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Abstract

Dose–response experiments and subsequent data analyses are often carried

out according to optimal designs for the purpose of accurately determining

a specific effective dose (ed) level. If the interest is the dose–response re-

lationship over a range of ed levels, many existing optimal designs are not

accurate. In this dissertation, we propose a new design procedure, called

two-stage sequential ED-design which directly and simultaneously targets

several ed levels. We use a small number of trials to provide a tentative

estimation of the model parameters. The doses of the subsequent trials are

then selected sequentially, based on the latest model information, to maxi-

mize the efficiency of the ed estimation over several ed levels.

Although the commonly used logistic and probit models are convenient

summaries of the dose–response relationship, they can be too restrictive.

We introduce and study a more flexible albeit slightly more complex three-

parameter logistic dose-response model. We explore the effectiveness of the

sequential ED-design and the D-optimal design under this model, and de-

velop an effective model fitting strategy. We develop a two-step iterative

algorithm to compute the maximum likelihood estimate of the model pa-

rameters. We prove that the algorithm iteration increases the likelihood

value, and therefore will lead to at least a local maximum of the likelihood
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Abstract

function. We also study the numerical solution to the D-optimal design for

the three-parameter logistic model. Interestingly, all our numerical solutions

to the D-optimal design are three-point-support distributions.

We also discuss the use of the ED-design when experimental subjects

become available in groups. We introduce the group sequential ED-design,

and demonstrate how to construct this design. The ED-design has a natural

extension to more complex models and can satisfy a broad range of the

demands that may arise in applications.
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Lay Summary

Dose–response experiments are routinely conducted in the early phase of

clinical trials. The most common goal of these experiments is to collect

information about the relationship between the dosage of an investigational

drug and the responses of patients. This goal is often accomplished by ac-

curately determining a specific dose level. In medical research, it is also

important to determine the effective and safe dose range so that it is high

enough to induce desired beneficial effects, and low enough to avoid poten-

tial adverse effects. Motivated by this observation, we propose a new design

procedure that simultaneously estimates several dose levels. We demon-

strate how to carry out this design. We find that the new design compares

favourably with many existing designs that we are aware of.
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Chapter 1

Introduction

1.1 Dose–response experiments and design issues

When a stimulus is administrated to a subject, some changes in the subject

might be observed immediately or after a certain exposure time. Studying

dose–response relationship and developing dose–response models are of cen-

tral importance in various applications. Dose–response experiments collect

data on the level or dosage of the stimulus applied and the response of the

subject. The information collected is used for model development and to

determine “safe”, “hazardous” and beneficial levels or dosages for investi-

gational drugs, pollutants, foods, and other substances to which humans,

other organisms, or non-living systems are exposed. These conclusions are

the basis for public policy or safety manuals.

In drug developments, dose–response experiments are involved in both

Phases I and II clinical trials. The main goal of clinical trials is to uncover

the relationship between the doses of an investigational drug and the proba-

bility of toxicity or beneficial responses of patients in the target population.

The dose given to a patient is ideally high enough to induce the desired re-

sponse and low enough to avoid potential adverse effects (Dette et al., 2005;

Dragalin et al., 2008a). An easily understandable example is the dosage
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1.1. Dose–response experiments and design issues

an anesthesiologist must decide: it must be low enough to not harm their

patients, but high enough to induce the desired anesthetic effect. The ac-

curate dose–response relationship is clearly vital in guiding the selection of

the dose levels in such practices (Pace et al., 2007).

Poor understanding of the underlying dose–response relationship in Phase

I/II clinical trials may result in selecting the wrong target doses to be used

in Phase III large scale confirmatory clinical trials. This may cause serious

ethical and financial consequences. Selecting too high a dose may cause a

large number of toxic responses in experimental subjects, and choosing too

low a dose may fail to establish adequate efficacy. Both can lead to unwar-

ranted failure to obtain the regulatory approval of an investigational drug

(Dette et al., 2008; Bretz et al., 2010). We refer to Ting (2006) and Bretz

et al. (2008) for additional general discussion on issues and challenges in

dose–response experiments in the context of the drug development process.

The dose–response relationship also plays a vital role in other applica-

tions. In pyrotechnics applications, we must have a thorough understanding

of the sensitivity of a new explosive to the stress of a shock to avoid catas-

trophic consequences. See Dror and Steinberg (2008) and Wu and Tian

(2013) for more vivid descriptions. In pyrotechnics experiments, the stress

level may be the drop height of an explosive, or the pressure on a pile of

ammunition. The response is either explosion or nonexplosion (Wu and

Tian, 2013). For example, in testing the sensitivity of new pyrotechnics to

ignition, each sample is assumed to have a threshold stress level. Ignition

pulses that are larger than this level will ignite the sample. Ignition pulses

that are smaller than this level will not ignite the sample. Repeated testing

2
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on any sample is not possible, because the pulse that is not large enough to

cause ignition will damage the sample. To estimate the parameters of the

underlying response model, samples are tested at various stress levels and

their responses are observed. Researchers then analyze the data to obtain

an estimate of the model parameters (Neyer, 1994). See Neyer (1994), Dror

and Steinberg (2008) and Wu and Tian (2013) for more vivid descriptions.

The task of accurately characterizing the dose–response relationship may

not appear to be challenging. One may simply administer various dose levels

to a large number of subjects. The data on the responses of these subjects

would likely give a clear picture of the dose–response relationship. This

practice is clearly not feasible. In drug developments it will hurt a large

number of patients or volunteers. In other applications, the cost can be

unacceptably high. We may not be able to find sufficient resources to run

the experiment, and it may take a long time to complete.

Fortunately, experience and our intuition indicate that the relationship

between the dose level and the probability of response is smooth and mono-

tone. Based on this belief, statistical design theory can be used to maximize

the information content of each experimental run/trial. A well-designed ex-

periment reduces the cost and saves time in the drug development process

or other applications.

In the general context, an optimal design maximizes the expected infor-

mation content in the anticipated data given a fixed number of experimental

runs. When a parametric model is selected for the relationship between the

response variable and design variables (also called explanatory variables, co-

variates, or dosage in drug development examples), an optimal design often

3



1.1. Dose–response experiments and design issues

aims to maximize the Fisher information by running experiments at specific

level combinations of the design variables. If the parametric model is linear,

the Fisher information does not depend on the true parameter values of the

model. Hence, the optimal design is possible without the knowledge of the

true parameter values (Montgomery, 2008).

The dose–response relationship is apparently nonlinear. No matter how

low or how high a dose level is, the probability of responding to a stimulus

takes a value between 0 and 1. For this reason, a nonlinear parametric

model is often selected. Suppose a specific dose–response relationship such

as logistic is assumed. Under this model, the Fisher information is a function

of unknown parameters, as well as the specific design. Without knowledge

of the specific parameter values, it is not possible to determine whether a

design maximizes the Fisher information. When the parameter values are

known, it is at least possible in principle to find the design that gives the

most efficient estimation of the model parameters (Wu, 1985b,a; Ford et al.,

1985; Sitter and Fainaru, 1997; Sitter and Forbes, 1997).

Clearly, if we knew the parameter values, there would be no point to

run experiments to estimate them. To overcome this dilemma, one may

first run a pilot study in which the dose levels are selected based on prior

knowledge. The resulting data will provide an improved estimate of the

model parameters over the prior guess. The optimal design based on the

fitted model is then used for selecting the dose levels of further trials. This

is called a two-stage design.

Because the precision of the parameter estimation based on a pilot study

is necessarily low, the resulting second stage design may markedly differ from

4



1.1. Dose–response experiments and design issues

an optimal one. To overcome this shortcoming, a full sequential approach

can be used; the parameter estimates are updated after each trial of the

experiment, and used to determine appropriate dose levels for the subsequent

trials.

Suppose the only model assumption we wish to make is the monotonicity

between the response probability and the dose level. The popular up-and-

down design works well under such a nonparametric model assumption. It

addresses both ethical and safety concerns as well (Anderson et al., 1946;

Békésy, 1947; Dixon and Mood, 1948).

The up-and-down design is also of sequential nature: depending on the

outcome of the current run/trial, the dose of the next trial will be made

one level higher or lower. By the appropriate choice of several criteria, the

majority runs will concentrate on the target dose level. An appropriate

estimate of the target dose level wii thereby be obtained.

Despite its long history, design theory for binary experiments remains

an active research area. For recent developments, see Li and Wiens (2011),

Wang et al. (2013), Wang et al. (2015), and Wu and Tian (2013).

Wang et al. (2015) considered a two-stage sequential D-optimal design.

They proposed first obtaining a tentative estimate of the model parameters.

The D-optimality criterion is then used to select the dose level of every ad-

ditional subject. Wu and Tian (2013) presented a three-phase sequential

design. The first phase aims to ensure a viable fitted model, and the sec-

ond phase chooses the dose levels to satisfy D-optimality. The third phase

clusters the dose levels around the target ed level.

In this dissertation, we wish to contribute to the literature of optimal

5



1.2. Major contributions

designs concerning the dose–response experiment and the estimation of the

dose–response relationship. The motivation of the research problem is from

the following observations. While many designs are optimal if estimating the

median effective dose level is the sole goal of the experiment, they are not the

best when a range of ed levels are targeted. In many applications, it is de-

sirable to accurately determine several ed levels. For example, Rosenberger

and Grill (1997) studied the dose–response experiment problem where ed50

is the primary target, but ed25 and ed75 or other ed levels are also of inter-

est. This prompted them to propose a new sequential design, and apply this

design to a psychophysical experiment where the objective was to observe

how patients respond to a range of stimulus levels. From this consideration,

we propose a new criterion and the corresponding sequential solution to its

implementation. We research the usefulness of the new method in achieving

higher precision for estimating the dose–response relationship over a specific

range of interest. More specific details are given in the next section.

1.2 Major contributions

The most important contribution of this dissertation is the introduction of

a new optimality criterion. Traditionally, when a parametric dose–response

model is assumed, we often search for designs which enable us to most ac-

curately estimate the model parameters. In applications, we consider, the

ultimate goal of the investigation is to accurately determine the various ef-

fective dose levels. These two goals are closely related but not equivalent.

Based on this consideration, we propose a new design criterion which we im-
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plement it sequentially. Because we directly aim at the accurate estimation

of the effective dose levels, we call it sequential ED-design.

We conduct extensive computer simulation to demonstrate that the pro-

posed sequential ED-design indeed improves the efficiency of the experiment

by changing the optimality target from model parameters to effective dose

levels of interest compared with many existing designs. A paper based on

this part of the dissertation has been published in Yu et al. (2016).

The logistic regression model is the most popularly assumed dose–response

model in applications. Either the proposed sequential ED-design or other

existing sequential designs often require some preliminary estimate of the pa-

rameter values based on a pilot experiment with a small number of runs/trials.

The maximum likelihood approach is often the choice to give a preliminary

estimate of the model parameters based on the pilot data. A technical hur-

dle is that the maximum likelihood estimate under the logistic regression

model may fail to exist when the data have a specific configuration, i.e., the

likelihood does not attain its maximum at a infinite parametric value. This

is even more likely for pilot data. In this dissertation, we employ the idea

of adding pseudo observations. This approach takes advantage of our prior

knowledge of the dose–response curve and enables a maximum likelihood

like estimate for any data configurations.

Based on these results, we further explore the application of the proposed

sequential ED-design to a more flexible three-parameter logistic regression

model. We develop a two-step iterative algorithm to compute the maximum

likelihood estimate of the model parameters. We prove that the algorithm

iteration increases the likelihood value and therefore will lead to at least

7



1.3. Outline of the dissertation

a local maximum of the likelihood function. We also study the numerical

solution to the D-optimal design for the three-parameter logistic regres-

sion model. It is of interest to find that all our numerical solutions to the

D-optimal design are three-point-support distributions. Simulation results

indicate that the more flexible three–parameter logistic regression model can

be easily implemented, and the sequential ED-design remains effective.

In addition to these achievements, we discuss the use of ED-design when

experimental subjects become available in groups. For instance, two patients

may become available for the next experimental trial at the same time. We

may be required to decide their appropriate dose levels simultaneously.

1.3 Outline of the dissertation

The thesis is organized as follows. In the next chapter we introduce some

notation and some parametric dose–response models. We give a general re-

view of the corresponding optimal design theory. We derive the analytical

and numerical results for locally D-optimal designs under the standard lo-

gistic model. We give a comprehensive review of some existing sequential

design procedures of dose–response experiments such as the up-and-down

and related designs, and discuss their advantages and shortcomings.

In Chapter 3, we introduce our two-stage sequential ED-design. We use a

small number of trials to provide a tentative estimation of the model param-

eters. The dose levels of the subsequent trials are then selected sequentially,

based on the latest model information, to maximize the efficiency of the

ed estimation over several ed levels. Some details of the ED-design under a

8



1.3. Outline of the dissertation

logistic regression model are given. Simulations indicate that the ED-design

compares favorably with several existing designs under various scenarios. In

addition, we provide some simulation evidence for the limiting ED-design

when the sample size n goes to infinity. It appears that as a distribution

over the dose range, the design has a limit with two support points.

In Chapter 4, we introduce the three-parameter logistic model. Some de-

tails of the ED-design under the three-parameter logistic regression model

are given. We investigate the effectiveness of the sequential ED-design,

the D-optimal design, and the up-and-down design under this model, and

develop an effective model fitting strategy. Simulations show that the com-

bination of the proposed model and the data analysis strategy performs

well. When the logistic model is correct, using the more complex model

suffers hardly any efficiency loss. When the three-parameter model holds

but the logistic model is violated, the new approach can be more efficient.

In addition, we apply the new approach to a real dataset.

In Chapter 5, we introduce a group sequential ED-design, and show how

to construct it. Simulation studies indicate that our group ED-design com-

pares favorably with several existing group design procedures under various

scenarios.

In Chapter 6, the asymptotic properties of the two-stage sequential ED-

design are investigated. The method of maximum likelihood is one of the

classical methods of estimation. We present some general results on the

asymptotic properties of the maximum likelihood estimators following a two-

stage sequential design. We provide evidence that the maximum likelihood

estimators from the two-stage sequential design exist and have the usual

9



1.3. Outline of the dissertation

asymptotic properties (i.e., consistency, asymptotically normality).

Chapter 7 summarizes the dissertation, adds some conclusions and dis-

cusses areas of future research.

10



Chapter 2

Preliminaries

To explain our idea clearly, let us first introduce some specific notation and

concepts.

2.1 Dose–response curves and parametric models

We use X or x to denote the dose level of a drug or a stimulus in a dose–

response experiment. We use Y for the random outcome of the response.

In toxicity studies, we put Y = 1 if the subject has toxicity reaction, and

Y = 0 otherwise. In the study of drug efficacy, we put Y = 1 if the desired

medical effect is achieved, and Y = 0 otherwise. At this moment, we only

consider the situation where the response is not a vector. Namely, we do

not consider multiple responses.

Suppose a stimulus at dosage X = x is applied to a subject/recipient,

and the outcome is Y . The dose–response relationship is defined to be the

function

π(x) = P (Y = 1|X = x).

When the dose–response relationship π(x) for a stimulus is fully and pre-

cisely determined, the user may decide on a suitable level of the stimulus in

11



2.1. Dose–response curves and parametric models

applications. She will have full knowledge of the risk of a catastrophic event

when a specific dosage is applied. She can also be nearly certain of when a

desired effect will occur by applying a high enough level of the stimulus.

We assume that π(x) is a monotone increasing function. Conceptually,

π(0) = 0 and π(∞) = 1. It is very unlikely to be true in most applications,

especially in medical fields. In applications, some dose levels are of particular

interest to scientists. For instance, ed50 is a dose level at which 50% of

subjects/recipients respond (Y = 1). In other words, it is the dosage such

that

π(ed50) = 0.5.

In general, the effective dose level edγ for some γ ∈ (0, 100) is the x value

such that

π(edγ) = γ/100.

We use ed25, ed50, ed75 and so on for dosages at which 25%, 50% and

75% of the subjects respond. See Figure 2.1 for an illustration of the dose–

response relationship.

It is feasible to have the dose–response relationship π(x) estimated based

on binary dose–response experiments nonparametrically. This practice is

safe against potential model misspecification. However, nonparametric in-

ference generally has lower efficiency compared with parametric inference.

Hence, a parametric model assumption is often imposed if it can provide a

good description of the dose–response relationship. There are many com-

monly used models for this purpose. We limit our review on a few specific

ones.

12



2.1. Dose–response curves and parametric models
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Figure 2.1: A sample dose–response curve.

Logistic regression model. Under the logistic regression model assump-

tion, we postulate the dose–response curve satisfying

logit{π(x)} = log
[ π(x)

1− π(x)

]
= α+ βx (2.1)

for some parameter α and β. It is seen that under this model,

π(x) =
exp(α+ βx)

1 + exp(α+ βx)
. (2.2)
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2.1. Dose–response curves and parametric models

For any γ ∈ (0, 100), we have

edγ =
logit(γ/100)− α

β
(2.3)

In particular, we have ed50 = −α/β.

When x =∞, we have π(∞) = 1 with β > 0. We do not generally have

π(0) = 0. This does not seem to be a problem in most applications. We will

discuss other properties of the logistic regression model later.
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Figure 2.2: Two sample logistic regression curves.
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2.1. Dose–response curves and parametric models

Probit regression model. Under the probit regression model assumption,

we postulate the dose–response curve satisfying

π(x) = Φ(α+ βx) (2.4)

where Φ(·) is the cumulative distribution function of the standard normal

distribution, and α and β are two model parameters.

The probit regression model can be motivated by the existence of a latent

variable. Suppose there exists an auxiliary random variable

Z = α+ βX + ε

such that ε has the standard normal distribution. Suppose a positive re-

sponse to the stimulus occurs only when Z > 0. In this case, we have

π(x) = P (Z > 0|X = x) = P (α+ βX + ε > 0) = Φ(α+ βx).

In applications, the latent variable may be regarded as some unobserved

stress index. The subject will respond to a stimulus only if its level exceeds

some threshold value.

Three-parameter logistic regression model. The two-parameter logis-

tic regression model in (2.1) can be easily generalized to allow additional

flexibility:

logit{πλ(x)} = log
[ πλ(x)

1− πλ(x)

]
= α+ βx (2.5)
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2.1. Dose–response curves and parametric models

for a parameter λ > 0. El-Saidi (1993) proposed the use of this model

for the doseresponse relationship. Note that when λ < 0, we will find

1−πλ(x) < 0. Then the logit function is not defined. Hence, the restriction

on λ is a mathematical necessity.

A two-parameter logistic regression model has some build-in symmetry.

For instance, it satisfies

edγ + ed(100− γ) = −2α

β

assuming β 6= 0. Such a restriction is hard to justify in applications. In-

troduction of the parameter λ helps to soften this restriction without over-

complicating the system. Under the proposed model, the effective dose level

at γ is given by

edγ =
logit

(
(γ/100)λ

)
− α

β
. (2.6)

An explicit expression of the dose–response relationship is

π(x) = P{Y = 1|X = x} =
{ exp(α+ βx)

1 + exp(α+ βx)

}1/λ
. (2.7)

Clearly, we may also introduce the three–parameter probit model in a

similar fashion. For the purpose of this dissertation, we focus on the three–

parameter logistic regression model. It will be seen that our idea is generally

applicable.
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2.2. Optimal designs

2.2 Optimal designs

An experimental design is a plan for the set of level combinations of explana-

tory/design variables. Namely, it specifies the number of experimental trials,

running at specific level combinations. For example, in a dose–response ex-

periment, a simple plan is to run 20 trials at dose level x1, and another 10

trials at dose level x2, with the total number of trials n = 30. The dose

level is the explanatory/design variable in this example. The explanatory

variable can be vector valued, for instance, when a trial is running with

two drugs being administered together. The combination of dose levels of

drugs A and B is a “level combination”. To develop optimal design theory

for dose–response experiments, we first review concepts of generic optimal

designs.

Consider the situation where the conditional distribution of the response

variable Y given the value of the explanatory variable X = x has a paramet-

ric form f(y;x, θ) in the experiment to be carried out. Suppose observations

at independently selected X values x1, x2, . . . , xn are obtained and denoted

as y1, . . . , yn. In this case, the likelihood function is given by

`n(θ) =

n∑
i=1

log f(yi;xi, θ). (2.8)

One may then estimate θ by its maximum likelihood estimator θ̂. Under

general regularity conditions on the conditional density function and some

restrictions on the design, namely the configuration of {x1, x2, . . . , xn}, the
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2.2. Optimal designs

maximum likelihood estimator is asymptotically normal. That is, as n→∞,

I−1/2
n (θ̂ − θ)→ N(0, I)

where In is the Fisher information matrix defined as

In(θ) =
n∑
i=1

E

{
∂ log f(yi;xi, θ)

∂θ

}{
∂ log f(yi;xi, θ)

∂θ

}τ
.

We have adopted the convention that θ is regarded as the true parameter

value.

The asymptotic result implies that the variance matrix of θ̂ is approx-

imately given by I−1
n . The precision of the estimator θ̂ is higher when In

is larger. Because In is a matrix, its magnitude is not well-defined. At the

same time, a matrix with a large determinant is deemed large in common

sense. Hence, a popular optimality criterion is to search for a design such

that

{det[In(θ)] : x1, . . . , xn ∈ X}

is maximized. Here X is the space of possible x values. We usually call

X the design space. The outcome of the design is a set of specific level

combinations {x1, . . . , xn}. The resulting design is called D-optimal: D for

determinant.

The determinant of a symmetric matrix is the product of its eigenvalues.

A positive definite matrix is seen as large if the sum of its eigenvalues is large.

Recall that the sum of eigenvalues of a matrix is called its trace. Hence, one

may also choose a design so that the trace of the Fisher information is
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2.2. Optimal designs

maximized:

max{tr[In(θ)] : x1, . . . , xn ∈ X}.

