
Understanding the Sources of Error for 3D Human Pose
Estimation from Monocular Images and Videos

by

Mir Rayat Imtiaz Hossain

Bachelor of Science, Islamic University of Technology, 2013

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

December 2017

c©Mir Rayat Imtiaz Hossain, 2017

Abstract

With the success of deep learning in the field of computer vision, most state-of-the-

art approaches of estimating 3D human pose from images or videos rely on training

a network end-to-end which can regress into 3D joint locations or heatmaps from

an RGB image. Although most of these approaches provide good results, the major

sources of error are often difficult to understand. The errors may either come from

incorrect 2D pose estimation or from the incorrect mapping of the features in 2D to

3D. In this work, we aim to understand the sources of error in estimating 3D pose

from images and videos. Therefore, we have built three different systems. The

first takes 2D joint locations of every frame individually as inputs and predicts 3D

joint positions. To our surprise, we found that by using a simple feed-forward fully

connected network, with residual connections, the ground truth 2D joint locations

can be mapped to 3D space at a remarkably low error rate, outperforming the best

reported result by almost 30% on the Human 3.6M dataset, the largest publicly

available dataset of motion capture data. Furthermore, training this network on the

outputs of an off-the-shelf 2D pose detector gives us state-of-the-art results when

compared with a vast array of systems trained end-to-end. To validate the efficacy

of this network, we also trained an end-to-end system that takes an image as input

and regresses 3D pose directly. We found that it is harder to train the network end-

to-end than decoupling the task. To examine whether temporal information over a

sequence improves results, we built a sequence-to-sequence network that takes a

sequence of 2D poses as input and predicts a sequence of 3D poses as output. We

found that the temporal information improves the results from our first system. We

argue that a large portion of error of 3D pose estimation systems results from the

error in 2D pose estimation.

ii

Lay Summary

Estimating human pose in 3D from images and videos has multiple applications

in the field of computer vision, robotics and graphics community such as human

action or activity recognition, sports analysis, animation and augmented reality.

A major challenge for this task is the lack of training data because collecting 3D

motion capture data is expensive and requires sophisticated laboratory setup. This

is also a very challenging task because of the inherent ambiguity of mapping a

scene in 2D to 3D. Recently, the methods for 3D pose estimation tend to leverage

deep networks and has generated some good results. However, the major source of

error for this task is not well understood. In this thesis, we examine the possible

sources of error and designed three different networks for this cause. Two of our

networks have produced state-of-the-art results for 3D pose detection task.

iii

Preface

This thesis is submitted in partial fulfillment of the requirements for a Master of

Science Degree in Computer Science. The entire work presented here is original

work done by the author, Mir Rayat Imtiaz Hossain, performed under the supervi-

sion of Professor James J. Little. A version of this work has been accepted to be

published as:

• J. Martinez, R.Hossain, J.Romero, and J.J.Little. A simple yet effective base-

line for 3d human pose estimation. In IEEE International Conference on

Computer Vision (ICCV), October 2017 [71]

iv

Table of Contents

Abstract . ii

Lay Summary . iii

Preface . iv

Table of Contents . v

List of Tables . viii

List of Figures . xi

Acknowledgments . xv

1 Introduction . 1
1.1 Problem Definition . 6

1.1.1 Scope . 8

1.1.2 Data . 9

1.2 Method Outline . 9

1.3 Thesis Organization . 13

2 Related Work . 15
2.1 Representation of 3D pose . 16

2.2 Approaches to 3D Pose estimation 18

2.2.1 3D Pose estimation by extracting features from single image 19

2.2.2 Using features to look up in a database of exemplar 3D poses 20

v

2.2.3 Deep network trained end-to-end 21

2.2.4 3D Pose Estimation from 2D pose 23

2.2.5 Exploiting temporal information 26

2.2.6 Exploiting multiple views 27

2.2.7 Exploiting depth information 28

2.3 2D pose estimation techniques 29

2.4 Deep Networks . 30

2.4.1 Biological motivation . 31

2.4.2 History of Neural Networks 31

2.4.3 Convolutional Neural Networks 34

2.4.4 Recurrent Neural Networks 37

3 3D pose from 2D pose . 42
3.1 Loss Function . 42

3.2 Network design . 43

3.2.1 Mapping 2D pose to 3D 44

3.2.2 Fully connected layers with ReLU activation 44

3.2.3 Residual or shortcut connections 45

3.2.4 Regularization with batch normalization, dropout and max-

norm constraint . 45

3.3 Data Preprocessing . 47

3.3.1 Camera coordinate frame 47

3.3.2 2D detections . 47

3.3.3 Training details . 48

3.4 Experimental evaluation . 49

3.4.1 Quantitative results . 51

3.4.2 Qualitative results . 54

3.4.3 Discussion of results . 55

4 End-to-end model . 59
4.1 Stacked hourglass module . 60

4.2 Pre-training stacked-hourglass model 61

4.3 Training end-to-end . 62

vi

4.3.1 Loss Function . 62

4.3.2 Data Preprocessing . 63

4.3.3 Training Details . 63

4.4 Experimental evaluation . 63

4.4.1 Quantitative results . 64

4.4.2 Qualitative results . 64

4.4.3 Discussion of results . 65

5 Exploiting temporal information . 68
5.1 Network design . 68

5.1.1 Sequence-to-sequence network with residual connections . 69

5.1.2 Layer Normalization . 70

5.1.3 Recurrent Dropout . 71

5.1.4 Temporal smoothness constraint 71

5.1.5 Loss function . 72

5.2 Data Preprocessing . 73

5.2.1 Training details . 74

5.3 Experimental evaluation . 75

5.3.1 Quantitative results . 75

5.3.2 Qualitative results . 81

5.3.3 Discussion of results . 82

6 Conclusion and future work . 89
6.1 Future directions . 91

6.2 Conclusion . 92

Bibliography . 93

vii

List of Tables

Table 3.1 Results showing errors action-wise on Human3.6M [51] under

Protocol #1 (no rigid alignment or similarity transform applied

in post-processing). SH indicates that we trained and tested our

model with the detections of Stacked Hourglass [80] model pre-

trained on MPII dataset [5] as input, and FT indicates that the

the model was fine-tuned on Human3.6M. GT detections de-

notes that the ground truth 2D locations were used. SA indicates

that a model was trained for each action, and MA indicates that

a single model was trained for all actions. 49

Table 3.2 Results showing errors action-wise on Human3.6M [51] dataset

under protocol #2 (rigid alignment in post-processing). The

14j annotation indicates that the body model considers 14 body

joints while 17j means considers 17 body joints. (SA) anno-

tation indicates per-action model while (MA) indicates single

model used for all actions. FT indicates that the stacked-hourglass

model has been fine-tuned on Human3.6M dataset. The results

of the methods are obtained from the original papers, except for

(*), which were obtained from [16]. 50

Table 3.3 Results on the HumanEva [105] dataset, and comparison with

previous methods. 53

viii

Table 3.4 Performance of our system on Human3.6M [51] dataset under

protocol #2 under different levels of additive Gaussian noise and

noise from 2D pose estimation from the pose estimators. (Top)

Training using ground truth 2D pose and testing on ground truth

2d plus plus different levels of additive Gaussian noise. (Bot-

tom) Training on ground truth 2D pose and testing on the noisy

outputs of a 2D pose estimator. Note that the size of the cropped

region around the person is 440×440. 54

Table 3.5 Ablative and hyperparameter sensitivity analysis. 55

Table 4.1 Results showing Mean Per Joint Error over all actions on Hu-

man3.6M [51] dataset under protocol #1 (left column) and #2

(right column) respectively. SH indicates 2D pose detections

obtained from stacked-hourglass module [80] trained on MPII [5]

dataset and FT indicates that the model was fine-tuned on Hu-

man3.6M dataset [51].The results of the methods are obtained

from the original papers, except for (*), which were obtained

from [16]. 65

Table 5.1 Results showing errors action-wise on Human3.6M [51] un-

der Protocol #1 (no rigid alignment or similarity transform ap-

plied in post-processing). Note that our results reported here

are for sequence of length 5. SH indicates that we trained and

tested our model with the detections of Stacked Hourglass [80]

model pre-trained on MPII dataset [5] as input, and FT indi-

cates that the the stacked-hourglass model was fine-tuned on

Human3.6M. SA indicates that a model was trained for each

action, and MA indicates that a single model was trained for

all actions.The bold-faced numbers mean the best result while

underlined numbers represent the second best. 76

ix

Table 5.2 Results showing errors action-wise on Human3.6M [51] dataset

under protocol #2 (rigid alignment in post-processing). Note

that the results reported here are for sequence of length 5. The

14j annotation indicates that the body model considers 14 body

joints while 17j means considers 17 body joints. (SA) anno-

tation indicates per-action model while (MA) indicates single

model used for all actions. FT indicates that the stacked-hourglass

model has been fine-tuned on Human3.6M dataset. The bold-

faced numbers mean the best result while underlined numbers

represent the second best. The results of the methods are ob-

tained from the original papers, except for (*), which were ob-

tained from [16]. 77

Table 5.3 Performance of our system trained with ground truth 2D pose

of Human3.6M [51] dataset and tested under different levels of

additive Gaussian noise (Top) and on 2D pose predictions from

stacked-hourglass [80] pose detector (Bottom) under protocol

#2. The size of the cropped region around the person is 440×
440. 80

Table 5.4 Ablative and hyperparameter sensitivity analysis. 81

x

List of Figures

Figure 1.1 A two step approach to 3D human pose estimation. a) A frame

from the input video. b) The input frame with the 2D pose

estimate superimposed. c) 3D pose estimate corresponding to

the input frame. Although it is hard to obtain training data

that maps the input frame to 3D pose, we can decompose the

challenge into two tasks. 4

Figure 1.2 Example of 3D pose estimation. The 2D pose is overlaid on

the image of the person. The corresponding 3D pose is shown

in the bottom. 6

Figure 1.3 (a) 2D position of joints, (b) Different 3D pose interpretations

of the same 2D pose. Blue points represent the ground truth

3D pose while the black points indicate other possible 3D in-

terpretations. All these 3D poses project to exactly same 2D

pose. 7

Figure 1.4 An example of data in Human 3.6m dataset from left to right:

RGB image, person silhouette, time-of-flight (depth) data, 3D

pose data (shown using a synthetic graphics model), body sur-

face scan. Source: [51]. 10

Figure 1.5 Sample images from Human 3.6m dataset, showing different

subjects, poses and viewing angle. Source: [51]. 10

xi

Figure 1.6 Block diagram of our first system. The building block of our

network, which we call Residual Block, is composed of a lin-

ear layer, followed by batch normalization,ReLU activation

and dropout layer repeated twice, wrapped in a residual con-

nection. The Residual Block can be repeated any number of

times. Our best network uses two such residual block. The

input to our system is an array of 2d joint positions, and the

output is a series of joint positions in 3d. 11

Figure 1.7 Our second model simply stacks our first model over stracked-

hourglass [80] 2D pose estimator. The stacked-hourglass net-

work is first pre-trained for 2D pose estimation using images

from Human3.6M dataset [51]. The heatmap of the final hour-

glass is passed as an input to our residual block and the entire

network is trained end-to-end. 12

Figure 1.8 Our final network. It is a sequence-to-sequence network [113]

with residual connections on the decoder side. The encoder

encodes the information of a sequence of 2D poses of length t

in its final hidden state. The final hidden state of the encoder is

used to initialize the hidden state of decoder. 〈START 〉 sym-

bol tells the decoder to start predicting 3D pose from the last

hidden state of the encoder. Note that the input sequence is

reversed as suggested by Sutskever et al. [113]. The decoder

essentially learns to predict the 3D pose at time (t) given the

3D pose at time (t−1). The residual connections help the de-

coder to learn the perturbation from the previous time step. . . 14

Figure 2.1 (Left) A sample skeleton model with 17 joints each of them

labeled. (Right) A Kinematic tree showing the kinematic re-

lationship between the joints. The arrow downward indicates

parent-child relationship between two joints. 17

xii

Figure 2.2 A Fully Connected Neural Network consisting of an Input Layer,

one hidden layer and an output layer. The connections be-

tween each neuron is shown with an arrow. Each connection

has a particular weight which is learned over time from train-

ing data using backpropagation. Each neuron also has an ac-

tivation function which defines a threshold for the neuron to

fire. 32

Figure 2.3 A convolutional layer having a depth column of 5, i.e. 5 neu-

rons are connected to same spatial region and a filter size or

receptive field size of 5×5. 35

Figure 2.4 A 2×2 max-pooling layer with a stride of 2 36

Figure 2.5 A RNN unrolled into a full network 38

Figure 2.6 (Left) Diagram of a simple RNN unit. Right) Diagram show-

ing a LSTM Block. 40

Figure 3.1 Example of output on the test set of Human3.6M dataset. (Left)

2D pose, (Middle) 3D ground truth pose in red and blue, (Right)

our 3D pose estimations in green and purple. 56

Figure 3.2 Qualitative results on the MPII [5] test set. Observed image,

followed by 2D pose detection using Stacked Hourglass [80]

and (in green) our 3D pose estimation. The bottom 3 examples

show typical failure cases, where either the 2D detector has

failed totally (left), or marginally (right). In the middle column

of last row, the 2D detector does a good job in estimating the

2D pose, but the person is faced upside-down. Human3.6M

dataset does not provide any corresponding poses which are

oriented upside-down. However, our network still seems to

predict a meaningful pose although the orientation is reversed

vertically . 57

Figure 4.1 Example of output on the test images of Human3.6M dataset.

(Left) Image, (Middle) 3D ground truth pose in red and blue,

(Right) our 3D pose estimations in green and purple. 67

xiii

Figure 5.1 Mean Per Joint Error(MPJE) in mm of our network for differ-

ent sequence length. SH Pre-trained indicates that 2D poses

are estimated using the stacked-hourglass model pre-trained

on MPII [5] while SH FT indicates that the detections were

obtained on the stacked-hourglass model fine-tuned by us on

Human3.6M dataset. 79

Figure 5.2 Qualitative result of Subject 11, action sitting down for Hu-

man3.6M dataset [51] (Left) Image with 2D pose, (Middle) 3D

ground truth pose in red and blue, (Right) 3D pose estimations

in green and purple. 83

Figure 5.3 Qualitative result of Subject 9, action phoning for Human3.6M

dataset [51] (Left) Image with 2D pose, (Middle) 3D ground

truth pose in red and blue, (Right) 3D pose estimations in green

and purple. 84

Figure 5.4 Qualitative result of Subject 11, action taking photo for Hu-

man3.6M dataset [51] (Left) Images with 2D pose detections,

(Middle) 3D ground truth pose in red and blue, (Right) 3D

pose estimations in green and purple. 85

Figure 5.5 Quantitative results on youtube videos. (Left) Images with 2D

pose detections, (Right) our 3D pose estimation. 86

Figure 5.6 Quantitative results on youtube videos. (Left) Images with 2D

pose detections, (Right) our 3D pose estimation. 87

Figure 5.7 Quantitative results on youtube videos. (Left) Images with 2D

pose detections, (Right) our 3D pose estimation. 88

xiv

Acknowledgments

I would like to extend my heartfelt gratitude to a number of people and organization

for providing me continuous academic, financial and mental support during my

Master’s.

First I would like to thank my supervisor Prof. James J. Little. Not only is he a

great academician and mentor, he is one of the nicest and most generous people that

I have come across in my life. He has always encouraged me to explore new ideas

and problems and appreciated my efforts throughout my program. He provided me

vital feedback, advices and insights whenever I got stuck with any problem. He

kept on giving me moral support and motivation to work hard and get the best out

of my thesis. Thank you Prof. Jim Little, I will always be grateful for all that I

have learned from you. I would also like to thank Prof. Leonid Sigal for taking his

time out and agreeing to be the second reader of my thesis.

Next I would like to thank Julieta Martinez, my lab-mate, who has always

helped me with great ideas. I had the privilege of collaborating with her for the

first part of my thesis and have learned a lot from her. I would also like to thank

Javier Romero, at MPI institute for agreeing to collaborate with us for the first part

of my thesis. I would like extend my gratitude to former lab mate Ankur Gupta,

for initially motivating me with the problem of 3D pose and my other lab mates

Jimmy, Moumita and Lili for being such great colleagues and for being so nice,

kind and helpful.

I would also like to thank the Department of Computer Science of University

of British Columbia (UBC) for giving me the honor and opportunity to be a part of

their prestigious alumni and for financially supporting me as a teaching assistant. I

thoroughly enjoyed my experience here. I have had the privilege to learn and gain

xv

knowledge from some amazing instructors during my coursework. I would like to

extend my gratitude to all my course instructors. This work was supported by the

Natural Sciences and Engineering Research Council of Canada (NSERC). A big

thanks to them as well.

Last but not the least I would forever be grateful and indebted to my parents,

younger sister and my lovely wife-to-be, Farozaan, for their unconditional love and

support. They have always given me the confidence, motivation and hope in times

of despair. Specially, I would like to thank my mom for her countless sacrifices

and for all her prayers.

xvi

Chapter 1

Introduction

Most existing representations of humans are two dimensional, e.g. video, images

or paintings. However, all the objects that we see in front of us are three dimen-

sional. What we essentially see with our eyes are images of these objects projected

onto our retina. The phenomenon of projecting 3D space onto a 2D plane is known

as perspective projection. It is from the sense of perspective that humans estimate

the depth of things in front of them, thereby knowing which objects are closer to

them than others. This makes humans very adept in understanding complex spa-

tial arrangements of objects in a scene even in the presence of depth ambiguities.

Therefore, such two dimensional representations have played a crucial role in con-

veying facts, ideas and feelings to other people. In many computer vision and

robotics applications, such as virtual and augmented reality, autonomous driving,

ability to perform spatial reasoning of objects in a scene is crucial. Poor under-

standing of spatial arrangement and depth can seriously limit the performance of

computer vision algorithms. In this thesis, we concentrate on a particular instance

of depth and spatial understanding: Estimating 3D human pose from images and

videos.

Estimating human pose in 3D from 2D representations is a challenging and

active research area among computer vision and graphics community. An under-

standing of human posture and limb articulation is important for higher level com-

puter vision tasks such as human action or activity recognition, sports analysis,

augmented and virtual reality. A 2D representation of human pose can be used

1

for these tasks. However, 2D poses are inherently ambiguous because an arbitrary

camera viewpoint can make totally different poses look similar (see Figure 1.3).

Moreover, 2D human poses can often be confusing because of occlusion of one

body part by another. 3D representation of human pose is free from such ambi-

guities and hence can improve performance for higher level tasks. Moreover, the

3D pose can be very useful in computer animation, where the articulated pose of

a person in 3D can be used to accurately model human posture and movement.

But, one of the biggest challenges is the lack of abundant data for the task of 3D

pose, particularly for images in the wild. Collecting data for 3D pose estimation is

expensive and requires complex laboratory setup.

Over the years, a number of different techniques has been used to address the

problem of 3D pose estimation from images and videos. In order to go from an

image to a 3D pose, an algorithm has to be invariant to a number of factors, in-

cluding background scenes, lighting, clothing shape and texture, skin color and

image imperfections, among others. Before the advent of deep networks, most of

the approaches tend to use hand-engineered features, such as silhouettes [1], shape

context [77], SIFT [68] descriptors [15] or edge direction histograms [103] to learn

a model that can estimate 3D poses from images. Most of these features have the

desired invariance properties. Another stream of work predicts 3D poses by query-

ing into a database of exemplars [22, 41, 53, 78, 128]. Some work tries to predict

3D poses given the 2D poses from an image by minimizing the camera parameters

of weak perspective projection equation. The 3D human pose is represented as a

sparse combination of a set of basis poses which is learned separately [2, 92, 134].

Another group of work tries to exploit temporal consistency over multiple frames

[4, 65, 81, 117, 134].

With the recent success of Deep Learning in the area of Computer Vision, many

systems have tried to exploit the powerful discriminative ability of deep networks,

to directly estimate 3D poses from RGB images by training the architecture end-

to-end [63, 65, 73, 74, 81, 85, 87, 112, 116, 118, 133]. Some other systems have

argued that 3D reasoning from monocular images can be achieved by training on

synthetic data [96, 120]. Most computer vision systems based on deep networks

currently outperform the traditional approaches on tasks like object classification

and localization [44, 57, 93, 114], 2D pose estimation [19, 45, 80, 123]. However,

2

deep learning methods require a huge amount of data to perform well. However,

unlike object classification or 2D pose estimation tasks which have abundant data,

there is a lack of ground truth 3D human pose data for images in the wild. This

makes the task of inferring 3D poses directly from images very challenging. Al-

though some end-to-end systems for 3D pose estimation have remarkably good

results compared to the older techniques, the primary sources of error in such sys-

tems are not well studied and understood. It is not clear whether the error occurs

comes from erroneous 2D human pose detection from images due to occlusion

from self and other objects, motion blur or other imaging artifacts, or from the

incorrect mapping of the features from 2D representation to 3D pose. Therefore,

in this work, we analyze the possible sources of error in 3D pose estimation by

decoupling the 3D pose estimation task into the well studied problems of 2D pose

estimation [80, 123], and 3D pose estimation from 2D joint detections, focusing

on the latter. Through decoupling we can exploit any of the existing 2D pose es-

timation systems which already provide invariance to the factors like background

scenes, lighting, clothing shape and texture, skin color. We can also train a deep

network based model for 2D-to-3D pose mapping with large databases of 3D mo-

tion capture (mo-cap)’ data captured in controlled environments in research labs.

The idea of decoupling the task of 3D pose is illustrated in Figure 1.1.

To validate the efficacy of decoupling the task of 3D pose estimation and

thereby analyzing the sources of error, we have designed three different network

systems. The first of these systems is based on a simple fully connected feed for-

ward network with residual connections in between (Figure 1.6). The input to the

system is normalized 2d joint positions of single frame. The task of this network

is to backproject joint locations in 2D to 3D in the camera coordinate frame. To

our surprise such a simple network architecture backprojects the ground truth 2D

positions to 3D with an error rate that improves the results from the state-of-the-art

by almost 30% on the dataset Human 3.6M, which is the largest publicly avail-

able dataset of motion capture (mo-cap) data in controlled lab environment. When

trained on the noisy output of a recent 2D pose detector [80], our system also out-

performs the state-of-the-art for 3D pose estimation, a large number of which is

trained end-to-end to predict 3D pose directly from the raw pixels of an image.

Our second system is an end-to-end network that takes RGB image as input and

3

2d pose
estimation

Lifting 2d
to 3d

(a) (b) (c)

Harder to acquire training examples

Figure 1.1: A two step approach to 3D human pose estimation. a) A frame
from the input video. b) The input frame with the 2D pose estimate
superimposed. c) 3D pose estimate corresponding to the input frame.
Although it is hard to obtain training data that maps the input frame to
3D pose, we can decompose the challenge into two tasks.

regresses 3D pose. The system adds our fully connected network on top of 2D

pose detection network by Newell et al.[80] which they named stacked-hourglass.

The 2D pose detection network by Newell et al. outputs a series of probability

heatmaps for each joint, indicating probability of the presence of the joint on a par-

ticular location on the 2D image. The stacked hourglass network is first pre-trained

for 2D pose estimation task. The 2D heatmaps from the stacked-hourglass network

are then fed into the fully connected network and trained end to end. However, the

performance of the system is worse than the decoupled system. Therefore it is more

difficult to train such a system end-to-end. Our final system attempts to exploit the

temporal information over a sequence of images. We wanted to examine whether

adding temporal information during training helps to improve the result obtained

from our first network. This system is also based on the idea of decoupling. It is a

sequence-to-sequence network [113], which reads through a sequence of 2D poses

4

and then predicts a sequence of 3D poses. The sequence-to-sequence network we

developed also has residual connections on the decoder side. Since we are dealing

with a sequence of frames together in the sequence-to-sequence network, it is also

easy to impose temporal smoothness constraint during training. We have found

that incorporating temporal information allows an improvement in error by about

17.5% from our initial system.

