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Abstract

This thesis proposes non-invasive automated scene analysis and augmentation techniques to improve

navigation in image-guided therapy (IGT) applications. IGT refers to procedures in which physicians

rely on medical images to plan, perform, and monitor an intervention. In IGT, the tomographic images

acquired before the intervention may not directly correspond to what the physician sees via the intra-

operative imaging. This is due to many factors such as: time-varying changes in the patient’s anatomy

(e.g., patient positioning or changes in pathology), risk of overexposure to ionizing radiation (restricted

use of X-ray imaging), operational costs, and differences in imaging modalities. This inconsistency

often results in a navigational problem that demands substantial additional effort from the physician to

piece together a mental representation of complex correspondences between the preoperative images

and the intraoperative scene.

The first direction explored in this thesis, investigates the application of image-based motion analysis

techniques for vessel segmentation. Specifically, we propose novel motion-based segmentation methods

to enable safe, fast, and automatic localization of vascular structures from dynamic medical image

sequences and demonstrated their efficacy in segmenting vasculature from surgical video and dynamic

medical ultrasound sequences.

The second direction investigates ways in which navigation uncertainties can be computed, prop-

agated, and visualized in the context of IGT navigation systems that target deformable soft-tissues.

Specifically, we present an uncertainty-encoded scene augmentation method for robot-assisted laparo-

scopic surgery, in which we propose visualization techniques for presenting probabilistic tumor margins.

We further present a computationally efficient framework to estimate the uncertainty in deformable im-

age registration and to subsequently propagate the effects of the computed uncertainties through to the

visualizations, organ segmentations, and dosimetric evaluations performed in the context of fractionated

image-guided brachytherapy.

Our contributions constitute a step towards automated and real-time IGT navigation and may, in the

near future, help to improve interventional outcomes for patients (improved targeting of pathologies)

and increase surgical efficiency (less effort required by the physician).
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Lay Summary

In this thesis, we present techniques to assist physicians during complex medical procedures that utilize

medical images, namely cancer surgery and radiation therapy. Our contributions entail the development

and application of advanced computer algorithms that can automatically process and enhance medical

images. To assist physicians in finding the location of hard to see blood vessels, we propose fast, safe,

and fully automatic techniques that can locate blood vessels based solely on how the vessels move

(useful for surgical applications where vessels are covered by a layer of tissue). We also contribute

algorithms and systems that can visualize potential ambiguities that occur during medical procedures,

which include: uncertain location of tumor boundaries during kidney cancer surgery and effects of

erroneous image alignment during radiation therapies.
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Chapter 1

Introduction

Computers have become ubiquitous appliances in the modern world and our dependency on them is in-

controvertible. The impact that computers and computer algorithms have had on medicine and medical

research are equally profound. Computing plays an integral role in modern medicine and it has been

used to address problems spanning a wide gamut of applications that include health informatics, medi-

cal imaging, patient monitoring systems, clinical decision support systems, medical databases, surgical

robotics, biomedical research, and many more. Breakthroughs in computer processing power and novel

algorithms have allowed researchers to acquire, store, and analyze detailed volumes of medical data;

which has led to ground breaking medical discoveries and the development of more advanced and ac-

curate diagnostic and interventional tools. Although research on applications of computing in medicine

has been ongoing for more than 40 years, recent accelerating advancements in medical image analysis

and computer-assisted interventional systems are a testament to the potential of computing in further

revolutionizing current medical practices and research methods [114].

Over the past three decades [85], a growing body of research contributions, promoting the usage

of intraoperative imaging technologies and computer algorithms as guidance tools during both surgical

interventions and interventional radiotherapy, have coalesced to form the exciting and burgeoning �eld

of image-guided therapy (IGT) [82, 83, 114]. Research into new and improved IGT systems demands

expertise from diverse disciplines that range from medicine to engineering and computer sciences. Such

multidisciplinary collaborations have been shown to be fraught with challenging system design prob-

lems [28, 115]; more so when the system is being developed in a clinical context, where human lives

are at stake. Within the solution to these challenges, however, lies the key to unlocking new paradigms

of interventional techniques and therefore bene�ts for patients.

1.1 Thesis Motivation

This thesis is motivated by unresolved engineering problems in computer-assisted IGT navigation and

investigates novel automated scene analysis and augmentation methods that can be leveraged to over-

come them. This introductory chapter entails the de�nition of IGT, explication of associated challenges,

and the rationale behind our scienti�c contributions proposed to address emerging challenges in IGT.

1



1.1.1 Image-Guided Therapy

Image-guided procedures are broadly de�ned as interventional techniques in which the physician relies

heavily on medical imaging technologies to plan, perform, and monitor an intervention. IGT systems

can therefore be thought of as the integration of three major contributing technologies: imaging, guid-

ance (navigation), and therapy delivery devices [82]. Indeed, the unifying objectives and associated

bene�ts of IGT within this de�nition are dif�cult to encapsulate in just a few sentences due to the broad-

ness of its scope, which encompasses both surgical and radiotherapy applications, and an overlap with

the �eld of minimally invasive surgery (MIS) research. There is, however, an important distinction to be

made between IGT and MIS techniques. In a recently published book on IGT, Jolesz [82] de�nes IGT

as systems that leverage medical imaging to both, improve targeting and control over therapy delivery,

and to decrease the invasiveness of a procedure; the latter of which is a shared objective with that of

MIS methods such as laparoscopy, whereas the former is not.

IGT systems that are characterized by the aforementioned objectives may be described using the

time-line based view proposed by Yaniv and Cleary [203], and categorized into three phases: preopera-

tive planning, intraoperative plan execution, and postoperative assessment. Within this time-line based

view, IGT systems generally follow a sequence of constituting steps (Figure 1.1) that was later described

by Cleary and Peters [28].

Naturally, the interest of this thesis lies in the applications of computer-assisted technologies in

IGT, the main involvements of which are in the preoperative and intraoperative phases. Thus, the key

challenges that stand out in this systemic view of IGT are the medical imaging technologies and the ap-

parent need for reconciliation between preoperative and intraoperative imaging modalities. Preoperative

imaging involves the acquisition of tomographic image volumes, typically X-ray computed tomography

(CT) and magnetic resonance (MR) images. These tomographic images enable the physician to peer

through the skin of the patient and view the anatomical, and sometimes functional, state of different

systems within the patient's body. Tomographic images are therefore essential to the generation of the

Figure 1.1: Typical steps in image-guided therapy systems organized in a time-line based view.
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interventional plan, which further implies that the quality of preoperative imaging may have a direct

impact on the effectiveness of the interventional plan and, by extension, the outcome of the therapy.

In addition to the quality of imaging and the interventional plan, it stands to reason that the execution

of interventional plan during the operation also has a notable impact on IGT outcomes. Due to time-

varying changes in the patient's anatomy, risk of overexposure to ionizing radiation, operational costs,

and incompatibility with therapy delivery devices, the interventional plan may not necessarily represent

the intraoperative state of the patient or, more importantly, the interventional plan may not directly

correspond to what the physician is able to see via the intraoperative imaging modalities.

This inconsistency may complicate the execution of the interventional plan as it often results in a

navigational problem that demands substantial additional cognitive effort from the physician to piece

together a mental representation of complex correspondences between the preoperatively conceived

plan and the intraoperative scene [183]. In lay terms, the navigation problem in IGT is akin to—albeit

a more complicated version of—the common problem of �nding one's way, in �rst person, from the

current street address to a destination using only a memorized representation of the route from a map

presented in bird's-eye view. Anyone who has ever been lost can easily appreciate the implications of

this problem in the context of IGT wherein, by extending the metaphor, the path being traversed lies

in 3D space, the map is outdated and is of questionable quality, the streets are not marked, landmarks

move in relation to each other, and a wrong turn may jeopardize the outcome of the intervention.

This intraoperative navigation problem, from a technical perspective, is a decisive issue for IGT

systems and is a suitable candidate for computer-assisted guidance solutions. Hence, we look into the

domain of computer-assisted intraoperative navigation to identify the emerging engineering research

problems in IGT.

1.1.2 Computer-Assisted Intraoperative Navigation

The solution to the computer-assisted navigation problem in IGT is by no means trivial. A one-size-

�ts-all computer-assisted solution is impractical because of drastic discrepancies between the imaging

modalities or therapy delivery devices used during the preoperative and intraoperative phases of differ-

ent IGT applications [16]. Nonetheless, existing computer-assisted guidance methods that are currently

employed to address IGT navigation problems may be considered as specialized amalgams of the fol-

lowing established signal processing, control system, and computer vision methodologies [28, 82, 203]:

� Low-level image processing: denoising, enhancement, and augmentation of image information

� Image segmentation: delineation or partitioning of regions/structures of interest

� Registration: alignment of multiple data sets into a single coordinate system

� Tracking: determining location and position of tools and anatomical structures

� Visualization: displaying the fusion of complimentary information from registered images

Among these methodologies, registration and tracking are often considered to be the most integral and

challenging components of the IGT navigation problem [28, 82, 106, 170, 181].
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Challenges in Medical Image Registration

Registration and tracking are dif�cult in many IGT scenarios, e.g., resection of soft-tissues [12, 185,

206], considering the different reference frames of acquisitions, the heterogeneity of the imaging modal-

ities (in terms of their dimensionality, appearance, and the meaning of the underlying physical measure-

ments), and the likely motion and deformation of anatomical structures. For example, in the context of

robot-assisted laparoscopic surgery, raw intensity information from a preoperative CT scan bears little

visual and structural resemblance to 2.5D color video data acquired intraoperatively by a stereoscopic

endoscope. In such extreme cases, where the intraoperative imaging modalities cannot wholly capture

the deformation of organs, the problem of image-based registration is often considered to be ill-posed.