The corresponding solution is called A-optimal.

Example: Consider the situation where the design variable X is one di-

mensional, and a linear model is appropriate:

y = θ0 + θ1x+ ε

where ε has the standard normal distribution. Based on n independent

observations {(xi, yi) : i = 1, 2, 3, . . . , n}, the Fisher information matrix is

given by

In(θ) =

 n
∑
xi∑

xi
∑
x2
i

 .
One may notice that the Fisher information does not depend on the unknown

parameter θ. If X = {−1,+1} and n = 2k, then the optimal design is given

by

{x1, . . . , xn} = {−1,−1, · · · ,−1; +1,+1, . . . ,+1}.

In other words, the D-optimal design for the experiment is to collect data by

running k trials at x = −1 and other k trials at x = +1. It is also convenient

to regard this design as a uniform distribution on {−1, 1}. We may hence

denote a design as ξn.

When it comes to nonlinear models, the solution to optimal designs is

no longer so simple.
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2.2. Optimal designs

Example: Consider the logistic regression model given by (2.1). In this

case, we have

log f(y;x, θ) = y log{π(x)}+ (1− y) log{1− π(x)}

where we have used new notation θ = (α, β)τ . The Fisher information

matrix based on a single observation at X = x is therefore given by

I(x) =

 π(x){1− π(x)} xπ(x){1− π(x)}

xπ(x){1− π(x)} x2π(x){1− π(x)}

 .
When n observations are obtained at x1, . . . , xn, the Fisher information

becomes

In(ξn) =
n∑
i=1

 π(xi){1− π(xi)} xiπ(xi){1− π(xi)}

xiπ(xi){1− π(xi)} x2
iπ(xi){1− π(xi)}

 .
Here we have introduced ξn for the design which subscribes trials at dose

levels x1, . . . , xn. We pointed out earlier that ξn can be regarded as a uniform

distribution on x1, . . . , xn.

Clearly, the Fisher information is a function of θ because π(x) depends

on θ. Consequently, the D-optimal design for the dose–response experiment

depends on θ. According to Sitter and Wu (1993), given θ, the D-optimal

design under the logistic dose–response model is a uniform distribution on

ed17.6 and ed82.4. Because ed values depend on the true value of θ, the

optimal design cannot be directly used to guide the experiment unless the θ

value is known. Yet if the θ value is known, there is no need to conduct the
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2.3. D-optimal design under the logistic model

experiment. Nevertheless, the result of the D-optimal design can be used in

other ways. For instance, it reveals the limit of how efficient a design can

be based on the D-optimal criterion.

To avoid the dilemma that a good design is possible only if the dose–

response relationship is known, sequential approaches are often used. The

general idea is simple: run a small pilot experiment based on the prior

information of the applicants to obtain a rough idea on the dose–response

relationship. Updating our knowledge of the dose–response relationship, and

select the “optimal design” for the next stage of experiment. In the most

extreme case, a completely sequential design is used.

2.3 D-optimal design under the logistic model

As mentioned in the last section, the D-optimal design under the logistic

dose–response model has two optimal dose levels, ed17.6 and ed82.4. The

derivation of these two optimal doses has been extensively studied, and

is already available in the literature (See Abdelbasit and Plackett (1983);

Minkin (1987); Sitter and Wu (1993); Mathew and Sinha (2001), among

others). In this section, we shall only give a brief derivation of the D-optimal

design under the logistic model.

In order to get the D-optimal design, we need to maximize the determi-

nant of the Fisher information matrix I(α, β). Let ai = α + βxi. We write
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2.3. D-optimal design under the logistic model

the Fisher information matrix as

I(α, β) =

 ∑n
i=1

exp(−ai)
(1+exp(−ai))2

∑n
i=1 xi

exp(−ai)
(1+exp(−ai))2∑n

i=1 xi
exp(−ai)

(1+exp(−ai))2
∑n

i=1 x
2
i

exp(−ai)
(1+exp(−ai))2


Minkin (1987) studied the following representation for the determinant of

the above Fisher information,

β2|I(α, β)| =
[ n∑
i=1

exp(−ai)(
1 + exp(−ai)

)2 ][ n∑
i=1

a2
i

exp(−ai)(
1 + exp(−ai)

)2 ]
−

[ n∑
i=1

ai
exp(−ai)(

1 + exp(−ai)
)2 ]2

.

Let wi = exp(ai)/
(
1 + exp(ai)

)2
. The above equation is simplified to

β2|I(α, β)| =
( n∑
i=1

wi)(
n∑
i=1

wia
2
i

)
−
( n∑
i=1

wiai
)2
. (2.9)

Using similar arguments in Abdelbasit and Plackett (1983), Minkin (1987)

showed that the first term in equation (2.9) is maximized when ai satisfies

the following equation,

ai =
(
exp(ai) + 1)/(exp(ai)− 1

)
,

which is solved as ai = ±1.5434.

Minkin (1987) claimed that when n is even, it is possible to simulta-

neously maximize the first term in (2.9) and minimize the second term

being subtracted, by assigning n/2 subjects to the dose corresponding to

aj = 1.5434, and assigning the remaining n/2 subjects to the dose corre-
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2.4. Sequential D-optimal design

sponding to aj = −1.5434. Therefore, the D-optimal design consists of two

doses x1 and x2, which satisfy α + βx1 = 1.5434, and α + βx2 = −1.5436.

Hence,

x1 = (1.5434− α)/β,

and

x2 = (−1.5434− α)/β.

Note that the corresponding probabilities of responses for x1 and x2 are

π(−1.5434) = 0.176 and π(1.5434) = 0.824. Thus, x1 and x2 correspond to

ed17.6 and ed82.4 doses, i.e., the corresponding optimal doses are ed17.6

and ed82.4. For the probit dose–response model, the corresponding optimal

dose levels are ed12.8 and ed87.2.

The direct use of the above D-optimal design is not always plausible.

First, the above derivation for the D-optimal design clearly shows that opti-

mal designs rely on the complete knowledge of the model parameters which

are always unknown or no experiments are needed. Thus, optimal designs

are often considered as benchmarks or reference points for comparing with

alternative designs.

2.4 Sequential D-optimal design

The D-optimal design requires complete knowledge of the dose–response

relationship. We can overcome this difficulty by implementing the design

sequentially. The experiment runs in a trial-by-trial way with the next dose

determined by the D-optimal criterion updated based on the most recent
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2.4. Sequential D-optimal design

trial results.

Sequential D-optimal designs usually use a pilot study and maximum

likelihood to give an initial estimate of the model parameters. However, this

procedure can be applied only if the MLE of the model parameters exist.

The MLE may not exist under the logistic regression model. According to

Silvapulle (1981), the MLE exists if there is an overlapping pattern in the

data. Hence, the sequential D-optimal design generally needs to start with

an initial stage which ends when the trial results meet the condition for the

existence of the MLE (Silvapulle, 1981; Albert and Anderson, 1984; Santner

and Duffy, 1986).

Wang et al. (2013) and Wang et al. (2015) are recent examples. Fol-

lowing Neyer (1991, 1994) and Langlie (1963), they proposed a sequential

two–stage D–optimality design. Their designs consist of two stages: an ini-

tial stage and a D–optimality stage. The first stage is designed to find an

overlap between stimuli that generate responses and those that generate

nonresponses, and tentatively estimate the model parameters. The over-

lap guarantees the existence of the MLE of the unknown model parameters

(Silvapulle, 1981). The estimates will then be used in the next stage of the

experiment. In the second stage, the parameter estimation is updated after

each additional trial. The subsequent design points are then selected se-

quentially to maximize the determinant of the Fisher information matrix of

the parameters. The procedure continues until the number of trials reaches

the predetermined sample size.

Other relevant literatures on the sequential D-optimal design include

Wu (1985a), Wu (1985b), Neyer (1991), Neyer (1994), Dror and Steinberg
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(2008), Wu and Tian (2013), among others.

2.5 Three-phase sequential design

The design proposed by Wu and Tian (2013) is another interesting sequential

approach. They developed a three-phase sequential procedure to quickly and

efficiently estimate a single ed level.

Their design consists of three stages. The first and second stages provide

information for an initial estimate of the dose–response model. The goal of

the first stage is to quickly identify a reasonable experimental range by

generating some responses and nonresponses, and to allocate the design

points to find an overlap in the data. In the second stage, subsequent design

points are then chosen to optimize the parameter estimation based on the

D-optimal criterion. In the third stage, Robbins-Monro-Joseph procedure

(Robbins and Monro, 1951; Joseph, 2004) is applied to cluster the design

points around the unknown target ed level.

Wu and Tian (2013) descried their procedures as follows. Let X or x

denote the dose level of a stimulus. Let Y be the random outcome. In

pyrotechnics study, Y = 1 if the experimental subject has exploded, and

Y = 0 otherwise. Wu and Tian considered the location-scale model

π(x) = P (Y = 1|X = x) = f((x− µ)/σ). (2.10)

where µ and σ are unknown parameters, and f is a known distribution

function. Under this model, the effective dose level edγ for some γ ∈ (0, 100)
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is the x value such that

π(edγ) = γ/100.

Hence,

edγ = µ+ σf−1(γ/100).

2.5.1 First stage

To implement the three-phase sequential design, a key ingredient is the up-

date of the parameter estimate after each trial. The MLE is a popular

choice, however, it may not exist under the logistic regression model (Silva-

pulle, 1981). To ensure the existence of MLE, the first stage aims to find

a reasonable range of the design points by generating some responses and

nonresponses, and to find an overlap in the data using a searching scheme.

See Wu and Tian (2013) for more vivid descriptions of the first stage design.

2.5.2 Second stage

In the second stage, the subsequent design points are selected based on the

D-optimal criterion. The MLEs of the model parameters are updated after

each additional trial.

• Compute the MLE (µ̂s, σ̂s) of (µ, σ) based on the observed data

(x1, y1), . . . , (xs, ys).

• Denote xm = min(x1, . . . , xs) and xM = Max(x1, . . . , xs). To ensure

the estimates are in the design region, Wu and Tian suggested to
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truncate the estimates µ̂s and σ̂s as

µ̃s = Max{xm,min(µ̂s, xM )}

and

σ̃s = Min{σ̂s, xM − xm}.

Hence, µ̃s is in [xm, xM ], and σ̃s dose not exceed xM − xm.

• Then, select the next design point xs+1 such that the determinant

of the Fisher information matrix evaluated at (µ̃s, σ̃s) based on the

existing s trials and an extra trial at dose level xs+1 is maximized.

• Suppose n1 runs are assigned for the first and second stage of the

design. The above process will then be repeated until the number of

trials reaches the predetermined size n1.

2.5.3 Third stage

The goal of the thirst stage is to cluster the design points around the un-

known target ed level. Wu and Tian applied the Robbins-Monro-Joseph

procedure. See Robbins and Monro (1951), Lai and Robbins (1979), Joseph

(2004), and Wu and Tian (2013) for detailed descriptions of the Robbins-

Monro-Joseph procedure. The third stage consists of two main steps.

• The first step is to choose an initial value. Wu and Tian applied

xn1+1 = µ̃n1 + f−1(γ/100)σ̃n1
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where µ̃n1 and σ̃n1 are MLEs of (µ, σ) based on the first n1 observations

(x1, y1), . . . , (xn1 , yn1) obtained from the first and second stage of the

experiment. Denote the Fisher information matrix as In1(µ̃n1 , σ̃n1).

Compute the inverse of Fisher information matrix.

V = In1(µ̃n1 , σ̃n1)−1 =

 v00 v01

v10 v11


Here v00 = var(µ̃n1), v11 = var(σ̃n1), and v01 = v10 = cov(µ̃n1 , σ̃n1)

are elements of the variance-covariance matrix of (µ̃n1 , σ̃n1). Then let

τ2
1 = v00 + {f−1(γ/100)}2v11.

• The second step is to cluster the design points around the target

ed level. Denote yn1+1 be the observed response at xn1+1. Wu and

Tian proposed to select the subsequent design points based on the

Robbins-Monro-Joseph iterative scheme (Joseph, 2004),

xn1+i+1 = xn1+i − ai(yn1+i − bi), i ≥ 1.

Here xn1+i and yn1+i are the ith design point and its corresponding

response, and ai and bi are some positive constants. See Joseph (2004)

and Wu and Tian (2013) for a general discussion on the choice of ai

and bi.

• Suppose n2 runs are assigned to the third stage of the experiment. The

above procedure is then repeated until the number of trials reaches the

predetermined size n2.
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2.6 Up-and-down design

Both the D-optimal design and the sequential D-optimal design are possible

only if a parametric model is assumed for the dose–response relationship.

Without a parametric model, the up-and-down design proposed by Dixon

and Mood (1948) is an effective way of determining the median effective

dose level ed50. See Pace et al. (2007), among others.

The following is a quick description of the up-and-down design. Prior to

the trial, K ordered discrete dose levels,

Ω = {x1 < x2 < . . . < xK}

are specified based on prior information. The experiment starts with the

first subject at dose X(1) = x1, or at a level thought to be close to the true

target dose such as ed50, or at a level selected randomly from Ω. Suppose

that the first trial is completed at X(1) = xk. If the observed response of

the first subject is Y1 = 1, the second subject is assigned to a lower dose

X(2) = xk−1. If the observed response of the first subject is Y1 = 0, the

second subject is assigned to a higher dose X(2) = xk+1. If X(1) = x1 or

X(1) = xK , appropriate adjustments are made.

Research shows that the up-and-down design tends to assign doses X(i)

in the long run clustered unimodally around ed50. Because of this, after n

trials, one may estimate ed50 using the empirical mean µ̂ = n−1
∑n

i=1X(i).

Other estimators may also be used. For example, Brownlee et al. (1953)

proposed to not include the initial dose X(1) in the calculation of the es-
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2.7. Biased-coin up-and-down design

timate, but include xn+1, the dose that would have been assigned to the

(n+ 1)th subject:

µ̂ =
1

n

n+1∑
i=2

X(i)

Another commonly used nonparametric estimator for ed50 is the turning

point estimator (See Wetherill (1963), Choi (1971), Choi (1990), among

others). If x1, . . . , xn is a sequence of dose levels, we say that there is a

turning point at time j, 1 < j < n, if xj−1 < xj and xj > xj+1 (peak)

or if xj−1 > xj and xj < xj+1(trough), that is, the sequence of dose levels

turns from increasing to decreasing, or from decreasing to increasing. Let σ

denote the difference between successive dose levels. Let t1, t2, . . . , denote

the doses at the turning points (peaks and troughs). Define

wi =

 ti + σ/2 if ti is a trough

ti − σ/2 if ti is a peak.

The turning point estimator for ed50 based on k turning points is

w̄ =

k∑
i=1

wi/k

The turning point estimator is widely used in anesthesia up-and-down stud-

ies.

2.7 Biased-coin up-and-down design

The standard up-and-down design is developed specifically for estimating

ed50. If a different ed level is of interest, one may use the biased-coin
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2.7. Biased-coin up-and-down design

up-and-down design of Durham and Flournoy (1994). Let the ed level of

interest be edγ for some γ ∈ (0, 100). The generalization aims to cluster

the assigned doses around edγ to enable efficient estimation.

The biased-coin up-and-down design is as follows. Let the dose level of

the first subject be X(1).

• Suppose the nth subject is assigned at dose X(n) = xk, and responds

with Yn = 0. For γ ≤ 0.5, the (n+ 1)th subject will be assigned at the

lower dose X(n+ 1) = xk−1. Otherwise, the (n+ 1)th subject will be

randomized with probability b = γ/(100− γ) to the next higher dose

level, and 1− b to the same dose.

• Suppose the nth subject is assigned at dose X(n) = xk, and responds

with Yn = 1. For γ > 50, the (n+ 1)th subject will be assigned at the

lower dose X(n+ 1) = xk−1. Otherwise, the (n+ 1)th subject will be

randomized with probability b = (100− γ)/γ to the next higher dose

level, and 1− b to the same dose.

Appropriate adjustments are made, if X(n) = x1 or X(n) = xK , where x1

and xK are the lowest and highest dose levels specified in Ω.

Durham and Flournoy (1994) showed that the assigned doses X(i) clus-

ter unimodally around the target ed level in a biased-coin up-and-down

experiment. They suggested to use the mode of the assigned doses as a

nonparametric estimator of the target ed level.
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2.8 Group up-and-down design

Sometimes, a group of experimental subjects become available at the same

time. Hence, it may be desirable to assign the same dose level to all subjects

in this group. A group up-and-down design has been developed, and it is

another widely used sequential design in clinical trials. The design was first

described by Anderson et al. (1946), followed by Wetherill (1963).

Tsutakawa (1967a,b) analyzed the group up-and-down design with the

goal to estimate ed50. Gezmu and Flournoy (2006) generalized their method,

and constructed the group up-and-down design to target any ed levels.

The group up-and-down design proceeds with groups of s experimental

subjects for some s. Let clow and cupper be the integers between 0 and s, such

that 0 ≤ clow < cupper ≤ s. Constants clow and cupper are usually referred to

as the cutoff points. Prior to the trial, K ordered discrete dose levels,

Ω = {x1 < x2 < . . . < xK}

are specified, just like the case of the standard up-and-down design.

The experiment starts with the first group at dose X(1), where X(1)

may be chosen as the lowest dose level in Ω. The responses of the subjects

from the first group are used to determine the dose level assigned to the

next group.

• If there are at most clow subjects in the first group with response Y = 1

at dose X(1) = xk, the second group are assigned to the next higher

dose X(2) = xk+1.
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2.9. Accelerated biased-coin design

• If there are at least cupper subjects in the first group with response

Y = 1 at dose X(1) = xk, the second group are assigned to the next

lower dose X(2) = xk−1.

• Otherwise, the second group are assigned to the same dose level.

If X(n) is at the lowest dose x1 or highest dose xK , appropriate adjustments

are made.

Given the target effective dose level edγ, Gezmu and Flournoy (2006)

studied the choice of the cutoff points clow and cupper, and the group size s

so that the assigned doses cluster around edγ. Similar to the biased-coin

up-and-down designs, the mode of the assigned doses are suggested as a

nonparametric estimator of the target edγ under the group up-and-down

design.

2.9 Accelerated biased-coin design

The sequential designs discussed above are easy to implement and widely

used in dose–response experiments. In these designs, the dose assigned to a

subject depends on the response of the preceding subject. Therefore, a new

subject cannot enter the trial until the preceding subject has responded. To

utilize these sequential designs, a subject’s response needs to be observed

quickly, otherwise, the above designs may cause long trial duration, which

is obvious not desirable in clinical trial practice.

Motivated by this, Stylianou and Follmann (2004) proposed to modify

the biased-coin up-and-down design to deal with the situation that a sub-
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ject’s response to a stimulus is not observed quickly. Their idea is to assign

doses to subjects as they enter the trial based on the response of the last

subject who has completed the trial. This modification allows researchers

to evaluate several subjects simultaneously.

Their design follows the dose assigning paradigm of the biased-coin up-

and-down design, and is referred to as the accelerated biased-coin up-and-

down design. If a subject enters the trial before the response of the preceding

subject has been observed, the new subject will be assigned to a dose based

on the last observed response.

Stylianou and Follmann (2004) compared the accelerated design with

the biased-coin up-and-down design, and found that the accelerated design

greatly reduces the duration of the trial, and does not affect the estimation

precision of the target ed level, when estimated by an isotonic regression

estimator (Stylianou and Flournoy (2002)).

2.10 Generalized Pólya Urn design

Rosenberger and Grill (1997) proposed a sequential design procedure based

on the generalized Pólya urn (GPU) model from Athreya and Ney (2012)

to efficiently estimate ed50, while potentially estimate other ed levels such

as ed25 and ed50.

The GPU model can be used to design dose–response experiments (Rosen-

berger, 1996; Rosenberger and Grill, 1997). A number of does levels are

prespecified. The procedure starts with a urn containing a population of

particles. Each particle is labeled with a dose level. A particle is drawn at
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2.10. Generalized Pólya Urn design

random and its dose level is assigned to the experimental subject. If the

experimental subject responds (or does not respond), one particle for each

of the next k lower (or higher) doses are added to the urn. The procedure

is then repeated until the end of the experiment.

Rosenberger and Grill (1997) suggested k = 5 and referred to this scheme

as the 5-up/5-down rule. They found the design points are unimodally dis-

tributed around ed50. To better estimate other ed levels such as ed25 and

ed50, they proposed to alter the design so that the dose levels would spread

out further. Based on the simulation result of Rosenberger and Grill (1997),

the GPU design is efficient for estimating ed50. However, its performance

for estimating other ed levels such as ed25 and ed75 are variable when the

number of trials is small, but its performance improves when the number

increases.

The sequential designs discussed above are simple to implement in prac-

tice. However, they all aim to estimate a single ed level of dose–response

curves. If one is interested in knowing the dose–response relationship over

a dose range, these designs are not most appropriate.
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Chapter 3

Two-stage Sequential

ED-Design

3.1 Introduction

In the last two chapters, we have introduced and reviewed many dose–

response models and some related design issues. We pointed out that many

classical designs such as the up-and-down design and its generalizations in

the literature aim to most accurately estimate a specific ed level. The D-

optimal and other optimal designs aim to most accurately estimate model

parameters. While a more accurate parameter estimation should generally

lead to more accurate characterization of the dose–response relationship,

these two goals are not equivalent. For this reason, we propose a new ap-

proach in designing a binary experiment, and investigate whether it leads

to a more efficient model estimation from this angle of interest.

More specifically, we study a situation where the dose–response relation-

ship over a range of ed levels is of interest. We believe such a relationship

can be well characterized after several carefully chosen ed levels are accu-

rately estimated simultaneously. Based on these considerations, we propose
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3.2. New criterion

a two-stage sequential ED-design.

