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Abstract 

 

Evidence of test dimensionality supports test scoring, and it is essential to construct validity. 

Yet many issues remain unclear in assessing dimensionality, especially when the response data 

are collected through self-report Likert-type tests that include negatively keyed items. The 

emergence of additional factors that can be attributed to the mixed-keyed format is an issue that 

draws much attention in investigating the dimensionality of tests that are designed to be 

unidimensional. Common methods for assessing dimensionality can be categorized into two 

types: exploratory and confirmatory. Exploratory studies use many rules and criteria, such as the 

eigenvalues-greater-than-one (K-G) rule and parallel analysis (PA), along with exploratory factor 

analysis (EFA) to help researchers determine the number of factors (i.e., dimensions). 

Confirmatory factor analysis (CFA), on the other hand, is often employed to examine the fit of a 

hypothesized measurement model. A large number of fit indices, including the Chi-square test, 

the comparative fit index (CFI), and the root mean square error of approximation (RMSEA), 

have been proposed to evaluate a model’s overall fit. 

This dissertation investigated, via computer simulation, how these various procedures 

performed in assessing the dimensionality of item response data collected using tests with 

negatively keyed items. Factors in the simulation experiment included psychometric models (i.e., 

the simulation methods) of negatively keyed items, the number of negatively keyed items, the 

magnitude of item communality, the distribution of observed item response, the scoring methods 

of negatively keyed items, and the methods and rules used for the statistical judgment of 

dimensionality.  

This dissertation adopts the threshold model of item responses, which assumes a monotonic 

relationship among the latent variable, item thresholds, and observed item responses. The results 

indicate that the dimensionality of tests with mixed-keyed items is always correctly identified 

when the observed item response distribution is symmetric. When it is asymmetric, however, the 

methods and decision rules used in dimensionality assessment affect the statistical judgment of 

test dimensionality. The results highlight the benefit of using categorical data analytic methods in 

dealing with item responses obtained through Likert-type rating scales. Guidelines are provided 

to inform researchers when assessing the dimensionality of mixed-keyed tests.  
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Lay Summary 

 

Tests are widely used in the social, behavioural, and health sciences. This dissertation 

focuses on tests that have both positively and negatively keyed items. For example, in a 

test/measure of well-being, these items could include negatively keyed statements like “I am sad” 

and “I am not happy,” along with positively keyed statements like “I feel happy.” This 

dissertation seeks to better understand how the inclusion of negatively keyed items affects the 

statistical judgment of the test scoring and interpretation. Four closely related computer 

simulation studies were conducted. The results highlight the benefit of using categorical data 

analysis in studying item responses obtained through Likert-type rating scales. Guidelines are 

presented to assist researchers and practitioners to make informed decisions when analyzing their 

data. 
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CHAPTER ONE: 

INTRODUCTION 

 

This chapter provides a general introduction to the problem investigated in this 

dissertation. In doing so, it explores the context of the research questions and highlights the 

purpose of the study. The structure of the dissertation is described at the end of this chapter. 

 

Context of the Study 

Tests, measures, questionnaires, and other measurement instruments are commonly used 

data collection methods in the social, behavioural, and health sciences. Scholars have proposed 

numerous types of such measures to assess individuals’ perceptions, personalities, attitudes, and 

other affective characteristics, and use varied terminology to describe these measurement 

instruments. This dissertation adopts the following nomenclature to capture the wide diversity of 

usage in the vast research literature.  

 The terms “test,” “measure,” “questionnaire,” and “scale” are used interchangeably to denote 

a multi-item instrument that results in one or more composite scores. Please note that the 

word “scale” will be employed sparingly, and its meaning will be evident in the context of 

use, because the term has several meanings in the literature. 

 Multi-item instruments are made up of items that are comprised of a stem (the statement or 

question) and a response scale.  

 The phrase “response scale” or “rating scale” will be used to modify the term “scale.” In 

addition, “scale response” or “item response” denotes the choice that the test taker or 

respondent makes when confronted with the item stem.  

 The phrases “item response distribution” and “response distribution” are utilized 

interchangeably to describe the statistical frequency or density of responses to an item 

calculated for a group of respondents.  

 A composite score is a sum or weighted sum of the item scores. The composite scores 

computed from each respondent’s (or test taker’s) item responses are called “test scores,” 

“scale scores,” “total scores,” “test-level scores,” or “factor scores,” depending on the context. 

The most common response scale format is a rating scale, which is also widely referred to 

as a Likert-type response scale or summative/summated rating scale. Tests that consist of items 
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with a Likert-type response format or summative rating scale, wherein one computes a composite 

test score, are referred to as Likert-type tests or summative tests (see Figure 1). One other central 

feature of these tests is that they are based on self-reporting, although an alternative does exist in 

which raters judge others’ behaviours or characteristics. 

 

 

Figure 1. 

Graphic depiction of the terms describing a Likert-type test 

 

This dissertation focuses on unidimensional psychological tests. These tests are often 

short compared to the long test batteries in multidimensional psychological tests, and consist of 

Likert-type response scales. Typical examples of self-report measures in psychological research 

include the Rosenberg Self-Esteem (RSE) scale (Rosenberg, 1965), the Penn State Worry 

Questionnaire (PSWQ; Meyer, Miller, Metzger, & Borkovec, 1990), and Ryff’s Psychological 

Well-Being Scales (PWB; Ryff & Keyes, 1995). Each of these is a multi-item measure that 

contains stand-alone (disjointed) items that are not dependent on the responses to other items. 

Each item is followed by a rating response scale that can range from two to nine points, with a 

common number being five. The descriptors attached to each scale often indicate different 

agreement levels (e.g., from “strongly disagree” to “strongly agree”) with the item stem. 

Typically, tests that use a Likert-type response scale will have the same number of response 

options for all of the items because this simplifies computing the total test score.  
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Composite test scores from item responses are frequently used to quantify the construct 

of interest. Evidence regarding the dimensionality of a test is therefore essential to supporting the 

use of its scores. More importantly, data collected from these measurement instruments, and 

especially the test-level scores, are usually used to make decisions and inferences. Thus, 

evaluating the validity of the interpretation of the test results is critical. According to the 

Standards for Educational and Psychological Testing (Standards; American Educational 

Research Association [AERA], American Psychological Association [APA], & National Council 

on Measurement in Education [NCME], 2014), validity refers to “the degree to which evidence 

and theory support the interpretations of test scores for proposed uses of tests” (p. 11). It should 

also be noted that the scoring strategies applied to obtain test-level scores implicitly make 

assumptions regarding the factor structure of a test. For example, whenever one uses a total or an 

average score of item responses from all the items in a test, one assumes that the test is 

unidimensional. 

Researchers view a test score as one of the indicators of the measured construct (Hubley 

& Zumbo, 1996). To adequately evaluate the validity of interpretations or inferences made from 

these scores, one needs some information to confirm their intended meaning (Guion, 1977; 

Messick, 1975). One way, among many, to do this is to focus on the theoretical dimensions of 

the construct that the test is designed to measure. Construct validity, sometimes also referred to 

as factorial validity (Thompson & Daniel, 1996), seeks agreement between a particular 

measurement and a theoretically conceptualized construct. Investigating the dimensionality and 

factor structure of a test is an essential component of construct validity and test scoring. Messick 

(1995) identifies six aspects of construct validity: content, substantive, structural, generalizable, 

external, and consequential. The factor structure of a test falls into the structural category. The 

Standards (AERA et al., 2014) also recognizes evidence based on factor structure as one of the 

five sources of validity evidence. 

It should be mentioned that both “dimensionality” and “factor structure” are used to refer 

to the structure of a phenomenon. The assessment of test dimensionality and factor structure are 

interrelated methods, and they are not always clearly distinguished in the research literature, 

especially when it comes to unidimensional tests. In short, the determination of the number of 

dimensions is a precursor to the interpretation of the factor structure, but the former is done on its 

own when investigating if a test is unidimensional (usually for the purposes of supporting test 



4 

scoring). In this dissertation, the terms “dimensionality” and “factor structure” are used with a 

subtle distinction. When the focus is on determining the number of factors (i.e., dimensions) 

underlying a test, the term “dimensionality” is utilized. When the factor loadings and factor 

interpretation (i.e., interpretation of dimensionality) are of interest, the phrase “factor structure” 

is used.  

Construct-irrelevant variance or construct under-representation can lead to major 

concerns about the validity of inferences, such as unanticipated or negative consequences of 

score interpretation (Messick, 1998). If a measurement instrument includes factors that are not 

part of the construct, or if it excludes factors that are essential to the construct, the inferences 

made from the test scores may result in undesirable consequences. Response style, or response 

bias, is a frequently concerned source of construct-irrelevant variance. To offset an unwanted 

response style, a common practice in constructing measurement instruments is to include items 

keyed in different directions. Indeed, negatively keyed items are employed primarily to attenuate 

response bias (Idaszak & Drasgow, 1987). In particular, it is believed that if an equal number of 

positively and negatively keyed items are included in a test, the effects of response style, such as 

acquiescence response and extreme response, will be cancelled out (Nunnally, 1978). 

In the literature, items that are keyed negatively are often described by ambiguous terms, 

such as “negative items,” or by the interchangeable use of the phrases “negatively worded” and 

“negatively keyed.” This dissertation uses “positively keyed” and “negatively keyed” to refer to 

items whose responses are keyed in different directions to derive a meaningful test score. For 

example, the ten-item RSE scale (Rosenberg, 1965) uses a four-point response scale (1-2-3-4), 

with a larger number meaning a higher level of agreement with the stem. One item stem states 

that “I take a positive attitude toward myself.” A higher level of agreement on this item (i.e., a 

higher response score) corresponds to greater self-esteem. Another item in the RSE scale has the 

stem: “All in all, I am inclined to feel that I am a failure.” A higher level of agreement on this 

item (i.e., a higher response score) shows the opposite. The responses to such items are usually 

re-scored in a reversed way, with a smaller numerical value assigned to those indicating a higher 

level of agreement—that is, the item responses are recoded such that 1 = 4, 2 = 3, 3 = 2, and 4 = 

1. A detailed discussion of the terms used to describe item keying and wording, and the reverse 

scoring process of item responses to negatively keyed items, will be presented in the next chapter.  
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Although negatively keyed items are ubiquitous in educational and psychological tests, 

many researchers question their use (e.g., Barnette, 2000; Lai, 1994; Marsh, 1986; Motl, Conroy, 

& Horan, 2000; Pilotte & Gable, 1990; Schmitt & Stultz, 1985; Schriesheim & Hill, 1981). 

These items have been shown to reduce the validity of responses by introducing construct-

irrelevant variance and systematic error (Jackson, Wall, Martin, & Davids, 1993; Schriesheim & 

Hill, 1981). Researchers have demonstrated that including items keyed in different directions in 

one test may result in an additional factor consisting of all negatively keyed items (Harvey, 

Billings, & Nilan, 1985; Schmitt & Stultz, 1985). The received view in the research literature is 

that a simple one-factor model may not represent a mixed-keyed test (i.e., a test consisting of 

both positively and negatively keyed items) as well as more complex models that allow for the 

item keying effect(s) (e.g., Carmines & Zeller, 1979; DiStefano & Motl, 2006; Marsh, 1996; 

Tomás & Oliver, 1999). The presumed item keying and/or wording effect has been found in 

various measures and populations of respondents, but its manifestation seems sample and context 

dependent (e.g., Barnette, 2000; Lai, 1994; Marsh, 1986, 1996; Motl et al., 2000; Pilotte & Gable, 

1990; Schriesheim & Hill, 1981; Tomás & Oliver, 1999). The issues related to tests with mixed-

keyed items include lower reliability and unexpected factor structure. Chapter Two will review 

these problems, with a focus on the emergence of additional factors in tests that were originally 

designed to be unidimensional.  

The threat that negatively keyed items may potentially pose to the assessment of the 

factor structure of a test has drawn extensive attention from researchers. This is mainly because 

the keying-related effect observed in mixed-keyed tests may not only confuse the understanding 

of the factor structure, but also influences the interpretation of the subsequent statistical analysis 

of the test scores. In this case, it is important to comprehend the reason for the emergence of the 

additional unexpected factor(s).  

One way to explain the appearance of unexpected factors formed by item keying 

direction is that items function differently when they are keyed positively or negatively. The 

differential functioning of so-called “negative” items is usually ascribed to the wording rather 

than to the keying effect (e.g., Ahlawat, 1985; Marsh, 1986, 1996). It has been suggested that the 

cognitive and linguistic processing demands inherent in negatively worded items are different 

from those needed to process positively worded ones (Ahlawat, 1985; Marsh, 1986, 1996). 
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Marsh (1986, 1996) has shown that respondents’ verbal ability is related to their response 

patterns to negatively worded items.  

Admittedly, in many measures, negatively keyed items are more likely to be 

grammatically negatively worded, while positively keyed items are usually expressed positively. 

However, keying direction and wording direction are not always consistent. For example, the 

ten-item RSE (Rosenberg, 1965) contains five positively keyed and five negatively keyed items. 

Among the negatively keyed items, one item stem is “All in all, I am inclined to feel that I am a 

failure,” which does not contain any grammatical negation. In other words, that item is 

negatively keyed but positively worded. Therefore, item wording is probably not the sole 

explanation for the systematic variance among the negatively keyed items. Moreover, other 

confounding factors exist, such as the content area under study (i.e., targeted construct), the 

characteristics of scoring (e.g., reverse scoring or not), and scaling methods (e.g., observed total 

score or factor score).  

Since the mechanisms that drive the differential functioning of positively and negatively 

keyed items on self-report measurement instruments are not completely understood, studies that 

seek additional factors to explain the occurrence of this systematic variance associated with item 

keying are eagerly anticipated. Empirical research based on various populations and measures 

has repeatedly reported issues related to the dimensionality and factor structure of 

unidimensional tests consisting of both positively and negatively keyed items (e.g., Marsh, 1996; 

Motl et al., 2000; Pilotte & Gable, 1990; Tomás & Oliver, 1999). However, this research is often 

unclear about whether such issues can be attributed to the wording effect alone, or whether they 

are better explained by the keying effect or by the interaction of both effects.  

It is extremely difficult (some would say impossible) to disentangle the keying effect 

from other item properties and/or respondent characteristics, thus complicating (or impeding) its 

study in empirical work with respondents. Computer simulation studies are better suited to 

separating effects from different sources, including those derived from item keying and wording. 

To the best of my knowledge, however, no simulation studies have been conducted to 

systematically examine the keying effect on test dimensionality and factor structure. Three 

simulation studies have explored some aspects of the effect of item characteristics, including 

item keying and item wording, as well as respondent characteristics on the factor structure of a 

test (Schmitt & Stults, 1985; Spector, Van Katwyk, Brannick, & Chen, 1997; Woods, 2006). 
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Each of these simulation studies had a slightly divergent focus and employed different designs 

and procedures. These earlier studies point to the promise of using computer simulation in this 

context, but more work is still needed to understand the keying effect. 

 

Purpose 

This dissertation will explore the performance of different statistical methods of assessing 

test dimensionality and factor structure in the presence of negatively keyed items (i.e., mixed-

keyed tests). An investigation of the factor structure of a test begins with either the a priori 

specification or the empirical determination of the number of factors—the former denoted as 

confirmatory and the latter as exploratory analyses. These statistical methods treat the item 

responses as either continuous or ordinal data. These various methods, and how the item 

response data are handled, may provide an alternative explanation for the unexpected keying 

effect arising in unidimensional mixed-keyed tests. Despite the prevalence of negatively keyed 

items in measurement instruments, and the importance of assessing dimensionality and factor 

structure, there remains a lack of clarity as to how researchers should proceed. For instance, it is 

often advised that responses to negatively keyed items should be reverse scored before 

conducting any analysis, despite the fact that little empirical evidence justifies this process.  

Indeed, whether or not negatively keyed items were reverse scored is a particularly 

thorny issue when investigating what researchers report in the literature, as many authors remain 

silent on the matter. To add further complication, little is known about whether and how the 

presence of negatively keyed items affects exploratory or confirmatory factor analysis. This 

combination of events leaves the reader uncertain about what to conclude when reviewing a 

study reporting on the dimensionality and factor structure of a test comprised of both positively 

and negatively keyed items (i.e., mixed-keyed test).  

Tests are classified as either multidimensional (such as the 44-item Big-Five Inventory 

and Costa and McCrae’s [1992] 60-item NEO Five-Factor Inventory) or unidimensional (such as 

the RSE scale and the PSWQ). This dissertation concentrates on the widely used unidimensional 

variety of tests, which result in one test score. In this case, the matter of factor structure largely 

comes down to the investigation of unidimensionality to support the test scoring and 

interpretation. This dissertation reports on several computer simulation studies that document 

how exploratory or confirmatory factor analysis (treating the item responses as either continuous 
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or ordinal) influences the statistical judgment of dimensionality for mixed-keyed tests. The 

results are used to provide guidelines for researchers. 

 

Structure 

The remainder of this dissertation is divided into three chapters. Chapter Two reviews the 

relevant literature and provides the psychometric background for the four simulation studies 

reported in this dissertation. The chapter begins with a further clarification of the terminology 

used to describe item keying and wording and the issues associated with negatively keyed items. 

In reviewing the extant simulation studies, it became evident that there are two ways of 

conceptualizing (and hence simulating) item responses to a mixed-keyed test—negative factor 

loadings and negatively keyed item thresholds—that have not been previously investigated. 

Given that this dissertation aims to inform day-to-day research practice with short Likert-type 

tests, it provides a brief review of the current reporting practices of common psychometric 

analyses to examine the dimensionality and factor structure of tests with mixed-keyed items. 

Chapter Two ends with a summary of the gaps in the research literature and an overview of the 

dissertation’s four simulation studies.  

Chapter Three starts with a short introduction that summarizes the main messages from 

chapters one and two. It then goes on to discuss the methods and results of four simulation 

studies. These studies are organized into two sections according to the conceptualization and 

simulation of item responses for mixed-keyed tests. Within each section, studies using both 

exploratory and confirmatory methods are presented. Chapter Four summarizes the findings of 

the four simulation studies by revisiting the research questions listed towards the end of Chapter 

Two. This final chapter also describes the novel contributions and limitations of this dissertation 

research, along with its implications for applied researchers and future directions. 
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CHAPTER TWO: 

LITERATURE REVIEW  

 

This chapter describes the issues related to and the methods used in the assessment of the 

dimensionality and factor structure of short self-report Likert-type tests (i.e., summative tests) 

with negatively keyed items. While this dissertation focuses on determining unidimensionality to 

support test scoring and interpretation, the literature review explores a slightly broader range of 

subjects, covering various studies that report on unidimensional psychological tests with mixed-

keyed items. The findings from studies on multidimensional tests with Likert-type response 

scales are also included because the results regarding negatively keyed items and their impact on 

factor structure may be informative for short unidimensional Likert-type tests.  

As was noted earlier, the assessment of dimensionality and the evaluation of factor 

structure are interrelated, and the distinction between them is subtle. The essential difference is 

that the former focuses on determining the number of dimensions (or factors), whereas the latter 

focuses on their interpretation. It should be noted that the psychometric literature does not 

always distinguish between these terms very well. In empirical studies, it is rare for researchers 

to assess test dimensionality without interpreting the resultant dimensions (i.e., factors). In fact, 

standard best practices recommend that one consider interpretation (i.e., factor structure) when 

addressing dimensionality (e.g., Flora & Flake, 2017). Thus, the phrase “assessment of factor 

structure” is often used together with or instead of “assessment of test dimensionality.” 

This chapter begins by defining negatively keyed items and distinguishing them from 

negatively worded items. It then reviews the literature investigating issues related to evaluating 

the factor structure of mixed-keyed tests. This review is organized into two subsections: (a) 

empirical studies that report on the effect of negatively keyed items on the internal structure of a 

test, and (b) simulation studies that explore possible explanations for the impact of these items on 

the assessment of test dimensionality. In light of the data simulation strategies of negatively 

keyed items used in the simulation studies, two psychometric models and thus two possible ways 

to conceptualize the item response process for negatively keyed items are discussed.  

Given that the remainder of this dissertation will require some understanding of the 

common statistical methods used in dimensionality and factor structure assessment, a brief 

introduction to these common methods is provided in this chapter. For a newly developed 
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unidimensional test or for an existing test that requires re-evaluation, its dimensionality is often 

ascertained either by (a) conducting an exploratory analysis of the factor structure, which has the 

enumeration of the factors as its first step; or (b) performing a direct analysis to determine if a 

test is unidimensional through confirmatory methods. This chapter describes both of these 

approaches. It then connects the gaps in the research literature to the purposes of the current 

study. Finally, it presents the research questions, along with an overview of the study design. 

 

Negatively Keyed Items 

Self-report measurement instruments suffer from various sources of error, which can 

potentially be introduced in every aspect of the measurement process. Item characteristics (e.g., 

item keying and wording), respondent characteristics (e.g., social desirability), and the setting of 

test administration, just to name a few, are all possible pitfalls. Many of these potential sources 

of error fall under the general heading of the “method effect,” which refers to the systematic 

variance in the responses (i.e., item scores) that is not explained by the construct of the 

measurement, but rather is due to the measurement method (Podsakoff, MacKenzie, Lee, & 

Podsakoff, 2003). The meaning of this effect can vary in different studies depending on the 

sources to which it is attributed. One much-discussed category of the method effect has been 

referred to as response sets, response styles, and response biases. Some response styles that are 

often discussed include acquiescence response, extreme response, and socially desirable response. 

A substantial amount of research pertains to each of these subcategories. A review of the 

extensive research literature on the method effect as a whole strays from the topic of this 

dissertation and thus is beyond its scope. 

This dissertation draws attention to the item keying effect. Although this effect is often 

ignored and can be a source of the method effect, the intention of this dissertation is not to 

demonstrate how the former can contribute to the latter, nor to compare its impact with other 

sources of the method effect. Rather, as an exploratory study, this dissertation attempts to 

disentangle the keying effect from the method effect, which is often attributed to item wording. 

The keying effect and wording effect are defined, and their relationship is discussed in this 

section. Recall that the goals of this dissertation are to (a) document how the inclusion of 

negatively keyed items may affect the statistical judgment of test dimensionality, and (b) provide 

guidelines to assist researchers in decision making when dealing with negatively keyed items. 
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The remainder of this section focuses on reviewing studies on the dimensionality assessment of 

tests with negatively keyed items, followed by a discussion of two possible psychometric models 

for these items. 

 

Definition 

The topic of this dissertation is negatively keyed items and their implications for 

assessing test dimensionality. To facilitate further examination of this subject, a clarification of 

the terminology is necessary, especially considering that the semantics used to refer to item 

keying, wording, and social-psychological meaning are inconsistent and intertwined in the 

literature. Indeed, many terms have been employed to describe items or item stems, including 

negatively keyed, reverse scored, and reverse coded; positively keyed and directly scored; 

negatively worded, reverse worded, negative items, and reversed items; and positively worded 

and positive items (e.g., Colosi, 2005; Curry, Wakefielf, Price, & Mueller, 1986; Ibrahim, 2001; 

Schriesheim & Hill, 1981; Sliter & Zickar, 2014; van Sonderen, Sanderman, & Coyne, 2013). 

The above is a list of only those terms that appear often in the literature. Others such as regular 

items (Wang, Minor, & Wei, 2011), connotatively consistent, and connotatively inconsistent 

(Chang, 1995a, 1995b) have also been used, though much less frequently. In many instances, 

these terms are used without a clear definition. Most notably, various studies do not distinguish 

between item “keying” and “wording” properly (e.g., Colosi, 2005; van Sonderen et al., 2013). 

In some cases, items that are stated positively but scored negatively are referred to as “negatively 

worded” items (e.g., Colosi, 2005; van Sonderen et al., 2013) while, in other cases, vague terms, 

such as “negative items” or “reversed items,” are used without differentiating wording from 

keying. 

Throughout this dissertation, keying direction and wording direction are viewed as two 

distinct item features. Item keying refers to how the responses to an item should be scored or 

interpreted. Item wording describes the grammatical features of how an item is stated. Following 

this rationale, the direction of item keying is related to the test score interpretation, but not 

necessarily to the wording of an item. Sometimes, negatively keyed items are designated as items 

that are opposite in meaning compared with the majority of the items in a test (e.g., Schmitt & 

Stults, 1985). This definition is narrow, and it only holds when there are fewer negatively keyed 

items than positively keyed ones in a test. More generally, a negatively keyed item can be defined 
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as an item whose meaning is opposite to the polarity of the construct being measured. Items are 

negatively keyed because a negative response to them (i.e., some level of denial or disagreement) 

indicates a higher level of the measured construct. On the contrary, items are defined as 

positively keyed because a positive response (i.e., some level of agreement) represents a higher 

level of the construct being measured. Items are keyed in different directions to reflect their 

meaning in relation to the construct. In this way, the scored item responses can be aggregated to 

make a meaningful test score. The keying direction of an item depends on the meaning of the 

item relative to the meaning of the test score, and thus, it cannot be judged in isolation. For ease 

of interpretation, the conventional practice is to use a higher test score to reflect a higher 

standing on the construct. Only if the standard or the meaning of a test score is predetermined 

can the keying direction be distinguished. 

Item keying difference can be observed in the item correlation matrix. If all the item 

responses are left in their original format (i.e., without applying reverse scoring), the item 

correlation matrix will show a clear pattern that distinguishes items keyed in different directions. 

The correlations are positive within items keyed in the same direction, but negative between 

positively and negatively keyed items. An operationalization of negatively keyed items can be 

that negatively keyed items are those correlate negatively with the total test score and with other 

positively keyed items in the same test.  

By contrast, the wording direction of an item can be judged independently from other 

items in the same test. This is because it is essentially a grammatical issue that can be evaluated 

relatively unambiguously. An item can be stated either as an affirmation (i.e., positively worded) 

or as a denial or disaffirmation of something (i.e., negatively worded) (Horn, 1989). A positively 

worded item refers to one that is grammatically affirmative and contains no negative syntactic 

markers. Meanwhile, a negatively worded item is one that possesses grammatically negative 

markers that negate or reverse the meaning the sentence would otherwise convey (Holden, 

Fekken, & Jackson, 1985; Horn, 1989). Negatively worded items can be identified by looking for 

negation markers in the stems. Some common negation markers include (a) syntactic negations 

using “not,” (b) syntactic negations using adverbs such as “never,” and (c) reversals 

accomplished via words containing certain prefixes (e.g., “in-,” “un-,” and “im-”) or suffixes 

(e.g., “-less”) (Holden et al., 1985). 
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By adopting the definitions described above, items can be distributed into four categories 

by cross-classifying the keying and wording directions. These categories are (a) positively 

worded and positively keyed, (b) positively worded and negatively keyed, (c) negatively worded 

and positively keyed, and (d) negatively worded and negatively keyed (e.g., Bentler, Jackson, & 

Messick, 1971; Coleman, 2013; Schriesheim, Eisenbach, & Hill, 1991).  

As shown in Figure 2, negatively keyed items may or may not be grammatically negative 

(i.e., negatively worded), and negatively worded items may or may not be negatively keyed. As 

an example, imagine that we have an instrument measuring an individual’s happiness, which 

consists of the four types of items. For the purpose of demonstrating some possible items with 

different combinations of wording and keying directions, the adjectives “sad” and “happy” are 

considered to be polar opposites. Assume that all the statements (i.e., item stems) are rated on a 

five-point Likert-type response scale, from strongly disagree (1) to strongly agree (5). For ease of 

score interpretation, we decide that a higher score on this measure represents a higher level of 

happiness. In this case, items such as “I am sad” and “I am not happy” can be identified as 

negatively keyed. This is because disagreement with these statements indicates a greater level of 

happiness. When examining these two negatively keyed items closely, however, it is evident that 

they differ in their wording directions. “I am sad” is a positively worded item (from a purely 

grammatical point of view), while “I am not happy” is negatively worded. Likewise, agreement 

with positively keyed items such as “I am happy” and “I never feel sad” demonstrates a higher 

level of happiness. The former item is positively worded, while the latter is negatively worded 

(see Figure 2). This example shows that keying and wording can be independent item features. 