There are several contributions of this work. The first of them is to design and

analyze a simple network that performs better than the state-of-the-art, is fast (a

forward pass takes around 3ms on a batch of size 64, allowing us to process as

many as 300 fps in batch mode) and robust to noise. The primary reason of the

improvement in performance is a collection of simple ideas such as estimating the

joint locations in 3D in the camera coordinate frame, using residual connections,

batch normalization. Secondly we have shown empirically that lifting 2D poses

to 3D, although still far from being solved, is a much easier task than previously

thought, particularly when compared against systems which predicts 3D pose from

image directly. This is evidenced by the fact that our simplest network significantly

outperforms the previous systems on 3D pose estimation when we use noise-free

ground truth 2D poses in Human 3.6M dataset or when we fine tune the 2D pose

detector on Human 3.6M. Finally, we also showed that by using the temporal in-

formation and adding temporal smoothness constraint during the training phase,

the results can be improved even further through designing a simple sequence-to-

sequence network, with residual connections.

From the findings mentioned above, it can be suggested that the major issue

inhibiting the performances of recent 3D pose estimation systems, particularly the

ones which are trained end-to-end from raw images, is lack of proper visual pars-

ing of aritculated human bodies in 2D RGB images. Therefore, as a future research

direction, we suggest putting more focus on obtaining better accuracy on estimat-

ing 2D articulated pose of human from images. In what follows next, we define the

problem, discuss the challenges of the task, limitations of our systems, description

of our data, followed by a brief outline of our networks.

5

Figure 1.2: Example of 3D pose estimation. The 2D pose is overlaid on the
image of the person. The corresponding 3D pose is shown in the bottom.

1.1 Problem Definition
The problem we are trying to address in this work is estimating 3D human pose

from monocular images or sequences of images. More formally, given an image or

a sequence of images, a 2-dimensional representation of a human being, 3d pose

estimation is the task of producing a 3-dimensional stick figure that matches the

spatial position of certain keypoints of joints of the depicted person (see figure 1.2).

In this work, we are particularly concentrating on lifting 2D poses detected from

off the shelve 2D pose detector into 3D pose. Here are some desired properties of

the solution:

• anthropomorphic correctness of the recovered pose

• recovered 3D keypoints must be accurate in 3D Cartesian geometry

• able to deal with arbitrary viewpoints of the camera

• accurately recover the pose in correct viewpoint without any similarity trans-

form

• robustness to noisy poses from off the shelve 2D pose detector

The task of predicting 3D human pose estimation is inherently difficult because

for any 3D object can be projected onto a 2D plane in an infinite number of ways

6

(a) (b)

Figure 1.3: (a) 2D position of joints, (b) Different 3D pose interpretations of
the same 2D pose. Blue points represent the ground truth 3D pose while
the black points indicate other possible 3D interpretations. All these 3D
poses project to exactly same 2D pose.

based on the position of the camera and its intrinsic parameters. Therefore, back-

projecting 2D points of any object to their 3D representation is a difficult task

since the problem is ill-defined and the mapping is not one to one (see Figure 1.3).

Obtaining 3D pose dataset is also difficult because unlike the 2D pose datasets,

where the users can manually label the keypoints or key joints by using mouse

clicks, 3D pose datasets require a complex laboratory setup with motion capture

sensors and cameras. Not only this makes the data collection expensive, it is also

difficult to replicate similar setup for outdoors or images in the wild. Hence, there

is a lack of 3D pose datasets for images in the wild. Additionally, the task of visual

understanding of human bodies itself is difficult because of visual ambiguities like

foreshortening or occlusion of certain body parts of a person by other body parts

or by objects. Even for humans, the task of reliably estimating the 3D pose is

very challenging. Marinoiu et al. [70] carried out an experiment to investigate

how people perceive the 3D pose in the image space and how they correspond this

perception to the 3D space. They eventually found that humans do not significantly

outperform existing computer vision approaches at reconstructing the pose in the

3D space given the image under laboratory setup. All these factors combined make

the problem of 3D pose estimation from images very challenging.

7

1.1.1 Scope

We have limited the scope of our problem by making some assumptions. One

of these limitations is that our system works for single person only. If there are

multiple people, it can deal with 2D poses of at most single person. Another key

assumption is that the image must contain the full body of the person. Currently,

our system can not deal with images that have a person with only half his body

visible. Another limitation of our approach is that the 3D pose detected is not

invariant to scale. Therefore the skeleton size may vary based on the size of the

person in the image. Below we discuss some other assumptions that we made.

3D pose relative to the root

Our system predicts the 3D location of each of the keypoints with respect to the root

node which in case of Human 3.6M dataset is the hip. By doing so, we are more

concerned about how far apart the joints are distributed around the hip. Thereby,

our focus is to retrieve the human pose as anthropomorphically correct as possible,

ensuring that the joints do not extend beyond their usual limit. Hence, our focus is

to predict the correct structure of the human pose in 3D. By predicting the 3D pose

relative to the root node, we are not able to locate the absolute global position of

the person in 3D.

3D pose in camera coordinate frame

Instead of predicting the 3D poses in global coordinate space, we are predicting

3D pose in camera coordinate frame. It is very difficult for an algorithm to infer

3D joint positions in a particular global coordinate space because any rigid body

transformation of such space will not result in any change of input data. Therefore,

the mapping of 2D joint locations, which depends on camera viewpoint, to 3D is no

longer unique in such cases. Hence, to make the prediction more consistent across

different camera viewpoints, we predict the 3D joint locations in terms of camera

coordinate frame. It also makes the learning process and prevent overfitting to a

particular global frame.

8

1.1.2 Data

For quantitative analysis of our systems we used the Human 3.6M dataset [20, 51]

and HumanEva dataset [105]. However, we used the HumanEva dataset for first

system only because dataset is quite old and smaller compared to Human3.6M.

Moreover, the same subjects show up on the train and test set. But HumanEva

has largely been used by the community to benchmark pervious work over the last

decade. For qualitative results we used MPII dataset [5] which is a standard dataset

for 2D pose estimation and does not have ground truth 3D pose.

Human3.6M [20, 51] is, to the best of our knowledge, currently the largest pub-

licly available datasets for human 3d pose estimation. The dataset consists of 3.6

million images, featuring 7 professional actors performing 15 everyday activities

such as walking, eating, sitting, making a phone call. The dataset consists of 2D

and 3D joint locations for each corresponding image. Each action is captured using

4 different high resolution cameras, each of which is calibrated. It also has 10 dif-

ferent motion capture cameras and 1 time of flight sensor to accurately capture the

motion of the actors in 3D. In addition to 2D and 3D pose ground truth, the dataset

also provides ground truth for bounding boxes, the camera parameters, the body

proportion of all the actors and high resolution body scans or meshes of each actor.

Figure 1.4 shows an example of data in human 3.6m dataset. While Figure 1.5

shows sample images from Human 3.6M dataset indicating the variation of images

in terms of subject, action and viewpoint.

On the other hand, MPII is a state of the art benchmark dataset for the evalu-

ation of 2d human pose estimation. The dataset consists of 25K images collected

from YouTube videos. It contains over 40K people with annotated body joint loca-

tions.

1.2 Method Outline
In this work, we aim to analyze the sources of error in the task of 3D pose estima-

tion. We would like to determine if the major source of error is due to poor visual

understanding of human pose or because of improper mapping from a 2 dimen-

sional representation to 3D. We are doing so by developing three different systems,

two of which decouple the task of 3D pose estimation, thereby predict 3D pose

9

Figure 1.4: An example of data in Human 3.6m dataset from left to right:
RGB image, person silhouette, time-of-flight (depth) data, 3D pose data
(shown using a synthetic graphics model), body surface scan. Source:
[51].

Figure 1.5: Sample images from Human 3.6m dataset, showing different sub-
jects, poses and viewing angle. Source: [51].

from 2D joint locations, while other one is trained end to end. Below we give a

brief outline of each of the three systems.

3D Pose from 2D joint locations of single image

Our first system takes 2D joint locations as input from single image. The input

to the system is simply the xy-pixel location of a set of joints or keypoints and

the output is 3D location of the joints in mm space with respect to a root joint

10

Li
ne

ar

10
24

L
in

e
a

r
1

0
2

4

B
at

ch
 N

or
m

R
eL

U

D
ro

po
ut

 0
.5

+

Linear
1024

Batch Norm

ReLU

Dropout 0.5

Linear
1024

Batch Norm

ReLU

Dropout 0.5

x2Residual Block

Figure 1.6: Block diagram of our first system. The building block of our
network, which we call Residual Block, is composed of a linear layer,
followed by batch normalization,ReLU activation and dropout layer re-
peated twice, wrapped in a residual connection. The Residual Block
can be repeated any number of times. Our best network uses two such
residual block. The input to our system is an array of 2d joint positions,
and the output is a series of joint positions in 3d.

in camera coordinate frame. Since we are dealing with low dimensional or very

abstracted form of data, our choice of network is multilayered fully connected

network with residual or shortcut connections [44], dropout [110] and batch norm

layer [50]. Rectified Linear Units (ReLU) [79] is used as the activation function

for the network. A block diagram of our first system is shown in Figure 1.6. The

2D poses given as input may come from the ground truth or may be an output of

any off the shelf 2D pose detector.

3D Pose from single image directly

Our second network aims to prove the effectiveness of decoupling. This time we

train our network end-to-end to predict 3D pose from single RGB image directly.

Our network is built upon the 2D pose detection network called stacked hourglass

by Newell et al. [80]. The stacked hourglass network is a collection of hourglass

networks each of which is fully convolutional network. We overlaid the Residual

11

Residual Block

L
in

e
a
r

1
0
2
4

R
e
L
U

D
ro

p
o
u
t
0
.5

Vectorized
Heatmap

Figure 1.7: Our second model simply stacks our first model over stracked-
hourglass [80] 2D pose estimator. The stacked-hourglass network is
first pre-trained for 2D pose estimation using images from Human3.6M
dataset [51]. The heatmap of the final hourglass is passed as an input to
our residual block and the entire network is trained end-to-end.

Block of our first network over the network by Newell et al. [80]. The hourglass

part of the network is first trained for 2D pose estimation task using the images

from Human3.6M dataset [20, 51]. We performed intermediate 2D pose super-

vision while training the network for 2D pose at the end of each hourglass. The

output of each hourglass is heatmap of each joint. The heatmap from the last hour-

glass is then fed as input to our residual block to output 3D pose. We use the

weights from the pre-trained network to initialize the hourglass part and fine tune

the entire network end-to-end to predict 3D pose. During the fine tuning step, the

network is supervised both by the 3D pose and by 2D joint heatmaps. We use the

intuition of transfer learning [83] here. We try to use the knowledge learned by the

2D pose detector and use it for the task of 3D pose estimation. However, empir-

ically we found that it is difficult to train such a system end-to-end. Figure 1.7

shows our second system.

3D Pose from 2D joint locations of a sequence of images

Our third network tries to figure out whether adding temporal information from a

sequence of 2D poses gives better results from the first network. For this purpose,

we designed a sequence-to-sequence network [113], where Long-Short-Term-Memory

12

(LSTM) blocks [48] is used as the building block. We have also added layer nor-

malization [6] and recurrent dropout [101] to our LSTMs. Sequence-to-sequence

network is extensively used in tasks like Neural Machine Translation i.e. trans-

lating a sentence from one language to another, hence is useful for tasks where

input is a sequence of data of one type and output is a sequence of data of different

type. Each sequence-to-sequence network has an encoder and a decoder part. In

our case, encoder part reads a sequence of 2D poses and encodes it into a fixed size

vector while the decoder reads the encoded vector and predicts a sequence of 3D

pose. Our network has residual connections on the decoder side. The encoder side

of the network effectively encodes the sequence of 2D pose information in a fixed

sized high dimensional vector while the decoder side of the network essentially

learns the perturbation of pose from the previous frame. The residual connections

on the decoder side makes it easy for the decoder to predict 3D poses better since

it only has to predict the change of 3D pose from the previous frame. We also im-

posed temporal constraints during training to ensure smoother output. Figure 1.8

shows our final network in detail.

1.3 Thesis Organization
We have organized this thesis as follows: First, in Chapter 2. we review the related

works and the literature. In this chapter, we discuss about different approaches and

techniques tried over the years for solving the problem of 3D pose estimation and

summarize them. We also review about some of the 2D pose estimation systems

and provide a general idea on different types of deep networks that we have used

in our systems particularly Recurrent Neural Networks (RNNs) and Convolutional

Neural Network (CNNs). In Chapter 3, we describe our first network, which takes

2D joint locations as input and gives 3D pose as output. The network is a fully

connected network with residual connections. We would discuss our network ar-

chitecture in details and also how we trained the system. We would also discuss

the experiments carried out with this network to prove its effectiveness along with

the results. In Chapter 4, we would discuss our second network, which was trained

end-to-end from RGB images together with the results obtained with this network.

Then we move on to describe our final network, which is our most important con-

13

.....

x(t)

x(t-1) x(t-2)

y(0)

<START>

+

+ + + +

y(1) y(2) y(t)

LSTM Units with Layer
Normalization and
Recurrent Dropout

x(t) x(0)

y(t)

<START>

Flow of hidden state
information

Flow of data
(input/output)

Element Wise Addition

Noisy 2D joint
locations from a
detector

Indicator for decoder to
start predicting 3D
pose

Predicted 3D pose at
time t

Encoder Units

Decoder Units

y(0) y(1) y(t-1)

Figure 1.8: Our final network. It is a sequence-to-sequence network [113]
with residual connections on the decoder side. The encoder encodes
the information of a sequence of 2D poses of length t in its final hidden
state. The final hidden state of the encoder is used to initialize the hidden
state of decoder. 〈START 〉 symbol tells the decoder to start predicting
3D pose from the last hidden state of the encoder. Note that the input
sequence is reversed as suggested by Sutskever et al. [113]. The decoder
essentially learns to predict the 3D pose at time (t) given the 3D pose
at time (t− 1). The residual connections help the decoder to learn the
perturbation from the previous time step.

tribution, in Chapter 5. It is a sequence-to-sequence network with residual connec-

tions at the decoder that takes a sequence of 2D poses and predicts a sequence of

3D poses. We also include the results that we obtained from different experiments

with this network, which shows the effectiveness of using temporal information

and decoupling the task of 3D pose estimation. Finally in Chapter 6, we highlight

our main contributions and discuss possible future directions.

14

Chapter 2

Related Work

The problem which we are addressing is 3D human pose estimation from RGB im-

ages or sequence of images that are in 2D. Over the years, the problem of perceiv-

ing depth from a two dimensional representation has been a subject of avid interest

to scientists, mathematicians and artists since the Renaissance, when Brunelleschi

used the mathematical concepts of linear perspective to elicit a sense of depth in

his paintings of Florentine buildings.

Centuries later, a similar knowledge of perspective has been exploited in the

area of computer vision to infer quantities such as lengths, areas and distance ra-

tios given any arbitrary scenes [135]. Others have tried to use visual cues like

shading [131] or texture [66] to estimate depth from an image. Recently, there has

been a trend of using deep learning [30, 67, 88, 99] for estimating the depth from

an image.

However, one of the initial methods for depth estimation by Roberts [94] ad-

dressed the problem in a different manner. Instead of using the knowledge of per-

spective or any of the image features, he exploited the known 3D structures of

objects in a scene. Decades later, Bülthoff et al. [17] found that top-down knowl-

edge of the familiar 3D structure is also used by humans when they perceive a

human body abstracted into a set of sparse points projected onto a 2D plane. They

found that the expectation about a known 3D structure of an object overrides the

true stereoscopic information. This idea of being able to reason or understand 3D

human posture from a minimal representation like the projection of sparse set of

15

points on the human body onto a 2D plane has inspired the problem of estimating

3D pose from 2D joint locations.

We have divided the related work into four different sections. In the first section

we discuss about different representations of 3D pose. In the second section we

take a look into different methods for 3D pose estimation. Then in the third section

we briefly discuss about some of the 2D pose estimation techniques. Finally, we

review different types of deep network architectures.

2.1 Representation of 3D pose
There are both model-based and model-free representation of 3D pose. Human

body is a very complex system with highly flexible and articulated body parts.

Marinoiu et al. [69] carried out experiments to investigate how people perceive hu-

man pose in the 3D space of photos and how their perception actually corresponds

to the 3D space. They found that even for humans it is difficult to reliably estimate

the location of joints in real 3D space given an image or a video. Hence, it is dif-

ficult to model the human body. Despite this, researchers have attempted to model

the articulated 3D pose that provides some prior of human body structure for an

algorithm to estimate 3D pose.

The most common model to represent 3D human pose is a skeleton or a stick

figure. The skeleton is defined by a kinematic tree of a set of joints. The kinematic

tree consists of initial location of the root joint, offsets of each joint from their

parent and rotational parameters for each joint that represents relative rotation of

the joint with its parent [8, 16, 20, 51, 84, 133]. One major advantage of this model

is that the resulting poses are forced to have human-like structure. Moreover, it is

much easier to impose anthropometric and kinematic constraints like joint angle

limits, bone lengths and limb length proportions [125]. Although most joints have

3 degrees of freedom, certain joints have 1 degree of freedom, such as the knee

joint, due to their constrained mobility. Hence it is possible to reduce the overall

dimensionality of the rotational parameters that need to be estimated. Figure 2.1

shows an example skeleton with 17 joints labeled and the corresponding kinematic

tree for the skeleton.

Another approach of modeling the 3D human pose involves learning an over-

16

Head

Nose
Neck

Left Shoulder

Left Elbow

Left Wrist

Hip (Root Node)

Spine

Left Hip

Left Knee

Left Ankle

Right Hip

Right Knee

Right Ankle

Right Shoulder

Right Elbow

Right Wrist

Hip (Root)

Spine Left Hip Right Hip

Left Knee Right Knee

Left Ankle Right Ankle

Neck

Nose Left
Shoulder

Right
Shoulder

Head
Left Elbow Right Elbow

Left Wrist Right Wrist

Figure 2.1: (Left) A sample skeleton model with 17 joints each of them la-
beled. (Right) A Kinematic tree showing the kinematic relationship be-
tween the joints. The arrow downward indicates parent-child relation-
ship between two joints.

complete dictionary of basis poses by using dimensionality reduction techniques

such as PCA or non-negative matrix factorization. This approach of modeling 3D

pose was introduced by Ramakrishna et al. [92]. The 3D pose is then computed as a

sparse linear combination of this over-complete dictionary [2, 132, 134]. However,

a major issue about this model is that they can potentially lead to an invalid 3D

pose, because of the lack of any anthropometric constraints. Also, there are a

number of ways the basis poses can be combined to obtain a particular 3D pose.

However, most of the recent work based on deep-learning techniques [51, 63,

73, 74, 87, 116, 117] typically uses model-free representation of 3D human pose.

The 3D human pose is represented as 3D locations of each joint relative to the root

node or to its parent. Although most of the methods [63, 73, 74, 87, 116, 117] us-

ing a model-free representation regress the 3D joint location directly, Pavlakos et

al. [87] predicts volumetric heatmap for each joint, which gives the likelihood

17

of the presence of a joint in a particular 3D spatial location. On the other hand,

Mehta et al. [74] predicts x,y,z location maps for each joint which gives the proba-

bility of joint being at a particular x,y, or z coordinate individually. The advantage

of model free representation is its simplicity and lower dimensionality compared

to model based approaches, which tend to make it work better for deep network

setting. However, because of the lack of a priori knowledge of human body struc-

ture, this can lead to an invalid 3D pose, may even fail to predict human structure

at all.

2.2 Approaches to 3D Pose estimation
There are several streams of work for estimating 3D human pose given an image.

The first of these involves extracting features from the image and learning a func-

tion to map the features into 3D pose [1, 14, 15, 56, 77, 82, 107, 117]. Another

stream of work involves using deep networks to predict 3D pose from an image

directly by training the network end-to-end. [63, 65, 73, 81, 85, 87, 96, 112, 116,

118–120, 133]. Some work uses the 2D human pose from image and learns to

back-project these 2D joint locations into 3D [2, 16, 62, 76, 90, 92, 122, 132, 134].

The 2D joint locations may either be ground truth or detected from an image us-

ing any 2D human pose detector. Some approaches have tried to formulate the

task of 3D pose estimation as a retrieval or similarity search problem. These tech-

niques use different image features or 2D pose to lookup into a large database

of exemplar 3D pose descriptor [22, 41, 53, 78, 103, 128]. Others have tried to

predict 3D pose from a sequence of images trying to exploit the temporal infor-

mation from the sequence [4, 29, 74, 117, 134]. Additionally, some techniques

leverage multiple views from different cameras to estimate the 3D pose, thereby

making the task much easier [3, 10, 18, 31, 86, 106]. Finally, there are a number

of approaches which uses depth images provided by RGB-D camera for 3D pose

estimation [7, 102, 104, 124, 129]. The image from RGB-D camera has an extra

depth channel giving depth of different objects in the image, along with the RGB

channels. With the added depth information, these methods can estimate 3D pose

with a high accuracy in real time. However, the downside of RGB-D cameras is

that they have limited range and do not work well in outdoor settings.

18

Below we will discuss the different streams of addressing the problem of 3D

human pose estimation, mentioned above, in detail.

2.2.1 3D Pose estimation by extracting features from single image

Most of the earlier methods of 3D pose estimation from monocular images aimed at

extracting discriminative features from images. A good feature for 3D Pose estima-

tion should be invariant to lighting, texture, background scenes, human skin color

etc. Agarwal and Triggs [1] encoded image silhouette shapes in a histogram-of-

shape-contexts descriptor [11, 12] and used it to recover 3D pose using non-linear

regression. Although silhouettes are invariant to texture and lighting, it requires

very good segmentation of the human in the image. Mori and Malik [77] used

shape context [12] which represents a shape using a set of sample points from

the contours of an object. They created a database of a number of exemplar 2D

views of human body, with joints labeled, under different camera configuration

and viewpoint. They used shape context matching technique [12] to match a test

image with the exemplar images and used the 2D joint locations from the exem-

plar and the test shape to estimate 3D pose using the method of Taylor [115]. Bo

et al. [15] built an algorithm that makes learning conditional Bayesian Mixture of

Experts models [109] faster and more scalable that can handle one order magni-

tude more data and is one order magnitude faster. They combined forward feature

selection and bound optimization contrary to backward feature selection used in

original work and compared the performance of SIFT [68], histogram of shape

contexts [12] and multi-scale hyper-feature encodings [54]. Similarly, image fea-

tures like Histogram-of-gradients (HOG) [25, 68] and HMAX [28] were used by

Bo et al. [14] to create a Twin Gaussian Process model and use Gaussian Process

Regression to estimate the 3D Pose. Ning et al. [82] designed an image descriptor

of their own called the Appearance and Position Context (APC) descriptor. They

learned visual bag of words using unsupervised clustering and then jointly learned

a distance metric for each visual word and Bayesian mixture of experts model using

labeled image-to-pose pairs, which is then used to regress 3D pose. Simo-Serra et

al. [107] proposed a method to jointly infer 2D pose and 3D pose using a Bayesian

model which combines generative latent variables constraining the space of all pos-

19

sible 3D pose with 2D location of joints using HOG-based discriminative model.

Kostrikov et al. [56] swept along each plane through 3D volume of potential 3D

joint locations and used a regression forest to predict the relative 3D position of

joint given the hypothesized depth and then use mixture of 3D pictorial structure

models (PSM) [34] to infer 3D pose in global coordinate space.

The major drawback of these methods is that their accuracy is bounded by the

discriminative properties of the features and robustness to different factors. Most

often, these features are not discriminative enough to give accurate estimation of

depth. Since the advent of deep networks, feature-based techniques have lost their

popularity because deep networks can learn sophisticated features which produce

excellent results.

2.2.2 Using features to look up in a database of exemplar 3D poses

Several methods have used the features extracted from the images to find the near-

est neighbour pose from a large database of exemplar 3D poses. Shakhnarovich et

al. [103] used a shape context feature vector to represent general contour shapes

and use the features to learn a set of hashing functions which can be used effi-

ciently look up and find the nearest-neighbor pose from a database of 3D poses.

The shape context feature vector from an image is also used by Mori and Ma-

lik [78] in conjunction with a kinematic chain-based deformation model to match

a stored 2D view of human body with labelled 2D pose. Once they obtain 2D pose,

they use Taylor’s method [115] to estimate 3D pose. Jiang [53] also used Taylor’s

algorithm [115] to generate all possible 3D pose given the 2D pose of an image

thereby forming a hypothesis pose. They used a kd-tree to find approximate near-

est neighbour of these hypothesis pose from a large database of exemplar poses.

