automatic segmentation

tool [207]. The resulting meshes were then manually aligned onto the first frame of each endoscopic

scene (Figure 2.4a) by rigidly transforming the models using a 6-degrees of freedom (DOF) 3D mouse

to adjust all DOF contemporaneously. Anatomical landmarks such as the contour of the kidney, visible

parts of the vessels, tumor, liver, spleen, ribs, and the surgical dissection planes were used to guide the

registration process. Initial alignments were made by a graduate student with extensive knowledge of

renal anatomy, and finalized by an early career urologist to ensure correctness. The segmentations and

alignments were done prior to performing the vascular motion segmentation. Examples of the registered

ground truths are presented in Figure 2.4b. Small observable discrepancies between the aligned ground

truth segmentation and the endoscopic view are attributed to non-rigid deformations of the organs and

vasculature caused by deformation during insufflation, retraction, or the mobilization of organs during

the dissection, which our rigid registration does not take into account. By comparing the observable

discrepancies against the known size of visible structures obtained from the CT images, we estimate an

average of 1–3 mm of alignment error in most cases and a maximum of 4–7 mm in cases where organs

have been considerably retracted by the surgical instruments or mobilization of other organs such as in

Cases 2, 3, 4, 5, 9, and 14.
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Case 1 (0) Case 2 (0) Case 3 (1) Case 4 (N/A) Case 5 (0)

Case 6 (1) Case 7 (0) Case 8 (1) Case 9 (0) Case 10 (1)

Case 11 (1) Case 12 (1) Case 13 (1) Case 14 (0) Case 15 (0)

Figure 2.3: Manually segmented computed tomography (CT) scans of each surgical case with the
number of accessory vessels included in parenthesis, showing kidney (brown), tumor/cyst
(green), veins (cyan), and arteries (red).

Data Selection Criteria

The sequences that constitute our dataset, represent patients with varying visceral adiposity, RENAL

Nephrometry Score (e.g. cyst or tumor, endophytic or exophytic), and vasculature. To explore the

advantages and limitations of our method, we included challenging conditions, such as heavy presence

of specular noise (Cases 1, 2, 5, 9, 10, and 12), the endoscope being close (Cases 3, 10, and 14) or far

(Cases 1, 5, and 6) from the tissue surface, vessel occlusion by other organs (Cases 4, 6, 8, and 10),

retraction of blood vessels (Cases 3, 5, 9, 13, and 14), and tool motion (Cases 7 and 12). Though not

all the clinical examples were successful (Cases 7 and 8), the cases cover a wide range of typical scenes

and potential problems that can arise.

2.3.2 Localizing Hidden Vasculature using Motion-Based Cues

In Figure 2.4 we illustrate the qualitative performance of our proposed method. In our experiments, we

observed that although venous and arterial structures pulsate at the same frequency, their pulsations are

not always in-phase. In fact, the temporal resolution of the surgical endoscope (30 frames per second)

was able to observe the motion of the IVC and RV an average of six frames ahead of the AA and RA. To

present this temporal phenomenon in Figure 2.4, we manually extracted two frames of the segmented
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Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Case 9

Case 10

Case 11

Case 12

Case 13

Case 14

Case 15

(a) (b) (c) (d) (e) (f)

Figure 2.4: Exemplar video frames with the proposed automatic localization of veins and arteries
showing: (a) the first frame of the sequence, (b) manually localized venous (cyan) and arterial
(red) structures, (c) the binary mask used for quantitative evaluation, (d) temporal mean of
the segmentations, and exemplar frames at the time of (e) venous and (f) arterial pulsation.
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Figure 2.5: Quantitative results on fifteen RAPN cases. Left: ROC of all cases with the associated
area under curve in parenthesis. Right: median (red) and mean (green) of all ROC. Mean
area under all ROC is 0.72 with a standard deviation of 0.05.

video that highlight venous vs. arterial pulsation.

The two exemplar frames were manually extracted from the same cardiac cycle. The fifteen four-

second clips contain between four to eight cardiac cycles; this number varies depending on the heart

rate of the patient during acquisition. Each motion label frame within a cardiac cycle, containing 15–

30 frames, was visually compared to the ground truth to identify a pair of frames that best represent

the venous and arterial structures. The ground truth was not altered during this process. Compared to

the reference in Figure 2.4b, the motions highlighted in Figure 2.4e correspond to the cyan structures

(venous) and Figure 2.4f corresponds to the red structures (arterial).

Currently our method is not able to automatically differentiate between the locations of veins and

arteries. Therefore, to quantify a measure of detection for such pulsating structures, the automatic

segmentations were first binarized (at a fixed threshold throughout the sequence) and combined across

the frames of the video to generate a single binary image containing the union of all pulsatile motion

regions in the video. The resulting image was then compared to a binary mask (Figure 2.4c) of the

reference manual segmentation, combining all vasculature into a single mask. Figure 2.5 illustrates

the segmentation performance of all cases, at different threshold values, via their receiver operating

characteristics (ROC). The areas under these ROC curves are presented in the legend of in Figure 2.5.

Clinical User Study

We performed an initial user-centric assessment of the proposed technique by analyzing feedback from

different surgeons at the Hamad Medical Corporation. We recruited four surgeons (two early career

surgeons, and two experienced surgeons) and asked them to watch short surgical scenes (video clips) of

hilar dissection from six different patients. Each surgeon was presented two types of video clips for each

patient and was asked to identify the vasculature in the scene. The first set of videos consisted of clips

from the original unprocessed surgical scenes, while the second set of videos consisted of the same clips
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but augmented using our proposed method. To prevent the surgeon’s performance from being biased by

their viewing of the original and augmented videos of the same patient, we separated the viewing dates

by one week and randomized the order of viewing for both original and augmented scenes. In addition,

the surgeons were given the option of viewing the history video, defined as a video clip of 5–10 minutes

in duration representing the history of the surgery preceding the selected short scene. The availability of

this option was requested by the surgeons as it mimics real surgical scenarios. During a real operation,

the events and actions leading to the current scene provide context for the short (4 seconds) video clips,

thus implicitly providing the surgeon with vital information such as where the vessels may be based

on how the organs have been retracted and positioned. In each experiment, we measured the time it

took for the surgeon to annotate the clip and saved the surgeon’s annotations on the first frame of each

scene. We then compared the annotations with the ground truth data of that first frame (binary mask in

Figure 2.4b) using the Dice similarity coefficient (DSC).

In general, the proposed method was found to improve vessel detection, mainly by reducing the

detection-time for early career surgeons. More specifically, the proposed method reduced vessel detec-

tion time by 22% on average for early career surgeons, though it did not seem to affect detection-time

for expert surgeons. Our proposed overlay only increased the average DSC for all users by a marginal

0.024. Upon debriefing, both early career and experienced surgeons confirmed that they were relying on

visual cues and prior knowledge for locating vessels and that the overlays were mainly used to confirm

their own localizations, which in and of itself was reported as an added benefit by the surgeons. The

feedback from the surgeons was generally positive, with the exception of one experienced surgeon who

stated that the visualizations of the segmentations were difficult to interpret. Nevertheless, the average

DSC for all cases (with and without augmentation) performed by all participants was 0.13 with a stan-

dard deviation of 0.11, whereas our method performed with a DSC of 0.50 with a standard deviation

of 0.24. Note that to compute the DSC for our method, we thresholded our fuzzy labels at 0.10 for all

cases, this threshold was chosen as it gave the highest average DSC across all cases. Our interpretation

of these findings is reported in the following section.

Discussions

In this section, we analyze the significance and implications of our experimental findings. We were

careful in the selection of our cases and in ensuring that the alignment of the ground truth is, to the

best of our ability, without error. The reported misalignment errors in ground truth (up to 4–7 mm in

cases with visible non-rigid deformations) may appear to be large to some readers, but it is rather small

compared to the size of the structures (up to 30 mm in diameter for the IVC) that we are trying to detect.

This small error does not have a pronounced impact on our interpretation of the results.

Our quantitative assessment indicates a mean area under the ROC curve of 0.72, midway between the

noise baseline of 0.5 and the highest possible value of 1.0 (indicating perfect detection). Our detection

rate may be slightly higher than the presented value due to the aforementioned misalignment of the

ground truth. A conservative value of 0.72 suggests that our generated labels are discriminative and

suitable for integration (as an additional data term) into existing vessel segmentation techniques that use
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other visible features such as color, shape and texture.

To put the reported detection rates into perspective and to identify opportunities for achieving higher

accuracy, we manually chose two exemplar frames (depicting venous and arterial structures) from the

resulting segmentations and compared the results to our ground truth. The following observations were

made for each of the fifteen cases.

Case 1 The RV and IVC are correctly labeled in spite of heavy occlusion. The small RA is also iden-

tified at the hilum, even though some false positives were detected on the tools. We attribute the

false positives to the fact that the vascular pulsations cause the end effectors of the surgical tools

to vibrate through the abdominal wall.

Case 2 The ground truth location of the RA (Figure 2.4b) is slightly misaligned due to retraction by the

surgical instrument. The detected locations of the AA, RA, IVC and RV are correct despite the

retraction.

Case 3 All structures are correctly identified, including the portion of the IVC that is occluded by the

surgical gauze and the small accessory RA to the left of RV.

Case 4 All structures are identified but it is difficult to differentiate between arterial and venous struc-

tures; possibly because of the heavy occlusion by the perinephric fat. Possible misalignment of

the ground truth (suprarenal vein) due to mobilization of the spleen.

Case 5 All structures are identified. Some false positives are present during arterial pulsation (Fig-

ure 2.4f). There may be a misalignment in the ground truth as retraction has shifted the abdominal

aorta up.

Case 6 Branching of the RA is detected on both sides of RV and the pulsation of heavy vascular region

has caused the tumor to pulsate in the center of the frame.

Case 7 The RV is correctly identified but noticeable amount of false positives is observed due to the

motion of the tools in the scene. Ideally, surgical instruments should remain motionless during

the acquisition of the video.

Case 8 Like Case 7, Case 8 also posed a big challenge as the vasculature is heavily occluded by the

bowel and many false positives are detected in fluid filled cavities to the left of the cyst.

Case 9 All structures are roughly identified. A specific patch of specular reflections on top of the RA in

the left side of the frame (Figure 2.4d) has skewed the normalization of the labels. Specular high-

lights pose a great challenge to endoscopic video analysis, and although the specular patches are

not large at the hilum compared to other organs such as the liver, their presence does have notice-

able effects, i.e., regions with highlights are emphasized more (stronger response) in comparison

to their neighbors. Cases 10 and 12 are also notable examples of this.

Case 10 The RA and RV are correctly identified. A large part of the bowel is occluding the large

(30 mm) IVC making it difficult to detect.
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Case 11 The RA is correctly identified but the pulsations of the RV are missed. We attribute this to the

large (20 mm) size of the structure. In such cases, the number of scales of the spatial steerable

pyramid may be increased to five levels.

Case 12 Both RA and RV are clearly detected in Case 12; small motion artefacts are present on the

suction tool.

Case 13 All structures are identified. This case provides a good visualization of the phase difference

between arterial and venous pulsations.

Case 14 In addition to identifying the RV our method was also capable of localizing the gonadal vein

present on the right side of the image (Figure 2.4e).

Case 15 All structures are identified. There is a Heavy presence of false positives caused by specular

highlights on the top right corner.

In summary, our method was qualitatively successful in all cases, except for Cases 7 and 8, both of

which are associated with the lowest area under curve values. Camera and tool movement may seem to

be a big challenge but coping with them is rather simple in the context of hilar dissection during RAPN.

Hilar dissection stage is not time-critical in comparison to the subsequent resection and reconstruction

stages. Our surgeons have confirmed that they can afford a four-seconds pause during the operation

while our system acquires the required information for processing. The surgical instruments can also

be moved out of sight during the acquisition. The most challenging sources of false positives are the

specular highlights and pulsatile vibrations in background structures. All organs inside a live human

exhibit minute pulsatile motion in sync with the heart rate. These minute vibrations are very small

compared to the motion of major vasculature, yet their apparent motion is magnified with the presence

of specular highlights or fluids. In the future, we plan to focus mainly on an adaptive estimation for noise

(to boost its robustness to specular reflections) and automating the process of differentiation between

veins and arteries.

Our initial user study was insightful, a Wilcoxon signed-rank test indicated that the segmentation

performance of our method (mean DSC of 0.50) was statistically significantly higher than the segmen-

tations performed by the surgeons (mean DSC of 0.13), p < 0.001. This difference does not indicate

that the ground truth is inaccurate or that the surgeons disagree with it. The performance of the surgeons

appears to be poor since surgeons were not able to locate large segments of the vasculature that were hid-

den/occluded. This difference in DSC and the fact that the performance of the surgeons only improved

marginally imply that, perhaps with more training and a better visualization technique, our method has

the potential to improve the surgeon’s performance even further. We plan to address this need by devel-

oping new (clinically appropriate) visualizations, user inputs that grant the surgeon the ability to control

the opacity of the displayed overlay, and a spotlight option that enables the surgeon to choose the region

within which the segmentations are overlaid. Although our initial trial is promising, further studies with

more participants and data are required to quantify the clinical impact and effectiveness of our method

in finding accessory vessels.

35



2.3.3 Embedding Motion-Based Cues in a High-Level Segmentation Framework

The PBMS technique, presented in this chapter, which was first proposed in Amir-Khalili et al. [5, 7],

was then incorporated into the high-level endoscopic video segmentation framework of Nosrati et al.

[125] and presented in Nosrati et al. [126]. In Nosrati et al. [126], a variational technique is proposed

to augment the surgical scene by segmenting visible as well as occluded structures in the intraopera-

tive endoscopic view. This approach to scene augmentation, estimates the 3D pose and deformation of

anatomical structures segmented from 3D preoperative data in order to align to and segment correspond-

ing structures in 2D intraoperative endoscopic views. To estimate pose and segment the highly noisy

and cluttered environment of an endoscopic video, this framework leverages both preoperative data,

as a source of patient-specific prior knowledge, as well as the vascular motion cues presented in this

chapter, and endoscopic visual cues by training a random decision forest. A tissue-specific physically-

based deformation model is also employed to handle the non-rigid deformation of different structures.

Finally, to make the non-rigid deformation of each structure closer to reality, the Houndsfield unit (HU)

value of each structure in the preoperative CT is used to assign a specific tissue-specific (i.e. heteroge-

neous) stiffness constraints to each deformable model. The utility of this technique was validated on

the same fifteen challenging clinical cases that was summarized in Section 2.3.1, demonstrating a 45%

improvements in accuracy compared to the standard PBMS method.

The detailed methodology of this high-level segmentation framework is out of the scope of this

thesis and was thus omitted. Readers are referred to Nosrati et al. [126] for more information.

Results

The default parameters suggested in our previous works [5, 7] were used to detect the vascular motion

cues. The parameters of learning based colour and textural feature extraction method is detailed in Nos-

rati et al. [126]. The segmentations obtained through the high-level segmentation system of Nosrati

et al. [126] was validated with the same ground truth presented in Amir-Khalili et al. [5, 7] (Figure 2.6

and Figure 2.7). Note how the noisy segmentations in Figure 2.6c and Figure 2.7c are improved in Fig-

ure 2.6d and Figure 2.7d by incorporating the learned intensity cues and preoperative prior information.

The quantitative performance comparisons between the original Amir-Khalili et al. [5, 7] approach and

the high-level segmentation method of Nosrati et al. [126] is presented in Table 2.1.

In the high-level segmentation implementation, the average run-time of our unoptimized MATLAB

code to process the vessel pulsation in a four-second clip (120 frames) was 65 seconds. The run-time

for pose estimation and segmenting the structures depends on the initial pose of the organs. The average

run-time to find the pose and segment the structures during system initialization is ∼16 seconds on a

standard 3.40 GHz CPU.

Discussions

The results on in vivo clinical cases of partial nephrectomy illustrate the potential of the proposed frame-

work for augmented reality applications in minimally invasive surgery (MIS).

The observable differences between the ground truth and the results presented in Figure 2.6 and
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(a) (b) (c) (d)

Figure 2.6: First eight cases of the qualitative comparison of the proposed high-level segmentation
method against the simple PBMS method. (a) Original endoscopic image. (b) The ground
truth of venous (cyan), arterial (red), kidney (brown) and tumor (green). (c) Segmentation re-
sults of vessels using PBMS. (d) Segmentation results of the proposed high-level framework.
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(a) (b) (c) (d)

Figure 2.7: Final seven cases of the qualitative comparison of the proposed high-level segmen-
tation method against the simple PBMS method. (a) Original endoscopic image. (b) The
ground truth of venous (cyan), arterial (red), kidney (brown) and tumor (green). (c) Segmen-
tation results of vessels using PBMS. (d) Segmentation results of the proposed high-level
framework.