In the next section, we will give a detailed description of the proposed

design.

3.2 New criterion

Assume that the dose–response relationship is given by the conditional prob-

ability mass function f(y;x, θ) where θ is the model parameter. We assume

that the total number of trials n will be used to obtain data for the model

fitting.

Under the parametric model assumption, each ed level ξ is a smooth

function of the unknown parameter θ: ξ = g(θ). Suppose that following

some scheme, i trials have been carried out. Let θ̂i be an estimate of θ

based on the data obtained from the first i trials. When i is large, the

variance-covariance matrix of θ̂i is well approximated by the inverse of the

Fisher information Ii(θ). The variance of g(θ̂i) is therefore approximately

{5gτ (θ)}{I−1
i (θ)}{5g(θ)} (3.1)

where 5g(θ) is the gradient of g(·).

When i is small, the approximate variance (3.1) is not accurate. Nev-

ertheless, it remains a good metric of the relative informativeness of the

data collected so far. Because of this, we propose to select dose (i + 1) to

minimize the total observed variance of several ed levels chosen by the user.

Let Ii(θ; +x) be the Fisher information based on the first i trials and the
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potential (i+1)th trial to be run at dose level x. The proposed ED-criterion

is to select the next dose level x which minimizes

K0∑
j=1

{5gτj (θ̂i)}{I−1
i (θ̂i; +x)}{5gj(θ̂i)} (3.2)

where gj(θ) = ξj are K0 selected target ed levels. In this thesis, we use

K0 = 3, and our criterion will not be affected if other K0 values are selected.

Starting from some K initial pilot trials, the sequential ED-criterion

is used to select dose levels for the (K + 1)th, (K + 2)th trials until the

experiment terminates.

Let {(Xi, Yi), i = 1, 2, . . . , n} be the doses and responses. Under a

sequential design such as our proposed one, they are not independent of

each other. However, the dependence of Yi on (Y1, X1), . . . , (Yi−1, Xi−1)

is only through Xi. As a consequence, the likelihood constructed from

(Y1, X1), . . . , (Yi, Xi) retains a product form
∏i
r=1 f(Yr;Xr, θ) despite the

dependence structure of the data arising from the sequential design (Chaud-

huri and Mykland, 1993, 1995). Hence, the likelihood based on the proposed

sequential design is identical to that arising from the independent observa-

tions. A general discussion on the validity of this likelihood function will be

given in Chapter 6.

The ED-design can be implemented with θ estimated by its MLE se-

quentially. It is natural to have all target edγ and the entire dose–response

curve estimated based on the likelihood method. We now discuss details

under the logistic model.
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3.2.1 The pilot experiment

To apply the proposed ED-design, we need a pilot experiment to give us an

initial parameter estimation. We propose to identify a dose range covering

the anticipated dose levels ed10 to ed90. We then create set Ω with k dose

levels from ed10 to ed90. The data collected in the pilot experiment will

be used to provide an initial parameter estimation for the implementation

of the proposed ED-design sequentially.

3.3 Sequential ED-design under the logistic

model

Recall that the logistic dose–response model assumes that

logit{π(x)} = log{π(x)/(1− π(x))} = α+ βx. (3.3)

Under this model, θ = (α, β)τ and the probability mass function

P (Y = 1;X = x, θ) = f(1;x, θ) = π(x)

and

P (Y = 0;X = x, θ) = f(0;x, θ) = 1− π(x)

with

π(x) = [1 + exp(−(α+ βx))]−1.

To implement our proposed ED-design and other sequential designs, a
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3.3. Sequential ED-design under the logistic model

key ingredient is the update of the parameter estimate after each trial. The

MLE is a popular choice in the literature. However, the MLE may not exist

under the logistic regression model. Suppose A1 is the set of dose levels at

which the subjects responded to the stimulus and A0 is the set of dose levels

at which the subjects did not respond. The MLE exists only if the convex

hulls of A1 and A0 overlap (Silvapulle, 1981; Albert and Anderson, 1984).

Particularly in simulation studies or the early stages of a sequential ex-

periment, the above condition may not be satisfied. Various suggestions

have been made in the literature. For instance, one may extend the pilot

experiment until the data collected permit a valid MLE. In this dissertation

we investigate a novel approach.

In most applications, the user has some idea on a sufficiently low dose

level at which the subject will not respond (Y = 0), and a high enough dose

level at which the subject will respond (Y = 1). Our idea is to make use

of such prior information in a non-Bayesian way. For this purpose, let s1

and s2 be the anticipated ed01 and ed99 values. Based on this, we create

four pseudo-outcomes: at dose level s1, we create two weighted responses of

Y = 0 and Y = 1 with weights 0.99 and 0.01; at dose level s2, we create two

weighted responses of Y = 0 and Y = 1 with weights 0.01 and 0.99. After K

observations obtained from some pilot experiment, they are expanded with

these four pseudo-outcomes. It can be seen that the resulting A1 and A0 have

overlapping convex hulls. Hence, the MLE based on the expanded data set

under the logistic regression model always exists. The pseudo-outcomes are

clearly based on our prior knowledge, which gives this approach a Bayesian

flavour. However, the prior information is not accommodated as a prior
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3.3. Sequential ED-design under the logistic model

distribution on the parameter value.

Given a dose level x, the Fisher information based on a single trial under

the logistic model is given by

 π(x){1− π(x)} xπ(x){1− π(x)}

xπ(x){1− π(x)} x2π(x){1− π(x)}

 .
The Fisher information after n trials with doses x1, . . . , xn is given by

In(α, β) =

n∑
i=1

 π(xi){1− π(xi)} xiπ(xi){1− π(xi)}

xiπ(xi){1− π(xi)} x2
iπ(xi){1− π(xi)}

 .
If an additional trial were carried out at dose level x, the Fisher information

would be

In(α, β; +x) = In(α, β) +

 π(x){1− π(x)} xπ(x){1− π(x)}

xπ(x){1− π(x)} x2π(x){1− π(x)}

 .
Note that the ed level is related to the model parameter by

ξγ = EDγ = gγ(α, β) =
logit(γ/100)− α

β
.

Under the current model, for a generic ed level ξ, (3.2) becomes

v00 + 2ξv01 + ξ2v11

β2
(3.4)

where vij are the elements of I−1(α, β).

Recall that we use Ii(α, β; +x) for the Fisher information after i trials,
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3.3. Sequential ED-design under the logistic model

and another trial at the proposed dose level x. We use

v̂00
i (x), v̂01

i (x), v̂10
i (x), v̂11

i (x)

for the elements of Ii(α̂, β̂; +x) where α̂, β̂ are estimated parameter values

based on the first i trials and the pseudo-observations.

In the second stage of our sequential ED-design, we choose the (i+ 1)th

dose level as

xi+1 = arg minx

3∑
j=1

{v̂00
i (x) + 2ξ̂j v̂

01
i (x) + ξ̂2

j v̂
11
i (x)}.

Clearly, the sequential ED-design can be used for any number of ed levels.

The numerical computation of xi+1 is also easy: a simple linear search suf-

fices. Hence, the new design can satisfy a broad range of the demands that

may arise in applications.

More specially, let us suppose ed25, ed50 and ed75 are the target ed lev-

els. We now demonstrate how to select the next dose level in the ED-design.

Denote ED25, ED50 and ED75 as ξj , j = 1, 2, 3. Note that

ξj =
logit(π)− α

β

with π being one of 0.25, 0.50 and 0.75.

The ξj value can be written as a function of α and β, i.e., ξj = g(α, β).

Let ξ̂j = g(α̂k, β̂k), via the delta-method, one can easily obtained the asymp-
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totic variance of g(α̂k, β̂k) as follows.

var(g(α̂k, β̂k)) = 5g(α̂k, β̂k)
T I−1
k (x; α̂k, β̂k)5 g(α̂k, β̂k) (3.5)

where5g(α̂k, β̂k) is the gradient of g(α̂k, β̂k), and I−1
k (x; α̂k, β̂k) is the inverse

of the Fisher information matrix. Then the asymptotic variance of ξ̂j , for

j = 1, 2, 3, is

var(ξ̂j) =
v00 + 2ξ̂jv01 + (ξ̂j)

2v11

β̂2
k

(3.6)

Here v00 = var(α̂k), v11 = var(β̂k), and v01 = v10 = cov(α̂k, β̂k) are elements

of the variance-covariance matrix of (α̂k, β̂k),

V = I−1
k (x; α̂k, β̂k) =

 v00 v01

v10 v11


Then the (k+1)th dose level is determined by minimizing the total variance

of ξ̂j , for j = 1, 2, 3, i.e.,

xk+1 = arg minx

3∑
j=1

var
(
gj(α̂k, β̂k)

)
.

3.4 Simulation studies

We conduct simulations to investigate the performance of the ED-design.

We compare the new design with existing designs including the standard

up-and-down design, the D-optimal design, and the two-stage D-optimal

design.
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3.4.1 Detailed specifications

We investigate the performance of the designs through a hypothetical dose–

response experiment with a binary outcome. For any given design, the

response values of the experiment are generated at the dose levels prescribed

by the design according to the assumed dose–response relationship. The goal

of the experiment is to estimate the dose–response curve, namely f(y; θ, x).

The detailed specifications are as follows.

1. Up-and-down design: As discussed in Section 2.6, this design places

the doses on a grid of prespecified dose levels:

Ω = {x1, . . . , xK}

for some K. In this simulation, we choose K = 7 with x1 and xK being

the anticipated ed01 and ed90. The choice of the first dose level will

be decided case by case in the simulation.

2. D-optimal design: According to Sitter and Wu (1993), a D-optimal

design for the logistic response curve is a uniform distribution on two

dose levels: ed17.6 and ed82.4. Hence, we assign half of the subjects

to ed17.6 and half to ed82.4, since the data generating dose–response

curves are known in the simulation.

3. Two-stage D-optimal design: We first form a grid of nine doses from

the anticipated ed10 to ed90. The first stage is carried out at the

middle k = 7 dose levels. The subsequent dose x is chosen to maximize

det{Ii(θ̂i; +x)}.
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4. Sequential ED-design: The first seven trials are at the dose levels for

the two-stage D-optimal design. The subsequent dose x is chosen to

minimize (3.2).

The two-stage D-optimal design of Wang et al. (2015) has a complex

scheme for its first stage. We have replaced this with our own more practical

first-stage design. In all cases, we obtain the MLE for θ at the conclusion of

the n trials. We repeat the simulation N times for all designs. The RMSEs

are computed as follows:

RMSE(ξ̂j) =

√√√√N−1

N∑
r=1

(ξ̂rj − ξj)2,

where ξ̂rj is the estimate of ξj in the rth repetition. The overall RMSE is

computed as

RMSE =

√√√√ 3∑
j=1

RMSE2(ξ̂j).

In this study, we choose N = 1000 and the sample sizes n = 30, 60, and 120.

3.4.2 Performance comparison when the response model is

correctly specified

In applications, we do not know the true form of the dose–response curve or

the corresponding parameter values. Yet all designs must start with a guess

of the true response curve. In this section, we consider the situation where

the observed response curve agrees well with the true curve. In particular,
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we generate data according to the logistic regression model

logit
[
π(x)

]
= −6.265 + 0.055x. (3.7)

These parameter values are taken from Gezmu and Flournoy (2006). They

illustrated their group up-and-down design using the same example from

Flournoy (1993). The drug studied in the example is cyclophosphamide,

measured in mg/kg. This response model was constructed from expert opin-

ion as described in Flournoy (1993). Under this model, ed25= 94, ed50 =

114, and ed75 = 134.

The details of the four designs to be simulated under this model are as

follows:

• For the up-and-down design, the specific dose levels are x1 = 34 and

x7 = 154. The dose range is given by

Ω = {34, 54, 74, 94, 114, 134, 154}.

The initial dose level is set to x4 = 94.

• For the D-optimal design, the optimal dose levels are ed17.6 = 86 and

ed82.4 = 143.

• For the two-stage D-optimal design and the ED-design, we use the

following grid of K = 7 doses in the first stage:

Ω = (84, 94, 104, 114, 124, 134, 144).
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Table 3.1: Simulated RMSEs under the logistic model targeting range ed25–
ed75

n ED-design Two-stage D Up-and-down D-optimal

30

Total 17.14 18.05 18.12 20.18

ED25 10.55 10.88 10.48 12.48

ED50 8.12 9.03 8.06 9.89

ED75 10.79 11.21 12.39 12.40

60

Total 12.54 12.83 12.79 12.63

ED25 7.80 7.67 7.90 7.70

ED50 5.89 6.42 5.53 6.15

ED75 7.85 8.03 8.40 7.90

120

Total 8.74 9.01 9.16 8.87

ED25 5.46 5.51 5.89 5.49

ED50 4.09 4.50 3.88 4.41

ED75 5.46 5.53 5.85 5.39

In the first simulation, we choose ed25, ed50, and ed75 as the targets.

The results are given in Table 3.1.

The results show that our ED-design has the lowest total RMSE when

n = 30. Its RMSE is generally lower when n = 60 and n = 120, but the

differences are smaller. Our design is noticeably superior to the two-stage

D-optimal design. If ed50 is the target, then the up-and-down approach is

competitive or superior. However, even in this case, our ED-design is among

the best.

It may be surprising that the D-optimal design based on a known dose–
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response relationship is not the best. This may be explained by the fact that

D-optimal designs aim to maximize the determinant of the Fisher informa-

tion matrix. However, the performance measure in this simulation is the

RMSE. Indeed, the averages of the determinants of the Fisher information

of the ED-design divided by n2 for n = 30, 60, and 120 are 15.4, 14.4, and

14.6. The corresponding value for the D-optimal design is 17.08.

In the second simulation, we consider the situation where a lower range

of ed levels is of interest. We use ed10, ed25, and ed40 as the targets. The

simulation settings remain the same except that the initial dose level for

the biased-coin up-and-down design is set to x3 = 74. This approach can

select only one target dose level in each simulation. We simulate all three

possibilities and Table 3.2 gives the results for each case.

Adjusting the target ed levels of our ED-design has the desired effect.

The resulting data enable much more efficient estimation over the target

range in terms of the total RMSE. In comparison with both D-optimal de-

signs, it has the lowest RMSE at both ed10 and ed25. The difference is

smaller at ed40, but our design has the lowest RMSE levels in two of the

three sample sizes simulated. Tuning the biased-coin up-and-down design

to specific ed levels improves its results. Particularly when n = 120, the

up-and-down design achieved the lowest RMSE at the targeted ed level.

However, this is at the cost of lower precision at the other ed levels. If the

goal is to determine a single ed level, the up-and-down design is the best

approach.

We repeat the first and second simulation studies 20 times under the

same simulation setting. We note that the resulting total RMSEs and indi-
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Table 3.2: Simulated RMSEs under the logistic model targeting range ed10–
ed40.

n ED-design Two-stage D
Up-and-down

D-optimal
Target
ED10

Target
ED25

Target
ED40

30

Total 17.93 20.81 21.82 18.81 20.24 23.58

ED10 12.68 15.13 11.61 13.18 15.59 17.53

ED25 8.93 10.84 11.15 8.92 9.71 12.15

ED40 9.01 9.29 14.74 10.02 8.51 10.07

60

Total 13.25 15.23 17.38 13.25 15.02 15.79

ED10 9.48 11.13 8.57 9.69 11.90 11.96

ED25 6.52 7.89 8.98 6.09 7.11 8.02

ED40 6.56 6.75 12.17 6.69 5.78 6.46

120

Total 9.35 10.76 13.38 9.36 10.57 10.87

ED10 6.73 7.90 6.14 6.93 8.52 8.02

ED25 4.55 5.58 6.96 4.24 4.92 5.63

ED40 4.63 4.70 9.64 4.66 3.88 4.69

vidual RMSEs are quite similar. For example, when ed25, ed50, and ed75

are the targets, the standard error between the resulting total RMSEs is

0.12 for n = 30; when ed10, ed25, and ed40 are the targets, the standard

error between the resulting total RMSEs is 0.26 for n = 30.

49



3.4. Simulation studies

3.4.3 Performance comparison when the response model is

mis-specified

In applications, the dose–response relationship is unknown. In this section,

we consider the case where the observed response curve is mis-specified.

Specifically, we consider the case where the observed dose–response rela-

tionship is logistic but the true model is probit. Thus, we generate data

according to the probit model,

probit(π) = Φ−1(π) = −6.265 + 0.055x (3.8)

where Φ(·) is the cumulative distribution function of the standard normal

distribution

Φ(z) =
1√
2π

∫ z

−∞
exp{−1

2
x2}dx.

Note that under model (3.8), we have

edγ =
Φ−1(γ/100)− α

β
.

Under this model, ed25 = 102, ed50 = 114, and ed75 = 127. The dose–

response curve is assumed to be model (3.7), and the simulation is otherwise

identical to that in the last section. The results are presented in Tables 5.3

and 5.4. For ed25–ed75, we set ed50 as the target for the up-and-down

design. For ed10–ed40, we target each level separately, as before.

With the same regression coefficients, the probit model has a steeper

slope in the range ed25–ed75 compared with the logistic model. The se-

quential designs seem to have some ability to recover from the mis-specified
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3.4. Simulation studies

Table 3.3: Simulated RMSEs under probit mis-specified as logistic
targeting ED range 25–75.

n ED-design Two-stage D Up-and-down D-optimal

30

Total 10.08 10.59 11.29 18.93

ED25 6.25 6.33 6.70 11.45

ED50 4.86 5.36 5.03 10.20

ED75 6.23 6.59 7.57 11.09

60

Total 7.16 7.46 7.63 13.98

ED25 4.53 4.56 4.71 8.23

ED50 3.38 3.76 3.46 7.50

ED75 4.39 4.55 4.90 8.46

120

Total 5.00 5.05 5.39 9.13

ED25 3.09 3.09 3.38 5.47

ED50 2.38 2.54 2.43 4.88

ED75 3.13 3.09 3.42 5.44

model, and their RMSEs are hence lower than those in the last section. Our

ED-design clearly has the best overall performance in both ranges. The

up-and-down design again has good performance at the target ed level but

poorer performance overall. Targeting ed25 achieves the best trade-off.

Both the logistic and probit models are symmetric in the ed levels: edγ

+ ed(100− γ) = 2 × ed50 for any γ ∈ (0, 100).

In the following example, we generate data according to the model

logit
[
π(x)

]
= −11.95 + 1.12

√
x, (3.9)
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3.4. Simulation studies

Table 3.4: Simulated RMSEs under probit mis-specified as logistic
targeting ED range 10–40.

n ED-design Two-stage D
Up-and-down

D-optimal
Target
ED10

Target
ED25

Target
ED40

30

Total 11.16 12.53 14.54 11.62 11.81 20.76

ED10 7.80 9.19 6.96 7.55 8.82 13.81

ED25 5.59 6.46 7.84 5.92 5.87 11.46

ED40 5.69 5.57 10.07 6.56 5.24 10.44

60

Total 7.62 8.65 10.73 8.03 8.45 14.93

ED10 5.34 6.41 4.84 5.57 6.38 9.88

ED25 3.78 4.44 5.71 3.99 4.21 8.23

ED40 3.90 3.74 7.68 4.20 3.59 7.58

120

Total 5.30 5.84 7.70 5.56 5.94 9.85

ED10 3.76 4.32 3.53 3.83 4.41 6.51

ED25 2.59 3.01 4.14 2.79 3.02 5.47

ED40 2.69 2.55 5.45 2.91 2.59 4.98

but we again analyze the data under model (3.7). We choose the above

parameter values so that the corresponding ed levels (i.e., ed25, ed50, and

ed75) roughly match the ed levels derived from model (3.7). Note that

under model (3.9),

ξj =
[ logit(π)− α

β

]2
.

Under this model, ed25 = 94, ed50 = 114, and ed75= 136. As discussed
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3.4. Simulation studies

in Section 2.6, for the first stage, we use a grid of K = 7 doses:

Ω = (84, 94, 104, 114, 124, 134, 144).

The subsequent dose x is chosen to minimize (3.2).

In this simulation, we first consider the situation where the lower ed lev-

els are of interest, choosing ed10, ed25, and ed40 as the targets. For the

biased-coin up-and-down design, we select ed25 as the target with the ini-

tial dose level at x2 = 94. This choice gives the best performance. The

simulation is repeated for ed25, ed50, and ed75. The results are given in

Tables 3.5 and 3.6.

The results show that our ED-design has a lower total RMSE when the

lower ed levels are of interest. It helps to improve efficiency over the whole

range of interest and is particularly efficient at ed10. When the middle

ed levels are of interest, the ED-design remains competitive, and none of

the three designs is a clear winner.
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3.5. Limiting design as n increases

Table 3.5: Simulated RMSEs under the mis-specified logistic model

n ED-design Two-stage D Up-down D-optimal

30

Total 16.47 19.22 17.68 24.40

ED10 11.61 13.94 11.76 18.14

ED25 8.13 10.00 8.64 12.55

ED40 8.39 8.68 9.99 10.43

60

Total 12.33 14.57 12.76 16.53

ED10 8.82 10.75 8.89 12.52

ED25 5.88 7.49 6.06 8.34

ED40 6.28 6.39 6.88 6.87

120

Total 8.87 10.29 9.29 11.57

ED10 6.17 7.39 6.44 8.65

ED25 4.20 5.27 4.46 5.84

ED40 4.80 4.86 4.99 4.99

3.5 Limiting design as n increases

We have so far focused on the performance of the ED-design. Recall that a

design for a binary dose–response experiment is equivalently a probability

distribution on the design space or dose range. The D-optimal design is

known to be a two-support-point design at ed17.6 and ed82.4 under the

logistic regression model. Because of its sequential nature, the ED-design

has many more support points. When n goes to infinity, it is possible that

the limiting distribution has two support points.

