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Abstract

The contributions of this thesis are motivated by an exciting challenge at
the intersection of computer science and biochemistry: Can we program
molecules to do interesting or useful computations? There has been signifi-
cant progress in programming nucleic acids - particularly DNA molecules -
thanks in part to availability of models and algorithms for predicting nucleic
acid structure and folding kinetics. At a higher level of abstraction, Chemical
Reaction Networks (CRNs) have proven to be valuable as a molecular pro-
gramming model that enables researchers to understand the potential and
limitations of computing with molecules, unencumbered by low-level details.
These two levels of abstraction are linked; it is possible to “compile” CRN
programs into nucleic acid systems that make the programs implementable
in a test tube.

We design and analyze CRN algorithms for two purposes. First, we
show how any semilinear function can be computed by CRNs, even when
no “leader” species (i.e., initial species with constant but non-zero counts)
is present. Our results improve earlier results of Chen et al. (2012) who
showed that only semilinear functions are computable by error-free CRNs
using leaders. Our new CRN construction can be done in expected time
O(n), which is faster than O(n log n) bound achieved by Chen et al. Second,
we provide the most intuitive proofs of correctness and efficiency for three
different CRNs computing Approximate Majority: Given a mixture of two
types of species with an initial gap between their counts, a CRN computation
must reach totality on the majority species with high probability. The CRNs
of our interest have the ability to start with an initial gap of Ω(

√
n log n).

In the second part of this thesis, we study the problem of predicting the
Minimum Free Energy secondary structure (the set of base pairs) of a given
set of nucleic acid strands with no pseudoknots (crossing base pairs).We
show that this problem is APX-hard which implies that there does not exist
a polynomial time approximation scheme for this problem, unless P = NP.
We also propose a new Monte-Carlo based method to efficiently estimate
nucleic acid folding kinetics.
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Lay Summary

Our contributions are motivated by an exciting challenge at the intersection
of computer science and biochemistry: Can we program molecules to do
interesting or useful computations? First, we study Chemical Reaction Net-
works (CRNs) – a valuable molecular model for programming the dynamics
of interacting molecules in a well-mixed solution. We show how CRNs can
compute functions that are unions of linear pieces, and provide a simple anal-
ysis of an elegant CRN that determines which of two molecular species is
most populous in the mixture. Since CRN programs can be“compiled” into
nucleic acid systems whose folding dynamics simulate the reactions, the sec-
ond part of our thesis studies such systems. We present an efficient method
to estimate the nucleic acid folding kinetics, and show that the structure
prediction of multiple interacting strands is computationally intractable.

iii



Preface

The author contributed to all major ideas and writing of all published and
unpublished manuscripts that are the basis of this dissertation. In no in-
stance, there was a student as a co-author. The author collaborated with the
author’s supervisor and mentors in all aspects of research including defining
the problems, design and implementation of algorithms, proving the main
claims and conducting experimental studies.

Part I of this thesis was resulted from collaboration with author’s super-
visor Dr. Anne Condon, as well as Dr. Dave Doty, Dr. David Kirkpatrick
and Dr. Jan Manuch.

• Chapters 1, 2 and 5 were written by the author, but used selected
content from publications that she co-authored [28, 33, 34].

• A version of Chapter 3 has been published in the proceedings of the
19th Annual International Conference on DNA Computing and Molec-
ular Programming (2013) [33] and also the Journal of Natural Com-
puting (2015) [34]. The author collaborated with the co-author, Dr.
Dave Doty, in developing the algorithms, proving the lemmas, and
writing the manuscripts.

• A version of Chapter 4 appears in the proceedings of the 23th Annual
International Conference on DNA Computing and Molecular Program-
ming (2017) [28]. The author was the primary investigator to lead all
the discussions and provide the initial detailed proofs of each phase
in the new proof strategy, and performed most of the experiments.
Dr. David Kirkpatrick proposed the new tri-molecular CRN as an
abstraction and intuition of the phases required to compute Approx-
imate Majority. All the authors then equally contributed in further
simplifying the proofs and writing the manuscript.

Part II of this thesis was resulted from collaboration with a number of co-
authors: the author’s supervisor Dr. Anne Condon, Dr. Bonnie Kirkpatrick,
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Part I

Leaderless Deterministic
Computation, and

Approximate Majority with
Chemical Reaction Networks



Chapter 1

Introduction

Molecular programming encompasses the design of programmable molec-
ular systems such as molecular robotics, nanoscale computing, and pro-
grammable assembly of nanoscale patterns and devices. It also encompasses
languages and algorithms for programming these systems [30, 62, 82]. In the
last two decades, theoretical and experimental studies in this field have shed
light on integration of logical computation with biological systems [25, 46].
For instance, such an integration can let a certain curative agent be released
if a specific condition is detected in a cell.

A key goal is to re-purpose the descriptive language of chemistry and
physics, which describes how the natural world works, as a prescriptive lan-
guage of programming, which prescribes how an artificially engineered sys-
tem should work. When the programming goal is the manipulation of indi-
vidual molecules in a well-mixed solution, the language of chemical reaction
networks (CRNs) is an attractive choice.

A CRN (i.e., formally defined in Section 2.1) is a finite set of reactions
such as X + Y → Z + W each describing a rule for transforming reac-
tant molecules (e.g., {X,Y }) into product molecules (e.g., {Z,W}) [42, 57].
Figures 1.1 and 1.2 show two examples of CRNs. The underlying model
describes how the amounts of molecular species evolve when molecules in-
teract in a well-mixed solution. If an interaction (i.e., a collision between
some molecules) is reactive, some molecules are consumed and others are
produced. Thus, by reaction, we mean a reactive interaction. A configura-
tion of a well-mixed solution is also defined as the current composition of
the amounts of all the species.

CRNs may model the “amount” of a species as a real number, namely its
concentration (average count per unit volume), or as a nonnegative integer
(i.e., total count in solution, requiring the total volume of the solution to be
specified as part of the system). Here, we focus on the latter integer counts
model which is called “stochastic”. The stochastic nature of the CRN model
makes it better suited than the former model for analysis of systems in which
some species counts may be low and may fluctuate significantly. In this
model, the reactions discretely change the configuration of the system, and

1



Chapter 1. Introduction

are assumed to happen probabilistically. In fact, the model is probabilistic at
two levels. First, which interaction occurs next is stochastically determined,
reflecting the dynamics of collisions in a well-mixed solution [20, 42]. For
instance, interactions whose reactants have high molecular counts are more
likely to happen first than interactions whose molecular counts are smaller.
Second, a reaction can have more than one outcome, and rate constants
associated with reactions determine the relative likelihood of each outcome.
For example, reactions (0’x) and (0’y) of Figure 1.2(c) are equally likely. A
computation of a CRN C is a trace of the configurations from a given initial
configuration to some final target configuration. We note that interactions
occur in parallel, and time of a computation is typically measured as the
total number of interactions divided by n, assuming that the total number
of interacting molecules and volume remain fixed and are Θ(n).

The computational power of CRNs has been investigated with regard
to simulating boolean circuits [65], neural networks [50], digital signal pro-
cessing [55], and simulating bounded-space Turing machines with an arbi-
trary small, non-zero probability of error with only a polylogarithmic slow-
down [11]. We note that Angluin et al. investigated the computational
power of bi-molecular CRNs (involving only two reactants) under a dif-
ferent name known as the population protocols (PPs) model [9], in which
agents interact in a pairwise fashion and may change state upon interacting.
Agents and states of a PP naturally correspond to molecules and species
of a CRN. CRNs are even efficiently Turing-universal, again with a small,
nonzero probability of error over all time [94]. Using a theoretical model of
DNA strand displacement systems (DSDs) 1, it was shown that any CRN
can be transformed into a set of DNA complexes that approximately emu-
late the CRN [83, 92, 95]. The experimental successes to date, are small in
scale, but in the future we can expect to be able to reliably implement much
larger CRNs by real chemicals, as causes of error are addressed [84, 99].
In the context of CRNs and PPs, a substanstial amount of research has also
been conducted on a central problem called Approximate Majority (AM)
[9, 12, 74, 81]: in a mixture of two types of species where the gap between
the counts of the majority and minority species is above some threshold,
which species is in the majority? Approximate Majority is a significant
problem because, for instance, it can be used as a subroutine when simulat-
ing other computational models [9]. For example, a comparison operation
(comparing the counts of two species or agents) is a necessary component

1DSDs consist of a set of strand displacement reactions where intuitively, in each reac-
tion, a strand displaces another strand from a complex [18].

2



1.1. Deterministic Computation with CRNs

to simulate the behaviour of a register machine and the AM protocol is an
important subroutine to compute this operation [12]. Moreover, the system
of some biological switches is also related to both the structure and kinetics
of the AM computation [19, 24].

While the works mentioned above focus on the stochastic behaviour of
chemical kinetics and may encounter some probability of error in the compu-
tations, the deterministic behaviour of CRNs, in the sense that the designed
protocols progress to a correct configuration with absolutely no error, is also
of great interest [10, 21].

In this part of the thesis, we make new contributions to design of CRNs
for deterministic computation, and analysis of CRNs for Approximate Ma-
jority. We discuss these two subjects and their related work in Section 1.1
and 1.2 respectively. Next, we sum up our objectives and contributions in
each context in Section 1.3. Finally, we end this introductory chapter by
giving an outline of the following chapters that detail our contributions in
this thesis part.

1.1 Deterministic Computation with CRNs

In this section, our focus is on CRNs with deterministic guarantees on their
behavior. These CRNs have the property that they are guaranteed to reach
a correct configuration, regardless of the order in which reactions occur. For
example, the CRN with the reaction X → 2Y is guaranteed eventually to
reach a configuration in which the count of Y is twice the initial count of
X, i.e., computes the function f(x) = 2x, representing the input by the
initial count x of species X and the output by the count y of species Y , once
stable. Similarly, the reactions X1 → 2Y and X2 + Y → ∅, under arbitrary
choice of sequence of the two reactions, compute the function f(x1, x2) =
max{0, 2x1 − x2}.

Angluin et al. [10, 11] explored the computational behaviour of CRNs
that are deterministic under the population protocols model. They showed
that the input sets S ⊆ Nk decidable by deterministic CRNs (i.e., provid-
ing “yes” or “no” answers by the presence or absence of certain indicator
species) are precisely the semilinear subsets of Nk. Semilinear sets are de-
fined formally in Section 3.1. Informally, they are finite unions of “periodic”
sets, where the definition of “periodic” is extended in a natural way to
multi-dimensional spaces, such as Nk. We note that the semilinear predi-
cate computation presented by Angluin et al. [10, 11] only depends on the
input species and does not require any auxiliary “leader” species, i.e., species

3



1.1. Deterministic Computation with CRNs

X → Y X → B + 2Y (1.1.1)

L→ Y B +B → B +K (1.1.2)

Y +K → ∅ (1.1.3)

(a) (b)

Figure 1.1: CRNs to compute function f(x) = x+ 1. CRN (a) starts with x
copies of species X and one copy of leader species L. CRN (b) starts with
only x copies of species X. All the reactions have rate constant 1.

present initially with constant but non-zero counts (described in more detail
later).

Chen et al. [21] extended these results to function computation and
showed that precisely the semilinear functions (functions f whose graph{

(x,y) ∈ Nk+l | f(x) = y
}

is a semilinear set) are deterministically com-
putable by CRNs. We say a function f : Nk → Nl is stably (a.k.a., determin-
istically) computable by a CRN C if there are “input” species X1, . . . , Xk

and “output” species Y1, . . . , Yl such that, if C starts with x1, . . . , xk copies
of X1, . . . , Xk, respectively, then with probability one, it reaches a “count-
stable” configuration in which the counts of Y1, . . . , Yl are expressed by the
vector f(x1, ..., xk), and these counts never again change [21].

The method proposed by Chen et al. [21] uses some auxiliary “leader”
species present initially, in addition to the input species. To illustrate their
utility, suppose that we want to compute function f(x) = x+ 1 with CRNs.
Using the previous approach, we have an input species X (with initial count
x), an output species Y (with initial count 0) and an auxiliary “leader”
species L (with initial count 1). Fig 1.1a shows the reactions that compute
f(x).

However, it is experimentally difficult to prepare a solution with a single
copy (or a small constant number) of a certain species. Chen et al. [21] asked
whether it is possible to do away with the initial “leader” molecules, i.e., to
require that the initial configuration contains initial counts x1, x2, . . . , xk of
input species X1, X2, . . . , Xk, and initial count 0 of every other species. It
is easy to “elect” a single leader molecule from an arbitrary initial number
of copies using a reaction such as L+ L→ L, which eventually reduces the
count of L to 1. However, the problem with this approach is that, since L is
a reactant in other reactions, there is no way in general to prevent L from
participating in these reactions until the reaction L+L→ L has reduced it
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to a single copy.
Despite these difficulties, we answer the question affirmatively, showing

that each semilinear function can be computed by a “leaderless” CRN, i.e.,
a CRN which starts with an initial configuration containing only the input
species. To illustrate the question, consider the function f(x) = x + 1
once more. In order to compute the function without a leader (i.e., the
initial configuration has x copies of X and 0 copies of every other species),
the reactions in Figure 1.1b suffice: Reaction 1.1.1 produces x copies of B
and 2x copies of Y . Reaction 1.1.2 consumes all copies of B except one,
so reaction 1.1.2 executes precisely x − 1 times, producing x − 1 copies of
K. Therefore reaction 1.1.3 consumes x − 1 copies of output species Y ,
eventually resulting in 2x − (x − 1) = x + 1 copies of Y . Note that this
approach uses a sort of leader election on the B molecules. We generalize
this example and describe our leaderless CRN construction in Chapter 3.

We also refer the readers to Sections 1.3.1 for a more detailed discussion
of our contributions.

1.2 The Approximate Majority Problem

Consider a mixture with n molecules, some of species X and the rest of
species Y . Let x and y denote the number of copies of X and Y during
a CRN computation. The Approximate Majority problem [9] is to reach
consensus — a configuration in which all molecules are X (x = n) or all
are Y (y = n), from an initial configuration in which x + y = n and the
gap |x− y| is above some threshold. If initially x > y, the consensus should
be X-majority (x = n), and if initially y > x the consensus should be Y -
majority. We focus on the case when initially x > y since the CRNs that
we analyze are symmetric with respect to X and Y .

Angluin et al. [12] proposed and analyzed the Single-B CRN of Figure
1.2(c) in the PP framework. Informally, reactions (0’x) and (0’y) are equally
likely to produce B’s (blanks) from X’s or Y ’s respectively, while reactions
(1’) and (2’) recruit B’s to become X’s and Y ’s respectively. When X is
initially in the majority (x > y initially), a reaction event is more likely
to be (1’) than (2’), with the bias towards (1’) increasing as x gets larger.
Angluin et al. showed correctness: if initially x − y = ω(

√
n log n), then

with high probability Single-B reaches X-majority consensus. They also
showed efficiency: with “high” probability 1 − n−Ω(1), for any initial gap
value x − y, Single-B reaches consensus within O(n log n) interactions. In
addition, they proved correctness and efficiency in more general settings,
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X +X + Y → X +X +X (1)

X + Y + Y → Y + Y + Y (2)

(a) Tri-molecular CRN

X + Y → B +B (0’)

X +B → X +X (1’)

Y +B → Y + Y (2’)

(b) Double-B CRN

X + Y
1/2→ X +B (0’x)

X + Y
1/2→ Y +B (0’y)

X +B → X +X (1’)

Y +B → Y + Y (2’)

(c) Single-B CRN

Figure 1.2: A tri-molecular and two bi-molecular chemical reaction networks
(CRNs) for Approximate Majority. Reactions (0’x) and (1’y) of Single-B
have rate constant 1/2 while all other reactions have rate constant 1.

such as when some molecules in the initial configuration are B’s, or in the
presence of o(

√
n) Byzantine agents.

Surprisingly, while the Single-B CRN is quite simple, they provided a
very complicated and lengthy proof and noted that “Unfortunately, while
the protocol itself is simple, proving that it converges quickly appears to be
very difficult”. Motivated by their intriguing but complex approach, we aim
to provide simpler and more intuitive proofs of correctness and efficiency,
with the hope that simple techniques can be adapted to reason about CRNs
for other problems. For this purpose, we analyze three different CRNs for
Approximate Majority: a simple tri-molecular CRN, whose reactions involve
just the two species X and Y that are present initially, and two bi-molecular
CRNs, which we call Double-B and Single-B, that use an additional “blank”
species B – see Figure 1.2. As noted earlier, the Single-B CRN is the same
as that of Angluin et al. The Double-B CRN is symmetric even in the PP
setting.

Several others have subsequently and independently studied the problem;
Mertzios et al. [74] analyze Single-B when x + y = n and y ≤ εn. They
use a biased random walk argument to show that for ε = 1/7, Single-B
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reaches consensus on X-majority with exponentially small error probability
1 − e−Θ(n). They conjecture that exponentially small probability holds if ε
is any positive constant less than 1/2. We show in Section 4.6 how to prove
this conjecture using our analysis tools.

Perron et al. [81] also analyze Single-B when the initial gap is a con-
stant fraction times n, showing correctness with all but exponentially small
probability. Their results do not apply to smaller initial gaps.

Cruise and Ganesh [31] devise a family of protocols in network mod-
els where agents (nodes) can poll other agents in order to update their
state. Their family of protocols provides a natural generalization of our
tri-molecular CRN. Their analysis uses connections between random walks
and electrical networks. We consider our proof of the tri-molecular CRN to
be simpler than theirs, and we obtain high probability bounds on efficiency,
while they reason about expected time.

Yet other work on Approximate Majority pertains to settings with dif-
ferent assumptions about the number of states per agent or with different
interaction scheduling rules [5, 36, 74], or analyze more general multi-valued
consensus problems [12, 14, 15].

Section 1.3.2 describes our contributions on the Approximate Majority
problem.

1.3 Contributions

Here, we summarize our contributions for the subjects discussed in Sec-
tions 1.1 and 1.2.

1.3.1 Deterministic Computations with CRNs

In this regard, we mainly answer the question asked by Chen et al. [21],
whether deterministic CRNs without a leader retain the same power, and
make the following contributions.

1. We show that every semilinear function is deterministically computable
by a CRN whose initial configuration contains only the input species
X1, . . . , Xk, and zero counts of every other species, so long as f(0) = 0.

2. We describe a leaderless CRN construction to compute any semilinear
function. We use a similar framework to the construction of Chen
et al. [21], decomposing the semilinear function into a finite union of
affine partial functions (linear functions with an offset; defined formally
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in Section 3.1). We show how to compute each affine function with
leaderless CRNs, using a fundamentally different construction than
the affine-function computing CRNs of Chen et al. [21].

3. We show that our direct stable leaderless computation of a semilinear
function completes in expected time O(n), where n is the total number
of input molecules. This time bound is slower than the O(log5 n) time
bound achieved by Chen et al. [21], but faster than the O(n log n)
bound achieved by the direct construction of Chen et al. [21] where
both fast and direct constructions crucially use leaders.

1.3.2 Approximate Majority with CRNs

Our main contribution is that we provide the simplest and most intuitive
proofs of correctness and efficiency for the CRNs listed in Figure 1.2 that
compute Approximate Majority. Our detailed contributions are listed below.

1. We propose a new and simple tri-molecular CRN (see Figure 1.2(a))
for Approximate Majority.

2. We analyze the correctness and efficiency of the tri-molecular CRN
using simple analysis tools such as biased random walks and Chernoff
bounds.

3. We analyze the efficiency and correctness of bi-molecular CRNs of
Figure 1.2 – Double-B and Single-B CRNs – by relating them to the
tri-molecular CRN (see Section 4.3).

4. We show that the count of B (blank) species in Single-B CRN is tightly
bounded by the count of Y species, assuming that initially y < x and
b < n/2, where n is the total count of molecules.

5. A bonus is that all of our results apply with high probability when
the initial gap is Ω(

√
n log n), and thus are a factor of

√
log n stronger

than Angluin et al.’s results [12]. However, we note that their results
address a more general settings (such as starting from any arbitrary
gap or tolerating o(

√
n) Byzantine agents) than ours and we suspect

that the complexity of their approach may well be attributable to the
difficulty of handling these cases that we do not address.
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1.4. Outline

1.4 Outline

In Chapter 2 we provide the required background and preliminary defini-
tions to understand chemical reaction networks kinetics. Next, Chapter 3
reports on our leaderless computation with CRNs. Section 3.1 first describes
the CRN semantics for the deterministic computation. Second, Section 3.2
explains our leaderless deterministic construction to compute any semilin-
ear function, along with its time complexity analysis. Then, in Chapter 4,
we discuss the correctness and efficiency of our concerned Approximate Ma-
jority CRNs. We study the behaviour of the tri-molecular CRN in three
different phases in Section 4.2. Later, we analyze the behaviour of Double-
B and Single-B CRNs in Section 4.3.

9



Chapter 2

Background on Chemical
Reaction Networks

Here, we present some preliminary concepts and definitions as needed to
understand chemical reaction networks and their underlying kinetic model
used throughout Chapters 3 and 4. We introduce additional concepts and
definitions as needed in each corresponding chapter.

2.1 Chemical Reaction Networks

We model interacting molecules in a well-mixed solution, under fixed envi-
ronmental conditions, such as temperature. Let Λ = {Λ1,Λ2, . . . ,Λm} be a
finite set of chemical species here and throughout. We write NΛ to denote
the set of vectors of |Λ| nonnegative integers, with each coordinate “labeled”
by a distinct element of Λ. Given X ∈ Λ and c ∈ NΛ, we refer to c(X) as
the count of X in c. We write c ≤ c′ to denote that c(X) ≤ c′(X) for all
X ∈ Λ. Given c, c′ ∈ NΛ, we define the vector component-wise operations
of addition c+c′, subtraction c−c′, and scalar multiplication nc for n ∈ N.
If ∆ ⊂ Λ, we view a vector c ∈ N∆ equivalently as a vector c ∈ NΛ by
assuming c(X) = 0 for all X ∈ Λ \∆.

Molecules can collide, or equivalently, interact. Given a finite set of
chemical species Λ, we denote an interaction that simultaneously involves
r1 copies of Λ1, r2 copies of Λ2, and so on by a vector r = (r1, r2, . . . , rm),
and define the order of the interaction to be r1+r2+. . .+rm. Reactions with
orders 1, 2, and 3 are called unimolecular, bimolecular, and tri-molecular re-
spectively. In our research on CRNs, we assume that all interactions have
the same order (either two or three). In fact, each interaction r has an as-
sociated rate constant kr > 0. In our discussions in Chapters 3 and 4 we
assume that all interaction rate constants kr are 1. Some interactions are
non-reactive (collisions resulting in no consumed or produced molecules),
while others can trigger one or more reactions. A reaction over Λ is a triple
α = 〈r,p, kα〉 ∈ NΛ × NΛ × R+, where r 6= p, specifying the stoichiome-
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try of the reactants and products, respectively, and the rate constant kα.
The reaction rate constant determines the probability that the reaction is
accomplished. We can write reaction α in the form

α : r1Λ1 + r2Λ2 + . . .+ rmΛm
kα→ p1Λ1 + p2Λ2 + . . .+ pmΛm.

For instance, reaction A+ 2B
1/2→ A+ 3C is a reaction with tuple 〈(1, 2, 0),

(1, 0, 3), 1
2〉.

A (finite) chemical reaction network (CRN) is a pair C = (Λ, R), where
Λ is a finite set of chemical species, and R is a finite set of reactions over Λ,
such that if R(r) is the subset of R with reactant vector r, then

∑
α∈R(r) kα ≤

1(= kr). A configuration of a CRN C = (Λ, R) is a vector c ∈ NΛ.
Given a configuration c and reaction α = 〈r,p, kα〉, we say that α is

applicable to c if r ≤ c (i.e., c contains enough of each of the reactants for
the reaction to occur). If α is applicable to c, then we write α(c) to denote
the configuration c+p−r (i.e., the configuration that results from applying
reaction α to c). If c′ = α(c) for some reaction α ∈ R, we write c→C c′, or
merely c→ c′ when C is clear from context.

2.2 Kinetic Model

The following model of stochastic chemical kinetics is widely used in quan-
titative biology and other fields dealing with chemical reactions between
species present in small counts [42]. It ascribes probabilities to computation
and execution sequences, and also defines the time of reactions, allowing
us to study the computational complexity of the CRN computation in the
following two chapters.

The kinetics of a CRN is described by a stochastic model of chemical
kinetics [42, IIB] as follows. Given a fixed volume v ∈ R+ and current
configuration c = (c1, · · · , cm), where c1 = c(Λ1), c2 = c(Λ2), . . . , cm =
c(Λm), the propensity of a particular interaction r = (r1, r2, . . . , rm) of order
o is

ρ(c, r) =

[
m∏
i=1

(
ci
ri

)]
/vo−1.

the propensity of reaction α = 〈r,p, kα〉 is ρ(c, α) = kαρ(c, r). For instance,

the propensity of a unimolecular reaction α : X
kα→ . . . in configuration c

is ρ(c, α) = kαc(X). Likewise, the propensity of a bimolecular reaction

α : X + Y
kα→ . . ., where X 6= Y , is ρ(c, α) = kα

c(X)c(Y )
v and the propensity
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2.2. Kinetic Model

of a tri-molecular reaction α : 2X +Y
kα→ . . . is ρ(c, α) = kα

c(X)(c(X)−1)c(Y )
2v2 .

Let ρ(c, R) =
∑

α∈R ρ(c, α) be the sum of the propensities of all reactions
applicable to configuration c. When an interaction occurs, the probability
that it is a reaction event is

ρ(c, R)/ρ,

where ρ =
∑

r ρ(c, r) is the sum of the propensities of all possible interac-
tions r of orders {o1, o2, . . . , ol} that are assumed to happen in a well-mixed
solution. For example, if only interactions of orders {1, 2} can happen in a
solution with total molecular count n, then ρ =

(
n
1

)
/v0 +

(
n
2

)
/v1.