Figure 2.7 are attributed party to the local optimization framework and also partly to the error in the

alignment of the ground truth. As mentioned in Section 2.3.1, due to the fact that the preoperative

model was rigidly aligned to the endoscopic video, an alignment error of 4–7 mm exists in cases where

the organs have been considerably retracted by the surgical instruments or mobilization of other organs.
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Table 2.1: Quantitative comparison for kidney and vessel segmentation of the proposed high-level
framework vs. direct phase-based motion segmentation (PBMS). Results are presented in
terms of accuracy, Dice similarity coefficient (DSC), true positive and false positive rates. Note
that the fuzzy PBMS results were thresholded at 0.50 to generate the following comparisons.

Method DSC True Positive Rate False Positive Rate Accuracy
Kidney Vessel Kidney Vessel Kidney Vessel Kidney Vessel

PBMS - 0.41 - 0.74 - 0.40 - 0.60
High-Level
Framework

0.70 0.61 0.70 0.56 0.07 0.06 0.88 0.87

We believe that despite the visible differences between the two, this variational segmentation framework

may be one step closer to an ideal solution compared to the ground truth as this framework allows for

non-rigid modes of vibration. Generating a ground truth that accounts for the non-rigid deformations

due to mobilization and retraction requires volumetric intraoperative imaging such as cone beam CT

or possibly implanting fiducials. The use of such imaging techniques is not feasible as it exposes the

patient and clinicians to ionizing radiation and implanting fiducials is intrusive and invasive and hence

not recommended.

There are several directions to extend this work. This variational framework is highly parallelizable

and we do not foresee any obstacles towards a graphical processing unit (GPU) implementation for

real-time pose estimation and endoscopic video segmentation. In addition, we believe that leveraging

stereo views as well as encoding depth information into the proposed energy functional can improve the

performance.

Another promising avenue for research would be to explore the use of an additional shape variation

component that is orthogonal to the restricted shape model, as described by Andrews and Hamarneh

[10], since this allows for exploring larger shape variability without noticeable increase in complex-

ity. Although the modes of vibration are limited to less than three times the corresponding eigenvalue

(to avoid any irrational shape deformation), similar projection from two different 3D deformations are

possible. This is due to the fact that geometric information is inevitably lost during the 3D to 2D trans-

formation. We believe that this limitation may be addressed by leveraging stereo views and is thus

another interesting future direction that warrants further investigation. Furthermore, given that a local

optimization technique was used in this framework, by leveraging state-of-the-art convexification tech-

niques [10, 11, 108, 123] we can further reduce the sensitivity of this framework to initialization. Finally,

improved estimates of elasticity parameters (e.g., using elastography imaging) will likely constrain the

space of non-rigid deformations more accurately [154].

2.4 Summary
In this chapter, we have presented an automatic method for localizing and labeling regions in endoscopic

video that contain occluded vessels. Our method extends Eulerian phase-based video motion processing

techniques to detect and label small motions that are barely visible on the surface of the perinephric fat.
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To the best of our knowledge, we were the first to attempt the challenging task of localizing occluded

vasculature in endoscopic video without the use of additional hardware or preoperative scans. We

validated our novel method qualitatively in a retrospective in vivo study to verify its application in a

clinical setting. Using manually aligned preoperative models of the in vivo patient data as ground truth,

we performed conservative quantitative validation of our method to report well known measures of

detection, i.e., the area under the ROC curve. Furthermore, we conducted a preliminary clinical study,

and received very enthusiastic feedback from the surveyed urologists.

The results from our evaluation and the user study demonstrated that our vessel localization method

is suitable for integration alongside existing techniques (e.g., as an additional cue) that use other visible

features such as color, shape and texture. In further support of this claim, we presented the results

of a high-level segmentation framework—an extension of Nosrati et al. [124]—that integrates both

preoperative data, as a source of patient-specific prior knowledge, as well as our vessel localization cues

and endoscopic visual cues in order to accurately segment the highly noisy and cluttered environment

of an endoscopic video. With the help of the proposed motion cues, the presented high-level framework

boasts state-of-the-art performance in localizing the kidney and vasculature from real surgical scenes

of RAPN interventions; producing a mean DSC of 0.70 and 0.61, and accuracy of 0.88 and 0.87 for

localizing the kidney and blood vessels respectively.

We have therefore provided evidence in support of our hypothesis that an understanding of temporal

anatomical behavior and mathematical modeling of this behavior can be used to improve localization and

navigation in the context of image-guided interventions, i.e., RAPN. To bolster our findings, in addition

to more extensive user studies involving in vivo experiments and animal trials, further evaluation of

the limitations of our methodologies in the context of RAPN are to be conducted with controlled ex

vivo phantom experiments. Specifically, there is a clear need to study the sensitivity of our methods

to various physiological parameters, which include: blood pressure, amount of occlusion (thickness of

tissues covering the vessel), vessel diameter, and vascular distensibility. This study would involve the

construction of a realistic ex vivo phantom, such as the one developed by Schneider [154]—however, to

mimic realistic pulsatile vascular motion in the phantom, we recommend the use of a pulsatile pump [25,

112, 190] in place of the peristaltic pump used in Schneider [154]. Indeed, the construction of said ex

vivo phantom is challenging, but such phantom experiments are indispensable as they may be used

to prototype and evaluate different visualization techniques. Furthermore, these phantom experiments

may also be used to explore other opportunities to improve our motion segmentation methodologies, i.e.,

more advanced endoscopic camera hardware and the use of both stereo endoscopic cameras to improve

vessel localization [110].

In the following chapter, we present extensions to our proposed automatic vessel localization method-

ology to increase its computational performance and sensitivity to outliers, and hence extend its utility

to other dynamic imaging modalities and clinical image-guided interventions that demand real-time

computational performance.
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Chapter 3

Kinematic Model-Based Vessel
Segmentation

“All parts of the material universe are in constant motion and though
some of the changes may appear to be cyclical, nothing ever exactly returns,

so far as human experience extends, to precisely the same condition.”
— Joseph Henry

This chapter details the extension of our phase-based motion segmentation (PBMS) method pre-

sented in Chapter 2 to the more robust kinematic model-based vessel segmentation (KMVS) method,

which was originally disseminated in Amir-Khalili et al. [6, 8]. The KMVS method leverages the local

orientation, in addition to magnitude of motion, and demonstrates that the extended computation and

utilization of motion vectors can improve the segmentation of vascular structures. We implement our

KMVS method using four alternatives to magnitude-only motion estimation by using traditional optical

flow and by exploiting the monogenic signal for fast flow estimation.

3.1 Leveraging Motion Vector Computation for Vessel Segmentation
Our goal is to leverage an understanding of the kinematics of vascular structures to perform image seg-

mentation. These kinematics are observed through the change in intensity information of anatomical

structures captured in a video or dynamic sequence of frames. In this paper, each jth frame of such

sequence is defined as a scalar valued (grayscale) function f : (x ⊂ R2, j ⊂ R)→ R mapping a pixel

x = (x1,x2)
ᵀ in the 2D spatial domain of each frame to an intensity value. Depending on the spatiotem-

poral resolution of the sequence and the specific vascular anatomy being imaged, some kinematics of

the vasculature may be observed by the naked eye, the most notable characteristic being the periodic

motion of the vascular walls induced by the pulsatile flow of blood in the vessel. The visibility of this

phenomenon—or the magnitude of observable displacement—varies depending on the radius, thick-

ness, and viscoelastic properties of the vascular walls as well as the flow rate and pressure of blood

inside the vessel [198]. In previous publications [5, 7], we demonstrated that advanced Eulerian motion

estimation techniques may be used to observe this phenomena, even in situations where the motions are

41



subtle and imperceptible to the naked eye, by observing the temporal change in f at every pixel x.

There are different ways to identify periodic motions occurring at a given pixel. For blood vessels,

these periodic pulsations are within a temporal passband centered on the heart rate of the patient. A

trivial way to identify this periodic motion is to apply a temporal bandpass filter to the raw intensity

information f at every pixel x independently. This naı̈ve approach is prone to error as it does not

consider the motion of neighboring pixels, is sensitive to noise, and it cannot estimate the magnitude

of motion, which is required to attenuate the effects of noise. In our previous PBMS approach [5, 7],

presented in Chapter 2, we overcame these limitations by (i) estimating the magnitude of motion via the

change in local (spatial) phase information, and (ii) measuring this change over multiple spatial scales

and orientations to encode the motion information from neighboring pixels.

In the original PBMS formulation, the objective was to generate segmentation labels for every frame

in the sequence. In this work, however, we aim to leverage all temporal information to generate a single

segmented frame

L(x) : R2→ l ∈ [0,1]. (3.1)

To do so, the denoised product φ̂z(x, j;s,n) is averaged across all scales s, orientations n, and frames j

to obtain our final fuzzy labels

LP(x) =
1

MP
∑
∀ j,s,n

|φ̂z(x, j;s,n)|
2πωs

, (3.2)

where ωs is the spatial frequency of scale s and MP is a normalizing factor to fix the range of PBMS

labels LP ∈ [0,1].

The simple averaging across all orientations only considers the weighted mean magnitude of motion.

An alternative approach, presented in Amir-Khalili et al. [6, 8] and described in detail below, is to

compute the motion vectors entirely (magnitude and orientation) and to use a kinematic model that is

more specific to vessel-like structures, which radially distend and contract in time.

3.1.1 Localizing Vasculature from Divergent Motion Patterns

The PBMS method, described in the previous Chapter 2, leverages the pulsatile temporal motion of

structures to approximate the location of blood vessels. In addition to pulsatile motion, the geometry of

the vessel is also an integral part of its distinguishing kinematics. Blood vessels are tubular structures.

When these structures are subjected to a pulsatile flow, the vascular walls undergo radial and longitudinal

displacements [198]. The radial displacement component manifests as the expansion and contraction

of vessel walls in medical images. These motions are unique to vasculature, unlike the longitudinal

motions that also occur in the surrounding tissues. The complete computation of local motion vectors,

that encode orientation and magnitude, allows us to model the characteristic pulsatile radial motion of a

blood vessel more accurately.

The major components and differences between PBMS and KMVS are illustrated in Figure 3.1. In

the KMVS pipeline, the simple multi-scale motion-based segmentation step is replaced with a complex

spatiotemporal pulsatile radial motion model (PRMM). Although the parameters of the temporal band-
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Figure 3.1: Overview of the PBMS and KMVS segmentation pipelines presented in this paper.
The same filter parameters are used to create the temporal bandpass filters (green) in both
pipelines but the dimensionality of inputs and outputs of the filters are different. The steer-
able phase pyramid decomposition (orange) decomposes the input sequence f : R3→R into
the overcomplete representation of phase magnitude φ : R3+N+S→R measured along N ori-
entations and S scales, while the output of the alternative multi-scale motion computation
step (blue) is the dense flow field d : R3→ R2. In the PBMS pipeline, the bandpassed phase
magnitudes are combined using a weighted average in the multi-scale motion-based seg-
mentation stage (red) to generate fuzzy segmentation labels; whereas, in the pulsatile radial
motion modelling stage (cyan) of the KMVS pipeline, the divergence operator is applied to
the bandpassed flow fields to extract a more accurate fuzzy segmentation.

pass used in both approaches are the same, the dimensionality of inputs to the filter are different. Lastly,

the KMVS approach requires an estimate of complete motion vectors. These motion vectors may be

computed using traditional optical flow (OF) or monogenic flow (MF).

Optical Flow

OF methods compute apparent local motions of objects in a sequence of images by imposing the bright-

ness consistency assumption. This constraint

f (x, j) = f (x+∆x, j+∆ j) (3.3)

assumes that the scene depicted at different points in time does not change in intensity, i.e., objects

merely translate across frames. In the discrete time domain of the sequence, this constraint defines

motion vectors d(x, j) that relate two frames in a sequence

f (x, j+1) = f (x−d(x, j), j), (3.4)

which can also be expressed as a continuous problem

d f (x, j)
d j

=
∂ f
∂x

dx
d j

+
∂ f
∂ j

= ∇x f v+∇ j f = 0, (3.5)

where ∂ f
∂x = ∇x f is the spatial gradient of the frame, ∂ f

∂ j = ∇ j f is the difference between the intensities

of two frames, and v is the velocity, or flow, of motion.

A simple solution to this problem, initially proposed in the context of computational stereopsis, is
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to assume that the motion is constant over a local window. This assumption leads to an overcomplete

system of equations that can be solved using least squares iteratively by warping the image at each

iteration [103]. Additionally, large displacements may be accounted for by performing the iterative op-

timization over multiple spatial scales as well, by subsampling the frames in the spatial domain. Com-

putational stereopsis problems comprise a subset of OF problems, where correspondence between two

rectified stereo images are constrained to only one dimension [68]. Once the motion of objects within

the scene are generalized to 2D, the simple localized least squares solution becomes ill-conditioned and

the problem of motion estimation becomes more difficult due to the aperture problem. An alternative

way to overcome this problem, proposed by Horn and Shunck [73], is to impose a global smoothness

constraint over the flow vectors v and solve the problem globally.

Both of these local and global approaches of computing flow have drastically advanced since their

inception and have also been successfully combined into a unified framework [20], which combines the

advantages of both approaches, i.e., robustness to noise and ability to yield dense flow fields. In our

analyses, we opted to use two modern implementations of OF [100, 178] implemented in MATLAB for

the purpose of computing the dense motion vector d(x, j).

One of the major drawbacks of OF lies in the brightness consistency assumption. This assumption

is sensitive to smooth contrast variations (temporal changes in lighting conditions) and other similar

situations where pixel intensities cannot be considered as reliable features. These scenarios are abundant

in medical image sequences; examples include: moving light sources in endoscopic video (EV), specular

noise or non-Lambertian reflections, and local brightness variations caused by complex acoustic beam

propagation in dynamic ultrasound (DUS). In context of 3D DUS imaging, [1] attribute brightness

consistency violations (temporal variations in the local echo strength) in part to changes in the angle

between connective tissue fibers and beam propagation direction, and the limited acquisition frame

rates of 3D DUS. 2D DUS benefits from higher frame rates, but suffers from artifacts caused by the

out-of-plane motion of structures within the 2D field of view. Structures with varying thickness and

acoustic properties may travel through the field of view during acquisition and cast a time varying

acoustic shadow on surrounding tissues. This results in local attenuation or amplification of 2D B-

mode intensity values which are not necessarily correlated to the relevant in-plane motions. On the

other hand, it has been argued that phase-based computation of motion vectors is more robust to this

type of noise and has the added advantage of producing subpixel accuracy without explicit subpixel

reconstruction or feature localization [47, 195]. This was the original motivation behind our choice to

utilize a phase-based [195] approach in our PBMS pipeline compared to seminal gradient-based Eulerian

video magnification (EVM) approaches [202].

Monogenic Flow

The monogenic (MON) signal is another 2D extension of the analytic signal (similar to the steerable

phase-based method presented in Section 2.1.1) and it provides an efficient framework for extracting

the local orientation θ and the local phase φ features from an image. By measuring the temporal change

in θ and φ in a sequence of images, we can estimate motion [2, 42]. The MON signal is constructed
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from a trio of bandpass filters with finite spatial support. This trio is commonly referred to as spherical

quadrature filters (SQF) [43]. To estimate the motion of both small and large structures in each frame,

we generate different SQF by tuning the spatial passband of the filters to varying scales.

Each set of SQF comprises an even (symmetric) radial bandpass filter and two odd (antisymmet-

ric) filters. The odd filters are computed from the Riesz transform, a 2D generalization of the Hilbert

transform, of the radial bandpass filter [43]. In the literature, many different bandpass filters have been

proposed to construct the SQF including: first order Gaussian [18], Cauchy [18], Poisson [44], and

difference of Poisson filters [200]. We employ Log-Gabor [93] bandpass filters as they suit the natural

statistics of an image [46, 168] and maintain zero DC gain at lower spatial scales. For every scale s, the

even Log-Gabor component of the SQF is expressed as

Be(u;s) = exp

−
[
log
(
|u|
ωs

)]2

2 [logk]2

 , (3.6)

in the frequency domain u = (u1,u2)
ᵀ, where k and ωs are parameters of the filter. The parameter

k =σ/ωs is a fixed constant representing the ratio of the standard deviation σ of the Gaussian describing

the Log-Gabor filter’s transfer function in the frequency domain to the filter’s center frequency ωs. At

each scale s, the center frequency is defined as ωs = (λ02(s−1))−1, where λ0 is an initial minimum

wavelength. The radial bandpass filter Be is symmetric as it is only a function of the magnitude of the

frequency u. Using the Riesz transform, we compute the two odd components (Bo1 and Bo2) associated

to this SQF as

Bo1(u;s) = i
u1

|u|
Be; Bo2(u;s) = i

u2

|u|
Be. (3.7)

In the spatial domain, the components of the MON signal (he,ho) are obtained by convolving the SQF

with a given frame of the sequence such that

he(x, j;s) = F−1 [Be(u;s)F(u, j)]

ho1(x, j;s) = F−1 [Bo1(u;s)F(u, j)]

ho2(x, j;s) = F−1 [Bo2(u;s)F(u, j)]

ho(x, j;s) = (ho1(x, j;s),ho2(x, j;s))ᵀ,

(3.8)

where F(u, j) = F [ f (x, j)] is the frequency domain representation of the frame.

