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Abstract

This dissertation studies one-to-one matching between workers and as-

sets in a market where financial securities are offered. The quality of an

asset is publicly known, but a worker’s productivity is private information.

The asset side first posts contracts, under which the payment is contingent

on the realized output. Then the workers direct their search based on the

offers. Production exhibits complementarity so that the efficient allocation

features positive assortative matching (PAM).

I consider a frictionless setting in the first chapter. First, I characterize

the sufficient and necessary conditions for decentralizing PAM. For any dis-

tribution of types, these conditions ensure that the set of posted contracts

not only induces the workers to sort assortatively but also precludes the as-

set owners from poaching. In comparison with the case of full information,

the asset side’s share of the matching surplus is always greater and increases

with the asset quality at a faster rate in equilibrium. Second, I show that all

asset owners will always be better off if the feasible contracts are replaced

with steeper ones, which cost better workers more than weaker workers.

The second chapter focuses on the class of output sharing contracts. I

study how it affects the matching efficiency and sorting pattern in the pres-

ence of search friction. The unique equilibrium features inefficient PAM.

The matched pairs fully separate into a continuum of markets, where the
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Abstract

queue length in each market still maximizes the expected surplus given the

worker’s equilibrium payoff. However, regardless of the distribution of types,

all but the best workers pair up with better assets compared to the Second

Best allocation. There is either an excessive entry of workers or an insuffi-

cient entry of assets. Sorting is inefficient because a reduction in the output

share costs less to weaker workers than better workers. This handicaps their

competition for better assets, driving up the output share of the best assets.

These asset owners then induce an inefficiently long queue of workers to

increase their matching probability.
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Lay Summary

This dissertation studies matching between parties on the two sides of

the markets where financial securities are commonly offered. An example

is that firms hire CEOs from outside and offer equity shares in the remu-

neration packages. The agents can be ranked by their types, say firm size

and candidate’s ability. Since both sides compete for better partners from

the given pools, the equilibrium matching pattern and the divisions of the

matching surpluses vary with the distribution of types. My contributions are

to provide qualitative results which hold for all distributions of types. The

first chapter studies when the efficient allocation can always be decentralized

in a frictionless environment, and how the forms of financial securities avail-

able affect the distribution of the surplus. The second chapter analyzes how

the offering of output shares affect the matching pattern and entry decisions

in the presence of search friction.
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Preface

This dissertation is my original, unpublished and solo work. All errors

are mine.
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Chapter 1

Introduction

This dissertation studies two-sided one-to-one matching in markets where

the offering of financial securities or, more generally, contingent contracts

is common. In many circumstances, the two sides can be ranked by some

characteristics, or simply their types. Since both sides are competing for

better partners from the given pools, the set of equilibria varies with the

distribution of types. As the distribution of types is constantly changing

and may not be observable to outsiders, qualitative results applicable to all

distributions of types are of particular interest.

The seminal work of Becker (1973) shows that if the matching surplus ex-

hibits supermodularity in types, positive assortative matching (PAM) max-

imizes the total surplus, and therefore prevails in a frictionless competitive

market.1 However, the agents on one side are often better informed about

their own types, or the surplus from a match.2 The forms of contingent

payments offered then determine how much an informed party gains from a

better partner, and more importantly, how such gain depends on his private

1Suppose a better agent generates a larger increase in the matching surplus when pair-

ing up with a better partner, then the matching surplus is said to exhibit supermodularity.

An allocation features PAM if the matches consist of the highest types on both sides, the

second highest types, and so on.
2I use feminine pronouns for the uninformed side and masculine one for the informed

side.
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Chapter 1. Introduction

type. I study how the offering of contingent contracts affects matching and

the divisions of surpluses in equilibrium.

I consider the following framework. There are continuums of asset owners

and workers. A worker’s productivity is privately known, whereas the quality

of an asset is publicly observable. Each worker may operate an asset. The

types on both sides determine the output distribution.3 The asset side

first posts contracts tied to the future outputs. The owners who have the

same asset quality and post the same contracts will gather and form a (sub-

)market. Observing the contracts posted, each worker may visit at most one

market. The participants on both sides of a (sub-)market pair up randomly.

Those who end up unmatched will stay idle. A worker forms his belief about

his peers’ choices, and hence his matching probability in each market. When

an asset owner is deciding her contract offer, the contracts offered by her

peers restrict the distribution of workers it may attract. Specifically, she

believes that a deviating offer may only attract the workers who accept the

lowest matching probability, or equivalently, the greatest percentage gain

relative to their equilibrium payoff.

In the literature on assortative matching, the environment described is

closest to the papers where the informed parties make up-front payments

and select their partners based on the offered prices. As the informed side

assumes the residual claim, the incentives for both sides is the same as in

the full information case. Hence, price competition still decentralizes effi-

cient allocations in a competitive market. The price competition has served

3Note that the distribution of the output does not depend on the contract chosen.

Here the sole purpose of a contract is to determine the split of the matching surplus.

This simplification allows me to concentrate on the potential distortions in the matching

pattern.
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Chapter 1. Introduction

as the benchmark case in the existing literature. However, the feasibility

of the buyout arrangement may be undermined by the presence of wealth

constraints and incentive provisions for other stakeholders. They motivate

the use of contingent contracts.

The difference between this dissertation and competitive screening lit-

erature is also noteworthy. In the latter, only the principals compete for

informed agents but not the other way around. Specifically, the equilibrium

analysis can be conducted in a sequential game in which multiple principals

simultaneously post their offers, then one single agent decides among them.

The lack of competition among agents implies that the set of the separating

equilibria and the associated distortion depend on neither the number of

agents nor the distribution of their types.4 This implication is the major

convenience, but also the restriction, of the competitive screening models.

Here both sides are competing for better partners from the exogenously

given pools of assets and workers respectively. Finding “distribution-free”

results is a non-trivial task because of the competition on both sides and

their interaction.

Chapter 2 considers a benchmark environment, in which the participants

in a market pair up frictionlessly.5 It focuses on two questions: When PAM

can always be decentralized in an equilibrium, and in this case, how the

divisions of matching surpluses depend on the form of contingent payments

available. Apart from theoretical interests, the conditions for decentralizing

PAM provide guidance on how to restrict the set of contracts available to en-

4This is because the support of the type distribution alone pins down the set of incentive

compatibility conditions.
5That is, the short side, which has fewer participants, will get matched for sure. Only

the long side, with more participants, will be rationed.
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Chapter 1. Introduction

sure matching efficiency and redistribute welfare. For empirical researchers,

The comparative statics on the equilibrium payoffs produce testable im-

plications on the presence of private information in these markets against

competing theories.

Chapter 3 introduces search friction into the matching process and fo-

cuses on the class of output sharing contracts such as equity shares. I iden-

tify a novel source of inefficiency in such markets and analyze the form of

distortion on the matching pattern and entry decisions. In particular, the

equilibrium is unique and still features PAM.6 I compare the equilibrium al-

location with the Second Best one and obtain qualitative conclusions which

are universal to all distributions of types.

Chapter 4 concludes.

6With search friction, PAM only requires that a better worker searches for weakly

better assets. This is satisfied by infinitely many allocations, but only a subset of them is

Second Best.
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Chapter 2

Decentralizing Assortative

Matching With Financial

Securities

2.1 Introduction

In many matching markets, financial securities is the prevailing form

of contracts between partners. It specifies how the payment between the

partners depends on certain outcomes, such as the realized output, and

imposes little restrictions on the actions taken by the partners. The following

applications are some examples:

Market for top management: Firms are hiring top executives, whose

contribution to the firm’s profit depends on his ability and the firm size.

However, the candidates know their own abilities better than the hiring

firms. Nowadays, stock and stock warrant are major components of the

remuneration packages. Frydman and Jenter (2010) look at the composition

of CEO pay in S&P 500 firms: During the period 2000 to 2008, base salary

makes up less than 20% of the remuneration, and over half of it are option

grants and restricted stock grants.

Market for venture capitals: Venture capitalists can be ranked by their

5



2.1. Introduction

reputation and the prospect of the entrepreneurs’ projects vary. Entrepreneurs

initially know certain aspects of their projects better than the outsiders. Ka-

plan and Strömberg (2003) analyze 213 rounds of investments: In over 90%

of financing rounds, venture capitalists obtain convertible preferred stock,

sometimes along with other financial securities, from the entrepreneurs in

return for their assistance and financing.

The defining feature is the contingent nature of the payment, which

needs not involve any direct financial claims or explicit contracts between

the partners. When forming business partnerships, contingent payments are

often implemented via the capital structure of a joint venture. Even when

a seller of an asset demands a fixed price, any postponed installment is still

contingent on the outcome. This is because the buyer is protected by limited

liability and may default if the business turns sour or the news reveals dim

prospects. Clearly, a variety of forces can be at play in the above examples.

The focus here is how the form of contingent payments available affects two-

sided matching in the presence of information asymmetry. I will adopt the

term contingent contract to underline this focus. 7

Under a contingent contract, the expected payment made by a worker

depends on his private type. More importantly, the asset owners become

concerned about the types of their partners and take screening into account

when deciding contract offer. They may attempt to poach better candidates.

PAM, though efficient, needs not occur in decentralized markets using con-

tingent contracts.

To have a direct comparison with price competition, the analysis centers

on a class of contracts, which are ranked by the division of surplus. Specif-

7In particular, I sidestep the issue on control rights specified in the financial securities.
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2.1. Introduction

ically, these contracts can be indexed by a single contract term, for which

workers of all types prefer a more generous term given the asset quality

whereas the asset owners prefer a less generous term for a given worker.8

Examples are equity contracts indexed by the percentage share and default-

able debts indexed by the principal amount.

I start by constructing a candidate equilibrium decentralizing PAM. By

virtue of the order structure in the setup, the conditions for voluntary par-

ticipation by both sides and the incentive compatibility for the workers pin

down a unique set of contracts for generic distributions of types. This can-

didate set of contracts requires the workers to accept a less generous term

for a better asset. More importantly, it defines indirect mappings from the

distribution of types to the equilibrium payoffs, and the deviating payoffs

for both sides. To obtain “distribution-free” results, the analysis then cen-

ters on the relation of these mappings with the output distribution and the

feasible set of contracts.

I first study whether a single worker or asset owner may profit from

a deviation under the candidate set of contracts. The analysis culminates

with the necessary and sufficient condition for the decentralization of PAM.

It can be decomposed into three conditions, which separately address the

incentives of workers, the participating asset owners and the asset owners

who shall take their outside option. These conditions are stated in terms of

8Namely, the set of feasible contracts is an ordered set of securities introduced in

DeMarzo, Kremer and Skrzypacz (2005).

In the other extreme, Riordan and Sappington (1988) characterize the condition that

perfect screening can be achieved costlessly using contingent payments. In this scenario,

the equilibrium allocation and payoffs are the same as in the full information case. The

discussed order structure for the contract space precludes this possibility.

7



2.1. Introduction

the worker’s induced preference over the contract term, his partner’s type,

and his matching probability.9 They apply to arbitrary distributions of

types. The conditions are the same when the uninformed side may post

single contracts only or menus of contracts. For each of the conditions

violated, I provide a procedure constructing distributions of types for which

the corresponding group must profit from a deviation. This illustrates the

forces against PAM.

I also provide a unifying sufficient condition on the worker’s expected

payoff: When switching to a better partner offering a less generous term,

a better worker always sees a larger increase (or smaller reduction) in his

expected payoff, measured by either amount or percentage. This increasing

difference condition, termed as Global ID, is sufficient for decentralizing

PAM by serving two purposes. The first one is to induce workers to sort

assortatively. The second purpose is to preclude poaching offers from asset

owners. I first show that under the set of candidate contracts inducing

PAM, an asset owner never profits from poaching weaker workers. She may

still attempt to poach better workers. To compete with better assets, the

asset owner must offer a more favorable term to maintain its appeal. This

generous offer will also interest workers of lower types. Since at most one

worker will be hired, the workers must face rationing when seeking for this

deviating contract. They have to trade off a better asset and a higher

matching probability against a more favorable contract term. Global ID

ensures that in the candidate equilibrium, the better workers always prefer

9The output distribution and the forms of feasible contracts jointly induce preferences

for both workers and assets workers. The conditions on the worker’s preference involve

the asset owner’s preference and the outside options for both sides indirectly.

8



2.1. Introduction

the former while the weaker workers prefer the generous term.10 As a result,

the poaching offer will fail to attract better workers.

In some sense, Global ID is satisfied if the variation in the contingent

payments aligns with the form of production complementarity. Based on this

observation, I propose two notions of production complementarity, which

manifest as a shift in the output distribution toward higher levels. For each

of these conditions on the output distribution, I provide the corresponding

sufficient condition for the set of feasible contracts. One condition applies

to mixtures of cash and securities. The other applies to securities such as

debt contracts, or stock options if the asset side makes the payment.

The second part is to study the effect of changes in the set of feasible

contracts. A contract is steeper than another if it costs more to the better

workers but less to the lower types.11 The other contract is said to be flatter.

Suppose that the entire set of feasible contracts is replaced by a steeper set

and the equilibrium matching remains PAM. The use of steeper contracts

handicaps the competition among workers. In particular, a low type worker

is willing to accept a less favorable term in exchange for a better asset. The

intensified competition for better assets will drive up the asset side’s share of

the surplus, despite the same allocation. While the first result is based on the

competition among workers, the second result stems from the competition

among asset owners. The asset side always prefers the flattest contracts

10Such monotonicity in the preference is stronger than necessary. The poaching offers

can be deterred if they attract only the lowest type among all participating workers. The

necessary and sufficient conditions for the asset side relaxes the above increasing difference

condition by exploiting this observation.
11For example, DeMarzo, Kremer and Skrzypacz (2005) show that under the assumption

of MLRP, the upfront payment, defaultable debt, equity share, call option are in ascending

order by their steepness.

9



2.1. Introduction

available, which are prone to attract better workers. Putting together, we

obtain comparative statics on how the introduction (or exclusion) of steeper

(or flatter) contracts affects the divisions of the matching surpluses under

assortative matching.

Since the inclusion of steeper contracts in the feasible set has no impacts

on the sets of equilibrium allocations and payoffs, all results can be extended

to larger sets of contracts, which are not fully ranked. In particular, I

consider examples that the workers have wealth constraints and that the

asset owners may misappropriate the outputs.

This also leads to the main testable implication of the model here. Sup-

pose a new regulation restricts the feasible set of contracts so that steeper

contracts are offered, my result on comparative statics predicts that all as-

set owners are better off under PAM. The opposite shall occur following a

slash of regulation. Such test, albeit demanding, is powerful. In pure moral

hazard or risk sharing models, a restriction in the feasible set would only

result in the offering of a suboptimal contract.

I then provide examples demonstrating that when offered flatter con-

tracts, better workers may benefit less from a match with a better asset

or an increase in matching probability. As a result, inefficiency may arise

after the introduction of the flatter contracts. In this sense, these exam-

ples illustrate how restricting the feasible set of contracts may improve total

surplus.

This chapter is organized as follows: Section 2.2 discusses the related

literature and the contribution of the present work. I illustrate the main

elements of the analysis casually using an example in Section 2.3.

Section 2.4 details the model setting and the equilibrium definition. Sec-

tion 2.5 formally defines PAM, the First Best allocation in the Utilitarian

10
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framework. It always occurs under symmetric information or in price com-

petition. Section 2.6 characterizes the conditions on the workers’ preference

for PAM decentralization. Joint sufficient conditions on the feasible con-

tracts and the distribution of output are provided in Section 2.7. Section

2.8 discusses the effects of changes in the set of feasible contracts. Section

2.9 concludes. All proofs are relegated to the Appendix A.

2.2 Related Literature

Assortative matching in directed search

Though PAM in various environments, including non-transferable utility

and random search, have been studied in the literature, the previous work

with similar environments has exclusively considered the case that the in-

formed side makes up-front payments. Mailath, Postlewaite and Samuelson

(2016) (and the references therein) study the agents’ decisions of privately

observed pre-investment when they pair up with uninformed partners in a

price competition afterward. Damiano and Li (2007) consider the rent ex-

traction problem of a matchmaker who decides a menu of meeting places and

admission fees for agents with private types. My setting is closely related to

that in Eeckhout and Kircher (2010). The authors study price competition

using a competitive search framework. They show that a stronger form of

production complementarity is required to support (imperfect) PAM in the

presence of search friction.

The use of contingent contracts not only changes the sorting incentives

for the informed but also gives rise to the screening problems for the un-

informed side. The latter has never been studied in this literature. For an

asset owner, the pool of workers attracted by a deviating offer varies with the

11



2.2. Related Literature

distribution of types indirectly through the set of contracts posted. Char-

acterizing the conditions for deterring poaching offers is the main challenge

in my analysis.

Competitive screening with bilateral matching

My setting is related to the competitive screening models with bilateral

matching including Gale (1996) and Guerrieri, Shimer and Wright (2010).

My equilibrium definition closely follows that the latter. They consider a

competitive search setting with free entry of principals, who have both con-

tract and matching probability as screening instruments. Facing the offers

posted, the matching probabilities for the agents are jointly determined with

their choices of contracts.12 The authors characterize the equilibrium and

study the form of distortion in various applications.

My point of departure is to consider two-sided one-to-one matching in

which both sides compete for partners from given pools.13 As a result, the

distribution of types determines the set of feasible allocations, and hence the

sets of efficient and equilibrium allocations. In general, the distortion in two-

sided matching varies with the distribution of types. Instead of targeting at

a specific form of distortion, the policy recommendation here is restricting

the feasible set of contracts to ensure efficient matching for any distribution

of types. To this end, I characterize the conditions for decentralizing PAM.

Security-bid auction

My formulation of the contract space is closely related to DeMarzo, Kre-

12This also implies that the introduction of bilateral matching changes the principals’

deviating payoff in comparison with the textbook competitive screening models, ensuring

the existence of an equilibrium.
13I also focus on a set of fully ordered contracts, so that any separation among work-

ers’ types must be induced by some variation in the asset quality and their matching

probability. This allows me to concentrate on the distortions in the matching pattern.
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mer and Skrzypacz (2005). They consider an auction of an asset, in which

the buyers bid in the form of securities. The authors introduce the concept

of ordered sets of securities, for which the expected payment can be ranked

unambiguously for all types of buyers. They compare different ordered sets

of securities in terms of their steepness. The auctioneer can improve her

revenue by requiring the buyers to bid from a steeper ordered set of secu-

rities, provided that the equilibrium allocation remains efficient.14 This is

because steeper securities strengthen the linkage between the winner’s type

and the payment he makes, handicapping the competition among buyers.

I adopt their definitions of an ordered set of securities and security steep-

ness. The comparative statics on the divisions of matching surpluses can be

attributed to the insight in DeMarzo, Kremer and Skrzypacz (2005). My

contribution is to establish the connection between the security-bid auction

and assortative matching in this aspect. I further show that the intensified

competition among workers for the same type of assets spills over to the

competition for the better assets under PAM. Besides, the change in the

feasible contracts will affect how the partners divide the gain from produc-

tion complementarity, potentially changing the equilibrium allocation. This

paper provides conditions ensuring that PAM always occurs in equilibrium.

Moral hazard and assortative matching

This paper is related to the literature on how incentive provision affects

the matching pattern. This strand of literature also considers the use of

contracts in two-sided matching markets. Serfes (2005) studies the equi-

librium matching pattern in a principal-agent setup. Legros and Newman

14DeMarzo, Kremer and Skrzypacz (2005) assume that the payoff for the winner is

strictly log-supermodular in his type and the ranking of his security-bid. This ensures

that the buyer of the highest type always outbids the others.
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(2007) discuss a related example. Kaya and Vereshchagina (2014) study how

ownership structure and production technology shape the cost of incentive

provision in team production. In these models, the parties’ types are pub-

licly observable. One side or both will take a private action after pairing up.

Despite production complementarity, assortative matching needs not arise

in equilibrium because of two channels. First, utility is not perfectly trans-

ferable. When adjusting the term of a contract to transfer utility between

two sides, the conversion rate is not constant and dependent on types. Sec-

ond, types affect productivity as well as the cost of incentive provision, so

the matching surplus does not inherit supermodularity from the production

technology.

I consider information asymmetry when forming matches. To focus on

the potential distortion of the matching pattern, the choice of contract in my

setting affects only the division, but not the size, of the matching surplus.

This ensures PAM if the types are publicly observable. Here inefficiency

can only arise because of both the use of contingent contracts and private

information. Furthermore, it allows me to obtain general results on how

the form of the contingent payments affects the divisions of surpluses in

equilibrium.

2.3 An Illustrative Example

This section illustrates the main elements of the analysis. I also casually

sketch out the equilibrium definition along the way. The formal setup will

be laid out in the next section.

Consider an economy with two types of workers p ∈ {1, 2}. Each type has

a unit measure. There are three types of assets q ∈ {1, 2, 3} with 1
2q measure

14
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respectively. Both sides have the same outside option, say 1. E(Y |p, q)

denotes the expected output from a match (p, q). The matching surplus is

supermodular (SPM) in types, so the First Best allocation is PAM. That

is, better workers pair up with better assets. In this example, all high type

workers are allocated the best assets. Half of the low type workers match

with the best assets, and the other half match with median quality assets.

The owners for the remaining half of the median quality assets and the

lowest quality assets take their outside option.

Figure 2.1: An example of PAM

For simplicity, I only consider two classes of contracts. The workers

either pay a fixed price upfront or promise the asset owner a share of the

future output.

It is well known that PAM prevails in a competitive market under full

information. In such equilibrium, the owners of the median quality assets

must be indifferent about their outside option, and the low type workers are

indifferent about matches with the two types of assets. These indifference
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conditions uniquely pin down the division of matching surplus.

1 = UFB(1) = UFB(2),

E(Y |1, 2) = V FB(1) + UFB(2),

E(Y |1, 3) = V FB(1) + UFB(3),

E(Y |2, 3) = V FB(2) + UFB(3),

where V FB(p) and UFB(q) denote the equilibrium payoffs for the workers

and asset owners respectively. Observe that

V FB(p) + UFB(q) ≥ E(Y |p, q),

no pairs will profit from switching their partners. Furthermore, the division

of matching surplus is the same under the two classes of contracts. If upfront

payment is feasible, the participating asset owners simply post the price

UFB(q). Under full information, an equity contract may function as a posted

price by making its term contingent on worker’s type to implement the

intended transfer UFB(q).

Now suppose workers have private types. If the asset side may post

prices, the equilibrium allocation and payoffs remain the same. This is

because the payment made by the worker does not depend on his private

type, so the deviating payoff for both sides is always the same as in the full

information case. The class of fixed prices, or cash payment, is in fact the

only contracts for which the division of matching surplus is unaffected by

information asymmetry.

Now we turn to the case that only equity contracts are available. Let

s̃q denote the equity shares for the assets of quality q. To induce PAM, the

indifference conditions mentioned must continue to hold. They uniquely
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determine the contracts offered, and hence the equilibrium payoffs

U(1) = U(2) = s̃2E(Y |1, 2) = 1,

V (1) = (1− s̃2)E(Y |1, 2) = (1− s̃3)E(Y |1, 3),

V (2) = (1− s̃3)E(Y |2, 3),

U(3) = (1− s̃3)[1
3E(Y |1, 3) + 2

3E(Y |2, 3)].

(2.1)

In this example, all but the highest types have the same equilibrium payoff

as in the the full information case. Yet the competition for the high quality

assets has intensified because the equity shares cost the high type workers

more than the low type. As a result, the high type workers end up paying

more for the best assets,

s̃3E(Y |2, 3) > UFB(3) = s̃3E(Y |1, 3).

This in turn leads to

V (2) + U(q) < E(Y |2, q), q = 1, 2.

So far we have pin down the set of posted contracts and the equilibrium

payoffs. The next step is to investigate the conditions ensuring that no

agents may profit from a deviation. The market structure and the belief

restriction provide the foundation for the deviating payoffs.

Facing the posted contracts s̃2 and s̃3, a high type worker may only

switch to the median quality assets, earning (1− s̃2)E(Y |2, 2). Substituting

s̃2 and s̃3, he will not profit from such deviation if

E(Y |2, 3)

E(Y |2, 2)
>
E(Y |1, 3)

E(Y |1, 2)
. (2.2)

(2.2) is stronger than SPM of the matching surplus. SPM merely ensures

that better workers benefit more from an improvement in the asset quality
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under the same contract. Yet, they also suffer more from the reduction in

their share. So PAM requires high type workers to have a greater percentage

gain from a better asset.

Unlike workers, the deviating payoff for the asset side depends on the

pool of workers attracted by a deviating offer. I adopt the belief restriction

that such offer will only attract the workers, if any, who accept the lowest

matching probability, or equivalently, see the greatest percentage gain rel-

ative to their equilibrium payoff. This restriction ensures that the pool of

the workers attracted depends on the strength of complementarity in types.

Take the lowest quality asset as an example. Suppose an owner posts a share

s′, a worker will be interested in this offer only if (1− s′)E(Y |p, 1) > V (p).

In this case, his percentage gain is simply (1−s′)E(Y |p,1)
V (p) . Combining with the

expression V (p) = (1 − s̃3)E(Y |1, 3), any deviating offer will at most draw

only the low-type workers if

E(Y |2, 3)

E(Y |1, 3)
>
E(Y |2, 1)

E(Y |1, 1)
. (2.3)

However, the asset owners never profit from a partner weaker than the one

under PAM in this framework.

V (1) + U(q) ≥ E(Y |1, q), q = 1, 2, 3.

One can check that the owners of the median and highest quality assets have

no profitable deviations as well. Hence, PAM can be supported.15

Nevertheless, the conditions (2.2) and (2.3) only apply to the given distri-

bution of types. The counterpart of the conditions (2.1) for general contracts

defines indirect mappings from a generic distribution of types to the set of

15Furthermore, I will show that the asset owners can do no better by offering menus of

contracts.
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contracts posted, hence the equilibrium payoffs and the deviating payoffs.

These mappings and their relation to the model primitives will be the central

object of the analysis.

2.4 Model Setting

2.4.1 Two-sided matching

Production is carried out by a single worker using an asset. There are

continuums of workers and asset owners. Each asset owner owns an asset.

Assets can be ranked according to their publicly known qualities q ∈ [q, q].

All workers are ex-ante homogeneous but differ in their actual productivity

p ∈ [p, p], Every worker privately knows his productivity. All parties are risk

neutral and have a quasi-linear preference.

Production takes place after a worker pairs up with an asset. The out-

put Y is stochastic and contractible. Given the pair of types (p, q), the

conditional distribution of output Y |(p, q) has C.D.F. F (y|p, q) with com-

mon support Ωy ⊆ R+. The outside options for the workers and assets

are given by V > 0 and U > 0 respectively, so the matching surplus is

E(Y |p, q)− V − U.16

Assumption (P). Y |(p, q) has the following properties:

1. For any y ∈ Ωy, F (y|p, q) is continuous and strictly decreasing in p

and q.

2. E(Y |p, q) is strictly supermodular(SPM) in p and q.

3. E(Y |p, q) = U + V .

16Measurability and integrability are tacitly assumed whenever they are required.
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Assumption (P) states that a higher worker’s productivity or asset qual-

ity always improves the output distribution in a strict F.O.S.D. sense. The

matching surplus is strictly increasing and supermodular in types p and q.

Furthermore, the matching surplus is positive for any pair. Therefore, the

total surplus is maximized under PAM.

For tractability, the type distribution for workers and assets assume to

have finite supports {pl}Ll=1 ⊆ (p, p] and {qk}Kk=1 ⊆ (q, q] respectively, where

L ≥ 2 and K ≥ 1.17 Higher types of worker and asset refer to greater l and

k respectively, i.e. pl > pl−1 and qk > qk−1.

The measure of workers with productivity pl is denoted by P (pl). r ∈

∆({pl}Ll=1) denotes the public belief about a worker’s type p, where ∆({pl}Ll=1)

is the set of probability distributions defined over {pl}Ll=1. Likewise, the mea-

sure of assets with quality qk is Q(qk). Taking outside options by the asset

owner and worker are referred as p0 and q0 respectively. Q(q0) and P (p0)

are defined as +∞.

In the analysis, types with subscripts, pl and qk, are used when consider-

ing a particular distribution of types. Otherwise, the discussion is referring

to general types in the type space.

17It is more convenient to work with a finite distribution of types when discussing general

contracts or menus of contracts.

Notice that there are no workers of type p and assets of type q. Together with

E(Y |p, q) = U + V , the matching surplus is always positive but can be arbitrarily small

for some pairs. Section 2.6 characterizes the conditions for First Best decentralization.

This property is exploited in establishing necessity of theses conditions. The conditions

remain sufficient if E(Y |p, q)) > U + V .
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2.4.2 Contingent contract and division of surplus

Suppose a worker pairs up with an asset. The two parties may enter

an agreement on the contingent payments, denoted by t : Ωy → R. When

the production concludes, the worker receives the realized output y and

makes payment t(y) to the asset owner accordingly. The contingent payment

scheme t(y) will be referred as a contract. It inherently satisfies ex-post

budget balance. The argument y will be omitted from t(y) if no confusion

will arise. Only bilateral contracts are considered.

All types of asset owners have access to the same set of feasible contracts,

which is denoted by Ωt. T denotes a sigma algebra for Ωt. The set of feasible

contracts captures various restrictions such as contract incompleteness and

limited liability.

Assumption (C). For all t ∈ Ωt, t(y) and y−t(y) are not constant functions

over Ωy and weakly increasing in y.

Assumption (C) rules out contracts specifying only a fixed payment to

either side.18 When the output level increases, one side must receive a

higher payment under ex-post budget balance. Assumption (C) further

requires that the asset owner’s and worker’s payoff are always increasing

in the production outcome under any contract. This can be motivated by

a threat of sabotage on both sides. It also implies that the payoffs for

both sides are continuous in the output level. Such double monotonicity is

common in financial agreements.

18This can easily be motivated by incentive provision for both sides. For example, the

production may require both partners to make an arbitrarily small investment or effort,

which are privately observed.
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Give the pair of types, the contract determines the surplus division be-

tween the two parties. The worker’s share of surplus is denoted by

v(p, q, t) := E(Y − t(Y )|p, q),

and that for the asset owner is denoted by

u(q, p, t) := E(t(Y )|p, q).

v(p, q, t) and u(q, p, t) will be referred as expected payoffs. Since a higher

type always improves the output distribution in a strict F.O.S.D. sense and

the contingent payment is monotonic in output, an agent, who has a higher

type himself or has a better partner, always enjoy a higher expected pay-

ment.

Remark 1. For any t ∈ Ωt, u(q, p, t) and v(p, q, t) are continuous and

strictly increasing in p and q.

Assumption (P) and (C) jointly introduce a uniform and monotonic pref-

erence for the partner’s type. This leads to competition for a better partner

on both sides. More importantly, an asset owner concerns about the type

of workers attracted by her offer.

When entering the same contract, a better worker not only pays out

more to his partner but also keeps a higher amount of residual payment.

Consequentially, only the workers of the lowest type may take their outside

options. However, the same conclusion does not automatically hold for the

asset side as an owner of a better asset may end up with a weaker worker.

To facilitate the comparison with price competition and security-bid auc-

tion, I adopt the convention that the informed party is entitled to the full

output and makes payment. This may differ from the default output di-

vision in the application considered. One must make adjustments to the
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forms of contracts accordingly, so that the payoffs at each output level are

the same as in the setup here.

Ordered set of securities The analysis focuses on a special class of

contracts, which has a complete order. The formulation here is built on

DeMarzo, Kremer and Skrzypacz (2005).

Definition. St is called an ordered set of securities if there exists a mapping

t(.; .) : Ωy × [0, 1]→ R such that

1. St = {t(.; s) : s ∈ [0, 1]} ⊆ Ωt, and

2. t(.; s) is continuous in s with respect to supremum norm, and

3. v(p, q, t(; s)) is strictly decreasing in s, whereas u(q, p, t(.; s)) is strictly

increasing in s for any (p, q) ∈ [p, p]× [q, q], and

4. For any (p, q) ∈ [p, p]×[q, q], v(p, q, t(.; 1)) ≤ V and u(q, p, t(.; 0)) ≤ U.

An ordered set of securities is a subset of feasible contracts indexed by s,

which will be referred as the contract term. v(p, q, t(.; s)) and u(q, p, t(.; s))

are continuous in all arguments under the second condition. The third

condition states that for any pair of types, a higher value of s represents a

greater share of surplus for the asset owner. For a given partner, workers

of all types unanimously prefer a lower term s, whereas the asset owners

always prefer the opposite. Many standard securities in practice can be

ranked in this manner. Examples of contract term s include the amount

of cash payment, the equity share, the principal amount of debt and the

strike price for options. These examples satisfy the third condition because

t(.; sH) ≥ t(.; sL) whenever sH > sL.
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Now consider a matched pair (p, q) who may only enter a contract in

St. Under the second and third condition, [v(p, q, t(.; 1)), v(p, q, t(.; 0))] is

the range of the feasible payoff for the worker and that for the asset owner

is [u(q, p, t(.; 0), u(q, p, t(.; 1)]. The fourth condition then implies that any

value v′ between V and E(Y |p, q)− U can be achieved by a contract in St.

v′ represents a split of matching surplus as the payoffs for both parties are

above their outside options. An example when the fourth condition holds is

that t(y; 0) = 0 and t(y; 1) ≥ y.

In summary, an ordered set of securities shares two similarities with

prices: a monotonic preference for all types and perfect transferability of

the matching surplus under full information. On the other hand, it renders

the expected payment from the worker dependent on his private type.

Throughout the analysis, an ordered set of securities is always feasible,

St ⊆ Ωt. As we shall see, this ensures that the equilibrium allocation under

full information is always the First Best.

2.4.3 Market structure

For a given distribution of types, there are continuums of (sub-)markets

indexed by (t, q). An owner of asset quality qk may decide between her out-

side option and one of the markets (t, qk) while a worker may take his outside

option or participate in any one of the markets. The market structure is

interpreted as follows: Asset owners decide what contract they post.19 Own-

ers of the same asset quality qk posting the same contract t gather into one

meeting place, which forms the (sub-)market (t, qk). When a worker decides

to accept the offer t posted by the owners of asset quality qk, he participates

19Section 2.4.5 will address the possibility of a menu of contracts.
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in the market (t, qk).

The participants on the two sides of a market will pair up randomly. De-

fine the tightness ratio µ ∈ [0,∞] as the ratio between the measure of assets

and that of participating workers in the market. A worker gets matched

with probability η(µ) while the matching probability for an asset owner is

η(µ)
µ . The matching is frictionless, so η(µ) = min{µ, 1}. The payoffs for those

left unmatched are normalized to zero. Hence, the values of outside option

are the cost of participation for the two sides.

Consider a market (t, q) with tightness ratio µ and the distribution of

participating workers is given by r ∈ ∆({pl}Ll=1). By a slight abuse of nota-

tion, I denote the expected surplus for a matched asset owner by

u(q, r, t) :=
∑L

l=1
u(q, pl, t)r(pl).

When participating in this market, the expected payoff for an asset owner

is given by η(µ)
µ u(q, r, t) and that for a worker of type p is η(µ)v(p, q, t). A

worker is said to prefer the contract (t, q) to (t′, q′) if v(p, q, t) ≥ v(p, q′, t′).

He prefers the market (t, q) to (t′, q′) if η(µ(t, q))v(p, q, t) ≥ η(µ(t′, q′))v(p, q′, t′).

The timing of the events is as follows: In the contract posting stage,

the asset owners make their participation decisions simultaneously. At the

beginning of acceptance stage, the workers observe the measure of asset own-

ers across markets. They simultaneously make their participation decisions.

Matches are then formed.

A market (t, q) is active if if it is chosen by some asset owners in equi-

librium. Otherwise, it is inactive. An active market clears if it has a unity

tightness ratio. The workers are said to be rationed in the market (t, q) if

its tightness ratio is below unity. In the opposite case, the asset owners are

said to be rationed.
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2.4.4 Equilibrium definition

In this subsection, I first propose a formal definition of an equilibrium.

I then explain the terminologies and motivate the belief restriction.

In the equilibrium definition, each market (t, q) is associated with a tight-

ness ratio µ(t, q) and a distribution of participating workers r(t, q). r(pl|t, q)

is the proportion of workers of type pl and the support is denoted as Ωp(t, q).

Everyone takes µ and r as given.20 For the active markets, µ and r cap-

ture the participation decision of the workers and asset owners. For an

inactive market (t̃, q̃), µ(t̃, q̃) and r(t̃, q̃) are interpreted as the public belief

regarding the tightness ratio and the composition of participating workers

in that market after an owner of asset quality q̃ deviates to it. This notation

eliminates the need to distinguish between deviations to active markets or

inactive markets by an asset owner. The equilibrium payoffs for both sides

are included in the definition to capture the optimality of the participation

decisions.

Definition. A competitive matching equilibrium consists of the asset own-

ers’ equilibrium payoff U : {qk}Kk=1 → R+, workers’ equilibrium payoff

V : {pl}Ll=1 → R+, asset owners’ contract posting set ψ : {qk}Kk=1 →

Ωt ∪ {p0}, the set of active markets Ψ ⊆ Ωt × {qk}Kk=1, the measure of par-

ticipating workers W : T × P({qk}Kk=1)→ [0, 1], the distribution of workers

r : Ωt×{qk}Kk=1 → ∆({pl}Ll=1) and market tightness µ : Ωt×{qk}Kk=1 → [0,∞]

such that

1. Asset Owners’ Optimal Contract Posting:

20The tightness ratio is often interpreted as the market clearing price of the concerned

market. All parties take µ as given, therefore the environment here is “competitive”.
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For all (t, q) ∈ Ωt×{qk}Kk=1, U(q) ≥ η(µ(t,q))
µ(t,q) u(q, r(t, q), t) with equality

if t ∈ ψ(q).

2. Workers’ Optimal Acceptance:

i)For all (t, q) ∈ Ωt × {qk}Kk=1,

V (p) ≥ η(µ(t, q))v(p, q, t) (2.4)

with equality if p ∈ Ωp(t, q) and µ(t, q) <∞.

ii)µ(t, q) =∞ if V (p) > v(p, q, t) for all p ∈ {pl}Ll=1

3. Active Markets:

Ψ := {(t, q) ∈ Ωt × {qk}Kk=1 : t ∈ ψ(q)} is the support of W.