We simulated the ED-design for two scenarios with n = 5000, first tar-
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3.5. Limiting design as n increases

Table 3.6: Simulated RMSEs under the mis-specified logistic model

n ED-design Two-stage D Up-down D-optimal

30

Total 17.53 17.56 19.12 20.29

ED25 10.23 10.00 10.70 12.55

ED50 8.06 8.63 8.54 10.02

ED75 11.72 11.56 13.35 12.41

60

Total 13.18 12.83 13.58 13.55

ED25 7.82 7.49 7.53 8.34

ED50 5.99 6.28 5.81 6.61

ED75 8.76 8.32 9.69 8.40

120

Total 9.26 9.61 9.41 9.49

ED25 5.36 5.27 5.55 5.84

ED50 4.36 4.93 4.01 4.83

ED75 6.16 6.35 6.45 5.70

geting ed25, ed50, ed75 and then ed10, ed25, ed40. In the first scenario

the observed and true response curves agree and are logistic. In the second

scenario the observed dose–response model is logistic and the true model is

probit. The resulting histograms are given in Figures 3.1 and 3.2. There are

clear indications that in both scenarios, the limiting distribution is binomial

around ed20 and ed80 when the target ed levels are ed25, ed50, and ed75.

We hope to prove this in the future.
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3.5. Limiting design as n increases

(a)

0
50

0
15

00
25

00

1 6 11 21 36 56 76 91 96

(b)

0
50

0
15

00
25

00

1 6 11 22 36 51 66 80 91 96

Figure 3.1: Histogram of the ED-design for (a) estimating ed25, ed50, and
ed75 when the response curve is correctly specified as logistic; (b) estimat-
ing ed25, ed50, and ed75 when the response is mis-specified; The x-axes
correspond to the ed levels.
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3.5. Limiting design as n increases

(c)
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Figure 3.2: Histogram of the ED-design for (c) estimating ed10, ed25, and
ed40 when the response curve is correctly specified as logistic, and (d) es-
timating ed10, ed25, and ed40 when the response is mis-specified. The
x-axes correspond to the ed levels.

57



3.6. Concluding remarks

3.6 Concluding remarks

In dose–response experiments, there may be insufficient or inaccurate knowl-

edge of the dose–response curve for the dose levels to be chosen properly.

Dose–response information gathered from such an experiment is often unre-

liable.

We have therefore proposed a two-stage sequential ED-design for such

experiments that unitize a second stage sequential experiment to compensate

for the scarcity or inaccuracy of the dose–response information in the first

stage experiment.

Our design simultaneously targets several ed levels of the underlying

dose–response curve. We propose that the dose–response relationship can

be well described by accurately estimating several ed levels simultaneously.

Simulations are conducted to investigate the performance of the proposed

design under various scenarios. They are designed to mimic a real dose–

response experiment with the goal to estimate the unknown dose–response

curve over a wide dose range. Simulations show that in general our design

is more robust and compares favourably with existing designs.

Although the commonly used logistic and probit models are convenient

summaries of the dose–response relationship, they can be too restrictive.

Our ED-design has a natural extension to more complex models. This will

be seen in the next chapter.
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3.7. R-code for the ED-design and simulation

3.7 R-code for the ED-design and simulation

# define function

q.logit <- function (x) {

p = (logit(x) - alpha ) / beta

return (p)

}

q.probit <- function (x) {

p = (qnorm(x) - alpha ) / beta

return (p)

}

logit <-function(p) log(p/(1-p))

g <- function(x, alpha, beta) alpha + beta*x

l <- function(g) exp(g)/(1+exp(g))

p <- function(x, alpha, beta) l(g(x, alpha, beta))

# Function f.fisher() computes the fisher information matrix

f.fisher <- function(x) {

a <- alpha_hat + beta_hat * x

fisher <- matrix(c(sum(exp(a)/(1+exp(a))^2),

sum(x*exp(a)/(1+exp(a))^2),

sum(x*exp(a)/(1+exp(a))^2),

sum(x^2*exp(a)/(1+exp(a))^2)), 2, 2)

return(fisher)
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3.7. R-code for the ED-design and simulation

}

# function f.dose() selects the next dose at the second stage

f.dose <- function (x)

{

a.sel <- alpha_hat + beta_hat * x

fisher.sel <- fisher + matrix(c(exp(a.sel)/(1+exp(a.sel))^2,

x*exp(a.sel)/(1+exp(a.sel))^2,

x*exp(a.sel)/(1+exp(a.sel))^2,

x^2*exp(a.sel)/(1+exp(a.sel))^2), 2, 2)

cov.sel <- solve(fisher.sel)

v00.sel <- cov.sel[1,1]

v01.sel <- cov.sel[1,2]

v11.sel <- cov.sel[2,2]

# variane

var1.sel <- (v00.sel + 2*v01.sel*mu_hat1 + v11.sel*mu_hat1^2) / beta_hat ^ 2

var2.sel <- (v00.sel + 2*v01.sel*mu_hat2 + v11.sel*mu_hat2^2) / beta_hat ^ 2

var3.sel <- (v00.sel + 2*v01.sel*mu_hat3 + v11.sel*mu_hat3^2) / beta_hat ^ 2

sum.se <- var1.sel + var2.sel + var3.sel

return(sum.se)

}

# initial design

n1 <- 7
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3.7. R-code for the ED-design and simulation

delta <- (max-min)/(n1+1)

c <- seq (from = 1, to = n1, by = 1)

x1 <- min + delta * c[1]

x2 <- min + delta * c[2]

x3 <- min + delta * c[3]

x4 <- min + delta * c[4]

x5 <- min + delta * c[5]

x6 <- min + delta * c[6]

x7 <- min + delta * c[7]

dose.initial <- c(x1, x2, x3, x4, x5, x6, x7)

# proposed.R Function

# add two pseudo points on each boundary point

# ensure the existence of MLE

y_pes1 = 1

y_pes2 = 0

x_pes1 = (logit (0.01) - alpha) / beta

x_pes2 = (logit (0.99) - alpha) / beta

y_pes3 = 0

y_pes4 = 1

x_pes3 = (logit (0.01) - alpha) / beta

x_pes4 = (logit (0.99) - alpha) / beta

for (k in 1:m)
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3.7. R-code for the ED-design and simulation

{

# change with different response models

yhat <- rbinom(length(dose.initial), 1, p(dose.initial, alpha, beta))

data <- data.frame(rbind(cbind (y_pes1, x_pes1), cbind (y_pes2, x_pes2),

cbind (y_pes3, x_pes3), cbind (y_pes4, x_pes4),

cbind (yhat, dose.initial)))

names(data)[1] <- paste("y")

names(data)[2] <- paste("x")

# weight for the initial experiment

weight <- c(0.01, 0.01, 0.99, 0.99, rep (1, 7))

fit <- glm(y ~ x, weights = weight, data = data, family = binomial)

alpha_hat <- fit$coef[[1]]

beta_hat <- fit$coef[[2]]

r <- dose.p (fit, p = ed)

mu_hat1 <- r[[1]]

mu_hat2 <- r[[2]]

mu_hat3 <- r[[3]]

# Second stage

# Select the next dose level

for (j in 1:(n-7))

{

w <- c(0.01, 0.01, 0.99, 0.99, rep (1, 7+j-1)) # weight

# calculate fisher information
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3.7. R-code for the ED-design and simulation

x <- data $ x

a <- alpha_hat + beta_hat * x

fisher <- matrix(c(sum(w*exp(a) / (1+exp(a))^2),

sum(w*x*exp(a) / (1+exp(a))^2),

sum(w*x*exp(a) / (1+exp(a))^2),

sum(w*x^2*exp(a)/ (1+exp(a))^2)), 2, 2)

# choose the next dosage

for (i in 1:length(t))

{

sum[i] <- f.dose(t[i])

}

opt <- t[which(sum == min (sum))]

# change with different response models

prob <- p(opt, alpha, beta)

y <- rbinom (1, 1, prob)

data <- rbind (data, data.frame (y, x = opt))

weight_opt <- c(0.01, 0.01, 0.99, 0.99, rep (1, 7 + j))

fit <- glm(y ~ x, data, weights = weight_opt, family = binomial)

alpha_hat <- fit$coef[[1]]

beta_hat <- fit$coef[[2]]

mu_hat1 <- r[[1]]

mu_hat2 <- r[[2]]
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3.7. R-code for the ED-design and simulation

mu_hat3 <- r[[3]]

}

weight_final <- c(0.01, 0.01, 0.99, 0.99, rep (1, n))

fit <- glm(as.factor(y) ~ x, data = data,

weights = weight_final, family = binomial)

r <- dose.p (fit, p = ed)

mu_temp1[k] <- r[[1]]

mu_temp2[k] <- r[[2]]

mu_temp3[k] <- r[[3]]

mu_temp [k, ] <- c(mu_temp1[k], mu_temp2[k], mu_temp3[k])

diff1[k] <- (mu_temp1[k] - mu1) ^ 2

diff2[k] <- (mu_temp2[k] - mu2) ^ 2

diff3[k] <- (mu_temp3[k] - mu3) ^ 2

diff[k] <- diff1[k] + diff2[k] + diff3[k]

datatotal[, 2*k -1] <- c(data[, 1])

datatotal[, 2*k] <- c(data[, 2])

print(k)

}

# General settings

rm(list=ls())

graphics.off()

library(stats)

library(MASS)
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3.7. R-code for the ED-design and simulation

library(logistf)

n <- 30

m <- 1000

alpha <- -6.2647

min <- 74

max <- 154

ed <- c(0.25, 0.50, 0.75)

a1 <- (logit(0.01)-alpha)/beta

a2 <- (logit(0.99)-alpha)/beta

t <- seq(from = a1, to = a2, by = 5)

mu1 <- (logit (ed[1]) - alpha) / beta

mu2 <- (logit (ed[2]) - alpha) / beta

mu3 <- (logit (ed[3]) - alpha) / beta

mu <- c(mu1, mu2, mu3)

# define objects

diff1 <- rep (0, m)

diff2 <- rep (0, m)

diff3 <- rep (0, m)

diff <- rep (0, m)

mu_temp1 <- rep (0, m)

mu_temp2 <- rep (0, m)

mu_temp3 <- rep (0, m)

mu_hat1 <- rep (0, m)

mu_hat2 <- rep (0, m)
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3.7. R-code for the ED-design and simulation

mu_hat3 <- rep (0, m)

sum <- rep(0, length(t))

# main part

# proposed two-stage

source("initialDesign.R")

source("proposed.R")

# outputs

mse1 <- mean(diff1)

mse2 <- mean(diff2)

mse3 <- mean(diff3)

mse <- mean(diff) #average mse

sqrt(c(mse1, mse2, mse3, mse))
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Chapter 4

ED-design under the

Three-parameter Logistic

Model

In the last chapter, we have explored the two-stage sequential ED-design

under the logistic and probit models. Simulation studies show the ED-design

is more robust and compares favourably with existing designs. Although the

commonly used logistic and probit models are convenient summaries of the

dose–response relationship, they can be too restrictive in applications. Our

ED-design has a natural extension to more complex models, and we will

explore this in this chapter.

4.1 Problem description

Naturally, if the model is mis-specified in an application, the optimal design

is then misguided, and the resulting data analyses may cause an unreliable

estimation of the ed levels. One way to lower this risk is to design the ex-

periment that targets an accurate estimation of a range of ed levels, instead
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4.1. Problem description

of a single median dose level or model parameters as we discussed in the last

chapter.

Another apparent approach to lower the risk of model misspecification

is to apply a more flexible and hence more complex dose–response model.

The choice of such a model invariably reflects a trade-off between the model

flexibility and inference efficiency. A nonparametric model has ultimate flex-

ibility, and therefore is free from the risk of model misspecification. How-

ever, it likely needs more trials to achieve the same estimation precision

compared with the analyses under approximately valid parametric model

assumptions. Commonly used logistic or probit models are simple and have

good mathematical and statistical properties. They are satisfactory in many

applications. Nevertheless, their model assumptions do impose some severe

restrictions on the dose–response relationship. Hence, a mildly more com-

plex model can be useful to lower the risk of model misspecification if it does

not complicate the issues related to optimal designs and data analyses, as

well as maintaining good efficiency in estimating the ed levels.

In this chapter, we show that the three-parameter logistic regression

model goes some distance in this direction. We investigate the effectiveness

of the sequential ED-design, the D-optimal design, and the up-and-down

design under this model, and develop an effective model fitting strategy. We

develop an easy way to implement an iterative numerical algorithm with

guaranteed convergence for computing the maximum likelihood estimation

of the model parameters. The sequential ED-design can be implemented

after some laborious but simple mathematical derivations. Although we have

yet to generate any theory on its D-optimal designs, a numerical procedure
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4.2. Three-parameter logistic model

via the well-developed vertex direction method (VDM) works well.

Simulation studies show that the combination of the proposed model and

the data analysis strategy performs well. When the logistic model is correct,

applying the more complex model suffers hardly any efficiency loss. When

the three-parameter model holds but the logistic model is violated, the new

approach is more efficient. Our research is a useful addition to the toolbox

of the dose–response experiment.

4.2 Three-parameter logistic model

Statisticians and scientists are keenly aware that both the logistic and probit

models can be poor approximations of the true dose–response relationship

in an application. A more flexible model can be advantageous if it does not

cause complex issues. The three-parameter logistic dose–response model

introduced in Chapter 2 ideally meets this demand. El-Saidi (1993) have

already proposed the use of this model for the dose–response relationship.

The three-parameter logistic regression model assumes that

logit(πλ(x)) = ln
{ πλ(x)

1− πλ(x)

}
= α+ βx. (4.1)

We require λ > 0 to ensure πλ(x) is between 0 and 1, and do not place

restrictions on α and β.

We note that when λ = 1, the three-parameter model becomes the com-

monly used logistic model. In this case, for any γ ∈ (0, 100), the model
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4.3. Maximum likelihood estimation

satisfies

edγ + ed(100− γ) = −2α

β

assuming β 6= 0. Such a restriction is hard to justify in applications.

Introduction of parameter λ helps to soften this restriction without over-

complicating the system. Under this model, the effective dose level at γ is

given by

edγ =
logit

(
(γ/100

)λ
)− α

β
. (4.2)

An explicit expression of dose–response relationship is

π(x) = P{Y = 1|X = x} =
{ exp(α+ βx)

1 + exp(α+ βx)

}1/λ
. (4.3)

As discussed in previous chapters, many sequential designs, including the

ED-design, contain a step to update the estimation of the model parameters.

The maximum likelihood estimate is a common choice. For this reason, we

investigate the problem of parameter estimation via maximum likelihood in

the next Section.

4.3 Maximum likelihood estimation

Let (xi, yi) : i = 1, . . . , n be observations from a dose–response experiment,

and assume model (4.1). Under commonly used designs, the log-likelihood

based on this data set is given by

`n(θ) =
n∑
i=1

{
yi ln

(
π(xi)

)
+ (1− yi) ln

(
1− π(xi)

)}
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4.3. Maximum likelihood estimation

where θ = (α, β, λ)τ .

When λ = 1 is fixed, the model becomes the usual logistic model, and

`n(θ) is known to be concave in α and β. The concavity permits a simple

numerical solution to the maximum likelihood estimate of α and β. We

remark that when xi’s corresponding to y = 1 is completely separated from

those corresponding to y = 0, the maximum point β̂ = ±∞. The problem

can be easily addressed by adding some informative pseudo observations as

suggested in Chapter 3. This technique will also be used for the procedure

being developed.

After some investigation, we find that given any value of λ, the log

likelihood remains concave in α and β. Given any α and β, the log-likelihood

is concave in λ. Because of these properties, the following two-loop iterative

numerical algorithm works nicely. We propose to start the algorithm with

the initial value λ(0) = 1, and set k = 0. Let ε be a small positive value such

as 10−5.

1. Let

`(k)
n (α, β) = `n(α, β, λ(k)).

Use an iterative algorithm to solve

(α(k+1), β(k+1)) = arg maxα,β`
(k)
n (α, β).

2. Define

ai =
exp(α(k+1) + β(k+1)xi)

1 + exp(α(k+1) + β(k+1)xi)
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4.3. Maximum likelihood estimation

and

`(k)
n (λ) =

n∑
i=1

{(1− yi) ln(1− aλi ) + λyi ln(ai)}.

Use an iterative algorithm to solve

λ(k+1) = arg max
λ

`(k)
n (λ).

If `n(θ(k+1)) − `n(θ(k)) ≤ ε, stop and report θ(k+1) and `n(θ(k+1)).

Otherwise, set k = k + 1 and go back to Step 1.

In the above presentation, we have used `
(k)
n (α, β) and `

(k)
n (λ) as two

different functions. We pointed out that the objective functions in both

loops are concave that guarantee the convergence of any sensible iterative

procedures that we may use in these two steps, and hence of the entire

algorithm. We state the concave conclusions in two lemmas, and start with

the simpler one.

Lemma: Function `
(k)
n (λ) in Step 2 is concave in λ given any data set (xi, yi)

for i = 1, 2, . . . , n with n ≥ 1.

Proof: To prove the concavity, it suffices to show that the second derivative

of this function is always non-negative. Some straightforward algebra shows

that

∂`
(k)
n (λ)

∂λ
=

n∑
i=1

(yi − aλi )(ln ai)

1− aλi

and subsequently,

∂2`
(k)
n (λ)

∂λ2
=

n∑
i=1

aλi (yi − 1)(ln ai)
2

(1− aλi )2
≤ 0
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4.3. Maximum likelihood estimation

since yi ≤ 1 for all i. Therefore, the function is concave as claimed.

Lemma: Given any data set (xi, yi) for i = 1, 2, . . . , n with n ≥ 1, the ob-

jective function `
(k)
n (α, β) in Step 1 is concave in α, β, under the assumption

λ > 0.

Proof: For notational simplicity, we will drop the superscript (k) and sub-

script n from `
(k)
n (α, β), and denote it simply as `(α, β) in this proof. We

start working on the case where n = 1 so that we further drop summation

and subindex i.

To prove this result, it suffices to show that the Hessian matrix

H = −


∂2`
∂α2

∂2`
∂α∂β

∂2`
∂α∂β

∂2`
∂β2


is positive definite. For this purpose, we note that

∂`

∂α
=
{ y

π(x)
− (1− y)

1− π(x)

}π(x)

∂α
=

(y − π(x))(1− πλ)

λ(1− π(x))
.

and

∂2`

∂α2
=

{(y − 1)(1− πλ(x))

λ(1− π(x))2
− λπλ−1(y − π(x))

1− π(x)

}π(x)

∂α

=
1

λ2
π(x)(1− πλ(x))

{(y − 1)(1− πλ(x))

(1− π(x))2
− λπλ−1(y − π(x))

1− π(x)

}
.

We first show that the above second derivative is less than or equal to

0. Note that the first factor in ∂2`/∂α2 is nonnegative. So we only need to
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4.3. Maximum likelihood estimation

determine the sign of the second factor. We consider the cases of y = 1 and

y = 0 separately.

(a) When y = 1, the first term in the second factor vanishes, and the

second term is clearly less than or equal to 0.

(b) When y = 0, the second factor becomes

λπλ(1− π(x))− (1− πλ(x))

(1− πλ(x))2
.

Denote its numerator as f(λ) whose derivative is given by

f ′(λ) = πλ(1− π(x)) + λπλ(1− π(x)) lnπ(x) + πλ(x) lnπ(x)

= πλ(x){1− π(x) + (1 + λ− λπ(x)) lnπ(x)}

≤ πλ(x){lnπ(x) + (1 + λ− λπ(x)) lnπ(x)}

= λπλ(x)(1− π(x)) lnπ(x) ≤ 0

where we have made use of the inequality 1 − π(x) ≤ − lnπ(x). Combined

with the fact that f(0) = 0, we find f(λ) ≤ 0 for all λ ≥ 0. This further

implies ∂2`/∂α2 ≤ 0 when y = 0.

Combining (a) and (b), noticing that y is either 0 or 1, we formally state

that for all λ > 0,

∂2`

∂α2
≤ 0.

To finish the proof, we note that

∂2`

∂α∂β
= x

∂2`

∂α2
;

∂2`

∂β2
= x2 ∂

2`

∂α2
.
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4.4. Potential designs for the three-parameter logistic model

Therefore, in the sense of being nonnegative definiteness, we find

H = −


∂2`
∂α2

∂2`
∂α∂β

∂2`
∂α∂β

∂2`
∂β2

 = − ∂
2`

∂α2


1 x

x x2

 ≥ 0.

When the design contains n dose levels, the Hessian matrix is the sum of n

nonnegative definite matrices. Hence it remains nonnegative definite. This

completes the proof.

By these two lemmas, `n(θ(k)) is an increasing sequence in k with an

upper bound 0. Hence, `n(θ(k)) has a finite limit as k → ∞. The corre-

sponding θ(k) is almost guaranteed to converge to at least a local maximum

point. Rigorous discussion on global maximum can be tedious and distrac-

tive. We do not pursue the issue in this dissertation.

4.4 Potential designs for the three-parameter

logistic model

The choice of a new model does not lead to new design issues, but some ad-

ditional technical work. All optimality criteria introduced previously remain

effective under the three-parameter logistic model (4.1). We merely work on

existing procedures under the new model. In the following, we selectively

discuss some particulars.
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4.4. Potential designs for the three-parameter logistic model

4.4.1 Up-and-down design

The up-and-down design and its variations do not require a parametric

model on the dose–response relationship π(x). The design is used for the

purpose of accurately estimating a specific effective dose level edγ, and com-

monly the target is γ = 50. The design requires a user to choose before hand

a grid of dose levels

Ω = {x1, . . . , xK} (4.4)

for some K based on prior information on π(x) so that x1 < edγ < xK .