From the SQF responses Equation 3.8, the phase vector r is then defined as the continuous repre-

sentation of local orientation θ and local phase information φ such that

r(x, j;s) = φ(cosθ ,sinθ)ᵀ =
ho

|ho|
arg(he + i|ho|) . (3.9)

Local motion may then be calculated by first computing the components of a 3D rotation that relates the

45



response of two adjacent frames in the video

∆he = he(x, j;s)he(x, j+1;s)+ho(x, j;s)ᵀho(x, j+1;s)

∆ho = he(x, j;s)ho(x, j+1;s)−he(x, j+1;s)ho(x, j;s)
(3.10)

and then computing the phase differences ∆r by substituting Equation 3.10 into Equation 3.9. Given a

local neighborhood N , the local displacement dN (x, j;s) is calculated from

∑
x∈N

[∇ᵀr(x, j;s)]dN (x, j;s) = ∑
x∈N

∆r(x, j;s) (3.11)

where ∇ᵀ is the divergence operator. The derivation of Equation 3.9, Equation 3.10, and Equation 3.11

from the response to the SQF falls outside of the scope of this paper and can be found in the original

MF paper [42]. To improve the estimate for the displacement vector dN (x, j;s), we compute the mean

of this value across all scales s. The computed dN (x, j) is an estimate of the true motion vectors d(x, j)

that relate two frames in a sequence f (x, j+1) = f (x−d(x, j), j). This is the same motion vector that

is computed by traditional OF techniques.

Pulsatile Radial Motion Model

Let d(x, j) define a motion field containing the motion vectors estimated for all adjacent frames inside

a given sequence using either OF or MF. We first isolate the motions that are in sync with the heart rate

by applying the same ideal temporal bandpass filter (Figure 3.1) described in Equation 2.5. We define

the temporally bandpassed motion vectors as dz(x, j) = d(x, j)∗ z( j).

Temporal filtering alone does not distinguish between structures that distend radially and tissues that

translate at pulsatile frequency. Pulsating vessels are subject to periodic expansion and contraction, and

the key insight is that this radial motion results in motion vector fields that are oriented away and then

toward the center-line of the vessel during expansion and contraction respectively. Such vector fields

thus exhibit high divergence along the center-line of the structure as illustrated in Figure 3.2.

In physical terms, divergence measures the extent to which a point source in the vector field behaves

as a sink or source and it is defined as the sum of the partial derivatives of the vector field

∇
ᵀdz(x, j) =

∂dz

∂x1
+

∂dz

∂x2
. (3.12)

Due of the tubular geometry of vessels, the radial motions at the center-line of the vessels are weaker

compared to the vascular walls. We account for this by computing the divergence across multiple spatial

scales; the motion field at each scale denoted dz(x, j;s). At each scale, we downsample the vector field

by a factor of two using bilinear interpolation. The resulting vessel labels are computed to be

LK(x) =
1

MK
∑
∀ j,s
|∇ᵀdz(x, j;s)|, (3.13)

where MK is a normalizing factor to fix the range of KMVS labels LK ∈ [0,1].
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Figure 3.2: Depiction of simple 2D motion vector fields (blue arrows) and corresponding scalar
divergence value plotted on an orthogonal axis (red arrows). The occurrence of divergent
vascular wall motions are illustrated on longitudinal (b) and transverse (c) cross sections
of an artery. Vector fields that purely translate in one direction (a) are incompressible or
divergence free, whereas radial distension motion (b and c) exhibit high divergence along the
center of expansion due to the tubular shape of the vessel.

3.2 Experiments
In this section we present two experiments to evaluate the performance of the different approaches pre-

sented in the methodology section. In each experiment, we compare the original PBMS implementation

against four different implementations of KMVS. The four implementations of the KMVS consist of

different motion estimation techniques, which includes two OF techniques [100, 178], the simple MF

method presented in Section 3.1.1, and a more robust alternative to compute MF [2].

3.2.1 Implementation Details

The different implementations of PBMS and KMVS are denoted PB, OF1, OF2, MF1, and MF2. A

summary of the different parameters used in each implementation is provided in Table 3.1. In our ex-

periments, we use the default parameters of PB [7] and the classic+nl-fast setting of OF1 [178].

In the OF2 [100] implementation, we manually tuned the parameters to increase the speed and perfor-

mance of the algorithm. The minimum wavelength was set to λ0 = 8, weight of the regularization α

was decreased to 0.022, the scale multiplier (inverse of downsampling ratio) was set to match other

implementations δ = 2, number of outer No and inner Ni fixed point iterations were reduced to 1, and
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Table 3.1: Summary of parameters used in all experiments.

Name Motion Estimation Kinematic Model
Method Parameters Method Parameters

PB Amir-Khalili et al. [5, 7] s = 4,
n = 4

Multi-Scale
Motion-Based
Segmentation

s = 4

OF1 Sun et al. [178] classic+nl-fast

PRMM s = blog2(L)c−1

OF2 Liu [100]

λ0 = 8,
α = 0.022,
δ = 2,
No = 1,
Ni = 1,
Ns = 20

MF1 Amir-Khalili et al. [6]
λ0 = 2,
k = 0.05,
s = blog2(L)c−1,
N ∼ 7×7 box

MF2 Alessandrini et al. [2]

mode = lucas kanade,
filter type = loggabor,
orient mode = robust,
freq mode = robust,
λ0 = 2,
k = 0.05,
δ = 2

the default number of successive over relaxation iterations Ns = 20 was found to be sufficient for our

purposes. The parameters for the MF1 [6] method were set to values used in the original publication: λ0

is set to 2, ratio k for the Log-Gabor filter was set to 0.05, and a 7×7 box filter was used to average the

displacements over the neighborhood of N . The number of scales are set such that s = blog2(L)c− 1

where L is the smallest image dimension. MF2 [2] was setup to use the same filter parameters as MF1

but the frequency and scale computation mode was set to robust. The motion estimation mode was

changed to lucas kanade as the spatially affine transformation model was not performing well on

our dataset. The remaining parameters were kept at their default values.

All of the methods described were implemented in MATLAB 2013b1 running on a workstation with

an Intel 3.7 GHz Xeon E5-1620 processor and 8 GB of RAM. The source code for OF1, OF2, and MF2

is publicly available online.

3.2.2 Materials and Experimental Setup

Although our methods are applicable to other imaging modalities, ultrasound (US) is ideal for valida-

tion as it can image vessels in the transverse and longitudinal axes, it has high temporal resolution, and

the vessels can be manually delineated with accuracy and regarded as ground truth for evaluation. We

validate the performance of PBMS and different implementations of KMVS on a set of synthetic com-

putational phantoms and two DUS datasets of CCA scans. The phantom dataset is designed to mimic

the kinematics of pulsating vascular structures imaged along the transverse and longitudinal slices and

is described in further detail in Section 3.2.3. The first DUS dataset, hereby referred to as the UBC

dataset [6], was acquired in-house and consists of eight sequences from three volunteers with six scans

acquired along the transverse and two along the longitudinal axis of the CCA captured at 30 frames

per second. The first frame of each sequence was manually segmented for quantitative analysis. These

1MATLAB executables are available for download from https://bisicl.ece.ubc.ca/software/radialDistension.html
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(a) US with bounding box (b) Ellipsoidal mask (c) Ground truth overlay

Figure 3.3: Processing steps used to generate ground truth data for the SPLab dataset. Each frame
in the dataset is accompanied by a set of coordinates that define a bounding box, overlaid in
yellow, around the common carotid artery (CCA) (a). We generate an ellipsoidal mask (b)
inside this bounding box and use it as an approximate ground truth overlaid in red (c).

eight cases and the synthetic dataset were previously presented in our KMVS paper [6] and are used to

select the parameters presented in Table 3.1. Our parameters were selected based on visual assessment

of the resulting segmentation and motion estimation quality and the quantitative segmentation accuracy

metrics employed in our results. A secondary publicly available DUS transverse scans of CCA, referred

to as the SPLab dataset [142–145], is used to further corroborate our findings. We selected a total of 35

sequences from the dataset with each sequence containing four to eight frames captured at an estimated

three frames per second. Every frame in the SPLab dataset is accompanied by image coordinates that

define a tight bounding box (Figure 3.3a) around the CCA. These coordinates are used to generate an

ellipsoidal mask (Figure 3.3b) for the first frame of the selected sequences to serve as an approximate

ground truth (Figure 3.3c), in lieu of manual segmentations.

3.2.3 Localizing Vasculature in Dynamic Ultrasound Sequences

Phantom Experiment

We use three computational phantoms, in a two-frame matching experiment, to compare the effective-

ness of our MF and OF based segmentation techniques to the PB method. Temporal filtering was not

used in this experiment. Our phantoms consist of: pulsating and translating circles (top row in Figure 3.4

and Figure 3.5), pulsating and translating tubular structures (middle row in Figure 3.4 and Figure 3.5),

and a noise pattern that undergoes a combination of pulsating and translating motions in shape of circles

and tubes (bottom row in Figure 3.4 and Figure 3.5). The fuzzy automatic segmentation results obtained

with all five implementations presented in Section 3.2.1 are presented in Figure 3.4 and the intermediary

motion computation results of the KMVS implementations are presented in Figure 3.5.

In our phantom experiments (Figure 3.4), the PB implementation is only capable of detecting the
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(a) Phantom

B

B

A

A

A

(b) PB (c) MF1

C

(d) MF2

D

D

D

(e) OF1

D

D

E

(f) OF2

Figure 3.4: Qualitative phantom experiments illustrating the results of PB, OF1, OF2, MF1, and
MF2 implementations. Top row: phantom with circular shapes of varying sizes. Middle
row: tubular shapes of varying sizes. Bottom row: A randomly generated texture subjected
to local deformations that include four translating/pulsating circular/tubular structures. The
first frame of each phantom sequence is depicted in column (a) with red contours overlaid to
indicate structures that distend or contract radially and yellow contours for structures that are
subject to translation only. The motion of these structures, estimated in the intermediate flow
computation stage of KMVS, are presented separately in Figure 3.5. The color-coded fuzzy
segmentation results of different implementations are presented in columns (b-f). The colors
range from blue to red, representing weak to strong response to detected vascular structures.
All segmentations are thresholded at 0.3 for visibility; responses below this threshold are col-
ored black. The KMVS results, columns (c-f), exhibit more accurate segmentation responses
(red) at the center-line of pulsating structures compared to the PBMS method presented in
column (b). In this experiment, the qualitative results favor the MF1 implementation of
KMVS in column (c). Refer to Section 3.2.3 for detailed explanation of annotations A© to E©.

translating structures ( A© in Figure 3.4c) and the edges of the larger pulsating structures ( B© in Fig-

ure 3.4c) that appear as local translations. Among the proposed KMVS implementations, MF2 (d) fails

to localize the large pulsating structure in the circle phantom ( C© in Figure 3.4) and any of the structures

in the tube phantom. This is due to the fact that the MF2 method fails to estimate the motion of large

circular structures in the circle phantom ( A© in Figure 3.5c) and any of the tubular structures in the tube

phantom (Figure 3.5c). The algorithm cannot detect the motion of the larger circles due to the fact that

default window sizes, over which the motion is computed, are too small. Increasing the window size

improves the performance when computing the motion of the larger circles, but it increases the com-

putation time and adversely effects the overall performance on the real data presented in the following

50



(a) Phantom (b) MF1 Motion

A

A

(c) MF2 Motion
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B

B

(d) OF1 Motion
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(e) OF2 Motion
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Figure 3.5: Intermediate results of the motion estimation stage of different KMVS implementa-
tions applied to the phantom dataset. The final segmentation results are presented in Fig-
ure 3.4. The PBMS method is not included in this comparison as it does not explicitly
compute the flow vectors. Column (a): the first frame of each phantom sequence with red
contours overlaid to indicate structures that distend or contract radially and yellow contours
for structures that are subject to translation only. Columns (b-e): the estimated 2D motion
vectors of each implementation is color-coded such that hue represents the direction and sat-
uration represents the relative magnitude of motion. The color-bar to the right illustrates the
mapping of hue to the orientation of motion measured in degrees. Refer to Section 3.2.3 for
detailed explanation of annotations A© and B©.

section, thus the default values were kept. As for the poor performance on the tube phantom, upon

inspecting the algorithm, we noted that this may be due to a stability check performed by the algorithm

during motion estimation. We found that relaxing the stability threshold results in some motions being

correctly measured on the tube phantom but we ultimately decided to leave the threshold unchanged as

lower limits resulted in more errors on other phantoms.

The results of motion estimation presented in Figure 3.5 are visibly different, especially for the circle

and tube phantoms, as both of the OF codes used rely on Horn and Schunck [73] style regularization

(flow field smoothness constraints) in regions that do not contain salient textures ( B© in Figure 3.5). This

regularization sometimes results in falsely occurring divergent behavior and, as a result, false positives

in the final segmentation ( D© in Figure 3.4). Although similar false positives are observed on the tube

phantom results for MF1 (Figure 3.4c), the strength of the response is lower compared to the response

at the center-line. We thus chose to use the third phantom to perform further quantitative comparison
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MF1
MF2
OF1
OF2

Method
Mean endpoint error
(95, 99.3 percentiles)

Mean angular error
(95, 99.3 percentiles)

Mean magnitude error
(95, 99.3 percentiles)

MF1 0.27(0.64,0.74) 23o(90o,97o) 0.23(0.59,0.86)
MF2 0.16 (0.42, 0.52) 19o(85o,160o) 0.11 (0.30, 0.50)
OF1 0.21(0.71,0.72) 11 o(40o, 82o) 0.17(0.51,0.93)
OF2 0.20(0.46,0.57) 18o(93o,114o) 0.15(0.40,0.59)

Figure 3.6: Boxplots of endpoint errors, angular errors in degrees, and magnitude errors in pixels
for each motion estimation methods in the KMVS pipeline. The corresponding mean of the
errors are depicted with filled markers and black outline. The errors are computed at every
pixel of the noise texture phantom (bottom row of Figure 3.5) by comparing the estimated
motions resulting from a two-frame matching experiment against corresponding ground truth
motion vector values used to create the phantom. The mean and maximum errors at the 95
and 99.3 percentiles over all pixels are tabulated, with the best performing methods presented
in bold. All differences in motion estimation performance were found to be significant,
p < 0.0001 according to Wilcoxon signed-rank tests using Bonferroni adjusted alpha levels
of 0.00056 per test (0.01/18). The OF2 method is the fastest in this experiment and ranks as
second best in motion computation performance for all three error metrics.

between the OF and MF estimation modules (presented in Figure 3.6) by computing the error in flow

endpoint εE to the ground truth dGT defined as

εE(x, j) = ‖d(x, j)−dGT (x, j)‖2 (3.14)

and the constituting errors in flow orientation εO and magnitude εM defined as

εO(x, j) = cos−1
(

d(x, j)·dGT (x, j)
‖d(x, j)‖‖dGT (x, j)‖

)
εM(x, j) = |‖d(x, j)‖−‖dGT (x, j)‖| .

(3.15)

A number of outliers were observed in the boxplots of orientation εO and magnitude εM errors

presented in Figure 3.6. This is indicative of the fact that the errors follow a heavily skewed distribution.

To give an accurate representation of the distribution of errors for each method, we report the the mean

error and the maximum errors at the 95 and 99.3 percentiles over all pixels in Figure 3.6. As these

error distributions are skewed, we tested the differences between each method for statistical significance

using a Wilcoxon signed-rank tests with Bonferroni adjusted alpha levels of 0.00056 per test (0.01/18)

to correct for multiple comparisons and observed that all differences were significant p < 0.0001.
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In quantitative comparisons of flow estimation methods, OF2 is the fastest and ranks as second best

in motion computation performance for all three error metrics. However, combined with the PRMM,

the motions extracted from OF2 fail to detect the small pulsating tubular structure ( E© in Figure 3.4f)

in the noise phantom. Reducing the regularization weight α to 0.01 improves the detection of the

small pulsating tubular structure, however we observed that regularization weights outside the range of

0.015 < α < 0.1 consequently result in noticeable reduction in motion estimation performance on syn-

thetic data and segmentation accuracy on UBC dataset experiments presented in the following section.

Real Data Experiment

Initial real data evaluation is conducted on the UBC dataset, consisting of eight 30- to 40-frame DUS

sequences of the CCA acquired along the transverse and longitudinal axes, where the vessel appears

as a pulsating ellipsoid and tube respectively. Unlike the previous two-frame phantom experiment,

experiments with real data require the temporal filtering stage to remove the high frequency noise and

the low frequency motions (caused by breathing and small movements of the probe) that occur in the

sequence. The passband of the temporal filter is tuned to the patient’s approximate heart rate, denoted τr.

The parameters were set such that τL = τr/2 and τH = 2τr. The PBMS segmentation method and the four

implementations of KMVS (Section 3.2.1) are then applied to the dataset using the same temporal filter

parameters across all methods. All of the resulting fuzzy segmentation labels are shown in Figure 3.7.