4. Optimal Participation:

i)U(q) ≥ U and V (p) ≥ V .

ii)
∫

Ωt×{qk}Kk=1
r(pl|t, q)dW ≤ P (pl) with equality if V (pl) > V .

iii)
∫

Ωt
µ(t, qk)dW ≤ Q(qk) with equality if U(qk) > U.

An allocation is denoted by (Wpq, Cpq) ∈ RK×L+ ×RK×L+ , whereWpq(pl, qk)

and Cpq(pl, qk) denote the measure of the workers with type pl and that for

the assets of quality qk assigned to the match (pl, qk) respectively. For a

given equilibrium, the allocation is given by

Wpq(pl, qk) =

∫
Ωt×{qk}

r(pl|t, qk)dW , and

Cpq(pl, qk) =

∫
Ωt×{qk}

µ(t, qk)dW.
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Active Markets ψ(qk) denotes the subset of contracts or outside option

chosen by the owners of asset quality qk. t
′ ∈ ψ(qk) if and only if a positive

measure of asset owners participate in the market (t′, qk). In equilibrium, the

asset owners participate in a market only when they anticipate a positive

measure of workers on the opposite side. Therefore, the set of active markets,

denoted by Ψ, is the union of ψ(qk)× qk across all asset qualities, excluding

the outside option. For any subset of markets A, W (A) denotes the total

measure of participating workers on the equilibrium path. The support of

W must be Ψ by the same reasoning.

For the active markets, r and µ have to be consistent with the partici-

pation decisions for both sides. The feasibility constraints require that for

any pl and qk,

Q(qk) ≥
∫

Ωt

µ(t, qk)dW, and

P (pl) ≥
∫

Ωt×{qk}Kk=1

r(pl|t, q)dW.

The equality must hold for type qk if these asset owners strictly prefer the

active markets to their outside option in equilibrium, and likewise for the

workers’ side. These lead to the optimal participation condition. With

this condition in place, one can recover the participation decisions for both

sides from the market tightness µ|Ψ, the workers’ composition r|Ψ, and the

measure of participating workers W , where g|Ψ denotes the restriction of g

to the set Ψ.

Since workers and asset owners may ensure themselves a payoff of V

and U respectively, so V (p) ≥ V and U(q) ≥ U are called participation

constraints for workers and asset owners.

A worker will never get matched if he unilaterally switches to an inactive

market. So workers only consider deviations to active markets or outside
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option. This is captured by the inequality (2.4) for the active markets and

condition ii) in Optimal Participation. Abusing the terminology, I will also

call this set of conditions as incentive compatibility (IC) condition.

In a worker’s perspective, the set of active markets Λ represents the

competition between the asset owners. The competition from other workers

is summarized by the matching probabilities η(µ(t, q)) in these markets.

Belief restriction Since there are continuums of workers and assets, switch-

ing between active markets or taking outside option by a single party has

negligible impacts. The same is true when a worker unilaterally switches to

an inactive market. The focus here is the deviation to some inactive market

by an asset owner, and her belief about the pool of workers who will, in

response, participate in that market.

The workers’ optimal acceptance condition impose restrictions on this

off-equilibrium-path belief. In particular, the inequality (2.4) is required to

hold for the inactive markets as well. The conditions implicitly require all

parties to share the same belief off the equilibrium path.

Suppose an owner of asset quality q̃ deviates to post a contract t̃. The

belief restriction states that if V (pl) > v(pl, q̃, t̃) for all types, then no workers

will be attracted, and so µ(t̃, q̃) = ∞. No restrictions are imposed on the

r(t̃, q̃), which has no bearing in such case. Now suppose that V (p) < v(p, q̃, t̃)

for a subset of types. Then µ(t̃, q̃) is given by the greatest value of tightness

ratio for which the inequality (2.4) holds for all types of workers. Put it

differently, µ(t̃, q̃) is the lowest matching probability some types of workers

are willing to endure. Furthermore, the support of r(t̃, q̃) contains only those

types. The remaining possibility is that V (p) ≥ v(p, q̃, t̃) holds for all types

of workers and with equality for some type. The inequality (2.4) requires
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that µ(t̃, q̃) ≥ 1. The restriction on r(t̃, q̃) in the preceding discussion still

applies if µ(t̃, q̃) is finite. All results in this study are robust to additional

restrictions on µ(t̃, q̃) in this case.

The belief restriction is interpreted as follows: Suppose an owner of

asset quality q̃ is pondering a deviating offer (t̃, q̃). Workers of type pl is

interested in it if V (pl) < v(pl, q̃, t̃). If multiple workers are interested in the

deviating offer, the competition between them manifests as a reduction in

their matching probability, dissipating any gain from the offer. The worker,

who ends up matching with her, must be among those who are willing to

endure the lowest matching probability.

In the view of a single asset owner, {V (pl)}Ll=1 reflects the competition

from other asset owners of various qualities. This in turns affects the compe-

tition among the workers for the deviating offer, and hence the distribution

of workers it attracts. These are captured by µ(t̃, q̃) and r(t̃, q̃) respectively.

The belief restriction here is often motivated by the “subgame perfec-

tion” in the competitive search literature. Suppose only ε-measure of the

owners of asset quality q̃ deviate to some inactive market (t̃, q̃). Observing

the measure of the asset owners in every market, a worker has to anticipate

his matching probability in each of the markets accordingly. When ε→ 0+,

no types of workers can strictly gain from participating in the market (t̃, q̃)

in the equilibrium of this “subgame”. Otherwise, workers of all such types

will turn up in this market but only ε-measure of them will get matched,

resulting in an expected payoff below their outside option. It follows that

the participating workers in the market (t̃, q̃), if any, are willing to accept

the lowest matching probability. By continuity, the workers’ payoff in the

equilibrium of this “subgame” must converge to V (p). This justifies the
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belief restriction discussed.21

Discussion Gale (1996) considers a continuum of markets indexed by all

possible contracts and defines a notion of competitive equilibrium in the

presence of adverse selection. In his definition of a “refined equilibrium”, the

restriction on the type of informed parties attracted by an off-equilibrium-

path contract is the same as here.22 The author suggests that this belief re-

striction is analogous to the “Universal Divinity” in Banks and Sobel (1988).

Eeckhout and Kircher (2010) define an equilibrium as a pair of mea-

sures of workers and assets across the markets. The set of active markets

and the equilibrium payoffs are then derived from the pair of equilibrium

measures. Eeckhout and Kircher (2010) adopt the same restriction on the

market tightness for inactive markets. Since uninformed parties post prices

in their setting, they leave out the off-equilibrium-path belief on the worker’s

type.

This study focuses on an equilibrium supporting positive assortative

matching. As I will show, the corresponding incentive compatibility con-

dition for workers and optimal participation conditions pin down a unique

pair of measures of workers and assets across the markets for generic distri-

butions of types. The remaining analysis is to verify that both sides have no

profitable deviations and study the comparative statics of the equilibrium

payoffs. To simplify the notation, I define an equilibrium using a set of

equilibrium conditions directly involving the equilibrium payoffs and other

21The case that V (p) ≥ v(p, q̃, t̃) for all types of workers and equality holds for some

type, say p′, is intricate. In such case, the limit µ(t̃, q̃) may depend on the equilibrium

strategies of both the workers and the asset owners. Nevertheless, the inequality (2.4)

remains valid and equality holds for type p′.
22To be precise, Gale (1996) imposes the restriction only on r but not µ.
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equilibrium objects of interest. This equilibrium definition closely follows

that of Guerrieri, Shimer and Wright (2010), which share the same belief

restriction.

I assume a finite distribution of types as a formal analysis for menus

of general contracts with continuums of types invites substantial technical

complications. Therefore, I define an equilibrium with respect to the sup-

port of a given finite distribution of types. The underlying arguments do not

hinge on the assumption of a finite distribution. One may approximate any

given distribution of types with a finite distribution close by. The results

here apply all such finite distributions. On the other hand, the type space

takes the form of an interval. This is because I have to vary the distribu-

tion of types in a continuous manner when establishing the necessity of the

conditions for decentralizing PAM.

2.4.5 Menu of contracts

The baseline setting assumes that an asset owner may post only a single

contract. Now consider a more general setting, in which an asset owner of

qk may post a menu of contracts specifying the asset quality q ≤ qk, the

separation probability π ≤ 1 and the associated payment scheme t. After

the matching stage, the worker selects (π′, q′, t′) from the menu. A lottery of

the stated probability π′ will be conducted publicly. If the lottery outcome

is separation, then two parties will get their unmatched payoff. If the lottery

outcome is continuation, the asset owner will impair the asset quality to q′.

The pair will then perform production and split the output according to the

contract t′. The key departure from the baseline setting is that the term

of the contract, the asset quality and the matching probability for workers,
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after adjusted for the separation probability, can be made contingent on the

worker’s type, subject to additional incentive compatibility conditions.

It is without loss to focus on direct revelation mechanisms (DRM). The

superscript and subscript denote the reported type and true type respec-

tively. T = {ql, πl, tl}Ll=1 denotes a DRM, and satisfies the incentive com-

patibility conditions,

(1− πl)v(pl, q
l, tl) ≥ (1− πl′)v(pl, q

l′ , tl
′
)

for all l and l′. The set of DRM differs across asset qualities, and ΩDRM
T (q)

denotes that for owners of asset quality q.

The continuum of markets is now indexed by (T, q). An owner of asset

quality qk may take her outside option or participate in one of the markets

T ∈ ΩDRM
T (qk). A worker may take his outside option or participate in

any market. It is noteworthy that even for the same menu of contracts T,

(T, q) and (T, q′) are two distinct markets in this formulation. The workers’

participation decisions in these two markets are allowed to differ. It is

straightforward to modify the definition of equilibrium accordingly. The

formal definition is relegated to the appendix.

Lemma 1 states that when the asset owners are allowed to post a menu

of contracts, the set of equilibrium payoffs and allocations weakly expands.

Lemma 1. For every competitive matching equilibrium, there exists an equi-

librium using direct revelation mechanisms which supports the same alloca-

tion and equilibrium payoffs, and the asset owners post only degenerate direct

revelation mechanisms.

This result stems from two features of the current model. First, the

pair of types determines the output distribution once a match is formed.
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Any post-matching or post-contracting messaging is a zero-sum game. An

asset owner may elicit a truthful report by posting a menu of contracts, but

this confers the worker information rent without improving the matching

surplus. Therefore, a menu of contracts is useful only if it affects the workers’

participation decisions before the matching stage.

Second, an asset owner may pair up with at most one worker. Suppose

an asset owner deviates to post a menu of contracts. As she cannot con-

tract with a continuum of workers, the competition between workers drives

down their matching probability to the level that no workers will gain from

the deviating offer. The workers, who are willing to remain despite being

rationed, are indifferent between the deviating offer and some other active

markets. They may be of different types and select a different contract from

the menu. When constructing an equilibrium using DRM, the asset owner

is assumed to believe that only the lowest type among these workers will be

attracted by her deviating offer.23 If she profits from contracting with such

type of workers, she must also profit from posting only the contract chosen

by that type. In the presence of capacity constraint, this single contract will

result in the same market tightness as the menu of contracts and attract

a pool of workers of potentially higher types. Or put it differently, if an

asset owner cannot profit from posting any contracts, deviation to a menu

comprising these contracts neither improves her matching probability nor

the worst admissible belief about her partner’s type. Therefore, the set of

23First, this off-equilibrium-path belief is adopted in constructing the corresponding

equilibrium using DRM but not required for the equilibrium using single contracts.

Second, the described belief is not the most pessimistic one allowed in the equilibrium

definition. A contract chosen by workers of a higher type may provide the asset owner a

lower payment.
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equilibria in the baseline model is robust to the modification that the asset

owners can post a menu of contracts.24

In the baseline setting, owners of the same asset quality may post several

different contracts only if they are indifferent about these contracts in equi-

librium. This is no longer true when the asset owners may post a menu of

contracts. Even though an asset owner prefers some contracts in her posted

menu over the rest, she refrains from posting only her favoured contracts

if doing so will lead to a deterioration of her partner’s type.25 As a re-

sult, allowing menus of contracts potentially expands the set of equilibrium

allocations and payoffs.

For notational simplicity, we restriction our attention to the baseline

setting, where the asset owners post only a single contract, in the subsequent

sections. All the results are robust to the introduction of the menus of

contracts, including the necessary conditions for decentralizing PAM. We

will revisit this issue at the end of Section 2.6.

2.5 First Best Allocation

I now formally define the First Best program. Since participation is

costly, it is without loss to assume that the Utilitarian planner will pool

all workers and assets assigned to the same match (p′, q′) into one meeting

24In fact, the argument underlying Lemma 1 applies to more general forms of menus

beyond the scope of the subsequent analysis.
25This can be prevented by imposing some local sorting condition or stronger belief

restriction. Though the choice of contract affects the matching surplus in Guerrieri, Shimer

and Wright (2010), introducing menus of contracts has no effects in their setting because

of a local sorting condition.
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place. The total surplus for an allocation is then given by

TS(Wpq, Cpq) :=
∑K

k=1

∑L

l=1
E(Y |pl, qk)Wpq(pl, qk)η(

Cpq(pl, qk)

Wpq(pl, qk)
)

−
∑K

k=1

∑L

l=1
[VWpq(pl, qk) + UCpq(pl, qk)] .

Definition. Given the distribution of types (P,Q), a First Best allocation

(WFB
pq , CFBpq ) maximizes the total surplus TS(Wpq, Cpq) subject to the re-

sources constraints:
∑K

k=1Wpq(pl, qk) ≤ P (pl),∀l ∈ [1, L]∑L
l=1Cpq(pl, qk) ≤ Q(qk),∀k ∈ [1,K]

The set of First Best allocations is well-defined and always exists. WFB
pq =

CFBpq because participation is costly. Hence, every active market clears in

an equilibrium supporting a First Best allocation.

The First Best allocation is indeed unique under Assumption (P). Since

the matching surplus is always positive, min
{∑K

k=1 P (pl),
∑L

l=1Q(qk)
}

mea-

sure of agents on both sides participate in matching. The rest take their out-

side options. Only the highest types participate and pair up assortatively

because the matching surplus is strictly increasing and SPM in types.

Definition. Positive Assortative matching (PAM) is an allocation (Wpq, Cpq)

satisfying Wpq = Cpq and for any l′ ≥ 1 and k′ ≥ 1,

∑L

l≥l′

∑K

k≥k′
WFB
pq (pl, qk) = min{

∑L

l=l′
P (pl),

∑K

k=k′
Q(qk)}. (2.5)

Remark 2. Positive Assortative matching is the unique First Best alloca-

tion.

The lowest participating type on each side is referred as the threshold
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type. The threshold types are given by

k = max
k′≥1

{∑K

k=k′
Q(qk) ≥ min

{∑L

l=1
P (pl),

∑K

k=1
Q(qk)

}}
,

l = max
l′≥1

{∑L

l=l′
P (pl) ≥ min

{∑L

l=1
P (pl),

∑K

k=1
Q(qk)

}}
.

Note that k = 1 in the case
∑K

k=1Q(qk) ≤
∑L

l=1 P (pl) and l = 1 if it

is the other way around. For any k ≥ k, define rFBq (qk) = {rFBq (pl|qk)}Ll=1

where

rFBq (pl|qk) =
WFB
pq (pl, qk)∑L

l′=1W
FB
pq (pl′ , qk)

. (2.6)

rFBq (qk) is the distribution of workers that the asset owners of quality qk

match with under the First Best allocation.

2.5.1 First Best decentralization under full information

When the workers’ types are public, the contract posted by an asset

owner not only specifies the contingent payment scheme, but also the type

of worker she commits to pair with. Owners of assets with the same quality

may match with different type of workers, provided that they are indifferent

between these contract offers. In this formulation, (t, p, q) indexes the con-

tinuums of markets. The market (t, p′, q′) only opens to the workers of type

p′ and the owners of asset quality q′. The equilibrium definition in Section

2.4.4 is adapted to this market structure to define an equilibrium under full

information. The formal definition is provided in Appendix A.2.

Proposition 1. Under full information, an allocation is supported by an

equilibrium if and only if it is First Best.

Proposition 1 does not require Assumption (P). It only relies on the

availability of an ordered set of securities, St ⊆ Ωt, so that any fraction of

matching surplus can be transferred between partners.
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Let V FB(pl) = V + ∆V FB(pl) and UFB(qk) = U + ∆UFB(qk), where

∆V FB(pl) ≥ 0 and ∆UFB(qk) ≥ 0 are the shadow prices of the respec-

tive resource constraint in the First Best program. Under Assumption (P),

V FB(pl) and UFB(qk) are monotonic in types, and strictly increasing for

those above threshold types pl and qk. The first order conditions for the

First Best program are given by

V FB(pl) + UFB(qk) ≥ E(Y |pl, qk) (2.7)

with equality if WFB
pq (pl, qk) > 0, and that the corresponding resource con-

straint must bind if V FB(pl) > V or UFB(qk) > U.

A First Best allocation can be decentralized in the following manner.

Asset owners of qk, with a measure of WFB
pq (pl, qk) > 0 will post the con-

tract t(.; slk) for the workers of type pl, where t(.; slk) provides the payoff

u(qk, pl, t(.; s
lk)) = UFB(qk). If an asset owner posts a contract to attract

workers of type pl′ , she has to offer v(pl′ , qk, t
′) ≥ V FB(pl′). This leaves her

at most u(qk, pl′ , t
′) ≤ UFB(qk) under the first order condition in (2.7). In

this equilibrium, a worker is indifferent between any contracts available to

him. Therefore, no one can gain from deviation.

Now consider an equilibrium under full information. Suppose E(Y |pl, qk) >

V (pl) + U(qk), then an asset owner of qk will profit from offering the work-

ers of pl a contract with payoff slightly above V (pl). Her contract will be

accepted and leaves her a payoff above U(qk). Since participation is costly,

rationing necessarily results in E(Y |pl, qk) > V (pl) + U(qk) for any pair of

participants in that market. This immediately implies market clearing in

every active market. If the resource constraint is not binding for some type

of agents, say pl, the decision that some of these workers are taking their

outside option indicates that V (pl) = V . Hence, the equilibrium payoffs and
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allocation for every equilibrium conform with the first order conditions of

the First Best program. It follows that the equilibrium allocation is a First

Best.

Corollary 1. Under full information, the First Best allocation can be de-

centralized using any set of contracts with transfers UFB(qk) for qk above

the threshold type. The equilibrium divisions of the surpluses are invariant

to the set of feasible contracts.

Suppose that the asset owners may post a menu of contracts, which the

contract term is contingent on the type of the worker. The markets are

indexed by the pair of types and the menu of contracts. The meeting is

bilateral. Proposition 1 can be extended to this setting using essentially the

same argument.

2.5.2 First Best decentralization in price competition

I now return to the case of one-sided private information but omit As-

sumption (C) in this subsection. I will consider the class of cash payment,

or fixed prices, which is represented by

tc(y; s) = sE(Y |p, q).

Price competition refers to a setting where the class of cash payment is

feasible.

Proposition 2 states that in price competition, the equilibrium allocation

and payoffs are irrespective of whether the workers’ types are private or

public. Therefore, price competition always leads to the First Best outcome.

This result is not surprising at all. With cash payment, the workers receive

the residual claims, while the asset owners find the belief about the worker’s

39



2.5. First Best Allocation

type irrelevant. As a result, the incentives for both sides are the same as in

the full information case.

Proposition 2. When cash payment is feasible, an allocation is supported

by an equilibrium if and only if it is First Best. Furthermore, the equilibrium

payoffs in this equilibrium are the same as under full information.

Like Proposition 1, Proposition 2 does not hinge on Assumption (P). A

First Best allocation is decentralized in an equilibrium, in which owners of

quality qk post the cash payment UFB(qk). In this equilibrium, a worker

of type pl receives E(Y |pl, qk) − UFB(qk) from a match with an asset of

quality qk. From the first order condition in (2.7), he can earn no more

than his equilibrium payoff V FB(pl) by deviating to other active markets.

As in the full information, this first order condition also rules out prof-

itable deviations on the asset side. The converse is also true. Specifically, if

E(Y |pl, qk) > V (pl) +U(qk), then an asset owner of qk will post a cash pay-

ment slightly above V (pl), earning a payoff above u(qk). We then conclude

that in every equilibrium, the allocation is a First Best and in particular,

all active markets clear.

Consider a generic distribution of types which satisfies
∑K

k=k′ Q(qk) 6=∑L
l=l′ P (pl) for all k′ ≥ 1 and l′ ≥ 1. Under Assumption (P), the first order

conditions of the First Best program uniquely determine the equilibrium

payoffs, and hence the set of prices posted in equilibrium. The asset owners

of the threshold type, if participating, will post the cash payment

UFB(qk) =

 E(Y |pl, q1)− V ,

U,

if
∑K

k=1Q(qk) <
∑L

l=1 P (pl); and

if
∑K

k=1Q(qk) >
∑L

l=1 P (pl).

Let l(k) denote max{l ≥ 1 : WFB
pq (pl, qk) > 0, qk ≥ qk}, the highest

type of workers pairing up with qk ≥ qk in the First Best allocation. l(k)
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is increasing in l under PAM. Generically, the First Best allocation also

involves matches between workers of type pl(k) and the assets of qk+1. From

the first order condition in (2.7),

V FB(pl(k)) = E(Y |pl(k), qk)− U
FB(qk) = E(Y |pl(k), qk+1)− UFB(qk+1),

which allows us to construct the set of posted prices recursively,

UFB(qk+1)− UFB(qk) = E(Y |pl(k), qk+1)− E(Y |pl(k), qk). (2.8)

2.6 Decentralization Of Positive Assortative

Matching

This section studies whether the First Best allocation, defined in the

equality (2.5), can be decentralized in an equilibrium. For exposition, I first

analyze the case that the whole set of feasible contracts is fully ordered.26

Assumption (S). The feasible set of contracts is an ordered set of securities,

Ωt = St.

I will construct a candidate equilibrium in the process. In general, the

expected payment between partners is not separable in the contract term

and the expected output. So I characterize the existence conditions in terms

of the worker’s expected payoff, representing his trade-off between the asset

quality q, the contract term s and his matching probability η(µ). These

conditions apply to any distribution of types. They are Condition Sorting-p

which renders deviations to other active markets unprofitable for the work-

ers, Condition Screening-q and Condition Entry-q which deter deviations by

26Section 2.8 will relax this assumption and discuss what other contracts can be made

feasible without affecting the results.
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the asset owners above and below the threshold quality respectively. In the

subsequent sections, I will explain how they address the potential deviations

by workers and asset owners in the candidate equilibrium. The argument

for necessity is relegated to the appendix. This section culminates with a

unifying sufficient condition, Global ID, for the decentralization of the First

Best allocation. I will evaluate the robustness of the result at the end of the

section.

2.6.1 Sorting of workers

It is instructive to start with the problem of implementing the First Best

allocation, in which the Utilitarian planner decides the contracts for each

type of assets subject to their voluntary participation.27 The implementa-

tion problem highlights the limitations due to the incentive compatibility

constraints for the workers. Its solution then serves as the set of active

markets in the candidate equilibrium supporting the First Best allocation.

All workers, regardless of their types, share the same preference over an

ordered set of securities. The First Best allocation requires market clearing

in every active market, and therefore owners of the same asset quality, if

participating, must post the same contract. Otherwise, either the asset

owners posting the contract with the highest term s will be left unmatched or

the workers will be rationed in the market with the lowest term s. Hence, the

solution to the implementation problem can be written as {(t(.; sk), qk)}k≥k,

where t(.; sk) denotes the contract for the owners of asset quality qk ≥ qk.
27In the market structure here, it is straightforward to implement such policy by re-

stricting the set of markets available to the asset owners.
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A worker has to decide among the active markets and his outside option,

V (pl) = max{V , {v(pl, qk, t(.; sk))}k≥k}.

The implementation of the First Best allocation entails two sets of in-

centive compatibility (IC) conditions on the workers’ side. The first set of

conditions is given by V (pl) = V if
∑L

l=1W
FB
pq (pl, qk) < P (pl), so that these

workers are indifferent about taking their outside options. The second set

concerns the choice of contracts, requiring V (pl) = v(pl, qk, t(.; sk)) if (pl, qk)

is in the support of WFB
pq .

The distributions of workers in the active markets are consistent with the

First Best allocation, which are given by rFBq defined in equality (2.6). Vol-

untary participation of the asset owners requires that u(qk, r
FB
q (qk), t(.; s̃k)) ≥

U for qk ≥ qk. Furthermore u(qk, r
FB
q (qk), t(.; sk)) = U if

∑L
l=1W

FB
pq (pl, qk) <

Q(qk), so that the corresponding active market clears.

Now consider a generic distribution of types with
∑K

k=k′ Q(qk) 6=
∑L

l=l′ P (pl)

for all k′ ≥ 1 and l′ ≥ 1. In this case, the outlined conditions uniquely pin

down the set of contracts offered . Let {(t(.; s̃k), qk)}k≥k denote this set of

contracts.

s̃k is chosen to ensure efficient participation of the threshold type on the

long side, which requires the following indifference condition.28 v(pl, qk, t(.; s̃k)) = V ,

u(qk, r
FB
q (qk), t(.; s̃k)) = U,

if
∑K

k=1Q(qk) <
∑L

l=1 P (pl); and

if
∑K

k=1Q(qk) ≥
∑L

l=1 P (pl).
(2.9)

This avoids excessive participation of the threshold type on the long side by

leaving them indifferent between participation and their outside options.

28In equation (2.9), I assume that the workers receive the entire matching surplus when

both sides are of equal measure. This is innocuous and not required for any of my results.
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Recall that pl(k) denotes the highest type of workers pairing up with

the assets of qk ≥ qk in the First Best allocation. For generic distributions

of types, the First Best allocation also involves matches between workers

of type pl(k) and the assets of qk+1. As a result, these workers must be

indifferent between the market (t(.; sk), qk) and (t(.; sk+1), qk+1), so that the

local upward IC condition must hold with equality.

v(pl(k), qk, t(.; s̃k)) = v(pl(k), qk+1, t(.; s̃k+1)). (2.10)

For k > k, s̃k is defined recursively by the indifference condition in (2.10).29

Remark 3. Give any generic distribution of types, the set of active markets

for any equilibrium supporting the First Best allocation, if exists, is unique

and given by {(t(.; s̃k), qk)}k≥k, where {s̃k}k≥k is determined by equations

(2.9) and (2.10) recursively.

{s̃k}k≥k is a strictly increasing sequence, representing the trade-off be-

tween the asset quality and the contract term facing the workers. More

importantly, {(t(.; s̃k), qk)}k≥k define indirect mappings from the distribu-

tion of types to the equilibrium payoffs, as well as the deviating payoffs for

both sides. Decentralization of the First Best allocation requires the for-

mer to be always above the latter. The subsequent analysis studies how

these mappings depend on the properties of the worker’s and asset owner’s

expected payoff. For non-generic distributions of types, the First Best al-

location can also be supported by a continuum of equilibria, including the

29Equation (2.10) should not be interpreted as binding local upward IC conditions. A

subset of IC conditions is said to be binding only with respect to certain optimization

problems, such as profit maximization or information rent minimization. The equality in

(2.10) holds merely because the First Best allocation involves matches between workers

of type pl(k) and the asset of qk+1 as well as those of qk.
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candidate equilibrium with the active markets {(t(.; s̃k), qk)}k≥k. Hence, all

results apply to any distribution of types.

Condition (Sorting-p). v(p, q, t(.; s)) satisfies Condition Sorting-p if for

any pH > pL, qH > qL and sH > sL satisfying v(pL, qL, t(.; sL)) ≥ V and

u(qL, pH , t(.; sL)) ≥ U , the following holds:

v(pH , qH , t(.; sH)) ≥ (>)v(pH , qL, t(.; sL))

if v(pL, qH , t(.; sH)) ≥ (>)v(pL, qL, t(.; sL)).
(2.11)

And v(p, q, t(.; s)) satisfies Condition strict Sorting-p if (2.11) is replaced by

v(pH , qH , t(.; sH)) > v(pH , qL, t(.; sL)) if v(pL, qH , t(.; sH)) ≥ v(pL, qL, t(.; sL)).

Condition Sorting-p is a single crossing property on the worker’s prefer-

ence over asset quality and contract term, provided that he will get matched.

Consider two contracts (t(.; sH), qH) and (t(.; sL), qL), the line (2.11) states

that a high type worker must strictly prefer the contract (t(.; sH), qH) to

(t(.; sL), qL) if a worker of lower type does so. Its contrapositive requires

that a low type worker must strictly prefer the contract (t(.; sL), qL) to

(t(.; sH), qH) if a worker of higher type does so. Nevertheless, only the con-

tracts that may be posted in the candidate equilibrium have to satisfy this

property. This is achieved by the restrictions v(pL, qL, t(.; sL)) ≥ V and

u(qL, pH , t(.; sL)) ≥ U, which ensure that the outside options for the work-

ers and the asset owners are no more attractive than the contracts.30 Hence,

Condition Sorting-p is weaker than the standard single crossing property,

which applies to the entire domain. Condition strict Sorting-p is a stronger

30For the worker’s type in Ωp(t(.; s̃k), qk), pl(k) plays the role of pH and

u(qk, pl(k), s̃k) ≥ U by construction. Therefore, Condition Sorting-p imposes the restric-

tion u(qL, pH , t(.; sL)) ≥ U.
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version of Sorting-p. It further requires that a high type worker strictly

prefer the contract (t(.; sH), qH) to (t(.; sL), qL) when a worker of lower type

is indifferent between the two.

It is the well-known that the single crossing property in Condition Sorting-

p ensures the set of adjacent upward IC conditions in (2.10) are sufficient

for the workers’ incentive compatibility.

The construction of {(t(.; s̃k), qk)}k≥k implies that the equilibrium pay-

offs are monotonic in types, and hence the participation constraints for the

both sides are satisfied. Therefore, Condition Sorting-p allows the imple-

mentation of the First Best allocation.31 As we will see, it is also necessary

for the implementation for arbitrary distributions of types.32

Lemma 2. Suppose Condition Sorting-p holds. Then the participation con-

straints for both sides and the workers’ incentive compatibility condition are

always satisfied given the set of active markets {(t(.; s̃k), qk)}k≥k.

Recall that in the candidate equilibrium, the distributions of workers in

the active markets are given by

r(t(.; s̃k), qk) = rFBq (qk), qk ≥ qk.

Hence, the equilibrium payoff for the asset owners is given by

U(qk) =

 u(qk, r
FB
q (qk), t(.; s̃k)),

U,

if qk ≥ qk; and

if qk < qk.

On the other side, a participating worker pays the asset owner u(qk, pl, t(.; s̃k))

in expectation, leaving him

V (pl) = E(Y |pl, qk)− u(qk, pl, t(.; s̃k)).

31The argument for Lemma 2 does not hinge on the equality in (2.10) and applies to

non-generic distribution of types.
32The necessity will be established in the proof of Proposition 3.
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In price competition, he pays UFB(qk) in equilibrium. Since u(qk, pl, t(.; s))

strictly increases with the worker’s type, V (pl) must increase at a slower

rate than in price competition, and the opposite is true for the asset side.

In both cases, the equilibrium payoff for the threshold type on the long

side is the same as his outside option, hence

u(qk, pl(k), t(.; s̃k)) ≥ U
FB(qk).

The adjacent upward IC conditions (2.8) and (2.10) in these two cases can

be rewritten as

u(qk+1, pl(k), t(.; s̃k+1))− UFB(qk+1) = u(qk, pl(k), t(.; s̃k))− U
FB(qk).

As the payment made by the worker increases with his type, the workers

all pay more in the candidate equilibrium when they are on the long side.

When the workers are on the short side, those of types above pl(k) must pay

more while their peers of the threshold type are better off.

Remark 4. Comparing with the equilibria under full information or price

competition, in the candidate equilibrium,

1. the equilibrium payoff for the asset owners is higher, and increases

with their types at a faster rate, and

2. the equilibrium payoff for the workers increases with their types at a

slower rate, and is lower for those matching with assets of quality

strictly above the threshold type.

The shift in the equilibrium divisions of the matching surpluses is related

to the linkage principle in DeMarzo, Kremer and Skrzypacz (2005). To see

the connection, consider a setting with a continuum of worker’s types. The
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contract term s̃k+1, and hence the payment received by an asset owner of

qk+1, is determined by the local competition between the workers of pl(k)

and those of slightly higher types for the same assets qk+1. This resembles

an auction of an asset of qk+1. Since the linkage between the worker’s type

and the expected payment he made is greater under a contingent contract

than a posted price, DeMarzo, Kremer and Skrzypacz (2005) states that the

competition between workers will intensify, bidding up the payment to the

asset owner.

What is novel in assortative matching is the additional spillover effect

to the competition for better assets. As the workers of pl(k+1) find the

contract term for assets qk+1 less favorable, they are willing to pay more

for an asset of qk+2, further intensifying the competition for such assets.

This spillover effect keeps growing when moving up to better assets. As a

result, all asset owners are better off in comparison with price competition.33

Section 2.8.1 will generalize this comparative statics for two different sets of

feasible contracts.

2.6.2 Screening by asset owners

In this subsection, we assume that the IC conditions on the workers’ side

are all met and turn to the incentives for the asset side.34 An asset owner

chooses between her outside option and posting a contract. The First Best

allocation can be decentralized if no asset owners may profit from posting a

33Note that the comparison with the full information case is due to the competition

among the asset owners. The auctioneer will extract all the surplus if she knows the

bidder’s types.
34Even if Condition Sorting-p is not met, there are distributions of types for which the

workers’ IC conditions are satisfied in the candidate equilibrium. Condition Sorting-p

plays no role in the analysis in this subsection.
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deviating offer,

U(qk) = max{U, {u(qk, r(t(.; s), qk), t(.; s), µ(t(.; s), qk))}s∈[0,1]}.

Remark 5. An owner of asset qk ≥ qk will never profit from a match with

a worker of type no higher than the lowest type in the support of rFBq (qk).

Let pL denote the lowest type of workers whom the asset owner may pair

with in the First Best allocation. She does not gain from matching with such

workers under full information because the decline in the expected output

outweighs the savings in the payment for the worker,

UFB(qk) ≥ E(Y |pL, qk)− V FB(pL) > E(Y |pl, qk)− V FB(pl).

Remark 4 establishes that the equilibrium payoff for workers increases at a

slower rate in the candidate equilibrium. Hence, the amount of savings is

even lower now,

U(qk) ≥ E(Y |pL, qk)− V (pL) > E(Y |pl, qk)− V (pl).

Yet the asset owner can receive at most E(Y |pl, qk) − V (pl) when pairing

up with a worker of pl. Otherwise, the worker will not accept the offered

contract. Therefore, an asset owner will never attempt to poach weaker

workers! On another hand, poaching a better worker is potentially profitable

because they are willing to accept a lower payoff than in the full information

case.

The worker’s gain from a match v(p, qk, t(.; s)) depends on the worker’s

type. As the quality of her asset is given, an asset owner may screen out bet-

ter workers by varying both the contract term and the matching probability
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for the workers. To induce rationing, the asset owner must accept a lower

term s compensating the workers for their risk of leaving unmatched.35

The distribution of workers attracted by a deviating offer depends on

other options available to them, which are the active markets {(t(.; s̃k), qk)}k≥k
from the preceding section. I now construct the off-equilibrium-path belief in

the candidate equilibrium. For any inactive market (t(.; s′), qk), no workers

will participate if the contract (t(.; s′), qk) provides them no more than their

equilibrium payoffs.36 In this case, r(t(.; s′), qk) can be set arbitrarily, say

the prior distribution for the worker’s side. Suppose certain types of work-

ers strictly gain from the contract (t(.; s′), qk), competition among workers

pushes down the tightness ratio until no one gains from participating in that

market,

µ(t(.; s′), qk) = max{µ′ ≤ 1 : V (p′) ≥ µ′v(p′, qk, t(.; s
′)), p′ ∈ {pl}Ll=1}.

Our equilibrium definition restricts the support of r(t(.; s′), qk) to the work-

ers who are willing to endure the lowest matching probability. In the candi-

date equilibrium, r(t(.; s′), qk) is taken to be degenerate at the lowest type

among these workers,

min{p′ ∈ {pl}Ll=1 : V (p′) = µ(t(.; s′), qk)v(p′, qk, t(.; s
′))}

This is the most pessimistic belief allowed.

I will address the screening incentive for an owner of asset quality qk ≥ qk
and qk < qk in sequence. An owner of asset quality qk ≥ qk will face

competition from other owners of the same or lower asset quality while

35Section 2.6.4 provides further discussion on the screening instrument available to the

asset owner.
36In the candidate equilibrium, I take µ(t(.; s′), q′) = ∞ when V (pl) = v(pl, q

′, t(.; s′))

for some types. All results remain valid if µ(t(.; s′), q′) is finite in such case.
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an owner of asset quality qk < qk will compete only with those of higher

asset quality, in particular the threshold type qk. As we are looking for

necessary and sufficient conditions for arbitrary distributions of types, the

most substantial difference between the two cases lies in the restrictions

imposed on the set of active markets in the candidate equilibrium. Note that

for any asset quality q ∈ (q, q), it is below the threshold type in the First

Best allocation for some distributions of types, while above the threshold

for other distributions of types.

Let us consider the screening problem for the owner of asset quality

qk ≥ qk. Suppose an asset owner posts a contract with s > s̃k, this contract

is dominated by the contract t(.; s̃k) posted by other owners of asset quality

qk. As the active market clears in the candidate equilibrium, the deviating

contract will attract no workers. Now consider a contract with lower s < s̃k,

competition among workers drives down their matching probability in the

market (t(.; s), qk), raising the possibility of screening.

Condition (Strong Screening-q). v(p, q, t(.; s)) satisfies Strong Screening-q

if for any q ∈ (q, q], pH > pL and sH > sL satisfying u(q, pH , t(.; sL)) >

max{U, u(q, pL, t(.; sH))} and v(pL, q, t(.; sH)) ≥ V , then

v(pH , q, t(.; sH))

v(pH , q, t(.; sL))
>
v(pL, q, t(.; sH))

v(pL, q, t(.; sL))
. (2.12)

Condition Strong Screening-q concerns the worker’s preference over the

contract term and his matching probability for the same type of assets.