Negatively keyed items can be either positively or negatively worded and vice versa. Studies that 

use ambiguous terms such as “negative” items therefore fail to provide clear information 

regarding which item feature is being investigated, potentially leading to the misinterpretation of 

the results.  
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  Item Keying 

  Positive Negative 

  (PK) (NK) 

Item Wording 

Positive 

(PW) 

PW & PK 

(e.g., I am happy.) 

PW & NK 

(e.g., I am sad.) 

Negative 

(NW) 

NW & PK 

(e.g., I never feel sad.) 

NW & NK 

(e.g., I am not happy.) 

Note: A possible response scale for the example items may be: 1) strongly disagree, 2) 

disagree, 3) neutral, 4) agree, and 5) strongly agree. The keying direction of the example 

items is selected so that higher scores represent higher levels of happiness. 

 

Figure 2. 

Cross-classification of items by wording and keying directions 

 

As stated at the beginning of this chapter, this dissertation investigates the effect of item 

keying on the assessment of test dimensionality and factor structure. Negatively keyed items, 

that is, the ones presented in the last column on the right side of the table in Figure 2, are of 

primary interest. The following discussion of the findings in the literature will focus mainly on 

tests with negatively keyed items. Bear in mind that the terms used in the literature to describe 

keying direction and wording direction are not always well defined and are usually employed 

inconsistently and interchangeably. Sometimes it is unclear whether the researchers studied 

negatively worded items, negatively keyed items, or a combination of both. When reporting the 

literature, items will be referred to using the terms defined in this chapter when sufficient 

information is provided. For example, when the items of the test under investigation are 

presented verbatim, their keying and wording directions can be identified. In such cases, it can be 

clarified which types of item are under study. When referring to articles in which the correctness 

of the terminology cannot be fully judged, the same wording used in that paper will also be used 

here to avoid misinterpretation. 
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Literature related to negatively keyed items: Empirical studies 

A common practice in educational and psychological measurements is to include items 

keyed in different directions in one measurement instrument. This is often recommended to 

guard against an individual respondent’s test scores being distorted by his/her response styles 

(e.g., Crocker & Algina, 1986; Nunnally, 1978; Nunnally & Berstein, 1994; Robinson, Shaver, 

& Wrightsman, 1991; Spector, 1992). For example, acquiescent respondents have a systematic 

tendency to overuse one side of a response scale (e.g., the agreement side), regardless of the 

content of the items (Couch & Keniston, 1960; Hui & Triandis, 1985), which leads to inflated or 

deflated test scores.  

Two interrelated arguments have been raised in support of using negatively keyed items 

to minimize the impact of acquiescence or extreme response styles (e.g., Cloud & Vaugh, 1970; 

Couch & Keniston, 1960; Martin, 1964; Nunnally, 1978; Wong, Rindfleisch, & Burroughs, 

2003). On the one hand, some researchers suggest that respondents’ acquiescence to negatively 

keyed items will offset their acquiescence to positively keyed ones. The belief is that respondents 

will be forced to consider each item carefully when items are keyed differently. To respond to 

these items consistently, individuals have to agree with some of the items and disagree with 

others. Therefore, negatively keyed items serve as cognitive “speed bumps” and consequently 

control for acquiescence (Kieruj & Moors, 2013). On the other hand, other researchers argue that 

while negatively keyed items do not eliminate respondents’ acquiescence tendency, they reduce 

its effect by creating test scores that are less extreme (Nunnally, 1978). 

Despite the prevalence of the practice, evidence from a preponderance of studies contests 

including items keyed in different directions in one test (e.g., Barnette, 2000; Lai, 1994; Marsh, 

1986; Motl et al., 2000; Pilotte & Gable, 1990; Schriesheim & Hill, 1981). It has been found that 

the reliability, and in particular the internal consistency, of a test can be adversely affected when 

positively and negatively keyed items are scored as a single bipolar scale (Barnette, 1997; Wong 

et al., 2003). Prior studies show that test versions with a single keying direction (i.e., all 

positively or all negatively keyed) yield higher internal consistency than do the same tests with 

mixed-keyed items (e.g., Barnette, 2000; Pilotte & Gable, 1990), although this conclusion is not 

always reached (e.g., Borgers, Hox, & Sikkel, 2004; Finney, 2001; Sauro & Lewis, 2011). This 

inconsistency in the research findings may be partially attributed to the ambiguity as to whether 

item wording, item keying, or both effects was studied. As discussed above, negatively keyed 
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items can be either negatively worded (e.g., “I am not happy”) or positively worded (e.g., “I am 

sad”), and similarly, positively keyed items can be either negatively worded (e.g., “I never feel 

sad”) or positively worded (e.g., “I am sad”). Even though negatively worded items have been 

found to show a tendency to exhibit lower internal consistency than their positively worded 

counterparts (e.g., Chang, 1995b; Pilotte & Gable, 1990), the internal consistency for negatively 

keyed items is not necessarily lower than for positively keyed ones (e.g., Schriesheim et al., 

1991). 

Besides the issue of internal consistency, more critically, the unexpected effect of the 

item keying direction raises questions regarding the validity of using test scores of mixed-keyed 

tests either for research purposes or other decisions. Studies in which item wording has been 

systematically varied across parallel versions of the same measure have generally found that 

versions featuring a consistent wording direction (i.e., all positively or all negatively worded 

items), which also resulted in a uniform keying direction (i.e., all positively or all negatively 

keyed items), yield better-fitting results to the one-factor models than do their mixed-keyed 

counterparts (e.g., Benson & Hocevar, 1985; Greenberger, Cheng, Dmitrieva, & Farruggia, 2003; 

Pilotte & Gable, 1990). However, some exceptions have also been noted (e.g., Finney, 2001).  

The dominant theme reported among factor-analytic studies of mixed-keyed tests is the 

emergence of two factors that are essentially separated by item keying direction (positively 

versus negatively keyed), although these tests are designed to be unidimensional. In research 

taking an exploratory approach to determining test dimensionality, principal component analysis 

(PCA) and exploratory factor analysis (EFA) have often been used. When data from a mixed-

keyed test that is supposed to measure one construct is analyzed through PCA or EFA, the results 

frequently suggest a two-component or two-factor solution differentiating items by their keying 

direction (e.g., Bieling, Antony, & Swinson, 1998; Carmines & Zeller, 1979; Hensley & Roberts, 

1976; Steed, 2001). 

In studies using confirmatory factor analysis (CFA) to investigate the factor structure of 

mixed-keyed tests designed to measure a unidimensional construct, a two-factor solution or a 

one-factor model with a specified method effect arising from item keying direction has been 

found to show a better fit than does a simple one-factor model (e.g., Corwyn, 2000; Marsh, 1986; 

Pohl & Steyer, 2010; Tomás & Oliver, 1999). Published research based on various target 
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populations and measures has repeated this finding (e.g., Barnette, 2000; Corwyn, 2000; Motl et 

al., 2000; Pilotte & Gable, 1990; Schriesheim & Hill, 1981).  

There are many variations in how these alternative factor models are proposed and 

utilized to account for the item keying effect. However, it is still confusing for scholars to decide 

which one is appropriate for their data and research purposes. Many studies with different 

measures and samples have compared these models. Researchers have generally found that the 

factor structure of their measures improves when they load items on different factors based on 

their keying direction or use models that account for the covariances among items with the same 

keying direction (e.g., Carmines & Zeller, 1979; DiStefano & Motl, 2006; Tomás & Oliver, 

1999). However, the results regarding which model can best represent the factor structure of 

mixed-keyed tests are inconsistent (e.g., DiStefano & Motl, 2006; Marsh, 1996; Tomás & Oliver, 

1999). This is partly because the fit statistics of these competing models follow closely with each 

other and often are not directly comparable.  

Much of the research examining the use of mixed-keyed tests has centered on self-esteem 

using the Rosenberg Self-Esteem (RSE) scale. Therefore, the findings on the RSE scale were 

chosen as examples to demonstrate the alternatives to the one-factor model that have often been 

suggested in the literature. By reviewing these findings, we can get a better sense of some of the 

challenges and confusions researchers may face in their day-to-day use of tests with items keyed 

in both directions. 

The RSE scale (Rosenberg, 1965) is widely used in assessing individuals’ self-esteem. 

The original version of this test contains ten items, half of which are positively keyed and the 

remainder of which are negatively keyed. The initial version uses a four-point Likert-type 

response scale ranging from “strongly disagree” to “strongly agree,” although other researchers 

have employed scales with different rating points and formats. Despite the differences in the 

presentation of the response scales, a summated score based on the responses to all ten items is 

used to quantify an individual’s level of self-esteem. 

The one-factor model (Model 1, see Figure 3), which is the basis for relying on this 

scoring method and on a summated total score, is often not supported by the statistical 

assessment of dimensionality. To better describe the factor structure of the RSE scale, at least 

eight alternative models have been proposed (see Tomás & Oliver, 1999). One of these models is 
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unique to the RSE scale and the study of self-esteem, while the others have been commonly 

suggested to handle tests with mixed-keyed items.  

 

Note: PK stands for positively keyed, and NK stands for negatively keyed. 

Figure 3. 

Model 1: One-factor model 

 

The seven models that have often been used as alternatives to describe unidimensional 

tests with negatively keyed items are classified into three categories: (a) a two-factor model 

whose factors are defined by keying directions (Model 2, see Figure 4); (b) three variations of 

the correlated uniqueness model (models 3a-3c, see Figure 5), including a one-factor model with 

correlated error terms among positively keyed items (Model 3a), a one-factor model with 

correlated error terms among negatively keyed items (Model 3b), and a one-factor model that 

allows for correlated error terms within both positively and negatively keyed items (Model 3c); 

and (c) three types of bi-factor models (models 4a-4c, see Figure 6), which mimic the three 

variations of the correlated uniqueness model. In these bi-factor models, the factors related to 

item keying directions are incorporated as distinct factors, and the correlations between 

substantive factors and keying factors are assumed to be zero. The factor loadings of a keying 

factor are typically allowed to differ, implying that each item can be influenced by the “keying 

effect” factor to a varying degree. The eighth model is somewhat unique to the ten-item RSE 

scale. It is a variation of the two-factor model, in which only two of the negatively keyed items 

form the second factor while all the other items load on the first (Model K, see Figure 7; 

proposed by Kaufman et al., 1991, as cited in Tomás & Oliver, 1999). 
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Note: PK stands for positively keyed, and NK stands for negatively keyed. 

Figure 4. 

Model 2: Two-factor model 
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Note: PK stands for positively keyed, and NK stands for negatively keyed. 

Figure 5. 

Model 3: Correlated uniqueness model 
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Note: PK stands for positively keyed, and NK stands for negatively keyed. 

Figure 6. 

Model 4: Bi-factor model 
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Note: PK stands for positively keyed, and NK stands for negatively keyed. 

 

Figure 7. 

Model K: Model proposed by Kaufman et al., 1991 (cited in Tomás & Oliver, 1999) 

 

The earlier studies tend to focus on a limited number of competing models, including a 

one-factor model (see Figure 3) and a two-factor solution based on item keying directions (see 

Figure 4; e.g., Ebesutani et al., 2012; Marsh, 1996; Motl et al., 2000). Later studies compare a 

wider range of models. These recent models can be placed into two broad categories: correlated 

uniqueness models and bi-factor solutions (e.g., Ebesutani et al., 2012; Wang, Chen, & Jin, 

2014). Three common variations of the correlated uniqueness model (models 3a-3c) are 

illustrated in Figure 5. These models all have one factor representing the construct intended to be 

measured, while the error terms of items with the same keying direction are correlated to 

represent the keying effect.  

In DiStefano and Motl’s (2006) study, the factor structure of the original ten-item RSE 

scale (Rosenberg, 1965) was compared via six models. They include a single-factor model 

(Model 1; see Figure 3); a two-factor model, with separate factors for the positively and 

negatively keyed items (Model 2; see Figure 4); and models with a self-esteem factor that 

accounted for the keying effect (i.e., models 3a, 3b, 4a, and 4b; see Figure 5 and Figure 6). They 

concluded that the one-factor model with correlated error terms among negatively keyed items 

(Model 3b) was the best fitting model. All the other models, except for the single-factor model 

(Model 1), achieved similar levels of model fit, as evidenced by almost identical fit statistics. 

Tomás and Oliver (1999) further expanded the number of possible alternative models. 

They compared nine different models to examine the factor structure of a Spanish version of the 

same ten-item RSE scale (Rosenberg, 1965). The nine models tested included the eight 
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alternative models described in the earlier paragraphs and the one-factor model (see Figures 3-7). 

The results showed that models that included the method effects among both positively and 

negatively keyed items (models 3c and 4c) were the best-fitting models. Both the correlated 

uniqueness model and bi-factor model exhibited an excellent and nearly equal fit to the data. 

Similarly, six models were compared in Marsh’s (1996) study, which utilized a seven-

item version of the RSE scale with three negatively keyed and four positively keyed items. The 

six models considered were (a) a single substantive self-esteem factor model (Model 1; see 

Figure 3 as an example), (b) a model with two factors representing either positively or negatively 

keyed items (Model 2; see Figure 4 as an example), (c) three variations of the correlated 

uniqueness models to account for the method effect (models 3a, 3b and 3c’; see Figure 5 as an 

example), and (d) a model with two factors representing general and transient self-evaluations 

(Model K, see Figure 7). Based on the fit statistics, it was concluded that the seven-item RSE 

scale was best described by a one-factor model with correlated uniqueness among negatively 

keyed items and selected positively keyed items (Model 3c’, a variation of Model 3c). 

Unfortunately, neither the rationale nor the procedure was clear about which items among the 

positively keyed ones should be chosen to allow for correlated error terms. 

The above examples of alternative factor models are taken from studies on the RSE scale. 

They contain the factor models recommended in the literature to describe the factor structure of 

mixed-keyed tests with CFA approaches. These factor models, including the two-factor model, 

correlated uniqueness models, and bi-factor models, are selected to represent the most typical 

models used in describing the structure of tests with negatively keyed items. Similar findings 

regarding the dimensionality and factor structure of tests with negatively keyed items have been 

observed across various measures. Most of these studies focus on measures that are purported to 

be unidimensional. Examples include the RSE scale (e.g., Carmines & Zeller, 1979; Marsh, 1996; 

Tomás & Oliver, 1999; Whiteside-Mansell & Corwyn, 2003), the revised Life Orientation Test 

(LOT–R; Scheier, Carver, & Bridges, 1994), the Social Physique Anxiety Scale (SPAS; Motl & 

Conroy, 2000; Motl et al., 2000), the Positive and Negative Affect Scale (PANAS; Bagozzi, 

1993), the Penn State Worry Questionnaire (PSWQ; Hazlett-Stevens, Ullman, & Craske, 2004), 

and so on.  

In summary, the empirical studies suggest that the more complex models, rather than the 

single-factor model, more adequately capture the factor structure underlying the data of mixed-
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keyed tests. Unfortunately, the interpretation of the alternative models may not be 

straightforward and can pose challenges to the understanding of the construct and the subsequent 

analyses of the test scores. Two common interpretations have been proposed for these alternative 

factor structures. One treats the additional factors in the model as substantive factors that have 

their own meanings. The other treats the emergence of a second factor or the appearance of 

correlations between some items as an artifact.  

The two-factor solution is a common alternative model that researchers may consider 

when a one-factor model is rejected. This solution treats positively and negatively keyed items as 

measuring two distinct but correlated latent constructs. When researchers choose this two-factor 

model over others, they are likely to give the factors substantive meaning. In the two-factor 

model, researchers interpret the second factor or the one defined by negatively keyed items as the 

polar opposite of the underlying construct. Take the revised Life Orientation Test (LOT-R; 

Scheier et al., 1994) as an example. The LOT-R was developed to assess the construct of 

dispositional optimism, which is defined as positive outcome expectancies (Scheier et al., 1994). 

Although dispositional optimism was conceptualized as a unidimensional concept at the 

beginning of the scale’s development (Scheier & Carver, 1985, 1987; Scheier et al., 1994), the 

response data in a number of studies indicated that the positively and negatively keyed items 

split into two factors (e.g., Creed, Patton, & Bartum, 2002; Herzberg, Glaesmer, & Hoyer, 2006; 

Lai & Yue, 2000). These factors observed with the LOT-R have been interpreted as two 

independent constructs, named as optimism and pessimism, rather than as a single trait (e.g., 

Herzberg et al., 2006). When researchers give factors substantive meanings, the implied 

theoretical stance is that they are distinct constructs or dimensions rather than the opposite ends 

of a continuum. Interpreting the results as two substantive factors/dimensions changes the 

conceptual definition of the construct that is originally hypothesized to be unidimensional; 

therefore, researchers must be cautious in making such an interpretation. 

The other common way to construe these alternative factor models is to treat the second 

factor (usually the one defined by negatively keyed items) as a method effect. Researchers who 

do this conclude that the two-factor structure underlying the response data is a result of a single 

meaningful dimension that is contaminated by a method effect or artifact (e.g., the keying and/or 

wording effect) (e.g., Carmines & Zeller, 1979). This method effect interpretation is widely 

employed to understand the results from the correlated uniqueness models (e.g., Bachman & 
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O’Malley, 1986) and bi-factor models (e.g., Innamorati et al., 2014). Limited work has been 

done to understand the mechanisms that produce the artifactual factors. Reasons that have been 

suggested for the emergence of the second factor include (a) a lack of reading ability to process 

negatively worded items (e.g., Cordery & Sevastor, 1993); (b) careless responses to negatively 

keyed items (e.g., Schmitt & Stults, 1985); and (c) response style, such as acquiescence 

responses (e.g., Savalei & Falk, 2014). 

Correlated uniqueness models are usually used to control the method effect associated 

with item keying direction, while bi-factor models are often used in studies where the method 

effect is considered an attribute of interest (e.g., DiStefano & Motl, 2006; Motl et al., 2000). For 

example, the method effect represented in bi-factor models has been conceptualized in 

association with response style (e.g., DiStefano & Motl, 2006), which is defined as a personality 

trait that is consistent over time and across measures (Bentler et al., 1971). Regarding the method 

effect interpretation in either correlated uniqueness or bi-factor models, fundamental questions 

arise about the nature of the variance associated with some but not all of the items in a test. For 

example, it is unclear whether this variance reflects the effect of item keying or is a general 

cognitive/psycholinguistic phenomenon associated with item wording. It is also unclear to what 

extent such variance might be viewed as a function of item features, individual characteristics, or 

the interaction between the two, and whether this variance is stable or transient. These 

possibilities do not seem to be mutually exclusive (e.g., Holden et al., 1991; Tourangeau & 

Rasinski, 1988). Not understanding the nature of the method effect renders the interpretability of 

the factors extracted from a supposedly unidimensional mixed-keyed test ambiguous. 

Besides the confusion surrounding factor meanings, researchers may be unsure which 

factor model is appropriate for their data. None of these complex models seems to be clearly 

superior to the others in terms of model fit and interpretability. Although the test is designed to 

follow a one-factor structure, a two-factor model or the other one-factor models controlling for 

the method effect can still be possible alternatives a researcher might consider in advance, or turn 

to if the one-factor model fits the data poorly. If the positively and negatively keyed items 

genuinely belong to two factors with different substantive meanings, the one-factor model would 

seem inappropriate when used to investigate the factor’s relationship with other external 

variables.  
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In summary, empirical studies focused on the internal structure of a test are often 

insufficient to confirm the meaning of the factors that emerge in the dimensionality assessment. 

Also, they are unable to disentangle the effects from different sources on test dimensionality 

assessment. Without knowing the “true” structure of a test, it is hard to judge which model is the 

right choice and how the covariance among the mixed-keyed items may change the statistical 

conclusions regarding dimensionality. For this reason, the following subsection reviews 

simulation studies on negatively keyed items and their effect on assessing test dimensionality. 

  

Literature related to negatively keyed items: Simulation studies 

Empirical studies suggest that negatively keyed items are suspected to introduce 

construct irrelevant variance and may lead to the emergence of a second factor when the test is 

designed to be unidimensional. The literature has explored various reasons for this phenomenon 

(e.g., Cordery & Sevastor, 1993; Schmitt & Stults, 1985; Spector et al., 1997; Woods, 2006). The 

factors that can potentially affect the assessment of test dimensionality can be attributed to three 

primary sources: (a) the features of a test, (b) respondents’ characteristics, and (c) the statistical 

methods used to assess dimensionality. This lack of transparency regarding the interplay among 

these sources makes it challenging to draw conclusions based on findings from empirical 

research. Simulation studies are better suited to separating the effects from different sources, 

including item keying and wording. 

Unfortunately, to the best of my knowledge, no simulation study has been conducted to 

systematically examine the keying effect on the statistical judgment of test dimensionality as 

informed by various analytic methods. A few such studies have explored some aspects of the 

effect of item characteristics, including item keying and wording, as well as respondent 

characteristics on the factor structure of a test (Schmitt & Stults, 1985; Spector et al., 1997; 

Woods, 2006). These simulation studies differ in their focus, study designs and procedures. They 

show that simulation is a promising method for exploring item keying effect, but such studies are 

rare and many issues remain unresolved.  

Schmitt and Stults (1985) explored a situation in which a subpopulation misread the 

negatively keyed items and responded to them as if they were positively keyed. They examined 

how such a situation may affect the factor structure of a test. Their study used factor loading 

matrices, based on item correlation matrices from real datasets, to generate item responses. They 
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employed three correlation matrices to replicate a variety of tests that are different in item 

intercorrelations. One of the correlation matrices represents the item intercorrelations of a 

unidimensional test, and the other two represent the intercorrelations of multidimensional tests. 

Negatively keyed items were indicated by negative factor loadings in the data generation model. 

The same thresholds were applied to the latent response distribution to obtain the observed 

response categories. The item responses were generated on a seven-point Likert-type scale with 

an asymmetric distribution. Before analyzing the data, all the responses to the negatively keyed 

items were reverse scored, as this is what applied researchers normally do. A group of careless 

respondents was created during this recoding process by leaving their responses unrecoded. The 

researchers subsequently analyzed the generated data, treating the ordinal item responses as 

continuous. Exploratory principal component analysis (PCA) was performed, and the findings 

suggest that a factor defined by negative keying direction can emerge with only 10% of the 

respondents misresponding to the negatively keyed items.  

Woods (2006) also concentrated on the effect of careless responses on the assessment of 

model fit via confirmatory factor analysis (CFA). This study utilized a unidimensional two-

parameter logistic item response theory (2PL IRT) model to generate dichotomous item 

responses to a unidimensional test. Ten items out of twenty-three (about 43%) were negatively 

keyed. Unlike Schmitt and Stults (1985), however, Woods (2006) simulated careless respondents 

by switching their responding categories (i.e., 0-1 and 1-0) on negatively keyed items. The item 

discrimination parameters used to generate the response data for both positively and negatively 

keyed items were all positive in the IRT models. Although not stated directly, the responses to 

negatively keyed items were probably generated through the reversed relationship between 

thresholds and observed response categories. The subsequent CFA analysis was carried out with 

weighted least squares means and variance adjusted (WLSMV). Consistently with Schmitt and 

Stults (1985), Woods (2006) concluded that, with relatively few individuals (10% of the total 

sample) misresponding to ten negatively keyed items in a 23-item test, a one-factor model could 

be wrongly rejected by the CFA model fit statistics.  

Although both of these studies focused on careless responses to items that are keyed or 

worded differently from the majority, Schmitt and Stults (1985) referred to such items as 

negatively keyed while Woods (2006) called them reverse worded. Both studies defined a 

careless respondent as someone who read a few items in a test and inferred that all the rest were 
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stated in the same direction, causing him/her to respond all the items in a similar manner 

(Schmitt & Stults, 1985; Woods, 2006). In light of this definition, it seems more appropriate to 

attribute the results to the misreporting of negatively worded and negatively keyed items (e.g., 

“I’m not happy” in a test measuring happiness). It is possible that a person might ignore syntactic 

negation markers, such as “not,” that negate the meaning of a statement and responds as if that 

item was positively worded. However, the plausibility is low for a careless respondent to misread 

an item that is positively worded but negatively keyed (e.g., “I am sad” in a test measuring 

happiness) and respond in an opposite manner than they should.  

Schmitt and Stults (1985) and Woods (2006) examined the impact on test dimensionality 

of having a subpopulation that consistently provides misresponses to negatively worded and 

negatively keyed items. Unlike these researchers, Spector and colleagues (1997) investigated the 

effect of item extremity on the dimensionality assessment of mixed-keyed tests. Spector and 

colleagues (1997) also relied on a different response process model for data generation. Although 

Schmitt and Stults (1985) used factor models and Woods (2006) used IRT models in their data 

simulation, both assumed that the observed item responses could be attributed to an underlying 

response model with continuous and normally distributed latent response functions. The latent 

response distribution underlying each item could be dichotomized at each threshold representing 

a response category. If persons and item response categories are put on a continuum reflecting 

the construct of interest, the person will tend to endorse a response category when his/her 

standing on the latent trait is higher than the response category. The literature sometimes refers 

to this as the dominance response process (Coombs, 1964; Likert, 1932). In contrast, Spector and 

colleagues (1997) used the ideal point principle to guide their data simulation. The ideal point 

process assumes that a person endorses an item or a response category only when he/she is near 

to the standing of the response category on the continuum of the attribute under investigation 

(Cliff, Collins, Zatkin, Gallipeau, & McCormick, 1988; Thurstone, 1928). In other words, in the 

ideal point process, people do not pick an option if they are much lower or much higher on the 

latent trait continuum relative to that response category.  

Spector and colleagues (1997), assumed that the latent response distribution underlying 

all the items was the same, but that the relationships between the latent trait and observed 

response categories varied depending on item extremity and keying direction. They defined 

extreme items as those that respondents found difficult to endorse. Item extremity was 
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manipulated through different transformation functions from latent response distribution to 

observed response categories. The authors argued that, while the relationship between the latent 

trait and observed response categories was linear for moderate items, it was curvilinear for 

extreme items, with a linear part close to one end of the continuum but mostly flat in other parts.  

Figure 8 shows the theoretical item characteristic curves for the moderate and extreme 

positively keyed items employed by Spector and colleagues (1997). For extreme items, 

respondents use only part of the response scale, which means their responses are clustered on one 

side. For positively keyed items that are extreme, the responses fall on the disagreement side of 

the response scale, while for negatively keyed extreme items, the responses are skewed towards 

the agreement side. The observed responses were simulated on a six-point response scale, and 

both CFA and EFA were conducted to explore the factor structure of the simulated datasets. 

Spector and colleagues (1997) concluded that the emergence of factors formed by item keying 

direction could be artifactually produced by different responding patterns associated with item 

extremity.  

 

Figure 8. 

Characteristic curves for (moderate vs. extreme) positively keyed items 

 

Taken together, these three simulation studies suggest that when respondents react 

inconsistently to items that are keyed in different directions, either due to “carelessness” or to 

item extremity (e.g., floor effect or ceiling effect), the expected factor structure of a test may not 

be supported by the statistics from factor analysis.  
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A couple of other simulation studies that may seem relevant are not included in the above 

review. These studies also simulated tests with negatively keyed items, but are not discussed in 

detail here because (a) they did not study the keying effect, but rather, some type of response 

style that may coexist with negatively keyed items (e.g., Savalei & Falk, 2014); or (b) they 

assumed that the inclusion of negatively keyed items would lead to a method effect, and studied 

the consequences of ignoring it (e.g., Gu, Wen, & Fan, in press).  

The findings of these simulation studies are important for applied researchers to consider 

when interpreting the results of a dimensionality assessment. However, studies of this sort are 

scarce, and have investigated only a limited number of factors that may affect test dimensionality. 

The lack of understanding of how the presence of negatively keyed items may affect the 

assessment of test dimensionality, combined with the dearth of research, calls for a simulation 

study that systematically investigates the effect of item keying on the evaluation of 

dimensionality and factor structure. 

 

Two psychometric models for generating responses to negatively keyed items 

As mentioned in the review of the simulation studies, different models have been used to 

generate data that represents item responses (see Gu et al., in press; Savalei & Falk, 2014; 

Schmitt & Stults, 1985; Spector et al., 1997; Woods, 2006;). In what follows, I first briefly 

describe the fundamentals of threshold models, which are often used to scale item responses in 

psychological testing. Models based on item response theory (IRT) and item factor analysis are 

often described as part of this category. Next, I discuss two possible psychometric models for 

negatively keyed items under the framework of factor analysis. This discussion will serve as the 

background and rationale for the simulation methodology used in this dissertation. 