When a reaction event occurs, the probability that it is reaction α = 〈r,p, kα〉
is

kαρ(c, r)/ρ(c, R).

With respect to a given initial configuration c, a computation is a finite or
infinite sequence I1, I2, . . . where each Ii is either a non-reactive interaction
or a reaction, chosen according to their probabilities. Formally, let c0 = c.
For i ≥ 1, the probability that Ii is non-reactive interaction r is ρ(ci−1, r)/ρ,
in which case we let ci = ci−1, and the probability that Ii is reaction α =
(r,p, kα) is kαλ(ci−1, r)/ρ, in which case ci is such that ci−1 → ci.

An execution (a.k.a., execution sequence) E is a finite or infinite sub-
sequence of configurations c0, c1, . . . of the underlying computation where
non-reactive interactions that result in no change of configuration are ex-
cluded. Therefore, for all i ∈ {1, . . . , |E|−1}, ci−1 → ci. If a finite execution
sequence starts with c and ends with c′, we write c→∗C c′, or merely c→∗ c′

when the CRN C is clear from context. In this case, we say that c′ is reach-
able from c.

The propensity function then determines the evolution of the system
as follows. At any moment, the time until the next interaction occurs is
exponentially distributed with parameter ρ [42, IIIC] defined earlier. Then,
the expected time until an interaction occurs is 1

ρ . Accordingly, the expected
time until the next reaction occurs is 1/ρ(c,R) (note that ρ(c, R) = 0 if no
reactions are applicable to c).

The kinetic model is based on the physical assumption of well-mixedness
in a diluted solution. Thus, we assume the finite density constraint, which
stipulates that a volume required to execute a CRN must be proportional
to the maximum molecular count obtained during execution [94]. In other
words, the total concentration (molecular count per volume) is bounded.
This realistically constrains the speed of the computation achievable by
CRNs. We apply the kinetic model only to CRNs with configuration spaces
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that are bounded for each start configuration, choosing the volume to be
equal to the reachable configuration with the highest molecular count. In
this thesis, the volume will always be within a constant multiplicative factor
of the number of input molecules.
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Chapter 3

Leaderless Deterministic
Chemical Reaction Networks

In this chapter, we begin with preliminary mathematical definitions and
different semantic interpretations of CRNs that are used throughout this
chapter. We then provide our construction and expected time analysis to
prove that a semilinear function is deterministically computed with leader-
less CRNs. Finally, we summarize our results and discuss our contributions.

3.1 Preliminaries

Given a vector x ∈ Nk, let ‖x‖ = ‖x‖1 =
∑k

i=1 |x(i)|, where x(i) de-
notes the ith coordinate of x. A set A ⊆ Nk is linear if there exist vectors
b,u1, . . . ,up ∈ Nk such that

A = { b + n1u1 + . . .+ npup | n1, . . . , np ∈ N } .

A is semilinear if it is a finite union of linear sets. If f : Nk → Nl is a func-
tion, define the graph of f to be the set

{
(x,y) ∈ Nk × Nl

∣∣ f(x) = y
}
. A

function is semilinear if its graph is semilinear. A predicate φ : Nk → {0, 1}
is semilinear if the set

{
x ∈ Nk

∣∣ φ(x) = 1
}

is a semilinear set.
We say a partial function f : Nk 99K Nl is affine if there exist kl rational

numbers a1,1, . . . , al,k ∈ Q and l+k nonnegative integers b1, . . . , bl, c1, . . . , ck ∈
N such that, if y = f(x), then for each j ∈ {1, . . . , l}, y(j) = bj +∑k

i=1 aj,i(x(i) − ci), and for each i ∈ {1, . . . , k}, x(i) − ci ≥ 0. In ma-
trix notation, there exist a l × k rational matrix A and vectors b ∈ Nl and
c ∈ Nk such that f(x) = A(x− c) + b.

This definition of affine function may appear contrived; see [21] for an
explanation of its various intricacies. For reading this chapter, the main
utility of the definition is that it satisfies Lemma 3.2.2.

Note that by appropriate integer arithmetic, a partial function f : Nk 99K
Nl is affine if and only if there exist kl integers n1,1, . . . , nk,l ∈ Z and 2l+ k
nonnegative integers b1, . . . , bl, c1, . . . , ck, d1, . . . , dl ∈ N such that, if y =
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f(x), then for each j ∈ {1, . . . , l}, y(j) = bj + 1
dj

∑k
i=1 ni,j(x(i) − ci), and

for each i ∈ {1, . . . , k}, x(i) − ci ≥ 0. Each dj may be taken to be the
least common multiple of the denominators of the rational coefficients in
the original definition. We employ this latter definition, since it is more
convenient for working with integer-valued molecular counts.

In this chapter, we use CRNs to decide subsets of Nk (for which we
reserve the term “chemical reaction decider” or CRD) and to compute func-
tions f : Nk → Nl (for which we reserve the term “chemical reaction com-
puter” or CRC). In the next two subsections we define two semantic inter-
pretations of CRNs that correspond to these two tasks. We use the term
CRN to refer to either a CRD or CRC when the statement is applicable to
either type.

These definitions differ slightly from those of Chen et al. [21], because
ours are specialized to “leaderless” CRNs: those that can compute a predi-
cate or function in which no species are present in the initial configuration
other than the input species. In the terminology of Chen et al. [21], a CRN
with species set Λ and input species set Σ is leaderless if it has an initial
context σ : Λ → N such that σ(S) = 0 for all S ∈ Λ \ Σ. The definitions
below are simplified by assuming this to be true of all CRNs.

We also use the convention of Angluin, Aspnes, and Eisenstat [10] that
for a CRD, all species “vote” yes or no, rather than only a subset of species
as in [21], since this convention is convenient for proving time bounds.

3.1.1 Stable Decidability of Predicates

We now review the definition of stable decidability of predicates introduced
by Angluin, Aspnes, and Eisenstat [10].2 Intuitively, the set of species is
partitioned into two sets: those that “vote” yes and those that vote no, and
the system stabilizes to an output when a consensus vote is reached (all
positive-count species have the same vote) that can no longer be changed
(no species voting the other way can ever again be produced). It would be
too strong to characterize deterministic correctness by requiring all possible
executions to achieve the correct answer; for example, a reversible reaction
such as A−⇀↽−B could simply be chosen to run back and forth forever, starv-
ing any other reactions. In the more refined definition that follows, the

2Those authors use the term “stably compute”, but we reserve the term “compute” for
the computation of non-Boolean functions. Also, we omit discussion of the definition of
stable computation used in the population protocols literature, which employs a notion of
“fair” executions; the definitions are proven equivalent in [21].
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determinism of the system is captured in that it is impossible to stabilize to
an incorrect answer, and the correct stable output is always reachable.

A (leaderless) chemical reaction decider (CRD) is a tupleD = (Λ, R,Σ,Υ),
where (Λ, R) is a CRN, Σ ⊆ Λ is the set of input species, and Υ ⊆ Λ is the
set of yes voters, with species in Λ \ Υ referred to as no voters. An input
to D will be an initial configuration i ∈ NΣ (equivalently, i ∈ Nk if we write
Σ = {X1, . . . , Xk} and assign Xi to represent the i’th coordinate); that is,
only input species are allowed to be non-zero. If we are discussing a CRN
understood from context to have a certain initial configuration i, we write
#0X to denote i(X).

We define a global output partial function Φ : NΛ 99K {0, 1} as follows.
Φ(c) is undefined if either c = 0, or if there exist S0 ∈ Λ \ Υ and S1 ∈ Υ
such that c(S0) > 0 and c(S1) > 0. Otherwise, either (∀S ∈ Λ)(c(S) >
0 =⇒ S ∈ Υ) or (∀S ∈ Λ)(c(S) > 0 =⇒ S ∈ Λ \ Υ); in the former case,
the output Φ(c) of configuration c is 1, and in the latter case, Φ(c) = 0.

A configuration o is output stable if Φ(o) is defined and, for all c such
that o →∗ c, Φ(c) = Φ(o). We say a CRD D stably decides the predicate
ψ : NΣ → {0, 1} if, for any initial configuration i ∈ Nk, for all configurations
c ∈ NΛ, i→∗ c implies c→∗ o such that o is output stable and Φ(o) = ψ(i).
Note that this condition implies that no incorrect output stable configuration
is reachable from i. We say that D stably decides a set A ∈ Nk if it stably
decides its indicator function.

The following theorem is due to Angluin, Aspnes, and Eisenstat [10]:

Theorem 3.1.1 ([10]). A set A ⊆ Nk is stably decidable by a CRD if and
only if it is semilinear.

The model they use is defined in a slightly different way; the differences
(and those differences’ lack of significance to the questions we explore) are
explained in Chen et al. [21].

3.1.2 Stable Computation of Functions

We now define a notion of stable computation of functions similar to those
above for predicates. Intuitively, the inputs to the function are the initial
counts of input species X1, . . . , Xk, and the outputs are the counts of output
species Y1, . . . , Yl. The system stabilizes to an output when the counts of
the output species can no longer change. Again determinism is captured
in that it is impossible to stabilize to an incorrect answer and the correct
stable output is always reachable.
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A (leaderless) chemical reaction computer (CRC) is a tuple C = (Λ, R,Σ,Γ),
where (Λ, R) is a CRN, Σ ⊂ Λ is the set of input species, Γ ⊂ Λ is
the set of output species, such that Σ ∩ Γ = ∅. By convention, we let
Σ = {X1, X2, . . . , Xk} and Γ = {Y1, Y2, . . . , Yl}. We say that a configura-
tion o is output stable if, for every c such that o →∗ c and every Yi ∈ Γ,
o(Yi) = c(Yi) (i.e., the counts of species in Γ will never change if o is
reached). As with CRD’s, we require initial configurations i ∈ NΣ in which
only input species are allowed to be positive. We say that C stably computes
a function f : Nk → Nl if for any initial configuration i ∈ NΣ, i→∗ c implies
there exists o such that c→∗ o and o is an output stable configuration with
f(i) = (o(Y1),o(Y2), . . . ,o(Yl)). Note that this condition implies that no
incorrect output stable configuration is reachable from i.

If a CRN stably decides a predicate or stably computes a function, we
say the CRN is stable (a.k.a., deterministic).

If f : Nk 99K Nl is a partial function undefined on some inputs, we
say that a CRC C stably computes f if C stably computes f on all inputs
x ∈ dom f , with no constraint on the behavior of C if it is given an input
x 6∈ dom f .

3.1.3 Kinetic Model

Here, we employ the same kinetic model described in Section 2.2. However,
we assume that the rate constants of all reactions are 1, and we adjust
the model with this assumption. The reaction rate constants do not affect
the definition of stable computation; they only affect the expected time
analysis. Our expected time analyses remain asymptotically unaffected if
the rate constants are changed (although the constants hidden in the big-O
notation would change). Intuitively, we can assume that in Lemmas 3.1.2,
3.1.3, and 3.1.4, i.e., the main lemmas to analyze the expected time in this
chapter, all the rate constants are replaced by the smallest one which only
scales down the total propensity of reactions by a constant factor.

Given CRN C = (Λ, R) and configuration c, recall from Section 2.2 that
the expected time until the next reaction occurs is 1

ρ(c,R) .

Moreover, for the reactions in R′, where R′ ⊂ R, assuming that the
reactions in R \ R′ either do not affect the reactants of reactions in R′,
or that if they do, those reactions are not applicable, then the expected
time until the next reaction in R′ occurs is 1

ρ(c,R′) . This observation allows
us to analyze different independent components of a CRN as if they were
their own CRN, so long as they either run in parallel without affecting each
others’ reactants, or they run in series, but under the assumption that one
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component has finished reacting (and therefore cannot affect reactant counts
for the next component).

It is not difficult to show that if a CRN is stable and has a finite reachable
configuration space from any initial configuration i, then under the kinetic
model (in fact, for any choice of rate constants), with probability 1 the CRN
will eventually reach an output stable configuration [21].

We require the following lemmas later in our main theorems. Some of
these are implicit or explicit in many earlier papers on stochastic CRNs, but
we include their proofs for the sake of self-containment.

The lemmas are stated with respect to a certain “initial configuration” c
that may not be the initial configuration of an actual CRN we define. This is
because the lemmas are employed to argue about CRNs that are guaranteed
to evolve to some configuration c that satisfies the hypothesis of the lemma,
and we use the lemma to bound the expected time it takes for the CRN to
complete a sequence of reactions, starting from c. Therefore terms such as
“applicable reaction” refer to being applicable from c and any configuration
reachable from it, although some additional inapplicable reactions may have
been applicable prior to reaching the configuration c. We note that, from
now on, if current configuration c is understood from the context, we may
write #X to denote c(X).

Lemma 3.1.2. Let c be a configuration. Let A = {A1, . . . , Am} be a set
of species with the property that, for all configurations reachable from c,
every applicable reaction in which any species in A appears is of the form
Ai → B1 + . . .+Bl, where each Bi′ 6∈ A for 1 ≤ i′ ≤ l. Then starting from a
configuration c, in which S =

∑m
i=1 c(Ai) ≤ L, the expected time to reach

from c to a configuration in which all Ai’s disappear is O(logL).

Proof. Assume the hypothesis. After each relevant reaction occurs, the sum
S is reduced by 1. Therefore no reactions can occur after (at most) L
reactions have executed. If

∑m
i=1 #Ai = k (i.e., the sum of the propensities

of each possible reaction) in an arbitrary configuration reachable from c, the
expected time for any reaction to occur is 1

k . By linearity of expectation, the

expected time for L reactions to execute is at most
∑L

k=1
1
k = O(logL).

Lemma 3.1.3. Let c be a configuration. Let A = {A1, . . . , Am} be a set
of species with the property that, for all configurations reachable from c,
every applicable reaction in which any species in A appears is of the form
Ai +Aj → Ap +B1 + . . .+Bl, where each Bi′ 6∈ A for 1 ≤ i′ ≤ l, and for all
i, j ∈ {1, . . . ,m}, there is at least one reaction Ai + Aj → . . . of this form.
Then starting from a configuration c in which S =

∑m
i=1 c(Ai) ≤ L, with
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volume O(L), the expected time to reach a configuration in which none of
the described reactions can occur is O(L).

Proof. Assume the hypothesis. Let c′ ∈ N be a constant such that the
volume is at most c′L. After each relevant reaction occurs, the sum S
is reduced by 1. Therefore no reactions can occur after (at most) L − 1
reactions have executed. Now let ρ(c, αij) be the propensity of the reaction
Ai + Aj → Ap + B1 + . . . + Bl, which is equal to ρ(c, αji) as well, and if
there is more than one reaction of that form, let ρ(c, αij) represent the rate
of one of those reactions selected arbitrarily. Since Ai can react with Aj for
any i, j ∈ {1, . . . ,m}, given that

∑m
i=1 #Ai = k in an arbitrary configuration

reachable from c, the expected time for the next reaction to occur is inversely
proportional to the sum of the propensities of each possible reaction, i.e.,

m∑
i=1

m∑
j=1
j≥i

ρ(c, αij) =
1

2

m∑
i=1

m∑
j=1
j 6=i

ρ(c, αij) +

m∑
i=1

ρ(c, αii)

=
1

2

m∑
i=1

m∑
j=1
j 6=i

#Ai#Aj
c′L

+
m∑
i=1

#Ai(#Ai − 1)

2c′L

=
1

2c′L

 m∑
i=1

m∑
j=1

#Ai#Aj −
m∑
i=1

#A2
i

+
1

2c′L

m∑
i=1

#Ai(#Ai − 1)

=
1

2c′L

 m∑
i=1

#Ai

 m∑
j=1

#Aj

− m∑
i=1

#Ai


=

1

2c′L
(k2 − k)

so the expected time for the next reaction to occur is 2c′L
k2−k . By linearity of

expectation, the expected time for (at most) L − 1 reactions to execute is
at most

∑L−1
k=1

2c′L
k2−k = 2c′L

∑L−1
k=1 ( 1

k−1 −
1
k ) = 2c′L(1− 1

L−1) = O(L).

Lemma 3.1.4. Let c be a configuration. Let C = {C1, . . . , Cp} and A =
{A1, . . . , Am} be two sets of species with the property that, for all configu-
rations reachable from c, every applicable reaction in which any species in
A or C appears is of the form Ci + Aj → Ci + B1 + . . . + Bl, where each
Bi′ 6∈ A for 1 ≤ i′ ≤ l. Then starting from a configuration c in which for
all i ∈ {1, . . . , p}, c(Ci) = Ω(L), and S =

∑m
i=1 c(Ai) ≤ L, with volume

O(L), the expected time to reach a configuration in which all Ai’s disappear
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is O(logL).

Proof. Assume the hypothesis. Then the counts of each Ci do not decrease.
(They may increase if some Bl ∈ C, but this only strengths the conclu-
sion.) Therefore this is similar to the proof of Lemma 3.1.2, since for each
k, the expected time until the next reaction occurs when

∑m
j=1 #Aj = k,

in an arbitrary configuration reachable from c, is within a constant of 1
k .

Thus by linearity of expectation, the expected time for (at most) L (i.e.,∑m
i=1 c(Ai) ≤ L) reactions to occur is at most

∑L
k=1

1
k = O(logL).

3.2 Leaderless CRCs can Compute Semilinear
Functions

To supply an input vector x ∈ Nk to a CRN, we use an initial configuration
with x(i) molecules of input species Xi. Throughout this section, we let
n = ||x||1 =

∑k
i=1 x(i) denote the initial number of molecules in solution.

Since all CRNs we employ have the property that they produce at most a
constant multiplicative factor more molecules than are initially present, this
implies that the volume required to satisfy the finite density constraint is
O(n).

Suppose the CRC C stably computes a function f : Nk 99K Nl. We
say that C stably computes f monotonically if its output species are not
consumed in any reaction.3

We show in Lemma 3.2.1 that affine partial functions can be computed
in expected time O(n) by a leaderless CRC. For its use in proving Theo-
rem 3.2.4, we require that the output molecules be produced monotonically.
If we used a direct encoding of the output of the function, this would be
impossible for general affine functions. For example, consider the function
f(x1, x2) = x1 − x2 where dom f = { (x1, x2) | x1 ≥ x2 }. By withhold-
ing a single copy of X2 and letting the CRC stabilize to the output value
#Y = x1 − x2 + 1, then allowing the extra copy of X2 to interact, the only
way to stabilize to the correct output value x1 − x2 is to consume a copy
of the output species Y . Therefore Lemma 3.2.1 computes f indirectly via
an encoding of f ’s output that allows monotonic production of outputs, en-
coding the output value y(j) as the difference between the counts of two

3Its output species could potentially be reactants so long as they are catalytic, meaning
that the stoichiometry of the species as a product is at least as great as its stoichiometry
as a reactant, e.g. if Y is the output species, X + Y → Z + Y or A+ Y → Y + Y .
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3.2. Leaderless CRCs can Compute Semilinear Functions

monotonically produced species Y P
j and Y C

j , a concept formalized by the
following definition.

Let f : Nk 99K Nl be a partial function. We say that a partial function
f̂ : Nk 99K Nl×Nl is a diff-representation of f if dom f = dom f̂ and, for all
x ∈ dom f , if (yP ,yC) = f̂(x), where yP ,yC ∈ Nl, then f(x) = yP − yC ,
and yP = O(f(x)).4 In other words, f̂ represents f as the difference of its
two outputs yP and yC , with the larger output yP possibly being larger than
the original function’s output, but is at most by a multiplicative constant
larger.

The following lemma is the main technical result required for proving our
main theorem, Theorem 3.2.4. It shows that every affine function can be
computed (via a diff-representation) in time O(n) by a leaderless CRC. The
example in Figure 3.1 also clarifies the essence of the leaderless computation
of affine functions.

Lemma 3.2.1. Let f : Nk 99K Nl be an affine partial function with f(0) = 0
if 0 ∈ dom f . Then there is a diff-representation f̂ : Nk 99K Nl × Nl of f
and a leaderless CRC that monotonically stably computes f̂ in expected time
O(n).

Proof. If f is affine, then there exist kl integers n1,1, . . . , nk,l ∈ Z and 2l+ k
nonnegative integers b1, . . . , bl, c1, . . . , ck, d1, . . . , dl ∈ N such that, if y =
f(x), then for each j ∈ {1, . . . , l}, y(j) = bj + 1

dj

∑k
i=1 ni,j(x(i) − ci), and

for each i ∈ {1, . . . , k}, x(i)− ci ≥ 0. Note in particular that since the range
of f is Nl, the value bj + 1

dj

∑k
i=1 ni,j(x(i)− ci) must be an integer.

Define the CRC as follows. It has input species Σ = {X1, . . . , Xk} and
output species Γ = {Y P

1 , . . . , Y
P
l , Y

C
1 , . . . , Y C

l }.
There are three main components of the CRN, separately handling the

ci offset, the ni,j/dj coefficient, and the bj offset.
For a species S that stabilizes to a fixed count depending only on the

input configuration, write #∞S to denote the eventual stable count of S
(in the case of Y P

j and Y C
j , this will be the same as the total amount ever

produced, since they are never consumed). The latter two components both
make use of Y C

j molecules to account for production of Y P
j molecules in ex-

cess of y(j) to ensure that #∞Y
P
j −#∞Y

C
j = y(j), which establishes that

the CRC stably computes a diff-representation of f . It is clear by inspection
of the reactions that #∞Y

P
j = O(y(j)).

4By yP = O(f(x)), we mean that there is a constant c such that yP ≤ cf(x) for all
x ∈ Nk.
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For all input species Xi (1 ≤ i ≤ k), add the reaction

Xi → Ci,1 +B1 +B2 + . . .+Bl + b1Y
P

1 + b2Y
P

2 + . . . blY
P
l (3.2.1)

The first product Ci,1 will be used to handle the ci offset, and the remain-
ing products will be used to handle the bj offsets. By Lemma 3.1.2, reac-
tion (3.2.1) takes time O(log n) to complete.

We now describe the three components of the CRC separately.

ci offset: Reaction (3.2.1) produces x(i) copies of Ci,1. We must reduce this
number by ci, producing x(i)− ci copies of X ′i, the species that will be
used by the next component to handle the ni,j/dj coefficient. A high-
order reaction implementing this is (ci+1)Ci,1 → ciCi,1+X ′i, since that
reaction will eventually happen exactly x(i)− ci times (stopping when
#Ci,1 reaches ci). This is implemented by the following bimolecular
reactions.

For each i ∈ {1, . . . , k} and m, p ∈ {1, . . . , ci}, if m + p ≤ ci, add the
reaction

Ci,m + Ci,p → Ci,m+p.

If m+ p > ci, add the reaction

Ci,m + Ci,p → Ci,ci + (m+ p− ci)X ′i.

By Lemma 3.1.3, these reactions complete in expected time O(n).

Note that although the final reaction above may produce a large num-
ber if X ′i has a large number of products, it is straightforward to simu-
late any such reaction with products P1, . . . , P` with reactions having
two products only, e.g., the first product is P ′1, followed by reactions
P ′i → P ′i+1 + Pi for each i ∈ {1, . . . , `− 2}, and P ′`−1 → P`−1 + P`.

ni,j/dj coefficient: For each i ∈ {1, . . . , k}, add the reaction

X ′i → Xi,1 +Xi,2 + . . .+Xi,l

This allows each output to be associated with its own copy of the
input. By Lemma 3.1.2, these reactions complete in expected time
O(log n).

For each i ∈ {1, . . . , k} and j ∈ {1, . . . , l}, add the reaction

Xi,j →
{
ni,jD

P
j,1, if ni,j > 0;

(−ni,j)DC
j,1, if ni,j < 0.
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By Lemma 3.1.2, these reactions complete in expected time O(log n).

We must now divide #DP
j,1 and #DC

j,1 by dj . This is accomplished by

the high-order reactions djD
P
j,1 → Y P

j and djD
C
j,1 → Y C

j . Similarly
to the previous component, we implement these with the following
reactions for dj ≥ 1.

We first handle the case dj > 1. For each j ∈ {1, . . . , l} and m, p ∈
{1, . . . , dj − 1}, if m+ p ≤ dj − 1, add the reactions

DP
j,m +DP

j,p → DP
j,m+p

DC
j,m +DC

j,p → DC
j,m+p

If m+ p > ci, add the reactions

DP
j,m +DP

j,p → DP
j,m+p−dj + Y P

j

DC
j,m +DC

j,p → DC
j,m+p−dj + Y C

j

By Lemma 3.1.3, these reactions complete in expected time O(n).

When dj = 1, we only have the following unimolecular reactions.

DP
j,1 → Y P

j

DC
j,1 → Y C

j

By Lemma 3.1.2, these reactions complete in expected time O(log n).

These reactions will produce 1
dj

∑
ni,j>0 ni,j(x(i)−ci) copies of Y P

j and

− 1
dj

∑
ni,j<0 ni,j(x(i) − ci) copies of Y C

j . Therefore, letting #coefY
P
j

and #coefY
C
j denote the number of copies of Y P

j and Y C
j eventually

produced just by this component, it holds that #coefY
P
j −#coefY

C
j =

1
dj

∑k
i=1 ni,j(x(i)− ci).

bj offset: For each j ∈ {1, . . . , l}, add the reaction

Bj +Bj → Bj + bjY
C
j (3.2.2)

By Lemma 3.1.3, these reactions complete in expected time O(n).

