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Abstract

Program comprehension is crucial in software engineering; a necessary step for

performing many tasks. However, the implicit and intricate relations between

program entities hinder comprehension of program behaviour and change. It is

particularly a difficult endeavour to understand dynamic and modern programming

languages such as JavaScript, which has grown to be among the most popular

languages. Comprehending such applications is challenging due to the temporal and

implicit relations of asynchronous, DOM-related and event-driven entities spread

over the client and server sides.

The goal of the work presented in this dissertation is to facilitate program com-

prehension through the following techniques. First, we propose a generic technique

for capturing low-level event-based interactions in a web application and mapping

those to a higher-level behavioural model. This model is then transformed into

an interactive visualization, representing episodes of execution through different

semantic levels of granularity. Then, we present a DOM-sensitive hybrid change im-

pact analysis technique for JavaScript through a combination of static and dynamic

analysis. Our approach incorporates a novel ranking algorithm for indicating the im-

portance of each entity in the impact set. Next, we introduce a method for capturing

a behavioural model of full-stack JavaScript applications’ execution. The model is

temporal and context-sensitive to accommodate asynchronous events, as well as the

scheduling and execution of lifelines of callbacks. We present a visualization of the

model to facilitate program comprehension for developers. Finally, we propose an

approach for facilitating comprehension by creating an abstract model of software

behaviour. The model encompasses hierarchies of recurring and application-specific

motifs. The motifs are abstract patterns extracted from traces through our novel
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technique, inspired by bioinformatics algorithms. The motifs provide an overview of

the behaviour at a high level, while encapsulating semantically related sequences in

execution. We design a visualization that allows developers to observe and interact

with inferred motifs.

We implement our techniques in open-source tools and evaluate them through

a set of controlled experiments. The results show that our techniques significantly

improve developers’ performance in comprehending the behaviour and impact of

change in software systems.
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Lay Summary

Program comprehension is crucial in software engineering; a necessary step for

performing many tasks. Assisting comprehension through analysis of code and

program execution traces has been a popular research area. However, the implicit

and intricate relations between program entities hinder comprehension of program

behaviour and change. It is particularly challenging to understand modern program-

ming languages such as JavaScript, which has grown to be among the most popular

languages for both client and server development.

The goal of the work presented in this dissertation is to facilitate program

comprehension through semi-automated techniques, using both static and dynamic

analysis. Our techniques create behavioural models of program execution through

our proposed algorithms, and visualize them for developers in order to improve their

performance. We evaluate our techniques through a set of controlled experiments.

The results show that our methods significantly improve developers’ performance

in terms of task completion duration and accuracy.
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Chapter 1

Introduction

Program comprehension is known to be an essential step in software engineering.

Developers spend a considerable amount of time understanding code. About 50% of

maintenance effort is spent on comprehension alone [31]. To understand code, de-

velopers typically start by searching for clues in the code and the environment. Then

they navigate the incoming and outgoing dependencies to relate pieces of foraged

information. Throughout the process, they collect information they find relevant for

understanding the code on an “as-needed” basis [71]. However, developers often fail

in searching and relating information, and lose track of relevant information when

using such ad-hoc strategies [117]. Further, they form a mental model of the entities,

relations and the intent of the code, which they use throughout development to help

them make decisions. Unfortunately, these models are almost always inaccurate

[92]. Thus, code understanding is challenging, and there is a need for systematic

and automated techniques that facilitate this process [75]. Further, presence of

programming languages characteristics such as dynamism, asynchrony and non-

determinism in the execution makes the analysis more problematic and burdensome,

and renders conventional techniques ineffective. It is particularly a challenging

endeavour to understand the complex behaviour of modern programming languages,

such as JavaScript.

JavaScript is widely used today to create interactive modern web applications

that replace many traditional desktop applications. It has been selected as the most

popular programming language for five consecutive years [126] and it is the most

1



used language on GitHub [74]. However, understanding the behaviour of web

applications is troublesome for developers [101, 143].

1.1 Challenges and Motivation
The goal of this thesis is to investigate support for developers to improve their

performance in program comprehension tasks. However, the implicit and intricate

relations between program entities hinder comprehension of program behaviour.

Comprehending client- and server-side JavaScript applications is particularly chal-

lenging due to the temporal and implicit relations of asynchronous, dynamic, and

event-driven entities split between the client and server. These relation also affect

the way a change propagates in a JavaScript application and impacts the system

as a whole. Moreover, size and complexity of execution traces further complicate

comprehension of real-world applications.

1.1.1 Understanding Dynamic JavaScript Behaviour

Despite their popularity, understanding the behaviour of modern web applications is

still a rigorous task for developers during development and maintenance tasks. The

challenges mainly stem from the dynamic, event-driven, and asynchronous nature

of the JavaScript language.

Understanding Event-Based Interactions

To understand JavaScript, developers must understand its weakly-typed, event-

driven, and highly-dynamic nature, its interactions with the Document Object

Model (DOM), and communications with the server. Unfortunately, despite its

importance and challenges, there is currently not much research dedicated to sup-

porting program comprehension for web applications [34]. Popular tools, such

as Firebug and Chrome DevTools, are limited in their capabilities to support web

developers effectively.

Research Question 1. How can we enhance developers’ performance in under-

standing the event-based interactions in client-side JavaScript?
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To address RQ1, we propose a generic technique for capturing low-level event-

based interactions in a web application and mapping those to a higher-level be-

havioural model. This model is then transformed into an interactive visualization,

representing episodes of triggered causal and temporal events, related JavaScript

code executions, and their impact on the dynamic state of the DOM. Our approach

allows developers to easily understand the complex dynamic behaviour of their

application at three different semantic levels of granularity. Furthermore, it helps

developers bridge the gap between test cases and program code by localizing the

fault related to a test assertion. This method is discussed in Chapter 2.

Understanding Test Failures and Their Root Causes

To test their web applications, developers often write test cases that check the appli-

cation’s behaviour from an end-user’s perspective using popular frameworks such

as Selenium [121]. Such test cases are agnostic of the JavaScript code and operate

by simulating a series of user actions followed by assertions on the application’s

runtime DOM. As such, they can detect deviations in the expected behaviour as

observed in the DOM.

However, when a web application test assertion fails, determining the faulty

program code responsible for the failure can be challenging. Fault localization is

one of the most difficult phases of debugging [132], and has been an active topic of

research [1, 28, 67, 144]. Although testing of modern web applications has received

increasing attention in the recent past [15, 88, 129], there has been limited work on

what happens after a test reveals an error.

Research Question 2. How can we enhance developers’ performance in under-

standing the root-causes of test assertion failures in client-side JavaScript?

We extend our approach for understanding program behaviour in Chapter 2

to further aid developers in understanding root causes of test failures. Our test-

case comprehension strategy automatically connects test assertion failures to faulty

JavaScript code considering the involved DOM elements.
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Asynchronous Interactions in Full-Stack JavaScript

JavaScript has been the lingua franca of client-side web development for some

years. But platforms such as Node.js [97] have made it possible to use Java-

Script for writing code that runs outside of the browser. As such, “full-stack”

applications written entirely in JavaScript from client-side to the server-side have

also seen an exponential growth recently. Node.js provides a light-weight, non-

blocking, fast, and scalable platform for writing network-based applications. It is

also more convenient for web developers to use the same language for both front-

and back-end development. Despite all the advantages, this approach imposes many

challenges on the developers’ comprehension of the dynamic execution of a web

application. Understanding such applications is challenging for developers, due to

the temporal and implicit relations of asynchronous and event-driven entities split

across the client and server side. JavaScript applications take extensive advantage of

asynchronous callbacks [49] to simulate concurrency, which complicates the flow of

execution. The impact of asynchrony intensifies due to the communication between

the client and server. They interact heavily with the DOM, events, timers, and XHR

objects, across both client and server, all of which negatively affect developers’

understanding. The uncertainty involved in the asynchronous communication makes

the execution more intricate and thus more difficult to understand for developers.

Despite the popularity of full-stack JavaScript development and severity of these

challenges, there is currently no technique available that provides a holistic overview

of the execution of JavaScript code in full-stack web applications. The existing tech-

niques do not support full-stack JavaScript comprehension [4, 10, 61, 84, 101, 143].

Research Question 3. How can we improve developers’ understanding of the

temporal and asynchronous behaviour of full-stack JavaScript?

In Chapter 4, we propose a technique for capturing a behavioural model of

full-stack JavaScript applications’ execution. The model is temporal and context-

sensitive to accommodate asynchronous events, as well as the scheduling and

execution of lifelines of callbacks. We present a visualization of the model to

facilitate program understanding for developers. Our goal is to help developers gain
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a holistic view of the dynamic behaviour of full-stack JavaScript applications.

1.1.2 Understanding Impact of Change in JavaScript

To remain useful, a software program must continually change to adapt to the

changing environment [77]. Code change impact analysis (CIA) [13] aims at

identifying parts of the program that are potentially affected by a change in the code.

Impact analysis has been a popular research area [12, 20, 105, 111, 114]. Most of

the research, however, is focused on traditional programming languages and ignores

JavaScript and thereby modern web applications.

JavaScript requires a novel approach for effective change impact analysis, be-

cause of its unique set of features that make it challenging to comprehend [4] and

analyze by traditional code analysis techniques [47]. Each of the parties involved in

the execution of a JavaScript application can introduce new and implicit relations in

the system that can transfer the impact of change seamlessly. For instance, we have

observed that the impact of a code change can be propagated through the DOM,

even when there may be no visible connections between JavaScript functions and

variables in the JavaScript code [6]. Similarly, events and server interactions can

transfer the impact of a change, in addition to the JavaScript code itself.

Traditional impact analysis has been performed either by static analysis or

dynamic analysis. However, the aforementioned challenges make it difficult for

JavaScript static analysis techniques [47, 66, 125] to carry out impact analysis effec-

tively. None of these techniques can provide support for the DOM-based, dynamic

and asynchronous JavaScript features. Further, current dynamic and hybrid analysis

techniques [136, 137] ignore the aforementioned challenges, i.e., they overlook the

important role of the DOM in their analysis and they do not support the hidden

relations that are created through event-handler registration, event propagation, and

asynchronous client/server communication.

Research Question 4. How does providing a model of the dependencies in the

application improve developers’ performance in understanding the change impact

in JavaScript applications?
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We first perform an empirical study of change propagation, the results of which

show that the DOM-related and dynamic features of JavaScript need to be taken

into consideration in the analysis since they affect change impact propagation. We

propose a DOM-sensitive hybrid change impact analysis technique for JavaScript

through a combination of static and dynamic analysis. The proposed approach

incorporates a novel ranking algorithm for indicating the importance of each entity

in the impact set. Our approach is explained in Chapter 3.

1.1.3 Understanding Hierarchical Motifs of Behaviour in Execution

Assisting comprehension through dynamic analysis of execution traces is a popular

research area. Traces are rich sources of information regarding the behaviour of a

program, leading to precise analysis techniques. However, these techniques typically

do not scale well, due to the size and complexity of execution traces.

Common techniques such as trimming, summarizing, and visualizing traces

[75, 92] do not solve the problem for large, complex, and real-world applications

and understanding higher-level key points of the semantics of program behaviour

remains difficult [33, 141, 142]. The interpretation of prior work from execution

patterns, if existent, is different from ours. These papers have predominantly fo-

cused on generic and pre-defined design patterns, low-level architectural relations

between program artifacts, or visualizations of all details of execution [7, 21, 60, 73].

Research Question 5. How does providing high-level and semantic motifs of a

application’s behaviour improve comprehensibility of the application?

To address this research question, we propose a generic technique in Chapter 5

for facilitating comprehension by creating an abstract model of software behaviour.

The model encompasses hierarchies of recurring and application-specific motifs.

The motifs are abstract patterns extracted from traces through our novel technique,

inspired by bioinformatics algorithms. The motifs provide an overview of the

behaviour at a high-level, while encapsulating semantically related sequences in

execution. We design a visualization that allows developers to observe and interact

with inferred motifs.
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1.2 Origin of Chapters and Acknowledgements
Chapters 2 – 4 are based on published peer-reviewed papers listed below. Chapter 5

is based on a paper that is currently under submission in a software engineering

conference. The author of this thesis is the main contributor of all chapters. Chap-

ter 2 is co-authored by Sheldon Sequeira, a former Masters’ student in SALT lab.

All chapters are co-authored by the author’s supervisors: Dr. Ali Mesbah and Dr.

Karthik Pattabiraman.

• Chapter 2. Addressing RQ1, this chapter was originally published in the

ACM/IEEE International Conference on Software Engineering (ICSE), in

2014. This paper received an ACM SIGSOFT Distinguished Paper Award.

The extended version of the paper, addressing RQ2, was later published in

ACM Transactions on Software Engineering and Methodology (TOSEM), in

2016.

– Understanding JavaScript Event-based Interactions [4]: S. Alimadadi,

S. Sequeira, A. Mesbah and K. Pattabiraman, ACM/IEEE International

Conference on Software Engineering (ICSE), 2014, 11 pages. (Accep-

tance Rate: 20%)

– Understanding JavaScript Event-based Interactions with CLEMATIS

[8]: S. Alimadadi, S. Sequeira, A. Mesbah and K. Pattabiraman, ACM

Transactions on Software Engineering and Methodology (TOSEM),

2016, 39 pages.

• Chapter 3. This chapter, targeting RQ3, was published in the European

Conference on Object-Oriented Programming (ECOOP) in 2015.

– Hybrid DOM-Sensitive Change Impact Analysis for JavaScript [6]: S.

Alimadadi, A. Mesbah and K. Pattabiraman, European Conference on

Object-Oriented Programming (ECOOP), 2015, 25 pages. (Acceptance

Rate: 22.8%)

• Chapter 4. This chapter addresses RQ4 and was published at the ACM/IEEE

International Conference on Software Engineering (ICSE) in 2016.

– Understanding Asynchronous Interactions in JavaScript Applications
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[7]: S. Alimadadi, A. Mesbah and K. Pattabiraman, ACM/IEEE Inter-

national Conference on Software Engineering (ICSE), 2016, 12 pages.

(Acceptance Rate: 19%)

• Chapter 5. This chapter, addressing RQ5, is currently under submission at

a software engineering conference. The original idea of this paper was ac-

cepted to the Doctoral Symposium track at the ACM SIGSOFT International

Symposium on the Foundations of Software Engineering (FSE) in 2016.

– Inferring Hierarchical Motifs from Execution Traces: S. Alimadadi, A.

Mesbah and K. Pattabiraman, 12 pages, under review.

– Understanding Behavioural Patterns in JavaScript [3]: S. Alimadadi,

ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE), 2016, 3 pages.
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Chapter 2

Understanding JavaScript
Event-Based Interactions

Web applications have become one of the fastest growing types of software systems

today. Despite their popularity, understanding the behaviour of modern web applica-

tions is still challenging for developers during development and maintenance tasks.

The challenges mainly stem from the dynamic, event-driven, and asynchronous

nature of the JavaScript language. We propose a generic technique for capturing

low-level event-based interactions in a web application and mapping those to a

higher-level behavioural model. This model is then transformed into an interactive

visualization, representing episodes of triggered causal and temporal events, related

JavaScript code executions, and their impact on the dynamic DOM state. Our

approach, implemented in a tool called CLEMATIS, allows developers to easily

understand the complex dynamic behaviour of their application at three different

semantic levels of granularity. Furthermore, CLEMATIS helps developers bridge the

gap between test cases and program code by localizing the fault related to a test

assertion. The results of our industrial controlled experiment show that CLEMATIS

is capable of improving the comprehension task accuracy by 157%, while reducing

the task completion time by 47%. A follow up experiment reveals that CLEMATIS

improves the fault localization accuracy of developers by a factor of two.

Understanding the implicit and intricate relations between program entities in

JavaScript applications is challenging for many reasons. First, the weakly-typed
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and highly-dynamic nature of JavaScript makes it a particularly difficult language

to analyze. Second, JavaScript code is extensively used to seamlessly mutate the

Document Object Model (DOM) at runtime. This dynamic interplay between two

separate entities, namely JavaScript and the DOM, can become quite complex to

follow [98]. Third, JavaScript is an event-driven language allowing developers to

register various event listeners on DOM nodes. While most events are triggered

by user actions, timing events and asynchronous callbacks can be fired with no

direct input from the user. To make things even more complex, a single event can

propagate on the DOM tree and trigger multiple listeners according to the event

capturing and bubbling properties of the event model [133].

In this chapter, we present a generic, non-intrusive technique, called CLEMATIS,

for supporting web application comprehension. Through a combination of auto-

mated JavaScript code instrumentation and transformation, we capture a detailed

trace of a web application’s behaviour during a particular user session. Our tech-

nique transforms the trace into an abstract behavioural model, preserving temporal

and causal relations within and between involved components. The model is then

presented to the developers as an interactive visualization that depicts the creation

and flow of triggered events, the corresponding executed JavaScript functions, and

the mutated DOM nodes.

We then apply our approach to further aid developers in understanding root

causes of test failures. Fault localization is one of the most difficult phases of

debugging [132], and is an active topic of research [1, 28, 67, 144]. Although

testing of modern web applications has received attention [15, 88, 129], there has

been limited work on what happens after a test reveals an error.

To the best of our knowledge, we are the first to provide a generic technique

for capturing low-level event-based interactions in a JavaScript application, and

mapping and visualizing those interactions as higher-level behavioural models. We

extend the approach, as we propose a novel test failures comprehension unit and

evaluate its effectiveness through a user experiment. Overall, our work makes the

following key contributions:

• We propose a generic technique for capturing and presenting the complex

dynamic behaviour of web applications. In particular, our technique:
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– Captures the consequences of JavaScript and DOM events in terms of

the executed JavaScript code, including the functions that are called

indirectly through event propagation on the DOM tree.

– Extracts the source-and-target relations for asynchronous events, i.e.,

timing events and XMLHttpRequest requests/callbacks.

– Identifies and tracks mutations to the DOM caused by each event.

• We build a novel model for capturing the event-driven interactions as well as

an interactive, visual interface supporting the comprehension of the program

through three different semantic levels of zooming granularity.

• We implement our technique in a generic open source tool called CLEMATIS,

which (1) does not modify the web browser, (2) is independent of the server

technology, and (3) requires no extra effort from the developer to use.

• We extend CLEMATIS to automatically connect test assertion failures to faulty

JavaScript code considering the involved DOM elements.

• We empirically evaluate CLEMATIS through three controlled experiments

comprising 48 users in total. The first two studies investigate the code

comprehension capabilities of CLEMATIS. One of these studies is carried out

in a lab environment, while the other is carried out in an industrial setting.

The results of the industrial experiment show that CLEMATIS can reduce the

task completion time by 47%, while improving the accuracy by 157%. We

evaluate the test failure comprehension unit of CLEMATIS through a third user

experiment. The results show that CLEMATIS improves the fault localization

accuracy of developers by a factor of two.

2.1 Challenges and Motivation
Modern web applications are largely event-driven. Their client-side execution is

normally initiated in response to a user-action triggered event, a timing event, or

the receipt of an asynchronous callback message from the server. As a result,

web developers encounter many program comprehension challenges in their daily

development and maintenance activities. We use an example, presented in Figures

2.1–2.2, to illustrate these challenges.

Furthermore, developers often write test cases that assert the behaviour of a web
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1 <BODY>
2 <FIELDSET class="registration">
3 Email: <INPUT type="text" id="email"/>
4 <BUTTON id="submitBtn">Submit</BUTTON>
5 <DIV id="regMsg"></DIV>
6 </FIELDSET>
7 </BODY>

Figure 2.1: Initial DOM state of the running example.

application from an end-user’s perspective. However, when such test cases fail, it

is difficult to relate the assertion failure to the faulty line of code. The challenges

mainly stem from the existing disconnect between front-end test cases that assert the

DOM and the application’s underlying JavaScript code. We use another example,

illustrated in Figure 2.3, to demonstrate these testing challenges.

Note that these are simple examples and these challenges are much more potent

in large and complex web applications.

2.1.1 Challenge 1: Event Propagation

The DOM event model [133] makes it possible for a single event, fired on a particular

DOM node, to propagate through the DOM tree hierarchy and indirectly trigger

a series of other event-handlers attached to other nodes. There are typically two

types of this event propagation in web applications; (1) with bubbling enabled, an

event first triggers the handler of the deepest child element on which the event was

fired, and then it bubbles up on the DOM tree and triggers the parents’ handlers. (2)

When capturing is enabled, the event is first captured by the parent element and

then passed to the event handlers of children, with the deepest child element being

the last. Hence, a series of lower-level event-handlers, executed during the capturing

and bubbling phases, may be triggered by a single user action. The existence or

the ordering of these handlers is often inferred manually by the developer, which

becomes more challenging as the size of the code/DOM tree increases.

Example. Consider the sample code shown in Figures 2.1–2.2. Figure 2.1 represents

the initial DOM structure of the application. It mainly consists of a fieldset

containing a set of elements for the users to enter their email address to be registered

for a service. The JavaScript code in Figure 2.2 partly handles this submission.
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1 $(document).ready(function() {
2 $('#submitBtn').click(submissionHandler);
3 $('fieldset.registration').click(function() {
4 setTimeout(clearMsg, 3000);
5 }); });
6 ...
7 function submissionHandler(e) {
8 $('#regMsg').html("Submitted!");
9 var email = $('#email').val();

10 if (isEmailValid(email)) {
11 informServer(email);
12 $('#submitBtn').attr("disabled", true);
13 }
14 }
15 ...
16 function informServer(email) {
17 $.get('/register/', { 'email': email }, function(data) {
18 $('#regMsg').append(data);
19 });
20 return;
21 }
22 ...
23 function clearMsg() {$('#regMsg').fadeOut(2000);}

Figure 2.2: JavaScript code of the running example.

When the user clicks the submit button, a message appears indicating that the

submission was successful. This message is displayed from within the event-handler

submissionHandler() (line 7), which is attached to the button on line 2 of

Figure 2.2. However, after a few seconds, the developer observes that the message

unexpectedly starts to fade out. In the case of this simple example, she can read the

whole code and find out that the click on the submit button has bubbled up to its

parent element, namely fieldset. Closer inspection reveals that fieldset’s

anonymous handler function is responsible for changing the value of the same DOM

element through a setTimeout function (lines 3–5 in Figure 2.2). In a more

complex application, the developer may be unaware of the existence of the parent

element, its registered handlers, or the complex event propagation mechanisms such

as bubbling and capturing.

2.1.2 Challenge 2: Asynchronous Events

Web browsers provide a single thread for web application execution. To circumvent

this limitation and build rich responsive web applications, developers take advantage
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of the asynchronous capabilities offered by modern browsers, such as timeouts and

XMLHttpRequest (XHR) calls. Asynchronous programming, however, introduces

an extra layer of complexity in the control flow of the application and adversely

influences program comprehension.

Timeouts. Events can be registered to fire after a certain amount of time or at certain

intervals in JavaScript. These timeouts often have asynchronous callbacks that are

executed when triggered. In general, there is no easy way to link the callback of

a timeout to its source, which is important to understand the program’s flow of

execution.

XHR Callbacks. XHR objects are used to exchange data asynchronously with the

server, without requiring a page reload. Each XHR goes through three main phases:

open, send, and response. These three phases can be scattered throughout the

code. Further, there is no guarantee on the timing and the order of XHR responses

from the server. As in the case of timeouts, mapping the functionality triggered by a

server response back to its source request is a challenging comprehension task for

developers.

Example. Following the running example, the developer may wish to further investi-

gate the unexpected behaviour: the message has faded out without a direct action

from the developer. The questions that a developer might ask at this point include:

“What exactly happened here?” and “What was the source of this behaviour?”.

By reviewing the code, she can find out that the source of this behaviour was the

expiration of a timeout that was set in line 4 of Figure 2.2 by the anonymous handler

defined in lines 3–5. However the callback function, defined on line 23 of Figure

2.2, executes asynchronously and with a delay, long after the execution of the anony-

mous handler function has terminated. While in this case, the timing behaviour can

be traced by reading the code, this approach is not practical for large applications.

A similar problem exists for asynchronous XHR calls. For instance, the anonymous

callback function of the request sent in the informServer function (line 17,

Figure 2.2) updates the DOM (line 18).
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2.1.3 Challenge 3: Implications of Events

Another challenge in understanding the flow of web applications lies in understand-

ing the consequences of (in)directly triggered events. Handlers for a (propagated)

DOM event, and callback functions of timeouts and XHR requests, are all Java-

Script functions. Any of these functions may change the observable state of the

application by modifying the DOM. Currently, developers need to read the code and

make the connections mentally to see how an event affects the DOM state, which

is quite challenging. In addition, there is no easy way of pinpointing the dynamic

changes made to the DOM state as a result of event-based interactions. Inferring

the implications of events is, therefore, a significant challenge for developers.

Example. After the submitBtn button is clicked in the running example, a

confirmation message will appear on-screen and disappear shortly thereafter (lines

8&23, Figure 2.2). Additionally, the attributes of the button are altered to disable it

(line 12). It can be difficult to follow such DOM-altering features in an application’s

code.

2.1.4 Challenge 4: Linking Test Failures to Faults

To test their web applications, developers often write test cases that check the

application’s behaviour from an end-user’s perspective using popular frameworks

such as Selenium1. Such test cases are agnostic of the JavaScript code and operate

by simulating a series of user actions followed by assertions on the application’s

runtime DOM. As such, they can detect deviations in the expected behaviour as

observed on the DOM.

However, when a web application test assertion fails, determining the faulty

program code responsible for the failure can be a challenging endeavour. The main

challenge here is the implicit link between three different entities, namely, the test

assertion, the DOM elements on which the assertion fails (checked elements), and

the faulty JavaScript code responsible for modifying those DOM elements. To

understand the root cause of the assertion failure, the developer needs to manually

infer a mental model of these hidden links, which can be tedious. Further, unlike in

traditional (e.g., Java) applications, there is no useful stack trace produced when

1http://seleniumhq.org
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1			<div	class="row-sort-assets">

2							<div	class="sort-assets"></div>

3							...

4			</div>

5			<div	id="assets-container"	data-pages="">

6							<div	class="asset-row">

7											<div	class="asset-icon"></div>

8											...

9							</div>

10		</div>

1		public	void	testSortByDefaults()	{

2						driver.get("http://localhost:9763/store/assets/gadget");

3						driver.findElement(By.css("i.icon-star")).click();

4						int	s1	=	driver.findElements(By.css(".asset-icon")).size();

5						assertEquals(12,	s1);

6

7						scrollWindowDown();

8						int	s2	=	driver.findElements(By.css(".asset-icon")).size();

9						assertEquals(4,	s2	-	s1);

10		}	

1			var	currentPage	=	1;

2			var	sortType	=	'default';

3			var	gridSize	=	8;

4			var	infiniteScroll	=	false;

5			

6			var	renderAssets	=	function(url,	size)	{

7							var	data	=	assetsFromServer(url);

8			

9							var	temp	=	'<div	class="asset-row">';

10						for	(i	=	0;	i	<	size;	i++)	{

11										temp	+=	'		<div	class="asset-icon">';	

12										...	//	Reading	from	variable	'data'

13										temp	+=	'		</div>';

14						}

15						temp	+=	'</div>';

16							

17						return	$('#assets-container').append(temp);

18		};

19			

20		$(document).on('click',	'#sort-assets',	function(){

21						$('#sort-assets').removeClass('selected-type')

22						$(this).addClass('selected-type');

23						currentPage	=	1;

24						sortType	=		$(this).attr('type');

25						gridSize	=	12;

26						renderAssets(url	+	sortType	+	currentPage,	gridSize)

27						infiniteScroll	=	true;

28		});

29			

30		var	scroll	=	function()	{

31						if(infiniteScroll)	{

32										currentPage++;

33										renderAssets(url	+sortType	+	currentPage,	gridSize/2)

34						}

35		};

36		$(window).bind('scroll',	scroll);

(a)

(d)

(c)

(b)

(e)

AAll CategoriesAll Categories

Bar Chart Bubble Chart Date Time Directions by Google

assertEquals(4,	s2	-	s1),	AssertionFailure:	expected	<4>	but	was:	<6>

1

3

2

4

Figure 2.3: Test assertion understanding example (a) JavaScript code, (b)
Portion of DOM-based UI, (c) Partial DOM, (d) DOM-based (Sele-
nium) test case, (e) Test case assertion failure. The dotted lines show
the links between the different entities that must be inferred.

a web test case fails as the failure is on the DOM, and not on the application’s

JavaScript code. This further hinders debugging as the fault usually lies within

the application’s code, and not in its representative DOM state. To the best of our

knowledge, there is currently no tool support available to help developers in this

test failure understanding and fault localization process.

Example. The example in Figure 2.3 uses a small code snippet based on the open-

source WSO2 eStore application 2 to demonstrate the challenges involved and

our solution. The store allows clients to customize and deploy their own digital

storefront. A partial DOM representation of the page is shown in Figure 2.3c.

Figure 2.3d shows a Selenium test case, written by the developers of the application

for verifying the application’s functionality in regards to “sorting” and “viewing” the

existing assets. The JavaScript code responsible for implementing the functionality

is shown in Figure 2.3a.

2https://github.com/wso2/product-es

16

https://github.com/wso2/product-es


After setting the environment, the test case performs a click to sort the assets.

Then, an assertion is made to check whether the expected assets are present on

the DOM of the page (line 5 of Figure 2.3d). The second portion of the test case

involves scrolling down the webpage and asserting the existence of four additional

assets on the DOM (lines 7–9).

While the mapping between the test case and related JavaScript code may seem

trivial to find for this small example, challenges arise as the JavaScript code-base

and the DOM increase in size. As a result, it can be difficult to understand the

reason for a test case failure or even which features are being tested by a given test

case.

When a test case fails, first one needs to identify the dependencies of the test

case. Based on the fail message in our example (Figure 2.3e), it is almost impossible

to determine the cause of failure. Closer examination reveals the dependencies of

assertions on variables s1 and s2, which in turn depend on DOM elements with

class asset-icon (link ¶ in Figure 2.3).

Next, the developer/tester is forced to find the points of contact between the

DOM elements and the JavaScript code. Finding the JavaScript code responsible

for modifying this subset of DOM elements is not easy. In the context of our

example, a developer would eventually conclude that line 17 of Figure 2.3a is

actually responsible for appending elements to the DOM. Discovering such implicit

links (· and ¸ in Figure 2.3) needs tedious examination in smaller programs, and

may not be feasible in larger applications.

In JavaScript, events can trigger code execution and must be taken into account

for finding the source of the fault. The renderAssets() function in our example

(Figure 2.3) can be called from within two event handlers (lines 26 and 33, respec-

tively, shown as ¹). While in our example it may be straight-forward to link the

call to scrollWindowDown() (line 7 of Figure 2.3d) to the execution of event

handler scroll (line 30–35 of Figure 2.3a) due to the similarity in naming convention,

such a linear mapping is neither possible in all cases nor easily inferable.

Finally, to fully understand an assertion and its possible cause of failure, the

data and control dependencies for the DOM-altering statements must be determined

and examined by the developer in order to identify all possible points of failure.

In the case of eStore, the modification of the DOM within renderAssets()
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Figure 2.4: A processing overview of our approach.

depends on the arguments passed into the function (lines 7 & 10). Dotted line

4 shows possible invocations of renderAssets(), revealing dependencies on

global variables such as gridSize. Tracing the dependencies reveals that an update

to gridSize on line 25 of Figure 2.3a is the root cause of the unusual behaviour.

2.2 Approach
In this section, we describe our approach for addressing the challenges mentioned

in the previous section. An overview of the overall process is depicted in Figure 2.4,

which consists of the following main steps:

• First, our technique captures a fine-grained trace of all semantically related

event-based interactions within a web application’s execution, in a particular

user session. The collection of this detailed trace is enabled through a series

of automated JavaScript transformations (Section 2.2.1).

• Next, a behavioural model is extracted from the information contained within

the trace. The model structures the captured trace and identifies the implicit

causal and temporal relationships between various event-based interactions

(Section 2.2.2).

• Then, the model is extended through a combination of selective code instru-

mentation and dynamic backward slicing to bridge the gap between test cases

18



and program code (Section 2.2.3).

• Finally, based on the inferred behavioural model, our approach generates

an interactive (web-based) user interface, visualizing and connecting all the

pieces together. This interactive visualization assists developers during their

web application comprehension and maintenance tasks (Section 2.2.4).

We describe each step further below.

2.2.1 JavaScript Transformation and Tracing

To automatically trace semantically related event-based interactions and their im-

pact, we transform the JavaScript code on-the-fly. Our approach generates a trace

comprising multiple trace units. A trace unit contains information acquired through

the interception of a particular event-based interaction type, namely, DOM events,

timing events, XHR calls and callbacks, function calls, and DOM mutations. The

obtained trace is used to build a behavioural model (as described in Section 2.2.2).