Threshold models, also known as latent response variable models with categorical data, 

are commonly used mathematical ways to statistically model item responses (e.g., Muthén, 1983; 

Muthén & Asparouhov, 2002; Schmitt & Stults, 1985; Zumbo, Gadermann, & Zeisser, 2007). 

They adopt the dominance item response process, which follows the assumption of Likert-type 

rating scales that higher agreement with positively keyed items indicates a higher level of the 

measured attribute (Likert, 1932). Threshold models assume that each item has a latent response 

distribution (y*) and an observed response distribution (y). The observed response (y) comes 

from a latent response distribution (y*) underlying that item. Although the observed responses 
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are usually within a limited number of categories, the latent response distribution is continuous 

and, for computational convenience, is usually assumed to follow a normal distribution. The 

observed response distribution (y) is determined by the latent response distribution (y*) and the 

thresholds.  

Thresholds reflect the position on the underlying continuous and normally distributed 

variable (y*) that distinguishes a category of the observed variable (y). The relationship between 

a latent response distribution y* and an observed ordinal distribution y can be expressed as 

y = c, if τc < y∗ <τc+1, 

with thresholds τc as parameters defining the categories c = 1, 2, …, C − 1, where τ0 = −∞ 

and τc = +∞ (Liu, Wu, & Zumbo 2010; Muthén, 1983). The value for an observed ordinal 

response (y) changes when the latent response variable y* exceeds a threshold τc value. It 

assumes a perfect correspondence between the observed item response and the construct being 

measured. 

In threshold models, the construct shapes the latent response distribution underlying each 

item that assesses it. For each item, the observed responses are a manifestation of its latent 

response distribution. Following the threshold model, responses to negatively and positively 

keyed items can vary either due to different latent response distributions (y*) or different 

thresholds. The two psychometric models for negatively keyed items also reflect different ways 

of conceptualizing the item response process to these items. As Hubley, Wu, Liu, and Zumbo 

(2017) argue, parameters in a measurement model carry information or assumptions about the 

item response process. Thus, the following discussion attempts not only to describe the 

psychometric model of data-generation for the simulation study, but also to make connections 

between the psychometric models and how people respond to items.  

 

Negative factor loading model for negatively keyed items 

On the one hand, responses to negatively keyed items can be generated through negative 

factor loadings in the latent response model. That is, the latent response distributions (y*) have 

different relationships with the construct for items that are keyed in different directions. Some 

simulation studies have used this strategy (e.g., Savalei & Falk, 2014; Schmitt & Stults, 1985). 

For positively keyed items, the factor loadings in the latent response model are positive, 

indicating a higher standing on the construct associated with a higher standing in the latent 
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response distribution (yp*). For negatively keyed items, the factor loadings are negative in the 

latent response model. A higher standing on the construct leads to a lower value on the latent 

response distributions (yn*). However, in the transformation stage from latent response y* to 

observed response categories y, y is coded so that its relationship with the latent response (y*) 

will be the same for both positively and negatively keyed items. In other words, lower values of 

the latent response (y*) always correspond to lower values of the observed response (y).  

One way to link this psychometric model to the items and tests we use in day-to-day 

research is to relate it to positively worded but negatively keyed items. Following the rationale of 

this model, an item is keyed negatively because it assesses a negative aspect or the polar opposite 

of the construct. For example, in the RSE scale (Rosenberg, 1965), an item states, “All in all, I 

am inclined to feel that I am a failure.” It is reasonable to argue that respondents may draw on 

their experiences of “lack of self-esteem” that are prompted (or cued) by the key word “failure” 

in the item stem. Thus, this item can be seen as measuring “lack of self-esteem,” and its 

underlying latent response distribution is negatively correlated to the distribution of the measured 

construct of interest. A higher standing on the latent response distribution of “lack of self-esteem” 

(yn*) leads to a higher agreement with this statement. In turn, a higher standing on the latent 

response distribution (y*) corresponds to a higher agreement category (y), and this positive 

relationship between y* and y is consistent for both positively and negatively keyed items. 

 

Reversed threshold model for negatively keyed items 

On the other hand, responses to negatively keyed items can come from a reverse response 

process arising from a latent response distribution (y*) to the observed response categories (y). 

Such an item is negatively keyed to accommodate the reversed relationship between the latent 

and the observed response. This simulation strategy has also been used in the research literature 

(e.g., Woods, 2006). This model for negatively keyed items applies thresholds with reversed 

correspondence relationships to the observed responses of positively and negatively keyed items. 

Indeed, these items are indistinguishable in the latent response model. The latent response 

distributions of all the items are assumed to be positively correlated with the construct (i.e., 

positive factor loadings in the latent response model). Negatively keyed items are separated from 

positively keyed ones by specifying the relationship between thresholds and the corresponding 

observed response categories differently. This means that, for positively keyed items, a higher 
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value on the latent response (y*) corresponds to a higher agreement response category; for 

negatively keyed items, a higher value on the latent response (y*) corresponds to a lower one.  

If we take an item from the RSE scale (Rosenberg, 1965) as an example, a possible 

interpretation of this psychometric model in terms of its implications on the response process to 

negatively keyed items can be described as follows. One of the negatively keyed items in the 

RSE scale states, “I feel I do not have much to be proud of.” Respondents need to pick an answer 

from a four-point Likert-type response scale ranging from “strongly disagree” to “strongly agree.” 

Instead of assuming this item is assessing a “lack of self-esteem” as the first psychometric model 

does, this model assumes that this item is measuring pride or high self-esteem, just like other 

positively keyed items. Because the word “proud” in the stem connotes a possession of self-

esteem, it is reasonable to assume that respondents will rely on their experience of “high self-

esteem” to answer this item. Thus, the underlying response process is better characterized by a 

latent response distribution of y* representing “high self-esteem.” That is, a higher value on the 

y* scale represents a higher level of self-esteem.  

Since the relationship between the latent response distribution (y*) of this item and the 

construct of self-esteem is specified to be positive, the factor loading between this item and the 

construct (i.e., factor) is also positive in the latent response model. However, in this item, the 

negation marker “not” changes the relationship between the latent response (y*) and the 

observed response (y). Without this negation marker (i.e., “I feel I do have much to be proud of”), 

the relationship between the latent response (y*) and the observed response (y) should be positive. 

That is, a higher value on the latent response distribution would correspond to a higher level of 

agreement with the statement. By adding the negation marker, the relationship between the latent 

and the observed responses will be reversed. A higher standing on the latent response 

distribution of this item will now be associated with a higher level of disagreement. Namely, an 

individual with a higher standing on the latent response distribution (i.e., high self-esteem) will 

have a lower level of agreement with this item and thus a lower value on the observed response 

scale (y).  

These two psychometric models potentially depict two distinct conceptualizations of 

responses to negatively keyed items, and they may be helpful in differentiating between two 

types of these negatively keyed items: positively worded or negatively worded. Both models 

have been used in simulation studies to generate item responses to tests with negatively keyed 
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items, but the potential difference between these models and their implications for the item 

response process have not been discussed. It is important to acknowledge that these 

psychometric models are mathematical abstractions of the phenomena of interest. Existing 

evidence is insufficient to directly link these models and the real cognitive process that 

individuals employ in their response to negatively keyed items. The actual response process is 

more complicated and can vary depending on item properties, individual characteristics, and the 

context of item responding. The examples provided above are meant to be used as a way of 

understanding the process of responding to negatively keyed items under the two psychometric 

models (i.e., simulation strategies). Without additional evidence from the cognitive processes 

underlying item responses, it cannot be concluded that the two types of negatively keyed items 

that differ in their wording direction are each represented by one of these two psychometric 

models. It is noteworthy that the direction of reasoning is important in this context. The 

psychometric models may imply a type of item responding but the item responses (on their own) 

do not necessarily imply a psychometric model exclusively. As a general problem in 

psychometrics, the data alone do not dictate the model; psychometric modeling is an interplay of 

theory, model, and data. 

  

Common Methods in Assessing the Dimensionality of Tests with Negatively Keyed Items in 

Validation Practice 

Investigating the dimensionality or factor structure of data collected from a test is de 

rigueur in day-to-day research. The factor structure of item response data is composed of a 

certain number of factors and the relationships among them. The factor structure of a test is 

usually reported as evidence to support the use or interpretation of the score (e.g., Thompson & 

Daniel, 1996; Zimprich, Kliegel, & Rast, 2011). To determine the factor structure of a test, 

researchers typically use factor analysis, which is usually conducted either through exploratory 

or confirmatory approaches, depending on the study design and purpose.  

This section provides a summary of the literature that describes different methods to 

determine factor structure. It is not meant to be a comprehensive review or a complete step-by-

step tutorial, but is rather an outline of some important decisions researchers must make when 

assessing factor structure. It begins with a summary of a general scoring method for negatively 

keyed items. The rest of the section is organized according to two themes in the investigation of 
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test dimensionality and factor structure, namely, exploratory approaches and confirmatory 

approaches. First, it explains the rules and criteria used to inform the decision on the number of 

factors. This is followed by a brief discussion of exploratory factor analysis (EFA). Finally, it 

presents a summary of confirmatory factor analysis (CFA) approaches for evaluating a specified 

factor structure. 

 

Scoring methods applied to negatively keyed items 

One goal of a measurement instrument, such as self-report Likert-type tests, is to quantify 

the construct of interest. To do this, the original responses obtained from a mixture of positively 

and negatively keyed items must be scored appropriately.  

Scoring the responses is usually the first step researchers need to perform before 

conducting any other analyses. The most common way of handling a mixed-keyed test is to code 

the responses to negatively keyed items in reverse order and then treat them in the same way as 

the responses to positively keyed items (e.g., DiStefano & Motl, 2006; Greenberger et al., 2003; 

Horan, DiStefano, & Motl, 2003). After reverse scoring the responses to these negatively keyed 

items, for all the items, a relatively large value of a response represents a high level of the 

construct being measured. Then the test score can be computed as a total, an average, or a factor 

score based on the scored responses to all the items. 

An example is provided here to demonstrate the reverse scoring or recoding process. If 

all the items are answered on a five-point Likert-type response scale, then for negatively keyed 

items an original answer of five (strongly agree) is recoded to a score of one (strongly disagree), 

a four (agree) is recoded to a two (disagree), a three (neutral) remains the same, a two (disagree) 

is recoded to a four (agree), and a one (strongly disagree) is recoded to a five (strongly agree). A 

simple mathematical rule can be used to summarize the reverse scoring process: 

Reverse score (y) = max(y)+1-y, 

where y is the original response score of a negatively keyed item, and max(y) is the maximum 

possible value for y (i.e., the total number of response categories on the response scale). In the 

above example of a five-point rating response scale, max(y) is five because the responding scale 

only goes up to five. To reverse score, take 5+1 = 6, and subtract the number indicating the 

original response. For example, the reversed score for a four (agree) would be two (disagree); the 
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formula used for this transformation can be written as reverse score (4, agree) = 5+1-4 = 2 

(disagree).  

Intuitively, this reverse scoring process numerically transforms the original responses to 

the negatively keyed items so that relatively large values, regardless of item keying directions, 

represent high levels of the construct being measured (Furr & Bacharach, 2013). This procedure 

assumes that when the negatively keyed items are reverse scored, all items should be 

psychometrically indistinguishable or interchangeable. However, the literature offers insufficient 

empirical evidence to support this crucial assumption. If the scoring method itself introduces 

construct-irrelevant variance or covariances, and does not reflect the true variance and 

covariance structure of the responses under investigation, minor factor(s) may appear when in 

fact they do not reflect the structure of the construct. For example, reverse scoring changes the 

item response distributions of some of the items in a test (e.g., after reverse scoring, a positively 

skewed distribution becomes negatively skewed), which may affect the subsequent analysis 

results. Another possibility is that reverse scoring of the negatively keyed items may not always 

be necessary. For example, the factor loadings in factor analysis can be either positive or 

negative, which can reflect the keying difference of items. If an item yields a negative factor 

loading, that item is negatively related to the factor, and it is considered to be negatively keyed 

relative to the direction of the factor score.  

 

Exploratory methods to determine the number of factors 

Exploratory approaches are often used when there is no a priori theory about the 

dimensionality of the measured construct or about which items should load on each of the factors. 

EFA aims to account for the shared variance of a set of observed variables (e.g., items) by a 

small number of common factors. When used for validation purposes, EFA is often conducted as 

an initial assessment of the factor structure of a test in its development or revising stage. EFA is 

a complex, multi-step process. Although this dissertation mainly concentrates on the decision of 

the number of factors, other analytical decisions, such as estimation methods and rotation 

methods, must be made to conduct an EFA. Choices made on these key issues have an impact on 

the number of factors to be extracted and the interpretation of the results (Armstrong & Soelberg, 

1968; Comrey, 1978; MacCallum, 1983; Weiss, 1976). Estimation methods will be discussed in 

the review of CFA, which is the subsection following this one. The current subsection will 
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briefly describe the methods used to inform the decision of the number of factors and some 

commonly used rotation methods in EFA.  

Choosing how many factors to retain is essential in exploring the factor structure of a test, 

and it is usually the first decision a researcher must make in this exploratory process. The 

decision of the number of factors accounts for the relationships among the items, and more 

importantly, it explains the structure of the measured construct. Either under- or over-factoring 

can largely impact the interpretation of the analysis results (Fava & Velicer, 1992, 1996). Under-

factoring results in a loss of information and the inability to portray the true factor structure 

(Gorsuch, 1983). Over-factoring creates trivial factors that might seem important, but their over-

interpretation threatens the proper understanding of the construct being measured and its factor 

structure (Dingman, Miller, & Eyman, 1964). 

Many rules and indices have been proposed to determine the correct number of factors to 

retain when assessing dimensionality (see Hattie, 1985; Hayton, Allen, & Scarpello, 2004; 

Russell, 2001; Zwick & Velicer, 1986). Unfortunately, the various rules of thumb often lead to 

different solutions (Humphreys & Ilgen, 1969; Humphreys & Montanelli, 1974), and no one 

method has been found to be accurate under all conditions (e.g., De Ayala & Hertzog, 1991; 

Warne & Larsen, 2014). In practice, researchers must determine the number of factors on a case-

by-case basis by applying one or more of these methods and decision rules.  

Given that a large number of rules and indices have been utilized to inform the decision 

of the number of factors, the following paragraphs focus only on describing the two methods 

used in this dissertation. The Kaiser-Guttman (K-G) rule was chosen due to its popularity and 

simplicity, along with parallel analysis (PA) for its strong empirical support. Both of these 

methods make use of the eigenvalues from PCA. PCA-based approaches, or eigenvalue-based 

approaches, serve as pointers to the number of factors to retain (Liu, Zumbo, & Wu, 2012). 

Unlike other methods relying on the assessment of model fit, these approaches ignore this 

characteristic and consider only the magnitude of the variance accounted for by each component.  

The eigenvalues-greater-than-one rule (Kaiser, 1960) is a prominent method (Thompson 

& Daniel, 1996). It is also known as the Kaiser-Guttman (K-G) rule, K1 rule, and Guttman rule. 

It will be referred to as the K-G rule in this dissertation. As one of the most widely used criteria 

to decide the number of factors (Thompson & Daniel, 1996; Warne & Larsen, 2014), it is the 

default option in some popular statistical software packages, such as SPSS. An eigenvalue is an 
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estimate of variance explained by a factor in a dataset (Ferguson & Cox, 1993), and an 

eigenvalue larger than one indicates it is greater than the average variance. The K-G rule has 

been found to be most effective with large sample sizes, fewer than 40 items, and item-to-factor 

ratios ranging from three to five (Gorsuch, 1983, 1997). The validity of using the K-G rule to 

determine the number of factors in a population matrix has been demonstrated in the literature 

(Cliff, 1988; Guttman, 1954), but, when applied to sample data, it has been reported to lead to 

over-extraction in many cases (e.g., Fabrigar, Wegener, MacCallum, & Strahan, 1999; Zwick & 

Velicer, 1982, 1986). Despite the poor performance of the K-G rule, it is still widely used in 

practice (Hoyle & Duvall, 2004).  

Parallel analysis (PA) is a method based on the idea that a meaningful component 

underlying a dataset should possess a larger eigenvalue than the corresponding eigenvalue 

obtained through generated random variables (Horn, 1965). PA requires the generation of a 

series of random datasets with the same number of items and respondents (i.e., same size) as the 

original data matrix. The number of factors is indicated by the point where the eigenvalues for 

the real dataset drop below the average eigenvalues for the random datasets. The number of 

eigenvalues from the original data that are larger than the average eigenvalues from the random 

datasets is considered to be the number of factors to retain. Simulation studies show that PA does 

not depend on the distributional assumptions made on the data (e.g., normal or non-normal 

distributions; Dinno, 2009; Glorfeld, 1995). To improve the accuracy of PA, researchers 

recommend comparing the eigenvalues from the real dataset to those corresponding to the 95th 

percentile of the eigenvalue distribution from the random datasets, rather than to the average 

eigenvalues (Cota, Longman, Holden, Fekken, & Xinaris, 1993; Glorfeld, 1995). The research 

literature strongly supports PA (Fabrigar et al., 1999; Thompson & Daniel, 1996) because it has 

been found to function well under various conditions (Humphreys & Montanelli, 1974; Zwick & 

Velicer, 1986), and to be more accurate than other decision rules (Dinno, 2009; Glorfeld, 1995; 

Liu et al., 2012; Velicer, Eaton, & Fava, 2000; Zwick & Velicer, 1986). 

Besides using PCA-based procedures to help decide on the number of factors, researchers 

can also employ the model comparison approach through EFA. In the EFA model comparison 

approach, a series of models with an increasing number of factors is tested in sequence. It usually 

starts with a one-factor solution, and adds one factor at a time until the model fits the data 

adequately. Then researchers can decide on the number of factors. Chi-square test statistics based 
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on maximum likelihood (ML) estimation can be utilized to compare nested models. The 

literature notes that using Chi-square test statistics to determine the number of factors tends to 

result in over-extraction (Gorsuch, 1983; Hakstian, Rogers, & Cattell, 1982; Hayashi et al., 2007; 

Zwick & Velicer, 1986). 

Rather than comparing all possible factor solutions through the EFA, it is common for 

researchers to use the model comparison approach in conjunction with PCA-based approaches to 

finalize their decision on test dimensionality. In this case, EFA is conducted as a follow-up once 

PCA-based rules and criteria have pointed to the approximate number of factors. Only a limited 

number of possible factor solutions surrounding the area of a “pointer” are tested via EFA. 

Usually, the ultimate goal of performing a factor analysis is to identify the underlying latent 

variables. To achieve this, interpretability, or the potential that the results of the factor analysis 

can be given clear meaning or labels, is important. Thus, when choosing the number of factors, 

researchers may regard not only model fit, but also the pattern and the interpretability of the 

factor structure observed in an EFA. 

Moreover, factor rotation is often considered because without it, clusters of variables are 

unlikely to be identified by the initial factor extraction methods (Gorsuch, 1983). Rotation 

cannot improve the basic aspects of the EFA results, such as the model fit and the total amount 

of variance extracted from the items. Rather, it is used to improve the interpretability, reliability, 

and reproducibility of factors (Weiss, 1976). The goal of rotation is to simplify and clarify the 

data structure. Because the number of positions for the factor axes is unlimited, a unique solution 

to the rotation problem is not possible (Comrey, 1978). A simple structure (Thurstone, 1947), 

which has served as the principal criterion for rotation, is achieved by rotating factors until each 

is maximally collinear, with a distinct cluster of vectors (Rummel, 1970). 

Researchers select rotation methods mainly based on the absence or presence of inter-

factor correlations. Orthogonal rotation produces statistically uncorrelated factors, while oblique 

rotation allows them to be correlated. Orthogonal rotation is recommended because of its 

conceptual clarity, computational simplicity, and accessibility to be incorporated into the 

subsequent analysis (e.g., Nunnally, 1978). Varimax (Kaiser, 1958), Quartimax (Carroll, 1953), 

and Equamax are readily available orthogonal methods of rotation. Varimax rotation is a 

common choice (Fabrigar et al., 1999; Henson & Roberts, 2006; Kline, 1994). However, 

assuming factors are uncorrelated is often impractical because most psychological and 
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educational factors are correlated. Using the Varimax rotation therefore produces unrealistic or 

less useful factor structures.  

Although oblique rotation adds statistical complexity, it more accurately represents the 

complex nature of the examined variables because constructs in the real world are rarely 

uncorrelated (Harman, 1976). With the development of computers and statistical software, the 

computational simplicity of orthogonal rotation methods became less compelling to researchers. 

More recent works have advised that oblique rotation methods should be used regardless of the 

assumptions about inter-factor correlation (Osborne, 2015; Schmitt, 2011). This is because 

oblique rotations allow a weak or zero correlation between factors, and their results are 

comparable to those from an orthogonal rotation when the inter-factor correlation is negligible 

(Schmitt, 2011).  

There are a variety of oblique rotation methods. Some common options include Promax 

(Hendrickson & White, 1964), Quartimin, Direct Oblimin (Jennrich & Sampson, 1966), and 

Geomin (Yates, 1987). Promax rotation is conceptually simple and is available in many widely 

used statistical software packages, including SPSS, Stata, and Mplus. It has been recommended 

for large datasets because its computations can be performed quickly. It is a multi-step method, 

starting from a Varimax rotation and then relaxing the constraint of no inter-factor correlations to 

allow the factors to be correlated. To apply Promax rotation, a power parameter must be 

specified. This parameter must be greater than one, but should usually not exceed the value of 

four. The default power parameter is four in SPSS and three in Stata. The choice of this power 

parameter affects the factor solution (Browne, 2001). The higher it is set, the more likely the 

researcher is to obtain factor structures that are low in cross-loadings but high in inter-factor 

correlations. Geomin, which is the default rotation method in Mplus, tends to produce solutions 

that are easy to interpret, as it focuses on reducing cross-loading magnitudes. Simulation studies 

show that Geomin rotation is a promising method when the true factor loading structure is 

unknown (Asparouhov & Muthén, 2009). On the other hand, it has been reported to function 

poorly with complex factor pattern loading matrices (Asparouhov & Muthén, 2009). Also, since 

Geomin rotation uses an iterative algorithm, it is possible that multiple solutions are reached 

because it converges to a local minimum (Asparouhov & Muthén, 2009) or no solution is 

reached due to it failing to converge. In general, researchers recommend trying different oblique 

rotations to better describe the factor structure (Kline, 1994; Rummel, 1970; Sass & Schmitt, 
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2010). Rotation methods can significantly affect the magnitude of inter-factor correlations and 

cross-loadings (Sass & Schmitt, 2010). Researchers may also wish to consider the potential 

factor structure complexity when selecting a rotation method.  

In summary, the K-G rule and PA are widely used as pointers to help researchers decide 

on the region of the possible number of factors. A researcher may start with these methods, and 

then rely on EFA to compare competing models with different numbers of factors, as pointed by 

the K-G rule or PA results. In the model selection process, the fit and interpretability of different 

factor solutions should be considered. Rotation is often applied because it helps clarify and 

simplify the EFA results. Recall that the goal of this subsection is not to provide a complete 

description of EFA but to prepare readers with basic background knowledge about the 

commonly used methods so that the methodology and the results of this dissertation can be easily 

understood. For a comprehensive introduction, see Brown (2006) and Thompson (2004).  

 

Confirmatory methods to assess the factor structure of mixed-keyed tests 

Researchers rarely collect and analyze data without an a priori idea of how the variables 

are related (Floyd & Widaman, 1995). When employed for validation purposes, CFA is often 

applied to test a theory or several competing theories of the construct. Researchers frequently 

draw on evidence from CFA to support the use of test-level scores (Zimprich et al., 2011), when 

they already have hypotheses about the structure of a test, including the number of factors, the 

relationships among items and factors, and the associations among factors. For example, when a 

total score of all the items is used to quantify the construct, it implies that this test follows a 

unidimensional structure. A one-factor model should be tested through CFA to investigate 

whether this unidimensional assumption is supported by the data. Additionally, CFA has been 

employed to investigate relationships among different variables or tests in validation studies 

(Thompson & Daniel, 1996). This subsection focuses on the use of CFA in the investigation of 

test dimensionality, and briefly describes three common estimation methods and some frequently 

reported fit indices. 

As described in the review of empirical studies on negatively keyed items, many 

alternatives to the one-factor model have been proposed to describe the structure of a presumed 

unidimensional test with mixed-keyed items (see Figure 3 to Figure 6). Often, one or two of 

these alternatives are selected as competing models in addition to the one-factor model. In such 
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cases, researchers determine the final factor structure of a test by comparing the fit statistics 

obtained through CFA.  

When conducting CFA, the maximum likelihood (ML) procedure is one of the most 

commonly used statistical methods for parameter estimation. The literature suggests that ML 

performs best with a sufficient sample size, proper model specification, and multivariate 

normality (Schmitt, 2011). The assumption of multivariate normality can be violated when the 

(observed) response data are collected through ordinal rating response scales with a small 

number of options. When the data distributions do not match the assumptions of the ML 

estimation method, it can result in biased estimates of parameters and standard errors (Beauducel 

& Herzberg, 2006; Flora & Curran, 2004; Rhemtulla, Brosseau-Liard, & Savalei, 2012). 

Alternative estimation methods exist. Among them, robust continuous ML (MLR) 

estimation and weighted least squares means and variance adjusted (WLMVS) estimation are 

often recommended in the literature. MLR uses standard Pearson correlations, while weighted 

least squares (WLS) uses polychoric correlations. Both adjust the Chi-square test statistic and 

can reach accurate parameter estimates and findings depending on data conditions and model 

specifications (see Rhemtulla et al., 2012). 

To evaluate and compare models, researchers review fit indices, parameter estimates, and 

sometimes, modification indices. Chi-square tests of model fit and other descriptive fit indices 

are used in factor analysis to assess the global fit of the model. Among them, Chi-square tests are 

the only ones based on distributional statistical theory (Hayashi et al., 2007). However, Chi-

square tests have been criticized for being too sensitive to reject even trivial model 

misspecifications with large sample sizes (Hu & Bentler, 1998; Miles & Shevlin, 2007; Saris, 

Satorra, & van der Veld, 2009). Meanwhile, when the sample size is small, models with 

substantial misspecifications may not be rejected (Saris et al., 2009). Despite the criticism they 

have received, the results of Chi-square tests are still routinely reported in studies using CFA. 

Moreover, the statistics from Chi-square tests are the basis for most other fit indices. 

Besides Chi-square tests, researchers have proposed a large number of descriptive fit 

indices (see Hu & Bentler, 1998). Some researchers have distinguished and categorized them 

into a few types, such as absolute fit indices, relative fit indices, and parsimony fit indices (e.g., 

Hu & Bentler, 1999; Kline, 2011). The Chi-square test, the root mean square error of 

approximation (RMSEA), the goodness-of-fit index (GFI), Akaike’s information criterion (AIC), 
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and the Bayesian information criterion (BIC) are some examples of absolute fit indices. Absolute 

fit indices are referred to as such because they are not obtained through model comparison but 

are derived from the fit of the observed and model-implied covariance matrices (Jöreskog & 

Sörbom, 1993; McDonald & Ho, 2002). By contrast, relative fit indices (McDonald & Ho, 2002), 

also known as comparative fit indices or incremental fit indices (e.g., Miles & Shevlin, 2007), 

are based on a comparison between the tested model and a null model. The null model should 

always have a poor fit (i.e., large Chi-square), as it is often specified as a model with all variables 

(i.e., items) uncorrelated. In other words, the null model often assumes that no common factor 

exists underlying the variables (McDonald & Ho, 2002). Relative fit indices include the 

comparative fit index (CFI; Bentler, 1990), the Tucker-Lewis index (TLI), the Bentler-Bonett 

normed fit index (NFI; Bentler & Bonett, 1980), and the Bollen’s incremental fit index (IFI). 

Parsimonious fit indices such as the parsimony goodness-of-fit index (PGFI), and the parsimony 

normed fit index (PNFI; Mulaik et al., 1989), are relative fit indices adjusted to penalize more 

complex models over the simpler or more parsimonious models. This group of fit indices appears 

to be less frequently reported in the literature. 