The inequality (2.12) is an increasing difference (ID) condition (in ratio)

on v(p, q, t(.; s)), under which an increase in the term s reduces the value

of a match for a low type worker proportionally more than a high type

worker. This in turn implies that when facing a trade-off between matching

probability and contract term, a high type worker prefers a higher matching
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probability whereas a low type worker prefers a more generous term. As a

result, rationing can never improve the distribution of workers.

Fix a distribution of types, the contract (t(.; s̃k), qk) corresponds to

(t(.; sH), q) in Condition Strong Screening-q. pL is the lowest type of work-

ers whom the asset owner may match with in the First Best allocation.

An owner of asset quality qk gains from posting a contract with sL < s̃k

only if the deviating offer will be accepted by some workers of pH , satis-

fying u(qk, p
H , t(.; sL)) > U(qk). Condition Strong Screening-q ensures the

workers of pL are willing to endure a lower matching probability in the mar-

ket (t(.; sL), qk), crowding out workers of pH . To see this, the equilibrium

tightness ratio in the market (t(.; sL), qk) must satisfy

V (pL) = v(pL, qk, t(.; s̃k)) ≥ µ(t(.; sL), qk)v(pL, qk, t(.; s
L).

The IC condition for workers of pH and the inequality (2.12) together yield

V (pH) ≥ v(pH , qk, t(.; s̃k)) > µ(t(.; sL), qk)v(pH , qk, t(.; s
L),

so no workers of pH will accept the deviating offer.

Condition Strong Screening-q, though intuitive, is stronger than neces-

sary. The reason is that it fails to capitalize on the presence of workers

matching with assets of other qualities. Condition Screening-q is weaker

than Condition Strong Screening-q in this regard. Condition Screening-q

factors in the possibility that there can be some workers of type pl ≤ pL, who

needs not be participating in the market (t(.; s̃k), qk), are willing to endure

a lower matching probability than those of pH in the market (t(.; sL), qk).

Given the equilibrium payoffs, this happens if and only if

V (pH)

V (pl)
≥ v(pH , qk, t(.; s

L))

v(pl, qk, t(.; sL))
.
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Since the equilibrium payoffs are endogenous, the challenge is to char-

acterize when this will be the case for arbitrary distributions of types and

worker’s expected payoff. PAM and the equalities conditions (2.9) and (2.10)

restrict the type distributions for which (t(.; s̃k), qk) is an active market, and

hence the active markets for assets of lower qualities. Condition Screening-q

exploits this restriction. It is necessary and sufficient for preventing owners

of asset quality qk ≥ qk from deviating in the candidate equilibrium.

Condition (Screening-q). v(p, q, t(.; s)) is said to satisfy Screening-q if for

any q ∈ Ωq, p
H > pL and sH > sL satisfying v(pL, q, t(.; sH)) ≥ V and

u(q, pH , t(.; sL)) > max{U, u(q, pL, t(.; sH))}, then either

v(pH , q, t(.; sH))

v(pH , q, t(.; sL))
≥ v(pL, q, t(.; sH))

v(pL, q, t(.; sL))
, (2.13)

Or the followings hold:

1. v(pL, q, t(.; sH)) ∈ (V ,E(Y |pL, q)− U ], and

2. Let q′ ≤ q and s′ ≤ sH satisfy v(pL, q′, t(.; s′)) = v(pL, q, t(.; sH)). If

v(p′, q′, t(.; s′)) = V or u(q′, p′, t(.; s′)) ≤ U for some p′ < pL, then

v(pH , q, t(.; sH))

v(pH , q, t(.; sL))
≥ v(p′, q′, t(.; s′))

v(p′, q, t(.; sL))
. (2.14)

The inequality (2.13) merely replaces the strict inequality (2.12) in Con-

dition Strong Screening-q with a weak one. In comparison with Condi-

tion Strong Screening-q, Condition Screening-q allows the situation that

the workers of pH are willing to endure a lower matching probability than

workers of pL for the contract term sL in the candidate equilibrium. Such

exception is permitted only under two additional conditions, which jointly

guarantee that there are other workers of type below pL prepared to accept

a lower matching probability than those of type pH .
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The first condition ensures that some workers of types below pL are

participating in other active markets. Recall that the contract (t(.; s̃k), qk)

plays the role of (t(.; sH), q) and pL is the lowest type of workers participating

in this market. For any asset quality q′ below qk, define the contract t(.; ŝ(q′))

such that a worker of type pL is indifferent between the contracts (t(.; s̃k), qk)

and (t(.; ŝ(q′)), q′). Condition Screening-q requires v(pL, qk, t(.; s̃k) > V and

u(q′, pL, t(.; ŝ(q′))) > U for any q′ < qk. By construction of s̃k, the very fact

that some workers of pL are participating in the active market (t(.; s̃k), qk)

in the candidate equilibrium implies that the First Best allocation involves

matches between workers of types below pL and assets of quality below qk.

The second condition ensures that workers of pH will not participate

in the market (t(.; sL), qk). pl is the lowest type among the participating

workers. If workers are on the short side, there always exists q′ < qk such

that V (pl) ≤ v(pl, q
′, t(.; ŝ(q′))) and u(q′, pl, t(.; ŝ(q

′))) ≤ U . Conversely,

there exists q′ < qk satisfying V (pl) = v(pl, q
′, t(.; ŝ(q′))) = V if workers are

on the long side. Given the continuity of the expected payoff, the existence

of q′ is an implication of the workers’ incentive compatibility conditions and

the construction of s̃k. In general, q′ is not in the support of the distribution

of types and q′ 6= qk in particular.37

Under Condition Screening-q, the inequality (2.14) implies that in the

candidate equilibrium,

V (pl) ≤ v(pl, q
′, t(.; ŝ(q′))) < v(pH , qk, t(.; s

L)),

and
V (pH)

V (pl)
≥ v(pH , qk, t(.; s

H))

v(pl, q′, t(.; ŝ(q′)))
≥ v(pH , qk, t(.; s

L))

v(pl, qk, t(.; sL))
.

37The support of type distribution Q is {qk}Kk=1, a finite subset of the types space (q, q],

and q′ ∈ (q, q).
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It follows that workers of pl accept a lower matching probability in the mar-

ket (t(.; sL), qk) than their peers of pH , and hence the asset owner believes

that her deviating offer will attract no workers of pH . Her deviating offer

may be accepted other workers of types above pL but she will not profit

from such match.

Lemma 3. Suppose participation constraints for both sides and the workers’

incentive compatibility condition are met. Under Condition Screening-q, an

owner of asset quality qk ≥ qk cannot profit from posting a contract t(.; s),

where s 6= s̃k, in the candidate equilibrium.

We now proceed to the participation decision of the asset owners of

qk < qk in the candidate equilibrium. For them, only the deviating offers

with sL < s̃k are relevant. Otherwise, the offer will be dominated by the

market (t(.; s̃k), qk). A direct consequence of Condition Sorting-p is that a

deviating offer from an owner of asset quality qk < qk, if attracts any workers

at all, will also interest the workers of the lowest type p1. The construction

of s̃k implies that workers of type p1 pay the asset owners of qk no more

than the latter’s outside option, so they will pay the deviating asset owner

even less under the contract t(.; sL). Consequently, the asset owner cannot

profit from such offer if it will attract only the workers of p1.

Condition Entry-q builds on this observation. It is an increasing dif-

ference condition concerning the worker’s preference over a more generous

contract term and improvements in both asset quality and his matching

probability. Condition Entry-q is necessary and sufficient to render any

deviation by the owners of asset quality qk < qk unprofitable in the candi-

date equilibrium. It shall be stressed that the sufficiency is irrespective of

whether Condition Sorting-p holds.
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Condition (Entry-q). v(p, q, t(.; s)) is said to satisfy Entry-q if for any

pH > pL, qH > qL and sH > sL satisfying
v(pH , qL, t(.; sL)) > v(pH , qH , t(.; sH)), and

v(pL, qH , t(.; sH)) ≥ V , and

u(qL, pH , t(.; sL)) > U ≥ u(qH , pL, t(.; sH)),

(2.15)

then
v(pH , qH , t(.; sH))

v(pL, qH , t(.; sH))
≥ v(pH , qL, t(.; sL))

v(pL, qL, t(.; sL))
. (2.16)

Suppose that workers of some type pH prefer the contract (t(.; sL), qL) to

(t(.; sH), qH). Under these two contracts, a worker of type pH pays more than

the asset owner’s outside option, whereas a worker of some type pL does not.

Then the inequality (2.16) in Condition Entry-q has two implications. First,

workers of type pL also prefer the contract (t(.; sL), qL) to (t(.; sH), qH).38

Second, for any pair of matching probabilities in the market (t(.; sH), qH)

and (t(.; sL), qL), workers of type pL always prefer the latter market to the

former if their peers of type pH do so.

Lemma 4. Suppose participation constraints for both sides and the work-

ers’ incentive compatibility condition are met. Under Condition Entry-q, an

owner of asset quality qk < qk cannot profit from posting any contract in the

candidate equilibrium.

In the candidate equilibrium, pL and (t(.; sH), qH) correspond to p1 and

(t(.; s̃k), qk) respectively. The contract (t(.; sL), qL) is a deviating offer by

an owner of asset quality qL < qk. The construction of s̃k ensures that the

38Though the inequality (2.16) implies the statement (2.11), the former.is only required

to hold for a smaller set of types and contracts. Therefore, Condition Entry-q is consistent

with, but no stronger than, Condition Sorting-p.
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preconditions in (2.15) are always met when the asset owners are on the long

side. Under Condition Entry-q, the workers of p1 are willing to endure a

lower matching probability than any workers whose participation profits the

deviating asset owner. Hence, the asset owners of qL will take their outside

options instead of posting the contract t(.; sL).

It is noteworthy that in both Condition Screening-q and Entry-q, workers

of the threshold type pl, whose exact type depends on the distribution of

types, play a key role in deterring deviations. Given the construction of

the active markets {(t(.; s̃k), qk)}k≥k, a match with them always renders

the concerned deviating offers unprofitable. This explains the sufficiency.

The less obvious part is why the necessary and sufficient conditions pivot

on them, but not their peers above the threshold type. This is because

these workers choose the same contract in the candidate equilibrium for

a larger subset of distributions of types. To see this, consider perturbing

the distribution of types above the threshold types on both sides, the pairs

of threshold types (pl, qk) and the contract term s̃k they choose remain

unchanged while the other active markets {(t(.; s̃k), qk)}k>k and the types

of their participants are potentially being affected. This feature stems from

the fact that the set of active markets is determined recursively from bottom

to top.

2.6.3 Conditions for Positive Assortative Matching

Proposition 3. The First Best allocation can be supported by an equilibrium

for any distribution of types if and only if Condition Sorting-p, Screening-q

and Entry-q all hold.

The preceding discussion covers the sufficiency of the conditions and
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the construction of the candidate equilibrium.39 The proof for necessity

is also constructive. For each of the conditions, I provide a procedure to

construct a generic distribution of types, for which no equilibria can support

the First Best allocation, if the condition is not met. The procedure identifies

the corresponding profitable deviation in the process. This illustrates the

incentives against assortative matching for an individual anticipating that

the actions by the rest are consistent with the First Best allocation.

Given the order structure in the First Best allocation and the prefer-

ence of the two sides, it is well known that some kinds of single crossing

or increasing difference conditions are sufficient for supporting assortative

matching. The novelty here is to characterize the exact conditions for all

distributions of types, which involves two new complications.

The first complication stems from the fact that the expected payoff for

workers is generally non-separable in the contract term and the matching

surplus. As a result, the contract terms cannot be canceled out and will

remain in the necessary and sufficient conditions. A prerequisite for such

conditions is then characterizing the set of active markets and the types of

the participants in the candidate equilibrium for all distributions of types

because any restrictions inconsistent with this characterization are point-

39 Condition Sorting-p, Screening-q and Entry-q should be viewed as three intersecting

subsets in the space of the expected payoff functions v(p, q, t(.; s)). None of the subsets

contains another. Each of them represents the exact subset of functions v for which the

corresponding type of deviations is not profitable in the candidate equilibrium. The three

conditions are separate in the sense that the arguments for sufficiency and necessity for

each of them do not rely on the other two conditions. In this perspective, one may inter-

pret that the intersection of the subsets corresponds to a grand necessary and sufficient

condition, which Condition Sorting-p, Strong Screening-q and Entry-q are its decomposi-

tion.
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less. This characterization must apply to a large class of expected payoff

functions, covering those indeed satisfying the necessary and sufficient con-

ditions.

In the setting here, the expected payoffs v(p, q, t(.; s)) and u(q, p, t(.; s))

are monotonic and continuous in all arguments and there exists pairs yielding

arbitrarily small matching surplus, formally, E(Y |p, q) = U +V in Assump-

tion (P).40 These two properties allow a closed-form characterization of the

set of active markets and the types of associated participants, which is then

incorporated as preconditions. The inclusion of preconditions allows me to

decompose the grand necessary and sufficient condition into three separate

conditions, underscoring the difference in the incentives in supporting PAM

for various groups.

The second complication lies in the analysis of the screening problem for

the uninformed side. The pool of workers attracted by a contract offer in

the candidate equilibrium is determined by the workers’ equilibrium payoff

and their expected payoff function. This seems to suggest that finding out

the exact condition involves characterizing the set of active markets and the

workers’ equilibrium payoff, which are dependent on the expected payoff

40The assumptions provide the following properties:

1. Given any (p, qH , sH) and qL < qH , one can find sL such that v(p, qH , t(.; sH)) =

v(p, qL, t(.; sL)).

2. Given any term ŝ, one finds a term s′ arbitrarily close to ŝ such that there exists

either a pair of types (p′, q′) satisfying v(p′, q′, t(.; s′)) = V and u(q′, p′, t(.; s′)) ≥ U

or a pair of types (p′′, q′′) satisfying v(p′′, q′′, t(.; s′)) ≥ V and u(q′′, p′′, t(.; s′)) < U.

For each pair of types, I then find out the closure of the set of contract terms they

may choose in the candidate equilibrium for some distribution of types using these two

properties.
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itself, for any distribution of types. I circumvent this task by introducing a

hierarchy of preconditions. Given the distribution of types, the set of active

markets must satisfy the equalities (2.9) and (2.10). Exploiting this system

of equalities and PAM, the preconditions are constructed to categorize the

candidate equilibrium into various scenarios. I then characterize the required

property for the expected payoff for each type of scenario.

I now provide a unifying sufficient condition for Condition Sorting-p,

Screening-q and Entry-q. It is an increasing difference condition stating

that when switching to a better asset with a higher contract term s, a

better worker will benefit more or suffer less, in term of either amount or

percentage. Simplicity is its main advantage and allows me to provide suffi-

cient conditions on the outcome distribution and contract space in Section

2.7.

Condition (Global ID). v(p, q, t(.; s)) satisfies Global ID if for any pH > pL,

qH ≥ qL and sH > sL, at least one of the following conditions hold:

v(pH , qH , t(.; sH))−v(pH , qL, t(.; sL)) ≥ v(pL, qH , t(.; sH))−v(pL, qL, t(.; sL)),

Or there exist cH ≥ cL ≥ 0 such that

v(pH , qH , t(.; sH)) + cL

v(pH , qL, t(.; sL)) + cL
≥ v(pL, qH , t(.; sH)) + cH

v(pL, qL, t(.; sL)) + cH
.

And v(p, q, t(.; s)) is said to satisfy strict Global ID if the weak inequali-

ties in the two conditions are replaced with strict inequalities.

Condition Global ID consists of two inequalities, one in level and the

other in ratio. It does not require the same inequality to hold for every pair

of {pH , pL} and {(qH , sH), (qL, sL)}. Instead, one of the inequalities must

hold for any given pair of {pH , pL} and {(qH , sH), (qL, sL)}. In this sense,
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Condition Global ID are not composed of two separate increasing difference

conditions. Furthermore, the values of cH and cL may vary with the pair of

{pH , pL} and {(qH , sH), (qL, sL)}. The constants cH and cL can be thought

to present in the level inequality but cancel out each other.

In the baseline setting, the workers and the asset owners receive nothing

if they participate in matching but end up unmatched. This assumption

is innocuous as it merely normalizes the parties’ payoff with respect to the

event they are left unmatched. Other reference points, the absolute out-

put level and the worker’s initial wealth for examples, are sometimes more

convenient for the purpose of studying primitive conditions on the contract

space and the output distribution. Taking the quantities cH and cL as the

new workers’ payoff when they left unmatched, Condition Global ID applies

to the re-normalized worker’s expected payoff. This property will be helpful

in Section 2.7. The restriction cH ≥ cL reflects the requirement that the

worker’s unmatched payoff is weakly decreasing in his type. The restric-

tion cL ≥ 0 ensures that the worker’s expected payoff is always positive,

otherwise the worker will simply take his outside option.

Proposition 4. Condition Global ID implies all Condition Sorting-p, Screening-

q and Entry-q. Condition strict Global ID implies all Condition Strict

Sorting-p, Strong Screening-q and Entry-q.

It is trivial that the inequalities in Condition Global ID imply Condi-

tion Sorting-p. Neither one of the inequalities is weaker than the other in

supporting Condition Sorting-p. When a worker, be it high type or low

type, finds the contract posted by the owner of higher quality asset more

attractive, then the level inequality is the weaker of the two. The opposite

is true if a worker prefers the contract posted by the owner of lower asset
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quality.

Recall from the previous discussion, Condition Strong Screening-q and

Entry-q concern the circumstance that some workers of pL are participating

in the active market (t(.; sH), qH) in the candidate equilibrium and both

workers of types pH and pL strictly prefer the deviating offer (t(.; sL), qL)

to (t(.; sH), qH).41 In this case, the level inequality implies the strict ratio

inequality with cH = cL = 0, and hence the two mentioned conditions. If

the ratio inequality holds for some pairs of re-normalized expected payoff

v(pH , q, t) + cL and v(pL, q, t) + cH , the worker’s marginal value of matching

probabilities in the two markets also satisfies ratio inequality with cH =

cL = 0. This is because a high type worker receives a lower payoff if he ends

up unmatched.

2.6.4 Discussion

Menu of contracts revisited Proposition 3 applies to the setting in

which the asset owners may post a menu of contracts. The sufficiency di-

rectly follows from Lemma 1 in section 2.4.5. The necessity merits some

discussion. For each of the conditions violated, the proof of Proposition 3

details the construction of a generic distribution of types such that the cor-

responding First Best allocation cannot be supported by any equilibrium in

which the asset owners may post only a single contract. Fix this distribution

of types and let us conjecture an equilibrium which supports the First Best

allocation using menus of contracts. In such equilibrium, the menu posted

by an owner of asset quality qk ≥ qk must include the contract t(.; s̃k) and

potentially some other contracts which are never chosen by workers. The

41Condition Strong Screening-q concerns the case that qH = qL.
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reason is that all workers will pick the same contract from a menu because

their preferences over the contracts are the same.42 As the distribution of

types is generic, the adjacent IC conditions imply that {(t(.; s̃k), qk)}k≥k is

the set of contracts chosen from the menus. This in turn implies that when

an asset owner deviates to post a single contract, the most pessimistic belief

about the pool of workers it attracts is the same as in an equilibrium which

{(t(.; s̃k), qk)}k≥k is the set of active markets. Therefore, the corresponding

deviation identified in the proof of Proposition 3 remains profitable.

Destruction never improves screening This section shows that an

asset owner never benefits from a lottery for separation, or a commitment

to impair her asset under Condition Screening-q and Entry-q.43

Fix an equilibrium and consider two inactive markets (1, q′, t′) and (π′, q′, t′)

with π′ < 1. Suppose the market (π′, q′, t′) is believed to attract some

workers. As these workers are willing to endure the matching probability

(1− π′)η(µ(π′, q′, t′)), they must also accept the same matching probability

in the market (1, q′, t′), so

(1− π′)η(µ(π′, q′, t′)) = µ(1, q′, t′).

It follows that any worker will anticipate the same payoff from these two

inactive markets, so the sets of admissible beliefs regarding the distribution

42Asset owners of the same quality may still post different menus. Since the equilibrium

supports the First Best allocation, workers face no variation in their matching probabilities

in the active markets. They must pick the same contract in every menu for a given asset

quality.
43According to Lemma 1, it is without loss to focus on the deviations to post a single

contract. Therefore, the candidate equilibrium supporting the First Best allocation in

Proposition 3 is robust to the introduction of menus of contracts specifying the separation

probability π ≤ 1, the asset quality q ≤ qk, and the contingent payment t.
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of worker’s type are the same for the two markets. An exogenous reduction

in the matching probability for workers will not improve screening. Never-

theless, the separation lottery exposes the asset owner to a higher risk of

ending up unmatched. We can exclude such lottery from our consideration,

irrespective of Condition Screening-q and Entry-q.

We now turn to the option of asset impairment. Under Condition Screening-

q and Entry-q, an asset owner cannot benefit from impairing her asset even

when it is costless. The key reason is that the equilibrium payoff for an asset

owner is increasing in her asset quality in the candidate equilibrium. Sup-

pose, to the contrary, that for some distribution of types, an asset owner of q
k̂

gains from posting a contract (t(.; s′), q′) in the candidate equilibrium, where

q′ ∈ [qk, qk̂). {qk}
K
k≥k denotes the set of asset qualities. Let q′ ∈ [qk′ , qk′+1),

then we modify the distribution of types by adding the same measure of

assets q′ and workers of type pl(k′). This construction leads to the following

properties for the resulting candidate equilibrium. First, the equilibrium

payoffs for workers stay unchanged, so does the off-equilibrium-path belief

for the inactive market (t(.; s′), q′) in the new candidate equilibrium. Second,

the owners of the asset qualities {qk}Kk≥k see no change in their equilibrium

payoff. Third, the new candidate equilibrium retains the same set of ac-

tive markets {(t(.; s̃k), qk)}k≥k and includes a new active market (t(.; s̃′), q′),

where s̃′ satisfies v(pl(k′), q
′, t(.; s̃′)) = V (pl(k′)). Note that the owners of as-

set quality q′ earn less than their peers of asset quality q
k̂
. Hence, an owner

of asset quality q′ must profit from posting t(.; s′) in the new candidate equi-

librium. This is impossible under Condition Screening-q. Condition Entry-q

rules out the case q′ < qk with a similar argument.44 Therefore, an asset

44This covers the case that the owner may reduce the quality of her asset to a level

below q if Condition Entry-q is extended to hold for qL ≤ q.
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owner will never profit from a lower asset quality.

It should be highlighted that Proposition 3 is robust only to the com-

mitments for deterministic impairment of the asset quality. The result does

not apply to the setting, where asset owners may post joint lotteries over

the asset quality and the contract term. For example, an asset owner may

post a lottery over (qH , sL) and (qL, sH), where qH > qL and sL ≤ sH . In

the context of the above argument, this joint lottery corresponds to side

payments between owners of assets qH and qL. Condition Screening-q and

Entry-q are silent on this example as they apply only to cases that a higher

asset quality is accompanied with a higher term s. The underlying reason is

that the analysis focuses on the workers’ preference over the asset quality,

the contract term and his matching probability, but not the joint lotteries

over them.

Properties of other equilibria

Equilibrium rationing Suppose that in some active market (t(.; s), qk),

workers are being rationed. A contract of a slightly higher term sH will inter-

est these workers. Among those are interested, Condition Strong Screening-

q implies that the types of workers attracted to the contract t(.; sH) are

no lower than those of the participants in the market (t(.; s), qk). An asset

owner will profit from the contract t(.; sH) as it provides a greater division

of surplus and attracts potentially better workers.

Lemma 5. Under Condition Strong Screening-q, workers are never rationed

in any equilibrium.

In contrast, asset owners may be rationed in equilibrium. Define Ip(t, q) :=

{p ∈ {pl}Ll=1 : V (p) = η(µ(t, q))v(p, q, t)}. Ip(t, q) denotes the types of work-
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ers, who obtain their equilibrium payoff if they participate in the market

(t, q). It is non-empty for any active market. Ip(t, q) and Ip(t, q) denote the

lowest and highest type in Ip(t, q).

Suppose that there is an active market (t(.; s′), qk) with µ(t(.; s′), qk) > 1.

Consider a contract t(.; sL), where sL < s′. The incentive compatibility con-

ditions and Condition Strong Screening-q jointly imply that workers of types

greater than Ip(t(.; s
′), qk) will never accept such contract. Therefore, the

asset owners have to trade off between a jump in matching probability and

a less favorable distribution of partner’s type. When sL < s′ is sufficiently

close to s′, only workers of type Ip(t(.; s
′), qk) will be attracted. Such local

deviation is the most profitable one among all contracts in St. It imposes an

upper bound on the tightness ratio through the following condition,

U(qk) =
η(µ(t(.; s′), qk))

µ(t(.; s′), qk)
u(qk, r(t(.; s

′), qk), t(.; s
′)) ≥ u(qk, Ip(t(.; s

′), qk), t(.; s
′)).

(2.17)

Note that the market (t(.; s′), qk) must clear if Ip(t(.; s
′), qk) contains a single

type only.

Assortative matching Lemma 5 has strong implications for the struc-

ture of an equilibrium. Since the workers are never rationed in equilibrium,

the properties of v(p, q, t(.; s)) determine their choices of active markets. The

first implication is that in any equilibrium, owners of the same asset quality,

if participating, must post the same contract and the choice of contract term

s increases with their asset quality. Second, workers’ participation and equi-

librium payoff are monotonic in their types. Now consider an equilibrium

with active markets (t(.; sH), qH) and (t(.; sL), qL). Condition Sorting-p al-

lows the possibility that a high type worker participates in (t(.; sL), qL) while

a low type worker participates in (t(.; sH), qH). This occurs when these two
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types of workers are indifferent between the two active markets. Condition

Strict Sorting-p rules out this case entirely. More importantly, Condition

Strict Sorting-p implies that the asset owners’ participation decision and

the equilibrium payoff are monotonic as well. To see this, suppose that

(t(.; sL), qL) is an active market and pH is the highest type of participat-

ing workers. Under Condition Strict Sorting-p, an owner of asset quality

qH > qL can find a contract t(.; sH), which gives workers of pH a payoff just

above what they may receive from the contract (t(.; sL), qL) and attracts no

workers of lower types. By posting this contract, her payoff will be strictly

greater than that of the owners of qL.

Lemma 6. Under Condition Strict Sorting-p and Strong Screening-q, every

equilibrium has the following properties:

1. Workers are not rationed.

2. Owners of the same asset quality, if participating, post the same con-

tract.

3. Participation on both sides is monotonic in type.

4. The equilibrium payoffs are monotonic in types for both sides.

5. The types of workers matching with better assets must be no lower than

those matching with assets of lower qualities.

The characterization in Lemma 6 states that for any equilibrium, the

set of active markets takes the form {(t(.; sk), qk)}k≥k̂ , where q
k̂

is the

lowest asset quality among the participating asset owners. The types of

workers participating in an active market Ωp(t(.; sk), qk) are increasing in
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the asset quality. Furthermore, only the highest type of workers in the

market (t(.; sk), qk) may also participate in the market (t(.; sk+1), qk+1).

Therefore, Lemma 6 implies that under Condition Strict Sorting-p and

Strong Screening-q, rationing of the asset owners is the only form of in-

efficiency in the set of equilibrium allocations. Together with Condition

Entry-q, a continuum of such equilibria always exists for generic finite dis-

tributions of types.45 They can be constructed by perturbing the candidate

equilibrium.

Under Condition Strict Sorting-p and Strong Screening-q, the equilib-

rium characterization in Lemma 6 allows us to construct a upper bound

over
u(qk,Ip(t(.;s′),qk),t(.;s′))
u(qk,Ip(t(.;s′),qk),t(.;s′)) for every active market. The inequality (2.17) then

yields the following bound on the tightness ratio of an active market,

µ(t(.; s′), qk) ≤ max
{u(qk, plH , t(.; s

′))

u(qk, plL , t(.; s
′))

:

lH∑
l′=lL

P (pl′) ≤ Q(qk), L ≥ lH ≥ lL ≥ 1
}
.

Note that when the distribution of types converges to a continuous one,

plH − plL → 0 and hence µ(t(.; s′), qk)→ 1.

Belief restriction In the equilibrium definition, a deviating offer will only

attract the types of workers who see the greatest proportional increase in

their payoffs if they get matched. The belief restriction here is the same as

in Guerrieri, Shimer and Wright (2010), who consider homogeneous princi-

pals.46 With heterogeneity on both sides, this belief restriction is crucial for

the decentralization of assortative matching. It establishes a linkage between

45Lemma 6 is silent on the existence of equilibria. The inclusion of Condition Entry-q

ensures the existence of the candidate equilibrium.
46DeMarzo, Kremer and Skrzypacz (2005) also adopts a symmetric belief refinement

when the informed party chooses the contract.
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the complementarity in types and the pool of workers attracted by a deviat-

ing offer. Suppose that in the candidate equilibrium, an asset owner intends

to poach workers from her peers of higher asset qualities. The workers ac-

cepting the deviating offer will suffer a reduction in the asset quality. The

belief restriction implies that no workers of higher types will be attracted if

they derive a sufficiently large gain from the complementarity in types. The

exact requirement is captured by Condition Screening-q and Entry-q.47

2.7 Conditions On Contracts And Production

Complementarity

This section discusses primitive conditions on the ordered set of securi-

ties and the conditional distribution of output, which give rise to Condition

Global ID. The classes of output distributions we consider conform with As-

sumption (P). The type space and the values of outside options are assumed

to satisfy E(Y |p, q) > V + U ≥ E(Y |p, q).48

For notational simplicity, assume that the output is continuously dis-

tributed on an interval with a lower bound y and an upper bound y ∈ (y,∞].

Abusing the notation, Ωy = [y,∞) if y =∞. F (y|p, q) and f(y|p, q), respec-

tively, denote the conditional distribution function and density function for

47Consider an alternative belief restriction. Suppose the asset owner believes that any

workers who benefit from the deviating offer will accept it, and the distribution of her

partner’s type is proportional to the prior distribution. In this case, the significance of

complementarity in types diminishes in the screening problem for the asset side. It is

straightforward to construct a distribution of types for which assortative matching cannot

be decentralized.
48If V + U > E(Y |p, q), the type space [p, p]× [q, q] is truncated to [p̃, p]× [q̃, q], where

E(Y |p̃, q̃) = V + U. The choice of the pair (p̃, q̃) is not unique.
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Y |(p, q). The results in this section can be extended to settings with discrete

output distributions readily.

The joint conditions on the feasible contracts and the distribution of

output are necessarily intertwined. I begin with conditions allowing decen-

tralization of the First Best allocation if the assets are all homogeneous. For

each of these conditions on the contingent contracts, I then proceed to the

sufficient condition on the output distribution leading to Condition Global

ID.49

Assumption (MLRP). Y |(p, q) satisfies strict conditional Monotone Like-

lihood Ratio Property(MLRP). Given any asset quality q ∈ [q, q], for all

yH > yL and pH > pL,

f(yH |pH , q)
f(yL|pH , q)

>
f(yH |pL, q)
f(yL|pL, q)

. (2.18)

As is well known, a higher output level is a favorable signal for the

worker’s type under Assumption (MLRP), regardless of the asset quality.50

Remark 6. When the assets are homogeneous, there exists an equilibrium

supporting the First Best allocation if either of the following conditions hold:

1. y − t(y; s) is SPM, or

2. y − t(y; s) + c is non-negative and log-SPM for some constant c ≥ 0.

In the case of homogeneous assets, Remark 1 already ensures monotonic

participation on the workers’ side in any equilibrium. The First best allo-

cation, which is still defined by the equality (2.5), can be decentralized if

49This approach rests on the assumption that uninformed parties of all types have access

to the same set of feasible contracts.
50The strictness is not needed in Section 2.7. However, it will be required for Lemma 9

in Section 2.8.
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a contract of a higher term s requires not only a greater expected transfer

from the worker but also his payoff to be increasing with the output at a

faster rate, either in level or percentage. Under Assumption (MLRP), a

reduction of the term always benefits a low type more than a high type,

preventing the asset owners from cream skimming. In the view of the un-

informed side, screening and increasing transfer complement each other for

such set of contracts. Formally, either of the conditions in Remark 6 ensures

that Condition Global ID holds for qH = qL and cH = cL = c.

Consider the condition y − t(y; s) is SPM. When the contract term s

increases, the worker has to pay the asset owner more on average but the

contingent payment increases with the output at a slower rate. A conse-

quence of these two requirements is that the worker must make a higher

payment at the lowest output level under a contract of a higher term s.

Presence of wealth constraint or limited liability may prevent the worker

from making such a payment, and hence the SPM of his payoff as well.

Log-SPM of y−t(y; s)+c is a promising alternative in this regard. It can

be met even if all contracts specify the same payment at the lowest output

level, and thus circumvents the wealth constraint. Log-SPM of y− t(y; s)+c

is a weaker condition than SPM of y − t(y; s) if the contingent payment

uniformly increases with the contract term s at all output levels. In general,

neither one of them implies the other because how t(y; s) changes with s is

indefinite. As we shall see, a stronger notion of production complementarity

is, nonetheless, needed for Condition Global ID under log-SPM of y−t(y; s)+

c.
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2.7.1 Applications to standard securities

The classes of standard securities introduced here satisfy Assumption

(C). They also satisfy the definition of an ordered set of securities when

indexed by appropriate contract terms. Note that the two conditions in

Remark 6 concern the worker’s payoff, which depends on both the initial

division of output and the contract between the two parties. As in the

baseline setting, we first consider the convention that the worker receives the

entire output. The output level is normalized to be non-negative throughout

this section, y ≥ 0.

I first discuss equity, debt and call option. These securities have the

additional properties that i) t(.; sH) ≥ t(.; sL) if sH > sL, and ii) y ≥

t(y; s) ≥ 0. Thus, log-SPM of y − t(y; s) + c is a weaker requirement than

SPM.

Example (Equity). An equity contract is represented by t(y) = αy. It can

be indexed by the output share α = s so that

y − tE(y; s) = (1− s)y.

When the output level increases, the worker’s payoff increases by the same

percentage across all equity contracts. However, the increase in level is

smaller if the asset owner is paid a greater share of output. Therefore,

y − tE(y; s) is non-negative and log-SPM but not SPM. In fact, Global ID

holds for equity contract whenever the expected output exhibits log-SPM.

Example (Debt). A debt or bond is represented by t(y) = min{y, d}. It is

indexed by the principal amount d = sŷ such that

y − tD(y; s) = max{0, y − sŷ}.
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ŷ can be simply set as y if y is finite. Otherwise, ŷ has to be large enough

so that E(min{Y, ŷ}|p, q) ≥ E(Y |p, q)−V . This ensures v(p, q, tD(y; 1)) ≤ V .

Under the debt contract, the worker keeps the residual output after pay-

ing out the principal amount in full. For any output level above the principal

amount, the worker’s payoff increases with the output by the same amount.

Nevertheless, the percentage increase will be greater if he pays a larger prin-

cipal amount. Formally, y − tD(y; s) is non-negative and log-SPM but not

SPM.

Example (Call option). A call option is represented by t(y) = max{y−c, 0}.

It is indexed using the strike price c = (1− s)ŷ, so that

y − tCO(y; s) = min{(1− s)ŷ, y}.

Again, ŷ is chosen so that E(min{Y, ŷ}|p, q) ≥ E(Y |p, q) − U , ensuring

U(q, p, tCO(y; 0)) ≤ U.

When granting the asset owner a call option, the worker receives the

output only up to the strike price of the option. His residual claim ceases

to increase with the output when the latter exceeds the strike price. When s

increases, the worker’s residual claim starts flattening out at a lower output

threshold, and so increases at a slower rate with the output level. Therefore,

y − tCO(y; s) is neither log-SPM nor SPM. So the results in the subsequent

section do not apply to the case that the uninformed parties are compensated

using contracts within the class of call options.

In the baseline setting, the informed party receives the output and makes

payment to the uninformed party. In a number of applications such as

executive compensation, the flow of payment goes the other way around and

the contingent payment is implemented using a different class of securities.
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As an example, consider in our setting that the worker takes a debt of

principal d from the asset owner in exchange for the use of the asset. The

ex-post surplus division in this case coincides with the arrangement that the

asset owner is entitled to the output and compensates the worker with a call

option of strike price d. The previous discussion applies after re-indexing

the class of call option as follows,

tCO(y; 1− s) = max{0, y − sŷ} = y − tD(y; s).

Now suppose that the asset owner is entitled to the output and enjoys

limited liability. If the asset owners compete for workers by offering fixed

wage contract w, this compensation scheme is equivalent to the arrangement

that the worker buys out the asset by granting its owner a call option with

strike price w. From the preceding analysis, Condition Global ID is not met

in general. This problem is more acute for small business and startups, who

are likely to liquidate in case of a low revenue.

Example (Mixture of cash and standard securities). Another popular ar-

rangement in practice is a mixture of cash and standard securities such as

equity or bond. In this case, the contract can be indexed by the portfolio

weight of cash payment. Fix a particular securities t̂(y) satisfying Assump-

tion (C), we can define an ordered set of securities as follows

tMIX(y; s|t̂) = s[E(Y |p, q)− V ] + (1− s)[t̂(y)− E(t̂(Y )|p, q) + U ].

s[E(Y |p, q)− V ]− (1− s)[E(t̂(Y )|p, q)−U ] is interpreted as the amount

of up-front cash payment and the rest is the security portion of the offer. It

is straightforward to verity that tMIX(y; s|t̂) satisfies Assumption (C) and

the conditions for an ordered set of securities. Since the security portion
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decreases with the term s, a contract of high term s renders the worker’s

payoff more sensitive to the output level. Hence, y − tMIX(y; s|t̂) is SPM.

So far, we have restricted attention to the circumstances, that the entire

output produced by the match is contractible. The result can also be applied

to another extreme, which the outcome is non-contractible and the parties

exchange cash payment. Let ĥ(y) and y− ĥ(y) denote the non-contractible,

possibly non-monetary, payoff for the asset owner and worker in the absence

of transfers respectively. Mailath, Postlewaite and Samuelson (2013) term

the pair E(ĥ(Y )|p, q)−U and E(Y −ĥ(Y )|p, q)−V as premuneration values.