Reaction (3.2.1) produces bj copies of Y P
j for each copy of Bj produced,

which is
∑k

i=1 x(i). Reaction (3.2.2) occurs precisely (
∑k

i=1 x(i)) − 1
times. Therefore reaction (3.2.2) produces precisely bj fewer copies of
Y C
j than reaction (3.2.1) produces of Y P

j . This implies that when all
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Y = f(X) =
3

2
(X− 5) + 4

• Initial configuration: #X = n, 0 any other species

• Reactions:

make copies for parallel computations: X → C +B + 4Y #C=#B=n,#Y=4n

1) offset 5:

(5 + 1)C → 5C +X ′ #C=5,#X′=n−5

2) coefficient 3
2 :

X
′ → 3D #D=3(n−5)

2D → Y #Y=3
2

(n−5)

3) offset 4:

B +B → B + 4Y C
#B=1,#YC=4(n−1)

4) combining steps 1, 2, and 3 :

Y + Y C → ∅
#Y=3

2
(n−5)+4n−4(n−1)=3

2
(n−5)+4

Figure 3.1: An example illustrating of the essential steps of our leaderless
construction for the deterministic computation of partial affine functions –
Lemma 3.2.1.

copies of Y C
j are eventually produced by reaction (3.2.2), the number of

Y P
j ’s produced by reaction (3.2.1) minus the number of Y C

j ’s produced
by reaction (3.2.2) is bj .

We require the following lemma, proven in Chen et al. [21].

Lemma 3.2.2 ([21]). Let f : Nk → Nl be a semilinear function. Then there
is a finite set {f1 : Nk 99K Nl, . . . , fm : Nk 99K Nl} of affine partial functions,
where each dom fi is a linear set, such that, for each x ∈ Nk, if fi(x) is
defined, then f(x) = fi(x), and

⋃m
i=1 dom fi = Nk.

We require the following theorem, due to Angluin, Aspnes, and Eisen-
stat [11, Theorem 5], which states that any semilinear predicate can be
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decided by a CRD in expected time O(n).

Theorem 3.2.3 ([11]). Let φ : Nk → {0, 1} be a semilinear predicate. Then
there is a leaderless CRD D that stably decides φ (so long as some positive
number of molecules are initially present), and the expected time to reach an
output-stable configuration is O(n).

The following is the main theorem of our work in this chapter. It shows
that semilinear functions can be computed by leaderless CRCs in linear
expected time.

Theorem 3.2.4. Let f : Nk → Nl be a semilinear function with f(0) = 05.
Then there is a leaderless CRC that stably computes f in expected time O(n).

Proof. The CRC will have input species Σ = {X1, . . . , Xk} and output
species Γ = {Y1, . . . , Yl}. By Lemma 3.2.2, there is a finite set F = {f1 :
Nk 99K Nl, . . . , fm : Nk 99K Nl} of affine partial functions, where each
dom fi is a linear set, such that, for each x ∈ Nk, if fi(x) is defined, then
f(x) = fi(x). We compute f on input x as follows. Since each dom fi is a lin-
ear (and therefore semilinear) set, by Theorem 3.2.3 we compute each semi-
linear predicate φi = “x ∈ dom fi and (∀i′ ∈ {1, . . . , i−1}) x 6∈ dom fi′?” by
separate parallel CRD’s each stabilizing in expected time O(n). (The latter
condition ensures that for each x, precisely one of the predicates is true, in
case the domains of the partial functions have nonempty intersection.) Here
we are relying on the fact that Boolean combinations (union, intersection,
complement) of semilinear sets are semilinear [43].

By Lemma 3.2.1, for each i ∈ {1, . . . ,m}, there is a diff-representation f̂i
of fi that can be stably computed by parallel CRC’s. Assume that for each
i ∈ {1, . . . ,m} and each j ∈ {1, . . . , l}, the jth pair of outputs yP (j) and
yC(j) of the ith function is represented by species Ŷ P

i,j and Ŷ C
i,j . We interpret

each Ŷ P
i,j and Ŷ C

i,j as an “inactive” version of “active” output species Y P
i,j and

Y C
i,j .

For each i ∈ {1, . . . ,m}, for the CRD Di = (Λ, R,Σ,Υ) computing the
predicate φi, let L1

i represent any species in Υ, and L0
i represent any species

in Λ \ Υ, and that once Di reaches an output stable configuration, where
b is the output of Di. By Theorem 5 of Angluin et al. [11], if the total
count of L1

i and L0
i molecules is Ω(n) (which can be enforced by adding

5It is easy to see that no leaderless CRN could reach an output stable state with positive
count of output species Y from an initial state with no molecules, since it would need to
contain reaction(s) of the form ∅→ A for some species A from which (unbounded counts
of) Y could be produced.
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both L1
i and L0

i as products of the initial reactions of the input molecules:
Xi → L1

i + L0
i + . . .), then the correct vote can be spread through the

population of Lbi molecules (for b ∈ {0, 1}) in time O(n).
Add the following reactions for each i ∈ {1, . . . ,m} and each j ∈ {1, . . . , l}:

L1
i + Ŷ P

i,j → L1
i + Y P

i,j + Yj (3.2.3)

L0
i + Y P

i,j → L0
i +Mi,j (3.2.4)

Mi,j + Yj → Ŷ P
i,j (3.2.5)

The latter two reactions implement the reverse direction of the first reaction
– using L0

i as a catalyst instead of L1
i – using only bimolecular reactions.

Also add the reactions

L1
i + Ŷ C

i,j → L1
i + Y C

i,j (3.2.6)

L0
i + Y C

i,j → L0
i + Ŷ C

i,j (3.2.7)

and

Y P
i,j + Y C

i,j → Kj (3.2.8)

Kj + Yj → ∅ (3.2.9)

That is, a “yes” answer for function i activates the ith output and a
“no” answer deactivates the ith output. Eventually each CRD stabilizes so
that precisely one i has L1

i present, and for all i′ 6= i, L0
i′ is present, which

takes time O(n) by Theorem 5 of Angluin et al. [11]. We now claim that
at this point, all outputs for the correct function f̂i will be activated and
all other outputs will be deactivated. The reactions enforce that at any
time, #Yj = #Kj +

∑m
i=1(#Y P

i,j + #Mi,j). In particular, #Yj ≥ #Kj and
#Yj ≥ #Mi,j at all times, so there will never be a Kj or Mi,j molecule
that cannot participate in the reaction of which it is a reactant. Eventually
#Y P

i,j and #Y C
i,j stabilize to 0 for all but one value of i (by reactions (3.2.4),

(3.2.5), (3.2.7)), and for this value of i, #Y P
i,j stabilizes to y(j) and #Y C

i,j

stabilizes to 0 (by reaction (3.2.8)). Eventually #Kj stabilizes to 0 by the
last reaction. Eventually #Mi,j stabilizes to 0 since L0

i is absent for the

correct function f̂i. This ensures that #Yj stabilizes to y(j).
It remains to analyze the expected time to stabilization. Let n = ‖x‖.

By Lemma 3.2.1, the expected time for each affine function computation to
complete is O(n). Since the Ŷ P

i,j are produced monotonically, the most Y P
i,j

molecules that are ever produced is #∞Ŷ
P
i,j . Since we have m computations

26



3.3. Conclusion

in parallel, the expected time for all of them to complete is O(nm) = O(n)
(since m depends on f but not n). We must also wait for each predicate
computation to complete. By Theorem 3.2.3, each of these predicates takes
expected time O(n) to complete, so all of them complete in expected time
O(mn) = O(n).

At this point, the Li1 leaders must convert inactive output species to
active, and Li

′
0 (for i′ 6= i) must convert active output species to inactive.

By Lemma 3.1.4, reactions (3.2.3), (3.2.4), (3.2.6), and (3.2.7) complete in
expected time O(log n). Once this is completed, by Lemma 3.1.3, reac-
tion (3.2.5) completes in expected time O(n). Reaction (3.2.8) completes
in expected time O(n) by Lemma 3.1.3. Once this is done, reaction (3.2.9)
completes in expected time O(n) by Lemma 3.1.3.

3.3 Conclusion

In this chapter, we have answered an open question of Chen, Doty, and
Soloveichik [21], who showed that a function f : Nk → Nl is deterministi-
cally computable by a stochastic chemical reaction network (CRN) if and
only if the graph of f is a semilinear subset of Nk+l. Their proposed con-
struction crucially used auxiliary leader species. The authors asked whether
deterministic CRNs without a leader can still compute semilinear functions.
We have affirmatively answered this question and showed that every semi-
linear function is deterministically computable by a CRN which starts with
an initial configuration containing only the input species and zero counts of
every other species, so long as f(0) = 0.

Chen et al. [21] provided, for every semilinear function f , a direct con-
struction of a CRN that computes f (using leaders) in expected time
O(n log n), where n is the number of molecules present initially. They
then combined this direct, error-free construction in parallel with a fast
(O(log5 n)) but error-prone CRN that uses a leader to compute any com-
putable function (including semilinear), using the error-free computation to
change the answer of the error-prone computation only if the latter is in-
correct. This combination speeds up the computation from expected time
O(n log n) for the direct construction to expected time O(log5 n) for the
combined construction.

Since we have assumed no leaders may be supplied in the initial configu-
ration, and since the problem of computing arbitrary computable functions
without a leader has remained a major open problem [11], this trick does
not work for speeding up our construction. However, we have shown that
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with some care in the choice of reactions, the direct stable computation of
a semilinear function can be done in expected time O(n), improving upon
the O(n log n) bound of the direct construction of [21].
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Chapter 4

Simplifying Analyses of
Chemical Reaction Networks
for Approximate Majority

In this chapter, we describe the details of our techniques to investigate the
efficiency and correctness of the CRNs shown in Figure 1.2. We start by ex-
plaining the preliminary semantics of the Approximate Majority CRNs and
our analysis tools utilized throughout in Section 4.1. We then analyze the
behaviour of the tri-molecular CRN in Section 4.2. Next, we analyze the bi-
molecular CRNs of Figure 1.2 (Single-B and Double-B CRNs) in Section 4.3
by showing that they are essentially simulations of the tri-molecular CRN.
We end this chapter by describing our experimental results and reviewing
our outcomes in this work.

4.1 Preliminaries

We employ the kinetic model described in Section 2.2 for our analysis6.
We note that for the CRNs that we analyze in this chapter, there is

some order o such that for every reaction (r,p, kα) of R, r1 +r2 + . . .+rm =
p1 + p2 + . . . pm = o. Thus the number of interacting molecules does not
change over time. Moreover, according to the finite density constraint, we’ll
assume that the volume of the solution is proportional to the initial number
of molecules.
We consider a system in which the initial molecular count is n, and so
the molecular count in each subsequent configuration is also n. Therefore,
the total molecular count in each configuration is n and, without loss of
generality, we assume that volume v, which remains fixed, is also equal to

6Here, we note that the reaction rate constants defined for the CRNs shown in Fig-
ure 1.2 are very important in the proof of their correctness and efficiency. It is an area
of future work (briefly discussed in Section 5.2.2) to understand how the reaction rate
constants can be accurately approximated by DSDs.
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4.1. Preliminaries

n.
Now, suppose that the well-mixed solution is in configuration c. Recall

from Section 2.2, the time until the next interaction happens is exponentially
distributed with parameter ρ =

∑
r ρ(c, r). Accordingly, the time Tk for

k interactions is at most the sum of k exponentially distributed random
variables, each with parameter ρ, with expected value and variance E[Tk] =
k/ρ and Var[Tk] = k/ρ2 respectively. With the assumptions that all the
interactions are of order o and v = n, we conclude

ρ =

(
n

o

)
/vo−1 = Θ(n) ≤ n. (4.1.1)

Thus, by Chebyshev’s inequality, we have that

P[|Tk − E[Tk]| ≥ h
√

Var[Tk]] = P[|Tk −Θ(k/n)| ≥ hΘ(
√
k/n)] ≤ 1/h2.

If for example k = n, then by setting h =
√
n we see that the time for n

interactions is O(1) with probability at least 1− 1/n. Thus we may use the
number of interactions, divided by n, as a proxy for time. More generally,
the time for k = Ω(n) interactions is O(k/n) with probability at least 1−1/n.

4.1.1 Analysis Tools

We will use the following well-known property of random walks, Chernoff
tail bounds on functions of independent random variables, and Azuma’s
inequality.

Lemma 4.1.1 (Asymmetric one-dimensional random walk [38](XIV.2)). If
we run an arbitrarily long sequence of independent trials, each with success
probability at least p, then the probability that the number of failures ever
exceeds the number of successes by b is at most (1−p

p )b.

Lemma 4.1.2 (Chernoff tail bounds [26]). If we run N independent trials,
with success probability p, then SN , the number of successes, has expected
value µ = Np and, for 0 < δ < 1,

(a) P(SN ≤ (1− δ)µ) ≤ exp(− δ2µ
2 ), and

(b) P(SN ≥ (1 + δ)µ) ≤ exp(− δ2µ
3 ).

Lemma 4.1.3 (Azuma’s inequality [73]). Let Q1, . . . , Qk be independent
random variables, with Qr taking values in a set Ar for each r. Suppose
that the (measurable) function f : ΠAr → R satisfies |f(x) − f(x′)| ≤ cr
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4.2. Approximate Majority Using Tri-molecular Reactions

whenever the vectors x and x′ differ only in the rth coordinate. Let Y be the
random variable f(Q1, . . . , Qk). Then , for any t > 0,

P[|Y − E[Y ]| ≥ t] ≤ 2 exp
(
− 2t2/

k∑
r=1

c2
r

)
.

4.2 Approximate Majority Using Tri-molecular
Reactions

In this section we analyze the behaviour of the tri-molecular CRN of Figure
1.2(a). Intuitively, its reactions sample triples of molecules and amplify
the majority species by exploiting the facts that (i) every triple must have
a majority of either X or Y , and (ii) the ratio of the number of triples
with two X-molecules and one Y -molecule to the number of triples with
2 Y -molecules and one X-molecule, is exactly the ratio of X-molecules to
Y -molecules.

Our main goal is to prove the following:

Theorem 4.2.1. For any constant γ > 0, there exists a constant cγ such
that, provided the initial molecular count of X exceeds that of Y by at least
cγ
√
n lg n 7, the tri-molecular CRN reaches a consensus of X-majority, with

probability at least 1− n−γ, in at most cγn lg n interactions.

Recall that we denote by x and y the random variables corresponding
to the molecular count of X and Y respectively. We divide the computa-
tion into a sequence of three, slightly overlapping and possibly degenerate,
phases, where cγ , dγ and eγ are constants depending on γ:

phase 1 cγ/2
√
n lg n < x− y ≤ n(dγ − 2)/dγ . It ends as soon as y ≤ n/dγ .

phase 2 eγ lg n < y < 2n/dγ . It ends as soon as y ≤ eγ lg n.

phase 3 0 ≤ y < 2eγ lg n. It ends as soon as y = 0.

Of course the assertion that a computation can be partitioned in such
a way that these phases occur in sequence holds only with sufficiently high
probability. To facilitate this argument, as well as the subsequent efficiency
analysis, we divide both phase 1 and phase 2 into Θ(lg n) stages, defined by
integral values of t and s, as follows:

7In this chapter, when we use notation lg to refer to log2.
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4.2. Approximate Majority Using Tri-molecular Reactions

• A typical stage in phase 1 starts with x ≥ y+ 2t
√
n lg n and ends with

x ≥ y + 2t+1
√
n lg n, where lg cγ ≤ t ≤ (lg n − lg lgn)/2 + lg((dγ −

2)/(2dγ)).

• A typical stage in phase 2 starts with y ≤ n/2s and ends with y ≤
n/2s+1, where lg dγ ≤ s ≤ lg n− lg lgn− lg eγ − 1.

Our proof of correctness (the computation proceeds through the specified
phases as intended) and our timing analysis (how many interactions does it
take to realize the required number of reaction events) exploit the simple and
familiar tools set out in the previous section, taking advantage of bounds
on the probability of reactions (1) and (2) that hold throughout a given
phase/stage:

(a) [Low probability of unintended phase/stage completion] The
relative probability of reactions (1) and (2) is determined by the rela-
tive counts of X and Y . This allows us to argue, using a biased random
walk analysis (Lemma 4.1.1 above), that, with high probability, there
is no back-sliding; when the computation leaves a phase/stage it is
always to a higher indexed phase/stage (cf. Corollaries 1, 2 and 3,
below).

(b) [High probability of intended phase/stage completion within
a small number of reaction events] Within a fixed phase/stage
the computation can be viewed as a sequence of independent trials
(choice of reaction (1) or (2)) with a fixed lower bound on the prob-
ability of success (choice of reaction (1)). This allows us to establish,
by a direct application of Chernoff’s upper tail bound Lemma 4.1.2,
an upper bound, for each phase/stage, on the probability that the
phase/stage completes within a specified number of reaction events
(cf. Corollaries 4, 5 and 6, below).

(c) [High probability that the reaction events occur within a
small number of molecular interactions] Within a fixed phase/stage
the choice of reaction events, among interactions, can be viewed as a
sequence of independent trials with a fixed lower bound on the prob-
ability of success (the interaction corresponds to a reaction event).
Thus our timing analysis (proof of efficiency) is another direct appli-
cation of Chernoff’s upper tail bound (Lemma 4.1.2) (cf. Corollary 7,
below).
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4.2. Approximate Majority Using Tri-molecular Reactions

Lemma 4.2.2. At any point in the computation, if x − y = ∆ then the
probability that x− y ≤ ∆/2 at some subsequent point in the computation is
less than (1/e)∆2/(2n+2∆).

Proof. Since x− y > ∆/2 up to the point when we first have x− y ≤ ∆/2,
it follows that x ≥ n/2 + ∆/4 and y ≤ n/2−∆/4. We can view the change
in x− y as a random walk, starting at ∆, with success (an increase in x− y)
probability p satisfying p ≥ 1/2 + ∆/(4n).

It follows from Lemma 4.1.1 that reaching a configuration where x −
y ≤ ∆/2 (which entails an excess of ∆/2 failures to successes) is less than
( 1

1+∆/n)∆/2 which is at most (1/e)∆2/(2n+2∆).

Corollary 4.2.3. In stage t of phase 1, x − y reduces to 2t−1
√
n lg n with

probability less than 1/n22t−2
.

Lemma 4.2.4. At any point in the computation, if y = n/k then the prob-
ability that y > 2n/k at some subsequent point in the computation is less
than (2/(k − 2))n/k.

Proof. Since y ≤ 2n/k up to the point when we first have y > 2n/k, we
can view the change in y as a random walk, starting at n/k, with success (a
decrease in y) probability p satisfying p ≥ 1− 2/k.

It follows from Lemma 4.1.1 that reaching a configuration where y >
2n/k (which entails an excess of n/k failures to successes) is less than (2/(k−
2))n/k.

Corollary 4.2.5. In stage s of phase 2, y increases to n/2s−1 with proba-
bility less than (2/(2s − 2))n/2

s
.

Corollary 4.2.6. In phase 3, y increases to 2eγ lg n with probability less
than (2eγ lg n/(n− 2eγ lg n))eγ lgn.

Lemma 4.2.7. At any point in the computation, if x− y = ∆ ≤ n/2 then,
assuming that x−y never reduces to ∆/2, the probability that x−y increases

to 2∆ within at most λn reaction events is at least 1− exp(− (λ−2)∆2

λ(2n+∆)).

Proof. We view the choice of reaction as an independent trial with success
corresponding to reaction (1), and failure to reaction (2). We start with x−
y = ∆ and run until either x− y = ∆/2 or we have completed λn reactions.
By Lemma 4.1.2, the probability that we complete λn reactions with fewer
than λn/2 + ∆/2 successes, which is necessary under our assumptions if we

finish with x− y < 2∆, is at most exp(− (λ−2)∆2

λ(2n+∆)).
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Corollary 4.2.8. In stage t of phase 1, assuming that x− y never reduces
to 2t−1

√
n lg n, the probability that x− y increases to 2t+1

√
n lg n within at

most λn reaction events is at least 1− exp(− (λ−2)22t lgn
3λ ).

Lemma 4.2.9. At any point in the computation, if y = n/k then, assuming
that y never increases to 2n/k, the probability that y decreases to n/k − r
within f(n) > 2r reaction events is at least 1− exp(−Θ(f(n)).

Proof. We view the choice of reaction as an independent trial with success
corresponding to reaction (1), and failure to reaction (2). We start with
y = n/k and run until either y = n/k−r or we have completed f(n) reaction
events. (We assume, by Lemma 4.2.4, that y < 2n/k, and so p > 1 − 2/k,
throughout.)

By Lemma 4.1.2, the probability that we complete f(n) reactions with
fewer than (f(n)+r)/2 successes, which is necessary under our assumptions
if we finish with y > n

k − r, is at most

exp(− [f(n)(k − 2)/k − (f(n) + r)/2]2

2f(n)(k − 2)/k
),

which is at most exp(−Θ(f(n)), when f(n) > 2r.

Corollary 4.2.10. In stage s of phase 2, assuming that y never increases
to n/2s−1, y decreases to n/2s+1, ending stage s, in at most λn/2s reaction
events, with probability at least 1− exp(−Θ(λn/2s)).

Corollary 4.2.11. In phase 3, assuming that y never increases to 2eγ lg n,
y decreases to 0, ending phase 3 (and the entire computation), in at most
λ lg n reaction events, with probability at least 1− exp(−Θ(λ lg n)).

Lemma 4.2.12. If during some sequence of m interactions the total propen-
sity of all reactions is at least p then the probability that the sequence gives
rise to fewer than mp/(2n) reaction events is no more than exp(−mp/(8n)).

Proof. Recall from Section 2.2 that if the total propensity of all reactions
in a given configuration c is at least p then the probability that an inter-
action results in a reaction is ρ(c,R)

ρ ≥ p/n (see Equation 4.1.1). Hence, by
Lemma 4.1.2, the probability that a sequence of m interactions gives rise to
fewer than mp/(2n) reaction events is no more than exp(−mp/(8n)).

Corollary 4.2.13.
(i) The λn reaction events of each stage of phase 1 occur within (8/3)dγλn
interactions, with probability at least 1− exp(−λn/4)
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4.3. Approximate Majority Using Bi-molecular Reactions

(ii) The λ(n/2s) reaction events of stage s of phase 2 occur within (16/3)λn
interactions, with probability at least 1− exp(−λn/2s+2) ; and
(iii) The λ lg n reaction events of phase 3 occur within (8/3)λn lg n interac-
tions, with probability at least 1− exp(λ lg n/4).

Proof. It suffices to observe the following lower bounds on the propensity of
reaction (1) alone in individual phases/stages:
(i) in phase 1, x > y ≥ n/dγ , so the propensity of reaction (1) is greater
than 3n/(4dγ);
(ii) in stage s of phase 2, x > n(1− 2s−1) and y ≥ n/2s+1 ≥ (lg n)/2, so the
propensity of reaction (1) is at least 3n/2s+3;
(iii) in phase 3, x ≥ n− lg n and y ≥ 1, so the propensity of reaction (1) is
at least 3/4.

Finally, we prove Theorem 4.2.1 using the pieces proved until now.

of Theorem 4.2.1. (i) [Correctness] It follows directly from Corollaries 1 and
4 (respectively, 2 and 5, 3 and 6) that phase 1 (respectively phase 2, phase
3) completes in the intended fashion, within at most λn lg n ( respectively,
λn, λ lg n) reaction events, with probability at least 1 − exp(−Θ(cγ lg n))
(respectively, 1− exp(−Θ(λn/dγ)), 1− exp(−Θ(λ lg n))).
(ii) [Efficiency] It is immediate from Corollary 4.2.13 that the required num-
ber of reaction events in phase 1 (respectively, phase 2, phase 3) occur within
Θ(λn lg n) interactions, with probability at least 1− exp(−Θ(λ lg n)).

4.3 Approximate Majority Using Bi-molecular
Reactions

Here we show correctness and efficiency of the Double-B and Single-B CRNs,
essentially by showing that the abstraction of both CRNs corresponds to the
tri-molecular CRN of the previous section.

Here and throughout, we denote by b the random variable corresponding
to the molecular count of B.

4.3.1 The Double-B CRN

In this section we analyse the behaviour of the Double-B CRN of Fig-
ure 1.2(b). We will show that:
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Theorem 4.3.1. For any constant γ > 0, there exists a constant cγ such
that, provided (i) the initial molecular count of X and Y together is at least
n/2, and (ii) the count of X exceeds that of Y by at least cγ

√
n lg n, the

computation reaches a consensus of X-majority, with probability at least
1− n−γ, in at most cγn lg n interactions.

Comparing with Theorem 4.2.1, it becomes clear that the role of the
molecule B is simply to facilitate the simulation. The sense in which Double-
B can be seen as simulating the earlier tri-molecular CRN is that we can
analyse its behaviour in three phases that directly parallel those of our tri-
molecular analysis. We measure progress throughout in terms of the change
in the molecular counts x̂, defined as x + b/2, and ŷ, defined as y + b/2,
noting that reaction (0’) leaves these counts unchanged and reactions (1’)
and (2’) change x̂ and ŷ at exactly half the rate that the corresponding tri-
molecular reactions (1) and (2) change x and y. In each phase, we note that
the relative propensity of reaction (1’) to that of (2’), equals or exceeds the
relative propensity of reaction (1) to that of (2) in the tri-molecular CRN,
and we argue that the total propensity of reactions (1’) and (2’) is at least
some constant fraction of the total propensity of reactions (1) and (2). This
allows us to conclude that Double-B (i) takes at most twice as many reaction
events as the tri-molecular CRN to complete each corresponding phase/stage
and (ii) these reaction events occur within a number of interactions that is at
most some constant multiple of the number of interactions needed to realize
the required reaction events in the tri-molecular CRN.

Bounds on b, the molecular count of B

We start by setting out bounds on b, the molecular count of molecule B,
specifically y/2α ≤ b ≤ n/2, where α ≥ 20, that, with high probability,
hold after the first Θ(n) interactions (see Lemmas 4.3.2 and 4.3.8), and
continue to hold thereafter. These bounds allow us to establish property
(ii) above. Our bounds are summarized in Lemma 4.3.3 below, and its
proof is a straightforward application of Chernoff bounds. We note that
the connection between the number of reaction events and the number of
interactions in each interval I used in Lemmas 4.3.2 and 4.3.3 is shown in
Lemma 4.3.8.