Gupta et al. [41] create a large database of fixed length 2D tractories called v-

trajectories using orthographic projection of unlabelled motion capture data. They

extract dense trajectories feature from vidoes and match the video trajectories to

v-trajectories using Non-linear Circular Temporary Encoding to retrieve appropri-

ate motion capture data. Gupta et al. [42] extended their method [41] to retrieve

a portion of longer mocap sequence and temporally align them with features re-

trieved from a short sequence using Dynamic Time Warping(DTW) [89]. Yasin et

20

al. [128] use two separate training sources. The first source is a large database

of motion capture data which is projected onto a normalized 2D pose space using

virtual cameras, while the second source is images with labeled 2D poses which

are used to learn pictorial structure model (PSM) [33] for 2D pose estimation. The

predicted 2D pose from PSM [33] is used to retrieve the nearest normalized 2D

pose using kd-tree search and the final 3D pose is estimated my minimizing the

reprojection error. On the other hand, Chen and Ramanan [22] used a CNN to es-

timate the 2D pose from an image and then use the predicted 2D pose to match a

library of 3D pose to estimate the depth.

A major drawback of exemplar-based 3D pose estimation is that the time re-

quired to match the correct 3D pose from a large database is quite high. This pro-

hibits any real time implementation. Moreover, the performance of these methods

largely depends on the range of poses available in the database. It is also diffi-

cult to align the retrieved 3D pose with the actual orientation of the person in the

image [42].

2.2.3 Deep network trained end-to-end

As mentioned before, deep networks have become extremely popular in many com-

puter vision tasks. However, these models require large amount of data to succeed.

It is difficult and expensive to collect motion capture data. There is still a lack of

dataset of 3D poses for people in the wild since 3D data acquisition requires spe-

cial motion camera with markers and complex laboratory setup. However, since the

introduction of Human3.6M dataset [20, 51], which contains 3.6 million high res-

olution images with annotated 2D and 3D data, there are a number of methods that

employ deep networks being trained end-to-end to predict 3D pose from images.

One of the earliest approaches to use deep networks was by Li et al [63]. They pro-

posed a convolutional neural network (CNN) [57, 60, 61] that jointly learns to re-

gresses 3D human pose and detect body parts in 2D given a monocular image. The

network was initially pre-trained for body parts detection and then jointly trained

for both tasks. Similar to [63], Park et al. [85] designed a CNN which is jointly

trained for both 3D pose regression and 2D pose estimation. They treated the 2D

pose estimation task as a classification problem for each joint where they divide the

21

image into n×n grids. Each grid is considered as a class for each joint. They clas-

sified each joint as belonging to any of the n2 classes. Tekin et al. [116] first trained

a de-noising auto-encoder [121] to learn a high-dimensional latent encoding of 3D

pose. Then they trained a CNN to map the image into latent representation learned

by the auto-encoder. Then they stacked the decoding layers of auto-encoder on

top of the CNN to regress 3D pose and fine-tuned the entire network end-to-end.

Tekin et al. followed up their earlier work in [118], where they fuse latent features

learned from images and their corresponding 2D joint heatmaps. Their network

learns when two fuse the features from the two sources. Mehta et al. [73] used

transfer learning to transfer the knowledge learned from 2D pose estimation task

for in-the-wild images to estimate 3D pose. They do so by first training Resnet-

101 [44] for 2D pose estimation task and then used the learned weight of up to

level 5 of ResNet-101 to build a network that outputs 3D joint locations and as

an auxiliary task predict 2D heatmaps for each joint. This idea of exploiting 2D

pose ground truth information on in-the-wild images was also adopted by Sun et

al. [112]. They modified Resnet-50 [44], pre-trained on ImageNet [57], to predict

3D joint locations from both images with and without 3D ground truth. When the

3D ground truth is missing, the depth coordinate is set to zero. Zhou et al. [133]

designed a CNN which predicts the motion parameters of the kinematic tree of hu-

man skeleton and then added a kinematic layer on top of it to convert the motion

parameters and skeleton information into 3D joint locations. The loss is defined on

the joint location and since kinematic layer is differentiable, they could train the

network end-to-end. Varol et al. [120] argued that a CNN which is trained to pre-

dict 3D human pose from synthetic images can effectively and accurately predict

3D pose from real images. Likewise, Rogez and Schmid [96] developed a syn-

thesis engine which generates synthetic images given real image and use them to

augment the database with more data. Then a CNN is trained on both real and syn-

thetic data. Pavlakos et al. [87] also develops an end-to-end CNN based model to

predict 3D pose. They extended the popular 2D pose detector by Newell et al. [80]

called stacked-hourglass to predict volumetric heatmaps for each joint instead of

predicting 2D heatmaps. Their method used to be the state-of-the-art before be-

ing surpassed by our first and third networks. Tome et al. [119] also used a similar

idea of extending a 2D pose estimator to reason in 3D. They extended the Convolu-

22

tional Pose Machine(CPM) by Wei et al. [123], which iteratively refines 2D poses

from the knowledge of the image and estimation from previous iteration. Tome et

al. [119] modified this architecture by introducing a probabilistic 3D pose layer

which lifts the predicted 2D heatmaps to 3D pose and projects them back into im-

age plane to generate a set of projected pose heatmaps. The projected 2D heatmaps

and the predicted 2D pose heatmaps are then fused together in a fusion layer and

passed onto the next stage. The fused heatmap from the final stage is used to lift

into 3D pose using the probabilistic 3D pose model and the entire system is trained

end-to-end. Nie et al. [81] separately encoded the ground truth 2D pose and image

patches surrounding the joint locations into skeleton LSTM and Patch LSTM. Both

the networks have a kinematic tree structure defined which is broadcast throughout

the whole skeleton. They predict the depth by integrating the outputs from skele-

ton LSTM and patch LSTM into another LSTM which predicts depth of each joint.

Lin et al. [65] predicts 3D pose from an image directly and refines them in multiple

stages using LSTM [48]. Each stage has a 2D pose module which learns a two di-

mensional pose-aware feature map that encodes information of human body pose.

This feature map is passed onto feature adaptation module which gives a high di-

mensional common embedding space for 2D and 3D pose. The adapted feature is

concatenated with the hidden states of the LSTM and 3D pose detection from the

previous stage and is passed as input to the LSTM of current stage to predict the

3D pose in the current refinement stage.

Although most of these systems trained end-to-end from images generate good

results for 3D pose, it is not clear whether the error stems from the visual features

learned by the network or from the mapping of the 2D pose or features in 2D into

3D pose.

2.2.4 3D Pose Estimation from 2D pose

The task of inferring 3d joint locations from their 2d projections can be traced

back to the classic work of Lee and Chen [62]. They showed that, given the bone

lengths, the problem boils down to a binary decision tree where each split cor-

respond to two possible states of a joint with respect to its parent. A common

approach to estimating 3D joint locations given 2D pose is to separate the camera

23

pose variability from the intrinsic deformation of human body, the latter of which

is modeled by learning an overcomplete dictionary of basis 3D poses from a large

database of 3D human pose [2, 16, 92, 122, 132, 134]. A valid 3D pose is defined

by a sparse linear combination of the bases and by transforming the points using

transformation matrix representing camera extrinsic parameters.

S =
k

∑
i=1

ciBi (2.1)

Here S∈R3×p is a set of 3D locations of p joints, Bi ∈R3×p is a basis pose and ci is

its corresponding coefficient. There are k bases in total. These approaches model

the 3D to 2D projection as weak perspective projection, the equation of which is

given below:

W = RS+T 1T (2.2)

Where S ∈ R3×p is the set of 3D locations of p joints, as given by eq. 2.1, W ∈
R2×p denotes 2D pose of p joints, R ∈ R2×3 and T ∈ R2 are camera rotation and

translation parameters respectively. The coefficients of the bases and the camera

extrinsic parameters are estimated by minimizing the reprojection error which is

given by the following loss function:

argmin
R,T,C

∥∥∥∥∥W −R
k

∑
i=1

ciBi−T 1T

∥∥∥∥∥
2

F

(2.3)

Here W ∈ R2×p is the ground truth 2D locations for p joints and the rest of the

symbols are same as defined in Eq. 2.1 and 2.2

Ramakrishna et al. [92] were the first to propose the idea of representing 3D

human pose as a sparse linear combination of bases and estimate the camera intrin-

sics and coefficients of the bases by minimizing reprojection error function. They

obtained the basis pose using PCA on a database of exemplar 3D poses. Wang et

al. [122] followed the same vein as [92] but instead of minimizing the L2-norm of

reprojection error, they minimized L1-norm and imposed limb length constraints

on the output pose. Akhter and Black [2] imposed a joint angle limit constraint for

certain joints after estimating the sparse coefficients and camera extrinsic. Since

24

rotation matrices are restricted within a set SO(3), the resulting objective function

is non-convex. Zhou et al. [132] proposed a method to relax certain conditions

to approximate convexity for the optimization of rotation matrix. The method is

extended by same authors [134], where they imposed temporal smoothness con-

straint during optimization. They also designed a CNN to predict 2D heatmaps for

each joint, giving the likelihood of presence of joint in that location. When the

ground truth 2D pose is not available, they used Expectation-Maximization (EM)

algorithm [26] to estimate 3D pose from the detected heatmaps.

Bogo et al. [16] used the 2D joint heatmaps from a CNN-based 2D pose detec-

tor to predict both 3D pose and the 3D shape of human body. Their body model

is defined as a function parameterized by coefficients of shape prior, pose parame-

ters defined by kinematic tree model (See Section 2.1) and translation parameters.

They minimize five different error terms: joint-based error defined by re-projection

error under weak perspective projection, three pose priors and a shape prior. Rad-

wan et al. [90] applied self-occlusion reasoning step over off-the-shelf 2D pose

detector to remove noise in 2D pose estimation. Then they projected an arbitrary

3D model onto the 2D joints and applied geometric and kinematic constraint to re-

move ambiguity. Then they generated some synthetic views using the pose distri-

butions and applied a structure from motion step to estimate the appropriate depth.

On the other hand, Moreno-Nouger [76] first computed a N×N distance matrix

,called Euclidean Distance Matrix (EDM), from the detected 2D pose where N is

the number of joints. Then they designed a CNN-based network to estimate the

Euclidean Distance Matrix for 3D pose. Then they convert the predicted EDM into

3D joint locations using a Multidimensional Scaling (MDS) approach [13].

Our first and third model are inspired from the idea of decoupling the task

of 3D pose into the 2D pose estimation using an off-the-shelf 2D pose estimator

and then learning a model to map 2D pose into 3D. We aim to analyze whether

the error for 3D pose estimation stems from noisy pose detections or from lifting

2D features to 3D. We observed empirically that decoupling makes the task of 3D

pose estimation much easier than training a deep network end-to-end. We also

observed that the task of lifting 2D poses into 3D can be done with very high

accuracy given the ground truth 2D pose by using a simple deep network model.

We believe it is difficult for a network trained end-to-end to perform well in this

25

case, because it needs to learn to extract image features which invariant to lighting,

texture, background scenes, human skin color etc. and at the same time lift those

features in 2D space to 3D. Moreover, the lack of in-the-wild datasets for 3D pose

may also be another factor which makes training the networks end-to-end difficult

because of the lack of variation in the scenes.

2.2.5 Exploiting temporal information

Estimating 3D pose per frame may cause jitter because the error in pose estimation

for each frame is independent of one another. A natural extension would be to

estimate the 3D pose over a sequence of images or monocular video such that the

poses look temporally coherent and smooth i.e. the error is distributed smoothly

over a sequence. A number of methods tried to exploit the temporal information

available over a sequence of images to achieve temporal smoothness.

Andriluka et al. [4] exploited temporal information using tracking-by-detection.

They first estimated 2D poses for each frame individually. Then they associated the

poses across frames using tracking-by-detection method. The robust estimates of

2D pose over a short sequence was used to recover 3D pose. Tekin et al. [117] ex-

ploited the motion information by first using a CNN to align successive bounding

boxes such that the person always remains in the center of the bounding box. Then

they concatenated the aligned images and extracted 3D HOG (histogram of gra-

dients) features densely over the spatio-temporal volume from which they regress

the 3D pose of the central frame. They tried different techniques for regressing 3D

pose and found deep network to work the best. Du et al. [29] used a height-map,

estimated from RGB image and camera calibration, and RGB image to regress 2D

joint locations using dual stream CNN. From a sequence of 2D joints, they esti-

mated 3D pose by minimizing reprojection error and by imposing pose-conditioned

joint velocity and temporal coherence constraints during optimization. Mehta et al.

[74] implemented a real time system for 3D pose estimation which exploits tem-

poral information from the previous frame to achieve temporal smoothness. Given

an image the bounding box at time t is estimated by tracking the bounding box

and 2D joint locations of the previous frame which is passed to a CNN to estimate

2D heatmaps and 3D location map x,y,z for each joint. They combine the 2D and

26

3D pose predictions of the current frame with that of the previous frame and apply

temporal filtering and smoothing to obtain the 3D pose of the current frame.

In our third model we exploit the temporal information present in a sequence

of frames and would like to examine if applying temporal constraints can improve

the performance of our previous network. For monocular videos, it is intuitive to

exploit the temporal information of previous frames as it can provide many impor-

tant cues like some part being occluded in one frame may be visible in the next

frame or in our case, the 2D pose estimation of a particular frame may be more er-

roneous than other frame. We expect that the temporal information will distribute

the error in pose estimation smoothly over the sequence reducing jitter and overall

improvement in results.

2.2.6 Exploiting multiple views

As discussed previously, acquiring motion capture data requires a complex labora-

tory setup and is expensive. It requires markers, multiple motion capture camera

and multiple high resolution RGB cameras. The motivation of using multiple views

of different cameras for 3D pose estimation is to make the data acquisition process

cheaper so that it does not require motion capture cameras or markers to be placed

on subject’s body and that the data can be acquired even in the outdoors. The ad-

ditional views should intuitively make the task of 3D pose estimation easier since

certain body parts in one view may be self-occluded in one view but visible clearly

in another view.

A number of works have proposed using multiple cameras to estimate 3D pose.

Sigal et al. [106] modeled human body as a collection of loosely-connected body

parts in an undirected graphical model where the nodes represent body parts and

edges represent a kinematic relationship between them. They imposed kinematic

and penetration constraints using statistical models learned from motion capture

data and use Particle Message Passing (PAMPAS) [52], a type of particle filter

that can be applied over a graph containing loops, to infer 3D pose and motion

from multi-view images with a set of calibrated camera. Amin et al. [3] extends

pictorial structures model for 2D pose estimation to a multi-view model which per-

forms joint reasoning over 2D poses from multiple view to estimate the 3D pose.

27

The same idea of using a multi-view pictorial structure for 3D pose estimation was

used by Burenius et al. [18]. They additionally imposed view, skeleton, joint angle

and intersection constraints. 3D multi-view pictorial structures was also used by

Belagiannis et al. [10]. The used geometric constraints of triangulation of body

joints from multiple views to estimate the 3D pose. On the other hand, Elhayek et

al. [31] used a CNN-based network to estimate unary potentials for each joint of

a kinematic tree model of skeleton which are used to extract pose constraints by

probabilistically sampling from a pose posterior model. They combined the sam-

pled constraints with an appearance-based similarity term and to track the articu-

lated joint angles from multiple views. Pavlakos et al. [86] used the CNN-based

stacked-hourglass model for 2D pose estimation to estimate 2D pose from multiple

views and combined them using 3D pictorial structure model to obtain a volumetric

heatmap of 3D joint uncertainties.

2.2.7 Exploiting depth information

With the availability of RGB-D cameras like Microsoft Kinect, a number of sys-

tems tried to exploit the additional depth information along with the RGB image.

Wei et al. [124] formulated the 3D pose estimation problem as a registration prob-

lem in Maximum A Posteriori (MAP) estsimation framework. They integrated the

depth data, person silhouette, full-body geometry, temporal pose prior and occlu-

sion reasoning in a unified MAP estimation framework and combine 3D tracking

with 3D pose estimation. Baak et al. [7] combined local optimization and global

retrieval methods to build a robust 3D pose estimator. They used a variant of Djjk-

stra’s algorithm to extract pose features from depth channel and later fused the lo-

cal and global pose estimates using sparse Hausdoff distance. Shotton et al. [104]

modeled 3D pose estimation problem as a per pixel classification problem which

classifies the pixels as belonging to a specific body part. They used depth compar-

ison features from depth image and used random forest classifier to classify each

pixel and generated a confidence-scored 3D proposal for different body joints by

reprojecting the classification results and finding local modes. Ye and Yang [129]

embedded articulated deformation model with exponential-map parameters into a

Gausian Mixture model for the task of 3D pose estimation. They also developed a

28

shape adaptation algorithm using the same probabilistic model used for pose esti-

mation. Shafaei and Little [102] used multiple views from multiple depth cameras.

They applied image segmentation to depth images and used curriculum learning

to train their pose estimation system on synthetic data. The 3D joint locations are

recovered by combining information from multiple views in real time. Although,

depth information from depth cameras can give us valuable cue for 3D pose esti-

mation, one major drawback of depth cameras is that it works poorly in outdoor

settings.

2.3 2D pose estimation techniques
Since this work concentrates on analyzing the effectiveness of decouplng the task

of 3D pose estimation into first estimating 2D pose from an image and then lifting

the 2D pose into 3D, we will discuss some of the techniques for 2D pose estimation.

The task of 2D pose estimation is defined as localizing a number joints or key-

points in an image.

One of the most popular 2D pose estimation technique before the advent of

deep network-based estimators was by Yang and Ramanan [127]. They described

the articulated human pose as a flexible mixture of non-oriented pictorial structure

and augmented classic spring models with the co-occurrence constraints so that

they can capture the contextual co-occurrence and spatial relationship between

different parts. Such constraints help to impose notions of local rigidity. They

embedded the co-occurrence contraints and spatial relationship between different

parts into a tree relational graph and optimize the entire model using dynamic pro-

gramming. Following the success of deep networks in computer vision, many ap-

proaches decided to leverage the deep learning techniques to estimate the 2D pose.

Wei et al. [123] developed a CNN-based 2D pose estimation framework, called

Convolutional Pose Machine (CPM), which predicts 2D belief maps for each joint,

giving the likelihood of the presence of that joint at a particular spatial location,

and refines the belief over multiple stages. Each stage of pose estimation technique

takes the image and the belief map from previous stage as input and generates a

refined belief map. Cao et al. [19] used a similar CNN architecture as the CPM,

refining 2D pose estimation in multiple stages. However, they extended it for pose

29

estimation of multiple people. They defined a non-parametric representation called

Part Affinity Fields(PAFs) to associate body parts with the individuals present in

the image. Each stage of the frame work has two branches, one branch predicts

PAFs and the other branch predicts part confident maps, both of which are passed

to next stage of the framework for refinement. Once the part locations are learned,

the parts belonging to a particular individual are associated by using Hungarian

method [58, 59], which is a bipartite graph matching algorithm. Newell et al. [80]

came up with a fully convolutional network for 2D pose estimation which com-

putes features at different scales and consolidate the features to capture the spatial

relationships of different joints in human body. In an hourglass module, bottom-

up and top-down processing of the features takes place through successive steps

of pooling and up-sampling to predict a 2D heatmap for each joint. They named

their method stacked-hourglass because they stacked multiple hourglass modules

end-to-end. The perform intermediate 2D pose supervision at the end of each hour-

glass. This repeated bottom-up and top-down inference helps to refine the 2D pose

heatmaps in the final hourglass. He et al. [45] extended Faster R-CNN network [93]

by Ren et al. which is used for finding region proposals or to localize objects in

an image. They added a branch for predicting segmentation mask for an object in

conjunction with object classification and bounding box regression. Their method

can also be used for pose estimation of multiple people by training K different

masks for each of K key-points where each mask is treated as a one-hot binary

mask where only one pixel is labeled as a foreground.

2.4 Deep Networks
All of our three methods are based on deep networks. In our first model, we use

a fully connected feed forward neural network with residual connections. Our

second model overlays our first network over a Convolutional Neural Network for

2D pose estimation. Finally our third network is a sequence-to-sequence network

where the building blocks are Long Short Term Memory Units (LSTMs). We will

review each of this networks briefly in this section.

30

2.4.1 Biological motivation

Artificial Neural Networks (ANNs) were originally inspired from biological neural

connectivity in human brain. Analogous to the neurons and the interconnection of

neurons in the brain, an ANN is composed of a number of connected units called

artificial neurons. In a biological nervous system, neurons communicate with each

other by propagating electrical impulses through connections called synapses. Bi-

ological neurons tend to have a threshold value such that if the magnitude of all

the impulses from different neurons exceed the threshold, the neuron would prop-

agate the signal forward or else will not send the signal at all. This phenomenon

is typically known as activating a neuron. The signal may get amplified or at-

tenuated when it is passed through synapses from one neuron to another. Similar

to the biological neural connections, artificial neurons have weighted connections

with other neurons which may amplify or dampen the strength of the signal as it

is being passed through the connection. The signal received by an artificial neuron

is therefore a linear combination of different signals propagated from the neurons

connected to it. Each neuron has an activation function which determines whether

the neuron receiving the signal would fire or not. This adds non-linearity to the

otherwise linear transformations. Typically the artificial neurons are arranged in

multiple layers: an input layer, several hidden layers, and an output layer. Neu-

rons belonging to a particular layer cannot be connected to a neuron in the same

layer. Figure 2.2 shows an example of a fully connected Artificial Neural Network.

The motivation of building such a network of artificial neurons was to mimic the

functionality of human brain and how humans use their brain to solve a problem.

Although artificial neural networks were initially developed keeping human brain

in mind, over time, due to practical reasons, the researches had to deviate from

biological motivation such as using backpropagation during training the network.

2.4.2 History of Neural Networks

The idea of building a computational model with artificial neurons mimicking the

behavior of human neurons using mathematics and threshold logic was first pro-

posed by McCulloch and Pitts [72] back in 1943. However the technological

limitation did not allow them to progress much further. Farley and Clark [32]

31

Figure 2.2: A Fully Connected Neural Network consisting of an Input Layer,
one hidden layer and an output layer. The connections between each
neuron is shown with an arrow. Each connection has a particular weight
which is learned over time from training data using backpropagation.
Each neuron also has an activation function which defines a threshold
for the neuron to fire.

and Rochester et al. [95] were the first research groups to perform computational

simulations of neural networks. In 1958, Roseblatt [97] came up with the single

layer Perceptron algorithm, a supervised algorithm for binary classification which

had a hidden layer or association layer to map a given input to a random output

unit. In 1969, Minsky and Papert [75] discovered two crucial issues regarding

neural networks. First, the basic perceptrons were not able to handle exclusive-or

(XOR) circuit and second, the lack of processing power at that time for comput-

ing large neural networks. This slowed down the research in neural networks for

some time until the computational powers were large enough to handle neural net-

work processing. However, the discovery of backpropagation algorithm by Paul

Werbos [126], the XOR issue was solved, thus speeding up the training of multi-

layered neural networks. This rekindled the interest in research on neural networks,

although progress was still slow. As parallel distributed processing became popular

in the mid ’80s, Rumelhart and McClelland [98] described using parallel process-

32

ing to simulate neural networks. Throughout the ’80s and ’90s, simpler methods

like Support Vector Machines (SVM), linear classifiers, random-forests dominated

the machine learning paradigm overshadowing the popularity of neural networks.

The vanishing gradient problem was a major issue for training multi-layered neu-

ral networks, when gradients tend to shrink to zero as the error is backpropagated

over multiple layers. Schmidhuber [100] proposed a work-around for the vanishing

gradient problem. He proposed to pre-train each layer at a time by unsupervised

learning and then fine-tune the entire network end-to-end through backpropaga-

tion. On the other hand, Behnke [9] came up with an algorithm called RProp or

resilient backpropagation. It only considers the sign of the gradient during back-

propagation. In 2005, Steinkrau et al. [111] were the first group of researchers

to implement a two layered fully connected network on GPU. Shortly after them,

Chellapilla et al. [21] showed that GPUs can also be used to accelerate the train-

ing of CNNs. However, when NVIDIA released the general purpose GPUs and

CUDA programming language platform in 2007, it enabled programmers to write

programs in standard programming languages like C or python and execute any

arbitrary codes on the GPUs. This was the major breakthrough for neural net-

works as it opened the floodgates for large number of researchers to train really

deep multi-layered networks on the GPUs without worrying about the vanishing

gradient problem. In 2009, Raina et al. [91] used the CUDA platform to show that

the Deep Belief Networks (DBN) [47] can be trained 70 times faster on GPUs over

multi-core CPUs. Similarly, Ciresan et al. [24] showed that multi-layered feed for-

ward networks can be trained efficiently and extremely fast on the GPUs by using

simple backpropagation with a low error rate. However, it was the Imagenet classi-

fication by Krizhevsky et al. [57] which popularized the use of deep networks in the

field of Computer Vision. Their network became known as AlexNet, named after

Alex Krizhevsky. They achieved an error percentage of 16% and it was after this

paper the classification error rate for Imagenet Competition decreased dramatically

to merely 2% now. The Imagenet project is a large database of images designed for

visual object recognition and localization task in 2009 by Deng et al. [27] and since

2010 an annual competition called the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) is arranged.