Interposing on DOM Events. There are two ways event listeners can be bound to

a DOM element in JavaScript. The first method is programatically using the DOM

Level 1 (e.click=handler) or DOM Level 2 (e.addEventListener)

methods W3C [133] in JavaScript code. To record the occurrence of such events,

our technique replaces the default registration of these JavaScript methods such

that all event listeners are wrapped within a tracing function that logs the occurring

event’s time, type, and target.

The second and more traditional way to register an event listener is inline in

the HTML code (e.g., <DIV onclick=‘handler();’>). The effect of this

inline assignment is semantically the same as the first method. Our technique

interposes on inline-registered listeners by removing them from their associated

HTML elements, annotating the HTML elements, and re-registering them using

the substituted addEventListener function. This way we can handle them

similarly to the programmatically registered event handlers.

Capturing Timeouts and XHRs. For tracing timeouts, we replace the browser’s

setTimeout() method and the callback function of each timeout with wrapper

functions, which allow us to track the instantiation and resolution of each timeout.

A timeout callback usually happens later and triggers new behaviour, and thus we
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1 function clearMsg() {
2 send(JSON.stringify({messageType: "FUNCTION_ENTER", fnName: "clearMsg←↩

", args: null, ...}));
3 $('#submissionMsg').fadeOut(2000);
4 send(JSON.stringify({messageType: "FUNCTION_EXIT", fnName: "clearMsg"←↩

, ...}));
5 }

Figure 2.5: Instrumented JavaScript function declaration.

consider it as a separate component than a setTimeout(). We link these together

through a timeout_id and represent them as a causal connection later. In our

model, we distinguish between three different components for the open, send,

and response phases of each XHR object. We intercept each component by

replacing the XMLHttpRequest object of the browser. The new object captures

the information about each component while preserving its functionality.

Recording Function Traces. To track the flow of execution within a JavaScript-

based application, we instrument three code constructs, namely function decla-

rations, return statements, and function calls. Each of these code constructs are

instrumented differently, as explained below.

Function Declarations: Tracing code is automatically added to each function

declaration allowing us to track the flow of control between developer-defined

functions by logging the subroutine’s name, arguments, and line number. In case of

anonymous functions, the line number and source file of the subroutine are used as

supplementary information to identify the executed code.

As this communication is done each time a function is executed, argument

values are recorded dynamically at the cost of a small overhead. Figure 2.5 contains

the simple clearMsg() JavaScript function from the running example shown in

Figure 2.2 (line 22), which has been instrumented to record both the beginning and

end of its execution (lines 2 and 4).

Return Statements: Apart from reaching the end of a subroutine, control can be

returned back to a calling function through a return statement. There are two reasons

for instrumenting return statements: (1) to accurately track nested function calls, and

(2) to provide users with the line numbers of the executed return statements. Without

recording the execution of return statements, it would be difficult to accurately
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1 function informServer(email) {
2 $.get('/register/', { email }, function(data) {
3 $('#regMsg').append(data);
4 });
5 return RSW(null, 5);
6 }

Figure 2.6: Instrumented JavaScript return statement.

1 function submissionHandler(e) {
2 $('#regMsg')[FCW("html")]("Submitted!");
3 var email = $('#email')[FCW("value")]();
4 if (FCW(isEmailValid)(email)) {
5 FCW(informServer)(email);
6 $('#submitBtn')[FCW("attr")]("disabled", true);
7 }
8 }
9 function clearMsg() {

10 $('#regMsg')[FCW("fadeOut")](2000);
11 }
12 function FCW(fnName) { // Function Call Wrapper
13 send(JSON.stringify({messageType: "FUNCTION_CALL",...,←↩

targetFunction: fnName}));
14 return fnName;
15 }

Figure 2.7: Instrumented JavaScript function calls.

track nested function calls. Furthermore, by recording return values and the line

number of each return statement, CLEMATIS is able to provide users with contextual

information that can be useful during the debugging process.

Figure 2.6 illustrates the instrumentation for the return statement of inform-

Server(), a function originally shown in the running example (Figure 2.2, lines

16-21). The wrapper function RSW receives the return value of the function and the

line number of the return statement and is responsible for recording this information

before execution of the application’s JavaScript is resumed.

Function Calls: In order to report the source of a function invocation, our

approach also instruments function calls. When instrumenting function calls, it is

important to preserve both the order and context of each dynamic call. To accurately

capture the function call hierarchy, we modify function calls with an inline wrapper

function. This allows us to elegantly deal with two challenging scenarios. First,
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1 Before Instrumentation:
2 getRegistrationDate(getStudentNumber(document.getElementById('←↩

username').value));

4 After Clematis Instrumentation:
5 FCW(getRegistrationDate)(FCW(getStudentNumber)(document←↩

FCW("getElementById")('username').value));

7 Alternative Instrumentation:
8 FCW(getRegistrationDate);
9 FCW(getStudentNumber);

10 FCW(getElementById);
11 getRegistrationDate(getStudentNumber(document.getElementById('←↩

username').value));

Figure 2.8: Comparison of instrumention techniques for JavaScript func-
tion calls.

when multiple function calls are executed from within a single line of JavaScript

code, it allows us to infer the order of these calls without the need for complex

static analysis. Second, inline instrumentation enables us to capture nested function

calls. Figure 2.7 depicts the instrumentation of function calls for two methods from

Figure 2.1, submissionHandler() and clearMsg().

Once instrumented using our technique, the function calls to isEmailValid()

and informServer() are wrapped by function FCW (lines 4 and 5). The interpos-

ing function FCW() executes immediately before each of the original function calls

and interlaces our function logging with the application’s original behaviour. Class

methods html(), value(), attr(), and fadeOut() are also instrumented

in a similar way (lines 2, 3, 6, and 10 respectively).

For comparison, an alternative instrumentation technique is shown on lines 8 –

10 of figure 2.8. While such a technique might be sufficient for measuring function

coverage, it does not capture the order of execution accurately for nested function

calls or when multiple function calls are made from a single line. Doing so would

require more complex static analysis.

DOM Mutations. Information about DOM mutations can help developers relate

the observable changes of an application to the corresponding events and JavaScript

code. To capture this important information, we introduce an observer module into

the system. This information is interleaved with the logged information about events
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and functions, enabling us to link DOM changes with the JavaScript code that is

responsible for these mutations.

2.2.2 Capturing a Behavioural Model

We use a graph-based model to capture and represent a web application’s event-

based interactions. The graph is multi-edge and directed. It contains an ordered

set of nodes, called episodes, linked through edges that preserve the chronological

order of event executions.3 In addition, causal edges between the nodes represent

asynchronous events. We describe the components of the graph below.

Episode Nodes. An episode is a semantically meaningful part of the application

behaviour, initiated by a synchronous or an asynchronous event. An event may

lead to the execution of JavaScript code, and may change the DOM state of the

application. An episode node contains information about the static and dynamic

characteristics of the application, and consists of three main parts:

1. Source: This is the event that started the episode, and its contextual infor-

mation. This source event is either a DOM event, a timeout callback, or a

response to an XHR request, and often causes a part of the JavaScript code to

be executed.

2. Trace: This includes all the functions that are executed either directly or

indirectly after the source event occurs. A direct execution corresponds to

functions that are called from within an event handler on a DOM element.

An indirect execution corresponds to functions that get called due to the

bubbling and capturing propagation of DOM events. The trace also includes

all (a)synchronous events that were created within the episode. All the

invoked functions and initiated events are captured in the trace part, and their

original order of execution and dependency relations are preserved.

3. Result: This is a section in each episode summarizing the changes to the

DOM state of the application. These changes are caused by the execution of

the episode trace and are usually observable by the end-user.

Edges. In our model, edges represent a progression of time and are used to connect

3Because JavaScript is single-threaded on all browsers, the events are totally ordered in time.
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episode nodes. Two types of edges are present in the model:

1. Temporal: The temporal edges connect one episode node to another, indicat-

ing that an episode succeeded the previous one in time.

2. Causal: These edges are used to connect different components of an asyn-

chronous event, e.g., timeouts and XHRs. A causal edge from episode s to d

indicates episode s was caused by episode d in the past.

Story. The term story refers to an arrangement of episode nodes encapsulating a

sequence of interactions with a web application. Different stories can be captured

according to different features, goals, or use-cases that need investigation.

Algorithm 1 takes the trace collected from a web application as input and

outputs a story with episodes and the edges between them. First, the trace units

are extracted and sorted based on the timestamp of their occurrence (line 3). Next,

the algorithm iteratively forms new episodes and assigns trace units to the source,

trace, and the result fields of individual episodes. If it encounters a trace unit

that could be an episode source (i.e., an event handler, a timeout, or an XHR

callback), a new episode is created (lines 5–6) and added to the list of nodes in

the story graph (line 8). The encountered trace unit is added to the episode as its

source (line 7). Line 9 shows different types of trace units that could be added to

the trace field of the episode. This trace is later processed to form the complete

function call hierarchy as well as each function’s relation with the events inside

that episode. Next, DOM mutation units that were interleaved with other trace

units are organized and linked to their respective episode (lines 11–12). An episode

terminates semantically when the execution of the JavaScript code related to that

episode is finished. The algorithm also waits for a time interval τ to ensure that

the execution of immediate asynchronous callbacks is completed (line 13). When

all of the trace units associated with the source, trace, and result of the episode are

assigned and the episode termination criteria are met, a temporal edge is added to

connect the recently created episode node to the previous one (line 14). The same

process is repeated for all episodes by proceeding to the next episode captured in the

trace (line 15). After all episodes have been formed, the linkages between distant

asynchronous callbacks – those that did not complete immediately – are extracted
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Algorithm 1 Story Creation
input : trace
output :story

Procedure CREATEMODEL() begin
1 G <V,E > story← /0
2 ecurr,eprev← /0
3 Σ tu← EXTRACTANDSORTTRACEUNITS(trace)
4 foreach tu ∈ Σ tu do
5 if eprev ≡ /0||eprev.ended()&&

tu.type≡ episodeSource then
6 ecurr← CREATEEPISODE()
7 ecurr.source← SETEPISODESOURCE(tu)
8 V ←V ∪ ecurr

9 else if (tu.type≡ FunctionTrace||EventHandler) ||
(tu.type≡ XHRCallback||TimeoutCallback
&& ¬episodeEndCriteria) then

10 ecurr.trace← ecurr.trace∪ tu

11 else if tu.type≡ DOMMutation then
12 ecurr.results← ecurr.results∪ tu

13 if episodeEndCriteriaSatis f ied then
14 E← E ∪ CREATETEMPORALLINK(eprev,ecurr)
15 eprev← ecurr

16 timeoutMap<TimeoutSet, TimeoutCallback>←MAPTIMEOUTTRACEUNITS(Σ tu)
17 XHRMap<XHROpen, XHRSend, XHRCallback>←MAPXHRTRACEUNITS(Σ tu)
18 E← E ∪EXTRACTCAUSALLINKS(TIMEOUTMAP, XHRMAP)

19 story← BUILDSTORY(G <V,E >)
20 return story

and added to the graph as causal edges (lines 16–18). Finally, the story is created

based on the whole graph and returned (lines 19–20).

2.2.3 Understanding Test Assertion Failures

In this section, we extend CLEMATIS to further assist developers in the compre-

hension process. We add a test case comprehension strategy to CLEMATIS, to help

developers understand the root cause of a test failure. Our technique automatically

links a test assertion failure to the checked DOM elements, and subsequently to the
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related statements in the JavaScript code. The following subsections describe our

strategies for fulfilling the aforementioned requirements of JavaScript test failure

comprehension.

Relating Test Assertions to DOM Elements. The DOM acts as the interface

between a front-end test case and the JavaScript code. Therefore, the first step to

understanding the cause for a test case failure is to determine the DOM dependencies

for each test assertion. While this seems simple in theory, in practice, assertions

and element accesses are often intertwined within a single test case, convoluting the

mapping between the two.

Going back to the test case of our example in Figure 2.3d, the first assertion on

Line 5 is dependent on the DOM elements returned by the access on the previous

line. The last assertion on Line 9 is more complex as it compares two snapshots

of the DOM and therefore has dependencies on 2 DOM accesses (Lines 4 and

8). Figure 2.9 summarizes the test case’s execution and captures the temporal and

causal relations between each assertion and DOM access.

Assertion 1 Assertion 2
DOM 

Access 1
(icon-star)

DOM 
Access 2

(asset-icons)

DOM 
Access 3

(asset-icons)

+

Figure 2.9: Relating assertions to DOM accesses for the test case of Fig-
ure 2.3d.

To accurately determine the DOM dependencies of each assertion (¶ in Fig-

ure 2.3), we apply dynamic backward slicing to each test case assertion. In addition,

we track the runtime properties of those DOM elements accessed by the test case.

This runtime information is later used in our analysis of the DOM dependencies of

each assertion.

Contextualizing Test Case Assertion. In the second step, our approach aims to (1)

help developers understand the context of their assertions by monitoring test-related

JavaScript execution, asynchronous events, and DOM mutations; (2) determine

the initial link between JavaScript code and the checked DOM elements (· in

Figure 2.3).
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In order to monitor JavaScript events, we leverage the tracing technique out-

lined in Section 2.2.1, which tracks the occurrence of JavaScript events, function

invocations, and DOM mutations. We utilize the tracked mutations in order to focus

on the segments of JavaScript execution most relevant to the assertions in a test case.

As we are only interested in the subset of the DOM relevant to each test case, our

approach focuses on the JavaScript code that interacts with this subset.

The previous step yields the set of DOM elements relevant to each assertion. We

cross reference these sets with the timestamped DOM mutations in our execution

trace extracted from CLEMATIS to determine the JavaScript functions and events

(DOM, timing, or XHR) relevant to each assertion.

Once the relevant events and JavaScript functions have been identified for each

assertion, we introduce wrapper functions for the native JavaScript functions used

by developers to retrieve DOM elements. Specifically, we redefine methods such as

getElementById and getElementsByClassName to track DOM accesses

within the web application itself so that we know exactly where in our collected

execution trace the mutation originated. The objects returned by these methods

are used by the application later to update the DOM. Therefore, we compute the

forward slice of these objects to determine the exact JavaScript lines responsible for

updating the DOM. Henceforth, we refer to the references returned by these native

methods as JavaScript DOM accesses.

We compare the recorded JavaScript DOM accesses with the DOM dependen-

cies of each test case assertion to find the equivalent JavaScript DOM accesses

within the application’s code. Moreover, the ancestors of those elements accessed

by each assertion are also compared with the recorded JavaScript DOM accesses.

This is important because in many cases a direct link might not exist between

them. For instance, in the case of our example (Figure 2.3d), a group of assets

are compiled and appended to the DOM after a scroll event. We compare the

properties of those DOM elements accessed by the final assertion (assets on Lines 4

and 8 of Figure 2.3d), as well as the properties of those elements’ ancestors, with

the recorded JavaScript DOM accesses and conclude that the assets were added to

the DOM via the parent element assets container on Line 17 of Figure 2.3a (·).

Slicing the JavaScript Code. At this point, our approach yields the set of Java-

Script statements responsible for updating the DOM dependencies of our test case.
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However, the set in isolation seldom contains the cause of a test failure. We compute

a backwards slice for these DOM-mutating statements to find the entire set of

statements that perform the DOM mutation.

In our approach, we have opted for dynamic slicing, which enables us to produce

thinner slices that are representative of each test execution, thus reducing noise

during the debugging process. The slices incorporate data and control dependencies

derived from the application. Moreover, by using dynamic analysis we are able

to present the user with valuable runtime information that would not be available

through static analysis of JavaScript code.

Selective Instrumentation. An ideal test case would minimize setup by exercis-

ing only the relevant JavaScript code related to its assertions. However, developers

are often unaware of the complete inner workings of the application under test. As a

result, it is possible for a test case to execute JavaScript code that is unrelated to any

of its contained assertions. In such a case, instrumenting an entire web application’s

JavaScript code base would yield a large trace with unnecessary information. This

can incur high performance overheads, which may change the web application’s

behaviour. Therefore, instead of instrumenting the entirety of the code for dynamic

slicing, our approach intercepts and statically analyzes all JavaScript code sent from

the server to the client to determine which statements may influence the asserted

DOM elements. Then, this subset of the application’s code is instrumented. This ap-

proach has two advantages. First, it minimizes the impact our code instrumentation

has on the application’s performance. Second, selective instrumentation yields a

more relevant and concise execution trace, which in turn lowers the processing time

required to compute a backward slice.

Our approach first converts the code into an abstract syntax tree (AST). This

tree is traversed in search of a node matching the initial slicing criteria. Once

found, the function containing the initial definition of the variable-in-question is

also found, henceforth referred to as the parent closure. Based on this information,

the algorithm searches this parent closure for all references to the variable of interest.

This is done in order to find all locations in the JavaScript code where the variable

may be updated, or where a new alias may be created for the variable. Moreover,

for each variable update pertaining to the variable of interest, we also track the

data dependencies for such an operation. Repeating these described steps for each
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of the detected dependencies allows us to iteratively determine the subset of code

statements to efficiently instrument for a given initial slicing criteria.

Once all possible data and control dependencies have been determined through

static analysis, each variable and its parent closure are forwarded to our code

transformation module, which instruments the application code in order to collect

a concise trace. The instrumented code keeps track of all updates and accesses to

all relevant data and control dependencies, hereby referred to as write and read

operations, respectively. This trace is later used to extract a dynamic backwards

slice.

Figure 2.10 shows an example of our code instrumentation technique’s output

when applied to the JavaScript code in Figure 2.3a with slicing criteria <10, size>.

By acting as a control dependency for variable temp, size determines the number

of displayed assets for the example. For each relevant write operation, our instru-

mentation code logs information such as the name of the variable being written to,

the line number of the executed statement, and the type of value being assigned to

the variable. Moreover, the data dependencies for such a write operation are also

logged. Likewise, for each read operation we record the name of the variable being

read, the type of value read, and the line number of the statement. Information about

variable type is important when performing alias analysis during the computation of

a slice.

Computing a Backwards Slice. Once a trace is collected from the selectively

instrumented application by running the test case, we run our dynamic slicing

algorithm. We use dynamic slicing as it is much more accurate than static slicing at

capturing the exact set of dependencies exercised by the test case.

The task of slicing is complicated by the presence of aliases in JavaScript. When

computing the slice of a variable that has been assigned a non-primitive value, we

need to consider possible aliases that may refer to the same object in memory. This

also occurs in other languages such as C and Java, however, specific to JavaScript

is the use of the dot notation, which can be used to seamlessly modify objects

at runtime. The prevalent use of aliases and the dot notation in web applications

often complicates the issue of code comprehension. Static analysis techniques often

ignore addressing this issue [47].

To remedy this issue, we incorporate dynamic analysis in our slicing method. If
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1			var	currentPage	=	1;

2			var	sortType	=	'default';

3			var	gridSize	=	_write("gridSize",	8,	3);

4			var	infiniteScroll	=	false;

5			

6			var	renderAssets	=	function(url,	size)	{

7							var	data	=	assetsFromServer(url);

8			

9							var	temp	=	'<div	class="asset-row">';

10						for	(i	=	0;	i	<	_read("size",	size,	10);	i++)	{

11										temp	+=	'		<div	class="asset-icon">';	

12										...	//	Reading	from	variable	'data'

13										temp	+=	'		</div>';

14						}

15						temp	+=	'</div>';

16							

17						return	$('#assets-container').append(temp);

18		};

19			

20		$(document).on('click',	'#sort-assets',	function(){

21						$('#sort-assets').removeClass('selected-type')

22						$(this).addClass('selected-type');

23						currentPage	=	1;

24						sortType	=		$(this).attr('type');

25						gridSize	=	_write("gridSize",	12,	25);

26						renderAssets(url	+	sortType	+	currentPage,	_readAsArg("gridSize",	gridSize,	26));

27						infiniteScroll	=	true;

28		});

29			

30		var	scroll	=	function()	{

31						if(infiniteScroll)	{

32										currentPage++;

33										renderAssets(url	+sortType	+currentPage,	_readAsArg("gridSize",	gridSize,	33)/2);

34						}

35		};

36		$(window).bind('scroll',	scroll);

Figure 2.10: Example JavaScript code after our selective instrumentation
is applied. Slicing criteria: <10, size>

a reference to an object of interest is saved to a second object’s property, possibly

through the use of the dot notation, the object of interest may also be altered via

aliases of the second object. For example, after executing statement a.b.c =

objOfInterest;, updates to objOfInterest may be possible through a,

a.b, or a.b.c. To deal with this and other similar scenarios, our slicing algorithm

searches through the collected trace and adds the forward slice for each detected

alias to the current slice for our variable of interest (e.g. objOfInterest).

The line numbers for each of the identified relevant statements in the com-

puted slice are collected and used during the visualization step, as shown in the
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Figure 2.11: Overview of all captured stories.

Section 2.2.4.

2.2.4 Visualizing the Captured Model

In the final step, our technique produces an interactive visualization of the gener-

ated model, which can be used by developers to understand the behaviour of the

application. The main challenge in the visualization is to provide a way to display

the model without overwhelming the developer with the details. To this end, our

visualization follows a focus+context [29] technique that provides the details based

on a user’s demand. The idea is to start with an overview of the captured story, let

the users determine which episode they are interested in, and provide an easy means

to drill down to the episode of interest. With integration of focus within the context,

developers can semantically zoom into each episode to gain more details regarding

that episode, while preserving the contextual information about the story.

Multiple Sessions, Multiple Stories. The user can capture multiple sessions that

leads to creation of multiple stories. After each story is recorded, it will be added to

the list of captured stories. The name of each story is the date and time at which

it was captured. Figure 2.11 shows a screenshot of sample captured stories in the

visualization of Clematis. Once the users select their desired story, the browser

opens a new page dedicated to that story. The initial view of a story contains a menu

bar that helps the user navigate the visualization (Figure 2.12, top). It also displays

an overview of all captured episodes inside the story (Figure 2.12, bottom).

Story Map, Queries, and Bookmarking. A menu bar is designed for the visu-

alization that contains two main parts: the story map and the query mechanism

(Figure 2.12, top). The story map represents a general overview of the whole story

as a roadmap. Panning and (semantic) zooming are available for all episodes and

31



Figure 2.12: Top: menu of CLEMATIS. Bottom: overview of a captured
story.

may cause users to lose the general overview of the story. Hence, based on the

user’s interaction with the story (e.g., episode selection), the episodes of interest

are highlighted on the roadmap to guide the user. The query section enables users

to search and filter the information visualized on the screen. Users can filter the

episodes displayed on the screen by the episode types (i.e., Event, Timeout, or

XHR). They can also search the textual content of the events as well as the actual

code. Moreover, they have the option to bookmark one or more episodes while

interacting with the target web application. Those episodes are marked with a star

in the visualization to help users to narrow the scope and spot related episodes (e.g.,

episode #6 in Figure 2.12 is bookmarked). The episodes’ timing information is also

shown.

Semantic Zoom Levels. The visualization provides 3 semantic zoom levels.

Zoom Level 0. The first level displays all of the episodes in an abstracted manner,

showing only the type and the timestamp of each episode (Figure 2.12, bottom). The

type of each episode is displayed by the text of the episode as well as its background

color. The horizontal axis is dedicated to time and episodes are sorted from left

to right according to the time of their occurrence (temporal relations). The causal

edges between different sections of each timeout or XHR object are shown by

additional edges under the episodes.

Zoom Level 1. When an episode is selected, the view transitions into the

second zoom level, which presents an outline of the selected episode, providing

more information about the source event as well as a high-level trace (Figure 2.13,

middle). The trace at this level contains only the names of the (1) invoked functions,

(2) triggered events, and (3) DOM mutations, caused directly or indirectly by the

source event. At this level, the user can view multiple episodes to have a side-by-side
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Figure 2.13: Three semantic zoom levels in CLEMATIS. Top: overview.
Middle: zoomed one level into an episode, while preserving the
context of the story. Bottom: drilled down into the selected
episode.

comparison.

Zoom Level 2. The final zoom level exhibits all the information embedded

in each episode (Figure 2.13, bottom). Clicking on the “Event” tab will display

the type of the event that started the episode (DOM, timeout or XHR event). The
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contextual information of the event are displayed based on its type. Choosing the

“DOM mutations” tab will list all the changes that were made to the DOM after

the execution of this episode. For each DOM element that was added, removed

or modified, an item is added to the list of mutations that identifies the modified

element, the type of the change and additional information about the change. The

third and final tab depicts a detailed trace of the episode. The trace at this level

includes a customized sequence diagram of the dynamic flow of all the invoked

JavaScript functions and events within that episode. When the user clicks on any of

the functions or events in the diagram, the JavaScript code of each executed function

is displayed and highlighted (Figure 2.13, bottom).

Inferred Mappings between Test Failures and Code. The test case comprehen-

sion unit extends the interactive visualization to depict the inferred mappings for

the test failure. The visualization helps to understand (1) the client-side JavaScript

code related to the assertion failure, (2) the test case’s relations to DOM changes

and JavaScript execution, and/or (3) any deviations in the expected behaviour with

respect to a previous version where the test passed. Figure 2.14 depicts an example

of the high-level view provided by our visualization for a test case.

In the high-level view, the progress of an executed test case over time is depicted

on the horizontal axis where the earliest assertions are shown on the left-hand side

of the high-level view and the most recent JavaScript events and assertions are

shown closer to the right-hand side. The top of Figure 2.14b shows the high-level

visualization produced by running the same test case from Figure 2.14a on a faulty

version of the application. Passing assertions for a test case are represented as grey

nodes, and failures are shown in red. In the case of an assertion, causal links relate

the assertion to prior events that may have influenced its outcome. These are events

that altered portions of the DOM relevant to the assertion. DOM events, timing

events, and network-related JavaScript events are visualized alongside the assertions

as green, purple and blue nodes, respectively.

Clicking on a failed assertion node reveals additional details about it (Fig-

ure 2.14b). Details include related (1) DOM dependencies, (2) failure messages, and

(3) related JavaScript functions. The final zoom level of an assertion node displays

all the information captured for the assertion including the captured slice, and the

line numbers of the failing test case assertions.
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	public	void	testSortByDefaults()	{

				driver.get(	"http://localhost:9763/store/assets/gadget");

					driver.findElement(By.css("i.icon-star")).click();

					int	s1	=	driver.findElements(By.css(".asset-icon")).size();

					assertEquals(12,	s1);

					scrollWindowDown();

					int	s2	=	driver.findElements(By.css(".asset-icon")).size();

					assertEquals(4,	s2	-	s1);

	}	

(b)

(a)

Episode #3
Scroll 

Assertion #2
Fail

Assertion #1
Pass

Episode #2
Click 

Episode #1
Load

Episode #3
Scroll 

Assertion #2
Pass

Assertion #1
Pass

Episode #2
Click 

Episode #1
Load

var	currentPage	=	1;

var	sortType	=	'default';

var	gridSize	=	8;

var	infiniteScroll	=	false;

var	renderAssets	=	function(url,	size)	{

				var	data	=	assetsFromServer(url);

				var	temp	=	'<div	class="asset-row">';

				for	(i	=	0;	i	<	size;	i++)	{

								temp	+=	'		<div	class="asset-icon">';	

								...	//	Reading	from	variable	'data'

								temp	+=	'		</div>';

				}

				temp	+=	'</div>';

				return	$('#assets-container').append(temp);

};

				$(document).on('click',	'#sort-assets',	function(){

								$('#sort-assets').removeClass('selected-type')

								$(this).addClass('selected-type');

								currentPage	=	1;

								sortType	=		$(this).attr('type');

								gridSize	=	12;

								renderAssets(url	+	sortType	+	currentPage,	gridSize)

								infiniteScroll	=	true;

				});

				var	scroll	=	function()	{

								if(infiniteScroll)	{

												currentPage++;

												renderAssets(url	+sortType	+	currentPage,	gridSize/2)

								}

				};

				$(window).bind('scroll',	scroll);
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Current	Line:	17	|	Operation:	Read	|	Variable:	temp	|	Value:	'<div
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org.junit.ComparisonFailure: expected:
<[4]> but was: <[6]>

class: "asset-icon"
tagName: "div"

renderAssets() scroll() anonymous20()
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Test Case Summary

Application JavaScript Slice
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2

Figure 2.14: Visualization for a test case. (a) Overview of the passing test
case, (b) Three semantic zoom levels for the failing test case; Top:
overview. Middle: second zoom level showing assertion details,
while preserving the context. Bottom: summary of failing asser-
tion and the backwards slice.

When displaying the code slice for an assertion, each line of JavaScript code

that may have influenced the assertion’s outcome is highlighted in the context

of the source code (Figure 2.14b, lower-right). The user can further explore the

captured slice by stepping through its recorded execution using a provided control
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panel, shown in green on Figure 2.14b. By doing so, the user is able to take a

post-mortem approach to fault localization whereby the faulty behaviour is studied

deterministically offine after execution has completed. Further, the user can also

examine the captured runtime values of relevant JavaScript variables.

RESTful API. We deployed a RESTful API that provides access to details about

captured stories and allows the approach to remain portable and scalable. This

architectural decision enables all users, independent of their environments, to take

advantage of the behavioural model. By invoking authorized calls to the API, one

can represent the model as a custom visualization, or use it as a service in the logic

of a separate application.

2.2.5 Tool Implementation: Clematis

We implemented our approach in a tool called CLEMATIS, which is freely available4.

We use a proxy server to automatically intercept and inspect HTTP responses

destined for the client’s browser. When a response contains JavaScript code, it

is transformed by CLEMATIS. We also use the proxy to inject a JavaScript-based

toolbar into the web application, which allows the user to start/stop capturing their

interactions with the application. We used a proxy since it leads to a non-intrusive

instrumentation of the code. A browser plugin would be a suitable alternative.

However, unlike browser plugins, a proxy-based approach does not require installing

a plugin, is not dependent on the type of the browser, and does not need to be

maintained and updated based on browser updates. The trace data collected is

periodically transmitted from the browser to the proxy server in JSON format. To

observe low-level DOM mutations, we build on and extend the JavaScript Mutation

Summary library5. The model is automatically visualized as a web-based interactive

interface. Our current implementation does not capture the execution of JavaScript

code that is evaluated using eval. CLEMATIS provides access to details of captured

stories through a RESTful API.

4http://salt.ece.ubc.ca/software/clematis/
5http://code.google.com/p/mutation-summary/
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2.3 Controlled Experiments
To assess the efficacy of our program comprehension approach, we conducted

two controlled experiments, following guidelines by Wohlin et al. [139], one in

a research lab setting and the other in an industrial environment. In addition, to

assess the test failure comprehension extension of CLEMATIS, we conduct a third

controlled experiment.

Common design elements of all experiments are described in this section. Sec-

tions 2.4–2.6 are dedicated to describing the specific characteristics and results of

each experiment, separately.

Our evaluation aims at addressing the following research questions. The first

four research questions are designed to evaluate the main code comprehension unit

of CLEMATIS. These questions are investigated in the first two experiments (Section

2.4–2.5). RQ1.5, however, assesses the extended test failure comprehension unit of

CLEMATIS (Section 2.6). In order to be able to maintain the duration of experiment

sessions reasonable, we decided to evaluate the test comprehension unit separately.

RQ1.1 Does CLEMATIS decrease the task completion duration for common tasks

in web application comprehension?

RQ1.2 Does CLEMATIS increase the task completion accuracy for common tasks

in web application comprehension?

RQ1.3 For what types of tasks is CLEMATIS most effective?

RQ1.4 What is the performance overhead of using CLEMATIS? Is the overall

performance acceptable?

RQ1.5 Is the test failure comprehension unit helpful in localizing (and repairing)

JavaScript faults detected by test cases?

2.3.1 Experimental Design

The experiments had a “between-subject” design; i.e., the subjects were divided into

two groups: experimental group using CLEMATIS and control group using other

tools. The assignment of participants to groups was done manually, based on the

level of their expertise in web development. We used a 5-point Likert scale in a

pre-questionnaire to collect this information, and distributed the level of expertise
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Table 2.1: Adopted and adapted comprehension activities.

Activity Description
A1 Investigating the functionality of (a part of) the system
A2 Adding to / changing the system’s functionality
A3 Investigating the internal structure of an artifact
A4 Investigating the dependencies between two artifacts
A5 Investigating the run-time interaction in the system
A6 Investigating how much an artifact is used
A7 Investigating the asynchronous aspects of JavaScript
A8 Investigate the hidden control flow of event handling

in a balanced manner between the two groups. None of the participants had any

previous experience with CLEMATIS and all of them volunteered for the study.