Lemma 4.3.2. Let I be the interval of the first l = 1
2y0 reaction events

in a computation of Double-B, where y0 is the initial molecular count of
Y . Let b0, and be denote the initial and final values of b in this interval
(similarly for y). If b0 < y0/α (even if b0 = 0), then there exists a constant
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fγ such that if y0 ≥ fγ lg n, then ye/α ≤ be ≤ 10n/21 with probability at
least 1− 1/nγ.

Proof. Note that x−y does not change by reaction (0’), and by Lemma 4.2.2,
it never reaches (x0 − y0)/2 through reactions (1’) and (2’), which result in
x− y ≥ 0 in interval I.

Assuming that b ≤ y/α over the course of interval I, the probability
that a reaction event would be equal to reaction (0’) is at least α

α+2 (see
computations below).

P[reaction (0’) occurs] =
xy

xy + xb+ yb
≥ xy

xy + 2x yα
≥ α

α+ 2
.

Therefore, by the Chernoff lower tail bound 4.1.2, there are at least 3α
4(α+2) l

reaction events of type (0’), among l = 1/2y0 reaction events, with proba-
bility at least 1 − 1/nγ provided that y0 ≥ fγ lg n . Thus, at most α+8

4(α+2) l

reactions events are of types (1’) and (2’).
We note that the number of B molecules increases via reaction (0’) and

decreases via reactions (1’) and (2’). The number of Y molecules also in-
creases via reaction (2’) and decreases via reaction (0’). So, we can compute
be and ye as follows.

be ≥ b0 +
6α

4(α+ 2)
l − α+ 8

4(α+ 2)
l, and ye ≤ y0 −

3α

4(α+ 2)
l +

α+ 8

4(α+ 2)
l,

With a simple computation, it is clear that be ≥ ye
α even if b0 = 0.

Moreover, since x > y in interval I, we have y0 < n/2 and subsequently
l < n/4 which never let b reach 10n/21.

Lemma 4.3.3. Let I be any interval of εy0 reaction events of a computation
of Double-B, where ε ≤ 1

α+1 , α ≥ 20, and y0 is the value of y at the beginning
of I. Let b0, be, bmin, bmax denote the initial, final, minimum, and maximum
values of b in the interval I (similarly for y). Then for any γ > 0, there is
a constant lγ such that if y0 ≥ lγ lg n, then the following bounds hold with
probability at least 1− 1/nγ.

(a) (Lower bounds) If b0 ≥ y0

α then bmin ≥ ymax

2α and be ≥ ye
α .

(b) (Upper bounds) If b0 ≤ 10n/21 then be ≤ 10n/21 and bmax ≤ n/2.

Proof. We prove the claims (a) and (b) as follows.
Lower bounds: We can validate that both lower bounds hold when

b0 ≥ 2
αy0. In fact, we can simply consider the minimum value b0 − εy0
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for bmin and be and the maximum value ymax = y0 + εy0 for ymax and ye.
So, we just focus on the situation where b0 <

2
αy0. Using this bound on

b together with the assumptions that x ≥ y (Lemma 4.2.2), and ε ≤ 1
α+1 ,

we obtain that a reaction event is equal to reaction (0’) with probability at
least α−1

α+5 (see computation below).

P[Reaction (0’) occurs] =
xy

xy + xb+ yb
≥ y

y + 2b
≥ y0 − εy0
y0 + 2

αy0 + 3εy0
≥ α− 1

α+ 5
.

Therefore, by the Chernoff lower tail bound (Lemma 4.1.2), there are at

least 3(α−1)
4(α+5)εŷ0 reaction events of types (0’), among εy0 reaction events, with

probability at least 1− 1/nγ on the condition that y0 ≥ lγ lg n. As a result,
at most α+23

4(α+5) reaction events are equal to either reaction (1’) or (2’) in
Figure 1.2. Therefore, we can prove the correctness of the lower bounds as
follows.

case (i) ymax

2α ≤ bmin. Throughout interval I, at most α+23
4(α+5)εy0 (reactions

(1’) and (2’)) B molecules are consumed and at most α+23
4(α+5)εy0 (reac-

tions (2’)) Y molecules are produced. So,

bmin ≥ b0 −
(α+ 23)

4(α+ 5)
εy0, and ymax ≤ y0 +

(α+ 23)

4(α+ 5)
εy0

that confirm the inequality for all y0

α ≤ b0 ≤
2y0

α .

case (ii) ye
α ≤ be. At the end of the interval I, in addition to the maximum

consumption and production of B and Y molecules described in case
(i), at least 6(α−1)

4(α+5)εy0 (reaction(0’)) B molecules are produced and at

least 3(α−1)
4(α+5)εy0 (reaction (0’)) Y molecules are consumed as well. So,

be ≥ b0 +
5α− 29

2(α+ 5)
εy0, and ye ≤ y0 −

α− 13

(α+ 5)
εy0

which result in ye
α ≤ be for all y0

α ≤ b0 ≤
2y0

α .

Upper bounds: Note that y0 ≤ n/2, since x > y and x + y ≤ n
through the interval. It is easy to verify that while b0 ≤ 9n

21 , both upper
bounds completely hold even if b increases to its maximum of b0 +2εy0 (be ≤
bmax ≤ 10n/21 ≤ n/2). Moreover, note that over the course of I, even if
b0 = 10n/21, we have bmax ≤ 10n/21 + 2εy0 ≤ 11n/21 and subsequently
x+ y ≥ 10n/21.
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We now consider the case where b0 >
9n
21 . The value of b increases via

reaction (0’) and decreases via reactions (1’) and (2’). Then, the relative
probability of reaction (0’) to that of reactions (1’) and (2’) can be computed
as follows.

P[Reaction (0’) occurs]

P[Reaction (1’) or (2’) occurs]
=

xy

(x+ y)b
≤ (10/42)2

(10n/21)(9n/21)
≤ 2

5

Therefore, the probability that a reaction event would be equal to reaction
(0’) is less than 2/7.

By the Chernoff upper tail bound (Lemma 4.1.2), we can then conclude
that there at most 11/35εy0 reaction events are equal to reaction (0’) (i.e.,
increasing b) with probability at most exp(−Θ(n)) assuming that y = Θ(n).
Interchangeably, it means that the number of reaction events equal to re-
actions (1’) or (2’) (i.e., decreasing b) is also at least 24/35εy0. Therefore,
with high probability, the net change in b after εy0 reaction events is nega-
tive ((22/35 − 24/35)εy0 < 0) and it gives us be ≤ 10n

21 . Also, as the total
increase in b is at most 22

35εy0 throughout interval I, b will be bounded by
b0 + 22

35εŷ0 ≤ n/2 as well.

Lemma 4.3.4. Let I be any interval of l = cy0 reaction events in the
computation of the Double-B CRN, where c ≤ 1/2, y0 is the initial value of
y at the beginning of I, and x ≥ y throughout the interval. If y0 ≥ w lg n,
then for any γ > 0, interval I will happen within 16γ

(1−c)wn interactions with

probability at least 1− 1/nγ.

Proof. Using Lemma 4.2.12, it is sufficient to show that the total propensity
of Double-B reactions over the course of interval I is 1−c

2 y0. Among l = εy0

reaction events, the number of Y molecules can decrease by at most l, so
y ≥ y0− l. On the other hand, since x ≥ y, we have n = x+y+b ≤ x+x+b
leading to x+b/2 ≥ n/2 throughout this interval. Putting these observations
together, we obtain:

ρ(c,R) =
xy + xb+ yb

n
≥ y(x+ b/2)

n
≥ 1/2(y0 − l) =

1

2
(1− c)y0.

Double-B simulates the tri-molecular CRN

To understand computations of the Double-B CRN as simulations of the
tri-molecular CRN, we again identify three phases, this time expressed in
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terms of x̂ and ŷ. (Note that (i) x̂ − ŷ = x − y and (ii) ŷ = 0 implies both
y = 0 and b = 0):

phase 1 cγ/2
√
n lg n < x̂− ŷ ≤ n(dγ − 2)/dγ . It ends as soon as ŷ ≤ n/dγ .

phase 2 eγ lg n < ŷ < 2n/dγ . It ends as soon as ŷ ≤ eγ lg n.

phase 3 0 ≤ ŷ < 2eγ lg n. It ends as soon as ŷ = 0.

As before, we divide both phase 1 and phase 2 into Θ(lg n) stages, defined
by integral values of t and s, as follows:

• A typical stage in phase 1 starts with x̂ ≥ ŷ+ 2t
√
n lg n and ends with

x̂ ≥ ŷ + 2t+1
√
n lg n, where lg cγ ≤ t ≤ (lg n − lg lgn)/2 + lg((dγ −

2)/(2dγ)).

• A typical stage in phase 2 starts with ŷ ≤ n/2s and ends with ŷ ≤
n/2s+1, where lg dγ ≤ s ≤ lg n− lg lgn− lg eγ − 1.

The proof of Theorem 4.3.1 completely parallels that of Theorem 4.2.1,
with x̂ and ŷ substituted for x and y. For correctness of Double-B, it suffices
to note that (i) reaction (0’) does not change either x̂ or ŷ, (ii) reaction (1’)
increases x̂ by 1/2 and decreases ŷ by 1/2, and (iii) reaction (2’) increases ŷ
by 1/2 and decreases x̂ by 1/2. Thus twice as many reactions (1’) and (2’)
suffice to achieve the same results as reactions (1) and (2) of the tri-molecular
CRN.

The efficiency of Double-B follows in a similar way from the earlier anal-
ysis of the tri-molecular CRN presented in Corollary 4.2.13. There we ob-
served that it sufficed to bound from below the propensity of reaction (1).
For the corresponding analysis of Double-B, we observe that in all corre-
sponding phases/stages the propensity of reaction (1’) is up to a constant
factor the same as that of reaction (1). This follows immediately from the
upper bound (n/2) on b, which ensures that the molecular count of X is at
least n/4, and the lower bound (y/292) on b, which ensures that the molec-
ular count of B is at least a constant fraction of that of Y . The constant eγ
that is used in demarking the end of phase 2 and the start of phase 3 will
now depend on the constant fγ of Lemma ??, in order to ensure that this
lower bound on b holds throughout phase 2 with high probability.

4.3.2 The Single-B CRN

Here, we study the behaviour of Single-B, originally proposed by Angluin et
al. [12] and shown in Figure 1.2(b). We will show that:
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Theorem 4.3.5. For any constant γ > 0, there exists a constant cγ > γ
such that, provided (i) the initial molecular count of X and Y together is at
least n/2, and (ii) the count of X exceeds that of Y by at least cγ

√
n lg n, the

Single-B CRN reaches a consensus of X-majority, with probability at least
1− n−γ, in cγn lg n interactions.

Comparing the Double-B and Single-B CRNs, we notice the only differ-
ence is that reaction (0’) is replaced by probabilistic reactions (0’x) and (0’y)
which are equally likely. Intuitively, this replacement keeps the behaviour
of the Single-B and Double-B CRNs essentially the same, as reactions (0’x)
and (0’y), on average, have no effect on x̂ and ŷ. However, its advantage is
to never let Single-B CRN reach B-majority consensus8.

In order to analyze the behaviour of Single-B, we also consider three
phases similar to those for Double-B and tri-molecular CRNs. The progress
of the protocol is also measured in terms of random variables x̂ and ŷ. Re-
actions (0’x) and (1’) increase x̂ by 1/2 and decrease ŷ by 1/2, and reactions
(0’y) and (2’) decrease x̂ by 1/2 and increase ŷ by 1/2. We recall that we
assume x and y are substituted by x̂ and ŷ when we refer to lemmas of
Section 4.2.

phase 1 (cγ − γ)/2
√
n lg n < x̂ − ŷ ≤ n(dγ − 2)/dγ . It ends as soon as

ŷ ≤ n/dγ .

phase 2 eγ lg n < ŷ < 2n/dγ . It ends as soon as ŷ ≤ eγ lg n.

phase 3 0 ≤ ŷ < 2eγ lg n. It ends as soon as ŷ = 0.

Similar to the Double-B and tri-molecular CRNs, we divide both phase 1
and phase 2 into Θ(lg n) stages, defined by integral values of t and s, as
follows:

• A typical stage in phase 1 starts with x̂ ≥ ŷ+ 2t
√
n lg n and ends with

x̂ ≥ ŷ+2t+1
√
n lg n, where lg(cγ−γ) ≤ t ≤ (lg n− lg lgn)/2+lg((dγ−

2)/(2dγ)).

• A typical stage in phase 2 starts with ŷ ≤ n/2s and ends with ŷ ≤
n/2s+1, where lg dγ ≤ s ≤ lg n− lg lgn− lg eγ − 1.

The proof that Single-B is correct and efficient parallels the phase anal-
ysis of the tri-molecular CRN, if we make the following adjustment steps.

8We note that although the B-majority consensus is reachable in the Double-B CRN,
the probability of such an event is very small (i.e., nΘ(− lg(n))) with our initial configuration
setting. The bound is computed with a simple biased random walk analysis in lgn stages.
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1. Establish that the initial gap between x̂ and ŷ, with high probability,
is not decreased by more than γ

√
n lg n within n reaction events –

see Lemma 4.3.6. Thus, it assures us that x̂ ≥ ŷ in the starting
interval required to get b bounded. Moreover, with the assumption
that initially x̂ − ŷ ≥ cγ

√
n lg n, with high probability, phase 1 starts

with x̂− ŷ ≥ (cγ − γ)
√
n lg n.

2. Employ Lemmas 4.3.2 and 4.3.3 to provide the lower-bound (y/2α),
where α ≥ 20, and upper-bound (n/2) on b after the first Θ(n) inter-
actions. In order to verify the proof of lemma for Single-B, it’s only
needed to adjust the constants according to propensities of reactions
(0’x) and (0’y). We are able to provide a tighter upper bound on
b with respect to variable y9. In fact, we can show that inequality
y

2α ≤ b ≤ 2αy hold at any point of the Single-B computation although
it doesn’t hold for the Double-B computation – see Lemmas 4.3.7 and
4.3.8.

3. Show that Lemmas 4.2.2 and 4.2.7 and their corresponding corollaries
also prove the correctness and efficiency of phase 1 in the Single-B
CRN. Utilizing the lower bound on b, the ratio of total propensity
of reactions (0’x) and (1’) to that of reactions (0’y) and (2’) is lower
than the relative propensity of reaction (1) to that of reaction (2) in
the tri-molecular CRN by at most a small constant – See Lemma 4.3.9.
Therefore, the analysis of phase 1 of Single-B parallels that of the tri-
molecular CRN.

4. Modify Lemmas 4.2.4 and 4.2.9 so that they also verify the correctness
and efficiency of phases 2 and 3 in the single-B CRN. Referring back
to the lower bound on b, we note that the ratio of total propensity of
reactions (0’y) and (2’) to that of reactions (0’x) and (1’), is greater
than the ratio of the propensity of reaction (2) to that of reaction (1)
in the tri-molecular CRN, by at most a small constant. It is straight-
forward to consider this small constant and revise Lemmas 4.2.4 and
4.2.9 and their related corollaries, to make the analysis of phases 2
and 3 of Single-B also parallel to those of the tri-molecular CRN – See
Lemmas 4.3.10 and 4.3.11.

5. Employ Lemma 4.2.12 to complete the proof of efficiency. Using the

9We note that, the derived b bounds in Lemma 4.3.3 are sufficient for the proof of
correctness and efficiency of our two bi-molecular CRNs. However, a tighter upper bound
on b may be useful when the Single-B protocol is used as a part of other CRNs.

42



4.3. Approximate Majority Using Bi-molecular Reactions

upper bound on b, which confirms that x ≥ n/4 and the lower bound
on b, which confirms b ≥ y/292, we can conclude that the total propen-
sities of reactions (0’x), (0’y), (1’), and (2’) is at least some constant
fraction of the total propensities of reaction (1) and (2) in tri-molecular
CRN. Therefore, the total number of interactions in Single-B is at most
some constant multiple the required number of interactions in the tri-
molecular CRN.

Lemma 4.3.6. Starting from x̂ − ŷ ≥ cγ
√
n lg n, where cγ > γ, x̂ − ŷ

reduces to (cγ − γ)
√
n lg n within d = n reaction events with probability less

than 1/n(γ2).

Proof. Starting from x̂−ŷ ≥ cγ
√
n lg n, the probability that x̂−ŷ increases is

at least as much as the probability that it decreases. As a worst case scenario,
we can view the changes in x̂− ŷ, as an unbiased random walk which starts
at cγ

√
n lg n and its expected translation distance is

√
n within n reaction

events [38](XIV). We now define event Md as the one where x̂− ŷ decreases
in total by at most γ

√
n lg n within d = n reaction events. Let Q1, . . . , Qr

denote independent random variables where 0 ≤ r ≤ d taking values in set
Ar = [1,−1]. The independent random variables Qr satisfy the conditions
of Azuma’s inequality (Lemma 4.1.3) with cr = 2, the expected change

√
n

(assuming an unbiased random walk), and function Y = f(Q1, . . . , Qd) =
max1≤r≤d |

∑r
i=1Qi| which gives us the maximum translation distance over

d reaction events. Now, using Azuma’s inequality, we can infer that P[|Y −√
n| ≥ γ

√
n lg n] ≤ 1/nγ

2
. It means that in our unbiased random walk

the maximum distance from the origin is not more than γ
√
n lg n with high

probability which leads to P[Md] ≤ 1− 1/nγ
2
.

Lemma 4.3.7. Let I be any interval of εy0 reaction events of a computation
of Single-B, where ε ≤ 1

α+1 , α ≥ 20, and y0 is the initial value of y at the
beginning of I. Let b0, be, bmin, bmax denote the initial, final, minimum,
and maximum values of b in the interval I (similarly for y). Then for any
γ > 0, there is a constant lγ such that if y0 ≥ lγ lg n, then the following
bounds hold with probability at least 1− 1/nγ.

(a) (Upper bounds) If b0 ≤ min(n/2, αy0) then bmax ≤ 2αymin and be ≤
αye.

Proof. We prove tighter upper bounds on b as follows.
Upper bounds: It is easy to verify that while b0 ≤ (α − 1)y0, upper

bounds bmax ≤ 2αymin and be ≤ αye completely hold even if y reaches to its
minimum of y0 − εy0 and b increases to its maximum of b0 + εy0 within εy0
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reaction events. Therefore, for simplicity we just consider the case where
b0 > (α− 1)y0. The number of B molecules can only increase via reactions
(0’x) and (0’y). We can bound the probability that a reaction event would
be equal to one of these two reactions as follows.

P[Reaction 0’x or 0’y ocurrs] =
xy

xy + xb+ yb
≤ y

y + b

≤ y0 + εy0
y0 + (α− 1)y0 + 2εy0

≤ 1 + ε

α− 2ε
.

With an application of the Chernoff upper tail bound 4.1.2, we then
conclude that the probability of having more than 4(1+ε)

3(α−2ε)εy0 reaction events

of types (0’x) and (0’y), is at most 1/nγ , provided that y0 ≥ lγ lg n. Also,

as reactions (0’x) and (0’y) have the same rate, there are at most 2(1+ε)
3(α−2ε)εy0

reaction events of type (0’x) with probability at least 1 − 1/nγ . Thus, the
number of reaction events equal to either reaction (1’) or (2’) is at least

εy0− 4(1+ε)
3(α−2ε)εy0. So, we can prove the upper bounds of our claim as follows.

case (i) bmax ≤ 2αymin. Since at most 4(1+ε)
3(α−2ε)εy0 (reactions (0’x) and (0’y))

B molecules are produced and at most 2(1+ε)
3(α−2ε)εy0 (reaction (0’x)) Y

molecules are consumed, we have:

bmax ≤ b0 +
4(1 + ε)

3(α− 2ε)
εy0, and ymin ≥ y0 −

2(1 + ε)

3(α− 2ε)
εy0

which lead to bmax ≤ 2αymin for all (α− 1)y0 < b0 ≤ αy0.

case(ii) be ≤ αye. We note that, at the end of the interval I, at least εy0−
4(1+ε)

3(α−2ε)εy0 (reactions (1’) and (2’)) B molecules are also consumed.
Therefor, we get

be ≤ b0 +
8(1 + ε)

3(α− 2ε)
εy0 − εy0, and ye ≥ y0 −

2(1 + ε)

3(α− 2ε)
εy0

which confirm be ≤ αye.

Lemma 4.3.8. With high probability, εy0 reaction events of interval I dis-
cussed in Lemma 4.3.3 happens in Θ(n) interactions.
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Proof. Using Lemma 4.2.12, it is sufficient to show that the total propensity
of Single-B reactions over the course of interval I is Ω(y0). Among l = εy0

reaction events, the number of B and Y molecules can decrease by at most l,
so y ≥ y0−l. On the other hand, since x ≥ y, we have n = x+y+b ≤ x+x+b
leading to x+b/2 ≥ n/2 throughout this interval. Putting these observations
together, we obtain:

ρ(c,R) =
xy + xb+ yb

n/2
≥ y(x+ b/2)

n/2
≥ y0 − l = Ω(y0).

Lemma 4.3.9. At any point in the computations, assuming that the x̂− ŷ ≥
∆/2, the probability that x̂− ŷ increases is at least 1/2 + Θ(∆/n).

Proof. Let p denote the probability of a success (x̂ − ŷ increases) and q
denote the probability of a failure (x̂− ŷ increases). We note that reactions
(0’y) and (2’) decrease the gap between x̂ and ŷ, and reactions (0’x) and
(1’) increase the gap. So, given that x ≤ n, and y/292 < b, we can compute
the probability that x̂− ŷ increases on a reaction event as follows.

1)
q = P[x̂− ŷ decreases]

p = P[x̂− ŷ increases]
=

1/2xy + yb

1/2xy + xb

≤ 1− (x̂− ŷ)b

1/2xy + xb
≤ 1− (∆/2)b

x(1/2y + b)
≤ 1−Θ(∆/n),

2) q + p = 1

So, with a simple calculation, equations 1 and 2 result in p ≥ 1/2+Θ(∆/4n).

Lemma 4.3.10. At any point in the computation, if ŷ = n/k then the
probability that ŷ > 2n/k at some subsequent point in the computation is
less than (1−Θ(1))n/k.

Proof. Let p denote the probability of a success (ŷ decreases) and q denote
the probability of a failure ( ŷ increases). We note that reactions (0’y) and
(2’) increase ŷ, and reactions (0’x) and (1’) decrease it. So, assuming that
x ≤ n, x̂− ŷ ≥ n− n/4k, and y < 292b, we can compute the ratio q/p on a
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reaction event as follows.

1)
q = P[ŷ increases]

p = P[ŷ decreases]
=

1/2xy + yb

1/2xy + xb

≤ 1− (x̂− ŷ)b

1/2xy + xb
≤ 1− (n− 4n/k)b

n(1/2y + b)
≤ 1−Θ(1)

By Lemma 4.1.1, we conclude that reaching a configuration where y >
2n/k (which entails an excess of n/k failures to successes) is less than (1−
Θ(1))n/k.

Lemma 4.3.11. At any point in the computation, if ŷ = n/k then, assuming
that ŷ never increases to 2n/k, the probability that ŷ decreases to n/k − r
within f(n) > Θ(r) reaction events is at least 1− exp(−Θ(f(n)).

Proof. The proof is completely parallel to the proof of Lemma 4.2.9. We only
need to compute the probability of a success (ŷ decrease). By Lemma 4.3.10,
q/p = 1 − Θ(1). So, considering p + q = 1, it’s straightforward to obtain
p ≥ 1

2 + Θ(1).

4.4 Experimental Results

Figure 4.1 illustrates the progress of computations of each of our CRNs in
each of the three phases, on a single run. In the first phase, the gap x−y (red
line) increases steadily. Once the gap is sufficiently high, phase 2 starts and
the count of y for the tri-molecular CRN, and ŷ for the bi-molecular CRNs,
decrease steadily. In the last phase, as the counts of y and ŷ are small, there
is more noise in the evolution of y and ŷ, but they do reach 0. The rate of
convergence is faster for Double-B than Single-B, stemming from the fact
that blanks are produced at double the rate. Figure 4.2 shows how expected
time and probability of correctness (success rate) increase as a function of the
volume n, for each of the CRNs. A fit to the data of that figure shows that
the expected times of the tri-molecular, Double-B and Single-B CRNs grow
as 3.4 lnn, 2.4 lnn, and 4.0 lnn respectively10. For n ≥ 100, the tri-molecular
CRN has at least 99% probability of correctness and the bi-molecular CRNs
have at least 97% percent probability of correctness. These probabilities all
approach 1 as n gets larger.

10We note that the x-axis is in the logarithmic scale in Figure 4.2(a). So, to compute
the growing rates, we only need to find the slope a of each set of data points according to
equation y ≈ a lnx.
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(a)

(b)

(c)

Figure 4.1: The gap x− y (red line) and minority (count y for tri-molecular
CRN and ŷ for bi-molecular CRNs) (blue line), as a function of time, of
sample runs of the (a) tri-molecular, (b) Double-B, and (c) Single-B CRNs.
The initial count is n = 106, the initial gap x−y is 2

√
n lg n and parameters

cγ , dγ and eγ are set to 2, 8, and 2 respectively. The vertical dotted lines
demark the transition between phases 1, 2 and 3.
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Figure 4.2: Comparison of the time (a) and success rate, i.e., probability
of correctness (b) of Single-B, Double-B and the tri-molecular CRN for Ap-
proximate Majority. Each point in the plot is an average over 5,000 trials.
The initial configuration has no B’s and the imbalance between X’s and Y ’s
is
√
n lnn. Plots show 99% confidence intervals.
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4.5 Application

As one application of our analysis methods, we show how to resolve a conjec-
ture of Mertzios et al. [74] for the Single-B CRN (when initially x+ y = n):

Conjecture: For any constant ε > 0, if initially x− y = εn then the CRN
reaches consensus on X-majority with probability at least 1− exp(−Θ(n)).