Bentler (2007) recommends limiting the number of fit indices reported. The RMSEA, 

CFI, and TLI (also called the non-normed fit index, or NNFI) are among the most popular ones. 

All three carry some penalty for model complexity and range from zero to one. The CFI and TLI 

are highly correlated. For these two fit indices, a value close to one indicates a good model fit; 

for RMSEA, this value is close to zero. There is no absolute cut-off when using these indices to 

judge model fit. However, general guidelines suggest that an RMSEA smaller than 0.05 indicates 

a good model fit, and an RMSEA smaller than 0.08 corresponds to an acceptable fit (MacCallum, 

Browne, & Sugawara, 1996). CFI values of 0.95 for continuous outcomes (Hu & Bentler, 1999) 

and 0.96 for ordinal categorical outcomes (Yu, 2002) indicate an acceptable model fit. TLI 

values of 0.95 or higher suggest that the model fit is adequate (Hu & Bentler, 1999). On the 

whole, it is recommended that multiple criteria, as well as theoretical reasoning, should be used 

in deciding which factor model to choose (Thompson & Daniel, 1996).  

Evaluating fit indices may lead researchers in one of two directions. When the indices 

indicate a good fit, they are likely to further examine the model by looking into parameter 

estimates. Such parameters usually include factor loadings, inter-factor correlations, and error 

variances. When the indices show a poor model fit, researchers sometimes modify their 
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hypotheses so that the measurement model is more consistent with the structure of the actual data 

collected. Fit indices assess the overall model fit, while modification indices can reveal where 

the deviation occurs by identifying potential modifications to the hypothesized measurement 

model. A modification index is the expected amount the Chi-square will drop if a parameter is 

estimated as part of the model rather than being fixed to zero. It therefore represents the potential 

benefit of revising or freeing the relevant parameter. Usually, a researcher who turns to 

modification indices in revising the a priori hypothesized model wish them to be large enough to 

be considered meaningful. The modification index value of 3.84, which corresponds to the Chi-

square value that should be exceeded at the 0.05 level for one degree of freedom, is a possible 

cut-off point. Although modification indices provide useful information about how the model-

data fit can potentially be improved, it is dangerous for researchers to rely solely on them when 

revising models. Allowing model modification moves a CFA from its confirmatory mode to an 

exploratory mode (Flora & Flake, 2017). Post-hoc modifications that are not based on theory can 

lead to models that fit by chance or to models that are unstable across different respondent 

samples (MacCallum, Roznowski, & Necowitz, 1992).  

This subsection is intended to be a brief, non-technical review of some key aspects in the 

use of CFA in assessing dimensionality. For a more comprehensive discussion, please refer to 

Brown (2006), Hoyle (1995), and Thompson (2004). 

 

Gaps in the Literature and the Purpose of This Study 

To understand the construct being investigated and to support the scoring of a 

measurement instrument, it is a common validation practice to assess the dimensionality and 

factor structure of a test. However, the mixed-keyed tests pose challenges to the assessment and 

interpretation of test dimensionality. Data collected from mixed-keyed tests that are designed to 

be unidimensional often turn out to support a more complex structure rather than the one-factor 

model.  

Despite numerous studies on “negative” items, it is not always clear if these researchers 

examined negatively keyed items, negatively worded items, or items with negative social-

psychological value (e.g., socially unacceptable or undesired attitudes and behaviours). This 

makes it difficult to compare the various findings. Studies properly distinguishing among keying, 

wording and the social-psychological meaning of an item are necessary to support a better 
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understanding of problems related to “negative” items. This dissertation defines and separates 

the terms used to describe item keying and item wording directions. 

Additionally, this dissertation attempts to disentangle the effect of item keying and 

wording on the psychometric properties of a test, and in particular, analyzes the effect of keying 

on the assessment of test dimensionality. Admittedly, most items are likely to fall into two 

categories, positively worded and positively keyed items, and negatively worded and negatively 

keyed items. In other words, the keying and wording direction are likely to be consistent. 

Therefore, it is difficult to clearly separate the keying effect from the wording effect in studies 

using data collected through existing measurement instruments. The vague terminology and the 

close connection between item keying and wording lead to a situation where the issues regarding 

factor structure have been observed, but their causes remain unknown. It is possible that the 

problems concerning the factor structure found in mixed-keyed tests are due to the differences in 

the cognitive and linguistic processing demands associated with item wording. It is also possible 

that the strategies utilized to score negatively keyed items do not reflect the keying differences 

properly or that the methods employed to assess the factor structure of mixed-keyed tests do not 

handle opposing keying directions well. Indeed, all of these possibilities may be at play. 

The inconsistent findings from empirical studies suggest that, among all mixed-keyed 

tests, only those with certain characteristics may tend to have poor psychometric properties. It is 

possible that only tests with few scale points on the response scale and a large proportion of 

negatively keyed items will suffer from poor psychometric properties. Without a systematic 

evaluation of mixed-keyed tests, their psychometric properties, and the proper methods for 

obtaining these statistics, we can obtain only a partial understanding of the nature of the negative 

keying effect. For example, tests usually have more positively keyed items than negatively keyed 

ones, but the proportion of the negatively keyed items can differ. Take the RSE scale (Rosenberg, 

1965) and the Penn State Worry Questionnaire (Meyer et al., 1990) as examples. The ten-item 

RSE scale (Rosenberg, 1965) contains five negatively keyed items, or 50% of the total. 

Meanwhile, among the sixteen items in the Penn State Worry Questionnaire (Meyer et al., 1990), 

five are negatively keyed, or about 31% of the total items. However, in most of the studies on the 

item keying effect, only tests with all positively keyed items, all negatively keyed items, or an 

equal number of positively and negatively keyed items have been examined. These types of tests 

are special cases where 0%, 100% or 50% of the items are keyed negatively. Extending the 
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investigation of the keying effect to a greater variety of conditions will help elucidate whether 

and how the proportion of the negatively keyed items in a test may influence the test factor 

structure. 

To take this one step further, this dissertation aims to provide some suggestions to 

researchers on handling negatively keyed items. A major gap in the literature is the lack of 

documentation on how data collected from mixed-keyed tests should be analyzed. The effect of 

item keying has been insufficiently studied, even though how to handle such data is a basic 

decision researchers must make in their day-to-day practice. To address this issue, this 

dissertation focuses on assessing the dimensionality of tests with negatively keyed items. The 

performance of common methods used in validation practice to assess dimensionality and factor 

structure will be investigated and, based on the results, a set of guidelines will be offered. 

In summary, the inclusion of both positively and negatively keyed items in one test is a 

common practice. Although it has been assumed that differently keyed items function in the 

same way, empirical studies call this assumption into question, as unidimensional tests with 

mixed-keyed items often result in a factor structure influenced by item keying direction. Given 

the lack of systematic studies on the effect of negatively keyed items, it is unclear whether the 

emergence of an unexpected factor structure should be attributed to item wording, item keying, 

respondent characteristics, data analytic methods, or the combination of these factors. It is also 

unknown to what extent and under what conditions the number of factors will be inflated in the 

presence of negatively keyed items.  

 

Research Questions and Study Overview  

To address the observed gap in the research literature, I investigate how including 

negatively keyed items in short unidimensional Likert-type tests affects the statistical 

conclusions on their dimensionality and factor structure in this dissertation. Primarily, I seek to 

document the conditions under which the presence of negatively keyed items will and will not 

lead to the correct judgment of test dimensionality and factor structure as suggested by different 

statistical methods. Based on the findings, I then propose recommendations for applied 

researchers regarding how to deal with data obtained from tests with negatively keyed items.  

The overall research questions guiding this study are as follows: 
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Q1: Do the different psychometric models (i.e., simulation models) of negatively keyed 

items affect the statistical judgment of test dimensionality under different conditions?  

Q2: Does the reverse scoring of negatively keyed items affect the statistical judgment of 

test dimensionality? 

Q3: Under which conditions will the K-G rule or PA identify the correct number of 

factors? 

Q4: When EFA is conducted with an inflated number of factors, what will the factor 

structure look like? Will factors emerge according to the keying direction of items? 

Q5: Under which conditions will the one-factor model be rejected either by the Chi-

square test or other fit indices? 

Q6: When the one-factor model is not supported by fit statistics in CFA, what are the 

consequences of revising the model using modification indices?  

To answer these research questions, I conducted a set of simulation studies to investigate 

the performance of different rules and indices in judging the dimensionality and factor structure 

of mixed-keyed tests using factor analytical methods. A flow chart is presented below showing 

the main factors considered (see Figure 9).  
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Figure 9. 

Factors manipulated at different stages of the simulation research 

 

As Figure 9 shows, each of the four simulation studies is carried out in three stages: data 

simulation, item response scoring, and data analysis. The variables manipulated in the data 

simulation stage are: (a) the psychometric model of negatively keyed items (i.e., negative factor 

loading model or reversed threshold model), (b) the number or proportion of negatively keyed 

items, (c) the magnitude of communality of the items, and (d) the distribution of the observed 

item responses. In the data analysis stage, the factors that are considered include (a) scoring 

method for the negatively keyed items, and (b) statistical methods for assessing test 

dimensionality. The methods that investigate test dimensionality fall into two broad categories: 

(a) exploratory approaches, and (b) confirmatory approaches. More specifically, when 

exploratory approaches are used, the number of factors to retain is first judged via two PCA-

based methods, the K-G rule and PA. When PA indicates that more than one factor should be 

kept, EFA with rotations will be conducted as a follow-up. Two common estimation methods, 
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ML and WLSMV, will be explored within the EFA framework. In conjunction with these two 

estimation methods, three rotation methods, Varimax, Promax, and Geomin, are considered 

when EFA is applied to the dataset. When confirmatory approaches are used to assess test 

dimensionality, three different estimators are considered, ML, MLR, and WLSMV. The overall 

model fit is judged by four fit indices including Chi-square test statistics, CFI, TLI and RMSEA. 

The study design and procedures will be described in detail for each study in Chapter Three. 
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CHAPTER THREE: 

SIMULATION STUDIES 

 

The purpose of this chapter is to present the four simulation studies that investigate the 

impact of negatively keyed items on the assessment of test dimensionality for validation 

purposes. As described in Chapter Two, including both positively and negatively keyed items in 

one test is a common practice for short psychological tests that are purported (designed) to 

measure one latent variable. It has been assumed that items keyed in different directions function 

in the same way. However, as Chapter Two clarifies, empirical studies call this assumption into 

question, as unidimensional tests with mixed-keyed items often have a factor structure that is 

defined by item keying direction. It is unclear from the empirical studies whether the emergence 

of this unexpected factor structure can be attributed to item wording, item keying, respondent 

characteristics, data analytic methods, or a combination of these variables. Among these factors, 

the item keying effect is one of the most commonly ignored. Although simulation studies are 

better suited to investigating the impact from different sources separately, they have rarely been 

done to explore the item keying effect. It is therefore unknown to what extent and under what 

conditions the number of factors will be inflated in the presence of negatively keyed items. To 

answer this question, I conducted four interrelated simulation studies. I simulated population data 

on a twelve-item test using factor models with varying numbers of negatively keyed items. 

To present the findings clearly, the four simulation studies are organized into two 

sections according to the methods used to generate the responses to negatively keyed items. 

Studies 1 and 2, which are contained in the first section, involve simulations of the item 

responses from a one-factor model in which negatively keyed items have negative factor 

loadings in the latent response model. The simulation procedures used for these two studies 

assume that responses to a negatively keyed item follow a latent response that is negatively 

correlated with the construct of interest. This psychometric model was described in Chapter Two 

as the “negative factor loading model for negatively keyed items.” In this model, an item is 

negatively keyed because it measures the polar opposite of the construct. For example, in a job 

satisfaction measure, an item like “My job is dull” can be seen as measuring the unsatisfying 

aspects of the work. In this regard, the latent response underlying the item, “My job is dull,” has 

a negative correlation with the job satisfaction factor (i.e., negative factor loading in the latent 



51 

response model). In this example, dissatisfaction and satisfaction are viewed as the two ends of 

one continuum, and a test like this can be referred to as a bipolar measure. To some extent, a 

mixed-keyed test is a bipolar measure in which the negatively keyed items are measuring the 

polar opposite of the construct. The details of the data simulation procedures will be described in 

the method section of Study 1.  

The last two studies (i.e., studies 3 and 4) are presented in the second section. In them, 

responses to the negatively keyed items are generated during the transformation from latent 

response y* to observed response y. Chapter Two designates this model as the “reversed 

threshold model for negatively keyed items.” The relationships between latent response y* and 

observed response y are reversed for items keyed negatively compared with their positively 

keyed counterparts. It is assumed that the latent responses underlying both positively and 

negatively keyed items are the same in their relationships with the construct. Take two items 

from a job satisfaction test as an example. A negatively keyed item, “I don’t enjoy going to 

work,” and a positively keyed item, “I enjoy my job,” can be seen as both assessing job 

satisfaction and having the same latent response distributions. However, the relationship between 

the latent response distribution and the observed response category is reversed for the negatively 

keyed item because it is a negation of the positively keyed item. A higher level of job satisfaction 

on the latent response distribution corresponds to a higher level of agreement on positively keyed 

items, but a lower level of agreement on negatively keyed ones. The details of the data 

simulation procedures will be given in the method section of Study 3.  

This research focuses on the correctness of the decision of the number of factors. Studies 

1 and 3 evaluate how many factors to retain through exploratory approaches, while Studies 2 and 

4 assess the model fit via CFA. Given that a purpose of this dissertation is to inform day-to-day 

applications, the methods used to decide on the number of factors were chosen based on the 

common research practice. Throughout, data simulation and item response scoring were 

conducted with SPSS 21.0 (IBM Corp, 2012), eigenvalues based on polychoric correlations were 

obtained through “psych” (Revelle, 2014) and “nFactors” (Raiche, & Magis, 2010) packages in 

R, and all the other analyses were conducted via Mplus 7 (Muthén & Muthén, 1998-2012). 
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Section One: A Negative Factor Loading Model for Negatively Keyed Items 

The two simulation studies in this section document how statistical decisions are made 

about the number of factors under different conditions, which vary in the number of negatively 

keyed items, item communality levels, observed response distributions, and the methods and 

rules used to judge test dimensionality. The simulation model generated item responses to 

negatively keyed items through negative factor loadings in the latent response model—i.e., the 

item response thresholds are all the same, but the factor loadings are negative for the negatively 

keyed items. Chapter Two described this psychometric model as a “negative factor loading 

model for negatively keyed items.”  

 

Study 1: The impact of negatively keyed items on the decision of the number of factors 

using exploratory approaches 

This study focuses on choosing the number of factors to retain through exploratory 

approaches. The research questions it aims to address are as follows: 

Q1.1: Does the reverse scoring of negatively keyed items affect the number of factors 

identified by the Kaiser-Guttman (K-G; i.e., eigenvalue-greater-than-one) rule and parallel 

analysis (PA)? 

Q1.2: Under what conditions will the K-G rule correctly point to the number of factors? 

Q1.3: Under what conditions will PA correctly point to the number of factors? 

Q1.4: When more than one factor is suggested for retention, what will the factor structure 

look like? Will a second factor be formed by negatively keyed items in EFA?  

 

Method 

Study design 

This study simulated negatively keyed items by specifying negative item loadings in the 

data generation factor model. The factors manipulated in the data simulation stage are presented 

in Table 1. As shown in the table, three factors are systematically manipulated and fully crossed 

during the data simulation process. These factors are: (a) the number or proportion of negatively 

keyed items, (b) the magnitude of item communality, and (c) the distribution of observed item 

responses. There are four levels of the number of negatively keyed items (0, 2, 4, 6 items out of 

12 items), three levels of communality (0.06, 0.25, and 0.56), and two observed item response 
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distributions (symmetric and asymmetric distributions; see Table 1). The number of negatively 

keyed items is manipulated to represent tests with various proportions of negatively keyed items. 

The levels of communality are manipulated through changing the magnitude of factor loadings. 

The three levels of communality are chosen to represent a wide range of factor loadings that are 

commonly seen in psycho-educational tests. These three levels of communality correspond to 

factor loadings of 0.25, 0.50, and 0.75. Two levels of observed item response distributions are 

chosen so that both symmetric and skewed conditions are included in this simulation study. 

Many variables measured in psycho-educational and health research are expected to follow bell-

shaped distributions which are unimodal and symmetric. It has also been noted that strongly 

skewed distributions are often encountered in psychology research (Aron, Coups, & Aron, 2013). 

Together, these factors manipulated in the data simulation stage cover a relatively wide range of 

conditions that represent a variety of unidimensional tests.  

The length of the test (i.e., the total number of items) is fixed at 12, and the observed 

responses are on a scale of one to five. The test length is chosen to represent a typical short, 

unidimensional psychological test. A systematic review of publications in six psycho-educational 

and health journals for the time period of 1999 to 2004 concludes that the median and average 

lengths of unidimensional psychological tests are 11 and 18 (Slocum, 2005). The current 

simulation study selects the test length to be 12 because this number is close to the median test 

length and it allows for conditions with an equal number of positively and negatively keyed 

items. Also, the five-point rating scale is chosen because it is a common Likert-type response 

format (Slocum, 2005). It is also in the grey zone where researchers are often unclear about 

whether the item responses from such scales should be treated as continuous or ordinal data 

(Rhemtulla et al., 2012), and thus needs more studies. In addition, the test is fixed to follow a 

one-factor model. This results in a total of 24 (i.e., 4 × 3 × 2) simulated datasets. 
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Table 1. 

Factors manipulated in the data simulation 

Factors Manipulated Number of Levels Specification for Each Level 

Number of negatively keyed 

items 
4 

0 (0.00%) 

2 (16.67%) 

4 (33.33%) 

6 (50.00%) 

Communality 3 

Communality = 0.06 

(factor loadings = 0.25) 

Communality = 0.25 

(factor loadings = 0.50) 

Communality = 0.56 

(factor loadings = 0.75) 

Skewness of the observed 

response distribution 
2 

Symmetric; skewness = 0 

Asymmetric; skewness = -2 

 

Besides the factors that are manipulated in the data simulation process, the scoring 

method for negatively keyed items is also manipulated after original item responses are 

simulated. Two scoring methods are investigated: (a) reversely scoring negatively keyed items, 

and (b) leaving all the responses in their original values. Each scoring method is applied to the 

negatively keyed items once the response data are simulated. Note that there are six conditions 

that do not contain any negatively keyed items, and these methods do not apply to them. 

Utilizing the two scoring methods for only the conditions having negatively keyed items results 

in a total of 42 (i.e., 4×3×2×2-6) unique datasets.  

The primary outcome variable of interest in this study is the decision of the number of 

factors, which is determined via the K-G rule and parallel analysis (PA). When PA is used, the 

criterion used to determine the number of factors is that the eigenvalue associated with a factor 

extracted from the correlation matrix is larger than its expected value at the 95th percentile 

eigenvalues obtained from random uncorrelated data. The expected eigenvalues are acquired by 

simulating normal random samples that parallel the observed data in their sample size and the 

number of variables. The number of factors suggested by the K-G rule and PA will be reported 

separately. In daily practice, researchers rely extensively on K-G and PA methods when deciding 

on the region of the possible number of factors. A researcher may start with these methods, and 
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then use EFA to compare competing models with different numbers of factors, as indicated by 

the K-G or PA results. When EFA is conducted, the decision of the number of factors and the 

factor structure is usually based on the fit and interpretability of different EFA models. 

Following this routine, when the PA results suggest that more than one factor should be retained, 

a follow-up EFA is performed to explore the pattern of the factor loadings.  

To investigate factor structure using EFA, two factors are considered and varied. Firstly, 

the observed item responses can be treated as either continuous or ordinal. Accordingly, different 

estimation methods are employed in the extraction procedure. Maximum likelihood (ML) 

estimation is used for EFA when the observed item responses are treated as continuous, while 

weighted least squares means and variance adjusted (WLSMV) estimation is used when they are 

treated as ordinal. Also, three types of rotation are applied to these datasets: (a) Varimax, (b) 

Promax, and (c) Geomin. Varimax is an orthogonal rotation method that assumes no correlations 

between factors. Promax is an oblique rotation method that allows correlations between factors. 

In addition to these two traditional methods, another oblique rotation method, Geomin, is also 

included. A fully-crossed factorial design (2 estimators × 3 rotation methods) leads to a total of 

six results for each dataset. Although factor rotation methods are applied, the focus here is not on 

the substantial interpretation of the factor solutions but on the general factor loading patterns. 

The primary reason for conducting the EFA is to examine whether the emergence of factors is 

associated with item keying direction. 

 

Procedures 

A flow chart summarizing the major steps in conducting this study is presented in Figure 

10. As shown in the chart, the study begins with data simulation and then applies different 

scoring methods to the simulated item responses. After scoring, the datasets are ready to be 

analyzed. In the data analysis stage, each dataset (i.e., each combination of factors manipulated 

before data analysis stage) is examined using PCA to obtain eigenvalues. The number of factors, 

as pointed by the K-G rule and PA, is reported for each condition. In cases where PA suggests 

retaining more than one factor, EFA with three types of rotation is applied to explore the factor 

structures. The details of each step are described in the following paragraphs. 



56 

 

Figure 10. 

A flow chart representing the research process of Study 1 

 

Step 1: Specify the data generation model. The simulations are based on the premise that 

the observed discrete responses (y) are a manifestation of an unobserved underlying continuous 

distribution (y*). In other words, they assume that each item is designed to measure a 

theoretically continuous construct, and that the observed responses are discretized realizations of 

the continuous y*. The unobserved univariate continuous distribution that generates an observed 

ordinal distribution is referred to as a latent response distribution y* (Muthén, 1983, 1984). 



57 

This study uses a one-factor model with 12 items to generate the item response data (see 

Figure 11). This model is chosen because it typifies the CFA model specifications that are 

commonly encountered in practice. The population data generated from this simulation model 

reflect a situation where strict unidimensionality is true at the population level. All the y* values 

follow normal distributions and are standardized to have a mean of zero and a standard deviation 

(SD) of one. The continuous y* distributions follow multivariate normal distributions. 

 

 

Figure 11. 

Specifications for the one-factor model 

 

Step 2: Transform continuous latent response distributions to observed responses. Each of 

the observed response variables (i.e., y) is determined by its own latent response variable (y*; see 

Figure 11). The latent response (y*) underlying each item is continuous, but the observed item 

responses can be broken down into K categories to represent responses obtained through Likert-

type response scales. The observed responses can be transformed into either symmetric or 

skewed distributions by applying different sets of thresholds.  

To transform the latent response (y*) into K ordered response categories, a set of (K-1) 

thresholds is needed. In this study, the observed item responses are simulated on a one-to-five 
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point response scale, which is a representation of a five-point rating response scale. Hence, four 

thresholds are needed to transform the latent responses (y*) into the observed responses (y). The 

observed response distribution is manipulated by using different sets of thresholds. This study 

investigates two observed response distribution conditions: (a) symmetric, and (b) negatively 

skewed with a skewness of -2. The correspondence between the latent response (y*) and 

observed response categories (y) for each distribution condition is illustrated in Table 2. 

 

Table 2. 

Thresholds used in the response transformation 

 Corresponding y* Values 

Response Categories Symmetric Skewed (skewness = -2) 

1 Lowest thru -1.8000 Lowest thru -1.66429 

2 -1.7999 thru -0.6000 -1.66428 thru -1.27956 

3 -0.5999 thru 0.6000 -1.27955 thru -1.02406 

4 0.6001 thru 1.8000 -1.02405 thru -0.68564 

5 Higher than 1.8000 Higher than -0.68564 

 

Step 3: Score the item responses. After the data are simulated, two methods are applied to 

score the observed responses to negatively keyed items. These methods are (a) reversely scoring 

negatively keyed items, and (b) leaving the responses in their original format. In both conditions, 

the responses to the positively keyed items remain as they are.  

Step 4: Decide on the number of factors. To determine the number of factors for each 

dataset, all the datasets undergo principal components analysis (PCA) to obtain eigenvalues. 

Following the traditional method, PCA is conducted on Pearson correlation matrices, that is, the 

item responses are treated as if they are on a continuous scale. For each dataset, the number of 

factors, as identified by the K-G rule and PA, are reported. Finally, a global assessment of the 

correctness or incorrectness of the number of factors is made.  

Step 5: Examine the factor structures. When PA identifies more than one factor, EFA is 

conducted using the suggested number. As described in the study design, EFA is performed with 

different estimators and rotation methods. Firstly, when EFA is carried out, item responses can 

be treated either as continuous or as ordinal variables. When they are treated continuously, ML 

estimation is used; when they are treated as ordinal variables, WLSMV estimation is used. 
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Estimated communality levels from the EFA models are presented, along with fit statistics for 

each. After evaluating the global fit of the EFA models, both orthogonal (i.e., Varimax) and 

oblique (i.e., Promax and Geomin) rotations are applied to the data to examine the pattern of 

factor loadings. Factor loadings and factor correlations are reported. When the EFA results do 

not support the number of factors suggested by PA, possible explanations for this inconsistency 

are explored. 

 

Checking the simulation method: Descriptive statistics from one of the simulated datasets 

As Chapter Two explains, negatively keyed items can be operationalized as ones that, 

without being reverse scored, are negatively correlated with the test score and other positively 

keyed items. To serve as a check on the simulation methodology, the descriptive statistics of 

each dataset are reviewed before conducting any further analyses. Before jumping to the results 

and conclusions, it may be worthwhile to present some basic statistics that summarize a 

simulated dataset. 

The descriptive statistics, including the mean, skewness, and item correlations, of one 

simulated dataset are presented. In this dataset, the number of negatively keyed items is six, the 

communality level is high (0.56), and the observed item response distribution is symmetric. 

Table 3 presents the mean and skewness of the observed item responses. The first two columns 

on the left show the item ID and the keying direction. The statistics presented in the table are 

based on the originally simulated item responses. In other words, responses to the negatively 

keyed items are not reverse scored. The mean scores of all the item responses are close to 3, 

which falls in the middle of a five-point rating scale. Also, the skewness values are close to zero 

for all the items, indicating that the distributions are symmetric.  
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Table 3. 

Mean and skewness of observed item responses (loading = 0.75, symmetric, NNK = 6) 

Item Id Keying Direction Mean Skewness 

I1 PK 3.01 0.00 

I2 PK 3.00 0.00 

I3 PK 3.01 0.00 

I4 PK 3.00 0.01 

I5 PK 3.00 0.00 

I6 PK 3.01 0.02 

I7 NK 3.00 0.00 

I8 NK 3.00 -0.01 

I9 NK 3.00 -0.04 

I10 NK 2.99 -0.03 

I11 NK 3.00 -0.01 

I12 NK 3.01 0.00 

Note: PK denotes positively keyed items and NK denotes negatively keyed items. 

 

Table 4 presents the inter-item correlations. The correlations between positively and 

negatively keyed items are negative, while all the other correlations are positive. This pattern is 

consistent with the operationalization of negatively keyed items. 

 

Table 4. 

Correlation matrix of observed item responses (loading = 0.75, symmetric, NNK = 6) 

 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 

I1 --           

I2 0.507  --          

I3 0.497  0.506  --         

I4 0.503  0.501  0.505  --        

I5 0.504  0.518  0.511  0.502  --       

I6 0.499  0.502  0.506  0.499  0.512  --      

I7 -0.498  -0.505  -0.500  -0.498  -0.505  -0.494  --     

I8 -0.506  -0.508  -0.510  -0.507  -0.509  -0.509  0.505  --    

I9 -0.507  -0.498  -0.515  -0.502  -0.509  -0.507  0.495  0.507  --   

I10 -0.504  -0.506  -0.514  -0.496  -0.512  -0.504  0.499  0.501  0.500  --  

I11 -0.495  -0.496  -0.495  -0.486  -0.501  -0.507  0.504  0.505  0.489  0.494  -- 

I12 -0.503  -0.494  -0.505  -0.495  -0.497  -0.503  0.497  0.487  0.500  0.498  0.512  
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The above tables show that the observed item response distribution and item keying 

directions have been manipulated according to the simulation design. The similarity between the 

general pattern of the simulated dataset and the datasets we may see in applied research shows 

the credibility of the simulation method.  