Task Design. The subjects were required to perform a set of tasks during the experi-

ment, representing tasks normally used in software comprehension and maintenance

efforts. We adapted the activities proposed by Pacione et al. [102], which cover

categories of common tasks in program comprehension, to web applications by

replacing two items. The revised activities are shown in Table 2.1. We designed a

set of tasks for each experiment to cover these activities. Tables 2.2 and 2.3 show

the tasks for studies 1 and 2 accordingly. Because study 2 was conducted in an

industrial setting, participants had limited time. Therefore, we designed fewer tasks

for this study compared to study 1. Table 2.4 depicts the tasks used in study 3,

which aims the fault localization capabilities of CLEMATIS.

Independent Variable (IV). This is the tool used for performing the tasks, and has

two levels: CLEMATIS represents one level, and other tools used in the experiment

represent the other level (e.g., Chrome developer tools, Firefox developer tools,

Firebug).

Dependent Variables (DV). These are (1) task completion duration, which is

a continuous variable, and (2) accuracy of task completion, which is a discrete

variable.

Data Analysis. For analyzing the results of each study, we use two types of

statistical tests to compare dependent variables across the control and experimental

groups. Independent-samples t-tests with unequal variances are used for duration

and accuracy in study 1, and for duration in study 2. However, the accuracy data in
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study 2 was not normally distributed, and hence we use a Mann-Whitney U test for

the analysis of accuracy in this study. We use the statistical analysis package R6 for

the analysis.

2.3.2 Experimental Procedure

All experiments consisted of four main phases. First, the subjects were asked to fill

a pre-questionnaire regarding their expertise in the fields related to this study.

In the next phase, the participants in the experimental group were given a tutorial

on CLEMATIS. They were then given a few minutes to familiarize themselves with

the tool after the tutorial.

In the third phase, each subject performed a set of tasks, as outlined in Tables

2.2 and 2.3. Each task was given to a participant on a separate sheet of paper, which

included instructions for the task and had room for the participant’s answer. Once

completed, the form was to be returned immediately and the subject was given the

next task sheet. This allowed us to measure each task’s completion time accurately,

to answer RQ1.1 and RQ1.3. To address RQ1.2 and RQ1.3, the accuracy of each

task was later evaluated and marked from 0 to 100 according to a rubric that we

had created prior to conducting the experiment. The design of the tasks allowed the

accuracy of the results to be quantified numerically. The tasks and sample rubrics

are available in our technical report Alimadadi et al. [5].

In the final phase, participants filled out a post-questionnaire form providing

feedback on their experience with the tool used (e.g., limitations, strength, usability).

2.4 Experiment 1: Lab Environment
The first controlled experiment was conducted in a lab setting with students and

postdocs at the University of British Columbia (UBC).

2.4.1 Approach

Experimental Design. For this experiment, both groups used Mozilla Firefox 19.0.

The control group used Firebug 1.11.2. We chose Firebug in the control group since

6http://www.r-project.org
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Table 2.2: Comprehension tasks used in study 1.

Task Description Activity
T1 Locating the implementation of a feature modifying the DOM A1, A4
T2 Finding the functions called after a DOM event (nested calls) A1, A4, A5
T3.a Locating the place to add a new functionality to a function A2, A3
T3.b Finding the caller of a function A4, A5
T4.a Finding the functions called after a DOM event (nested calls + bubbling) A1, A4, A5
T4.b Locating the implementation of a UI behavior A1, A3, A4
T5.a Finding the functions called after a DOM event (bubbling + capturing) A1, A5, A8
T5.b Finding the changes to DOM resulting from a user action A4, A5
T6.a Finding the total number of sent XHRs A6, A7
T6.b Finding if there exists an un-responded XHR A4, A5, A7

it is the de facto tool used for understanding, editing, and debugging modern web

applications.7 Firebug has been used in other similar studies Zaidman et al. [143].

Experimental Subjects. We recruited 16 participants for the study, 3 females and

13 males. The participants were drawn from different educational levels: 2 under-

graduate students, 5 Master’s students, 8 Ph.D. students, and 1 Postdoctoral fellow,

at UBC. The participants represented different areas of software and web engineer-

ing and had skills in web development ranging from beginner to professional. The

tasks used in this study are enumerated in Table 2.2.

Experimental Object. We decided to use a web-based survey application that was

developed in our lab. The application had modest size and complexity, so that it

could be managed within the time frame anticipated for the experiment. Yet it

covered the common comprehension activities described in Table 2.1.

Experimental Procedure. We followed the general procedure described in section

2.3.2. After filling the pre-questionnaire form, the participants in the control group

were given a tutorial on Firebug and had time to familiarize themselves with it,

though most of them were already familiar with Firebug.

2.4.2 Results

Duration. To address RQ1.1, we measured the amount of time (minutes:seconds)

spent on each task by the participants, and compared the task durations between

7Firebug has over 3 million active daily users: https://addons.mozilla.org/en-US/firefox/addon/firebug/
statistics/usage/
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CLEMATIS and Firebug using a t-test. According to the results of the test, there

was a statistically significant difference (p-value=0.002) in the durations between

CLEMATIS (M=23:22, SD=4:24) and Firebug (M=36:35, SD=8:35). Figure 2.15

shows the results of the comparisons.

To investigate whether certain categories of tasks (Table 2.2) benefit more from

using CLEMATIS (RQ1.3), we tested each task separately. The results showed im-

provements in time for all tasks. The improvements were statistically significant for

tasks 2 and 5, and showed a 60% and 46% average time reduction with CLEMATIS,

respectively. The mean times of all tasks for CLEMATIS and Firebug are presented
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Table 2.3: Comprehension tasks used in study 2.

Task Description Activity
T7 Extracting the control flow of an event with delayed effects A1, A4, A5, A7
T8 Finding the mutations in DOM after an event A1, A5
T9 Locating the implementation of a malfunctioning feature A1, A2, A3
T10 Extracting the control flow of an event with event propagation A1, A5, A8

in Figure 2.16. The results show that on average, participants using CLEMATIS

require 36% less time than than the control group using Firebug, for performing the

same tasks.

Accuracy. The accuracy of answers was calculated in percentages. We compared

the accuracy of participants’ answers using a t-test. The results were again in favour

of CLEMATIS and were statistically significant (p=0.02): CLEMATIS (M=83%,

SD=18%) and Firebug (M=63%, SD=16%). This comparison of accuracy between

tools is depicted in Figure 2.17. As in the duration case, individual t-tests were

then performed for comparing accuracy per task (related to RQ1.3). CLEMATIS

showed an increased average accuracy for all tasks. Further, the difference was

statistically significant in favour of CLEMATIS for task 5, and subtasks 4.a and 5.a.

The results show that participants using CLEMATIS achieved 22% higher accuracy

than participants in the control group. We plot the average accuracies of all tasks

for CLEMATIS and Firebug in Figure 2.18. We discuss the implications of these

results in Section 2.8.

2.5 Experiment 2: Industrial
To investigate CLEMATIS’s effectiveness in more realistic settings, we conducted

a second controlled experiment at a large software company in Vancouver, where

we recruited professional developers as participants and used an open-source web

application as the experimental object.

2.5.1 Approach

Experimental Design. Similar to the first experiment, the participants were divided

into experimental and control groups. The experimental group used CLEMATIS
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throughout the experiment. Unlike the previous experiment, members of the control

group were free to use the tool of their choice for performing the tasks. The intention

was for the participants to use whichever tool they were most comfortable with.

5 participants used Google Chrome’s developer tools, 2 used Firefox’s developer

tools, and 3 used Firebug.

Experimental Subjects. We recruited 20 developers from a large software company

in Vancouver, 4 females and 16 males. They were 23 to 42 years old and had medium

to high expertise in web development.

Task Design. For this experiment, we used fewer but more complex tasks

compared to the first experiment. We designed 4 tasks (Table 2.3) spanning the

categories: following the control flow, understanding event propagation, detecting

DOM mutations, locating feature implementation, and determining delayed code

execution using timeouts.
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Experimental Object. Phormer 8 is an online photo gallery in PHP, JavaScript,

CSS and XHTML. It provides features such as uploading, commenting, rating,

and displaying slideshows for users’ photos. It contains typical mechanisms such

as dynamic DOM mutation, asynchronous calls (XHR and timeouts), and event

propagation. Phormer has over 6,000 lines of JavaScript, PHP and CSS code in total

(1500 lines of JavaScript). It was rated 5.0 star on SourceForge and had over 38,000

downloads at the time of conducting the experiment.

Experimental Procedure. We followed the same procedure described in 2.3.2,

with one difference: the participants in the control group were not given any tutorial

regarding the tool they used throughout the experiment, as they were all proficient

users of the tool of their choice.

2.5.2 Results

Box plots of task completion duration and accuracy, per task and in total, for the

control (Ctrl) and experimental (Exp) groups, are depicted in Figures 2.19 and 2.20,

respectively.

Duration. Similar to the previous experiment, we ran a set of t-tests for the total

task duration as well as for the time spent on individual tasks. The results of the

tests showed a statistically significant difference (p-value = 0.0009) between the

experimental group using CLEMATIS (M=15:37, SD=1:43) and the control group

(M=29:12, SD=5:59), in terms of total task completion duration. The results showed

improvements in duration when using CLEMATIS for all four tasks. We found

significant differences in favour of CLEMATIS for tasks T7, T8 and T9. The results

show that developers using CLEMATIS took 47% less time on all tasks compared to

developers in the control group.

Accuracy. We used Mann-Whitney U tests for comparing the results of task accu-

racy between the control and the experimental group, since the data was not normally

distributed. For the overall accuracy of the answers, the tests revealed a statistically

significant difference with high confidence (p-value = 0.0005) between CLEMATIS

(M=90%, SD=25%) and other tools (M=35%, SD=20%). We then performed the

comparison between individual tasks. Again, for all tasks the experimental group

8http://p.horm.org/er/
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using CLEMATIS performed better on average. We observed statistical significant

improvements in the accuracy of developers using CLEMATIS for tasks T7, T8 and

T10. The results show that developers using CLEMATIS performed more accurately

across all tasks by 157% on average, compared to developers in the control group.

2.5.3 Qualitative Analysis of Participant Feedback

The industrial participants in our second experiment shared their feedback regarding

the tool they used in the experiment session (CLEMATIS for the experimental

group and other tools for the control group). They also discussed their opinions

about the features an ideal web application comprehension tool should have. We

systematically analyzed [36] the qualitative data to find the main features of a web

application comprehension tool according to professional web developers. To the

best of our knowledge, at the time conducting this study, there were neither any

tools available specifically designed for web application comprehension, nor any

studies on their desirable characteristics.

Data Collection

The participant selection was based on introductions by the team leads in the

company. Our research group had started a research collaboration with the company

and they were willing to spread the word about the experiment and help recruit

volunteer participants. The examiner was present at the company starting two weeks

prior to the experiment and helped the procession of recruiting and if possible,

giving an introduction to the potential participants.

Our overall policy for recruiting participants was random sampling. However,

throughout the course of the experiment, we tried to partially apply theoretical

sampling by asking participants to recommend other candidates fit for attending the

experiment. In general, this did have a noticeable impact on our sampling process

since our desirable sample set had to be diverse. A wider range of experience and

proficiency was suitable for our purpose, as we wanted to support various groups

of web developers by CLEMATIS. Moreover, preserving the overall randomness

of sampling was necessary for ensuring the validity of our qualitative analysis.

Hence, we examined the background and the experience of our potential candidates
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and tried to include a more diverse group of participants that still met our original

requirements.

In the final phase of the experiment, where we gathered the qualitative data,

the participants filled a post-questionnaire form with open-ended questions. The

forms allowed them to focus and provide answers without having the sense of being

watched. Next, they were interviewed verbally based on both their answers to the

questionnaire, and the comments of previous participants. During the interviews,

the examiner took notes of the participants’ answers as well as their expressions and

body language, which could convey more insight into participants’ intents.

Extracting the Concepts

After each group of consecutive sessions was completed, we started coding the

gathered data based on open coding principles. We read and analyzed comments and

interview manuscripts of each participant, and coded every comment based on the

participant’s intention. At this stage, no part of the data was excluded. The coding

only helped us extract the existing concepts within the data. Hence, by performing

coding parallel to conducting the experiments, we were able to better direct our

following interview sessions. This process enabled us to observe the emerging

categories as we proceeded with the experiment. We used this information to guide

the interviews towards discovering the new data. Moreover, we simultaneously

compared the coded scripts of different participants. This allowed us to investigate

the consistencies or differences between the derived concepts.

As we progressed further in conducting the experiment sessions, the core cat-

egories of concepts began to emerge from the coded data. We used memos to

analyze these categories early in the process, while we were still able to improve

the interviews.

Categories started to form during the process of coding the data. We started

to recognize the core categories based on the density of the data in each category.

We then continued with selective coding of the remaining forms and manuscripts.

We intentionally permitted the evolution of multiple core categories (as opposed

to one), in order to account for different aspects of an ideal comprehension tool to

get recognized. Multiple categories were integrated to create each core category.
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The concepts that contributed to building each core category were referred to by a

noticeable number of participants. Various subcategories were brought together to

form different aspects of a desirable web application comprehension tool according

the developers who are interested in using such a tool. Closer to the end of the

experiments, only the more relevant categories to the core categories were selected

due to selective coding. The maturity of the core categories (described below) was

indicated when the newly gathered data did not contribute much to the existing

categories.

Guidelines for Web Application Comprehension Tools

The following are the characteristics of a desirable web application comprehension

tool, derived from the participants’ responses to our post-questionnaire forms and

interviews.

• Integration with debugging.
One of the most prevalent concepts that was discussed by the participants was

debugging. All of our participants were using a browser-specific debugger

in their everyday tasks. Although these debugging capabilities are not best

tuned for web application comprehension, they still play a potent role in

web development process. Almost all developers in the control group used

one or more features of a debugger. Many developers in the experimental

group requested adding features such as setting break points and step-by-step

execution to CLEMATIS. Some of our participants suggested the integration

of CLEMATIS with commonly-used platforms that support debugging.

• DOM inspection.
Majority of the participants used the DOM inspection feature of browser

development tools extensively. However, the participants in the control group

were frustrated by the unavailability of a feature that allows them to easily

detect all of changes to the DOM after a certain event. This option was

provided for CLEMATIS users, most of whom chose this feature as one of

their favourite features. The majority of the participants in the experimental

group mentioned CLEMATIS’s DOM mutation view is particularly useful, and

requested a better visualization.
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• JavaScript and DOM interaction.
Many participants in the control group were complaining about the lack of

better means of relating the JavaScript code to DOM elements and events.

Not using CLEMATIS, there is currently no trivial way of relating DOM events

to the respective executed JavaScript code. Moreover, there is no connection

between a DOM feature and the JavaScript code responsible for that feature.

This can make the common task of feature location rigorous.

• Call hierarchy.
One of the most popular topics of CLEMATIS users was any concept related

to the trace it keeps in each episode. The majority of the participants in the

experimental group were pleased by the ease of understanding the customized

sequence diagrams. They quickly adopted this feature, and many of the

CLEMATIS users were also impressed by the inclusion of asynchronous

callbacks and propagated event handlers. On the other hand, most of the

participants in the control group expressed dissatisfaction by the lack of

features such as call stacks in existing tools.

• Interactivity and realtimeness.
Many CLEMATIS users mentioned more interaction and better responsiveness

of the tool as a key factor in adopting it for their every-day tasks. Intrigued by

the ability to capture a story of interactions, they were demanding realtime

creation of stories while interacting with the application, and better analysis

performance. The industrial tools used by the control group provided much

better performance, but lacked many of the desired features (other core

categories).

• Sophisticated visualization.
Many participants indicated that visualization techniques and the usability

factors can hugely impact their usage of a tool. Most of CLEMATIS user

preferred the focus+context technique adopted by CLEMATIS. However,

being an academic prototype, CLEMATIS has much room for improvement in

terms of interface design and usability. In general, any tool that supports all

technical core categories can still be unsuccessful should it fail in delivering

the necessary information to users through a visualization.
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Table 2.4: Injected faults for the controlled experiment.

Fault Fault Description Detecting Test
Case

Related
Task

F1 Altered unary operation related to navigating slideshow SlideShowTest T11
F2 Modified string related to photo-rating feature MainViewTest T12
F3 Changed number in branch condition for photo-rating feature MainViewTest T12
F4 Transformed string/URL related to photo-rating feature MainViewTest T12

There were few features that the participants found useful, but were not included

in the core categories. Among them was semantic zooming, or presenting the

overview first and providing more details on demand. Another popular feature

was the extraction of DOM mutations per event. The participants also requested

for a number of features to be included in future versions of the tool. These

features included filtering and query options for DOM mutations, and the ability to

attach notes to bookmarked episodes. Overall, according to two of our industrial

participants, CLEMATIS is “Helpful and easy to use” and “Very useful. A lot of

potential for this tool!”.

2.6 Experiment 3: Test Failure Comprehension
We conducted a third controlled experiment to assess the effectiveness of our test

failure comprehension extension of CLEMATIS.

2.6.1 Approach

Experimental Design. Once again, we divided the participants into experimental

(CLEMATIS) and control groups.

Experimental Subjects. 12 participants were recruited for the study at the Univer-

sity of British Columbia (UBC), three females and nine males. The participants

were drawn from different education levels at UBC. They all had prior experience in

web development and testing, ranging from beginner to professional. Furthermore,

six of the participants had worked in industry previously either full-time or through

internships

Task Design. For this experiment, we used fewer but more complex tasks compared

to the first experiment. To answer RQ1.5, participants were given two main tasks,
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each involving the debugging of a test failure in the Phormer application (Table 2.4).

For each task, participants were given a brief description of the failure and a test

case capable of detecting the failure. We used a test suite written by a UBC student

for the Phormer application. The test suite was written as part of a separate and

independent course project, six months before the inception of our project presented

in this paper.

For the first task of this experiment (T11), they were asked to locate an injected

fault in Phormer given a failing test case. Participants were asked not to modify the

application’s JavaScript code during T11.

The second task of this experiment (T12) involved identifying and fixing a

regression fault (unrelated to the first one). For this task, participants were asked

to locate and repair the fault(s) causing the test failure. As the second failure was

caused by three separate faults, participants were allowed to modify the application

source code in order to iteratively uncover each fault by rerunning the test case. In

addition to the failing test case, participants in both groups were given two versions

of Phormer, the faulty version and the original fault-free one. The intention here

was to simulate a regression testing environment.

The injected faults are based on common mistakes JavaScript developers make

in practice, as identified by Mirshokraie et al. [90].

Experimental Object. Similar to the previous experiment, we used Phormer as the

experimental object.

Experimental Procedure. The procedure was similar to what we described in

2.3.2. A maximum of 1.5 hours was allocated for the study: 10 minutes were

designated for an introduction, 15 minutes were allotted for users to familiarize

themselves with the tool being used, 20 minutes were allocated for task 11, another

30 minutes were set aside for task 12, and 15 minutes were used for completing the

questionnaire at the end of the study.

2.6.2 Results

Figure 2.21 and Figure 2.22 depict box plots of task completion accuracy and

duration, per task and in total, for both the experimental group (Exp) and the control

group (Ctrl).
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Accuracy. The accuracy of participant answers was calculated to answer RQ5.

Overall, the group using CLEMATIS (M = 95.83, SD = 10.21) performed much

more accurately than the control group (M = 47.92, SD = 45.01). The results

show a statistically significant improvement for the experimental group (p-value =

0.032). Comparing the results for the two tasks separately, the experimental group

performed better on both tasks on average. The results show that participants using

CLEMATIS performed more accurately across both tasks by a factor of two, on

average, compared to those participants in the control group.

Duration. To further answer RQ5, we measured the amount of time (minutes:seconds)

spent by participants on each task and in total. According to the results of the tests,

there was a statistically significant difference in the duration of T11 for CLEMATIS

(M = 5:42, SD = 2:10) and the control group (M = 12:03, SD = 4:29); p-value =

0.016. Comparison of the duration data gathered for T12 yielded no significant

difference between CLEMATIS (M = 23:23, SD = 6:31) and the control group (M
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= 19:46, SD = 8:05); p-value > 0.05. Those participants in the control group who

answered task 2 correctly required a mean duration of 25:21 to complete the task,

which is a longer time than the mean duration of the experimental group. The results

revealed no significant difference between CLEMATIS group (M = 29:05, SD =

7:42) and the control group (M = 31:49, SD = 10:37) with regard to the total time

spent (p-value > 0.05). The results show that developers using CLEMATIS took 54%

less time to localize a detected fault. The results are inconclusive regarding fault

repair time.

2.7 Performance Overhead
With respect to RQ4, there are three sources of potential performance overhead:

(1) instrumentation overhead, (2) execution overhead, and (3) dynamic analysis

overhead. The first pertains to the overhead incurred due to the instrumentation code

added by CLEMATIS, while the second pertains to the overhead of processing the

trace and constructing the model. The third type of overhead is caused by dynamic

slicing, and can only occur when the test failure comprehension unit is activated.

We do not measure the overhead of visualization as this is dependent on the user

task performed.

We measure the first two types of overhead when the test comprehension unit

is deactivated. Then we activate the test unit and measure the additional overhead.

Phormer, the experimental object in study 2, is used to collect performance mea-

surements over 10 one-minute trials of user interaction with the application. We

also activate the test comprehension unit, and execute each of the two test cases

from experiment 3 with both selective instrumentation enabled and disabled. The

two tests were run 10 times each. The results are as follows:

Instrumentation overhead. Code comprehension. Average delays of 15.04 and

1.80 seconds were experienced for pre and post processing phases with CLEMATIS

respectively. And a 219.30 ms additional delay was noticed for each page. On

average, each captured episode occupies 11.88 KB within our trace.

Test comprehension Average delays of 1.29 and 1.83 seconds were introduced

by the selective and non-selective instrumentation algorithms, respectively, on top

of the 407 ms required to create a new browser instance. Moreover, the average
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trace produced by executing the selectively instrumented application was 37 KB in

size. Executing a completely instrumented application resulted in an average trace

size of 125 KB. Thus, the selective instrumentation approach is able to reduce trace

size by 70% on average, while also reducing instrumentation time by 41%.

Execution overhead. Code comprehension. For processing one minute of activity

with Phormer, CLEMATIS experienced an increase of 250.8 ms, 6.1 ms and 11.6 ms

for DOM events, timeouts and XHRs, respectively. Based on our experiments, there

was no noticeable delay for end-users when interacting with a given web application

through CLEMATIS.

Test Comprehension The actual execution of each test case required an addi-

tional 246 ms for the selectively instrumented application. Instrumenting the entire

application without static analysis resulted in each test case taking 465 ms longer

to execute. Based on these measurements, our selective instrumentation approach

lowers the execution overhead associated with CLEMATIS by 47%.

Dynamic analysis overhead. It took CLEMATIS 585 ms on average to compute

each JavaScript slice when utilizing selective instrumentation. Non-selective instru-

mentation lengthened the required dynamic analysis time to 750 ms. By analyzing

a more concise execution trace, CLEMATIS was able to lower the slice computation

time by 22%. Thus, we see that CLEMATIS incurs low performance overhead in all

three components, mainly due to its selective instrumentation capabilities.

2.8 Discussion

2.8.1 Task Completion Duration

Task completion duration is a measure of task performance. Therefore, CLEMATIS

improves web developers’ performance by significantly decreasing the overall time

required to perform a set of code comprehension tasks (RQ1.1).

Dynamic Control Flow. Capturing and bubbling mechanisms are pervasive in Java-

Script-based web applications and can severely impede a developer in understanding

the dynamic behaviour of an application. These mechanisms also complicate the

control flow of an application, as described in Section 2.1. Our results show

that CLEMATIS significantly reduces the time required for completing tasks that
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involve a combination of nested function calls, event propagation, and delayed

function calls due to timeouts within a web application (T2, T5.a, and T7). Hence,

CLEMATIS makes it more intuitive to comprehend and navigate the dynamic flow

of the application (RQ1.3).

One case that needs further investigation is T10. This task mainly involves

following the control flow when most of the executed functions are invoked through

event propagation. The results of this task indicate that although using CLEMATIS

caused an average of 32% reduction in task completion duration, the difference

was not statistically significant. However, closer inspection of the results reveals

that the answers given using CLEMATIS for T10 are 68% more accurate in average.

This huge difference shows that many of the developers in the control group were

unaware of occurrences of event propagation in the application, and terminated the

task early. Hence, they scored significantly lower than the experimental group in

task accuracy and still spent more time to find the (inaccurate) answers.

Feature Location. Locating features, finding the appropriate place to add a new

functionality, and altering existing behaviour are a part of comprehension, mainte-

nance and debugging activities in all software tools, not only in web applications.

The results of study 1 suggested that CLEMATIS did reduce the average time spent

on the tasks involving these activities (T1, T3, T4.b), but these reductions were

not statistically significant. These tasks mostly dealt with static characteristics of

the code and did not involve any of the features specific to JavaScript-based web

applications. Study 2, however, involved more complicated tasks in more realistic

settings. T9 represented the feature location activity in this study, and the results

showed that using CLEMATIS improved the average time spent on this task by

68%. Thus, we see that CLEMATIS speeds up the process of locating a feature or a

malfunctioning part of the web application (RQ1.3).

State of the DOM. The final category of comprehension activities investigated in

this work is the implications of events on the state of the DOM. Results of Study

1 displayed a significant difference in duration of the task involving finding DOM

mutations in favour of CLEMATIS (T5). The results of Study 2 further confirmed the

findings of Study 1 by reducing the duration in almost half (T8). Thus, CLEMATIS

aids understanding the behaviour of web applications by extracting the mutated
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elements of the DOM, visualizing contextual information about the mutations, and

linking the mutations back to the corresponding JavaScript code (RQ1.3).

Test Failure Comprehension. The average recorded task duration for T11 was

significantly lower for the experimental group. The participants in the control

group often used breakpoints to step through the application’s execution while

running the provided test case. When unsure of the application’s execution, these

developers would restart the application and re-execute the test case, extending

their task duration. Instead of following a similar approach, those developers using

CLEMATIS were able to rewind and replay the application’s execution multiple times

offline, after only executing the test case once. The trace collected by CLEMATIS

during this initial test case execution was used to deterministically replay the

execution while avoiding the overhead associated with re-running the test case.

While task duration was significantly improved by CLEMATIS for T11, the aver-

age measured task duration was in fact longer for CLEMATIS in T12. However, the

participants using CLEMATIS performed much more accurately on T12, suggesting

that the task is complex and the main advantage of using CLEMATIS is in accurate

completion of the task. Studying the accuracy results for T12 reveals that many

of the participants in the control group failed at correcting the faults, and instead

simply addressed the failure directly. This may explain the reason for no observable

improvement in task duration for T12, as hiding the failure often requires less effort

than repairing the actual fault.

2.8.2 Task Completion Accuracy

Task completion accuracy is another metric for measuring developers’ performance.

According to the results of both experiments, CLEMATIS increases the accuracy

of developers’ actions significantly (RQ1.2). The effect is most visible when the

task involves event propagation (RQ1.3). The outcome of Study 1 shows that

CLEMATIS addresses Challenge 1 (described in Section 2.1) in terms of both time

and accuracy (T5.a). Study 2 further indicates that CLEMATIS helps developers to

be more accurate when faced with tasks involving event propagation and control

flow detection in JavaScript applications (67% and 68% improvement for T7 and

T10 respectively).
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For the remaining tasks of Study 1, the accuracy was somewhat, though not

significantly, improved. We believe this is because of the simplistic design of the

experimental object used in Study 1, as well as the relative simplicity of the tasks.

This led us towards the design of Study 2 with professional developers as participants

and a third-party web application as the experiment object in the evaluation of

CLEMATIS. According to the results of Study 2, CLEMATIS significantly improves

the accuracy of completion of tasks (T8) that require finding the implications of

executed code in terms of DOM state changes (RQ1.3). This is related to Challenge

3 as described in Section 2.1.

For the feature location task (T9), the accuracy results were on average slightly

better with CLEMATIS. However, the experimental group spent 68% less time on the

task compared to the control group. This is surprising as this task is common across

all applications and programming languages and we anticipated that the results for

the control group would be comparable with those of the experimental group.

Test Failure Comprehension. The results from both experimental tasks suggest

that CLEMATIS is capable of significantly improving the fault localization and repair

capabilities of developers (RQ1.5). many participants in the control group failed

to correctly localize the fault, illustrating the difficulty in tracing dependencies in

a dynamic language such as JavaScript. Although users in the control group had

access to breakpoints, many of them had difficulty stepping through the application’s

execution at runtime due to the existence of asynchronous events such as timeouts,

which caused non-deterministic behaviour in the application when triggered in the

presence of breakpoints.

Many of the participants in the control group fixed the failure instead of the

actual fault; they altered the application’s JavaScript code such that the provided

test case would pass, yet the faults still remained unfixed. The JavaScript code

related to task 2 contained multiple statements that accessed the DOM dependency

of the failing test case assertion. Participants who simply corrected the failure had

trouble identifying which of these statements was related to the fault, and as a result

would alter the wrong portion of the code. On the other hand, those participants

using CLEMATIS were able to reason about these DOM altering statements using

the provided links and slices.
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2.8.3 Consistent Performance

Looking at Figures 2.19 and 2.20, it can be observed that using CLEMATIS not only

improves both duration and accuracy of individual and total tasks, but it also helps

developers to perform in a much more consistent manner. The high variance in the

results of the control group shows that individual differences of developers (or tools

in Study 2) influence their performance. However, the low variance in all the tasks

for the experimental group shows that CLEMATIS helped all developers in the study

to perform consistently better by making it easier to understand the internal flow

and dependency of event-based interactions.

2.8.4 Threats to Validity

Internal Threats. The first threat is that different levels of expertise in each subject

group could affect the results. We mitigated this threat by manually assigning the

subjects to experimental and control groups such that the level of expertise was bal-

anced between the two groups. The second threat is that the tasks in the experiment

were biased towards CLEMATIS. We eliminated this threat by adopting the tasks

from a well-known framework of common code comprehension tasks Pacione et al.

[102]. A third threat arises from the investigators’ bias towards CLEMATIS when

rating the accuracy of subjects’ answers. We addressed this concern by developing

an answer key for all the tasks before conducting the experiments. A similar concern

arises regarding the task completion duration measurements. We mitigated this

threat by presenting each task to subjects on a separate sheet of paper and asking

them to return it upon completion. The duration of each task was calculated from

the point a subject received the task until they returned the paper to the investigators,

thus eliminating our bias in measuring the time (and the subjects’ bias in reporting

the time). Finally, we avoided an inconsequential benchmark by choosing a tool for

the control group in Study 1 that was stable and widely-deployed, namely Firebug.

In Study 2, the developers in the control group were given the freedom to choose

any tool they preferred (and had experience with).

External Threats. An external threat to validity is that the tasks used in the

experiment may not be representative of general code comprehension activities.

As mentioned above, we used the Pacione’s framework and thus these tasks are
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generalizable. A similar threat arises with the representativeness of the participants.

To address this threat, we used both professional web developers and students/post-

docs with previous web development experience.

Reproducibility. As for replicating our experiments, CLEMATIS, the experimen-

tal object Phormer, and the details of our experimental design (e.g., tasks and

questionnaires) are all available making our results reproducible.

2.8.5 Limitations

The contributions of this work were essential basic steps towards an interactive

approach for understanding event-based interactions in client-side JavaScript. How-

ever, our approach entails many limitations and has much room left for future

improvements.

JavaScript is a highly dynamic language. There are many cases that occur

in JavaScript applications and are not currently supported by CLEMATIS. As an

example, CLEMATIS does not instrument JavaScript code that is maintained in

strings and is executed using eval(). Also, should an exception occur and change

the normal means of function execution, the resulting model may be affected.

However, these are among features of JavaScript that can be handled in near future

using the current design.

There is also room left for research in determining the episode ending criteria.

For terminating an episode, the current approach ensures that the call stack is empty

and there are no immediate asynchronous timing events in the event loop. If these

conditions are valid and there is inactivity in JavaScript execution for a certain

amount of time, the algorithm terminates the episode. We determined the minimum

required inactivity time by choosing the best results from is a set of empirical

examinations. Further investigation on this temporal threshold, as well as other

criteria that can define the boundaries of episodes may lead to interesting findings.

Finally, the resulting model can still be overwhelming for users. Large-scale

enterprise applications often have customized event frameworks and communicate

with their servers constantly. CLEMATIS’s semantic zooming can help mitigate this

issue, but to a limit. Proposing abstraction and categorization techniques techniques

for CLEMATIS’s visualization can be applied to further assist the comprehension
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process.