Consequently, in IGT applications that target deformable soft-tissue structures, real-time registration

is dif�cult to achieve without the help of complex hardware solutions involving electromagnetic or

optical tracking systems and the use of �ducial markers. During complex abdominal interventions, e.g.,

kidney cancer surgery [12, 185], some IGT guidance systems also necessitate the use of additional,

potentially harmful, intraoperative imaging systems. Aside from the often considerable operational

costs associated to these hardware tools, the use of such tools in some situations, e.g., aforementioned

abdominal interventions, is arguably antithetical to one of the principles of IGT as they may increase

the invasiveness of the procedure [36, 106]. This trade-off between guidance accuracy and invasiveness

is dif�cult to quantify and justify in many interventional applications. There is therefore a trend, in

the �eld of IGT research, towards scene analysis and augmentation solutions that strive to overcome

navigation problems without resorting to the use of invasive tools or harmful imaging techniques.

Intraoperative Image Segmentation

A possible non-invasive solution to facilitate the task of preoperative to intraoperative registration is

to identify corresponding landmarks independently in both preoperative and intraoperative images, i.e.,

segmenting the intraoperative scene independently of preoperative images. Among computer-assisted

approaches to the IGT navigation problem, some automated image analysis and augmentation meth-

ods [64, 113, 124–126, 130, 136, 205] adhere to a more mathematically elegant and holistic perspective

of the navigational problem. Though it is often useful to compartmentalize navigation into different

sub-problems of image segmentation, registration, tracking, and visualization, it is also important to

note and appreciate the fundamental relationships that exist between them. These sub-problems may

be mathematically modelled in such a way that the computational solution to the navigation problem

would jointly produce an optimal solution for the requisite segmentation, registration, and tracking sub-

problems. Such mathematical frameworks cast the problem of navigation as a numerical optimization

problem, the objective of which is deftly formulated in such a way that it corresponds to the true ob-

jective of navigation—and associated sub-problems—as closely as possible. It stands to reason that,

within such mathematical formulations, an insight into improving one sub-problem would likely result

in an improvement to another [64]. The detection of corresponding landmarks, such as location of blood

vessels, between the two intraoperative and preoperative imaging modalities may therefore simplify and

expedite the registration step.
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Automatic localization or segmentation of structures from preoperative data has been thoroughly

researched for many years [155]. Analysis of preoperative image data is also typically not subject to

hard performance constraints as preoperative data can be analyzed and processed prior to the actual

operation. While on the other hand, segmentation of structures from intraoperative imaging modalities

are arguably more challenging; this is due partly to stringent demands on real-time performance [82]

and partly to the limitations of the intraoperative imaging modalities, e.g., poor signal quality or inability

to see through the surface of tissues. But, intraoperative modalities are not as limited as they seem. In

many IGT application, e.g., image-guided surgery, intraoperative imaging modalities are used to provide

real-time information from the interventional scene to the physician and, as a result, are able to capture

dynamic or temporal behavior of the patient's anatomy. Automatic localization of structures may be

dif�cult to do in real-time from a single static image, but the dynamic image information acquired by

the intraoperative imaging modality can also be used to improve localization [5–8, 53, 111, 142].

Navigation Uncertainty

In addition to the challenges associated to registration and intraoperative segmentation, a perhaps more

fundamental problem in computer-assisted IGT navigation systems is regarding the inevitable sources

of uncertainty. A perfect navigation system is unattainable in practice due to inherent errors or uncer-

tainties in imaging, segmentation, localization, registration and tracking; which also is precisely why

IGT navigation systems are never fully automated and instead rely on the expertise of a physician in the

�nal decision making process. Even if a mathematical navigation framework has been established to

align the preoperative plan with the intraoperative frame of reference and associated location of therapy

delivery instruments, it is of critical importance to consider the computational errors and uncertainties

that may rise during this numerical optimization process. It is important—and arguably ethical—to es-

timate and display imprecision of such IGT navigation systems to the physicians such that they are not

forced to make decisions based on false determinations. Though some IGT systems can visualize the

imprecision of the tools using a circle or an ellipse to represent the likely registration and localization

uncertainties [159, 160, 184], the majority of IGT systems are limited by processes or results that do

not encode uncertainty information in one of the navigational tasks (segmentation, tracking, and regis-

tration), none of which is guaranteed to be accurate, especially the paramount registration stage. In this

thesis, we use the adjective `crisp' to refer to such deterministic or non-probabilistic variables, results,

and processes that do not encode uncertainty information. Moreover, without an uncertainty-encoding

visualization or augmentation, physicians are rendered oblivious to the levels of trust that should be

bestowed on the navigational results presented to them. This observation furthermore raises another

important systemic problem in regards to the ergonomic factors of the system, i.e., the level of trust

a physician can bestow on the navigation system in light of the innate uncertainties that exist in the

imaging and computer-assisted navigation solutions [176].
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1.2 Problem Statement

1.2.1 Thesis Objectives

The objective of this thesis is to develop automated scene analysis and augmentation techniques that can

improve intraoperative navigation in IGT procedures without increasing the level of invasiveness to the

patient. In this section, we translate this objective into concise research questions that will guide us to

better understand the limitations of existing solutions and to frame our contributions within the related

prior art associated to computer-assisted navigation methods.

1.2.2 Research Questions Addressed

In Section 1.1.2, we motivated that the independent segmentation of structures in preoperative and in-

traoperative images may improve the dif�cult task of image registration. We also motivated that the

kinematic behavior of anatomical structures, which is encoded in the dynamic information of medical

image sequences, may be used as an independent source of information for the purpose of segmentation.

In this thesis, we choose to investigate motion-based segmentation of blood vessels because vascular

structures exhibit unique periodic pulsatile radial motion characteristics (they are pulsating tubes) that

may be captured with intraoperative imaging modalities, e.g., dynamic ultrasound (DUS) and endo-

scopic video. Furthermore, as we elaborate later in Section 1.4, automatic vessel localization methods

are applicable to many image-guided medical diagnosis and interventional procedures. Segmentation of

vessels in IGT is however challenging due to (i) low spatial and temporal imaging resolution (motions

may be faint), (ii) presence of occlusions (vessels hidden under tissues), and (iii) spatial and temporal

noise artefacts. The �rst research question that we seek to address in this thesis is hence:

Research Question #1:How can motion information be used to automatically segment blood vessels

from dynamic medical images during IGT where: there are multiple sources of motion, the data

is noisy, vessels may be occluded by layers of tissues, and observable vascular motions are faint?

Our second research question investigates the systemic problem of navigation uncertainty. In the

context of IGT, the added value of the end-to-end computation of navigation uncertainties has been pre-

viously demonstrated in the context of orthopedic interventions [159, 160]. In image-guided orthopedic

interventions, which involve the alignment of rigid organs (i.e., bones) and rigid surgical tools (e.g.,

plates, screws, and surgical drills), the effects of navigation uncertainties (speci�cally from tracking,

calibration, and registration) can be gleaned from the imprecision of rigid transformations. In the con-

text of image-guided interventions that target deformable tissues, on the other hand, computation and

propagation of navigation uncertainties are more challenging for two reasons: (i) there are additional

sources of uncertainties (e.g., segmentation and surface reconstruction), and (ii) deformable image reg-

istration uncertainties are more challenging to compute in an ef�cient manner. As such, the second

research question is:

Research Question #2:How can different sources of navigation uncertainties be computed, propa-

gated, and visualized for image-guided medical interventions that target deformable tissues?
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To address both of these two research questions, it is crucial to �rst understand the capabilities and

limitations of the imaging modalities that are currently used during IGT. In the following sections we

�rst provide an overview of three popular medical imaging modalities used in IGT before surveying the

prior art relating to the proposed research questions.

1.3 Medical Imaging Technologies in Image-Guided Therapy

Medical imaging technologies play a central role in IGT. Existing computer-assisted navigational solu-

tions employed during IGT are designed around the capabilities and limitations of these medical imaging

technologies. This section thus provides a general overview of three very different imaging modalities

that are commonly used during IGT: CT, ultrasound, and stereo endoscopy. Among these modalities,

CT is the oldest and most widely used imaging modality, often employed during all three (pre, intra, and

postoperative) stages of IGT interventions. Ultrasound (US) is another well established, although safer

and more portable, imaging modality favored primarily for diagnostic and intraoperative applications.

Stereo endoscopy, commonly used during robot-assisted MIS, is a newer extension of traditional optical

endoscopy that has garnered considerable attention in recent years.

Although this thesis focuses primarily on the three aforementioned modalities, these modalities

and the applications for which we present our contributions are, in essence, effective examples for

the exposition of our proposed mathematical methodologies. By design, the methodologies presented

in this thesis are not explicitly restricted to these modalities and may be extended to other prevalent

imaging modalities used in IGT including MR imaging, single-photon emission computed tomography,

positron emission tomography, X-ray �uoroscopy, diffusion-weighted MR imaging, and various contrast

enhanced specializations of these modalities.

1.3.1 X-ray Computed Tomography Imaging

X-ray imaging has historically played a central role in IGT systems and may be considered as the

original inspiration behind this paradigm of interventional techniques and technologies [114]. Among

existing X-ray-based medical imaging modalities, which essentially are techniques that utilize X-ray

sources and X-ray detectors in different con�gurations to image a patient, CT is considered to be the

workhorse of all interventional procedures that require cross-sectional imaging [61]. CT imaging is

often preferred over other tomographic imaging techniques, such as MR, for imaging anatomical struc-

tures because of its relatively faster acquisition speeds, �ner imaging resolution, superior visualization,

and cheaper operational costs.

As a preoperative imaging modality, X-ray imaging modalities are primarily used during image-

guided orthopedic interventions, in the context of which CT imaging is used to plan for the treatment

of complex fractures and implant placements [60]. CT is also often considered to be the gold standard

for diagnosing and staging of different types of cancers including lung carcinomas [121], renal cell

carcinoma [146], pancreatic carcinoma [50], and colorectal cancers [129]. By extension, CT has proven

to be a suitable modality to use during the planning stages of many different image-guided surgical and

radiotherapy interventions.
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X-ray imaging technologies, however, cannot differentiate between certain soft-tissues as effectively

as MR imaging techniques. Therefore, the utility of CT in diagnosing certain types of cancers such as

early detection of prostate cancer [32] is limited. Another critical downside of X-ray imaging—and

by extension CT imaging—is in regards to the use of harmful ionizing radiation. As a consequence

of the potential for adverse health effects to patients and clinicians, the use of CT imaging during the

intraoperative stages of IGT is reserved strictly for interventions where the bene�ts of CT imaging

outweigh its adverse effects.