Mertzios et al. [74] proved that the conjecture holds for Single-B when
ε > 5n/7. We first argue that Mertzios et al.’s conjecture holds for the
tri-molecular CRN, for any ε > 0. As in previous sections, we model the
evolution of x − y as a sequence of stages, where the ith stage starts when
x− y ≥ 2iεn for the first time, and ends when x− y = 2i+1εn. Lemma 4.2.2
shows that, once the ith stage starts, the probability that x − y reduces
to 2i−1εn is at most exp(−Θ(n)). Lemma 4.2.7 shows that, assuming that
x−y does not reduce to 2i−1εn, the stage does indeed end, i.e. x−y reaches
2i+1εn, with probability 1 − exp(−Θ(n)). In these applications of Lemmas
4.2.2 and 4.2.7, the constant in the Θ depends on ε. Since consensus to
X-majority is reached in O(lg n) stages, the overall success probability is at
least 1− exp(−Θ(n)).

To prove Mertzios et al.’s conjecture for Single-B, we show that if x−y =
∆ ≥ εn (and x+ y + b = n) then for some sufficiently large constant k that
depends on ε, the probability that x − y increases to min{2∆, n} within
kn reaction events is at least 1 − exp(−Θ(n)) (where the constant in the
Θ depends linearly on ε2/k). From this property, the conjecture follows by
modeling the evolution of x − y as a sequence of stages exactly as for the
tri-molecular CRN.

Let #(0’x), #(0’y), #(1’) and #(2’) be random variables denoting the
number of reactions of type (0’x), (0’y), (1’) and (2’) respectively at any
point in the sequence of kn reaction events. Azuma’s inequality 4.1.3 tells us
that throughout the computation, with probability at least 1−exp(−Θ(n)),

|#(0’x)−#(0’y)| ≤ ∆/6. (4.5.1)

So we’ll assume in what follows that (4.5.1) holds. Then at any point in the
computation,

x− y = ∆ + (#(1’)−#(2’)) + (#(0’x)−#(0’y)) ≥ 5∆/6 + (#(1’)−#(2’)).

A slight variant of Lemma 4.2.2 shows that the random walk #(1’)−#(2’)
reduces to −2∆/3 at some point in the computation with probability at
most exp(−Θ(n)). Similarly, a variant of Lemma 4.2.7 then tells us that,
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assuming that #(1’)−#(2’) never reduces to −2∆/3, and thus x− y never
reduces to ∆/2, with probability at least 1 − exp(−Θ(n)), x − y increases
to min{2∆, n} within k′n reactions of type #(1’) or #(2’), for a sufficiently
large constant k′. To complete the argument, note that any sequence of
kn = 2k′n+n reaction events of Single-B must contain at least k′n reactions
of types #(1’) or #(2’). Otherwise the reaction sequence would contain at
least k′n+ n+ 1 reactions of types #(0’x) and #(0’y), and these reactions
would consume k′n + n + 1 X’s and Y ’s in total. This is more than the
sum of the number of X’s and Y ’s present at the start of the sequence of
reactions (at most n) plus the number of X’s and Y ’s produced during the
sequence of reactions (at most k′n), a contradiction.

4.6 Conclusion

Angluin, Aspnes, and Eisenstat proposed a simple population protocol for
Approximate Majority and proved correctness and O(log n) time efficiency
with high probability, given an initial gap of size ω(

√
n log n) when the to-

tal molecular count in the mixture is n. Motivated by their intriguing but
complicated proof, we have provided simpler, more intuitive proofs of cor-
rectness and efficiency for three different CRNs for Approximate Majority.
Key to our approach has been to first analyze a tri-molecular CRN with just
two reactions and two species. We have then showed how two bi-molecular
CRNs, including that of Angluin et al., are essentially simulations of the
tri-molecular CRN. Our results improve on those of Angluin et al. in that
they hold even with an initial gap of Ω(

√
n log2 n). Our analysis approach,

which leverages the simplicity of a tri-molecular CRN to ultimately reason
about bi-molecular CRNs, may be also useful in analyzing other CRNs.
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Chapter 5

Summary and Future Work

5.1 Summary

In Chapter 3 we have proposed a new design to deterministically compute
semilinear functions with CRNs using no leader species. We were motivated
by the intriguing question of Chen et al. [21] who asked about the possibil-
ity of such computations. Similar to Chen et al.’s framework [21], we have
also decomposed the semilinear function into a finite union of affine partial
functions. We have then provided leaderless CRNs to compute each affine
function. Our CRN construction differs from the affine-function computing
CRNs of Chen et al. [21] in that we only use the input species (and no
leader species) to compute the offset and coefficients of each affine partial
function. Lemma 3.2.1, is in fact our primary technical contribution. Next,
in order to decide which affine function should be applied to a given input,
we have employed the leaderless semilinear predicate computation of An-
gluin et al. [11]; this latter part of the construction is actually identical to
the construction of Chen et al. [21], but we have included it because our
time analysis is different. Assuming n is the number of molecules present
initially, we have proved that our construction ends in expected time O(n)
which is faster than the O(n log n) expected time bound on the direct con-
struction (with the use of leaders) of Chen et al. [21], but slower than the
O(log5 n) expected time bound on the fast construction of Chen et al. [21]
which relied heavily on the use of a fast, error-prone CRN that computes
arbitrary computable functions, and which crucially uses a leader.

In Chapter 4, first we have analyzed our tri-molecular CRN, shown in
Figure 1.2(a) which computes Approximate Majority. We have studied the
CRN in three phases. Recall that x and y denote the number of copies of X
and Y during a CRN computation. In the first phase we have modeled the
evolution of the gap x−y as a sequence of random walks with increasing bias
of success (i.e., increase in x− y). Similarly, in the second phase we model
the evolution of the count of y as a sequence of random walks with increasing
bias of success (decrease in y). We have used a simple biased random walk
analysis to show that these walks make forward progress with high probabil-
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ity, thereby ensuring correctness. To show efficiency of each random walk,
we have modeled it as a sequence of independent trials, observed a natural
lower bound on the probability of progress, and applied Chernoff bounds.
In the third and last phase we have modeled the “end game” as y decreases
from Θ(log n) to 0, and applied the random walk analysis and Chernoff
bounds a final time to show correctness and efficiency, respectively. For the
Double-B CRN, we have showed that with high probability, after a short
initial start-up period and continuing almost until consensus is reached, the
number of B’s (blanks) is at least proportional to y and is at most n/2, in
which case reaction events are reactions (1’) or (2’) with probability Ω(1).
Moreover, blanks are in a natural sense a proxy for X + Y (an interaction
between X and Y ), and so reactions (1’) and (2’) behave exactly like the two
reactions of our tri-molecular CRN. Essentially the same argument applies
to Single-B. However, we have been also able to provide a tighter upper
bound (i.e., proportional to y) on the number of blanks. We didn’t concern
ourselves with smaller initial gaps. But note that even with no initial gap
we can still expect efficiency, since the expected number of interactions until
a gap of

√
n log n is reached is O(n log n). This would be true even if there

were no bias in favour of reaction (1’) as x, the majority species, increases.
We suspect that the complexity of Angluin et al.’s proof stems from the case
when the initial gap is small (O(

√
n log n)), and the fact that they show ef-

ficiency with high probability, rather than expected efficiency for the cases
with small enough gaps.

5.2 Future Work

We discuss our future work pertaining to the first part of this thesis.

5.2.1 Deterministic Computation With CRNs

We identify two general directions for future work in the context of deter-
ministic computations.

Time Complexity The clearest shortcoming of our leaderless CRC, com-
pared to the leader-employing CRC of Chen et al. [21], is its time complexity.
Our CRC takes expected time O(n) to complete with n input molecules, ver-
sus O(log5 n) for the CRC of Theorem 4.4 of Chen et al. [21]. However, we
do obtain a modest speedup (O(n) versus O(n log n)), compared to the direct
construction of Theorem 4.1 of Chen et al. [21]. The indirect construction of
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Theorem 4.1 of Chen et al. [21] relied heavily on the use of a fast, error-prone
CRN that computes arbitrary computable functions crucially using a leader.
The major open question is, for each semilinear function f : Nk → Nl, is
there a leaderless CRC that stably computes f on input of size n in expected
time t(n), where t is a sublinear function? Belleville et al. [16] very recently
showed that, a wide range of semilinear functions and predicates, satisfy-
ing some conditions, require linear time to be deterministically computed.
However, the optimal computing time of the other semilinear functions and
predicates not satisfying those conditions, still remains as an open question.

If this is not possible for all semilinear functions, another interesting open
question is to precisely characterize the class of functions that can be stably
computed by a leaderless CRC in polylogarithmic time. For example, the
class of linear functions with positive integer coefficients (e.g., f(x1, x2) =
3x1 + 2x2) has this property since they are computable by O(log n)-time
unimolecular reactions such as X1 → 3Y,X2 → 2Y . However, most of
the CRN programming techniques used to generalize beyond such functions
seem to require some bimolecular reaction A+B → . . . in which it is possible
to have #A = #B = 1, making the expected time at least n just for this
reaction.

Tolerance to Imprecise Inputs Despite the fact that removing the as-
sumption of initial leader species makes the model more realistic, it remains
an unrealistic aspect of the model. We have assumed the ability to prepare
an initial state with precisely specified counts of input molecules. It is cer-
tainly equally as difficult to prepare a solution with 999,999 molecules of X,
ensuring that the solution does not contain 1,000,000 molecules, as to ensure
that the solution contains 1 molecule of leader L and not 2. However, it is
not clear how to properly formalize the question, “What computations can
CRNs do when initial states can only be approximately specified?” If we
imagined, for instance, being able to prepare counts only to within k bits
of precision for some constant k, then at most 2k different values of a given
input could be specified.

Rather than discussing errors of specification and approximate initial
counts, there is an alternative way to formalize the idea that with large
amounts of molecules, we lose control over individual counts. This is to
use the continuous (mass-action) model, in which the amount of a species
is given by a nonnegative real number indicating its average count per unit
volume in an infinite volume solution. Even with the ability to specify a
precise initial state (vector of real-valued concentrations), without control
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over the rates of reactions, only continuous piecewise linear functions can be
computed [22]. Because these functions are continuous (in fact, uniformly
continuous, i.e., rates of change of the output with respect to input are
bounded by a constant), a small error in specifying an initial state provably
leads only to a small error in reporting the output. Therefore, continuous
CRNs are in a sense already robust to imprecise inputs, merely because they
can only compute functions that are naturally “error-tolerant”.

Contrast this to the case of the discrete model and the semilinear func-
tions they compute, such as the function f(n) = n if n is even and f(n) = 0
otherwise. Here, a small change in the input causes an arbitrarily large
change in the correct output, and hence an arbitrarily large error in the
reported output if the initial state is specified incorrectly. Thus, given the
theoretical ability of discrete CRNs to compute functions lacking the natural
robustness of continuous functions to small errors in inputs, it remains an
open problem to formalize how such a CRN might compute such nonrobust
functions in a robust way.

5.2.2 Approximate Majority

There are several ways in which we can extend our results. Angluin et al. [12]
analyze settings in which (i) some agents (molecules) have Byzantine, i.e.,
adversarial, behaviour upon interactions with others, (ii) some molecules are
“activated” (become eligible for reaction) by epidemic spread of a signal,
and (iii) there are three or more species present initially and the goal is to
reach consensus on the most populous species (multi-valued consensus). We
believe that our techniques can be generalized to these settings.

There are other ways in which we might generalize our results, moti-
vated by practicalities of molecular systems. When a CRN is “compiled”
to a DNA strand displacement system, it may be that the DNA strand
displacement reaction rate constants closely approximate, but are not ex-
actly equal to, the CRN reaction rates. It could be helpful to describe how
the initial gap needed to guarantee correct and efficient computations for
Approximate Majority with high probability depends on the uncertainty in
the rate constants. It could also be useful to analyze variants of the CRNs
analyzed here, or other CRNs, in which some or all of the reactions are
reversible. For example, if the blank-producing reaction (0’) of Double-B is
reversible, the CRN appears to still be both correct and efficient, while hav-
ing the additional nice property that stable B-majority is no longer possible.
Again, we believe that our analyses can generalize to these scenarios.

Another interesting problem to investigate, is the application of Approx-
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imate Majority in solving and analyzing the fast probabilistic leader election
problem using CRNs, i.e., in volume n with an initial configuration with
n copies of species X and no other species initially present, produce a sin-
gle copy of a species L in time O(log n) with high probability. We have
suggested such a leader election CRN using Approximate Majority and our
experimental results are very promising. However, the proof of its correct-
ness and efficiency is still very challenging. Our hope is that our new analysis
of Approximate Majority would be a big step toward simplifying the analysis
of our proposed leader election CRN.
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Chapter 6

Introduction

RNA and DNA are both nucleic acids; the role of DNA in the cell is to
serve as an information storage channel available to cellular computing net-
works [93]. RNA molecules are involved in many cellular functions, includ-
ing DNA transcription into mRNA, translation of RNA into proteins by
tRNA [61], control of the plasmid copy number in Escherichia coli [41] and
gene regulation via mechanisms that degrade mRNA [13]. The possible
splice isoforms of the mRNA transcript are also partly regulated by RNA
molecules [103]. In order to determine RNA/DNA functions, it is an im-
portant step to recognize their structures [4, 80]. Moreover, nucleic acid
sequences are the basis of DNA computing and molecular programming for
construction of nano-devices such as DNA origami [40, 48] and DNA strand
displacement (DSD) systems [87]. As dicussed in the first part of this thesis,
DSDs are also promising components to pysically implement even hypothet-
ical chemical reaction networks [95], which abstract details about displace-
ments. Therefore, identifying RNA and DNA structures is also a funda-
mental step in the design, programming, and verification of these systems.
Determining the nucleic acid structure using experimental methods, such as
NMR and X-ray crystallography, is expensive, time-consuming and in some
cases impractical [37]. Therefore, computational methods are widely used
to help understand the structure and function of DNA and RNA molecules.

Nucleic acid folding pathways describe how RNA and DNA molecules
fold in on themselves via intra-molecular interactions. RNA/DNA molecules
dynamically move through a sequence of intermediate structures, when fold-
ing into their functional structures, i.e., three-dimensional shapes. In some
cases these intermediate structures also contribute to the biological func-
tion of the molecule. For example, the function of the flavinmononucleotide
riboswitch depends on this molecule’s ability to change its structure [106].
In other examples, a molecule may be bistable, i.e., have two stable func-
tional structures [39, 106]. The folding pathways of DNA molecules can
help determine gene transcription rates or control the DNA strand displace-
ment kinetics [112]. In fact, DSDs are designed so that a sequence of strand
displacements follows a DNA folding pathway.
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While it would be ideal to have the full description of nucleic acid folding
dynamics, nucleic acid secondary structure – a set of bonds formed between
nucleotides in an RNA/DNA molecule (see Section 6.1) – already provides
a level of description that yields much insight into its thermodynamics and
folding kinetics [100, 112]. Therefore, we also focus on nucleic acid secondary
structure in our research.

In recent years, computational methods for nucleic acid folding path-
ways simulation have received increasing attention, since they can be very
helpful in designing nano-scale machines that have potential health applica-
tions [104, 112] and they can also provide significant insights into RNA/DNA
folding dynamics. For example, there is a designed RNA that can detect
a cancer mutation and activate the cell death pathway [104]. In another
example, designed RNAs were used to map simultaneous RNA expression
patterns in intact biological samples [27].

Motivated by all of these roles of nucleic acid structures and folding
pathways, in this part of the thesis, we aim to contribute to computational
methods helpful for improving the folding pathway and structure prediction
of nucleic acids. In the remainder of this chapter, we first provide some
background on nucleic acids. We then describe related work on nucleic acid
folding pathway and structure prediction and introduce the problems that
are our focus in sections 6.2 and 6.3 respectively. We continue to summarize
our objectives and contributions in Section 6.4 and provide an outline of the
remaining chapters in Section 6.5.

6.1 Background on Nucleic Acids: RNA/DNA
Molecules

A single DNA or RNA strand is a sequence of nucleotide bases, which we
represent using the character set {A, C, G, T} or {A, C, G, U} respectively11,
with the left end of the sequence corresponding to the 5′ end of the strand
and the right end corresponding to the 3′ end. Here and throughout, let n
denote the length of RNA/DNA sequences. If sequences are indexed consec-
utively starting from 1, we can represent a base pair as a tuple (i, j), such
that i < j − 1, which specifies that the base at position i in the sequence
is paired with the base at position j (where j is not consecutive with i).
A secondary structure is simply a matching of strand positions that agrees
with the Watson-Crick base pairs [32], namely C–G, A–T for DNA and C–G,

11The letters A, C, G, U, and Tstand for Adenine, Cytosine, Guanine, Uracil, and Thymine
nucleotides respectively.
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A–U for RNA where no position is in two pairs. That is, if (i, j) and (i′, j′)
are in the structure then i, j, i′ and j′ are all distinct. We note that wobble
pairs, i.e., non-Watson-Crick G–U pairs, are also frequent in RNA structures
and we consider them in our analysis of RNA kinetics. The secondary struc-
ture is pseudoknot-free, if no base pairs cross, and more formally, if neither
i < i′ < j < j′ nor i′ < i < j′ < j, for all tuples (i, j) and (i′, j′). If a
secondary structure is not pseudoknot-free, it is said to have a pseudoknot.
Figure 6.1 shows planar representations of two possible pseudoknot-free sec-
ondary structures for an RNA sequence of 23 nucleotides. From now on,
when we use structure, we refer exclusively to secondary structure.

Each secondary structure is composed of motifs, which have an associ-
ated free energy value. The free energy of a secondary structure then is
calculated as the sum of its motifs’ energies.

At first, the free energy of a secondary structure was computed for a
simple “base pair” energy model [77, 78, 114] in which the free energy of
the structure was only dependent on the number and types of its base pairs.
However, since the mid-1990s, more sophisticated thermodynamic energy
models have been developed that account for entropic loop penalties, stacked
pairs and other structural motifs [64, 68–70]. For example, in Figure 6.1,
the energy of the right structure is −8.70 kcal/mol, using the Turner energy
model [68].
RNA/DNA molecules tend to fold into their minimum free energy (MFE)
structure at equilibrium [101]. A nucleic acid partition function is also de-
fined as a sum of the free energy over all possible structures12.

6.2 Nucleic Acid Folding Pathways

We start this section with an informal description of nucleic acid folding
pathways and population kinetics. We then briefly discuss available meth-
ods and challenges in computing the population kinetics. The readers can
find the formal and detailed description of population kinetics estimation in
Chapter 7.
Throughout, we only discuss RNA sequences as our arguments about DNA
folding pathways follow the same principle.

A folding pathway, from an initial structure to a final one, is defined as a
sequence of secondary structures where each successive secondary structure
differs from the previous one by a single base pair. Figure 6.2 shows a

12The partition function algorithm proposed by Mathews [69] can also predict a MFE
structure with highly probable base pairs.
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6.2. Nucleic Acid Folding Pathways

Figure 6.1: Two RNA secondary structures drawn using NUPACK [110].
These are two out of the many possible secondary structures.
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Figure 6.2: An example of a folding pathway for the RNA sequence in
Figure 6.1. Each structure has been drawn using NUPACK [110].

folding pathway for the RNA sequence represented in Figure 6.1 starting
from its unfolded structure and ending at its minimum free energy (MFE)
structure. If the holding times, i.e., the elapsed times in transitioning from
one structure to the next, are also included in a folding pathway, the obtained
sequence is called a folding pathway trajectory. If we were to imagine a very
large number of copies of the same RNA, say all initially in the unfolded
state, and observe a folding pathway for each copy, then we could compute
the fraction of copies occupying each secondary structure at each time point.
The vector of these fractions over time is the approximate population kinetics
of the RNA molecule (with respect to the initial unfolded state). For a given
time point, the exact population kinetics are essentially the diffusion limit
of the folding pathway simulation at that time point, i.e., when the number
of copies of the RNA is taken to infinity [76].

RNA population kinetics were initially researched as a way to enhance
prediction of the functional secondary structure of RNA molecules [2, 67, 96].
Structure prediction could be improved by predicting structures that are
very common in the population kinetics but that are not necessarily the
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6.2. Nucleic Acid Folding Pathways

thermodynamically most favourable, i.e., MFE structure [88]. Considering
the dependency between the quality of MFE-based secondary structure pre-
diction and the quality of the thermodynamic energy parameters used, it
is also the case that the quality of population kinetics prediction depends
on the kinetic rates used by the predictive model. Work that relies on or
predicts these rates are grouped into two broad categories: 1) work at ther-
modynamic equilibrium without force acting on the system [23, 53, 112] and
2) work at a thermodynamic non-equilibrium where a force is acting on the
system [66, 102].

Methods such as the Multistrand Simulator [90] and Kinfold [39] can sim-
ulate folding pathways of RNA/DNA molecules in the examples described
as our motivations. For a given input RNA molecule and initial structure,
these methods model the RNA folding process by continuous-time Markov
chains (CTMCs). A model of CTMC can be thought of as a timed random
walk on a directed graph. There are probabilities of transition associated
with the edges of the graph, and the holding time is exponentially dis-
tributed with a rate depending on the current node. To approach inference
in CTMCs representing RNA folding process, these two methods perform
Monte-Carlo simulations (or execute the Doob-Gillespie algorithm [42]) of
folding pathway trajectories, where the underlying state space is the set of
all possible secondary structures for the input molecule and kinetic rates
determine holding times, and transition probabilities from one secondary
structure to another. Since it seems quite difficult to obtain the necessary
kinetic rates experimentally, in these simulators the kinetic transition rates
are derived from nearest neighbor thermodynamic parameters such as the
Turner energy model [68].

The simulation model, Kinfold, of Flamm et al. [39], has all secondary
structures of an input sequence in its state space, and we refer to it as the full
model. The full model can also be used to infer exact or approximate popu-
lation kinetics (see Section 7.1). However, inferring the population kinetics
from the full model is slow, in part because of the size of the underlying
state space. For an RNA sequence of length n, there can be as many as

(
n
2k

)
ways to create a secondary structure of k base pairs, and thus O(3n) possible
secondary structures. This means that the size of the state space for the
full model will be exponentially related to the length of RNA, which even
renders the Monte Carlo simulations (or the Doob-Gillespie algorithm [42]),
non-practical for longer RNAs (e.g., with length > 30) or multi-stranded
RNA sequences (i.e., an RNA sequence composed of multiple interacting
strands). This difficulty prompted us to investigate an alternative for the
classic Monte Carlo methods in order to efficiently estimate the population
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kinetics of longer RNAs. We discuss our objectives and contributions on
this matter in Section 6.4.1.

6.3 Nucleic Acid Secondary Structure Prediction

As explained earlier, computational methods are widely used to obtain a
better understanding of the structure and function of nucleic acids. In this
area, a central challenge has been reliable prediction of nucleic acid sec-
ondary structure. In both biological and molecular computing contexts,
thermodynamic analyses are widely used to predict secondary structures.
Much work has focused on prediction of pseudoknot-free secondary struc-
tures, since such structures are common in both biological and designed
systems and since pseudoknot-free structures are easier to handle algorith-
mically [54, 63, 71]. Here and throughout, we consider a method to be
efficient if its running time is bounded by a fixed-degree polynomial in the
total length of the strands in the multi-set.

In what follows, we briefly summarize significant contributions on the de-
velopment of algorithms for predicting the pseudoknot-free secondary struc-
ture of a single nucleic acid strand, or of multiple interacting strands. Ta-
ble 6.1 also presents a summary of the time complexity of pseudoknot-free
secondary structure and partition function prediction (our contribution in
this thesis is shown in bold). When the input has multiple strands, we sep-
arate the cases where the number of strands is bounded by a fixed constant
c, and when the number of strands is unbounded, i.e., can grow with the
input size.

For single strands with length n, O(n3) dynamic programming algo-
rithms have long been used to efficiently predict minimum free energy (MFE)
pseudoknot-free secondary structures, first for a simple base pair model and
later for more sophisticated energy models [77, 78, 114]. However, very re-
cently, Bringmann et al. [17] proposed a truly sub-cubic algorithm to predict
MFE secondary structures for a simple base pair energy model. Dynamic
programming methods can also be used to efficiently calculate the partition
function for a given strand, making it possible to compute the probability
of base pair formation in equilibrium [72].

In addition to prediction of secondary structure of single strands, there
has also been much interest in prediction of complexes that result when base
pairs form between two or more strands. Such predictions can be used to
understand the affinity of binding between a nucleic acid oligonucleotide and
its potential target in biological processes such as RNA interference [107].
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Input Type MFE Partition Function

Single Strand O(n3) [77, 78, 114] O(n3) [72]

Multiple Strands, Bounded (≤ c) ? O(n3(c− 1)!) [32]

Multiple Strands, Unbounded APX-hard ?

Table 6.1: Computational complexity of predicting nucleic acid MFE
pseudoknot-free secondary structures and partition functions, when the in-
put is a single strand, multiple strands with a constant bound c on the
number of strands, and multiple strands where the number of strands can
grow with the input length n. In each case, n is the total number of bases
in the input strand(s). We note that, for a single strand, a new work by
Bringmann et al. [17] presents an exact sub-cubic algorithm using a simple
base pair model. The bold term shows our contribution and the question
marks show that the complexity of the corresponding problems is as yet
unresolved.

Prediction of multi-stranded secondary structures is also important, because
methods for biomolecular programming and construction of nano-devices,
such as algorithmic self-assembly, DNA strand displacement systems and
DNA origami, are based on the formation of such complexes [40, 87]; pre-
diction methods, such as that provided by NUPACK, [111] can guide the
design of such programs and devices and be very useful in physical imple-
mentation of chemical reaction networks studied in part I of the thesis.