2.9 Concluding Remarks
Modern web applications are highly dynamic and interactive, and offer a rich expe-

rience for end-users. This interactivity is made possible by the intricate interactions

between user-events, JavaScript code, and the DOM. However, web developers face

numerous challenges when trying to understand these interactions. In this paper, we

proposed a portable and fully-automated technique for relating low-level interac-

tions in JavaScript-based web applications to high level behaviour. We proposed

a behavioural model to capture these event interactions, and their temporal and

causal relations. We also proposed a strategy for helping developers understand

the root causes of failing test cases. We presented a novel interactive visualization

mechanism based on focus+context techniques, for presenting these complex event

interactions in a more comprehensible format to web developers. Our approach

is implemented in a code comprehension tool, called CLEMATIS. The evaluation

of CLEMATIS points to the efficacy of the approach in reducing the overall time

and increasing the accuracy of developer actions, compared to state-of-the-art web

development tools. The greatest improvement was seen for tasks involving con-

trol flow detection, and especially event propagation, showing the power of our

approach.
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Chapter 3

Hybrid DOM-Sensitive Change
Impact Analysis for JavaScript

In Chapter 2, we discussed understanding the interactions of episodes of JavaScript

execution. However, software constantly changes to adapt to the changing envi-

ronment. Understanding and analyzing the impact of change has been a popular

research trend. However, performing change impact analysis on JavaScript appli-

cations is challenging due to features such as the seamless interactions with the

DOM, event-driven and dynamic function calls, and asynchronous client/server

communication.

The first feature is the interplay between the JavaScript code and the Document

Object Model (DOM) at runtime. The DOM is a standard object model representing

HTML at runtime. DOM APIs are used in JavaScript for dynamically accessing,

traversing, and updating the content, the structure, and the style of HTML pages.

We have observed that the impact of a code change can be propagated through the

DOM, even when there may be no visible connections between JavaScript functions

and variables in the JavaScript code. The second feature pertains to the highly

dynamic [116] and event-driven [133] nature of JavaScript code. For instance, a

single fired event can dynamically propagate on the DOM tree [133] and trigger

multiple listeners indirectly. These implicit relations between triggered functions

are not directly visible in the JavaScript code. Finally, XMLHttpRequest (XHR)

objects used for asynchronous communication in JavaScript can transfer the impact
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of a change between two parts of the program that are not explicitly connected

through the code. For instance, a server response can dynamically generate and

execute JavaScript code on the client-side through callbacks.

In this chapter, we propose a hybrid analysis method for change impact analysis

of JavaScript-based web applications that combines the advantages of both static

and dynamic analysis techniques to obtain a more complete impact set. Our analysis

is DOM-sensitive and aware of the event-driven, dynamic and asynchronous entities,

and their relations in JavaScript. It creates a novel graph-based representation

capturing these relations, which is used for detecting the impact set of a given code

change. The main contributions of our work are as follows.

• A formalization of factors and challenges involved in change impact analysis

for JavaScript.

• An exploratory study to investigate the existence and role of impact paths that

require the analysis of DOM-related and event-based features in JavaScript.

The results show that these features exist in real-world applications and cannot

be ignored by JavaScript change impact analysis.

• A DOM-sensitive event-aware hybrid change impact analysis technique for

JavaScript. The approach creates a novel hybrid model for identifying the

impact set of a change in a JavaScript application.

• A set of metrics for ranking the inferred impact set to facilitate the finding

and understanding of the desired change impact by developers.

• An implementation of our approach in a tool called TOCHAL (TOol for

CHange impact AnaLysis). TOCHAL is open source and available for down-

load [130].

• An empirical evaluation of TOCHAL through a comparison with traditional

pure static and dynamic analysis approaches, as well as a controlled experi-

ment to assess the usefulness of TOCHAL in an industrial setting.

Our results show that event-driven and dynamic interactions between JavaScript

code and the DOM are prominent in real applications, can affect change propagation,

and thus should be part of a JavaScript impact analysis technique. We also find that

a hybrid of both static and analysis techniques is necessary for a more complete
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1 function checkPrice() {
2 var itemName = extractName($('#item231'));
3 var cadPrice = $('#price_ca').innerText;
4 $.ajax({
5 url : "prices/latest.php",
6 type : "POST",
7 data : itemName,
8 success : eval(getAction() + "Item")
9 });

10 confirmPrice();
11 }
12 function updateItem(xhr) {
13 var updatedInfo = getUpdatedPrice(xhr.responseText);
14 suggestItem.apply(this, updatedInfo);
15 }
16 function suggestItem() {
17 if (arguments.length > 2) {
18 displaySuggestion(arguments1);
19 }
20 }
21 function calculateTax() {
22 $(".price").each(function(index) {
23 $(this).text(addTaxToPrice($(this).text()));
24 });
25 }
26 $("#price-ca").bind("click", checkPrice);
27 $("prices").bind("click", calculateTax);

Figure 3.1: Motivating example: JavaScript code

analysis. And finally, TOCHAL can improve developers’ performance in terms of

both impact analysis task completion time (by 78%) and accuracy (by 223%).

3.1 Impact Transfer in JavaScript
Many unique features of JavaScript applications require special attention during

impact analysis. These features include (but are not limited to) DOM interactions,

dynamic event-driven execution of functions, and asynchronous communication

with the server. The impact can be transferred through these entities, without direct

visible relations in JavaScript. Throughout the rest of the paper, we use the term

indirect impact to refer to change impact transferred through such features. Impact

transferred directly through JavaScript code, e.g., through function calls, is referred

to as direct impact.

Relevant Entities. Let f be a JavaScript function, d a DOM element, and x an XHR
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1  <img id=‘item231’ src=‘img/items/231.png’                                 
             itemName=‘dress’/>
2  <fieldset name=‘prices’>
3      <div class=‘price’ id=‘price-ca’>120</div>
4      <div class=‘price’ id=‘price-us’>110</div>
5  </fieldset>

div

img fieldset

div div

1 2

3 4

Figure 3.2: Motivating example: HTML/DOM

object. If F, D, and X are sets representing each of those entities, respectively, then

the set of all relevant entities is defined as E : ∑ε ← F ∪D∪X

Change impact can propagate between these JavaScript entities through a series

of read and write operations.

Read/Write Operations. Let ε1 and ε2 be arbitrary entities in E. Suppose ε1 writes

to ε2 at time τ . Then the relation is represented as ε1Wτε2. If ε1 is read by ε2 at time

τ , then the relation is represented as ε1Rτε2.

The semantics of the relations between entities are drawn from actual JavaScript

execution mechanisms (e.g., function f reads from a DOM element d). However, for

each W/R relation between two entities, there is a conceptual R/W relation between

the same two entities in the opposite direction (e.g., d writes to f ). Definition 3.1

formalizes the notion of impact transmission between two entities.

Impact. Let ε1 and ε2 ∈ E. If the value and/or the behaviour of ε2 depends on the

value and/or the behaviour of ε1, then ε1 is said to have an impact on ε2, represented

as ε1→ ε2.

The impact can also be indirectly transferred from entity ε1 to ε2, if ε1 writes to

ε3, which is later read by ε2. We call such this relation a WR pair.

We use a simple motivating example, presented in Figures 3.1–3.2, to illustrate

the challenges and explain each definition. We use different portions of this example

in the following subsections. Note that this is a simple example and these challenges

are much more potent in large and complex web applications.
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3.1.1 Impact through the DOM

In modern web applications, the DOM structure [42] evolves dynamically through

the execution of JavaScript code, to update the content, structure, and style of the ap-

plication in a responsive manner. A JavaScript function can write to a DOM element,

which in turn can be read by another function and thus impact its behaviour. Such

DOM elements can transfer the impact of a change indirectly. Impact transferred

through the DOM introduces an important challenge in identifying change impact

in web applications. Hence, in this work, we propose DOM-related dependencies

as additional means of impact transfer.

body

fieldset

div div

1  function checkPrice() {
2      . . .
3      var cad-price = $(‘#price_ca’).innerText();
4      . . .
5  }

6  function calculateTax() {
7      $(‘.price’).each(function(index) {
8          $(this).text(addTaxToPrice(
               $(this).text());
9      });
10 }

11 $(‘#price_ca’).bind(‘click’, checkPrice);
id=price_ca
class=price
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2

Figure 3.3: Impact transfer through DOM elements.

. Figure 3.3 displays a portion of the motivating example that contains a hidden

DOM-based dependency. Function calculateTax() retrieves all DOM ele-

ments having the class attribute price (line 7). The function then recalculates

the price of each element to include the tax and rewrites the value of the element

with the new price (line 8). Later, when the function checkPrice() (line 1)

is invoked through a user event (registered in line 11), it retrieves the value of a

DOM element with id "price-ca" (line 3) and uses this value to perform other

operations. So far, there is no direct relation between functions calculateTax()

and checkPrice() that shows any dependency between the two code segments.

However, looking at the DOM structure shown on the right side of Figure 3.3, we can

see that the element with ID "price-ca" is also an instance of the price class

(element Â on the DOM tree). This means that the value used by checkPrice()

may be affected by calculateTax(). This is a simple example of dynamic
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body

fieldset

div div

1  function checkPrice() {
2      . . .
3  }

4  function calculateTax() {
5      . . .
6  }

7  $(‘#price_ca’).bind(‘click’, checkPrice);
8  $(‘prices’).bind(‘click’, calculateTax); id=price_ca

name=prices
2

3 4

Figure 3.4: Impact transfer through event propagation.

DOM dependency, which needs to be taken into account in impact analysis of

JavaScript applications.

3.1.2 Impact through Event Propagation

In web applications, a single event can propagate on the DOM tree and invoke

multiple handlers of the same event-type attached to any of the ancestors of the

target element [133]. The direction of the event propagation depends on whether

the capturing or bubbling mode is enabled. When capturing is enabled, the event

is first captured by the parent element and then passed to the event handlers of

children, with the deepest child element being the last. With bubbling enabled, an

event first triggers the handler of the target element on which the event was fired,

and then it bubbles up and triggers the parents’ handlers. The second type of impact

dependencies we introduce pertain to the hidden relations between the handlers

invoked via propagation of the original event on the target DOM tree. Such invoked

handlers can be involved in change impact propagation, i.e., they can affect the

control flow of the application and thus need to be considered in impact analysis for

JavaScript.

. In a segment of the motivating example shown in Figure 3.4, checkPrice() is

attached to the element with id price-ca as an event handler (line 7). Therefore,

if a user clicks on that element (element Â on the right side DOM tree), func-

tion checkPrice() gets invoked. However, price-ca is contained within a

fieldset element with the name prices (element Á on the DOM tree), which

is similarly bound to an event handler for the click event (Figure 3.4, line 8).
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Due to event bubbling, any click on price-ca will bubble up to prices and

trigger its event handler as well. Hence, calculateTax() is invoked through

propagation of an event originally targeting price-ca. As a result, the execution

of calculateTax() also depends on the price-ca element, in addition to the

prices element.

3.1.3 Impact through Asynchronous Callbacks

XMLHttpRequest (XHR) objects help developers enrich user experiences with

web applications through asynchronous communication with the server. While

increasing the interactivity and responsiveness of applications, XHR usage adds

additional complexity to impact analysis. Each XHR consists of three main phases:

open, send, and response. A callback function is invoked when the XHR response

is received from the server, without a user involvement. A change in opening the

request, sending it, or the sent message can impact the response of the server, as well

as the behaviour of the application after receiving the response through a callback

function. Different components of XHR objects can make the detection of control

and data flow relations more troublesome, particularly when these components are

not necessarily collocated in the same function or module. This motivates the third

type of impact dependencies we introduce in this work.

. checkPrice() sends an asynchronous request to the server (lines 4–9 in

Figure 3.5). However, the assigned callback function cannot be recognized statically,

as the code uses the action chosen by the user dynamically to invoke the appropriate

function (line 8, eval). Let’s assume that in this example the selected action is to

“update” the price of an item, and hence the updateItem() function is assigned

as the callback function of the XHR object. As it can be seen, there are no direct

function calls or shared variables between checkPrice() and updateItem()

to enable traditional change impact analysis techniques to derive a dependency

relation between the two functions. However, the XHR message along with the data

that was sent with it can affect the response that comes back from the server and

thus can impact the behaviour of updateItem().
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1  function checkPrice() {
2      . . .
3      var itemName = extractName($(‘item231’);
4      $.ajax({
5          url : ‘prices/latest.php’,
6          type : ‘POST’,
7          data : itemName,
8          success : eval(getAction() + ‘item’)
9      });
10    . . .
11 }

12 function updateItem(xhr) {
13      var updatedInfo = getUpdatedPrice(xhr.responseText);
14      suggestItem.apply(this, updatedInfo);
15 }

16 function suggestItem() {
17     if (arguments.length > 2) {
18         displaySuggestion(arguments);
19     }
20 }

XHR

Figure 3.5: Impact transfer through asynchronous callbacks.

3.1.4 JavaScript Dynamism

Many traditional impact analysis techniques use static aspects of the code to deter-

mine the impact set of a change. Dynamic features of the JavaScript language pose a

challenge to static analysis techniques. For instance, almost everything in JavaScript,

from fields and methods of objects to their parents, can be created or modified at

runtime. Also, JavaScript’s dynamic policies for invoking functions can add more

complexities. One such policy is function variadicity, which is common in web

applications [116]; i.e., in JavaScript, functions can be invoked with more or less

arguments compared to the parameters specified in a function’s static declaration.

In addition to the DOM, event, and XHR challenges, the dynamic features of the

JavaScript language need to be addressed in an effective change impact analysis

technique.

. In line 14 of Figure 3.5, updateItem() invokes suggestItem() through

the apply() function, which makes it impossible to infer the number of passed

arguments statically. Function suggestItem(), the callee, takes no arguments

according to its declaration (line 16). Yet, the function is invoked with an arbitrary

non-zero number of arguments, which can change the execution of the application

(Figure 3.5, line 17). Knowledge of the passed arguments at runtime is crucial for
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performing precise data-flow analysis, required for impact analysis.

3.1.5 Impact Paths

The concept of WR pairs can be generalized to any mechanism that can transfer

impact in JavaScript, such as XHR objects, function arguments, and function return

values. Consecutive WR pairs involving all JavaScript entities can form general

impact paths, as described in Definition 3.1.5.

Impact Path. An impact path of an entity (P(ε)) is a directed acyclic path starting

from entity ε . The nodes on the path are entities in the system, and the edges are

the directed impact relations that connect those entities.

For instance, updateItem() → suggestItem(), checkPrice()

→ #price-ca (DOM element with id=price-ca), checkPrice() →
#price-ca → calculateTax() → addTaxToPrice() are examples of

impact paths that exist in the running example (Figure 3.1).

The length of an impact path is defined as the number of entities in the path. The

minimum length for propagation of the impact of a change through DOM elements

is 3 ( f Wτ1 d Rτ2 g | τ1 < τ2, d ∈ D, f ,g ∈ F).

3.2 Exploratory Study: DOM-related and Event-based
Impacts

We conducted an exploratory study to investigate the role of JavaScript’s DOM-

related, event-based and dynamic features in code change propagation. Our goal

was to understand whether DOM elements, event handlers, and propagated events

contribute to forming new impact paths in JavaScript code.

Subject Applications. We selected ten web applications that make extensive

use of JavaScript on the client-side for this study. We selected these applications

from (1) participants of recent JavaScript programming contests, and (2) trending

and popular JavaScript projects on GitHub1. They are listed in column 1 of Table 3.1.

1https://github.com/trending/
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Design. We capture JavaScript-DOM interactions as well as any occurrences

of event propagation on the DOM tree. For each DOM access that occurs during

the execution, we collect the accessed entity, the JavaScript function that accesses

the DOM, and the access type. Access types are directed operations performed

on DOM elements by JavaScript functions, where the direction of the access is

determined by the direction of the flow of data. For instance, assume function

f oo creates DOM element e at time τ , which means f oo Wτ e. Then the type

of access is element-creation and the direction of access is from f oo to e.

The collected data is analyzed to extract the impact set for each of the JavaScript

functions involved in the execution. The DOM elements that are located on at

least one impact path of a function are the ones that can contribute to the impact

propagation process and are called WR elements for simplicity. The considered

impact paths are required to have a length of at least three (e.g., f ooWτ1eRτ2bar,

for functions f oo and bar and DOM element e). Moreover, redundant impact pairs

(reads and writes between same entities) do not contribute to the impact paths and

are therefore eliminated from the analysis.

Results. Each application is manually exercised in different scenarios multiple

times and the results are integrated. The results are shown in section (A) of Table 3.1.

The first column of section (A) displays the total number of DOM elements accessed

by JavaScript code during execution. The second column of the section shows the

ratio of WR DOM elements to the total number of involved DOM elements from

the first column. The number of DOM event handlers that were triggered during

the execution is shown in column three. Column four represents the percentage of

handlers that were invoked through event propagation (capturing or bubbling) to

the total number of triggered handlers. The average length of impact paths in each

application is depicted in column one of section (B).

The results show that on average, 42% of the DOM elements that were accessed

during the execution of these applications, were part of an impact path between

two functions. Moreover, about 14% of the executed event handlers were invoked

through event propagation mechanisms. The results thus reveal the importance of

DOM elements in transferring the impact. Also, the role of propagated event han-

dlers is significant in determining the dynamic behaviour of a JavaScript application.
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Table 3.1: (A) Results of analyzing JavaScript’s DOM-related and dy-
namic features. (B) Factors in determining impact metrics.

JavaScript (A) DOM and dynamic features (B) Factors of impact metrics
Application LOC #

DOM
elem.

% WR
DOM
elem.

# of
handlers

% prop.
handlers

Avg.
Path
Length

fan-in
elem.

fan-
out
elem.

fan-in
func.

fan-
out
func.

same-game 229 62 98 20 45 6.3 1.9 2.9 23.1 15.2
ghostBusters 343 44 61 39 0 4.3 3.3 0.4 2.6 20.0
simple-cart 9238 41 51 14 0 3.9 2.1 1.7 2.7 3.3
mojule 522 47 17 18 33 7.0 1.5 2.1 4.6 3.3
jq-notebook 839 1 100 21 38 4.0 16.0 11.0 0.9 1.3
doctored.js 3534 2 50 47 15 5.3 4.0 7.0 1.0 0.8
jointlondon 2498 34 9 16 0 3.7 0.8 2.2 1.6 0.6
space-mahjon 983 61 10 53 4 4.0 1.8 3.0 1.5 0.9
listo 354 5 20 10 0 4.0 0.1 1.5 21.4 1.9
peggame 1274 17 6 23 0 3.0 0.8 1.3 4.3 2.1
Average 1981 31 42 26 14 4.6 3.2 3.3 6.3 4.9

Hence, a CIA technique for JavaScript application should consider the DOM-related

and event-based features as media for propagating the impact.

We further analyze the structure of the created dependency graphs to gain more

insight into the nature of DOM- and event-based relations within JavaScript applica-

tions. Among all structural and semantic aspects of the graphs, the average fan-in

and fan-out scores of the functions and DOM elements in the graphs are reported in

section (B) of Table 3.1. These factors are selected due to their correlations with the

ratio of WR elements in subject applications. We use this information later in the

paper, when we propose a set of metrics for ranking the impact set (Section 3.4).

3.3 Hybrid Analysis
We propose a hybrid technique, called TOCHAL, which augments static analysis

with dynamic analysis to enable a DOM-sensitive and event-aware change impact

analysis method for JavaScript applications.

3.3.1 Static Control-Flow and Partial Data-Flow Analysis

Our approach first identifies JavaScript entities that can be analyzed statically.

Among entities described in Definition 3.1, JavaScript functions (F) are the only

entities that fit this criterion. The DOM is created and mutated during execution.

This limits the static reasoning about its structure and possible event propagations

that would affect change impact. Regarding XHR objects, it is not easy to infer
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statically what messages are received from the server. Moreover, there is no static

information available regarding the order and timing of asynchronous callbacks.

Our static analysis module incorporates direct relations between functions into a

static call graph (SCG) by analyzing the JavaScript code. In JavaScript, functions are

first-class citizens and receive the same treatment as objects; we augment the same

static call graph with global variables, which we treat similarly as the functions.

To increase the precision of the static analysis, which in turn improves the quality

of the impact set, we perform a pruning algorithm on the extracted dependencies.

The pruning is conducted based on a partial data-flow analysis of the call graph.

Function invocations are not considered as impact relations unless the two functions

have a data dependency through passed arguments or return values, as described in

Section 3.3.1. This does not concern data dependencies through global variables

shared between two functions, where separate dependency relations are formed.

Function Dependencies Let ρ,δ ∈ P. Then impact relations between f and g are

defined as:

• f → g if f invokes g and the signature of g indicates that it takes parameters.

• g→ f if f invokes g and the definition of g includes a return value.

3.3.2 Analyzing the Dynamic Features

To include the dynamic features of the JavaScript language in our impact analysis,

our dynamic analysis module intercepts, transforms, and instruments the Java-

Script code on-the-fly to collect execution traces. To collect a trace of function

executions, the beginning and the end of each JavaScript function are instrumented.

Function declarations are modified to collect traces of function invocation and

passed arguments. We also trace function terminations and return statements (if

they exist in the function). These traces are then used to create a dynamic call graph

(DCG) that captures dependencies between function executions at runtime.

The DCG is an under-approximation of the call graph, while the SCG is an

over-approximation of the call graph. The DCG contains fewer false positives

compared to the SCG, and we augment it to capture DOM-related, event-driven,

and asynchronous features of JavaScript, as explained below.
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DOM-Sensitive Impact Analysis A JavaScript function can impact a DOM element

and vice versa, which is defined as:

Direct Impact between JavaScript and DOM Consider a DOM element d ∈ D,

and a function f ∈ F. Then f can directly impact d and vice versa:{
f →τ d if fWτd

d→τ f if f Rτd

Furthermore, the impact can travel from function f to function g, through a

DOM element d, under certain conditions as defined in the next definition.

Indirect JavaScript Impact through DOM Consider two functions f, g ∈ F, and

a DOM element d ∈ D. f can indirectly impact g through d, if and only if the

following conditions hold:

f →d g if


fWτ1d &

gRτ2d &

τ2 > τ1

In other words, function f can potentially impact function g through DOM

element d, if f writes to d and g reads from the same element. Such a write-read

(WR) pair indicates the existence of a potential impact between the two functions, if

the read instruction happens after the write. Such WR pairs can occur subsequently,

involving more elements and functions in the application. The reading function can

itself write to a DOM element and augment the propagation path. The same change

can then potentially impact all elements and functions that are on such a path.

To analyze how the DOM transfers the change impact (Section 3.3.2), all read

and write accesses to the DOM need to be monitored dynamically. Each access

is made from a JavaScript function to a DOM node, element, or an attribute, and

through standard DOM API calls (e.g., getElementById, querySelector).

We modify the prototype of the Node, Document and Element classes to be able

to dynamically intercept DOM accesses, while preserving the original behaviour of

these classes. This allows us to monitor changes to the structure of the DOM tree,

as well as the existence, content, and attributes of DOM elements.
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It is worth mentioning that the caller functions are extracted from the dynamic

context of the intercepted DOM API calls. As a result, if a function does not exist

or is not detected statically (e.g., it is created through an eval statement), it will

still be captured in the dynamic phase if it interacts with other entities and is part of

the execution.

For each function and DOM element involved in an access, we augment the

dynamic call graph by adding two nodes (if they do not already exist), and connect-

ing them through an edge representing the type of access that was made from the

function to the element.

Event-Based Impact Propagation

TOCHAL also captures all event handlers called directly and indirectly through event

propagation on the DOM tree.

Definition 3.3.2 summarizes the potential impact transmission between a DOM

element and all event handlers that are called through event propagation.

Indirect Impact via Propagation Let d be a DOM element that has an event han-

dler for event e. Consider prope[d] to be the set of all JavaScript functions that are

submitted as handlers for event e to d or any of its ancestors in the DOM tree, and

thus can be triggered by event propagation. Then d can impact all these handlers

indirectly: d→ prope[d].

Moreover, the dynamic analysis module yields information on function argu-

ments and return values for all directly and indirectly invoked functions. These

variables may differ from what has been declared in static function signatures, due

to function variadicity in JavaScript.

XHR Relations There are three main phases in the lifecycle of each XHR object:

open, send, and response. These three phases can be scattered throughout the

code. In addition, callbacks from the server-side could invoke other functions on

the client-side, and hence it is not trivial to find the XHR components statically.

Our technique instruments and intercepts each component of an XHR object by

wrapping around the XHR object of the browser. The gathered information is then

73



Table 3.2: Impact transfer through different entities.

Assume f ,g ∈ F (functions), d ∈ D (DOM) and x ∈ X (XHR)
Relation Description

fWτ g
1. f calls g and passes arguments.
2. g calls f and f returns a value.

fWτ d
1. f creates element d, adds it to the DOM tree, deletes it, or detaches or relocates it from the
DOM.
2. f modifies the content or the attributes of d.

dRτ f

1. f uses information regarding the content, attributes, or location of d in the DOM.
2. f is bound to d through an event handling mechanism.
3. f is set as an event handler of one of the ancestors of d, that can be triggered via event
propagation.

fWτ x
1. f opens x as a new XHR object.
2. f sends a previously-created XHR object x.

xRτ f
1. f is set as the callback function of x
2. f sends a previously-created XHR object x.

used to augment the dynamic call graph. Similar to the previous features, new nodes

representing XHR objects are added to the graph, the involved functions nodes are

only added if they were not previously included, and the function nodes are linked

to the XHR node based on the type of access they make to the XHR object. The

access types are defined by the type of the interaction between a function f and an

XHR object x, and determine the direction of the impact relation. For instance, if f

creates and opens x, then f → x, while if f is registered as the callback function of

x, then x→ f .

Similar to the static call graph, we enhance the dynamic call graph using inter-

procedural data-flow analysis. Arguments and return values of functions are used to

trim the call graph where there is no data flow between two functions (Definition

3.3.1). However, instead of using the static function code, the dynamic arguments

and return values are used to support function variadicity at run time.

3.3.3 Hybrid Model for Impact Analysis

At this stage, TOCHAL creates a system dependency graph by integrating the

obtained static and dynamic call graphs. This graph is used for performing impact

analysis on JavaScript applications. The dynamic part of the model contributes

to the precision of the analysis, while its static features make it more complete.

We take a best-effort approach for fulfilling soundness, following the soundiness
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checkPrice()

XHR

updateItem() suggestItem()displaySuggestion()getUpdatePrice()

addTaxToPrice()

           
           
           
           

JS Function

XHR Object
Labeled and
Directed Edge

calculateTax()

Figure 3.6: A static call graph, displaying the dependencies ex-
tracted from the running example (Figures 3.1 and 3.2).
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Figure 3.7: A sample hybrid graph, including the dynamic and
DOM-sensitive dependencies extracted from the running ex-
ample (Figures 3.1 and 3.2).

manifesto [80]. In order to satisfy the practicality of our approach in terms of

precision and scalability, complete soundness is not a concern of our approach. The

hybrid model is represented as a directed graph. The vertices are system entities

and the edges are the potential impact relations as summarized in Table 3.2.

Vertices. The vertices in the graph are all entities that are present statically or

are created during the execution of an application. The vertices can take one of the

following types:
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• JavaScript functions. JavaScript functions extracted by our static analyzer

(Section 3.3.1) are added as vertices. Functions found dynamically are added

as well due to their involvement in the impact propagation, even if they are

not connected directly (Section 3.3.2).

• DOM elements. The importance of DOM elements in transferring the impact

dynamically was discussed in Section 3.3.2. Accessed DOM elements (and

their contextual information) are captured as vertices in the model.

• XHR objects. XHR vertices incorporate information regarding the creation

and sending of messages, as well as callback functions and data transmitted

dynamically between the server and the browser.

Edges. The edges in the graph are labeled and directed.

• Direction. The direction of each edge depicts the flow of the data between

two vertices. The edges are categorized into read and write accesses. An

edge is directed from the vertex that writes (offers) the data to the vertex that

reads it.

• Labels. The edge labels indicate the type of dependency relations that connect

the vertices. Different labels are used to connect different vertices, since the

valid operations vary for each category of vertices.

Example. Figure 3.6 shows a dependency graph for the running example

(Figures 3.1 and 3.2) obtained through the static analysis module alone. On the

other hand, Figure 3.7 depicts a simplified hybrid graph utilizing both the static

and dynamic analysis modules of TOCHAL. This is hard to do with the static graph.

However, using the hybrid graph, one can find the potential impact set of a change

in entity ε by tracing the graph forward, starting from ε .

Consider a case where a developer plans to make a change to the calculateTax()

function (line 21 of Figure 3.1), and would like to find the potential impact be-

fore making the actual change. A DOM-agnostic static change impact analysis

method (see Figure 3.6) would report that only addTaxToPrice() would be

affected. The source code shows that next to the addTaxToPrice() function,

DOM elements with class=price (lines 22–23 of Figure 3.1) can also be affected.

However, our hybrid DOM-sensitive analysis reveals that there exist more

impact paths. The DOM element with id=price-ca is also a member of a

76



Table 3.3: Impact Metrics

Entity Metric Description CC with % WR
DOM elem.

d ∈ D fin(d) Number of functions f such that fWτ d 0.66
f ∈ F fin( f ) Number of elements d such that f Rτ d 0.74

fout( f ) Number of elements d such that fWτ d 0.62
ε ∈ DorF L̂[P] Average length of impact paths in the application 0.59

Dm(ε) Minimum distance of ε from the change set -

class=price (box 4 of Figure 3.7). This element can thus be impacted by

calculateTax(), and in turn can propagate the impact to checkPrice()

indirectly (lines 3 & 26 of Figure 3.1, box 1 of Figure 3.7). Furthermore, eval-

uating the response of an XHR object, checkPrice() can then transfer the

impact to updateItem() (box 6), which can propagate the impact to more

functions (boxes 5, 8 & 9). To summarize, as our hybrid model shows, chang-

ing the calculateTax() function can affect six more elements in addition to

the two elements that can be detected by statically analyzing the code. Thus, the

proper impact set consists of functions addTaxToPrice(), checkPrice(),

updateItem(), getUpdatedPrice(), suggestItem(),

displaySuggestion(), the DOM element with id=price-ca, and the anony-

mous XHR object.

3.4 Impact Metrics and Impact Set Ranking
An impact set inclusive of the contributions of both static and dynamic analyses

can become large and overwhelm the user. Considering that not all entities in the

impact set are equally important, providing a ranking mechanism is essential for

helping developers identify relevant impacted entities more efficiently.

We propose a set of impact metrics to estimate the importance of each entity in

the produced impact set. The impact metrics, outlined in Table 3.3, are variables

derived from the semantic and structural characteristics of the hybrid graph. These

metrics can affect the probability of impact propagation, through DOM-related and

dynamic mechanisms of JavaScript. Based on the impact metrics, we propose an

impact ranking mechanism as outlined in Definition 3.4. The impact rank score

of each entity ε , referred to as IR(ε), is an estimation of the importance of ε in
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propagating the change, relative to other elements in the impact set.

Impact rank Let ε be an entity in the impact set. Then the impact rank of ε is

defined as:

IR(ε) =
IRpr(ε)∗ L̂[P(ε)]∗Fanw(ε)

Dm(ε)

where, the value of the impact rank of an element in the impact set depends on four

variables. (1) IRpr(ε): the accumulation of impact ranks of immediate precedents

of entity ε in the hybrid graph that are on an impact path from the change set to ε . If

the impact is transferred to ε from entities with higher ranks, then the importance of

ε in transferring the impact potentially increases. (2) Dm(ε): the shortest distance

of ε from the change set in the hybrid graph. The closer ε is to the change set, the

higher is the probability of being impacted by the change in practice. Hence, a

longer distance of ε from the change set has a lesser effect on its impact rank. (3)

L̂[P(ε)]: the average length of an impact path starting from entity ε . If ε can cascade

the impact to more elements and deeper levels in the propagation graph, then ε is

potentially an important entity in the impact set. (4) Fanw(ε): the weighted fan-in

/ fan-out score of functions and DOM elements in the hybrid graph is indicative

of the number of entities that can impact and be impacted by ε directly; hence,

we consider it as a determining factor in impact rank determination. Fanw(ε) is

calculated as follows:

Fanw(ε) =

{
w1 ∗ fin(ε) if ε ∈ D

w1 ∗ fin(ε)+w2 ∗ fout(ε) if ε ∈ F

L̂[P(ε)] and Fanw(ε) are extracted from the findings of our exploratory study

(Section 3.2). During the course of the study, we measured the semantic and

topological properties of hybrid graphs of ten web applications. Among the analyzed

variables, the length of impact paths, fan-in of DOM element node, and fan-in and

fan-out of function nodes (section (B) of Table 3.1) have a correlation with the

number or ratio of DOM elements that can transfer the impact. Hence, these

variables can affect the probability of impact propagation through an entity. They

thus play a role in these two determining factors influencing the overall impact rank.
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3.5 Tool Implementation: TOCHAL

We implemented TOCHAL using JavaScript libraries such as Esprima,2 Estraverse3

and Escodegen4 for parsing and transforming the JavaScript code. We use these

libraries to instrument functions in a manner that permits us to collect data about

function invocations, function entries and function exits. The collected data also

include dynamic values of functions’ arguments and return values. External files

are attached to the beginning of each document that allow instrumentation and

interception of DOM events, XHR objects and timeouts. We use the Mutation

Summary library [93] to detect JavaScript code appended to the DOM on the fly.