Despite associated health risks, CT imaging is currently used as an intraoperative imaging modality

during many sensitive IGT procedures including: image-guided external beam radiotherapy, brachyther-

apy, CT-guided needle biopsy or radio frequency ablation, vascular procedures, orthopedics and neuro-

surgery; with many more applications to emerge with future developments in CT-guided surgical robotic

technologies [173, 189].

1.3.2 Dynamic Ultrasound

US imaging, or ultrasonography, is an imaging technology that is also ubiquitous and well established

in clinical practice and medical research. The prevalence of US in the medical imaging community

is primarily due to its ability to acquire images of soft-tissue structures located beneath the surface of

the skin (e.g., tendons, muscles, joints, vessels and internal organs) in real-time without exposing the

patient or the physician to harmful ionizing radiation. Medical US is predominately used during clinical

diagnostic procedures but many advocate for its use within image-guided surgical interventions in part

due to the aforementioned bene�ts and also because medical US machines are inexpensive and portable

compared to some of the other existing medical imaging technologies.

Though the affordances associated to US in an interventional context are fairly obvious, the draw-

backs of US have in past limited its use to rather rudimentary procedures, e.g., catheterization and needle

biopsies. US imaging is impeded by various limits on its �eld of view [45] and a low signal-to-noise

ratio. Due to the physics of US, image quality is highly dependent on the size, orientation, and acoustic

properties of structures being imaged. As a result, US image quality depends on the expertise of the

US operator; and even with a highly skilled operator, it is often impossible to image structures behind

bone and air pockets. Moreover, US image quality is also degraded by the presence of signal dependent

speckle noise [139], which further necessitates the need for an expert to interpret the acquired images.

This need for expertise, or specialization, in US image acquisition and interpretation has been an in-

sidious barrier to the adoption of US as the primary intraoperative imaging modality during surgical

interventions.

The capabilities of US imaging technologies have been improving steadily since its introduction,

overcoming the associated drawbacks with the help of breakthroughs in hardware and software. There

have been marked advancements in US hardware in terms of transducer sensitivity, beam-forming, and

image processing speed, which have improved the trade-off between image quality versus acquisition

speed. Other hardware-based solutions such as tracking systems and 3D volumetric US probes [45] have

also been developed to overcome the �eld-of-view limitations. Concurrent with the advancements in
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hardware, countless automated algorithms have been proposed by the research community to reduce the

reliance on an expert for analysis and interpretation of the images. Additionally, advanced technologies

such as Doppler US, US elastography [208], high-intensity focused US, and contrast-enhanced US have

also been developed to extend the capabilities of US devices beyond imaging of soft-tissues.

The steady and incremental improvements in US capabilities have paved the way for the prolifera-

tion of US imaging into formerly unconventional surgical applications such as orthopedic surgery [62]

and cancer treatment [116]; with more applications emerging on the horizon. Coupled with the height-

ened level of projected growth and competitiveness among manufacturers of US equipment, as well

as the trend towards open-software US platforms [96], medical US imaging is poised to remain as a

dominant modality of intraoperative imaging during image-guided interventions.

1.3.3 Stereo Endoscopic Video

Recently, robot-assisted MIS techniques have emerged as viable alternatives to traditional abdominal

laparoscopic surgery techniques; providing surgeons with the added bene�ts of superior ergonomics,

advanced vision systems, intuitive control over wristed instruments, scaling or miniaturization of move-

ments, and �ltering of hand tremor; which have led to increased dexterity and higher precision [95].

The purpose of such robots is not to replace the surgeon, but to effectively augment and enhance the

dexterity and perceptual capabilities of the surgeon instead by overcoming the ergonomic ambiguities

that exist in laparoscopic surgery. Surgical laparoscopic robots such as the da Vinci Surgical System are

thus designed in a unidirectional master-slave con�guration. In such con�guration, the surgeon inter-

acts with the patient by directly controlling the robot via a surgical console that in turn provides visual

feedback from the surgical site to the surgeon via the high-de�nition stereo endoscopic camera.

The stereo endoscope of the da Vinci Surgical System, is regarded as one of its greatest advan-

tages over traditional laparoscopic methods. The stereo cameras provide the surgeon with added depth

perception, which has been shown to improve surgical performance for both novice and experiences

operators [21]. Furthermore, the video processing pipelines used within the da Vinci Surgical System

and other similar robot-assisted systems create a natural and practical platform for the deployment of

advanced computer-assisted algorithms for automated scene analysis and augmentation [135]. As a di-

rect result, research into endoscopic video analysis has gained considerable momentum in recent years

and many novel imaged-based computer-assisted systems have been proposed to leverage endoscopic

video as a primary intraoperative imaging modality for automated guidance. A timely survey by Bern-

hardt et al. [16] identi�ed 279 academic publications relating to surgical endoscopic scene augmentation

published between 2000 to June 2016, more than half of which were published after 2011.

Most of image-based laparoscopic guidance systems proposed to date are motivated by a common

objective: to compensate for the loss of tactile or haptic feedback incurred with the transition from

traditional open style to laparoscopic methods of surgery. The importance of tactile sensations in context

of surgery is patently evident as, in open surgeries, surgeons rely on manual palpation of tissues to

identify important structures hidden beneath the surface. The location of these important structures are

often directly tied to surgical outcomes as they include: blood vessels, nerves, and pathologies such
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Figure 1.2: Examples of challenging noise artefacts present in video sequences acquired by one of
the stereo-endoscopic cameras of the da Vinci Surgical System during a partial nephrectomy
procedure. These artefacts, caused by the presence of blood (red), white specular highlights
(green), smooth organ surfaces (blue), and smoke (gray), pose unique challenges to automatic
localization of anatomical landmarks.

as tumors and cysts. The dominant trend in laparoscopic guidance has therefore been to compensate

for the loss of the ability to perceive hidden or occluded structures by augmenting the intraoperative

endoscopic video with patient-speci�c models extracted from preoperative CT and MR image volumes.

The trend of image-based surgical guidance is however not free controversy and criticism by advo-

cates of hardware based solutions, which instead aim to integrate haptic feedback directly into the next

generation of surgical robots [37]. Admittedly, the �eld of image-based laparoscopic guidance has yet

to reach maturity and automated augmentation of endoscopic video still remains an open problem partly

due to the presence of challenging conditions such as deformable tissue motion, limited �eld-of-view,

presence of non-Lambertian specular highlights, smoke, blood, and tissue surfaces that are smooth (Fig-

ure 1.2). The haptics-based approach to this problem, on the other hand, is perhaps more challenging

as the development of a true-to-life haptics feedback system is contingent on: (i) the development of

complex sensors to measure instrument interactions and (ii) interfaces to convey force/tactile sensations

back to the surgeon; both of which are far from being justi�able in terms of cost despite the push towards

improved haptic displays and force/tactile sensors that are high-performance, low-cost, biocompatible,

and sterilizable.

Indeed, advantages can be achieved in robotic surgery by employing the underutilized haptic sensory

channel but such advantages will arguably not surpass that of traditional open surgery; whereas image-

based guidance methods that leverage advanced computer vision techniques possess the potential to

improve the surgical practice beyond what is currently possible [16].

1.4 Segmentation of Vasculature from Dynamic Medical Image
Sequences

The three medical imaging modalities presented in the previous section provide an exemplary repre-

sentation of just how different medical images can be; CT images measure the radiodensity of tissues,

B-mode US measures the differences in acoustic impedance, and stereo endoscopy captures sequences
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of color images of the surfaces of organs inside of the patient at two different viewpoints. Automatic

localization of corresponding landmarks is challenging as the static appearance of tissues and organs

does indeed vary across these imaging modalities. However, the underlying temporal behavior and ap-

parent motions of some anatomical structures remains unchanged despite the difference in appearance.

We propose that these dynamic characteristics are a missing piece to the large puzzle that is the IGT

navigation problem.

Within the scope of this thesis, we aim to improve IGT guidance by investigating non-invasive

automated scene analysis and augmentation techniques that can localize anatomical landmarks, i.e.,

blood vessels, from dynamic intraoperative imaging modalities. Speci�cally, we aim to establish that

an understanding of the temporal anatomical behavior of blood vessels can be mathematically modelled

and leveraged to facilitate automatic localization of these vessels in a computationally ef�cient manner.

Fortunately, blood vessels in particular have unique shape and motion characteristics, i.e., they are

essentially pulsating tubes that periodically pulsate with a frequency that is predominantly governed by

the heart-rate. These pulsatile motion characteristics, once computed, can be utilized as novel features

for vessel segmentation and may be incorporated alongside other complimentary static visual features

such as color, intensity, shape, and texture.

Due to the sheer breadth of associated applications, which extend beyond IGT into clinical diag-

nostic assessment, automatic vessel segmentation from medical images has been a popular subject of

research for many years and has resulted in many notable contributions. Common applications of vas-

cular imaging range from routine non-invasive diagnostic procedures to complex surgical interventions.