To clarify the advantages of each approach as a trade-off between accuracy and computation time, in

Figure 3.8, we present quantitative analysis of segmentation error using the ground truth segmentations

of the DUS sequences. The area under the receiver operating characteristics curve (AUC) for each case

(thresholding the fuzzy segmentations from 0 to 1) is reported as a measure of segmentation accuracy,

in which the value of 1 indicates perfect segmentation and 0.5 is the noise threshold.

Once the parameters of each implementation have been tuned on the phantom and UBC datasets,

the real data experiments are repeated using the larger publicly available SPLab dataset. Only the first

four frames of each sequence, recorded at an estimated three frames per second, was used to generate

the results presented in Figure 3.9, Figure 3.10 and Figure 3.11. Due to the small number of frames and

low frame rate of each sequence in this dataset, the temporal bandpass filter becomes a highpass filter

that passes all of the temporal frequencies except for the zero frequency, DC gain, component.

In addition to the quantitative evaluation of segmentation errors using AUC, we also compare the re-

sults of each implementation by computing the Dice similarity coefficient (DSC) between the computed

segmentations and corresponding ground truth of each dataset. To compute the DSC, the fuzzy segmen-

tation labels generated using each implementation were binarized at a threshold of 0.5. The mean DSC

and AUC of all cases in each dataset is computed and tabulated in Table 3.2. The summarized results

indicate that the OF2 implementation of KMVS is the best performing method in terms of DSC and

AUC. Detailed analysis of the presented results is carried out in the following section.

Discussions

Our experimental results show that all of the KMVS implementations outperform the PBMS approach
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PBMS Proposed KMVS Implementations

(a) US (b) PB (c) MF1 (d) MF2 (e) OF1 (f) OF2

Figure 3.7: Qualitative results of our experiment on the UBC dataset with yellow grid-lines super-
imposed to facilitate correspondence. Column (a): first frame of DUS sequences of CCA in
axial and longitudinal axes including the bifurcation of internal and external carotid arteries.
The corresponding US ground truth for the vessel is shown in red. Columns (b-f): color-
coded fuzzy segmentation results of different implementations. The colors range from blue
to red, representing weak to strong response to detected vascular structures. Segmentations
are thresholded at 0.3 for visibility; responses below this threshold are colored black.
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PB
MF1
MF2
OF1
OF2

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Mean
PB 0.20 0.21 0.16 0.13 0.32 0.032 0.23 0.14 0.18

MF1 0.0049 0.056 0.018 0.026 0.13 0.0095 0.24 0.026 0.063
MF2 0.0077 0.12 0.0046 0.027 0.17 0.0068 0.34 0.0042 0.085
OF1 0.0081 0.058 0.0082 0.0042 0.013 0.013 0.098 0.0015 0.025
OF2 0.0040 0.020 0.0014 0.0023 0.017 0.0006 0.069 0.0003 0.014

Figure 3.8: Quantitative performance of our experiment on the UBC dataset. Left: Performance of
each segmentation method illustrating the trade-offs between computation time and segmen-
tation performance; corresponding averages depicted with filled markers and black outline.
Right: Bar chart of segmentation errors, grouped according to case number. Segmentation
error values (1-AUC) are tabulated with the best performing methods in bold.

Table 3.2: Quantitative summary of segmentation performance of the experiments performed on
real data presented as mean Dice similarity coefficient (DSC) and mean area under the receiver
operating characteristics curve (AUC) across all cases of the UBC and SPLab datasets. The
fuzzy segmentations were thresholded at 0.5 in order to compute the DSC. The OF2 imple-
mentation of the proposed KMVS pipeline boasts the highest performance (shown in bold)
compared to PBMS and other implementation of KMVS.

Name Method
UBC Dataset SPLab Dataset

DSC AUC DSC AUC

PB PBMS 0.11±0.10 0.82±0.084 0.20±0.096 0.83±0.070
OF1

KMVS

0.60±0.15 0.97±0.034 0.53±0.28 0.93±0.12
OF2 0.72±0.097 0.99±0.023 0.67±0.21 0.98±0.027
MF1 0.49±0.095 0.94±0.080 0.42±0.18 0.95±0.051
MF2 0.36±0.18 0.92±0.12 0.44±0.26 0.88±0.16
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(a) US (b) PB (c) MF1 (d) MF2 (e) OF1 (f) OF2

Figure 3.9: Four exemplar cases illustrating the best results of our experiment with the publicly
available SPLab dataset with yellow grid-lines superimposed to enhance correspondence.
Column (a): first frame of DUS sequences of CCA in axial and longitudinal axes including
the bifurcation of internal and external carotid arteries. The corresponding US ground truth
for the vessel is shown in red. Columns (b-f): color-coded fuzzy segmentation results of
different implementations. The colors range from blue to red, representing weak to strong
response to detected vascular structures. All segmentations are thresholded at 0.3 for visibil-
ity; responses below this threshold are colored black. The best performing out of all 35 cases
are framed in green.

in terms of segmentation accuracy. Compared to PB, with the addition of our proposed PRMM, our

MF and OF pipelines are more specific to motion of the CCA and resilient to motions that occur on the

surrounding soft tissues. In the phantom experiments (Figure 3.4), we explicitly showed how the PB

implementation is only capable of detecting the translating structures ( A© in Figure 3.4) and the edges

of the larger pulsating structures ( B© in Figure 3.4) that appear as local translations. On the other hand,

the KMVS segmentation results presented in columns (c-f) of Figure 3.4 are closer to center-line of

the pulsating structures. This trend is also evident in the qualitative results of the real data experiments

presented in Figure 3.7, Figure 3.9 and Figure 3.10, and is further substantiated by the quantitative

analysis of segmentation accuracy presented in Figure 3.8, Figure 3.11 and Table 3.2. However, contrary

to our initial conclusions on real data experiments that favored MF methods over OF [6], we show that

it is possible to outperform our proposed MF1 approach using the tuned OF2 algorithm.

Both OF implementations presented in this paper tend to perform well on DUS sequences as the
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(a) US (b) PB (c) MF1 (d) MF2 (e) OF1 (f) OF2

Figure 3.10: Four exemplar cases illustrating the worst results of our experiment with the publicly
available SPLab dataset with yellow grid-lines superimposed to enhance correspondence.
Column (a): first frame of DUS sequences of CCA in axial and longitudinal axes including
the bifurcation of internal and external carotid arteries. The corresponding US ground truth
for the vessel is shown in red. Columns (b-f): color-coded fuzzy segmentation results of
different implementations. The colors range from blue to red, representing weak to strong
response to detected vascular structures. All segmentations are thresholded at 0.3 for visi-
bility; responses below this threshold are colored black. The worst performing out of all 35
cases are framed in red.

global flow smoothness constraint enables OF to approximate the motion of tissues in locations that

are void of salient image information, i.e., the center of the vessel. This added constraint increases the

computational complexity of the algorithm but, by comparing OF1 to a manually tuned OF2 (Figure 3.8

and Figure 3.11), we demonstrate that it is possible to obtain low segmentation error without increasing

the run-time of OF motion computation. The motion estimation errors presented in Figure 3.6 further

confirm that the manually tuned OF2 implementation produces errors that are comparable to the auto-

matically tuned OF1 implementation, while maintaining a run-time that is faster by almost two orders

of magnitude across all phantom and real data experiments. The only notable difference between the

two OF methods is that the mean angular error of OF2 is greater than that of OF1 and, as a result, OF1

is better at localizing the small pulsating tubular structure in our noise phantom compared to OF2 ( E©
in Figure 3.4f). Regardless, OF2 outperforms OF1 on all real DUS data experiments (Figure 3.8 and

Figure 3.11). From this observation, we conclude that although the computationally more expensive
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Figure 3.11: Quantitative performance of experiment on 35 sequences from the publicly avail-
able SPLab dataset. Left: Performance of each segmentation method illustrating trade-offs
between computation time and segmentation error; corresponding averages depicted with
filled markers and black outline. Right: Boxplots of segmentation errors for each method.

OF1 method generates better estimates of motion vectors, the much faster OF2 implementation per-

forms better in tandem with our proposed PRMM technique and thus generates more accurate vessel

localizations in DUS sequences.

The quantitative results presented in Figure 3.8 and Figure 3.11 also show that the MF1 method

can, on average, achieve comparable accuracy with the OF1 method. The comparable performance

of MF1 to other flow estimation methods is further confirmed by the analysis of the endpoint errors

presented in Figure 3.6. In terms of run-time, both OF2 and MF1 implementations are suitable for

diagnostic applications, e.g., CCA segmentation, as they are projected to perform in near real-time with

our imaging setup given an efficient implementation and a specialized workstation. MF1 is slower

than OF2 in the two-frame phantom experiment (Figure 3.6) and the experiment on the SPLab data

(Figure 3.11), but it performs faster on the UBC data (Figure 3.8). This is attributed to the computational

overhead cost of building the SQF for each sequence. The MF1 method is designed in such a way that

the filter bank containing the SQF pyramid is constructed only once per sequence and, as a result, this

one-time computational cost dominates the overall run-time in cases where the number of frames are

few, such as in the phantom and SPLab data experiments. In the UBC data experiments, where each

sequence contains 30–40 frames, our MF1 implementation is faster than OF2. MF1 is also parallelizable

as most of the computations performed are point-wise (pixel-wise) operations, which do not need a Horn

and Schunck [73] style global smoothness constraint. By precomputing the filter bank and porting the

code to run on a graphical processing unit (GPU), it is possible to achieve further performance gains

and enable the method to run in real-time on sequences with larger images [3, 127].

Our UBC dataset was recorded at 30 frames per second while the SPLab dataset was recorded at an

estimated three frames per second. This translates to a recording window of 1 to 1.3 seconds in duration

for both datasets. We found this recording length to be empirically sufficient for localizing the CCA as

it captures the periodic behavior of a patient with a resting heart rate as low as 60 beats per minute or 1
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Hz. The discriminative performance of our proposed methods would increase with a larger number of

samples, however with the current temporal filtering scheme, a larger recording window would result in

a delay (lag time) greater than the current 1.3 seconds, which may not be reasonable for some clinical

applications. If the acquisition is not corrupted by prominent motion artifacts, e.g., probe movement

or swallowing, we hypothesize that the periodic behavior of the CCA may be detected with a shorter

recording window, up to twice the heart rate frequency, which amounts to a 0.5 second window. In

real-time applications, our method may be combined with fast tracking algorithms and on-line model

fitting techniques such as extended Kalman filtering [111] to compensate for this lag.

The proposed temporal filtering scheme is not well suited for applications that impose hard con-

straints on temporal performance and lag times, such as intraoperative image-guidance systems. The

ideal filter employed in our paper is non-causal and assumes knowledge of future inputs to the filter. This

ideal filter approach gives a single response over the 1 to 1.3 seconds recording window. For real-time

applications, causal filters such as infinite impulse response filter used in Wu et al. [202] and general

biquad filter employed by McLeod et al. [110], or the aforementioned extended Kalman filtering [111]

approach are more suitable alternatives that can be easily incorporated into our proposed pipeline.

The motion estimation method used in MF2 was originally developed to extract motion from medi-

cal imaging modalities, e.g., DUS and dynamic magnetic resonance (MR) imaging, in which the bright-

ness consistency assumption does not hold [2]. Despite performing well on the synthetic phantom

experiments, producing the lowest endpoint error among all methods (Figure 3.6), MF2 does not per-

form as well as other KMVS methods on the real datasets. We hypothesize that this might be due to the

fact that MF2 was specifically designed to compute large myocardial motion as opposed to the subtle

motion of vascular walls, i.e., the CCA.

Although the OF2 pipeline outperforms both MF methods in our real data experiments, monogenic

methods have other advantages that may be exploited to improve vessel localization. In the domain

of US image processing, SQF have been shown to improve the extraction of structures, during radio

frequency (RF) signal to B-mode conversion, by demodulating the RF in a 2D context [194]. This

implies that MF methods may be used to extract local motion information from raw RF data, allowing

for a direct implementation in the native representation of acquired DUS data.

Another advantage is that the MF implementations presented may be extended to three spatial di-

mensions [1]. Our approach is not yet able to cope with gross out-of-plane motion, common during

2D+time DUS acquisitions, but such problems would not exist once the method is extended to process

3D+time sequences. A study on 3D steerable wavelets and the monogenic signal [27] concluded that

the steerable approach of Portilla and Simoncelli [132], which was used in the PBMS method, is hard

to extend into 3D due to its invertibility but, on the other hand, the MF formulation can be extended to

process 3D+time sequences [1, 27]. Similarly, 3D+time extension of the OF implementations are also

possible, e.g., 3D OF between two volumes followed by divergence computation of the estimated 3D

vector field and multi-scale averaging. This will allow our proposed MF and OF implementations to

be extended to volumetric medical images such as 3D+time computed tomography (CT) fluoroscopy,

Cine MR imaging, and 3D DUS. Due to the aforementioned fact that the MF1 implementation largely
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consists of point-wise operations, we hypothesize that a 3D implementation of MF1 would outperform

3D Horn and Schunck [73] style OF methods in terms of speed. We consider this to be an important

advantage of our MF implementation as 3D+time data of vasculature is prevalent in cardiac motion

analysis [1, 2], imaging of coronary arteries [90], monitoring the distensibility of vasculature [23, 65],

and other applications; with more applications likely to emerge as the availability and quality of 3D

DUS continues to improve over time.

3.3 Summary
In this chapter, we assessed the performance of vessel localization using automatic segmentation algo-

rithms that model pulsatile radial motion—a more robust extension of the PBMS methodology presented

in the previous chapter. We presented four implementations of a low-level motion-based segmentation

pipeline, which detects the characteristic pulsatile radial motion of vascular structures through the anal-

ysis of divergent motion vector fields extracted from a sequence of frames. Our proposed methods are

focused solely on fast and accurate extraction and modeling of motion vector fields, without the aid

of learning and appearance models, such that our segmentation labels may be incorporated alongside

complimentary low-level intensity based features into existing high-level discriminative segmentation

frameworks [13, 71].

In each implementation, we explored alternative optimized and off-the-shelf techniques for perform-

ing the motion estimation stage of the proposed pipeline. Through evaluation of proposed methods,

using synthetic and real DUS sequences of the CCA, we conclude that coupling a tuned OF motion es-

timation method with our PRMM provides the best overall performance compared to other candidates.

Our experiments on two real DUS datasets show that the performance of the old PBMS method can

be increased using the tuned OF2 implementation of KMVS from an average AUC of 0.82 to 0.99 on

the UBC dataset and from 0.83 to 0.98 on the SPLab dataset. Similarly, binarizing the resulting fuzzy

segmentation labels at 0.5 yields a notable increase in DSC from 0.11 to 0.72 on the UBC dataset and

0.20 to 0.67 on the SPLab dataset. Furthermore, the tuned OF2 implementation of the pipeline performs

the fastest on short sequences compared to all other implementations, while our MF1 implementation

boasts the fastest run-time on longer sequences due to the precomputation of the SQF.

The computational speed of our proposed MF1 motion estimation method can also greatly benefit

from a parallel implementation that takes advantage of GPU computing [3]. The monogenic framework

used to extract motions in the MF1 implementation may also be able to estimate motion from native

RF data of DUS sequences [194] and can be extended to process volumetric dynamic (3D+time) data

efficiently [1, 27]. The Horn and Schunck [73] style OF methods, on the other hand, do not scale as well

in comparison as the spatial dimensionality of the data increases from 2D to 3D. As a result, point-wise

motion estimation methods such as MF1 are poised to outperform competing methods as the use of

volumetric dynamic imaging of vasculature becomes more prevalent in image-based medical diagnosis

and interventions.

60



Chapter 4

Uncertainty-Encoded Augmentation of the
Surgical Scene

“Information is the resolution of uncertainty.”
— Claude Shannon

In Chapter 2 and Chapter 3, we demonstrated the utility of temporal modelling in automated analysis of

dynamic medical image sequences. This chapter presents our preliminary phantom experiments towards

addressing our second research question; that is, to explore avenues in which navigation uncertainties

may be computed, propagated, and visualized for interventions that target deformable tissues. Our

contributions investigate a proof-of-concept augmentation method for encoding navigation uncertainties

during image-guided minimally invasive robot-assisted partial nephrectomy (RAPN). The presented

framework encodes uncertainties through the computation and visualization of uncertainties that may

occur during preoperative computed tomography (CT) segmentation and computational stereopsis steps

of RAPN navigation.

4.1 Towards Probabilistic Tumor Demarcation in Image-Guided
Surgical Interventions

In Chapter 2 of this thesis, we motivated the benefits of medical robotic technologies in the context of

nephron sparing interventions. We stated that the RAPN procedure is organized into five main stages:

(i) Bowel mobilization; (ii) Hilar dissection and control; (iii) Identification and demarcation of tumor

margins; (iv) Resection of tumor; and (v) Reconstruction of the kidney. In this chapter, we focus on

the crucial step of tumor identification, during which the surgeon localizes the kidney tumor mass and

identifies the resection margins. This step is important to properly plan and speed up the succeeding

stage of tumor mass excision during which blood flow can only be safely obstructed for a limited time.