Therefore, we can extend function instrumentation to the JavaScript code that gets

created dynamically during application execution. We use WALA [128] to extract

the static call graphs of applications.

TOCHAL provides an interface for developers to utilize our hybrid change impact

analysis. The main goal is to facilitate the comprehension of change impact “during”

development and debugging activities. Hence, the analysis needs to be available

to developers while they make changes to their application. We have integrated

our impact analysis method within Google Chrome’s DevTools [27], a popular

web development environment. This decision entails a number of benefits, namely

(1) the approach is complementary to existing web development platforms and

environments; it does not change the functionality they provide, but augments their

capabilities. (2) The developer can perform the impact analysis in the same context

as the code, and can preserve her mental model of the code. (3) The developer is

not required to learn a new tool, or divide her attention between two different tools.

The interface allows the user to select JavaScript functions (including XHR

callbacks) or DOM elements as the change set, and then perform the impact analysis.

Chrome’s DevTools includes a set of panels, each providing a window to a subset

of functionalities that the platform provides. Two panels are of more interest for us:

“elements” and “sources”. The elements panel visualizes and provides inspection

mechanisms on the DOM. The sources panel displays all of the JavaScript code that

contributes to the application. We add a sidebar to each of these panels, allowing

2http://esprima.org
3https://github.com/Constellation/estraverse/
4https://github.com/Constellation/escodegen/
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the user to invoke the CIA unit, on a selected entity, at any stage of the development.

TOCHAL is publicly available for download [130].

3.6 Evaluation
We empirically evaluate the effectiveness and usefulness of TOCHAL through the

following research questions:

RQ4.1 How does our hybrid method compare to static/dynamic analysis methods?

RQ4.2 Does TOCHAL help developers in performing change impact analysis in

practice?

We address these questions through two studies, each described in the following

two subsections, respectively.

3.6.1 Study 1: Comparing Static, Dynamic, and Hybrid Analyses

To address RQ4.1, we conduct a study to evaluate the impact sets extracted us-

ing TOCHAL in comparison with those detected by static and dynamic analysis

techniques separately. We compare TOCHAL with a state-of-the-art static analysis

technique. We also examine the differences in the outcomes of TOCHAL with those

of the dynamic analysis unit of TOCHAL. The term dynamic analysis encompasses

the DOM-sensitive, dynamic, event-driven, and asynchronous analysis performed

by TOCHAL. Our first hypothesis is that TOCHAL outperforms static impact analysis

due to its support for dynamic analysis. We also hypothesize that while dynamic

analysis is a significant part of Tochal, it is outperformed by tochal’s hybrid analysis.

We decided to compare TOCHAL with static and dynamic approaches, since to

the best of our knowledge, TOCHAL is the first change impact analysis technique

for JavaScript and there is no similar tool available for JavaScript.

Design and Procedure. The only entities that can be analyzed by both static and

dynamic analysis methods are JavaScript functions. Hence, to be fair to both static

and dynamic analyses, we configure TOCHAL to only deliver functions in the impact

sets. TOCHAL’s hybrid model and analysis, however, do not differ from what is
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described in Section 5.3 and use DOM-based, dynamic and asynchronous entities

and relations to extract the functions in the impact sets.

We use the same set of subject applications from our exploratory study of

Section 3.2 (Table 3.4, column 1). For each application, we randomly sample three

functions and extract their impact sets using each of the methods. We compare

the impact sets to assess the completeness of the outcomes of analysis with each

approach. The sample functions are selected from a pool of functions that are

recognized by all three analysis methods. In other words, static and dynamic

analysis alone are not able to detect some functions that are detected by TOCHAL

and are involved in its hybrid analysis. If static/dynamic analysis is performed on

any of the functions it does not recognize, the impact set will be empty. We aim at

comparing impact sets at this stage and these functions are unable to provide useful

information regarding the analysis. Thus, we do not include such functions in the

comparison. However, this indicates the need for an investigation of the functions

involved in each type of analysis (in the dependency graphs), as described in the

next paragraph.

We measure the number of functions that are included in the dependency graphs

of each analysis, contributing to the detection of the impact sets. The average

number of functions in each type of analysis denotes the extent of the analysis

performed for extracting the impact sets. Moreover, the lower number of recognized

functions by an analysis method means that there are more functions for which the

method is unable to perform CIA.

Pure Static Analysis. We use the static analysis part of our approach, which

is built using WALA [128]. WALA is a leading static analysis tool for JavaScript,

used by many other JavaScript analysis techniques [125, 136, 137]. It should be

noted that WALA by itself does not support change impact analysis. For the purpose

of this evaluation, we extended and directed it towards performing static impact

analysis to conduct the comparisons.

Pure Dynamic Analysis. We disable the static module of TOCHAL and only

utilize the dynamic analysis module. The applications are exercised through their

test suites when available and manually within multiple sessions and the results are

integrated. Each manual session follows a set of pre-defined scenarios that covers
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Table 3.4: Results of comparison between static, dynamic and TOCHAL
(RQ1) (A) Comparison of impact sets (B) Comparison of functions
in system dependency graphs

(A) Impact sets (B) Functions
Application TOCHAL Static Static

TOCHAL Dynamic Dynamic
TOCHAL TOCHAL Static

TOCHAL
Dynamic
TOCHAL Pure

Static
Pure
Dynamic

avg min max avg min max % avg min max % avg % % % %
same-game 4.33 2 7 0.67 0 1 15 3.67 2 6 85 16 56 93 6 44
ghostBusters 1.33 0 2 0.33 0 1 25 1.33 0 2 75 10 80 100 0 20
simple-cart 1.67 0 3 0.67 0 1 40 1.67 0 3 100 44 74 91 9 26
mojule 1.00 0 2 0.33 0 1 33 0.67 0 2 67 21 24 90 10 71
jq-notebook 2.67 0 7 0.67 0 2 25 2.33 0 6 87 19 47 100 0 53
doctored.js 1.67 0 4 0.33 0 1 20 1.33 0 3 80 38 67 50 56 33
jointlondon 2.33 0 5 0.67 0 1 29 1.67 0 4 72 36 31 85 15 69
space-mahjon 2.67 1 5 1.00 0 2 37 2.00 0 5 63 27 56 93 7 44
listo 1.33 1 2 0.00 0 0 0 1.33 1 2 100 12 75 58 25 42
peggame 2.67 1 6 1.00 1 1 37 2.00 0 5 75 24 83 75 25 17
Average 2.07 0.5 4.3 0.57 0.1 1.1 26 1.8 0.3 3.9 80 25 59 84 15 42

all main use-cases of the application that are accessible to an end-user.

Hybrid Analysis. We use the hybrid model of TOCHAL for performing impact

analysis and obtaining the set of functions that are involved in the hybrid analysis.

Results and Discussion To answer RQ4.1, we discuss the outcomes of the study,

summarized in table 3.4.

Completeness of Impact Sets. Section (A) of Table 3.4 depicts the results of

the impact set detection using static, dynamic and hybrid analysis methods. The

first column of this section displays the average, minimum and maximum sizes

of the impact sets of the selected JavaScript functions, detected by TOCHAL. The

second column displays the average, minimum and maximum impact set size by

static analysis. The third column represents the percentage of the ratio of the impact

set size of static analysis to that of TOCHAL. Similarly, the fourth and fifth columns,

respectively, show the impact set size for dynamic analysis, and the ratio of the

size of impact sets using dynamic analysis compared to TOCHAL. We observe an

increase in completeness for all applications in favour of TOCHAL. On average,

static and dynamic analysis methods detected 0.57 and 1.80 functions in the impact

set of each sample function, respectively. The hybrid TOCHAL method, however,

extracted an average of 2.07 functions to be potentially impacted by each of the

sample functions.

Overall, the impact sets extracted by TOCHAL include 74% more functions
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on average compared to those detected by static impact analysis. The outcome

conforms the findings of our earlier exploratory study, showing the prevalence and

importance of DOM-related and dynamic characteristics of JavaScript in impact

analysis. TOCHAL takes into account new types of entities in its dependency graph

that are more aligned with the nature of JavaScript (DOM elements, XHR objects).

It also recognizes new (and mostly hidden) types of relations between these entities,

that lead to more complete and more precise dependency graphs and impact sets at

the same time. The static analysis still remains useful in TOCHAL since dynamic

analysis can only cover 80% of the impact sets detected by hybrid analysis and

cannot replace it.

It is worth noting the small sizes of static impact sets. Considering the conser-

vativeness of static methods, the dependency graphs in general can include many

relations between functions that are not feasible in practice. Therefore, static impact

sets in CIA methods for traditional languages are expected to get large and contain

infeasible relations. Our results show an opposite phenomenon for JavaScript ap-

plications. The small sizes of static dependency graphs and the resulting impact

sets attest to the difficulties and limitations of static analysis for JavaScript. The

findings further confirm that new forms of definitions and usages of functions, ob-

jects, DOM elements and asynchronous objects negatively affect analysis of useful

dependency graphs. Static analysis confronts more barriers during the analysis

JavaScript applications that should be mitigated using an approach that supports

these features.

Necessity of Hybrid Analysis. Separate data sets are collected from each type

of analysis, to let us distinguish between the statically detected and dynamically

invoked functions. Through these datasets, we extract the functions that were

invoked dynamically but were not detected statically, and the functions that were

extracted before the execution, but did not play a role at runtime. The results are

summarized in section (B) of Table 3.4. The first column of this section contains

the total number of functions that were included in our hybrid analysis. The second

and third columns represent the percentages of these functions that were covered by

static and dynamic analysis units, respectively.

The static analysis method only covers about 56% of the functions that are
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covered during hybrid analysis. As expected, this inadequacy is caused due to

the dynamism of JavaScript even in simple function invocations. Moreover, the

dynamic analyzer includes 86% of the functions detected by the hybrid analysis.

This confirms our anticipation of incompleteness of dynamic analysis, due to its

reliance on specific executed scenarios of the code. The increase in the covered

JavaScript functions by our proposed hybrid analysis leads to a more complete

system dependency graph, which is used to perform the impact analysis. Hence, the

proposed hybrid approach can improve the accuracy of JavaScript impact analysis.

Column 4 in section (A) of Table 3.4 represents the percentage of JavaScript

functions that were detected by the static analyzer, but were not invoked during

any of the executions of the applications. Note that the existence of such functions,

that would be missed from pure dynamic analysis, is sufficient evidence for the

necessity of a hybrid analysis technique. Column 5 of the same section of the table,

on the other hand, displays the percentage of functions that were executed during

the execution of each application, but were not detected by the static analyzer. The

results confirm our previous intuition regarding the shortcomings of static Java-

Script analysis, even in a well-established type of analysis based merely on function

declarations and invocations.

3.6.2 Study 2: Industrial Controlled Experiment

We conducted a controlled experiment [139] in an industrial environment5 to address

the following two questions, derived from RQ4.2:

RQ4.2.1 Does TOCHAL increase the CIA task completion accuracy?

RQ4.2.2 Does TOCHAL decrease the CIA task completion duration?

Experimental Subjects We recruited 10 participants, 5 female and 5 male, with

ages ranging from 20 to 34. At the time of conducting the experiment, all participants

were employed in a large software company in Vancouver. Their skills in web

development ranged from medium to professional. All participants volunteered for

taking part in our experiment and did not receive monetary compensation.

5The experimental material is available at: http://ece.ubc.ca/~saba/tochal/study-materials.zip
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Experimental Design The experiment had a “between-subject” design to avoid

carryover effects. We formed two independent groups of participants. The experi-

mental group used TOCHAL for performing the tasks; none of the participants were

familiar with TOCHAL prior to attending the experimental sessions. Since TOCHAL

is the first CIA tool for JavaScript applications, the control group performed the

tasks using the development tool they used in their day-to-day web development

activities (without TOCHAL). To avoid bias, it was important for the members of the

two groups to have similar proficiency levels. We manually assigned the participants

to the groups to ensure this was the case based on a pre-questionnaire evaluating

their experience and expertise.

Tasks. We designed a set of four tasks that involved finding change impacts

during web application maintenance activities. The tasks, outlined in Table 3.5,

require the participants to detect and comprehend the potential impact of a change

in a JavaScript function or a DOM element. Moreover, two of the tasks require

participants to use their understanding of the change impact to find a bug or an

inconsistency that occurs after the change.

All features of TOCHAL were available to the experimental group during the

experimental session. We were particularly interested in assessing the usefulness of

the ranking mechanism of TOCHAL, which was deployed based on our proposed

impact metrics (Section 3.4). Hence, we designed a smaller study that enabled us

to compare the effects of using the ranking. However, this comparison was only

meaningful for the experimental group, who used TOCHAL and had access to its

ranking feature. Having this in mind, the two debugging tasks, tasks T3 and T4 in

Table 3.5, were designed to have similar levels of difficulty and to require similar

amount of effort and expertise. However, we disabled the ranking feature for T3,

while leaving it enabled for T4. These two tasks were counterbalanced to avoid

order effects.

Dependent and Independent Variables. We measured two continuous vari-

able as our dependent variables. Task completion duration was measured in minutes

and seconds. Tasks completion accuracy was measured in marks based on a fixed

and predefined grading rubric, and the marks were converted to percentages for

consistency across all tasks.
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Table 3.5: Impact analysis tasks used in the controlled experiment.

Task Description
T1 Finding the potential impact of a DOM element (the button changing the size of the

displayed slideshow images)
T2 Finding the potential impact of a JavaScript function (the function toggling the play/pause

state of the slideshow)
T3 Finding a conflict after making a new change (problem in submitting new comments

after changing the table containing all comments of a picture). Ranking is disabled.
T4 Finding a bug in JavaScript code (entered email format is not properly checked)

The independent variable is a nominal variable including two levels. One level

represents using TOCHAL, and the other level depicts using a different tool (e.g.,

Chrome DevTools, Firefox Developer Tools, or Firebug).

Experimental Object We used Phormer [106], an online photo gallery in PHP,

JavaScript, CSS and XHTML, which consisted of around 6,000 lines of code and

over 38,000 downloads at the time of conducting the experiment. Throughout the

experiment, the participants had to understand and debug parts of the application

related to displaying a slideshow of pictures, viewing the pictures, and authoring

comments.

Experimental Procedure. The experiment consisted of three main phases.

Pre-Experiment. The participants were given a pre-questionnaire form be-

fore attending the experimental session. They were required to provide information

regarding their proficiency and experience in web development and software engi-

neering. This information was used for assigning them into one of the two groups

prior to the session. The pre-questionnaire also inquired about the tools the partici-

pants normally used for performing their every-day web development tasks. The

answers to this question were used to determine the proficiency levels of the partici-

pants for assigning them into the control and experimental groups. The information

was also used to indicate the tool the control group would use for the experiment.

It is worth mentioning that all participants of the control group selected Google

Chrome as their preferred web development tool. In the experimental session, the

participants were introduced to TOCHAL for the first time and were trained to use it.
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Then they were given a few minutes to familiarize themselves with the tool, and ask

us questions if needed.

Tasks. During the experimental session, the participants were asked to per-

form a set of tasks, as indicated in Table 3.5. To avoid experimental bias, each task

was handed out on a separate sheet of paper to the participant, when the investigator

marked the start time of the task. The investigator terminated the measurement of

the task duration when the participant returned the paper to the investigator along

with her answer. The task accuracy was marked after the session, using a rubric

created prior to conducting the experiment.

Post-Experiment. We asked the participants to fill a post-questionnaire form

after completing the tasks. The questionnaire contained questions regarding both

the helpful features and the shortcomings of the tool they used in the experiment.

Moreover, we enquired about the metrics our participants considered to affect the

importance of an entity in the impact set.

Results and Discussions

Figures 3.8 and 3.9 depict the results of task completion duration and accuracy for

both experimental and control groups.

Accuracy (RQ4.2.1). We ran the Shapiro-Wilk normality test on the accuracy

data. The results showed that the data collected for tasks T1, T3 and T4 were not

normally distributed and hence, Mann-Whitney U tests were used for analyzing

the results of these tasks. The data gathered for task T2 and the total accuracy of

the tasks were normally distributed and were analyzed using t-tests. The results

of conducting the tests revealed a statistically significant difference for the experi-

mental group using TOCHAL (Mean=84%, STDDev=14%) compared to the control

group (Mean=26%, STDDev=11%); (p-value=0.0001). Overall, participants using

TOCHAL perform 223% more accurately compared to the control group, across all

tasks in the experiment.

Further, the accuracy for all tasks was higher when the participants used

TOCHAL. The improvement was statistically significant for tasks T1, T2 and

T4, but not T3. Recall from the tasks table (Table 4.4), that the ranking mechanism

of TOCHAL was disabled for T3. This outcome thus emphasizes the value of ranking

87



●

●

●

● ●

●

T
1−

E
xp

T
1−

C
tr

l

T
2−

E
xp

T
2−

C
tr

l

T
3−

E
xp

T
3−

C
tr

l

T
4−

E
xp

T
4−

C
tr

l

To
t−

E
xp

To
t−

C
tr

l
0

20

40

60

80

100

Accuracy (%)

Figure 3.8: Task completion
accuracy per task and in
total for the control (ctrl)
and experimental (exp)
groups (RQ4.2.1).
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the impact set in helping the user find the important impacts more efficiently. Not

having access to the impact ranks, participants had to expend more manual effort.

Enforcing more analysis burden on the participant increases the variation in the

answers based on the individual differences in abilities of the participants. The high

variation prevents the statistical significance of the results of T3, in spite of the 60%

higher accuracy average for TOCHAL users.

Duration (RQ4.2.2). We first used the Shapiro-Wilk test on the duration data

and confirmed that the data was normally distributed. Therefore, we ran a set of

t-tests on all individual tasks, as well as on the total time spent on all of the tasks

throughout the experiment. The results show a statistically significant difference

in the total duration for the experimental group using TOCHAL (Mean=19:54,

STDDev=1:23), compared to the control group using other tools (Mean=35:26,

STDDev=8:21); (p-value=0.01). Overall, participants using TOCHAL spent an

average of 78% less time on the same set of tasks compared to those using other

tools.

Further, the participants using TOCHAL showed improvements for all of the
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tasks compared to the control group, with the difference being statistically significant

for T1. Considering the higher accuracy scores for other tasks when using TOCHAL,

we observe that many participants of the control group terminated the tasks with

incomplete and incorrect answers, erroneously assuming that they had completed

the task. This caused them to obtain lower accuracy scores, while still spending

more time on average.

Ranking. The results of the experimental group were analyzed further to

investigate the effects of using our proposed ranking system on the duration and

accuracy of understanding and debugging an application after a change. T3 and

T4 were both debugging tasks requiring similar levels of expertise. As mentioned

earlier, the use of TOCHAL’s ranking feature was disabled for T3, while it was

enabled for T4. Performing a t-test on the results revealed a statistically significant

difference in task completion duration between participants who used the ranking

mechanism (Mean=1:50, STDDev=39), compared to those who did not (Mean=6:34,

STDDev=1:16), with p-value<0.05. We used a Mann-Whitney U test to analyze

the accuracy results for the ranking mechanism. Although using the ranks led to

an average of 20% higher accuracy of the answers, the results were not statistically

significant in this case. However, the participants completed T4 about 3.7 times

faster than T3. This significant improvement highlights the importance of ranking

the impact set, and is an indication of the usefulness of our impact ranking method

(Section 3.4).

Participants’ Feedback. We gathered qualitative data from both experimental

and control groups through a post-questionnaire form. The questionnaire asked

participants about the usefulness of the tool used in the study, its strengths, and its

shortcomings. Overall, all TOCHAL users mentioned that they found the tool useful.

The participants were particularly pleased with the idea of finding the potential

impact of JavaScript functions and DOM elements. Understanding the dynamic

behaviour and underlying dependencies were mentioned to be most useful. The

users found TOCHAL to be helpful in solving the problems faster, especially in the

presence of its ranking mechanism. The participants in the experimental group were

also interested to see more features in TOCHAL. The feature requests were mostly
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attributed to improving the user interface. Some participants were also interested in

having direct debugging support in the tool.

Furthermore, we asked our participants about the metrics they thought could

determine the importance of an entity in the impact set. We analyzed and categorized

the participants’ opinions on impact metrics. A few of the final categories were

considered in our ranking strategy, as we expected. These metrics included (1)

distance of an entity from the change set and (2) number of dependencies of an

entity. However, there were many other categories that are not included in our

methods, such as: (1) number of invocations of a function, (2) visibility of the

impact in the interface, (3) importance of the feature to the customers, (4) “breadth”

of usage of the entity: whether it is used by multiple files, or is isolated to one file

(5) complexity of the function, and (6) “history” of a function: rate of having faults

in the function.

Threats to Validity. The first internal threat is the the population selection threat,

and specifically the equivalency of the two groups in terms of their expertise.

We addressed this threat by first manually dividing the participants into different

proficiency levels, which were extracted from the information gathered in the pre-

questionnaire forms. We then distributed the members of each level into control and

experimental groups by random sampling. The second threat is the investigator’s

bias while marking the accuracy of the answers. We mitigated this threat by creating

a marking rubric while designing the tasks, and using the same rubric for marking

the results later. A similar threat can arise from the bias in measuring the duration

of the tasks. We resolved this issue by enforcing a mutual supervision on time

measurement by both the investigator and the participant. We assigned a separate

sheet of paper to each task, which was handed to the participant in the beginning of

the task, and was returned to the investigator after task completion. The fourth threat

can be introduced by the choice of the tool that the control group used. This threat

was mitigated by allowing the control group to choose the tool of their preference.

Finally, the compensatory incentives were not a threat to validity as all of our

participants volunteered for the experiment, with no monetary compensation.

An external threat is with regard to the representativeness of our sample of

population. We mitigated this threat by recruiting professional web developers from
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industry as our participants. Another concern is raised regarding the representa-

tiveness of tasks used in the experiment. We used general tasks enquiring about

understanding the impact of a code change and also detecting potential faults in the

code, which are faced by developers in their daily professional activities.

3.7 Concluding Remarks
The dynamic, asynchronous, and event-based nature of JavaScript and its interac-

tions with the DOM make modern web applications highly interactive and respon-

sive to users. These same features also introduce new types of dependencies into

the system, making the prediction and detection of change impact challenging for

developers. In this paper, we proposed an automated technique, called TOCHAL, for

performing a hybrid DOM-sensitive change impact analysis for JavaScript. TOCHAL

builds a novel hybrid system dependency graph, by inferring and combing static

and dynamic call graphs. Our technique ranks the detected impact set based on

the relative importance of the entities in the hybrid graph. Our evaluation shows

that the dynamic and DOM-based JavaScript features occur in real applications and

can lead to significant means of impact propagation. Furthermore, we find that a

hybrid approach leads to a more complete analysis compared with a pure static or

dynamic analysis. Finally, our industrial controlled experiment shows that TOCHAL

increases developers’ performance, by helping them to perform maintenance tasks

faster and more accurately.
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Chapter 4

Understanding Asynchronous
Interactions in Full-Stack
JavaScript

JavaScript has become one of the most popular languages in practice. In Chapters

2–3, we discussed understanding the behaviour and impact of change in client-side

JavaScript. However, developers now use JavaScript not only for the client-side

but also for server-side programming, leading to “full-stack” applications written

entirely in JavaScript.

However, there are three groups of challenges involved in understanding the

execution on the client side, the server side, and their interactions. First, JavaScript

is a single-threaded language and thus callbacks are often exercised to simulate

concurrency. Nested and asynchronous callbacks are used regularly [49] to provide

capabilities such as non-blocking I/O and concurrent request handling. This use of

callbacks, however, can gravely complicate program comprehension and mainte-

nance — a problem known as “callback hell” on the web by developers. Second, the

Document Object Model (DOM) and custom events, timers and XMLHttpRequest

(XHR) objects interact with JavaScript code on the client and server to provide

real-time interaction, all of which complicate understanding. Moreover, Node.js

deploys the event-loop model for handling and scheduling asynchronous events

and callbacks, the improper use of which can lead to unexpected behaviour of the
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application. Finally, client and server code communicate through XHR messages,

and multiple messages (and their responses) can be in transit at a given time. As in

any distributed system, there is no guarantee on the order or time of the arrival of

requests at the server, and responses at the client. The uncertainty involved in the

asynchronous communication makes the execution more intricate and thus more

difficult to understand for developers.

Despite the popularity of JavaScript and severity of these challenges, there is

currently no technique available that provides a holistic overview of the execution

of JavaScript code in full-stack web applications. The existing techniques do not

support full-stack JavaScript comprehension [10, 61, 84, 101, 143]. In our earlier

work, we proposed a technique, called CLEMATIS [4], for understanding client-side

JavaScript. CLEMATIS is, however, only designed for client-side JavaScript, and

is agnostic of the server, where most of the program logic is located in full-stack

applications.

In this chapter, we present a technique called SAHAND, to help developers gain

a holistic view of the dynamic behaviour of full-stack JavaScript applications. Our

work makes the following contributions.

• We propose a novel temporal and behavioural model of full-stack JavaScript

applications. The model is context-sensitive and creates lifelines of JavaScript

execution on both the client and server sides. The model connects both sides

through their asynchronous communications, to provide a holistic view of the

application behaviour.

• We create a visual interface for displaying the model to the developers, to

help them understand the underlying mechanisms of execution. We treat the

model as a multi-variate time series, based on which, we create a temporal

visualization of the lifelines of JavaScript execution.

• We implement our approach in a tool called SAHAND [119]. The tool is

browser-independent and non-intrusive. SAHAND can handle the simulated

concurrency of JavaScript through asynchronous execution of callbacks, XHR

objects, timers, and events.

• We evaluate our approach through a controlled experiment conducted with 12

participants. Our results show that using SAHAND helps developers perform
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program comprehension tasks three times more accurately.

4.1 Challenges and Motivation
To comprehend the behaviour of a full-stack web application, one must understand

the full lifecycle of a feature on both the client and server sides. We elaborate on

some the challenges involved using the examples illustrated in Figures 4.1–4.3.

These are simple examples and the challenges are more potent in large and complex

applications.

4.1.1 Challenge 1: Server-Side Callbacks

Receiving requests at the end points. Various types of HTTP requests are received

at the end points on a server. Node.js applications have one or more handlers

assigned to each incoming request. Each of the handlers can change the flow of

execution, return a response to the client, or pass the execution to the next handler.

The ability to register anonymous functions, or arrays of functions, can complicate

the process of understanding and maintaining the handling and routing the requests.

Example. The example of Figure 4.1 depicts an end point for receiving a GET request

(lines 12–18 use Express.js APIs [46]). Three items are registered as handlers of

the /locate request. First, an anonymous function is registered (lines 12–15),

which can return a response to the client conditionally (lines 13–14) and prevent

the execution of the remaining handlers. The second assigned handler (line 16) is

an array of callback functions cb1() and cb2() (line 8). An additional function

cb0() can be pushed to the array at runtime based on dynamic information (lines

9–11). cb0() can itself affect the control flow and send a response to the client

in a specific scenario (lines 3–4). Finally, another anonymous function is added to

the list of request handlers (line 16). Understanding how a request is received and

routed in the server depends on understanding the complex control flow of all these

handlers. This task becomes more challenging as the number of handlers increases

in practice.

Callback hell. Functions are first-class citizens in JavaScript. They can be passed

as arguments to other functions and be executed later. Callback functions are widely
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1 var cb0 = function (req, res, next) {
2 var region = locateClient(req.body.client)
3 if (region.ASIA) {
4 res.send(customizedRes(req.body.content))
5 }
6 next()
7 }
8 var cbacks = cb1, cb2
9 if (user.isLoggedIn) {

10 cbacks.push(cb0);
11 }
12 app.get('/locate', function(req, res, next) {
13 if (req.header('appStats'))
14 res.send(statCollectionResponse(req.body.stats))
15 next();
16 }, cbacks, function(req, res) {
17 // do stuff
18 })

Figure 4.1: Receiving HTTP requests at an end point

used in JavaScript applications [49]. However, It is not trivial to understand the

JavaScript code that deploys callbacks. In many cases callbacks are nested (up

to eight levels deep [49]) or are assigned in loops, which negatively impacts the

readers’ ability to follow the data and the control flow. This problem is know as the

callback hell by developers [24]. To aggravate the situation, Node.js deploys the

event loop model for scheduling and organizing callbacks. The event loop is not

visible to the developers, but it determines the asynchronous execution on the server

side.

Example. The code in Figure 4.2 depicts a simple example of callback hell. Many

callback functions are passed as arguments to other functions in a nested manner

(lines 2–5). Callbacks can also get assigned in loops. In the case of our example

(lines 3–5), the same anonymous function is assigned as a callback for all iterations

of a loop.

4.1.2 Challenge 2: Asynchronous Client Side

There are two asynchronous events typically used in the client side. First, asyn-

chronous XHR messages are used to seamlessly communicate with the server

without changing the state. Second, timing events are utilized for performing
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1 app.post('/cparse', function(req, res) {
2 customParse(req.body, function(er, list) {
3 list.forEach(function (row, index) {
4 buildScript(row, req.body.format).extractArgs(row, function (←↩

instType) {
5 row.forEach(function (arg, i) {
6 resolveAliases(instType, arguments0);
7 }) }) }) })
8 // send response back
9 })

Figure 4.2: Callback hell

1 function updateUnits() {
2 for (var i = 0; i < unit.length; i ++) {
3 (function(i) {
4 $.post(extractUrl(i), function(data) {
5 if (data.requiresAlert())
6 setTimeout(extractMessage(data), msgDelay);
7 });
8 } } })(i);
9 function periodicUpdate() {

10 $.get('/pupdate', function(data) {
11 // do stuff
12 });
13 }
14 setInterval(periodicUpdate, updateCycle);

Figure 4.3: Asynchronous client-side JavaScript

periodic tasks, or tasks that must take place after a temporal delay. To handle

asynchronous events, developers typically use callbacks which are triggered when

the event occurs. However, mapping the observed functionality of the event to its

original source is a challenging task for developers. This is especially so when the

source and the callback are often semantically and temporally separate.

Example. The sample code in Figure 4.3 displays a simplified client-side JavaScript

code. The updateUnits() function (line 1) posts a set of XHR requests to the

server in a loop (lines 2–7). Each of these messages has a callback function that is

invoked upon receipt of the server’s response. The callback function of all sent is the

same anonymous function (lines 4–7). Based on the content of the response data, a

timeout may be set that will execute after a certain delay (line 6). In another part of

the code, an interval is set that executes the periodicUpdate() function at pe-
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riodic intervals throughout the lifecycle of the application. periodicUpdate()

in turn sends a get request to the server and continues its execution upon arrival of

the response.

4.1.3 Challenge 3: Network Communication

The server and the client communicate through request/response messages. Hence,

the role of the network layer needs to be taken into account to obtain a holistic

overview of the execution. The requests do not necessarily arrive at the server in

the same order as they are sent on the client side. The processing times of different

requests can vary on the server side as well. Moreover, after the responses are sent

from the server, there is no guarantee on the time and order in which they will

arrive at the client. Observing the behaviour of the application as a whole on both

client and server sides is non-trivial. However, this is necessary for developers to

understand the full functionality of the features throughout their lifespan.

4.2 Approach
In this section, we first present the building blocks of our model. We then discuss

the different steps of our approach and how they contribute to the generation of the

model.

4.2.1 Temporal and Context-Sensitive Model

Our approach creates a custom directed graph of the context-sensitive executions

of events and functions during their lifespan. The model is designed to accommo-

date the temporal nature of function executions and the asynchronous scheduling

mechanisms of full-stack JavaScript. The relations of functions and (a)synchronous

events are also temporal to reflect the precise dynamic and asynchronous behaviour

of the application. We use the notations introduced here to show how our approach

creates the model based on dynamic analysis.

Vertices. The vertices of the graph can be events or lifelines of function executions:

V ::= LL lifeline of a function execution
| E (a)synchronous client/server event
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Function executions are the focal points of the model. Each function can go

through four phases in its lifecycle. Hence, a lifeline of the ith execution of function

f at time τ during execution (LL < f , i,τ >) manifests as one of the following

phases:
LL < f , i,τ > ::= Sch( f ) scheduled : as a callback

| Act( f ) active: being executed

| Ina( f ) inactive: in stack, but

another function is active

| Ter( f ) terminated: execution has

finished
To understand the lifeline of each execution, the model must account for all

these phases. There can be a maximum of one scheduling phase per function

execution, depending on whether it was triggered asynchronously. This means

Sch( f ) can occur 0 or 1 times in the beginning of a lifeline. Each execution has at

least one active phase (Act( f )). If the function invokes another function, the callee

becomes active, and the caller becomes inactive until the execution of the callee

is finished. Hence, after an initial active phase, a lifeline can contain an arbitrary

number of {Ina( f ),Act( f )} pairs, before its execution is finally terminated (Ter( f )).