33

2.4.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of deep and feed forward neural

network which are typically used for visual analysis of images for tasks like ob-

ject classification, object localization, segmentation. The hidden layers of a CNN

can be composed of convolutional layers, pooling layers or fully connected layers.

CNNs are suitable to be applied on images for computer vision tasks because the

learned weights of the convolutional layers act as convolution masks which people

would have hand-engineered otherwise for processing the image. Hence CNNs re-

quire little pre-processing of input data. The fully connected network is not ideal

for learning features from images because if each pixel in an image or each neuron

in a volumetric input is fully connected to the neurons in the hidden layers, it would

result in a very large number of parameters which may cause several problems like

the vanishing gradient problem or overfitting to training data.

The concept of convolutional layers stems from the work of Hubel and Wiesel

in 1968 [49], who showed how the neurons in the visual cortexes of monkeys

respond individually to small regions in their field of view. The portion of area of

the visual field that triggers a particular neuron in the visual cortex is known as

receptive field. Hubel and Wiesel [49] found that when the eyes are still, visual

cells within an small patch of the retina share similar and overlapping receptive

fields. They found that the monkey brain has two types of visual cells:

• simple cells: Sensitive to edges of different orientations.

• complex cells: Have larger receptive fields and is responsible for understand-

ing contextual information.

Simply put, the learned weights of each convolutional layer performs a convo-

lution operation on the input volume and outputs another volume. A conolutional

layer arranges its neurons in a volume. Each neuron of a convolutional layer is

connected to a local spatial region of the input volume instead of being fully con-

nected to the neurons of the previous layer. However, the neurons are fully con-

nected along the depth of the volume. The spatial area of the region connected to a

neuron is known as its receptive field, analogous the receptive fields of biological

visual cells.

34

32

32

3

5

5

3

A volume of neurons in a
convolutional layer

Receptive field Five neurons across the
depth gives a depth column

of 5

Figure 2.3: A convolutional layer having a depth column of 5, i.e. 5 neurons
are connected to same spatial region and a filter size or receptive field
size of 5×5.

There are several hyper-parameters of a convolutional layer. We list them be-

low:

• Filter size or size of the receptive field for a neuron.

• Number of filters or neurons connected to the same spatial region of the

input, called the depth column.

• Stride by which we want to slide the filter, hence controlling the distance

between the depth columns.

Even if we connect each neuron to a local spatial region, the number of learn-

able parameters is still considerably high. Hence, to reduce the number of parame-

35

2 5 7 0

3 1 4 2

6 2 2 0

1 4 4 3

5 7

6 4

single depth slice

max-pooling with 2×2 filter
and stride of 2

Figure 2.4: A 2×2 max-pooling layer with a stride of 2

ters and make convolutional layers act like image convolution, the neurons within

the same depth slice are made to share a single set of weights. Hence, a single

forward pass means convolving the input with the learned weight for each slice.

Figure 2.3 shows an example of a convolutional layer of depth 5, with filter size

5×5 applied on a 32×32 image.

Another key ingredient of a CNN is a pooling layer which are periodically

inserted after convolutional layers. Pooling layers combine outputs of a group of

neighboring neurons from the previous layer into a single neuron in the next layer,

hence performing spatial downsampling. Pooling layers help to reduce the number

of parameters and overfitting. Most commonly, pooling is done by max-pooling i.e.

by taking the maximum value from a cluster of neighboring neurons from previous

layer. Besides, max-pooling, average pooling is also common. Figure 2.4 shows

an example of max-pooling layer.

One of the earliest and pioneering deep convolutional network, LeNet-5, was

designed by LeCun et al. [60] for handwritten digits recognition. LeNet-5 had

two convolutional and 2 pooling layers followed by 3 fully connected layers for

classifying handwritten digits from 32× 32 image. However, as discussed before

the real breakthrough of convolutional neural network came after NVIDIA opened

their CUDA platform which allowed GPU implementations of neural network and

36

with the release of the AlexNet [57] by Krizhevsky et al. the popularity of convo-

lutional neural networks in computer vision burgeoned exponentially. Aided by the

GPU implementation, the convolutional neural networks just got deeper and deeper

giving unprecedented performances particularly in the area of object recognition

and localization. While AlexNet had a depth of 8 layers only, the other popular

networks like VGG ConvNet [108] by Simonyan and Zisserman, released in 2014

had 19 layers, GoogleNet/InceptionNet [114] released in 2015 by Szegedy et al.

had 100 layers, and ResNet [44] released in 2016 by He et al. has 152 layers. The

inception module introduced by Szegedy et al. in their GoogleNet [114] allowed

them to design a deeper and wider network. The module performs four different

operations on the input in parallel and concatenate the output features. Each of the

branch performs a 1× 1 convolution which is followed by a 3× 3 convolution in

second branch and 5× 5 convolution in the third, while a 3× 3 max-pooling pre-

cedes the 1× 1 convolution in fourth layer. Because the computation is reduced

by 1× 1 convolution before performing more expensive 3× 3 and 5× 5 convo-

lutions allowed them to design a deeper network without significant increase in

the number of parameters. On the other hand, He et al. [44], in their ResNet,

stacked multiple bottleneck blocks with a residual or shortcut connection between

each block. Within each bottleneck block, they stacked three convolutional layers

of size a 1× 1, 3× 3 and 1× 1 successively. The 1× 1 convolutional layers are

used for altering the number of depth columns. If we consider H(x) to be the de-

sired mapping of input data x for a particular block, it now has to fit a mapping of

F(x) = H(x)− x instead of H(x). The authors hypothesized that it is easier to op-

timize a network with this residual mapping than the ones without it. The residual

connections in our first and third network is motivated from this work.

2.4.4 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a deep neural network with loops allowing

it to store long term information. The looping structure allows them to exploit pre-

vious computations to compute present information thereby making them suitable

for sequential data. Figure 2.5 shows an RNN being unrolled into a full network.

From the figure, we can observe that RNNs are essentially copies of same net-

37

RNN
Unit

s

V

U

x

o

W

RNN
Unit

s
t-1

V

U

xt-1

ot-1

RNN
Unit

s
t

V

U

ot

RNN
Unit

s
t+1

V

U

ot+1

W W W

xt
xt+1

Figure 2.5: A RNN unrolled into a full network

work with each unit connected to the next. Messages are passed from each layer

to the next forming a long chain-like network. In the figure, xt denotes the input at

time step t, st denotes the hidden state at time t calculated by st = f (Uxt +Wst−1)

where f is a non-linear function (typically a ReLU [79] or hyperbolic tangent) and

ot is the output at timestep t. U,V and W are weights or parameters in the net-

work which are shared across the network and are learnt during training. Although

theoretically RNNs were designed to handle long term dependencies among data,

in practice they can only deal with recent information because of the vanishing

gradient problem.

Long Short-Term Memory (LSTM)

The most commonly used LSTM structure in current literature was proposed by

Graves and Schmidhuber [40]. They incorporated changes made by Gers et al. [36]

and Gers and Schmidhuber [35] into the original LSTM architecture and proposed

a full error backpropagation training. We will refer to the architecture proposed by

Graves and Schmidhuber [40] as Vanilla LSTM.

Each memory block of the recurrent hidden layer of the vanilla LSTM contains

memory cells with self connections having abilities of storing temporal state of the

network. These cells are regulated by special multiplicative units called gates.

There are three types of gates: input gate, output gate and a forget gate. Gates

38

are typically sigmoid functions which regulates how much information should be

let through. An input gate controls the flow of input activations into the cell and

an output gate regulates the output flow of cell activations into the rest of the net-

work. The original LSTM by Hochreiter and Schmidhuber [48] did not contain

forget gates and could not process continuous input streams. To address this is-

sue, Gers et al. [36] introduced forget gate. Forget gate scales the internal state

of the cell thereby allowing each cell to reset or forget its memory. Forget gates

allow LSTMs the flexibility of deciding when to drop information and how long

to store information. Further modification was proposed by Gers and Schmidhu-

ber [35] who argued that regulation of gates was necessary to learn precise tim-

ings. Hence, they proposed to include peephole connections from internal cells to

the gates of the same cell and omitted output activation function. Vanilla LSTM

includes all these modifications and introduced full backpropagation through time

training (BPTT) for LSTM networks. In Original LSTM, backpropagation was

truncated after one timestep, because the authors felt that long time dependencies

would be dealt with by the memory blocks, and not by the flow of backpropagated

error gradient. Vanilla LSTM simplifies the training and implementation of LSTM

by performing full error backpropagation. Figure 2.6 shows the difference between

a LSTM node and a simple RNN node. We can observe the three gates (input, out-

put and forget) all controlled by sigmoid functions, a block input, a cell known as

Constant Error Carousel which continuously feeds error back to each of the gates

until they become trained to cut off the value, output activation function and peep-

hole connections. Like recurrent networks, the output of a block is connected back

to the input block and all of the gates.

The vector formulas for the forward pass are given below:

zt = g(Wzxt +Rzyt−1 +bz) block input

it = σ(Wixt +Riyt−1 + pi� ct−1 +bi) input gate

f t = σ(Wf xt +R f yt−1 + p f � ct−1 +b f) forget gate

ct = it � zt + f t � ct−1 cell state

ot = σ(Woxt +Royt−1 + po� ct +bo) output gate

yt = ot �h(ct) block output

39

g

+

input
 xt

recurrent
 yt-1

recurrent
 yt-1

output
 yt-1

RNN
Block

LSTM
Block

+

input
 xt

recurrent
 yt-1

+

input
 xt

recurrent
 yt-1

+

input
 xt

recurrent
 yt-1

+

input
 xt

recurrent
 yt-1

+
g

σ

σ

h

σ

f t

recurrent
 yt-1

output
 yt-1

ct

ot

forget gate

cell

output gatepeepholes

input gate

ct-1

ct-1
ct

it

z t

block output

block input

Legend

+

σ

g

h

unweighted connection
weighted connection
recurrent connection from
previous time step
peephole connection
brachning point
multiplication operation
addition operation

Gate activation function,
always sigmoid
input activation function,
generally tanh
output activation function,
generally tanh

Figure 2.6: (Left) Diagram of a simple RNN unit. Right) Diagram showing
a LSTM Block.

In the equations, xt and yt denote input and block output vectors respectively

at time t. W s are rectangular input weight matrices. There are four different sets of

W for each gate and block input. The Rs are square matrices for recurrent weights.

Similar to W , there are four different sets of R. The vectors p are peephole weight

vectors and b are bias vectors. Functions σ , g and h are non-linear activation func-

tions. Sigmoid functions are used for the gates and hyperbolic tangent functions are

used for block input and outputs. � indicates element-wise multiplication between

two vectors.

In 2014, Cho et al. [23] proposed a simplified version of LSTM called Gated

Recurrent Unit (GRU) for the task of phrase based Machine Translation (SMT).

Their architecture consisted of two RNNs: one for encoding a variable length

source sequence to a fixed length vector and other for decoding it back to a variable

length target sequence. Their simplified architecture did not have any peephole

connections or output activation functions. They combined forget gate and input

40

gate into an update gate. They also combined cell state and hidden cell state. Their

output gate is called a reset gate that applies a sigmoid function over the recurrent

connections to the input block. The reset gate specifies whether the current hidden

state would ignore the previous hidden state or not. If it is set to zero, hidden state

will update in the current input block only. The update gate controls how much

information from previous hidden state will be carried over to current state if the

reset gate is closed.

Like other deep networks, a complex model of LSTM may result in overfitting.

Applying regularization efficiently to RNN networks proved to be a challenging

task until Zaremba et al. [130] showed how dropout can be used in LSTM to re-

duce overfitting. The authors applied dropout to the non- recurrent connections

for multi-layer RNNs so that it corrupts the information carried by the units result-

ing in more robust intermediate computations. At the same time the architecture

allowed the units to remember the information occurred many time steps back.

Sequence-to-sequence Network

Sutskever et al. [113] came up with the idea of sequence-to-sequence network

for translating English sentences into French. Sequence-to-sequence networks are

convenient for tasks where the input and output has different sequence length, e.g.

Machine Translation. Sutskever et al. used LSTM units to read the input sequence

and encode it to a fixed dimensional vector representation. Then a second set of

LSTM units were used to decode the vector into output sequence. The decoder

LSTM units maximize the conditional probability of the output sequence given the

input sequence. They found an improvement in their results when the order of

the words in the input sequence was reversed. Our final model is inspired from

sequence-to-sequence network and the machine translation task. In our case, the

input is sequence of 2D poses and the output is a sequence of 3D poses of the same

sequence length as input.

41

Chapter 3

3D pose from 2D pose

Our first model aims to analyze the effectiveness of breaking up the task of 3D

pose estimation into two parts: i) obtaining 2D pose using a off-the-shelf 2D pose

estimator ii) Learning a mapping from 2D pose to 3D pose. As mentioned before,

this would help us to find out whether it is more difficult to estimate 3D pose

directly from an image in an end-to-end frame work than to estimate it from 2D

poses.

For the purpose of 3D pose estimation from 2D joint locations of an image,

we have designed a simple multi-layered fully-connected network. Since our net-

work only takes 2D coordinates of joint locations as input, it is much smaller in

dimension than an image. Hence, we can afford to use multiple layers of fully-

connected neurons. We have used a residual or shortcut connection after every two

fully connected layers as inspired by He et al. [44] who used shortcut connections

to build a deep convolutional network. Additionally we used dropout [110] and

batch normalization [50] layers after each hidden layer and used Rectified Linear

Units (ReLU) [79] as the activation function.

3.1 Loss Function
Our goal is to estimate the body joint locations in 3D space given the joint locations

in 2D. In other words, the input to our system is a set of 2D joint locations x ∈R2n

and our output is a set of 3D joint locations y∈R3n. Our network learns a mapping

42

of f (x)→ y;x ∈ R2n,y ∈ R3n. We use Mean Squared Error (MSE) of 3D joint

locations over a set of N poses as our loss function given by,

L (f (x),y) = min
f (x)

1
N

N

∑
i=1
‖ f (xi)−yi‖2

2 . (3.1)

Here f (xi) is the predicted 3D pose for i-th 2D pose and f (yi) is the ground truth

3D pose. The input 2D pose xi may be obtained from 2D joint detections from a 2D

pose detector or from the ground truth. We have experimented both with the ground

truth 2D joint locations and with the detections from the 2D pose detector, stacked-

hourglass by Newell et al. [80], which predicts 2D joint locations of 16 joints from

an image namely: Central hip, spine, neck, head, both left and right joints for hip,

knee, ankle, shoulder, elbow and wrist. We map of the 2D locations of these 16

joints, using our deep network, into 3D locations of 17 joints, with the nose joint

being the extra joint. We had to drop the nose joint because the stacked-hourglass

network does not predict it. We predict the 3D joint locations with respect to the

root node, central hip, which is common in the literature. However, instead of

predicting the 3D pose in an arbitrary global coordinate space, we predict them in

the coordinate space of the camera, i.e. how the camera is looking at the 3D pose.

3.2 Network design
Figure 1.6 shows a diagram with the basic building blocks of our architecture.

The key component of our network is the residual block as depicted in the dia-

gram. First we project the input into a higher dimension using a fully connected

linear layer. Then after applying dropout [110] and batch normalization [50] we

pass it to our residual block. Each unit of our residual block consists of two fully

connected layers with dropout and batch normalization layers in between. There

is a shortcut or residual connection from the input to the residual block to the out-

put of the block. In most of our experiments, we have used two units of residual

blocks. Finally we project down the output from the second residual block into

48-dimensional vector which corresponds to the 3D locations of 16 joints with

respect to root node which is always set at (0,0,0). Overall, our network has 6

fully connected linear layers and approximately 4-5 million trainable parameters.

43

Our model benefits from recent improvements on the optimization of deep net-

works, courtesy of the deep convolutional networks submitted to the Imagenet

Challenge [27, 57]. The contributions applied by the authors in the context of

deep networks also help our fully connected model to better generalize our 2D-to-

3D pose mapping task. Below we discuss the contribution of each module in our

network and elaborate on our design choices.

3.2.1 Mapping 2D pose to 3D

We chose to use 2D and 3D locations of joints as inputs and outputs, instead of in-

ferring 3D pose from images directly by training the model end-to-end which many

of the recent techniques did [63, 65, 73, 81, 85, 87, 96, 112, 116, 119, 120, 133]

because we wanted validate the efficiency of dividing the 3D pose estimation task.

Some decoupled approaches [134] have used 2D probability distributions or 2D

joint heatmaps from 2D pose estimators as inputs as inputs. However, the 2D joint

locations have much smaller dimensionality than the heatmaps which enabled us to

store the entire Human3.6M dataset in the GPU while training the network which

massively reduces the training time. Because our network can be trained very fast

(approximately 5ms per batch of 64), we can experiment with network design and

training hyper-parameters. As we have mentioned in Chapter 2, different models of

3D pose estimation have represented the 3D pose output in different ways e.g. 3D

probabilities or volumetric heatmap of joints [87], 3D motion parameters [133] or

coefficients of basis pose [2, 16, 92, 132, 134]. However, our network predicts the

3D joint locations with respect to the root node, which is a simple and model-free

representation of 3D pose. This simplifies the 3D pose estimation task of having to

estimate the offsets of each joint from the root joint instead of having to predict the

absolute coordinates of each joint, because it is more difficult to find meaningful

spatial relationships between the joints if absolute coordinates are predicted.

3.2.2 Fully connected layers with ReLU activation

Since our input is 2D joint locations which is low-dimensional when compared to

images or 2D joint heatmaps and hence there is no need for convolutional layers.

Therefore we can use fully connected linear layers which are computationally less

44

expensive than applying convolution. We use Rectified Linear Unit (ReLU) [79] as

activation function because it has been found effective in decreasing the possibility

of vanishing gradient problems. The ReLU [79] is defined as y = max(0,a) where

is a =Wx+b. Hence the gradient for ReLU is defined as,
0 i f a < 0,

1 i f a > 0

undefined i f a = 0

 .

Hence even if the value of a is very high, the gradient is 1. Therefore, ReLU

gradients do not vanish and hence it reduces the chances of vanishing gradients.

The constant gradient of ReLU also makes the learning process faster. Another

advantage of using ReLU unit is the sparsity of gradients in cases when a < 0.

However, since gradient of ReLU is undefined at 0, a small value ε can be added

to a when a = 0.

3.2.3 Residual or shortcut connections

The idea of residual or shortcut connects was proposed by He et al. [44]. Residual

connections have allowed them to build a convolutional neural network which is

152 layers deep. They hypothesized that it is easier for the network to learn the

residual mapping than the ones without residual connections. One reason for this

could be because the block of network connected by residual connection only needs

to learn the amount of change from the input to obtain the desired mapping instead

of having to learn the mapping directly. We also found residual connections to

be highly effective in generalizing on new data and reducing test time. We added

shortcut connections every two fully connection layers. In our case, the connection

has helped us to reduce the error by approximately 10%.

3.2.4 Regularization with batch normalization, dropout and
max-norm constraint

Batch normalization was proposed by Ioffe and Szegedy [50] in 2015. One ma-

jor issue of deep networks is that the distribution of features at each hidden layer

changes over many times during training as the parameters of previous layer change

45

even though the input data have same distribution. They called this phenomenon

internal covariance shift. It slows down the training of deep networks by enforc-

ing lower learning rate and makes the networks extremely sensitive to parameter

initialization. It also makes training extremely difficult due to saturation of non-

linearities leading to vanishing gradient problem. To reduce internal covariance

shift, they proposed to normalize the input features of every layer during training by

incorporating normalization as a part of the model. The batch normalization layer

learns an estimation of population variance and mean from each training mini-

batch and applies normalization using the estimated population mean and variance

during test time. The advantages of batch normalization are many. It makes conver-

gence of the optimization function quicker by allowing larger learning rate making

the overall training faster. It also makes the network less sensitive to parameter

initialization and since it normalizes the inputs to the activation function it reduces

the vanishing gradient problem. Additionally it regularizes the network because of

the noise in population statistics estimation, hence gives better generalization.

Dropout proposed by Srivastava et al. [110] is another method for regularizing

deep networks. Dropout works by randomly dropping out or ignoring individual

neurons at every layer with a probability of p (keeps a neuron with probability 1-p)

during training time by removing all the incoming and outgoing connections from

the dropped neuron, resulting in a reduced network.

We have also found batch normalization and dropout to be effective particularly

when we trained our network with noisy 2D pose estimates from the detectors.

Without batch normalization our network does not generalize well for noisy 2D

pose estimates. Adding both batch normalization and dropout help our network to

generalize better for test data decreasing the overall test error of our network with

a minute increase in training time.

In addition to batch norm and dropout we also added a constraint on the weights

of each layer of the network so that their maximum norm is always less than or

equal to 1. We observed that it makes our model robust to noise and improves

generalization.

46

3.3 Data Preprocessing
We normalized both our 2D pose inputs and 3D pose ground truth by subtracting

the mean and dividing it by the standard deviation. Since we predict the 3D joint

locations relative to the root node and do not predict the global position of the root

node, we zero-center the 3D poses around the hip-joint, the root node. This is in

line with the standard protocol of Human3.6M and the previous work.

3.3.1 Camera coordinate frame

A key factor of our system is predicting the 3D pose in the camera coordinate frame

instead of an arbitrary global frame. Intuitively it is difficult for any model to learn

the mapping from a 2D pose at a particular view to any arbitrary coordinate space

since it captures no information of the view and any random amount rotation or

translation to the arbitrary space would yield in no change in the input. Predicting

3D pose in a fixed global frame causes the multiple views of the same 2D pose map

to the same output. This reduces variance in the training data, making it harder for

the network to learn the mapping and causes overfitting. A direct consequence of

predicting in arbitrary global coordinate frame is the failure to capture the global

orientation of the person leading to higher errors in all the joints. There are a

number of works that have predicted 3D pose in camera coordinate frame [29, 64,

87, 117, 133, 134].

By predicting 3D pose in the same camera frame as 2D pose, we get a greater

variability of training data per camera view. Therefore to make our network predict

3D poses in camera space, we rotate and translate the 3D ground truth, in global

coordinate frame, by applying inverse transform of the camera based on its extrin-

sic parameters. It should be noted that we do not use any ground truth camera

parameters at test time. The network learns itself to correctly map the 2D pose in

a particular view to its corresponding 3D space in the same view.

3.3.2 2D detections

We used the the state-of-the-art 2D pose estimator called stacked hourglass network

by Newell et al. [80], trained on the MPII [5] dataset, to obtain 2D pose detections.

MPII dataset is a standard dataset for the task of 2D pose estimation containing

47

over 25K images over wide variety of scenes containing more than 40K people.

To obtain the detections, we first used the bounding box ground truth provided

with Human3.6M dataset to estimate the center of the person in the image which

is in line with previous work [51, 64, 76, 85, 117]. We cropped a region of 440×
440 pixels around the estimated center and passed it to the stacked-hourglass pose

estimator which resizes the cropped image to 256× 256 pixels before processing

it.

We found that the average error between the detected and ground truth 2D

poses for Human3.6M dataset is approximately 15 pixels which is slightly higher

than the 10 pixel error reported by Moreno-Nouguer [76] who used CPM [123]

for 2D pose estimation. However, we chose stacked-hourglass [80] model over the

CPM model because we found it to be approximately 10 times faster than CPM

in estimating pose from an image. Moreover, stacked-hourglass model reported a

lower error in MPII dataset which contains a lot of in-the-wild images. Hence we

felt it would generalize better to in-the-wild images than CPM [123].

To find out whether more accurate 2D pose estimation improves error in our

model, we also fine-tuned the stacked-hourglass model, pre-trained on the MPII

dataset. For fine-tuning we use all the default hyper-parameters of the pretrained

except for the mini-batch size which was set to 3 from 6 due to memory limitations

on the GPU and fine-tuned it for 40,000 iterations.