More importantly, the accuracy of this step is necessary not only to preserve kidney function by sparing

as much healthy tissue as possible, but also to avoid tumor recurrence by excising all cancerous tissue.

The tumor identification step is usually performed with the help of multimodal sources of infor-
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mation at surgeon’s disposal: preoperative scans (typically 3D CT and/or magnetic resonance (MR))

and intraoperative data (2.5D stereo endoscopic data and, when available, laparoscopic 2D/3D ultra-

sound (US)). Currently, these rich and complementary sources of information are just displayed on the

surgeon’s console in a tiled fashion, i.e., side-by-side, or even sometimes on a separate screen of a

workstation nearby. These typical display setups require substantial additional effort from the surgeon

to piece together a 3D mental map of the surgical scene that integrates all information together in order

to localize the tumor and adjacent tissue. Hence, an augmented reality view, in which the endoscopic

video stream is overlaid with highlighted kidney and tumor boundaries, can substantially reduce the

effort required by the surgeon to achieve accurate and quick tumor excision.

The fusion of data in RAPN for the purpose of augmenting the surgical scene is, however, chal-

lenging considering the different reference frames of acquisitions, the heterogeneity of the imaging

modalities, and the likely motion and deformation of organs when the patient’s abdomen is insufflated

during surgery.

Among the proposed computer-assisted image-guided therapy (IGT) solutions, seminal efforts ne-

cessitated the use of invasive fiducials to provide further details regarding the current position and shape

of the kidney and tumor [12, 185, 206]. At the time of the publication of our proposed contributions,

state-of-the-art IGT navigation systems that did not require the use of invasive tools mostly relied on

an initial manual rigid alignment of preoperative segmentations to stereo data. This alignment was

then followed by a motion tracking component that can be deterministic [174, 177], probabilistic [56],

or biomechanically constrained [134]. Other notably relevant works focused on developing more ro-

bust [15] and real-time [150, 175] stereo surface reconstruction algorithms to which they aimed to

register preoperative segmentations.

Computation of a 3D surface from stereo video data had shown to be an important aspect of the IGT

guidance systems but the efforts pertaining to 3D computational stereopsis were limited to deterministic

results. In computer vision research, attempts had been made to model the encoding of 3D geometry

in a pair of 2D images using Bayesian frameworks [14]. Probabilistic stereo reconstruction had been

proposed [74, 87] and probabilistic scene analysis had also been used to detect smooth problem areas

prior to matching [172]. The goal of these approaches were to use this probabilistic model to arrive

at a globally optimal depth reconstruction. However, none of the probabilistic reconstruction methods

had attempted to project the probabilistic cost (disparity) map directly into 3-space to create a proba-

bilistic representation of the surface. This probabilistic surface is an important source of navigational

uncertainty in RAPN that has not been computed and accounted for.

Moreover, all of the surveyed computer-assisted IGT navigation systems proposed for tumor demar-

cation in the context of RAPN were limited to the visualization of a crisp segmentation only [135]. Such

crisp visualizations, which do not encode uncertainties, render the surgeon susceptible to the varying

levels of confidence in what is overlaid on the screen. Like the computational stereopsis stage, seg-

mentations are hardly ever perfectly accurate for many possible reasons: graded composition [191], im-

age acquisition artifacts, inter-expert segmentation variability, and fuzzy image segmentation [58, 210].

These uncertainties can be important in subsequent analyses and decision-making [191, 197].
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Figure 4.1: Proposed augmented reality framework for kidney tumor demarcation. 3D dense prob-
abilistic map of surface reconstruction from stereo endoscopic data and probabilistic segmen-
tation of preoperative CT are co-registered to create a stereo endoscopic view augmented with
tumor boundaries and corresponding uncertainties to guide resection planning.

We propose to provide a visualization of uncertainties at the kidney and tumor boundaries as a

visual cue to assist the surgeon in finding the optimal resection strategy. This is similar in concept to

what is currently being explored in radiotherapy for brain tumors when extrapolating glioma invasion

with variable margins [92].

Our visual cues are derived from shape boundary uncertainties in the probabilistic segmentation of

the preoperative CT. To do so, as summarized in Figure 4.1, we extract 1) the kidney/tumor boundaries in

the CT prior to the operation and 2) corresponding uncertainty information from the stereo-endoscopic

views intraoperatively using (2a) computation stereo matching techniques [68], (2b) converting match-

ing weights into probability values, and (2c) triangulating the surface probabilities into the same domain

as the CT. Finally, 3) we register the preoperative boundary uncertainties to the live probabilistic recon-

struction from stereo. We apply our method to an ex vivo lamb kidney to create an uncertainty-encoded

augmented reality view. We compare our results to standard guidance methods that use crisp segmenta-

tions and present the potential added benefits of our method and its utility for resection planning.

4.2 Uncertainty-Encoded Probabilistic Resection Margins
We first describe the probabilistic segmentation of the preoperative CT that provides uncertainties about

the boundary localization of kidney and tumor. Secondly, we perform a probabilistic 3D surface recon-

struction from stereo endoscopy to which the probabilistic segmentation is directly registered.
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(a) (b) (c)

Figure 4.2: Probabilistic preoperative CT segmentation. (a) Original CT. (b) Membership prob-
abilities of kidney (green), tumor (blue), and background (red). (c) Background boundary
location probability (0 in black and 1 in white).

4.2.1 Probabilistic Segmentation of Preoperative Image Volumes

The probabilistic segmentation of the preoperative CT is based on the random walker segmentation algo-

rithm [58, 167] that generates membership probabilities of three manually seeded regions: background

(BG: red), kidney (KD: green), and tumor (TM: blue) as shown in Figure 4.2b.

We denote the resulting multi-label probabilistic CT segmentation by:

PCT
seg : Ω⊂ R3→ p ∈S 2 ,

where p = [pBG, pKD, pT M] belongs to the simplex of order 2, and Ω is the region of interest of the CT.

From this multi-label probabilistic segmentation, we can extract the membership probability map of

background PCT
BG , kidney PCT

KD and tumor PCT
T M regions.

We also compute the likelihood PCT
sur f ace of the surface union of kidney and tumor in the preoperative

CT (Figure 4.2c) by combining the membership probabilities of being inside the kidney PCT
KD and inside

the tumor PCT
T M as follows:

PCT
sur f ace = 1− |(P

CT
KD +PCT

T M)−0.5|
0.5

. (4.1)

4.2.2 Probabilistic Stereo-Endoscopic Surface Reconstruction

We propose an extension of traditional stereo surface reconstruction from a single crisp surface [68] to

a probabilistic representation of surfaces in 3-space.

Dense Matching of Left and Right Stereo Images

Using polar rectification [131] with the camera calibration parameters, the 2D dense matching of left

and right stereo images is simplified to a 1D matching along parallel epipolar lines in the left and

right rectified images. We use the normalized cross-correlation (NCC) ratio on greyscale images as a

matching similarity metric. This metric has the advantage of being less prone to changes in illumination.

In contrast with current state-of-the-art methods, e.g., Stoyanov et al. [175], Bernhardt et al. [15], and

Röhl et al. [149], instead of computing one set of robust and optimal matches, we retain all possible
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matches with their associated disparity (displacement d ∈ Z between matching points along the same

horizontal line of the rectified images) and similarity measure (c ∈ [−1,1]).

Construction of a 3D Probabilistic Voxel Map

In order to facilitate the preoperative to intraoperative registration detailed in Section 4.2.3, we first

create a 3D probabilistic voxel map in which each voxel stores the probability of being at the surface of

the stereo endoscopic scene. To achieve this, we compute the disparity probability values by converting

the NCC profile c = [c1,c2, · · · ,cNd ] computed previously at every pixel (u,v) ∈Ω2D ⊂R2 in one of the

rectified images for different disparities d ∈D = {d1,d2, · · · ,dNd}, where Nd is the number of inter-digit

signed disparities. Basically, the NCC profiles are stacked into a 3D correlation map:

NCCstereo
3D : (u,v,di) ∈Ω3D→ ci ∈ [−1,1] (4.2)

and converted into a 3D probabilistic voxel map using the Gibbs measure as follows:

Pstereo
3D (u,v,di) =

exp(−β (maxd (NCCstereo
3D (u,v,d))−NCCstereo

3D (u,v,di)))

W (β )
, (4.3)

where W (β )=∑d exp(−β (maxd (NCCstereo
3D (u,v,d))−NCCstereo

3D (u,v,di))) is the partition function, and

β is a free parameter.

Finally, the 3D position of each matched pair of points in the stereo views is triangulated with the

camera projection matrices to transform Pstereo
3D into a probabilistic voxel map Pstereo

sur f ace in real world 3D

space:

Pstereo
sur f ace : (x,y,z) ∈Ω3D→ [p,1− p] ∈S 1 , (4.4)

where p ∈ [0,1] is the likelihood of the tissue surface being reconstructed at the discretized position

(x,y,z) in real world 3D space Ω3D with our computational stereopsis method.

4.2.3 Registration of Stereo Camera and Preoperative Segmentations

We initialize the registration of the CT to the stereo camera in a semi-automatic manner using manu-

ally matched landmarks between original CT, left and right camera views. In this first step, we use a

similarity transformation to model the combination of Equation 4.1 a rigid transformation to cope with

different reference frames between stereo camera and CT acquisitions and Equation 4.2 a global scaling

to cope with ambiguities resulting from possible camera calibration errors. The resulting transforma-

tion is then refined with an automatic similarity registration of PCT
sur f ace to Pstereo

sur f ace obtained respectively

from Equation 4.1 and Equation 4.4. Finally, a non-linear registration step of these two volumes with a

B-Spline transformation model is performed to cope with deformations occurring between the preopera-

tive CT acquisition and the surgical scene. We used elastix [91] with the sum of squared differences

similarity metric for the two last automatic registration steps.
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(a) (b) (c) (d)

Figure 4.3: Transverse slices of CT volume depicting our ex vivo lamb kidney phantom with (a)
an exophytic and (c) an endophytic artificial tumor. (b) and (d) are probabilistic Random
Walker segmentations of (a) and (c), respectively. Tumor labels are colored blue, kidney is
colored green, and the background is red.

4.3 Experiments

4.3.1 Materials and Experimental Setup

For validation purposes, we fabricated an ex vivo phantom using a lamb kidney and implanted artificial

tumors inside it. Different materials (chewing gum and olive pit) were used to emulate low and high

contrast kidney-tumor boundaries within the CT. The chewing gum was placed on the surface of the

kidney to emulate a partially exophytic tumor/cyst (Figure 4.3a) and the olive pit was planted deep

inside the kidney (close to the renal pelvis) representing a completely endophytic tumor (Figure 4.3c).

A 16 slice Siemens SOMATOM Sensation CT scanner was used to acquire a high resolution CT

volume of the phantom. The resulting volume is composed of 130 (0.600 mm thick) transverse slices

of 512× 512 pixels (0.215 mm pixel spacing). Stereo endoscopy data was captured with a calibrated

da Vinci S Surgical System at full HD 1080i resolution.

4.3.2 Ex vivo Lamb Kidney Study

The Random Walker segmentation algorithm was applied with manual seeding of each label in the CT

volume. The probabilistic labeling corresponding to the two simulated tumors is illustrated in Fig-

ure 4.3b and Figure 4.3d. Note that the diffusion of uncertainties in the endophytic case is more visible

compared to the exophytic tumor; this is a direct result of weaker contrast (CT intensity values: dif-

ference in pit/gum composition) at the kidney-tumor boundary. We were careful to keep the distances

between the manually placed seeds and the visible boundaries constant to decrease the influence of seed

placement on the resulting segmentations.

As illustrated in Figure 4.4a, our phantom is quite smooth and lacks unique features on its surface.

This results in a largely uncertain reconstruction from our stereo matching algorithm, which in turn

causes the registration to be sensitive to the initial pose estimation. Successful registration was achieved

after estimating the pose (Figure 4.4c) using only four manually selected corresponding surface land-

marks. The outcome of the registration was verified visually (Figure 4.4) by projecting the kidney and
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(a) (b)

(c) (d) (e)

Figure 4.4: Results of registration: (a) Original left stereo camera view, (b) final registered crisp
mesh of the tumors (blue) projected on top of the image. Close-up views depicting interme-
diate results of the registration: (c) pose estimation, (d) automatic similarity transformation,
and (e) non-rigid registration.

tumor surfaces on both left and right endoscopy views. The small amount of error (< 1 mm) observed

in the resulting registration is due to the error in reconstruction which is attributed to lack of texture on

the phantom.

In order to verify the usefulness of probabilistic boundary visualization, we present four visual-

ization scenarios. In the first case (Figure 4.4b), we generate a crisp mesh model of the tumor by

thresholding the probabilistic segmented CT volume to extract the most probable kidney-tumor bound-

ary. In our second case, we project the previously generated mesh onto a 2D plane (normal to the

camera) and extract its contour (Figure 4.5a). This particular approach does not provide the surgeon

with much additional information. Without any visible information (e.g. in the endophytic case) the

surgeon’s confidence regarding the visualized crisp boundary is, at best, changing isotropically away

from the contour (as emulated in Figure 4.5b). Third case, we isotropically dilate the 3D thresholded

volume of the tumors by 1mm increments and overlay the corresponding projected 2D contours (Fig-

ure 4.5c). The resulting 2D contours dilate anisotropically as they are influenced by the orientation

and shape of the tumor in 3-space. Fourth case, we propose thresholding the probabilistic volume at
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(a) (b)

(c) (d)

Figure 4.5: Augmented reality view of Ex vivo lamb kidney with endophytic and exophytic arti-
ficial tumors showing different visualization scenarios: (a) crisp contour of projected mesh,
(b) isotropic 2D diffusion of the crisp contour, (c) 2D projections of the crisp mesh dilated in
3D by 1mm increments, (d) 2D projections of 3D isoprobabilities from 0.5 to 0.15. Contours
range from the most probable boundary (red) to the most conservative boundary (green).

increasingly conservative confidence intervals instead of isotropic dilation to obtain isoprobability con-

tours (Figure 4.5d). In this case, we are essentially guiding the dilation of resection boundaries using

the underlying uncertainty information extracted during the probabilistic segmentation of the CT. These

results are consistent with our initial observation that the diffusion of uncertainties are greater in the

endophytic case (pit/gum difference).
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(a)

(b)

Figure 4.6: (a) Top and (b) side views of ex vivo lamb kidney augmented with uncertainty-driven
tumor boundary localization. Uncertainty is encoded into the tumor boundary ranging from
certain (green) to uncertain (red).

We presented the four cases to expert urology surgeons. The general consensus was that the infor-

mation presented in the fourth case (Figure 4.5d) is promising. A valid critique was made regarding

the number of contours being overlaid on the endoscopy view: it obstructs the kidney more than the

simple crisp solution (Figure 4.5a). In order to address this problem, we present a complimentary vi-

sualization scenario in which uncertainties are projected onto a single crisp contour. We accomplish

this by computing the minimum distance between the most probable contour and the most conservative

one at every location of the most probable contour (distance from inner-most to outer-most contours in

Figure 4.5d). A lower distance implies a higher confidence in the boundary localization as it indicates

a sharper edge in the probability map. We then transform these distances into a relative color map and

use it to color-code the crisp contour (Figure 4.6).
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This final visualization scenario does not only provide the most probable tumor boundary local-

ization, but also provides information about its local confidence. This visualization may prove to be

effective in guiding the surgeon to quickly identify the best (most confident) place to start the resection.

During the resection, the surgeon can always opt for the fourth case to see exactly how the uncertainty

is diffused spatially.

Although our visualization techniques were well received by our clinical collaborators, the assumed

benefits of our proposed visualizations are yet to be thoroughly evaluated in a clinical context. It is

important to note that the benefits of navigation uncertainty in computer-assisted orthopedic interven-

tions have been demonstrated [159] and there exists prior art on experimental design of user studies for

evaluating the benefits of uncertainty-encoded visualizations [160].

4.4 Summary
We proposed methods that enable the extraction and registration of probabilistic data from two compli-

mentary sources of information available in robot-assisted surgical interventions. Our approach provides

the confidence in the resulting augmented information, which may prove useful to the surgeon during

the demarcation of excision margins before resection.

The novel visualization we presented is a proof-of-concept. The next step is to validate our exper-

iments on clinical data and more realistic ex vivo phantoms with agar-based tumors of varying intensi-

ties, shapes and sizes [77]. Our methods also stand to benefit from in-depth summative usability tests

in addition to more formative usability tests to fully validate the integration of our uncertainty encoded

visualization techniques into the clinical workflow. To do this, we advocate for simulated RAPN tumor

identification and resection studies similar to the phantom studies recently presented by Singla et al.

[166]. The aim of such user study should be to evaluate the benefits of our proposed uncertainty-encoded

visualization techniques during RAPN. As such, this experiment should follow the experimental design

guidelines proposed by Simpson et al. [160], while adopting the success criteria proposed by Singla

et al. [166], i.e., excision time, adjusted excised specimen volume, and excision margin status.

In addition to the proposed user studies, there is a need to automate the initialization (pose estima-

tion) steps of our methods to facilitate real-time operation. This may be done using our Nosrati et al.