However, there are cases where the execution is left unterminated, for instance due

to exceptions, or ending the execution before a scheduled callback occurs. In

general, the lifeline of function f can be depicted as:

LL( f ) = [Sch( f )]Act( f )(Ina( f )Act( f ))∗ [Ter( f )]

The other type of nodes included in our model are events. The events can be

synchronous or asynchronous, and can be triggered on the client or the server code.

Capturing the events and extracting their relations with the rest of the entities in

the application is crucial for program understanding. Table 4.1 summarizes the

information required for analyzing various types of vertices that is captured by our

approach, in addition to the time of event occurrence.

Edges. The edges of the graph have three primary attributes, namely time, type,

and direction.

Function lifelines are temporal entities over a contiguous time period. A lifeline
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Figure 4.4: A sample temporal, context-sensitive and asynchronous
model of events, lifelines, and interactions.

Table 4.1: Types of vertices in the model graph

Event
Type

Node Client/
Server

Information gathered

DOM
event

Ve client user input information, DOM element, handler function

Custom
event

Ve client Custom Event type, DOM element, handler function

Node.js
event

Ve(s) server Custom event type, registered function

Timeout
set

Vll(t) client&
server

Custom ID, delay, callback function, setter function

Timeout
callback

Vll(t) client&
server

Custom ID, callback function, setter function

XHR
send

Vll(x) client&
server

Custom ID, sent data, callback function, opening and
sending functions

XHR
callback

Vll(x) client&
server

Custom ID, response data, callback function, opening and
sending functions

can interact with other lifelines and events at multiple points in time during its

lifespan. The edges must preserve the temporal aspects of the interactions, and

reflect them in the model.

The type of each edge represents the type of interaction between the two involved

graph nodes. Function lifelines can interact with each other and with events through
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Table 4.2: Interaction Edges

Edge Relation Src Dst Sync Gathered
information

Ec calls LL LL yes args, context info
Et terminates LL LL no return value
Ecs schedules LL|E LL no callback type
Ess schedules (s) LL LL no callback type
Ets timeout set LL LL no delay
Exs xhr send LL LL both data
Et triggers LL E yes event type
Ee emits E LL yes event type

various types of relations, which are summarized in Table 4.2.

The direction of an edge represents the direction of the control flow between

the involved nodes, which depends on the type of the edge.

Table 4.3 summarizes the algorithm of creating the model graph based on

a selective trace of execution. The rows of the table are the transactions in the

trace, and the columns formulate the handling of nodes, edges, and the logic of the

algorithm for each transaction. Figure 4.4 provides a schematic representation of

the model. We refer to the algorithm table and the model figure throughout the rest

of the section, as we discuss the formation of the model.

4.2.2 Client-Side Analysis

On the client side, each function is either invoked directly by another function, or

is triggered by a DOM event, a scheduled callback (including timing events) or a

response to a request sent earlier. Next, we discuss how we create the client-side

model based on these entities and their relations.

Events and DOM Interactions. Our approach captures both DOM and custom

client-side events. For each event, we gather information on the involved DOM

element, the type of user action or programmatic event, the user input and the

invoked handler. Furthermore, our previous study [6] shows that around 14% of the

triggered handlers are not invoked directly by an event. These handlers are indirectly

called through event propagation mechanisms of JavaScript, where a single event

can trigger multiple handlers of the ancestors of the target element [133]. Thus, we

capture propagated handlers and their relations with the original events.
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Table 4.3: Creation and extension of the behavioural graph based on the
operations

tll : Stack of function lifelines. ©: Node.js event loop. Π f e: List of fired DOM events. Πue: List of unhanded DOM events.
The time τ and the side (server/client) are included in all transactions.
Row Operation

Type
Node Edge Instructions

1 Original DOM
event <ev,el>

e := newVe(ev,el)
ll := newVll(ev→ handler)
tll ←tll ∪ ll
Π f e←Π f e ∪ e

d = newEe(src : e,dst : ll,
action)

if(JS active)
ll.init(Phase.Sch)
Πue←Πue ∪ e

O.W.
ll.init(Phase.Act)

2 Propagated
DOM events
(Σ pe)

ep := Π f e→ head
∀ei ∈ Σ pe

lli := newVll(pe→ handler)
tll ←tll ∪ ll

∀ei ∈ Σ pe
d := newEe(src : ep,

dst : lli,ep→ action)

∀ei ∈ Σ pe
lli.init(Phase.Sch)

Π f e←Π f e ∪ (ei)

3 Timeout set to− id := newuniqueTOID()
llc := tll → head
ll := newVll(to− id,delay)

d := newEts(src : llc,dst : ll,
delay)

ll.init(Phase.Sch)
i f (serverside)
©←©∪< TO, ll >

4 Timeout
callback

ll := tll .get(TO→ to− id) ll.end(phase.Sch)
ll.start(phase.Act)
i f (serverside)
©.pop(ll→ to− id)

5 XHR send xhr− id := newuniqueXHRID()
llc := tll → head
ll := newVll(xhr− id,url,method)

d := newExs(src : llc,dst : ll,
data)

ll.init(Phase.Sch)
i f (serverside)
©←©∪< XHR, ll >

6 XHR callback ll := tll .get(XHR→ xhr− id) ll.end(phase.Sch)
ll.start(phase.Act)
i f (serverside)
©.pop(ll→ xhr− id)

7 Server events llc := tll → head
e := newVe(ev)
ll := newVll(ev→ handler)
tll ←tll ∪ ll

d = newEe(src : llc,dst : e,
e→ type)

d = newEe(src : e,dst : ll)

ll.init(Phase.Act)
llc.init(Phase.Ina)

8 Callback
scheduling

llc := tll → head
ll := newVll(callback)

d = newEcs(src : llc,dst : ll) ll.init(Phase.Sch)
i f (serverside)
©←©∪< CB, ll >

9 Callback
invokation

ll :=©→head ll.end(Phase.Sch)
ll.start(Phase.Act)
i f (serverside)
©.pop(< CB, ll >)

10 Function
invokation

llc := tll → head
ll := newVll( f unction)

d = newEc(src : llc,dst : ll) ll.start(Phase.Act)
llc.start(Phase.Ina)

11 Function
termination

llc := tll → pop
llp := tll → head

d = newEt(src : llc,dst : llp) llc.start(Phase.Ter)
llp.start(Phase.Act)

Upon invocation of the original handler, we create a node representing the event

and add it to the model (Table 4.3, row 1 & Figure 4.4, a). The node contains

information about the target DOM element and the input data (if applicable). If the

call stack at the time of event is empty and the event can be handled immediately,

a new lifeline is created for the handler, and is initialized with an active phase.
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However, if the call stack is not empty and the browser thread is executing other

JavaScript code, the lifeline will start with a scheduled phase, which will terminate

and enter an active phase as soon as the stack and waiting event queue are empty

and the handler can be invoked. For each propagated handler, a new lifeline is

created (linked to the same event node of the original event) that is initialized with a

scheduled phase (Table 4.3, row 2 & Figure 4.4, b). The lifeline enters the active

phase after the execution of the original (preceding) event and its synchronous

callers is finished, but before any asynchronous event/callback scheduled in the

preceding event handler.

A new edge is created from the event node to each of the newly created handler

lifelines. The edge to the original handler’s lifeline maintains the user action.

The edges to the propagated lifelines (if any) will indicate the occurrence of the

propagation as well as the initial user action. We intercept event handling by

instrumenting the registration of event listeners in the code. Our tracing technique

then retrieves information regarding the element, the event, and the handler(s) once

the event occurs.

Timeouts. There is often temporal and semantic separation between setTimeout()

and the callback function. Even in the case of immediate timeouts, the callback

is not executed until the JavaScript call stack is empty, and there are no other pre-

ceding triggered DOM and asynchronous events that are yet not handled. Hence, a

setTimout’s delay is merely the minimum required time until the timeout expires.

We intercept all timeouts by replacing the browser’s setTimeout() similar

to our previous work [4].

Each timeout must be set within the current active phase of a lifeline. Upon

setting a timeout, we create a new lifeline, representing the callback function

execution, that is initialized with a scheduled phase in the beginning. An edge is

created from current active lifeline to the newly created scheduled lifeline (Table 4.3,

row 3 & Figure 4.4, c). The new edge includes the data regarding the details of

the timeout (delay and passed arguments). The lifeline proceeds to an active phase

when the timeout expires and the callback is executed (Table 4.3, row 4 & Figure 4.4,

d).

XHRs. The server is treated as a blackbox at this stage. Our technique captures
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the information regarding sending the request (e.g., method, data) and the means of

receiving the response (e.g., response data, callback) and how it is handled on the

client side (sync or async).

When the active lifeline sends a request, we create a new node, initialized

with a scheduled phases (Table 4.3, row 5 & Figure 4.4, e). A new edge connects

the current active lifeline to the new scheduled one. The new edge encapsulates

information regarding the request (type of the request, sync/async, url, possible sent

data). When the response is received, the captured information is completed with

the response data (Table 4.3, row 6 & Figure 4.4, f).

Function executions. Our analysis of function executions is similar to creating a

dynamic call graph that is temporal and context sensitive. Our method accumulates

a trace of function executions initiated by regular function calls, as well as the

function executions caused by any of the mechanism discussed above.

The lifeline node representing the lifecycle of a function execution preserves the

temporal states of the function and their respective edges represent their relations

with the rest of the application. Lifelines and their edges map to particular executions

of functions and maintain the information regarding the context of that execution

(e.g., caller information, dynamic arguments, return values).

There are three possible cases of function invocation, each of which is handled

differently. First, when a function is invoked without passing any callbacks, a new

lifeline node is created (Table 4.3, row 10 & Figure 4.4, g). The new lifeline is

initialized with an active phase, and the execution continues from there. Meanwhile,

an inactive phase is added to the caller lifeline, which finishes and enters the active

phase when the callee returns. Second, when a function is invoked with a callback,

but the callback is not immediately (synchronously) executed, a new lifeline is

added for the callee. The lifeline is initialized with a scheduled phase and is not

marked as active yet (Table 4.3, row 8 & Figure 4.4, h). Finally, when a function

is invoked with a callback function, and the passed callback function is executed,

our method retrieves the existing lifeline where the callback is already scheduled,

and transitions it to an active phase (Table 4.3, row 9 & Figure 4.4, i). Synchronous

callback invocations are treated as regular function calls.

Every time a new lifeline is created, it is added to a stack of lifelines (tll). When

the execution of a function lifeline terminates after an active phase, the lifeline
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enters the terminated phase, and is popped (Table 4.3, row 11 & Figure 4.4, j).

Our technique instruments all JavaScript functions in order to gather a detailed

execution trace dynamically. JavaScript functions can have different return state-

ments in different intra-procedural execution paths. Hence, our method instruments

all existing return statements individually. Should a path terminate without a return

statement, we inject a different logging function for marking the termination of the

function. Function invocations are wrapped within our trace functions. All argu-

ments are examined and if they are functions, additional instrumentation is added

to distinguish potential callback scheduling. The analysis recursively checks the

subprogram and if the potential callback is eventually invoked, the actual callback

invocation are annotated through additional tracing code. Further, to distinguish

between multiple invocations of the same function, we maintain its contextual

information in the caller function, and update it per execution of the callee. We

pass the updated state to the callee through our instrumentation, where it is used to

customize the collected trace for that specific execution.

4.2.3 Server-Side Analysis

Our approach tracks the incoming requests from their arrival at the endpoints of the

server. The endpoint layer typically contains minimal logic, but can highly affect

the flow of execution (e.g., routing to different handlers, sending the response back).

The essence of this part of the analysis is similar to the client side. However, the

focus at this stage is on challenges specific to server-side JavaScript development,

such as the callback hell and the server-side events. Before discussing our analysis

of the server-side behaviour of a JavaScript application, we need to describe the role

of the event loop on the server.

Event loop. The event loop consists of a queue of asynchronous events waiting

to be executed at each tick of the loop when the stack (of synchronous functions)

becomes empty.

The stack, the event loop, and the mechanisms of pushing/popping events

in/from the loop determine the order and time of asynchronous events execu-

tion. Hence, we need to consider them in our analysis. For example, there

are three ways of scheduling an immediate callback in a Node.js application,
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namely Immediate setTimeout() (a timeout with 0 delay), setImmediate()

and process.nextTick() However, the order and time of execution of the

callbacks using each method differs based on the contents of the event loop.

process.nextTick() pushes the callback to the front of the event loop queue

regardless of the contents of the queue. setImmediate() enters the callback into

the queue after the I/O operations, but before timing callbacks. setTimeout(0)

pushes the callback to the end of the queue (after all existing callbacks). Hence, even

though the delay is set to 0, it may be executed with more delay in practice. This

shows the importance of reflecting the exact dynamic execution of asynchronous

JavaScript in helping developers understand the behaviour of the application.

Callbacks. We capture all callback invocations (synchronous or asynchronous),

their relations with the events in the loop that triggered them, and the consequences

of their executions. When a callback is scheduled, a new lifeline node is created in

the server-side of the model for the callback function, which starts with a scheduled

phase. The respective asynchronous event is added to the list of events in the loop.

Later when the event is popped and the callback is invoked, the lifeline is retrieved,

the scheduled phase is terminated and the active phase starts. This part of the

analysis is similar to that of the client side, although we consider the event loop and

the respective scheduling methods (Table 4.3, rows 8–9 & Figure 4.4, k).

Events. There is no DOM on the server side and hence there are no user events.

However, developers can take advantage of Node.js events to trigger custom events

and invoke their handlers using EventEmitters. A major difference between

EventEmitters and client-side events is that the former are synchronous in

nature and thus do not occur in the event loop. Although these events can be emitted

in asynchronous functions, the invocation of handlers is different from asynchronous

handlers and thus has to be analyzed differently. In our model, for each emitted

event a new event node is created. An edge connects the current active lifeline to

the event. The current lifeline enters an inactive phase. A new lifeline in the active

phase is created, which is connected to the new event node through an edge. When

the execution of the handler finishes, the inactive phase of the original lifeline will

finish and it will be active again (Table 4.3, row 7 & Figure 4.4, l).
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4.2.4 Connecting Client and Server

In a typical web application, execution starts on the client side with an event, which

can trigger an asynchronous request to the server. This entails code execution on

the server and sending the response back to the client, which will complete the

lifecycle of interaction when the execution terminates on the client side. However,

JavaScript execution can continue on the client side even while the asynchronous

request is being handled on the server. The synchronization of the client and server

side executions of a full-stack feature occurs in our model when the two ends

communicate through XHR objects (Table 4.3, rows 5–6 & Figure 4.4, m).

We create temporal models for both client and server sides. Due to the network

layer in the middle, each side initially treats the other side as a black box. The

connections between the two sides are made by marking and tracking the XHR

objects. Because the client and the server may have different clocks, we cannot use

the timestamps produced by their respective clocks for synchronization. Hence, we

track all communications between the client and the server. This way, our approach

can find windows of synchronization between the two sides, which start by a request

arriving at the server and end when the response is sent back to the client. While

this approach only provides a relative sense of time globally, in practice, this is

sufficient for the purposes of our approach, since it is accurate for each specific

full-stack interaction.

4.2.5 Visualizing the Model

In the last step of the approach, we create a visual interface based on our inferred

temporal model. The visualization shows the temporal characteristics of the lifelines,

events, and their relations, to facilitate understanding of execution patterns. There

are three major criteria that need to be considered in creating a visualization for

temporal data [2].

1) Time. There are two types of temporal primitives. Time points are specific lines

on the time axis. Time intervals constitute ranges on the time axis. our visualization

uses time points to represent events and event loop ticks, and time intervals, to

depict function lifelines and the phases of their lifespans. The time axis can follow

one of the common structures of time: linear, cyclic or branching. The structure
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Figure 4.5: A snapshot of the visualization.

of our time axis is a mixture of subsets of both linear and branching structures.

As a linear structure, it follows the natural perception of time, where time passes

from past to future, and the temporal primitives are ordered (as opposed to a cyclic

perception of time). Moreover, similar to the branching structure, multiple edges

can exit a single temporal primitive node. But unlike branching, the outgoing edges

actually occur at different timestamps and do not represent alternatives.

2) Data. Data is the second criterion of time-series visualization and can be exam-

ined from different aspects. The frame of reference for our data is abstract, since

it does not encompass a spacial layout. The data is multivariate since each node

contains a set of information (variables) accumulated for the event or lifeline it

represents.

3) Representation. The final criterion is the representation of the time-relevant data.

This can be of two kinds: static or animated. We deploy a static approach, meaning

that our visualization makes all the information available on screen on demand,

and hence the viewers can concentrate on the data itself and make comparisons on

different parts of the model. We collect multiple variables for each node. Presenting

them all to the viewers can be overwhelming and obstruct the overview of the whole

model. We utilize basic interaction to allow users to view information on demand

by clicking on any of the events.

Lifeline visualization has been extensively used for displaying histories in

domains such as medical records [108]. We incorporate custom lifeline visualization

in the interface of our behavioural model.
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Visualization example. Figure 5.7 displays a sample snapshot of the interface. The

main frame of the visualization depicts our lifelines. Each lifeline represents a

particular context-sensitive execution of a function (a). Different phases of a lifeline

are depicted as rectangles with different colours on the lifeline (b). If a lifeline

represents an asynchronous callback, it will start with a scheduling phase (c). Lines

between caller/scheduler lifelines and their respective callee/scheduled lifelines

display the edges between the function executions (d).

Once an XHR is sent to the server, an edge connects the the scheduled callback

to the handler on the server. However, due to the potential network delays, the

handler execution may start later than when the request is sent (g). The request is

then dispatched and handled, until the response is sent back to the client (h). In

addition to the main panel, there are two smaller panels to represent the client-side

events and the server event loop. The first row on the client panel (i) represents the

DOM events, and timeout and XHR callbacks that occur on the client side. The

colour and label of each cell on this row depict the type of each event. The server’s

event loop is depicted at the bottom of the server panel (j). Every time a user-defined

callback is scheduled, a timeout is set, or an XHR is sent, an event is pushed to the

event loop (marked with a green border). When it is a callback’s turn to be executed,

the corresponding event is popped from the loop (marked with a red border), while

the remaining events (if any) can still be observed in the loop. Finally, the horizontal

axis below both panels represents the time.

4.2.6 Implementation

We implemented our approach in a tool called SAHAND. We instrument JavaScript

code on the server side at startup, using a proxy server built with Node.js and

Express.js, and on the client-side code on the fly. We create an AST of the code

using Esprima [44], instrument the AST using Estraverse [45], and serialize the AST

back into JavaScript code with Escodegen [43]. The visualization is built on top of

the timeline view of Google chart tool [53]. SAHAND is publicly available [119].
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4.3 Evaluation
We conducted a comparative controlled experiment [139] to investigate the effects

of using SAHAND on the performance of developers when understanding full-stack

web applications. Our experimental dataset is available online [119].

4.3.1 Experimental Setup

The participants in our study are asked to perform three comprehension tasks on a

full-stack JavaScript application.

Experimental subjects. We recruited 12 participants for the experiment, 11 males

and one female, aged between 23 and 33. All of the participants are graduate

students at UBC who regularly program with JavaScript. None of the participants

had used SAHAND prior to the experiments.

Experimental object. We use Math-Race [82] as our experimental object. It is

an open-source, online game that allows multiple players to compete over solving

simple mathematical problems. During timed cycles of the game, they players can

answer questions, keep the history of their scores, and enter the game’s hall of fame

if they achieve high scores. We chose this application because it is a full-stack

JavaScript application built on Node.js. It is also relatively small (about 200-300

LOC of JavaScript on each of the client and server sides), and hence it is feasible

for our participants to understand its main features during the limited time of the

experiment (about 75 minutes). Although it is a small application, it employs many

advanced features such as asynchronous events and callbacks. Our participants had

never seen Math-Race before the experiment.

Experimental design. The experiment had a between-subject design. We divided

the participants into two groups. The experimental group used SAHAND for perform-

ing a set of comprehension tasks. The participants in the control group were allowed

to use any existing web development tool. They all selected Google Chrome’s

Developer Tools [27], one of the most popular client-side development tools, as they

all self-reported as experts in it. We also provided the control group with JetBrain’s

WebStorm [135], a popular JavaScript IDE, for working with the server-side code

of the experimental object. In contrast, the experimental group were only allowed

to view the code in addition to SAHAND’s visualization, and not permitted to use an
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Table 4.4: Comprehension tasks of the experiment

Task Description
T1 Understanding full-cycle implementation of submitting a correct answer on the client side.
T2.a Understanding time-triggered feature of terminating game rounds managed by the server.
T2.b Detecting a potential for an event-race condition during client-server communications.
T3.a Understanding the purpose of a new feature involving nested callbacks.
T3.b Understanding the asynchronous execution of a function involved in nested callbacks.

IDE or debugger. We limited their access to other tools because we wanted to gain

a better control of SAHAND’s impact on understanding.

Task Design. We designed a set of tasks that represented common comprehen-

sion activities performed in normal development proposed by Pacione et al. [102].

Each of our tasks covers multiple activities, and also involves elements specific to

JavaScript comprehension. The tasks are summarized in Table 4.4.

Variables. We wanted to measure the performance of developers in performing

program comprehension tasks. The dependent variables (DV) should quantify

developers’ performance. Our design involves two interval dependent variables, task

completion duration and accuracy. We also considered two nominal independent

variables (IV). The first IV is the tool (set of tools) used for the experiment, and has

two levels. One level is SAHAND, and the other is the set of Chrome’s DevTools

and WebStorm. The second IV is the expertise level of participants. We wanted

to investigate the effects of expertise of the participants on how they comprehend

web applications. We classified participants into two groups, namely experts and

novices, based on their responses to a pre-questionnaire form (described below).

Experimental procedure. This consists of four parts. In the first part, the partici-

pants completed a pre-questionnaire form where they ranked their expertise in web

application development using a 5-point Likert scale, and prior experience with

software development in general. We used a combination of their self-reported ex-

pertise and experience to assign an expertise score to each participant. The expertise

score was used to assign the participant to either the experimental or control group.

We manually balanced the distribution of expertise in both groups. We also used the

expertise score to assess whether the expertise of participants affects their program

comprehension performance. In the second part of the experiment, we presented a

short tutorial on SAHAND for the experimental group. However, we did not present
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any tutorial to the control group as they identified themselves as expert in Chrome

Developer Tools. Both groups were given a few minutes to familiarize themselves

with the settings of the application, the object application, and the tools. In the third

part, the participants performed the tasks (Table 4.4). We presented each task to

the participants on a separate sheet of paper, and measured the time from when

they started the task until they returned the answer. This setup ensured that the

time-tracking process was not biased towards either the examiner or the participant.

We measured the accuracy of the answers later, based on a grading rubric that we

had finalized prior to conducting the study. The accuracy of the tasks could be

quantified with a grade between 0 and 100 per task. The tasks and their rubrics,

along with the rest of documentations of the study are available online [119]. In

the fourth part, when the participants finished all of the tasks, they were given a

post-questionnaire form. The form asked about their experience with the tool used

in the experiment, and its pros and cons. We also solicited participants’ opinions on

the features they thought would be useful for a web application comprehension tool.

4.3.2 Results

We were interested in observing the effects of tool and expertise on task completion

duration and accuracy. Both variables are conceptually dependent although we did

not observe a correlation between them in our experiments. Imagine a case where a

participant finishes the tasks early thinking she has found the correct answer, but

the answer is incorrect or incomplete. In this case, the fast completion of a task

is not an improvement, since the purpose of the question is not fulfilled and the

participant has not performed better. Because of this relationship, we performed a

multivariate analysis, where we examined the pair of both duration and accuracy as

the dependent variable.

We performed a set of multivariate analysis of variance (MANOVA) tests to

investigate the effects of tool and expertise on the integration of duration and

accuracy. Using MANOVA entails two advantages for our analysis. First, it can

reveal differences that are not discovered by ANOVA. Second, it can prevent type I

errors that may occur when multiple independent ANOVA tests are conducted. We

performed the MANOVA tests on the total duration and accuracy (combining all
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tasks). Next, we ran a MANOVA test on each individual task. If the results of a

MANOVA test were significant, we examined the univariate tests (ANOVA) to see

if the significance in performance improvement was due to the duration, accuracy,

or both.

Examining the total results, we found a significant main effect of tool (p <

.0001) on the group of accuracy and duration, but no significant main effect of

expertise (p > .05). For individual tasks too, we found a significant main effect of

tool (T1:p< .001, T2:p< .001, T3:p< .05), but not of expertise. We then examined

the univariate tests (ANOVA) for each significant result, to find which dependent

variable(s) contributed to the significance. From the results, we found that there is a

statistically significant difference (p<.00001) in accuracy between the group using

SAHAND (M=89%, SD=10%) and the control group (M=30%, SD=11%). However,

we did not find a statistically significant difference for duration (p > .05) between

the group using SAHAND (M=32:06, SD=5:43) and the control group (M=33:49,

SD=6:37).

The above results suggest that that task completion accuracy was the determining

factor in the significance of the results of the multivariate tests. The accuracy

results are shown in Figure 5.8. We find that SAHAND helped developers perform

comprehension tasks three times more accurately, in about the same amount of time

used by the control group.

4.3.3 Discussion

“Fast Is Fine, but Accuracy Is Everything”. Using SAHAND significantly im-

proved the accuracy of each individual task in the experiment. The large difference

between the means of two groups, and the high confidence of the test results em-

phasize the impact of the challenges of understanding full-stack JavaScript, even

for a simple application as our experimental object. Tasks T1 and T2 were seeking

developers’ understanding of two of the basic features of the application, whose

implementation was divided between both ends of the application. The tasks also

involved understanding features such as event propagation on the client-side, and

asynchronous time management on the server side. Task T3 required understanding

the execution of a nested callback code segment, which can create implicit and
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Figure 4.6: Accuracy results. Gold plots display experimental (SAHAND)
group, and green plots display the control group. Higher values are
better.

intricate connections in the application.

Manual analysis of the answers of the control group showed that they all had an

incomplete and sometimes incorrect vision of the full-stack execution of the features.

Their mental model of the application’s behaviour missed both entities and connec-

tions, on both client and server and their interactions. They gained significantly

lower accuracy scores, while spending about the same time as the experimental

group. On the other hand, SAHAND users were able to see all the involved entities

and their relations. The model allowed them to extract the information usually

hidden in the application, and finish the tasks much more accurately.

“It Will Get Better ... in Time”. The results did not show a statistically significant

difference of task completion duration between experimental and control groups.

Manual investigation of the control group’s answers showed that almost all of them

had incomplete (and not necessarily wrong) answers for most of the questions.

Therefore, it is possible that these participants spent the whole time on a small por-

tion of the answer compared to the experimental group. This means that overall, as

the multivariate tests found, SAHAND users performed better than the control group
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as they used approximately the same amount of time for providing significantly

more accurate answers.

Further, none of the participants in the experimental group had seen SAHAND

before the experiment. We observed that SAHAND users looked more often at the

source code and spent more time analyzing and interpreting the interface at the

beginning of the session. However, near the end of task T1, they would shift almost

all of their attention on the model while solving the problems. We believe this is due

to two main reasons: (1) the users required a short learning phase for performing

a real task (although they had a tutorial in the beginning), (2) only after multiple

comparisons between the interface and the actual code, were the users able to trust

SAHAND as a fair representation of the behaviour. We believe that developers will

get faster using SAHAND once these barriers are overcome. Examining the average

time spent on each task, we observed that SAHAND users finished T1 only 8% faster

than the control group in the beginning of the session. However, by the end of the

session, SAHAND users finished T3 32% faster on average. This result strengthens

our intuition that by adopting the tool for a longer period of time, users will become

much faster in performing the tasks.

User Feedback. According to the post-questionnaire forms, all SAHAND users

found the tool useful. They particularly liked the overview it provided of the whole

interaction. They found the unified client/server view most useful. The participants

also found it easy to infer function relations from the model, and liked the abstraction

and filtering of details in the visualization. However, some of them mentioned that

the context-sensitive depiction of functions can become overwhelming in large

interaction sessions. They requested interface features such as direct links to the

code, showing connections to the DOM, and integration with a debugger. These are

interesting directions for future work.

Threats to Validity. The first internal threat is the examiner’s bias in measuring the

time. We addressed this threat by enforcing a mutual supervision on timekeeping by

the examiner and the participant. The start and end time of each task were marked by

the exchange of sheets of paper containing the question and the answer of that task

between the examiner and the participant. The same threat arises from examiner’s

bias while marking the accuracy of the tasks. We mitigated this risk by devising the
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rubrics of each task before conducting the experiments. The rubrics were later used

to mark the accuracy of the answers. Another threat is the impact of the expertise

level of the participants on their performance in the experiment. We eliminated this

threat by determining the expertise level of participants through a pre-questionnaire

form before conducting the experiments. We used this information to rank par-

ticipants into multiple bins based on their expertise levels, and then used random

sampling to assign the members of each bin to one of the control and experimental

groups. The tools used by the control group can introduce another threat. We

avoided this threat by letting the participants choose the browser development kit for

client-side analysis (all chose Chrome). For the server side, we provided them with

WebStorm, a popular enterprise IDE for web development. We resolved the bias

of the experiment tasks by designing the tasks based on a framework of common

comprehension tasks [102]. Using this framework, we also eliminate a potential

external threat arising from the representativeness of the tasks. The second external

threat is the representativeness of the participants. We addressed this threat by

recruiting graduate students who regularly performed (and researched) JavaScript

development. Many of the participants had professional development experience

during or prior to the time of this work. However, our participants were not full-time

professional developers and this could still threaten the validity of our experiment.

Finally, to ensure the reproducibility of the experiment, we used an open-source

experimental object, and made our tool, the tasks, questionnaires, and the rubrics

public [119].

4.4 Conclusion
Full-stack JavaScript development is becoming increasingly important; yet there

is relatively little support for programmers in this space. This paper introduced

SAHAND, a novel technique for aiding developers’ comprehension of full-stack

JavaScript applications by creating a behavioural model of the application. The

model is temporal and context sensitive, and is extracted from a selectively recorded

trace of the application. We proposed a temporal visualization interface for the

model to facilitate developers’ understanding of the behavioural model. The im-

plementation of the approach is available as an open-source Node.js application
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[119]. We investigated the effectiveness of SAHAND by conducting a user experi-

ment. We found that SAHAND improves developers’ performance in completing

program comprehension tasks by increasing their accuracy by three times, without

a significant change in task completion duration.
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Chapter 5

Inferring Hierarchical Motifs
from Execution Traces

5.1 Introduction
Program comprehension is an essential first step for many software engineering

tasks. Developers spend a considerable amount of time understanding code. About

50% of maintenance effort is spent on comprehension alone [31]. Unfortunately,

code understanding is challenging. To understand code, developers typically start

by searching for clues in the code and the environment. Then they go back and forth

on the incoming and outgoing dependencies to relate pieces of foraged information.

Throughout the process, they collect information they find relevant for understanding

the code on an “as-needed” basis [71]. However, developers often fail in searching

and relating information, and lose track of relevant information when using such

ad-hoc strategies [117]. Further, developers form mental models of code, that are

often inaccurate [92]. Thus, there is a need for systematic and automated techniques

for program comprehension [76].

Dynamic analysis, which collects and utilizes data (traces) from program exe-

cution [34], is a popular technique for program comprehension. However, due to

the amount of information obtained during the execution, the traces tend to become

complex and overwhelming and thus difficult to understand [33, 141, 142]. Existing

techniques target this problem, e.g., by summarizing traces [55], structuring and
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visualizing collected data [7, 48], or inferring system specifications [100]. However,

the first technique loses some of the data that may still be valuable, and the rest

become overwhelming for developers and are not flexible to small variations of data.

The problem can also be approached by finding patterns in the execution. However,

prior work in the area has predominantly focused on generic and predefined design

patterns, low-level architectural relations between program artifacts, or visualiza-

tions of all details of execution [7, 21, 60, 73]. While useful, these approaches do

not capture the behavioural patterns that are not defined or even known prior to

analysis, but form and recur (with small variations) throughout the execution of a

program. Even in more traditional programming languages, patterns in execution do

not repeat exactly in the same manner or same sequence. Further, presence of pro-

gramming languages features such as dynamism, asynchrony and non-determinism

in the execution makes the analysis more problematic and burdensome, and ren-

ders conventional techniques ineffective. Hence, program comprehension through

dynamic analysis still remains challenging [34].