3.3.3 Training details

We trained our network for 200 epochs where each epoch makes a pass over the

2D poses of entire Human3.6M dataset. We used the Adam [55] optimizer for

optimization. We started our training with learning rate of 0.001 and applied expo-

nential decay on the learning rate as our training progressed. We used a mini-batch

size of 64. We initialized the weights of our network by using using Kaiming

initialization [43]. Our code has been implemented on Tensorflow. A single pass

over a mini-batch including back-propagation takes around 5ms and a forward pass

takes only 2ms on an NVIDIA Titan X GPU. Therefore, when combined with any

real-time 2D pose estimator our network can predict the 3D pose from an image in

real-time. Single training epoch, which makes a pass over the entire Human3.6M

48

Protocol #1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD Smoke Wait WalkD Walk WalkT Avg

LinKDE [51] (SA) 132.7 183.6 132.3 164.4 162.1 205.9 150.6 171.3 151.6 243.0 162.1 170.7 177.1 96.6 127.9 162.1
Li et al [64] (MA) – 136.9 96.9 124.7 – 168.7 – – – – – – 132.2 70.0 – –
Tekin et al [117] (SA) 102.4 147.2 88.8 125.3 118.0 182.7 112.4 129.2 138.9 224.9 118.4 138.8 126.3 55.1 65.8 125.0
Zhou et al [134] (MA) 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0
Tekin et al [116] (SA) – 129.1 91.4 121.7 – 162.2 – – – – – – 130.5 65.8 – –
Ghezelghieh et al [37] (SA) 80.3 80.4 78.1 89.7 – – – – – – – – – 95.1 82.2 –
Du et al [29] (SA) 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2 117.5 226.9 120.0 117.7 137.4 99.3 106.5 126.5
Park et al [85] (SA) 100.3 116.2 90.0 116.5 115.3 149.5 117.6 106.9 137.2 190.8 105.8 125.1 131.9 62.6 96.2 117.3
Zhou et al [133] (MA) 91.8 102.4 96.7 98.8 113.4 125.2 90.0 93.8 132.2 159.0 107.0 94.4 126.0 79.0 99.0 107.3
Nie et al [81] (MA) 90.1 88.2 85.7 95.6 103.9 103.0 92.4 90.4 117.9 136.4 98.5 94.4 90.6 86.0 89.5 97.5
Rogez et al [73] (MA) – – – – – – – – – – – – – – – 88.1
Mehta et al [73] (MA) 57.5 68.6 59.6 67.3 78.1 82.4 56.9 69.1 100.0 117.5 69.4 68.0 76.5 55.2 61.4 72.9
Mehta et al [74] (MA) 62.6 78.1 63.4 72.5 88.3 93.8 63.1 74.8 106.6 138.7 78.8 73.9 82.0 55.8 59.6 80.5
Lin et al [65] (MA) 58.0 68.2 63.3 65.8 75.3 93.1 61.2 65.7 98.7 127.7 70.4 68.2 72.9 50.6 57.7 73.1
Tome et al [119] (MA) 65.0 73.5 76.8 86.4 86.3 110.7 68.9 74.8 110.2 173.9 84.9 85.8 86.3 71.4 73.1 88.4
Pavlakos et al [87] (MA) 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Tekin et al [118] 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107.3 69.3 70.3 74.3 51.8 63.2 69.7

Ours (SH detections) (SA) 61.6 73.4 63.3 58.3 91.8 93.6 66.3 62.0 91.7 109.4 75.7 86.5 67.2 51.2 52.3 73.6
Ours (SH detections) (MA) 53.3 60.8 62.9 62.7 86.4 82.4 57.8 58.7 81.9 99.8 69.1 63.9 67.1 50.9 54.8 67.5
Ours (SH detections FT) (MA) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Ours (GT detections) (MA) 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5

Table 3.1: Results showing errors action-wise on Human3.6M [51] under
Protocol #1 (no rigid alignment or similarity transform applied in post-
processing). SH indicates that we trained and tested our model with
the detections of Stacked Hourglass [80] model pre-trained on MPII
dataset [5] as input, and FT indicates that the the model was fine-tuned on
Human3.6M. GT detections denotes that the ground truth 2D locations
were used. SA indicates that a model was trained for each action, and
MA indicates that a single model was trained for all actions.

dataset, takes only about 2 minutes which allowed us to experiment with different

hyper-parameters and variants of our architecture.

3.4 Experimental evaluation

Datasets and protocols We perform quantitative evaluation on two benchmark

datasets for 3D pose estimation: Human3.6M [51] and HumanEva [105]. For

qualitative results we use the MPII dataset [5] which is a benchmark dataset for

2D pose estimation and does not have any ground truth for 3D pose.

As we have discussed in Section 1.1.2, Human3.6M is, to the best of our knowl-

edge, the largest publicly available datasets for human 3d pose estimation. Hu-

manEva, on the other hand, is another dataset for 3D pose estimation which is

49

Protocol #2 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD Smoke Wait WalkD Walk WalkT Avg

Akhter & Black [2]* (MA) 14j 199.2 177.6 161.8 197.8 176.2 186.5 195.4 167.3 160.7 173.7 177.8 181.9 176.2 198.6 192.7 181.1
Ramakrishna et al [92]* (MA) 14j 137.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1 168.6 175.6 160.4 161.7 150.0 174.8 150.2 157.3
Zhou et al [134]* (MA) 14j 99.7 95.8 87.9 116.8 108.3 107.3 93.5 95.3 109.1 137.5 106.0 102.2 106.5 110.4 115.2 106.7
Bogo et al [16] (MA) 14j 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 86.8 79.7 87.7 82.3
Rogez et al [73] (MA) – – – – – – – – – – – – – – – 87.3
Nie et al [81] (MA) 62.8 69.2 79.6 78.8 80.8 86.9 72.5 73.9 96.1 106.9 88.0 70.7 76.5 71.9 76.5 79.5
Mehta et al [73] (MA) 14j – – – – – – – – – – – – – – – 54.6
Tekin et al [118] (MA) 17j – – – – – – – – – – – – – – – 50.1
Moreno-Noguer [76] (MA) 14j 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 71.5 78.0 73.2 74.0
Pavlakos et al [87] (MA) 17j – – – – – – – – – – – – – – – 51.9

Ours (SH detections) (SA) 17j 50.1 59.5 51.3 56.9 68.5 67.5 51.0 47.2 68.5 85.6 61.2 67.0 55.1 41.1 45.5 58.5
Ours (SH detections) (MA) 17j 42.2 48.0 49.8 50.8 61.7 60.7 44.2 43.6 64.3 76.5 55.8 49.1 53.6 40.8 46.4 52.5
Ours (SH detections FT) (MA) 17j 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Ours (SH detections) (SA) 14j 44.8 52.0 44.4 50.5 61.7 59.4 45.1 41.9 66.3 77.6 54.0 58.8 49.0 35.9 40.7 52.1

Table 3.2: Results showing errors action-wise on Human3.6M [51] dataset
under protocol #2 (rigid alignment in post-processing). The 14j anno-
tation indicates that the body model considers 14 body joints while 17j
means considers 17 body joints. (SA) annotation indicates per-action
model while (MA) indicates single model used for all actions. FT in-
dicates that the stacked-hourglass model has been fine-tuned on Hu-
man3.6M dataset. The results of the methods are obtained from the orig-
inal papers, except for (*), which were obtained from [16].

comparatively much smaller and older than the Human3.6M dataset but have been

used as a benchmark by many previous work.

On Human3.6M we follow the standard protocol which has been used over

the years. The protocol involves using subjects 1, 5, 6, 7, and 8 for training, and

subjects 9 and 11 for evaluation. Our error metric is average error per joint in

millimeters between the estimated and the ground truth 3D pose relative to the root

node (central hip joint). We refer to this as protocol #1. However, in some previous

work(e.g., [16, 76]), the predicted 3D pose is aligned to the ground truth 3D pose

under a rigid body similarity transform. This is typically done by using Procrustes

analysis [39]. This post-processing is referred to as protocol #2.

Several methods which used Human3.6M dataset performed an action specific

training and testing. However, recent deep network based methods train a single

model for all the actions. We observed that training a single model gives better

results than action specific models.

However, for HumanEva action specific models are trained in the literature and

the error is always computed after similarity transform. Hence we also used this

50

protocol.

3.4.1 Quantitative results

Evaluation on estimated 2D pose

Conceptually we modeled our 3D pose framework as a decoupled architecture

which divides the 3D pose estimation task into two parts: detecting 2D pose us-

ing a 2D pose estimator and estimating 3D pose from detected 2D joint location.

As mentioned before, we obtained 2D pose estimations from Human3.6M dataset

using a stacked-hourglass model [80] trained on MPII dataset [5].

Our results on protocol #1 on Human3.6M dataset is shown in Table 3.1.

As seen from the table, when we use the predictions from the stacked-hourglass

model [80] trained only on MPII dataset, our framework outperforms all the re-

cently released methods. Our network outperform Pavlakos et al. [87] by 4.4 mm,

who trained an end-to-end model from image by extending the stacked-hourglass

2D pose estimator to make it estimate volumetric heatmaps. Our network also

marginally beats the method recently proposed by Tekin et al. [118] by 2.2 mm.

Intuitively, since our method takes 2D joint location estimations as input and

tries to regress 3D pose from it, the accuracy largely depends on the accuracy of

2D estimations. To validate this we fine-tuned the stacked-hourglass network, pre-

trained on MPII dataset, over Human 3.6M dataset. As hypothesized, when trained

using the predictions from fine-tuned network, our method outperforms our nearest

competitors Pavlakos et al. [87] by 9.0 mm and Tekin et al. [118] by 6.8mm. The

margins between the errors increase by more than twice when we use fine-tuned

predictions, suggesting the superiority of our network compared to the state-of-the-

art.

We report our results on Human3.6M under protocol #2, which uses a similarity

transform with the ground truth in Table 3.2. Although under protocol #2, our

method is very narrowly beaten by both Pavlakos et al. [87] and Tekin et al. [118]

(by 0.6 mm and 2.4 mm respectively) when we use the detections from the stacked-

hourglass model trained on MPII dataset, it beats both the state-of-the-arts (by 4.2

mm and by 2.4 mm) when the detections from fine-tuned model are used.

51

Finally, we report the results on the HumanEva dataset in Table 3.3. In this

dataset, we obtained the best the result in 4 out of 6 cases, and achieved the lowest

average error for the actions Jogging and Walking and for all subject. But compared

to Human3.6M, HumanEva is a much smaller dataset and the same subjects are

present on both training and test set. Therefore, visual methods would have a

stronger bias on this dataset. Therefore, these results are not so significant as the

results obtained on Human 3.6M dataset.

A lower bound on the error 2d-to-3d regression

To validate our hypothesis that the major source of error for 3D pose estimation is

due to the errors in estimating 2D poses, we train our model on Human3.6M with

ground truth 2D pose. We show the results under protocol #1 in Table 3.1 where a

single model is trained for all actions. Unsurprisingly, the network trained with the

ground truth results in a significantly lower error (approximately 17 mm) than our

model trained on detections of pre-trained stacked-hourglass.

Under protocol #2 our network trained on the ground truth achieves an error of

37.10 mm, almost 30% better than the case when our network was trained on the

estimated 2D pose, which validates our hypothesis empirically that for deep net-

works it is easier to learn the mapping from 2D joint locations to 3D joint locations

and the more accurate the estimation of 2D pose is, the better is the accuracy of 3D

pose.

Even though we evaluate per frame separately and don’t use any temporal post-

processing, we observed that the predictions produced from the ground truth 2D

are smooth. A video demonstrating this and other qualitative results can be found

at at https://youtu.be/Hmi3Pd9x1BE.

Robustness to detector noise

To further analyze the robustness of our approach to noisy inputs, we carried out

experiments where our model is trained on the ground truth 2D pose and tested on

ground truth 2D pose randomly corrupted by different level of additive Gaussian

Noise. We used protocol #2 to compare against the work by Moreno-Nouguer [76]

because they used the same protocol. The results are reported in Table 3.4. We

52

https://youtu.be/Hmi3Pd9x1BE

Walking Jogging
S1 S3 S3 S1 S2 S3 Avg

Radwan et al [90] 75.1 99.8 93.8 79.2 89.8 99.4 89.5
Wang et al [122] 71.9 75.7 85.3 62.6 77.7 54.4 71.3
Simo-Serra et al [107] 65.1 48.6 73.5 74.2 46.6 32.2 56.7
Bo et al [14] 46.4 30.3 64.9 64.5 48.0 38.2 48.7
Kostrikov et al [56] 44.0 30.9 41.7 57.2 35.0 33.3 40.3
Yasin et al [128] 35.8 32.4 41.6 46.6 41.4 35.4 38.9
Moreno-Noguer [76] 19.7 13.0 24.9 39.7 20.0 21.0 26.9
Pavlakos et al [87] 22.1 21.9 29.0 29.8 23.6 26.0 25.5
Ours (SH detections) 19.7 17.4 46.8 26.9 18.2 18.6 24.6

Table 3.3: Results on the HumanEva [105] dataset, and comparison with pre-
vious methods.

outperform the work by Moreno-Nouguer [76] by a huge margin for all levels of

noise. Even in the case when no Gaussian noise is added our method bettered the

results from Moreno-Nouguer by a staggering 43%.

We have also reported the case when our network was trained with ground truth

2D pose but tested with noisy detections from the 2D pose detectors CPM [123]

and stacked-hourglass [80]. As can be observed from the table, our method also

performs reasonably well in this case, thereby demonstrating the robustness of our

model.

Ablative and hyperparameter analysis

To demonstrate the usefulness of different components and design choices of our

network we perform an ablative analysis. We perform the ablative analysis under

Protocol #1 where the input 2D pose comes from the model that is trained on MPII

dataset only and train a single model for all the actions for 3D pose estimation. The

results are show in Table 3.5. As we can see from the table, when we remove only

batch normalization, the network generalizes poorly and this leads to an increase

in error of 21 mm. Removing both batch normalization and dropout leads to an

increase of 8.5 mm, while adding residual connections give as a gain of about 8.3

mm. The biggest impact is made when we predict 3D pose in camera coordinate

frame. When the 3D pose is predicted in an arbitrary global frame it leads to an

53

DMR [76] Ours ∆

GT/GT 62.17 37.10 25.07
GT/GT + N (0,5) 67.11 46.65 20.46
GT/GT + N (0,10) 79.12 52.84 26.28
GT/GT + N (0,15) 96.08 59.97 36.11
GT/GT + N (0,20) 115.55 70.24 45.31

GT/CPM [123] 76.47 – –
GT/SH [80] – 60.52 –

Table 3.4: Performance of our system on Human3.6M [51] dataset under
protocol #2 under different levels of additive Gaussian noise and noise
from 2D pose estimation from the pose estimators. (Top) Training using
ground truth 2D pose and testing on ground truth 2d plus plus different
levels of additive Gaussian noise. (Bottom) Training on ground truth 2D
pose and testing on the noisy outputs of a 2D pose estimator. Note that
the size of the cropped region around the person is 440×440.

average error of over 100 mm, a significant increase of about 33 mm.

We also evaluated how our network performs under different depth. Using a

single residual block results in a performance loss of about 7 mm. The network

starts to saturate when we use more than 2 Residual blocks , mostly because of

large number of parameters due to full connections.

Although not reported in the table, empirically we observed that decreasing the

size of the hidden layers to 512 from 1024 leads to an increase in error. Increasing

the size of hidden layers to 2048 units did not seemingly improve the results despite

a loss in training speed.

3.4.2 Qualitative results

We show some qualitative results on Human3.6M under protocol #1 and using the

2D poses from stacked-hourglass model pre-trained on MPII dataset in Figure 3.1.

We also show some results on in-the-wild images from MPII dataset in Figure 3.2.

We can observe certain shortcomings of our approach in Figure 3.2. We can

see from the figure that our system cannot recover from a faulty 2D pose estimation

particularly when the 2D pose detector fails completely in generate any meaning-

54

error (mm) ∆

Ours 67.5 –
w/o batch norm 88.5 21.0
w/o dropout 71.4 3.9
w/o batch norm w/o dropout 76.0 8.5
w/o residual connections 75.8 8.3
w/o camera coordinates 101.1 33.6

1 block 74.2 6.7
2 blocks (Ours) 67.5 –
4 blocks 69.3 1.8
8 blocks 69.7 2.4

Table 3.5: Ablative and hyperparameter sensitivity analysis.

ful pose. Another limitation is that our model cannot handle poses which have

unconventional orientation and are not present in Human3.6M dataset, e.g. a diver

diving into a pool. In this case, the person is upside down. Even though our model

could capture the pose to some extent, it failed to capture the real orientation of the

person.

3.4.3 Discussion of results

If we analyze the Table 3.1, we observe a general trend of getting higher errors

in certain action classes like taking photo, talking on the phone, sitting and sitting

down. Most previous work had a hard time dealing with these actions. We would

like to attribute the cause of higher error to severe self-occlusion of body parts in

these actions e.g. in certain phone sequences, one of the hands is hardly visible.

Same can be said for actions like sitting and sitting down where the actors some-

times sit in a way where the legs get aligned with the viewpoint of the camera,

resulting in blockage of view of one leg and also foreshortening.

We have demonstrated empirically that a model based on simple architecture

like fully connected layers are good enough to achieve a remarkably low error on

3D pose estimation given the 2D poses. In fact, using the state-of-the-art 2D pose

estimator, stacked-hourglass [80] we have bettered the state-of-the-art results till

55

Figure 3.1: Example of output on the test set of Human3.6M dataset. (Left)
2D pose, (Middle) 3D ground truth pose in red and blue, (Right) our 3D
pose estimations in green and purple.

date. The result goes along with our hypothesis, that the task of mapping 2D poses

to 3D is easier than previously thought and it is the error in understanding of human

pose in 2D which contributes as the major factor in the accuracy of 3D pose esti-

mation task. This hypothesis is in contrast with the standard deep learning mantra

applied to 3D pose estimation task which focuses on training deep networks end-

to-end to predict 3D pose directly from images. Pavlakos et al. [87], who had the

previous best results by training their network end-to-end, hypothesized that re-

gressing 3D points directly is more difficult than predicting a volumetric heatmap.

They also showed in their paper that when they used decoupled network i.e. use

the heatmaps as input to 3D pose estimation system without the image features, it

decreased the performance of their network despite being trained end-to-end. Our

network shows that their hypothesis about regressing 3D points directly being more

difficult is not correct. However, we do agree with them that image features may

provide valuable contextual information and that the 2D heatmaps alone is not good

enough for some reason to estimate 3D pose effectively, which we would show in

56

Figure 3.2: Qualitative results on the MPII [5] test set. Observed image, fol-
lowed by 2D pose detection using Stacked Hourglass [80] and (in green)
our 3D pose estimation. The bottom 3 examples show typical failure
cases, where either the 2D detector has failed totally (left), or marginally
(right). In the middle column of last row, the 2D detector does a good
job in estimating the 2D pose, but the person is faced upside-down. Hu-
man3.6M dataset does not provide any corresponding poses which are
oriented upside-down. However, our network still seems to predict a
meaningful pose although the orientation is reversed vertically

the next chapter. Despite this our network has shown that something as simple as

2D joint locations alone can be discriminative enough to estimate 3D pose with a

remarkably low error rate using very simple, totally decoupled network not trained

end-to-end. Our network is simple, fast and lightweight and can be trained very

easily to obtain the state-of-the-art results.

Moreno-Nouguer [76] claimed that the use of a distance matrix as a representa-

tion of human body is justified by the claim that invariant, human-designed features

should boost the accuracy of the system. However, we found using a much simpler

representation like 2D pose, a well trained system can outperform the networks

that learn from hand-generated features.

To summarize the findings from our first architecture, our accuracy in 3D pose

estimation from ground truth 2D poses suggest that, although 2D pose estimation

is considered to be a nearly solved problem, it is one of the root causes for error

57

in 3D pose estimation task. Our work also suggests that learning invariant feature

representation of human pose from images by training a network end-to-end may

not be as critical as thought or has not been exploited to its full potential.

58

Chapter 4

End-to-end model

With our first model, we showed an empirical proof that 2D pose information alone

can be discriminative enough to regress 3D joint locations with a high accuracy

and that more accurate estimation of 2D joint locations can improve overall perfor-

mance. To further bolster our argument, we design a network which regresses 3D

poses directly from the RGB image.

Our model is inspired by the stacked-hourglass network [80], which predicts

2D joint heatmaps, and by the work of Pavlakos et al. [87] which extends the

stacked-hourglass network to predict 3D volumetric heatmaps for each joints. How-

ever, instead of predicting the volumetric heatmaps, we want to regress the 3D

points directly. For this purpose we overlay our first model on top of the stacked-

hourglass network. The joint heatmaps from the last hourglass are vectorized and

projected onto a 1024 dimensional vector, which is then passed to residual blocks

like the first network. The output of the residual block is then projected down to

predict 3D joint locations relative to the root joint. Figure 1.7 shows the architec-

ture of our second network.

However, we found that it is difficult to train such a network end-to-end and

the error in estimating 3D pose is considerably higher. The heatmap for a joint

gives the probability or likelihood of the joint being at a particular spatial location.

The 2D joint locations from a heatmap are found by applying 2D argmax on the

heatmap to the find the spatial index of the maximum value. However, the argmax

function is not differentiable. Hence we cannot extract the 2D joint locations from

59

the output of stacked hourglass to pass it to our residual block and train the whole

network end-to-end. This may suggest that the heatmaps are not as discriminative

as 2D joint locations or the mapping from heatmaps to 3D joint locations is more

difficult than mapping from 2D joints to 3D and therefore leads to a higher error.

4.1 Stacked hourglass module
The hourglass module was proposed by Newell et al. [80] for the task of 2D pose

estimation. The motivation behind designing the hourglass structure was to gather

discriminative features and clues needed for understanding human pose at multi-

ple scales. Each hourglass module is composed several residual modules, which is

same as the bottleneck residual blocks proposed by He et al. [44], discussed in de-

tails in the related work Section 2.4.3. Therefore, each hourglass performs a series

of convolutions and max-pooling to process features at multiple different scales,

the lowest resolution being 4×4. The network branches off into two parts before

each pooling layer, where more convolutions are applied on the pre-pooled fea-

tures on one branch, while the other branch applies max-pooling to bring the scale

down. Once the lowest resolution is reached by successive pooling operations,

the features are sequentially up-sampled and combined with the features which

branched off and were not max-pooled at the same scale in a top-down manner.

The up-sampling is done using nearest-neighbor up-sampling and the features are

combined by element-wise addition. The output of the hourglass module is a 2D

heatmap for each joint which gives the likelihood of that joint being at a particular

spatial location.

Newell et al. [80] stacked multiple hourglass modules together to build a com-

plete 2D pose estimation framework. The heatmaps of joints from an hourglass

are projected to a larger number channels using 1× 1 convolution and are added

with the intermediate features of the hourglass and with the feature output of the

previous hourglass. The resulting output is passed onto the following hourglass

as input. The repeated bottom-up and top-down inference over the whole network

helps later hourglasses to refine the outputs of previous hourglasses. They applied

intermediate supervision at the end of each hourglass to ensure each hourglass pre-

dicts accurate estimates of heatmaps thereby allowing later hourglasses to refine

60

previous estimates. The loss function used by the authors is the Mean Squared

Error (MSE) between predicted heatmaps and ground truth heatmaps.

4.2 Pre-training stacked-hourglass model
Empirically, we found that the network does not converge easily when the en-

tire model is trained end-to-end with random weight initialization. Therefore, we

decided to pre-train the stacked-hourglass part of our network for 2D pose estima-

tion only. We stacked four hourglass modules for the task. Each hourglass has

four residual modules. We trained the stacked-hourglass module from scratch on

the images of Human3.6M dataset. Following the standard protocol of the Hu-

man3.6M dataset, we only used the images of subjects 1,5,6,7,8 for training the

network.

For this task, we cropped the input image using the bounding box annotations

provided in the dataset. We first estimated the center of the bounding box from

the given information and then cropped a 440× 440 region around the estimated

center to the network. We performed a random color augmentation in each channel

of the image separately during training by multiplying with a scalar value chosen

for each channel from a uniform distribution between 0.6 and 1.4, followed by a

clipping to ensure that the resulting intensity values like in the range of 0− 255.