 

Results and conclusions 

Decision on the number of factors 

The K-G rule and PA are PCA based procedures. Following the conventional methods to 

determine the number of factors, PCA is conducted on a Pearson correlation matrix to extract 

eigenvalues. As expected, both scoring methods for negatively keyed items produced identical 

eigenvalues. Therefore, the number of factors pointed either by the K-G rule or PA is not 

affected by the scoring method. Table 5 presents the number of factors suggested either by the 

K-G rule or PA for (a) different communality levels, and (b) different numbers of negatively 

keyed items. Both the K-G rule and PA always correctly identify the number of factors as one 

when the observed item response distributions are symmetric. In other words, none of the other 

factors (i.e., item communality level, the number of negatively keyed items, and scoring methods 

for negatively keyed items) affects the identification of the number of factors for a symmetric 

observed item response distribution. Hence, only conditions under which the observed item 

distribution is skewed are presented in Table 5. The conditions in which no item is negatively 

keyed (i.e., all items are positively keyed) serve as baselines for comparison with the conditions 

where different numbers of negatively keyed items are manipulated.  

The far left column of Table 5 lists the number of negatively keyed items, and next to it 

are the factor loadings specified in the simulation model. The remaining two columns present the 

number of factors pointed by the K-G rule and PA, respectively. When the observed item 

response distribution is asymmetric, the number of factors that the K-G rule suggests in most of 

the conditions is wrong. The K-G rule points to the right number of factors only when the item 

communality level is high and none of the items is negatively keyed. It is evident that, in the 

presence of an asymmetric observed item response distribution and negatively keyed items, the 

K-G rule inflates the number of factors. As for PA, if no negatively keyed items exist, as shown 

in the first three rows (the rows with the first column labeled “0” under “No. of NK”), PA always 

point to one factor. In the presence of asymmetric observed response distributions, the number of 
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factors increases depending on the level of item communality and the number of negatively 

keyed items. The general pattern shows that with a higher average item communality level and a 

larger number of negatively keyed items, the decision of the number of factors based on PA is 

more likely to be inflated. 

Taken together, there is, in essence, a four-way interaction among the studied 

conditions—i.e., observed response distribution, item communality level, number of negatively 

keyed items, and decision rules (K-G rule or PA). That is, the results suggest that the decision of 

the number of factors is always correct when the item response distribution is symmetric, 

regardless of any other factors manipulated in this study. In the presence of skewed item 

response distributions, the decision on the number of factors depends on the number of 

negatively keyed items, item communality levels, and the decision methods used. When the 

observed item response distribution is asymmetric, the number of factors pointed by the K-G rule 

is inflated in all conditions except one. Compared to the K-G rule, PA is more robust when 

dealing with negatively keyed items and skewed item response distributions. 

 

Table 5. 

Number of factors based on a Pearson correlation matrix 

Number of NK 

items 

Item 

Loadings 

Observed Item Response Distribution 

Asymmetric (Skewness = -2) 

The K-G rule based on 

Pearson correlations 

PA results based on 

Pearson correlations 

0 

(Baseline) 

0.25 3 1 

0.50 3 1 

0.75 1 1 

2 

0.25 3 1 

0.50 3 1 

0.75 2 2 

4 

0.25 3 1 

0.50 2 1 

0.75 2 2 

6 

0.25 3 1 

0.50 2 2 

0.75 2 2 

Note: NK denotes negatively keyed items. 
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Exploring factor structures using EFA when more than one factor is identified  

Exploring the factor structure of a test is a step that usually follows the identification of 

the number of factors. Sometimes researchers may also take an iterative approach to inform their 

decision using the model fit and the pattern of factor structure observed in EFA. Following this 

practice, EFA is used to explore the factor structure when the number of factors suggested by PA 

is greater than one. The number of factors to extract in EFA is set based on the results obtained 

from PA. This is because the literature has criticized the K-G rule for its frequent over-

factorization (Hakstian et al., 1982; Zwick & Velicer, 1982, 1986). This inflation has also been 

observed in the current study (see Table 5). Moreover, this inflation also appears under some of 

the baseline conditions where there are no negatively keyed items. The primary focus of the 

following EFA is to examine if items will load on different factors due to their keying direction. 

The inflation of the number of factors under baseline conditions makes it difficult to interpret the 

EFA results and the comparisons between these and other conditions. 

In total, PA points to an incorrect number of factors under four conditions (see Table 5), 

where the K-G rule also points to the wrong number of factors. These four conditions are: (a) 

item loadings equal 0.75, two items are negatively keyed, and the observed item responses are 

asymmetric (i.e., L0.75_NK2_Asymm); (b) item loadings equal 0.75, four items are negatively 

keyed, and the observed item responses are asymmetric (i.e., L0.75_NK4_Asymm); (c) item 

loadings equal 0.75, six items are negatively keyed, and the observed item responses are 

asymmetric (i.e., L0.75_NK6_Asymm); and (d) item loadings equal 0.50, six items are 

negatively keyed, and the observed item responses are asymmetric (i.e., L0.50_NK4_Asymm). 

The numbers of factors identified by PA in all these four conditions are two.  

To begin reporting the EFA results, the item communality levels are estimated. Since 

rotation does not change these item communality levels, for each condition, four sets of item 

communalities (2 estimators × 2 scoring methods) are estimated. The results show that the 

communality levels are identical regardless of whether the negatively keyed items are reverse 

scored or left in their original values. Hence, when reporting these results in Table 6, the scoring 

methods applied to negatively keyed items are not included. For each condition under 

investigation, two sets of communality estimates are listed, one obtained with statistics from the 

EFA model estimated by treating the observed ordinal item responses as continuous with the ML 
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estimator, and the other using the WLSMV estimator. The communality estimates are obtained 

as 1-(residual variance).  

 

Table 6. 

Estimated communality levels from two-factor EFA models 

 L0.75_NK2_Asymm L0.75_NK4_Asymm L0.75_NK6_Asymm L0.50_NK6_Asymm 

 

Cont. 

(ML) 

Ordinal 

(WLSMV) 

Cont. 

 (ML) 

Ordinal 

(WLSMV) 

Cont. 

 (ML) 

Ordinal 

(WLSMV) 

Cont. 

 (ML) 

Ordinal 

(WLSMV) 

I1 0.43 0.58 0.43 0.58 0.40 0.55 0.18 0.27 

I2 0.41 0.57 0.41 0.57 0.42 0.57 0.15 0.26 

I3 0.43 0.58 0.43 0.58 0.43 0.58 0.17 0.26 

I4 0.41 0.57 0.41 0.56 0.40 0.55 0.16 0.24 

I5 0.42 0.58 0.42 0.58 0.43 0.58 0.17 0.25 

I6 0.39 0.55 0.39 0.55 0.40 0.56 0.13 0.23 

I7 0.43 0.58 0.43 0.58 0.41 0.56 0.17 0.25 

I8 0.43 0.59 0.43 0.59 0.39 0.57 0.17 0.25 

I9 0.41 0.57 0.43 0.57 0.41 0.56 0.15 0.26 

I10 0.41 0.56 0.40 0.59 0.41 0.56 0.15 0.25 

I11 0.25 0.56 0.40 0.56 0.42 0.56 0.15 0.25 

I12 0.71 0.58 0.39 0.57 0.44 0.60 0.17 0.26 

Note: Communalities for items that are negatively keyed are bolded. Cont. stands for continuous; L# 

denotes the factor loading specified in the simulation model; NK# denotes the number of negatively 

keyed items; Asymm indicates observed item responses following asymmetric distributions; ML stands 

for maximum likelihood estimation; and WLSMV denotes weighted least squares means and variance 

adjusted estimation. The simulated (expected) communality levels for conditions noted with “L0.75” (first 

three conditions) and “L0.50” (last condition on the right) are 0.56 and 0.25, respectively.  

 

Recall that for conditions simulated with factor loadings equal to 0.75 (noted as “L0.75” 

in the column headers of Table 6), the expected communality level is 0.56. As for those 

simulated with factor loadings equal to 0.50 (noted as “L0.50” in the column headers of Table 6), 

this value is 0.25. Compared with the communalities estimated using ML when the item 

responses are assumed to be continuous, those obtained through WLSMV on ordinal data are 

always higher and closer to the simulation values. Under each condition, the estimated values for 

the communality levels of positively and negatively keyed items are similar. No evidence 

suggests that the communality estimates for negatively keyed items are biased with one 

exception. The estimation of communalities for negatively keyed items is incorrect when ML is 
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used under the condition where the communality is high, two out of twelve items are negatively 

keyed, and the observed item responses are asymmetric (i.e., L0.75_NK2_Asymm). Under this 

condition, one negatively keyed item shows much higher communality level than all the other 

items, while the other negatively keyed item has a lower communality level (see the last two 

rows in the second column from the left in Table 6) under this condition.  

Table 7 presents the fit statistics of the two-factor EFA solutions for these four conditions. 

As rotation does not change the fit of the factorial solution to the correlation matrix, the reported 

results does not include it here. For each condition investigated, four sets of model fit statistics 

were obtained (2 estimators × 2 scoring methods). As with item communalities, the two scoring 

methods for negatively keyed items produce the same model fit statistics, and they are thus not 

presented in Table 7. The fit statistics suggest a good fit for all these two-factor solutions.  

 

Table 7. 

Fit statistics for the two-factor EFA models 

Conditions   Data Type (Estimator) 
Chi-Square Test 

RMSEA SRMR 
Chi-Square df p 

L0.75_NK2_Asymm 
Cont. (ML) 48.89 43 0.248 0.004 0.004 

Ordinal (WLSMV) 26.07 43 0.981 0.000 0.006 

L0.75_NK4_Asymm 
Cont. (ML) 34.18 43 0.830 0.000 0.004 

Ordinal (WLSMV) 41.08 43 0.555 0.000 0.008 

L0.75_NK6_Asymm 
Cont. (ML) 21.06 43 0.998 0.000 0.003 

Ordinal (WLSMV) 28.59 43 0.955 0.000 0.007 

L0.50_NK6_Asymm 
Cont. (ML) 28.41 43 0.958 0.000 0.005 

Ordinal (WLSMV) 28.63 43 0.955 0.000 0.009 

Note: L# denotes the factor loading specified in the simulation model; NK# denotes the number of 

negatively keyed items; Asymm indicates observed item responses following asymmetric distributions; 

Cont. stands for continuous; ML stands for maximum likelihood estimation; and WLSMV denotes 

weighted least squares means and variance adjusted estimation. 

 

As described above, a fully-crossed factorial design with three factors leads to a total of 

12 factor structures (2 estimators × 2 scoring methods × 3 rotation methods) for each condition. 

Given that one of the purposes of this study is to inform day-to-day research, Varimax, Promax, 

and Geomin rotation methods were selected due to their popularity. Different rotations create 

different loadings and inter-factor correlations for a factor and therefore change the sums of the 
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squares of the loadings for the factor and the factor interpretation. The following tables (Table 8 

to Table 15) present the factor loadings and the factor correlations of the two-factor EFA 

solutions under different conditions. The title of each table briefly describes the condition under 

investigation. In the table titles, L# represents factor loading, NK# represents the number of 

negatively keyed items, and Asymm indicates that the observed item response distribution is 

skewed (i.e., asymmetric). For example, L0.75_NK2_Asymm with original item responses (Table 

8) means that the dataset fitted to the two-factor EFA solution was simulated from a one-factor 

model with factor loadings of 0.75 (i.e., L0.75), two negatively keyed items (i.e., NK2), skewed 

distributions for all observed item responses (i.e., Asymm), and the original item responses being 

used in the EFA modeling. Two estimation methods and three rotation methods resulted in six 

factor solutions under each of these conditions. Taking Table 8 as an example, the first three 

solutions were obtained with item responses being treated as continuous data. ML estimation was 

used, and Varimax, Promax, and Geomin rotations were applied. The last three solutions were 

obtained with ordinal item response data. WLSMV was employed for model estimation, and the 

same three types of rotation were applied. When oblique rotation methods were used, the 

corresponding factor correlations are presented in the bottom rows of each table.  

As shown in tables (Table 8 to Table 15), when item responses were treated as 

continuous, two-factor solutions with factors defined by item keying directions appear under all 

the conditions. This pattern is consistent across different rotation methods. However, when item 

responses were treated as ordinal, the patterns of the factor loadings seem to suggest that the 

factors may be overly extracted from these datasets. The results show that the factor solutions 

vary with different rotation methods. When Varimax was applied, items show cross-loadings on 

both factors in most of the conditions (see tables Table 8 to Table 15). When Geomin was used, 

items largely load on the first factor and the second factor seems redundant. The patterns of the 

factor loadings from Promax were inconsistent across different datasets, but the solutions 

resembled either those obtained from Varimax or those obtained from Geomin. 
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Table 8. 

Factor loadings obtained from two-factor EFA solutions: L0.75_NK2_Asymm with original item 

responses 

 Continuous Ordinal 

 
Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 

I1 0.63 0.18 0.65 0.01 0.66 0.01 0.73 0.20 0.76 0.01 0.76 0.12 

I2 0.61 0.19 0.63 0.03 0.64 -0.01 0.73 0.20 0.75 0.01 0.75 0.02 

I3 0.63 0.18 0.65 0.01 0.66 0.00 0.73 0.20 0.76 0.01 0.76 -0.03 

I4 0.62 0.18 0.63 0.02 0.64 0.00 0.73 0.18 0.76 -0.01 0.75 -0.01 

I5 0.63 0.18 0.64 0.01 0.65 0.00 0.73 0.20 0.76 0.01 0.76 0.06 

I6 0.60 0.18 0.61 0.03 0.62 -0.01 0.71 0.20 0.73 0.01 0.73 0.09 

I7 0.63 0.18 0.65 0.01 0.65 0.00 0.74 0.19 0.76 0.00 0.76 -0.05 

I8 0.63 0.18 0.65 0.01 0.66 0.00 0.74 0.20 0.76 0.00 0.77 -0.06 

I9 0.62 0.18 0.63 0.02 0.64 0.00 0.73 0.19 0.76 -0.01 0.76 -0.03 

I10 0.62 0.18 0.64 0.01 0.65 0.00 0.39 1.44* 0.11 1.44* 0.75 0.07 

I11 -0.17 -0.61 -0.01 -0.63 0.00 0.63 -0.72 -0.20 -0.74 -0.01 -0.76 0.13 

I12 -0.18 -0.61 -0.02 -0.63 0.00 0.63 -0.73 -0.21 -0.75 -0.01 -0.75 -0.13 

Factor Correlations 

 -- 0.45 -0.53 -- 0.44 0.04 

Note: L# denotes the factor loading specified in the simulation model; NK# denotes the number 

of negatively keyed items; Asymm indicates observed item responses following asymmetric 

distributions. Factor loadings for negatively keyed items are highlighted in bold. * indicates 

instances where the residual variance estimated for that item was negative.  
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Table 9. 

Factor loadings obtained from two-factor EFA solutions: L0.75_NK2_Asymm with reverse 

scored item responses for negatively keyed items 

 Continuous Ordinal 

 
Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 

I1 0.63 0.18 0.65 0.01 0.66 -0.01 0.61 0.47 0.55 0.25 0.76 0.12 

I2 0.61 0.19 0.63 0.03 0.64 0.01 0.54 0.53 0.41 0.39 0.75 0.02 

I3 0.63 0.18 0.65 0.01 0.66 0.00 0.51 0.57 0.34 0.46 0.76 -0.03 

I4 0.62 0.18 0.63 0.02 0.64 0.00 0.52 0.55 0.36 0.43 0.75 -0.01 

I5 0.63 0.18 0.64 0.01 0.65 0.00 0.58 0.50 0.48 0.32 0.76 0.06 

I6 0.60 0.18 0.61 0.03 0.62 0.01 0.58 0.47 0.51 0.27 0.73 0.09 

I7 0.63 0.18 0.65 0.01 0.65 0.00 0.49 0.59 0.30 0.51 0.76 -0.05 

I8 0.63 0.18 0.65 0.01 0.66 0.00 0.50 0.59 0.30 0.51 0.77 -0.06 

I9 0.62 0.18 0.63 0.02 0.64 0.00 0.51 0.56 0.34 0.45 0.76 -0.03 

I10 0.62 0.18 0.64 0.01 0.65 0.00 0.58 0.49 0.50 0.30 0.75 0.07 

I11 0.17 0.61 0.01 0.63 0.00 0.63 0.44 0.63 0.19 0.60 0.76 -0.13 

I12 0.18 0.61 0.02 0.63 0.00 0.63 0.62 0.45 0.59 0.22 0.75 0.13 

Factor Correlations 

 -- 0.50 0.53 -- 0.79 0.04 

Note: L# denotes the factor loading specified in the simulation model; NK# denotes the number 

of negatively keyed items; Asymm indicates observed item responses following asymmetric 

distributions. Factor loadings for negatively keyed items are highlighted in bold. 
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Table 10. 

Factor loadings obtained from two-factor EFA solutions: L0.75_NK4_Asymm with original item 

responses 

 Continuous Ordinal 

 
Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 

I1 0.63 0.18 0.65 0.02 0.65 0.00 0.70 0.32 0.75 0.03 0.76 -0.03 

I2 0.61 0.18 0.63 0.03 0.64 -0.01 0.68 0.32 0.73 0.04 0.75 -0.03 

I3 0.63 0.18 0.65 0.02 0.65 0.00 0.69 0.33 0.73 0.05 0.77 0.03 

I4 0.62 0.17 0.64 0.01 0.65 0.01 0.67 0.33 0.71 0.05 0.74 -0.05 

I5 0.63 0.17 0.64 0.01 0.65 0.00 0.70 0.30 0.76 0.01 0.75 -0.06 

I6 0.60 0.18 0.61 0.03 0.61 -0.02 0.68 0.30 0.74 0.01 0.73 -0.08 

I7 0.63 0.18 0.65 0.01 0.66 0.00 0.69 0.34 0.72 0.06 0.78 0.06 

I8 0.63 0.17 0.65 0.01 0.66 0.01 0.42 0.91 0.16 0.89 0.77 0.01 

I9 -0.17 -0.63 0.00 -0.65 0.01 0.66 -0.68 -0.32 -0.73 -0.03 -0.75 -0.01 

I10 -0.17 -0.61 -0.01 -0.63 0.00 0.64 -0.70 -0.31 -0.75 -0.03 -0.79 -0.10 

I11 -0.18 -0.60 -0.02 -0.62 0.00 0.63 -0.66 -0.35 -0.69 -0.09 -0.75 -0.03 

I12 -0.18 -0.60 -0.03 -0.61 -0.01 0.62 -0.68 -0.32 -0.73 -0.05 -0.71 0.30 

Factor Correlations 

 -- 0.50 -0.53 -- 0.65 -0.15 

Note: L# denotes the factor loading specified in the simulation model; NK# denotes the number 

of negatively keyed items; Asymm indicates observed item responses following asymmetric 

distributions. Factor loadings for negatively keyed items are highlighted in bold. 
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Table 11. 

Factor loadings obtained from two-factor EFA solutions: L0.75_NK4_Asymm with reverse 

scored item responses for negatively keyed items 

 Continuous Ordinal 

 
Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 

I1 0.63 0.18 0.65 0.02 0.65 0.00 0.59 0.48 0.54 0.27 0.76 0.03 

I2 0.61 0.18 0.63 0.03 0.64 0.01 0.58 0.48 0.53 0.27 0.75 0.03 

I3 0.63 0.18 0.65 0.02 0.65 0.00 0.63 0.44 0.62 0.17 0.77 -0.03 

I4 0.62 0.17 0.64 0.01 0.65 -0.01 0.57 0.49 0.51 0.28 0.74 0.05 

I5 0.63 0.17 0.64 0.01 0.65 0.00 0.57 0.50 0.50 0.30 0.75 0.06 

I6 0.60 0.18 0.61 0.03 0.61 0.02 0.54 0.50 0.46 0.33 0.73 0.08 

I7 0.63 0.18 0.65 0.01 0.66 0.00 0.65 0.42 0.67 0.13 0.78 -0.06 

I8 0.63 0.17 0.65 0.01 0.66 -0.01 0.62 0.46 0.60 0.21 0.77 -0.01 

I9 0.17 0.63 0.00 0.65 -0.01 0.66 0.61 0.44 0.59 0.20 0.75 -0.01 

I10 0.17 0.61 0.01 0.63 0.00 0.64 0.68 0.39 0.73 0.06 0.79 -0.10 

I11 0.18 0.60 0.02 0.62 0.00 0.63 0.62 0.42 0.62 0.16 0.75 -0.03 

I12 0.18 0.60 0.03 0.61 0.01 0.62 0.42 0.71 0.14 0.71 0.71 0.30 

Factor Correlations 

 -- 0.50 0.53 -- 0.78 0.15 

Note: L# denotes the factor loading specified in the simulation model; NK# denotes the number 

of negatively keyed items; Asymm indicates observed item responses following asymmetric 

distributions. Factor loadings for negatively keyed items are highlighted in bold. 
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Table 12. 

Factor loadings obtained from two-factor EFA solutions: L0.75_NK6_Asymm with original item 

responses 

 Continuous Ordinal 

 
Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 

I1 0.61 0.17 0.62 0.02 0.63 0.00 0.72 0.41 0.71 0.16 -0.71 0.11 

I2 0.62 0.17 0.64 0.01 0.65 0.00 0.42 0.63 0.15 0.63 -0.74 0.07 

I3 0.63 0.17 0.65 0.01 0.66 0.01 0.39 0.66 0.09 0.70 -0.75 0.04 

I4 0.61 0.18 0.62 0.02 0.63 -0.01 0.43 0.61 0.18 0.60 -0.71 0.11 

I5 0.63 0.17 0.65 0.01 0.66 0.01 0.42 0.64 0.14 0.65 -0.76 0.02 

I6 0.61 0.17 0.63 0.02 0.63 -0.01 0.41 0.63 0.14 0.64 -0.75 -0.01 

I7 -0.17 -0.62 -0.02 -0.63 0.00 0.64 -0.44 -0.61 -0.19 -0.59 0.75 0.01 

I8 -0.18 -0.60 -0.03 -0.61 -0.02 0.62 -0.48 -0.59 -0.26 -0.55 0.68 -0.30 

I9 -0.17 -0.62 -0.01 -0.64 0.00 0.65 -0.35 -0.67 -0.03 -0.74 0.76 0.03 

I10 -0.17 -0.62 -0.02 -0.63 -0.01 0.64 -0.38 -0.65 -0.09 -0.68 0.75 0.02 

I11 -0.17 -0.62 -0.01 -0.64 0.00 0.65 -0.42 -0.62 -0.16 -0.62 0.76 0.03 

I12 -0.17 -0.64 0.00 -0.66 0.01 0.67 -0.44 -0.63 -0.18 -0.63 0.78 0.03 

Factor Correlations 

 -- 0.48 -0.51 -- 0.75 -0.22 

Note: L# denotes the factor loading specified in the simulation model; NK# denotes the number 

of negatively keyed items; Asymm indicates observed item responses following asymmetric 

distributions. Factor loadings for negatively keyed items are highlighted in bold. 
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Table 13. 

Factor loadings obtained from two-factor EFA solutions: L0.75_NK6_Asymm with reverse 

scored item responses for negatively keyed items 

 Continuous Ordinal 

 
Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 

I1 0.61 0.17 0.62 0.02 0.63 0.00 0.55 0.50 0.49 0.30 0.71 0.11 

I2 0.62 0.17 0.64 0.01 0.65 0.00 0.58 0.48 0.54 0.25 0.74 0.07 

I3 0.63 0.17 0.65 0.01 0.66 -0.01 0.60 0.47 0.57 0.23 0.75 0.04 

I4 0.61 0.18 0.62 0.02 0.63 0.01 0.55 0.50 0.48 0.31 0.71 0.11 

I5 0.63 0.17 0.65 0.01 0.66 -0.01 0.62 0.45 0.61 0.18 0.76 0.02 

I6 0.61 0.17 0.63 0.02 0.63 0.01 0.62 0.42 0.63 0.15 0.75 -0.01 

I7 0.17 0.62 0.02 0.63 0.00 0.64 0.62 0.42 0.63 0.15 0.75 -0.01 

I8 0.18 0.60 0.03 0.61 0.02 0.62 0.43 0.70 0.17 0.68 0.68 0.30 

I9 0.17 0.62 0.01 0.64 0.00 0.65 0.63 0.41 0.65 0.13 0.76 -0.03 

I10 0.17 0.62 0.02 0.63 0.01 0.64 0.63 0.41 0.64 0.13 0.75 -0.02 

I11 0.17 0.62 0.01 0.64 0.00 0.65 0.63 0.41 0.65 0.13 0.76 -0.03 

I12 0.17 0.64 0.00 0.66 -0.01 0.67 0.65 0.42 0.67 0.13 0.78 -0.03 

Factor Correlations 

 -- 0.48 0.51 -- 0.77 0.22 

Note: L# denotes the factor loading specified in the simulation model; NK# denotes the number 

of negatively keyed items; Asymm indicates the observed item responses followed asymmetric 

distributions. Factor loadings for negatively keyed items are highlighted in bold. 
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Table 14. 

Factor loadings obtained from two-factor EFA solutions: L0.50_NK6_Asymm with original item 

responses 

 Continuous Ordinal 

 
Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 

I1 0.38 0.17 0.40 0.02 0.42 0.00 0.41 0.32 0.38 0.18 0.52 0.00 

I2 0.35 0.18 0.35 0.06 0.36 -0.04 0.39 0.32 0.35 0.18 0.51 -0.01 

I3 0.38 0.17 0.40 0.03 0.42 0.00 0.47 0.24 0.51 0.02 0.54 0.10 

I4 0.36 0.16 0.38 0.03 0.39 0.00 0.38 0.31 0.34 0.18 0.49 -0.01 

I5 0.39 0.16 0.41 0.01 0.43 0.02 0.40 0.31 0.38 0.16 0.51 0.01 

I6 0.30 0.19 0.28 0.10 0.29 -0.09 0.29 0.40 0.15 0.37 0.45 -0.14 

I7 -0.15 -0.38 -0.01 -0.41 0.03 0.44 -0.25 -0.49 -0.04 -0.52 -0.45 0.23 

I8 -0.15 -0.38 0.00 -0.41 0.04 0.44 -0.32 -0.38 -0.21 -0.32 -0.47 0.10 

I9 -0.18 -0.35 -0.05 -0.36 -0.02 0.38 -0.43 -0.28 -0.43 -0.10 -0.52 -0.04 

I10 -0.18 -0.34 -0.06 -0.34 -0.03 0.36 -0.42 -0.28 -0.41 -0.11 -0.51 -0.04 

I11 -0.18 -0.34 -0.06 -0.34 -0.03 0.36 -0.42 -0.28 -0.41 -0.11 -0.51 -0.04 

I12 -0.18 -0.37 -0.04 -0.38 -0.01 0.40 -0.33 -0.40 -0.21 -0.34 -0.48 0.12 

Factor Correlations 

 -- 0.67 -0.75 -- 0.77 -0.21 

Note: L# denotes the factor loading specified in the simulation model; NK# denotes the number 

of negatively keyed items; Asymm indicates observed item responses following asymmetric 

distributions. Factor loadings for negatively keyed items are highlighted in bold. 
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Table 15. 