The experiment starts with assigning a stimulus at level xj in Ω to the

subject. If the subject responds, the level is moved down to xj−1, and

otherwise up to xj+1. Special rules are needed if xj is on the boundary

of Ω. Variations are needed such as staying at xj with a specific positive

probability related to the target edγ. A nonparametric estimate of edγ may

be used. Our experience shows that such estimators are not efficient. For

more informative comparison, we obtain the maximum likelihood estimate

(MLE) under the assumed model, and estimate edγ in the simulation, even if

the data are obtained under the up-and-down design in this chapter. Clearly,

introducing the three-parameter model leads to no new issues.

4.4.2 D-optimal design

As pointed out in previous chapters, the variance-covariance matrix of the

MLE of the parameter θ is well approximated by I−1
n (θ) when the number of

runs n is large, where In(θ) is the Fisher information. A D-optimal design

is a design which maximizes the determinant of In(θ). As far as we are
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4.4. Potential designs for the three-parameter logistic model

aware, there have been no direct results on the D-optimal design for the

three-parameter logistic model. In this section, we do not aim to give a

theoretical solution to the D-optimal design for the three-parameter logistic

model. Rather, we provide a numerical approach to get approximate D-

optimal designs. Solutions to the D-optimal designs will be used in our

simulation studies.

Sitter and Wu (1993) showed that under the (two-parameter) logistic

response model, Ψ∗ is a uniform distribution on ed17.6 and ed82.4; and

under the probit model, Ψ∗ is a uniform distribution on ed12.8 and ed87.2.

We do not have a comparable theory for the D-optimal design under the

new model but point out that a vertex direction method (VDM) remains

effective for numerical solutions. This method will be illustrated in the next

section.

We implemented VDM as an R function for the three-parameter logistic

model (4.1). The resulting D-optimal design for α = −6.265, β = 0.055 and

λ = 0.5 is a uniform distribution on ed2, ed35 and ed91. The resulting D-

optimal design for α = −14.148, β = 0.1 and λ = 2 is a uniform distribution

on ed6, ed55, and ed95. These two designs are used in simulations for the

purpose of comparison. We also implemented VDM for the three-parameter

probit model. Under the three-parameter logistic and probit models, design

points and design weights change with different λ values. A number of λ

values are given in Tables 4.1 and 4.2. For more discussions of VDM, we

refer to Fedorov (1972), Wynn (1972), and Wu (1978).
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4.4. Potential designs for the three-parameter logistic model

Table 4.1: D-optimal design under three-parameter Logistic model.

Model Three-parameter Logistic Model

α = −6.265, β = 0.055 α = −14.148, β = 0.1

λ = 0.5
ED2 ED35 ED91 ED2 ED35 ED91

0.33 0.33 0.33 0.33 0.33 0.33

λ = 0.75
ED3 ED39 ED92 ED3 ED39 ED92

0.33 0.33 0.33 0.33 0.33 0.33

λ = 1
ED3 ED43 ED93 ED3 ED43 ED93

0.33 0.33 0.33 0.33 0.33 0.33

λ = 1.25
ED4 ED46 ED94 ED4 ED46 ED94

0.33 0.33 0.33 0.33 0.33 0.33

λ = 1.5
ED5 ED49 ED94 ED5 ED49 ED94

0.33 0.33 0.33 0.33 0.33 0.33

λ = 1.75
ED5 ED52 ED95 ED5 ED52 ED95

0.33 0.33 0.33 0.33 0.33 0.33

λ = 2
ED6 ED55 ED95 ED6 ED55 ED95

0.33 0.33 0.33 0.33 0.33 0.33

4.4.3 Vertex Direction Method(VDM)

A number of algorithms have been proposed for numerical computation of

the D-optimal design. In this dissertation, we apply a well-known iterative

strategy, vertex direction method (see Fedorov (1972), Wynn (1972), and

Wu (1978)) to numerically compute the D-optimal design under the three-

parameter logistic regression model. Let’s consider a finite design space

X of permissible dose levels, x1, . . . , xk. A design is a set of dose levels

x1, . . . , xk together with how often they are applied: m1, . . . ,mk, ignoring
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4.4. Potential designs for the three-parameter logistic model

Table 4.2: D-optimal design under the three-parameter probit model.

Model three-parameter probit Model

α = −6.265, β = 0.055 α = −14.148, β = 0.1

λ = 0.5
ED4 ED53 ED97 ED4 ED53 ED97

0.33 0.33 0.33 0.33 0.33 0.33

λ = 0.75
ED4 ED55 ED98 ED4 ED55 ED98

0.33 0.33 0.33 0.33 0.33 0.33

λ = 1
ED4 ED57 ED98 ED4 ED57 ED98

0.33 0.33 0.33 0.33 0.33 0.33

λ = 1.25
ED5 ED59 ED98 ED5 ED59 ED98

0.33 0.33 0.33 0.33 0.33 0.33

λ = 1.5
ED5 ED60 ED98 ED5 ED60 ED98

0.33 0.33 0.33 0.33 0.33 0.33

λ = 1.75
ED5 ED61 ED98 ED5 ED61 ED98

0.33 0.33 0.33 0.33 0.33 0.33

λ = 2
ED5 ED62 ED98 ED5 ED62 ED98

0.33 0.33 0.33 0.33 0.33 0.33

the order of the runs. This design is characterize by a distribution Ψ on

X whose probability mass function is given by ψ(xj) = mj/n. To reflect

the dependence on Ψ, we denote the Fisher information as I(Ψ) here. A Ψ

degenerates at x is denoted as δx, and we use I(x) for I(δx). It is seen that

I(Ψ) =

∫
X
I(x)dΨ(x).
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4.4. Potential designs for the three-parameter logistic model

The popular D-optimal design is defined to be

Ψ∗ = arg max{ln[det(I(Ψ))]}.

Define the directional derivative

D(Ψ;x) = lim
ε→0+

ln[det(I((1− ε)Ψ) + εδx)]− ln[det(I(Ψ))]

ε
.

It is known that Ψ∗ is the D-optimal design if and only if D(Ψ∗;x) ≤ 0

for any x. Starting from an initial design Ψ = Ψ(0), VDM searches for

x∗ = arg maxD(Ψ;x) and

ε∗ = arg max ln[det(I((1− ε)Ψ + εδx∗)}.

Iterate to obtain Ψ(k), k = 1, 2, . . . until the determinant stops increasing.

In particular, for the three-parameter logistic regression model (4.1),

D(Ψ;x) = tr(I−1(Ψ)I(x))− 3

where the constant 3 is the dimension of I. Additional details for the explicit

expression of I will be given at the end of this section.

We implemented VDM as an R function for the three-parameter logistic

model (4.1). The steps of VDM applied in our simulations are as follows. In

the experiment, suppose mi patients are assigned to doses xi, i = 1, . . . , k,

and
∑k

i=1mi = n. Here k is the number of distinct dose levels. The corre-
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4.4. Potential designs for the three-parameter logistic model

sponding experimental design is

ξ =


x1 x2 · · · xk

m1 m2 · · · mk


Denote wj = mj/n as the design weight for xj , j = 1, . . . , k. Let

w = (w1, . . . , wk) ∈ Ω = {w :

k∑
i=1

wi = 1, wi ≥ 1}

be the vector of design weights. Give a parametric model, the goal of the

D-optimal design is to find an allocation of weights, w1, . . . , wk, to the de-

sign points, x1, . . . , xk, such that the determinant of the Fisher information

matrix of the model parameters is maximized.

1. Choose an initial design

ξ =


x1 x2 · · · xk

w
(1)
1 w

(1)
2 · · · w

(1)
k


In the simulation, we choose to have equal weights at all n design

points. Let n = 200. The dose level xi is chosen based on the assumed

dose–response model used in the simulation. Then the initial design

we choose is

ξ =


1 2 · · · 200

1/200 1/200 · · · 1/200
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4.5. Two-stage sequential ED-design

2. For the current design, w
(t)
1 , w

(t)
2 , . . . , w

(t)
k , t = 1, 2, . . . , find the index

imax with the maximum directional derivative, that is,

D(imax, w
(t)) = max1≤i≤nD(i, w(t)).

Then set the new design weight at the (t+ 1)th iteration as

w
(t+1)
i =


(1− δ(t))wi i 6= imax

(1− δ(t))wi + δ(t) i = imax

where

δ(t) =
D(imax, w

(t))/m− 1

D(imax, w(t))− 1
.

Here m = 3 for the three-parameter logistic regression model.

3. Repeat step 2 until

D(i, w(t))−m ≤ ε.

Here ε is a small positive constant.

Each iteration of the vertex directional derivative method moves the weight

w in the direction of a design point at which the directional derivative is the

largest.

4.5 Two-stage sequential ED-design

The D-optimal design as well as many other optimal designs focus on the

precision of the parameter estimation under the assumed model. The form of
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4.5. Two-stage sequential ED-design

the parameter in consideration is generally chosen as the one permitting the

most convenient analytical presentation of the dose–response model. Under

the three-parameter logistic regression model, for instance, one naturally

takes θ = (α, β, λ) as the target parameter. In some applications, we are

more interested in the precise estimation of ed levels. Hence, the proposed

ED-design can be easily applied here.

Let ξ = g(θ), for some smooth function g with gradient function 5g(θ).

The variance of its MLE is approximately

{5gτ (θ)}{I−1(θ)}{5g(θ)} (4.5)

where 5g(θ) is the gradient of g(·). The sequential ED-design aims to

minimize
m∑
j=1

{5gτj (θ)}{I−1(θ)}{5gj(θ)} (4.6)

with ξj = gj(θ) being m selected ed levels. Clearly, this solution depends

on the value of the unknown parameter θ. Hence, a sequential version is

needed.

Suppose the experiment has been carried out at dose levels x1, . . . , xi

with response values y1, . . . , yi. Let θ̂i be the intermediate MLE of θ based

on the data obtained from the first i trials. Let Ii(θ̂i; +x) be the Fisher

information based on the first i trials and the potential (i+ 1)th trial to be

run at dose level x. We choose the next dose level x that minimizes

v(i;x) =
m∑
j=1

{5gτj (θ̂i)}{I−1
i (θ̂i; +x)}{5gj(θ̂i)}. (4.7)
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4.5. Two-stage sequential ED-design

Repeat this rule until i = n.

The sequential ED-design needs an initial set of trials and the corre-

sponding θ̂. We recommend and use a uniform initial design on a set of

dosage Ω = {x1, . . . , xK} for K = 7 with x1 and xK being equally spaced

grids between the perceived ed01 and ed99.

Some algebra for implementation of the ED-design. The numerical

value of v(i;x) can be computed based on the following simple mathematical

results. Denote the single observation log-likelihood as

`(θ) = y lnπ(x) + (1− y) ln
(
1− π(x)

)
.

We have

∂`(x)

∂θ
=

(y − π(x))

π(x)(1− π(x))

∂π(x)

∂θ
.

The contribution of a single trial at dose level x to the Fisher information

matrix is therefore given by

I(θ;x) = E
[ (y − π(x))

π(x)(1− π(x))

]2{∂π(x)

∂θ
}{∂π(x)

∂θ
}τ

=
1

π(x)(1− π(x))
{∂π(x)

∂θ
}{∂π(x)

∂θ
}τ

and ∂π(x)/∂θ have three entries given by

∂π(x)

∂α
= λ−1π(x)(1− πλ(x))

∂π(x)

∂β
= λ−1xπ(x)(1− πλ(x)) = x

∂π(x)

∂α

∂π(x)

∂λ
= −λ−1π(x) lnπ(x).
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Finally, for ξγ = edγ, we have

g(θ; γ) =
logit

(
(γ/100)λ

)
− α

β

Og(θ; γ) = − 1

β

(
1, ξ,− ln(γ/100)

1− (γ/100)λ
)τ
.

These calculations lead to a simple way to evaluate v(i;x) and the numerical

solution to its minimization.

4.6 Simulation studies

We conduct simulation studies to demonstrate several issues related to the

use of the extended three-parameter logistic regression model (4.1) for the

dose–response experiment. We repeat the simulation N = 1000 times for all

model/design combinations. The sample sizes are chosen to be n = 30, 60,

and 120. We choose three effective dose levels each time as the targets for

estimation and obtain their MLEs. Under each model/design setting, we

compute the RMSE of a single ed level as

RMSE(ξ̂j) =

√√√√N−1

N∑
r=1

(ξ̂rj − ξj)2,

where ξ̂rj is the estimate of ξj in the rth repetition. The total RMSE is

computed as

RMSE =

√√√√ 3∑
j=1

RMSE2(ξ̂j).
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Three designs are included in the simulation. One is the up-and-down design

whose implementation does not depend on the model, but a specific target

ed level will be indicated in the summary of the simulation result. We

choose a set of doses Ω = {x1, . . . , x7} with x1 and x7 being equally spaced

grids between the anticipated ed01 and ed99. We simulate on the D-optimal

design and the sequential ED-design, assuming the relevant knowledge of the

dose–response model as discussed in the last section. For the sequential ED-

design, we use a uniform initial design on Ω as specified for the up-and-down

design.

We wish to use simulations to answer several questions related to the

combination of the ED-design and the three-parameter model under the

dose–response experiment.

The first question is how the ED-design fairs. Does it have any advantage

compared with other potential designs under a three-parameter model? As

you will see, the ED-design works very well in this respect.

The second question is whether the use of the three-parameter model

necessary? Based on our simulation, if one focuses on the precision of the

estimation of ed levels over a local region as we did in the last chapter, we

can observe the advantage of employing the correct three-parameter logistic

model.

Finally, if the true dose–response relationship is a two-parameter logistic

model, how much efficiency do we lose by using a more complex three-

parameter logistic? Our simulation shows the loss is very limited or can

hardly be noticed.

We now present our simulation results in three subsequent sections.

86



4.6. Simulation studies

4.6.1 The three-parameter model is both the assumed and

the truth for the dose–response experiment

We generate data according to the three-parameter logistic regression model

(4.1) with α = −6.265, β = 0.055, λ = 0.5, and α = −14.148, β = 0.1,

λ = 2 in two separate simulations. The corresponding dose–response curves

are depicted in Figure 4.1.

The simulations are done for each of the three sets of the targeting dose

levels: (a) ed25, ed50, ed75; (b) ed10, ed25, ed40; and (c) ed60, ed75,

ed90.

The use of the up-and-down design requires us to identify a target

ed level. In our simulation, we always take the middle one as its target.

The ed01 and ed99 values under λ = 0.5 is (74, 211); The ed01 and ed99

values under λ = 2 is (49, 180). These values are used in determining

the first stage design Ω. The simulation results are reported in Tables 4.3

and 4.4.

We take note that the RMSEs under each design decrease when n in-

creases. Their sizes are not dramatically different, but those of the D-optimal

design are higher. The sequential ED-design has the best overall perfor-

mance. The up-and-down design gives the lowest RMSEs for some single

ed level. These are expected as the D-optimality aims at the precise esti-

mation of θ, not ed levels, and the up-and-down design is never intended

for the current purpose: estimating ED levels under a parametric model.

Nevertheless, it is nice to find that the sequential ED-design works well.
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Figure 4.1: Dose–response curves in the simulation
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Table 4.3: Simulated RMSEs under the three-parameter model (α = −6.265, β = 0.055,
λ = 0.5)

Size n = 30 n = 60 n = 120

Design ED Up-down D-opt ED UP-down D-opt ED Up-down D-opt

Total 13.32 16.20 16.82 9.87 10.33 11.96 6.93 7.42 8.44

ED10 8.62 9.39 11.33 6.66 6.79 8.16 4.71 4.97 5.82

ED25 6.78 8.09 9.03 4.78 5.05 6.34 3.23 3.61 4.45

ED40 7.55 10.43 8.54 5.50 5.92 6.02 3.93 4.15 4.19

Total 14.02 15.68 16.97 10.49 10.85 11.95 7.47 7.69 8.46

ED25 8.20 8.00 9.03 6.15 5.83 6.33 4.46 4.38 4.45

ED50 6.72 7.68 8.72 4.83 5.06 6.16 3.48 3.51 4.29

ED75 9.17 11.09 11.42 7.00 7.62 8.05 4.88 5.25 5.77

Total 17.36 21.59 22.27 12.63 13.49 16.01 8.89 9.26 11.61

ED60 9.00 9.08 8.94 6.29 6.01 6.45 4.39 4.24 4.60

ED75 8.69 10.64 11.23 5.92 6.45 8.09 4.07 4.34 5.82

ED90 12.04 16.44 17.03 9.22 10.21 12.21 6.57 7.00 8.93
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Table 4.4: Simulated RMSEs under the three-parameter model (α = −14.148, β = 0.1,
λ = 2)

Size n = 30 n = 60 n = 120

Design ED Up-down D-optimal ED Up-down D-optimal ED Up-down D-optimal

Total 16.76 18.61 21.35 12.26 12.98 15.84 8.92 9.09 11.05

ED10 12.01 12.16 15.58 9.03 9.00 11.63 6.61 6.66 8.22

ED25 8.34 9.44 11.23 5.79 6.38 8.24 4.12 4.45 5.66

ED40 8.21 10.46 9.32 5.93 6.85 6.91 4.35 4.30 4.75

Total 13.05 14.65 16.23 9.36 10.01 11.78 6.76 6.92 8.06

ED25 8.76 8.67 11.23 6.37 6.52 8.24 4.69 4.65 5.66

ED50 6.37 6.32 8.48 4.42 4.42 6.28 3.12 3.25 4.28

ED75 7.28 9.97 8.10 5.25 6.18 5.61 3.74 3.96 3.82

Total 12.32 15.42 16.30 8.67 9.98 11.54 6.23 6.66 8.30

ED60 6.84 7.22 7.93 4.81 4.99 5.77 3.46 3.52 3.89

ED75 6.24 7.63 8.10 4.14 4.96 5.61 2.83 3.27 3.82

ED90 8.12 11.28 11.72 5.90 7.08 8.28 4.35 4.61 6.26
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4.6.2 Effects of fitting a three-parameter model when a

two–parameter logistic model suffices

When the logistic model is appropriate, but a three-parameter model is

assumed in the design and analysis, the results are likely suboptimal. In

this section, we use simulations to examine the degree of the efficiency loss.

We simulate dose–response data from the logistic regression model with two

sets of designs, and analyze the data: one set is under the two-parameter

logistic regression model, and the other set is under the three-parameter

logistic regression model. We only include the D-optimal design and the

sequential ED-design in this simulation. The up-and-down design is not

included, because it does not depend on the model assumption, although

the data analysis could be performed under a model assumption.

In this simulation, we generate data from the two-parameter model:

logit(π(x)) = −6.265 + 0.055x.

The results are presented in Tables 4.5 and 4.6. Table 4.5 is obtained under

the correct two-parameter logistic regression model assumption. The D-

optimal design in this case is a uniform distribution on ed17.6 and ed82.4

which are known to us though not known in applications. Table 4.6 is

obtained under the also correct three-parameter logistic regression model

assumption, though it is more complex than needed.

According to these results, we notice that the use of the ED-design has

advantages compared with the D-optimal design. The simulated RMSEs un-

der the ED-design are always lower than those under the D-optimal design.
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The efficiency gain can be as much as 40%.

In addition, the use of the more complex and necessary three-parameter

model does not hurt the efficiency significantly. In the case of targeting

ed10, ed25, and ed40, the total RMSE increases from 17.93 to 18.36 when

the sample size n = 30. This loss is below 2.4%. The worst case is when

n = 120, the total RMSE increases from 9.35 to 9.88. The loss is below

5.7%.

In comparison, the efficiency of the D-optimal design can be affected

more markedly. In the case when ed60, ed75 and ed90 are targeted with n =

120, the loss is as high as 18%. When n = 30, the use of the more complex

three-parameter logistic regression model makes the D-optimal design more

efficient. This might be due to the fact that the initial design takes up a

large proportion of the number of trials.

Overall speaking, if the ED-design is used, the use of a more than nec-

essary three-parameter logistic regression model does not hurt much of the

efficiency in estimating ed levels.
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Table 4.5: Simulated RMSEs when fitting a simple logistic model when a
two–parameter model suffices.

Fit a Simple Logistic Regression Model

Design ED-design D-optimal design

Size 30 60 120 30 60 120

Total 17.93 13.25 9.35 23.58 15.79 10.87

ED10 12.68 9.48 6.73 17.53 11.96 8.02

ED25 8.93 6.52 4.55 12.15 8.02 5.63

ED40 9.01 6.56 4.63 10.07 6.46 4.69

Total 17.14 12.54 8.74 20.18 12.63 8.87

ED25 10.55 7.80 5.46 12.48 7.70 5.49

ED50 8.12 5.89 4.09 9.89 6.15 4.41

ED75 10.79 7.85 5.46 12.40 7.90 5.39

Total 18.91 13.42 9.40 26.03 15.76 10.58

ED60 9.49 6.64 4.86 9.09 6.45 4.62

ED75 9.39 6.51 4.57 12.87 8.01 5.47

ED90 13.40 9.67 6.63 20.72 11.94 7.79
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Table 4.6: Simulated RMSEs when fitting a three-parameter model when a
two–parameter model suffices.

Fit the three-parameter Logistic Model

Design ED-design D-optimal

Size 30 60 120 30 60 120

Total 18.36 13.63 9.88 23.56 17.50 12.41

ED10 12.30 9.60 7.03 17.29 13.04 9.32

ED25 9.55 6.57 4.68 12.03 8.76 6.18

ED40 9.74 7.10 5.13 10.56 7.72 5.37

Total 17.52 12.33 8.86 19.99 14.52 10.22

ED25 10.64 7.80 5.66 12.03 8.76 6.18

ED50 8.45 5.48 4.04 10.33 7.56 5.23

ED75 11.06 7.81 5.48 12.17 8.77 6.23

Total 19.00 13.48 9.92 23.77 17.25 12.49

ED60 9.77 6.97 5.08 10.57 7.70 5.33

ED75 9.43 6.36 4.51 12.17 8.77 6.23

ED90 13.30 9.64 7.22 17.47 12.70 9.42
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4.6.3 Effects under model misspecification

In this section, we investigate the effect of two kinds of model misspec-

ification. One is when the dose–response relationship satisfies the three-

parameter logistic regression model with λ 6= 1. The other is when the

dose–response relationship is not even a three-parameter logistic model.