Following He et al. [44], we zero center each image by subtracting each channel

by the mean values computed from the Imagenet dataset [27, 57]. To generate the

ground truth 2D heatmaps for each joint from the 2D joint locations, we applied

a 2D Gaussian filter, having a zero mean and a standard deviation of 0.75 pixels,

over the location of the joint. We applied a Mean Squared Error (MSE) between

the predicted and ground truth heat maps over all the poses as the loss function.

We applied intermediate supervision to the output of intermediate hourglasses as

suggested by Newell et al. [80]. However, we could only stack four hourglasses

due to limitation in memory and time. We used RMSprop optimizer [46] used by

Newell et al. [80] for optimizing the network with a learning rate 2.5e− 4 and

applied exponential decay for the learning rate. It took us about a day to train the

network on a single NVIDIA Titan X GPU.

61

4.3 Training end-to-end
After pre-training the hourglass part of the network, we combined our first network

on top of this pre-trained network to train the model end-to-end. Over here, we

used the intuition of transfer learning [83] where we expect that the knowledge of

human pose acquired by the 2D pose estimation part of the network can help in

obtaining better 3D pose estimation.

4.3.1 Loss Function

The goal of our model is to estimate the 3D joint locations from images directly by

training the entire network end-to-end. Therefore the input to our system is now an

RGB image. Let us denote the RGB Image as In×n×3 where n×n is the resolution

of the image having 3 channels. The output of the stacked hourglass part of the

network is a set of 16 heatmaps, one for each of the 16 joints. Each heatmap has

resolution 64× 64. Let us denote the estimated heatmaps from the last hourglass

by H(I)64×64×16 and ground truth heatmaps by G(I)64×64×16. The final output of

our system is the estimation of 3D joint locations which we denote as ŷ and the

ground truth is denoted by y.

The loss function for our network is the weighted sum of Mean Squared Error

(MSE) of 3D joint locations and MSE of the heatmaps of all the joints over a set

of N poses. It is given by

L (ŷ,H(I),y,G(I))= min
ŷ,H(I)

1
N

N

∑
i=1

[
α ‖ŷi−yi‖2

2 +β

16

∑
j=1

64

∑
a=1

64

∑
b=1

∥∥H(I(a,b)) j,i−G(I(a,b)) j,i
∥∥2

2

]
.

(4.1)

In the equation, α and β are hyperparameters controlling the importance of the

penalty terms.

As mentioned before, the stacked-hourglass module predicts the heatmaps for

16 joints namely: Central hip, spine, neck, head, both left and right joints for hip,

knee, ankle, shoulder, elbow and wrist. However, in 3D we predict 17 joints, the

extra joint being the nose. We are simply following the same output format as our

first model. We predict the 3D locations of joint relative to the root node, central

hip and the ground truth 3D poses are transformed into camera coordinate space.

62

4.3.2 Data Preprocessing

For training end-to-end, we normalized the 3D ground truth poses by subtracting

the mean and dividing by standard deviation. Similar to our first model and to

the standard protocol of Human3.6M dataset, we zero center our 3D joint locations

relative to the root node since we do not predict the global position of the root. Like

previous model, we predict the 3D pose in the camera coordinate space and hence

transformed the ground truth 3D poses into the camera space using the extrinsic

camera parameters. The input images are preprocessed in the same way as they

were preprocessed during the pre-training step in Section 4.2. The ground truth

heatmaps are obtained in similar manner.

4.3.3 Training Details

For end-to-end training we initialized the stacked-hourglass part of our network

with the weights learned during pre-training. The rest of the network is initialized

using Kaiming-initialization [43].

Because a single pass of training a convolutional neural network is expensive,

we pick every 20th frame from each training video and randomly sample 50K

images from it during a single epoch. We trained our network for 100 epochs. To

optimize our network end-to-end we used the Adam [55] optimizer. We started

our training with a learning rate of 1e− 5 and applied exponential decay on the

learning rate as our training progressed. We used a mini-batch size of 3 images due

to limitations of memory in the GPU and implemented our code on Tensorflow. A

single pass over a mini-batch including back-propagation takes around 230ms and

a forward pass takes approximately 75ms on a NVIDIA Titan X GPU.

4.4 Experimental evaluation

Datasets and protocols In case of our second model we perform quantitative

evaluation on Human3.6M [51] dataset only. We have not chosen HumanEva,

because compared to Human3.6M it is much smaller and the same subject appears

in training and test set. Besides, we have already shown the effectiveness of going

from 2D pose to 3D by reporting results on both the datasets. Therefore, we felt

63

that it is more important to perform better on Human3.6M on which most of the

recent approaches have evaluated.

In case of the second network, we follow the protocols discussed in Section 3.4.

However, because it the forward pass for our second network takes longer due

to more expensive convolutions, we evaluate every 64th frame of all the actions

on subject 9 and 11. This is a standard protocol used the methods which have

trained a CNN end-to-end for estimating 3D pose from images directly [73, 87,

119]. As mentioned before, in our protocol #1, the error is estimated as average

error per joint in millimeters between the estimated and the ground truth 3D pose

relative to the root node(central hip joint), while in protocol #2, the estimated

pose is aligned with the ground truth pose using similarity transform methods like

Procrustes analysis [39]. For this experiment, we trained a single model for all the

actions.

4.4.1 Quantitative results

The quantitative results for our second model on Human3.6M dataset for both the

protocols, protocol #1 and protocol #2, is shown in Table 4.1. For this experiment,

we only reported the average mean per joint error over all the actions. As can

be seen from the table, our end-to-end method performs quite poorly compared to

the state-of-the-art methods, under both the protocols. In fact, we observed that

our model was second worst out of all the methods that reported error on protocol

#1 and under protocol #2, it is only better than two other methods [2, 92]. This

indicates that it is more difficult to train a 3D pose estimator model end-to-end.

Particularly, it seems that the mapping 2D heatmaps of joints to 3D pose locations

directly is more difficult than mapping from 2D joint locations. We discuss the

results more elaborately in Subsection 4.4.3.

4.4.2 Qualitative results

We show some qualitative results for our second model in Figure 4.1. We can

observe from the results that our end-to-end network had a hard time predicting

terminal joints like the position of ankles, wrists and limbs. Although it does gen-

erally well for walking or standing images, there seems to be a large error for sitting

64

Methods Protocol #1 Protocol #2

LinKDE [51] 162.1 –
Akhter & Black [2]* – 181.1
Ramakrishna et al [92]* – 157.3
Bogo et al [16] – 82.3
Moreno-Noguer [76] – 74.0
Tekin et al [117] 125.0 –
Zhou et al [134]* 113.0 106.7
Du et al [29] 126.5 –
Park et al [85] 117.3 –

Zhou et al [133] 107.3 –
Pavlakos et al [87] 71.9 51.9
Our first model (SH detections) 67.5 52.1
Our first model (SH detections FT) 62.9 47.7

Our end-to-end model 144.7 112.2

Table 4.1: Results showing Mean Per Joint Error over all actions on Hu-
man3.6M [51] dataset under protocol #1 (left column) and #2 (right
column) respectively. SH indicates 2D pose detections obtained from
stacked-hourglass module [80] trained on MPII [5] dataset and FT in-
dicates that the model was fine-tuned on Human3.6M dataset [51].The
results of the methods are obtained from the original papers, except for
(*), which were obtained from [16].

pose.

4.4.3 Discussion of results

Based on the quantitative and qualitative results, we can see that training an

end-to-end model has proved to be more difficult, as suggested by a higher average

error for both the protocols. One reason for worse results than our first model can

be due to the fact that the 2D heatmaps for each joint may not be as discriminative

as the 2D joint locations for 3D pose estimation or the mapping from heatmaps

to 3D joint locations may be tougher. While we could use a 2D argmax function

65

to find the spatial location of maximum likelihood for each joint, this would have

prevented us from designing an end-to-end network because the argmax function

is not differentiable. Therefore, we can argue that it is much easier and simpler for

any model to learn a mapping from 2D joint locations to 3D and that combining

the results from last chapter, we can hypothesize that even though most of 2D

pose estimators give excellent performance, it is the error in estimating 2D joint

locations that gets carried forward when mapping to 3D pose.

One interesting experiment which can be done in future is instead of using the

heatmaps of the joints as input to the second part of our network, we can try to map

the intermediate features learned by the stacked-hourglass module to 3D pose. This

would also make the network differentiable end-to-end. However, one limiting

factor in this case is that intermediate features have a resolution of 64×64 and have

more than 256 channels, e.g. the intermediate feature of our last our hourglass has

512 channels. A possible solution to this may be to reduce the number of channels

using 1× 1 convolution which would reduce the number of connections to the

Residual Block. (See Chapter 3).

66

Figure 4.1: Example of output on the test images of Human3.6M dataset.
(Left) Image, (Middle) 3D ground truth pose in red and blue, (Right)
our 3D pose estimations in green and purple.

67

Chapter 5

Exploiting temporal information

From our previous experiments, we managed to demonstrate that 2D positions of

joints, despite having low dimensions, provide sufficient information of human

pose and that simple deep network architecture can efficiently map 2D joint loca-

tions into 3D space with a high accuracy. We also showed that designing and train-

ing a model end-to-end to predict 3D poses directly from images is more difficult

and computationally expensive. In our third model, we analyze the effectiveness

of incorporating temporal information over a sequence of 2D poses to estimate a

sequence of 3D poses.

To exploit the temporal information across a sequence of 2D poses, we de-

signed a sequence-to-sequence network [113] using Long Short-Term Memory

(LSTM) units [48] with layer normalization [6] and recurrent dropout [101, 130]

for regularization. Additionally there is a shortcut or residual connection from the

input of each unit to the output of that unit on the decoder. Moreover, making

prediction on a sequence of frames instead of a single frame allows us to impose

temporal smoothness constraints over the joints during training. Figure 1.8 shows

the diagram of our final model.

5.1 Network design
Our motivation of using sequence-to-sequence network comes from its applica-

tion on the task of Neural Machine Translation (NMT) [113], in which the trained

68

model translates a sentence in one language to a sentence in another language e.g

English to French. Our task is analogous to language translation task, where we

transform one form of input, a sequence 2D joint locations, to a different form on

output, a sequence of 3D joint locations. In a language translation model, the input

and output sentences can have different length. However, our case is simpler than

NMT because the input and the output have the same sequence length.

5.1.1 Sequence-to-sequence network with residual connections

As shown in Figure 1.8, our network is a sequence-to-sequence network consisting

of an encoder and a decoder component. Note that decoder side of the network has

shortcut connections [44] connecting the input of each LSTM unit to the prediction

of each unit. The encoder side of our network encodes the 2D pose information

over a sequence of frames in a fixed size high dimensional vector. The encoding

also captures the temporal consistency information over the sequence of input.

The initial state of the decoder is initialized by the last state of the encoder

LSTM, and a 〈START 〉 token is passed as input to the first time step of the decoder

LSTM, which in our case is a vector of ones, to start decoding. Suppose, the input

sequence has a length of t. Once the 〈START 〉 token is passed as input to the

decoder, it predicts 3D pose of the first frame, y0 which in turn is passed as input

to the next LSTM unit of the decoder, which then predicts the 3D pose for the next

frame, y1. In other words, given a 3D pose estimate, yt , of a given time step t each

LSTM unit predicts the 3D pose for next time step, yt+1. Note that the order of

input sequence is reversed, i.e. 2D pose at time t being passed as the first time step,

as recommended by Sutskever et al. [113], who empirically found that it is easier

for a decoder of sequence-to-sequence network to predict the output sequence in

reverse order as the input sequence of the encoder.

The residual connections practically makes the decoder learn the amount of

change in 3D position of each joint from the previous frame. This makes it easier

for the network to make output predictions because it only needs to estimate the

amount of perturbation from the 3D pose of previous frame, instead of estimating

the absolute 3D pose for a particular frame directly. This observation is in line

with the hypothesis of He et al. [44]. To regularize our network, we applied layer

69

normalization on each LSTM unit [6]. We also applied recurrent dropout, with a

dropout probability [101, 130] of p.

5.1.2 Layer Normalization

Although batch normalization [50] has been found to be very effective in regu-

larizing the deep networks and in reducing the training time, its applicability to

Recurrent Neural Networks is not well understood. Unlike deep networks with

fixed depth, the summed input to each recurrent neuron varies with the length of

the sequence. Therefore, it requires storing different global statistics for different

time-steps for a RNN rather than maintaining batch statistics separately for each

hidden layer in ordinary feed-forward networks. Moreover, batch normalization is

ineffective for online learning tasks or when the model is extremely large thereby

forcing a smaller batch size.

Therefore, to regularize RNNs effectively and speeding up the training pro-

cess, Ba et al. [6] proposed layer normalization. Layer normalization estimates the

normalization statistics (mean and standard deviation) from the summed inputs to

the recurrent neurons of hidden layer on a single training case instead of trying to

estimate a population mean and variance like batch normalization.

In any feed forward neural network, the input to a hidden neuron is a weighted

linear combination of the outputs of neurons from previous hidden layers, on which

a non-linear function like ReLU or sigmoid function is applied. In layer normal-

ization, the normalization statistics over all the hidden units in the same layer are

computed by:

µ
k =

1
H

H

∑
i=1

ak
i , σ

k =

√
1
H

H

∑
i=1

(ak
i −µk)2. (5.1)

In the given equations, µk represents the mean and σk represents the standard

deviation of all the recurrent neurons in hidden layer k, ak
i represents the input to

hidden unit i in layer k, which is actually linear combination of the outputs of hid-

den units from previous layer. Total number of hidden units in a particular layer

is denoted by H. All the hidden units in the same layer share the same normal-

ization terms like batch normalization but instead of estimating population mean

70

and variance for a training mini-batch, different training examples lead to different

normalization terms. Additionally, there is no constraint on the training mini-batch

size in layer normalization and it can be used even for a batch size of 1 and per-

forms same computation during training and test time.

5.1.3 Recurrent Dropout

Although dropout is very popular for regularizing deep networks, they do not work

well particularly for RNNs. Zaremba et al. [130] proposed a technique for effec-

tively applying dropout on LSTM cells so that overfitting can be reduced. They

proposed to apply dropout only on the non-recurrent connections of the network

with a certain probability p while always keeping the recurrent connections intact.

Therefore, the dropout operation adds noise to the information propagating through

the LSTM units, making their intermediate computation more robust. Not apply-

ing dropout on recurrent connections ensures that each LSTM unit remembers the

information of events that occured many timesteps back in the past. Therefore, by

using recurrent dropout technique, LSTMs can be regularized effectively without

sacrificing their ability to memorize contrary to vanilla dropout operation which

throws away residual connections inhibiting LSTMs to memorize information for

long time.

5.1.4 Temporal smoothness constraint

One issue of making 3D pose prediction for 2D poses of each frame individually

is that the error in one frame is independent of the other. The lack of aggregated

information of errors over a sequence of frames tends to cause temporally jittery

predictions. In fact, a high error in estimating 3D pose for one of the frames would

make the predictions appear inconsistent over time.

Since in our final network, we are making predictions over a sequence of 2D

poses, we can easily apply temporal smoothness constraint to ensure that the 3D

joint locations of successive frames don’t differ by too much. We apply this con-

straint by adding L2 norm of the first order derivative on the 3D joint locations with

respect to time to our loss function during training.

However, from our empirical observation from first network, we found that

71

certain joints are difficult to estimate accurately e.g. wrist, ankle, elbow. In fact,

compared to the rest these joints highly contribute to the overall mean error. To

address this issue, we partitioned the joints into three disjoint sets torso head,

limb mid and limb terminal based on the magnitude of error in estimating the

joints. We observed that the joints connected to the torso and head e.g. hips,

shoulders, neck are always predicted with high accuracy since compared to the

limbs, these body parts tend to be more rigid. Therefore these joints are put in the

set torso head. On the other hand, the joints of the limbs are always more difficult

to predict due to their high range of motion. To our observation, the terminal joints

of the limbs i.e. wrists and ankles are more difficult to predict accurately than knees

and elbows. Therefore, we put the knees and the elbows in set limb mid and the

terminal joints in set limb terminal. To reduce jitter, we multiply the derivatives

of each set of joints with different scalar values, with the highest weight being

assigned to the derivatives of the set of terminal joints, followed by the set of limbs

and the set of torso and head joints. This ensures that the derivatives of terminal

joints are penalized more than the derivatives of torso joints.

5.1.5 Loss function

The loss function of our network consists of the sum of two separate terms: Mean

Squared Error (MSE) of N different sequences of 3D joint locations; the mean of

L2 norm of the first order derivative of N sequences of 3D joint locations with

respect to time, where the joints are divided into three disjoint sets (see last sub-

section).

The MSE over N sequences, each of T time-steps, of 3D joint locations is given

by:

L(Ŷ,Y) =
1

NT

N

∑
i=1

T

∑
t=1

∥∥Ŷi,t−Yi,t
∥∥2

2 (5.2)

Here, Ŷ denotes the estimated 3D joint locations while Y denotes 3D ground

truth.

The mean of L2 norm of the first order derivative of N sequences of 3D joint

locations, each of length T , with respect to time is given by:

72

∥∥∇tŶ
∥∥2

2 =
1

N(T −1)

N

∑
i=1

T

∑
t=2

{
η
∥∥ŶTH

i,t − ŶTH
i,t−1

∥∥2
2 +ρ

∥∥ŶLM
i,t − ŶLM

i,t−1
∥∥2

2 +

τ
∥∥ŶLT

i,t − ŶLT
i,t−1

∥∥2
2

}
. (5.3)

As mentioned in the last subsection the joints are divided into three different dis-

joint sets based on their likelihood of being more erroneous. In the above equation,

ŶTH, ŶLM and ŶLT denotes the predicted 3D locations of joints belonging to sets

torso head, limb mid, and limb terminal respectively. The η ,ρ and τ are scalar

hyper-parameters to control the significance of the derivatives of 3D locations of

each of the three set of joints. A higher weight is assigned to set of the joints which

are generally predicted with higher error.

The overall loss function for our network is given as:

L = min
Ŷ

αL(Ŷ,Y)+β
∥∥∇tŶ

∥∥2
2 . (5.4)

Here α and β are scalar hyper-parameters regulating the importance of each of the

two terms in the loss function.

5.2 Data Preprocessing
For our sequence-to-sequence network, we normalized the 3D ground truth poses,

the noisy 2D pose estimates from stacked-hourglass network and the 2D ground

truth [80] by subtracting the mean and dividing by standard deviation in the same

manner as Chapter 3. Just like our previous two models, we do not predict the 3D

location of the root joint i.e. central hip joint and hence zero center the 3D joint

locations relative to the global position of the root node. The 3D poses are predicted

in the camera coordinate frame and the ground truth 3D poses are transformed into

the camera coordinate frame using the ground truth parameters of the camera.

Like our first model, we obtain 2D joint locations both from the stacked-

hourglass model pre-trained on MPII dataset [5] and from the model fine-tuned

by us for our first network on Human3.6M dataset. The detections in both cases

were obtained in the same manner described in Chapter 3.

73

To generate the training sequences, we used a sliding window of length T . The

window is slid by one frame at a time to generate the input and output sequences

of 2D and 3D poses, each of length T . Thus there is overlapping between training

sequences. This gives us more data to train on, which is always an advantage for

deep learning systems. To generate test sequences, the sliding window is slid in a

non-overlapping manner i.e. the stride length of the sliding window is same as its

size.

5.2.1 Training details

We trained our final network for 100 epochs, where each epoch makes a complete

pass over the entire Human 3.6M dataset just like our first network. Because we are

using 2D joint locations as input, which is low in dimension, we can store the entire

Human3.6M dataset into the GPU memory. We used the Adam [55] optimizer for

training the network with a learning rate of 1e−5 which is decayed exponentially

per iteration. The weights of the LSTM units are initialized by Xavier uniform ini-

tializer [38]. We used a minibatch batch size of 32 i.e. 32 sequences. For most of

our experiments we used a sequence length of 5, because it allows faster training

with high accuracy. We experimented with different sequence lengths and found

sequence length 4,5 and 6 to generally give better results, which we will discuss

in detail in the results section. Our code is implemented in Tensorflow just like

the previous two models. We empirically set the hyper-parameter values αandβ of

our loss function to 1 and 5 respectively. Similarly the three hyper-parameters of

the temporal consistency constraint η ,ρ and τ , are set to 1,2.5 and 4 respectively.

A single training step, including both forward pass and backprogagation, for se-

quence of length 5 takes only 34 ms approximately, while a forward pass takes

only about 16ms on NVIDIA Titan X GPU. Therefore, on average, our network

takes only about 3.2ms to predict 3D pose per frame, which is only slightly higher

than our first network which predicts 3D pose at 2ms per frame, with a higher ac-

curacy in prediction. Therefore, our final network is simple and can be trained fast,

which allowed us to experiment with diferent hyper-parameters and components of

our network.

74

5.3 Experimental evaluation

Datasets and protocols For our final model, we perform quantitative evaluation

on Human 3.6M [51] dataset like our second model. For qualitative evaluation, we

used some videos from youtube and from Human3.6M dataset.

For our final experiment we follow the standard protocol of Human3.6M dataset

described in Chapter 3. As described in previous chapters, protocol #1 requires us-

ing subjects 1, 5, 6, 7, and 8 for training, and subjects 9 and 11 for testing and the

error is evaluated on the predicted 3D pose without any transformation. In protocol

#2, the predicted pose is rigidly aligned to the ground pose using similarity trans-

form. Like our previous two models, the error metric is average error per joint in

millimeters between the estimated and the ground truth 3D pose relative to the root

node. We trained a single model for all the actions.

5.3.1 Quantitative results

Evaluation on estimated 2D pose

As shown by our previous two models, mapping 2D joint locations to 3D is an

easier task for deep network models than directly predicting 3D pose from images.

Our final network takes the idea of decoupling the 3D pose estimation task even fur-

ther. We want to see the effect of exploiting temporal information using a sequence

of 2D joint locations to predict a sequence of 3D joint locations. As mentioned in

Chapter 3, we obtain two sets of 2D pose detections from both stacked-hourglass

model pre-trained on MPII [5] dataset and from the model that we fine-tuned on

Human3.6M dataset [51]. We use a sequence length of 5 to evaluate our final

model.