As the asset owners post prices, we define an ordered set of securities as

tPRE(y; s|ĥ) = ĥ(y)− E(ĥ(Y )|p, q) + U + s[E(Y |p, q)− V − U ].

If ĥ satisfies Assumption (C), then tPRE(y; s|ĥ) satisfies Assumption (C)

and the conditions for an ordered set of securities. Lemma 7 applies because

y − tPRE(y; s|ĥ) is SPM.

2.7.2 Conditions on production complementarity

Condition (Survival-SPM). For any y ∈ (y, y), F (y|p, q) is strictly de-

creasing and weakly pairwise submodular in p and q, and F (y|p, q) is strictly

pairwise submodular in p and q for some subinterval of (y, y).

Condition Survival-SPM is stronger than supermodularity of expected

output. The interpretation of Condition Survival-SPM is that when there

are two types of agents on both sides, with types {pH , pL} and {qH , qL}, the

distribution of total output under positive assortative matching F.O.S.D.

that under negative assortative matching.
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Lemma 7. Condition Global ID holds if y − t(y; s) is SPM and Condition

Survival-SPM holds.

The SPM of y−t(y; s) implies that v(p, q, t(.; s)) is pairwise SPM in (p, s)

while Condition Survival-SPM establishes that v(p, q, t(.; s)) is pairwise SPM

in (p, q). Hence, the level inequality in Global ID always holds.51

To save on space, ∨ and ∧ are used to denote maximum and minimum

operator respectively.

Condition (Survival-logSPM). Given any pH ≥ pL and qH ≥ qL, for any

y and y′ in Ωy,

[1− F (y ∨ y′|pH , qH)][1− F (y ∧ y′|pL, qL)] (2.19)

≥ [1− F (y|pL, qH)][1− F (y′|pH , qL)],

with strict inequality if y 6= y′ and (pH , qH) 6= (pL, qL).

Compared to strict log-SPM of [1−F (y|p, q)], Condition Survival-logSPM

is slightly weaker as it does not require strict pairwise log-SPM in (p, q).

On the other hand, Condition Survival-logSPM is stronger than Condition

Survival-SPM.52

Under Condition Survival-logSPM, conditioning on the event that the

output is above some level y > y, the public belief regarding the type of the

workers will be higher in F.O.S.D. sense if he is operating with an asset of

higher quality.53 In this sense, pairing up with an asset of higher quality

51Lemma 7 does not require Assumption (MLRP).
52Note that by taking y = y and y′ = y, (2.19) implies that F (y|p, q) is strictly decreasing

in p and q. Take y′ = y, [1− F (y|p, q)] is strictly increasing and log-SPM in (p, q). Thus,

it must be strictly pairwise SPM in (p, q).
53Abusing the notation, let P denote the random variable for the worker’s type. For

any y ∈ (y, y) and qH > qL, the ratio Pr(Y≥y,P≤p′|qH )

Pr(Y≥y,P≤p′|qL)
is increasing in p′. Thus Pr(P ≤

p′|Y ≥ y, qH) ≤ Pr(P ≤ p′|Y ≥ y, qL).
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makes a high output level an even more favorable signal for the worker’s

type.

Notice that the expected output can be written as

E(Y |p, q) = y +

∫ y

y
1− F (y|p, q)dy.

Since log-SPM for a non-negative function is preserved under integration,

the expected output must be log-SPM under Condition Survival-logSPM.

Lemma 8. Condition Global ID holds if Condition Survival-logSPM holds

and y − t(y; s) + c is non-negative and log-SPM for some constant c ≥ 0.

Condition Survival-logSPM, together with Assumption (C), ensure that

v(p, q, t(.; s)) + c is pairwise log-SPM in (p, q). Assumption (MLRP) implies

that v(p, q, t(.; s)) + c is pairwise log-SPM in (p, s). These two properties

yield the desired condition.54

Under Condition Survival-SPM and Survival-logSPM, production com-

plementarity manifests as a shift in the entire output distribution toward the

right. The worker’s payoff is always increasing with the output level because

of Assumption (C). So a worker benefits more from an improvement in the

asset quality than his peers of lower types under the same contract. The

conditions in Remark 6 further imply that the contracts posted in the can-

didate equilibrium amplifies such difference between workers’ types. This is

because the owners of higher asset quality demand a higher contract term,

rendering the worker’s payoff increasing with the output at a higher rate.

In general, the form of the production complementarity must align with

the worker’s compensation, improving the odds of the states in which he

54For the function v(p, q, t(.; s)) + c, pairwise log-SPM in (p, s) is weaker than SPM in

(p, s), whereas pairwise log-SPM in (p, q) is stronger than SPM in (p, q). This explains

why Lemma 8 requires a stronger condition on the output distribuition.
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is generously rewarded. As a result, a worker enjoys a greater raise in

expected payoff for a better partner than his peers of lower types for the

same contract. The catch is that such differential among workers must be

preserved after accounting for the difference in the contracts offered. This

requires further alignment between the forms of feasible contracts and the

form of production complementarity.

The well-known result that multiplication and integration preserve log-

SPM for non-negative functions may be directly applied to establish a suf-

ficient condition for log-SPM of v(p, q, t(.; s)), and hence Condition Global

ID. It is interesting to compare Lemma 8 with such condition. For [y −

t(y; s) + c]f(y|p, q) to be log-SPM in all arguments, the sufficient condition

on the conditional distribution is given by

f(y|pL, qH)f(y′|pH , qL) ≤ f(y ∨ y′|pH , qH)f(y ∧ y′|pL, qL). (2.20)

When integrating the conditional density functions over their common sup-

port, both sides of the inequality will be unity. This turns out to impose

strong restrictions on the conditional density functions satisfying the in-

equality (2.20).

Remark 7. Suppose a conditional density function f(y|p, q) satisfies As-

sumption (MLRP) and the inequality (2.20), then f(y|p, q) is pairwise log-

modular in (y, q) and (p, q).

The set of conditions in Remark 7 is far more demanding than Condition

Survival-logSPM. The monotonicity of the worker’s payoff is instrumental

for the weaker condition required in Lemma 8.

Examples of parametric distribution
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Example (Bernoulli distribution). Suppose Y |(p, q) is a Bernoulli distri-

bution with support {y, y}. Assumption (P) and (MLRP) hold if and only

if Pr(Y = y|p, q) is strictly increasing and strictly SPM. This already im-

plies Condition Survival-SPM. Condition Survival-logSPM holds if and only

if strict SPM is strengthened to log-SPM.

Example (Exponential distribution). Suppose Y |(p, q) follows exponential

distribution with mean µ(p, q), then Assumption (P) and (MLRP) hold if

and only if µ(p, q) is strictly increasing and strict SPM. Both Condition

Survival-SPM and Survival-logSPM are equivalent to the requirement that

µ−1(p, q) is submodular.

Assumption (MLRP) and Condition Survival-SPM and Survival-logSPM

are preserved under monotonic transformation of random variable Y . This

observation leads to the following example.

Example (Transformed geometric distribution). {∆n}n∈N is a non-negative

deterministic sequence. {Xn}n∈N is a sequence of non-degenerate Bernoulli

random variables with support {0, 1} and {Xn}n∈N|(p, q) are independent.

Define Y = y +
∑M

n=1 ∆n where M = min{n ≥ 1 : Xn = 0}. Suppose

Pr(Xn = 1|p, q) = G(p, q;n) is strictly increasing in (p, q), then

1. Assumption (MLRP) is met if G(pH ,q;n)
1−G(pH ,q;n)

1−G(pL,q;n)
G(pL,q;n)

is weakly decreas-

ing in n for any q and pH > pL.

2. Condition Survival-SPM is satisfied if G(p, q;n) is strictly SPM in

(p, q) for all n.

3. Condition Survival-logSPM is satisfied if G(p, q;n) is log-SPM in (p, q)

for all n.
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The condition for Assumption (MLRP) is always met if G(p, q;n) can

be written as Gpq(p, q)Gn(n) where Gn(n) is weakly decreasing.

The output distribution can be interpreted as follows: Once a match is

formed, a base output y is produced immediately. A sequence of production

stages has to take place in succession. ∆n and G(p, q;n) are the output

and probability of success for the n-th stage. A failure is irrevocable and

terminates the production. There may be a cap on the number of possible

production stages, say N. This is accommodated by letting ∆n = 0 and

G(., .;n) = G(., .;N) for n > N. A continuous distribution counterpart for

the example of Transformed geometric distribution can be obtained readily.

2.8 Feasible Contracts And Comparative Statics

This section studies how a change in the feasible set of contracts will

affect the equilibrium allocation, and the divisions of the matching surplus.

I will compare the contracts in term of their steepness, a partial order based

on DeMarzo, Kremer and Skrzypacz (2005).

Definition. Given Y |(p, q), a contract ts is steeper than another contract

tf if E(ts(Y )|p′, q′) = E(tf (Y )|p′, q′) for some (p′, q′) ∈ [p, p] × [q, q], then

for all pH > p′ > pL, E(ts(Y )|pH , q′) > E(tf (Y )|pH , q′)

E(ts(Y )|pL, q′) < E(tf (Y )|pL, q′)
.

Furthermore, tf is said to be flatter than ts.

In essence, a contract is steeper if it costs more to workers of higher

types but less to those of lower types, regardless of the asset quality. We

say a single contract t is steeper(flatter) than a set of contracts Φt if t is
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steeper(flatter) than every contract from Φt. Likewise, a set of contracts is

steeper(flatter) than another set of contracts if every member of the former

is steeper(flatter) than every member of the latter.

Lemma 9 (DeMarzo, Kremer and Skrzypacz, 2005). A contract ts is steeper

than another contract tf if there exists some y∗ ∈ (y, y) such that ts(y) ≥

tf (y) if y > y∗ and ts(y) ≤ tf (y) if y < y∗, with strict inequality for some

interval in (y, y).

Under Assumption (MLRP), a higher output level is a favorable signal

for the worker’s type. Lemma 9 states that a contract ts is steeper than a

contract tf if the former cuts the latter from below.55 For examples, Lemma

9 can be applied to rank the classes of standard securities. Call option is the

steepest, followed by equity. Equity is steeper than debt. Cash is the flattest

under Assumption (C).

The analysis of the comparative statics consists of two parts. The first

part considers the case that only an ordered set of securities is feasible and

it is replaced by another ordered set. I study the changes in the equilibrium

divisions of the surplus, provided that the equilibrium allocation remains

First Best. This comparative statics is driven by the sorting of the work-

ers. It applies whenever the conditions in Section 2.7 are met. The second

part relaxes Assumption (S) and considers the introduction of new contracts

into the feasible set. I study when the equilibrium allocation and payoffs

will remain unchanged. Such invariance stems from the screening consider-

ations by the asset side. This result also applies when contracts are made

unavailable.

55An implication of Assumption (C) is that unless one contract always specifies a higher

payment than the other, any two contracts must intersect at some output level.
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The subsequent discussion assumes the baseline convention that the pay-

ment flows from the worker to the asset owner. If it is the asset owner is

entitled to the output and the flow of payment goes the other way around,

then a flatter contract costs more to high type workers, and all results will

be flipped.

2.8.1 Steepness and division of surplus

Proposition 5. With a steeper ordered set of securities, the equilibrium pay-

off for the asset owners will be higher in the candidate equilibrium, whereas

the equilibrium payoff will be lower for the workers matching with assets of

quality strictly above the threshold type.

Fix a distribution of types where the workers are on the short side,

and every type of workers match with two types of assets in the First Best

allocation. When switching to a steeper ordered set of securities, consider

the following the thought experiment: First starts with the contract terms

{sk}k≥1 keeping the same equilibrium payoff for the asset side. As the new

contracts are steeper, a worker of type p1 will pay less if he deviates to match

with the asset of quality q2. To satisfy the IC condition for the workers of

type p1, the contract term s2 must increase, driving up the equilibrium

payoff for the owners of asset quality q2. This in turns makes the deviation

to the market with q3 even more profitable for workers of type p2, resulting

in a greater increase in s3.
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Figure 2.2: Spill-over effect of increased competition across assets

Inductively, all owners of asset quality above q2 must post higher contract

terms.

For any distribution of types, the above line of reasoning applies to the

assets of quality above the threshold type and the workers they match with.

For the workers matching with assets of the threshold type, the impact on

their equilibrium payoff depends on the distribution of types. In particular,

the workers of the threshold type are better off under a steeper ordered set

of securities when the assets are on the long side. On another hand, all

workers will be weakly worse off if they are on the long side.

Since the cash payment is the flattest ordered set of securities, Remark

4 in Section 2.6.1 is a special case of Proposition 5. In fact, Proposition 5

can be viewed as an extension of the Linkage principle in DeMarzo, Kremer

and Skrzypacz (2005). The authors show that in the security-bid auction,

a steeper ordered set of securities allows the auctioneer to extract more

information rent from the bidders, provided that the equilibrium allocation

is efficient and remains unchanged. Under assortative matching, the spillover
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effect across different types of assets further shifts the equilibrium division

of matching surplus in the asset side’s favor. Hence, I establish an analogous

result in the context of assortative matching.

2.8.2 Steepness and contract offering

This subsection relaxes Assumption (S), which requires the feasible con-

tracts to be fully ordered by a contract term, and analyzes the asset owners’

choice of contract in a larger feasible set. The main conclusion is that all the

results remain valid if the asset owners may post steeper contracts. Since

a flatter contract costs the workers of higher types less than a steeper con-

tract, the asset owners always prefer posting the former as it is less prone

to attract the low type workers. Yet posting a flatter contract will has no

effects on the pool of workers in certain situations, so that the asset owners

are indifferent between the two contracts. Proposition 6 formalizes this ob-

servation. It states that when steeper contracts are made available, the set

of equilibria weakly expands. Nevertheless, the set of equilibrium allocations

and payoffs remain the same.56

Proposition 6. Suppose St ⊆ Φt, and ts /∈ Φt is a contract steeper than St.

1. For every equilibrium under the contract space Φt, there is a corre-

sponding equilibrium under the contract space Φt ∪ {ts} with the same

equilibrium payoffs {U, V }, the same active markets Ψ ⊆ Φt and the

same distribution of participants in every active market.

2. For every equilibrium under the contract space Φt ∪ {ts}, there must

be an equilibrium under the same contract space, which supports the

56Note that the cash payment satisfies Condition Global ID. Nevertheless, Proposition

2 is not a corollary to Proposition 3 and Lemma 6 as it holds without Assumption (P).
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same equilibrium payoffs and allocation, and the asset owners only post

contracts in Φt.

Note that Proposition 6 allows Φt to contain other contracts flatter than

St. With an ordered set of securities available, the introduction of the new

contract does not improve the transferability of surplus within the pair.

From the preceding discussion, posting a steeper contract never benefits an

asset owner. Therefore, any equilibrium is robust to the introduction of a

steeper contract. It is obvious that the converse of the first statement is also

true.

We proceed to the case that the ordered set of securities and a steeper

contract ts are both available. Notice that for any match (p, q), there is

a contract t(.; s(p, q)) in St providing both parties the same payoff as the

steeper contract ts. As the former contract is flatter, workers of lower types

all strictly prefer the contract ts to t(.; s(p, q)). With these flatter contracts

available, the asset owners are willing to post the steeper contract in an

equilibrium only when the corresponding market (ts, q) clears and attracts

exactly a single type of workers.57

57To see this, suppose multiple types of workers participate in this active market and

pH is the highest type. an asset owner must profit from posting a contract t(.; s′) with a

term s′ slightly below s(pH , q). This is because the flatter contract will attract no workers

of type below pH and weakly improve her matching probability. Hence, pH must be the

only type of workers attracted to the market (ts, q). This argument further implies that

workers of higher types will be strictly worse off if they deviate to the market (ts, q), and

workers are not rationed in this market. Suppose the asset side is being rationed in the

market (ts, q), then an asset owner will deviate to a contract t(.; s) where s is slightly

above s(pH , q). Posting such contract will lead to a jump in the matching probability and

attracts only workers of pH .

This argument actually does not hinge on the assumption of finite distribution of types.
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Now suppose that all the asset owners and workers in the market (ts, q)

switch to the market (t(.; s(p′, q)), q). As the contract (t(.; s(p′, q)), q) is flat-

ter, it will not attract workers of lower types. It will not attract workers of

higher types either, otherwise the asset owners would have deviated to post

it after the first place. So all equilibrium conditions will still be satisfied.

The equilibrium payoffs and the result allocation remain unchanged in the

new equilibrium. This argument holds irrespective of the presence of other

contracts in Φt.

An immediate corollary is that it is without loss to focus on the ordered

set of securities if all other feasible contracts are steeper.

Corollary 2. Suppose that At is steeper than St. an allocation and a pair

of equilibrium payoffs can be supported by an equilibrium under the contract

space St if and only if they can be supported by an equilibrium under the

contract space At ∪ St.

DeMarzo, Kremer and Skrzypacz (2005) also consider informal auctions,

in which the buyers may submit their bids from a larger set of securities and

the seller selects the winning bid based on her belief. A worker signals his

type by bidding with a flatter security, which is costlier to the low types.

In equilibrium, all buyers bid with the flattest securities available. Here

the competition among uninformed parties drives them to post the flattest

securities available because of the screening incentive.

Corollary 2 allows us to generalize the results to larger sets of contracts.

Example (Linear compensation contracts). Consider Ωt = {t(y;α,w) =

αy − w : α ∈ [0, 1], w ≥ 0}, which satisfies Assumption (C) and limited

liability of the worker. The worker’s payoff is given by y − t(y;α,w) =

(1 − α)y + w, so Ωt represents a class of linear compensation contracts. If
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a contract with w = 0 intersects with another one with w > 0, the former

must cut the latter from below. The subclass of contracts with w = 0, which

are effectively equity contracts, is flatter than any contracts with w > 0.

Therefore, it is without loss to focus on the class of equity contracts tE(y; s).

Example (Wealth constraint). Fix some π ≥ 0, let Ωt be the set of contracts

satisfying Assumption (C) and t(y) ≤ y + π. π is interpreted as the initial

wealth level for the worker, so that the payment he made to the asset owner

cannot exceed y + π for any output level y. Take y as finite for simplicity.

Under Assumption (C), any t ∈ Ωt is absolutely continuous. Hence, t(y)

can be expressed as t(y) +
∫ y
y t
′(z)dz, where t′(z) ∈ [0, 1]. t(y) ≤ y + π is

necessary and sufficient for t(y) ≤ y + π for any output level y ∈ [y, y].

Define the following ordered set of securities

tD+π(y; s) = min{y + π, s(y + π)}.

For s ≤ π
y+π , the worker pays out cash up to his wealth level π. For s > π

y+π ,

the worker tops up the cash payment π with a debt of principal amount

sy+(1−s)π. This ordered set of securities is flatter than any other contracts

in Ωt.
58 Therefore, it is without loss to focus on the class tD+π(.; s). Since

y− tD+π(y; s) + π = max{0, y+ π− s(y+ π)} is non-negative and log-SPM,

58Fix some s′ ∈ [0, 1], let t̂ be a contract in Ωt such that t̂ and tD+π(.; s′) intersects

at least once somewhere in (y, y). Note that t̂(y) ≤ tD+π(y; s′) = y + π. For s′ ≤ π
y+π

,

tD+π(y; s′) = s′(y + π). Since t̂(y) is increasing in y, t̂(y) must cut tD+π(y; s′) from

below at some y∗ ∈ (y, y). For s′ > π
y+π

, t̂(y) increases no faster than tD+π(y; s′) for

y < s′(y + π). Furthermore, tD+π(y; s′) is constant in the region (s′′(y + π), y]. Hence,

t̂(y) must cut tD+π(y; s′) from below at some y∗ ∈ (s′(y + π), y).

The above construction can be generalized to the constraint that t′(y) ∈ [α(y), α(y)] ⊆

[0, 1] in the following manner: t(y; s) = y+π, t′(y; s) = α(y) if y < s(y+π) and t′(y; s) =

α(y) if y > s(y + π). An example for such case is the threat of diversion.
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Condition Global ID holds under Condition Survival-logSPM.

Example (A threat of misappropriation). Let Ωt be the set of contracts

satisfying Assumption (C) and t′(y) ≥ κ. This can be motivated as follows:

The asset owner receives the output and pays the worker compensation. She

may underreport the output level and misappropriate the unreported portion

at a unit cost 1 − κ. Incentive provision for the asset owner leads to the

constraint t′(y) ≥ κ. Take y as finite for simplicity.

Define the following ordered set of securities

tκ(y; s) = κy + sy − (1− s)κE(Y |p, q).

tκ(y; s) is essentially a cash payment topped with equity share κ. Any contract

in Ωt, if intersecting at all, must cut tκ(y; s) from below. Therefore, it

suffices to consider only the class tκ(.; s). As y− tκ(y; s) is SPM, Condition

Global ID holds under Condition Survival-SPM.

Testable Implications Proposition 5 and 6 together yield a testable im-

plication regarding private types on one side.

Corollary 3. Suppose an ordered set of securities is always available, then

under assortative matching, exclusion of the flattest contracts increases the

equilibrium payoff for the asset side.

The preceding comparative statics predict an increase in the asset side’s

equilibrium payoff when the prevailing form of contracts offered, presumably

the flattest available, switches to a steeper one, due to exogenous reasons

such as financial regulation. It is hard to justify this prediction without

information asymmetry when forming matches.
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Under full information, a contingent payment is merely an instrument

for transferring the matching surplus. Proposition 1 states that the equilib-

rium payoffs are invariant to changes in the feasible set of contracts. Now

suppose at least one side is risk-averse, so the partners share the risk using

the contingent contract. When contracts are excluded from the feasible set,

the partners may either stay with the same contract or move to a subopti-

mal one. Some asset owners above threshold type must not gain from the

exclusion of the contracts. The same argument applies in the case of pure

moral hazard. Restriction on the incentive contracts will not benefit all asset

owners.

Introduction Of Flatter Contracts Proposition 6 states that the in-

troduction of steeper contracts have no effects on the set of equilibrium

allocations and payoffs. When flatter contracts are introduced, the same

cannot be said. If only particular contracts, say tf , are introduced, the as-

set owners will gain from posting lotteries over tf and St, which effectively

form a flatter ordered set of securities. Therefore, I only consider the intro-

duction of a flatter ordered set of securities. From the previous section, we

know that assortative matching is still decentralized if the flatter ordered set

of securities and the distribution of outputs satisfy the joint conditions in

Lemma 7 and Lemma 8. The following examples illustrate that inefficiency

may occur if the conditions are not all met. In other words, restricting the

feasible set of contracts can improve welfare in these examples.

Introduction of a flatter ordered set of securities Consider the fol-

lowing example: The type space is given by [p, p] = [q, q] = [0, 1]. Produc-

tion may result in three outcomes, Ωy = {0, 1
2 , 1}. The output distribution
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is given by

fε(y|p, q) =

 1
8p(1 + 2εq)

1
2(1− ε)pq + 1

4q + 1
8

, if y = 1; and

, if y = 1
2 ,

where ε ∈ (0, 1).

The output distribution has the following properties:

1. Fε(y|p, q) is continuous and strictly decreasing in p and q, and

2. fε(y|p, q) satisfies Assumption(MLRP), and

3. Fε(y|p, q) satisfies Condition Survival-SPM, and

4. The expected output E(Y |p, q) = 1
4(p+ 1

2)(q + 1
2) is log-modular, and

hence SPM.

It is noteworthy that the survival function 1− Fε(y|p, q) is pairwise log-

SPM in (p, q) and (p, y) but not (q, y), so Condition Survival-logSPM is not

met. The values of outside options can be chosen to satisfy V + U = 1
16 ,

and hence Assumption (P).

Suppose that only the class of equity contracts is feasible. For a given

ε ∈ (0, 1), the worker’s expected payoff is denoted by

vε(p, q, tE(.; s)) =
1

4
(p+

1

2
)(q +

1

2
)(1− s).

It immediately follows that vε(p, q, tE(.; s)) satisfies Global ID, and hence

the First Best allocation can always be decentralized.

Now suppose that the class of debt contracts is also made available. Since

the class of debt contracts is flatter than that of equity, Corollary 2 states
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that it is without loss to assume the asset owners post only debt contracts.

vε(p, q, tD(.; s))

=

 1
2(p+ 1

2)[1
2(q + 1

2)− s(q + 1
4)]− 1

4(εpq + 1
4)s

1
8(1− s)p(1 + 2εq)

, if s < 1
2 ; and

, if s ≥ 1
2 .

The key property is that workers of all types share the same preference over

(q, s, η) in the region s ≥ 1
2 . From now on, we focus on the limiting case of

ε → 0+ and v0+ denotes the worker’s expected payoff at the limit. All the

results hold when ε is sufficiently small.

For the workers side, v0+(p, q, tD(.; s)) satisfies Condition Sorting-p. For

the asset side, it is easy to verify that for any ε ∈ (0, 1) and sH ≥ 1
2 ,

vε(p
H , qH , tD(.; sH))vε(p

L, qL, tD(.; sL))

≥vε(pL, qH , tD(.; sH))vε(p
H , qL, tD(.; sL)).

(2.21)

For the case that 1
2 ≥ sH > sL, the above inequality (2.21) holds at the

limit ε→ 0+ if and only if

sH [
1

2
(qL +

1

2
)− sL(qL +

1

4
)] ≥ sL[

1

2
(qH +

1

2
)− sH(qH +

1

4
)].

This is true whenever qH = qL, so Condition Screening-q is met.

However, the inequality (2.21) is violated for a large range of (p, q, s)

where qH > qL. Condition Entry-q is not satisfied for certain values of

outside options. Hence, there are distributions of types for which owners of

asset quality below the threshold type profit from deviations in the candidate

equilibrium. It is noteworthy that in this example, the First Best allocation

can be decentralized if the asset side is homogeneous.

The concept of “steepness” does not concern about how the gain from

production complementarity is shared within pair. In the current example,
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the worker’s reward becomes more concentrated in the highest output level

under the flatter class of contracts. While the highest output level is the most

informative about the worker’s productivity, the probability of its occurrence

exhibits very weak complementarity between types. As a result, the workers

benefit less from production complementarity to the extent that Condition

Entry-q is no longer met, while Condition Sorting-p remains valid.

Introduction of a slightly flatter ordered set of securities Consider

the following example: The type space is given by [p, p] = [q, q] = [0, 1].

Y |(p, q) is a Bernoulli distribution with support {y, y}, where 1 > y > y ≥ 0.

Pr(Y = y|p, q) = pq is the probability of the good state, so Condition

Survival-logSPM is met. The values of outside options satisfy V + U = y

and y2 ≥ U , and so Assumption (P).

For the classes of equity contracts and debt contracts, the worker’s ex-

pected payoffs are given by

v(p, q, tE(.; s)) = (1− s)[y + (y − y)pq]

v(p, q, tD(.; s)) =

 max(y − s, 0)pq

[y + (y − y)pq]− s

, if s ∈ [y, 1]; and

, if s ∈ [0, y).

For a given ε ∈ (0, 1), define a mixture of debt and equity contracts by

tε(.; s) = (1− ε)sy + εmin(y, s),

so that

v(p, q, tε(.; s)) = (1− ε)v(p, q, tE(.; s)) + εv(p, q, tD(.; s)).

ε is the weight on the debt contract while 1− ε is the weight on the equity
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contract.59 Though [y − tE(y; s)] and [y − tD(y; s)] are log-SPM in (y, s),

y − tε(y; s) is neither log-SPM nor SPM for any ε ∈ (0, 1).

If only equity contracts are feasible, v(p, q, tE(.; s) satisfies Global ID, and

hence the First Best allocation can always be decentralized. Now suppose

mixtures of debt and equity with a fixed ε are introduced, it is without

loss to consider only such mixtures because they are flatter than the equity

contracts.

First, v(p, q, tε(.; s)) satisfies Condition Sorting-p for any ε ∈ (0, 1).

The reason is that v(p, q, tE(.; s)) and v(p, q, tD(.; s)) both satisfy Condi-

tion Sorting-p and are linear in p for any given pair of (q, s), so do any

linear combination of the two.

For a given asset quality, all workers share the same preference over

(η, s) in the region s ∈ [y, 1]. When ε is sufficiently small, a high type

worker is willing to endure a lower matching probability for an incremental

reduction in contract term than a low type worker if s ∈ (y, y). The opposite

happens if s ∈ [0, y). This holds for all asset qualities. It can be shown that

v(p, q, tε(.; s)) does not satisfy Condition Screening-q for sufficiently small ε

using a more involved argument.60

59When only equity contracts or debt contracts are available, the analysis is invariant

to any order-preserving transformation of s in the definitions of tE(.; s) and tD(.; s). This

is no longer true for a mixture of debt and equity contracts because the contract term s

determines the pair of debt and equity contracts forming the mixture. The definition of

tε(.; s) here implies that the principal amount is capped at y for debt contracts for s > y.
60Suppose, to the contrary, that Condition Screening-q is met. Consider y > sH >

sL > y. q, pH and pL are chosen so that v(pL, q, tε(.; sH)) ≥ V and u(q, pH , tε(.; sL)) > U .

u(q, pH , t(.; sL)) > u(q, pL, t(.; sH))} if sH and sL are close enough. As discussed, the

inequality (2.13) does not hold. It follows that the inequality (2.14) must hold for some

q′ ≤ q and s′ ≤ sH satisfying v(pL, q′, tε(.; s′)) = v(pL, q, tε(.; sH)). The inequality (2.14)

implies that v(p′, q, tε(.; sL)) > v(p′, q′, tε(.; s′)), while Condition Sorting-p requires that
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For small values of ε, v(p, q, tε(.; s)) indeed satisfies Condition Entry-q.

Condition Entry-q has the pre-condition U ≥ u(qH , pL, tε(.; sH)). At ε = 0,

y2 ≥ U ≥ sH [y + (y − y)pLqH ], and hence y > sH . For any pair of sH and

sL in this range, v(p, q, tE(.; s)) is strictly pairwise log-SPM in (p, s). Since

v(p, q, tE(.; s)) is also strictly pairwise log-SPM in (p, q), we must have

v(pH , qH , tε(.; sH))

v(pL, qH , tε(.; sH))
>
v(pH , qL, tε(.; sL))

v(pL, qL, tε(.; sL))
,

when ε→ 0+.

In summary, when a small component of the debt contract is introduced,

there exist distributions of types for which owners of asset quality above the

threshold type have profitable deviations in the candidate equilibrium. This

is in stark contrast to the case with only equity contracts. Under a debt

contract with term s ∈ (y, y), a worker will repay the principal in full only in

the good state. A tiny reduction in the contract term reduces the expected

payment from a worker more if his productivity is higher. Yet, the workers

of lower types still see a greater decline in percentage. However, if the

contract includes an overwhelming component of equity, it turns out that

the reduction in contract term will result in a greater percentage gain for

the workers of high types. So the asset owners will succeed in poaching the

better workers.

v(p′, q′, tε(.; s′)) ≥ v(p′, q, tε(.; sH)). Since this holds for sL arbitrarily close to sH , it follows

that v(p′, q′, tε(.; s′)) = v(p′, q, tε(.; sH)). Suppose that the workers of pL are indifferent

between the contract (tε(.; sH), q) and (tε(.; s′′), q′′), where q′′ ∈ (q, q′). Condition Sorting-

p then requires that all workers of types between p′ and pL are also indifferent between

these two contracts. This is impossible because v(p, q, tE(.; s)) satisfies Condition strict

Sorting-p and v(p, q, tε(.; s)) is a linear combination of v(p, q, tE(.; s)) and v(p, q, tD(.; s)).
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2.9 Concluding Remarks

In this chapter, I study how the use of the contingent payment affects

the matching efficiency and the divisions of surpluses in a market where the

types on one side are privately known. I propose a stylized framework to

address these questions. To uncouple the potential sources of inefficiencies,

I focus on an equilibrium decentralizing PAM. I analyze the sorting decision

for the informed side, and the uninformed side’s choices of contracts in

such equilibrium. I characterize the conditions under which PAM can be

decentralized for any distribution of types. If these conditions are not all

met, I detail how to construct some distributions of types and identify the

profitable deviations by the corresponding group, illustrating the incentives

against assortative matching. The convenience, which is also its limitation,

of this approach is that it leaves out the interaction among these incentives.

Studying their interactions and the resulting allocation is left for future

research.

I then provide a unifying sufficient condition, Global ID, which is intu-

itive and easy to interpret. Its simplicity allows me to provide joint sufficient

conditions on the contingent contracts and the form of production comple-

mentarity. When these primitive conditions are not all met for the applica-

tion at hand, one shall directly check whether and which of the necessary

and sufficient conditions on the expected payoff is violated. This points to

the groups who potentially have incentives against assortative matching. I

provide examples illustrating how restricting the feasible set of contracts

can align the incentives for such group, and hence improve the matching

efficiency in the decentralized market. In this light, this paper is a first step

toward how a benevolent planner mitigates the potential inefficiency caused
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by screening in the matching markets. This is a promising direction for

further studies.

Though the use of contingent contracts may leave the equilibrium al-

location unchanged, it does affect the divisions of the matching surpluses

between the two sides. Comparing with the full information case, the asset

owners will enjoy higher payoffs at the expense of the workers above the

threshold types. Furthermore, the equilibrium payoffs for the workers in-

crease with their types at a slower rate, and the opposite holds for the asset

owners. Recall that the equilibrium payoff for the workers and firm owners

in the full information case represents their shadow value in a social plan-

ner’s problem maximizing the total surplus. In this light, my result indicates

there is a wedge between the social and private benefit of getting matched,

and how the size of this wedge changes with the feasible set of contracts.

This opens avenues for future research on how this wedge will interact with

other channels such as pre-investment and search friction in richer models.
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Chapter 3

Inefficient Sorting Under

Output Sharing

3.1 Introduction

This paper studies sorting in a frictional market where the two sides

can be ranked by some characteristics, or simply their types. One side

competes for partners by offering financial securities or contracts specifying

how the payment between the partners is contingent on certain outcomes,

say the realized output. An example which has received much attention is

the market for top executives. Firms are ordered by their size, while the

candidates are ranked by their productivity or talents. Gabaix and Landier

(2008); Terviö (2008) apply a frictionless assignment model to study how

assortative matching accounts for the empirical distribution of the amount

of CEOs pay among the largest publicly traded companies in the United

States. Frydman and Jenter (2010) look at the composition of CEO pay

in S&P 500 firms and document that base salary makes up less than 20%

of the remuneration, and over half of it are option grants and restricted

stock grants during the period 2000 to 2008. Other applications include the

sorting between the entrepreneurs and venture capitals (Sørensen (2007)),

or between the acquiring firms and target firms in M&A (Rhodes-Kropf and
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Robinson (2008)).

In many circumstances, the parties on one side, say candidates for the

CEO positions, are better informed about their own types. Little is known

about how such information asymmetry may interact with search friction

and contingent payment, and the overall effect on sorting.

I address this question for the class of output sharing contracts in a com-

petitive search framework. There are double continuums of types of assets

and workers. A worker’s productivity is privately known, whereas the qual-

ity of an asset is publicly observable. Each worker may operate an asset.

The types on both sides determine the output.61 The asset owners first post

sharing contracts specifying the payment contingent on the future outputs.

Then the workers decide which type of asset and contract they search for.

The meeting is bilateral and subject to search friction. Production exhibits

complementarity, so the Second Best allocation always features positive as-

sortative matching (PAM) despite search friction.62 I identify a novel source

of inefficiency in this environment and analyze the resulting distortion.

To better understand the source of inefficiency, let us first consider the

benchmark result in Eeckhout and Kircher (2010). They study price compe-

tition in the described environment, in which the asset side post fixed prices.

Hence the informed workers, once matched, will pay the asset owners up-

front and assume the residual claim. The authors show that the equilibria

supports Second Best allocations. Furthermore everyone receives her “social

61Here the choice of contract determines the split of the output, while leaving its size

unaffected. This simplification allows me to concentrate on the potential distortions in

the matching pattern.
62In the presence of search friction, PAM occurs if better workers always search for

better assets.
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value”, the shadow price in the Utilitarian planner’s problem, in equilibrium.

However, wealth constraint of the workers and incentive provision for the as-

set owners may undermine the feasibility of the buyout arrangement, calling

for the use of sharing contracts.

The Second Best allocations can no longer be decentralized using the

sharing contracts. A low-type worker pays less than a high-type worker

when conceding a larger output share to the asset owner. So the offering

of sharing contracts handicaps the competition among workers for the same

type of assets, increasing the expected payoff for the asset owners. This

shift in the divisions of matching surpluses can be attributed to the link-

age principle in auction theory (DeMarzo, Kremer, and Skrzypacz, 2005)

because the allocation is held unchanged. Assortative matching gives rise to

an additional spillover effect. Since the workers pay more for their partners

in the Second Best allocation, they will find better assets more attractive,

further intensifying the competition among workers for better assets. As a

result, the set of incentive compatible contracts supporting a Second Best

allocation must provide the asset side a larger slice of the matching surplus

than in price competition.

Consequently, the private benefit for an asset to get matched is above the

social benefit. The wedge is the largest at the top. Facing search friction,

the owners of the best assets increase their matching probability by inducing

an inefficiently long queue of workers. This leads to the unravelling of the

Second Best allocation. Inefficiency here is caused by the interplay between

three elements: sharing contracts, private types and search friction.

Two questions naturally arise from the preceding discussion. Unlike

fixed prices, the asset owners are now concerned about the types of their

partners, which affect their expected payment under sharing contracts. An
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asset owner will take screening into account when deciding contract offer,

and may attempt to poach better workers.63 The first question is whether

PAM can still be supported by an equilibrium. In such equilibria, the pool

of workers left to the lower quality assets must deteriorate amid an increase

in the queue length for the best assets. This presents a countervailing force

as an asset owner gains less from a match with a weaker worker, and may

induce a shorter queue of workers instead. Hence, the distortions in the

queue lengths and the sorting pattern are intertwined. The second question

is what form of distortion arises in equilibrium.

To distinguish the channel of inefficiency here from those in the search

and matching literature literature, I consider the setting that all workers

have the same preference over the contract term and the matching probabil-

ity the two given the asset quality. This property ensures that asset owners

never use queue length as an instrument to screen out better workers. The

stylized setting yields a unique equilibrium, which still features PAM. In

this equilibrium, the matched pairs of types fully separate into a continuum

of (sub-)markets. The term of the contract offered in every market is given

by the Hosios (1990) condition, under which the equilibrium payoff of an

agent is the reduction in the aggregate surplus if she is removed from the

population.64 The standard interpretation is that both sides fully internal-

63An asset owner believes that an off-equilibrium-path contract will only attract the

types of workers accepting the lowest matching probability, given all other contract offers.