In both situations, we compute two sets of RMSEs of ed estimates. One

set is when the design and analysis are done under the three-parameter lo-

gistic regression model assumption; the other set is done under the usual

two-parameter logistic regression model assumption. We wish to demon-

strate that the design and analysis based on the three-parameter logistic

regression model leads to a more accurate estimation of the target ed levels.

For the first kind of model misspecification, we generate data from two

three-parameter models:

logit(πλ(x)) = −6.265 + 0.055x (4.8)

with λ = 0.5, and

logit(πλ(x)) = −14.148 + 0.1x (4.9)

with λ = 2. Under model (4.8), ed25 = 114, ed50 = 130, and ed75 =

148 when λ = 0.5; and under model (4.9), ed25 = 114, ed50 = 130, and

ed75 = 144 when λ = 2. The results are presented in Tables 4.7 and 4.8,

and Tables 4.9 and 4.10 . Tables 4.7 and 4.9 are obtained under the two-

parameter logistic regression model assumption. The D-optimal design in

this case is a uniform distribution on ed17.6 and ed82.4. Tables 4.8 and 4.10
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are obtained under the correct three-parameter logistic regression model

assumption.

According to these results, we notice that the use of the ED-design is

noticeably superior to the D-optimal design in both situations. The simu-

lated RMSEs under the ED-design are always lower than those under the

D-optimal design. The efficiency gain can be as much as 30%.

In addition, the use of the more complex three-parameter model when

data are generated under the three-parameter logistic model gains the effi-

ciency significantly. In the case of λ = 2, targeting ed25, ed50, and ed75,

the total RMSE decreases from 15.57 to 14.02 when the sample size n = 30.

This gain is as much as 11%. Overall speaking, the use of the more com-

plex three-parameter logistic regression model makes the ED-design more

efficient in estimating ed levels.

For the second kind of model misspecification, we generate data from

the three-parameter probit model:

π(x) = Φ1/λ(−6.265 + 0.055x)

with λ = 0.5, and

π(x) = Φ1/λ(−14.148 + 0.1x)

λ = 2. Under this model, ed25 = 114, ed50 = 124, and ed75 = 134 when

λ = 0.5; and ed25 = 86, ed50 = 102, and ed75 = 117 when λ = 2. The

simulation results are presented in Tables 4.11 and 4.12, and Tables 4.13

and 4.14. Tables 4.11 and 4.13 are obtained under the two-parameter lo-

gistic regression model assumption. The D-optimal design in this case is
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Table 4.7: Simulated RMSEs under the three parameter model (α =
−6.265, β = 0.055, λ = 0.5).

Fit a Simple Logistic Regression Model

Design ED-design D-optimal Design

Size 30 60 120 30 60 120

Total 13.87 9.96 7.16 16.62 13.38 11.04

ED10 10.14 7.08 4.99 11.75 9.50 7.77

ED25 6.53 4.74 3.43 8.63 7.15 6.09

ED40 6.86 5.17 3.82 7.97 6.14 4.94

Total 15.57 11.14 7.65 15.72 11.46 8.69

ED25 9.45 6.63 4.30 8.63 7.15 6.09

ED50 6.64 5.06 3.57 8.12 5.82 4.30

ED75 10.44 7.39 5.22 10.34 6.81 4.47

Total 18.98 12.89 8.98 19.80 13.86 10.23

ED60 8.16 5.78 4.23 8.65 5.82 3.90

ED75 8.74 5.90 4.21 10.34 6.81 4.47

ED90 14.73 9.89 6.71 14.50 10.57 8.34
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Table 4.8: Simulated RMSEs under the three-parameter model (α =
−6.265, β = 0.055, λ = 0.5).

Fit the three-parameter Logistic Regression Model

Design ED-design D-optimal Design

Size 30 60 120 30 60 120

Total 13.32 9.87 6.93 16.82 11.96 8.44

ED10 8.62 6.66 4.71 11.33 8.16 5.82

ED25 6.78 4.78 3.23 9.03 6.34 4.45

ED40 7.55 5.50 3.93 8.54 6.02 4.19

Total 14.02 10.49 7.47 16.97 11.95 8.46

ED25 8.20 6.15 4.46 9.03 6.34 4.45

ED50 6.72 4.83 3.48 8.72 6.16 4.29

ED75 9.17 7.00 4.88 11.42 8.05 5.77

Total 17.36 12.63 8.89 22.40 15.83 11.48

ED60 9.00 6.29 4.39 9.33 6.58 4.63

ED75 8.69 5.92 4.07 11.42 8.05 5.77

ED90 12.04 9.22 6.57 16.86 11.94 8.78
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Table 4.9: Simulated RMSEs under the three-parameter model (α =
−14.148, β = 0.1, λ = 2).

Fit a Simple Logistic Regression Model

Design ED-design D-optimal Design

Size 30 60 120 30 60 120

Total 17.43 12.39 8.99 24.82 15.78 12.04

ED10 14.00 9.78 6.98 19.42 12.80 10.33

ED25 7.50 5.40 3.95 12.51 7.47 5.11

ED40 7.19 5.35 4.06 9.07 5.42 3.50

Total 13.80 9.57 6.95 16.25 10.09 6.93

ED25 9.43 6.64 4.76 12.51 7.47 5.11

ED50 5.95 4.25 3.47 7.52 4.69 3.13

ED75 8.14 5.43 3.70 7.13 4.90 3.49

Total 13.06 8.75 6.35 15.63 10.30 7.10

ED60 6.27 4.57 3.49 6.59 4.37 3.06

ED75 6.22 4.08 2.96 7.13 4.90 3.49

ED90 9.63 6.25 4.40 12.25 7.93 5.37
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Table 4.10: Simulated RMSEs under the three-parameter model (α =
−14.148, β = 0.1, λ = 2).

Fit the three-parameter Logistic Regression Model

Design ED-design D-optimal Design

Size 30 60 120 30 60 120

Total 16.76 12.26 8.92 21.35 15.84 11.05

ED10 12.01 9.03 6.61 15.58 11.63 8.22

ED25 8.34 5.79 4.12 11.23 8.24 5.66

ED40 8.21 5.93 4.35 9.32 6.91 4.75

Total 13.05 9.36 6.76 16.23 11.78 8.06

ED25 8.76 6.37 4.69 11.23 8.24 5.66

ED50 6.37 4.42 3.12 8.48 6.28 4.28

ED75 7.28 5.25 3.74 8.10 5.61 3.82

Total 12.32 8.67 6.23 16.30 11.54 8.30

ED60 6.84 4.81 3.46 7.93 5.77 3.89

ED75 6.24 4.14 2.83 8.10 5.61 3.82

ED90 8.12 5.90 4.35 11.72 8.28 6.26
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a uniform distribution on ed12.8 and ed87.2. Tables 4.12 and 4.14 are

obtained under the three-parameter logistic regression model assumption.

Both model assumptions are incorrect. However, we wish to demonstrate

the use of the three-parameter logistic model makes the ED-design more

efficient in estimating ed levels.

According to the simulation result, we notice that the use of the ED-

design is noticeably superior to the D-optimal design in both situations. The

simulated RMSEs under the ED-design are always lower than those under

the D-optimal design. In the case of λ = 2, targeting ed10, ed25, and ed40,

the total RMSE increases from 8.39 to 12.89 when the sample size n = 30.

The efficiency gain is as much as 54%.

In addition, the use of the more complex model when data are generated

under the three-parameter probit model gains the efficiency noticeably. In

the case of λ = 2, targeting ed60, ed75, and ed90, the total RMSE decreases

from 8.29 to 7.12 when the sample size n = 30. This efficiency gain is as

much as 16%. Overall speaking, the use of the more complex model makes

the ED-design more efficient in estimating ed levels, when the model is

mis-specified.
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Table 4.11: Simulated RMSEs under probit mis-specified as logistic (α =
−6.265, β = 0.055, λ = 0.5).

Fit a Simple Logistic Regression Model

Design ED-design D-optimal Design

Size 30 60 120 30 60 120

Total 9.27 6.29 4.31 9.02 6.81 7.48

ED10 6.68 4.49 3.01 5.44 3.98 4.69

ED25 4.36 3.08 2.11 4.85 3.86 4.37

ED40 4.72 3.16 2.24 5.31 3.95 3.85

Total 9.73 6.22 4.38 10.29 7.28 6.40

ED25 6.22 3.91 2.72 4.85 3.86 4.37

ED50 4.18 2.71 2.00 5.72 4.06 3.52

ED75 6.21 4.01 2.80 7.05 4.65 3.07

Total 10.17 6.71 4.45 12.75 8.38 5.64

ED60 5.05 3.29 2.21 6.19 4.23 3.25

ED75 4.78 3.17 2.14 7.05 4.65 3.07

ED90 7.41 4.90 3.21 8.63 5.55 3.44
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Table 4.12: Simulated RMSEs under probit mis-specified as logistic (α =
−6.265, β = 0.055, λ = 0.5).

Fit the three-parameter Logistic Regression Model

Design ED-design D-optimal Design

Size 30 60 120 30 60 120

Total 8.58 5.75 4.25 12.36 7.65 4.95

ED10 5.76 3.94 2.94 7.24 4.40 3.14

ED25 4.42 2.85 2.06 7.11 4.41 2.77

ED40 4.57 3.08 2.27 7.06 4.43 2.64

Total 8.57 6.00 4.25 12.09 7.56 4.83

ED25 5.17 3.70 2.68 7.11 4.41 2.77

ED50 4.27 2.85 2.00 6.99 4.41 2.65

ED75 5.34 3.77 2.61 6.84 4.28 2.94

Total 9.14 6.52 4.58 12.55 7.71 5.26

ED60 4.77 3.45 2.47 6.89 4.36 2.72

ED75 4.49 3.07 2.12 6.84 4.28 2.94

ED90 6.37 4.60 3.22 7.94 4.70 3.42
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Table 4.13: Simulated RMSEs under probit mis-specified as logistic ( α =
−14.148, β = 0.1, λ = 2).

Fit a Simple Logistic Regression Model

Design ED-design D-optimal Design

Size 30 60 120 30 60 120

Total 8.52 5.65 3.70 8.75 5.95 4.31

ED10 6.33 4.13 2.67 6.24 4.19 3.05

ED25 3.97 2.69 1.79 4.63 3.10 2.16

ED40 4.09 2.75 1.83 4.04 2.87 2.14

Total 8.25 5.39 3.52 7.51 5.80 4.77

ED25 5.42 3.50 2.28 4.63 3.10 2.16

ED50 3.40 2.36 1.57 3.93 3.00 2.41

ED75 5.20 3.36 2.17 4.43 3.89 3.50

Total 8.29 5.30 3.55 8.29 7.05 6.24

ED60 3.97 2.66 1.79 3.99 3.27 2.80

ED75 3.87 2.51 1.71 4.43 3.89 3.50

ED90 6.17 3.84 2.55 5.76 4.88 4.33
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Table 4.14: Simulated RMSEs under probit mis-specified as logistic ( α =
−14.148, β = 0.1, λ = 2).

Fit the three-parameter Logistic Regression Model

Design ED-design D-optimal Design

Size 30 60 120 30 60 120

Total 8.39 5.43 3.13 12.89 7.62 4.33

ED10 5.81 3.80 2.13 9.13 5.16 2.80

ED25 4.24 2.67 1.57 6.67 4.02 2.39

ED40 4.32 2.82 1.68 6.19 3.91 2.28

Total 7.33 5.21 3.66 10.47 6.59 4.21

ED25 4.59 3.21 2.31 6.67 4.02 2.39

ED50 3.67 2.57 1.78 5.98 3.82 2.24

ED75 4.37 3.19 2.21 5.42 3.57 2.66

Total 7.12 5.06 3.65 9.63 6.39 4.99

ED60 3.97 2.77 2.05 5.76 3.70 2.29

ED75 3.76 2.51 1.71 5.42 3.57 2.66

ED90 4.56 3.41 2.48 5.48 3.79 3.54
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4.7 Numerical example

To illustrate the ideas described in this chapter, we consider a real clinical

study. Brown (1982) assumed a logistic response curve to model the rela-

tionship between the wheezing symptom and the age of British coal miners.

The number of subjects being examined and the number of subjects showing

the symptom are copied in Table 4.15.

We first fit the observed data using model (4.1). The MLE of the model

parameters are α̂ = −1.798, β̂ = 0.044, and λ̂ = 0.400. We then fit the

observed data using a simple logistic model. The MLE of the model param-

eters are α̂ = −4.225 and β̂ = 0.065. For comparison, we draw the observed

data and the two fitted curves in Figure 4.2. The result of Figure 4.2 shows

that the three-parameter logistic model (4.1) is a better fit than the simple

logistic model.
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Table 4.15: Number of subjects examined and showing the wheezing symp-
tom for British coal miners.

Group Age
Number

Examined

Number
showing

symptom

proportion
showing
symptom

1 22 1952 104 0.053

2 27 1791 128 0.072

3 32 2113 231 0.109

4 37 2783 378 0.136

5 42 2274 442 0.194

6 47 2393 593 0.248

7 52 2090 649 0.311

8 57 1750 631 0.361

9 62 1136 504 0.447
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Figure 4.2: Observed Data and the fitted curve for British Coal Miners
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4.8 Limiting design as n increases

We have so far focused on implementing the ED-design under the three-

parameter logistic regression model. Recall that a design for a binary dose–

response experiment is a probability distribution on the design space or dose

range. From Section 4.4.2, the D-optimal design is roughly a three-support-

point design under the three-parameter logistic regression model. Because of

its sequential nature, the ED-design likely has many more support points.

When n goes to infinity, it is possible that the limiting distribution has

three support points. We simulated the ED-design for two scenarios with

n = 1000, first targeting ed25, ed50, ed75, and then targeting ed10, ed25,

ed40, and targeting ed60, ed75, ed90. In the first scenario, we consider the

case where the data are generated under the three-parameter logistic model

with α = −6.265, β = 0.055 and λ = 0.5. In the second scenario, we set

α = −14.148, β = 0.1 and λ = 2. The resulting histograms are given in

Figures 4.3 and 4.4. There are clear indications that in both scenarios, the

limiting distribution has three support points around ed6, ed32 and ed86

when the target ed levels are ed25, ed50, and ed75, or ed10, ed25, and

ed40. We hope to prove this in the future.
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Figure 4.3: Histogram of the ED-design with respect to ed levels (α =
−6.265, β = 0.055, λ = 0.5) for (a) estimating ed10, ed25, and ed40; (b)
estimating ed25, ed50, and ed75, and (c) estimating ed60, ed75, and ed90.
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Figure 4.4: Histogram of the ED-design with respect to ed levels (α =
−14.148, β = 0.1 and λ = 2) for (a) estimating ed10, ed25, and ed40; (b)
estimating ed25, ed50, and ed75, and (c) estimating ed60, ed75, and ed90.
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4.9 Concluding remarks

We explore the use of the three-parameter logistic regression model for dose–

response experiments. We show that the sequential ED-design can be easily

carried out under this model assumption, and the resulting data analysis is

very effective.

Simulation results show that the three-parameter logistic regression model

is an effective extension of the commonly used logistic regression model with-

out leading to more complex data analysis issues.

Simulation studies also show that the combination of the proposed model

and data the analysis strategy works well. When the logistic model is correct,

applying the more complex model suffers hardly any efficiency loss. When

the three-parameter model holds but the logistic model is violated, the new

approach gains substantial ground. Our finding leads to a useful addition

to the toolbox of the dose–response experiment.
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4.10 R-code for simulations

rm(list=ls())

library(MASS)

# define objects

m = 1000

n = 30

diff1 <- rep (0, m)

diff2 <- rep (0, m)

diff3 <- rep (0, m)

diff <- rep (0, m)

mu_temp1 <- rep (0, m)

mu_temp2 <- rep (0, m)

mu_temp3 <- rep (0, m)

mu_temp <- matrix(0, m, 3)

t <- seq(from = 40, to = 200, by = 1)

sum <- rep(0, length(t))

alpha <- -6.2647

beta <- 0.05478

lambda <- 0.5

maxit <- 50

ed <- c(0.25, 0.50, 0.75)

dose.initial <- seq(from=(logit(0.01^lambda)-alpha)/beta,

to=(logit(0.99^lambda)-alpha)/beta, by=20)

mu1 <- (logit (ed[1]^lambda) - alpha) / beta
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mu2 <- (logit (ed[2]^lambda) - alpha) / beta

mu3 <- (logit (ed[3]^lambda) - alpha) / beta

# Define functions

# Function f.lr.p() computes the probability vector

# under the logistic model

f.lr.p <- function (x, alpha, beta, lambda) {

prob = (exp(alpha + beta * x)/(1+exp(alpha + beta *x)))^(1/lambda)

return (prob)

}

f.lr.l <- function(x, y, theta, lambda) {

alpha <- theta[1]

beta <- theta[2]

ai <- (exp(x * beta + alpha) / (1+ exp(x * beta + alpha)))

w <- c(0.1, 0.1, 0.9, 0.9, rep (1, length(x)-4))

l <- sum(w * (-y * log(ai^(1/lambda)) - (1 - y) * log(1 - ai^(1/lambda))))

return(l)

}

# function for the parameter estimation

f.est <- function(x, y, theta)

{

lambda.start = 1
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theta.start <- theta

mle = optim(theta.start, f.lr.l, x = x, y = y, lambda = lambda.start)

alpha_hat <- mle$par[[1]]

beta_hat <- mle$par[[2]]

theta.hat = c(alpha_hat, beta_hat)

mle = optimize(f.lr.l, c(0.01,100), x = x, y = y, theta = theta.hat)

lambda_hat <- mle$minimum

like.1 <- mle$objective

i <- 0 # initial iteration index

diff.like <- 1

while (i <= maxit & diff.like > 1e-6)

{

i <- i + 1

mle = optim(theta.hat, f.lr.l, x = x, y = y, lambda = lambda_hat)

alpha_hat <- mle$par[[1]]

beta_hat <- mle$par[[2]]

theta.hat = c(alpha_hat, beta_hat)

mle = optimize(f.lr.l, c(0.01,100), x = x, y = y, theta = theta.hat)

lambda_hat <- mle$minimum

like.2 <- mle$objective

diff.like <- like.1 - like.2

like.1 <- like.2

}

para=c(alpha_hat, beta_hat, lambda_hat, like.2)

}
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fisher <- function (x,theta,lambda)

{

w <- c(0.01, 0.01, 0.99, 0.99, rep (1, length(x)-4))

alpha <- theta[1]

beta <- theta[2]

pi <- f.lr.p(x, alpha, beta, lambda)

v00 <- sum(w*lambda^(-2) * pi * (pi-1)^(-1)* (1-pi^lambda)^2)

v11 <- sum(w*x^2 * lambda^(-2) * pi * (pi-1)^(-1) * (1-pi^lambda)^2)

v22 <- sum(w*log(pi)^2 * lambda^(-2) * pi * (pi-1)^(-1))

v01 <- sum(w*x * lambda^(-2) * pi * (pi-1)^(-1) * (1-pi^lambda)^2)

v02 <- sum(w*log(pi) * lambda^(-2) * pi * (1-pi)^(-1) * (1-pi^lambda))

v12 <- sum(w*x * log(pi) * lambda^(-2) * pi * (1-pi)^(-1) * (1-pi^lambda))

fisher.infor <- - matrix(c(v00, v01, v02, v01, v11,

v12, v02, v12, v22), 3,3)

return(fisher.infor)

}

# dose selection function

f.dose.box <- function (x, theta, lambda, fisher.infor, ed)

{

alpha <- theta[1]

beta <- theta[2]

pi <- f.lr.p(x, alpha, beta, lambda)

v00 <- sum(lambda^(-2) * pi * (pi-1)^(-1)* (1-pi^lambda)^2)

116



4.10. R-code for simulations

v11 <- sum(x^2 * lambda^(-2) * pi * (pi-1)^(-1) * (1-pi^lambda)^2)

v22 <- sum(log(pi)^2 * lambda^(-2) * pi * (pi-1)^(-1))

v01 <- sum(x * lambda^(-2) * pi * (pi-1)^(-1) * (1-pi^lambda)^2)

v02 <- sum(log(pi) * lambda^(-2) * pi * (1-pi)^(-1) * (1-pi^lambda))

v12 <- sum(x * log(pi) * lambda^(-2) * pi * (1-pi)^(-1) * (1-pi^lambda))

fisher.sel <- fisher.infor - matrix(c(v00, v01, v02, v01,

v11, v12, v02, v12, v22), 3,3)

cov.sel <- solve(fisher.sel)

v00.sel <- cov.sel[1,1]

v11.sel <- cov.sel[2,2]

v22.sel <- cov.sel[3,3]

v01.sel <- cov.sel[1,2]

v02.sel <- cov.sel[1,3]

v12.sel <- cov.sel[2,3]

# variane

mu_hat1 <- (logit (ed[1]^lambda) - alpha) / beta

mu_hat2 <- (logit (ed[2]^lambda) - alpha) / beta

mu_hat3 <- (logit (ed[3]^lambda) - alpha) / beta

var1.sel <- (v00.sel + v11.sel*mu_hat1^2

+ (log(ed[1])/(1-ed[1]^lambda))^2*v22.sel

+ 2*v01.sel*mu_hat1 - 2*v02.sel*log(ed[1])/(1-ed[1]^lambda)