[124] method presented in Chapter 2. It is important to point out that the utility of our proposed methods

is not contingent on automatic initialization and real-time registration. In fact, our proposed methods

can be integrated into other RAPN guidance techniques [35, 153, 185]. For example, our visualizations

can be used to render uncertainty-encoded tumor boundaries obtained from intraoperative CT [185] or

US [153] imaging. Furthermore, the uncertainties which we compute from preoperative CT may be

fused with uncertainties from additional intraoperative sources (e.g., US [153], CT [185], and tracking

data [35]) to improve the confidence at the localized boundary as new data is acquired during resection.

Above all, we believe that it is imperative to extend our method to account for the uncertainties

associated to the error-prone image registration stage, which has been shown to be the biggest source

of uncertainty in IGT navigation [159]. In the following chapter, we present our contributions towards

automatic estimation, propagation, and visualization of deformable image registration uncertainties.
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Chapter 5

Encoding Deformable Image Registration
Uncertainties for Scene Augmentation

“Medicine is a science of uncertainty and an art of probability.”
— William Osler

This chapter continues the presentation of our contributions towards addressing our second research

question by investigating the effects of deformable image registration uncertainties on intraoperative

guidance. To enable such capability, we propose a mathematical framework that first estimates the reg-

istration uncertainty and subsequently propagates the effects of the computed uncertainties from the

registration stage through to the visualizations, organ segmentations, and dosimetric evaluations. To

ensure the practicality of our proposed framework in real world image-guided radiotherapy contexts,

we implemented our technique via a computationally efficient and generalizable algorithm that is com-

patible with existing deformable image registration software.

5.1 Computing and Propagating Uncertainties in Deformable
Registration

The details of our proposed framework are organized into four components and are presented as follows.

We start by detailing our registration uncertainty (RU) estimation technique in Section 5.1.1. In Sec-

tion 5.1.2, we present a parametric representation of the computed RU along with two different methods

for visualizing the computed RU. In Section 5.1.3, we present our uncertainty propagation method,

which encodes the parametric representation of the computed RU into associated dosimetric maps and

segmentation masks representing delineation of organs at risk (OAR). Finally, in Section 5.1.4, we take

the analysis of RU propagation one step further by demonstrating how RU encoded dosimetric maps

can be accumulated into an RU encoded accumulated dose map, which can then be summarized into a

RU encoded dose-volume histogram (DVH) representation.
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5.1.1 Computing Registration Uncertainty

Given a pair of volumetric images ft , fm : R3→ R henceforth referred to as target and moving image,

the objective of parametric deformable image registration (DIR) models is to obtain an optimal set

of transformation parameters θ that describe a transformation function T : R3 → R3. The function

T(x;θ), defined over the domain of pixels x ∈Ωt ⊂R3 of the target image, maps a deformation field to

the domain of the moving image Ωm ⊂R3 in order to maximize its overall correspondence or similarity

with the target image, measured with the similarity metric Ψ. This optimization is written as

θ̂ = argmax
θ

Ψ( ft(x), fm ◦T(x;θ)) . (5.1)

If the solution to Equation 5.1 is guaranteed to be correct every time (which is not the case in

many real world applications), we should then be able to perturb (geometrically deform) the target

volume in a controlled manner and expect the solution to Equation 5.1 to correctly identify exactly

how the target image was perturbed. If the DIR process cannot correctly predict the perturbations,

there must be uncertainties in the process, and we can therefore compute the difference between the

controlled perturbations and the perturbations estimated with Equation 5.1 to quantify the uncertainty

in registration.

The process of applying controlled perturbations and estimating the errors in DIR is computationally

expensive. Rather than applying random and unrealistic perturbations to the target image, we can lever-

age the initial DIR solution θ̂ and prior knowledge about how we expect the registration to go wrong

to induce these perturbations in a more informed and computationally efficient manner [199]. As such,

RU may be computed by treating θ as a normally distributed random variable N (µθ ,Σθ ), in which µθ

is estimated by µ̂θ = θ̂ and Σθ is estimated depending on the deformation model used. For the popular

B-spline deformation model, Σθ is estimated using an a priori baseline Σo in a convex combination

Σθ = (1−ρ)Σo +ρθ̂ θ̂
ᵀ

(5.2)

weighted by ρ ∈ [0,1) forming a shrinkage estimator. In context of 3D B-spline DIR, this a priori

baseline Σ0 is computed by taking the Kronecker product of a 3D first order autoregressive model

ΣAR with a 3× 3 matrix c that encodes the covariance of the x,y,z components of the transformation

parameter θ , such that Σ0 = c⊗ΣAR.

The 3D autoregressive kernel

ΣAR(i, j) = r|x(i)−x( j)|
x r|y(i)−y( j)|

y r|z(i)−z( j)|
z ,1≤ i, j ≤ K (5.3)

is computed subject to smoothness parameters r=(rx,ry,rz) and constraints |rx|, |ry|, |rz|< 1 that control

the smoothness between sampled neighboring B-spline control points, where K is the total number

of control points. In this formulation, x(i) = mod(i− 1,nx),y(i) = mod(b(i− 1)/nxc,ny),z(i) = b(i−
1)/(nxny)c represent the mapping from index i to the corresponding x,y,z coordinate of the ith control

point, assuming an (nx,ny,nz) grid of B-spline control points. The derivation of this prior and efficient
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techniques for sampling it are detailed in Watanabe and Scott [199]. The selection of the free parameters

r and c indeed depends on the chosen DIR hyperparameters, e.g., number of B-spline control points,

transformation regularization, optimization strategy, extent of possible deformable motion in clinical

context, etc. A good strategy for selecting r and c would be based on initial clinical phantom studies, as

suggested by Brock et al. [19], or from clinical experiments as explained in Section 5.3.1.

Once the distribution of θ has been estimated, the next steps for computing RU are to: (i) draw

samples θ i ∼N (µ̂θ , Σ̂θ ) from the distribution of parameters, (ii) apply the sampled transformation to

the target image to generate synthetic images f (i) = ft ◦T−1(x; θ̂) ◦T(x;θ i), (iii) register the moving

image fm to each and every synthetic image to obtain

θ̂ i = argmax
θ

Ψ
(

ft ◦T−1(x; θ̂)◦T(x;θ i), fm ◦T(x;θ)
)
, (5.4)

and finally (iv) compute the errors in the simulated transformations

ei(x) = (eix(x),eiy(x),eiz(x)) = T(x; θ̂ i)−T(x;θ i). (5.5)

These errors represent the performance of the DIR method, in the spatial domain of the target image,

subject to a set of random but structured perturbations (governed by prior Σo) applied to the target image.

These errors implicitly account for overall end-to-end performance of a given a pair of images and a

DIR method with fixed hyperparameters. The overall end-to-end performance accounts for both the

contextual geometric uncertainties that exist in the image pair (e.g., lack of salient image information)

and the behavior of the DIR method (e.g., correctness of the deformation model and performance of the

optimization strategy used) subject to the contextual geometric uncertainties. The spatial distribution of

these errors are therefore the RU associated to the DIR process. The estimation of RU is improved by

drawing more samples from θ i, however this process is expensive as computing an additional ei requires

a computationally expensive 3D registration. In the next section, we describe how this expensive process

can be simplified by assuming a parametric model over the distribution of the RU computed for DIR

parameter θ , and by extension, at every voxel x.

5.1.2 Parametric Representation and Visualization of Registration Uncertainty

The benefits of assuming a parametric model for the distribution of RU are three-fold. This parametric

representation reduces memory requirements for storing {ei(x)}, reduces the number of ei samples

required to estimate RU, and simplifies the process of propagating the RU onto the next processing

steps, i.e., using the spatial confidence to diffuse segmentations or dose maps. Assuming that e(x) ∼
N (µe(x),Σe(x)), spatial confidence region Φ(x) is defined by

Φ(x) = {x′ : (x−µe(x))
ᵀ
Σ
−1
e (x−µe(x))< χ

2
3 (1− γ)}, (5.6)

where γ is the confidence level and {µe(x),Σe(x)} are the sample mean and covariance of {ei(x)}.
Sample covariance calculation is sensitive to outliers and becomes a problem if the synthetic samples
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are few. Student’s t-distribution is a better fit but it is computationally complex as its parameters have

to be solved numerically. We propose a two-step estimation of the sample covariance by omitting the

outliers that fall outside of the γ = 0.95 level set of the first estimate of Φ(x). It should be noted that even

if θ is sampled normally, there is no guarantee that the errors {ei(x)} will follow a normal distribution.

This matter is further discussed in the Results section.

The confidence regions Φ(x) are effectively structural tensors parameterized by {µe(x),Σe(x)} at

every voxel x. To visualize the quality of DIR at each voxel, these structural tensors may be rendered

as ellipsoids in 3D using tensor rendering toolkits available for medical images. An alternative visual-

ization may also be produced by transforming these structural tensors to scalar quantities that represent

RU by computing the differential entropy of each tensor

E(x) =
3
2
(1+ ln(2π))+

1
2

ln |Σe(x)|. (5.7)

Note that differential entropy E is a logarithmic measure, which depends on the log-determinant of the

covariance matrix Σe(x) and as a result E ∈ (−∞,∞).

In the next section, we show how this parametric representation is used within our framework to

propagate RU beyond the registration step.

5.1.3 Diffusion of Image Information using Registration Uncertainty

The parametric representation of RU, in essence, presents the likelihood of possible locations where a

voxel from the domain of the moving image would be mapped to in the domain of the target image. As

such, RU also presents the likelihood that a voxel in the target image domain may have the values of its

neighbors due to potential errors in registration. We can propagate the effects of potential DIR errors

onto associated mappings, e.g., segmentation labels and dose maps, using a weighted averaging scheme

that encodes the likely contributions of neighboring voxels.

Let Im = (Dm,S1
m,S

2
m, ...,S

N
m) : R3→ RN+1 represent a vector valued volume that contains N binary

segmentation labels Sm ∈ {0,1} of different OAR and radiation dose map Dm in the domain of the mov-

ing image fm. This image can be transformed into the domain of the target image using the parameters

θ̂ such that I′m(x) = Im ◦T(x; θ̂),x ∈ Ωt . To compute the posterior distribution P′m ∼N (µP,σP
2) of

I′m, RU is encoded using a convex combination characterized by the weighted mean and variance

µP(x) =
∑∀x′ W(x|x′)I′m(x′)

∑∀x′ W(x|x′)
,

σP(x)2 =
∑∀x′ W(x|x′)(I′m(x′)−µP(x))2

∑∀x′ W(x|x′)
,

(5.8)

where the weights

W(x|x′) = (2π)−
3
2 |Σe(x′)|−

1
2 e(−

1
2 (x−µe(x′))ᵀΣe(x′)−1(x−µe(x′))) (5.9)

are obtained by evaluating the probability density of the trivariate normal distribution N (µe(x′),Σe(x′))
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at x. The computational performance of this diffusion process can be increased by assuming that the

contribution of I′m(x′) to Pm(x) is negligible, i.e. W(x|x′) ∼ 0, when x and x′ are more than a certain

distance apart; effectively reducing the space of x′ ∈Ωt , over which Equation 5.8 is evaluated.

It is worth noting that a possible simplification of Equation 5.8, which we do not perform, is to

assume that W(x|x′) = W(x′|x), then the computation of the mean simplifies to µP = W ∗ I′m. This

allows for the mean of the posterior to be calculated by convolution or, in other words, by blurring I′m
with an adaptive Gaussian kernel parameterized by {µe(x),Σe(x)}. This approach was used in Simpson

et al. [163] to diffuse segmentation labels in a study involving registration of inter-subject brain MRI

scans.

Having computed a parametric distribution of associated dose maps {µDm ,σDm} as part of P′m, we

can now extend the propagation of RU though to the accumulated dose map and resulting DVH repre-

sentation, which is detailed in the following section.

5.1.4 Propagation of Registration Uncertainty in Accumulated Dose Analysis

DVH parameters have been used in numerous published toxicity analyses, which are the basis for rec-

ommended dose constraints used in modern-day treatment planning. It is important to compute and

visualize the effects of RU on the DVH curves as the RU information may be used to (i) simulate poten-

tial errors in how the DVH was computed, and to (ii) provide uncertainty metrics for the DVH-derived

parameters that are used in practice for evaluating the treatment plans. We propose to use the propaga-

tion technique presented in Section 5.1.3 to compute the distribution of accumulated dose at each pixel

after dose information from different fractions have been probabilistically aligned onto the target (ref-

erence) image volume. An RU encoded probabilistic DVH curve is then computed from the generated

probabilistic accumulated dose map.

The DVH for each n ∈ N OAR, denoted Hn : d ∈ R→ R, is defined as the cumulative distribution

function of the number of pixels within an OAR that receive an accumulated radiation dose above a

certain accumulated dose value d. Let xn ⊂ x define the subset of pixels that fall within a certain OAR

indexed as n, as indicated by the corresponding segmentation label, such that Sn(xn) = 1,∀xn. The DVH

is formally defined as

Hn(d) = ∑
∀xi∈xn

I(Dacc(xi)> d), (5.10)

where I(.) is the indicator function. Dacc(x) represents dose map containing the summation of the total

amount of radiation received throughout all fractions accumulated onto one fraction (selected as the

target volume) such that

Dacc(x) = Dt(x)+∑
∀m

Dm ◦T(x; θ̂ m), (5.11)

where Dt is the dose map of the fraction selected as the target and Dm are the dose maps of all m ∈M

moving fractions. The DIR alignment of each moving fraction onto the target fraction is parameterized

by θ̂ m obtained by registering each fm to ft .

Having defined how the DVH is computed using Equation 5.10, we can now extend the formulation
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to account for RU by leveraging the parametric representation of probabilistic dose maps {µDm ,σDm}
computed in the previous section. Assuming that {µDm ,σDm} computed for each moving fraction m∈M

are independent random variables, the sum of them is also normal, with its mean being the sum of the

means, and its variance being the sum of the variances. Summing the aligned RU encoded dose volumes

results in the parametric representation of the accumulated dose map

µDacc(x) = Dt(x)+∑
∀m

µDm ,

σDacc(x)
2 = ∑

∀m
σ

2
Dm

.
(5.12)

The DVH may now be computed at different α standard deviations from the mean accumulated dose

value such that

Hn(d;α) = ∑
∀xi∈xn

I((µDacc(xi)+ασDacc(xi))> d) . (5.13)

In summary of the methodologies presented in this section, we have proposed a framework that is

capable of: (i) estimating the quality of a B-spline DIR method via RU, (ii) visualizing the RU, and

(iii) propagating the effects of RU onto associated segmentation labels and dose maps using a weighted

averaging technique. We then went a step further to propagate the effects of RU on the accumulated dose

from multiple fractions. The corresponding DVH representation, which may be used for interventional

planning and quality assessment purposes, was also computed. We discuss the potential benefits of RU

encoded DVH analysis in further detail in Section 5.3.4. In the following section, we demonstrate the

utility of our framework on a retrospective study of fractionated brachytherapy interventions.

5.2 Encoding Uncertainties in Multi-Fraction Cervical Cancer
Brachytherapy

Our application choice for demonstrating the effects of RU on DIR and therapy delivery is image-guided

multi-fraction cervical cancer brachytherapy (MFCCB). MFCCB is a form of radiotherapy that relies

heavily on 3D imaging for treatment planning, delivery, and quality control. A patient undergoing

MFCCB is exposed to multiple sessions (fractions) of radiation separated by one or more days to max-

imize the effectiveness of radiation on cancerous cells and to minimize the damage to healthy cells. In

MFCCB, an updated set of 3D patient-specific planning images is acquired and segmented prior to the

delivery of radiation at each fraction to identify changes in the clinical target volume and in the OAR.

Similar to other image-guided radiotherapy applications, many of the challenges faced in MFCCB

are rooted in the fact that hollow elastic OAR, such as the urinary bladder, may have a significantly

different size, shape and orientation across treatment fractions mainly due to differences in fill volumes

and brachytherapy applicator positioning [70]. In other similar applications, the use of RU quantification

in DIR-based assessment has been presented as a potential solution to the following challenges: (i)

computing the accumulation of radiation doses across multiple fractions for quality control and post-

treatment analysis [119, 148, 186]; (ii) transferring the delineation of organs from one fraction to the
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next to expedite the planning stage [48, 69, 79, 163]; and finally (iii) visualizing localized RU to assist

clinicians when decisions are made based on registered image data [147].

The application of MFCCB also stands to benefit from multimodal registration methods, such as our

proposed techniques, even though DIR is being performed on different CT scans of the same patient. We

believe that this is due to occasional observable differences in how the contrast agent presents within the

bladder across different fractions. Although the protocol dictates that the amount of contrast agent must

not be variable among different fractions of the same patient, noticeable variations occur due to both

human error, which results in possible variations in the water-contrast mixture used for each fraction, as

well as visible variation of contrast within the same image due to settling of the contrast material inside

the bladder [88]. This settling effect is further complicated by the fact that the bladder fill level and

balloon catheter position are intentionally altered across fractions in some treatment centers to reduce

the risk of urinary toxicity [209]. A multimodal RU estimation method may therefore be better suited

to MFCCB and other similar interventional applications.