Guerrieri, Shimer, and Wright (2010) motivates this belief restriction using “subgame

perfection” with bilateral matching.
64The equilibrium allocation here is inefficient. Unlike the standard setting where both

sides are homogeneous, the equilibrium payoff for an agent is no longer the same as her

“social value”, the maximum increase in the aggregate surplus a Utilitarian planner may

achieve from assigning a new agent of the same type. I will provide a precise interpretation
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ize their search externality on other participants in the same market. So

the asset owners in every market induce a queue length maximizing the ex-

pected surplus for the pair of types, subject to free-entry of the workers at

their equilibrium payoff. Nevertheless, the matching pattern and the work-

ers’ equilibrium payoff are endogenously determined. The asset owners do

not account for the effects of their contract offers on the information rent

for other types of workers and on the remaining pool of workers left to other

types of assets. Therefore, the sorting inefficiency only arises in two-sided

matching.

The equilibrium and the Second Best allocation vary with the entire

distribution of types. The key contribution of this paper is the qualitative

features of the distortion which are universal for all distributions. Such

“distribution-free” result is of theoretical interest as the argument illumi-

nates general economic forces which are always at play.

As one may have expected, the queue length for the best assets is always

inefficiently high. The surprising and novel result is that all but the best

assets will always pair up with weaker workers. Depending on the distribu-

tion of types, there is either an excessive entry of workers or an insufficient

entry of assets. As a result, the best workers will suffer while the weakest

workers gain from the offering of sharing contracts. The opposite is true for

the asset side.

It is noted that here the comparative statics on the equilibrium payoffs

differ from that in Proposition 5 in chapter 2. This is due to the adjustments

in the equilibrium allocation following the change in the form of contingent

payments.

of Hosios condition in the current setting with double continuums of types.
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Section 3.2 discusses the related literature. Section 3.3 details the model

setting and the equilibrium definition. Section 3.4 covers the benchmark

results from Eeckhout and Kircher (2010). That is, the Second Best allo-

cations feature PAM and can be decentralized when asset side post prices.

Section 3.5 characterizes the equilibria when asset side offers output shares.

Section 3.6 studies the forms of distortion in equilibrium. Section 3.7 con-

cludes. All proofs are relegated to the Appendix B.

3.2 Related Literature

This paper is part of the literature on assortative matching. My setting

is closely related to Eeckhout and Kircher (2010). The authors show that

in price competition, the n-root-supermodularity condition is necessary and

sufficient for any equilibrium to feature PAM, regardless of the distribution

of types. In addition, the Second Best allocations are supported by the equi-

libria. The production and matching technology in my setting satisfy this

condition. The offering of sharing contracts not only changes the sorting

incentives for the workers but also renders poaching potentially profitable

for the asset side. I address how such arrangement distorts sorting in equi-

librium.

This paper also contributes to the literature on efficiency in search and

matching models. Hosios (1990) considers a market where both sides are

homogeneous. He provides the condition on the division of the matching

surplus, under which the equilibrium queue length is constrained efficient.

Albrecht, Navarro, and Vroman (2010) and Julien and Mangin (2016) show

that the Hosios condition no longer ensures constrained efficiency when mul-

tiple types are pooled into a single market. This is because the participation
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of an agent also affects the distribution of the partners for the other side.

In my setting, every active market features one pair of types and meets the

Hosios condition. This distinguishes the channel of sorting inefficiency from

the search externalities in the literature.

Guerrieri (2008) studies dynamic efficiency in a directed search model

where a worker privately observes his match-specific productivity upon meet-

ing. The worker then weighs the current match against his continuation

value in the unemployed pool. As a result, the wage offers in the future pe-

riods determine the probability of workers’ acceptance and their information

rent in the present period. Under free entry, firms do not account for the

effects of their offers on the markets in previous periods. The author shows

that the convergence to the steady state is inefficiently slow in equilibrium.

The source of sorting inefficiency here shares the similarity that the asset

owners do not internalize the effects of their offers on the markets for other

assets.

Guerrieri, Shimer, and Wright (2010) study competitive screening in

a competitive search framework. They assume free entry of homogenous

principals. These principals have both contract and matching probability

as screening instruments, and the latter is endogenously determined. The

authors characterize the equilibrium and study the form of distortion in var-

ious applications. I consider two-sided matching where both sides compete

for partners from given pools.The key difference is that the distortion now

depends on the distribution of types. I obtain “distribution-free” features

of the form of distortion.
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3.3 Model Setting

3.3.1 Production

There are continuums of workers and asset owners. Each asset owner

owns a unit of asset. Assets can be ranked according to their publicly known

qualities q ∈ [0, 1]. All workers are ex-ante homogeneous but differ in their

actual productivity p ∈ [0, 1]. Every worker privately knows his productivity.

The values of outside options for workers and asset owners are given by V

and U respectively. ∅ denotes the choice of outside option. All parties are

risk neutral and have a quasi-linear preference. I shall use feminine pronouns

for asset owners and masculine one for the workers.

Production takes place after a worker pairs up with an asset. The match-

ing surplus for the pair of types (p, q) is the output they produce, denoted

by y(p, q). y : [0, 1]2 → R++ is positive, strictly increasing and twice contin-

uously differentiable (C2) in (p, q).

Assumption (Y). The output y(p, q) is strictly log-supermodular (log-SPM)

in p and q.

Assumption (Y) has two important implications in a frictionless setting.

First, it represents a stronger form of production complementarity than

strict supermodularity (SPM). Without search friction, the total surplus is

maximized under perfect positive assortative matching. Second, log-SPM of

the output y(p, q) is also necessary and sufficient for decentralizing PAM in

a frictionless world, when the asset side may only post output shares.

Example (O-ring production). Assumption (Y) is satisfied if the condi-

tional distribution of output Y |(p, q) is a Bernoulli distribution with support

{y, y}, where y > y > 0 and Pr(Y = y|p, q) = pq : Production is composed
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of two tasks. The probability of success for the first task is p, and that of

the second task is q. The production yields high output y if both tasks are

successful. Otherwise, only base output y is produced.

The types on both sides are continuously distributed with support [0, 1]2.

F (p) denotes the measure of workers of productivity below p and G(q) is

the measure of assets with qualities below q. F and G are C2 and their

derivatives are denoted by f and g respectively. f and g are positive and

bounded over [0, 1].

Suppose a worker pairs up with an asset. The two parties may enter into

a sharing contract s ∈ [0, 1] where s and 1 − s are the shares of output for

the asset owner and worker respectively.

3.3.2 Matching

There are continuums of (sub-)markets indexed by (q, s) ∈ [0, 1]2. An

owner of asset quality q may participate in one of the markets (q, s) while a

worker may participate in any one of the markets.

The timing of the events is as follows: In the contract posting stage, the

asset owners make their participation decisions simultaneously. Observing

the measure of asset owners in every market, the workers simultaneously

make their participation decisions. Matches are then formed.

The participants on the two sides of a market will pair up randomly.

Define the queue length λ ∈ [0,∞] as the ratio of the workers to the asset

owners in the market. A worker gets matched with probability η(λ) while

the matching probability for a asset owner is δ(λ). Meeting is bilateral,

so δ(λ) ≤ min{λ, 1} and λη(λ) = δ(λ). The payoffs for those who left

unmatched are normalized to zero.
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η is a strictly decreasing function. δ : [0,∞] → [0, 1] is C2, strictly

increasing and strictly concave. These properties jointly imply the follow-

ing: For any positive λ ∈ (0,∞), d ln δ
d lnλ ∈ (0, 1).65 and 1 > η(λ) > δ′(λ).

limλ→∞ δ
′(λ) = 0 because limλ→0+ δ(λ) = 0 and strictly concavity imply

that δ(λ) > λδ′(λ) for all λ > 0.

Assumption (M). d ln δ
d lnλ , the elasticity for δ(λ), is decreasing.

Following Eeckhout and Kircher (2010), I assume a decreasing elasticity

for δ(λ).66 Since 1 = d ln δ
d lnλ−

d ln η
d lnλ , the elasticity for η(λ) must be increasing.67

The presence of search friction gives rise to an insurance motive against the

risk of being unmatched. Assumption (M) states that an asset owner’s

marginal gain in her matching probability from an increase in the queue

length is diminishing. Symmetrically, the workers see a diminishing marginal

gain from a decrease in the queue length.

Example (Random matching). Assumption (M) is satisfied for δ(λ) =

λ
λ+1 : All participants on both sides are pooled together to form pairs ran-

domly. The pair may carry out production only when it consists of a worker

and an asset owner.

Example (Urn-ball matching). Assumption (M) is satisfied for Urn-ball

matching function, δ(λ) = 1− exp(−λ) : Every worker approaches one asset

65In particular, d ln δ
d lnλ

= 1 + d ln η
d lnλ

< 1 for λ ∈ (0,∞).
66Note that Assumption (M) is equivalent to a unit upper bound on the elasticity of

substitution of the aggregate matching function. Suppose M(L,K) is the number of

matches in a market with L workers and K assets. Then ML(λ,1)MK(λ,1)
MLK(λ,1)M(λ,1)

≤ 1 for any

λ ≥ 0.
67Eeckhout and Kircher (2010) assume a strictly decreasing elasticity for δ(λ). Their

results remain valid here because I strengthen the assumption on output y(p, q) to strict

log-SPM.
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owner without coordination. An asset is utilized if its owner is approached

by at least one worker.

Participation in matching is costly because the agent has to forgo her

outside option. We assume that the total output from the matched pairs

at the top can always cover the total opportunity costs of participation.

Formally,

max
λ≥0

[δ(λ)y(1, 1)− λV − U ] > 0. (3.1)

It ensures that for any distribution of types, it is always efficient to have the

best agents on both sides searching for partners.

Example (Random matching). Given δ(λ) = λ
λ+1 , condition (3.1) is satis-

fied if and only if y(1, 1) > (
√
U +

√
V )2.

Example (Urn-ball matching). Given δ(λ) = 1− exp(−λ), condition (3.1)

is satisfied if (1−
√
e)y(1, 1) > 1

2U + V .

3.3.3 Equilibrium definition

K(q, s) is the measure of asset owners participating in the markets

(q′, s′) ≤ (q, s). L(p, q, s) is the measure of workers with types p′ ≤ p par-

ticipating in the markets (q′, s′) ≤ (q, s). The marginal distributions are

denoted with the corresponding variables as subscripts. (K,L) is feasible if

Kq ≤ G and Lp ≤ F. G(q) − Kq(q) and F (p) − Lp(p) are respectively the

measures of assets of quality below q and workers with productivity below

p assigned to the outside option. The support of K is denoted by Ψ. A

market is active if it is in Ψ. Otherwise it is inactive. Since participation is

costly, it is never optimal for workers to visit a market with no asset owners.

Therefore, Lqs is required to be absolutely continuous w.r.t. K.68

68This requirement ensures the Radon-Nikodym derivative
dLqs

dK
is well-defined.
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The equilibrium concept here follows the literature on large games (e.g.

Mas-Colell, 1984). The payoff for every single agent depends on her own

decision, and the decisions of all others only through K and L. K and L in

turn are consistent with the optimal decisions of all individual agents.

Each market (q, s) is associated with a queue length Λ(q, s;K,L) and

a distribution of participating workers R(q, s;K,L), where R(.|q, s;K,L)

is the C.D.F. for worker’s type. The environment is competitive in the

sense that everyone takes Λ and R as given. For the active markets, Λ is

the Radon-Nikodym derivative,
dLqs
dK and R is derived using Bayes’ law.69

By participating in an active market (q, s), a worker of type p receives an

expected payoff

η(Λ(q, s;K,L))(1− s)y(p, q), (3.2)

while an asset owner receives an expected payoff

δ(Λ(q, s;K,L))s

∫
y(p, q)dR(p|q, s;K,L). (3.3)

I now extend the payoff functions to the inactive markets. I will elabo-

rate on the belief restriction underlying the payoffs functions afterwards. A

worker will never get matched if visiting an inactive market. A worker of

type p can at most generate

V (p;K,L) = sup{η(Λ(q, s;K,L))(1− s)y(p, q), (q, s) ∈ Ψ} ∪ {V }.

V (.;K,L) then determines the deviating payoff for the asset owners. For

any inactive market,

Λ(q, s;K,L) = inf{λ ∈ [0,∞] : V (p) ≥ η(λ)(1−s)y(p, q), ∀p ∈ [0, 1]}, (3.4)

69Formally,
∫
ψ

Λ(q, s)dK =
∫
ψ
dLqs, and

∫
ψ
R(p′|q, s)dLqs =

∫
{p≤p′}×ψ dL for any mea-

surable subset ψ ⊆ Ψ and any p′ ∈ [0, 1].
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and R(q, s;K,L) is degenerate at

inf{p ∈ [0, 1] : V (p;K,L) ≤ η(Λ(q, s;K,L))(1− s)y(p, q)}. (3.5)

The definition (3.4) and (3.5) represent two conditions. First, if V (p;K,L) >

η(0)(1− s)y(p, q) for all p ∈ [0, 1], then Λ(q, s;K,L) = 0 and R(q, s;K,L) is

degenerate at p = 0 for such inactive market. Second, for any market, be it

active or inactive,

V (p;K,L) ≥ η(Λ(q, s;K,L))(1− s)y(p, q)

for all types of workers, and equality holds if p is in the support ofR(q, s;K,L)

and Λ(q, s;K,L) > 0.

Facing Λ(q, s;K,L) and R(q, s;K,L), an owner of asset quality q can

receive

U(q;K,L)

= sup{δ(Λ(q, s;K,L))s

∫
y(p, q)dR(p|q, s;K,L), (q, s) ∈ [0, 1]2} ∪ {U}.

Definition. An equilibrium is a pair of distributions (K,L) satisfying:

• Asset owners’ optimal contract posting: (q, s) ∈ Ψ only if s maximizes

the asset owner’s expected payoff (3.3). K ′q(q) ≤ g(q) with equality if

U(q;K,L) > U.

• Workers’ optimal acceptance: (p, q, s) is in the support of L only if

(q, s) ∈ Ψ and maximizes the worker’s expected payoff (3.2). L′p(p) ≤

f(p) with equality if V (p;K,L) > V .

Fix an equilibrium (K,L), V (p;K,L) and U(q;K,L) are the equilibrium

payoff for workers and asset owners respectively. The argument K and L

will be omitted from the equilibrium objects if no confusion arises.
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Definition. A pair of distributions (K,L) is incentive compatible if it satis-

fies workers’ optimal acceptance condition in the definition of an equilibrium.

Definition. A pair of distributions (K,L) induces voluntary participation

of the asset side if for any (q, s) ∈ Ψ, the asset owners’ expected payoff in

(3.3) is no less than U .

The notions of incentive compatibility and voluntary participation will

be useful in the discussion of the Utilitarian planner’s problem.

Belief restriction Since there are continuums of workers and assets, switch-

ing between active markets or taking outside option by a single party has

negligible impacts. The same is true when a worker unilaterally switches to

an inactive market. The focus here is the deviation to some inactive market

by an asset owner. For an inactive market (q, s), Λ(q, s) and R(q, s) are

interpreted as the public belief regarding the queue length and the composi-

tion of the workers attracted to that market after an owner of asset quality

q deviates to it. An advantage of this notation is to eliminate the distinction

between deviations to active markets or inactive markets by an asset owner.

Suppose an owner of asset quality q deviates to post a contract s. If

V (p) ≥ η(0)(1− s)y(p, q) for all types, then no workers will ever profit from

accepting the deviating offer. The asset owner believes such offer will attract

no workers and R(q, s), which has no bearing in such case, is degenerate at

p = 0. Now consider the case that V (p) < η(0)(1− s)y(p, q) for some types.

Then Λ(s, q) is uniquely determined by the lowest matching probability some

workers are willing to endure. The asset owner believes that only the lowest

type among these workers will be attracted.

The restriction on the “off-equilibrium-path” belief here is often moti-
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vated by the “subgame perfection” on the workers’ side in the competitive

search literature. Suppose only ε-measure of the owners of asset quality

q deviate to some inactive market (s, q). Observing the measure of asset

owners in every market, a worker has to anticipate his matching probabil-

ity in each of the markets and adjust his participation decision accordingly.

When ε → 0+, no types of workers can strictly gain from participating in

the market (s, q) in the equilibrium of this “subgame”. Otherwise, workers

of all such types will turn up in this market but only ε-measure of them will

get matched, resulting in an expected payoff below their outside option. It

follows that any workers attracted to the market (s, q), if any, are those will-

ing to endure the lowest matching probability. By continuity, the workers’

payoff in the equilibrium of this “subgame” must converge to V (p). This

justifies the belief restriction discussed.

In particular, the belief restriction here closely follows Guerrieri, Shimer,

and Wright (2010). Eeckhout and Kircher (2010) adopt the same restriction

on the queue length. Since asset owners post prices in their setting, they

leave out the off-equilibrium-path belief on the worker’s type.

3.3.4 Assortative matching

Definition. A pair of distributions features positive assortative matching

(PAM) if there exists a pair of threshold types (p, q) < (1, 1) and an in-

creasing function κ : [p, 1] → [q, 1] such that κ(p) = q and Lpq(p, κ(p)) =

F (p)− F (p).

κ(p) denotes the quality of the asset assigned to a worker of type p.

The above definition of PAM not only requires the participants to match

assortatively, but also every worker above the threshold type to participate

111



3.4. Second Best Allocation

in matching. This is not restrictive because a better worker always gains

more when entering the same market, so only the lowest types may take

their outside options in equilibrium and in any efficient allocations.

This conclusion does not automatically extend to the asset side. Even

when posting the same contract, an owner of a better asset may end up

attracting weaker workers, gaining less from participation. In the subsequent

sections, I will show that monotonic participation for both sides indeed

occurs in any efficient allocations and equilibria. In this case, κ is bijective

and strictly increasing. The inverse of κ is well-defined and denoted by

r : [q, 1] → [p, 1]. r(q) is the type of worker assigned to the asset of quality

q.

3.4 Second Best Allocation

Suppose that a Utilitarian planner, whose goal is to maximize the to-

tal output, have complete information and may dictate the participation

decision for each type. Nevertheless, search friction remains present in the

matching process. Her problem is given by

max
K,L

∫
η(Λ(q, s))y(p, q)dL+ [F (1)− Lp(1)]V + [G(1)−Kq(1)]U

subject to

Kq ≤ G,Lp ≤ F and Λ(q, s) =
dLqs
dK

.

The search friction introduces an insurance motive, which is conducive

to negative assortative matching. This is because the most efficient way

to increase the matching probability for high types is assigning them to a

market flooded with low types from the other side. The more responsive

the matching probabilities to a change in tightness ratio, the greater the
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insurance motive. The Utilitarian planner’s solution always features PAM

only if the production complementarity outweighs the insurance motive for

all distributions of types.

Theorem (Eeckhout and Kircher, 2010). Under Assumption (Y) and (M),

Second Best allocations always feature PAM.

The efficient allocation requires monotonic participation because the

matching surplus is strictly increasing in types. The strict concavity of

δ(λ) implies that it is efficient to pool the same pairs of types into one mar-

ket. The contract term s can be omitted as it does not affect the size of

the matching surplus. As a result, the Utilitarian planner’s problem can be

simplified as

max
p,q,r,λ

∫ 1

q
δ(λ(q))y(r(q), q)dG(q) + F (p)V +G(q)U

subject to

r(q) = p, r(1) = 1, (3.6)

and for q ≥ q, ∫ 1

q
λ(q′)dG(q′) = F (1)− F (r(q)).

Abusing the terminology, a solution, denoted by (rSB, λSB, pSB, qSB),

is called a Second Best (SB) allocation.70 The Utilitarian planner’s prob-

lem can be reformulated as an optimal control problem with r as the state

variable and λ as the control variable. The law of motion is given by

r′(q) =
g(q)

f(r(q))
λ(q). (3.7)

70There is a continuum of (K,L) with the same matching pattern (r, λ, p, q) but different

divisions of matching surpluses.
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Introducing the co-state variable τ , the Hamiltonian is given by

H(q, r, λ, τ) = g(q)[δ(λ)y(r, q)− τ(q)
λ

f(r)
].

Eeckhout and Kircher (2010) show that the first order conditions can be

written as

vSB(rSB(q)) = δ′(λSB(q))y(rSB(q), q), (3.8)

∂vSB(p)

∂p

∣∣∣∣
p=rSB(q)

= η(λSB(q))
∂y(p, q)

∂p

∣∣∣∣
(p,q)=(rSB(q),q)

, (3.9)

where τ(q) = f(rSB(q))vSB(rSB(q)). In particular, rSB and λSB are contin-

uously differentiable, C1.

vSB(p) is the shadow value for a worker of type p ≥ p
SB

. When com-

paring vSB(p) and v′SB(p), it is noteworthy that δ′(λ) < η(λ) < 1 for λ > 0.

The gap between δ′(λ) and η(λ) reflects the benefit of a better asset. One

can derive the shadow value for an asset of quality q ≥ q
SB

by a symmetric

approach,

uSB(q) = [δ(λSB(q))− λSB(q)δ′(λSB(q))]y(rSB(q), q), 71 (3.10)

and uSB(q) is strictly increasing. The boundary conditions at the bottom

are given by

q
SB

[uSB(q
SB

)− U ] = p
SB

[vSB(p
SB

)− V ] = 0. (3.11)

The above set of conditions, (3.6)-(3.11), defines a boundary value problem

for (p
SB
, q
SB
, rSB, λSB, vSB, uSB), which admits a unique solution under

Assumption (Y) and (M). The assumption in (3.1) ensures participation

at the top, p
SB

< 1 and q
SB

< 1. The shadow value of an agent below

71Note that δ − λδ′ = dη(λ)

dλ−1 .
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the threshold type is simply the value of her outside option. I extend the

definition of vSB and uSB to their entire type space, with vSB(p) = V for

p < p
SB

and uSB(q) = U for q < q
SB
.72

Remark 8. The Second Best allocation is unique. For any p, q and λ,

uSB(q) + λvSB(p) ≥ δ(λ)y(p, q) (3.12)

with equality if and only if λ = λSB(q) and p = rSB(q).

The inequality in (3.12) is the counterpart of the well-known condition

for stable matching. Without search friction, δ(λ) = min{λ, 1}, the set of

inequalities (3.12) collapses to uSB(q) + λvSB(p) ≥ y(p, q).

When defining the Second Best allocation, it is assumed that the Util-

itarian planner knows the workers’ types. One may question if this is an

appropriate benchmark when the workers’ types are privately known. Sup-

pose the Utilitarian planner observes only the types of the assets and may

restrict the set of markets available. In essence, she may dictate the sharing

contracts s(q) for each type of assets, subject to their voluntary participa-

tion. The planner can induce the Second Best allocation by excluding all

assets below q
SB

from participation, and imposing ŝ(q) for q ≥ q
SB
, where

ŝ(q) = 1−
δ′(λSB(q

SB
))

η(λSB(q))
exp

(
−
∫ q

q
SB

∂ ln y(p, q′)

∂q

∣∣∣∣
p=rSB(q′)

dq′

)
.

At q = q
SB
, ŝ(q

SB
) = 1− d ln δ

d lnλ

∣∣
λ=λSB(q

SB
)
, so that the expected payoffs

for the pair of threshold types are the same as their shadow values in (3.8)

and (3.10). For q > q
SB
, ŝ(q) satisfies

d

dq
ln(1− ŝ(q))η(λSB(q))y(p, q)

∣∣∣∣
p=rSB(q)

= 0.

72By an abuse of notation, vSB and uSB denote their respective restrictions over [p
SB
, 1]

and [q
SB
, 1] when referring to the solution of the boundary value problem.
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Under Assumption (Y), the workers of type rSB(q) strictly prefer the market

(ŝ(q), q) to all other markets, receiving an expected payoff of V̂ (rSB(q)) =

η(λSB(q))(1−ŝ(q))y(rSB(q), q). By construction, vSB(p) ≥ V̂ (p) ≥ vSB(p
SB

)

for p ≥ p
SB

and equalities hold only at p = p
SB

.73 This ensures incentive

compatibility on the workers’ side and voluntary participation for asset own-

ers of q ≥ q
SB
. Therefore, the Second Best allocation can be supported by

ŝ(q).74

3.4.1 Price competition

Price competition refers to the benchmark setting that the asset owners

may post prices, and the workers buy out the asset up front. When par-

ticipating in a market with posted price w and queue length λ, a worker

receives an expected payoff

η(λ)[y(p, q)− w],

while an asset owner receives an expected payoff of δ(λ)w. An equilibrium

in price competition can be defined analogously. It is essentially the equi-

librium definition in Eeckhout and Kircher (2010).

Theorem (Eeckhout and Kircher, 2010). Under Assumption (Y) and (M),

the Second Best allocation can be decentralized in price competition.

For any (p
SB
, q
SB
, rSB, λSB, vSB, uSB) satisfying (3.6)-(3.11), the au-

thors construct an equilibrium which supports the Second Best allocation

73This is because ∂
∂p

ln vSB(p) > ∂
∂p

ln V̂ (p) > 0 for p ≥ p
SB
. It also implies that the

schedule ŝ(q) ∈ [sSB(q), 1) is well-defined.
74One can recover the corresponding pair of distributions (K,L) from the Second Best

allocation and the set of active markets
{

(q, ŝ(q)) : q ∈ [q
SB
, 1]
}

and check the conditions

formally. The construction of (K,L) mirrors that in the proof of Proposition 7 in the

Appendix.
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(rSB, λSB, pSB, qSB) and the equilibrium payoffs for the two sides are given

by vSB and uSB. Let wSB(q) denote the price posted by the owners of asset

quality q ≥ q
SB

in equilibrium. wSB(q) is determined by the FOC (3.8),

vSB(rSB(q)) = δ′(λSB(q))y(rSB(q), q) = η(λSB(q))[y(rSB(q), q)− wSB(q)],

so that

wSB(q) =

(
1− d ln δ

d lnλ

∣∣∣∣
λ=λSB(q)

)
y(rSB(q), q). (3.13)

This is known as the Hosios condition, for which a worker’s share of the

matching surplus is given by the elasticity of δ(λ) at the equilibrium queue

length he is facing. Furthermore, Eeckhout and Kircher (2010) show that

wSB(q) is increasing in q. The corresponding pair of distributions (K,L)

can be again recovered from the Second Best allocation and wSB(q) readily.

The FOC (3.9) ensures that

vSB(rSB(q)) = max
q′∈[q

SB
,1]
{η(λSB(q′))[y(rSB(q), q′)− wSB(q′)]}.

Together with the boundary condition(3.11), the incentive compatibility for

workers is met.

Given the type of her potential partner rSB(q), an owner of asset quality

q cannot profit from adjusting the price if and only if the Hosios condition

holds. This is the standard result in settings with homogeneous workers.

With heterogeneous workers,

Λ(q, w) = inf
λ∈[0,∞]

{vSB(p) ≥ η(λ)[y(p, q)− w], p ∈ [0, 1]},

so a deviating offer may attract a longer queue of workers of other types.

Yet Assumption (Y) and (M) ensure such offer will not be profitable

for the asset owners. The reason is that the price paid by the worker is
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independent of his type. Rearranging the inequality (3.12),

uSB(q) ≥ max
p,λ

[δ(λ)y(p, q)− λvSB(p)] = max
w

δ(Λ(q, w))w,

and equality holds for q ≥ q
SB
.

3.5 Equilibrium Characterization

We now turn to the set of equilibria when only output sharing contracts

are feasible. The workers’ expected payoff can be separated into y(p, q)

and η(λ)(1 − s), and only the former depends on the private type. This

has two important implications. First, the workers’ preferences over q and

η(1 − s) satisfy the strict single crossing property (SCP) as the matching

surplus exhibits strict log-SPM. This reduces the multi-dimensional sorting

into a familiar single dimensional one. Second, workers of all types share

the same preference over their matching probability and the contract term

for any given asset quality. The corresponding sets of indifference curves for

workers are illustrated in the Figure 3.1

Figure 3.1: Properties of workers’ preferences

The first property implies that if a worker prefers a market with better

assets to another market with lower quality assets, then all better workers
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strictly prefer the one for better assets, vice versa. This holds regardless of

the queue lengths and the contract terms in these markets. Therefore, the

participants must match assortatively in any equilibrium.

This property also ensures monotonic participation on the asset side in

any equilibrium. Suppose some type of workers participate in an active

market (qL, sL), an owner of a better asset qH can find a less generous con-

tract sH leaving these workers indifferent about accepting the two contracts.

Hence, the queue length in the market (qH , sH) will be no lower than that in

the active market (qL, sL). The strict SCP then implies that all weaker work-

ers strictly prefer the latter market to the former. So posting the contract

sH provides an asset owner of qH an expected payoff above the equilibrium

payoff for her peers of qL.

Let (p̃, q̃, κ̃, r̃) denote PAM in the equilibrium under consideration.

Figure 3.2: Characterization of active markets

The indifference curves over q and η(1−s) of the participating workers, which

yield their equilibrium payoff, are plotted in the left panel of Figure 3.2. The
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lower envelope of all these indifference curves must be η(Λ(q, s))(1−s) for the

set of active markets. Furthermore, the workers will have strict preference

over the resulting set of active markets. That is, a worker of any type other

than r̃(q′) will be strictly worse off if he deviates to the active market (q′, s′).

Put it differently, the workers of r̃(q′) accept a lower matching probability

in the market (q′, s′) than anybody else.

The second property then implies that only the workers of r̃(q′) will

accept the lowest matching probability for any contract (q′, s). This is be-

cause for a given asset, the share and the matching probability are perfect

substitutes to the workers. The competition among workers of r̃(q′) alone

will result in an adjustment in their matching probability fully offsetting

the variation in the posted share. A deviating asset owner of q′ > q̃, if

gets matched, always pair up with the same type of workers in equilibrium.

She only trades off between her matching probability and her output share.

This is illustrated in the right panel of Figure 3.2. Suppose we fix the pair

of types (r̃(q′), q′) and plot the indifference curves over η(λ) and (1 − s).

Taking the workers’ equilibrium payoff as given, the tangent point of the

indifferent curves of both sides is the optimal contract, and the associated

queue length for the asset owner. This is exactly the Hosios condition. In

equilibrium, owners of the same asset quality q, if participating, will post

the same share

s = 1− d ln δ

d lnλ

∣∣∣∣
λ=λ̃(q)

,

where λ̃(q) is the resulting queue length. Hence, r̃ and λ̃ must satisfy the

law of motion in (3.7).

The Hosios condition can be rearranged as

δ′(λ̃(q)) = η(λ̃(q))(1− s′),
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and thus,

V (r̃(q)) = δ′(λ̃(q))y(r̃(q), q).

This is the same condition in (3.8), which I will refer to as the Hosios con-

dition as well. The violation of the Hosios condition is the reason why ŝ(q)

in Section 3.4 cannot be supported by an equilibrium.

The incentive compatibility (IC) condition for the workers above the

threshold type can also be rewritten as

V (r̃(q)) = max
q′∈[q̃,1]

δ′(λ̃(q′))y(r̃(q), q′). (3.14)

After accounting for the contract posting decisions, sorting of workers is

induced by the variation in the queue length. The better the asset, the

greater the queue length in the active market. Under Assumption (M), the

output shares posted by the asset owners increase with their asset quality.

Apply the envelope theorem to (3.14), we obtain

∂V (r̃(q))

∂p
= δ′(λ̃(q))

∂y(r̃(q), q)

∂p
. (3.15)

Under the strict SCP over q and η(1 − s), the conditions (3.14) and (3.15)

are in fact equivalent. Abusing the terminology, I will call the latter as the

workers’ IC condition.

The strict SCP also implies that the active market for asset quality q̃

is the most profitable deviation for the worker of type below p̃. Therefore,

the workers of the threshold type p̃ must be indifferent about participation.

This yields the boundary condition for the workers side, p̃(V (p̃)− V ) = 0.

The boundary condition for the asset side is more complicated as we

have to find out the deviating payoff for the owners of asset quality below

q̃. Suppose an owner of asset quality q′ < q̃ post a deviating offer s′. We

again look at the lower envelope of the workers’ indifference curves over q
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and η(1−s) which yield their equilibrium payoff, including those below p̃, in

Figure 3.3. The indifference curve for the workers attracted must be tangent

to the lower envelope, which pins down η(Λ(q′, s′))(1− s′).

Figure 3.3: Deviations by assets below threshold type

Under the strict SCP, the workers of the threshold type p̃ is the highest

type a deviating offer may attract. So the asset owner can never make more

than her peers of the threshold type q̃. On the other hand, posting the same

output share provides an asset owner slightly below q̃ a deviating payoff

close to the equilibrium payoff of the threshold type q̃. The latter is given

by U(q̃) = [δ(λ̃(q̃))− δ′(λ̃(q̃)λ̃(q̃)]y(p̃, q̃) under the Hosios condition. So the

boundary condition for the asset side, q̃(U(q̃)−U) = 0, mirrors that for the

workers. Notice that the boundary conditions at the bottom are the same

as those for the Second Best allocation in (3.11).

The set of equilibrium conditions (3.6)-(3.8),(3.10), (3.11), and(3.15) de-

fines a boundary value problem, for which the set of equilibria can be re-

covered from the solutions. In the appendix, I will analyze this boundary

value problem. I establish the existence and the uniqueness of its solution,
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3.5. Equilibrium Characterization

and hence the equilibrium. So Proposition 7 fully characterize the set of

equilibria.

Proposition 7. There exists a unique equilibrium. This equilibrium sup-

ports PAM and has the following properties:

1. Asset owners (workers) participate if and only if q ≥ q̃ (p ≥ p̃), and

2. Workers of p ≥ p̃ have equilibrium payoffs ṽ(p), and

3. The set of active markets Ψ is given by

{
(q, s) : q ∈ [q̃, 1], s = 1− d ln δ

d lnλ

∣∣
λ=λ̃(q)

}
,

with Λ(q, s) = λ̃(q) for (q, s) ∈ Ψ, and

4. For any s ∈ (0, 1), R(q, s) is degenerate at r̃(q) if q ≥ q̃ and Λ(q, s) > 0.

r̃ : [q̃, 1] → [p̃, 1], λ̃ : [q̃, 1] → R++, and ṽ : [p̃, 1] → R++ are all con-

tinuously differentiable and strictly increasing. Together with the pair of

threshold types (p̃, q̃), they satisfy the conditions

r̃(q̃) = p̃, r̃(1) = 1,

0 = q̃[(δ(λ̃(q̃))− δ′(λ̃(q̃))λ̃(q̃))y(p̃, q̃)− U ],

0 = p̃(ṽ(p̃)− V ),

r̃′(q) =
g(q)

f(r(q))
λ̃(q),

ṽ(r̃(q)) = δ′(λ̃(q))y(r̃(q), q),

∂ṽ(p)

∂p

∣∣∣∣
p=r̃(q)

= δ′(λ̃(q))
∂y(p, q)

∂p

∣∣∣∣
(p,q)=(r̃(q),q)

.

(3.16)
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3.6. Matching Efficiency

3.6 Matching Efficiency

As explained in the introduction, the offering of output sharing contracts

inevitably leads to an inefficient allocation. By comparing the set of condi-

tions (3.16) in Proposition 7 with the set of conditions (3.6)-(3.11) for the

Second Best allocation, I establish the form of distortion in equilibrium for

any distribution of types.

Proposition 8. In comparison with the Second Best allocation, the equilib-

rium allocation has the following features:

1. The queue length for the best assets is greater, λSB(1) < λ̃(1); and

2. All participating asset owners pair up with worse partners, rSB(q) >

r̃(q) for q ∈ (q̃, 1); and

3. Higher participation on the workers’ side, p
SB
≥ p̃, but lower partici-

pation on the asset side, q̃ ≥ q
SB

; and

4. The threshold type on one side remains unchanged only if that side

features full participation, i.e., If p
SB

= p̃(q̃ = q
SB

), then p
SB

= p̃ =

0(q̃ = q
SB

= 0).

Corollary 4. In comparison with price competition,

1. the best workers are strictly worse off, whereas the lowest types of the

participating workers of the threshold type, p ∈ (p̃, p
SB

] strictly benefit;

and

2. the owners of the highest quality assets are strictly better off, whereas

those of the threshold asset quality q ∈ (q
SB
, q̃] must be strictly worse

off.
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3.6. Matching Efficiency

To better understand the form of distortion, it is instructive to start with

an equilibrium in price competition. Suppose we replace the posted prices

with output shares sSB(q) = 1 − d ln δ
d lnλ

∣∣
λ=λSB(q)

, keeping the same division

of the matching surplus for every matched pair. This set of contracts is

not incentive compatible for the workers. In comparison with a fixed price,

a fixed share of output costs more to the better workers but less to the

low types. The workers will have a higher deviating payoff from the active

markets for better assets. In particular, the workers above the threshold

type p
SB

can always profit from searching for slightly better assets.

This must result in a longer queue of workers for the best assets.75 In

response, their owners will post a greater share to partially offset the increase

in the queue length. These asset owners decide to retain a longer queue

than in the Second Best allocation because their private value of matching

probability increases with their share of the surplus.76 On the other side,

the best workers will suffer from the reductions in their share of surplus as

well as their matching probability.

Under assortative matching, the pool of workers available to the lower

quality assets must deteriorate. The asset owners in the intermediate range

face two counteracting forces. First, a sharing contract costs less to weaker

workers, intensifying the local competition among workers. Given the same

type of workers, a less generous term is required to maintain sorting. With

a greater share of the surplus, the asset owners gain by improving their

75wSB(q) is monotonic in q but sSB(q) needs not be. So we can only deduce a higher

queue length for the best assets.
76In a setting with a large but finite number of agents, the average type of workers will

decrease with the queue length. The owners of the best assets would still decide to retain

a longer queue in equilibrium. Otherwise, a single asset owner will deviate to post a more

generous term, drawing workers from other owners of the best assets.
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3.6. Matching Efficiency

matching probability. On the other hand, the asset owners are left with

weaker workers amid the increase in the queue length for the better assets.

As they see a lower gain from a match, they have incentive to induce a

shorter queue of workers instead.