Vascular imaging is routinely used to assess the risk for cardiovascular morbidity by (i) directly imaging

and analyzing the coronary arteries with intravascular US, MR, or CT imaging; (ii) quantifying arte-

riosclerosis from color images of the retina [128]; (iii) segmenting atherosclerotic plaque from US [17],

MR [34], or CT images [105] of the common carotid artery (CCA); or (iv) monitoring changes in vas-

cular distensibility from MR images of the aorta [23] and CT angiography images of the CCA [65]—all

of which have been identi�ed as independent predictors of stroke [24, 66, 84, 97, 201]. In the domain

of IGT, the real-time acquisition speed and noninvasive nature of US imaging have popularized its util-

ity for guidance during commonly performed, yet laborious, vascular access (cannulation) procedures

such as insertion of central venous and arterial pressure catheters [104]. Moreover, vascular imaging

is used regularly during preoperative planning and screening of surgical interventions like kidney and

liver transplants [63, 86]. Finally, in addition to the traditional applications of X-ray �uoroscopy and

CT angiography during image-guided cardiac catheterization [59] and aneurysm surgery [138], vascular

imaging is �nding new applications in intraoperative guidance during robot-assisted prostate and kidney

cancer surgeries [5, 7, 110, 187].

Extraction of vascular structures are of such importance that many acquisition techniques and imag-

ing modalities have been speci�cally developed to enhance the appearance of vasculature in medi-

cal images. Such techniques include contrast enhanced CT or MR angiography, laser speckle imag-

ing [118], near infrared �uorescence imaging [187], color Doppler US and optical coherence tomog-

raphy (OCT) [80]. Although these modalities and techniques enhance the appearance of the imaged
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Table 1.1: Categorization and comparison between state-of-the-art methods for automatic vessel
segmentation.

Modality Application Method

M
ul

ti-
S

ca
le

M
ot

io
n

M
od

el

Frangi et al. [49] 2D DSA &
3D MRA

Vessel enhancement Vesselness Y N

Lorigo et al. [101] 3D MRA &
3D CT

Vessel segmentation Active contours N N

Staal et al. [171] RGB image Segment retinal vessels Vesselness Y N

Vermeer et al. [193] 2D image Segment retinal vessels AM N N

McIntosh and Hamarneh [107]3D MRA &
3D CT

Vessel segmentation Vesselness+
TSMT

Y N

Law and Chung [98] 3D MRA Detect curvilinear structures OOF Y N
�R�́ha and Bene�s [142] DUS Segment carotid artery OF+MO+HT N Y

Schaap et al. [152] 3D CT Segment coronary artery Supervised AM Y N

Rigamonti and Lepetit [141] 2D RGB Segment retinal vessels Random forests Y N

Becker et al. [13] 2D RGB &
3D BM

Vessel segmentation CNN Y N

Amir-Khalili et al. [5, 7] EV Segment renal vessels PBMS Y Y

Hennersperger et al. [71] 2D US Segment carotid artery Vesselness+
AM+USCM

Y N

McLeod et al. [111] DUS Detect dural pulsation EKF+FS N Y

Gastounioti et al. [53] DUS Segment plaque GWIR+GBS N Y

Gao et al. [52] 3D MR Segment carotid artery
and abdominal aorta

HT + NURBS Y N

Amir-Khalili et al. [6, 8] DUS Segment carotid artery MF+PRMM Y Y

AM : Appearance Model MF: Monogenic Flow
BM: Bright�eld Microscopy MO: Morphological Operations
CNN: Convolutional Neural Network MRA : Magnetic resonance angiography
CT: Computed tomography NURBS: Non-uniform rational B-spline
DSA: Digital Subtraction Angiography OF: Optical Flow
DUS: Dynamic Ultrasound OOF: Optimally Oriented Flux
EKF: Extended Kalman Filter PBMS: Phase-Based Motion Segmentation
EV: Endoscopic Video PRMM : Pulsatile Radial Motion Model
FS: Frequency Smoothing TSMT: Tubular Spring-Mass Tracker
GBS: Graph-Based Segmentation US: Ultrasound
GWIR : Group-Wise Image Registration USCM: Ultrasound Con�dence Maps
HT: Hough Transform

vasculature, many of the aforementioned clinical applications stand to bene�t from a fully automatic

vessel localization algorithm. The need for automated vessel localization, or segmentation, has in-

spired novel contributions in the �eld of medical image analysis. In the next subsection, we provide an

overview of important contributions made in this �eld and survey the emerging trend of incorporating

temporal information (kinematics) into automatic vessel segmentation algorithms.

1.4.1 Related Works

In Table 1.1, we have summarized notable contributions made towards fully automatic segmentation

of vascular structures with an emphasis on seminal techniques and recent approaches that incorporate

temporal motion models. The reader is referred to comprehensive surveys of vessel segmentation tech-
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niques [89, 90, 99, 179] for more information on other existing methods.

The early attempts at automatic vessel segmentation focus on applying advanced low-level pixel

based image analysis techniques to static intensity information acquired from the aforementioned imag-

ing modalities. Such attempts include the exploitation of ridge-like features in the image [171], Hessian-

based vesselness features [49, 71, 98], and model/physics based approaches [71, 193]. Other high-

level techniques have also been proposed by embedding these low-level features in broader frame-

works, which include: vessel trackers [107], deformable 3D cylindrical non-uniform rational B-spline

(NURBS) surfaces [52], a combination of wavelet-based features and machine learning [168], active

contours [101], and supervised machine learning techniques [13, 141, 152]. With the exception of

Doppler US and OCT, the techniques listed above and in cited survey papers [89, 90, 99, 179] focus on

extracting low- and high-level features from static information alone, ignoring the most characteristic

feature of a pulsating vessel, i.e., its kinematics or temporal behavior.

On the other hand, US and OCT can exploit the pulsatile �ow kinematics of blood inside the vessels

to facilitate localization. Such modalities are capable of measuring the directionality and relative veloc-

ity of structures (usually blood) by leveraging the Doppler effect. The �ow of blood, however, is not

the only temporal characteristic of vascular structures. The pulsatile radial distension and compression

of the vascular walls (from the lumen to tunica externa) is another characteristic that can be observed

and measured using almost any imaging modality so long as the temporal and spatial resolutions are

adequate.

The �rst use of temporal features for the purpose of vessel segmentation did not explicitly model

the kinematics [142]. In their paper, the authors simply assumed that the only meaningful movement in

DUS scan of the CCA imaged along the transverse axis is the pulsatile movement of a circular pattern.

Based on this assumption the authors propose to use an optical �ow (OF) sequence and simply average

the absolute value (magnitude) of motion across the entire sequence to generate features. These features

are then processed with median �ltering and morphological operations (MO) to generate a binary mask.

High-level features are �nally extracted from the Hough transform (HT) of the binary mask and the

resulting features, along with the last frame of the sequence, are fed into a Bayesian classi�er to compute

the center and radius of the CCA.

We initially proposed to exploit the kinematics of pulsating vessels in the context of kidney cancer

surgery to identify major vessels that are hidden under layers of connective tissues [5, 7]. Rather than

a simple computation of the average magnitude of motion using OF, we proposed the use of a temporal

bandpass �lter to isolate features that are in sync with the heart-rate. In our approach, we reformulated

the Eulerian video magni�cation (EVM) [195] pipeline into a multi-scale phase-based motion segmen-

tation (PBMS) algorithm to detect the motion of renal vessels by analyzing the magnitude of temporal

change in the local phase information of an endoscopic video (EV) sequence. Our PBMS method,

although novel in application, only operates on the magnitude of local pulsatile motion and is conse-

quently prone to false positives when tested on other applications and imaging modalities, failing to

differentiate between the motions speci�c to vasculature versus neighboring structures that happen to

move at the same frequency as blood vessels. In more recent publications [6, 8], to reduce the number
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of false positives and to extend the application of our method to more challenging imaging modalities,

such as DUS sequences of the CCA, we proposed a novel kinematic model-based vessel segmentation

(KMVS) pipeline that couples a pulsatile radial motion model (PRMM) with a more detailed computa-

tion of motion characteristics that entails an estimation of the local magnitude and orientation of motion.

We showed that this updated pipeline increases the accuracy of kinematics-based vessel segmentation

and that by reconstructing the monogenic signal [43] and computing the motion vectors using a mono-

genic �ow (MF) technique, the local orientation of motion may be estimated in a more computationally

ef�cient manner compared to the previous PBMS method.

Concurrent with our efforts, other novel methods have been proposed to address similar challenges

with the help of pulsatile kinematics models. In a recent publication, it was demonstrated that a

kinematic model of periodic low velocity out-of-plane motion of structures in DUS using extended

Kalman �lter (EKF) and frequency smoothing (FS) can localize dural pulsation for spine needle inter-

ventions [111]. The proposed method operates in real-time and is capable of detecting subtle motions

that are imperceptible in Doppler US. Furthermore, the proposed visualizations were shown to reduce

the normalizing path length and number of attempts required to perform a mock epidural procedure on

a spinal phantom model. Although this method was shown to be effective in the novel application pre-

sented, similar to our PBMS method, it will likely not be able to distinguish between vascular structures

and others that happen to translate at the same frequency as vessels. The FS aspect of the proposed

method may allow the EKF approach to perform better than PBMS, but this method cannot bene�t from

an advanced kinematic model of vasculature due to the lack of a mechanism to account for the spatial

orientation of motion.

In the context of CCA atherosclerosis assessment, another method was proposed to learn the kine-

matic dependencies between atherosclerotic and healthy vascular tissue in DUS by combining group-

wise image registration (GWIR) with a graph-based segmentation (GBS) scheme [53]. Rather than

implementing a physics-based kinematic model, the authors proposed a data-driven approach to learn a

complex discriminative model. To do this, the magnitude of total vertical and horizontal displacements

(MTD) are �rst computed for every pixel throughout the sequence using GWIR. Then, independent

component analysis is used to identify the dominant and independent motion classes, which are used as

a basis to which the MTD of each pixel is mapped using mutual information. A �nal mutual informa-

tion value is assigned to a given pixel through majority voting. The likelihood of a pixel belonging to

a binary class (healthy or atherosclerotic) given the �nal map is �rst learned and then used as the data

term to perform GBS and generate contiguous contours around the atherosclerotic regions. Segmenting

atherosclerotic plaque from DUS is challenging and the proposed pipeline performs well. It can be ar-

gued that the pipeline may be modi�ed to segment vascular structures in addition to the plaque regions.