In this clinical context, we present evidence that our proposed framework is beneficial to the three

challenges associated with image guided MFCCB. Specifically, we show that (i) the effect of RU on dose

accumulation provide useful insights for quality control and post-treatment analysis; (ii) RU propagation

improves the transfer of delineations from one fraction to the next; and (iii) RU can be used to generate

intuitive visualizations that reflect the quality of DIR and thus can assist physicians in making decisions

based on registered image data. We emphasize that our proposed methodology, though presented here

to address the challenges of MFCCB, can be generalized to other similar clinical application as it is

applicable to different DIR software, is faster than current Bayesian approaches, and has been designed

to handle multimodal registration tasks.

5.3 Experiments

5.3.1 Data and Experimental Setup

We applied the methods outlined in the previous section to a dataset of 37 MFCCB patients collected at

BC Cancer Agency, Vancouver, Canada, following applicable Research Ethics Board review. Each of

the 37 instances within the dataset is comprised of five fractions and the set of planning images acquired

at each fraction contains a computed tomography (CT) scan f , detailed segmentations of the interior Si

and exterior Se surfaces of the bladder wall, and a dosimetric map D representing the amount of radiation

absorbed at every voxel. The segmentation and dose maps in each instance are in the same coordinate

space as the CT volume. Also, three landmarks on the urinary bladder that make up the Trigone (bladder

neck and ureteral orifices) were identified in all CT scans to enable the calculation of target registration

error (TRE). Landmarks were manually localized with respect to the origin of the corresponding CT

scan. Landmark locations were not used to facilitate the alignment of the image volumes and no further

processing was done to the image volumes prior to registration.

The clinical goal in MFCCB analysis is to account for changes in patient anatomy between fractions,

thus we need to perform intrapatient registration. The CT volume of the first fraction is selected as the
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Figure 5.1: Exemplar case depicting the effects of registration on bladder and landmark alignment.
3D contours of the bladder presented in this figure are extracted from the target image volume
(black) and the moving image at different stages of alignment: before registration (red), after
affine registration (blue), and after affine+deformable image registration (green). Landmark
locations (two ureter orifices and the bladder neck) are plotted as spheres and are colored
according to their corresponding 3D bladder contour. Correspondence between landmark
locations are indicated with a black line. In this example, the mean landmark alignment error
is reduced from 36.4 mm before registration to a mean target registration error of 12.9 mm
after affine and 5.4 mm after affine+deformable image registration.

target volume ft to which the CT volumes of all other fractions are registered. Automatic registration

is performed in two stages: (i) a simple affine image registration to roughly align the volumes followed

by (ii) a DIR to account for elastic deformations. The elastix toolbox [91], which is based on the

popular Insight Segmentation and Registration Toolkit (ITK, Kitware Inc.), was used to perform the

registrations and the same pair of affine and DIR parameter files were used for all registrations. To

speed up computation, each image volume was downsampled by a factor of two; to 256× 256 axial

resolution.

The error in landmark alignment is computed before and after every stage of registration by com-

puting the Euclidean distance between the Trigone landmarks of the target and moving image volumes

(Figure 5.1). The landmark alignment error is averaged across the four fractionated moving volumes of

each patient and is presented in Figure 5.3. The automatic affine image registration step of our frame-

work reduced the mean landmark alignment errors across four moving fractions and 37 patients from

29.57 mm to a mean TRE of 10.67 mm. This mean TRE is further reduced from 10.67 mm to 7.71 mm

following the initial DIR. All resulting reductions in landmark alignment errors following each registra-

tion step were found to be statistically significant subject to a Wilcoxon signed-rank test, p< 0.001. The

independent and joint histograms of the displacements between corresponding landmarks are presented

in Figure 5.2.

RU is computed only for the DIR step of the registration. To compute the RU after the initial

DIR, our method requires an a priori baseline Σ0 in order to realize 40 samples of the transformation

parameters. We parametrize the free parameters of the first order 3D autoregressive model ΣAR by

setting the value of c to the covariance of absolute x,y,z error components of the TRE computed post-

DIR. We set the smoothness parameter r to 0.9 for all x,y,z directions, and ρ to 0.1 as recommended in

the original paper [199].
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Histograms of displacements between corresponding landmarks prior to registration
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Histograms of displacements between corresponding landmarks after affine registration
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Histograms of displacements between corresponding landmarks after affine+DIR
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Figure 5.2: Independent and joint histograms of the x,y,z components of displacements E be-
tween corresponding landmarks. Displacements are computed for all three corresponding
pairs of landmarks (two ureter orifices and the bladder neck) with respect to their loca-
tions in the target image volume and the moving image volume before and after affine and
affine+deformable image registration (DIR) stage of image registration.
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Figure 5.3: Target registration errors (TREs) computed with respect to the target image volume,
averaged across the four moving volumes, acquired before and after every stage of image
registration. Known landmark locations were not used during registration.
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Figure 5.4: Scalar (left) and tensor (right) representations of registration uncertainty overlaid on
CT. In the scalar visualization, the colors of the overlay represent uncertainty ranging from
most certain (blue) to most uncertain (red). This uncertainty corresponds to the volume of the
ellipsoids depicted in the tensor visualization. In the tensor representation, the colors indicate
the orientation of the major axis of the ellipsoid or direction of maximum uncertainty. Note
that this exemplar registration result is more certain at rigid structures (bones) compared
to deformable ones (bladder, bowels, and air) and the tensor orientations follow the edge
information in the image.

To increase the computational performance of diffusion process, we restricted the space over which

Equation 5.8 is evaluated to an 80× 80× 80 mm neighborhood about x. Effectively, we assume that

W(x|x′)∼ 0, when the distance between x and x′ is more than 40 mm, i.e., twice the maximum measured

TRE post-DIR.
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5.3.2 Registration Results and Uncertainty-Encoded Visualizations

Applying the transformations obtained with the initial DIR to align the segmentations of the entire

bladder, up to the external bladder wall Se
m
′, with the target volume results in an average Dice similarity

coefficient (DSC) of 0.860 with a standard deviation of ±0.092. This high similarity and low TRE

(presented in Figure 5.3) indicates that the initial DIR provides a good prediction of the location of the

bladder.

In the methodology, we presented a parametric representation for RU Φ(x), which can be in-

terpreted as structure tensors. After computing RU, these tensors can be rendered as 3D ellipsoids

using existing tensor rendering toolkits available for medical images [188] or, alternatively, trans-

formed into scalar quantities using Equation 5.7. An exemplar visualization of the computed RU as

scalar and tensor overlays is provided in Figure 5.4. To generate the color mapping for the scalar

visualizations, we first normalized the computed differential entropy values to EN ∈ [0,1] such that

EN = (E−min(E))/(max(E)−min(E)) and mapped color values to the normalized EN values to rep-

resent relative uncertainty in DIR. In Figure 5.4, min(E) =−1.64 and max(E) = 7.91. Qualitatively, the

proposed visualizations of RU are as expected; RU is more certain at rigid structures (bones) compared

to deformable ones (bladder, bowels, and air) and the tensors follow the edge information in the image.

Such visualizations may be useful in many similar image guided applications but its utility to clinicians

needs to be thoroughly validated.

5.3.3 Propagation of Registration Uncertainties onto Segmentation Labels

We applied the proposed RU estimation method (presented in Section 5.1.1) and the proposed RU propa-

gation method (presented in Section 5.1.3) to segmentation labels of the entire bladder to test if segmen-

tation may be improved by encoding RU information. Specifically, we tested the following hypotheses:

1. The diffusion of segmentation labels using our proposed RU estimation method improves binary

segmentation performance after non-rigid registration.

2. The diffusion of segmentation labels using the Watanabe and Scott [199] RU estimation method

improves binary segmentation performance after non-rigid registration.

3. Our proposed RU estimation method is better than Watanabe and Scott [199] for improving binary

segmentation labels.

4. The probabilistic segmentation labels produced using our proposed RU estimation method is bet-

ter than a trivial isotropic diffusion of binary segmentation.

5. The probabilistic segmentation labels produced using the Watanabe and Scott [199] RU estimation

method is better than a trivial isotropic diffusion of binary segmentation labels.

6. Our proposed RU estimation method is better than Watanabe and Scott [199] for generating prob-

abilistic segmentation labels.
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Figure 5.5: Qualitative effects of DIR and RU based diffusion on segmentation labels of the entire
bladder. Exemplar slice of corresponding moving and target CT volumes (top) and segmented
bladder (bottom) depicting the progressive stages of the intra-patient registration of moving
to target image.

To test the first three hypotheses, we encode RU by diffusing the aligned binary segmentation labels

Se
m
′ using Equation 5.8 and observed improvements in the alignment of the bladder labels following the

diffusion (Figure 5.5). The resulting mean of the diffused labels µSe are fuzzy and in order to quantify

the improvement over the initial crisp alignment, we first threshold µSe at 0.5 and compute the DSC. In

this scenario, the average DSC increases to 0.862± 0.093. The improvement may seem marginal but

this is due to the fact that precious information is discarded during thresholding.

The fuzziness of µSe itself conveys useful information as well. The diffusion of µSe is based on local

RU; if µSe is thresholded at values other than 0.5, it follows a trade-off between true positive and true

negative rates. This behavior is evident in the receiver operating characteristics (ROC) space [39] shown

in Figure 5.6. In the ROC space, the correctness of the alignment can be measured by the area under

the receiver operating characteristics curve (AUC). To test the last three hypotheses, we interpreted the

crisp alignment results as a discrete pixel classifier and µSe as a probabilistic one, and compared their

performance in classifying the ground truth bladder pixels in the target image. With the µSe classifier,

the average AUC (across 4 fractions and 37 patients) was increased from 0.942 to 0.991. Note that these

reported numbers are high due to the fact that the relative number of true negative responses outnumber

the misclassified ones in the CT volume. By comparison, the Watanabe and Scott [199] method for

computing RU, resulted in an average AUC of 0.987. Furthermore, to demonstrate that diffusion based

on our RU estimation is more representative of true registration error than an isotropic diffusion, and

that the improvements in segmentation are not due to under- or over-segmentation, rather than using

an adaptive RU diffusing kernel, we eroded and dilated the crisp segmentations with a 3x3x3-voxel

structuring element and observed an average AUC of 0.984.
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Figure 5.6: Quantitative effects of deformable image registration and registration uncertainty (RU)
based diffusion on segmentation labels of the entire bladder summarized using mean receiver
operating characteristics (ROC) curves. Presented ROC curves compare the mean perfor-
mance of bladder alignment using different RU diffusion methods. The results of a discrete
classifier (red) and an isotropically diffused version of it (black) are used as baselines for
comparison. The isotropic diffusion was generated by performing 3D morphological dilation
and erosion operations on the discrete segmentation. Our diffusion technique based on the
proposed RU method (green) outperforms diffusion using Watanabe and Scott [199] (blue)
and the baselines. The associated area under the mean ROC curves are 0.944 (red), 0.984
(black), 0.987 (blue), and 0.991 (green).

A summary of the quantitative improvements in segmentation accuracy are provided in Figure 5.7

and Table 5.1. To test our hypotheses, we tested the statistical significance of the reported differences

in DSC and AUC comparisons using the Wilcoxon signed-rank test with Bonferroni adjusted alpha

levels of 0.0017 per test (0.01/6). We observed that the improvements using our method over both the

isotropic diffusion and Watanabe and Scott [199] were tested to be statistically significant, p < 0.001.

On the other hand, the improvement in AUC between the Watanabe and Scott [199] method and isotropic

diffusion were not statistically significant, p = 0.69. This insignificant improvement over an isotropic

diffusion implies that the standard unimodal Watanabe and Scott [199] method may not be suitable for

RU estimation in context of MFCCB, which is further corroborated by the associated drop in mean

DSC when the Watanabe and Scott [199] method is used. All differences in DSC were tested to be

significant p < 0.001. Note that the crisp and isotropic diffusion approach are identical in terms of DSC

performance as isotropically diffused segmentations were created from the crisp segmentations. From

these observations we conclude that, as expected, our proposed multimodal RU estimation approach can

better estimate the DIR errors in our context as it is capable of improving segmentation performance

through the propagation of RU.

Regarding the outliers present in the boxplots in Figure 5.7, we attribute this in part to the fact that
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Figure 5.7: Boxplots summarizing labelling performance following the proposed and Watanabe
and Scott [199] registration uncertainty based diffusion of registered segmentation labels
compared to the crisp and isotropically diffused baselines. Performance results reflect per-
formance across all 148 registrations and are measured using the Dice similarity coefficient
(DSC) and area under the receiver operating characteristics curve (AUC). Note: DSC for
crisp and isotropically diffused baselines are identical as the isotropic diffusion is derived
from the crisp results.

the resulting DSC and AUC performance metrics are not normally distributed, and in part to our choice

to use the first fraction acquired for each patient as the reference image. For two patients (cases 5 and

20), the bladder fill level in the first fraction was drastically different than the following four factions,

causing the registrations be less successful compared to other 35 cases. This is also observed via the

relatively higher TRE measured after affine+DIR stage, as reported in Figure 5.3; though the TRE of the

Trigone landmarks may not necessarily predict DSC and AUC performance as the landmark locations

do not cover the entire surface of the bladder. It is important to note the increased AUC performance

on these outliers using our methods. This suggests that the fuzzy labels generated with our proposed

method is effective in situations were the errors in DIR are high and, by extension, that our estimated

RU is perhaps more representative of DIR errors.

A critically important, yet subtle, point that merits repeating and further discussion at this point is

in regards to the direction of the RU diffusion. This behavior can only be seen in the tensor (vector)

visualization presented in Figure 5.4. From this figure, one can easily observe that the diffusion of RU

is greater in homogeneous regions (e.g., inside of the bladder) compared to regions with salient image

texture such as observable tissue boundaries. More importantly, it can be seen that the diffusion is

greater along the direction of a tissue boundary than across it. In other words, the major axis of the

ellipsoidal tensors are aligned with tissue boundaries, e.g., the bladder wall. This is logical as the DIR

algorithm can align two edges with relative ease, however perfect correspondence between two points

along these edges is so far impossible to obtain, without the aid of perfectly accurate tissue deformation
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Method AUC DSC
Crisp baseline 0.942±0.060 0.860±0.092
Isotropically diffused 0.984±0.034† 0.860±0.092
Watanabe and Scott [199] 0.987±0.028† 0.855±0.100
Proposed method 0.991±0.021 0.862±0.092

Table 5.1: Summary of the labelling performance across all 148 registrations measured using the
Dice similarity coefficient (DSC) and the area under the receiver operating characteristics
curve (AUC). Note that the DSC results for crisp and isotropically diffused baselines are iden-
tical as the isotropic diffusion is derived from the crisp results. †: The differences between
the computed AUC for the isotropically diffused and Watanabe and Scott [199] approach were
not found to be significant subject to a Wilcoxon signed-rank test, p = 0.69.

models, due to the lack of salient image information along the edge. Compared to the abdominal cavity

and surrounding soft tissues, the boundaries of the bladder wall are easy to identify in most of the

images within our dataset due to the use of contrast agents. It is thus of no surprise that the proposed RU

diffusion results in a seemingly incremental improvement in segmentation alignment. By contrast the

effects of RU on dose accumulation analysis, presented in the following section, is more noteworthy.

5.3.4 Effects of Registration Uncertainty on Accumulation of Dose Volumes

The aligned dose volumes D′ acquired during the planning stages are also diffused using Equation 5.8.

The resulting uncertainty in accumulated diffused dose maps are first computed using Equation 5.12

and then used to compute the DVH with Equation 5.13. A visual comparison between the crisp and

probabilistic accumulated dose maps over the bladder walls (intersection of the interior and exterior

bladder wall segmentation labels Si
t ∩Se

t ) are provided in Figure 5.8.

The influence of RU on the resulting DVH is presented in Figure 5.8. In this exemplar case, the

mean of the RU encoded accumulated-dose map (Figure 5.8b) is slightly higher than that of the crisp

DIR aligned dose maps (Figure 5.8a), especially at the radiation hot spot that is formed on the bladder

wall. This effect can also be observed from the small discrepancy between the blue and dotted black

line in the DVH curves of Figure 5.8. Considering a widely used clinical dose metric such as D2cc (the

minimum dose received by the most exposed 2 cm3 of tissue), which characterizes the intensity of hot

spots that have the potential to cause significant morbidity [133], the DVH curves for this example yield

a D2cc value of 28.5 Gy using the crisp approach (dashed black line), whereas the probabilistic method

(blue line) computes a more conservative value of 29.2 Gy. The mean of the RU encoded dose map is

more conservative (in terms of total absorbed radiation) than that obtained from a crisp DIR alignment

and, building on our conclusions from the experiments with RU encoded segmentation label propagation

in Section 3.3, we hypothesize that our RU encoded accumulated-dose map and corresponding DVH

curves are more representative of the true accumulated dose compared to the naı̈ve crisp DIR approach.