The relative strengths of the two forces depend on the distribution of

types. Surprisingly, it turns out that all but the best assets must settle

with weaker partners, regardless of the distribution of types. By continuity,

this must happen to the assets of second highest quality. Suppose, to the

contrary, that we move down from the top and find the owners of asset

q̂ > q̃ pairing with the same type p̂ = r̃(q̂) = rSB(q̂) as in the Second

Best allocation. Since the workers slightly better than p̂ now match with

better assets, the queue length for the assets q̂ must be below than in the

Second Best allocation, λSB(q̂) ≥ λ̃(q̂), under assortative matching. Figure

3.4 depicts the situation.

Figure 3.4: Law of motion in a thought experiment

Now consider the thought experiment of removing all workers above p̂

and assets above q̂. The Utilitarian planner still finds the original Second

Best allocation optimal for this truncated distribution of types. Otherwise,

she would have improved upon it. The same set of equilibrium conditions

in Proposition 7 still applies to the truncated distribution of types. The
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3.6. Matching Efficiency

underlying reason is that the set of contracts posted is to deter the agents

below the threshold types from participating and the participating workers

from deviating to match with slightly better assets. As p̂ and q̂ are now the

highest types, we have argued that the owners of asset quality q̂ will induce

an inefficiently long queue of workers, λSB(q̂) < λ̃(q̂). This contradicts our

previous claim!

To understand the distortion in the threshold types, let us return to our

preceding discussion on the hypothetical set of contracts sSB(q). Suppose

p
SB

> 0, the workers of the threshold type p
SB

are indifferent about their

outside option and entering the market (sSB(q
SB

), q
SB

). Those with type

below p
SB

now pay less under the sharing contract sSB(q
SB

). Some of them

will be induced to participate. So the participation on the workers side must

increase in equilibrium if p
SB

> 0.

The result on the matching pattern only states that the workers with type

p
SB

pair up with better assets in equilibrium, κ̃(p
SB

) ≥ κSB(p
SB

) = q
SB
.

This raises the question on whether the workers with type p̃ may turn out

matching with assets below q
SB
. The answer is negative because for the

second best allocation, the Utilitarian planner would keep assigning agents

into participation until the expected surplus for the last pair of types declines

to zero. Suppose, to the contrary, that p
SB

> p̃ and q
SB

> q̃,

0 = (uSB(q
SB

)− U) + λSB(q
SB

)(vSB(p
SB

)− V )

= max
λ≥0

[δ(λ)y(p
SB
, q
SB

)− λV − U ] > max
λ≥0

[δ(λ)y(p̃, q̃)− λV − U ]!
(3.17)

This is impossible as one side of the threshold types (p̃, q̃) will be better off

taking outside option. Therefore, we conclude that the participation on the

asset side can only be inefficiently low.77

77Since κ̃(p) > κSB(p) for p ∈ (p
SB
, 1), the case p

SB
= p̃ and q

SB
> q̃ is impossible.
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3.6. Matching Efficiency

It remains to argue that some asset owner must be discouraged from

participating if q
SB

> 0. Suppose, to the contrary, that q̃ = q
SB

> 0, and

hence ũ(q̃) = uSB(q̃) = U. Again, the Utilitarian planner would assign some

assets to their outside options only if the pair of threshold types yields zero

expected surplus or all the workers are exhausted, p
SB

= 0. Recall that

p
SB

> p̃ if p
SB

> 0. So the former case is impossible as the inequality

(3.17) applies again. For the remaining possibility p
SB

= p̃ = 0, the queue

length for the pair of threshold types must also stay the same under the

Hosios condition. Since the workers near the lowest type pay less under the

sharing contract, the asset owners slightly above the threshold quality face

a longer queue than in price competition. This is exactly opposite to the

case in Figure 3.4. These asset owners must pair up with better workers

than in the Second Best allocation, contracting our previous claim! With

the distortion of the threshold types, ṽ(p
SB

) > vSB(p
SB

) and ũ(q̃) < uSB(q̃)

follow from the boundary conditions and the Hosios condition.

Notice that the above arguments only hinge on the property that the

better workers always pay more under the sharing contracts.78 Nonetheless,

we are still able to draw conclusions on how the matching pattern and the

participation margin are distorted.

Again, two counteracting forces affect the distortion of the queue length

at the bottom. On one hand, the owners of assets slightly above q̃ now

benefit less from a higher matching probability as they face weaker partners.

On the other hand, their cost of increasing their matching probability may

also fall. This happens when ṽ(p
SB

) > vSB(p
SB

) > ṽ(p̃). Therefore, the

queue length at the lower end can be distorted in either direction. This is

78Formally, the expected payment received by the asset owner strictly increases with

the worker’s type for any contracts and asset quality.
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illustrated in the following example.

A symmetric example Suppose types on the two sides are both uni-

formly distributed over [0, 1]. The outside options for the two sides yield the

same payoff V = U. Consider a market with O-ring production y(p, q) =

(y − y)pq + y and random matching technology δ(λ) = λ
λ+1 . The Second

Best allocation inherits the symmetry between both sides in the setup. It is

given by rSB(q) = q, λSB(q) = 1, vSB(p) = 1
4y(p, p) and uSB(q) = 1

4y(q, q).

p
SB

= q
SB

satisfy 1
4 [(y−y)q2

SB
+y] = U if 1

4y ≤ U. Otherwise, p
SB

= q
SB

=

0.

We first consider the case 1
4y ≤ U. The boundary conditions at the

bottom immediately imply that p̃q̃ > 0 and(
1

λ̃(q̃)+1

)2

[(y − y)p̃q̃ + y] = V = U =

(
λ̃(q̃)

λ̃(q̃)+1

)2

[(y − y)p̃q̃ + y].

It follows that λ̃(q̃) = 1 and p̃q̃ = p
SB
q
SB
. Applying the characterization in

Proposition 7 and 8, we conclude that p̃ < p
SB

= q
SB

< q̃ and the queue

length in almost every active market is inefficiently high, λ̃(q) > 1.

For the case 1
4y > U, Proposition 8 states that 0 = p̃ = p

SB
= q

SB
< q̃.

The boundary condition for q̃ > 0 implies that λ̃(q̃) < 1. Hence, there is a

threshold asset quality q̂ such that all active markets for q > q̂ feature an

inefficiently high queue length and the opposite occurs to the active markets

for q < q̂.

3.6.1 Discussion

The recipe for inefficiency here contains three ingredients: output sharing

contracts, private types and search friction.
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Eeckhout and Kircher (2010) show that Second Best allocations can

always be decentralized in price competition. If the workers’ types are con-

tractible, a menu of output shares may function as a posted price as its term

can be made contingent on types to implement the required transfer. So the

Second Best allocation will be decentralized.79

Now consider an environment where the parties face no search friction.

In the First Best allocation, the matching is perfectly assortative with a

unit queue length for every matched pair. The First Best allocation always

prevails if the asset side may post prices. When we replace the posted prices

with output shares keeping the same division of the matching surplus, the

workers will again deviate to better assets, resulting in a longer queue for

the best assets. Without search friction, the owners of the best assets will

increase their posted share until the queue length restores to unity. The

asset owners still have a greater share of surplus upon matching, and hence

a higher marginal value of matching probability. However, they cannot

improve their matching probability by distorting the queue length. Their

decisions in turn leave the same pool of workers to the asset owners of the

second highest quality. Inductively, the equilibrium allocation remains First

Best amid higher equilibrium payoff for all participating asset owners.

3.7 Concluding Remarks

This chapter studies how the output sharing arrangement affects sorting

efficiency in a directed search framework where one side has private types. I

79Under condition 3.12 in Remark 8, an asset owner cannot gain from posting a menu

of output shares specifying different expected payment for different types. This is because

the meeting is bilateral in the setting here.
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3.7. Concluding Remarks

consider a stylized setting to disentangle the source of inefficiency from the

well-known channels. I characterize the unique equilibrium which features

inefficient PAM. I provide qualitative features of the distortion in equilib-

rium. These features applies to any distribution of types as the underlying

forces are always present. In particular, the unique equilibrium features full

separation of types and the Hosios condition is met in every active market.

I then provide qualitative features of the distortion in the matching pattern

and the participation thresholds.

For other forms of securities or contingent contract, the preference over

the matching probability and the term of the contract differ across workers.

In equilibrium, the matched pairs will not fully separate into a continuum

of markets where the Hosios condition is satisfied. This is because in such

case, the asset owners will distort the queue length to screen out better

workers. 80 As a result, the channel of sorting inefficiency here will confound

with the distortions associated with the screening by the asset owners as

well as the search externalities such as thick market effect, congestion effect

and compositional effect. An avenue for future research is to study such

interactions and the resulting form of distortion. The results in this chapter

will then serve as a useful benchmark.

80Under Hosios condition, an incremental distortion of the queue length leads to a

second-order loss while an improvement in the worker’s type yields a first-order gain.
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Chapter 4

Conclusion

In two-sided one-to-one matching, the equilibrium matching pattern and

the divisions of surpluses vary with the distribution of types. A central ques-

tion is to identify “distribution-free” qualitative features and their relation

to the model primitives such as the production technology and the market

structure. These results yield testable implications and policy recommenda-

tion, which are robust to misspecification of the distribution of types. The

arguments underlying the results illuminate general economic forces.

A recurrent focus in the literature has been the conditions for assortative

matching, or lack thereof. This dissertation introduces private information

and contingent payment, which are present in a number of circumstances.

The contribution is twofold.

First, I provide economically meaningful conditions ensuring decentral-

ization of efficient matching in a frictionless environment. The analysis

extends our understanding of the potential forces against PAM from fixed

prices to more general forms of contingent contracts. The policy implication

here is to restrict the flattest contracts available so that Condition Global

ID is met. Roughly speaking, assortative matching occurs whenever the

variation in the contingent contracts aligns with the form of production

complementarity. Such consideration has been absent from the literature of

contract theory and in particular, security design.

132



Chapter 4. Conclusion

Second, I provide two novel comparative statics. I show how the form

of financial securities available affects the divisions of matching surpluses

in a frictionless environment. As discussed, this comparative static not

only has redistributive implications but also provides testable implications of

information asymmetry in such markets. I then consider a frictional market

in which the asset side posts output shares. I show that the inefficiency

caused by the output sharing contracts manifests as monotonic changes in

the matching pattern and the participation decision. These two comparative

statics are qualitatively different from the existing results in the literature.

The forces underlying them may open avenues for future research.
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Appendix A

Appendix for chapter 2

A.1 Proof of Lemma 1

I now formally define an equilibrium when DRM is feasible. It is straight-

forward to adapt the equilibrium definition for the setting that an owner of

asset quality qk may only post a single contract (q, π, t) with q ≤ qk.

Definition. A competitive matching equilibrium using direct revelation mech-

anisms consists of the asset owners’ equilibrium payoff U : {qk}Kk=1 → R+,

workers’ equilibrium payoff V : {pl}Ll=1 → R+, asset owners’ contract post-

ing set ψT : {qk}Kk=1 → ∪Kk=1ΩDRM
T (qk) ∪ {p0}, the set of active mar-

kets ΨT ⊆ ∪Kk=1ΩDRM
T (qk) × {qk}Kk=1, the measure of participating workers

W T :
∏L
l=1{B([q, q] × [0, 1]) × T } × P({qk}Kk=1) → [0, 1], the distribution of

workers rT : ∪Kk=1ΩDRM
T (qk) × {qk}Kk=1 → ∆({pl}Ll=1) and market tightness

µT : ∪Kk=1ΩDRM
T (qk)× {qk}Kk=1 → [0,∞] such that

1. Asset Owners’ Optimal Contract Posting:

i)For all q ∈ {qk}Kk=1 and T ∈ ΩDRM
T (q),

U(q) ≥ η(µT (T, q))

µT (T, q)

L∑
l=1

rT (pl|T, q)(1− πl)u(ql, pl, t
l)

with equality if T ∈ ψT (q).

ii)µT (T, q) = 0 and T /∈ ψT (q) if T /∈ ΩDRM
T (q).
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2. Workers’ Optimal Acceptance:

i)For all (T, q) ∈ ∪Kk=1ΩDRM
T (qk)× {qk}Kk=1,

V (pl) ≥ η(µT (T, q))(1− πl)v(pl, q
l, tl) (A.1)

with equality if rT (pl|T, q) > 0 and µT (T, q) <∞.

ii)µT (T, q) =∞ if V (pl) > (1− πl)v(pl, q
l, tl) for all p ∈ {pl}Ll=1.

3. Active Markets:

ΨT := {(T, q) ∈ ∪Kk=1ΩDRM
T (qk)× {qk}Kk=1 : T ∈ ψT (q)} is the support

of W T .

4. Optimal Participation:

i)U(q) ≥ U and V (pl) ≥ V .

ii)
∫

ΩDRMT ×{qk}Kk=1
rT (pl|T, q)dW T ≤ P (pl) with equality if V (pl) > V .

iii)
∫

ΩDRMT
µT (T, qk)dW

T ≤ Q(qk) with equality if U(qk) > U.

Notice that the inequality (A.1) in the workers’ optimal acceptance de-

cision holds for both active and inactive markets. Therefore, the worker’s

optimal acceptance condition captures the belief restriction in section 2.4.4.

Suppose that {U, V, ψ,Ψ,W, r, µ} is a competitive matching equilibrium.

Then there exists an equilibrium using direct revelation mechanisms

{U, V, ψT ,ΨT ,W T , rT , µT } supporting the same equilibrium payoffs {U, V }

and same allocation,∫
ΩDRMT (qk)

rT (pl|T, qk)dW T =

∫
Ωt

r(pl|t, qk)dW∫
ΩDRMT (qk)

rT (pl|T, qk)µT (t, qk)dW
T =

∫
Ωt

r(pl|t, qk)µ(t, qk)dW

for all pl and qk. Furthermore, all active markets ΨT involve only degenerate

direct revelation mechanisms.
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Proof. Fix an equilibrium {U, V, ψ,Ψ,W, r, µ}, I now construct a correspond-

ing equilibrium {U, V, ψT ,ΨT ,W T , rT , µT } involving only degenerate DRM.

The participation decisions are as follows: ψT (qk) = {T = {q′, π′, t′}Ll=1 :

(q′, π′, t′) ∈ ψ(qk)} if {p0} /∈ ψ(qk). Otherwise, ψT (qk) = {T = {q′, π′, t′}Ll=1 :

(q′, π′, t′) ∈ ψ(qk)} ∪ {p0}. As required in the equilibrium definition, ΨT =

{(T, q) ∈ ΩDRM
T ×{qk}Kk=1 : T ∈ ψT (q)}.W T is defined as follows. For every

set A,

W T (A) = W ({(q′, π′, t′) : {q′, π′, t′}Ll=1 ∈ A ∩ΨT }).

Consider T ′ ∈ ψT (qk). By construction, T ′ takes the form of {q′, π′, t′}Ll=1,

where (q′, π′, t′) ∈ ψ(qk).Define rT (T ′, qk) = r((q′, π′, t′), qk) and µT (T ′, qk) =

µ((q′, π′, t′), qk). {U, V, ψ,Ψ,W, r, µ} and {U, V, ψT ,ΨT ,W T , rT , µT } support

the same allocation by construction.

For infeasible menus T ′ /∈ ΩDRM
T (qk), then µT (T ′, q) = 0 and rT (p1|T ′, qk) =

1. Now consider an inactive market T ∈ ΩDRM
T (qk)\ψT (qk). Define the mar-

ket tightness by

µT (T, qk) = sup{µ′ ∈ [0,∞] : V (pl) ≥ η(µ′)(1− πl)v(pl, q
l, tl), L ≥ l ≥ 1}.

Notice that µT (T, qk) = ∞ if V (pl) ≥ (1 − πl)v(pl, q
l, tl) for all type pl.

Otherwise, µT (T, qk) < 1 and rT (T, qk) is defined to be degenerate at

min{p ∈ {pl}Ll=1 : V (pl) = µT (T, qk)(1− πl)v(pl, q
l, tl)}.

The construction of ΨT and the equilibrium conditions for {U, V, ψ,Ψ,W, r, µ}

immediately imply that deviations to active markets are never profitable.

It is sufficient to check if an asset owner of qk cannot profit from posting

T̃ ∈ ΩDRM
T (qk)\ψT (qk). Consider T̃ = {q̃l, π̃l, t̃l}Ll=1 with µT (T̃ , qk) <∞. By

construction, µT (T̃ , qk) < 1 and rT (T̃ , qk) must be degenerate at some p
l̂
.
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For any type pl,

V (pl) ≥ µT (T̃ , qk)(1− π̃l)v(pl, q̃
l, t̃l)

≥ µT (T̃ , qk)(1− π̃ l̂)v(pl, q̃
l̂, t̃l̂).

The first inequality is merely the definition of µT (T̃ , qk) and the second

inequality is the IC condition for DRM. As they hold with equalities for

pl = p
l̂
, it follows that µ((π̃ l̂, q̃ l̂, t̃l̂), qk) = µT (T̃ , qk) < 1. Any pl′ in the

support of r((π̃ l̂, q̃ l̂, t̃l̂), qk) must satisfy

V (pl′) = µT (T̃ , qk)(1− π̃ l̂)v(pl′ , q̃
l̂, t̃l̂)

The previous inequality immediately implies that V (pl′) = µT (T̃ , qk)(1 −

π̃l
′
)v(pl′ , q̃

l′ , t̃l
′
) and hence, p

l̂
≤ pl′ by construction. From the optimal

contract posting condition for {U, V, ψ,Ψ,W, r, µ},

U(qk) ≥ (1− π̃ l̂)u(q̃ l̂, r((π̃ l̂, q̃ l̂, t̃l̂), qk), t̃
l̂)

≥ (1− π̃ l̂)u(q̃ l̂, p
l̂
, t̃l̂).

The last inequality is due to Remark (1). Hence, the asset owner has no

profitable deviations.

A.2 Proof of Proposition 1

I first define an equilibrium in the full information case. Each market is

associated with a tightness ratio µFI(t, p, q). The distribution of workers is

trivial, and therefore omitted.

Definition. A full information competitive matching equilibrium consists

of the asset owners’ equilibrium payoff UFI : {qk}Kk=1 → R+, workers’
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equilibrium payoff V FI : {pl}Ll=1 → R+, asset owners’ contract posting set

ψFI : {qk}Kk=1 → Ωt × {pl}Ll=1 ∪ {p0}, the set of active markets ΨFI ⊆

Ωt × {pl}Ll=1 × {qk}Kk=1, the measure of participating workers WFI : T ×

P({pl}Ll=1 × {qk}Kk=1) → [0, 1], and market tightness µFI : Ωt × {pl}Ll=1 ×

{qk}Kk=1 → [0,∞] such that

1. Asset Owners’ Optimal Contract Posting:

For all (t, p, q) ∈ Ωt×{pl}Ll=1×{qk}Kk=1, U
FI(q) ≥ η(µFI(t,p,q))

µFI(t,p,q)
u(q, p, t)

with equality if t ∈ ψFI(q).

2. Workers’ Optimal Acceptance:

For all (t, p, q) ∈ Ωt × {pl}Ll=1 × {qk}Kk=1,

V FI(p) ≥ η(µFI(t, p, q))v(p, q, t) (A.2)

with equality if V FI(p) ≤ v(p, q, t). Otherwise, µFI(t, p, q) =∞.

3. Active Markets:

ΨFI := {(t, p, q) ∈ Ωt × {pl}Ll=1 × {qk}Kk=1 : (t, p, q) ∈ ψFI(q)} is the

support of WFI .

4. Optimal Participation:

i)UFI(q) ≥ U and V FI(p) ≥ V .

ii)WFI(Ωt × {pl} × {qk}Kk=1) ≤ P (pl) with equality if V FI(pl) > V .

iii)
∫

Ωt×{pl}Ll=1
µFI(t, p, qk)dW

FI ≤ Q(qk) with equality if UFI(qk) > U.

I am going to show that the set of First Best allocations coincides with

the set of equilibrium allocations under full information. The proof here

does not require Assumption (P).
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Every First Best allocation can be supported by an equilibrium under full

information.

Lemma 10. Suppose (WFB
pq , CFBpq ) is a First Best allocation and (∆V FB,∆UFB)

is a set of associated Lagrange multipliers for the First Best program, where

∆V FB(p) and ∆UFB(q) denote the shadow price of the corresponding re-

source constraint respectively. Define V FB(p) := V+∆V FB(p) and UFB(q) :=

U + ∆UFB(q). Then WFB
pq = CFBpq and

1. V FB(p) + UFB(q) ≥ E(Y |p, q). Equality holds if WFB
pq (p, q) > 0.

2. V FB(p) ≥ V .
∑K

k=1W
FB
pq (p, qk) = P (p) if V FB(p) > V .

3. UFB(q) ≥ U .
∑L

l=1C
FB
pq (pl, q) = Q(q) if UFB(q) > U.

Proof. For any (W ′pq, C
′
pq), define min{W ′pq, C ′pq} = W ′′ where W ′′(p, q) :=

min{W ′pq(p, q), C ′pq(p, q)} for all (p, q). If W ′pq 6= C ′pq, then TS(W ′pq, C
′
pq) <

TS(min{W ′pq, C ′pq},min{W ′pq, C ′pq}). ThereforeWFB
pq = CFBpq . Substitute this

into the First Best program, the Kuhn-Tucker conditions for the recasted

program give rise to the remaining conditions.

Fix a First Best allocation and a set of shadow prices. For all pairs (pl, qk)

with WFB
pq (pl, qk) > 0, Lemma 10 states that V FB(pl) ∈ [V ,E(Y |pl, qk) −

U ]. Hence, there must exist some contract t(.; s′) ∈ St s.t. UFB(qk) =

u(qk, pl, t(.; s
′)) and V FB(pl) = v(pl, qk, t(.; s

′)). Denote s′ by sFB(pl, qk).

I now construct a candidate equilibrium with V FI = V FB and UFI =

UFB. The participation decisions are defined as follows: If
∑L

l=1W
FB
pq (pl, qk′) =

Q(qk′),

ψFI(qk′) = {(t, pl) : WFB
pq (pl, qk′) > 0, t = t(.; sFB(pl, qk′))}.
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If
∑L

l=1W
FB
pq (pl, qk′) ∈ (0, Q(qk′)),

ψFI(qk′) = {(t, pl) : WFB
pq (pl, qk′) > 0, t = t(.; sFB(pl, qk′))} ∪ {p0}.

ψFI(qk′) = {p0} if
∑L

l=1W
FB
pq (pl, qk′) = 0.

ΨFI = {(t, pl, qk) : WFB
pq (pl, qk) > 0, t = t(.; sFB(pl, qk))}. WFI is degen-

erate with ΨFI as support and WFI(t(.; sFB(pl, qk)), pl, qk) = WFB
pq (pl, qk).

µFI(t, pl, qk) = 1 for all (t, pl, qk) ∈ ΨFI . Workers’ optimal acceptance

condition pins down µFI for inactive markets. For any (t, pl, qk) /∈ ΨFI ,

µFI(t, pl, qk)

µFI(t, pl, qk) = sup{µ′ ∈ [0,∞] : V FI(pl) ≥ η(µ′)v(pl, qk, t)}.

It remains to verify that ψFI is the set of optimal contracts for the asset

owners. All other equilibrium conditions are met by construction. Sup-

pose that for some (t̂, p
l̂
, q
k̂
) /∈ ΨFI ,

η(µFI(t̂,p
l̂
,q
k̂
))

µFI(t̂,p
l̂
,q
k̂
)
u(q

k̂
, p
l̂
, t̂) > UFI(q

k̂
). It

follows that u(q
k̂
, p
l̂
, t̂) > UFI(q

k̂
) and µFI(t̂, p

l̂
, q
k̂
) > 0 so that v(p

l̂
, q
k̂
, t̂) ≥

V FI(p
l̂
). These two inequalities jointly implies V FB(p

l̂
)+UFB(q

k̂
) < E(Y |p

l̂
, q
k̂
),

contradicting the efficiency of the First Best allocation!

Every equilibrium allocation is a First Best.

Lemma 11. An allocation (Ŵpq, Ĉpq) satisfying resources constraints is a

First Best if Ŵpq = Ĉpq and there exists a pair of functions Û : {qk}Kk=1 →

R+ and V̂ : {pl}Kk=1 → R+ such that

1. V̂ (p)+Û(q) ≥ E(Y |p, q) for all (p, q) ∈ {pl}Ll=1×{qk}Kk=1, and equality

holds if Ŵpq(p, q) > 0.

2. V̂ (p) ≥ V .
∑K

k=1 Ŵpq(p
′, qk) = P (p′) if V̂ (p′) > V .

3. Û(q) ≥ U.
∑L

l=1 Ĉpq(pl, q
′) = Q(q′) if Û(q′) > U .

147



A.2. Proof of Proposition 1

Proof. For any (W ′pq, C
′
pq), define min{W ′pq, C ′pq} = W ′′ where W ′′(p, q) :=

min{W ′pq(p, q), C ′pq(p, q)} for all (p, q). Consider any allocation (Wpq, Cpq)

satisfying the resource constraints,

TS(Wpq, Cpq) ≤ TS(min{Wpq, Cpq},min{Wpq, Cpq})

=
∑K

k=1

∑L

l=1
[E(Y |pl, qk)− U − V ] min{Wpq(pl, qk), Cpq(pl, qk)}

+V
∑L

l=1
P (pl) + U

∑K

k=1
Q(qk)

≤
∑L

l=1

{[
V̂ (pl)− V

]∑K

k=1
min{Wpq(pl, qk), Cpq(pl, qk)}+ P (pl)V

}
+
∑K

k=1

{[
Û(qk)− U

]∑L

l=1
min{Wpq(pl, qk), Cpq(pl, qk)}+Q(qk)U

}
≤

∑L

l=1
P (pl)V̂ (p) +

∑K

k=1
Q(qk)Û(q) = TS(Ŵpq, Ĉpq).

The first inequality stems from the specification of matching function. The

second inequality is obtained by substituting V̂ (p)+Û(q) ≥ E(Y |p, q). Since

(Wpq, Cpq) satisfies the resource constraints, the second and third condition

for V̂ and Û in Lemma 11 leads to the third inequality. The last equality is

due to the equality conditions for the first condition in Lemma 11. Hence,

(Ŵpq, Ĉpq) is a First Best allocation.

Now consider an equilibrium under full information. First, every ac-

tive market clears. Suppose not, µFI(t′, pl′ , qk′) < 1 for some (t′, pl′ , qk′) ∈

ΨFI . Then v(pl′ , qk′ , t
′) > V FI(pl′) ≥ V and by ex-post budget balance,

E(Y |pl′ , qk′))− v(pl′ , qk′ , t
′) = UFI(qk′) ≥ U. There exist contracts t(.; s′′) ∈

St yielding v(pl′ , qk′ , t(.; s
′′)) arbitrarily close to but below v(pl′ , qk′ , t

′), so

that µFI(t(.; s′′), pl′ , qk′) < 1 and u(qk′ , pl′ , t(.; s
′′)) > UFI(qk′). an asset

owner will gain from offering such contract. A symmetric argument rules

out µFI(t′, pl′ , qk′) > 1. This argument remains valid when V FI(pl′) = V

or UFI(qk′) = U. Second, V FI(pl) + UFI(qk) ≥ E(Y |pl, qk) for all pairs of
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(pl, qk), and equality holds if (t′, pl, qk) ∈ ΨFI for some t′ ∈ Ωt. The equality

is a direct consequence of ex-post budget balance and µFI(t, pl, qk) = 1 for

all (t, pl, qk) ∈ ΨFI . Now suppose V FI(pl′) + UFI(qk′) < E(Y |pl′ , qk′), then

an asset owner with quality qk′ will deviate to a market (t(.; s′), pl′ , qk′) ∈ St,

in which v(pl′ , qk′ , t(.; s
′)) is slightly above V FI(pl′)!

Since µFI(t, pl, qk) = 1 for all (t, pl, qk) ∈ ΨFI , the equilibrium allocation

is given by CFIpq (pl, qk) = WFI
pq (pl, qk = WFI(Ωt × (pl, qk)). Optimal partici-

pation conditions imply that CFIpq and WFI
pq satisfy the resources constraints,

with equality in the case UFI(qk) > U and V FI(pl) > V respectively.

The equilibrium conditions also imply UFI(qk) ≥ U , V FI(pl) ≥ V and

V FI(pl) + UFI(qk) = E(Y |pl, qk) whenever WFI
pq (pl, qk) > 0. In summary,

(WFI
pq , C

FI
pq ) satisfies the conditions in Lemma 11 with (UFI , V FI) = (Û , V̂ ).

A.3 Proof of Proposition 2

I am going to prove that if Ct ⊆ Ωt, the set of First Best allocations

coincides with the set of equilibrium allocations in price competition. The

proof again does not require Assumption (P). The structure of this proof

closely follows that for Proposition 1.

Every First Best allocation can be supported by an equilibrium under full

information.

Proof. I now construct a candidate equilibrium with V = V FB and U =

UFB, where V FB and UFB are defined in the proof of Proposition 1. Let

ψ(qk) = {p0} if
∑L

l=1W
FB
pq (pl, qk) = 0. For any q

k̂
satisfying

∑L
l=1W

FB
pq (pl, qk̂) >

0, Lemma 10 implies that UFB(q
k̂
) ∈ [U,max

k
{E(Y |pl, qk̂) − V }]. Hence,

these exists s
k̂
∈ [0, 1] s.t. tc(.; sk̂) = UFB(q

k̂
). Let ψ(q

k̂
) = {tc(.; sk̂)} if
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∑L
l=1W

FB
pq (pl, qk̂) = Q(q

k̂
) and ψ(q

k̂
) = {tc(.; sk̂)}∪{p0} if

∑L
l=1W

FB
pq (pl, qk̂) <

Q(q
k̂
). Hence, Ψ = {(tc(.; sk), qk) :

∑L
l=1W

FB
pq (pl, qk) > 0}. W is degenerate

with Ψ as support and W (tc(.; sk), qk) =
∑L

l=1W
FB
pq (pl, qk). For an active

market (tc(.; sk), qk) ∈ Ψ, µ(tc(.; sk), qk) = 1 and r(tc(.; sk), qk) = rFBq (qk).

Workers’ optimal acceptance condition pins down µ and r for the inactive

markets. For any (t′, q′) /∈ Ψ,

µ(t′, q′) = sup{µ′ ∈ [0,∞] : V FB(p) ≥ η(µ′)v(p, q′, t′)}.

If µ(t′, q′) <∞, then r(t′, q′) is degenerate at

min{p ∈ {pl}Ll=1 : V FB(p) = µ(t′, q′)v(p, q′, t′)}.

If µ(t′, q′) = ∞, r(t′, q′) has no bearings and is assumed to be the same as

prior.

I first show that ψ(qk) is optimal for the owners of asset quality qk.

Suppose that for some (t̃, q̃) /∈ Ψ, η(µ(t̃,q̃))

µ(t̃,q̃)
u(q̃, r(t̃, q̃), t̃) > UFB(q̃). By con-

struction, µ(t̃, q̃) < ∞ and r(t̃, q̃) is degenerate at some type p̃. It follows

that u(q̃, p̃, t̃) > UFB(q̃) and v(p̃, q̃, t̃) ≥ V FB(p̃). These two inequalities

jointly implies V FB(p̃) + UFB(q̃) < E(Y |p̃, q̃), contradicting Lemma 10!

Second, the workers cannot gain by deviating to other active markets. For

any p ∈ {pl}Ll=1 and (tc(.; sk), qk) ∈ Ψ, V (p) ≥ E(Y |p, qk) − UFB(qk) =

v(p, qk, tc(.; sk)}). The inequality is due to Lemma 10 and the last equality

makes use of the property of cash payment. It suffices to check for these two

types of deviations. All other equilibrium conditions are met by construction

and Lemma 10.

Every equilibrium allocation is a First Best.

Proof. Fix an equilibrium. First, every active market clears. Suppose not,

µ(t′, q′) > 1 for some (t′, q′) ∈ Ψ and let r(p′|t′, q′) > 0. Then u(q′, r(t′, q′), t′) >
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U(q′) ≥ U. Then there exists contract tc(.; s
′′) yielding v(p′, q′, tc(.; s

′′))

arbitrarily close to but above v(p′, q′, t′), so that µ(tc(.; s
′′), q′) < 1, and

u(q′, r(tc(.; s
′′), q′), tc(.; s

′′)) > U(q′) for arbitrary r(tc(.; s
′′), q′). An asset

owner will gain from offering such contract. A symmetric argument rules

out µ(t′, q′) < 1. Second, V (p) + U(q) ≥ E(Y |p, q) for all pairs of (p, q),

and equality holds if (t′, q) ∈ Ψ for some t′ ∈ Ωt. The equality is a di-

rect consequence of µ(t, q) = 1 for all (t, q) ∈ Ψ. Now suppose V (p′) +

U(q′) < E(Y |p′, q′). There is some contract tc(.; s
′) in which v(p′, q′, tc(.; s

′))

is slightly above V (p′), so that µ(tc(.; s
′), q′) < 1, and u(q′, p′′, tc(.; s

′)) =

tc(.; s
′) > U(q′) for any p′′ ∈ {pl}Ll=1. An asset owner with quality q′ will

gain from offering such contract.

The allocation is given by

W ′pq(pl, qk) = C ′pq(pl, qk) =
∫

Ωt
r(pl|t, qk)dW (t, pl, qk).

Since µ(t, q) = 1 in the support of W , optimal participation conditions imply

that C
′
pq and W

′
pq satisfy the resources constraints, with equality in the case

U(q) > U and V (p) > V respectively. In addition, V (p) +U(q) = E(Y |p, q)

whenever W ′pq(p, q) > 0. Applying Lemma 11 with (U, V ) = (Û , V̂ ), the

equilibrium allocation (W ′pq, C
′
pq) is a First Best.

A.4 Proof of Lemma 2-4 and Proposition 3

The sufficiency part in Proposition 3 directly follows from Lemma 2-4,

which I will establish in sequence.

I first reiterate the candidate equilibrium for reference. The set of ac-

tive markets is given by Ψ = {(t(.; s̃k), qk)}k≥k where {s̃k}k≥k satisfies the
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equalities (2.9) and (2.10).

W ({t, q}) =


Q(qk)∑L

l=1W
FB
pq (pl, qk)

0

if {t, q} = {(t(.; s̃k), qk)} and qk > qk;

if {t, q} = {(t(.; s̃k), qk)};

Otherwise.

ψ(qk) =


{(t(.; s̃k), qk)}

{(t(.; s̃k), qk)} ∪ {p0}

{p0}

if qk > qk;

if qk = qk and
∑L

l=1W
FB
pq (pl, qk) < Q(qk);

if qk < qk.

The equilibrium payoffs for workers and asset owners are given by

V (pl) =

 max{v(pl, qk, t(.; s̃k))}k≥k,

V ,

if pl ≥ pl; and

if pl < pl.

U(qk) =

 u(qk, r
FB
q (qk), t(.; s̃k)),

U,

if qk ≥ qk; and

if qk < qk.

For the active markets, r(t(.; s̃k), qk) = rFBq (qk) and µ(t(.; s̃k), qk) = 1.

For an inactive market (t(.; s′), qk′) /∈ Ψ,

µ(t(.; s′), qk′) = sup{µ′ ∈ [0,∞] : V (p′) ≥ η(µ′)v(p′, qk′ , t(.; s
′)), p′ ∈ {pl}Ll=1}.

If µ(t(.; s′), qk′) <∞, r(t(.; s′), qk′) is degenerate at

min{p′ ∈ {pl}Ll=1 : V (p′) = µ(t(.; s′), qk′)v(p′, qk′ , t(.; s
′)))}.

This is the most pessimistic belief allowed in our equilibrium definition. If

µ(t(.; s′), qk′) = ∞, r(t(.; s′), qk′) has no bearings and is assumed to be the

same as prior.
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A.4.1 Proof of Lemma 2

Lemma 12. Suppose Condition Sorting-p holds. For any k′ ≥ k, V ≥

v(pl, qk′ , t(.; s̃k′)) if pl ≤ pl and v(pl, qk, t(.; s̃k)) ≥ v(pl, qk′ , t(.; s̃k′)) if (pl, qk)

is in the support of WFB
pq .

Proof. To save on space, I will denote v(pl, qk, t(.; s̃k)) by g(l, k) for k ≥ k.

l(k) denotes min{l ≥ 1 : WFB
pq (pl, qk) > 0, qk ≥ qk}, the lowest type pairing

up with qk ≥ qk. For generic distributions of types, l(k+1) = l(k). Obviously,

v(pl, qk, t(.; s̃k)) ≥ V for pl ≥ pl and u(qk, pl, t(.; s̃k)) ≥ U for pl ≥ pl(k).

For any n ≥ 1, g(l(k+n−1), k+n−1) ≥ g(l(k+n−1), k+n) by (2.10).

Condition Sorting-p implies that g(l(k), k + n − 1) ≥ g(l(k), k + n). This

argument holds for any n ≥ 1. Inductively, g(l(k), k) ≥ g(l(k), k + n) for all

n ≥ 1. For any n ∈ [1, k− k + 1], g(l(k − n), k− n) ≥ g(l(k − n), k− n− 1).

By a symmetric argument, g(l(k), k) ≥ g(l(k), k − n) for n ∈ [1, k − k].

Now consider pl in the support of rFBq (qk) and kH > k ≥ k. From

Condition Sorting-p, g(l, k) ≥ g(l, kH) because g(l(k), k) ≥ g(l(k), kH). For

the case k > kL ≥ k, g(l(k), k) ≥ g(l(k), kL), and so g(l, k) ≥ g(l, kL).

Putting together, we show that if WFB
pq (pl, qk) > 0, then g(l, k) ≥ g(l, l′) for

any k′ ≥ k.

For pl ≤ pl, v(pl, qk, t(.; s̃k)) ≤ v(pl, qk, t(.; s̃k)) ≤ v(pl, qk, t(.; s̃k) = V .

The first inequality is due to Remark 1 and the preceding argument estab-

lishes the second inequality. The last equality is from the construction of

s̃k.

For workers of type pl ≥ pl, V (pl) = v(pl, qk, t(.; s̃k)) for (pl, qk) in the

support of WFB
pq . For workers of type pl < pl cannot gain from participat-

ing in any active markets. For any pl ≥ pl, V (pl) ≥ V (pl) ≥ V . Hence,
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the participation constraints for workers hold. Therefore, workers have no

profitable deviations in the candidate equilibrium.