The results on Human3.6M dataset [51] under protocol #1 dataset is shown

in Table 5.1. As we can see, our final model achieves state-of-the-art results on

protocol #1. Compared to our first network, our final network achieves significantly

better performance for both noisy 2D estimates and ground truth 2D pose. For the

2D estimates from stacked-hourglass model pre-trained on MPII dataset, our final

network has an error of approximately 12 mm less than that of the first model. As

75

Protocol #1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD Smoke Wait WalkD Walk WalkT Avg

LinKDE [51] (SA) 132.7 183.6 132.3 164.4 162.1 205.9 150.6 171.3 151.6 243.0 162.1 170.7 177.1 96.6 127.9 162.1
Li et al [64] (MA) – 136.9 96.9 124.7 – 168.7 – – – – – – 132.2 70.0 – –
Tekin et al [117] (SA) 102.4 147.2 88.8 125.3 118.0 182.7 112.4 129.2 138.9 224.9 118.4 138.8 126.3 55.1 65.8 125.0
Zhou et al [134] (MA) 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0
Tekin et al [116] (SA) – 129.1 91.4 121.7 – 162.2 – – – – – – 130.5 65.8 – –
Ghezelghieh et al [37] (SA) 80.3 80.4 78.1 89.7 – – – – – – – – – 95.1 82.2 –
Du et al [29] (SA) 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2 117.5 226.9 120.0 117.7 137.4 99.3 106.5 126.5
Park et al [85] (SA) 100.3 116.2 90.0 116.5 115.3 149.5 117.6 106.9 137.2 190.8 105.8 125.1 131.9 62.6 96.2 117.3
Zhou et al [133] (MA) 91.8 102.4 96.7 98.8 113.4 125.2 90.0 93.8 132.2 159.0 107.0 94.4 126.0 79.0 99.0 107.3
Nie et al [81] (MA) 90.1 88.2 85.7 95.6 103.9 103.0 92.4 90.4 117.9 136.4 98.5 94.4 90.6 86.0 89.5 97.5
Rogez et al [73] (MA) – – – – – – – – – – – – – – – 88.1
Mehta et al [73] (MA) 57.5 68.6 59.6 67.3 78.1 82.4 56.9 69.1 100.0 117.5 69.4 68.0 76.5 55.2 61.4 72.9
Mehta et al [74] (MA) 62.6 78.1 63.4 72.5 88.3 93.8 63.1 74.8 106.6 138.7 78.8 73.9 82.0 55.8 59.6 80.5
Lin et al [65] (MA) 58.0 68.2 63.3 65.8 75.3 93.1 61.2 65.7 98.7 127.7 70.4 68.2 72.9 50.6 57.7 73.1
Tome et al [119] (MA) 65.0 73.5 76.8 86.4 86.3 110.7 68.9 74.8 110.2 173.9 84.9 85.8 86.3 71.4 73.1 88.4
Tekin et al [118] 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107.3 69.3 70.3 74.3 51.8 63.2 69.7
Pavlakos et al [87] (MA) 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9

Our first model (SH detections) (MA) 53.3 60.8 62.9 62.7 86.4 82.4 57.8 58.7 81.9 99.8 69.1 63.9 67.1 50.9 54.8 67.5
Our first model (SH detections FT) (MA) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Our seq-2-seq model (SH detections) (MA) 45.2 51.0 55.5 51.3 75.3 62.6 48.4 47.4 67.6 75.4 61.0 52.1 53.6 43.9 45.6 55.7
Our seq-2-seq model (SH detections FT) (MA) 44.2 46.7 52.3 49.3 59.9 59.4 47.5 46.2 59.9 65.6 55.8 50.4 52.3 43.5 45.1 51.9

Our first model (GT detections) (MA) 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Our seq-2-seq model (GT detections) (MA) 35.2 40.8 37.2 37.4 43.2 44.0 38.9 35.6 42.3 44.6 39.7 39.7 40.2 32.8 35.5 39.2

Table 5.1: Results showing errors action-wise on Human3.6M [51] under
Protocol #1 (no rigid alignment or similarity transform applied in post-
processing). Note that our results reported here are for sequence of length
5. SH indicates that we trained and tested our model with the detections
of Stacked Hourglass [80] model pre-trained on MPII dataset [5] as input,
and FT indicates that the the stacked-hourglass model was fine-tuned on
Human3.6M. SA indicates that a model was trained for each action, and
MA indicates that a single model was trained for all actions.The bold-
faced numbers mean the best result while underlined numbers represent
the second best.

stated before in Chapter 3, a better 2D pose estimate improves the performance

of the network. When trained on detections of a fine-tuned 2D pose detector, the

error of our final network decreased by approximately 4 mm. As can be seen from

Table 5.1, the error of our network for fine-tuned 2D detections is 51.9 mm which

is 11 mm lower than the error of our first model which had an error of 62.9 mm on

fine-tuned detections. Our sequence-to-sequence model beats the previous state-

of-the-art by Pavlakos et al. [87] by 20 mm (almost 28% better) on protocol #1.

The results for protocol #2, which aligns the predictions to the ground truth

using a similarity transform before computing error, is reported in Table 5.2. Our

method improves the results of our first model by 8.1 mm and 5.7 mm for detec-

76

Protocol #2 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD Smoke Wait WalkD Walk WalkT Avg

Akhter & Black [2]* (MA) 14j 199.2 177.6 161.8 197.8 176.2 186.5 195.4 167.3 160.7 173.7 177.8 181.9 176.2 198.6 192.7 181.1
Ramakrishna et al [92]* (MA) 14j 137.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1 168.6 175.6 160.4 161.7 150.0 174.8 150.2 157.3
Zhou et al [134]* (MA) 14j 99.7 95.8 87.9 116.8 108.3 107.3 93.5 95.3 109.1 137.5 106.0 102.2 106.5 110.4 115.2 106.7
Rogez et al [73] (MA) – – – – – – – – – – – – – – – 87.3
Nie et al [81] (MA) 62.8 69.2 79.6 78.8 80.8 86.9 72.5 73.9 96.1 106.9 88.0 70.7 76.5 71.9 76.5 79.5
Mehta et al [73] (MA) 14j – – – – – – – – – – – – – – – 54.6
Bogo et al [16] (MA) 14j 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 86.8 79.7 87.7 82.3
Moreno-Noguer [76] (MA) 14j 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 71.5 78.0 73.2 74.0
Tekin et al [118] (MA) 17j – – – – – – – – – – – – – – – 50.1
Pavlakos et al [87] (MA) 17j – – – – – – – – – – – – – – – 51.9

Our first model (SH detections) (MA) 17j 42.2 48.0 49.8 50.8 61.7 60.7 44.2 43.6 64.3 76.5 55.8 49.1 53.6 40.8 46.4 52.5
Our first model (SH detections FT) (MA) 17j 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Our seq-2-seq model (SH detections) (MA) 37.7 41.2 45.5 42.4 54.9 48.9 38.1 37.2 54.1 57.7 49.2 40.9 44.7 35.0 38.9 44.4
Our seq-2-seq model (SH detections FT) (MA) 36.9 37.9 42.8 40.3 46.8 46.7 37.7 36.5 48.9 52.6 45.6 39.6 43.5 35.2 38.5 42.0

Table 5.2: Results showing errors action-wise on Human3.6M [51] dataset
under protocol #2 (rigid alignment in post-processing). Note that the
results reported here are for sequence of length 5. The 14j annotation
indicates that the body model considers 14 body joints while 17j means
considers 17 body joints. (SA) annotation indicates per-action model
while (MA) indicates single model used for all actions. FT indicates that
the stacked-hourglass model has been fine-tuned on Human3.6M dataset.
The bold-faced numbers mean the best result while underlined numbers
represent the second best. The results of the methods are obtained from
the original papers, except for (*), which were obtained from [16].

tions from pre-trained and fine-tuned models respectively. This beats the previous

state-of-the-art by Tekin et al. [118] by 5.7 mm for detections from out-of-the-box

hourglass model and by 8.1 mm for fine-tuned model. Like protocol #1, our model

also achieves the best result on protocol #2.

From the above tables, we observe that exploiting temporal information across

multiple sequences is indeed useful. It significantly improves the overall accuracy

of the estimates of 3D joint locations, particularly on actions like phone and sitting

down on which most of the previous approaches have performed poorly due to

heavy occlusion. For the detections from fine-tuned stacked hourglass, our network

has achieved the lowest error in every action class of Human3.6M dataset. It is to

be noted that we used the same detections from the fine-tuned stacked-hourglass in

our first network.

77

Evaluation on 2D ground truth

As suggested by the results from our first model, the more accurate the 2D joint

locations are, the better are the estimates for 3D pose. We carried the same ex-

periment for our final network to show that the lower bound on the 3D pose error

can be decreased even further by exploiting temporal information across the se-

quences. We used a sequence of 2D ground truth poses of length 5 as input to train

our network. The results of experimenting with ground truth 2D joint locations

under protocol #1 are reported in Table 5.1. As seen from the table, our sequence-

to-sequence model improves the lower bound error of our first network by almost

6.3 mm.

The results for protocol #2 are reported in Table 5.3 where we show the ro-

bustness of our network which is trained using the ground truth 2D pose and tested

with different levels of Gaussian noise. We can see that even under protocol #2 our

final network outperforms our first network when there is no noise in the 2D joint

locations.

From the results mentioned above we can hypothesize that information of tem-

poral consistency over a sequence of pose is a valuable cue for the task of estimat-

ing 3D pose. Even in the noise-free ground truth data, the temporal information

improves the overall performance.

Performance on different sequence lengths

The results reported so far have been for input and output sequences of length 5

only. We carried out experiments to see how our network performs for different

sequence lengths ranging from 2 to 10. The results are shown in Figure 5.1. We

carried out this experiment for 2D detections from both out-of-the-box stacked-

hourglass and the fine-tuned one. As it can be seen, the performance of our network

for both case remains stable for sequences of varying lengths. Particularly the best

results were obtained for length 4, 5 and 6. However, we chose sequence length

5 for carrying out our experiments as a compromise between training time and

accuracy.

78

Figure 5.1: Mean Per Joint Error(MPJE) in mm of our network for different
sequence length. SH Pre-trained indicates that 2D poses are estimated
using the stacked-hourglass model pre-trained on MPII [5] while SH
FT indicates that the detections were obtained on the stacked-hourglass
model fine-tuned by us on Human3.6M dataset.

Robustness to noise

Like our first model, to test the tolerance of our final model to noise in input 2D

joint locations, we carried out experiments where we train our model on ground

truth 2D pose data and evaluate the performance of our network on inputs corrupted

by different levels of Gaussian noise. As mentioned in Chapter 3, we use protocol

protocol #2 for comparison which rigidly aligns the output with the ground truth.

Table 5.3 shows how our final model compares against the model by Moreno-

Nouguer [76] and our first network. Both of our networks are significantly more

robust to noise than Moreno-Nouguer’s model [76]. When compared our two net-

works, we find similar level of tolerance for noise. Our sequence-to-sequence net-

work trained on ground truth 2D pose seems to fare better when the level of input

noise is low i.e. less than 10, whereas our first model proves to be marginally more

robust for higher levels of noise. We have also evaluated the case when our network

79

DMR [76] Our first model Ours(seq−2− seq)

GT/GT 62.17 37.10 31.67
GT/GT + N (0,5) 67.11 46.65 37.46
GT/GT + N (0,10) 79.12 52.84 49.41
GT/GT + N (0,15) 96.08 59.97 61.80
GT/GT + N (0,20) 115.55 70.24 73.65

GT/SH [80] – 60.52 62.43

Table 5.3: Performance of our system trained with ground truth 2D pose
of Human3.6M [51] dataset and tested under different levels of addi-
tive Gaussian noise (Top) and on 2D pose predictions from stacked-
hourglass [80] pose detector (Bottom) under protocol #2. The size of
the cropped region around the person is 440×440.

was tested with noisy detections from the stacked-hourglass model [80] not fine-

tuned on Human3.6M data. The stacked-hourglass network coming out-of-the-box

has an error of 15 pixels on average per joint. Similar to our observation for higher

levels Gaussian noise, our sequence-to-sequence network slightly under-performs

compared to our first model. Note that the size of the cropped region around the

person is 440× 440. One reason for our sequence-to-sequence network, trained

on ground truth data, being more sensitive to higher levels of noise may be that,

because of the temporal smoothness constraint, the errors from individual frames

gets distributed over the entire sequence to maintain smoothness, whereas for our

first model, the errors are independent in each frame.

Ablative analysis

To show the effectiveness of different components of our network, we perform

an ablative analysis. We follow protocol #1 for performing ablative analysis and

trained a single model for all the actions. The errors reported here are for 2D

pose prediction from the fine-tuned stacked-hourglass network [80]. The results

are reported in Table 5.4.

From the table, we observe that the biggest improvement of result is due the

the residual connections on the decoder side, which agrees with the hypothesis of

80

error (mm) ∆

Ours 51.9 –
w/o temporal consistency constraint 52.7 0.8
w/o recurrent dropout 58.3 6.4
w/o layer normalized LSTM 61.1 9.2
w/o layer norm and recurrent dropout 59.5 7.6
w/o residual connections 102.4 50.5

Table 5.4: Ablative and hyperparameter sensitivity analysis.

He et al. [44]. Removing the residual connections increases the error by 50.5 mm,

which is a huge margin. When we train our network without layer normalization

on LSTM units, the error increases by 9.2 mm. On the other hand when no dropout

is performed, the error raises by 6.4 mm. If both layer norm and recurrent dropout

is not used the results get worse by 7.6 mm. Although the temporal consistency

constraint may seem to have less impact (only 0.8 mm) on the performance of our

network, it ensures that the predictions over a sequence are smooth and temporally

consistent which is apparent from our qualitative results discussed in next section.

5.3.2 Qualitative results

We provide some qualitative results on Human3.6M sequences and some Youtube

videos. The 2D poses were detected using the fine-tuned stacked-hourglass model.

We show some qualitative results on Human3.6M under protocol #1 in Figure 5.2,

Figure 5.3 and Figure 5.4. The results for Youtube videos are shown in Figure 5.5,

Figure 5.6 and Figure 5.7. To generate results we used our network trained on

fine-tuned stacked hourglass predictions with a sequence length of 5.

We can see that for the Human3.6M sequence, our network predicts smooth and

temporally consistent 3D poses in challenging actions like Sitting Down, Phoning

and Taking Photo on which most methods performed worse than other actions.

Especially in Figure 5.2, we can see for the second frame, the 2D detection is

noisy. Yet our network manages to estimate a temporally consistent 3D based on

the information from previous frame.

The real advantage of using temporal smoothing constraint during training is

81

apparent in the results of our network on youtube video sequences. As can be seen

in Figure 5.5, for the 3rd and 5th frames the 2D pose detector totally breaks and es-

timates unrealistic 2D poses. Yet our network was able to recover a meaningful and

consistent 3D pose by exploiting the temporal information. Also in Figure 5.7, the

2D pose estimator generates very noisy poses from which our network successfully

predicts temporally coherent 3D pose.

5.3.3 Discussion of results

Both the quantitative and qualitative results for our sequence-to-sequence network

show the effectiveness of exploiting temporal information over multiple sequences

to estimate 3D poses which are temporally smooth. Our network achieved the best

accuracy on all of the 15 actions which is a remarkable feat. Particularly, most of

the previous work struggled with actions which have a high degree of occlusion

like taking photo, talking on the phone, sitting and sitting down. Our network has

significantly better results for these actions e.g. for sitting down action our error is

lower by an impressive 29 mm, while for the rest of the complicated actions, the

improvement ranges between 6−19 mm.

We have seen that our network is reasonably robust to noisy 2D poses. Al-

though the contribution of temporal smoothness constraint is not apparent in the

ablative analysis in Table 5.4, its effectiveness is highlighted in the qualitative re-

sults particularly in the results on challenging youtube vidoes, where we observe

that, even though the 2D pose estimator breaks and generates faulty predictions,

our network can recover meaningful 3D pose.

Our final network effectively demonstrates the power of using temporal in-

formation and we achieved it using a simple sequence-to-sequence network which

can be trained efficiently in reasonably quick time. Also our network makes predic-

tions at 3ms per frame on average which suggests that, given the 2D pose detector

is real-time, our network can be applied in real-time scenarios.

82

Figure 5.2: Qualitative result of Subject 11, action sitting down for Hu-
man3.6M dataset [51] (Left) Image with 2D pose, (Middle) 3D ground
truth pose in red and blue, (Right) 3D pose estimations in green and
purple.

83

Figure 5.3: Qualitative result of Subject 9, action phoning for Human3.6M
dataset [51] (Left) Image with 2D pose, (Middle) 3D ground truth pose
in red and blue, (Right) 3D pose estimations in green and purple.

84

Figure 5.4: Qualitative result of Subject 11, action taking photo for Hu-
man3.6M dataset [51] (Left) Images with 2D pose detections, (Middle)
3D ground truth pose in red and blue, (Right) 3D pose estimations in
green and purple.

85

Figure 5.5: Quantitative results on youtube videos. (Left) Images with 2D
pose detections, (Right) our 3D pose estimation.

86

Figure 5.6: Quantitative results on youtube videos. (Left) Images with 2D
pose detections, (Right) our 3D pose estimation.

87

Figure 5.7: Quantitative results on youtube videos. (Left) Images with 2D
pose detections, (Right) our 3D pose estimation.

88

Chapter 6

Conclusion and future work

In this work, we analyzed the sources of error for the task of 3D pose detection.

We designed three different deep-network based models to address the task in three

different manners. One key issue for 3D pose estimation is that the major source of

error for the task is still not well understood. The difficulty of predicting 3D joints

from images can arise due to any of these reasons:

• Error in predicting 2D joint locations from an image;

• Difficulty in learning image features that can be reliably mapped to 3D joint

locations;

• Difficulty in mapping 2D pose representation to 3D pose.

Our first network decouples the task of estimating 3D pose from an image

into two parts: i) estimating 2D joint locations ii) transforming the 2D pose to

3D. In this experiment we wanted to verify how accurately the 2D poses can be

translated to 3D. Empirically, we found that a simple network composed of a set

of fully connected linear layers with residual connections predicted 3D pose from

ground truth 2D pose with remarkably high accuracy almost 30% better than the

state-of-the-art. When trained with noisy 2D detections from a pre-trained 2D

pose detector, the error increased, still giving us a better result than the state-of-

art models by Tekin [118]. When the same network was trained with the 2D pose

detector fine-tuned on Human3.6M [51] dataset, the results improved by more than

89

7%. From these results we hypothesize that it is the task of mapping 2D joint

locations to 3D is easier than mapping 3D joint locations directly from the image.

To further prove our hypothesis, we trained a second model end-to-end that

predicts 3D poses from an image directly by stacking our first model on top of 2D

pose estimator such that the 2D joints heatmaps are fed as input to the second part.

We found that it is much more difficult to train the network because the prediction

error was significantly higher compared to our first network. This further proved

our hypothesis that although state-of-the-art 2D pose estimators are very accurate,

the noise from the detections is the primary cause of error in 3D pose estimation.

By these experiments, we also found that 2D joint locations, despite being low in

dimension, is a better feature for learning 3D pose than the 2D joint heatmaps.

The results obtained are contradictory to the hypotheses proposed by the recent

methods for 3D pose estimation to justify their complex systems trained end-to-end

to predict 3D pose from images. For example, Pavlakos et al. [87] claimed that it is

more difficult to regress 3D joint locations directly than predicting the volumetric

heatmaps of joints, whereas our first network proved that 3D joint locations can

be predicted with high accuracy from something as simple as 2D coordinates of

joints. Although image features can provide useful information cues, we would

like to argue that that finding invariant features and complex representations of 3D

pose, which has been the focus for a majority of recent approaches, may either not

be that important or has not been utilized to its full potential yet.

In our third and final model we wanted to examine the effect of exploiting tem-

poral consistency information over a sequence. For this purpose, we designed

a sequence-to-sequence network with shortcut connections on the decoder side

which connects the input of decoder to its output. Given 2D joint locations of

sequence, our network predicts a sequence 3D pose. We also imposed temporal

consistency constraint on the network during training. Our final network signifi-

cantly outperformed our first network (which happened to be the state-of-the-art of

all methods) for both noisy and ground truth 2D pose, thereby proving the effective-

ness of exploiting temporal information from multiple frames. Also, qualitatively,

our sequence-to-sequence network predicts more temporally coherent poses under

noisy 2D inputs reducing the jitter that occurred when 3D poses were estimated on

each frame separately.

90

Next we will discuss some of the some future research directions not addressed

by our work, followed by a summary of our work and contributions.

6.1 Future directions
One area not addressed by our systems and most of recent work is the absolute

location of the person in 3D world. To find this the homography information and

camera parameters must be known, which is possible if the 3D pose estimation

system is deployed on smartphones or tablets or if we know the camera used to

capture the image. However, to find 3D pose from arbitrary image or videos, one

approach can be to estimate the extrinsic parameters of the camera along with the

3D pose. Finding the absolute location of root joints is critical for multi-person 3D

pose estimation, which is an interesting research path to explore.

For our end-to-end network, we used 2D joint heatmaps as features to the 3D

pose estimator. However, the latent features learn from the images by the 2D pose

estimator can provide valuable and discriminative information. We did not train

any end-to-end model from deep features. One future research direction can be

to take the intermediate features learned by deep convolutional layers of either a

2D pose estimator like stacked-hourglass [80] or of deep networks trained on Ima-

genet like ResNet-101 [44] and perform a 1×1 convolution to reduce the number

of channels and try to estimate 3D joint locations from the deep features. Most

state-of-the-art 2D pose estimators estimates the locations of joints by applying 2D

argmax operation over the heatmaps. However, since the argmax function is non-

differentiable we cannot put it in the end-to-end deep learning pipeline. A way

around could be to estimate an expected gradient for the argmax operation using

multiple samples of 2D heatmaps similar to the policy gradients commonly used

in reinforcement learning to train deep reinforcement networks.

Moreno-Nouguer [76] showed that a distance-matrix can be a good represen-

tation of the structure of human joint. One interesting direction can be to somehow

combine the distance-matrix of each joint with 2D joint locations as input.

Since deep networks are dependent on large amounts of data, we can simulate

2D detectors by projecting the 3D motion capture data from multiple virtual cam-

eras and add some noise with it to augment the training data. One limitation for all

91

our networks, is that they cannot estimate 3D poses when a person is in unusual

orientation i.e. being upside down during diving or doing a front flip, because of

the absence of such poses in 3D pose estimation dataset. Augmenting such poses

can help in alleviating this problem.

For a sequence of images, it will be interesting to see if the translation and

change of orientation of the root joint over a sequence can be predicted by ex-

ploiting temporal information. Other than that, it may be interesting to see if deep

features from networks like ResNet-101 [44] or Mask R-CNN [45] can be com-

bined with LSTM units to learn the temporal coherence between the 3D poses.

6.2 Conclusion
To summarize our work, we designed two simple, yet sophisticated and robust net-

works both of which can be trained very fast to estimate 3D poses from noisy 2D

joint locations. We hypothesized that a majority of the error for 3D pose estimation

comes from the error in 2D pose detections and that training a network end-to-end

to predict 3D pose from images directly is more difficult and computationally ex-

pensive. Finally, we proved that temporal coherence information over a sequence

can be exploited efficiently to improve the accuracy of 3D pose estimation and

produce estimations which are temporally smooth. Both of our networks also gen-

eralize very well to arbitrary and noisy inputs as evident by the performances of

our networks on MPII dataset and Youtube videos.