An energy model for single-stranded secondary structure formation can
be extended to obtain a model for multi-stranded complex formation by (i)
charging an additional strand association penalty, typically a constant times
the number of strands involved in the complex, and (ii) accounting for ro-
tational symmetries [32] . We explain a simple extension of the base pair
energy model to operate on multi-stranded nucleic acids in Section 8.1.1.
Predicting MFE pseudoknot-free secondary structures formed from two (or
any constant number) of strands with respect to a model that only accounts
for strand association penalties is a straightforward extension of dynamic
programming algorithms for single strands [8, 109, 113]. However, it is
not clear how such algorithms can efficiently account for rotational sym-
metries that can arise when two or more indistinguishable strands interact
[32]. Nevertheless, Dirks et al. [32] showed how to efficiently calculate the
partition function for a constant number of interacting molecules that form
pseudoknot-free structures, by showing how rotational symmetry could be
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accounted for, while simultaneously addressing algorithmic overcounting is-
sues that arise in partition function calculation. However, the partition
function calculation method of Dirks et al. requires a separate dynamic
programming computation on all possible orderings of strands that interact
to form a single complex. As a result, the method does not run in polyno-
mial time when the number of participating strands grows with the overall
input size (total length of strands). This situation can arise, for example, in
DNA strand displacement systems. Also, surprisingly, while the partition
function for a constant number of interacting strands can be calculated effi-
ciently, it is not known how to efficiently calculate the MFE pseudoknot-free
secondary structure of a constant number of interacting strands.
In summary, exact and efficient dynamic programming algorithms are well
known for predicting the MFE pseudoknot-free secondary structure of a sin-
gle nucleic acid strand. However, all the available methods for computing
MFE pseduoknot-free secondary structure formed from a set of nucleic acid
strands are either heuristic and therefore are not guaranteed to find the opti-
mum structure or require an exponential runtime to find the exact solution.
Thus, we are motivated to answer the following basic question that has re-
mained open after over three decades of work on computational pseudoknot-
free secondary structure prediction of nucleic acids: given a set of nucleic
acid strands, is it possible to efficiently compute a MFE pseudoknot-free
secondary structure that they can form? We discuss our objectives and
contributions in more detail in Section 6.4.2.

6.4 Objectives and Contributions

Next, we give a summary of our objectives and contributions on the two
different problems discussed in this part of the thesis.

6.4.1 Nucleic Acid Folding Pathways

To enhance the functional structure prediction, i.e., common structures that
are not necessarily the MFE ones, of RNA molecules, it would be beneficial
to have an accurate estimation of their population kinetics. RNA population
kinetics indeed provide information about the probability of reaching differ-
ent secondary structures at a given time. Considering an RNA molecule
with a combinatorial state space, the computation of population kinetics,
and hence probabilistic inference, would be difficult or impossible with the
existing methods. So, we first aim to find an approach that accurately
and efficiently computes the probability that an RNA molecule beginning in
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one secondary structure, x, will transition in the given time, t, to a target
structure, y. For this purpose, we focus on the computation of transition
probabilities in general CTMCs having combinatorial state spaces, because
not only this could approximate RNA population kinetics, but also it could
be beneficial to many other applications as diverse as queueing theory, pylo-
genetics, and chemical reaction networks [51, 75].Our contributions on this
matter are as follows.

1. For CTMC problems with countably infinite states, where classical
methods such as matrix exponentiation are not applicable, the main
solution approach has been Markov chain Monte Carlo methods for
both the holding times and sequences of visited states. We propose a
modified Monte Carlo method, where the holding times are marginal-
ized analytically. Our method approaches inference in CTMCs with
weak assumptions on the state space and can approximate transition
probabilities as well as estimate CTMC parameters for this general
class of processes.

2. We confirm our results by conducting experiments on an important
example of CTMCs with combinatorial state space (i.e., a set of all
secondary structures): nucleic acid folding pathways. We verify on real
RNA sequences that our method outperforms the classic Monte Carlo
approach for estimating the transition probabilities that marginalize
over folding pathways and provide a model for the kinetics of an RNA
molecule interacting chemically with itself.

6.4.2 Multi-stranded Nucleic Acid Structure Prediction

We note that MFE secondary structure prediction is still of particular inter-
est to researchers for a better understanding of the functional nucleic acid
structure. While efficient thermodynamics-based approaches are well known
for prediction of pseudoknot-free secondary structures of single strands, the
problem of predicting pseudoknot-free secondary structures of multiple in-
teracting strands is not studied well enough.

Given a set of nucleic acid strands and a positive integer k, let
Multi-Pkf-SSP be the problem of determining whether the strands can
form a pseudoknot-free secondary structure with at least k base pairs.

In this thesis, we mainly prove that for the base pair energy model,
the Multi-Pkf-SSP problem is computationally intractable. We note that
hardness results can be valuable even for the simple base pair energy model;
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it would seem unlikely that the prediction problem becomes easier if the
energy model is more sophisticated.

Our contributions, in more detail, are as follows.

1. We show that Multi-Pkf-SSP is NP-hard, meaning that the exis-
tence of an polynomial time method for MFE pseudoknot-free sec-
ondary structure prediction of a multi-set of strands would imply all
problems in the complexity class NP, which includes problems that
are widely believed to be intractable, would have polynomial time al-
gorithms.

2. Our hardness proof of Multi-Pkf-SSP uses a reduction from a vari-
ant of 3-dimensional matching (3DM), already known to be NP-hard,
and employs code word designs with high pairwise edit distance [91].
We noticed an error in the proof of high pairwise distance between
words that were padded (i.e., expanded by inserting a character in
regular positions) given by Schulman and Zukerman [91]. So, as an-
other contribution we fixed the issue and will ask them to publish an
erratum.

3. Given the NP-hardness result above, we also prove that there is no
efficient method to find a pseudoknot-free secondary structure whose
energy is a close estimate of the energy of the MFE structure un-
less NP 6= P. Specifically, if there is a polynomial time approximation
scheme (PTAS) that could find a pseudoknot-free secondary structure
whose free energy closely approximates that of the MFE for any given
multi-set of strands, then again NP = P. A PTAS is a polynomial
time algorithm that receives as input an instance of an optimization
problem and an arbitrary parameter ε > 0, and returns an output
whose value (in our case, the number of base pairs in the MFE struc-
ture) is within a factor 1− ε of the value of the optimal solution. The
running time of a PTAS could be dependent on ε, but it must be poly-
nomial in the input size for every fixed ε. Formally, we show that the
optimization problem of finding the MFE structure for a multi-set of
nucleic acid strands is hard for the complexity class APX (shown as
“APX-hard” in Table 6.1), the class of NP optimization problems that
have constant factor approximation algorithms.
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6.5 Outline

We address the formal definition of RNA folding models, population kinetics,
continuous time Markov chains (CTMCs) and our efficient estimation of
CTMC transition probabilities in Chapter 7, Sections 7.1 and 7.2. We note
that we only describe our methodology with respect to a simple CTMC
setup that expresses RNA folding pathways. However, our algorithm can
be extended to other situations, where some or all the parameters of the
CTMC are unknown, but as it is not directly related to the scope of this
dissertation we do not discuss them here13. Finally, in Section 7.3, we
provide the experimental results on approximating population kinetics of
some real RNAs employing our new method.

Chapter 8, Section 8.1 first provides preliminary definitions, problem
statements, and an overview of some useful theorems to resolve the com-
putational complexity of the MFE structure prediction for multi-stranded
nucleic acid systems. Later, in Section 8.2, we outline the string proper-
ties and designs required for our NP-hardness proof. We further provide a
polynomial time reduction from a variant of 3DM to Multi-Pkf-SSP in
Section 8.3, and prove its correctness in Section 8.4. In Section 8.5, we also
infer that an optimization version of the problem is hard for the complexity
class APX.

13The extended version of our method can be found in the published manuscript [47].
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Chapter 7

Approximating Nucleic Acid
Population Kinetics

In this chapter, we first provide some background and formal definitions
on RNA folding models. Equipped with this background, in Section 7.2,
we present an effective method for approximating transition probabilities in
general CTMCs defined over combinatorial state spaces. In Section 7.3, we
then support the efficiency of our method by applying it to RNA folding
models, as a powerful example of CTMCs, to estimate the population kinet-
ics of some real RNA molecules. Later, in Section 7.4, we give a summary
of our results and contributions.

7.1 Preliminaries

Here and throughout, we will restrict our attention to RNA pseudoknot-free
secondary structures, a large and important class of structures14.

A folding pathway of m steps consists of a sequence of secondary struc-
tures σ = i1, i2, ..., im where each successive secondary structure differs from
the previous one by a single base pair, i.e. the Hamming distance between
ij−1 and ij is exactly 1 for all 2 ≤ j ≤ m. A folding pathway trajectory of
m steps is a sequence of tuples (s0, t0), (s1, t1), ..., (sm, tm) where si is the
secondary structure at time i and ti is the holding time for structure si. The
collection of structures in a folding pathway or trajectory is not necessarily
distinct. In other words, one structure can appear more than once along the
folding pathway or trajectory.

The free energy of a secondary structure i, E(i), is computed using
the Turner energy model [68] and an O(n3) dynamic programming algo-
rithm [72].

14We note that all models and methods in this chapter can trivially be extended to
DNA sequences. Moreover, they all can also trivially apply to the case of pseudoknots by
simply including psudoknotted structures in the model and using free energies of pseudo-
knots to derive kinetic rates. However, our emperical results depend non-trivially on the
assumption of pseudoknot-free structures.
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The equilibrium probability that an RNA molecule will occupy a partic-
ular secondary structure is

ki =
e−E(i)/(ρτ)

Zk

where ρ is the gas constant, τ is the temperature, Zk =
∑

j∈U e
−E(j)/(ρτ)

is the partition function [72], and U is the set of all possible secondary
structures for the molecule. The vector k is a distribution since the sum of
the ki’s is one, and is known as the Boltzmann distribution.

For example τ = 310.15 K is roughly body temperature. The gas con-
stant is ρ = 1.985× 103 kcal/(K mol), making ρτ = 6.1565× 105 kcal/mol.
The gas constant is related to the Boltzmann constant as ρ = NAkB where
kB is the Boltzmann constant and NA is Avogadro’s number. Since ρτ and E
have the same units (i.e., kcal/mol), this makes the Boltzmann distribution
unit-less.

7.1.1 RNA Folding Models

Flamm et al. [39] introduced the RNA folding model that was inspired by
chemical reaction systems modelled using continuous-time Markov chains
(CTMCs). A CTMC is defined via its infinitesimal generator matrix, i.e.,
an array of numbers representing the rate a CTMC moves between states,
and an initial distribution over its states. Like discrete Markov chains, many
CTMCs have a stationary distribution.

Assume that an RNA molecule is given and let U be the space of
pseudoknot-free secondary structures for that molecule. Let N(i) ⊂ U be
the neighborhood of i where {i} ∩N(i) = ∅ and symmetry is preserved (if
j ∈ N(i) then i ∈ N(j) for all i 6= j, i, j ∈ U). For the full model defined
directly below, the neighborhood of i includes every structure that differs
from i by a single base pair.

We say that secondary structures i and j are connected if there is a path
of structures from i to j where each subsequent structure is a neighbor of
the previous one, i.e. i = s1, s2, ..., s`−1, s` = j such that s` ∈ N(s`−1) for all
`.

The Full Model [39]. Kawasaki introduced an ‘inverse-symmetric’ tran-
sition rule, i.e., one for which Kij = K−1

ji for i 6= j. The Kawasaki transition
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rule gives the infinitesimal generator matrix for i 6= j as

Kij =

{
e(E(i)−E(j))/(2ρτ) if j ∈ N(i)
0 if j /∈ N(i)

(7.1.1)

and
Kii = −

∑
j 6=i

Kij .

The neighborhood of i is every structure that differs from i by exactly one
base pair. Notice that although Flamm et al. also included as neighbors
a pair of structures that differ by shifted base pairs, we do not and only
consider basic and well-known kinetic moves (i.e., base pair removal and
addition). This means that every pair of secondary structures is connected.
We use the ’full model’ to refer to the CTMT with infinitesimal matrix K
and with the initial state, x, being that distribution over the structures that
the RNA molecule begins in. Typically x is the point-mass on either the
open-chain or the minimum free energy state. The concepts introduced in
what follows apply to any other initial state distribution.

Informally, the population kinetics at a given time t is a vector whose
jth entry is the probability that the CTMT is in state (secondary structure)
j at time t. Formally, for a CTMT with initial distribution x and infinites-
imal generator matrix Q, the population kinetics is given by x exp(tQ). In
the case that Q = K, as t → ∞ the population kinetics converges to the
stationary distribution given by the Boltzmann distribution k (this follows
from the fact that k exp(tK) = k, for all t ≥ 0⇔ kK = 0).

The Subset Model [98]. The main challenge with obtaining the matrix
K is that the size of the state space U is exponential in the number of bases
in an RNA molecule. For this reason, some approximations take a subset
of connected structures S ⊆ U [75], such that the initial (unfolded) state is
in S. The choice of S is an important decision and we briefly discuss it in
Chapter 9. We also follow the approach proposed by Kirkpatrick et al.[60]
to verify the quality of the chosen set. Some models design a CTMC on the
subset of nodes S that converges to the Boltzmann distribution normalized
on the subset S of structures [98]. Next, we describe such a model.

We now employ the Kawasaki rule as described in Tang et al. [98] to
infer the infinitesimal rate matrix L on the subset S.

Lij =

{
Kij if i ∈ S and j ∈ N(i) ∩ S
0 otherwise
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and
Lii = −

∑
j 6=i

Lij ≥ Kii,

where K is the rate matrix in Equation 7.1.1. Notice that since Lii ≥ Kii the
process L will have slower holding times on average than does the process
K. More discussion of the holding times will follow.

The process with infinitesimal rate matrix L converges to the distribution
on S which is proportional to the Boltzmann distribution

`i =
e−E(i)/(ρτ)

Z`

where Z` =
∑

j∈S e
−E(j)/(ρτ).

7.1.2 Population Kinetic Calculations

There are two ways to calculate the population kinetics of an RNA molecule:
either from the transition probabilities of the corresponding CTMT or from
a Monte Carlo simulation.

For an arbitrary finite CTMC with infinitesimal generator matrix Q, the
transition probability PQ(t)ij is defined to be the probability that the CTMT
transitions to state j at time t, given that it is in state i. The corresponding
matrix of transition probabilities PQ(t) satisfies the ODE

dPQ(t)

dt
= QPQ(t), t ≥ 0.

This ODE can be solved using an ODE solver or matrix exponentiation (see
Norris [76] 2.1.1 for a proof):

PQ(t) = exp(tQ) :=

∞∑
j=1

(tQ)j

j!
. (7.1.2)

From the matrix exponential, we can immediately obtain the exact popula-
tion kinetics which are the vector x exp(tQ), where x is the initial distribu-
tion of the CTMC.

Computing Equation 7.1.2 can be done through matrix exponentiation
methods such as spectral decomposition or the eigenvalues using the Lanczos
algorithm [89]. However, these matrix exponentiation algorithms have expo-
nential running time, since |U |, and thus the size of the matrix is exponential.
Munsky and Khammash provide an alternative method for approximating
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the matrix exponential [75].
A second way to compute the population kinetics is the Monte Carlo

simulation of folding pathway trajectories from process Q. A single sam-
ple of such a simulation tracks the progress of a single RNA molecule as
it moves across the secondary structure state space U . Monte Carlo simu-
lation [42] is accomplished using the exponential holding-time distribution
and the embedded Markov chain [45]:

(1) The holding time ti is exponentially distributed with parameter −Qii.

(2) The embedded (discrete) Markov chain has transition matrix Hij =
−Qij/Qii when Qii < 0 whereas Hii = 0 ∀i. The self-loop transition
probability Hii is zero to represent that self-transitions are invisible in
continuous time.

Initially si is distributed according to the initial distribution x. Steps
(1)-(2) yield a single tuple, (si, ti), and a trajectory is made of m tuples, θ =
(s0, t0), (s1, t1), ..., (sm, tm). Let Θ be the set of trajectories sampled. Given
these |Θ| samples, approximate population kinetics at a given time t can be
computed by calculating the fraction of samples in which the RNA molecule
is in a given secondary structure at time t. Recall that the population
kinetics is a vector and its i’th component is approximated as

(p̃(t))i = (1/|Θ|) ·

∣∣∣∣∣∣
sk = i|

∑
j≤k−1

tk ≤ t <
∑
j≤k

tk


∣∣∣∣∣∣

The approximation p̃(t) converges to the exact population kinetics, x exp(tQ),
as the number of samples grows [76]. This Monte Carlo simulation is the
one performed by the RNA folding software Kinfold [39] with process K and
with both Metropolis-Hastings and Kawasaki versions of process K.

7.2 Efficient Continuous-Time Markov Chain
Estimation

In leveraging the modelling capabilities of CTMCs, the bottleneck is typi-
cally the computation of the transition probabilities: the conditional proba-
bility that a trajectory ends in a given end state, given a start state and a
time interval. This computation involves the marginalization over the un-
countable set of end point conditioned paths. We propose an efficient Monte
Carlo method to approach inference in CTMCs with weak assumptions on
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the state space. Our method can approximate transition probabilities as
well as estimate CTMC parameters for this general class of processes. More
precisely, we are interested in countably infinite state space CTMCs that
satisfy the following two criteria. First, we require the construction of a cer-
tain type of potential on the state space. We describe this potential in more
detail in Section 7.2.1, and show in Section 7.3 that such potentials can be
easily constructed for RNA folding models, as a real example of CTMCs.
Second, the CTMC should be explosion-free to avoid pathologies (i.e., it is
required to have a finite number of transitions in any finite time interval
with probability one).

In contrast, classical uniformization methods assume that there is a fixed
bound on all the rates [44], a much stronger condition than our explosion-free
assumption. Other approaches, based on performing Markov chain Monte
Carlo (MCMC), relax the bounded rate assumption [85, 86], but they have
a running time that depends linearly on the size of the state space in the
sparse case and quadratically in the dense case.

Assume that every trajectory (or path) is considered as a particle, then
particle-based methods offer an interesting complementary approach, be-
cause they have a time complexity per particle that depends on the imputed
number of transitions between the two end points instead of on the size of
the state space.

In the simplest case, one can implement this idea using a proposal dis-
tribution equal to the generative process over paths initialized at the start
point. The weight of a particle is then equal to one if the end point of the
generated path coincides with the observed end point, and zero otherwise.
We call this proposal the forward sampling proposal and it exactly corre-
sponds to the simple Monte Carlo process explained in the previous section
for the approximation of RNA population kinetics.

Unfortunately, the forward sampling method has two serious limitations.
First, the requirement of imputing holding times between each transition
means that the proposal distribution is defined over a potentially high-
dimensional continuous space. This implies that large numbers of particles
are required in practice. Second, in problems where each state has a large
number of successors, the probability of reaching the end state can become
extremely small.

Now, we present our efficient particle-based Monte Carlo approach method
where the holding times are marginalized analytically. For convenience, we
call our approach Time Integrated Path Sampling, or TIPS.
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7.2.1 Methodology

In this thesis, we only describe the simplest framework in which our method
can be applied and our main contributions can be understood: computing
the probability that a CTMC with known rate parameters occupies state
y ∈ X at time t given that it occupies state x ∈ X at time 0, where X is a
countable set of states. This simple framework is still very influential and
completely represents the RNA folding models that are of particular interest
to us. However, we note that our method is not limited to this setup and
can be extended to more complicated CTMC frameworks that fall out of
the scope of this thesis - see Hajiaghayi et al. [47] for more details.

Notation. Let ν(x, y) denote the transition probability from state x ∈ X
to state y ∈ X given that a state jump occurs (i.e.

∑
y:y 6=x ν(x, y) =

1, ν(x, x) = 0). Let λ(x) denote the rate of the exponentially-distributed
holding time at state x (λ : X → [0,∞)).15 We only require efficient point-
wise evaluation of λ(·), ν(·, ·) and efficient simulation from ν(x, ·) for all
x ∈ X . We start by assuming that ν and λ are fixed, and discuss their esti-
mation later. We define some notation for paths sampled from this process.
Let X1, X2, . . . denote the list of visited states with Xi 6= Xi+1, called the
jump chain, and H1, H2, . . . , the list of corresponding holding times. The
model is characterized by the following distributions: Xi+1|Xi ∼ ν(Xi, ·),
Hi|Xi ∼ F (λ(Xi)), where F (λ(Xi)) = 1− exp(−λν(Xi, ·)), is the exponen-
tial distribution CDF with rate λ. Given a start state X1 = x, we denote by
Px the probability distribution induced by this model. Finally, we denote
by N the number of states visited, counting multiplicities, in the interval
[0, t], i.e. (N = n) ≡ (

∑n−1
i=1 Hi ≤ t <

∑n
i=1Hi).

Overview of the inference method Using the simple setup introduced
above, the problem we try to solve is to approximate Px(XN = y), which
we approach using an importance sampling method16 [35]. Each proposed
particle consists of a sequence (a list of variable finite length) of states X ∗
starting at x and ending at y. More formally, we have

X ∗ = (x1, . . . , xn) | n ∈ N, x1 = x, xn = y and xi ∈ X .
15Note that this is a reparameterization of the infinitesimal generator matrix Qx,y, with

Qx,x = −λ(x), and Qx,y = λ(x)ν(x, y) for x 6= y.
16Intuitively, when the target distribution is difficult to sample from, importance sam-

pling can be used as an alternative approach. This sampling method specifies a new
probability density function as the proposal distribution and draw samples from this dis-
tribution rather than drawing them directly from the target distribution.
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In fact, we marginalize the holding times, hence avoiding the difficulties
involved with sequentially proposing times constrained to sum to the time
t between the end points.

Concretely, our method is based on the following elementary property:

Proposition 7.2.1. If we let π(x∗) = γ(x∗)/Px(XN = y), where,

γ(x∗) =

(
n−1∏
i=1

ν(xi, xi+1)

)
× (7.2.1)

P

(
n−1∑
i=1

Hi ≤ T <

n∑
i=1

Hi

∣∣∣∣X∗ = x∗
)
,

for x∗ ∈ X ∗ and zero otherwise, where n = |x∗|, X∗ = (X1, · · · , XN ), and
Hi’s are sampled independently according to F (λ(Xi)), then π is a normal-
ized probability mass function.

Proof. We have, for any x∗ = (x1, x2, . . . , xn) ∈ X ∗,(∏n−1
i=1 ν(xi, xi+1)

)
P
(∑n−1

i=1 Hi ≤ T <
∑n

i=1Hi

∣∣∣∣X∗ = x∗
)

Px(XN = y)

=
Px(X1 = x1, . . . , Xn = xn)

Px(XN = y)

× P

(
n−1∑
i=1

Hi ≤ T <
n∑
i=1

Hi

∣∣∣∣X1 = x1, . . . , Xn = xn

)

=
1

Px(XN = y)

× Px

(
n−1∑
i=1

Hi ≤ T <

n∑
i=1

Hi, X1 = x1, . . . , Xn = xn

)
= Px(X∗ = x∗|XN = y).

Since the right hand side is a conditional distribution,

π(x∗) = Px(X∗ = x∗|XN = y),

is indeed a normalized probability mass function.

As our notation for γ and π suggests, we use this result as follows. First,
we define an importance sampling algorithm that targets the unnormalized
density γ(x∗) via a proposal P̃(X∗ = x∗). Let us denote the k-th particle
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produced by this algorithm by x∗(k) ∈ X ∗, k ∈ {1, . . . ,K}, where the num-
ber of particles K is an approximation accuracy parameter. Each of the
K particles is sampled independently according to the proposal P̃. Second,
we exploit the fact that the sample average of the unnormalized importance
weights w(x∗(k)) = γ(x∗(k))/P̃(X∗ = x∗(k)) generated by this algorithm
provide a consistent estimator for the normalizer of γ. Finally, by Propo-
sition 7.2.1, this normalizer coincides with the quantity of interest here,
Px(XN = y) – see Algorithm 1 followed by Algorithms 2, and 3. The only
formal requirement on the proposal is that Px(X∗ = x∗) > 0 should imply
P̃(X∗ = x∗) > 0. However, to render this algorithm practical, we need to
show that it is possible to define efficient proposals, in particular proposals
such that Px(X∗ = x) > 0 if and only if P̃(X∗ = x∗) > 0 (in order to avoid
particles of zero weight). We also need to show that γ can be evaluated
point-wise efficiently, which we establish in Proposition 7.2.3.

Algorithm 1 : TIPS(x, y, t)

Input: Two end point states x and y and a given time t
Output: The sample average of unnormalized importance weights, s/K
s← 0
for k = 1, 2, . . . ,K do

(L, p̃, p)← propose(x, {y})
Q̌← Q̌(L) {See Section ‘Analytic jump integration’}
n = |L| {The length of the list of states L}
s← s+ p× (exp(tQ̌))1,n/p̃

end for
return s/K
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Algorithm 2 : propose(x,A)

Input: A start state x, and a set of target states A
Output: A sampled path L, proposal transition probability p̃, and jump

chain transition probability p
(L, p̃, p)←proposeHittingPath(x,A, false)
n ∼ Geo(·, β) {Geometric with support 1, 2, . . . }
p̃← p × Geo(n;β) {Multiply by geometric probability mass function}
for i = 2, 3, . . . , n do
x′ ← last(L) {Last state visited in the list L}
(L′, p̃′, p′)←proposeHittingPath(x′, A, true)
p̃← p̃× p̃′
p← p× p′
L← L ◦ L′ {Concatenation of the two lists}

end for
return (L, p̃, p)

Algorithm 3 : proposeHittingPath(x,A, b)

Input: A start state x, a set of target states A, and a boolean variable b to
whether sample at least one state or not

Output: A sampled path L, proposal transition probability p̃, and jump
chain transition probability p
p← 1
p̃← 1
L← list(x) {Creates a new list containing the point x}
for i = 1, 2, . . . do

if x ∈ A and (not(b) or i > 1) then
return (L, p̃, p)

end if
x′|x ∼ P̃(·|Xi−1 = x)
p̃← p̃× P̃(Xi = x′|Xi−1 = x)
p← p× ν(x, x′)
L← L ◦ x′
x← x′

end for
return (L, p̃, p)
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Proposal distributions. Our proposal distribution is based on the idea
of simulating the jump chain, i.e., of sequentially sampling from ν until y is
reached. However this idea needs to be modified for two reasons. First, (*),
since the state is countably infinite in the general case, there is a potentially
positive probability that the jump chain sampling procedure will never hit
y. Even when the state is finite, it may take an unreasonably large number
of steps to reach y. Second, (**), forward jump chain sampling assigns zero
probability to paths visiting y more than once.