For qk ≥ qk,

U(qk+1)− U(qk) ≥ u(qk+1, pl(k), t(.; s̃k+1))− u(qk, pl(k), t(.; s̃k))

= E(Y |pl(k), qk+1)− E(Y |pl(k), qk) > 0

The first inequality is due to Remark (1). The equality (2.10) gives rise to

the equality on last line. The last inequality is due to Assumption (P). Our

construction of s̃k ensures that U(qk) ≥ U. The participation constraints for

the asset owners are met.

A.4.2 Proof of Lemma 3

Proof. For any qk ≥ qk, V (pl) ≥ v(pl, qk, t(.; s̃k)). These asset owners will

not get matched if posting a contract with s > s̃k. I now show that own-

ers of asset quality qk ≥ qk have no incentive in posting a contract with

s < s̃k. Suppose not, an asset owner of q
k̂
≥ qk profits from posting

sL̂ < s̃
k̂
. By construction, r(t(.; sL̂), q

k̂
) is degenerate at some worker’s

type, say pH . pL denotes the lowest type in Ωp(t(.; s̃k), qk). It is trivial that

u(q
k̂
, pH , t(.; sL̂)) > U(q

k̂
) ≥ max{U, u(q

k̂
, pL, t(.; s̃

k̂
))} and pH > pL. Fur-

thermore,

v(pH , q
k̂
, t(.; s̃

k̂
)) ≤ V (pH) = µ(t(.; sL̂), q

k̂
)v(pH , q

k̂
, t(.; sL̂)),

v(pL, q
k̂
, t(.; s̃

k̂
)) = V (pL) > µ(t(.; sL̂), q

k̂
)v(pL, q

k̂
, t(.; sL̂)),

which implies
v(pH , q

k̂
, t(.; s̃

k̂
))

v(pH , q
k̂
, t(.; sL̂))

<
v(pL, q

k̂
, t(.; s̃

k̂
))

v(pL, q
k̂
, t(.; sL̂))

.

For all q ≤ q
k̂
, define ŝ(q) by v(pL, q, t(.; ŝ(q))) = v(pL, q

k̂
, t(.; s̃

k̂
)).

Condition Screening-q implies that V (pL) = v(pL, q
k̂
, t(.; s̃

k̂
)) > V and
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u(q, pL, ŝ(q)) > U for any q ≤ q
k̂
. Our construction of {s̃k}k≥k implies that

k̂ > k ≥ 1 and pL > pl. Note that

U(q
k̂
) > u(q

k̂
, pL, t(.; sL̂) > u(q

k̂
, pl, t(.; s

L̂).

From the workers’ IC condition, s̃k ≥ ŝ(qk) for k ≤ k ≤ k̂ − 1 because

v(pL, qk, t(.; ŝ(qk))) = v(pL, q
k̂
, t(.; s̃

k̂
)) ≥ v(pL, qk, t(.; s̃k).

Consider the case that
∑K

k=1Q(qk) <
∑L

l=1 P (pl), then v(pl, q1, t(.; ŝ(q1)) ≥

v(pl, q1, t(.; s̃1)) = V (pl) = V ≥ v(pl, qk̂, t(.; ŝ(qk̂))). The last inequality is

due to Lemma 12. By continuity of v(p, q, t(.; s)) in q and s, there must

exist q′ ∈ [q1, qk̂] such that v(pl, q1, t(.; s̃1)) = v(pl, q
′, t(.; ŝ(q′)) = V . Recall

that V (pH) ≥ v(pH , q
k̂
, t(.; s̃

k̂
)). Putting together, Condition Screening-q

implies that

V (pH)

V (pl)
≥
v(pH , q

k̂
, t(.; s̃

k̂
))

v(pl, q′, t(.; ŝ(q′))
≥
v(pH , q

k̂
, t(.; sL̂))

v(pl, qk̂, t(.; s
L̂))

.

Therefore, V (pl) ≤ µ(t(.; sL̂), q
k̂
)v(pl, qk̂, t(.; s

L̂)). Our construction of off-

equilibrium-path belief implies r(t(.; sL̂), q
k̂
) is degenerate at pl < pH !

Consider the case that
∑K

k=1Q(qk) ≥
∑L

l=1 P (pl). Recall that s̃k ≥

ŝ(qk), so U ≥ u(qk, p1, t(.; s̃k)) ≥ u(qk, p1, t(.; ŝ(qk))) and v(p1, qk, t(.; ŝ(qk)) ≥

v(p1, qk, t(.; s̃k)) = V (p1). Combining with V (pH) ≥ v(pH , q
k̂
, t(.; s̃

k̂
)), Con-

dition Screening-q implies

V (pH)

V (p1)
≥

v(pH , q
k̂
, t(.; s̃

k̂
))

v(p1, qk, t(.; ŝ(qk))
≥
v(pH , q

k̂
, t(.; sL̂))

v(p1, qk̂, t(.; s
L̂))

.

Therefore, V (p1) ≤ µ(t(.; sL̂), q
k̂
)v(p1, qk̂, t(.; s

L̂)), and hence r(pl|t(.; sL̂), q
k̂
) =

1!
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A.4.3 Proof of Lemma 4

Proof. Suppose to the contrary that an owner of asset quality q̂ < qk may

gain from posting some contract ŝ. It follows that ŝ < s̃k. Otherwise,

no workers will accept such contract because V (pl) ≥ v(pl, qk, t(.; s̃k)) >

v(pl, q̂, t(.; ŝ)). By construction, r(t(.; ŝ), q̂) is degenerate at some worker’s

type, say pH . The deviation is profitable only if u(q̂, pH , t(.; ŝ)) > U. The con-

struction of s̃k ensures that U ≥ u(qk, p1, t(.; s̃k)), and hence pH > p1. From

the worker’s IC condition, v(pH , q̂, t(.; ŝ)) > V (pH) ≥ v(pH , qk, t(.; s̃k)). The

inequality (2.16) in Condition Entry-q implies that

V (p1) = v(p1, qk, t(.; s̃k)) < v(p1, q̂, t(.; ŝ)),

and
V (pH)

V (p1)
≥
v(pH , qk, t(.; s̃k))

v(p1, qk, t(.; s̃k))
≥ v(pH , q̂, t(.; ŝ))

v(p1, q̂, t(.; ŝ))
.

The equilibrium condition requires V (p1) ≥ µ(t(.; ŝ), q̂)v(p1, q̂, t(.; ŝ)). It

follows that V (pH) ≥ µ(t(.; ŝ), q̂)v(pH , q̂, t(.; ŝ)). Our construction of off-

equilibrium-path belief implies r(pH |t(.; ŝ), q̂) = 0!

A.4.4 Proof for necessity of conditions

If Condition Sorting-p fails, then there exists some distribution of types

(P ,Q) such that the First Best allocation cannot be supported by an equilib-

rium.

Proof. Suppose Condition Sorting-p fails, there exist p̂H > p̂L, q̂H > q̂L and

ŝH > ŝL s.t. v(p̂L, q̂L, t(.; ŝL)) ≥ V , u(q̂L, p̂H , t(.; ŝL)) ≥ U and v(p̂H , q̂H , t(.; ŝH)) ≤ v(p̂H , q̂L, t(.; ŝL)),

v(p̂L, q̂H , t(.; ŝH)) ≥ v(p̂L, q̂L, t(.; ŝL)),
(A.3)
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where at least one of the inequalities in (A.3) is strict. Notice that equal-

ity cannot hold for both v(p̂L, q̂L, t(.; ŝL)) ≥ V and u(q̂L, p̂H , t(.; ŝL)) ≥

U . By continuity, ŝL can be chosen such that v(p̂L, q̂L, t(.; ŝL)) > V ,

u(q̂L, p̂L, t(.; ŝL)) 6= U , and both inequalities in (A.3) are strict. Note that

u(q̂H , p̂H , t(.; ŝH)) > U. Define ŝ(q) by v(p̂L, q̂L, t(.; ŝL)) = v(p̂L, q, t(.; ŝ(q)))

for all q ≤ q̂L. ŝ(.) is continuous and increases with ŝL. Furthermore,

ŝL can be chosen so that v(p, q, t(.; ŝ(q))) 6= V almost everywhere when

(p, q)→ (p, q).

The first case is that u(q̂L, p̂L, t(.; ŝL)) < U. In this case, ŝL can be chosen

such that u(q̂L, p̂H , t(.; ŝL)) > U . Consider the distribution of types with

support {p1, p2} = {p̂L, p̂H} and {q1, q2} = {q̂L, q̂H}. Moreover, P (p̂H) +

P (p̂L) < Q(q̂H) + Q(q̂L), P (p̂H) > Q(q̂H) and u(q̂L, rFBq (q̂L), t(.; ŝL)) = U.

In the First Best allocation, workers of type p̂H will match with assets of

quality q̂H and q̂L. In any equilibrium supporting the First Best, there must

be two active markets (t(.; ŝL), q̂L) and (t(.; s̃H), q̂H) s.t. v(p̂H , q̂H , t(.; s̃H)) = v(p̂H , q̂L, t(.; ŝL))

v(p̂L, q̂L, t(.; ŝL)) ≥ v(p̂L, q̂H , t(.; s̃H))
(A.4)

Comparing with (A.3), the first equality requires s̃H < ŝH while the second

equality requires s̃H > ŝH !!!

Consider the case v(p̂L, q̂L, t(.; ŝL)) ∈ [E(Y |p̂L, q)−U,E(Y |p̂L, q̂L)−U).

It follows that v(p̂L, q̂L, t(.; ŝL)) = E(Y |p̂L, q′)− U for some q′ ∈ (q, q̂L). In

this case, consider the distribution of types with support {p1, p2} = {p̂L, p̂H}

and {q1, q2, q3} = {q′, q̂L, q̂H}. Moreover,

Q(q̂H) +Q(q̂L) +Q(q′) > P (p̂H) + P (p̂L) > Q(q̂H) +Q(q̂L)

and P (p̂H) > Q(q̂H). In any equilibrium supporting the First Best, there

must be three active markets (t(.; ŝ(q′)), q′), (t(.; ŝL), q̂L) and (t(.; s̃H), q̂H),
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where u(q′, p̂L, t(.; ŝ(q′))) = U and v(p̂L, q̂L, t(.; ŝL)) = v(p̂L, q′, t(.; ŝ(q′))).

(A.4) must be satisfied and the previous argument applies.

The last case is v(p̂L, q̂L, t(.; ŝL)) ∈ (V ,E(Y |p̂L, q) − U ]. Recall that

E(Y |p, q)) = V +U, our choice of ŝL ensures that when (p, q) is sufficiently

close to (p, q), v(p, q, t(.; ŝ(q))) /∈ [V ,E(Y |p, q) − U ]. Either there exists

(p′, q′) < (p̂L, q̂L) satisfying v(p′, q′, t(.; ŝ(q′)) = V and u(q′, p′, t(.; ŝ(q′)) >

U or there exists (p′′, q′′) < (p̂L, q̂L) such that v(p′, q′, t(.; ŝ(q′)) > V and

u(q′, p′, t(.; ŝ(q′)) < U.

For the first possibility, consider the distribution of types with support

{p1, p2, p3} = {p′, p̂L, p̂H} and {q1, q2, q3} = {q′, q̂L, q̂H}.

P (p̂H) + P (p̂L) + P (p′) > Q(q̂H) +Q(q̂L) +Q(q′)

> P (p̂H) + P (p̂L) > Q(q̂H) +Q(q̂L),

and P (p̂H) > Q(q̂H). In any equilibrium supporting the First Best, there

must be three active markets (t(.; ŝ(q′)), q′), (t(.; ŝL), q̂L) and (t(.; s̃H), q̂H).

(A.4) must be satisfied and the previous argument applies again.

For the remaining possibility, consider the distribution of types with

support {p1, p2, p3} = {p′′, p̂L, p̂H} and {q1, q2, q3} = {q′′, q̂L, q̂H} satisfy-

ing Q(q̂H) + Q(q̂L) + Q(q′′) > P (p̂H) + P (p̂L) + P (p′′), P (p̂H) + P (p̂L) >

Q(q̂H) + Q(q̂L), P (p̂H) > Q(q̂H) and u(q′′, rFBq (q′′), t(.; ŝ(q′′)) = U. In any

equilibrium supporting the First Best, there must be three active markets

(t(.; ŝ(q′′)), q′′), (t(.; ŝL), q̂L) and (t(.; s̃H), q̂H). The previous argument ap-

plies again.

Suppose Entry-q fails, then there exists some distribution of types (P ,Q)

such that the First Best allocation cannot be supported by an equilibrium.

Proof. Suppose that Condition Entry-q fails for some q̂H > q̂L, p̂H > p̂L
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and ŝH > ŝL satisfying

v(p̂H , q̂L, t(.; ŝL)) > v(p̂H , q̂H , t(.; ŝH)) > v(p̂L, q̂H , t(.; ŝH)) ≥ V ,

u(q̂L, p̂H , t(.; ŝL)) > U ≥ u(q̂H , p̂L, t(.; ŝH)), and

v(p̂H , q̂H , t(.; ŝH))

v(p̂L, q̂H , t(.; ŝH))
<

v(p̂H , q̂L, t(.; ŝL))

v(p̂L, q̂L, t(.; ŝL))
.

Since u(q̂H , p̂L, t(.; ŝH)+v(p̂L, q̂H , t(.; ŝH)) > U+V , ŝH can be chosen so

that u(q̂H , p̂L, t(.; ŝH)) < U. Consider the distribution of types with support

{p1, p2} = {p̂L, p̂H} and {q1, q2} = {q̂L, q̂H}. Moreover, P (p̂H) + P (p̂L) <

Q(q̂H) and u(q̂L, rFBq (q̂H), t(.; ŝH)) = U. In the First Best allocation, all

workers will match with assets of quality q̂H and the asset owners of q̂L will

take their outside options. In any equilibrium supporting the First Best,

there is a single market (t(.; ŝH), q̂H). Consider the deviation that an asset

owner of q̂L posts the contract t(.; ŝL). Since

V (p̂H)

V (p̂L)
=
v(p̂H , q̂H , t(.; ŝH))

v(p̂L, q̂H , t(.; ŝH))
<
v(p̂H , q̂L, t(.; ŝL))

v(p̂L, q̂L, t(.; ŝL))
,

It follows that V (p̂L) > µ(t(.; ŝL), q̂L)v(p̂L, q̂L, t(.; ŝL)) and r(p̂H |t(.; ŝL), q̂L) =

1. Such contracts yield the asset owner u(q̂L, p̂H , t(.; ŝL)) > U = U(q̂L)!

Suppose Screening-q fails. There exists some distribution of types (P ,Q)

such that the First Best allocation cannot be supported by an equilibrium.

Proof. Suppose that Condition Screening-q fails for some q̂, p̂H > p̂L and

ŝH > ŝL s.t. v(p̂L, q̂, t(.; ŝH)) ≥ V , u(q̂, p̂H , t(.; ŝL)) > max{U, u(q̂, p̂L, t(.; ŝH))}

and
v(p̂H , q̂, t(.; ŝH))

v(p̂L, q̂, t(.; ŝH))
<
v(p̂H , q̂, t(.; ŝL))

v(p̂L, q̂, t(.; ŝL))
.

Define ŝ(q) by v(p̂L, q̂, t(.; ŝH)) = v(p̂L, q, t(.; ŝ(q))) for q ≤ q̂. ŝH can be cho-

sen such that v(p̂L, q̂, t(.; ŝH)) > V , u(q̂, p̂L, t(.; ŝH)) 6= U , and v(p, q, ŝ(q)) 6=

V almost everywhere when (p, q)→ (p, q).
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The first case is u(q̂, p̂L, t(.; ŝH)) < U. Consider the distribution of types

with support {p1, p2} = {p̂L, p̂H} and {q1} = {q̂}. P (p̂H)+P (p̂L) < Q(q̂) and

u(q̂, rFBq (q̂), t(.; ŝH)) = U. In the First Best allocation, workers of both types

match with assets of quality q̂. In any equilibrium supporting the First Best,

there is only one active market (t(.; ŝH), q̂) with µ(t(.; ŝH), q̂) = 1. Consider

the deviation that an owner of asset quality q̂ posts the contract t(.; ŝL).

Since
V (p̂H)

V (p̂L)
=
v(p̂H , q̂, t(.; ŝH))

v(p̂L, q̂, t(.; ŝH))
<
v(p̂H , q̂, t(.; ŝL))

v(p̂L, q̂, t(.; ŝL))
, (A.5)

It follows that V (p̂L) > µ(t(.; ŝL), q̂)v(p̂L, q̂, t(.; ŝL)) and r(p̂H |t(.; ŝL), q̂) =

1. By posting the contract t(.; ŝL), the asset owner can earn a payoff

u(q̂, p̂H , ŝL) > U = U(q̂).

For the case v(p̂L, q̂, t(.; ŝH)) ∈ [E(Y |p̂L, q)−U,E(Y |p̂L, q̂)−U), there ex-

ists some q′ ∈ (q, q̂L) such that u(q′, p̂L, t(.; ŝ(q′))) = U and v(p̂L, q̂, t(.; ŝH)) =

v(p̂L, q′, t(.; ŝ(q′))). Consider the distribution of types with support {p1, p2} =

{p̂L, p̂H} and {q1, q2} = {q′, q̂}. Moreover,

Q(q̂) +Q(q′) > P (p̂H) + P (p̂L) > Q(q̂) > P (p̂H).

In the First Best allocation, workers of both types match with assets of

quality q̂ and only low type workers match with assets of quality q′. In

any equilibrium supporting the First Best, there must be two active mar-

kets (t(.; ŝ(q′)), q′) and (t(.; ŝH), q̂). (A.5) holds in equilibrium, so that

r(p̂H |t(.; ŝL), q̂) = 1. Posting t(.; ŝL) is a profitable deviation for the owners

of asset quality q̂.

The remaining case is v(p̂L, q̂, t(.; ŝH)) ∈ (V ,E(Y |p̂L, q) − U ]. Suppose

that for some p̂1 < p̂L and q′ ≤ q̂, v(p̂1, q
′, t(.; ŝ(q′))) = V but

v(p̂H , q̂, t(.; ŝH))

v(p̂H , q̂, t(.; ŝL))
<
v(p̂1, q

′, t(.; ŝ(q′)))

v(p̂1, q̂, t(.; ŝL))
. (A.6)
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I will restrict the attention to the case q′ < q̂. This also covers the case

q′ = q̂ because of continuity. Consider the distribution of types with support

{p1, p2, p3} = {p̂1, p̂
L, p̂H} and {q1, q2} = {q′, q̂}. Moreover,

P (p̂H) + P (p̂L) + P (p̂1) > Q(q̂) +Q(q′) > P (p̂H) + P (p̂L) > Q(q̂) > P (p̂H).

In any equilibrium supporting the First Best, there must be two active

markets (t(.; ŝ(q′)), q′) and (t(.; ŝH), q̂). By construction, v(p̂L, q̂, t(.; ŝH)) =

v(p̂L, q′, t(.; ŝ(q′))). By construction,

V (p̂H)

V (p̂1)
=

v(p̂H , q̂, t(.; ŝH))

v(p̂1, q′, t(.; ŝ(q′)))
<
v(p̂H , q̂, t(.; ŝL))

v(p̂1, q̂, t(.; ŝL))
.

Together with (A.5), we obtain r(p̂H |t(.; ŝL), q̂) = 1. Posting t(.; ŝL) is a

profitable deviation for the owners of asset quality q̂.

A similar construction applies to the case u(q′, p̂1, t(.; ŝ(q
′))) ≤ U and

(A.6) holds. The only change is that Q(q̂)+Q(q′) > P (p̂H)+P (p̂L)+P (p̂1),

P (p̂H) + P (p̂L) > Q(q̂) > P (p̂H) and u(q′, rFBq (q′), t(.; ŝ(q′))) = U.

A.5 Proof of Proposition 4

It is trivial that Condition Global ID gives rise to Condition Sorting-p.

The proof here is to establish the following

Condition (ID-q). For any pH > pL, qH ≥ qL and sH > sL satisfy-

ing v(pL, qH , t(.; sH)) ≥ V , u(qL, pH , t(.; sL)) > U and v(pH , qL, t(.; sL)) >

v(pH , qH , t(.; sH)). Then

v(pH , qH , t(.; sH))

v(pL, qH , t(.; sH))
≥ v(pH , qL, t(.; sL))

v(pL, qL, t(.; sL))
. (A.7)

Note that when qH = qL = q̂, v(pH , q̂, t(.; sL)) > v(pH , q̂, t(.; sH)) is

always true. Condition ID-q implies both Condition Screening-q and Entry-
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q. Condition strong Screening-q holds if (A.7) always holds with strict

inequality.

Proof. Fix the pairs {pH , pL} and {(qH , sH), (qL, sL)}, for any cH ≥ cL ≥ 0,

denote

∆product(v; cH , cL) = [v(pH , qH , t(.; sH)) + cL][v(pL, qL, t(.; sL)) + cH ]

−[v(pH , qL, t(.; sL)) + cL][v(pL, qH , t(.; sH) + cH ]

∆sum(v) = v(pL, qL, t(.; sL)) + v(pH , qH , t(.; sH))

−v(pH , qL, t(.; sL))− v(pL, qH , t(.; sH).

Notice that

∆product(v; cH , cL)−∆product(v; 0, 0)

=cH∆sum(v)− (cH − cL)[v(pL, qL, t(.; sL))− v(pL, qH , t(.; sH)].

Recall the pre-condition v(pL, qH , t(.; sH)) ≥ V > 0 and v(pH , qL, t(.; sL)) >

v(pH , qH , t(.; sH)) in Condition ID-q. Global ID immediately implies that

v(pL, qL, t(.; sL)) > v(pL, qH , t(.; sH)). The first case is that ∆sum(v) ≥ 0,

then

∆product(v; 0, 0)

≥∆product(v; cH , cL) + (cH − cL)[v(pL, qL, t(.; sL))− v(pL, qH , t(.; sH)]

−[v(pL, qH , t(.; sH)) + cH ]∆sum(v)

=∆product(v;−v(pL, qH , t(.; sH)),−v(pL, qH , t(.; sH)))

=[v(pH , qH , t(.; sH))− v(pL, qH , t(.; sH))][v(pL, qL, t(.; sL))− v(pL, qH , t(.; sH))]

>0

For the case that ∆sum(v) < 0, ∆product(v; 0, 0) ≥ 0 if ∆product(v; cH , cL) ≥ 0

and ∆product(v; 0, 0) = 0 if and only if cH = cL = 0.
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Putting together, if ∆product(v; cH , cL) ≥ 0, then ∆product(v; 0, 0) ≥ 0

regardless of the sign for ∆sum(v). Hence, Condition Global ID implies that

∆product(v; 0, 0) ≥ 0. Furthermore, ∆product(v; 0, 0) > 0 if ∆sum(v) ≥ 0 or

∆product(v; cH , cL) ≥ 0 for some cH > 0.

A.6 Proof of Lemma 5

Proof. Suppose not, (t(.; s′), q′) is an active market with µ(t(.; s′), q′) < 1.

Let pH be the highest type in Ip(t(.; s
′), q′). Pick a sufficiently small ε > 0

such that v(pH , q′, t(.; s′+ε) > µ(t(.; s′), q′)v(pH , q′, t(.; s′)). µ(t(.; s′+ε), q′) <

1 and satisfies

V (pH) = µ(t(.; s′), q′)v(pH , q′, t(.; s′)) ≥ µ(t(.; s′ + ε), q′)v(pH , q′, t(.; s′ + ε)

For all p′ < pH , Condition Strong Screening-q and the worker’s IC condition,

V (p′) ≥ µ(t(.; s′), q′)v(p′, q′, t(.; s′)) > µ(t(.; s′ + ε), q′)v(p′, q′, t(.; s′ + ε.)

Hence, r(p′|t(.; s′+ ε), q′) = 0 only if p′ < pH . Posting this contract gives the

asset owner a payoff u(q′, r(t(.; s′+ε), q′), t(.; s′+ε)) ≥ u(q′, pH , t(.; s′+ε)) >

u(q′, pH , t(.; s′)) ≥ U(q̃)!

A.7 Proof of Lemma 6

Proof. Fix an equilibrium {U, V, ψ,Ψ,W, r, µ}. From Lemma 5, µ(t(.; s′), qk) ≥

1 if (t(.; s′), qk) ∈ Ψ. A worker of pl obtains v(pl, qk, t(.; s
′)) from partic-

ipating in this active market. It follows that for any s′′ > s′, V (pl) ≥

v(pl, qk, t(.; s
′)) > v(pl, qk, t(.; s

′′)) for all pl, so that µ(t(.; s′′), qk) = 0.

(t(.; s′), qk) must be only active market for asset quality qk. This shows

that owners of the same quality , if participating, post the same contract.
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For any equilibrium, the set of active markets can be written as Ψ =

{(t(.; sk), qk)}k≥k̂. The equilibrium payoff is V (pl) = max{V , v(pl, qk, t(.; s)) :

(t(.; s), qk) ∈ Ψ}, which is increasing in p. It also follows that worker’s par-

ticipation is monotonic.

Now consider an active market (t(.; s′), qk) and pl is the highest type in

Ωp((t(.; s
′), qk). Then V (pl) = v(pl, qk, t(.; s

′)) and V (pL) ≥ v(pL, qk, t(.; s
′))

for any pL < pk. For any qH > qk, there exists s′′ > s′ satisfying v(pl, q
H , t(.; s′′))

= v(pl, qk, t(.; s
′)). Condition Strict Sorting-p implies that v(pL, qH , t(.; s′′)) <

v(pL, qk, t(.; s
′)) ≤ V (pL) for all pL < pk. For sufficiently small ε > 0,

V (pl) < v(pl, q
H , t(.; s′′ − ε) and V (pL) > v(pL, qH , t(.; s′′ − ε)). Hence,

µ(t(.; s′′ − ε), qH) < 1 and pL /∈ Ωp((t(.; s
′′ − ε), qH) for any pL < pl. Note

that

u(qH , pk, t(.; s
′′)) = [E(Y |pl, qH)− E(Y |pl, qk)] + u(qk, pl, t(.; s

′))

> u(qk, pl, t(.; s
′)) ≥ U(qk) ≥ U

For sufficiently small ε > 0, posting t(.; s′′ − ε) provides the asset owner of

qH a payoff u(qH , pk, t(.; s
′′ − ε)) > U(qk). This establishes that U(qH) >

U(qk) ≥ U, so the asset owner’s participation is monotonic and their equi-

librium payoff is increasing in q.

Consider two active markets (t(.; sH), qH) and (t(.; sL), qL) where qH >

qL. µ(t(.; sH), qH) ≥ 1 and µ(t(.; sL), qL) ≥ 1 requires sH > sL. Now sup-

pose that there exists pH > pL such that pL ∈ Ωp(t(.; s
H), qH) and pH ∈

Ωp(t(.; s
L), qL). IC condition for workers requires both v(pH , qL, t(.; sL)) ≥

v(pH , qH , t(.; sH)) and v(pL, qL, t(.; sL)) ≤ v(pL, qH , t(.; sH)). This contra-

dicts Condition Strict Sorting-p. Therefore, if p ∈ Ωp(t(.; s
H), qH) and

p′ ∈ Ωp(t(.; s
L), qL), then p ≥ p′.
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A.8 Proof of Remark 6

First, consider the case that [y − t(y; s)] is SPM, which is the same

as [t(y; sL) − t(y; sH)] is weakly increasing in y. Since Y |(pH , q) F.O.S.D.

Y |(pL, q),

v(pH , q, t(.; sH)) + v(pL, q, t(.; sL))− v(pH , q, t(.; sL))− v(pL, q, t(.; sH))

=

∫ y

y
[t(y; sL)− t(y; sH)]d[F (y|pH , q)− F (y|pL, q)] ≥ 0.

Second, suppose that [y − t(y; s) + c] is non-negative and log-SPM. To-

gether with Assumption (MLRP), [y−t(y; s)+c]f(y|p, q) is also non-negative

and log-SPM in (y, s, p). It is well known that these two properties are jointly

preserved under integration w.r.t. y, so that

[v(pH , q, t(.; sH)) + c][v(pL, q, t(.; sL)) + c]

≥[v(pH , q, t(.; sL)) + c][v(pL, q, t(.; sH)) + c].

When either of these conditions hold, the inequalities in Condition Global

ID hold for qH = qL. This is a special case of the proof for Lemma 4 and

hence,

v(pH , q, t(.; sH))

v(pL, q, t(.; sH))
≥ v(pH , q, t(.; sL))

v(pL, q, t(.; sL))
> 1.

This ensures the First Best allocation is supported by the candidate equi-

librium with a single active market (t(.; s̃1), q1) in the case of homogeneous

assets.
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A.9 Proof of Lemma 7

Proof. Under Assumption (C) and Condition Survival-SPM,

v(pH , qH , t(.; s)) + v(pL, qL, t(.; s))− v(pH , qL, t(.; s))− v(pL, qH , t(.; s))

= −
∫ y

y
[F (y|pH , qH) + F (ypL, qL)− F (y|pH , qL)− F (y|pL, qH)]d[y − t(y; s)]

≥ 0.

Recall from the proof of Remark 6, SPM of [y − t(y; s)] implies

v(pH , q, t(.; sH)) + v(pL, q, t(.; sL)) ≥ v(pH , q, t(.; sL)) + v(pL, q, t(.; sH)).

Combining the two inequalities together yields Global ID.

A.10 Proof of Lemma 8

Proof. Under Assumption (C), [y − t(y; s) + c] is absolutely continuous,

weakly increasing and strictly increasing for some interval of [q, q].81 By

integration by parts,

v(p, q, t(.; s)) + c = [y − t(y; s) + c] +

∫ y

y
[1− F (y|p, q)]d[y − t(y; s) + c].

The log-SPM of the survival function in Condition Survival-SPM is pre-

served under integration. v(p, q, t(.; s)) + c then inherits log-SPM from∫ y
y [1− F (y|p, q)]d[y − t(y; s) + c], so that

[v(pH , qH , t(.; s)) + c][v(pL, qL, t(.; s)) + c]

≥[v(pH , qL, t(.; s)) + c][v(pL, qH , t(.; s)) + c].

81For any interval (yL, yH), yH − yL ≥ [yH − t(yH ; s)] − [yL − t(yL; s)] ≥ 0. Hence,

y − t(y; s) + c is absolutely continuous in y.
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Recall from the proof of Remark 6, log-SPM of [y− t(y; s) + c] and Assump-

tion (MLRP) jointly imply

[v(pH , q, t(.; sH)) + c][v(pL, q, t(.; sL)) + c]

≥[v(pH , q, t(.; sL)) + c][v(pL, q, t(.; sH)) + c].

The two inequalities together yield Global ID.

A.11 Proof of Remark 7

Proof. To prove this remark, I will make use of a result based on Theorem

2.1 in Karlin and Rinott (1980). Fix the pairs of {pH , pL} and {qH , qL}. To

saves on space, denote f(y|pH , qH), f(y|pL, qL), f(y|pL, qH) and f(y|pH , qL)

by fHH(y), fLL(y), fLH(y) and fHL(y) respectively. For any y, y′ ∈ Ωy, we

have

fHH(y ∨ y′)fLL(y ∧ y′) ≥ fLH(y)fHL(y′). (A.8)

Since
∫
f(y|p, q)dy = 1, we have the identity

0 =

∫
fHH(y)dy

∫
fLL(z)dz −

∫
fLH(y)dy

∫
fHL(z)dz

=

∫
{yH>yL}

{
fHH(yH)fLL(yL) + fHH(yL)fLL(yH)− fLH(yH)fHL(yL)

− fLH(yL)fHL(yH)
}
d(yH , yL).

Fix a pair of (yH , yL). Denote [fHH(yH)fLL(yL)− fLH(yH)fHL(yL)] by A,

[fHH(yH)fLL(yL)− fLH(yL)fHL(yH)] by B and

C = fHH(yH)fLL(yL)fHH(yL)fLL(yH)−fLH(yH)fHL(yL)fLH(yL)fHL(yH).

Applying the inequality (A.8), we obtain that A, B and C are all non-

negative. Since fHH(yH)fLL(yL) is positive throughout the support, the
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integrand can be expressed as

1

fHH(yH)fLL(yL)
[AB + C)] ≥ 0.

It follows that AB = C = 0 for any pair of (yH , yL).82 The equality C = 0

and the inequality (A.8) imply that for y ∈ {yH , yL},

fHH(y)fLL(y) = fLH(y)fHL(y).

Hence, f(y|p, q) is pairwise log-modular in (p, q). Assumption (MLRP),

together with the above equality imply that A > 0, and hence B = 0. The

equality B = 0 again implies

fHH(yH)fHL(yL) = fHH(yL)fHL(yH).

Hence, f(y|p, q) is pairwise log-modular in (y, q).

A.12 Proof of Proposition 6

{U, V, ψ,Ψ,W, r, µ} is an equilibrium under the contract space Φt if and

only if there exists a corresponding equilibrium {U, V, ψ,Ψ,W ′, r′, µ′} under

the contract space Φt ∪ {ts} with the same equilibrium payoff {U, V }, the

same active markets Ψ ⊆ Φt and the same distribution of participants in

every active market, {µ|Ψ, r|Ψ,W |Ψ} = {µ′|Ψ, r′|Ψ,W ′|Ψ}.
82Alternatively, Condition Global ID can be obtained by replacing the inequality (A.8)

with

[y ∨ y′ − t(y ∨ y′; sH) + c][y ∧ y′ − t(y ∧ y′; sL) + c]f(y ∨ y′|pH , qH)f(y ∧ y′|pL, qL)

≥ [y − t(y; sH) + c][y′ − t(y′; sL) + c]f(y|pL, qH)f(y′|pH , qL).

The same equality condition still applies when sH → sL.

168



A.12. Proof of Proposition 6

Proof. The if part is trivial because Ψ ⊆ Φt. For only if part, I now construct

a corresponding equilibrium.

For the markets (ts, q) ∈ {ts} × {qk}Kk=1,

µ(ts, q) = sup{µ′ ∈ [0,∞] : V (p) ≥ η(µ′)v(p, q, ts)}.

If µ(ts, q) <∞, then r(ts, q) is degenerate at the type

min{p ∈ {pl}Ll=1 : V (p) = µ(ts, q)v(p, q, ts)}.

It is sufficient to show that an asset owner cannot gain from a posting the

contract ts. Suppose not, an owner of asset quality qk′ profits from posting

ts. By construction, r(ts, q) is degenerate at some pl′ , where v(pl′ , qk′ , t
s) ≥

V (pl′) and u(qk′ , pl′ , t
s) > U(qk′). s′ can be chosen s.t. v(pl′ , qk′ , t(.; s

′))

is slightly above v(pl′ , qk′ , t
s) and hence µ(t(.; s′), qk′) < min{µ(ts, qk′), 1}.

Since ts is steeper than t(.; s′), r(pl|t(.; s′), qk′) = 0 if pl < pl′ .
83 This

contradicts with the equilibrium condition that the asset owner cannot gain

from posting t(.; s′) as

U(qk′) <
η(µ(ts, qk′))

µ(ts, qk′)
u(qk′ , pl′ , t

s) < u(qk′ , r(t(.; s
′), qk′), t(.; s

′)).

For every equilibrium {U, V, ψ,Ψ,W, r, µ} under the contract space Φt ∪

{ts}, there also exists an equilibrium {U, V, ψ′,Ψ′,W ′, r′, µ′} under the same

contract space, for which the asset owners only contracts in Φt and support-

ing the same allocation,
∫

Ωt×{qk} r(pl|t, qk)dW =
∫

Ωt×{qk} r
′(pl|t, qk)dW ′ and∫

Ωt×{qk} µ(t, qk)dW =
∫

Ωt×{qk} µ
′(t, qk)dW

′ for all pl and qk.

83This result does not depend on the assumption of finite distribution of types. s′ can

be chosen such that r(t(.; s′), q′) contains types in some local neighborhood of p′, which

satisfies u(q′, p, t(.; s′)) > U(q′)

169



A.12. Proof of Proposition 6

Proof. I will first establish some properties of an equilibrium {U, V, ψ,Ψ,W, r, µ}

with ts ∈ ψ(qk) for some qk.

The first property is that if ts ∈ ψ(qk′), then Ωp(t
s, qk′) is a singleton.

Suppose to the contrary that Ωp(t
s, qk′) contains more than one type. Let pl′

be the highest type in Ωp(t
s, qk′) and so u(qk′ , pl′ , t

s) > u(qk′ , r(t
s, qk′), t

s).

There exists s̃ such that E(t(Y ; s̃)|pl′ , qk′) = E(ts(Y )|pl′ , qk′). It follows that

for all p < pl′ , v(p, qk′ , t
s) > v(p, qk′ , t(.; s̃)) because ts is steeper than St.

For sufficiently small ε > 0,

V (pl′) ≤ η(µ(ts, qk′))v(pl′ , qk′ , t
s) < η(µ(ts, qk′))v(pl′ , qk′ , t(.; s̃− ε)),

but V (pl) > η(µ(ts, qk′))v(pl, qk′ , t(.; s̃− ε)) for all pl < pl′ in the support of

P .84 The last inequality makes use of the incentive compatibility condition

for workers with pl < pl′ . Hence, µ(t(.; s̃ − ε), qk′) < min{µ(ts, qk′), 1} and

r(pl|t(.; s̃− ε), qk′) = 0 if pl < pl′ . Hence,

U(qk′) <
η(µ(ts, qk′))

µ(ts, qk′)
u(qk′ , r(t

s, qk′), t
s) < u(qk′ , r(t(.; s̃− ε), qk′), t(.; s̃− ε)).

and an asset owner will gain from posting a contract t(.; s̃− ε).