92

Bibliography

[1] A. Agarwal and B. Triggs. 3D human pose from silhouettes by relevance
vector regression. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2004. → pages 2, 18, 19

[2] I. Akhter and M. J. Black. Pose-conditioned joint angle limits for 3d
human pose reconstruction. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1446–1455, 2015. → pages 2, 17,
18, 24, 44, 50, 64, 65, 77

[3] S. Amin, M. Andriluka, M. Rohrbach, and B. Schiele. Multi-view pictorial
structures for 3d human pose estimation. In British Machine Vision
Conference (BMVC), 2013. → pages 18, 27

[4] M. Andriluka, S. Roth, and B. Schiele. Monocular 3d pose estimation and
tracking by detection. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 623–630. IEEE, 2010. → pages 2, 18,
26

[5] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose
estimation: New benchmark and state of the art analysis. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
→ pages viii, ix, xiii, xiv, 9, 47, 49, 51, 57, 65, 73, 75, 76, 79

[6] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. → pages 13, 68, 70

[7] A. Baak, M. Müller, G. Bharaj, H.-P. Seidel, and C. Theobalt. A
data-driven approach for real-time full body pose reconstruction from a
depth camera. In Consumer Depth Cameras for Computer Vision, pages
71–98. Springer, 2013. → pages 18, 28

[8] C. Barron and I. A. Kakadiaris. Estimating anthropometry and pose from a
single uncalibrated image. Computer Vision and Image Understanding

93

(CVIU), 81(3):269–284, 2001. URL
http://dx.doi.org/10.1006/cviu.2000.0888. → pages 16

[9] S. Behnke. Hierarchical neural networks for image interpretation, volume
2766. Springer Science & Business Media, 2003. → pages 33

[10] V. Belagiannis, S. Amin, M. Andriluka, B. Schiele, N. Navab, and S. Ilic.
3d pictorial structures for multiple human pose estimation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
1669–1676, 2014. → pages 18, 28

[11] S. Belongie, J. Malik, and J. Puzicha. Shape context: A new descriptor for
shape matching and object recognition. In Advances in neural information
processing systems, pages 831–837, 2001. → pages 19

[12] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object
recognition using shape contexts. IEEE transactions on pattern analysis
and machine intelligence, 24(4):509–522, 2002. → pages 19

[13] P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang. Semidefinite
programming approaches for sensor network localization with noisy
distance measurements. IEEE transactions on automation science and
engineering, 3(4):360–371, 2006. → pages 25

[14] L. Bo and C. Sminchisescu. Twin Gaussian processes for structured
prediction. International Journal of Computer Vision (IJCV), 87(1-2),
2010. → pages 18, 19, 53

[15] L. F. Bo, C. Sminchisescu, A. Kanaujia, and D. N. Metaxas. Fast
algorithms for large scale conditional 3D prediction. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
1–8, 2008. URL http://dx.doi.org/10.1109/CVPR.2008.4587578. → pages
2, 18, 19

[16] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and M. J. Black.
Keep it smpl: Automatic estimation of 3d human pose and shape from a
single image. In European Conference on Computer Vision (ECCV), pages
561–578. Springer, 2016. → pages viii, ix, x, 16, 18, 24, 25, 44, 50, 65, 77

[17] I. Bülthoff, H. Bülthoff, and P. Sinha. Top-down influences on stereoscopic
depth-perception. Nature Neuroscience, 1(3):254–257, 1998. → pages 15

94

http://dx.doi.org/10.1006/cviu.2000.0888
http://dx.doi.org/10.1109/CVPR.2008.4587578

[18] M. Burenius, J. Sullivan, and S. Carlsson. 3d pictorial structures for
multiple view articulated pose estimation. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3618–3625,
2013. → pages 18, 28

[19] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-person 2d pose
estimation using part affinity fields. arXiv preprint arXiv:1611.08050,
2016. → pages 2, 29

[20] C. S. Catalin Ionescu, Fuxin Li. Latent structured models for human pose
estimation. In IEEE International Conference on Computer Vision (ICCV),
2011. → pages 9, 12, 16, 21

[21] K. Chellapilla, S. Puri, and P. Simard. High performance convolutional
neural networks for document processing. In Tenth International Workshop
on Frontiers in Handwriting Recognition. Suvisoft, 2006. → pages 33

[22] C.-H. Chen and D. Ramanan. 3d human pose estimation= 2d pose
estimation+ matching. arXiv preprint arXiv:1612.06524, 2016. → pages 2,
18, 21

[23] K. Cho, B. V. Merriënboer, C. Gulcehre, D. B. F. Bougares, H. Schwenk,
and T. Bengio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. In Conference on
Empirical Methods in Natural Language Processing (EMNLP 2014), 2014.
→ pages 40

[24] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep,
big, simple neural nets for handwritten digit recognition. Neural
computation, 22(12):3207–3220, 2010. → pages 33

[25] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 1, pages 886–893. IEEE, 2005. → pages 19

[26] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical
society. Series B (methodological), pages 1–38, 1977. → pages 25

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A
large-scale hierarchical image database. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 248–255. IEEE,
2009. → pages 33, 44, 61

95

[28] J. Deutscher, A. Blake, and I. Reid. Articulated body motion capture by
annealed particle filtering. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), volume 2, pages 126–133. IEEE, 2000.
→ pages 19

[29] Y. Du, Y. Wong, Y. Liu, F. Han, Y. Gui, Z. Wang, M. Kankanhalli, and
W. Geng. Marker-less 3d human motion capture with monocular image
sequence and height-maps. In European Conference on Computer Vision
(ECCV), pages 20–36. Springer, 2016. → pages 18, 26, 47, 49, 65, 76

[30] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. In IEEE
International Conference on Computer Vision (ICCV), 2015. → pages 15

[31] A. Elhayek, E. de Aguiar, A. Jain, J. Tompson, L. Pishchulin,
M. Andriluka, C. Bregler, B. Schiele, and C. Theobalt. Efficient
convnet-based marker-less motion capture in general scenes with a low
number of cameras. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3810–3818, 2015. → pages 18, 28

[32] B. Farley and W. Clark. Simulation of self-organizing systems by digital
computer. Transactions of the IRE Professional Group on Information
Theory, 4(4):76–84, 1954. → pages 31

[33] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object
recognition. International journal of computer vision (IJCV), 61(1):55–79,
2005. → pages 21

[34] M. A. Fischler and R. A. Elschlager. The representation and matching of
pictorial structures. IEEE Transactions on computers, 100(1):67–92, 1973.
→ pages 20

[35] F. A. Gers and J. Schmidhuber. Recurrent nets that time and count. In
Proceedings of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks (IJCNN), volume 3, pages 189–194, 2000. → pages 38,
39

[36] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual
prediction with lstm. In Ninth International Conference on Artificial
Neural Networks (ICANN).(Conf. Publ. No. 470), volume 2, pages
850–855. IET, 1999. → pages 38, 39

96

[37] M. F. Ghezelghieh, R. Kasturi, and S. Sarkar. Learning camera viewpoint
using cnn to improve 3d body pose estimation. In 3D Vision (3DV), 2016
Fourth International Conference on, pages 685–693. IEEE, 2016. → pages
49, 76

[38] X. Glorot and Y. Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, pages
249–256, 2010. → pages 74

[39] C. Goodall. Procrustes methods in the statistical analysis of shape. Journal
of the Royal Statistical Society. Series B (Methodological), pages 285–339,
1991. → pages 50, 64

[40] A. Graves and J. Schmidhuber. Framewise phenome classification with
bidirectional lstm and other neural network architectures. Neural Networks,
18(5-6):602–610, 2005. → pages 38

[41] A. Gupta, J. Martinez, J. J. Little, and R. J. Woodham. 3D Pose from
Motion for Cross-view Action Recognition via Non-linear Circulant
Temporal Encoding. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014. → pages 2, 18, 20

[42] A. Gupta, J. He, J. Martinez, J. J. Little, and R. J. Woodham. Efficient
video-based retrieval of human motion with flexible alignment. In IEEE
Winter Conference on Applications of Computer Vision (WACV), pages
1–9. IEEE, 2016. → pages 20, 21

[43] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In IEEE
International Conference on Computer Vision (ICCV), pages 1026–1034,
2015. → pages 48, 63

[44] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. → pages 2, 11, 22, 37, 42, 45,
60, 61, 69, 81, 91, 92

[45] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. arXiv preprint
arXiv:1703.06870, 2017. → pages 2, 30, 92

[46] G. Hinton, N. Srivastava, and K. Swersky. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude., 2012. → pages 61

97

[47] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for
deep belief nets. Neural computation, 18(7):1527–1554, 2006. → pages 33

[48] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997. → pages 13, 23, 39, 68

[49] D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture
of monkey striate cortex. The Journal of physiology, 195(1):215–243,
1968. → pages 34

[50] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference
on Machine Learning (ICML), 2015. → pages 11, 42, 43, 45, 70

[51] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6m: Large
scale datasets and predictive methods for 3d human sensing in natural
environments. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(7):1325–1339, jul 2014. → pages viii, ix, x, xi, xii, xiv, 9,
10, 12, 16, 17, 21, 48, 49, 50, 54, 63, 65, 75, 76, 77, 80, 83, 84, 85, 89

[52] M. Isard. Pampas: Real-valued graphical models for computer vision. In
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages I–I. IEEE, 2003. → pages 27

[53] H. Jiang. 3d human pose reconstruction using millions of exemplars. In
International Conference on Pattern Recognition (ICPR), pages
1674–1677. IEEE, 2010. → pages 2, 18, 20

[54] A. Kanaujia, C. Sminchisescu, and D. Metaxas. Semi-supervised
hierarchical models for 3d human pose reconstruction. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
1–8. IEEE, 2007. → pages 19

[55] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR), 2015. →
pages 48, 63, 74

[56] I. Kostrikov and J. Gall. Depth sweep regression forests for estimating 3d
human pose from images. In British Machine Vision Conference (BMVC),
2014. → pages 18, 20, 53

[57] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information

98

processing systems (NIPS), pages 1097–1105, 2012. → pages 2, 21, 22, 33,
37, 44, 61

[58] H. W. Kuhn. The hungarian method for the assignment problem. Naval
Research Logistics (NRL), 2(1-2):83–97, 1955. → pages 30

[59] H. W. Kuhn. Variants of the hungarian method for assignment problems.
Naval Research Logistics (NRL), 3(4):253–258, 1956. → pages 30

[60] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):
2278–2324, 1998. → pages 21, 36

[61] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object
recognition with invariance to pose and lighting. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), volume 2, pages
II–104. IEEE, 2004. → pages 21

[62] H. J. Lee and Z. Chen. Determination of 3D human body postures from a
single view. Computer Vision, Graphics and Image Processing, 30:
148–168, 1985. → pages 18, 23

[63] S. Li and A. B. Chan. 3d human pose estimation from monocular images
with deep convolutional neural network. In Asian Conference on Computer
Vision (ACCV), pages 332–347. Springer, 2014. → pages 2, 17, 18, 21, 44

[64] S. Li, W. Zhang, and A. B. Chan. Maximum-margin structured learning
with deep networks for 3d human pose estimation. In IEEE International
Conference of Computer Vision (ICCV), 2015. → pages 47, 48, 49, 76

[65] M. Lin, L. Lin, X. Liang, K. Wang, and H. Chen. Recurrent 3d pose
sequence machines. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. → pages 2, 18, 23, 44, 49, 76

[66] T. Lindeberg and J. Garding. Shape from texture from a multi-scale
perspective. In IEEE International Conference on Computer Vision (ICCV),
1993. URL http://dx.doi.org/10.1109/ICCV.1993.378146. → pages 15

[67] F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields for depth
estimation from a single image. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5162–5170. IEEE
Computer Society, 2015. ISBN 978-1-4673-6964-0. URL
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7293313.
→ pages 15

99

http://dx.doi.org/10.1109/ICCV.1993.378146
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7293313

[68] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004. → pages 2,
19

[69] E. Marinoiu, D. Papava, and C. Sminchisescu. Pictorial human spaces:
How well do humans perceive a 3d articulated pose? In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
1289–1296, 2013. → pages 16

[70] E. Marinoiu, D. Papava, and C. Sminchisescu. Pictorial human spaces: A
computational study on the human perception of 3d articulated poses.
International Journal of Computer Vision (IJCV), 119(2):194–215, 2016.
→ pages 7

[71] J. Martinez, R. Hossain, J. Romero, and J. J. Little. A simple yet effective
baseline for 3d human pose estimation. In IEEE International Conference
on Computer Vision (ICCV), 2017. → pages iv

[72] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133,
1943. → pages 31

[73] D. Mehta, H. Rhodin, D. Casas, O. Sotnychenko, W. Xu, and C. Theobalt.
Monocular 3d human pose estimation using transfer learning and improved
cnn supervision. arXiv preprint arXiv:1611.09813, 2016. → pages 2, 17,
18, 22, 44, 49, 50, 64, 76, 77

[74] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei, H.-P. Seidel,
W. Xu, D. Casas, and C. Theobalt. Vnect: Real-time 3d human pose
estimation with a single rgb camera. arXiv preprint arXiv:1705.01583,
2017. → pages 2, 17, 18, 26, 49, 76

[75] M. Minsky and S. A. Papert. Perceptrons: An introduction to
computational geometry. MIT press, 1969. → pages 32

[76] F. Moreno-Noguer. 3d human pose estimation from a single image via
distance matrix regression. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. → pages 18, 25, 48, 50, 52, 53, 54,
57, 65, 77, 79, 80, 91

[77] G. Mori and J. Malik. Recovering 3D human body configurations using
shape contexts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(7):1052–1062, July 2006. URL
http://dx.doi.org/10.1109/TPAMI.2006.149. → pages 2, 18, 19

100

http://dx.doi.org/10.1109/TPAMI.2006.149

[78] G. Mori and J. Malik. Recovering 3d human body configurations using
shape contexts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(7):1052–1062, 2006. → pages 2, 18, 20

[79] V. Nair and G. E. Hinton. Rectified linear units improve restricted
Boltzmann machines. In International Conference on Machine Learning
(ICML), pages 807–814, 2010. → pages 11, 38, 42, 45

[80] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human
pose estimation. In European Conference on Computer Vision (ECCV),
2016. → pages viii, ix, x, xii, xiii, 2, 3, 4, 11, 12, 22, 30, 43, 47, 48, 49, 51,
53, 54, 55, 57, 59, 60, 61, 65, 73, 76, 80, 91

[81] B. X. Nie, P. Wei, and S.-C. Zhu. Monocular 3d human pose estimation by
predicting depth on joints. 2017. → pages 2, 18, 23, 44, 49, 50, 76, 77

[82] H. Ning, W. Xu, Y. Gong, and T. Huang. Discriminative learning of visual
words for 3d human pose estimation. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–8. IEEE, 2008.
→ pages 18, 19

[83] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359, 2010. → pages
12, 62

[84] V. Parameswaran and R. Chellappa. View independent human body pose
estimation from a single perspective image. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2004. URL
http://doi.ieeecomputersociety.org/10.1109/CVPR.2004.264. → pages 16

[85] S. Park, J. Hwang, and N. Kwak. 3d human pose estimation using
convolutional neural networks with 2d pose information. In Computer
Vision–ECCV 2016 Workshops, pages 156–169. Springer, 2016. → pages
2, 18, 21, 44, 48, 49, 65, 76

[86] G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis. Harvesting
multiple views for marker-less 3d human pose annotations. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
→ pages 18, 28

[87] G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis. Coarse-to-fine
volumetric prediction for single-image 3D human pose. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
→ pages 2, 17, 18, 22, 44, 47, 49, 50, 51, 53, 56, 59, 64, 65, 76, 77, 90

101

http://doi.ieeecomputersociety.org/10.1109/CVPR.2004.264

[88] A. Popa, M. Zanfir, and C. Sminchisescu. Deep Multitask Architecture for
Integrated 2D and 3D Human Sensing. In CVPR, 2017. → pages 15

[89] L. R. Rabiner and B.-H. Juang. Fundamentals of speech recognition. 1993.
→ pages 20

[90] I. Radwan, A. Dhall, and R. Goecke. Monocular image 3d human pose
estimation under self-occlusion. In IEEE International Conference on
Computer Vision (ICCV), 2013. → pages 18, 25, 53

[91] R. Raina, A. Madhavan, and A. Y. Ng. Large-scale deep unsupervised
learning using graphics processors. In International Conference on
Machine Learning (ICML), pages 873–880. ACM, 2009. → pages 33

[92] V. Ramakrishna, T. Kanade, and Y. Sheikh. Reconstructing 3d human pose
from 2d image landmarks. Computer Vision–ECCV 2012, pages 573–586,
2012. → pages 2, 17, 18, 24, 44, 50, 64, 65, 77

[93] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015. → pages 2, 30

[94] L. G. Roberts. Machine perception of three-dimensional solids. TR 315,
Lincoln Lab, MIT, Lexington, MA, May 1963. → pages 15

[95] N. Rochester, J. Holland, L. Haibt, and W. Duda. Tests on a cell assembly
theory of the action of the brain, using a large digital computer. IRE
Transactions on information Theory, 2(3):80–93, 1956. → pages 32

[96] G. Rogez and C. Schmid. Mocap-guided data augmentation for 3D pose
estimation in the wild. In NIPS, 2016. URL http://papers.nips.cc/book/
advances-in-neural-information-processing-systems-29-2016. → pages 2,
18, 22, 44

[97] F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958. → pages 32

[98] D. Rumelhart, J. McClelland, and S. D. P. R. G. University of California.
Parallel Distributed Processing: Foundations. A Bradford book. MIT
Press, 1986. ISBN 9780262680530. URL
https://books.google.ca/books?id=eFPqqMBK-p8C. → pages 32

102

http://papers.nips.cc/book/advances-in-neural-information-processing-systems-29-2016
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-29-2016
https://books.google.ca/books?id=eFPqqMBK-p8C

[99] A. Saxena, M. Sun, and A. Y. Ng. Learning 3-D scene structure from a
single still image. In IEEE International Conference on Computer Vision
(ICCV), 2007. → pages 15

[100] J. Schmidhuber. Learning complex, extended sequences using the principle
of history compression. Neural Computation, 4(2):234–242, 1992. →
pages 33

[101] S. Semeniuta, A. Severyn, and E. Barth. Recurrent dropout without
memory loss. arXiv preprint arXiv:1603.05118, 2016. → pages 13, 68, 70

[102] A. Shafaei and J. J. Little. Real-time human motion capture with multiple
depth cameras. In Computer and Robot Vision (CRV), 2016 13th
Conference on, pages 24–31. IEEE, 2016. → pages 18, 29

[103] G. Shakhnarovich, P. A. Viola, and T. J. Darrell. Fast pose estimation with
parameter-sensitive hashing. In IEEE International Conference on
Computer Vision (ICCV), 2003. URL
http://dx.doi.org/10.1109/ICCV.2003.1238424. → pages 2, 18, 20

[104] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake,
M. Cook, and R. Moore. Real-time human pose recognition in parts from
single depth images. Communications of the ACM, 56(1):116–124, 2013.
→ pages 18, 28

[105] L. Sigal, A. O. Balan, and M. J. Black. Humaneva: Synchronized video
and motion capture dataset and baseline algorithm for evaluation of
articulated human motion. International journal of computer vision (IJCV),
87(1):4–27, 2010. → pages viii, 9, 49, 53

[106] L. Sigal, M. Isard, H. Haussecker, and M. J. Black. Loose-limbed people:
Estimating 3d human pose and motion using non-parametric belief
propagation. International journal of computer vision (IJCV), 98(1):15–48,
2012. → pages 18, 27

[107] E. Simo-Serra, A. Quattoni, C. Torras, and F. Moreno-Noguer. A joint
model for 2d and 3d pose estimation from a single image. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2013.
→ pages 18, 19, 53

[108] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014. → pages 37

103

http://dx.doi.org/10.1109/ICCV.2003.1238424

[109] C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Discriminative
density propagation for 3d human motion estimation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 390–397. IEEE, 2005. → pages 19

[110] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research (JMLR), 15(1), 2014.
→ pages 11, 42, 43, 46

[111] D. Steinkraus, I. Buck, and P. Simard. Using gpus for machine learning
algorithms. In International Conference on Document Analysis and
Recognition, pages 1115–1120. IEEE. → pages 33

[112] X. Sun, J. Shang, S. Liang, and Y. Wei. Compositional human pose
regression. arXiv preprint arXiv:1704.00159, 2017. → pages 2, 18, 22, 44

[113] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems
(NIPS), pages 3104–3112, 2014. → pages xii, 4, 12, 14, 41, 68, 69

[114] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1–9, 2015. → pages 2, 37

[115] C. J. Taylor. Reconstruction of articulated objects from point
correspondences in a single uncalibrated image. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), volume 1, pages
677–684. IEEE, 2000. → pages 19, 20

[116] B. Tekin, I. Katircioglu, M. Salzmann, V. Lepetit, and P. Fua. Structured
prediction of 3d human pose with deep neural networks. In British Machine
Vision Conference (BMVC), 2016. → pages 2, 17, 18, 22, 44, 49, 76

[117] B. Tekin, A. Rozantsev, V. Lepetit, and P. Fua. Direct prediction of 3d body
poses from motion compensated sequences. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 991–1000, 2016.
→ pages 2, 17, 18, 26, 47, 48, 49, 65, 76

[118] B. Tekin, P. Marquez Neila, M. Salzmann, and P. Fua. Learning to fuse 2d
and 3d image cues for monocular body pose estimation. In IEEE
International Conference on Computer Vision (ICCV), number
EPFL-CONF-230311, 2017. → pages 2, 18, 22, 49, 50, 51, 76, 77, 89

104

[119] D. Tome, C. Russell, and L. Agapito. Lifting from the deep: Convolutional
3d pose estimation from a single image. arXiv preprint arXiv:1701.00295,
2017. → pages 22, 23, 44, 49, 64, 76

[120] G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev, and
C. Schmid. Learning from synthetic humans. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. → pages 2, 18,
22, 44

[121] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. Journal of Machine Learning
Research, 11(Dec):3371–3408, 2010. → pages 22

[122] C. Wang, Y. Wang, Z. Lin, A. L. Yuille, and W. Gao. Robust estimation of
3d human poses from a single image. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014. → pages 18, 24,
53

[123] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose
machines. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. → pages 2, 3, 23, 29, 48, 53, 54

[124] X. Wei, P. Zhang, and J. Chai. Accurate realtime full-body motion capture
using a single depth camera. ACM Transactions on Graphics (TOG), 31(6):
188, 2012. → pages 18, 28

[125] X. K. Wei and J. Chai. Modeling 3D human poses from uncalibrated
monocular images. In IEEE International Conference on Computer Vision
(ICCV), 2009. URL
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5453389.
→ pages 16

[126] P. Werbos. Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences. Harvard University, 1975. URL
https://books.google.ca/books?id=z81XmgEACAAJ. → pages 32

[127] Y. Yang and D. Ramanan. Articulated pose estimation with flexible
mixtures-of-parts. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1385–1392. IEEE, 2011. → pages 29

[128] H. Yasin, U. Iqbal, B. Kruger, A. Weber, and J. Gall. A dual-source
approach for 3d pose estimation from a single image. In The IEEE

105

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5453389
https://books.google.ca/books?id=z81XmgEACAAJ

Conference on Computer Vision and Pattern Recognition (CVPR), pages
4948–4956, 2016. → pages 2, 18, 21, 53

[129] M. Ye and R. Yang. Real-time simultaneous pose and shape estimation for
articulated objects using a single depth camera. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2345–2352,
2014. → pages 18, 28

[130] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network
regularization. arXiv preprint arXiv:1409.2329, 2014. → pages 41, 68, 70,
71

[131] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah. Shape from shading: A
survey. IEEE Transactions on Pattern and Machine Intelligence (TPAMI),
21(8):690–706, 1999. URL http://dx.doi.org/10.1109/34.784284;http:
//doi.ieeecomputersociety.org/10.1109/34.784284. → pages 15

[132] X. Zhou, S. Leonardos, X. Hu, and K. Daniilidis. 3d shape estimation from
2d landmarks: A convex relaxation approach. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4447–4455,
2015. → pages 17, 18, 24, 25, 44

[133] X. Zhou, X. Sun, W. Zhang, S. Liang, and Y. Wei. Deep kinematic pose
regression. In Computer Vision–ECCV 2016 Workshops, pages 186–201.
Springer, 2016. → pages 2, 16, 18, 22, 44, 47, 49, 65, 76

[134] X. Zhou, M. Zhu, S. Leonardos, K. G. Derpanis, and K. Daniilidis.
Sparseness meets deepness: 3d human pose estimation from monocular
video. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4966–4975, 2016. → pages 2, 17, 18, 24, 25,
44, 47, 49, 50, 65, 76, 77

[135] A. Zisserman, I. D. Reid, and A. Criminisi. Single view metrology. In
IEEE International Conference on Computer Vision (ICCV), 1999. URL
http://dx.doi.org/10.1109/ICCV.1999.791253. → pages 15

106

http://dx.doi.org/10.1109/34.784284; http://doi.ieeecomputersociety.org/10.1109/34.784284
http://dx.doi.org/10.1109/34.784284; http://doi.ieeecomputersociety.org/10.1109/34.784284
http://dx.doi.org/10.1109/ICCV.1999.791253

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	1.1 Problem Definition
	1.1.1 Scope
	1.1.2 Data

	1.2 Method Outline
	1.3 Thesis Organization

	2 Related Work
	2.1 Representation of 3D pose
	2.2 Approaches to 3D Pose estimation
	2.2.1 3D Pose estimation by extracting features from single image
	2.2.2 Using features to look up in a database of exemplar 3D poses
	2.2.3 Deep network trained end-to-end
	2.2.4 3D Pose Estimation from 2D pose
	2.2.5 Exploiting temporal information
	2.2.6 Exploiting multiple views
	2.2.7 Exploiting depth information

	2.3 2D pose estimation techniques
	2.4 Deep Networks
	2.4.1 Biological motivation
	2.4.2 History of Neural Networks
	2.4.3 Convolutional Neural Networks
	2.4.4 Recurrent Neural Networks

	3 3D pose from 2D pose
	3.1 Loss Function
	3.2 Network design
	3.2.1 Mapping 2D pose to 3D
	3.2.2 Fully connected layers with ReLU activation
	3.2.3 Residual or shortcut connections
	3.2.4 Regularization with batch normalization, dropout and max-norm constraint

	3.3 Data Preprocessing
	3.3.1 Camera coordinate frame
	3.3.2 2D detections
	3.3.3 Training details

	3.4 Experimental evaluation
	3.4.1 Quantitative results
	3.4.2 Qualitative results
	3.4.3 Discussion of results

	4 End-to-end model
	4.1 Stacked hourglass module
	4.2 Pre-training stacked-hourglass model
	4.3 Training end-to-end
	4.3.1 Loss Function
	4.3.2 Data Preprocessing
	4.3.3 Training Details

	4.4 Experimental evaluation
	4.4.1 Quantitative results
	4.4.2 Qualitative results
	4.4.3 Discussion of results

	5 Exploiting temporal information
	5.1 Network design
	5.1.1 Sequence-to-sequence network with residual connections
	5.1.2 Layer Normalization
	5.1.3 Recurrent Dropout
	5.1.4 Temporal smoothness constraint
	5.1.5 Loss function

	5.2 Data Preprocessing
	5.2.1 Training details

	5.3 Experimental evaluation
	5.3.1 Quantitative results
	5.3.2 Qualitative results
	5.3.3 Discussion of results

	6 Conclusion and future work
	6.1 Future directions
	6.2 Conclusion

	Bibliography