Even though real-time performance is not a strict requirement for diagnostic clinical applications, the

speed of the algorithm is of clinical value. The authors do not mention the runtime of their pipeline and

the GWIR method used in the paper was projected to take minutes to complete, at best, if optimized and

implemented in C++ [169]. It is thus unlikely that the proposed method would be able to perform in

real-time.
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We introduce our contributions in intraoperative segmentation of blood vessels from dynamic medi-

cal image data starting with Chapter 2, in which we present our automatic phase-based motion segmen-

tation technique. Our proposed PBMS method can localize blood vessels that are hidden under layers

of tissues (visually occluded) by estimating the magnitude of apparent motion via the change in local

(spatial) phase information and measuring this change over multiple spatial scales and orientations to

encode the motion information from neighboring pixels. In Chapter 3, we follow with the evolution of

our methodologies that result in improved accuracy, increased computational performance, and broad-

ened applicability to other medical imaging modalities. Our next-generation kinematic model-based

vessel segmentation methods extend the computation of motion to include the orientation of motion,

in addition to the magnitude of motion, and take advantage of a mathematical pulsatile radial motion

model to localize vasculature.

1.5 Navigation Uncertainty in Image-Guided Therapy

In comparison to vessel segmentation, the computation and visualization of intraoperative guidance

uncertainty during IGT is a relatively new topic of research that has recently found applications in

orthopedic surgery [159, 160], image-guided neurosurgery [147], longitudinal studies of Alzheimer's

disease [162], as well as pharyngeal [148] and prostate [119] radiotherapy. A method for visualizing

the in�uence of propagated non-rigid registration uncertainties onto probabilistic segmentation has also

been presented [163]. Similar visualizations are currently being explored in radiotherapy for brain

tumors [148] and also for probabilistic extrapolation of glioma invasion with variable margins [92].

1.5.1 Sources of Navigation Uncertainty

Sources of uncertainties in computer-assisted navigation emanate from both preoperative and intra-

operative stages of IGT. Among the contributing sources to navigation uncertainty, the uncertainties

associated with the image segmentation stage of IGT are well known. Probabilistic segmentation of

image data is not novel and many automated segmentation techniques are capable of producing fuzzy

or probabilistic labels that represent the underlying uncertainties in the resulting segmentation output;

more so now that statistical atlas-based [78] and machine learning [156] techniques for medical image

segmentation are gaining in popularity. It is also possible to estimate segmentation uncertainties within

semi-automated image segmentation frameworks that are intended for accurate segmentation of preop-

erative data [58]. Despite the availability of probabilistic segmentation methodologies, the segmented

models produced for the purpose of IGT navigation are often converted to determinate or crisp labels

during the preoperative planning and intraoperative scene augmentation.

Another important, and often ignored, source of uncertainty in many of the emerging image-guided

surgical navigation frameworks stems from the extraction of 3D surface geometry from stereo endo-

scopic video. In the past, attempts have been made to model the encoding of 3D geometry in a pair

of 2D images using Bayesian frameworks [14], probabilistic stereo reconstruction methods have been

proposed [74, 87], and probabilistic scene analysis has also been used to detect smooth problem areas

prior to matching [172]. These approaches merely leverage a probabilistic model to arrive at a globally
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optimal depth reconstruction and, surprisingly, none of these approaches attempted to propagate the

computed uncertainties to create a probabilistic representation of the extracted geometry.

We explore methods to estimate and visualize sources of uncertainties in Chapter 4, in which we

present our preliminary phantom experimentation using an uncertainty-encoded navigation framework

designed for image-guided minimally invasive robot-assisted partial nephrectomy (RAPN). The pre-

sented framework encodes uncertainties through the computation and visualization of uncertainties that

may occur during preoperative CT segmentation and computational stereopsis steps of navigation.

Although the computation of segmentation and geometric uncertainties are important, the combined

effects from these separate sources of error cannot be quanti�ed in many IGT applications without

their integration within a probabilistic registration framework. In fact, the lack of research into the

propagation of uncertainty in IGT can be attributed in part to the need for an effective mathematical

framework for computing and propagating the effects of uncertainty during the registration stage of

IGT [159].

1.5.2 Uncertainty in Deformable Image Registration

Deformable image registration (DIR) algorithms are arguably the most important source of uncertainty

in IGT navigation systems and, in such contexts, registration uncertainty (RU) is challenging to compute

and visualize. Unlike simpler rigid and af�ne transformation models, DIR is fraught with challenges

stemming from the complexity of parameter optimization, choice of similarity metric, and evaluation of

accuracy and precision of resulting transformations [81, 170, 181]. Such challenges are exacerbated as

transformation models become more complex to accommodate for more realistic deformations.

Despite the challenges associated with DIR, deformable models generally outperform simpler reg-

istration models since most organs inside the human body undergo complex elastic deformations. In-

evitably, however, errors that occur during DIR would propagate through to all subsequent analyses per-

formed post-registration. Examples include errors in augmented reality visualization during computer-

assisted surgery [72], biased estimation of head movement in fMRI time-series analysis [51], and geo-

metric uncertainties in localizing organ shape or motion during image-guided radiotherapy [30]. Addi-

tionally, DIR uncertainties also affect the decisions made by the end-users of DIR, which include both

image analysts and physicians. An erroneous DIR may result in catastrophic outcomes for a patient

during image guided therapies where DIR is often used for the purpose of guidance [40]. Furthermore,

established methods for estimating the overall accuracy of registration processes from �ducial or target

registration errors cannot be simply generalized from rigid to deformable transformation models [204].

Instead, in order to calculate the accuracy of DIR, the ground truth (GT) transformation, a dense 3D-3D

mapping, is required.

Unfortunately, GT data for DIR are either scarce, non-existent, or impossible to obtain for most

clinical applications. Obtaining GT data is particularly dif�cult in clinical applications where volumet-

ric medical images from complementary imaging modalities are fused for the purpose of image-guided

interventions or therapies. Such applications widely vary from multimodal imaging for radiation treat-

ment [30] to computer assisted surgery [106]. The lack of a GT thus restricts the validation process to
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testing on synthetically generated data or simpli�ed approximations of DIR errors [19, 181].

Even though errors cannot be equated to uncertainty, the two have been found to be strongly cor-

related [75, 102] and RU thus remains as a valuable measure of quality for DIR. The importance of

understanding and communicating the uncertainty associated with DIR software is a timely issue. Re-

cently, the Therapy Physics Committee of the American Association of Physicists in Medicine (AAPM)

commissioned a task group to review the current approaches and solutions for image registration in

radiotherapy. Among their clinical recommendations, Brock et al. [19] advocated for a better under-

standing of the basic components of the registration algorithm; end-to-end tests of imaging, registration,

and treatment systems using a physical phantom; and comprehensive commissioning of image regis-

tration using digital phantom data. Although we support these recommendations, we emphasize that

phantom-based studies shed limited insights on the validity of DIR software, primarily due to the fact

that phantom-based analyses are often an oversimpli�cation of real world situations where noise, dis-

tortion, and complex anatomical variations typically occur.

1.5.3 Related Works

Our survey of the prior works relating to computation and propagation of RU is naturally divided into

two parts. In the �rst part of this section, we survey and outline the limitations of current mathematical

methods for estimating RU and, in the second part, we discuss notable works that propose application

speci�c end-to-end frameworks for propagating the effects RU.

Registration uncertainty computation:

Current approaches to estimating RU may be divided into three groups: (i) characterizing uncertainty

from contextual image information [182, 196], (ii) frequentist approaches involving multiple registra-

tions [75, 76, 94, 199], and (iii) Bayesian approaches involving model inference on the posterior of

the deformation parameters [147] and at the regularization level [161]. Among these methods, Watan-

abe and Scott [199] stands out as a suitable base for a solution in the context of IGT since: it can be

implemented on top of existing DIR software; it is computationally more ef�cient than the Bayesian

approach of Risholm et al. [148]; and it is capable of representing RU through ellipsoidal spatial con-

�dence regions in the pixel-domain of the target image, which facilitates intuitive visualization and RU

propagation. Despite these important advantages, some associated limitations exist which we address

below.

It may be argued that a notable limitation of the cited frequentist methods, in contrast to the Bayesian

approach of Simpson et al. [161], is that the computation of RU is evaluated from changes in image sim-

ilarity subject to local random deformations without an explicit consideration for the global in�uence of

regularization. Though the effects of regularization on RU have been shown to be signi�cant, e.g., es-

pecially the case for complex intra-subject brain registration [164], the amount of computation required

for inference on regularization parameters is costly. This cost hinders the applicability of such Bayesian

methods in intraoperative applications. On the other hand, the frequentist RU computation methods are

often pleasingly parallel and extendable to commonly used medical image registration software such as
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elastix [91]. We elaborate on this point further in Section 5.3.5.

Another limitation of the frequentist approach of Watanabe and Scott [199], the context-based

method of Wang et al. [196], and the generative Bayesian approaches of Risholm et al. [147] and Simp-

son et al. [161] is that they are designed for unimodal registration tasks; wherein two images from the

same modality, or even from the same patient, are registered together. In Watanabe and Scott [199] for

example, RU is estimated from intensity information of the moving image alone, which may not be rep-

resentative of the true RU. Extending the generative Bayesian RU estimation approaches to multimodal

DIR is also challenging as doing so would essentially require a model for generating the target imaging

modality from the moving imaging modality.

Registration uncertainty propagation:

Compared to the amount of literature on RU estimation methodologies, research into RU propagation

in an end-to-end fashion is surprisingly scarce. Within the broad context of fractionated radiotherapy,

which also includes external beam radiotherapy, the effects of DIR error propagation have been mainly

studied on dose accumulation. Most notably, the Bayesian RU estimation method of Risholm et al.