The second property is that µ(ts, qk′) = 1. Now let Ωp(t
s, qk′) = {pl′}.The

case for µ(ts, qk′) > 1 follows a similar argument. For sufficiently small

ε > 0, V (pl′) < v(pl′ , qk′ , t(.; s̃ − ε)) but V (pl) > v(pl, qk′ , t(.; s̃ − ε)) for

all pl < pl′ . Hence, µ(t(.; s̃ − ε), qk′) < 1 and r(p|t(.; s̃ − ε), qk′) > 0 only

if p ≥ pl′ . an asset owner will gain from posting t(.; s̃ − ε) for sufficiently

small ε. Now consider µ(ts, qk′) < 1. If a worker with type p is indifferent

between participating in (ts, qk′) and a market (t′, qk′) with some tightness

ratio µ′, then define µ(p|t′, qk′) = µ′. Otherwise, µ(p|t′, qk′) =∞. Note that

µ(pl′ |t(.; s̃), qk′) = µ(ts, qk′). For sufficiently small ε > 0, µ(pl|t(.; s̃), qk′) >
84This result does not depend on the assumption of finite distribution of types.
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µ(pl′ |t(.; s̃+ε), qk′) > µ(ts, qk′) whenever pl < pl′ . Hence, µ(t(.; s̃+ε), qk′) < 1

and r(pl|t(.; s̃ + ε), qk′) > 0 only if pl ≥ pl′ . an asset owner will gain from

posting t(.; s̃+ ε) for sufficiently small ε.

It follows that U(qk′) = u(qk′ , pl′ , t(.; s̃)) and V (pl′) = v(pl′ , qk′ , t(.; s̃)).

V (pl) > v(pl, qk′ , t(.; s̃)) for all pl 6= pl′ . This holds for pl < pl′ because

V (pl) ≥ v(pl, qk′ , t
s) and ts is steeper than t(.; s̃). The part for pl > pl′ comes

from the fact that an owner of asset quality qk′ cannot profit from the de-

viation of posting t(.; s̃). Note that if ψ(qk′) also contains t(.; s̃), it must be

that Ωp(t(.; s̃), qk′) = {pl′} and µ(t(.; s̃), qk′) = 1. Otherwise, the asset own-

ers will not be indifferent between the two markets. Putting all together, all

equilibrium conditions will still be met if those asset owners of qk′ posting ts

and the workers participating in (ts, qk′) all switch to the market (t(.; s̃), qk′).

In the new equilibrium, Ωp(t(.; s̃), qk′) = {pl′} and µ(t(.; s̃), qk′) = 1. It is

trivial that the resulting allocation is unchanged.

A.13 Proof of Proposition 5

Consider two ordered set of securities Sst and Sft , where Sst is steeper

than Sft . Fix a distribution of types, the contracts ts(.; s) and tf (.; s) are

indexed in a manner that same set of contract terms {s̃k}k≥k are posted in

the two candidate equilibriums under the contract space Sst and Sft .

Proof. First, notice that v(pl(k), qk, t
s(.; s̃k)) ≤ v(pl(k), qk, t

f (.; s̃k)). If work-

ers are on the long side, then v(pl, q1, t
s(.; s̃1)) = v(pl, q1, t

f (.; s̃1)) = V .

The above inequality holds because tf (.; s̃1) is flatter. If workers are on

the short side, then u(qk, r
FB
q (qk), t

s(.; s̃k)) = u(qk, r
FB
q (qk), t

f (.; s̃k)) = U.

Suppose, to the contrary, that v(pl(k), qk, t
s(.; s̃k)) > v(pl(k), qk, t

f (.; s̃k)) =
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v(pl(k), qk, t
s(.; s′)). Then v(pl, qk, t

f (.; s̃k)) ≥ v(pl, qk, t
s(.; s′)) whenever l(k) ≥

l ≥ 1. By ex-post budget balance,

u(qk, r
FB
q (qk), t

s(.; s̃k)) > u(qk, r
FB
q (qk), t

s(.; s′)) ≥ u(qk, r
FB
q (qk), t

f (.; s̃k))!!!

The indifference condition in (2.10) implies that

v(pl(k), qk+1, t
s(.; s̃k+1)) = v(pl(k), qk, t

s(.; s̃k))

≤ v(pl(k), qk, t
f (.; s̃k)) = v(pl(k), qk+1, t

f (.; s̃k+1)).

Hence, there exists v(pl(k), qk+1, t
s(.; s̃k+1)) = v(pl(k), qk+1, t

f (.; s′′)) for some

s′′ ≥ s̃k+1. Now consider any higher type l ≥ l(k), in particular l(k + 1),

v(pl, qk+1, t
s(.; s̃k+1)) ≤ v(pl, qk+1, t

f (.; s′′)) ≤ v(pl, qk+1, t
f (.; s̃k+1)).

Hence, u(qk+1, r
FB
q (qk+1), ts(.; s̃k+1)) ≥ u(qk+1, r

FB
q (qk+1), tf (.; s̃k+1)).

By induction, it follows that under the contract space Sst , U(qk) is higher

whereas V (pl) is lower for pl ≥ pl(k).
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Appendix B

Appendix for chapter 3

B.1 Proof of Remark 8

Eeckhout and Kircher (2010) show that the boundary value problem for

the Second Best allocation admits a solution.85 Fix (p
SB
, q
SB
, rSB, λSB, vSB, uSB),

I will first show that it satisfies the inequality (3.12), and use the inequality

to establish uniqueness of the Second Best allocation. Define

Û(p, q) = max
λ≥0
{δ(λ)y(p, q)− λvSB(p)}.

Since δ(λ) is strictly concave, the unique maximizer, denoted by λ̂(p, q), is

determined by the FOC,

δ′(λ̂(p, q))y(p, q) = vSB(p).

We first consider p ≥ p
SB
. From the condition (3.8),

vSB(p) = δ′(λSB(κSB(p)))y(p, κSB(p)).

Therefore, λ̂(p, q) > (<)λSB(κSB(p)) if q > (<)κSB(p). By envelope theo-

85Though Eeckhout and Kircher (2010) assume the values of outside options to be zero,

their proof is readily extended to cover the case with positive outside options.
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rem,

∂

∂p
Û(p, q)

= δ(λ̂(p, q))
∂

∂p
y(p, q)− λ̂(p, q)

∂

∂p
vSB(p)

= δ(λ̂(p, q))
∂

∂p
y(p, q)− λ̂(p, q)η(λSB(κSB(p)))

∂

∂p
y(p, κSB(p))

= λ̂(p, q)vSB(p)

[
η(λ̂(p, q))

δ′(λ̂(p, q))

∂ ln y(p, q)

∂p
− η(λSB(κSB(p)))

δ′(λSB(κSB(p)))

∂ ln y(p, κSB(p))

∂p

]
The second inequality obtained by substituting the condition (3.9). Un-

der Assumption (Y) and (M), ∂
∂p Û(p, q) > (<)0 if q > (<)κSB(p). For

p < p
SB
, vSB(p) = V = vSB(p

SB
), so Û(p, q) < maxλ≥0{δ(λ)y(p

SB
, q) −

λvSB(p
SB

)} = Û(p
SB
, q).

Putting together, for q ≥ q
SB

and any p ∈ [0, 1]

uSB(q) = δ(λSB(q))y(rSB(q), q)− λSB(q)vSB(rSB(q))

= Û(rSB(q), q) = max
λ≥0
{δ(λ)y(p, q)− λvSB(p)}

For q < q
SB
, the boundary condition requires that

uSB(q) = U = max
λ≥0
{δ(λ)y(p, q

SB
)−λvSB(p)} > max

λ≥0
{δ(λ)y(p, q)−λvSB(p)}.

This establishes the inequality (3.12).

Let supp(L) denote the support of measure L. The total surplus for

(K,L) is given by∫
supp(L)

η(
dLqs
dK

)y(p, q)dL+ [F (1)− Lp(1)]V + [G(1)−Kq(1)]U

≤
∫
supp(L)

dK

dLqs
uSB(q) + vSB(p)dL+ [F (1)− Lp(1)]V + [G(1)−Kq(1)]U

≤
∫
uSB(q)dG(q) +

∫
vSB(p)dF (p)

=

∫ 1

q
δ(λSB(q))y(rSB(q), q)dG(q) + F (p)V +G(q)U
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The first inequality is due to the inequality (3.12) and the second inequality

stems from the boundary conditions for the Second Best allocation. The

above inequality holds with equality if and only if (K,L) features PAM

with (p
SB
, q
SB
, κSB) and

dLqs
dK = λSB(q) almost everywhere in the support

of L.

B.2 Proof of Proposition 7

In this proof, I first show the properties listed in Proposition 7. I then

proceed to show that the boundary value problem in system (3.16) admits

a unique solution. Note that (r̃, λ̃, ṽ) in any solution must be continu-

ously differentiable and strictly increasing. In particular, ∂ ln ṽ(p)
∂p

∣∣∣
p=r̃(q)

=

∂ ln y(p,q)
∂p

∣∣∣
(p,q=(r̃(q),q)

, so the gain from matching with a better asset must be

offset by a reduction in δ′(λ̃(q)). Hence, λ̃ is strictly increasing.

Characterization of the equilibria

Any equilibrium satisfies the properties in Proposition 7.

“Only if”

First fix an equilibrium (K,L). The assumption in (3.1) ensures that

the set of active markets is non-empty. Suppose not, consider the inactive

market (1, s′) where s′ and λ′ satisfy V = δ′(λ′)y(1, 1) = η(λ′)(1−s′)y(1, 1).

Since η(λ′)(1−s′)y(p, 1) < V if p < 1, only the best workers will be attracted

to this inactive market, and the resulting queue length is λ′. The deviating

payoff for an owner of asset quality q is [δ(λ′) − δ′(λ′)λ′]y(1, 1) > U ! Since

participation is costly, every active market must have a positive finite queue

length, and s ∈ (0, 1). Furthermore, the participation on the workers side

must be monotonic.

Step 1: All equilibria feature PAM
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Suppose not, then there must exist {(qH , s1), (qL, s0)} ∈ Ψ, where qH >

qL, and pH > pL where pL and pH are in the support of R(qH , s1) and

R(qL, s0) respectively. The workers’ acceptance decisions are optimal only

if

η(Λ(qL, s0))(1− s0)y(pH , qL) ≥ η(Λ(qH , s1))(1− s1)y(pH , qH), and

η(Λ(qH , s1))(1− s1)y(pL, qH) ≥ η(Λ(qL, s0))(1− s0)y(pL, qL),

This implies y(pH , qL)y(pL, qH) ≥ y(pH , qH)y(pL, qL), which contradicts

strict log-SPM of y(p, q)!

Since the equilibrium allocation features PAM, the threshold types (p, q)

and κ(p) are well-defined. κ is strictly increasing because the distribution of

types is atomless and every active market must have a positive finite queue

length.

Step 2: U(q) is strictly increasing for q ≥ q

Suppose (qL, s0) ∈ Ψ and qL = κ(pL). Fix q̂ > qL. Consider the inactive

market (q̂, ŝ), where ŝ is given by

(1− ŝ)y(pL, q̂) = (1− s0)y(pL, qL).

Λ(q̂, ŝ) ≥ Λ(qL, s0) because V (pL) ≥ η(Λ(q̂, ŝ))(1 − ŝ)y(pL, q̂). For all

p < pL,

V (p) ≥ η(Λ(qL, s0))(1− s0)y(p, qL) > η(Λ(q̂, ŝ))(1− ŝ)y(p, q̂).

The strict inequality follows from log-SPM of y(p, q). It follows that the

support of R(q̂, ŝ) contains no type below pL. An owner of asset q̂ can ensure

herself a payoff of

δ(Λ(q̂, ŝ))ŝ

∫
y(p, q̂)dR(q̂, ŝ) > U(qL).

176



B.2. Proof of Proposition 7

Therefore, the participation of the asset side is monotonic, and the func-

tion r(q) is well-defined. By definition,

V (p) = η(Λ(q, s))(1− s)y(p, q) if q = κ(p) and (q, s) ∈ Ψ.

Step 3: For any p ∈ [0, 1] and (q, s) ∈ Ψ,

V (p) > η(Λ(q, s))(1− s)y(p, q) if q 6= κ(p).

Consider two active markets (qH , s1) and (qL, s0), where qH > qL. Sup-

pose a worker of type r(qH) > 0 is indifferent between these two markets.

His acceptance decision is optimal only if

η(Λ(qL, s0))(1− s0)y(r(qH), qL) = η(Λ(qH , s1))(1− s1)y(r(qH), qH)

≥ η(Λ(q, s′))(1− s′)y(r(qH), q)

for all (q, s′) ∈ Ψ where q ∈ (qL, qH). Strict log-SPM of y(p, q) implies that

for any p < r(qH),

η(Λ(qL, s0))(1− s0)

η(Λ(qH , s1))(1− s1)
=
y(r(qH), qH)

y(r(qH), qL)
>
y(p, qH)

y(p, qL)

and
η(Λ(qL, s0))(1− s0)

η(Λ(q′, s′))(1− s′)
≥ y(r(qH), q′)

y(r(qH), qL)
>

y(p, q′)

y(p, qL)
,

for all (q′, s′) ∈ Ψ where q′ ∈ (qL, qH). PAM then implies that Λ(q′, s′) = 0

if (q′, s′) ∈ Ψ and q′ ∈ (qL, qH). Hence, U(q′) = U ≤ U(qL), contradicting

our previous claim!

Suppose 1 > qL = k(pL) and (qL, s0) ∈ Ψ. A symmetric argument rules

out the case that a worker of type pL is indifferent between (qL, s0) and

another active market (qH , s1) where qH > qL.

Step 4:Characterize active marketsΨ.
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Lemma 13. Suppose (q, s′) ∈ Ψ and for any p ∈ [0, 1],

V (p) ≥ η(Λ(q, s′))(1− s′)y(p, q),

with equality if and only if q = κ(p). Then for any s ∈ [0, 1), R(q, s) is

degenerate at r(q) if Λ(q, s) > 0. Furthermore, an owner of asset quality q

has no profitable deviations if and only if Λ(q, s′) satisfies

δ′(Λ(q, s′)) = η(Λ(q, s′))(1− s′). (B.1)

Proof. For s ∈ [0, 1) and p 6= r(q),

V (p)

V (r(q))
>

y(p, q)

y(r(q), q)
=

η(Λ(q, s))(1− s)y(p, q)

η(Λ(q, s))(1− s)y(r(q), q)
.

Suppose Λ(q, s) > 0, then V (p) = η(Λ(q, s))(1 − s)y(p, q) if and only if

p = r(q), and hence R(q, s) is degenerate at r(q). In this case, Λ(q, s) is

determined by

V (r(q)) = η(Λ(q, s′))(1− s′)y(r(q), q) = η(Λ(q, s))(1− s)y(r(q), q).

An asset owner has no profitable deviations if and only if

U(q) ≥ δ(Λ(q, s))sy(r(q), q),

with equality at s = s′. This can further simplified as

Λ(q, s′) ∈ arg max
λ∈[0,∞]

δ(λ)− λη(Λ(q, s′))(1− s′).

Since δ(λ) is strictly concave and Λ(q, s′) ∈ (0,∞), the above holds if and

only if the equality (B.1) holds.

Step 5: Establish the boundary value problem (3.16).

There exists a function λ̃ : [0, 1]→ (0,∞) such that

Ψ = {(q, s) : q ∈ [q, 1], s = 1− d ln δ

d lnλ

∣∣∣∣
λ=λ̃(q)

},
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and Λ(q, s) = λ̃(q) for (q, s) ∈ Ψ. (λ̃, V, r) is continuously differentiable and

satisfies the differential equation system in (3.16) along with q.

Recall that the participation is monotonic on both sides, so there is at

least one active market (q′, s′) for any q′ ∈ [q, 1]. Consider the workers of

p ≥ p. Substitute the equality (B.1), the expression of their equilibrium

payoff can be expressed as

V (r(q′)) = δ′(Λ(q′, s′))y(r(q′), q′),

and incentive compatibility requires

V (r(q′)) = max
(q,s)∈Ψ

{δ′(Λ(q, s))y(r(q′), q)}.

The envelope theorem implies that V is continuously differentiable (C1).

Since δ′(λ) and y(p, q) are C1, there must exist a C1 function λ : [0, 1] →

(0,∞) such that

∂V (p)

∂p

∣∣∣∣
p=r(q)

= δ′(λ(q))
∂y(p, q)

∂p

∣∣∣∣
(p,q)=(r(q),q)

.

This also establishes that for each asset quality q ≥ q, there is exactly one

active market (q′, s′) with s′ = 1− d ln δ
d lnλ

∣∣
λ=λ

Furthermore, Λ(q′, s′) = λ(q′).

Given full participation for p ∈ [p, 1] and q ∈ [q, 1], λ and r must satisfy

the law of motion (3.7).

It remains to show the boundary conditions for the threshold types.

Suppose p > 0. Since y(p, q) is strictly increasing in p, the workers p < p all

take their outside option only if V (p) = V . Now suppose q > 0, (q, s) ∈ Ψ

and U(q) > U. If p = 0, an owner of q′ slightly below q can secure a payoff

δ(λ(q))s′y(0, q′) > U by posting a share s′ satisfying η(λ(q))(1−s′)y(0, q′) =

V (0). We turn to the case p > 0 so that V (p) = η(λ(q))(1− s)y(p, q) = V .
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By continuity, for q′ slightly below q, there must exist s′ < s and p′ < p

satisfying both

δ(λ(q))s′y(p′, q′) > U

η(λ(q))(1− s′)y(p′, q′) = V

It follows that Λ(q′, s′) ≥ λ(q), and η(Λ(q′, s′))(1 − s′)y(p, q′) < V for any

p < p′. Hence, the expected payoff for an asset owner to participate in (q′, s′)

must be above U , rendering the deviation profitable. Therefore, U(q) = U

if q > 0.

The preceding analysis verifies all properties in Proposition 7.

“If”

Fix a solution (p̃, q̃, r̃, λ̃, ṽ) to the boundary value problem in system

(3.16). One can recover a unique candidate equilibrium (K̃, L̃) satisfying

the properties in listed Proposition 7. Let κ̃ denote the inverse of r̃. Define

s̃(q) = 1− d ln δ
d lnλ

∣∣
λ=λ̃(q)

. Since λ̃(q) is continuous and strictly increasing, s̃(q)

is also continuous and increasing in q under Assumption (M). K̃(q′, s′) = 0 if

q′ ≤ q̃ or s′ ≤ s̃(q̃). Otherwise, K̃(q′, s′) = G(sup{q ≤ q′ : s̃(q) ≤ s′})−G(q̃).

L̃(p′, q′, s′) = F (sup{p ≤ p′ : κ̃(p) ≤ q′, s̃(κ̃(p)) ≤ s′})− F (p̃) if p > p̃, q′ > q̃

and s′ > s̃(q̃). Otherwise, L̃(p′, q′, s′) = 0.

I first verify that the workers’ acceptance decision is optimal. V (p) =

ṽ(p) > V for p > p̃. Combining the conditions (3.8) and (3.14),

∂ ln ṽ(p)

∂p
=
∂ ln y(p, q)

∂p

∣∣∣∣
q=κ̃(p)

, p ≥ p̃.

180



B.2. Proof of Proposition 7

Consider any p0 ≥ p̃ and p1 6= p0,

lnV (p1)− ln δ′(κ̃(p0))y(p1, κ̃(p0))

= [lnV (p1)− ln ṽ(p0)]− [ln y(p1, κ̃(p0))− ln y(p0, κ̃(p0)]

=

∫ p1

p0

∂ lnV (p)

∂p
− ∂ ln y(p, q)

∂p

∣∣∣∣
q=κ̃(p0)

dp

≥
∫ max{p1,p̃}

p0

∂ ln y(p, q)

∂p

∣∣∣∣
q=κ̃(p)

− ∂ ln y(p, q)

∂p

∣∣∣∣
q=κ̃(p0)

dp > 0.

The last strict inequality is due to the strict log-SPM of y(p, q) and κ̃ is

strictly increasing. Recall that η(Λ(q, s))(1 − s) = δ′(λ̃(q)) holds for any

active market (q, s). Therefore, a worker of p = r̃(q) receives his highest

payoff only at (q, s) ∈ Ψ, and the outside option is optimal for the workers

of p < p̃.

We now turn to the asset side. For q ≥ q̃,

U(q) = [δ(λ̃(q))− λ̃(q)δ′(λ̃(q))]y(r̃(q), q) ≥ U.

Together with Lemma 13, the contract posting decision is optimal for owners

of q ≥ q̃.

Now suppose q̃ > 0. Consider an inactive market (qL, s′) where qL < q̃.

For any pH > p̃,R(pH |qL, s′) = 0 because

V (pH)

V (p̃)
>
δ′(λ̃(q̃))y(pH , q̃)

δ′(λ̃(q̃))y(p̃, q̃)
>

(1− s′)y(pH , qL)

(1− s′)y(p̃, qL)
.

Hence, R(qL, s′) is degenerate at some pL ≤ p̃. The case Λ(qL, s′) = 0

is trivial. For the case Λ(qL, s′) > 0, Λ(qL, s′) satisfies η(Λ(qL, s′))(1 −

s′)y(pL, qL) = V (pL). If deviating to the market (qL, s′), an asset owner will
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receive

δ(Λ(qL, s′))s′y(pL, qL) = δ(Λ(qL, s′))y(pL, qL)− Λ(qL, s′)V (pL)

≤ max
λ

[δ(λ)y(pL, qL)− λV (pL)]

= max
λ

[δ(λ)y(pL, qL)− λV (p̃)] < U(q̃) = U.

The second equality holds because of the boundary condition p̃(V (p̃)−V ) =

0. So it is never optimal for an owner of q < q̃ to participate.

Analysis of the boundary value problem

By differentiating the Hosios condition w.r.t. q and subtracting it with

the expression ∂ ln ṽ(p)
∂p

∣∣∣
p=r̃(q)

, we obtain

∂ ln δ′(λ̃(q))

∂q
= −∂ ln y(r̃(q), q)

∂q

There exists a unique pair of λ and λ satisfying [δ(λ)−δ′(λ)λ]y(1, 1) = U

and δ′(λ)y(1, 1) = V respectively. Note that λ > λ. Consider the following

initial value problem (IPV-λ(1)):

r′(q) =
g(q)

f(r(q))
λ(q),

∂ ln δ′(λ(q))

∂q
= −∂ ln y(r(q), q)

∂q
,

where the initial values are given by r(1) = 1 and λ(1) = λ1 ∈ [λ, λ].

Since the differential equation system is locally Lipschitz, Picard’s existence

theorem ensures that IPV-λ(1) (in the downward direction) admits a unique

solution {r(q;λ1), λ(q;λ1)} over the interval [q(λ1), 1], where q(λ1) is the first

level of q where either of the following cases occurs:

0 = r(q;λ1)[δ′(λ(q;λ1))y(r(q;λ1), q)− V ] = 0, or (B.2)

0 = q[(δ(λ(q;λ1))− δ′(λ(q;λ1))λ(q;λ1))y(r(q;λ1), q)− U ]. (B.3)
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Furthermore, q(λ1) and p(λ1) := r(q(λ1);λ1) are continuous in λ1. For

q > q(λ1), λ(q;λ1) and r(q;λ1) are strictly increasing.

For p ∈ [p(λ1), 1], κ(p;λ1) denote the inverse of r(q;λ1). Also define

v(p;λ1) = δ′(λ(κ(p;λ1);λ1))y(p, κ(p;λ1)), p ∈ [p(λ1), 1], and

u(q;λ1) = [δ(λ(q;λ1))− δ′(λ(q;λ1))λ(q;λ1)]y(r(q;λ1), q ∈ [q(λ1), 1].

Notice that for q > q(λ1), r(q;λ1)[v(r(q;λ1);λ1)−V ] and q[u(q;λ1)−U ] are

positive and strictly increasing in q.86

Existence of a solution

The boundary value problem has a solution if there exists some λ1 such

that the solution to the IPV-λ(1) with λ(1) = λ1 satisfies both condition

(B.2) and (B.3) at q = q(λ1). By construction, condition (B.2) holds at

q = q(λ) and condition (B.3) holds at q = q(λ). Consider

λ̂ = inf{λ′ ≥ λ : [v(p(λ1);λ1)− V ]p(λ1) = 0,∀λ1 ≥ λ′}.

By continuity, [v(p(λ̂); λ̂)− V ]p(λ̂) = 0. If λ̂ = λ, then we have argued that

condition (B.3) also holds at q = q(λ̂). Suppose λ̂ > λ, the construction

of λ̂ ensures that there is a convergent sequence {λ1
n} with limit λ̂ such

that λ1
n < λ̂ and only condition (B.3) holds at q = q(λ1

n) for λ1 = λ1
n.

By continuity, q(λ̂)[u(q(λ̂); λ̂) − U ] = 0 must hold as well. Therefore the

solution to the IPV-λ(1) with λ(1) = λ̂ solves the boundary value problem.

Uniqueness of the solution

Suppose λH > λL. For p ∈ [max{p(λH), p(λL)}, 1), κ(p;λH) > κ(p;λL),

v(p;λH) < v(p;λL) and λ(κ(p;λH);λH) > λ(κ(p;λL);λL).

Proof. Since r′(1;λH) > r′(1;λL), κ(p;λH) > κ(p;λL), λ(κ(p;λH);λH) >

86v(r(q;λ1);λ1) is stricly increasing in q because ∂ ln δ′(λ(q;λ1))
∂q

+ ∂ ln y(r(q;λ1),q)
∂q

= 0.
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λ(κ(p;λL);λL) and v(p;λH) < v(p;λL) must hold in some neighborhood of

p = 1.

Consider the case that κ(.;λH) and κ(.;λL) intersects somewhere in

[max{p(λH), p(λL)}, 1). pκ = max{p < 1 : κ(p;λH) = κ(p;λL)} is then

well-defined and by construction, κ(p;λH) > κ(p;λL) for all p ∈ (pκ, 1). It

follows that v(.;λH) and v(.;λL) must intersect somewhere in [pκ, 1). Oth-

erwise, for all p ∈ (pκ, 1],

δ′(λ(κ(p;λH);λH))y(p, κ(p;λH)) = v(p;λH)

< v(p;λL) = δ′(λ(κ(p;λL);λL))y(p, κ(p;λL)),

and hence λ(κ(p;λH);λH) > λ(κ(p;λL);λL). This contradicts the law of

motion,

0 >

∫ 1

pκ

1

λ(κ(p;λH);λH)
− 1

λ(κ(p;λL);λL)
dF

= [G(1)−G(κ(pκ;λH))]− [G(1)−G(κ(pκ;λL))] = 0!

Consider the case that v(.;λH) and v(.;λL) intersects somewhere in

[max{p(λH), p(λL)}, 1). Define pv = max{p < 1 : v(p;λH) = v(p;λL)}.

Since v(p;λH) < v(p;λL) for p > pv,

∂ ln y(p, q)

∂p

∣∣∣∣
(p,q)=(pv ,κ(pv ;λH))

=
∂ ln v(pv;λ

H)

∂p

≤ ∂ ln v(pv;λ
L)

∂p
=
∂ ln y(p, q)

∂p

∣∣∣∣
(p,q)=(pv ,κ(pv ;λL))

.

Assumption (Y) implies that κ(pv;λ
H) ≤ κ(pv;λ

L). So κ(.;λH) and κ(.;λL)

intersects somewhere in [pv, 1].

Putting together, it must be that κ(p;λH) > κ(p;λL) and v(p;λH) <

v(p;λL) throughout [max{p(λH), p(λL)}, 1). Otherwise, pv and pκ are well-

defined satisfying pv > pκ and pκ ≥ pv. λ(κ(p;λH);λH) > λ(κ(p;λL);λL)

then follows from the definition of v(p;λH).
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There is a unique initial value of λ(1) for which the solution to the IPV-λ(1)

satisfying both condition (B.2) and (B.3) at q = q(λ1).

Suppose not, the solutions to the IPV-λ(1) with λ(1) = λH and λ(1) =

λL satisfy both condition (B.2) and (B.3) at q = q(λ1), where λH > λL.

Consider the case p(λL) > p(λH). Since p(λL) > 0, V = v(p(λL);λL) >

v(p(λL);λH). Condition (B.2) cannot be met at p(λH)!

Now consider the case p(λL) ≤ p(λH), then q(λH) = κ(p(λH);λH) >

κ(p(λH);λL) ≥ q(λL) and λ(q(λH);λH) > λ(κ(p(λH);λL);λL). This is

impossible because q(λH) > 0 implies

U = u(q(λH);λH) > u(κ(p(λH);λL);λL)

Condition (B.3) cannot be met at q(λL)!

B.3 Proof of Proposition 8

Denote the equilibrium payoff for the asset owners by

ũ(q) = (δ(λ̃(q))− δ′(λ̃(q))λ̃(q))y(r̃(q), q), q ≥ q̃.

The equilibrium allocation and the Second Best allocation (or the equilib-

rium allocation in price competition) can be respectively recovered from

(p̃, q̃, r̃, λ̃, ṽ, ũ) and (rSB, λSB, pSB, qSB, vSB, uSB), which both satisfy the

following conditions

Boundary conditions: r(q) = p, r(1) = 1, q[u(q)− U ] = p(v(p)− V ) = 0,

Law of motion: r′(q) = g(q)
f(r(q))λ(q),

Hosios condition: v(r(q)) = δ′(λ(q))y(r(q), q).
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The only difference is in the worker’s IC conditions, which are given by

∂ ln ṽ(p)

∂p

∣∣∣∣
p=r̃(q)

=
∂ ln y(p, q)

∂p

∣∣∣∣
(p,q)=(r̃(q),q)

,

∂ ln vSB(p)

∂p

∣∣∣∣
p=rSB(q)

=
η(λSB(q))

δ′(λSB(q))

∂ ln y(p, q)

∂p

∣∣∣∣
(p,q)=(rSB(q),q)

.

The listed set of conditions defines two boundary value problems, and we

are going to compare their solutions.

Step 1: For any p̂ > max{p
SB
, p̃} and q̂ > 0 satisfying q̂ = κ̃(p̂) = κSB(p̂),

then λSB(q̂) < λ̃(q̂).

Suppose, to the contrary that, λSB(q̂) ≥ λ̃(q̂). Then vSB(p̂) ≤ ṽ(p̂)

and ∂ ln ṽ(p̂)
∂p < ∂ ln vSB(p̂)

∂p . There must exist some ε > 0 such that for all

p ∈ (p̂− ε, p̂), vSB(p) < ṽ(p) and κSB(p) > κ̃(p).87

Consider the case that κ̃ and κSB intersect in [max{p
SB
, p̃}, p̂). pκ de-

notes the first intersection point of κ̃ and κSB in [max{p
SB
, p̃}, p̂), so that

κSB(p) > κ̃(p) for all p ∈ (pκ, p̂). Then vSB and ṽ must intersect some-

where in between pκ and p̂. Otherwise, for all p ∈ (pκ, p̂), the Hosios

condition implies δ′(λ̃(κ̃(p)))y(p, κ̃(p)) > δ′(λSB(κSB(p)))y(pv, κSB(p)), and

hence λ̃(κ̃(p)) < λSB(κSB(p)). This contradicts the law of motion,

0 <

∫ p̂

pκ

1

λ̃(κ̃(p))
− 1

λSB(κSB(p))
dF

= [G(q̂)−G(κ̃(pκ))]− [G(q̂)−G(κSB(pκ))] = 0!

Consider the case that vSB and ṽ intersect in [max{p
SB
, p̃}, p̂). Let pv

be the first intersection point of vSB and ṽ in [max{p
SB
, p̃}, p̂), so that

vSB(p) < ṽ(p) for all p ∈ (pv, p̂). Then κ̃ and κSB must intersect at some

point between pv and p̂. Suppose not, the continuity of κ̃ and κSB imply

87For the case λSB(q̂) = λ̃(q̂), one can show ∂ ln δ′(λSB(q̂))
∂q

> ∂ ln δ′(λ̃(q̂))
∂q

by differentiating

Hosios condition v(r(q)) = δ′(λ(q))y(r(q), q) w.r.t. q and combining it with ∂ ln v(p)
∂p

∣∣∣
p=r(q)

.
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that κSB(p) > κ̃(p) for p ∈ (pv, p̂). The Hosios condition again requires

λ̃(κ̃(p)) < λSB(κSB(p)) for all p ∈ (pκ, p̂). Under Assumption (Y) and (M),

for all p ∈ (pκ, p̂),

∂ ln vSB(p)

∂p
=
η(λSB(κSB(p)))

δ′(λSB(κSB(p)))

∂ ln y(p, κSB(p))

∂p

>
η(λ̃(κ̃(p)))

δ′(λ̃(κ̃(p)))

∂ ln y(p, κ̃(p))

∂p
>
∂ ln ṽ(p)

∂p
.

Hence, vSB and ṽ cannot intersect at pv.

It follows that vSB(p) < ṽ(p) and κSB(p) > κ̃(p) for p ∈ [max{p
SB
, p̃}, p̂).

Otherwise, pv and pκ will co-exist, satisfying p̂ > pκ > pv and p̂ > pv > pκ!

Again λ̃(κ̃(p)) < λSB(κSB(p)) throughout [max{p
SB
, p̃}, p̂) because of the

Hosios condition.

These conclusions cannot be consistent with the boundary conditions.

Suppose p̃ > p
SB
, then the boundary condition for p̃ > 0 requires V =

ṽ(p̃) > vSB(p̃)! Suppose p̃ ≤ p
SB
, then q

SB
= κSB(p

SB
) > κ̃(p

SB
) ≥ q̃ and

λSB(q
SB

) > λ̃(κ̃(p
SB

)). The boundary condition for q
SB

> 0 then requires

U = uSB(q
SB

) > ũ(κ̃(p
SB

)) ≥ ũ(q̃)!

Corollary: λSB(1) < λ̃(1), vSB(1) > ṽ(1) and uSB(1) < ũ(1).

Step 2: κ̃(p) > κSB(p) for any p ∈ (max{p
SB
, p̃}, 1).

Since λSB(1) < λ̃(1), the law of motion implies r′SB(1) < r̃′(1), and hence

κ̃(p) > κSB(p) for sufficient large p. Suppose κ̃(.) and κSB(.) intersects

somewhere in (max{p
SB
, p̃}, 1). Consider the first intersection point p̂ =

max{p ∈ (0, 1) : κ̃(p) = κSB(p)}. Let q̂ = κ̃(p̂) = κSB(p̂). The previous

claim states that λSB(q̂) < λ̃(q̂). However, rSB(q) > r̃(q) for q > q̂ by

construction. From the law of r′SB(q̂) ≥ r̃′(q̂) only if λSB(q̂) ≥ λ̃(q̂)!

Step 3: p
SB
≥ p̃ and q̃ ≥ q

SB
, and one of the inequalities must be strict.

First, suppose, to the contrary that, p̃ > p
SB
≥ 0. Then q̃ = κ̃(p̃) ≥
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κSB(p̃) > κSB(p
SB

) = q
SB
. The boundary conditions must be violated if

p̃ > p
SB

and q̃ > q
SB

.

U = ũ(q̃) + λ̃(q̃)[ṽ(p̃)− V ]

= max
λ≥0

[δ(λ)y(p̃, q̃)− λV ] > max
λ≥0

[δ(λ)y(p
SB
, q
SB

)− λvSB(p
SB

)] (B.4)

= uSB(q
SB

)!

The first equality is due to the boundary conditions for q̃ > 0 and p̃ > 0

while the second equality and the last equality come from their FOCs and

the Hosios condition. Interchanging the role of (p
SB
, q
SB

) and (p̃, q̃) in

the inequality (B.4), the case p
SB

> p̃ and q
SB

> q̃ is also ruled out. A

continuity argument rules out the case p
SB

= p̃ and q
SB

> q̃. For any p′

slightly above p̃, κ̃(p′) > κSB(p′) > q
SB

and κ̃(p̃) = q̃ < q
SB
. κ̃ must be

discontinuous at p̃! Therefore, we establish that p
SB
≥ p̃ and q̃ ≥ q

SB
.

Step 4: p
SB

= p̃ only if p
SB

= p̃ = 0 and ṽ(0) > vSB(0). q̃ = q
SB

only if

q̃ = q
SB

= 0 and uSB(0) > ũ(0).

First, consider the case p
SB

= p̃ and q̃ = q
SB
. Differentiating the Hosios

condition ln v(r(q)) = ln δ′(λ(q)) + ln y(r(q), q) and subtracting it with the

respective expressions of ∂ ln vSB(p)
∂p

∣∣∣
p=rSB(q)

and ∂ ln ṽ(p)
∂p

∣∣∣
p=r̃(q)

, we obtain

∂ ln δ′(λSB(q̃))

∂q >
∂ ln δ′(λ̃(q̃))

∂q . It follows that λ̃(q̃) < λSB(q̃). Otherwise, λ̃(q′) >

λSB(q′) for q′ slightly above q̃. The law of motion in turn implies that r̃(q′) >

rSB(q′), contradicting the previous claim in Step 2! We can immediately rule

out the cases with p
SB

= p̃ > 0 or q̃ = q
SB

> 0. This is because the boundary

conditions and the Hosios condition in such case require λ̃(q̃) = λSB(q̃)! The

remaining possibility is that p
SB

= p̃ = q̃ = q
SB

= 0. ṽ(0) > vSB(0) and

uSB(0) > ũ(0) because λ̃(0) < λSB(0).

Consider the case p
SB

= p̃ and q̃ > q
SB
. From the boundary conditions
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and Hosios condition,

max
λ≥0

[δ(λ)y(p
SB
, q
SB

)− λvSB(p
SB

)] = uSB(q
SB

)

≥ U = ũ(q̃) = max
λ≥0

[δ(λ)y(p
SB
, q̃)− λṽ(p

SB
)].

This immediately implies that ṽ(p
SB

) > vSB(p
SB

) ≥ V , and hence p
SB

=

p̃ = 0. The case p
SB

> p̃ and q̃ = q
SB

follows from a symmetric argument.

Corollary: ṽ(p
SB

) > vSB(p
SB

) and uSB(q̃) > ũ(q̃)

The previous claim establishes the cases of p
SB

= p̃ or q̃ = q
SB
. Suppose

p
SB

> p̃, the boundary condition immediately implies ṽ(p
SB

) > vSB(p
SB

) =

V . Similarly, uSB(q̃) > ũ(q̃) = U if q̃ > q
SB
.

Notice that the above arguments only require the workers’ IC condition

to satisfy ∂ṽ(p)
∂p

∣∣∣
p=r̃(q)

< η(λ̃(q)) ∂y(p,q)
∂p

∣∣∣
(p,q)=(r̃(q),q)

for ṽ(p) ≥ V .
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