We address (*) by using a user-specified potential ρy : X → N centered
at the target state y (see Lemma 7.2.2 for the conditions we impose on ρy).
For example, we used the Hamming distance, i.e., the distance between the
base pairs of the current structure and the target structure, for RNA kinetics
applications. Informally, the fact that this distance favours states which are
closer to y is all that we need to bias the sampling of our new jump process
towards visiting y.

How do we bias the proposal sampling of the next state? Let D(x) ⊂ X
be the set of states that decrease the potential from x. The proposed jump-
chain transitions are chosen with probability

P̃(Xi+1 = xi+1|Xi = xi) = (7.2.2)

(αyxi)

(
ν(xi, xi+1)1{xi+1 ∈ D(xi)}∑

x′i+1∈D(xi)
ν(xi, x′i+1)

)

+ (1− αyxi)

(
ν(xi, xi+1)(1− 1{xi+1 ∈ D(xi)})∑

x′i+1 /∈D(xi)
ν(xi, x′i+1)

)
,

where αyx = max{α,
∑

x′i+1∈D(xi)
ν(xi, x

′
i+1)}. We note that α > 1/2 is a

tuning parameter. We briefly discuss the sensitivity of our method to this
parameter in Chapter 9. Lemma 7.2.2 guarantees that our proposal hits the
target end point y with probability one.

Point (**) can be also easily addressed by simulating a geometrically-
distributed number of excursions where the first excursion starts at x, and
the others at y, and each excursion ends at y. We let β denote the parameter
of this geometric distribution, a tuning parameter, which we also discuss in
Chapter 9.

Lemma 7.2.2. Assuming αyx = max{α,
∑

x′i+1∈D(xi)
ν(xi, x

′
i+1)}, under weak

conditions, our proposal mechanism in Equation 7.2.2 will hit target y in fi-
nite time with probability one.

Proof. We show that our proposal mechanism hits the target end point y
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with probability one under the following assumptions:

1. The potential ρy(x) takes the value zero if and only if x = y.

2. The potential changes by one in absolute value for all state transitions:

|ρy(z)− ρy(x)| = 1 for all z such that ν(x, z) > 0

3. For all states x 6= y, there is always a way to propose a state that
results in a decrease in potential:

For all x ∈ X , x 6= y, there exists z such that ν(x, z) > 0 and ρy(z) < ρy(x).

To simplify the notation, we will drop the y superscript for the remainder
of this proof.

To prove that the process always hits y, it is sufficient to show that the
sequence ρ(Xn) is a supermartingale17, which in our case reduces to showing
that E[ρ(Xi+1)|Xi] ≤ ρ(Xi).

Note that the last condition ensures that the normalizer
∑

x′2∈D(X1) ν(X1, x
′
2)

is always positive, hence our expression of the proposal mechanism is always
well defined. Note that technically, we should also require 0 < Px(ρy(X2) <
ρy(x)) ≤ 1 to ensure that the second normalizer,

∑
x′2 /∈D(X1) ν(X1, x

′
2), is

also positive, but if this is not the case, the proposal mechanism can always
be replaced by ν in these cases without changing the conclusion of the result
proven here.

Using the second condition, we have:

E[ρ(Xi+1)|Xi] = αXi(ρ(Xi)− 1) + (1− αXi)(ρ(Xi) + 1)

= 1− 2αXi + ρ(Xi)

≤ ρ(Xi).

Finally, since the supermartingale ρ(Xn) is non-negative, P̃(N <∞) = 1,
we conclude that the process always hits y.

Analytic jump integration. Now, we describe how the unnormalized
density γ(x∗) defined in Equation (7.2.1) can be evaluated efficiently for any
given path x∗ ∈ X ∗.

17A supermartingale is a sequence of real-valued random variables X0, X1, X2, . . . with
the property that for each Xi, E[Xi] < ∞ and E[Xi|X0, . . . , Xi−1] ≤ Xi−1 [45](Chapter
12).
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It is enough to show that we can compute the following integral for
Hi|X∗ ∼ F (λ(Xi)) independently conditionally on X∗:

P

(
n−1∑
i=1

Hi ≤ t <
n∑
i=1

Hi

∣∣∣∣X∗ = x∗
)

= (7.2.3)∫
· · ·
∫
hi>0:

∑n
i=1 hi=t

g(h1, h2, . . . , hn) dh1 dh2 . . . dhn,

where g(h1, h2, . . . , hn) ={
n−1∏
i=1

f(hi;λ(xi))

}
(1− F (hn;λ(xn))),

and where f is the exponential density function. Unfortunately, there is
no efficient closed form for this high-dimensional integral, except for special
cases (for example, if all rates are equal) [3]. This integral is related to those
needed for computing convolutions of non-identical independent exponential
random variables. While there exists a rich literature on numerical approxi-
mations to these convolutions, these methods either add assumptions on the
rate multiplicities (e.g. |{λ(x1), . . . , λ(xN )}| = |(λ(x1), . . . , λ(xN ))|), or are
computationally intractable [6].

We propose to do this integration using the construction of an auxiliary,
finite state CTMC with a n+1 by n+1 rate matrix Q̌ (to be defined shortly).
The states of Q̌ correspond to the states visited in the path (x1, x2, . . . , xn)
with multiplicities plus an extra state sn+1. All off-diagonal entries of Q̌
are set to zero with the exception of transitions going from xi to xi+1, for
i ∈ {1, . . . , n}. More specifically, Q̌ is


−λ(x1) λ(x1) 0 · · · 0 0
0 −λ(x2) λ(x2) · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · −λ(xn) λ(xn)
0 0 0 · · · 0 0

 . (7.2.4)

This construction is motivated by the following property.

Proposition 7.2.3. For any finite proposed path (x1, x2, . . . , xn), if Q̌ is
defined as in Equation (7.2.4), then

(
exp(tQ̌)

)
1,n

= P

(
n−1∑
i=1

Hi ≤ t <
n∑
i=1

Hi

∣∣∣∣X∗ = x∗
)

(7.2.5)
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where exp(A) denotes the matrix exponential of A.18

Proof. Let X̌1, X̌2, . . . and Ȟ1, Ȟ2, . . . denote the states and holding times
respectively of a CTMC with rate matrix Q̌. The states take values in
{1, 2, . . . , n + 1}, and we let P̌1 denote the path probabilities under this
process conditioned on starting at X1 = 1. Let Ň be defined similarly to N
(the random number of states visited):

(Ň = n) ≡

(
n−1∑
i=1

Ȟi ≤ t <
n∑
i=1

Ȟi

)

≡

{
ω ∈ Ω̌ :

n−1∑
i=1

Ȟi(ω) ≤ t <
n∑
i=1

Ȟi(ω)

}
.

Here, Ω̌ is an auxiliary probability space used to define the above random
variables:

X̌i : Ω̌→ X
Ȟi : Ω̌→ [0,∞).

For all i ∈ {2, . . . , n+1}, only state i−1 has a positive rate of transitioning to
state i, therefore (X̌i = j) ⊂ (X̌i−1 = j−1) for all j (*). Using equation 7.1.2

18Multiplicities of the rates in Q̌ greater than one will break diagonalization-based
methods of solving exp(tQ̌), but other efficient matrix exponentiation methods such as
the squaring and scaling method are still applicable in these cases.
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and applying (*) inductively yield:(
exp(tQ̌)

)
1,n

= P̌1

(
X̌Ň = n

)
= P̌1

(
X̌Ň = n, X̌Ň−1 = n− 1

)
...

= P̌1

(
X̌Ň = n, X̌Ň−1 = n− 1, . . . , X̌1 = n− Ň + 1

)
= P̌1

(
Ň = n, X̌1 = 1, X̌2 = 2, . . . , X̌n = n

)
= P̌1

(
Ň = n

)
P̌1

(
X̌1 = 1, X̌2 = 2, . . . , X̌n = n|Ň = n

)
= P̌1

(
Ň = n

) n∏
i=2

P̌(X̌i = i|X̌i−1 = i− 1)

= P̌1

(
Ň = n

)
=

∫ ∫
· · ·
∫
hi>0:h1+h2+···+hn=t

g(h1, h2, . . . , hn) dh1 dh2 . . . dhn.

7.3 Experimental Results

Here, we will use our method, TIPS, to approximate RNA population kinet-
ics. More specifically, we compare the accuracy of the transition probability
estimates given by our method (TIPS) to those obtained by forward sam-
pling (FS). We used the RNA molecules shown in Table 7.1.

Sequence Length |U | |S|
1AFX 12 70 -
1XV6 12 48 -
RNA21 21 ∼ 1100 657
HIV 23 ∼ 1500 266

Table 7.1: Biological RNA sequences obtained from the RNA STRAND
database [7]. Symbols U and S correspond to the set of secondary structures
obtained from the full model and subset model, respectively.

For each method (TIPS and FS) and molecule, we first approximated
the probability Px(XN = y) that beginning in its unfolded structure x, the
molecule would end, after folding time t, in its MFE structure y. We then

82



7.3. Experimental Results

computed, as a reference, the probability of this transition using an expen-
sive matrix exponential. Computing the matrix exponential on the full state
space was only possible for the RNAs of no more than 12 nucleotides. For
the longer RNAs, we used an RNA subset model – see Section 7.1.1 – and
restricted the state space to a connected subset S of secondary structures.
While our method scales to longer RNAs, we wanted to be able to com-
pare against forward sampling and to the true value obtained by matrix
exponentiation.

We note that Figure 7.1 shows the results on the subset model of RNA21
and HIV molecules, and Figure 7.1 shows the results on the full model of
1AFX and 1XV6.

We ran the experiments with a range of number of particles, {51, 52, · · · , 56},
for 30 replicates on folding times from {0.125, 0.25, · · · , 8}19. Here, we com-
pare the performance of the two methods by looking at the absolute log
error of the estimate p̂ (i.e., error(p̂) = | log p̂ − logPx(XN = y)|) over all
replicates.

Figures 7.1a, 7.1d, 7.2a, and 7.2d show the performance of the FS and
TIPS methods on selective folding times, {0.25, 1, 4}. Figures 7.1b, 7.1e,
7.2b, and 7.2e show the CPU times (in milliseconds) corresponding to the
minimum number of particles required to satisfy the certain accuracy level,
I = {p̂ : error(p̂) < 1.0} on all the folding times.

The variances of FS and TIPS weights, for 56 = 15625 particles, are also
computed and compared on different folding times (see Figures 7.1c, 7.1f,
7.2c, and 7.2f). Note that the variance is shown in log scale in these figures.

The graphs show that our novel method TIPS outperforms FS in esti-
mating the probability of transition from x to y in shorter folding times,
since it needs many fewer particles (and correspondingly faster CPU times)
than FS to be able to precisely estimate the probability. For instance, for
the RNA21 molecule with folding time 0.25, FS cannot satisfy the accuracy
level I given above, even with 15625 particles, however TIPS only needs 5
particles with 16 ms of CPU time to reach the same accuracy level. Similarly,
the variance of our method is smaller by a larger margin.

For longer folding times in Figure 7.1, the performance of the TIPS
and FS methods are comparable (in terms of the obtained errors and CPU
times), slightly in favour of forward sampling. For example, for the HIV23
molecule with folding time 4.0, TIPS and FS require 5 and 25 particles, and

19Folding time, in this context, is a dimensionless quantity, meaning that it can be
scaled. See the discussion about dimensions for the Boltzmann distribution in Section
7.1.
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CPU times, 12 ms and 5 ms, respectively to satisfy I.
We note that the reason why FS can still perform reasonably well for

longer folding times is that we picked the final end point to be the MFE
structure, which has high probability under the stationary distribution. For
low probability targets, FS will often fail to produce even a single hitting
trajectory, whereas each trajectory sampled by our method will hit the target
by construction.

7.4 Conclusion

We have presented an efficient method for approximating transition prob-
abilities and posterior distributions over parameters in countably infinite
CTMCs. We have demonstrated on real RNA molecules that our method
is competitive with existing methods for estimating the transition probabil-
ities which marginalize over folding pathways and provide a model for the
kinetics of a single strand of RNA interacting chemically with itself.

What makes our method particularly attractive in large or countably
infinite state space CTMCs is that our method’s running time per particle
is independent of the size of the state space. The running time does depend
cubically on the number of imputed jumps, so we expect that our method
will be most effective when the typical number of transitions between two
observations or imputed latent states is moderate (no more than approxi-
mately a thousand with current architectures). The distribution of the jump
chain should also be reasonably concentrated to ensure that the sampler can
proceed with a moderate number of particles. We have shown the realistic
examples on RNA folding pathways where these conditions are empirically
met.
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Figure 7.1: Performance of our method (TIPS) and forward sampling (FS) on RNA21
and HIV23 molecules with their subset state space. The relative errors of the estimates
vs. folding times, {0.25,1,4}, are shown (Figures (a) and (d)) along with the CPU times
corresponding to the minimum number of particles required to satisfy the accuracy level I
in milliseconds (Figures (b) and (e)) and the variance of TIPS and FS estimations (Figures
(c) and (f)) on folding times, {0.125, 0.25, · · · , 8}.
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Figure 7.2: Performance of our method (TIPS) and forward sampling (FS) on 1AFX and
1XV6 molecules with their full state space. The relative errors of the estimates vs. folding
times, {0.5,2,8} are shown (Figures (a) and (d)) along with the CPU times corresponding
to the minimum number of particles required to satisfy the accuracy level I in milliseconds
(Figures (b) and (e)) and the variance of TIPS and FS estimations (Figures (c) and (f))
on folding times, {0.5, 1, · · · , 8}.
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Chapter 8

Hardness of Multi-stranded
Nucleic Acid MFE
Secondary Structure
Prediction

In the previous chapter, we proposed an efficient method to estimate the
population kinetics of RNA/DNA molecules that can contribute to a more
accurate prediction of their functional structure. Here, we discuss the com-
putational hardness of MFE structure prediction for a set of nucleic acids
strands, as another important method for a better understanding of nucleic
acid functions.

8.1 Preliminaries

We review some basic terminology and prior work in order to precisely for-
mulate the problem description and proof techniques. We employ the prop-
erties described in Section 6.1 as our basis for single-stranded nucleic acids
and assume that only Watson-Crick base pairs can form between nucleotide
bases. Nevertheless, an RNA/DNA sequence can be composed of multiple
strands. In this case, we define a secondary structure formed between multi-
ple interaction strands as follows. Base pairing between two strands occurs
in an antiparallel format. That is, the Watson-Crick complement (sometimes
referred to as the ‘reverse-complement’) of strand x = 5′ − x1 · · ·xn − 3′ is
the strand 3′ − y1 · · · yn − 5′ ≡ 5′ − yn · · · y1 − 3′ where (xi, yi) is a Watson-
Crick base pair. For example, the reverse-complement of 5′ − ACTCG− 3′ is
5′−CGAGT−3′. Throughout, for simplicity, we will use the term complement
to mean reverse-complement or Watson-Crick complement and denote the
complement of x by x̄.

Similar to the single-stranded model, the secondary structure formed by
m interacting strands is a set of Watson-Crick base pairs. To specify the
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Figure 8.1: a) Polymer graph representation of the pseudoknot-free sec-
ondary structure for the strand set {1, 2, 3} with ordering {123}, b) second
polymer graph for the same set of strands with ordering {132}.

secondary structure, we assign identifiers from 1 to m to the strands, and
each base is named by a strand identifier and a position on the corresponding
strand. For instance if base i in strand s pairs with base j in strand t, where
s ≤ t and i < j − 1 if s = t, the base pair is denoted as (is, jt). Schemati-
cally, a multi-stranded secondary structure can be represented as a polymer
graph by ordering and depicting the directional (5′ to 3′) strands around the
circumference of a circle and connecting the base pairs with straight lines.
The number of different ways to position m strands on a circle corresponds
to the set of circular permutations is (m−1)! (e.g., {123} and {132} are the
only orderings for three strands 1, 2, and 3 — see Figure 8.1) [32]. If there
exists a polymer graph for a given secondary structure, corresponding to a
circular permutation without crossing lines, then the secondary structure is
called pseudoknot-free — see Figure 8.1a. A secondary structure consists of
one or more complexes that correspond to the connected components in the
polymer graph representation.

8.1.1 The Simple Energy Model

Here, we employ a very simple extension of the “base pair” free energy model
for secondary structures [78]. In that model, the energy of each base pair is
−1, and the overall free energy of a secondary structure is the total energy
contribution of its base pairs. This means that a higher number of base
pairs in a secondary structure of a single strand corresponds to a lower free

88



8.1. Preliminaries

energy.
In a system consisting of multiple interacting strands, there is an entropic

penalty for strands to associate via base pairing (i.e., a penalty for reducing
the number of complexes) [32]. In this simplified energy model, we define
the strand association penalty to be Kassoc ≥ 0. Thus, for a pseudoknot-free
secondary structure S consisting of m strands, l ≤ m complexes, and p base
pairs, the free-energy of S is defined as E(S) = p(−1) + (m− l)Kassoc. For
example, the secondary structure in Figure 8.1(a) has free energy 21(−1) +
(3−1)Kassoc = −21+2Kassoc. Therefore, given a set of strands {s1, . . . , sm},
an optimal pseudoknot-free secondary structure Si has the property that
E(Si) ≤ E(Sj) for all Sj ∈ S(s1, . . . , sm) where S(s1, . . . , sm) is the set of
all pseudoknot-free secondary structures of s1, . . . , sm.

Since there can be a tradeoff between the number of base pairs and the
number of complexes, then it is possible under this model for an optimal
pseudoknot-free secondary structure to have less than the maximum number
of possible base pairs. However, our proofs have been constructed so that
pseudoknot-free MFE secondary structures will have a maximum number of
base pairs for any reasonable value of the constant Kassoc. We will proceed
with our problem definitions under the assumption that Kassoc = 0 and
formally argue later that the results hold for all constants Kassoc ≥ 0.

8.1.2 Problem definitions

We now formally define the main problem of interest in this chapter.

Problem 1. Multi-Pkf-SSP
Instance: Given m nucleic acid strands and a positive integer k.
Question: Is there a pseudoknot-free secondary structure of the m strands
containing at least k base pairs?

To show hardness of our problem, we will describe a polynomial-time
reduction from a restriction of the 3-dimensional matching problem to
Multi-Pkf-SSP. A 3-dimensional matching is defined as follows. Let X,
Y , and Z be finite, disjoint sets, and let T be a subset of X × Y × Z.
That is, T consists of triples (x, y, z) such that x ∈ X, y ∈ Y , and z ∈ Z.
Now M ⊆ T is a 3-dimensional matching if the following holds: for any
two distinct triples (xi, yj , zk) ∈ M and (xa, yb, zc) ∈ M, we have xi 6= xa,
yj 6= yb, and zk 6= zc.

For convenience in our construction, we use a restriction of the 3-dimensional
matching problem, called 3dm(3), that requires each element to appear in
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x1 y1 z1

x2 y2 z2

x3 y3 z3

X Y Z

(a)

x1 y1 z1

x2 y2 z2

x3 y3 z3

X Y Z

(b)

Figure 8.2: An instance of the restricted 3-dimensional match-
ing problem (3dm(3)) where X = {x1, x2, x3}, Y = {y1, y2, y3},
Z = {z1, z2, z3}. (a) The set of permitted triples, T =
{(x1, y2, z2), (x2, y1, z1), (x2, y3, z2), (x3, y3, z3)}. (b) A valid matching M⊆
T .

at most three triples of T .

Problem 2. 3dm(3)
Instance: Given T ⊆ X × Y × Z, where |X| = |Y | = |Z| = n and each
element of X, Y and Z appears in at most 3 triples of T .
Question: Does there exist a matching M ⊆ T , with |M | = n?

Theorem 8.1.1 (Garey & Johnson (1979) [1]). 3dm(3) is NP-complete.

We note that the Multi-Pkf-SSP problem is a decision problem that
determines whether there exists an output structure with at least k base
pairs or not. This problem can be turned into an optimization problem with
a slight modification. We name this variant of the problem Max-Multi-Pkf-SSP.

Problem 3. Max-Multi-Pkf-SSP
Instance: Given m nucleic acid strands.
Question: Determine a pseudoknot-free secondary structure of the m
strands with maximum number of base pairs.

An optimization problem is in APX if it has a constant factor approxima-
tion algorithm, i.e., an efficient method that can determine a solution within
some fixed multiplicative factor of an optimal solution. A problem is APX-
hard if for some constant c, a c-approximation algorithm for the problem
would imply that NP = P. One way to prove a problem is APX-hard is to
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show an approximation-preserving reduction from a known APX-hard prob-
lem. We derive our hardness result for the Max-Multi-Pkf-SSP problem
by a reduction from the Max-3dm(3) problem, an optimization variant of
3dm(3).

Problem 4. Max-3dm(3)
Instance: Given T ⊆ X × Y × Z, where |X| = |Y | = |Z| = n and each
element of X, Y and Z appears in at most 3 triples of T .
Question: Find a maximum size 3-dimensional matching M ⊆ T .

Kann [58] had previously shown Max-3dm(3) is APX-hard by showing
that it is NP-hard to decide whether an arbitrary instance of the problem
has a matching of size n or a matching of size at most (1−ε0)n, for some ε0 >
0 [59]. Nutov & Beniaminy [79] gave a (1− 1/e) approximation algorithm,
demonstrating that Max-3dm(3) is in APX.

Theorem 8.1.2 (Kann (1994) [58] and Nutov & Beniaminy [79]). Max-3dm(3)
is APX-complete.

8.2 String Designs and their Properties

In this section we show how to design strings with properties that are useful
in our reduction. We follow standard string notation: for a string a =
a1 . . . an we denote its ith character (or symbol) by ai and its length by
|a| = n; for any symbol B, we let Bl denote a string of length l consisting of
only B’s. The following related string properties are of particular interest
to us.

1. A pairwise sequence alignment, or simply alignment, of strings a and b
is a pair of strings (a′, b′) with |a′| = |b′|, where a′ and b′ are obtained
from a and b respectively by the insertion of zero or more copies of
a special gap symbol. Moreover, for any i, not both a′i and b′i are
gap symbols and if neither a′i nor b′i is the gap symbol then a′i = b′i.
The alignment can alternatively be considered as a sequence of aligned
pairs (a′i, b

′
i), 1 ≤ i ≤ |a′|. A pair is a gap pair if either a′i or b′i is a gap

symbol. We also define an optimal alignment of a and b as a pairwise
alignment of a and b with a minimum number of gap pairs, amongst
all possible alignments.

2. A longest common subsequence between strings a and b is a longest
subsequence common to the two strings. We denote the length of
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such a subsequence by LCS(a, b). A longest common subsequence
corresponds to an optimal alignment of a and b and LCS(a, b) is equal
to the total number of gap-free pairs of symbols in the alignment.

3. The insertion-deletion distance dLCS(a, b) between strings a and b is
the minimum number of insertions and deletions of symbols needed to
convert a into b (or equivalently to convert b to a). Equivalently, the
insertion-deletion distance between a and b is equal to the number of
gap pairs in an optimal alignment of a and b.

The insertion-deletion distance and length of the longest common sub-
sequence of two strings are related by the following known result.

Theorem 8.2.1 ([49]). Given two strings a and b, where |a| = n and |b| =
n′, then dLCS(a, b) = k if and only if LCS(a, b) = (n+n′−k)

2 .

Note that if a and b are equi-length strings, then k is an even number.
In the next theorem, we provide a set of strings with a technique that

employs a greedy codeword design used also in Justesen [56] and Schulman
and Zuckerman [91].

Theorem 8.2.2. Let w > 0 and δ > 0. For any n, a set of at least wn
equi-length strands over the alphabet {A, T}, each of length k log2 n for some
constant k (that depends on w and δ), can be designed in 2O(log2 n) time,
such that the insertion-deletion distance between any pair in the set is at
least δ log2 n. Moreover, all strands in the set have at least dδ log2 n/2e A’s
and at least dδ log2 n/2e T’s.

Proof. We construct the desired set using a greedy algorithm that is specified
in terms of a quantity t = Θ(log2 n) that we determine later. From {A, T}t,
first put the two strings At and Tt in the set (we will remove them at the
end). Once i ≥ 2 strings are in the set, choose any string from {A, T}t whose
insertion-deletion distance from all i strings already in the set is at least
δ log2 n, and add it to the set. Continue until no more strings can be chosen
with the desired insertion-deletion distance. Finally, remove the strings At

and Tt. This algorithm runs in time 2O(log2 n).
The number of strings in {A, T}t that have insertion-deletion distance at

most 2d from a given string s is at most
(
t
d

)2
2d (see proof of Lemma 2 of

Schulman and Zukerman [91]). If d = dδ log2 n/2e, then our set has the
desired property that the insertion-deletion distance between any pair in
the set is at least δ log2 n. Furthermore all strings in the set, once At and
Tt are removed, must have at least dδ log2 n/2e A’s and at least dδ log2 n/2e
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T’s; otherwise, their insertion-deletion distance from At and Tt, would be less
than δ log2 n.