Factor loadings obtained from two-factor EFA solutions: L0.50_NK6_Asymm with reverse 

scored item responses for negatively keyed items 

 Continuous Ordinal 

 
Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

Orthogonal 

(Varimax) 

Oblique 

(Promax) 

Oblique 

(Geomin) 

 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 

I1 0.38 0.17 0.40 0.02 0.42 0.00 0.41 0.32 0.38 0.17 0.52 0.00 

I2 0.35 0.18 0.35 0.06 0.36 0.04 0.40 0.32 0.36 0.18 0.51 0.01 

I3 0.38 0.17 0.40 0.03 0.42 0.00 0.47 0.24 0.51 0.02 0.54 -0.10 

I4 0.36 0.16 0.38 0.03 0.39 0.00 0.38 0.31 0.34 0.18 0.49 0.01 

I5 0.39 0.16 0.41 0.01 0.43 -0.02 0.40 0.30 0.38 0.15 0.51 -0.01 

I6 0.30 0.19 0.28 0.10 0.29 0.09 0.29 0.40 0.16 0.37 0.45 0.14 

I7 0.15 0.38 0.01 0.41 -0.03 0.44 0.25 0.49 0.04 0.52 0.45 0.23 

I8 0.15 0.38 0.00 0.41 -0.04 0.44 0.33 0.38 0.22 0.31 0.47 0.10 

I9 0.18 0.35 0.05 0.36 0.02 0.38 0.43 0.28 0.43 0.10 0.52 -0.04 

I10 0.18 0.34 0.06 0.34 0.03 0.36 0.42 0.28 0.42 0.11 0.51 -0.04 

I11 0.18 0.34 0.06 0.34 0.03 0.36 0.42 0.28 0.41 0.11 0.51 -0.04 

I12 0.18 0.37 0.04 0.38 0.01 0.40 0.33 0.40 0.22 0.34 0.48 0.12 

Factor Correlations 

 -- 0.67 0.75 -- 0.77 0.21 

Note: L# denotes the factor loading specified in the simulation model; NK# denotes the number 

of negatively keyed items; Asymm indicates observed item responses following asymmetric 

distributions. Factor loadings for negatively keyed items are highlighted in bold. 

 

As shown by the factor loadings in the above tables (Table 8 to Table 15), when item 

response data were treated as continuous, regardless of the rotation method used, a two-factor 

structure was found with factors essentially formed according to item keying direction. When 

item responses were treated as ordinal, Varimax and Promax rotations produced factor structures 

with relatively heavy cross-loadings, and only Geomin seemed to recover the true data structure. 

The two-factor structures produced by Geomin consist of a primary factor and a nuisance factor 

on which all items load weakly. This data structure is similar to the psychometric model that 

simulated the data. 

When deciding on the number of factors using eigenvalues, it is conventional to rely on 

PCA based on Pearson correlations. After the eigenvalues are obtained through PCA, they are 

evaluated via different decision rules, such as the K-G rule and PA. To explore whether using 
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polychoric correlations in the PCA stage will suggest a different number of factors to retain, the 

same decision rules are applied to eigenvalues based on polychoric correlation matrices. Table 

16 presents the number of factors suggested by the K-G rule. The PA results suggest one-factor 

solutions under all the conditions, and therefore are not listed in the table. One could accurately 

conclude that using PA with polychoric correlations in the PCA stage to obtain eigenvalues and 

Pearson correlations in the data simulation stage produces the correct number of factors under all 

the simulated conditions. Comparing the results based on polychoric correlations with those 

based on Pearson correlations suggests that treating item responses as ordinal and calculating 

eigenvalues based on polychoric correlations helps point to the right number of factors to retain 

even when the observed response distributions are skewed. When the response distributions are 

symmetric, the K-G rule and PA both point to the right number of factors with eigenvalues 

calculated either based on Pearson or polychoric correlations. 

 

Table 16. 

Number of factors: K-G rule based on polychoric correlation matrix 

  Observed Item Response Distribution 

Number of NK Item Loadings Asymmetric (Skewness = -2) 

0 

(Baseline) 

0.25 3 

0.50 1 

0.75 1 

2 

0.25 3 

0.50 1 

0.75 1 

4 

0.25 3 

0.50 1 

0.75 1 

6 

0.25 3 

0.50 1 

0.75 1 

Note: NK denotes negatively keyed items. 

 

To summarize the findings from Study 1, responses to each of the research questions are 

presented as follows.  
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Q1.1: Does the reverse scoring of negatively keyed items affect the number of factors 

identified by the K-G rule and PA? 

Neither reverse scoring the negatively keyed items nor leaving them in their original 

format affects the number of factors identified by the K-G rule or PA.  

Q1.2: Under what conditions will the K-G rule correctly point to the number of factors? 

The K-G rule, when applied to PCA eigenvalues from either Pearson or polychoric 

correlations, points to the right number of factors when the observed item responses are 

symmetric. When these response are asymmetric, applying the K-G rule to eigenvalues obtained 

from polychoric correlations points to the right number of factors when the communality level is 

median (0.25) or high (0.56). The K-G rule’s performance is not altered by the presence of 

negatively keyed items. In fact, it shows inflation in the suggested number of factors even 

without the presence of negatively keyed items when the communality level is low. 

Q1.3: Under what conditions will PA correctly point to the number of factors? 

PA points to the right number of factors under most conditions. Only when the observed 

item response distribution is asymmetric, the communality level is high, the number of 

negatively keyed items is relatively large, and the Pearson correlation matrix is used at the PCA 

stage will PA inflate the number of factors.  

Q1.4: When more than one factor is suggested for retention, what will the factor structure 

look like? Will a second factor be formed by negatively keyed items in EFA?  

Under conditions where PA points to more than one factor, the suggested number is two. 

If the follow-up EFA is conducted with ML estimation (i.e., treating item responses as 

continuous), a two-factor solution with factors formed by item keying direction will be observed 

under each of these conditions, regardless of the rotation methods applied. Note that all of the 

two-factor models are incorrect because the data were simulated through a one-factor model. The 

correct factor structure is only recovered under conditions where the item response data are 

treated as ordinal in EFA and rotated by Geomin.  

 

Study 2: The impact of negatively keyed items on the model fit in CFA 

The purpose of the second simulation study is to investigate the effect of negatively 

keyed items on assessing the factor structure of a test using CFA. One of the advantages of CFA 

is its ability to offer multiple indices to evaluate the quality of the model fit. These fit indices 
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assist researchers in deciding whether to reject or tentatively retain an a priori specified model. 

Acceptable fit indices usually lead to the conclusion that none of the evidence collected supports 

the rejection of the model. However, if the indices indicate a potential model misfit, researchers 

may revise the original model either based on statistics, such as modification indices, or on 

previous research findings. To demonstrate how modifying models using modification indices 

may influence the interpretation of the factor structure of mixed-keyed tests, modification indices 

are presented when the one-factor model is rejected by CFA fit indices. 

More specifically, the research questions that this study aims to address are as follows: 

Q2.1: Does the reverse scoring of negatively keyed items affect the assessment of model 

fit? 

Q2.2: Under what conditions will the one-factor model be rejected either by the Chi-

square test or other fit indices? 

Q2.3: When the one-factor model is rejected, which parameters will the modification 

indices suggest to be freed? Will these additional parameters support an alternative model that 

accounts for the item keying effect? 

 

Method 

Study design 

Following the same data simulation design and procedures as Study 1, the present study 

examines whether model fit statistics from CFA support the one-factor structure in the presence 

of negatively keyed items. It uses the same datasets as Study 1. Each dataset consists of 12 items 

and 10,000 respondents. These datasets are simulated by varying three factors in a factorial 

design: (a) the magnitude of communality in the factor structure, (b) the number of negatively 

keyed items, and (c) the distribution of observed item responses. The study explores three levels 

of communality, which are manipulated by varying the factor loadings in the data simulation 

model. Item loadings of 0.25 represent a low level of communality (h2 = 0.06), those of 0.50 a 

medium level (h2 = 0.25), and those of 0.75 a high level (h2 = 0.56). The number of negatively 

keyed items is set at 0, 2, 4 and 6. The distribution of observed item responses is either 

symmetric with a skewness of 0 or asymmetric with a skewness of -2. The manipulation of the 

observed item response distributions is done by changing the thresholds used in the 

transformation from latent response distributions to observed responses. The simulation follows 
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a 3×4×2 completely crossed design. As in Study 1, two scoring methods are applied to 

negatively keyed items. The two scoring methods are (a) using item responses in their original 

format for both positively and negatively keyed items, and (b) reverse scoring the item responses 

to negatively keyed items while leaving those to positively keyed items untouched. In total, 42 

unique datasets are created. 

As in Study 1, item responses are treated either as continuous or ordinal data when factor 

analysis is performed. CFA is conducted with different estimators to accommodate different data 

types. ML and MLR are used for continuous item responses, and WLSMV is utilized for ordinal 

data. The global model fit indices are of primary interest in this study. Following the guidelines 

suggested by Jackson, Gillaspy, and Purc-Stephenson (2009), model fit is assessed using various 

fit statistics. Four fit indices are used to evaluate the goodness of fit: (a) Chi-square test statistics, 

(b) CFI, (c) TLI, and (d) RMSEA with associated confidence intervals (CIs).  

In cases where these fit indices suggest a poor model fit, the study uses modification 

indices to identify places where the misfit occurs. Allowing model fit to drive the process of 

dimensionality assessment deviates from the theory-testing purpose of CFA. The parameters 

associated with large modification indices are presented. The intention is to demonstrate how 

alternative models can be derived by allowing modification indices to shape the modeling 

process. These alternative models, however, are not tested further. 

 

Procedures 

Figure 12 is a flow chart showing the major steps in conducting this study. The data 

simulation design and the first three steps in the procedure are the same as those used in Study 1. 

The description therefore focuses on the data analysis methods (i.e., steps 4 and 5).  
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Figure 12. 

A flow chart representing the research process of Study 2 

 

Step 1: Specify the data generation model: Same as in Study 1.  

Step 2: Transform continuous latent response distributions to observed responses: Same 

as in Study 1. 

Step 3: Score the item responses: Same as in Study 1. 

Step 4: Evaluate the fit of the one-factor CFA model. To examine whether the one-factor 

model fits well for each of the simulated datasets, all the datasets are analyzed using CFA. For 

each dataset, item responses are treated as either continuous or ordinal. Therefore, the same one-
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factor model is tested via ML or MLR with continuous item responses and WLSMV with ordinal 

responses. 

Step 5: Use modification indices. When any of the fit indices rejects the one-factor model, 

modification indices will be requested. This is because, in day-to-day practice, researchers 

usually do not follow a strictly confirmatory approach to test a theorized model. They are often 

willing to consider minor modifications based on the results of analyses.  

 

Results and conclusions 

The results show that the judgment of the model fit is not affected by the scoring methods 

applied to the negatively keyed items. Reverse scoring these items or leaving all item responses 

in their original format lead to the same statistical conclusion regarding the model fit. Therefore, 

the following results are presented without distinguishing the scoring method used for negatively 

keyed items. 

 

One-factor CFA model fit indices with ML estimation 

When the item responses are treated as continuous, the one-factor model is first tested via 

CFA using ML estimation. When the observed item response distributions are symmetric, a one-

factor model is always supported by the Chi-square test (p > .05), CFI (> 0.95), TLI (> 0.95), and 

RMSEA (< 0.05). When the observed item response distribution is asymmetric, however, the 

decision regarding model fit varies depending on the number of negatively keyed items, item 

communality levels, and the decision rules. Table 17 presents the Chi-square test results and the 

model fit indices under each of the conditions with asymmetric item response distributions. The 

first column on the left lists the number of negatively keyed items, while the second indicates the 

item loadings specified in the simulation model. These different item loadings represent different 

levels of item communality. The two columns in the middle list the judgment of the model fit, 

which is made either based on the Chi-square test or on a combined rule of CFI, TLI, and 

RMSEA values. The last column indicates the consistency of the judgment based on different 

rules. 

As Table 17 makes clear, out of the 12 simulation conditions with different numbers of 

negatively keyed items and levels of communality, the Chi-square test (p < .05) rejected the one-

factor model under seven of them. The results suggest that when the observed item responses are 
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distributed asymmetrically and the level of communality is high (h2 = 0.56 or factor loadings = 

0.75), the one-factor model is likely to be rejected by the Chi-square test regardless of whether 

any negatively keyed items are included. If negatively keyed items are present (n ≥ 2), the Chi-

square test rejects the one-factor model when the observed item responses are distributed 

asymmetrically and the level of communality is medium to high (h2 = 0.25 to 0.56).  

Descriptive fit indices, such as CFI, TLI, and RMSEA, are widely used. The cut-off 

values used for judging the model fit are CFI ≥ 0.95, TLI ≥ 0.95, and RMSEA ≤ 0.05. The 

results regarding the conclusion of model fit are consistent across these three fit indices and any 

combination of them. Therefore, the judgment of model fit based on these fit indices is presented 

in one column. Out of the 12 simulation conditions (i.e., 3 levels of communality × 4 levels of 

the number of negatively keyed items) with asymmetric item response distributions, the fit 

indices wrongly rejected the one-factor model under two (see Table 17). These two conditions 

feature asymmetric observed item responses, a high communality level (h2 = 0.56), and a 

relatively large number of negatively keyed items (4 or 6 items). 
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Table 17. 

One-factor CFA model with ML estimation 

Number of 

NK Items 

Item 

Loadings 

Observed Item Response Distribution 

Asymmetric (Skewness = -2) 

Model fit assessed by 

Chi-square test 

Model fit assessed by 

CFI / TLI / RMSEA 

Decision consistency:  

Chi-square test vs. other 

fit indices 

0 

(Baseline) 

0.25 Y Y CON 

0.50 Y Y CON 

0.75 N Y Inconsistent 

2 

0.25 Y Y CON 

0.50 N Y Inconsistent 

0.75 N Y Inconsistent 

4 

0.25 Y Y CON 

0.50 N Y Inconsistent 

0.75 N N CON 

6 

0.25 Y Y CON 

0.50 N Y Inconsistent 

0.75 N N CON 

Note: NK denotes negatively keyed items. N means that the one-factor model is rejected by the Chi-

square test (p < 0.05), or CFI (< 0.90), TLI (< 0.90), and RMSEA (> 0.08); Y denotes that the model is 

supported by the Chi-square test or the three descriptive fit indices; CON means that different decision 

rules reach consistent decisions regarding overall model fit. 

 

The results presented in Table 17 also suggest that using the Chi-square test or the 

descriptive fit indices leads to the same conclusions regarding model fit in many cases. However, 

the conclusions are inconsistent under five conditions, all of which have asymmetric item 

response distributions and are marked by “Inconsistent” in the last column of Table 17. When 

this inconsistency between the Chi-square test and the descriptive fit indices occurs, the pattern 

is that the former rejects the one-factor model while the latter support it. This suggests that the 

Chi-square test wrongly rejects the one-factor model under more conditions than the descriptive 

fit indices do when the observed item response distribution is asymmetric. 

 

Modification indices in cases where model fit is poor (ML estimation) 

Parameters with large modification indices are recorded when the one-factor model is 

rejected. This can be viewed as a supplement to the assessment of overall model fit, as it 
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indicates the area of potential misfit. This is meant to mimic the common practice of using 

modification indices to modify the originally hypothesized model. 

As Table 17 demonstrates, the Chi-square test rejects the one-factor model under seven 

conditions. Modification indices are reviewed under these conditions. The following table (Table 

18) presents the parameters recommended to be added to the one-factor model to achieve a better 

model fit. The suggested parameters are listed in the order of their Chi-square change values, 

from high to low. When there are more than five parameters with significant modification 

indices, only the five with the largest Chi-square change values are listed. Note that none of the 

modification indices is statistically significant (p > 0.05) under the condition where item loading 

equals 0.75, none of the items is negatively keyed, and the observed item response distribution is 

asymmetric. Therefore, Table 18 presents only the results from the other six conditions. 

 

Table 18. 

Parameters suggested to be freed by modification indices (ML estimation) 

 Observed Item Response Distribution: Asymmetric (Skewness = -2) 

Number of 

NK Items 
 NK = 2 NK = 4 NK = 6 

Factor 

Loading 
L0.50 L0.75 L0.50 L0.75 L0.50 L0.75 

Suggested 

Parameters 

I12 with I11 I12 with I11 I12 with I11 I10 with I9 I12 with I7 I5 with I3 

  I10 with I9 I12 with I9 I8 with I7 I5 with I2 

  I11 with I9 I11 with I9 I5 with I1 I12 with I10 

  I12 with I9 I11 with I10 I7 with I5 I6 with I3 

  I12 with I10 I12 with I11 I7 with I3 I3 with I2 

Note: Only parameters associated with a significant Chi-square improvement are listed; when multiple 

parameters meet this criterion, only the first five are listed and they are ordered from top to bottom by 

their Chi-square change value. Parameters represent correlated error terms between items keyed in 

different directions are highlighted in bold. 

 

Each column in Table 18 represents a simulated condition where a one-factor model is 

rejected by the Chi-square test. For example, the first two columns list the two conditions with 

asymmetric item response distributions and two negatively keyed items. These conditions differ 

in their communality levels or the factor loadings in the simulation model. Similarly, the 

remaining columns contain conditions grouped by the number of negatively keyed items. As 

Table 18 confirms, the suggested parameters are mostly between negatively keyed items. Only in 
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balanced-tests, where the number of positively and negatively keyed items is equal, do the 

suggested changes include parameters between items keyed in different directions. As observed 

in this simulation study, if researchers draw on modification indices to revise their one-factor 

model, it is likely that they will improve it by allowing correlated error terms between negatively 

keyed items when these items do not exceed the positively keyed items in a test (i.e., see Model 

3b in Figure 5). It is worth noting that, although the one-factor model is the correct choice, and 

the models based on modification indices are incorrect, the model fit improved, as indicated by 

various fit indices.  

 

One-factor CFA model fit indices with robust estimation method MLR 

As shown above, the one-factor model can be wrongly rejected when the observed item 

response distributions are skewed and the ML estimator is used in CFA. The literature suggests 

that continuous MLR often performs as well as categorical data estimation methods on response 

data that have five or more rating points (Rhemtulla et al., 2012). Thus, the robust estimator is 

often preferred to ML with continuous data since it is believed to reach more accurate results. To 

explore whether using a robust estimator will lead to different decisions on the model fit than 

would drawing on ML estimation, the same one-factor model is tested using robust maximum 

likelihood (MLR) under all the simulated conditions.  

When the observed item response distributions are symmetric, the one-factor model is 

always supported by the Chi-square test, with ps > 0.05, CFIs > 0.95, TLIs > 0.95, and RMSEAs 

< 0.05, regardless of the number of negatively keyed items or the item communality levels. The 

model is rejected only under some conditions with asymmetric response distributions and 

negatively keyed items. The judgment of model fit under conditions with asymmetric item 

response distributions is summarized in Table 19. The structure of Table 19 is the same as that of 

Table 17. The two columns in the middle list the judgment of the model fit, either based on the 

Chi-square test or on a combined rule of CFI, TLI, and RMSEA values. Just as when ML 

estimation is used with CFA, the judgment of model fit, as indicated by CFI, TLI, and RMSEA, 

is consistent across all the conditions, and thus, these results are presented together. The last 

column shows the consistency of the judgment based on different rules. 

As Table 19 shows, the Chi-square test rejects the one-factor model under five conditions. 

All feature asymmetric item response distributions, negatively keyed items, and relatively high 
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communality levels. When the fit is judged by the descriptive fit indices, the one-factor model is 

rejected with RMSEA > 0.08, CFI < 0.90, and TLI < 0.90 under two conditions, both of which 

have skewed item response distributions, high communality levels (h2 = 0.56, or factor loadings 

= 0.75), and four or more negatively keyed items out of 12 (approximately 33% or more of the 

total). Note that when the one-factor model was rejected by the descriptive fit indices (CFI, TLI, 

and RMSEA), the model was also rejected by the Chi-square test. 

 

Table 19. 

One-factor CFA model with MLR estimation 

Number of 

NK Items 

Item 

Loadings 

Observed Item Response Distribution 

Asymmetric (Skewness = -2) 

Model fit assessed 

by Chi-square test 

Model fit assessed by 

CFI / TLI / RMSEA 

Decision consistency:  

Chi-square test vs. other 

fit indices 

0 

(Baseline) 

0.25 Y Y CON 

0.50 Y Y CON 

0.75 Y Y CON 

2 

0.25 Y Y CON 

0.50 Y Y CON 

0.75 N Y Inconsistent 

4 

0.25 Y Y CON 

0.50 N Y Inconsistent 

0.75 N N CON 

6 

0.25 Y Y CON 

0.50 N Y Inconsistent 

0.75 N N CON 

Note: NK denotes negatively keyed items. N means that the one-factor model is rejected by the Chi-

square test (p < 0.05), or CFI (< 0.90), TLI (< 0.90), and RMSEA (> 0.08); Y denotes that it is supported 

by the Chi-square test, or the other three fit indices; CON means that different decision rules reach 

consistent decisions regarding overall model fit. 

 

To compare the performance of the ML and MLR estimators, the consistency of the 

judgment regarding model fit is evaluated. When utilizing the three fit indices, the judgment is 

not affected by the estimator. However, when the model fit is judged by the Chi-square test, the 

conclusion is different in two cases, as presented in Table 20. The results suggest that the 

decisions on the model fit are consistent in most of the conditions for ML and MLR estimations. 

Compared with ML, the robust estimator (i.e., MLR) performs better when the observed item 

response distribution is asymmetric, and there are few or no negatively keyed items. Under such 
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conditions, CFA with MLR estimation leads to fit indices that support the correct judgment of 

model fit in more conditions than with ML estimation. The one-factor model is supported when 

MLR is used in two of the conditions where fit statistics obtained from ML wrongly reject it.  

 

Table 20. 

Consistency of the decision on model fit based on the Chi-square test or fit indices (ML vs. MLR) 

  Observed Item Response Distribution 

Number of 

NK Items Item Loadings 

Asymmetric 

(Skewness = -2) 
Symmetric 

0 

(Baseline) 

0.25 CON CON 

0.50 CON CON 

0.75 Inconsistent CON 

2 

0.25 CON CON 

0.50 Inconsistent CON 

0.75 CON CON 

4 

0.25 CON CON 

0.50 CON CON 

0.75 CON CON 

6 

0.25 CON CON 

0.50 CON CON 

0.75 CON CON 

Note: NK denotes negatively keyed items; CON means that the statistical decisions regarding model fit 

are consistent between the two estimators. 

 

Modification indices in cases where model fit is poor (MLR estimation) 

When the one-factor model was rejected, the modification indices and the parameters 

suggested to be freed are recorded in Table 21. Each parameter reported is associated with a 

significant Chi-square change (p < .05) if it is freed. Each column in Table 21 represents a 

simulated condition where a one-factor model is rejected by the Chi-square test. Within each 

column, the parameters are listed in the order of their corresponding Chi-square change values, 

from large to small. When more than five parameters have significant modification indices, only 

the five with the largest Chi-square change value are listed.  
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Table 21. 

Parameters suggested to be freed by modification indices (MLR estimation) 

 Observed Item Response Distribution: Asymmetric (Skewness = -2) 

Number of 

NK Items 
 NK = 2 NK = 4 NK = 6 

Factor  

Loading 
L0.75 L0.50 L0.75 L0.50 L0.75 

Suggested 

Parameters 

I12 with I11 I12 with I11 I10 with I9 I12 with I7 I5 with I3 

 I10 with I9 I12 with I9 I8 with I7 I5 with I2 

 I11 with I9 I11 with I9 I5 with I1 I12 with I10 

 I12 with I9 I11 with I10 I7 with I5 I6 with I3 

 I12 with I10 I12 with I11 I7 with I3 I3 with I2 

Note: Only parameters associated with a significant Chi-square improvement are given; when multiple 

parameters meet this criterion, only the first five are listed and they are ordered from top to bottom by 

their corresponding Chi-square change value. Parameters represent correlated error terms between items 

keyed in different directions are highlighted in bold. 

 

The one-factor model is rejected under five conditions when CFA is conducted with 

MLR estimation (see Table 19). Modification indices are reported under these conditions. Table 

21 presents the parameters suggested to be freed to achieve a better model-data fit. As is 

observed in Table 18, the suggested parameters are mostly correlations between negatively 

keyed items. Only under conditions where the number of positively and negatively keyed items 

is balanced do the suggested parameters, as indicated by large modification indices, include 

correlations between error terms of positively keyed items and those keyed in different directions. 

If researchers revise their original model solely based on modification indices with the aim to 

improve the model fit, it is likely to result in a model with one dominant factor and a factor 

accounting for the item keying effect. This might, to some extent, explain why in empirical 

studies with balanced tests, a positive keying effect sometimes emerges in one sample and a 

negative keying effect emerges in another with the same measure. 

 

One-factor CFA model fit indices with WLSMV 

CFA models treating item responses as ordinal and using WLSMV show a good model fit 

across all the simulated conditions.  
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The results from Study 2 are summarized below by responding to each of the research 

questions that were previously raised. 

Q2.1: Does the reverse scoring of negatively keyed items affect the assessment of model 

fit? 

Neither reversed scoring the negatively keyed items nor leaving them in their original 

format leads to any differences in the judgment of the one-factor model fit.  

Q2.2: Under what conditions will the one-factor model be rejected either by the Chi-

square test or other fit indices? 

When item responses are treated as continuous and ML estimation is used in CFA, the 

one-factor model may be wrongly rejected when the observed item response distribution is 

asymmetric. Chi-square tests reject the right model under conditions with skewed item response 

distributions and high communality, even without negatively keyed items. Descriptive fit indices 

are more robust with asymmetric response distributions, but they still wrongly reject the model 

under conditions with high communality and a relatively large number of negatively keyed items. 

MLR performs similarly to ML in assessing the model fit under most conditions. When 

judged by fit indices, CFA models with MLR or ML always lead to the same conclusions. When 

the model fit is judged by the Chi-square test, MLR does slightly better than ML. The two 

conditions where MLR estimation leads to the correct judgment of model fit while ML 

estimation does not are those with few negatively keyed items.  

When item responses are treated as ordinal and the one-factor model is tested via CFA 

using WLSMV, both the Chi-square test and other fit indices suggest a good model fit under all 

the simulated conditions. This implies that having negatively keyed items does not affect the 

judgment of model fit when the item responses are treated as ordinal in CFA with WLSMV 

estimation.  

Q2.3: When the one-factor model is rejected, which parameters will the modification 

indices suggest to be freed? Will these additional parameters support an alternative model that 

accounts for the item keying effect? 

Under the conditions where the one-factor model is rejected by fit statistics from CFA, 

the modification indices are likely to suggest freeing parameters that represent correlations 

between negatively keyed items. Relying on modification indices to modify the original factor 
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model tends to lead to factor solutions with one dominant factor and correlated error terms 

between negatively keyed items. 

 

Section Two: A Reversed Threshold Model for Negatively Keyed Items 

The two simulation studies in this section document the effect of negatively keyed items 

on the decision of the number of factors using exploratory and confirmatory approaches. The 

simulation model used in this section differs from the one in studies 1 and 2 because the factor 

loadings in the latent response model are all positive and the latent response thresholds are 

reversed for negatively keyed items. That is, for positively keyed items, higher values on the 

latent response distribution correspond to higher values on the response category; however, for 

negatively keyed ones, higher values on the former correspond to lower values on the latter. 

Chapter Two describes this psychometric model as a “reversed threshold model for negatively 

keyed items.” 

 

Study 3: The impact of negatively keyed Items on the decision of the number of factors 

using exploratory approaches 

Similarly to Study 1, the research questions this study aims to address are as follows. 

Q3.1: Does the reverse scoring of negatively keyed items affect the number of factors 

pointed by the K-G rule and PA? 

Q3.2: Under what conditions will the K-G rule correctly point to the number of factors? 

Q3.3: Under what conditions will PA point to the correct number of factors? 

Q3.4: Will the two simulation models (Study 1 vs. Study 3) lead to the same conclusions 

regarding the number of factors under different conditions? 

 

Method 

Study design 

This study mimics negatively keyed items by reversing the relationship between the 

latent response distribution and observed response categories. The factors manipulated in the 

data simulation stage are presented in Table 1. As in studies 1 and 2, three factors are 

systematically varied and fully crossed. These three factors are: (a) the number or proportion of 

negatively keyed items, (b) the magnitude of communality in the factor structure, and (c) the 
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distribution of observed item responses. There are four levels of the number of negatively keyed 

items (0, 2, 4, 6 items out of 12), three levels of communality (0.06, 0.25, and 0.56), and two 

levels of the distribution of observed item responses (symmetric and asymmetric distributions; 

see Table 1). The length of the test (i.e., the total number of items) is fixed at twelve, and the 

observed responses are on a scale from one to five. In addition, the “true” factor structure of the 

test is fixed to follow a strict one-factor model. This results in a total of 24 (i.e., 4 × 3 × 2) 

datasets after the data simulation. 