[147] was applied to oropharyngeal radiotherapy in Risholm et al. [148], while Murphy et al. [119]

and Tilly et al. [186] implemented a frequentist approach to quantify RU during radiotherapy of the

prostate. In Murphy et al. [119], principal component analysis was applied to multiple registrations

of CT image pairs to obtain decorrelated modes of error, from which sample deformations (used to

compute RU) were drawn. In Tilly et al. [186], a synthetic simulation framework was used to study

the sensitivity of planning parameters to DIR. Radiation planning parameters are typically derived from

dose-volume histogram (DVH) that provide a summary of absorbed radiation over the entire volume

of a structure, which include the target volume and the organs at risk (OAR) [120, 133]. Cumulative

DVH is important for planning and postoperative analysis as it has been shown to correlate with patient

toxicity outcomes [55]. For hollow elastic OAR, in addition to DVH parameters, it is also important to

study the spatial distribution of the accumulated doses as it is indicative of the formation of radiation

hot spots and, thus, potential resulting complications [209]. To the best of our knowledge, the effects of

RU have only been studied on the entire dose volume [147] or the resulting DVH. There is still a need

for planning parameters that can capture the spatial distribution of total radiation dose while accounting

for the quality of DIR.

Given the challenges described above, there remains a need for a RU estimation and propagation so-

lution that is supported by mathematical formalism while being implementable as an end-to-end frame-

work in real world applications. To address the need for RU-encoding methodology, in Chapter 5, we

present a mathematical framework for estimating RU and propagating the effects of the computed uncer-

tainties from the registration stage through to the proceeding dosimetric evaluations and visualizations.

1.6 Thesis Contributions

Our peer-reviewed contributions presented in this thesis are organized into four chapters; the �rst two

of which pertain to our �rst research question, the latter two to the second.
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1.6.1 Motion-Based Localization of Vasculature

Our methods presented in Chapter 2 and Chapter 3 demonstrate how motion cues may be extracted and

used to locate blood vessels in IGT applications. In support of our contributions, we provide publicly

available MATLAB executables1 of our PBMS and KMVS methods to allow our fellow researchers to

evaluate and incorporate our proposed methodologies within other application domains.

Phased-Based Motion Segmentation of Occluded Vasculature

We propose an automatic PBMS method, which leverages subtle motion cues from medical video data

to localize blood vessels that are hidden under layers of connective tissues [5, 7]. We also present:

� Evaluations of our PBMS method on a retrospective study of �fteen clinical RAPN procedures. To

the best of our knowledge, we are the �rst to attempt the task of localizing occluded vasculature in

endoscopic video without the use of additional hardware or preoperative scans. In this challenging

context, we demonstrate quantitatively promising vessel localization performance, i.e., a mean

area under the receiver operating characteristics curve (AUC) of 0.72.

� Evaluations of our high-level variational scene segmentation method [126] (which integrates our

PBMS alongside other image-based cues and patient-speci�c priors, i.e., shape and deformation)

and demonstrate a 45% increase in pixel-wise accuracy (for localizing renal vasculature in context

of RAPN) compared to our original PBMS method.

� A preliminary clinical user study involving four surgeons and our �ndings regarding how our

PBMS visualization techniques may be improved in the future.

Kinematic Model-Based Motion Segmentation

We propose KMVS [7, 8], an extension of PBMS, that is designed to localize vasculature from dynamic

medical image sequences by leveraging: (i) the estimation of local motion vectors and (ii) a novel

PRMM that enables the modelling of divergent (radially moving) motion patterns. We also present:

� Implementation of a parallelizable technique for the computation of motion vectors, which esti-

mates motion via the changes in the monogenic representation of image information.

� Four alternative implementations of our KMVS method using different motion computation tech-

niques and discussions regarding the advantages of the different implementations.

� Evaluations of the four implementations of our KMVS method on a synthetic dataset and two

real DUS datasets of the CCA and report differences in performance, in terms of segmentation

accuracy and computation time, compared to the PBMS method. Compared to PBMS, our fast

tuned optical �ow implementation increases the average AUC from 0.82 to 0.99 on our in-house

data and from 0.83 to 0.98 on a publicly available dataset.
1MATLAB executables are available for download fromhttps://bisicl.ece.ubc.ca/software/radialDistension.html
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1.6.2 Computation, Propagation, and Visualization of Navigation Uncertainties

In Chapter 4 and Chapter 5, we present our contributions towards automatic augmentation of intraop-

erative data through the computation, propagation, and visualization of different sources uncertainties

that result from the use of computer-assisted surgical and radiological guidance tools.

Uncertainty-Encoded Augmentation of the Surgical Scene

We propose an endoscopic scene augmentation method for facilitating the registration of probabilistic

preoperative CT segmentations with stereo endoscopic video data [4]. We also propose:

� An uncertainty-encoded computational stereopsis technique for extracting probabilistic surface

information from stereo endoscopic data.

� Application of our framework to anex vivolamb kidney phantom to simulate the tumor demarca-

tion stage of RAPN interventions.

� Uncertainty-encoded visualization techniques for depicting probabilistic tumor margins onto the

endoscopic scene and discussions regarding the potential advantages of our proposed visualiza-

tions compared to existing crisp (deterministic) techniques.

Encoding Deformable Image Registration Uncertainties for Scene Augmentation

We propose a mathematical framework for estimating RU from DIR and subsequently propagating the

effects of the computed uncertainties from the registration stage through to the visualizations, organ

segmentations, and dosimetric evaluations [9]. We also propose:

� A method for computing RU that is designed to: (i) interface with existing multimodal DIR

software, which we deploy usingelastix , and (ii) represent RU in a parametric manner using

structure tensors.

� A weighted averaging technique for propagating the effects of RU, onto volumetric segmenta-

tion and dose data, to produce a probabilistic map of aligned segmentation and dose information

subject to the estimated RU.

� Evaluation of our framework on a retrospective study consisting of 37 multi-fraction cervical

cancer brachytherapy (MFCCB) patients, in context of which we present preliminary evidence

that our proposed framework may be advantageous. Speci�cally, we show that (i) the effect of

RU on dose accumulation provide useful insights for quality control and post-treatment analysis;

(ii) RU propagation improves the transfer of delineations from one fraction to the next; and (iii)

RU can be used to generate visualizations that re�ect the quality of DIR that may prove to assist

physicians in making decisions based on registered image data.
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Chapter 2

Phase-Based Motion Segmentation of

Occluded Vasculature

“We, on the other hand, must take for granted that the things that exist by nature are,
either all or some of them, in motion.”

— Aristotle

In this chapter, we present our contributions towards automatic segmentation of visually occluded

vasculature from video data. The methodology presented herein was originally published in Amir-

Khalili et al. [5, 7], Nosrati et al. [126]. To aid in vessel discovery, in Amir-Khalili et al. [5, 7], we

proposed a novel automatic method to segment hidden vasculature by labeling minute pulsatile motion

that is otherwise imperceptible to the naked eye. Our segmentation technique extracts subtle tissue

motions using a technique adapted from phase-based video magni�cation [195], in which we measure

motion from periodic changes in local phase information. Based on measuring local phase through

spatial decomposition of each frame of the endoscopic video using complex wavelet pairs, our approach

assigns segmentation labels by detecting regions exhibiting temporal local phase changes matching the

heart rate. Our proposed phase-based motion segmentation (PBMS) method presented in this chapter is

extended in Chapter 3 to increase its speci�city to outliers.

2.1 Localizing Vasculature using Temporal Information

Periodic pulsations of major blood vessels are within a narrow temporal passband centered around the

heart rate of the patient. With high de�nition surgical video data, one can observe the pulsations of

the vessels as faint movements on the surface of the connective tissue that covers them. Our goal is to

automatically process every frame in the surgical video and label pixels that exhibit this characteristic

motion. We denote our labels

L(x;t) : R2 � R+ ! l 2 [0;1]; (2.1)

wherel is a normalized fuzzy value that is proportional to the magnitude of pulsatile motion measured at

the pixelx = ( x1;x2)| ;x 2 Win the 2D spatial domainW� R2 at a given point in timet � R+ . Similarly,
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Figure 2.1: Overview of our proposed method: (a) a synthetic input video composed of one circle
that pulsates (top) and another that remains stationary (bottom). (b) Steerable �lter bank
with illustrated impulse responses decompose the information inside each frame into (c)
magnitude and local phase at different scales and orientations. (d) The phase information
of all frames of the video is temporally �ltered using an ideal bandpass �lter centered on
the frequency of the pulsating circle. (f) A median �lter is applied to (e) the magnitude
weighted response of the �ltered phases to remove phase noise. (g) The results are then
combined to generate the fuzzy labelsL and (h) added back to the input video as an overlay.
A spatiotemporal cross section of the video (lower right) illustrates four pulsations across 30
frames of the synthetic video. High resolution images are available in the digital copy.

the color endoscopic video signal is de�ned as

V(x;t) : R2 � R+ ! v � R3; (2.2)

in the continuous time domain, wherev = ( vr ;vg;vb)| represents the vector encoded values of redvr ,

greenvg, and bluevb color channels at every pixelx. In the discrete time domain, eachj th frame j � N

of a video recorded at 1=T frames per second is de�ned asV(x; jT ) = V(x;t). The motion estimation

techniques presented in this thesis, extract motion from the scalar valued (grayscale) representation of

the video de�ned hereby as a function

f : (x � R2; j � N) ! R; (2.3)

mapping a pixelx in the 2D spatial domain of each framej to an intensity valuef = 0:299vr + 0:587vg+

0:114vb. In the remainder of this section, we elaborate on our methodology for generating segmentation

labelsL from local phase measurements, starting with the relationship between phase and motion.