- 2*v12.sel*mu_hat1*log(ed[1])/(1-ed[1]^lambda)) / beta ^ 2
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var2.sel <- (v00.sel + v11.sel*mu_hat2^2

+ (log(ed[2])/(1-ed[2]^lambda))^2*v22.sel

+ 2*v01.sel*mu_hat2-2*v02.sel*log(ed[2])/(1-ed[2]^lambda)

- 2*v12.sel*mu_hat2*log(ed[2])/(1-ed[2]^lambda)) / beta ^ 2

var3.sel <- (v00.sel + v11.sel*mu_hat3^2

+ (log(ed[3])/(1-ed[3]^lambda))^2*v22.sel

+ 2*v01.sel*mu_hat3-2*v02.sel*log(ed[3])/(1-ed[3]^lambda)

- 2*v12.sel*mu_hat3*log(ed[3])/(1-ed[3]^lambda)) / beta ^ 2

sum.se <- var1.sel + var2.sel + var3.sel

return(sum.se)

}

# main part

y_pes1 = 1

y_pes2 = 0

x_pes1 = (logit (0.01^lambda) - alpha) / beta

x_pes2 = (logit (0.99^lambda) - alpha) / beta

y_pes3 = 0

y_pes4 = 1

x_pes3 = (logit (0.01^lambda) - alpha) / beta

x_pes4 = (logit (0.99^lambda) - alpha) / beta
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for (k in 1:m)

{

# initial design

# generate data

yhat <- rbinom(length(dose.initial), 1,

f.lr.p(dose.initial, alpha, beta, lambda))

data <- data.frame(rbind(cbind (y_pes1, x_pes1), cbind (y_pes2, x_pes2),

cbind (y_pes3, x_pes3), cbind (y_pes4, x_pes4),

cbind (yhat, dose.initial)))

names(data)[1] <- paste("y")

names(data)[2] <- paste("x")

theta <- c(alpha, beta)

out <- f.est (data$x, data$y, theta)

alpha_hat <- out[1]

beta_hat <- out[2]

lambda_hat <- out[3]

# Second stage

# Select the next dose level

for (j in 1:(n-length(dose.initial)))

{

# calculate fisher information

theta <- c(alpha_hat, beta_hat)

fisher.info <- fisher(data$x, theta, lambda_hat)
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for (i in 1:length(t))

{

sum[i] <- f.dose.box(t[i], theta, lambda_hat,fisher.info, ed)

}

opt <- t[which(sum == min (sum))]

prob <- f.lr.p(opt, alpha, beta, lambda)

y <- rbinom (1, 1, prob)

data <- rbind (data, data.frame (y, x = opt))

# new function

theta <- c(alpha_hat, beta_hat)

out <- f.est (data$x, data$y, theta)

alpha_hat <- out[1]

beta_hat <- out[2]

lambda_hat <- out[3]

}

theta <- c(alpha_hat, beta_hat)

out <- f.est (data$x, data$y, theta)

alpha_hat <- out[1]

beta_hat <- out[2]

lambda_hat <- out[3]

mu_temp1[k] <- (logit (ed[1]^lambda_hat) - alpha_hat) / beta_hat
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4.10. R-code for simulations

mu_temp2[k] <- (logit (ed[2]^lambda_hat) - alpha_hat) / beta_hat

mu_temp3[k] <- (logit (ed[3]^lambda_hat) - alpha_hat) / beta_hat

mu_temp [k, ] <- c(mu_temp1[k], mu_temp2[k], mu_temp3[k])

diff1[k] <- (mu_temp1[k] - mu1) ^ 2

diff2[k] <- (mu_temp2[k] - mu2) ^ 2

diff3[k] <- (mu_temp3[k] - mu3) ^ 2

diff[k] <- diff1[k] + diff2[k] + diff3[k]

print(k)

}

sqrt(mean(diff1))

sqrt(mean(diff2))

sqrt(mean (diff3))

sqrt(mean(diff))
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Chapter 5

Group Sequential ED-Design

5.1 Introduction

The standard up-and-down design of Dixon and Mood (1948) has been in-

troduced in Chapter 2. Under this design, the dose of the next trial is one

level higher or lower than that of the current trial depending on the outcome

of the current subject. Much of the discussion of the up-and-down design

(Dixon and Mood, 1948; Derman, 1957; Durham and Flournoy, 1994, 1995;

Durham et al., 1997; Stylianou and Flournoy, 2002) focused on the situation

where there is only one subject at each trial: only one subject is admitted,

and its response is used to choose the next dose level.

The idea of the up-and-down design can also be used so that multi-

ple subjects are admitted to the experiment at each trial. Anderson et al.

(1946); Wetherill (1963); Tsutakawa (1967b); Gezmu and Flournoy (2006)

among others, proposed a group version of the up-and-down design. They

considered the problem that a group of m subjects are admitted to a single

dose level at each trial. They proposed to determine the dose level for the

next trial based on the number of positive responses at the current trial.

If the number of positive responses in the group is less than or equal to a

threshold s, the dose level of the next trial will be moved one level higher.
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If the number of positive responses is greater than or equal to a threshold

t, the dose of the next trial will be moved one level lower. Otherwise, the

dose level for the next trial stays the same. With appropriate values of the

group size m, and thresholds s and t, Gezmu and Flournoy (2006) showed

that the group up-and-down design allocates a large number of dose levels

around the prespecified target dose.

Clinical trials involving developing new drugs include all drug devel-

opment experiments that are conducted on human beings. They can last

for many years with high financial and human costs. “Phase II/III Study

Trends and Market Outlook (2016-2020)” reported that large drug develop-

ment Sponsors (R&D $500M+) spent $465,725,000 in Phase II/III trials in

2015 on average. Despite the high financial costs of clinical trials, there are

greater human costs. New drugs studied in clinical trials can be unsafe and

inferior. It is unethical to make any decision lightly. Thus, it is desirable to

design the experiments to speed up the clinical trial, and prevent waste of

valuable resources. In practice, clinical trials are carried out over a certain

period of time, and individuals often enter the trial sequentially in groups.

Thus, for ethical, scientific and economic reasons, it is often more practical

and natural to treat individuals sequentially in groups.

The sequential ED-design proposed in Chapter 3 has been developed to

have one subject admitted at each trial. It appears that the same idea works

when a group of subjects admits at each trial. In this chapter, we propose

a group scheme and call it two-stage group sequential ED-design. The first

stage will be a fix-point design. A group of subjects will be assigned to

some pre-selected dose levels. The responses of these subjects will be used
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5.2. Two-stage group sequential ED-design under the logistic regression model

to obtain a rough parameter estimation. At the second stage, we use a group

sequential procedure. We look for the most informative dose combination

for the next group of subjects with respect to some criterion. This procedure

is then repeated until the experimental subjects are exhausted.

A simulation study is conducted to investigate the performance of the

proposed two-stage group sequential ED-design under various scenarios. We

mimic real dose–response experiments with the goal of accurately estimating

the unknown dose–response curve over a wide dose range.

5.2 Two-stage group sequential ED-design under

the logistic regression model

We only consider the case where each group is made of two subjects and

two different dose levels are permitted. The idea can be used to groups with

different sizes and more dose levels. We investigate three possible ways to

select two doses at each trial.

Suppose ξj , j = 1, 2, 3 are the target ed levels. Each ed level is a function

of the model parameters α and β under the logistic regression model: ξj =

gj(α, β) for some smooth function gj . Let α̂k, β̂k be the maximum likelihood

estimators of the model parameters based on the outcomes of the first k

trials. As it has been pointed out before, the variance of ξ̂ = g(α̂k, β̂k) is

conceptually approximated by

var(ξ̂) = 5g(α̂k, β̂k)
T I−1
k (x; α̂k, β̂k)5 g(α̂k, β̂k)
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5.2. Two-stage group sequential ED-design under the logistic regression model

where 5g(α̂k, β̂k) is the gradient of g(α̂k, β̂k) and Ik(x; α̂k, β̂k) is the Fisher

information matrix based on the existing k trials and an extra trial at dose

level x, at the model parameter value α̂k, β̂k. Each of the next three proposed

dose selection methods aims to minimize some criterion.

1. Let ξ̂2 be the maximum likelihood estimate of ξ2 based on the outcomes

of the first k trials. We compute

x1 = arg min
x≤ξ̂2

{ 3∑
j=1

5g(α̂k, β̂k)
T I−1
k (x; α̂k, β̂k)5 g(α̂k, β̂k)

}
x2 = arg min

x≥ξ̂2

{ 3∑
j=1

5g(α̂k, β̂k)
T I−1
k (x; α̂k, β̂k)5 g(α̂k, β̂k)

}
.(5.1)

A simple linear search can be used to find solutions easily.

2. We select two doses to minimize the total anticipated asymptotic vari-

ance of the target ed levels in the second stage of our group sequential

ED-design:

(x1, x2) = arg min
x1,x2

{ 3∑
j=1

5g(α̂k, β̂k)
T I−1
k (x1, x2; α̂k, β̂k)5 g(α̂k, β̂k)

}
.

(5.2)

where Ik(x1, x2; α̂k, β̂k) is the Fisher information matrix based on the

existing k trials and two extra trials at dose levels x1 and x2, at the

model parameter value α̂k, β̂k.
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3. Remember that

3∑
j=1

5g(α̂k, β̂k)
T I−1
k (x; α̂k, β̂k)5 g(α̂k, β̂k)

represents the potential total asymptotic variance of ξ̂j , j = 1, 2, 3 after

the first k trials and one single additional trial at x. Our experience

indicates that, as a function of x, it can have two local minima. We

propose to choose two dose levels for the next group of two subjects at

these two local minima. We again use a simple linear search for this

purpose.

5.3 Simulation

We conduct simulations to investigate the performance of the group sequen-

tial ED-design. We compare the new design with several existing designs,

and repeat the simulation N = 1000 times for all model/design combina-

tions. The simulation sample sizes are chosen to be n = 30, 60, and 120. We

choose three effective dose levels each time as the targets and obtain their

MLEs. Under each model/design setting, we compute the RMSE of a single

ed level as

RMSE(ξ̂j) =

√√√√N−1

N∑
r=1

(ξ̂rj − ξj)2,

where ξ̂rj is the estimate of ξj in the rth repetition. The total RMSE is

computed as

RMSE =

√√√√ 3∑
j=1

RMSE2(ξ̂j).
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5.3. Simulation

5.3.1 Detailed specifications

The detailed simulation specifications are as follows. Four designs are in-

cluded in the simulation: the up-and-down design, the group up-and-down

design, the sequential ED-design, and the group ED-design. Similar to the

setting of Chapter 3.4, for the up-and-down design, we choose K = 7 equal

spaced grids for Ω between the anticipated ed01 and ed90. For the group

ED-design and the sequential ED-design, the initial design is uniform on Ω.

The group up-and-down design uses the same Ω as its grids. The choice of

the first dose level, thresholds s and t, and the group size s will be specified

later in the simulation.

5.3.2 Performance comparison when the response model is

correctly specified

In this section, we consider the situation where the assumed response curve

agrees with the true curve. We generate data according to the following

logistic regression model

logit
[
π(x)

]
= −6.265 + 0.055x.

Under this model, ed25 = 94, ed50 = 114, and ed75 = 134.

The details of the four designs under this model are as follows:

• For the up-and-down design, the specific dose levels are x1 = 34 and

x7 = 154. The dose range is given by

Ω = {34, 54, 74, 94, 114, 134, 154}.
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5.3. Simulation

The initial dose level is set to x4 = 94.

• For the ED-design, we use the following grid of K = 7 doses in the

first stage:

Ω = (84, 94, 104, 114, 124, 134, 144).

• For the group up-and-down design, the dose range is given by

Ω = {34, 54, 74, 94, 114, 134, 154}.

The initial dose level is set at x4 = 94. We choose thresholds s = 0,

t = 2, and group size s = 2.

• For the group ED-design, we use the following grid of K = 8 doses in

the first stage:

Ω = (74, 84, 94, 104, 114, 124, 134, 144).

The subsequent doses are chosen according to each of the three pro-

posed dose selection methods.

In the first simulation, we set ed25, ed50, and ed75 as the target dose

levels. The simulation results are given in Table 5.1. The results show that

the group sequential ED-design is noticeably superior to the group up-and-

down design with lower total RMSEs when n = 30, n = 60 and n = 120.

The differences are getting smaller as n increases.

Its individual RMSEs is generally lower except targeting ed50 when

n = 60 and n = 120. The group ED-design based on the third selection
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5.3. Simulation

method has lower RMSEs than the group ED-design with the first and sec-

ond selection methods. If ed25 is the target, the group ED-design (method

3) is superior than the ED-design with lower RMSE. Comparing with the

up-and-design, group ED-design (method 3) is generally superior with lower

total RMSEs.

Table 5.1: Simulated RMSEs under the logistic model targeting range ed25–
ed75

n
ED

Group ED-design
Group UD Up-and-down

M 1 M 2 M 3

30

Total 17.14 18.60 18.04 17.80 22.81 18.12

ED25 10.55 10.79 11.36 10.20 11.75 10.48

ED50 8.12 7.86 8.94 8.66 9.24 8.06

ED75 10.79 12.95 10.80 11.75 17.23 12.39

60

Total 12.54 13.16 12.93 12.73 14.67 12.79

ED25 7.80 7.79 8.41 7.42 8.67 7.90

ED50 5.89 5.89 6.31 6.05 5.69 5.53

ED75 7.85 8.81 7.52 8.40 10.37 8.40

120

Total 8.74 9.02 9.00 8.84 9.92 9.16

ED25 5.46 5.49 5.73 5.22 6.25 5.89

ED50 4.09 4.30 4.35 4.23 3.80 3.88

ED75 5.46 5.72 5.40 5.74 6.69 5.85

In the second simulation, we consider the situation where a lower range

of ed levels is of interest. We take ed10, ed25, and ed40 as the target
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5.3. Simulation

dose levels. The simulation settings remain the same except that the initial

dose level for the up-and-down design is set at x3 = 74. This approach can

select only one target dose level in each simulation. We simulated all three

possibilities, and the simulation results are given in Table 5.2.

The results show that the group ED-design is noticeably superior to the

group up-and-down design with lower total RMSEs. In comparison with the

up-and-down design, the group ED-design is generally superior with lower

RMSEs. Tuning the biased-coin up-and-down design to specific ed levels

improves its results. Particularly when targeting ed25, the up-and-down

design achieved lower RMSEs. If ed25 is the target, the group ED-design

(method 1) is superior to the ED-design with lower RMSEs in all three

sample sizes simulated.

5.3.3 Performance comparison when the response model is

mis-specified

In applications, the dose–response relationship is unknown. In this section,

we consider the case where the observed response curve is mis-specified.

We investigate the performance of the group ED-design. Specifically, we

consider the case where the observed dose–response relationship is logistic

but the true model is probit. Thus, we generate data according to the probit

model (3.8). Recall that under model (3.8), we have

edγ =
Φ−1(γ/100)− α

β
,
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5.3. Simulation

Table 5.2: Simulated RMSEs under the logistic model targeting range ED10–ED40.

n ED
Group-ED design Up-and-down

Group UD

M 1 M 2 M 3
Target
ED10

Target
ED25

Target
ED40

30

Total 17.93 19.58 20.16 19.07 21.82 18.81 20.24 24.11

ED10 12.68 15.13 15.19 13.62 11.61 13.18 15.59 19.00

ED25 8.93 8.92 10.02 9.50 11.15 8.92 9.71 11.24

ED40 9.01 8.66 8.67 9.37 14.74 10.02 8.51 9.70

60

Total 13.25 14.39 14.44 13.38 17.38 13.25 15.02 17.69

ED10 9.48 10.94 10.87 9.72 8.57 9.69 11.90 14.38

ED25 6.52 6.33 7.15 6.49 8.98 6.09 7.11 8.34

ED40 6.56 6.88 6.28 6.51 12.17 6.69 5.78 6.05

120

Total 9.35 9.36 10.06 9.13 13.38 9.36 10.57 12.60

ED10 6.73 6.65 7.68 6.57 6.14 6.93 8.52 10.28

ED25 4.55 4.42 4.92 4.36 6.96 4.24 4.92 5.99

ED40 4.63 4.88 4.25 4.61 9.64 4.66 3.88 4.15

and ed25 = 102, ed50 = 114, and ed75 = 127. The dose–response curve

is given by Model (3.7), and the simulation is otherwise identical to that

in the last section. The results are presented in Tables 5.3 and 5.4. For

ed25–ED75, we set ed50 as the target for the up-and-down design. For

ed10–ED40, we target each level separately, as before.

In the next simulation, we repeat the simulation with the target dose

levels changed to ed10, ed25, and ed40. In comparison with the group

up-and-down design, the group ED-design clearly has the best overall per-

formance in both ranges. The up-and-down design again has good perfor-
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Table 5.3: Simulated RMSEs under probit mis-specified as logistic
targeting ED range 25–75.

n
ED

Group ED-design
Group UD Up-and-down

M 1 M 2 M 3

30

Total 10.08 11.29 11.03 11.29 13.45 11.29

ED25 6.25 6.77 6.82 6.68 7.14 6.70

ED50 4.86 5.15 5.64 5.66 5.74 5.03

ED75 6.23 7.42 6.58 7.12 9.84 7.57

60

Total 7.16 7.58 7.85 7.78 8.53 7.63

ED25 4.53 4.69 5.05 4.67 4.94 4.71

ED50 3.38 3.48 3.97 3.83 3.53 3.46

ED75 4.39 4.83 4.01 4.91 6.00 4.90

120

Total 5.00 5.32 5.57 5.46 5.73 5.39

ED25 3.09 3.22 3.53 3.18 3.55 3.38

ED50 2.38 2.53 2.78 2.69 2.34 2.43

ED75 3.13 3.40 3.29 3.53 3.84 3.42

mance at the target ed level, but poorer performance overall. Targeting

ed25 achieves the best trade-off.

The group ED-design based on the third selection method has lower total

RMSEs than the other two methods. The sequential ED-design has the best

performance, except when targeting ed40 with n = 120.
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Table 5.4: Simulated RMSEs under probit mis-specified as logistic
targeting ED range 10–40.

n ED
Group-ED design Up-and-down

Group UD

M 1 M 2 M 3
Target
ED10

Target
ED25

Target
ED40

30

Total 11.16 11.74 12.13 11.49 14.54 11.62 11.81 14.65

ED10 7.80 8.39 8.84 7.99 6.96 7.55 8.82 11.08

ED25 5.59 5.78 6.11 5.62 7.84 5.92 5.87 7.24

ED40 5.69 5.83 5.63 6.05 10.07 6.56 5.24 6.27

60

Total 7.62 8.20 8.53 7.75 10.73 8.03 8.45 10.08

ED10 5.34 5.92 6.25 5.40 4.84 5.57 6.38 7.98

ED25 3.78 3.84 4.25 3.80 5.71 3.99 4.21 4.89

ED40 3.90 4.18 3.94 4.05 7.68 4.20 3.59 3.74

120

Total 5.30 5.32 5.86 5.46 7.70 5.56 5.94 7.21

ED10 3.76 3.74 4.40 3.78 3.53 3.83 4.41 5.75

ED25 2.59 2.67 2.89 2.69 4.14 2.79 3.02 3.53

ED40 2.69 2.68 2.57 2.88 5.45 2.91 2.59 2.55

5.4 Concluding remarks

Clinical trials are planned experiments on human beings with high financial

and human costs. It is desirable to design the experiments to speed up the

trial and prevent waste of valuable resources. In practice, individuals often

enter the trial sequentially in groups. Hence, it is often more practical to

treat individuals by groups. Motivated by this observation, in this chapter,

we propose a group sequential ED-design.

Our group ED-design has a natural extension to more complex models.
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Moreover, the group ED-design can also be used for any ed levels, and meet

a broad range of the demands that may arise in applications. Simulations

show that in general our design is more robust, and compares favourably

with existing designs.
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Chapter 6

Asymptotic Properties

In dose–response experiments with sequential designs, doses administrated

to experimental subjects are selected depending on previous doses and re-

sponses. Data generated from such experiments are not independent. De-

spite the dependence structure arising from such designs, the likelihood is

identical to the one derived from independent observations. For discussions

in this respect, see Chaudhuri and Mykland (1993, 1995); Stylianou and

Flournoy (2002); Hu and Rosenberger (2006); Fedorov and Leonov (2013);

Rosenberger and Lachin (2015).

In this chapter, we first investigate the likelihood function derived from

the dependent observations generated from dose–response experiments with

sequential designs. We present the derivation of the likelihood function for

the up-and-down experiment.

Next we study the asymptotic properties of the maximum likelihood

estimators from designs with certain properties. When independent and

identically distributed observations are available, it is well known that under

some regularity conditions, maximum likelihood estimators are the solutions

to their score functions. They are consistent and asymptotically normal. We

present some general results on the asymptotic properties of the maximum
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likelihood estimators following a two-stage sequential design. We provide

evidence that the maximum likelihood estimators from the two-stage se-

quential design exist, and have the usual asymptotic properties.

6.1 Data structure

Following Hu and Rosenberger (2006), we begin with a useful data structure

which facilitates the derivation of the likelihood. Consider an experiment

with n experimental subjects. Each subject is assigned to a stimulus at

one of K dose levels. Suppose that subjects are assigned sequentially and

respond immediately. Let T = (T1, . . . , Tn)T be a matrix of randomization

sequence, where Ti = (Ti1, . . . , TiK) is a vector of zeroes with a 1 in the jth

entry, if jth dose level is assigned to the ith subject.

Let Y = (Y1, . . . , Yn)T be a matrix of responses, where Yi = (Yi1, . . . , YiK)

is a sequence of responses which would be observed, if every dose level is

assigned to the ith subject independently. Note that only one element of Yi

is observable.