In this paper, we propose a novel technique for program comprehension by

inferring a model of execution motifs. Motifs are abstract and flexible recurring

patterns in program execution that serve a specific purpose in the functionality of

the program. The term is inspired by sequence motifs, which are recurring patterns

in DNA sequences that have a biological function [40]. Our approach discovers

motifs from traces containing function executions and events. Our proposed algo-

rithm compares a trace obtained from an interaction session against a database of

previously-collected traces. It iteratively examines segments of traces for detecting

sequences of function executions that may recur in execution. It is tolerant of

small variations in different manifestations of each motif, allowing abstraction in

inferred motifs. The algorithm discovers hierarchies between motifs as they emerge

from details of execution. The hierarchical structure of inferred motifs reveals

how higher-level key points of execution are formed. It allows users to have an

overview of the trace, while still having access to all execution details as well as all

intermediate levels.

The main contributions of our work are as follows:

• We propose an automated approach for inferring a model of program be-
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haviour, which encompasses hierarchies of abstract recurring motifs extracted

from execution traces. Our approach is inspired by techniques from bioinfor-

matics, where similar challenges arise in investigating similarities in large

sequences of DNA. The motifs facilitate program comprehension by high-

lighting the main characteristics of behaviour, and abstracting the details and

variations of execution.

• We design and build a visualization technique for presenting the motifs to

developers, to provide assistance with program comprehension. Our method

is complementary to existing tools and techniques, and is designed to be

utilized alongside existing programming environments.

• We implement our approach in a tool called SABALAN that supports Java-

Script-based web applications. Our tool is non intrusive for generating traces,

and infers models of recurring motifs from execution trace in an automated

manner.

• We evaluate our approach through a controlled experiment conducted with 14

participants, on a set of real-world program comprehension tasks. The results

show that using SABALAN helps developers perform program comprehension

tasks 54% more accurately than other tools.

5.2 Challenges and Motivation
To assist the process of searching, relating and collecting information, many tech-

niques collect execution traces, analyze them, and/or visualize the results for the

developers. Despite providing the grounds for precise analyses, dynamic traces

become very large and cause information overload. Further, they become very

complex due to dynamism, asynchrony and non-determinism in program execution.

These challenges render large traces ineffective in assisting program understanding.

In this section, we use a simple example to illustrate these challenges (Figures

5.1–5.3). We selected JavaScript for the examples since it is the lingua franca of web

development. It is voted as the most popular language [126] and is the most used

language on GitHub [74]. JavaScript applications are highly dynamic, asynchronous

and event driven, and heavily interact with the Document Object Model (DOM) and

the server code. These features can help demonstrate trace complexity within small
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Figure 5.1: I: A sample registration form. II: A) Sample execution trace,
and B) hierarchy of inferred motifs. III: Dynamic call graph of
example

code segments. While our approach is general, we use JavaScript in this paper to

demonstrate it.

Overload by Information in Large Traces. The amount of information a trace

carries matters due to the cognitive overload understanding the trace imposes on

developers [35], e.g., a study found that one GB of trace data was generated for

every two seconds of executed C/C++ code [113]. For modern applications, which

are often distributed among many nodes with many components involved, the traces

become incomprehensible for developers very quickly. Some techniques try to

address the problem by reducing the trace during/after its collection [19, 55, 113] by

focusing on more important entities, or filtering the details of the executions. These

techniques have been able to make traces more useful by decreasing the information

contained in the traces [61]. However, even with a technique that creates a smaller

trace, the trace is still not necessarily understandable for developers, as some of the

data might be lost or missed by developers.

Complex and Hidden Dependencies. Revealing abstract and higher-level patterns

that highlight the key points of a program’s behaviour can facilitate comprehen-
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1 <form>
2 Email: <input type="email" id="email">
3 Address: <input type="text" class="addr">
4 Occupation: <div class="dropdown" id="occupation">
5 <button class="dropbtn">
6 Choose one</button>
7 <div class="dropdown-content">
8 <a href="#">Academic</a>
9 <a href="#">Industry</a>

10 </div>
11 </div>
12 <input type="submit" value="submit">Submit</input>
13 </form>

Figure 5.2: Initial DOM state of the running example.

1 $("#email").addEventListener("change", validateEmail, false);
2 $(".addr").click(checkAddress);
3 $(".dropdown-content").addEventListener("change", occupation, false);
4 function validateEmail () {
5 // do stuff
6 }
7 function checkAddress() {
8 // do more stuff
9 }

Figure 5.3: [Partial] JavaScript code of the running example.

sion. The focus of the developer can be guided through a hierarchy of recurring

patterns of execution, while all collected information are still preserved for further

inquiry. However, extracting such patterns (motifs) is challenging due to dynamism,

asynchrony and non-determinism in program execution.

First, there are many complex and hidden dependencies between entities in the

system, that can affect the execution. Understanding the impact of a user action

or asynchronous communication with the server are examples of relations that

are difficult, if not impossible, to capture from merely analyzing the code or the

call graph. They act as media for connecting segments of execution together, that

otherwise would not be related in the code itself. Further, for a part of behaviour

to be distinguished as a motif, it should recur during the execution. Different

executions of what is conceptually the same motif, may vary in details and thus may

not converge to reveal the same motif. The alterations are intensified when programs

have user interfaces, are distributed, or involve general dynamism and asynchrony.

121



However, the caused variations should not prevent the analysis to recognize the

high-level blueprint of the behavioural motif they all manifest. An analysis that is

overly dependent on all execution details cannot permit higher-level motifs to reveal

themselves.

Example. Consider the example shown in Figure 5.1, showing a part of a form re-

quired for registering a user. Specific events on the input fields of the form have han-

dlers that validate the input before the form can be submitted. verifyEmail()

and checkAddress() (lines 1–2 of Figure 5.3) are handlers for email and

address fields of part (A) of the form (lines 2–3 of Figure 5.2). The two func-

tion are always executed together in a successful registration scenario, and are a

consistent part of the motif representing that scenario, due to their placement in the

DOM. However, this relation cannot be inferred from the code (Figure 5.3) or the

call graph (Figure 5.1.III).

Moreover, a successful submission requires filling all the fields properly and

submitting. However, the form change in section (B) of Figure 5.1 is based on the

input of occupation (lines 4–11 of Figure 5.2). If the user chooses Student,

a drop-down menu appears and the appearance, content, and functionality of the

form changes a bit based on user’s input. However, the conceptual purpose of

submitting the form, and hence the motif, remain the same. Should an analysis be

too dependent on exact execution details, these two executions will be considered

different. However, a more representative analysis should recognize that regardless

of occupation of the user, the essence of the motif is the same and it should support

both options. There are no prior knowledge or templates of the application-specific

motifs. Hence, a useful comprehension method should allow a degree of flexibility

in inferring motifs, to allow abstract motifs to form independently from unimportant

contextual details.

5.3 Overview of the Methodology
For execution traces, such as the one depicted in Figure 5.1.II.A, our goal is to

infer a hierarchy of its recurring motifs, by utilizing the knowledge of previous

executions of the application. The model of extracted motifs assists comprehension

of the program behaviour by facilitating the cycle of searching, relating, and
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collecting information. Having our proposed approach, developers are able to gain

an overall understanding of the highlights of execution, manifested as motifs, at a

glance. Further, they would have the means to understand the details of such motifs,

their hierarchies, and relations upon inquiry (Figure 5.1.II.B). Our approach takes

advantage of precision of dynamic analysis, but prevents developers from being

trapped and overwhelmed by the execution details.

Our proposed approach first instruments and intercepts the application on the fly,

to obtain traces. Having a knowledge-base of previously collected traces and a query

trace, our algorithm then extracts motifs of different lengths within traces, and infers

hierarchies and relations of motifs. Our algorithm is inspired by bioinformatics

algorithms for aligning biological sequences. Our approach creates a behavioural

model from the motifs and their relations, which we visualize for developers in the

final step.

Execution Traces. To obtain the traces required for the algorithm, we instru-

ment the applications and collect dynamic execution information automatically. Our

instrumentation allows our technique to intercept all function executions and collect

their context-sensitive information. It also intercepts all events that can occur during

the execution. Their added knowledge can assist the algorithm to infer conclusions

about motifs and their causal and temporal relations with (a)synchronous events.

Next, our approach eliminates low-level details included in the raw trace, such

as auxiliary events, low-level and library method calls, and framework-specific

details. The pruned trace is then used as the input to the algorithm. Note that our

method is non intrusive, and preserves the original behaviour of the application

under investigation.

5.4 Algorithm for Inferring Motifs
In this section, we propose our algorithm for detecting motifs in order to create

a higher-level model of behaviour. We define motifs as abstract and hierarchical

sequences of function executions that recur throughout the lifetime of an application.

While each motif eventually supports concrete sequences of function executions, it

is by nature a composite element, and can represent more complicated structures.

We define a motif as an ordered set of two or more members (m0 to mi), which
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include [sub-]motifs, abstract entities, and context-sensitive function executions.

The confidence of a motif in each of its members is a representative of the manner

that member is observed within different executions of the motif, and is shown as

c0 to ci for all motif’s members, respectively.

M = {〈m0,c0〉 . . .〈mi,ci〉|∞i=1} ,
mi ::= function execution

| sub-motif

| abstract entity
Our approach draws the attention of developers to the main observed motifs,

presumed to represent highlights of behaviour, preventing their view to be obstructed

by low-level details. The underlying model still preserves details that can be

demanded by users as necessary.

5.4.1 Inspiration from Analyzing Biological Sequences

In designing the algorithm, we were inspired by bioinformatics, where there is

a constant need to explore, compare, and analyze large data sequences. Most

relevant to our approach are sequence alignment algorithms, which find similarities

in sequences of DNA, RNA, and protein by arranging and comparing them [52]. We

begin our core algorithm by using a heuristic for finding exact matches between trace

sequences. For comparison of the trace sequences, we adapt the idea of BLAST

(Basic Local Alignment Search Tool) [9], a local sequence alignment algorithm

which we modify to fit the domain of execution traces. We then expand the matches

by maximizing similarities in their neighbouring entities in the traces. This phase

is accomplished using a dynamic programming algorithm in order to allow more

flexible and more abstract motifs. Throughout this process, our method infers

existing motifs and reveals their relations and hierarchies. In this section, we use

Algorithms algorithm 2 – algorithm 3 and Figures 5.4 – 5.5 to explain our algorithm.

Our algorithm takes the application (app) and its knowledge-base (ΣΣdb) as input

and returns the extracted motifs as output. Please note that we have eliminated

and/or merged many details for the sake of brevity. The details can be found in the

repository of our open-source tool [118].
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Figure 5.4: This figure depicts a DB of traces (A) and a sample query
trace (B) of an application, on the left and right side, respectively.
Exact matches of length 2 and 3 between the query trace and differ-
ent DB traces are marked.

5.4.2 Forming a Knowledge Base

Our algorithm requires a knowledge base of multiple previous executions, i.e., a

set of traces, named database (DB) traces (ΣΣdb), which can initially be collected

by executing the test suite, crawling, or exploratory testing and exercising the

application multiple times. During each interaction session, our approach collects a

trace, called the query trace (Σq), which will be analyzed and compared against all

DB traces for finding its motifs. Each query trace is itself added to the DB traces

after the algorithm is finished. This part is depicted in lines 21–23 of Algorithm

algorithm 2. Parts A and B of Figure 5.4 display sample DB traces and query trace

of the running example (Figure 5.3).

5.4.3 Finding Exact Matches

Next, the algorithm finds all the exact matches of length k between the query trace

and the DB traces. We start by matches of length 2 (function pairs). We then

increment the length of exact matches iteratively and repeat the search at each

iteration, until we have found all exact matches. Two sets of exact matches of length

2 and 3 are shown in Figure 5.4, between 2 DB traces (part A) and the query trace

(part B). Lines 25–26 of algorithm 2 iterate over the query trace for finding matches
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Algorithm 2 Finding exact matches and expanding them
input :app, ΣΣdb
output :motifs

Procedure EXTRACTPATTERNS() begin
21 modifiedApp← INSTRUMENT(app)
22 rawTrace← INTERCEPT(modifiedApp)
23 Σq← PRUNE(rawTrace)
24 k← 2
25 for i← k; i ≤ Σq.length; i ++ do
26 for j← 0; j ≤ Σq.length - k; j ++ do
27 subQ← EXTRACTSUBTRACE(k,Σq, i, j)
28 matches← EXACTDBMATCHES(ΣΣdb, i, subQ)
29 for m← 0; matches.length; m ++ do
30 for n← 0; n < matches[m].length; n ++ do
31 dir← INITIALEXPANSIONDIRECTION()
32 Σ I←

[
qIstart qIend dbIstart dbIend

]
33 if EXPANDABLE(Σq, ΣΣdb[m]), Σ I then
34 subDb← matches[m][n]
35 expandedQ← Σq.EXPAND(subq, Σ Iq, dir)
36 expandedDb← ΣΣdb[m].EXPAND(subdb, Σ Idb, dir)
37 dir← DIREXPANSION(toggle: true, ΣΣdb[m], Σq, Σ I)
38 k.INCREMENT()
39 MOTIF← COMPARE(expandedQ, expandedDb, k)
40 matches.PUSH(MOTIF, k)
41 motifs.ADD(MOTIF)
42 Σ I ← ADJUSTEXPANSIONINDICES(dir)
43

44

45

46

47

of length k, and increment k at each iteration. Lines 27–28 show that subsequences

of length k are extracted from the query trace at each iteration, and are compared

against all k-length subsequences of all DB traces to find matches.

5.4.4 Allowing Abstraction in Motifs

In the next step, we expand each match to progress towards finding flexible and

abstract motifs, that are tolerant of small alterations. This technique decreases

dependency on specific execution details, provides a higher-level overview of the
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semantics of the application, and permits flexible motifs of variable length that may

include gaps.

At this stage, our algorithm iteratively performs the following steps. First, it

selects two matches from existing matches, which were determined as the result of

previous step (Figure 5.4). Then, it iteratively expands the query and DB matches

from both directions, while gradually incrementing the length of the motif under

investigation (Lines 29–45 of Algorithm algorithm 2). Figure 5.4 also shows

an expanded match of two [partially] different sequences, for measuring their

similarities (Figure 5.4. A). This phase continues until the accumulated penalty of

gaps interrupts expansion of the motif.

Next, the algorithm finds a [sub-]sequence of those matches that have the

maximum similarity. At this step, we adapt a dynamic programming algorithm

called Smith-Waterman for finding patterns in two molecular sequences [123].

This algorithm quantifies the sequence alignment process by assigning scores for

matches and mismatches, and penalties for gaps. Aligned sequences are then found

by searching for the highest scores in scoring matrices. To adapt this algorithm to

our domain and compare similarities of two traces, we propose a similarity matrix

that determines the similarity of two members in traces. The similarity of the traces

are determined by a combination of similarities of all their members, based on a

dynamic programming heuristic.

Similarity Matrix. We propose a similarity measure for quantifying the similarities

between function executions in traces. Our comparison is based on two metrics,

function names and parameters. We devise three scores for comparison: strong

match, weak match, and mismatch (leading to a carryover penalty). If two functions

match in terms of names and parameter numbers they are a strong match. The match

is weak if only the names are equal (and not parameter numbers). The reason for

considering parameter count as a separate metric is the nature of JavaScript, where

a function call does not need to be faithful to the function signature in terms of

arguments (known as function variadicity). Two function executions do not match

if both metrics are different. The strong and weak matches are assigned positive

scores, while the mismatch is assigned a negative score as it can represent gaps in

the motif, which can accumulate and disrupt a motif. The base scores for matches

and penalties are determined using empirical data.
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panded trace subsets, (B, C) forming a scoring matrix based on sim-
ilarities between sub-traces, and (D, E) finding a match in manner
that maximizes the similarities between sub-traces. The final motif
can be seen in (F).

Moreover, our matrix needs to support comparison of motifs, to accommodate

another extension of the original algorithm, which permits hierarchies between

motifs. The function execution members of a motif are compared as explained

above. Should a motif contain an abstract node, then all valid executions of the

abstract node should be compared with the other sequence. Throughout the process

of comparing motifs, our algorithm infers hierarchies and abstractions of motifs

should they exist, as explained below.

Then, we perform our adaptation of the Smith-Waterman algorithm on the two

expanded sequences, as shown in line 48 of Algorithm algorithm 3, which creates

a scoring mechanism for comparing the two sequences based on a one-by-one

comparison of all their entities, based on our similarity matrix. The result is a

scoring matrix of overall scores of comparing two sequences (Mk+1,k+1). This
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process is shown for the two sequences of the running example from the previous

step in Figure 5.5.A–C. To find the common motif in these sequences, we find

the sub-sequences that hold the highest collective similarity as a group. We start

by finding the highest score in the matrix (line 49 of algorithm 3, Figure 5.5.D),

and then trace the matrix back, determining the aligned motif at this stage (lines

50–58 & Figure 5.5.E). For navigating the motif back in the matrix, our dynamic

programming algorithm chooses the maximum neighbouring score at each step (line

51). Based on the selected neighbour, the algorithm determines whether that motif

member comes from one or both of sequences, and whether an abstract entity should

be injected to show different alternatives of the motif. The motif’s confidence in

that member is then updated based on how it is selected (lines 53–55 of Algorithm

3). The inferred motif of the running example (Figure 5.5.F) has five members, one

of which is abstract. The abstract member was advised to enable to motif to support

both sequence shown in Figure 5.5.A, which serve the same purpose (registration),

but are executed in a slightly different manner. The abstract member demonstrates

that observing the studentForm function in the motif is arbitrary, and the motif

can either be observed with this function and five total members, or with only four

members which do not include said function.

5.4.5 Inferring Hierarchies of Motifs

In the next step, we devise another extension to the original algorithm, which

enables us to infer and reveal hierarchical relations between motifs. By definition,

our motifs are composite entities, which can contain other motifs as their members.

During the analysis, our algorithm may encounters cases where (1) the match that

is being compared is a motif itself, and (2) the expansion leads to discovery of a

new motif. In such cases, a hierarchical relation is added between the two motifs.

Meaning not only the [sub-]motif was observed independently within the execution,

it also contributes to the formation of the new and larger motif. Our analysis follows

a bottom-up approach, starting with function executions as building blocks of the

trace. It iteratively works the way up to higher-level and more abstract motifs that

allow flexibility in execution. At each iteration of the algorithm, new motifs can be

revealed which may have hierarchical relations with existing motifs. As such motifs
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Algorithm 3 Inferring a motif
input :S1,S2,k
output :motif

Procedure EXPANDPATTERNS() begin
48 Mk+1,k+1← SMITHWATERMAN(S1,S−2,k)
49

〈
imax, jmax

〉
← MAXSCORELOCATION(Mk+1,k+1)

50 while imax > 0 AND jmax > 0 do
51 dir← MAXNEIGHBOUR(imax, jmax)
52 if dir == DIAG then
53 MOTIF.INSERT(ABSTRACT(S1[imax],S2[ jmax]))54

55 else if then
motif.insert

(FUNCTION(S1[imax] == S2[ jmax]))56

57
〈

imax, jmax

〉
← BACKTRACK(Mk+1,k+1,S1,S2,dir)

58

59 if S2.type == MOTIF then
60 BUILDHIERARCHY(S2 , MOTIF)
61

62 return MOTIF

emerge, our algorithm captures the process of their formation and hierarchies in a

model, as explained in the next section.

In the running example, we first find an exact match with k = 3, which is a motif

itself, but with no abstraction (Figure 5.4). Later, during expansion, we find that

this motif is a member of a larger motif (Figure 5.5.F) with two other members (an

abstract member and a function execution). The algorithm creates a hierarchy (line

59 of algorithm 3), which then manifests in the model (Figure 5.6), as an edge from

the new abstract motif (node 1) to the sub-motif (node 2).

5.5 Creating and Visualizing the Model
In this section, we explain our methodology for inferring the hierarchical model of

behavioural motifs and visualizing it.
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5.5.1 Creating the Motif Model

As mentioned above, during the process of extracting motifs, our approach infers

the hierarchies and other potential relations between them. Such structural relations

are preserved in a model, represented as a directed acyclic graph (DAG), which

evolves as the algorithm proceeds, as explained below.

Vertices. Vertices of the graph can be functions, motifs, abstract entities, or

dependent vertices. Function vertices are atomic nodes representing specific and

context-sensitive function executions. Motif vertices are semantically composite

classes. Each motif conceptually contains an ordered set of its members. Abstract

vertices are the model’s means for supporting flexibility in motifs. Should there

be alterations in different observations of a motif, an abstract node is used for

accommodating all valid cases. Dependent vertices hold additional attributes of

other types of vertices. and exist only to provide more information about other

vertices. e.g., an event contributing to a function execution is shown as a dependent

vertex.

Edges. The vertices of the graph are connected through directed and ordered

edges. The edges are responsible for connecting motifs to their members. The

direction of an edge is from a motif node to its members, which are ordered based
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on the time they were observed in traces. The edges also represent the confidence of

the algorithm in the respective member (strong or weak), based on the manner of

observation of the member. Edges may contain other special attributes, depending

on its type and the purpose it serves in the model. For instance, the “edge exclusion”

property is used to show that only one of the variations of an abstract node is valid

at a given time.

Figure 5.6 represents the model of the running example of Figure 5.1. The root

of the DAG (node 1) is a motif representing registration. It consist of three members:

a sub-motif (2), an abstract node (3), and a function execution (8). The first member

is a motif itself, which contains a sequence of three functions from the trace, marked

4–6. The strong edge to the sub-motif (and from there to its children) shows the

high confidence of the algorithm in the sub-motif. Node 3 is an abstract node, acting

as a place holder for valid versions of the node, manifested in its children. This

node exists due to the variation in two observations of the motif (Figure 5.5.A). In

the case of our example, the exclusive type of the child (7) edge demonstrates that

occurrence of this node is optional in the motif (studentForm is observed or

not). Further, the weak edge type displayed the algorithm low confidence in this

node. Node 8, the final member of 1, is a execution of function submit. All leaves

of the DAG are concrete function executions from the trace. Nodes at higher levels

of a graph involve abstractions and hierarchies, to represent the incremental process

of emergence of motifs from details of trace.

Motif Relations. The hierarchies that form between motifs are one type of

relations that are preserved through the model. The algorithm also discovers other

types of relations between motifs, such as temporal or causal relations. The in-

tegration of all these relations depict how semantics of the program are shaped

from bottom (small specific motifs) to the top (larger and more abstract motifs

representing key points of behaviour). The motifs may be semantically related

in manners that are not quite obvious from the code. For instance, motif m1 may

cause motif m2, or they may be ordered (but not dependent) due to the design and

the architecture of the system. Querying the model allows us to reveal patterns of

motifs themselves and even discover patterns that are not known by the developer,

are created unintentionally, or are imposed on the system by other factors such as

third-party frameworks.
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code.

5.5.2 Visualizing the Model

Finally, we visualize the motifs to further assist program comprehension by taking

advantage of information visualization techniques. Our web-based visualization

provides two main views for displaying (1) the motifs recorded in a specific query

trace, and (2) all motifs discovered in the behaviour (DB traces).

Trace Motifs. To allow developers to focus only on a part of behaviour that is

of interest to them, this view displays motifs that are found within the query trace,

freshly recorded from an interaction session (Figure 5.7, A and B). Section (A) of

the figure displays the pruned query trace, where time proceeds from top to bottom.

Section (B) displays the motifs, distinguished by colour and index. The saturation

of each cell of a motif displays the motif’s confidence in that member. Each motif

may recur multiple times in the same trace, or may contain hierarchies of motifs

(Figure 5.7C).

All Motifs. The second view is meant to provide a global overview of appli-

cation behaviour by displaying all its motifs, extracted from all DB traces (Fig-

ure 5.7D). These motifs may display system usecases, feature implementations, or

other higher-level sequences that somehow describe the functionality of the system.

They do not conform to a single trace, and thus each motif has its own separate
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trace. In both views, hovering the mouse over each entity displays more information

regarding that entity in the tooltip. Clicking on an entity displays its respective

code (function or motif) on the code panel (Figure 5.7E). Displaying only the code

relevant to the motif, allows developers to only focus on their specific task, without

the added burden of understanding the whole application.

5.6 Implementation: SABALAN

We implemented our approach in an open-source tool, called SABALAN. The

entire tool is implemented in JavaScript. We create our own Express.js server for

implementing the algorithm, the instrumentation unit, and the visualization. We

develop the bioinformatics-inspired algorithms from scratch for execution traces.

We use a proxy to automatically inspect applications [63]. For instrumenting the

code, we create an AST of the code, modify it, and serialize it back into JavaScript

[43–45]. SABALAN is publicly available [118].

5.7 Evaluation
We empirically evaluate our approach by investigating the characteristics of the

extracted motifs, as well as the usefulness of our approach for developers and its

overhead through the following research questions.

RQ5.1. What are the characteristics of typical motifs inferred by SABALAN from

execution traces?

RQ5.2. Does using SABALAN improve developers’ performance for common

comprehension tasks?

5.7.1 Motif Characteristics

To address RQ5.1, we performed our analysis on seven JavaScript applications,

listed in Table 5.1.

Design. We selected seven open-source JavaScript applications from GitHub (Ta-

ble 5.1). These applications cover various software domains and were selected

based on their popularity and usage. Based on each application’s specifications,

we selected a method for collecting its traces (running the test suite or designing
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scenarios for exploratory testing). We provided the traces (DB and query) as input

to our approach, and analyzed their extracted motifs and investigated their main

characteristics. We measured the number of unique motifs inferred from all traces

for each application, calculated their lengths, and analyzed their hierarchies. We

registered the size of DB traces in terms of number of different traces as well as the

size of a typical trace.

Results and Discussion. The results of the analysis are depicted in Table 5.1. The

second column displays the number of lines of code for each application, while the

third column contains the number of motifs our approach found in the applications.

The next column represents the number of DB traces that were collected for each

application. Column five, shows the average size of traces of each application,

collected by SABALAN in one-minute interaction sessions. Note that our tool

performs a level of filtering while logging execution details. Column six shows the

average trace size collected by Google Chrome’s JavaScript profiling and Timeline.

It can be seen that the average trace size using SABALAN is 77 KBs, while without

SABALAN there is an average of 96 MBs of data for the same interaction session.

These values emphasize the extent of the information contain in the raw traces,

even for modest-sized applications, which make them challenging for developers to

analyze. However, using our approach, developers have an average of 8 recurring

high-level motifs for each interaction session, each with an average length of 4

(columns 7–9), to guide them through the understanding the behaviour. The last

column displays the number of unique hierarchical relations between unique inferred

motifs. The numbers show the existence of hierarchies of motifs. Further assessment

of the structures of model graphs depict the bottom-up formation of higher-level

key points of behaviour based on smaller motifs through such hierarchies.

There are a few cases in the results where the algorithm was not able to find

many (meaningful) motifs, or any hierarchies. Upon further investigation, we found

that these applications rely heavily on external and graphic libraries, which were

disabled in our analysis. These features can be activated in future if needed.

An important factor that can impact the efficacy of the algorithm is the require-

ments of the DB traces. The number of initial traces in the knowledge base, their

coverage of the application’s functionality, and their similarities (or differences),

are factors that can impact the quantity and quality of the final motifs. We aimed to
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Table 5.1: Characteristics of traces and inferred motifs
Motif Length

Application LOC #
of
M.

#of
DB

Trace
size
(KB)

Raw
Trace
(MB)

Avg Min Max #
of
unq
H.

Phormer 6000 13 20 84 86 4 2 11 4
same-game 229 4 7 255 143 3 2 4 0
simple-cart 9238 4 19 45 67 4 2 8 3
browserQuest 36206 17 15 67 125 5 3 9 2
adarkroom 15612 6 15 41 40 4 2 6 2
doctored.js 3534 4 10 16 102 3 2 5 1
hextrix 5154 7 16 30 110 4 2 6 2
Average 10853 8 14.5 77 96 4 2 7 2

maximize the features we covered with the DB traces. We stopped collecting new

DB traces when we observed that adding a trace did not affect the inferred motifs

(average of 14.5 DB traces per application).

5.7.2 Controlled Experiment

Next, we conducted a controlled experiment to assess the effectiveness of our

technique for developers in practice and address RQ5.2. We divided the participants

into control and experimental groups. The experimental group used our approach,

while the control group used the tool of their choice. The participants accomplished

a set of comprehension tasks, and their performance was measured. The tasks

were designed based on common software comprehension activities [102]. We

defined the performance of a developer by the combination of time and accuracy of

completing the tasks. Our hypothesis was that using our approach would enhance

developers’ performance in understanding the overall behaviour, main usecases, and

recurring motifs of a web application.

Experiment Planning

The goal of our experiment is to investigate the following research questions.

RQ5.2.1. Does using SABALAN decrease task completion duration for common

comprehension tasks?

RQ5.2.2. Does using SABALAN increase task completion accuracy for common
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comprehension tasks?

RQ5.2.3. Is SABALAN better suited for certain types of comprehension tasks?

Variable Selection. Our design involved one independent variable (IV), the variable

we controlled, which was the type of tool used in the experiment, i.e., a nominal

variable with two levels. We refer to the first level as SABALAN, since they had to

use our tool. The second level represented usage of other tools, which we refer to

as OTHER. Our goal was to measure developers’ performance in completing the

tasks. Since performance is not measurable, we quantified it using two variables,

namely task completion duration and accuracy (both continuous), which were our

dependent variables (DV).

Selection of Object. We chose Phormer photo gallery application as our object

[106], which has about 6,000 lines of code and over 43,000 downloads. It is an

open-source PHP-based application that allows users to store photos, categorize and

rate them, view them as a slideshow. Since we had allocated limited time for each

session, we had to choose an application that is simple, and yet exhibits realistic

motifs in its behaviour - these criteria are met by Phromer.

Selection of Subjects. We recruited 14 participants for the experiment. They were

all graduate students in computer science and engineering, and many of them had

professional software development experience. The participants consisted of 2

female and 12 male participants, aged between 23 and 35, and they volunteered for

the experiment. Knowledge of programming and familiarity with web development

(and particularly JavaScript) were our only requirements for picking the participants.

Overall, our participants had 1–10 years of web development and 1–18 years of

software development experience, respectively.

Experimental Design. Our experiment had a “between-subject” design. To avoid

the carryover effect, we divided our participants into two groups. The experimental

group were given access to SABALAN for performing the tasks, while the control

group used Google Chrome’s Developer Tools for completing the session. All

our participants were familiar with DevTools according to their answers to the

pre-questionnaire form and chose to use it during the experiment. No member of

the experimental group were familiar with SABALAN prior to the study session. To

avoid bias in favour of one of the groups in terms of their proficiency levels, we
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Table 5.2: Comprehension tasks used in the study.
Task Description Activity
T1.A Understanding all common usecases A1, A7, A9
T1.B Determining the most used scenarios A6, A7
T2.A Locating the implementation of a feature for reuse A1, A3
T2.B Estimating the quality of said implementation A4, A5, A8
T3 Understanding the addition of a new feature A1, A2, A3

collected historical data about our participants prior to scheduling the sessions. We

assigned each participant a proficiency score, based on a combination of metrics,

including their experience with software development, knowledge of JavaScript,

and how they perceived their own expertise. We balanced the proficiency levels in

both experimental and control groups.

Experiment Tasks. We designed five comprehension tasks, as outlined in Table 5.2.

The design of the tasks was based on common program comprehension activities,

proposed by Pacione et al. [102]. As the name suggests, these activities represent

fine-grained activities that developers need to perform for understanding software,

regardless of the language and the platform used. Table 5.2 shows how each of

our tasks covers one or more activities - all activities are covered in our design.

Moreover, each task also included a mini questionnaire, which asked about how

participants perceived the difficulty of the task, the required time, and the required

expertise level for accomplishing the task. We have made all the tasks and datasets

publicly available [118].

Experimental Procedure

The procedure of the experimental sessions consisted of three main phases.

• Pre-study. We required all participant to fill a pre-questionnaire form to

gather some demographic data about them. Further, we used the data regard-

ing their experience, programming habits, and self-perceived expertise level,

to assign participants expertise scores. The score allowed us to fairly balance

the expertise levels in both experimental and control groups.

• Training. At this step, the experimental group were given a tutorial on

SABALAN, which they were encountering for the first time. Then both
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Figure 5.8: Notched box plots of ccuracy results. Green plots display ex-
perimental (SABALAN) group, and gold plots display the control
group. Higher values are better.

groups were given some time to familiarize themselves with the setting of the

experiment. We then started the tasks when the participants were ready.

• Tasks. During this phase, the participants completed the five comprehension

tasks summarized in Table 5.2. Based on our design, we wanted to measure

both duration and accuracy of completing the tasks. To measure time, we

prepared each task on a separate sheet of paper. We started a timer when we

handed a task sheet to a participant, and asked her to return it to us (with the

answer) as soon as she had completed the task, which is when we stopped

the timer. This allowed us to record the time they spent on each task. We

evaluated the accuracy of each task later, based on rubrics we had prepared

prior to conducting the experiment.