2.1.1 Extracting Motion-Based Cues from Time Varying Local-Phase Information

The shift property of the Fourier transform,f (t � t0) , F(w)e� iwt0, states that motion is related to

the change in phase, however the explicit computation of motion vectors from phase with techniques
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like Gautama and Van Hulle [54] is computationally expensive. To avoid this cost, we aim to exploit

the relationship between phase and motion to segment the pulsating regions of interest in the video

sequence. The overview of our method is shown in Figure 2.1 and it is described in the following

1D intuitive manner, without loss of generality. First, consider a video, a simpli�ed version of the

one shown in Figure 2.1a, denoted asf (x;t) representing a function mapping given pixelx � R at

time t to an intensity value. Suppose that this video is a sequence composed of the 1D imagef (x)

that is translated by a displacement vectordx(t) along thex direction as a function of timet such that

f (x;t) = f (x+ dx(t)) . To extract this motion, we decompose each frame of the video into spatial sub-

bands

f (x;t) = f (x+ dx(t)) =
¥

å
w= � ¥

Aweiw(x+ dx(t)) (2.4)

with each sub-band representing a complex sinusoidSw(x;t) = Aweiw(x+ dx(t)) at spatial frequencyw.

The phase of each sub-band is de�ned asf w(x;t) = arg(Sw) = w(x+ dx(t)) . Sincewdx(t) is the only

motion related component of the phase that varies with time, we can isolate it from the DC component

wx by applying a DC-balanced temporal bandpass �lter with a wide enough passband to capture all

temporal variations indx(t).

Multi-Scale Steerable Analytic Decomposition

Generally, motions in a video are not merely a simple global translation. The displacement vector

dx(t) is, in fact,dx(x;t) since it varies as a function of both time and space. In 1D, local phase can be

measured by constructing the analytic signal. The analytic signal is constructed from quadrature �lters,

i.e., 1D Hilbert pair of bandpass �lters. The estimation of local phase is more complex in 2D images and

there are thus many approaches to extend the analytic signal to 2D. One approach is to use a steerable

complex pyramid decomposition [132] to extract local motion information from a sequence of grayscale

images. To measure these spatially localized variations, rather than using a Fourier series expansion,

we decompose each frame of the video using a spatial �lter bank (pyramid) consisting of a cascade

of Gabor odd and even symmetric �lter pairs (analogous to Hilbert transform �lter pairs in 1D) with

limited spatial support (note that the impulse responses of these wavelets have been enlarged for clarity

in Figure 2.1b). In the steerable pyramid, the spatial extent of each �lter is determined by the scale or

spatial passband of the Gabor wavelets and, at each scale, the �lters are designed to measure motion

along a certain direction or orientation in 2D space (note that in Figure 2.1b, a pyramid consisting of

two scales and two orientations is used). In the 1D example, if the local motion is from a single sinusoid

with spatial frequencyw along thex direction, we would only need a single pair of Gabor wavelets to

extract the motion from the change in local phase.

With the complex steerable pyramid, the analytic signal is estimated at different scaless= f 1; :::;Sg,

alongn = f 1; :::;Ng different orientations from the complex responseh(x; j;s;n)js;n : R3 ! C to a set

of steerable �ltersb(x;s;n). The real and imaginary parts ofh(x; j;s;n) correspond to a pair of even-

and odd-symmetric �lter responses that are analogous to a one dimensional Hilbert transform along the

given orientation. The orientations are sampled evenly such that the local orientationqn (where] x =
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(cosqn;sinqn)| ) is determined byqn = pn=N, whereN is the total number of orientations used in the

pyramid. This steerable method measures the magnitude of local phasef (x; j;s;n) = arg(h(x; j;s;n))

projected ontoN different anglesqn;n = f 1; :::;Ng.

Spatiotemporal Filtering

Local, or instantaneous, phase is calculated from the argument of the response to the wavelet pair (Fig-

ure 2.1c). We then estimate local motiondx(x;t) from the change in local phase by applying a DC

gain-balanced temporal bandpass �lter to the obtained local phase values. We �lter the local phase

measurements using an ideal bandpass �lter:

z( j) = 2t Hsinc (2t H j) � 2t Lsinc (2t L j); (2.5)

wheret L is the temporal low frequency cut-off andt H is the high frequency cutoff and thesinc func-

tions are the time domain representations ofrect functions in the temporal frequency domain that con-

struct an ideal bandpass. The response of the temporal bandpass �lter isf z(x; j;s;n) = f (x; j;s;n) � z( j):

We tune the passband of the �lter to the typical heart rate of a patient so that we then can simply and

effectively isolate components of the local motion that are synchronous with the heart rate and hence to

vascular pulsation. In this work we have set the passband of the temporal �lter wide enough such that

it can separate pulsatile motion from breathing motion in all of the �fteen cases. Future development

should involve a tighter estimate of the patient's heart rate to improve the results. Such estimates may

be recorded directly from the patient's heart rate monitor or obtained from the anesthetist.

To generate fuzzy segmentation labels from the computed local motion,f z is �rst attenuated in

regions where the magnitude response (Aw in the 1D case) of the spatial sub-band is weak. This is done

by computing the product between the bandpassed phases and the normalized magnitude of the spatial

�lter response vectorsjh(x; j;s;n)j to obtainf̂ z(x; j;s;n) = jh(x; j;s;n)jf z(x; j;s;n) (Figure 2.1e). Since

local phase measurementsf w are wrapped between the interval(� p;p], and sincez in Equation 2.5

acts as a derivative, the jumps in wrapped phase become impulse noise inf̂ z. We remove this noise

from the productQw using a spatiotemporal median �lter (Figure 2.1f). For faster performance, the

spatiotemporal median �lter is replaced with a spatial pseudo-median �ltering process using ef�cient

2D morphological opening� and closing� operations as follows

f̃ z = f̂ z � E + f̂ z � E � f̂ z; (2.6)

whereE is a 2� 2 square structuring element.
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Multi-Scale Motion-Based Segmentation

The denoised product̃f z(x; j;s;n) is averaged across all spatial sub-bands (Figure 2.1g) and all �lter

orientations to obtain our �nal fuzzy labels

L =
1
M å

8s;n

j f̂ z(x; j;s;n)j
2pws

; (2.7)

wherews is the spatial frequency of scales andM is a normalizing factor to �x the range of phase-

based motion segmentation (PBMS) labelsL 2 [0;1]. The resulting sequence of fuzzy labelsL may

be displayed as an overlay or separately to highlight this pulsatile motion (Figure 2.1h). In a real-time

application, the ideal temporal �lterzmay be replaced with an in�nite impulse response �lter.

2.2 Automatic Vessel Localization during Robot Assisted Partial
Nephrectomy

Approximately 64,000 new cases of kidney cancer, commonly renal cell carcinoma, were projected to

occur in the U.S. in 2017 [158]. This constitutes double the number of cases reported in 2005 and has

not changed since 2014 [157]. Kidney resection, also known as a nephrectomy, remains the only known

effective treatment for this type of localized cancer [33]. Robot-assisted partial nephrectomy (RAPN)

refers to nephron-sparing techniques performed with surgical robots in which only the cancerous cells

are excised and the kidney is reconstructed to retain functionality.

The RAPN procedure is organized into �ve main stages according to Gill et al. [57]: (i) Bowel

mobilization; (ii) Hilar dissection and control; (iii) Identi�cation and demarcation of tumor margins;

(iv) Resection of tumor; and (v) Reconstruction of the kidney (renorrhaphy). Hilar dissection stands out

as a daunting stage requiring signi�cant expertise since improper clamping due to overlooked accessory

renal vessels can cause signi�cant bleeding during resection [165].

Figure 2.2: Variation of renal artery structure and corresponding percentage of occurrence in 266
kidneys adapted from [151]. In each case all vessels that cross the dotted line must be
clamped or ligated to minimize intraoperative hemorrhaging.

Hilar dissection is a delicate procedure during which the surgeon dissects through the Gerota's

fascia and removes the connective tissue that surrounds the renal artery (RA) and renal vein (RV).

This task is complex due to substantial natural variability in patient vasculature (Figure 2.2) and the

amount of perinephric fat surrounding the kidney. Access to the hilum grants the surgeon control over

the �ow of blood into and out of the kidney, which is critical as warm ischemia is required during

the excision of the tumor to minimize internal hemorrhaging. In some cases, accessory vessels that
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branch off from the RA or the abdominal aorta (AA) are accidentally missed as they lie hidden behind

a thick layer of perinephric fat. In one study of 200 laparoscopic partial nephrectomy cases by world

leading surgeons [140], seven incidents of intraoperative bleeding were reported as a result of inadequate

hilar control, two of which were directly caused by missed accessory vessels. Although the number

of incidents is relatively low, other studies by [151, 192] observed the existence of accessory vessels

in more than 35% of patients. These accessory vessels also prolong the hilar dissection stage as the

surgeon must locate them prior to resection. If the surgeon's level of experience is limited, the incidence

of bleeding and overall dissection time may be much higher. The implications are many, aside from

obvious complications that would arise from internal hemorrhaging, as bleeding may also jeopardize

the surgical outcome by occluding the surgeon's view while the tumor is being resected.

Nephrogenesis and Kidney Migration: Development of Accessory Renal Arteries

Kidneys are primary retroperitoneal organs developed from intermediate mesoderm. Kidney develop-

ment, also called nephrogenesis, proceeds through a series of three successive mesenchyme-to-epithelial

transformation phases: pronephros, mesonephros, and metanephros. These three phases follow a cranio-

caudal developmental cascade starting with the development of the pronephros in the neck region of the

embryo. The pronephros extends from the sixth to the fourteenth somites and consists of 6-10 pairs of

tubules [31]. These tubules spill into a pair of primary ducts that are formed at the same level and ex-

tend caudally into the cloaca. The pronephros is a vestigial structure that is nonfunctional in mammals

and disappears completely by the fourth week of human embryonic life as the mesonephros develops.

Mesonephros develops by the formation of mesonephric tubules from the intermediate mesoderm and it

is the principal excretory organ during early four to eight weeks of embryonic life. It gradually degen-

erates, although parts of its duct system (Wolf�an duct) become associated with the male reproductive

organs [180]. Metanephros arises caudal to the mesonephros at �ve weeks of development and it ulti-

mately serves as the permanent and functional �ltration components of the kidneys. The ureteric bud

arises as a diverticulum from the Wolf�an duct, close to the entrance to the cloaca and grows towards

the metanephric mesenchyme. As the cephalic end of the ureteral bud grows inside metanephric mes-

enchyme, it expands within the growing mass of metanephrogenic tissue to form the renal pelvis and

the primary collecting ducts of the kidney [180].