Besides the factors manipulated in the data simulation process, the effect of two scoring 

methods for negatively keyed items is also investigated. These scoring methods are (a) reverse 

scoring negatively keyed items, and (b) leaving all the responses in their original format. Each 

scoring method is applied to the negatively keyed items once the response data are simulated. 

There are six conditions that contain no negatively keyed items, and that hence do not need these 

scoring methods. Therefore, a total of 42 (i.e., 4×3×2×2-6) unique datasets are produced after the 

data simulation and item response scoring stages.  

In this study, the primary outcome variable of interest is the decision of the number of 

factors. PCA is conducted for each dataset to obtain eigenvalues. The K-G rule and PA are 

applied to determine the number of factors. Following the routine procedure in applied research, 

when PA points to more than one factor to retain, follow-up EFA modeling is conducted and 

evaluated. These EFA models examine whether factors associated with item keying direction 

will emerge. 

 

Procedures 

Although this study and Study 1 differ in their data simulation models, the procedures in 

both are the same. The major steps in conducting this study are presented in Figure 13. As the 

flow chart indicates, this study begins with data simulation and proceeds to apply different 

scoring methods to the simulated item responses. After scoring, the datasets are ready to be 

analyzed. In the analysis stage, each dataset (i.e., each combination of factors manipulated before 

data analysis stage) is analyzed through PCA to obtain eigenvalues. The K-G rule and PA are 

then utilized to determine the number of factors. In cases where PA suggests more than one 

factor, EFA with different types of rotation is applied to explore the factor structures. The 

following paragraphs describe the steps that diverge from Study 1. 
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Figure 13. 

A flow chart representing the research process of Study 3 

 

Step 1: Specify the data generation model. Observed responses are simulated through 

latent response y*. The data were generated using a one-factor model with 12 items (see Figure 

11). The continuous y* distributions for the latent responses follow multivariate normal 

distributions, and the loadings for all the items are positive. The magnitude of the item loadings 

is manipulated to represent different levels of communality.  
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Step 2: Transform continuous latent response distributions to observed responses. The 

continuous latent response (y*) is broken down into K ordered response categories through a set 

of (K-1) thresholds. By manipulating the values of the thresholds, the distribution of the observed 

response can be changed. As in the two previous studies, the number of response categories is 

fixed at five. Two sets of four thresholds are used to transform the latent responses (y*) into 

observed responses (y), forming two types of distributions: symmetric and skewed, with an 

absolute skewness value of 2. The correspondence between latent response (y*) and observed 

response categories (y) for each distribution condition is presented in Table 22.  

 

Table 22. 

Thresholds used in the response transformation 

Response categories for 

positively keyed items 

Corresponding y* values Response categories for 

negatively keyed items Symmetric Skewed (|skewness| = 2) 

1 Lowest thru -1.8000 Lowest thru -1.66429 5 

2 -1.7999 thru -0.6000 -1.66428 thru -1.27956 4 

3 -0.5999 thru 0.6000 -1.27955 thru -1.02406 3 

4 0.6001 thru 1.8000 -1.02405 thru -0.68564 2 

5 Higher than 1.8000 Higher than -0.68564 1 

 

Step 3: Score the item responses: Same as in Study 1. 

Step 4: Decide on the number of factors: Same as in Study 1. 

Step 5: Examine the factor structures: Same as in Study 1. 

 

Checking the simulation method: Descriptive statistics from one of the simulated datasets. 

To serve as a check on the simulation methodology, the descriptive statistics for each 

dataset are reviewed before conducting any further analyses. The statistics for one of these 

datasets are reported to show the method’s credibility. This demonstration draws on the dataset 

with the same constraints as the example dataset used in Study 1. These two sample datasets are 

the same in terms of item communality level (i.e., h2 = 0.56 or item loading = 0.75), observed 

item response distribution (i.e., symmetric), and number of negatively keyed items (i.e., six out 

of twelve). Placing the same constraints on the simulation factors allows us to compare the 

datasets using different approaches to conceptualizing negatively keyed items. This facilitates the 

interpretation and discussion of the results from this study in relation to those from Study 1.  
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Table 23 presents the mean and skewness of the simulated data. Item responses are 

analyzed in their original format, that is, those to negatively keyed items are not reverse scored. 

The first column on the left lists item code, while the second column indicates the intended 

keying direction. In this simulated condition, the last six items are negatively keyed. No 

difference is observed between positively and negatively keyed items in terms of their means and 

the values of skewness. Table 24 displays the item correlations, whose directions match the 

intended keying directions for the items. The correlations between items keyed in the same 

direction (either positively or negatively keyed) are positive. The correlations between items 

keyed in different directions (i.e., those between positively and negatively keyed items) are 

negative, suggesting that a higher response category on one type of item is associated with a 

lower response category on the other. The absolute values of the inter-item correlations are all 

similar.  

As mentioned in the first study, a negatively keyed item is one whose original response is 

negatively correlated with the total score of a test, as well as with other positively keyed items. A 

positively keyed item should correlate positively with the total test score and with other 

positively keyed-items. Based on the descriptive statistics on the observed item responses, the 

simulation strategy used in this study produces items with different keying directions.  

  



94 

Table 23. 

Mean and skewness of observed item responses (loading = 0.75, symmetric, NNK = 6) 

Item Id Keying Direction Mean Skewness 

I1 PK 2.99 0.00 

I2 PK 3.00 0.00 

I3 PK 2.99 -0.01 

I4 PK 3.00 0.00 

I5 PK 2.99 -0.02 

I6 PK 3.00 0.03 

I7 NK 3.01 0.02 

I8 NK 3.00 0.04 

I9 NK 3.00 0.04 

I10 NK 2.99 0.00 

I11 NK 3.01 0.04 

I12 NK 3.01 0.00 

Note: PK denotes positively keyed items, and NK denotes negatively keyed ones. 

 

Table 24. 

Correlation matrix of observed item responses (loading = 0.75, symmetric, NNK = 6) 

 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 

I1 --           

I2 0.516 --          

I3 0.505 0.505 --         

I4 0.502 0.502 0.500 --        

I5 0.508 0.507 0.511 0.498 --       

I6 0.500 0.496 0.496 0.497 0.500 --      

I7 -0.506 -0.509 -0.504 -0.502 -0.502 -0.497 --     

I8 -0.503 -0.514 -0.504 -0.507 -0.496 -0.494 0.509 --    

I9 -0.502 -0.497 -0.502 -0.501 -0.508 -0.488 0.505 0.497 --   

I10 -0.497 -0.510 -0.493 -0.507 -0.505 -0.489 0.491 0.502 0.494 --  

I11 -0.510 -0.510 -0.502 -0.498 -0.497 -0.499 0.494 0.500 0.506 0.502 -- 

I12 -0.487 -0.503 -0.497 -0.496 -0.491 -0.489 0.504 0.499 0.492 0.493 0.494 

 

Compare the data presented in tables 23 and 24 with that in tables 3 and 4 in Study 1. The 

mean scores, skewness of the item responses, and inter-item correlations all have similar values. 

This suggests that when the simulated observed response distribution is symmetric, the two 
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conceptualizations of negatively keyed items used in Study 1 and Study 3 produce item 

responses with similar statistical features.  

 

Results and conclusions 

Decision on the number of factors 

As expected, both scoring methods produce identical eigenvalues after extraction. As a 

result, the number of factors that the K-G rule or PA identifies is the same for the datasets that 

differ only in their scoring methods for negatively keyed items. Therefore, the results are 

presented below without explicitly referring to the scoring methods used. 

As in Study 1, PCA is first conducted on a Pearson correlation matrix for each dataset. 

The K-G rule and PA point to the right number of factors when the observed item response 

distribution is symmetric. When this observed item response distribution is skewed, however, the 

number of factors indicated by the K-G rule and PA under each condition is presented in Table 

25. The table also shows the consistency of the results of this study with those of Study 1. The 

first column on the left lists the number of negatively keyed items. Next is a column containing 

the factor loadings used in the simulation model. The following two columns present the number 

of factors pointed by the K-G rule and PA. As shown in the table, under most conditions where 

the observed item response distribution is asymmetric, the number of factors is correctly 

identified as one. Only under conditions with low communality (h2 = 0.06, or factor loadings 

equal 0.25) and skewed item response distributions does the K-G rule inflate this number. The 

last two columns evaluate the consistency of the number of factors indicated by the two methods 

under different simulation frameworks. As was observed in Study 1, the K-G rule inflates the 

number of factors under conditions where the observed item responses are asymmetric and the 

communality level is low (i.e., item loadings equal 0.25). In contrast to Study 1, the K-G rule 

points to the right number of factors when the item communality level is median or high, even 

with asymmetric observed item response distributions and different numbers of negatively keyed 

items.  
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Table 25. 

Number of factors based on a Pearson correlation matrix 

Number 

of NK 

Items 

Item 

Loadings 

Observed Item Response Distribution: Asymmetric (Skewness = -2) 

Study 3 Results Results Consistency: Study 3 vs. Study 1 

K-G rule based 

on Pearson 

correlations 

PA based 

on Pearson 

correlations 

K-G rule based on 

Pearson 

correlations  

PA based on 

Pearson correlations 

0 

(Baseline) 

0.25 3 1 CON CON 

0.50 1 1 Inconsistent CON 

0.75 1 1 CON CON 

2 

0.25 3 1 CON CON 

0.50 1 1 Inconsistent CON 

0.75 1 1 Inconsistent Inconsistent 

4 

0.25 3 1 CON CON 

0.50 1 1 Inconsistent CON 

0.75 1 1 Inconsistent Inconsistent 

6 

0.25 3 1 CON CON 

0.50 1 1 Inconsistent Inconsistent 

0.75 1 1 Inconsistent Inconsistent 

Note: NK denotes negatively keyed items; Inconsistent represents a condition where the number of 

factors differs between Study 3 and Study 1; CON means that the numbers of factors identified in Study 3 

and Study 1 are the same. 

 

Although PA points to the correct number of factors under all the simulation conditions, 

the K-G rule still shows inflation when PCA is conducted on Pearson correlations while the item 

communality is low and the item response distribution is asymmetric. As the results from Study 

1 suggest, the K-G rule and PA using eigenvalues from PCA on polychoric correlations seem to 

be more robust to the presence of skewed item response distributions. Table 26 presents the 

number of factors suggested by the K-G rule and PA with PCA on polychoric correlations. This 

is to examine whether switching from Pearson to polychoric correlations affects the performance 

of the K-G rule and PA under the current simulation framework. 

When the observed item response distribution is symmetric, the K-G rule and PA always 

point to the right number of factors. Hence, Table 26 displays the results for only asymmetric 

distributions. The data show that using Pearson or polychoric correlations in the PCA stage does 



97 

not affect the number of factors suggested by the K-G rule and PA. The results align with Study 

1, in which eigenvalues are extracted from a polychoric correlation matrix.  

 

Table 26. 

Number of factors: Results based on a polychoric correlation matrix 

Number of NK 

Items 

Item 

Loadings 

Observed Item Response Distribution: Asymmetric (|Skewness| = 2) 

K-G rule based on polychoric 

correlations 

PA results based on polychoric 

correlations 

0 

(Baseline) 

0.25 3 1 

0.50 1 1 

0.75 1 1 

2 

0.25 3 1 

0.50 1 1 

0.75 1 1 

4 

0.25 3 1 

0.50 1 1 

0.75 1 1 

6 

0.25 3 1 

0.50 1 1 

0.75 1 1 

Note: NK denotes negatively keyed items.  

 

As in Study 1, PA outperforms the K-G rule in the overall accuracy of the number of 

factors it identifies across all the simulated conditions. When negatively keyed items are 

simulated through negative factor loadings in the latent response model (Study 1), the number of 

factors suggested by the K-G rule or PA with PCA on Pearson correlations tends to be inflated 

when the observed item response distributions are asymmetric. However, when negatively keyed 

items are simulated through a reversed transformation from the latent to the observed responses, 

both approaches suggest the right number of factors except for conditions with low item 

communality combined with the use of K-G rule.  

Because PA points to one factor under all the simulated conditions in this study, a 

subsequent EFA is not conducted. In general, when negatively keyed items are simulated 

through reversing the relationship between the latent and observed responses rather than through 
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utilizing negative factor loading in the latent response model, the assessment of dimensionality is 

not as dependent on the data analysis methods.  

The study results are summarized by responding to the research questions presented 

above. 

Q3.1: Does the reverse scoring of negatively keyed items affect the number of factors 

pointed by the K-G rule and PA? 

When the K-G rule and PA are used to explore test dimensionality, the reverse scoring of 

negatively keyed items does not influence the subsequent data analysis or its results. 

Q3.2: Under what conditions will the K-G rule correctly point to the number of factors? 

When the observed item response distribution is symmetric, the K-G rule always 

identifies the right number of factors. When it is not, the K-G rule inflates the number of factors 

when the item communality level is low. This inflation is not associated with the presence of 

negatively keyed items. 

Q3.3: Under what conditions will PA point to the correct number of factors? 

PA always points to the right number of factors in this simulation study. 

Q3.4: Will the two simulation models (Study 1 vs. Study 3) lead to the same conclusions 

regarding the number of factors under different conditions? 

When the simulated item responses follow a symmetric distribution, the results regarding 

the number of factors to retain are consistent between Study 1 and Study 3. This suggests that for 

symmetrically distributed observed item responses, different simulation procedures for 

negatively keyed items do not make a difference in the exploratory assessment of test 

dimensionality. When the observed item responses are asymmetrically distributed, however, the 

situation becomes complicated. Depending on the generation process for negatively keyed items 

and the method used to determine the number of factors, the conclusion regarding test 

dimensionality can be different. 

 

Study 4: The impact of negatively keyed items on the model fit in CFA 

As in Study 2, the purpose of this study is to investigate the effect of negatively keyed 

items on the factor structure of a test when CFA is used to assess the model fit. It considers four 

fit indices: (a) Chi-square statistics, (b) CFI, (c) TLI, and (d) RMSEA with associated confidence 
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intervals (CIs). Poor fit indices usually lead to the rejection of a model, while acceptable ones 

lead to its acceptance. 

In correspondence with Study 2, this study seeks to answer the following questions: 

Q4.1: Does the reverse scoring of negatively keyed items affect the assessment of model 

fit? 

Q4.2: Under what conditions will the Chi-square test or other fit indices reject the one-

factor model? 

Q4.3: Do different simulation models (Study 2 vs. Study 4) lead to the same judgment 

regarding model fit?  

 

Method 

Study design 

The same datasets from Study 3 are used here. In total, 42 unique datasets are simulated, 

each consisting of twelve items and 10,000 respondents. CFA is applied and the item responses 

are treated either as continuous or ordinal. ML and MLR estimations are used for continuous 

item responses, and WLSMV estimation for ordinal ones. The global model fit indices are of 

primary interest in this study.  

 

Procedures 

The flow of this study, as presented in Figure 14, is similar to that of Study 2. The data 

simulation strategy (i.e., steps 1 to 3) is the same as the one described in Study 3. The data 

analysis plan (i.e., steps 4 and 5) replicates that in Study 2. 
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Figure 14. 

A flow chart representing the research process of Study 4 

 

Step 1: Specify the data generation model: Same as in Study 3.  

Step 2: Transform continuous latent response distributions to observed responses: Same 

as in Study 3. 

Step 3: Score the item responses: Same as in Study 3. 

Step 4: Evaluate the fit of the one-factor CFA model: Same as in Study 2. 

Step 5: Use modification indices: Same as in Study 2. This step is only conducted for 

conditions where the one-factor model is rejected. 
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Results and conclusions 

The judgment of model fit does not vary between datasets that differ only in their scoring 

methods for negatively keyed items. The fit statistics obtained from the reverse scoring of item 

responses for negatively keyed items are the same as those obtained from analysing them in their 

original format. In the remainder of this study, the results for datasets using different scoring 

methods will not be presented separately.  

 

One-factor CFA model fit indices with ML estimation 

When item responses are treated as continuous, the one-factor model is tested via CFA 

using ML estimation. Chi-square tests and the other three fit indices are in agreement, and all 

suggest a good model fit when observed items responses are symmetric, regardless of the 

communality levels and the number of negatively keyed items. Hence, Table 27 includes only 

conditions with asymmetric item response distributions. Since the judgment of model fit is 

consistent across the three descriptive fit indices, their results are presented together. The results 

from this study and Study 2 are compared, and their consistency is indicated in the last two 

columns on the right. 

The Chi-square test (p < 0.05) rejects the one-factor model under four conditions (see 

Table 27). It suggests that when the observed item responses are distributed asymmetrically and 

the level of communality is high (h2 = 0.56 or factor loadings = 0.75), the one-factor model is 

likely to be rejected by the Chi-square test regardless of whether any negatively keyed items are 

included. 

When using CFI, TLI, and RMSEA, the one-factor model is supported under all the 

simulated conditions. The cut-offs used for these three indices are 0.95, 0.95, and 0.05, 

respectively. This result is slightly different from what is found in Study 2, where the one-factor 

model is rejected by the fit indices under conditions with a high communality level (h2 = 0.56), a 

relatively large number of negatively keyed items (4 to 6 negatively keyed items), and 

asymmetrically distributed observed item responses. 

The results also show that conclusions regarding the model fit are inconsistent between 

the Chi-square tests and the other three fit indices under four conditions. These conditions all 

have asymmetric observed item response distributions and high communality levels. Under such 
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conditions, the Chi-square tests reject the one-factor model while CFI, TLI, and RMSEA support 

it (Table 27). 

 

Table 27. 

One-factor CFA model with ML estimation 

  Observed Item Response Distribution: Asymmetric (Skewness = -2) 

  
Study 4 Results 

Results Consistency:  

Study 4 vs. Study 2 

Number of 

NK Items 

Item 

Loadings 

Model fit assessed 

by Chi-square test 

Model fit assessed 

by CFI / TLI / 

RMSEA  

Model fit 

assessed by 

Chi-square test 

Model fit 

assessed by CFI / 

TLI / RMSEA 

0 

(Baseline) 

0.25 Y Y CON CON 

0.50 Y Y CON CON 

0.75 N Y CON CON 

2 

0.25 Y Y CON CON 

0.50 Y Y Inconsistent CON 

0.75 N Y CON CON 

4 

0.25 Y Y CON CON 

0.50 Y Y Inconsistent CON 

0.75 N Y CON Inconsistent 

6 

0.25 Y Y CON CON 

0.50 Y Y Inconsistent CON 

0.75 N Y CON Inconsistent 

Note: NK denotes negatively keyed items. N means that the one-factor model is rejected by the Chi-

square test (p < 0.05), or CFI (< 0.90), TLI (< 0.90), and RMSEA (> 0.80); Y denotes that it is supported 

by the Chi-square test (p ≥ 0.05) or the other three fit indices. In the last two columns; Inconsistent 

represents a condition where the results of Study 4 are different from those of Study 2; CON means that 

the results of Study 4 are consistent with those of Study 2. 

 

In practice, when only the Chi-square test rejects a hypothetical model, it is still likely to 

be accepted, especially if the sample size is large. Given that the one-factor model is supported 

by CFI, TLI, and RMSEA, its modification is not considered in this study. 

 

One-factor CFA model fit indices with robust estimation 

To explore whether relying on a robust estimator will lead to different decisions on the 

model fit compared with employing ML estimation, the one-factor model is also tested using 
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MLR. The model is always supported by the Chi-square test with ps > 0.05 and the other three fit 

indices under all the simulated conditions. 

The judgment of model fit when CFA is conducted with ML or MLR is consistent in 

most conditions. Only when Chi-square test is used to make the model fit judgment, observed 

item response distribution is asymmetric, and item communality level is high (h2 = 0.56), the 

model fit judgment is different depending on the estimation method used in CFA (see Table 28). 

 

Table 28. Consistency of the decision on model fit based on Chi-square test (ML vs. MLR) 

  Observed Item Response Distribution 

Number of 

NK Items Item Loadings 

Asymmetric 

(|Skewness| = -2) 
Symmetric 

0 

(Baseline) 

0.25 CON CON 

0.50 CON CON 

0.75 Inconsistent CON 

2 

0.25 CON CON 

0.50 CON CON 

0.75 Inconsistent CON 

4 

0.25 CON CON 

0.50 CON CON 

0.75 Inconsistent CON 

6 

0.25 CON CON 

0.50 CON CON 

0.75 Inconsistent CON 

Note: NK denotes negatively keyed items; CON means that the statistical decisions regarding model fit 

are consistent between the two estimators; Inconsistent denotes the conditions where the decisions are 

inconsistent. 

 

One-factor CFA model fit indices with WLSMV 

CFA models treating item responses as ordinal and using WLSMV estimator showed 

good model fit across all the simulated conditions.  

 

To summarize the findings of this study, the research questions listed at the beginning of 

this study are responded to as follows. 

Q4.1: Does reverse scoring of negatively keyed items affect the assessment of model fit? 
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No. Reverse scoring the negatively keyed items or not does not lead to any differences in 

the final judgment of the one-factor model fit.  

Q4.2: Under which conditions will the one-factor model be rejected either by Chi-square 

test or other fit indices? 

Under this simulation framework, the one-factor is supported by descriptive fit indices 

(i.e., CFI, TLI, and RMSEA) in all the conditions regardless of the estimator used in CFA. Only 

when item responses are treated as continuous, the one-factor model is tested via ML estimation, 

the observed item responses are asymmetric, and the item communality level is high, would the 

Chi-square test wrongly reject the one-factor model. However, this happens independently of the 

presence of negatively keyed items. 

Q4.3: Do different simulation models (Study 2 vs. Study 4) lead to the same judgment 

regarding the model fit? 

Study 2 and Study 4 are different in the simulation strategy used to generate negatively 

keyed items. They represent different ways to conceptualize a negatively keyed item. When CFA 

models are conducted with WLSMV estimation, the model fit judgment is consistent between 

these two studies, and the one-factor model shows good fit under all the simulation conditions. 

Also, when the observed item response distribution is symmetric, the judgment of model fit is 

consistent regardless of the simulation strategy, CFA estimation methods, and other factors 

manipulated in the simulation. However, when CFA with ML or MLR estimation is applied 

under conditions where the observed item response distribution is asymmetric, the overall 

judgment of model fit can differ depending on the simulation strategy to negatively keyed items 

and the method assessing model fit (Chi-square test vs. descriptive fit indices). 
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CHAPTER FOUR: 

DISCUSSION AND RECOMMENDATIONS 

 

This dissertation investigated how including negatively keyed items may affect statistical 

conclusions about the dimensionality and factor structure of short psychological measures 

containing Likert-type items. These measures are typically postulated to be unidimensional and 

hence report an overall test score. The dissertation conducted four simulation studies both to 

inform psychometric theories and provide recommendations to researchers in their day-to-day 

practice. This chapter discusses the findings from the simulations in the context of revisiting the 

research questions listed in Chapter Two. It then offers guidelines for researchers based on these 

findings. Next, the novel contributions of this dissertation are described. The chapter closes with 

a discussion of the future research directions that arise from the limitations of this research.  

 

Revisiting the Research Questions 

Self-report Likert-type tests are commonly used in educational and psychological 

research, and these measures frequently contain both positively and negatively keyed items. A 

major assumption underlying this practice is that the negatively keyed items will function in the 

same manner as their positively keyed counterparts (Marsh, 1996). In other words, regardless of 

the keying direction, items intended to measure the same construct should be psychometrically 

comparable. An individual’s score on a typical Likert-type test is a sum, an average, or another 

similar composite derived from his or her responses to all the items—i.e., the overall test score. 

Hence, the scoring of item responses rests on the implicit supposition that the measure is 

unidimensional (i.e., contains one latent factor). 

Unfortunately, empirical evidence calls this assumption into question for several different 

measurement instruments and populations (e.g., Barnette, 2000; Lai, 1994; Marsh, 1986; Motl et 

al., 2000; Pilotte & Gable, 1990; Schriesheim & Hill, 1981). This has serious implications, since 

the scoring of a test and, more importantly, the validity of inferences based on test scores depend 

on its factor structure. The emergence of additional factor(s), which are essentially defined by 

item keying direction, raises concerns about the credibility of interpretations based on the overall 

test score. Moreover, the incorrect identification of a test’s dimensionality or factor structure 
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may obscure the understanding of the construct and lead to misinterpretation. Finally, any 

subsequent statistical analysis that relies on the overall test score is also adversely affected. 

To understand the mechanisms that drive the emergence of additional factors in tests with 

mixed-keyed items, a large number of empirical data-based research and three simulation studies 

have been reported in the research literature. It has been argued that including negatively keyed 

items in a test tends to, but does not always, introduce a systematic method effect (e.g., Finney, 

2001; Marsh, 1986; Motl et al., 2000; Pilotte & Gable, 1990; Schmitt & Stults, 1985; 

Schriesheim & Hill, 1981; Spector et al., 1997; Woods, 2006). These mixed findings may be due 

to the unclear terminology and conceptualization used for keying and wording effects, as well as 

to their close interconnection. Most of the empirical studies have paid attention only to the item 

wording effect, in particular, to negatively worded items. This may be attributed to the avoidance 

of using items that are negatively worded but positively keyed (e.g., an item like “I am not sad” 

in a test measuring happiness). It should be noted, however, that the negative wording effect is 

often nested within the keying effect. That is, negatively worded items are often negatively 

keyed, but negatively keyed items are not necessarily negatively worded.  

If the item keying effect cannot be ruled out, the method effect that is often ascribed to 

item wording can also be attributed to item keying or a combination of these factors. Without 

investigating and documenting the keying effect, we can neither get a full picture of the issues 

related to the factor structure of tests with mixed-keyed items nor clearly understand the effect of 

item wording. To extend the previous research on negatively keyed items and their impact on the 

assessment of test dimensionality, I systematically investigated this issue via four inter-related 

computer simulation studies in this dissertation.  

Item response data are generated through threshold models to represent responses 

collected on Likert-type tests. To guide the simulation procedures, two ways to conceptualize the 

responses to negatively keyed items are used. One is to conceive of them as items whose latent 

response functions (y*) are negatively correlated with the construct of interest. In this case, these 

item responses are attributed to a latent response distribution that is negatively correlated with 

the construct. This psychometric model is called the “negative factor loading model for 

negatively keyed items” and is investigated in Section I of Chapter Three (studies 1 and 2). To 

better understand the study results, we can relate this psychometric framework to items that are 

negatively keyed but not necessarily negatively worded. These items measure the polar opposite 
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of the target construct, and mainly fall into the category of positively worded but negatively 

keyed items (see Figure 2 in Chapter Two).  

The second way to conceptualize the responses to negatively keyed items is to view them 

as deriving from a reversed function from the latent response distribution to observed responses. 

In this case, the relationship between the latent responses and the construct is the same for items 

keyed in both directions. However, the relationship between thresholds and their corresponding 

response categories is reversed for negatively keyed items. This psychometric model is called the 

“reversed thresholds model for negatively keyed items” and is investigated in Section II of 

Chapter Three (studies 3 and 4). To connect this psychometric framework to daily practice, we 

can see it as presenting responses to negatively worded and negatively keyed items. Typical 

examples are items containing negation markers, such as “not,” “no,” and “never.”  

The connections made between the two psychometric models and the two types of 

negatively keyed items are meant to facilitate the understanding of study results and promote 

further conversations. According to the research on item response process, individuals use 

various verbal, visual and contextual cues to answer an item (e.g., Schwarz, Strack, Hippler, & 

Bishop, 1991; Tourangeau, Couper, & Conrad, 2007, 2013). Item features, such as wording 

directions, and response scale features, such as descriptors attached to each response category 

(e.g., Cabooter, Weijters, Geuens, & Vermeir, 2016) are some examples of such cues. It is 

reasonable to postulate that the two types of negatively keyed items that are different in their 

wording direction may prompt different response processes and are better represented by 

different psychometric models. However, it is worth noting that, when they were first proposed 

in the research literature, the item factor models were not (response) process models and were 

not necessarily designed to describe different response processes. Rather, they were introduced 

as a statistical estimation method to reproduce the covariance structure. As mentioned in Chapter 

Two, the directionality of this argument is important in understanding the relationship between 

these psychometric models and the two types of negatively keyed items. As was stated earlier, 

psychometric modeling is an interplay of theory, model, and data, and therefore, while the 

psychometric models may imply a type of item responding, the item responses (on their own) do 

not necessarily imply a psychometric model exclusively.  