Furthermore, it is evident that there exists a large uncertainty in the accumulated-dose DVH curves.

More importantly, this uncertainty is greatest at high accumulated dose thresholds that constitute a

smaller percentage of the total volume of the bladder. In the above example, the probabilistic DVH

85



Colors represent local accumulated dose information [Gy]

0 5 10 15 20 25 30 35

(a) Dacc (b) μDacc
(c) σDacc

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Accumulated dose [Gy]

R
e
la

ti
v
e
 v

o
lu

m
e
 o

f 
b
la

d
d
e
r 

w
a
ll 

[%
]

 

 

Crisp D
acc

µ
D

acc

 − 3σ
D

acc

µ
D

acc

µ
D

acc

 + 3σ
D

acc

Figure 5.8: Effects of registration uncertainty (RU) on accumulated dose map for one patient. Left:
comparison between accumulation of crisp aligned Dacc dose (a) versus the mean µDacc (b)
and standard deviation σDacc (c) of the accumulated RU-based diffusion of Dacc, which en-
codes the effects of RU at every voxel. Right: the effects of RU on the dose-volume his-
togram. The volume of the bladder wall presented in this example is 49 cm3.

curves indicate that within six standard deviations (99.7% confidence interval) around the mean of the

computed probabilistic dose values µDacc , the true D2cc may lie anywhere within the range of 21.6 Gy

(green line) to 37.8 Gy (red line). In Figure 5.8c, this region of uncertainty is shown to be spatially

localized in the proximity of the small-volume/high-dose region, i.e., the radiation hot spot, which is

of more radiobiological interest. The implications of this phenomena are crucial as we believe that this
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observed localized variability in accumulated dose casts doubts on the usefulness of planning parameters

that are derived from the DVH alone, and consequently leans in favor of methods that also account for

the spatial distribution of the accumulated dose such as the method proposed by Zakariaee et al. [209].

The demonstrated effects of RU on the accumulated dose corroborates the surveyed prior art in other

applications, yet their impact on MFCCB analyses is to be explored.

5.3.5 Computational Performance

Our pipeline is well suited to applications where image volumes from different modalities need to be

registered due to our choice to use the established multimodal mutual information similarity metric

readily implemented in elastix. Furthermore, our algorithm is fast; our unoptimized MATLAB plus

elastix implementation takes, on average, 37 minutes to compute RU and 12 minutes to diffuse both

the segmentation and dose volumes per fraction on an 8-core workstation with two Intel 3GHz Xeon

x5472 processors and 8GB of RAM, which is faster than the Bayesian approach of Risholm et al. [148]

that takes 11 hours per fraction on an 8-core machine. In our RU computation for every fraction, the

initial registration and sample generation takes less than one minute and the following 40 registrations

are independent and may be performed in parallel. Similarly, the diffusion equations Equation 5.8 may

be evaluated at each voxel location independently, and therefore higher performance gains are expected

with a larger computing cluster. It should be noted that the computational performance of Risholm et al.

[148] can be improved with the help of modern sampling techniques, i.e., as was proposed in Simpson

et al. [164] and Simpson et al. [161] with variational techniques for performing Bayesian inference. We

were however unable to quantify the performance improvements proposed in Simpson et al. [164] and

Simpson et al. [161] as performance times were not reported in their publications.

5.4 Summary
In this chapter, we presented a mathematical framework for estimating RU and propagating the effects

of the computed uncertainties from the registration stage through to the dosimetric evaluation and visu-

alization stages that are critical to the physician performing radiation therapy. Specifically, we presented

a novel and computationally efficient RU computation technique that enables a parametric representa-

tion of RU as structure tensors, as well as two different methods for visualizing the computed RU. We

further presented an uncertainty propagation method that encodes the RU into dosimetric maps and or-

gan segmentation masks. Finally, we demonstrated how the RU encoded dosimetric maps computed for

different fractions can be accumulated into an RU encoded accumulated dose map, which can then be

summarized into a RU encoded DVH representation.

Our proposed framework is designed to compute RU from existing B-spline DIR software such as

the popular elastix software package. Our framework can therefore be easily integrated within other

image-guided radiotherapy applications as it generally does not require major changes to the existing

medical image analysis workflow.

In the context of our showcased clinical application, we provided preliminary evidence indicating

that the computation and propagation of RU results in improvements during treatment planning and
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quality control stages of MFCCB. Specifically, we demonstrated how our proposed RU estimation and

propagation can be used to visualize potential errors in DIR and, further, to transfer the delineation

of organs from a prior fraction to the next more accurately. We also substantiated the utility of RU

propagation in evaluating the potential errors and deviations in accumulated dose at a specific voxel,

as well as in the DVH. More importantly, we observed that the resulting accumulated dose uncertainty

is greatest in the proximity of the small-volume/high-dose region, i.e., the radiation hot spot, which

is of significant radiobiological interest. Our next objectives include assessing the effects of RU on

the correlation between accumulated dose and MFCCB patient toxicity outcomes. We also plan to

extend our framework to group-wise or symmetric registration frameworks to mitigate uncertainties and

potential biases associated with manual selection of one image volume as the reference image.
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Chapter 6

Conclusions

Throughout this thesis, we presented novel directions towards fully automatic image-based scene anal-

ysis and augmentation for the benefit of image-guided therapy (IGT) procedures. We proposed novel

motion-based segmentation methods that enable fast and safe localization of vascular structures from

endoscopic video and dynamic ultrasound (DUS) sequences. We then presented novel methods for

computing and encoding different sources of navigation uncertainties in the context of robot-assisted

minimally invasive surgery (MIS) and fractionated radiotherapy. In this chapter, we conclude with a

discussion of the strengths and weaknesses of our contributions and future research opportunities in

IGT navigation afforded by the novel research directions which we have established.

6.1 Motion-Based Localization of Vasculature
In Chapter 2 and Chapter 3, we investigated how motion information may be used to automatically

segment vasculature during IGT where there are multiple sources of motion, the data is noisy, vessels

may be visually occluded by layers of tissues, and observable vascular motions are faint.

In Chapter 2, we presented our novel automatic phase-based motion segmentation (PBMS) method

for localizing visually occluded vasculature from dynamic medical image sequences [5, 7], which we

evaluated on a retrospective study of fifteen clinical robot-assisted partial nephrectomy (RAPN) proce-

dures [7] and demonstrated quantitatively promising segmentation performance, i.e., a mean area under

the receiver operating characteristics curve (AUC) of 0.72. To the best of our knowledge, we were the

first to attempt and demonstrate promising results for the challenging task of localizing occluded vascu-

lature in endoscopic video without the use of additional hardware or preoperative scans. In a follow-up

study, we then presented the evaluation of our high-level variational scene segmentation method [126],

which incorporates our PBMS methods in addition to other sources of information, on the same fifteen

clinical RAPN procedures and demonstrated a 45% increase in pixel-wise accuracy for localizing renal

vasculature compared to our original PBMS method.

In Chapter 3, we presented our kinematic model-based vessel segmentation (KMVS) method [7, 8],

an extension of PBMS, that is designed to localize vasculature from dynamic medical image sequences

by leveraging: (i) the complete estimation of local motion vectors and (ii) a novel pulsatile radial mo-
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tion model (PRMM) that enables the modelling of divergent motion patterns. To enable fast and com-

plete estimation of motion, we implemented a parallelizable technique, which estimates motion via the

changes in the monogenic representation of image information. In total, we presented four alternative

implementations of our KMVS method using different motion computation techniques and discussed

the advantages of the different implementations. In our evaluations on a synthetic dataset and two real

DUS datasets of the common carotid artery (CCA), we demonstrated that, compared to PBMS, our fast

OF2 implementation increases the mean AUC from 0.82 to 0.99 on the UBC dataset and from 0.83 to

0.98 on the SPL dataset.

We emphasize that our PBMS and KMVS methods were not designed for any specific imaging

modality, and that our proposed techniques may therefore be employed within many different image-

guided interventions that stand to benefit from automatic blood vessel localization, e.g., robot-assisted

prostate cancer surgery [109, 110] and stereotactic neurosurgery [138]. To promote the adoption of our

methodologies for real-time guidance applications, we discussed real-time alternatives to the temporal

filtering techniques which we utilized in our applications. Finally, we have made the MATLAB executa-

bles1 of our PBMS and KMVS methods publicly available for download. We hope that, in doing so, we

encourage fellow researchers to incorporate our low-level motion features into their specific segmenta-

tion pipelines. In addition to the code, we provided our phantom dataset to allow others to compare the

performance of their methods to ours.

Though we conducted a preliminary user study of our proposed PBMS methodologies, additional

clinical evaluations are required to demonstrate the quantifiable clinical benefits of motion-based vessel

segmentation and augmentation in terms of improved IGT outcomes. The most pivotal and natural ex-

tension to the works presented in Chapter 2 and Chapter 3 would be to integrate the proposed method-

ologies directly into a prototypical image-guided navigation system. Such an implementation would

shed more insight into the clinical utility of our methodologies and would allow for further investigation

into the most effective strategy for optimizing the trade-off between localization accuracy and lag-times

that are inherent to our methods.

Another compelling research direction, which presents itself as an extension to our works, is to

investigate whether motion-based cues may be leveraged to distinguish between venous and arterial

structures. In our preliminary studies [5, 7], we observed that the pulsations of the renal artery and

the renal vein occur out-of-phase with one another. Though this phenomenon was observed in almost

all of the fifteen cases in our study, this effect may not present itself at other locations in the human

body. Nonetheless, flow rates and vascular pressures are drastically different between venous and ar-

terial structures [198], and these differences may perhaps manifest as distinguishing pulsatile motion

signatures that can in turn be used as features to automatically discriminate between arteries and veins.

Furthermore, a motion-based discriminative model may also be used to automatically detect patholog-

ical vasculature or aneurysms based solely on apparent motions. It is important to note that kinematic

differences between veins versus arteries or healthy versus pathological vessels are likely to be very

complex and may not be simple to model mathematically. It is therefore probable that future investiga-

1MATLAB executables are available for download from https://bisicl.ece.ubc.ca/software/radialDistension.html
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tion into such discriminative frameworks will involve data-driven machine learning techniques designed

to exploit the capabilities of our proposed motion-based features.

6.2 Computation, Propagation, and Visualization of Navigation
Uncertainties

In Chapter 4 and Chapter 5, we investigated ways in which navigation uncertainties can be computed,

propagated, and visualized, specifically in the context of computer-assisted IGT navigation systems that

target deformable soft-tissues.

In Chapter 4, we presented a proof-of-concept endoscopic scene augmentation method for facilitat-

ing the registration of probabilistic preoperative computed tomography (CT) segmentations with stereo

endoscopic video data [4]. We proposed an uncertainty-encoded computational stereopsis technique

for extracting probabilistic surface information from stereo endoscopic data and used this probabilis-

tic surface to register probabilistic preoperative CT segmentations with stereo endoscopic scene. We

applied our framework to an ex vivo lamb kidney phantom to simulate the tumor demarcation stage of

RAPN interventions. We proposed novel uncertainty-encoded visualization techniques for presenting

probabilistic tumor margins onto the endoscopic scene and discussed the potential advantages of our

proposed visualizations compared to existing crisp (deterministic) techniques. One such potential ad-

vantage is that the ability to visualize uncertainties associated to preoperative imaging—and therefore

the associated resection margins—may guide the surgeon’s attention to localized regions of high un-

certainty, at which point the surgeon may choose to revise the resection strategy or opt for additional

intraoperative imaging, e.g., ultrasound, to improve confidence in the localization.

Our proposed visualizations are not exclusive to preoperative CT imaging or the context of RAPN.

Our contributions are extendable to other IGT applications that stand to benefit from visualization of

uncertainties, namely other robot-assisted interventions. Furthermore, the proposed augmentations may

also be used in surgical navigation frameworks that make use of fiducial markers, instead of image

registration, to align preoperative data with the intraoperative scene. In such applications, the effects

of calibration and tracking errors may also be estimated and propagated onto the visualizations of the

probabilistic margins [159].

Our uncertainty-encoded surgical navigation method stands to benefit from further rigorous valida-

tion and summative usability tests to fully evaluate the utility of our uncertainty-encoded visualization

techniques in the clinical workflow. The most challenging component in our initial proof-of-concept

framework, which we did not fully address in Amir-Khalili et al. [3] and have since tried to overcome,

is the probabilistic registration piece to the uncertainty-encoded navigation puzzle. As we further elab-

orate below, probabilistic image registration is difficult to perform in real-time. Nonetheless, with the

exception of the registration component, real-time performance is attainable for all other components of

our framework.

Deformable image registration (DIR) is an important source of uncertainty in computer-assisted

navigation systems and there is presently a need for fast algorithms to compute registration uncertainty

(RU) in DIR and to then propagate the effects of RU onto the augmented scene. DIR methods typi-
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cally entail computationally expensive numerical optimizations and are thus often unable to operate in

real-time. This computational cost is further exacerbated when RU is to be computed from a sample

containing multiple potential DIR solutions. Some intraoperative surgical navigation applications, such

as tumor resection in RAPN, demand real-time performance and there yet remains the open problem of

whether DIR and RU-encoding methodologies are ever feasible in such applications.

Towards the goal of developing fast and computationally efficient RU-encoding methodology, in

Chapter 5, we implemented an end-to-end mathematical framework that estimates RU in DIR and sub-

sequently propagates the effects of the computed uncertainties from the registration stage through to the

visualizations, organ segmentations, and dosimetric evaluations that are critical in the context of multi-

fraction cervical cancer brachytherapy (MFCCB) [9]. In our framework, we proposed a novel method

for computing RU that is designed to: (i) interface with existing multimodal DIR software, which we

deployed using elastix, and (ii) represent RU in a parametric manner using structure tensors. We also

proposed a weighted averaging technique for propagating the effects of RU, onto volumetric segmenta-

tion and dose data, to produce a probabilistic map of aligned segmentation and dose information subject

to the estimated RU. We evaluated our framework on a retrospective study consisting of 37 patients and

presented preliminary evidence that our proposed framework may be advantageous to MFCCB applica-

tions. Specifically, we showed that (i) the effect of RU on dose accumulation provide useful insights for

quality control and post-treatment analysis; (ii) RU propagation improves the transfer of delineations

from one fraction to the next; and (iii) RU can be used to generate visualizations that reflect the qual-

ity of DIR that may prove to assist physicians in making decisions based on registered image data.

Furthermore, our RU computation and propagation methods are parallelizable.

A limitation of our RU estimation method, in fact RU estimation for DIR in general, is the long

computation time. In IGT applications where strict real-time constraints are not imposed, such as the

showcased MFCCB application, our framework can be integrated into the clinical workflow following

simple performance optimizations and an implementation on a dedicated high-performance computing

cluster. On the other hand, real-time RU computation and propagation in surgical navigation contexts

is currently not feasible despite the attempts towards fast RU estimation. Concurrent with our efforts,

the generative Bayesian alternatives to RU estimation presented in Risholm et al. [147] and Risholm

et al. [148] have moved towards faster mean-field variational Bayesian approximation techniques as

presented in Simpson et al. [164] and Simpson et al. [161]. These approaches can easily incorporate

other data-terms, such as the visual cues and elastically deformable shape priors that we proposed in the

variation framework of Nosrati et al. [126], as regularizers in order to improve the overall performance

of the registration framework. Though these computationally expensive generative frameworks are

seemingly far from real-time operation, in light of the continuing advancements towards more powerful

and affordable graphical processing units (GPUs), real-time performance may be attainable in the near

future. Similarly, our proposed uncertainty encoding framework can also benefit from advancements in

GPU-based computation techniques. Therefore, at this point in time, the best strategy for encoding the

effects of RU into real-time IGT navigation systems remains, ironically, shrouded in uncertainty.
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common carotid artery transverse section in ultrasound images using modified viola-jones
detector. Ultrasound in Medicine & Biology, 39(10):1887–1902, 2013.

[146] B. I. Rini, S. C. Campbell, and B. Escudier. Renal cell carcinoma. The Lancet, 373(9669):
1119–1132, 2009.

[147] P. Risholm, S. Pieper, E. Samset, and W. M. Wells III. Summarizing and visualizing uncertainty
in non-rigid registration. In Medical Image Computing and Computer-Assisted Intervention,
pages 554–561. Springer, 2010.

[148] P. Risholm, J. Balter, and W. M. Wells. Estimation of delivered dose in radiotherapy: the
influence of registration uncertainty. In Medical Image Computing and Computer-Assisted
Intervention, pages 548–555. Springer, 2011.
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[183] H. A. Taylor, T. T. Brunyé, and S. T. Taylor. Spatial mental representation: implications for
navigation system design. Reviews of Human Factors and Ergonomics, 4(1):1–40, 2008.

[184] R. H. Taylor and D. Stoianovici. Medical robotics in computer-integrated surgery. Robotics and
Automation, 19(5):765–781, 2003.

[185] D. Teber, S. Guven, T. Simpfendörfer, M. Baumhauer, E. O. Güven, F. Yencilek, A. S. Gözen,
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