As the kidney develops in the elongating fetus, it moves cephalad relative to the bladder to its

mature location (in the retroperitoneum just caudal to the diaphragm). During its migration, the kidney

takes new arterial supply from the aorta and new venous drainage into the inferior vena cava (IVC).

Occasionally, caudal branches of these vessels persist as the kidney ascends. These persisting branches

form accessory renal arteries (Figure 2.2). Accessory renal arteries may arise from the aorta adjacent to

the main RA, distal to the ostium of the main RA, or even from the iliac artery.

According to Chavan et. al. [26], when multiple arteries occur, each artery supplies a distinct seg-

ment of the kidney. As there is no collateral perfusion, occlusion of one artery will result in infarction

of the associated kidney segment. Multiple renal veins, draining into the IVC, are almost as frequent

as multiple renal arteries on the right side and are infrequent on the left side. Unlike the arteries, how-
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ever, the renal veins interconnect (anastomose) within the kidney. If one renal vein is occluded, the

remaining renal veins will continue to drain the entire kidney. Because of this fact, aside from the con-

text of RAPN, the identi�cation of accessory renal arteries is extremely important to kidney transplant

procedures [22, 67].

Locating the Renal Hilum and Accessory Renal Arteries

Similar to the kidneys, the AA, IVC, and branching renal vessels are also primary retroperitoneal struc-

tures. Depending on the patient's amount of visceral adiposity, the vasculature at the renal hilum may be

dif�cult to locate as all of the associated structures lie behind the peritoneum on the posterior abdominal

wall.

There are two established approaches to perform RAPN interventions [57], the choice between

which depends on location of the cancerous mass. Posterior or posterolateral tumors are approached

retroperitoneoscopically, while anterior, anterolateral or lateral tumors are approached transperitoneally.

Additionally, upper pole apical tumors are better approached by transperitoneal laparoscopy. In RAPN

interventions, the transperitoneal approach is more common than the retroperitoneal approach [41].

Locating the renal hilum retroperitoneoscopically is further complicated by the fact that the retroperi-

toneal space is relatively small during the hilar dissection stage of the intervention. If the renal hilum

cannot be located during the retroperitoneal approach, the scope is reinserted to identify the psoas mus-

cle. The psoas muscle is then crossed from lateral-to-medial in a cephalad direction and a search is

conducted for arterial pulsation near its medial border. Pulsations of the fat-covered RA is usually

identi�able on the surface of the peritoneum [122]. While performing this search, some of the more

prominent accessory arteries (such as aberrant branches from the aorta, superior messnteric or iliac

arteries) may be identi�ed.

In comparison, locating the hilar vessels transperitoneally is relatively easier. If RAPN is being

performed on the left kidney, the dissection is pursued cephalad along the gonadal vein and the ureter,

which run parallel and anterior to the psoas major muscle. By following them cephalad, the renal hilum

can be identi�ed by the deep pulsations of its artery under the renal pole. The gonadal vein typically

drains directly into the left renal vein, further aiding with localization and dissection. On the right, the

IVC is �rst identi�ed and the dissection is then pursued cephalad until either the ureter or the right renal

vein is exposed. The right renal hilum can then be identi�ed from the pulsations.

As neither approach guarantees localization of accessory vessels, surgeons often make use of pre-

operative medical images for identifying troublesome accessory vessels [117]. Contrast enhanced an-

giography images are usually required as part of surgical planning for kidney transplant procedures, but

are very rarely acquired prior to RAPN.

Even with high-resolution scans and segmented preoperative plans available to them, surgeons are

still burdened with the complex and error-prone task of mentally transferring these abstractions onto the

surgical site during the operation. Reducing the dif�culty of navigation has been attempted by various

approaches that rely on multi-modal registration to align the preoperative surgical map of the vessels

onto the surgeon's endoscopic view, e.g., Amir-Khalili et al. [4], Estépar and Vosburgh [38], Hamarneh
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et al. [64], Nosrati et al. [124], Pratt et al. [135], Puerto-Souza et al. [137], Su et al. [177], Teber et al.

[185]. Registering and augmenting preoperative segmentations into intraoperative video is an excellent

idea. However, such techniques have major limitations including selection of sensitive parameters [124],

manual alignments [135, 177], use of invasive �ducials [185], and high computational complexity that

prohibits practical real-time operation [4, 38, 64, 137]. These limitations stem from the dif�culty of

registering intraoperative video data with 3D anatomy that deforms and changes due to factors such as

cutting, retraction, and breathing. Furthermore, these methods do not speci�cally focus on augmenting

the location of vasculature.

Recent methods that focus more speci�cally on the detection of vasculature include the use of hard-

ware solutions such as near infrared �uorescence imaging [187] or algorithmic methods that only use

color intensity information from the endoscope to highlight vasculature based on perfusion models [29].

Solutions that use near infrared �uorescence are not widely accessible as they are cost restrictive, re-

quiring additional equipment and expert clinicians to control the dosage of �uorescent agents. On the

other hand, simple algorithmic methods fail to identify vessels that are hidden under a layer of fat.

Intraoperative ultrasound (US) imaging is another hardware solution employed during the tumor

demarcation and excision stages of RAPN; mainly to resolve uncertainties in the location of tumor

boundary [57]. Recent advancements in the �eld of US imaging, i.e., `pick-up' transducers [153], moti-

vate the use of US during hilar dissection, but such US guidance techniques also incur additional costs

in terms of an increase in required personnel (as some robotic surgeons are not trained to operate and in-

terpret US), operating time, and equipment upkeep. Even with Doppler US imaging, the localization of

complex vascular structures is further ameliorated by the fact that the laparoscopic US probes currently

available in the market can only acquire 2D images and, depending on the availability of picture-in-

picture visualization, the surgeon may have to look at a separate screen to view the US images.

In summary, we have established that hilar dissection is a critical stage during RAPN, often compli-

cated by the presence of accessory renal vasculature. The presence of accessory renal vessels is common

as they are caused by natural variations during fetal development. Current laparoscopic hilar dissection

techniques employed during RAPN interventions do not focus on the localization of these accessory

vessels. Furthermore, existing vascular imaging techniques are rarely used due to prohibitive costs and

additional risks to patients. There remains a need for cost effective alternatives to current methods of

imaging and locating renal vasculature. As a result, the application of vessel localization during the hilar

dissection stage of RAPN is a suitable and challenging application for the evaluation of our proposed

phase-based motion segmentation (PBMS) methodologies.

2.3 Experiments

In this section, we detail thein vivo dataset and the parameters used for the qualitative, quantitative,

and clinical evaluation of our method. Results are illustratedin situ following the description of the

experiments in each subsection. Extended discussions of all experimental �ndings are carried out in the

next section.
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2.3.1 Experimental Setup and Data Acquisition

Video sequences from �fteen clinical RAPN interventions were used for validation. All endoscopic

video data were acquired by a da Vinci Si Surgical System. High-de�nition (1080i) videos were down-

sampled to 480� 270 pixels, to reduce computation times and memory requirements of the overcom-

plete wavelet representation. The publicly available code from Portilla and Simoncelli [132] was used

to generate sixteen complex steerable �lter pairs (four orientations at four scales). The number of scales

was set to four since, at the downsampled resolution, this number restricts the spatial extent of the

wavelets such that most of the large structures in the videos are detected without blurring the motion

of the smaller structures. In Section 2.3.2, we point to cases where the detection can be improved with

a higher number of scales. The number of orientations was chosen such that diagonal motion is de-

tected more accurately without increasing the computational and memory complexity of the algorithm.

Increasing the orientations would improve the detection but it would increase the over completeness of

the pyramid representation at a faster rate than an increase in number of scales. Readers are referred

to Wadhwa et al. [195] for more details regarding over completeness.

The passband of the temporal �lter was set betweent L = 60 to t H = 120 beats per minute. Aver-

age runtime of our unoptimized MATLAB code to process these four second clips (120 frames) was

45 seconds (35 seconds with the pseudo-median �lter). All results shown were obtained using the

spatiotemporal median �lter with a window size of 3� 3� 3.

To provide an objective framework for validation, we compared the segmentations obtained through

our guidance system against the manually obtained ground truth vasculature. To generate the ground

truth, we segmented the kidney, tumor/cyst, AA, IVC, RA, RV, and accessory vessels (Figure 2.3)

from the preoperative CT data using the publicly available ITK-SNAP semi-automatic segmentation

tool [207]. The resulting meshes were then manually aligned onto the �rst frame of each endoscopic

scene (Figure 2.4a) by rigidly transforming the models using a 6-degrees of freedom (DOF) 3D mouse

to adjust all DOF contemporaneously. Anatomical landmarks such as the contour of the kidney, visible

parts of the vessels, tumor, liver, spleen, ribs, and the surgical dissection planes were used to guide the

registration process. Initial alignments were made by a graduate student with extensive knowledge of

renal anatomy, and �nalized by an early career urologist to ensure correctness. The segmentations and

alignments were done prior to performing the vascular motion segmentation. Examples of the registered

ground truths are presented in Figure 2.4b. Small observable discrepancies between the aligned ground

truth segmentation and the endoscopic view are attributed to non-rigid deformations of the organs and

vasculature caused by deformation during insuf�ation, retraction, or the mobilization of organs during

the dissection, which our rigid registration does not take into account. By comparing the observable

discrepancies against the known size of visible structures obtained from the CT images, we estimate an

average of 1–3 mm of alignment error in most cases and a maximum of 4–7 mm in cases where organs

have been considerably retracted by the surgical instruments or mobilization of other organs such as in

Cases 2, 3, 4, 5, 9, and 14.
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