A comparison of results based on these two psychometric frameworks (i.e., Section I vs. 

Section II in Chapter Three) shows that the conceptualization and simulation strategy employed 
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for negatively keyed items can affect the statistical assessment of test dimensionality and factor 

structure. Generally speaking, when negatively keyed items are simulated through reversing the 

relationship between latent response distributions and observed responses (Section II), their 

presence does not affect the statistical judgment of test dimensionality. When item responses are 

simulated using the first strategy, however, the negative keying direction comes from negative 

loadings in the latent response model (Section I). To assess test dimensionality in such cases, the 

item responses are better treated as ordinal rather than continuous. When the observed item 

response distribution is skewed and item responses are treated continuously, the presence of 

negatively keyed items can inflate the number of factors or suggest an incorrect model. Using PA 

with polychoric correlations in PCA or using estimators that treat item responses as ordinal in 

factor analysis can prevent the misidentification of the factor structure. 

Another observation is that the reverse scoring of negatively keyed items does not change 

the statistical judgment of test dimensionality. It is conventional wisdom to reverse score the 

negatively keyed items before analyzing the data, but this dissertation suggests that it is not 

always necessary. When the analyses are conducted using the EFA or CFA methods reported in 

the simulation studies, whether or not the negatively keyed items are reverse scored does not 

affect the judgment. When factor analysis techniques are applied to tests with negatively keyed 

items, the different keying directions of items are reflected by the signs of the factor loadings. 

Moreover, under conditions where negatively keyed items do affect the statistical decisions 

about the test dimensionality, reverse scoring these items does not solve the problem. 

Two of the simulation studies (studies 1 and 3) focus on assessing dimensionality through 

exploratory methods. They utilize two PCA-based approaches, the K-G rule and PA, to 

determine the number of factors to retain. Both methods point to the right number of factors 

when the observed item response distributions are symmetric. However, when the observed item 

response distributions are asymmetric, the K-G rule tends to show an inflated number of factors 

even without negatively keyed items. The finding that PA outperforms the K-G rule in many 

conditions is consistent with previous studies (Hakstian et al., 1982; Zwick & Velicer, 1982, 

1986). The results from studies 1 and 3 suggest that researchers should prefer PA using 

eigenvalues based on polychoric correlations when deciding on the number of factors. Of special 

note is that a polychoric correlation matrix should be used in calculating eigenvalues, especially 
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when the response distributions are asymmetric, the item loadings are relatively high, and the 

number of negatively keyed items is large (close to 50% of the total).  

In cases where an inflated number of factors is proposed, PA or the K-G rule usually 

suggests a two-factor structure. If EFA with ML estimation is conducted as a follow-up to 

explore the factor structure, a two-factor model will be supported by the good model fit. The two 

factors in the model are likely to be defined by the item keying direction. The three rotation 

methods investigated in Study 1, Varimax, Promax, and Geomin, all lead to similar factor 

structures. The emergence of a second factor defined by negatively keyed items occurs even with 

a small number of these items (i.e., as few as two). Although the “true” structure of the data 

under investigation is always a one-factor model, EFA with ML estimation wrongly points to 

two-factor solutions, which also seem to be supported by model fit statistics, acceptable item 

loadings, and interpretable factor structures. This implies that researchers should be cautious 

about making substantive interpretations of EFA results with tests having negatively keyed items. 

Because it may lead to an over-extraction of the number of factors. This over-extraction may 

result in researchers trying to substantively interpret statistical artifact.  

When a test’s dimensionality or factor structure is examined through a confirmatory 

approach (studies 2 and 4), the results suggest that it is beneficial to conduct CFA using an 

estimator that treats item responses as ordinal (e.g., WLSMV) rather than one that treats them as 

continuous (e.g., ML or MLR). When the observed item responses are asymmetric and CFA is 

conducted with continuous item responses, the fit statistics may wrongly reject the one-factor 

model. The results also show that the practice of revising models based on modification indices 

to improve the fit can be misleading. As Study 2 indicates, modification indices tend to suggest 

adding correlations between the error terms of negatively keyed items. In this case, the better-

fitting model is actually the wrong one. Usually, researchers do not change their hypothetical 

models solely based on one index, but it is common for them to use statistics to inform their 

decisions about model modification and selection. To make matters worse, the method effects of 

“negative keying” or “negative wording” have been widely reported in the literature, making it 

easier for researchers to accept their existence in the tests they use. Although fit indices are 

generally considered to be useful in assessing the overall model fit, it is worth noting that they 

are inadequate to guard against invalid models. Indeed, models that such indices deem to be well 

fitting can still have some poorly fitting parts (Reisinger & Mavondo, 2006; Tomarken & Waller, 



110 

2003). In more serious cases, fit indices can wrongly reject an acceptable model (Marsh, Han, & 

Wen, 2004). 

These findings suggest that the observed item response distribution is the driving force 

behind the statistical decision of test unidimensionality. When the observed item responses are 

symmetric and normal-like, the unidimensional data structure can be correctly identified under 

most of the conditions. That is, with a symmetric item response distribution, none of the other 

factors, including the number of negatively keyed items, the psychometric models used, the 

reverse scoring of negatively keyed items, and the methods assessing dimensionality, affect the 

statistical judgment of a unidimensional test. When the observed item responses are asymmetric, 

the statistical methods employed play an important role in the correct identification of test 

unidimensionality. Methods that treat item responses as ordinal outperform those that treat them 

as continuous. It is worth noting that methods treating item responses as ordinal are consistent 

with the data assumptions made in the simulation models; hence, it is not surprising that 

categorical methodology is more likely to identify the right data structure in these cases. 

Let us now turn to the research questions stated near the end of Chapter Two. 

Q1: Do the different psychometric models (i.e., simulation models) of negatively keyed 

items affect the statistical judgment of test dimensionality under different conditions?  

It depends on the shape of the observed item response distribution. When these 

distributions are symmetric, data generated from the different psychometric models of negatively 

keyed items result in the same statistical conclusions of test dimensionality. When the observed 

item response distributions are asymmetric, however, the situation becomes complicated. 

Depending on the way negatively keyed items are generated, the simulation conditions (i.e., the 

number of negatively keyed items, item communality levels, and the distribution of observed 

item responses), and the analytical methods used to assess the dimensionality, the conclusions 

regarding test dimensionality can differ. For example, when CFA with ML estimation is applied 

when the number of negatively keyed items is relatively large (i.e., four or six in a twelve-item 

test), the item communality level is high (factor loading = 0.75), and the observed item response 

distribution is asymmetric, fit statistics reject the one-factor model if the negatively keyed items 

are simulated through negative factor loadings in the simulation model. If the negatively keyed 

items are simulated through the reversed threshold model, these fit indices will support the one-
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factor solution when the same methods are applied to the datasets under the same simulation 

conditions.  

Q2: Does the reverse scoring of negatively keyed items affect the statistical judgment of 

test dimensionality? 

No, the reverse scoring of negatively keyed items has no impact on the statistical 

judgment of test dimensionality. 

Q3: Under what conditions will the K-G rule or PA point to the correct number of factors? 

When the observed item response distributions are symmetric, both these methods always 

suggest the proper number of factors. When these distributions are asymmetric, however, the 

accuracy of the K-G rule depends on the particular psychometric models used to simulate 

(generate) the data, the simulation conditions, and the type of correlation matrix used in 

eigenvalue calculation. When negatively keyed items are simulated through negative factor 

loadings in the latent response model, the K-G rule applied to eigenvalues obtained from PCA 

based on Pearson correlations tends to inflate the number of factors. The K-G rule applied to 

eigenvalues obtained from PCA based on polychoric correlations is more robust in the presence 

of skewed response distributions. However, it still inflates the number of factors when the 

communality level is low, even without negatively keyed items. 

In general, PA performs better than the K-G rule when the observed item response 

distribution is asymmetric, pointing to the right number of factors in more conditions (i.e., 

simulation and analysis conditions). Like the K-G rule, the accuracy of PA depends on the 

psychometric models that generated the data, the simulation conditions, and the type of 

correlation matrix used to calculate eigenvalues. Indeed, PA points to the right number of factors 

under all the conditions when negatively keyed items are simulated through a reversed 

relationship between the latent response and observed response categories. When these items are 

simulated through negative factor loading in the latent response model, PA still indicates the 

right number of factors under most of the simulated conditions. Only under conditions where the 

observed item response distribution is asymmetric, the communality level is high, the number of 

negatively keyed items is relatively large, and the Pearson correlation matrix is used at the PCA 

stage does PA overestimate the number of factors. 

Q4: When EFA is conducted with an inflated number of factors to retain, what will the 

factor structure look like? Will factors emerge according to the keying directions of items? 
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When PA points to an inflated number of factors, it always proposes two. Conducting 

EFA with two factors using ML estimation results in a two-factor model, with each factor 

essentially being defined by item keying direction. 

Q5: Under what conditions will the one-factor model be rejected either by the Chi-square 

test or other fit indices? 

Only when negatively keyed items are simulated through negative factor loadings and the 

observed item responses are asymmetric does the estimation method matter. When item 

responses are treated as continuous and ML estimation is used in CFA modeling, the one-factor 

model may be wrongly rejected when the observed item response distribution is asymmetric. The 

Chi-square test rejects the true model under conditions with skewed item response distributions 

and high communality, even without negatively keyed items. Descriptive fit indices are more 

robust in the presence of asymmetric response distributions, but they still wrongly reject the 

model under conditions with high communality and a relatively large number of negatively 

keyed items. The performance of MLR is similar to that of ML regarding the judgment of model 

fit under most conditions. When the model fit is judged by fit indices, CFA models with MLR or 

ML always lead to the same scientific conclusions (rather than statistical results). When the 

model fit is judged by the Chi-square test, MLR estimation performs slightly better than ML 

estimation. The two conditions where MLR leads to the correct judgment of model fit while ML 

does not both have few negatively keyed items. When item responses are treated as ordinal and 

the one-factor model is tested via CFA using WLSMV estimation, both the Chi-square test and 

other fit indices suggest a good fit under all the simulated conditions. 

When the observed item response distribution is symmetric, the judgment of model fit is 

consistent regardless of the simulation strategy, CFA estimation methods, or other factors 

manipulated.  

When the observed item response distribution is asymmetric and CFA models are 

employed with WLSMV estimation, the judgment of model fit is still consistent between the two 

psychometric models of negatively keyed items. The one-factor model shows a good fit to the 

data under all the simulation conditions. However, when CFA with ML or MLR estimation is 

applied to the asymmetric observed item response distributions, the overall judgment of model fit 

can differ depending on the simulation strategy for negatively keyed items and the method for 

assessing model fit (Chi-square test vs. descriptive fit indices).  
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Q6: When the one-factor model is not supported by fit statistics in CFA, what are the 

consequences of modifying the model using modification indices?  

When the Chi-square test or other fit indices, including CFI, TLI, and RMSEA, reject the 

one-factor model, modification indices can show the parameters to free to achieve a better model 

fit. It appears that most suggested parameters associated with large Chi-square changes (as 

indicated by large modification indices) are correlations between negatively keyed items. 

Revisions solely based on modification indices tend to produce a one-factor model with 

correlated error terms between negatively keyed items, although the true measurement model is a 

one-factor model without correlated uniqueness terms. 

Taken together, the findings highlight the benefit of using categorical data analytic 

techniques when assessing the dimensionality of Likert-type tests, especially when the items are 

keyed in different directions and the observed response data are skewed. When the observed item 

response distribution is symmetric, continuous methodology performs as well as the categorical 

estimator. Also, the four simulation studies show that more than one psychometric model can be 

used to generate responses to negatively keyed items, although they may lead to different 

statistical conclusions. These results call attention to the assumptions of different models (both 

for data analysis and for data generation) used in the validation process, because their selection 

has implications for the eventual validation results. Understanding a model’s assumptions is 

necessary for a comprehensive discussion of its validity (Zumbo, 2007, 2017). 

 

Guidelines and Implications for Researchers 

An objective of this study was to provide suggestions and guidelines for researchers 

when interpreting the statistical results of measures that consist of items keyed in different 

directions. The following recommendations are based mainly on the simulation results outlined 

in Chapter Three. They are preliminary in that further research is needed to investigate how they 

may work under other simulated conditions, as well as in empirical studies. The guidelines 

provide recommendations based on certain conditions (i.e., the values in the simulation studies), 

which researchers must compare to their own data before use. 

In summary, negatively keyed items are not inherently flawed and including them in a 

measure does not automatically produce complications in the factor structure of the test. 

However, skewed item response distributions and inappropriate data analysis methods may lead 
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to a poor statistical judgment of the test’s dimensionality and a subsequent misinterpretation of 

the factor structure. The observed item distributions can be skewed for different reasons. For 

example, extreme items tend to lead to skewed response distributions (e.g., the ceiling and the 

flooring effect), as can response scales with few rating points. Also, the construct can be a truly 

skewed phenomenon in a population because of the population’s characteristics and/or the 

construct itself. When the response distributions are skewed, researchers must be cautious when 

choosing a data analysis method to assess test dimensionality. 

For applied researchers who collect data using mixed-keyed tests with five-point Likert-

type response scales, the following are nine suggestions that are drawn from the study results. 

These guidelines are not black and white, but are intended to serve as advice in the decision-

making process of dimensionality assessment. 

(a) During the test administration, try to ensure that respondents understand the items 

correctly and interpret the response scale consistently. Either careless or acquiescence 

responding can lead to the emergence of additional factors in the dimensionality 

assessment. 

(b) The scoring of a test contains implied assumptions about its dimensionality. When 

computing it as a total, an average, or a factor score of all the items, researchers 

assume that the test is unidimensional. Evidence from dimensionality assessment 

must be provided to support the scoring of the test and the use of the test score.  

(c) When item responses follow the assumption of threshold models—that is, for each 

item, the relationship between the observed responses and the construct is 

monotonic—the conventional reverse scoring of negatively keyed items is reasonable.  

(d) The reverse scoring of negatively keyed items is unnecessary in the assessment of test 

dimensionality or factor structure through factor analysis. 

(e) When using EFA to explore the dimensionality of a test with PCA-based pointers to 

the number of factors, it is advised to employ polychoric correlations to obtain the 

eigenvalues. Also, PA performs better than the K-G rule when the observed response 

distributions are asymmetric. 

(f) When determining the factor structure using EFA or CFA, it is better to choose 

estimators that treat observed item responses as categorical (e.g., WLSMV with a 
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polychoric correlation matrix) than ones that treat them as continuous (e.g., ML or 

MLR with a Pearson matrix). 

(g) When using CFA to confirm the factor structure, fit indices can wrongly reject a 

correct model when the observed item responses are skewed and continuous data 

analytic methods are used. 

(h) Revising the initial model based on modification indices in CFA should be done 

carefully. In such cases, a more appropriate approach is to run an EFA or an 

exploratory structural equation model (ESEM).  

(i) When assessing dimensionality for validation purposes, comparing competing models 

by overall model fit does not strengthen the validity argument. A well-fitting model 

can still be wrong. Instead of comparing the fit of numerous plausible measurement 

models for a test, it might be more helpful to consider the question of the factor 

structure in a larger conceptual framework with a matrix of variables and their 

hypothesized relationships (e.g., a multitrait-multimethod matrix, or MTMM). 

 

For researchers who are interested in studying the item wording or keying effect, the 

main conclusions drawn from this dissertation are: 

(a) It is important to properly differentiate among and describe item features, such as 

wording, keying, and social-psychological meaning. Using terms ambiguously or 

interchangeably makes the results difficult to interpret, compare, and synthesize.  

(b) Researchers may conceptualize the responses to negatively keyed items differently 

and test takers may employ various psychological procedures to answer them. The 

difference in the conceptualization and response process of negatively keyed items 

can be reflected by different mathematical models. The conclusions regarding the 

“method effect” associated with item keying can therefore diverge depending on the 

assumptions made in the modeling process. 

(c) Model fit indices alone are insufficient to determine if the presence of the “method 

effect” associated with item keying or wording is meaningful or an artifact.  
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Novel Contributions 

Likert-type tests are widely used for data collection in the social, behavioural, and health 

sciences. Hence, most researchers in these fields need to work with data collected through such 

tests in their daily research practice. It is therefore important that they are made aware of the 

possible impact of negatively keyed items on the analysis and interpretation of test factor 

structure, especially considering the widespread use in Likert-type tests. However, there has been 

virtually no clear guidance or systematic discussion on the strategies to handle responses from 

mixed-keyed tests, and how the various methods perform under different conditions. As a first 

step in filling this gap, this dissertation has made three novel contributions to understanding how 

negatively keyed items may affect the statistical conclusions regarding test dimensionality. 

To my knowledge, this dissertation is the first to systematically document the impact of 

negatively keyed items from different psychometric models on the statistical judgment of test 

dimensionality. Test dimensionality supports test scoring strategies, as well as test score 

interpretation. It is one of the most regularly reported pieces of validity evidence to support test 

score use (Zumbo & Chan, 2014). Given the popularity of mixed-keyed Likert-type tests, and the 

crucial role of test dimensionality, the additional factors formed by item keying direction have 

attracted much attention and generated heated discussions regarding their interpretation. With an 

eye towards communicating with social and behavioural researchers, this dissertation shows 

practitioners, psychometricians, and methodologists how having negatively keyed items can 

influence the statistical decision about the factor structure in a factor analysis framework. 

Unlike most previous empirical studies that are observational in nature, or the three very 

limited simulation studies noted in Chapter Two, this dissertation used four computer simulation 

experiments to investigate the impact of negatively keyed items on the assessment of test 

dimensionality. A relatively large number of factors were considered in the research design. 

These design factors, including data generation models for negatively keyed items, test 

characteristics (e.g., different observed response distributions, numbers of negatively keyed 

items, and item communality levels), scoring methods for negatively keyed items, and statistical 

methods to assess dimensionality, cover a wide range of factors that may affect the statistical 

judgement of test dimensionality. Prior to this research, many of these factors had never been 

investigated in the context of mixed-keyed tests. 
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The second contribution is that this dissertation made two important distinctions that may 

help open future research directions in understanding the factor structure of mixed-keyed tests. 

Firstly, it distinguished negatively keyed items from negatively worded items. This separation is 

important, as respondents may engage with items that researchers view as negative in various 

ways, leading to different response patterns. In turn, these patterns may have different effects on 

the results from different statistical methods. Indeed, although many empirical studies 

investigated the impact of negatively worded items on test dimensionality, few paid attention to 

the item keying effect.  

This dissertation further classified negatively keyed items into two types, which it then 

examined separately. To my knowledge, this is the first simulation study that has described and 

deliberately distinguished between two psychometric models for negatively keyed items. By 

making this distinction, this dissertation attempted to caution future researchers about the impact 

of the simulation strategies they choose for these items on the interpretation of their results. As 

described in Chapter Two, one operationalization of negatively keyed items is that their item 

responses (without reverse scoring) correlate negatively with the responses to positively keyed 

ones, and positively with the total test score. The expected data pattern described in this 

operational definition of negatively keyed items can be achieved by both the negative factor 

loading model and the reversed threshold model. If we focus only on the outcome (i.e., the 

generated item responses), we will miss the potential difference implied by these two 

psychometric models.  

The final contribution of this dissertation is that it offered advice to applied researchers 

on how to assess dimensionality using data collected through mixed-keyed tests. It is also useful 

for those who are interested in studying negatively keyed or negatively worded items. One 

advantage of conducting computer simulation studies is that they enable us to systematically 

manipulate specific conditions of interest (e.g., the number of negatively keyed items). Although 

they apply to idealized situations, the results suggest some general guidelines. In practice, the 

true factor structure of a test is almost always unknown to the researchers who are working with 

empirical data. Without knowing the “true” structure of the data in the population, the accuracy 

of the statistical methods and decision rules cannot be evaluated. Thus, researchers need to rely 

on results from simulation studies to more clearly understand how the item and test features, the 



118 

resulting item response distributions, as well as their chosen statistical methods may affect the 

results they have observed in empirical studies.  

This dissertation also included some follow-up steps (e.g., EFA with two factors, and 

CFA with modification indices) in each of the studies to mimic what researchers usually do 

when the suggested number of factors is more than one, or the prior measurement model is 

rejected by fit statistics. By doing so, it sought to provide some insight into the potential reasons 

for some of the reported findings in the literature. The results from the follow-up steps showed 

how the presence of negatively keyed items, together with inappropriate analysis methods, may 

distort the judgment and interpretation of a test’s factor structure. 

In summary, by (a) conducting simulation experiments to disentangle the keying effect 

from others, (b) making distinctions between two psychometric models for negatively keyed 

items, and (c) providing guidelines for other researchers based on the findings, this dissertation 

fills an important gap in the research literature and contributes to the critical issue of better 

understanding negatively keyed items and their impact on the assessment of test dimensionality. 

 

Future Directions 

Responding to items is a complicated process that can be affected by many factors, 

including item features, respondent characteristics, administration mode, and other social and 

cultural variables. Because they are highly inter-related, separating these factors and studying 

their effects in isolation using empirical data is difficult. As an attempt to detach the item keying 

effect from the wording effect and to account for the responding process, the four studies 

reported here were performed using computer simulation. Admittedly, despite its advantages, 

this method may oversimplify the phenomenon; however, the priority was placed on this 

experimental setting for its capacity to isolate causal effects. As mentioned in Chapter One, these 

four inter-related studies conducted in this dissertation aim to create a baseline for future work in 

this area. Their simulated conditions were somewhat idealized to help with the interpretation. A 

limited number of influential factors that are believed to have some impact on the statistical 

judgment of test dimensionality and factor structure were investigated. In essence, the studies 

reported in this dissertation are controlled experiments in which a few factors were manipulated 

and studied. Some other variables that may influence the statistical conclusions on factor 

structure were not considered, such as the sample size, the number of points on the rating 
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response scale, sub-populations in the respondent population, and the degree of misfit between 

the model and the data at the population level. In light of the limitations of this dissertation, 

future research directions are discussed below.  

 

Measurement model  

In the current study, the simulation factors, including item communality levels and 

observed item response distributions, are simulated in idealized conditions. That is, they are kept 

consistent across all the items. This is only possible when all the items in a test are equivalent, 

which seldom happens in practice. In reality, items rarely have an equal magnitude in their 

loadings on the factor(s) and the same thresholds on their rating response scale. The population-

level “true” model is assumed to follow a strict unidimensional structure. This refers to a type of 

structure that has one dominant factor without secondary minor factors. While this situation 

meets the assumptions of classical testing theory (CTT), several other scenarios may happen in 

practice. For example, items are likely to have different factor loadings, thresholds may be 

different for different items, and the observed response distribution may differ across items. 

Moreover, some of the items in the measure may load on one minor factor (e.g., method effect).  

This dissertation focused on unidimensional tests. This is largely because, of the studies 

that have investigated issues associated with negatively keyed items, most have examined 

measures that are purportedly unidimensional. Also, a typical Likert-type or summative test 

assumes a unidimensional structure as indicated by the scoring practice which uses a total or an 

average of all the items. However, analyzing unidimensional tests makes it impossible to observe 

the deflation of the number of factors that may result from different statistical methods. When 

multidimensional tests are investigated, the measurement model can get complicated, with cross-

loadings potentially occurring (e.g., one item loading on more than one factor). Based on the 

findings of this dissertation, future research may begin investigating more of these complexities 

in the measurement model. 

 

Psychometric models of negatively keyed items 

Two psychometric models were used to help conceptualize and simulate the responses to 

negatively keyed items. It is important to note that the two psychometric response models 

(negative factor loading and reversed thresholds models) are mathematical-statistical models of 
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item responding. As Zumbo (2017) states, such models have a long and fruitful history in 

psychometrics and statistics. It should be noted, however, that these models are representations 

of idealized item responding and that the actual process may be more complex and varied 

depending on item features, respondent characteristics, and the context of the test. To the best of 

my knowledge, there is no clear evidence from the investigation of the actual cognitive process 

of item responding to clearly confirm or rule out either of these possible psychometric models. 

Also, no direct evidence has been found to support the connections made between the 

psychometric framework and the item types (i.e., wording and/or keying). One may argue for 

different explanations of these two psychometric frameworks, and the ones presented here are 

just examples. 

In this dissertation, threshold models are used to generate observed item responses. It 

assumes that all the observed responses can be explained by a latent response model. That is, the 

observed response to an item can be fully attributed to a continuous latent response distribution 

underlying the item. Thresholds are applied to transform continuous latent responses into 

observed ordinal responses. Other theoretical frameworks, such as the ideal point model (Cliff et 

al., 1988; Thurstone, 1928), have been proposed in the literature to explain the responding 

process. The study results based on the threshold model may thus not be generalizable to 

response data simulated from other theoretical models.  

 

Respondent population 

The simulations conducted in this dissertation assumed that all the respondents 

understood and responded to the items in the same way. In other words, there are no sub-groups 

of respondents that respond to the items in different ways. In reality, participants in a study 

usually come from diverse backgrounds. It is possible that the respondent population is 

heterogeneous, and that subpopulations may differ in their responding process to negatively 

keyed items. For example, two psychometric models of negatively keyed items were investigated 

separately in this dissertation. However, these psychometric models may not represent the 

difference in negatively keyed items, but the difference in how respondents may react to an item. 

In this case, some of the respondents may employ an item responding process that is more 

similar to one of the psychometric models, while others may employ one that better suits a 

different psychometric framework. 
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Other factors can give rise to subpopulations. Previous studies show that if a small group 

of test takers is careless and misresponds to the negatively worded and keyed items, an extra 

factor may appear in the factor analysis (Schmitt & Stults, 1985; Woods, 2006). Future studies 

may explore how different types of subpopulations may interact with the presence of negatively 

keyed items. 

 

Sample size  

Only population-level data were simulated and analyzed in this dissertation, since it 

sought to document the statistical conclusions on the factor structure in the presence of 

negatively keyed items. The current study was conducted on a population data of 10,000 

simulated respondents—that is, a population analogue. Although it is possible to obtain such a 

large sample size with extensive testing, such as the Programme for International Student 

Assessment (PISA) and Trends in International Mathematics and Science Study (TIMSS), it 

would be in many day-to-day researchers’ interest to explore the effect of smaller sample sizes 

on the statistical judgment of test dimensionality and factor structure. The results based on 

population-level data may not be replicated, especially in cases where the sample size is small. 

 

The impact of negatively keyed items on other statistical and psychometric procedures 

Besides the most prominent issues, others, such as how misidentifying the factor structure 

of tests with negatively keyed items might bias the subsequent analysis, are worth investigating. 

As discussed at the beginning of this dissertation, the assessment of test dimensionality and 

factor structure usually serves as a fundamental step in test validation by supporting its scoring. 

Test-level scores are often used for research purposes and to make various decisions. When 

including negatively keyed items poses challenges to the statistical judgment of test 

dimensionality, it calls into question the accuracy and appropriateness of the test score. In such 

cases, it may also affect other methods that rely on this data, such as t-tests and regression 

analyses. We may ask two questions that go in opposite directions: (a) When an incorrect but 

better-fitted measurement model with the “method effect” is selected to represent the factor 

structure of a test with negatively keyed items, what is the impact of this mis-identification on 

the subsequent analysis? and (b) What are the consequences when method effects exist among 

some items but are ignored (e.g., Gu et al., in press)? 
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In conclusion, more research is needed to understand negatively keyed items and their 

impact on the results of psychometric and statistical analysis. With the limitations of this 

dissertation in mind, future research can be designed to focus on two broad directions. On the 

one hand, further simulation studies are needed to investigate more factors, so we can fully 

comprehend the effect of negatively keyed items on the assessment of test dimensionality. On 

the other, empirical studies should be undertaken to confirm or disconfirm the connections 

between the psychometric models of item response and the processes in which respondents 

actually engage. Although many mathematical-statistical models have been used to generate and 

analyze item response data, far less is understood about how these models can contribute to 

elucidating the item response process. Indeed, these models are developed to capture or 

reproduce the data pattern of the observed item responses, rather than to replicate how 

participants produced these data. However, we should recognize that focusing on the 

measurement outcome (i.e., response data) and ignoring the response process narrows our 

understanding of the phenomenon we wish to study.  
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