Moreover, we wanted to gather some data regarding how the participants

perceived the tasks. Thus, we provided them with a set of meta tasks, that

questioned them about the perceived difficulty, time-consumption, and re-

quired expertise level for each task. Finally, the participants filled a post-

questionnaire form regarding their experience in the study.
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Results

We first ran the Shapiro-Wilk test on all collected data sets, to determine if they were

normally distributed. For normally distributed data of accuracy we used two-sample

t-tests. The duration data did not pass the normality test and thus we used the

Mann-Whitney U test.

For the accuracy, the results of running the tests showed a significant dif-

ference, with a high confidence, for the experimental group using SABALAN

(Mean=87.8%, STDDev=11.6%), compared to the control group using Chrome

DevTools (Mean=50.5%, STDDev=11.6%); (p− value = 6.2e−05). The accuracy

results are shown in Figure 5.8. Overall, using SABALAN increased developers’

accuracy in performing comprehension tasks by an average of 54%, over other

tools. (RQ5.2.1). We further analyzed the impact of using SABALAN in accuracy

of individual tasks. The results of running the statistical tests showed significant

difference in favour of SABALAN for all tasks, expect T3. The accuracy of results

of T1A through T2B were significantly higher using SABALAN. The results for task

T3, although not statistically significant, were on average 23% more accurate when

participants used SABALAN.

For the times, the collected task completion duration data were comparable for

participants of both experimental and control groups. Running the tests did not

reveal any statistically significant difference in task duration between the two groups

(RQ5.2.2).

Finally, we analyzed the collected data from the questionnaire form participants

filled regarding each task. They perceived the difficulty of tasks from 2.15 to 2.54,

based on a 5-point Likert scale, which shows an average level of difficulty for all

tasks. We compared the difficulty of each task as perceived by participants with the

results of duration and accuracy of the same task. We found no correlation between

perceived difficulty of a task by participants and how they actually perform the task

based on the Pearson correlation coefficient.

5.7.3 Discussion

The results of the experiment revealed that SABALAN improves developers’ per-

formance in comprehension by significantly increasing their accuracy by 54%
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(RQ5.2.1). The results however did not show a significant difference for duration

(RQ5.2.2).

Domain Knowledge and System Use-casess. One of the first steps towards

program understanding is general understanding of its domain and overall dynamic

behaviour by identifying the components that provide a solution to the domain. Our

results show that SABALAN significantly increases the accuracy of such tasks (T1).

This task consisted of two main parts, understanding the overall behaviour and usec-

ases of the experimental object (T1.A), and deciding on their importance (T2.B).

Using SABALAN significantly improved the accuracy of these two tasks by 49% and

78%, respectively. The results show that using SABALAN not only provides a more

accurate overview of an application’s behaviour compared to ad-hoc approaches,

but also helps developers obtain a better understanding of the importance and usage

of main system components and their interactions (RQ5.2.3).

Feature Location. Feature location is one of the main tasks performed during

program comprehension, and has many applications, such as reuse and testing. Our

results show that using SABALAN significantly improved the accuracy of feature

location (RQ5.2.1, RQ5.2.3). The experimental group were able to find components

involved in the implementation of a feature and infer their relations 42% more

accurately than the control group (T2.A). They were also 42% more accurate in

estimating the quality of the implementation of the said feature (T2.B). Investigating

the answers revealed that the control group missed many connections in the code

that lead to discovery of different parts of the implementation and thus failed to

create a complete and accurate model of the involved code. Due to their incomplete

understanding of the feature, the control group was not able to estimate and measure

the quality of the respective part of application as well. The experimental group,

however, could assess the quality based on the more accurate model of the behaviour

that extracted the feature as a behavioural motifs (RQ5.2.3).

Software Change and Root-Cause Detection. The last task (T3) involved

understanding the system in order to make a change, by finding the root cause of a

particular observed behaviour. The experimental group were able to perform the

task 23% more accurately with SABALAN, although the results were not statistically

significant (RQ5.2.1). Using SABALAN, they were able to focus on a much smaller

part of the code that was relevant to the feature that needed change. However, be-
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cause we do not have debugger support within SABALAN, using common debugging

techniques such as setting breakpoints and watching variables in such tasks required

the participants to frequently switch between the visualization and the application.

We believe that we could achieved statistical significance for task if we extend

our research prototype or integrate it with a debugger such as Google Chrome’s

DevTools.

Accuracy over Speed. The results did not show any significant difference for

task completion duration in favour of SABALAN. We believe this is not a significant

issue due to three reasons. First, accuracy of performing a task is more impor-

tant that its speed [7]. The significant improvement of task completion accuracy

with SABALAN (54%), and the test’s high confidence in the result, emphasize the

challenges of comprehending traces, as well as the usefulness of SABALAN in

improving developers’ performance for completing said tasks. Investigating the

answers further, we found that many participants in the control group had finished

the tasks early, assuming they had the right answers. While in fact, they were not

even aware that they are missing crucial parts of the answer, which resulted in them

having lower accuracy than SABALAN users. Next, we believe that the unfamiliarity

of our participants with SABALAN might have caused them to spend more time

trying to use it. This theory is strengthened when we analyze individual tasks results.

We observed that the experimental group had the worst speed ratio compared to the

control group for the first task (T1.A), after which they quickly improve and surpass

the control group in later tasks. Finally, dividing the locus of attention may have

also played a role in the results. While the control group were only focusing on the

browser, the SABALAN group had to switch back and forth between the application

(browser) and the tool. We believe this problem can be solved by either extending

the tool or integrating it into an existing programming environment.

Participants’ Perception of Tasks vs. Performance Reality. There were no

correlations between the difficulty of a task as perceived by participants, and their

measured performance scores. All participants deemed all tasks to be of moderate

difficulty. However, the control group scored significantly lower accuracy marks for

all tasks. Considering the participants rated tasks after their completion, shows their

interpretation of the task requirements did not match the reality of the task they had

just performed. The result confirm the challenging nature of trace comprehension.
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Due to difficulty of finding, relating, and collecting elements of execution with

an ad-hoc approach, developers miss crucial elements of analysis, without even

knowing that there is more to the task.

Performance Overhead. We used the experimental object of our user study,

Phormer, to obtain data regarding the additional overhead of our approach, in

10 one-minute interaction sessions. We measured three sources of potential per-

formance overhead into account. The overhead caused by instrumentation phase,

the imposed overhead on execution of instrumented code and data collection, and

the overhead of analysis of traces and motif extraction, which were respectively

measured as 1.2, 0.1, and 2.1 seconds on average. This is negligible for all practical

purposes, and is barely noticeable during the interaction with the application. Thus,

the performance overhead of SABALAN was entirely acceptable for this application.

5.7.4 Threats to Validity

The external threats of conducting an experiment such as ours, typically arise from

representativeness of tasks, participants, and object selected for the experiment. We

mitigated the threat of task selection by designing our tasks in a manner that covered

all Pacione’s common comprehension activities [102], to show that the design of

our tasks is not biased, and that they are representative of routine comprehension

tasks. A valid concern is regarding the representativeness of the participants of

the developer population, since we recruited students. We tried to address this

concern by recruiting only graduate students who had prior experience with Java-

Script, many of whom had experience working in industry. To address the threat

of representativeness of the experimental object, we chose an open source Java-

Script application Phormer, [106] with about 6,000 lines of code and over 43,000

downloads at the time of conducting the study. An internal threat that concerns

our method is the bias towards assigning participants into control and experimental

groups, or the population-selection problem, which we addressed by balancing the

expertise levels between the two groups. Other threats can arise due to the possible

bias of the examiner (us) regarding the measurement of both duration and accuracy

of task completion. We mitigated the time measurement threat by designing a

method for time measurement that both the participant and the examiner agreed
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upon, namely physically exchanging the task sheet between the participant and the

examiner. We mitigated the bias towards measuring accuracy by creating a rubric

prior to conducting the experiments, and abiding by the rubric for marking the tasks

in order to address this threat. The final threat we address is the tool used in the

experiment. We chose Google Chrome’s Developer Tools, which is very popular

for client-side web development, and all our participants were previously familiar

with it (based on the pre-questionaire they filled out).

5.8 Concluding Remarks
In this paper, we proposed a generic technique for inferring a hierarchical model

of application-specific motifs from execution traces. Our motifs, inspired by bioin-

formatics algorithms, are recurring abstract patterns of execution that abstract out

alterations and are closer to the higher-level features of a system. We designed a

visualization for our technique that allows users to observe and query the motifs for

program understanding. Our technique is implemented in a tool called SABALAN,

which is publicly available. The results of our user experiment showed that using the

systematic analysis of SABALAN enabled participants to perform comprehension

tasks 54% more accurately than other state of art tools.
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Chapter 6

Related Work

Previous research has approached understanding program behaviour and change

through different perspectives.

Program Analysis. EventRacer is a tool for facilitating dynamic race detection

for event-driven applications [112]. Compliant with its goal, EventRacer traces

only the events and not other dynamic and asynchronous feature of JavaScript.

Moreover, unlike all our methods, theirs requires using an instrumented browser.

Wei and Ryder [136] use both static and dynamic analysis to perform a points-to

analysis of JavaScript. However, they do not take into account the DOM-based

and asynchronous interactions of JavaScript. Ghezzi et al. [51] extract behavioural

models from a different perspective. They focus on users’ navigation preferences

in user-intensive software. Their approach, called BEAR, depends on server logs

to capture user interactions. Unlike CLEMATIS and SAHAND, BEAR only focuses

on direct user interactions in order to fulfill its purpose, which is classifying the

behaviour of users.

Originally proposed by Weiser [138], program slicing techniques can be clas-

sified in two categories, namely static and dynamic slicing [72]. WALA [124]

performs JavaScript slicing by inferring a call graph through static analysis. Since

JavaScript is such a dynamic language, WALA yields conservative results that

may not be reflective of an application’s actual execution. It also ignores the Java-

Script-DOM interactions completely. Although not used for slicing purposes, others

[94, 140] have utilized static analysis to reduce the execution overhead incurred
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from code instrumentation. CLEMATIS determines JavaScript slices through a

selective code instrumentation algorithm.

There are numerous static analysis techniques proposed for JavaScript analysis

in different domains [47, 66, 69, 83, 95, 125]. We did not choose a pure static

approach, since many event-driven, dynamic and asynchronous features of Java-

Script are not well supported statically. Dynamic and hybrid JavaScript analysis

techniques have attempted to solve the shortcomings of static analysis [4, 6, 96, 137].

However, existing techniques focus on the client-side and do not consider the server.

Magnus et al. recently proposed a technique to build an event-based call graph

for Node.js applications [84]. There are two differences between their work and ours.

First, our method considers functions in the graph as temporal and context-sensitive

nodes, which can interact with each other and with events throughout different

phases of their lifecycle. Second, our technique accounts for various means of

asynchronous scheduling. It integrates client information, client-server interactions,

and asynchronous server execution and creates a behavioural model. It is through

this model that SAHAND can provide a holistic and temporal overview of full-stack

execution.

Analysis of Asynchrony. Different approaches target asynchrony in different do-

mains, such as comprehension, debugging and testing. Frameworks such as Arrows

[70] have been proposed to help developers understand and avoid asynchronous

errors. Zheng et al. [145] used static analysis to find asynchronous bugs in web

applications. WAVE [62] is a testing platform for finding concurrency errors on

the client side. Libraries and features such as Async.js [25] and Promises [109]

have been adopted to “tame” the asynchronous JavaScript issue. Despite being

very useful and promising, Async.js is not native to JavaScript. Both Async.js and

Promises require the current and future code to follow specific design and syntactic

guidelines, which impede their wide adoption.

Fault Localization and Debugging. Delta debugging [144] is a technique

whereby the code change responsible for a failure is systematically deduced by

narrowing the state differences between a passing and a failing run. Other fault

localization techniques have been proposed that compare different characteristics

of passing and failing runs for a program [1, 28, 54, 110]. CLEMATIS is different

in that it focuses on a single web application test assertion at a time and does not
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require a passing test per se to operate.

There is limited research geared towards web application fault localization in

the literature [14, 99]. Google has recently provided some support for debugging

asynchronous JavaScript in Chrome DevTools [26]. Our work is different from pre-

vious techniques since it aims at making the implicit links between test failures and

faulty JavaScript code more explicit to enhance debugging. In addition, calculating

and displaying the JavaScript code slice for a test assertion poses new challenges

not faced by previous techniques. This is stemmed from the disconnect between a

test assertion failure, the DOM, and the JavaScript code interacting with the DOM.

Analysis of Change. Static Analysis. Static CIA is performed by analyzing

the source code without executing it. A common pattern in many traditional CIA

techniques is the usage of dependency-based impact analysis methods [18]. Static

impact analysis techniques typically find syntactic dependencies by performing

forward slicing on the graph. This type of analysis, however, is based on assumptions

made for all possible executions of the software, and hence incurs false positives,

which hinders its adoption [58]. The dependency graph can become large and may

contain invalid paths. Hence, the resulting impact set can be large and difficult to

comprehend. More recently, static analysis has been applied to analyze JavaScript

applications. Sridharan et al. [125] adapt traditional points-to analysis for Java-

Script through correlation tracking of dynamic properties in the code. Jensen et al.

[66] statically model the role of the DOM and browser in their analysis. However,

they acknowledge gaps and shortcomings in their analysis, which can result in

many false-positives. Feldthaus et al. [47] present an approach for constructing

approximate JavaScript call graphs. However, their analysis completely ignores

dynamic property accesses and interactions with the DOM. Madsen et al. [83]

combine pointer analysis with use analysis to investigate the effects of JavaScript

libraries and frameworks on the applications’ data flow. These techniques neglect

the dynamic DOM interactions as well as event-driven, and asynchronous features of

the JavaScript language. Therefore, their analysis can be incomplete for performing

change impact analysis for JavaScript applications.

Dynamic Analysis. Existing dynamic methods produce a precise but incomplete

analysis. Apiwattanapong et al. [12] propose a dynamic technique in which execute-

after relations are used to reduce the overhead caused by the amount of collected
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dynamic information. Dynamic CIA tools have been applied to various fields

of software engineering. For instance, Ramanathan et al. [111] avoid testing

unchanged test cases by comparing strings of different traces in their tool. Chianti

[114] is a CIA tool for Java that reports the change impact in terms of the subset

of the test suite affected by the change. These techniques provide more precision

compared to static analysis, especially when integrated with other techniques such

as information retrieval [41][50]. However, they do not target JavaScript code and

its unique analysis challenges, such as DOM interactions, dynamic function calls

involving event propagations, and asynchronous callbacks.

Wei and Ryder’s recent JavaScript blended analysis approach [136] and state-

sensitive points-to analysis [137] are perhaps the closest to our work. Their work

integrates the information gathered during both static and dynamic analyses to

perform a points-to analysis of JavaScript applications. However, their methods

do not focus on analyzing the change impact, and hence do not incorporate the

dependencies that are formed through DOM interactions and asynchronous Java-

Script mechanisms. Moreover, they do not take into account the important role of

events and event propagation [133] on the DOM tree, which connects JavaScript

functions, unlike our analysis which does.

Feature Location, Capture and Replay, and Tracing. Many papers have focused

on locating the implementation of UI- and interaction-based features [23, 81, 85, 86]

in web applications. However, they only retrieve the client-side implementation of

a feature, and they require a constant manual effort for selecting the elements or

features under investigation. FireDetective [143] is a Firefox add-on that captures

the client-server interactions to facilitate comprehension. Although its purpose

is similar to SAHAND, it only supports partial Java execution on the server side.

Further, it does not support a higher level model or a temporal visualization of

the trace. Li and Wohlstadter [78] present a tool called Script Insight to locate

the implementation of a DOM element in JavaScript code. Similarly, Maras et al.

[85, 86] propose a technique for deriving the implementation of a UI feature on

the client side. While similar to our work at a high level, in these approaches the

user needs to select a visible DOM element and its relevant behaviour in order to

investigate its functionality. This manual effort can easily frustrate the user in large

applications. Further, these techniques are not concerned with capturing event-based
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interactions. Finally, the model they derive and present to the user contains low-level

information and noise, which can adversely influence program comprehension.

Extensive reliance on user interactions is an important characteristic of modern

web applications. Capture and replay tools are used in the literature to address this

issue [34]. Record and replay techniques aid the understanding and debugging tasks

of web applications [11, 22, 89, 91]. The goal of these techniques, however, is to

provide a deterministic replay of UI events without capturing their consequences.

Montoto et al. [91] propose a set of techniques for generating a navigation sequence

for Ajax-based websites and executing the recorded trace. Mugshot [89] is a

system which employs a server-side web proxy to capture events in interactive

web applications. It injects code into a target web application in order to record

sources of nondeterminism such as DOM events and interrupts. The recorded

information is used by Mugshot to dispatch synthetic events to a web browser in

order to replay the execution trace. WaRR [11] is another system for capturing

and replaying events. Capturing is accomplished by altering a user’s web browser

in order to record keystrokes and mouse clicks. In the event of a failure, end

users of a web application may send a record of their keystrokes to the developer

for debugging purposes. Jalangi [122] is another record-replay tool that supports

dynamic analysis by shadow execution on shadow values. Burg et al. [22] integrate

their capture/replay tool with debugging tools.

The goal in most of these techniques is to find a deterministic way of replaying

the same set of user events for debugging purposes. Instead of simply replaying

recorded events, our approach aims at detecting causal and temporal event-based

interactions and linking them to their impact on JavaScript code execution and DOM

mutations. Moreover, our approach does not require manual user effort, a modified

server, or a special browser.

Tracing techniques such as FireCrystal [101] and DynaRIA [10] collect traces

of JavaScript execution selectively. Unravel [61] is a more recent tool for supporting

developer learning. Similar to our work, these tools provide a high-level abstraction

and visualization of the trace. However, all these techniques only focus on the

client-side JavaScript. SAHAND, on the other hand, traces, models and connects

both client and server side traces with a focus on asynchronous JavaScript execution.

Visualization. There are many tools that use visualization to improve the process
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of understanding the behaviour of software applications [10, 101, 143]. However,

these methods are not concerned with creating a behavioural model and inferring

high-level motifs of execution, while ours is.

Matthijssen et al. [87] conduct a user study for investigating the strategies

that web developers use for code comprehension. Extraviz [35] is a visualization

tool that represents the dynamic traces of Java applications to assist with program

comprehension tasks. However, their approach does not concern itself with building

a model of the web application, while ours does.

Zaidman et al. [143] propose a Firefox add-on called FireDetective, which

captures and visualizes a trace of execution on both the client and the server side.

Their goal is to make it easier for developers to understand the link between client

and server components, which is different from our approach which aims to make it

easier for developers to understand the client-side behaviour of the web application.

FireCrystal [101] is another Firefox extension that stores the trace of a web

application in the browser. It then visualizes the events and changes to the DOM in a

timeline. FireCrystal records the execution trace selectively similar to our work. But

unlike CLEMATIS, FireCrystal does not capture the details about the execution of

JavaScript code or asynchronous events. Another limitation of FireCrystal is that it

does not link the triggering of events with the dynamic behaviour of the application,

as CLEMATIS does. DynaRIA [10] focuses on investigating the structural and

quality aspect of the code. While DynaRIA captures a trace of the web application,

CLEMATIS facilitates the process of comprehending the dynamic behaviour using a

high-level model and visualization based on a semantically partitioned trace.

Trace Visualization. Several papers assist program comprehension through dy-

namic analysis and visualization of traces. Their proposed techniques allow users to

explore large traces [115], or perform reduction, compaction and pruning techniques

on traces [19, 55–57, 113]. A popular trend is using standard visual protocols, such

as UML diagrams [21, 38, 127]. Other papers propose more customized visual-

ization techniques through synchronized views [33], provide program’s landscape

focusing on communications [48], allow user interactions with the visualization

[104], visualize similarities in traces [32], or present many other techniques for

representing the traces [17, 37, 47, 64, 65, 68, 79, 115, 120, 131]. Extravis [33] is

the first such technique that was quantitatively measured through a controlled exper-
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iment [35]. Another group of methods capture and analyze low-level information

in execution traces using techniques such as extracting behavioural units described

in usecase scenarios [134], profiling [73], dividing the trace into segments [107],

identifying feature-level phases by defining an optimization problem [16], or similar

methods [30, 39, 103]. Heuzeroth et al. [59, 60] propose to find patterns in execu-

tion. Other papers aim at providing higher-level representations of trace [7, 142].

However, unlike our approach, these approaches do not address the problem of

large traces, do not infer a higher-level model of program behaviour, and do not

application-specific and hierarchical abstract motifs for facilitating comprehension.
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Chapter 7

Concluding Remarks

Program comprehension is vital for performing many software engineering tasks,

consuming much of the effort in software engineering. Modern web applications

are highly dynamic and interactive, and offer a rich experience for end-users. This

interactivity is made possible by the intricate interactions between user-events,

JavaScript code, the DOM, and the server. However, web developers face numerous

challenges when trying to understand these interactions.

7.1 Contributions
In this thesis, we introduced our novel techniques for understanding the behaviour,

root causes of failures, and impact of change for JavaScript, as well as inferring

higher-level motifs of behaviour from execution traces. The main contributions of

the thesis are as follows.

• A portable and fully-automated technique, called CLEMATIS, for extracting

episodes of interaction in JavaScript-based web applications in Chapter 2. We

also proposed a strategy for helping developers understand the root causes of

failing test cases. We presented a novel interactive visualization mechanism

based on focus+context techniques, for facilitating the understanding of

these complex event interactions. The evaluation of CLEMATIS points to

the efficacy of the approach in reducing the overall time and increasing the

accuracy of developer actions, compared to state-of-the-art web development
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tools.

• An automated technique, called TOCHAL, for performing a hybrid DOM-

sensitive change impact analysis for JavaScript (Chapter 3). TOCHAL builds

a novel hybrid system dependency graph, by inferring and combing static

and dynamic call graphs. Our technique ranks the detected impact set based

on the relative importance of the entities in the hybrid graph. Our evaluation

shows that the dynamic and DOM-based JavaScript features occur in real

applications and can lead to significant means of impact propagation. Fur-

thermore, we find that a hybrid approach leads to a more complete analysis

compared with a pure static or dynamic analysis. Finally, our industrial con-

trolled experiment shows that TOCHAL increases developers’ performance,

by helping them to perform maintenance tasks faster and more accurately.

• A novel technique, called SAHAND, for aiding developers’ comprehension

of full-stack JavaScript applications by creating a behavioural model of the

application. The model, described in Chapter 4, is temporal and context

sensitive, and is extracted from a selectively recorded trace of the application.

We proposed a temporal visualization interface for the model to facilitate

developers’ understanding of the behavioural model. We investigated the

effectiveness of SAHAND by conducting a user experiment. We found that

SAHAND improves developers’ performance in completing program compre-

hension tasks by increasing their accuracy by three times, without a significant

change in task completion duration.

• A generic technique for inferring a hierarchical model of application-specific

motifs from execution traces (Chapter 5). Our motifs, inspired by bioin-

formatics algorithms, are recurring abstract patterns of execution that are

accommodating to alterations and are closer to the higher-level features of a

system. We designed a visualization for our technique that allows users to

observe and query the motifs. Our technique is implemented in a tool called

SABALAN, which is publicly available. The results of our user experiment

showed that using the systematic analysis of SABALAN enabled participants

to perform 54% more accurately.
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7.2 Research Questions Revisited
We introduced a set of five research questions in Chapter 1, which were addressed

by the work presented in the following chapters (chapters 2–5).

Research Question 1

How can we enhance developers’ performance in understanding the event-based

interactions in client-side JavaScript?

This research question focuses on understanding the behaviour of modern web

applications, which is a challenging endeavour for developers during development

and maintenance tasks. The challenges mainly stem from the dynamic, event-driven,

and asynchronous nature of the JavaScript language. To address RQ1, in Chapter 2,

we proposed a generic technique for capturing low-level event-based interactions

in a web application and mapping those to a higher-level behavioural model. This

model is then transformed into an interactive visualization, representing episodes of

triggered causal and temporal events, related JavaScript code executions, and their

impact on the dynamic DOM state. Our approach, implemented in a tool called

CLEMATIS, allows developers to easily understand the complex dynamic behaviour

of their application at three different semantic levels of granularity.

The results of our industrial controlled experiment showed that CLEMATIS is

capable of improving the comprehension task accuracy by 157%, while reducing

the task completion time by 47%. Further, the results showed that CLEMATIS

is most helpful for complex and implicit relations in program execution that are

troublesome for developers to understand, if not impossible. For instance, in the

experimental object, the effect of using CLEMATIS was most visible when the tasks

involved timing events, event propagations, or server communications. It can also

be observed that using CLEMATIS not only improves both duration and accuracy of

individual and total tasks, but it also helps developers to perform in a much more

consistent manner. Unlike the control group, the low variance in all the tasks for

the experimental group shows that CLEMATIS helped all developers in the study to

perform consistently better by making it easier to understand the internal flow and

dependency of event-based interactions.
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Research Question 2

How can we enhance developers’ performance in understanding the root-causes of

test assertion failures in client-side JavaScript?

While RQ1 addresses understanding the behaviour of client-side JavaScript

applications, RQ2 focuses on understanding the behaviour specifically when a

failure occurs. The goal of this research question is to investigate the means by

which we can help developers bridge the gap between test cases and program code

by localizing the fault related to a test assertion. Our approach for addressing RQ2 is

built on top of CLEMATIS. We proposed an automated technique to help developers

localize the fault related to a test failure. Through a combination of selective

code instrumentation and dynamic backward slicing, our technique bridges the gap

between test cases and program code. We extended the visualization of CLEMATIS

to help developers understand the relation of observed program behaviour to the

test cases. A follow up experiment reveals that extended CLEMATIS improves the

fault localization accuracy of developers by a factor of two. This approach is also

discussed in Chapter 2.

Research Question 3

How can we improve developers’ understanding of the temporal and asynchronous

behaviour of full-stack JavaScript?

RQ1 and RQ2 both target understanding different aspect of JavaScript applica-

tions, but only on the client side. While JavaScript is the lingua franca of client-side

web development, it is also used for server-side programming, leading to “full-stack”

applications written entirely in JavaScript. RQ3 targets the challenges that rise when

understanding distributed components of a full-stack application on the client- and

server-side, as well as their interactions. The temporal nature of program execution

particularly the asynchronous and implicit relations of JavaScript entities spread

over the client and the server make comprehension a rigorous task.

In Chapter 4, we proposed a technique for capturing a behavioural model of

full-stack JavaScript applications’ execution. The model is temporal and context-
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sensitive to accommodate asynchronous events, as well as the scheduling and

execution of lifelines of callbacks. We present a visualization of the model to

facilitate program understanding for developers. We implement our approach in a

tool, called SAHAND, and evaluate it through a controlled experiment. The results

show that SAHAND improves developers’ performance in completing program

comprehension tasks by increasing their accuracy by a factor of three.

Research Question 4

How does providing a model of the dependencies in the application improve devel-

opers’ understanding of the change impact in JavaScript applications?

While all the previous research questions focus on understanding the behaviour

of a JavaScript application exactly as captured from an execution session, this

research questions target understanding the behaviour in the presence of a change

in the code. It aims at helping developers understand and analyze the impact of a

change in the system, and predict the potential impact even before the actual change

happens.

In Chapter 3, we propose a change impact analysis for JavaScript which ad-

dresses challenges such as the seamless interplay with the DOM, event-driven and

dynamic function calls, and asynchronous client/server communication. We first

perform an empirical study of change propagation, the results of which show that

the DOM-related and dynamic features of JavaScript need to be taken into consid-

eration in the analysis since they affect change impact propagation. We propose a

DOM-sensitive hybrid change impact analysis technique for JavaScript through a

combination of static and dynamic analysis. The proposed approach incorporates a

novel ranking algorithm for indicating the importance of each entity in the impact

set. Our approach is implemented in a tool called TOCHAL. The results of our

evaluation reveal that TOCHAL provides a more complete analysis compared to

static or dynamic methods. Moreover, through an industrial controlled experiment,

we find that TOCHAL helps developers by improving their task completion duration

by 78% and accuracy by 223%.
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Research Question 5

How does providing high-level and semantic motifs of a application’s behaviour

improve comprehensibility of the application?

All previous research questions rely on all details of program execution, captured

through traces. However, due to the amount of information that can be gathered

through the execution, the captured traces tend to become very large, complex, and

difficult to understand. None of these approaches provide a higher-level abstraction

of the program behaviour or infer recurring and behavioural patterns representing

the semantics of a particular application, which is the focus of this research question.

Further, the scope of this research question is not limited to JavaScript and includes

all program traces. In Chapter 5, we propose a generic technique for facilitating

comprehension by creating an abstract model of software behaviour. The model

encompasses hierarchies of recurring and application-specific motifs. The motifs

are abstract patterns extracted from traces through our novel technique, inspired by

bioinformatics algorithms. The motifs provide an overview of the behaviour at a

high-level, while encapsulating semantically related sequences in execution. We

design a visualization that allows developers to observe and interact with inferred

motifs. We implement our approach in an open-source tool, called SABALAN,

and evaluate it through a user experiment. The results show that using SABALAN

improves developers’ accuracy in performing comprehension tasks by 54%.

7.3 Reflections and Future Directions
In this thesis, we took the first steps towards using static and dynamic analysis

for assisting program comprehension, particularly for JavaScript. Our approaches

aimed at algorithmically structuring program entities and their execution traces

into behavioural models and making them more comprehensible. We also used

information visualization techniques to facilitate developers’ understanding of the

application. However, there still remains much left to be addressed.

As a next future step to this thesis, researchers can further investigate the

means of helping comprehension by providing semantic models and patterns of

execution of software systems. There is great need for techniques that bridge the gap
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between low-level details of code and execution and the mental model of developers.

Our preliminary studies showed that such techniques are effective in facilitating

comprehension by significantly improving developers’ performance. However, there

is not much research conducted for providing higher-level and semantic overviews

into the behaviour of software that better match the mental model of developers.

Conducting long-term experiments with professional developers can greatly

guide the design of such techniques and tools. Investigating how developers un-

derstand program behaviour can provide valuable insight for the current state of

research in program comprehension. Studying developers’ expectations of compre-

hension tools can drive designing, building, and deploying such tools. An iterative

process of studying, designing, evaluating, and improving the design based on

feedback can lead to more useful comprehension techniques that are more likely to

be adopted in industry as well.

Further, designing and building more sophisticated visualizations using infor-

mation visualization techniques can allow programmers to gain a better insight into

program behaviour. Enabling visual pattern recognition and clustering methods

in an interactive visual interface can greatly benefit the viewers. The interaction

mechanisms such as querying, filtering, semantic zooming, bookmarking, and

adding notes can be utilized to help developers locate and understand their required

information easier, faster, and more accurately.

Moreover, more tool support for such techniques can greatly increase their

impact in real-world software engineering. Integration with programming IDE’s,

debugger, and other developments environments can have a significant effect on

adaptation of these techniques, and improve developers’ performance in their every-

day tasks. Another direction these approaches can pursue is in debugging. Specially

improving CLEMATIS’s fault localization unit to further help developers detect and

localize faulty behaviour of JavaScript applications.

Another possible future direction in program understanding is understanding

other program artifacts, such as test cases. The test suite is a major part of an

application that needs to be understood and maintained by the developers. Despite

this necessity, there has been far less research on aiding developers’ understanding

of the test suites. Researchers can extend program comprehension to understanding

the test suites of applications and to address the challenges specific to test compre-
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hension and maintenance. Understanding test code is difficult, firstly due to the

same challenges that make production-code comprehension rigorous. Moreover,

compared to testing traditional languages, JavaScript-specific features such as DOM

interactions and server communications further complicate comprehension of Java-

Script test suites. Developers and testers use assertions in test cases to investigate the

correctness of the code under test. Assertions are vital to functionality and quality of

test suites. They can examine the validity of a condition and the conformance of the

target code to a requirement. However, they do not contain information regarding

the procedure of a test case, its semantics, and its purpose. In order to understand

a test case, developers need to understand the process that led to the state of the

application that is asserted in the test case. Furthermore, coverage metrics are used

for distinguishing parts of the code that are covered by a test suite. Code coverage

can reveal parts of the application that are not tested. Although useful, coverage

tools do not provide any information regarding how test cases interact with the code.

Moreover, client-side JavaScript applications consists of more than just the code.

The challenges of understanding JavaScript application propagate to understanding

test cases as well. With existing techniques, it is difficult to understand how the test

cases interact with the dynamic and event-driven JavaScript code, the DOM, and

the server. We hypothesize that having an always-on visualization in a development

environment is beneficial for developers to improve their performance in under-

standing the testing process of a given application. Deploying such approaches by

embedding them into development environments will provide realtime visual cues

for representing the test cases, their dynamic procedure, and their interactions with

the code, DOM elements, and the server.

It is worth mentioning that this thesis is only a step towards facilitating compre-

hension of program behaviour and motifs. Our findings show the usefulness of our

proposed techniques, as well as great promise for further research in the area. We

have made all our tools and supporting documents open source and available to be

used in future research.
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