Let ti = (ti1, . . . , tiK) and yi = (yi1, . . . , yiK) be the realized dose as-

signments and responses from the ith subject, i = 1, 2, . . . , n. The observed

data for the ith subject is zi = {ti,
∑K

j=1 tijyij}. Note that Yij is observed

only if Tij = 1.
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6.1. Data structure

6.1.1 The likelihood

Based on the above data structure, Y1j , Y2j , . . . , Ynj , are independent and

identically distributed. Denote their density function as

Y1j ∼ f(·; θj) (6.1)

where θj is the unknown parameter of interest. For s = 1, . . . , n, Ys is

independent of Y1, Y2, . . . , Ys−1, T1, . . . , Ts. However, Ts is dependent on

Y1, Y2, . . . , Ys−1, T1, . . . , Ts−1.

Now we consider a sequentially designed dose–response experiment, in

which doses assigned to subjects are selected sequentially based on previous

responses and doses. Let us first consider the situation where K = 2 and

n = 1. The observed data in this case are z1 = {t1, t11y11 + t12y12}. We

have

P (Z1 = z1) =


P (Z1 = y11) = f(y11; θ1) if t12 = 0

P (Z1 = y12) = f(y12; θ2) if t12 = 1

The likelihood function is

L(θ1, θ2) = f(y11; θ1)t11f(y12; θ2)t12 .

Next we consider the situation where K = 2 and n = 2. The ob-

served data for these two subjects are z1 = {t1, t11y11 + t12y12}, and z2 =

{t2, t21y21 + t22y22}. Since the dose assignment of the second subject is com-

pletely determined by the dose assignment and response of the first subject,
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6.1. Data structure

P (T2 = t2|Z=z1) = 1. Hence, the likelihood function is given by

L(θ1, θ2) = P (Z1 = z1, Z2 = z2)

= P (Z2 = z2|Z1 = z1)P (Z1 = z1)

= P (Z2 = z2|Z1 = z1, T2 = t2)P (T2 = t2|Z=z1)P (Z1 = z1)

= P (Z2 = z2|T2 = t2)P (T2 = t2|Z=z1)P (Z1 = z1)

= P (Z2 = z2|T2 = t2)P (Z1 = z1)

= f(y21; θ1)t21f(y22; θ2)t22f(y11; θ1)t11f(y12; θ2)t12 .

Following the same principle, the likelihood derived from the sequential

experiment with K doses and n observations is as follows:

L(θ1, . . . , θK) = f(y11; θ1)t11 × f(y12; θ2)t12 × . . .× f(y1K ; θK)t1K

× f(y21; θ1)t21 × f(y22; θ2)t22 × . . .× f(y2K ; θK)t2K

× f(y31; θ1)t31 × f(y32, θ2)t32 × . . .× f(y3K ; θK)t3K

...

× f(yn1; θ1)tn1 × f(yn2; θ2)tn2 × . . .× f(ynK ; θK)tnK

=
n∏
i=1

K∏
j=1

{f(yij ; θj)}tij .

Note that this likelihood is identical to the one based on independent obser-

vations.

In the up-and-down experiment, Yij is a Bernoulli random variable. It

equals to 1 if the ith subject responds at the jth dose level, and 0 otherwise,

j = 1, . . . ,K. Thus, f(·; θj) is the probability function of the Bernoulli dis-
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tribution, with the probability of success pj being the probability of response

at jth dose level. The likelihood function is therefore given by

L(·) =
n∏
i=1

K∏
j=1

[p
yij
j (1− pj)1−yij ]tij

=
n∏
i=1

K∏
j=1

p
tijyij
j (1− pj)tij(1−yij)

=
K∏
j=1

p
∑n

i=1 tijyij
j (1− pj)

∑n
i=1 tij(1−yij).

Let Nj =
∑n

i=1 Tij be the number of subjects assigned to dose level j,

and let Sj =
∑n

i=1 YijTij be the number of subjects respond at dose level j.

Let nj and sj be the observed values of Nj and Sj . The likelihood function

is therefore written as

L(·) =

K∏
j=1

p
sj
j (1− pj)nj−sj (6.2)

The above likelihood function is generally applicable.

6.2 Maximum likelihood estimation

As discussed above, data generated from the sequential design are depen-

dent. Chaudhuri and Mykland (1993) showed that despite the dependence

structure in the data, the resulting likelihood function is the same to the

one derived from the independent observations. Following Chaudhuri and

Mykland (1993), we investigate the likelihood function from the sequential

ED-design.
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6.2.1 Data structure and assumptions

Following Chaudhuri and Mykland (1993), we consider a dose–response ex-

periment with the response variable Y and explanatory variable X whose

values are chosen from a finite experiment space Ω. Let the response space,

the set of all possible outcomes of the experiment, be R. Denote the condi-

tional distribution of Y given X = x as f(y|θ, x). Let Θ be the parameter

space. Here θ ∈ Θ is the unknown parameter, and f is a known distribu-

tion function. In addition, we assume f(y|θ, x) is smooth and regular so

that log f(y|θ, x) is differentiable in θ, and the Fisher information matrix,

denoted as I(θ;x), exists finitely. The Fisher information matrix I(θ;x) is

∫
R

[∇ log{f(y|θ, x)}][∇ log{f(y|θ, x)}]T µ(dy),

where ∇ is the gradient operator, and µ is the usual counting measure.

Recall from Chapter 3, the sequential ED-design consists of two stages.

Assume that the total number of trials n is predetermined prior to the

experiment. Suppose that n1 trials are carried out in the first stage. The

remaining (n− n1) trials are carried out in the second stage. Compute the

maximum likelihood estimator θ̂n1 of the model parameter θ based on the

observed data (y1, x1), . . . , (yn1 , xn1) from the first n1 trials. In the second

stage, suppose ξj , j = 1, 2, 3, are the target ed levels. Each ed level is a

function of the model parameter θ, i.e., ξj = g(θ). Let θ̂i−1 be the maximum

likelihood estimator of θ based on (y1, x1), . . . , (yi−1, xi−1), n1 + 1 ≤ i ≤ n.

Let ξ̂j = g(θ̂i−1), via delta-method, the asymptotic variance of ξ̂j can be
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approximated by

5g(θ̂i−1)T I−1
i−1(θ̂i−1;x)5 g(θ̂i−1)

where 5g(θ̂i−1) is the gradient of g(θ̂i−1) and I−1
i−1(θ̂i−1;x) is the inverse of

the Fisher information matrix after (i− 1) trials and the potential ith trial

to be run at dose level x. Hence, for each i, n1 + 1 ≤ i ≤ n, the ith design

point is determined by

xi = arg minx

3∑
j=1

var(ξ̂j), j = 1, 2, 3.

From the sequential scheme discussed above, the ith design point Xi is

determined based on the past observations (Y1, X1), . . . , (Yi−1, Xi−1). Thus,

the observations generated from this sequential design are no longer in-

dependent. The standard asymptotic properties of the maximum likeli-

hood estimates may not be applicable. However, the dependence of Yi on

(Y1, X1), . . . , (Yi−1, Xi−1) is only through Xi. As a consequent, the likeli-

hood constructed from (Y1, X1), . . . , (Yi, Xi) remains in the product form∏i
r=1 f(Yr|θ,Xr), despite the dependence structure of the data arising from

the sequential design (See Chaudhuri and Mykland (1993)). Hence, the

likelihood conducted from the sequential ED-design is identical to the one

arising from the independent and identically distributed observations. As a

result, the resulting MLE of θ can be computed as usual. We denote the
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MLE of θ based on (Y1, X1), . . . , (Yn, Xn) as

θ̂n = arg maxθ∈Θ

n∏
r=1

f(Yr|θ,Xr)

In the next section, we investigate the asymptotic properties (i.e., con-

sistency and asymptotically normality) of θ̂n derived from the sequential

ED-design. Following Chaudhuri and Mykland (1995), we identify some reg-

ularity conditions which will guarantee the desirable asymptotic behaviours

of the maximum likelihood estimates.

6.3 Asymptotic properties of the maximum

likelihood estimate

In this section, we investigate the asymptotic properties of θ̂n from the

sequential ED-design. Following Chaudhuri and Mykland (1993, 1995), we

summarize the following general conditions on the response model f(y; θ, x).

• Condition 1: The response space R does not depend on θ and x. For

every y ∈ R and x ∈ Ω, log f(y; θ, x) is thrice continuously differen-

tiable in θ at any θ ∈ Θ.

• Condition 2: Let ∇ log f(y; θ, x) = G(y; θ, x) be the gradient vector of

log f(y|θ, x) with respective to θ. Then G(y; θ, x) should satisfy

∫
R
G(y; θ, x)f(y; θ, x)µ(dy) = 0,
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and

sup
x∈Ω

∫
R
|G(y; θ, x)|2+tf(y; θ, x)µ(dy) <∞

for some t > 0. Here | · | is the usual Euclidean norm.

• Condition 3: Let H(y; θ, x) be the Hessian matrix of log f(y; θ, x) as

the second order partial derivatives of log f(y; θ, x) with respective to

θ. Then

∫
R
H(y; θ, x)f(y; θ, x)µ(dy)

= −
∫
R

(
G(y; θ, x)

)(
G(y; θ, x)

)T
f(y; θ, x)µ(dy)

= −I(θ;x),

and

sup
x∈Ω

∫
R
|H(y; θ, x))|2f(y; θ, x)µ(dy) <∞.

• Condition 4: For every θ ∈ Θ, there is an open neighbourhood N(θ) ⊂

Θ, and a nonnegative random variable K(y; θ, x) which satisfies

sup
x∈Ω

∫
R
K(y; θ, x)f(y; θ, x)µ(dy) <∞.

Each of the third order partial derivatives of log f(y; θ′, x) with respec-

tive to θ′ is dominated by K(y; θ, x) for all θ′ ∈ N(θ).

In addition, Chaudhuri and Mykland (1995), presented the following

asymptotic results for the maximum likelihood estimate in a general adaptive

sequential design setting. We summarize their findings in the following.
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Theorem 1: Assume that Condition 1 through Condition 4 hold, and

(Y1, X1), . . . , (Yn, Xn) are observations generated from an adaptive sequen-

tial design. Denote λn as the smallest eigenvalue of

1

n

n∑
r=1

I(θ;Xr).

Suppose the design is that for some positive constant α < 1/4, nαλn remains

bounded away from zero in probability as n→∞ for any θ ∈ Θ. Then the

maximum likelihood estimator θ̂n of θ exists and is weakly consistent for θ.

Theorem 2: Assume that Condition 1 through Condition 4 hold, and

(Y1, X1), . . . , (Yn, Xn) are observations generated from an adaptive sequen-

tial design. Suppose

1

n

n∑
r=1

I(θ;Xr)
p→ A as n→∞,

where A is a nonrandom positive definite matrix. Then there exists a max-

imum likelihood estimator θ̂n of θ such that the distribution of
√
n(θ̂n − θ)

converges weakly to a multivariate normal distribution with mean zero and

variance-covariance matrix A−1 as n→∞.

The proofs of Theorems 1 and 2 were given in Chaudhuri and Myk-

land (1993, 1995). Their proofs utilize some standard martingale techniques

introduced in Lai and Wei (1982) for an adaptive sequential design. We

present and summarize their proofs as follows.
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Proof of Theorem 1. Let {Fni, 1 ≤ i ≤ n} be an increasing sequence of

σ-fields generated by Y1, . . . , Yi, that is, Fni = σ(Y1, . . . , Yi). It follows from

Condition 2 that

{ i∑
r=1

G(Yr; θ,Xr);Fni, 1 ≤ i ≤ n
}

is a square integrable martingale. Then,

E
∣∣ n∑
r=1

G(Yr; θ,Xr)
∣∣2 = E

( n∑
r=1

∣∣G(Yr; θ,Xr)
∣∣2) = Op(n)

as n→∞. Hence,
n∑
r=1

G(Yr; θ,Xr) = Op(n
1/2). (6.3)

Next, consider the sequence

{ i∑
r=1

[
H(Yr; θ,Xr) + I(θ;Xr)

]
;Fni, 1 ≤ i ≤ n

}
.

Condition 3 implies that it is also a square integrable martingale. By a

similar argument,

n∑
r=1

[
H(Yr; θ,Xr) + I(θ;Xr)

]
= Op(n

1/2). (6.4)

For any δ > 0, let Nδ(θ) be the neighbourhood centred at θ with radius δ.

Let δn = n−β for some α < β < (1/2)− α. Then, the smallest eigenvalue of
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the Hessian matrix of

nα−1
n∑
r=1

log f(Yr|θ′, Xr)

is negative and bounded away from zero in probability as n → ∞ for all

θ′ ∈ Nδ(θ). This implies that

lim
n→∞

P
( n∑
r=1

log{f(Yr; θ
′, Xr)} is concave for θ′ ∈ Nδ(θ)

)
= 1. (6.5)

Next consider the third order Taylor expansion of the log-likelihood around

θ,

n∑
r=1

log f(Yr; θ
′, Xr) =

n∑
r=1

log{f(Yr; θ,Xr)}+ (θ′ − θ)T
[ n∑
r=1

G(Yr; θ,Xr)
]

+ (θ′ − θ)T
[ n∑
r=1

H(Yr; θ,Xr)
]
(θ′ − θ) +Rn(θ′, θ).

Under Condition 4, the remainder term in the above equation satisfies

sup
θ′:|θ′−θ|≤δn

|Rn(θ′, θ)| = Op(nδ
3
n). (6.6)

Now (6.5) and (6.6) imply that the probability of the event that the like-

lihood equation has a root within the neighbourhood Nδ(θ) will tend to 1

as n → ∞. Because the size of the neighbourhood can be made arbitrar-

ily small, this further implies the consistency of the maximum likelihood

estimator.
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Proof of Theorem 2. Using the result in Theorem 1, let θ̂n be a weakly

consistent estimator for θ. Consider a first order Taylor expansion around

θ,

n−1
n∑
r=1

G(Yr; θ̂n, Xr) = n−1
n∑
r=1

G(Yr; θ,Xr)

+
[
n−1

n∑
r=1

H(Yr; θ,Xr) + ∆n(θ)
]T

(θ̂ − θ)

where ∆n(θ) is a random matrix of size op(1) under Condition 4 and weak

consistency of θ̂n. Following Conditions 2 and 3, and the design condition in

Theorem 2, by the martingale central limit theorem (Hall and Heyde, 2014),

n−1/2
n∑
r=1

G(Yr, θ,Xr)

converges weakly to a multivariate normal distribution with mean zero and

variance-covariance matrix A.

Note that Conditions 1 through 4 are standard Cramer-type conditions

that hold for a large class of models. The response models, f(y; θ, x),

(e.g. standard logistic regression model) considered in this thesis for dose–

response experiments are smooth and regular. These Cramer-type condi-

tions 1 through 4 are satisfied. In addition, under the sequential ED-design,

the design points are sequentially selected in the same fashion as in Chaud-

huri and Mykland (1995). Hence, the sequence of design points satisfy the

conditions assumed in Theorem 1. Other than the eigenvalue condition,

all other conditions are satisfied. As a result, we have nearly proved that

the maximum likelihood estimator derived from our sequential ED-design is
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consistent and asymptotically normal.

6.4 Concluding remarks

Following Chaudhuri and Mykland (1995), we went through the derivation of

the likelihood function based on the dependent observations generated from

the proposed design. We show that it is identical to the one with indepen-

dent observations. We identify some regularity conditions under which the

resulting maximum likelihood estimators are consistent and asymptotically

normal.
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Chapter 7

Contributions and Future

Research

Dose–response experiments are routinely conducted in Phases I and II clini-

cal trials to study the relationship between the doses of a stimulus and the re-

sponses of experimental subjects. Estimating the underlying dose–response

relationship is the primary goal of dose–response experiments (Dette et al.,

2005; Dragalin et al., 2008a,b).

Accurately charactering the dose–response relationship is a key step in

the clinical development process of pharmaceutical drugs. Poor understand-

ing of the underlying dose–response relationship may lead to select wrong

target doses to be used in large scale confirmatory clinical trials, which may

cause serious ethical and financial consequences. Selecting too high a dose

may cause potential toxicity to experimental subjects, and choosing too low

a dose may fail to establish adequate efficacy, and fail to obtain the regula-

tory approval of the drug. See Bretz et al. (2008), Bretz et al. (2010), and

Dette et al. (2008).

Statistical design theory is therefore developed to most effectively collect

the needed information while minimizing potential side effects. Despite its
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long history, design theory for binary dose–response experiments remains an

active research area.

7.1 Contributions

The first contribution of this dissertation is the introduction of a new op-

timality criterion. Traditionally, when a parametric dose–response model

is assumed, we often search for designs which enable us to most accurately

estimate the model parameters. In applications as we observed, the ultimate

goal of the investigation is to accurately determine various ed levels. In this

dissertation, we take a new approach in designing a binary dose–response

experiment. We consider a situation where the dose–response relationship

over a range of ed levels is of interest.

We proposed a new design criterion which directly and simultaneously

targets several ed levels. We believe such a relationship can be well char-

acterized after several tactically chosen ed levels are accurately estimated.

Based on these considerations, we propose a two-stage sequential design.

The proposed sequential design is easy to implement in general and leads

to more efficient estimation of ed levels. Because our design is sequential

and aims to efficiently estimate several chosen ed levels, we call it two-stage

sequential ED-design or simply ED-design.

We conducted extensive computer simulations to demonstrate that the

proposed sequential ED-design indeed improves the efficiency of the experi-

ment by changing the optimality target from estimating model parameters

to ed levels of interest compared with many existing designs. First, we
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confirm that our ED-design is indeed more efficient for estimating several

targeted ed levels based on the total root mean square error (RMSE) or

the individual RMSEs. The D-optimal design and its sequential version do

not have this flexibility, and the up-and-down design cannot target more

than one ed level. These results provide strong support for the proposed

design. Second, because in practice the true dose–response relation never

fully conforms to the model, optimal designs do not perform at their peak

levels in general. We therefore use simulation studies to evaluate the effect

of model misspecification. The ED–design still has the best performance in

terms of the RMSE. We also provide some simulation evidence for the lim-

iting ED-design when the sample size n goes to infinity. It appears that as

a distribution over the dose range, the design has a limit with two support

points.

Another apparent approach to reduce the risk of model misspecification

is to apply a more flexible and hence more complex dose-response model.

The choice of such a model reflects a trade-off between the model flexibility

and inference efficiency. Commonly used logistic or probit models are simple

and have good mathematical and statistical properties. They are satisfac-

tory in many applications. Nevertheless, their model assumptions impose

some severe restriction on the dose-response relationship. Hence, a mildly

more complex model can be useful to lower the risk of model misspecifica-

tion if it does not complicate the issues related to optimal designs and data

analyses as well as maintaining good efficiency in estimating the ed levels.

In this dissertation, we introduced the three–parameter logistic model.

Some details of the ED-design under the three–parameter logistic regres-
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sion model are given. We investigate the effectiveness of the sequential ED-

design, the D-optimal design, and the up-and-down design under this model,

and develop an effective model fitting strategy. We develop an easy way to

implement an iterative numerical algorithm with guaranteed convergence

for computing the maximum likelihood estimation of the model parameters.

The sequential ED-design can be implemented after some laborious but sim-

ple mathematical derivations. Although we have yet to generate any theory

on its D-optimal design, a numerical procedure via the well-developed vertex

direction method (VDM) works well. Simulations show that the combina-

tion of the proposed model and the data analysis strategy performs well.

When the logistic model is correct, using the more complex model suffers

hardly any efficiency loss. When the three-parameter model holds but the

logistic model is violated, the new approach can be more efficient.

In addition to these achievements, we discuss the use of the ED-design

when experimental subjects become available in groups. We introduce the

group sequential ED–design, and show how to construct this design.

7.2 Future Research

In this dissertation, the property of the ED-design is studied numerically

and analytically. The theoretical aspect of the proposed design has not

been fully explored. We will focus on the theoretical aspect such as the

asymptotic properties of the ED-design in future research. For example,

simulation studies show that for sample size n = 1000, the doses generated

from the ED-design cluster around two ed levels of the underlying dose–
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response curve. In the future, we will investigate if doses generated from

the ED-design converge to these two specific ed levels as n tends to infinity.

In this dissertation, we apply the vertex direction method (VDM) to nu-

merically compute the D-optimal designs under the three-parameter logistic

and probit models. The resulting D-optimal designs are uniform distribu-

tions on three support points. Under these two models, design points and

design weights change with different λ values. We do not have a compara-

ble theory for the D-optimal design under new models but point out that a

vertex direction method remains effective for numerical solutions. In future

research, we plan to generate a theory on the D-optimal design under more

complicated models.

The proposed two-stage ED-design is very easy to implement in medical

research. To utilize this design, the responses of experimental subjects need

to be observed quickly, such as in anesthesia research, a subject’s response

to anesthetic drugs, i.e., being anesthetized or not, is observed immediately.

However, in most clinical practice, especially in cancer trials, a subject’s

response is not immediately obtained. The ED-design may delay the assign-

ment of the subsequent subjects and lead to long trial duration. Thus, it is

interesting to modify our design to incorporate delayed responses.

We may also generalize our proposed design in many ways. In this

dissertation, we mainly focus on studying the ED-design under the logistic

response model. As a starting point, we have investigated the performance

of our proposed design under the three–parameter logistic model. We believe

that the same results can be generalized to other popular response models,

such as the double exponential model.
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We also believe that the proposed design can be extended to estimate

other sets of ed levels, including sets of two or more ed levels of the un-

derlying dose-response curve, for example, estimating ed25 and ed75 si-

multaneously. More simulations will be carried out to confirm the above

claims.

More studies will be conducted to modify and extend our proposed design

in the future. Our group ED-design has a natural extension to more complex

models and can also be used for any ed levels, and satisfy a broad range of

demands that may arise in applications. We feel that our proposed design

reveals some interesting directions and provides great potential for further

research.
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