The number of strings in the set before removal of At and Tt is at least
wn+ 2 if we choose t so that

2t/(

(
t

d

)2

2d) ≥ 2t/2 ≥ wn+ 2.

These inequalities hold if t is a sufficiently large constant times log2 n. (For
the second inequality, we simply need that t ≥ 1 + 2 log2w + 2 log2 n. For
the first inequality, from Stirling’s formula we have that

(
t
d

)
< (t e/d)d,

and so the inequality holds if d log2(t e/d) ≤ t/2. This in turn holds if
t = ηd (= ηdδ log2 n/2e) where we choose constant η so that ηe ≤ 2η.)

Finally, since the strings At and Tt are removed and all other strings have
insertion-deletion distance at least δ log2 n from strings At and Tt, all strands
in the set have at least δ log2 n A’s and at least δ log2 n T’s.

Our design also makes use of a padding function. Let ρ5 denote the
padding function that, applied to a string, inserts five A’s (called padded
A’s) at the start of, and between, every pair of symbols in the string.

Definition 8.2.3 (padding function ρ5). Let a = a1a2 . . . an be a string.
Then ρ5(a) = A5a1A

5a2 . . . A
5an.

If dLCS(a, b) = k then dLCS(ρ5(a), ρ5(b)) may be less than k. To
illustrate why, first consider a modified padding function ρ1, defined as
ρ1(a1a2 . . . an) = A1a1A

1a2 . . . A
1an. If we choose a = a1a2a3a4a5 = AATATT,

and ac = TTATAA (ac is the real complement of a), then dLCS(a, ac) = 6
whereas dLCS(ρ1(a), ρ1(ac)) = 4. This appears to contradict an assertion in
Lemma 2 of Schulman and Zukerman [91]. Adapting this example, it is the
case that if

a′ = a5
1a

5
2 . . . a

5
5 = A5A5T5A5T5T5

and a′c would be the real complement of a′, then dLCS(a′, a′c) = 30, while
dLCS(ρ5(a′), ρ5(a′c)) = 24.

We next show a general lower bound on dLCS(ρ5(a), ρ5(b)) in terms of
dLCS(a, b).

Lemma 8.2.4. Let a and b be equi-length strings over {A, T}. If dLCS(a, b) =
k then dLCS(ρ5(a), ρ5(b)) ≥ k

2 .

Proof. Suppose that dLCS(ρ5(a), ρ5(b)) < k
2 . Let n be the length of a and

b. We will obtain a contradiction to the hypothesis of the lemma that
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dLCS(a, b) = k. Throughout, when referring to characters in the padded
strings ρ5(a) and ρ5(b), we’ll denote the characters of the original strings a
and b by Ao and To and the padded A’s by Ap.

LetA be an optimal alignment of ρ5(a) and ρ5(b). Each pair of characters
in alignment A has one of four types: original, with two original characters;
padded, with two padded characters; mixed, with one Ao and one Ap, or
gap, with one gap symbol. Let x, y and u denote, in order, the counts of
original, padded and mixed pairs, respectively. To prove the lemma, we first
establish various bounds on these counts.

First, it must be that x ≤ n− k
2 : since dLCS(a, b) = k, if x were greater

than n− k
2 we would be able to use the alignment A to obtain an alignment

of a and b with less than k gap pairs.
Second, using Theorem 8.2.1 and our assumption that dLCS(ρ5(a), ρ5(b)) <

k
2 , we have that LCS(ρ5(a), ρ5(b)) ≥ 6n− bk4c, and so

x+ y + u = LCS(ρ5(a), ρ5(b)) ≥ 6n− bk4c. (8.2.1)

Third, we’ll obtain a lower bound on x. Note that 2y + u is bounded
by the total number of Ap characters, and so is at most 10n. Therefore
y+ du2 e ≤ 5n. Substituting this inequality into Equation 8.2.1, we have that

x ≥ n− bk4c − b
u
2 c. (8.2.2)

From the fact that x ≤ n− k
2 and inequality 8.2.2 we also have that the

number of mixed pairs u is at least k
2 .

Now partition the mixed pairs into two types: sloppy and tight. A mixed
pair p is sloppy if, among the first five pairs to the right of p, there is at
least one gap pair containing a To or Ap character. If p is not sloppy, we
call it tight. If p is tight, let p′ be the first pair to the right of p that is
not a padded pair. Such a pair p′ must exist, since our padding function is
such that any Ap character is eventually followed by an original character.
Pair p′ is either a gap pair containing Ao or is a mixed pair, in which case it
also contains Ao. In either case, because exactly five Ap’s separate any two
original characters, if the Ao character of pair p is in string a then the Ao
character of pair p′ is in string b and vice versa. In what follows, we refer to
p′ as p’s partner. Note that p′ may itself be a tight pair.

Each sloppy pair contributes one to dLCS(ρ5(a), ρ5(b)). Since we are
assuming that dLCS(ρ5(a), ρ5(b)) < k

2 , less than k
2 of the mixed pairs are

sloppy.
Thus, at least u− k

2 + 1 of the mixed pairs are tight. Using these tight
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pairs, we now convert alignment A to another alignment A′ with at least
n− k

2 +1 original pairs, obtained as follows. Starting from the leftmost pair of
alignment A and working towards the right, find the first tight mixed pair p
ofA and its partner p′. Remove p, p′ and all of the intervening (padded) pairs
between them from the alignment, and instead pair each padded character
from the removed pairs with a gap, and pair the Ao character of p with the
Ao character of p′ (recall that one of these Ao characters is in string a and
the other is in string b). Repeat, starting from the pair just to the right of
p′, until the rightmost end of A is reached.

Let d be the number of new original pairs obtained in this manner. Then
d is at least bu2 c − d

k
4e + 1: this lower bound is achieved when all partners

are themselves tight mixed pairs. Therefore, the number of original pairs in
alignment A′ is

x+ d ≥ n− bk4c − b
u
2 c+ bu2 c − d

k
4e+ 1 = n− k

2 + 1.

As noted earlier, any alignment of ρ5(a) and ρ5(b) has at most n− k
2 original

pairs since dLCS(a, b) = k, and so we have a contradiction. Thus, our
assumption that dLCS(ρ5(a), ρ5(b)) < k

2 is false, and the lemma is true.

We next define the unpairedness of a secondary structure for a strand or
pair of strands, and show that sets of padded strings with high insertion-
deletion distance are useful in obtaining strands whose optimal structures
have high unpairedness.

Definition 8.2.5. Let a and b be strands and let S(a) and S(a, b) be sec-
ondary structures for strand a and pair (a, b) respectively. The unpairedness
of S(a) or S(a, b) is the number of bases that are not paired in S(a) or
S(a, b), respectively. We note that the base pairs of (a, b) includes both
inter-molecular and intra-molecular pairs.

Lemma 8.2.6. Let a′ and b′ be any strands over the alphabet {A, T}, let
a = ρ5(a′), let b = ρ5(b′), and let s be any substrand of a or a. Let S(s),
S(a, b), S(a, b) and S(a, b) be any pseudoknot-free secondary structures for
s, (a, b), (a, b) and (a, b), respectively. Then

1. The unpairedness of S(s) is at least 1
3 |s|.

2. The unpairedness of S(a, b) is at least 2
3 (|a|+ |b|).

3. The unpairedness of S(a, b) is at least 2
3

(
|a|+ |b|

)
.

4. The unpairedness of S(a, b) is at least 1
3dLCS(a, b).
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Proof. To show part 1, first suppose that s is a substrand of a = ρ5(a′). All
bases that are paired in the secondary structure S(s) are within substrand
s. If |s| ≤ 2, then no bases of s are paired in S(s), given our assumption
that consecutive bases in a strand cannot form a base pair, and so part 1
holds. If |s| ≥ 3, the number of (intra-molecular) base pairs of S(s) is at
most the number of T’s in s. If 3 ≤ |s| ≤ 6 then s can have at most one
T, and thus at most one base pair, so s has at least |s| − 2 unpaired bases
and again part 1 holds. Suppose that |s| ≥ 7. Because s is a substrand of
a padded strand, the number of T’s in s is at most d2|s|/7e: this maximum
is achieved if |s| = 7 and s both starts and ends with a T. Even if all of
the T’s of s are paired to A’s, the number of unpaired A’s is still at least
b3|s|/7c ≥ |s|/3 since |s| ≥ 7. The argument when s is a substrand of a is
obtained by replacing A’s with T’s in the argument for a substrand of a.

Similarly, the total number of T’s in S(a, b) is at most (|a|+ |b|)/6 and so
the unpairedness is at least 4(|a|+|b|)/6. The argument for the unpairedness
of S(a, b) is obtained by replacing A’s with T’s in the argument for {a, b}.

Finally, the inter-molecular base pairs of S(a, b) correspond to a common
subsequence of strands a and b, and thus the number of such base pairs is
at most LCS(a, b) = n − dLCS(a,b)

2 by Theorem 8.2.1. Therefore the total
number of bases in both a and b that do not form inter-molecular base pairs
of S(a, b) is at least dLCS(a, b). Now consider any substructure of S(a, b)
within some maximal substrand s of either a or b̄ that has no inter-molecular
base pairs. The unpairedness of this substructure is at least 1

3 |s|, by part 1 of
this Lemma. Thus, over all substrands that do not contain inter-molecular
base pairs, at least a fraction 1

3 of bases are unpaired (not involved in intra-
molecular base pairs). Since the total length of such substrands is at least
dLCS(a, b), the unpairedness of S(a, b̄) is at least 1

3dLCS(a, b).

Definition 8.2.7. A set S of strands is k-robust if the following properties
hold:

1. All strands of S have the same length.

2. All strands of S have at least k A’s and at least k T’s.

3. For any a and b in the set, the unpairedness of optimal structures for
a, ā, (a, b), (ā, b̄), and (a, b̄) is at least k.

Theorem 8.2.8. Let w > 0. For any n, a log2 n-robust set of at least
wn strands, each of length p log2 n for some constant p, can be designed in
2O(log2 n) time.
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Proof. Using Theorem 8.2.2, for any w > 0 and δ = 6 we can obtain, in
time 2O(log2 n), a set S ′ of at least wn strands, each of length k log2 n for
some constant k, such that the insertion-deletion distance between any pair
of strands in S ′ is at least 6 log2 n. Moreover, all strands in S ′ have at least
3 log2 n A’s and at least 3 log2 n T’s. This latter property implies that the
strands in S ′ have length at least 6 log2 n.

Apply the padding function ρ5 to strands in S ′ to obtain a new set S.
Note that the strands in S have length 6k log2 n, which must be at least
36 log2 n. Lemma 8.2.4 shows that the insertion-deletion distance between
any pair of strands in S is at least δ log2 n/2 = 3 log2 n. Lemma 8.2.6 then
shows that if a and b are any two strands in the set S, the unpairedness of
the optimal structure of a, or its complement, or of (a, b), (a, b) or (a, b), is at
least min{1

3 |a|,
2
3(|a|+ |b|), 1

3dLCS(a, b)}. Given that |a| and |b| are at least
36 log2 n and that dLCS(a, b) = 3 log2 n, this lower bound is at least log2 n.
Therefore, the unpairedness of the set S is at least log2 n, as desired.

8.3 The Reduction

We show a polynomial time, many-one reduction from 3dm(3) to Multi-Pkf-SSP
(3dm(3) ≤PT Multi-Pkf-SSP). Given an instance I = (X,Y, Z, T ) of
3dm(3), where m = |T | and n = |X| = |Y | = |Z|, we construct an instance
I ′ of Multi-Pkf-SSP as follows.

Domains used in strands of I ′:

The strands of the resulting instance, I ′, consist of the following domains.

• One domain for each x ∈ X, y ∈ Y , and z ∈ Z and one domain for
each complement. Where no confusion arises, we use x, x̄, y, ȳ, z, and
z̄ to refer to these domains.

• A separator and a separator-complement domain, denoted by Sep and
Sep.

• A trim domain and a trim-complement domain, denoted by Trm and
Trm respectively.

Strands of I ′:

The resulting instance, I ′, consists of the following strands; the strands are
described as a sequence of domains.
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(b) MFE structure

Figure 8.3: The resulting set of strands, specified at the domain level (part
a), and the MFE structure (part b), when reducing from the 3dm instance
of Figure 8.2. In the MFE structure, triple-strand t1 labeled as perfect
triple represents that the triple (x1, y2, z2) is in the solution of the 3dm(3)
instance. However, triple-strand t4 denoted as trim-deprived triple shows
that the triple (x2, y3, z2) is not selected in the solution.
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• Template strand : one strand that is the concatenation of triple-strands.
There is one triple-strand for each triple (x, y, z) ∈ T , which is the
concatenation of the domains Trm, x, Sep, y, Sep, z, Trm, z̄, Sep, ȳ,
Sep, x̄, Trm in that order. We call the substrands x Sep y Sep z and
z̄ Sep ȳ Sep x̄ of a triple-strand the 5′ and 3′ flanks, respectively.

We call the Trm domains at the ends of the triple-strand the end-trims
and the Trm domain at the center of the triple-strand the center-trim.

• Separator (-complement) support strands: there are 2n strands con-
sisting of just the domain Sep and another 2n strands consisting of
just the domain Sep.

• xyz-support strands: for each x, y and z domain there is one strand
consisting of just that domain and one for its complement, for a total
of 6n strands.

• Trim-complement strands: there are 2m+n strands consisting of just
the domain Trm (these strands are the complement of the trim domains
Trm).

We refer to the xyz-support strands and the separator and separator-complement
support strands collectively as the support strands.

This completes the description of the reduction at the domain level of
detail. Figure 8.3a shows the resulting Multi-Pkf-SSP instance, specified
at the domain level, after a reduction from the 3dm(3) instance depicted in
Figure 8.2.

The MFE structure of the resulting set of strands is partially depicted
in Figure 8.3b. The binding of the xyz-supports and separator supports
x1, Sep, y2, Sep, z2, their complements, and trim-complement strands to
the substrand labeled as “perfect triple”, denotes that the triple (x1, y2, z2)
is selected in the solution of the 3dm(3) instance. The other triple-strand
that is depicted is a “trim-deprived triple” — i.e., a triple where at least
one of its trim domains is unbound — as the triple (x2, y3, z2) does not
appear in the solution from Figure 8.2 (right). Intuitively, there is a trim-
complement strand available to bind with each of the 2m end-trim domains
at the ends of all triple-strands, and in addition the number of xyz-support,
separator supports and additional trim-complement strands is necessary and
sufficient to have n “perfect triples” in an optimal secondary structure when
the 3dm(3) instance has a perfect matching of size n.
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Sequence design for I ′:

To complete the reduction, we specify a sequence design for each domain of
I ′. For the x, y, and z domains, we use the set of sequences of Theorem 8.2.8
with w = 3, since we need 3n domains (plus their complements) in total.
Let E (= Θ(log2 n)) be the length of these domains. The trim domains
consist only of the base G, and are also of length E. Formally, let Trm = GE .
The Sep domain is A6E , and the Sep domain is the complement of the Sep

domain, namely T6E .
The sequence design has the property that there are an equal number

of A and T bases overall: for every x, y, z or separator domain in a triple-
strand, or x, y, z, or separator strand there is another domain or strand that
is its complement. The total number of C’s in trim-complement strands is
(2m+ n)E. The total number of G’s in end-trims and center-trims is 3mE.
Since m ≥ n, the total number of G’s is at least as great as the total number
of C’s. Therefore, under the assumption that only Watson-Crick base pairs
can form, the maximum number of base pairs is limited to the total number
of A (or T) bases plus the total number of C bases. Let P denote this quantity.

The instance I ′ is comprised of the strands of I ′ and the positive integer
P .

Lemma 8.3.1. Instance I ′ can be constructed in time polynomial in n.

Proof. Instance I ′ has one template strand, 2n separator supports and 2n
separator-complement supports 6n xyz-support strands, and 2m + n trim-
complement strands, for a total of 2m + 11n + 1 strands. The template
strand has 13m domains and the other strands have one domain each, for a
total of 15m+ 11n domains.

Since every domain in the construction has length Θ(log2 n), instance
I ′ is of size polynomial in n overall. The sequences can also be designed
in polynomial time: The sequence design of separator and trim domains is
trivial, and the sequences for the x, y, z domains can be designed in time
polynomial in n by Theorem 8.2.8.

8.4 Reduction Correctness

We show that if the given instance I of 3dm(3) has a perfect matching
then the optimal secondary structure formed from strands in I ′ is a single
complex that has P base pairs–the maximum number of base pairs that can
be formed from the strands of I ′, whereas if the optimal matching of I has
size n− i then the optimal structure has only P − Ω(iE) base pairs.
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Lemma 8.4.1. If I has a perfect matching, then the strands of I ′ can form
a pseudoknot-free secondary structure, consisting of a single complex and P
base pairs, with n perfect triple-strands.

Proof. Here, in the reduced instance I ′, bases in the n triple-strands cor-
responding to the perfect matching can be bound to the support strands
x, Sep, y, Sep, z, their complements, and three trim-complement strands
and form n perfect triple-strands. The end-trims of the remaining triple-
strands can also be bound to two trim-complement strands while their com-
plementary 5′ and 3′ flanks are paired together to make trim-deprived triples.
Therefore, as all A’s and C’s are paired in this single (connected) complex,
the number of base pairs is P which is optimal.

We next consider the case that the optimal matching of I has size at
most n− i. Let Opt(I ′) denote the optimal pseudoknot-free structure of the
reduced instance I ′. We establish properties that must hold true of Opt(I ′)
and conclude that when the optimal matching of I has size at most n − i,
then Opt(I ′) has P − Ω(iE) base pairs.

With respect to a given structure, we say that a domain is bound if at
least one of its bases forms a base pair. A domain d in a triple-strand (as
part of the template strand) is connected to a non-template strand s if there
is a sequence of non-template strands s1, s2, . . . , sj where sj = s, such that
d forms a base pair with s1, s1 forms a base pair with s2, and so on up to
sj−1 forming a base pair with sj = s.

We partition the triple-strands into four types, depending on the struc-
ture they form in Opt(I ′).

• Perfect triples: the triple-strand binds to the set of non-template
strands that are complementary to the triple-strand domains. This
set of non-template strands contains two Sep’s, two Sep’s, three Trm’s
and six xyz-support strands in total. The set of perfect triples corre-
sponds to a matching of instance I.

• Trim-deprived triples: at least one trim of a triple-strand is unbound.

• Hogger triples: these are triple-strands which are not trim-deprived,
and moreover, the ten domains in the flanks of a hogger triple are
bound to, or connected to, at least eleven support strands in total.

• Flawed triples: none of the above. In particular, flawed triples are not
trim-deprived.
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Each triple-strand belongs to exactly one of the above four types. Note also
that because a hogger or a flawed triple is not trim-deprived, the support
domains that are bound to or connected to the 5′ flank (or 3′ flank) of its
triple-strand cannot bind to other domains on the template strand, or a
pseudoknot would form.

Lemma 8.4.2. The total number of trim-deprived and flawed triples in
Opt(I ′) is at least (m− n) + i/11.

Proof. There are m triple-strands overall. Let p be the number of perfect
triples; each of these triple-strands has 10 support strands bound to it. Let
h be the number of hogger triples; there are at least 11 support strands
bound or connected to each. There are 6n xyz-supports and 4n separator
and separator-complement strands in total, so 10p + 11h ≤ 10n and h ≤
10(n − p)/11. Note also that since the optimal matching of I has size at
most n − i, the number of perfect triples p must be at most n − i and so
n− p ≥ i.

The total number of triple-strands is m, so the number of triple-strands
that are neither perfect nor hogger is

m− p− h ≥ m− p− 10(n− p)/11 = m− n+ (n− p)/11 ≥ (m− n) + i/11.

Lemma 8.4.3. Either Opt(I ′) has at least m−n+i/22 trim-deprived triples,
or at least i/22 flawed triples.

Proof. Suppose that the number of trim-deprived triples is less than m −
n + i/22. By Lemma 8.4.2, the total number of trim-deprived and flawed
triples is at least (m− n) + i/11. Subtracting, we have that the number of
flawed triples is at least i/22.

We now adapt our notion of unpairedness from Section 8.2 to ACT-
unpairedness. Let a and b be strands and let S(a) and S(a, b) be secondary
structures for strand a and pair (a, b) respectively. The ACT-unpairedness of
S(a) or S(a, b) is the number of A, C and T bases that are not paired in S(a)
or S(a, b), respectively.

Lemma 8.4.4. If the number of trim-deprived triples in Opt(I ′) is at least
m−n+ i/22, then at least iE/22 C’s are unpaired in Opt(I ′), and so Opt(I ′)
has ACT-unpairedness Ω(iE).
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Proof. Each trim-deprived triple forms at most 2E CG base pairs, with the
Gs being in the trims (center-trim and end-trims) of the triple-strand and
the Cs being in trim-complement strands. Triple-strands that are not trim-
deprived form at most 3E CG base pairs. There are no other CG base pairs.
So, the total number of CG base pairs is at most

(m− n+ i/22)2E + (m− (m− n+ i/22))3E = (2m+ n− i/22)E.

The total number of trim-complement strands is 2m + n, each containing
E Cs. So, the number of unpaired C bases in trim-complements is at least
iE/22.

In order to show that many flawed triples cause Opt(I ′) to have high ACT-
unpairedness, we first derive some useful properties about flawed triples. In
what follows, we let Lf = x Sepxy y Sepyz z and Rf = z̄ Sepyz ȳ Sepxy x̄
denote the sequences on the 5′ and 3′ flanks of a flawed triple. Let Bf (5′)
and Bf (3′) be the sets of support strands that are bound to, or connected to
domains of Lf and Rf respectively, in the structure Opt(I ′). Since a flawed
triple has at most ten support strands bound to it in total, either Bf (5′) ≤ 5
or Bf (3′) ≤ 5. In the following lemmas, for concreteness, we suppose that
Bf (5′) ≤ 5; the argument when Bf (3′) ≤ 5 is obtained by replacing domains
and strands with their complements and bases A and T with each other. Let
Opt(Lf ) be the substructure of Opt(I ′) formed by the bases in Lf and the
strands in Bf (5′).

Lemma 8.4.5. Let Lf = x Sepxy y Sepyz z be the left flank of a flawed
triple with respect to structure Opt(I ′). Suppose that there are l ≥ 2 bonds
between x, y or z domain of Lf and either Sepxy or Sepyz. Then Opt(Lf )
has ACT-unpairedness at least 5(l − 1).

Proof. As Sepxy and Sepyz contain only A’s, they can only bind with T’s
of Lf . Our sequence design ensures that there are at least five padded A’s
between any two successive T’s of x, y or z. Therefore, in order to avoid
pseduoknots, if there are l bonds between x, y, or z and a Sep domain, at
least 5(l − 1) padded A’s remain unpaired.

Lemma 8.4.6. Suppose that in Opt(Lf ), Bf (5′) ≤ 5 and the ACT-unpairedness
of Lf is less than (log2 n)/3. Then the following must hold.

1. Each Sep domain of Lf is bound to a Sep-support domain.

2. Each x, y and z domain of Lf is bound to an xyz-support domain.
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As a consequence, each x, y, and z domain of Lf is bound to a distinct
xyz-support of Bf (5′), each Sep domain of Lf is bound to a distinct Sep

support of Bf (5′), and Bf (5′) contains exactly three xyz-supports and two
Sep supports.

Proof. Suppose to the contrary that the first condition does not hold, i.e.,
one of Lf ’s Sep domains is not bound to a Sep support. The total number
of T’s that can bind to the Sep domain is at most 5.5E, accounted for as
follows: at most 3E/6 T’s in the x, y, and z domains of Lf plus at most
5E in the remaining support strands, if they are five xyz-support strands.
Thus at least E/2 of the 6E A’s in the Sep domain are unpaired. Since
E ≥ log2 n, we get a contradiction to the hypothesis of the lemma. Thus
the first condition must hold.

Next suppose that the first condition holds but that the second does not;
specifically that the x domain of Lf is not bound to an xyz-support domain
(the argument is similar for the y or z domains). Recall that domain x
contains at least log2 n T’s, since by design the domains comprise a log2 n-
robust set. At least 2(log2 n)/3 of the T’s must be paired, or the hypothesis
of the lemma that the ACT-unpairedness of Lf is less than (log2 n)/3 would
not be true. Since the first condition of the lemma holds, the Sep domain
adjacent to x on the 5′ flank is bound to a Sep strand. Therefore domain
x cannot have bonds to domain y or z, or to the Sep domain between y
and z, or a pseudoknot would form. Also, the T’s in domain x cannot bind
to Sep strands, since Sep’s are composed only of T’s. If there were at least
(log2 n)/3 bonds between x and Sepxy, Lemma 8.4.5 would imply that x has
ACT-unpairedness at least 5((log2 n)/3−1) ≥ log2 n, again contradicting the
hypothesis of the lemma.

Therefore, at least (log2 n)/3 T’s of x must form intramolecular bonds
with A’s that are also in the x domain. The total length of substrands of
x that have either unpaired bases or intramolecular base pairs must be at
least 3(log2 n)/3: this lower bound is met if each T, say at position i of x is
bound to an A that is either at position i− 2 or i+ 2 (since we assume that
no base pair can form between consecutive bases). Part 1 of Lemma 8.2.6
therefore implies that x has ACT-unpairedness at least (log2 n)/3, once again
contradicting the hypothesis of the lemma. We conclude that the second
condition of the lemma must hold.

Since both conditions hold, it cannot be that two of the x, y, and z
domains of Lf are bound to the same xyz-support of Bf (5′), or a pseudoknot
would form with bonds between a Sep of Lf and a Sep support. Similarly,
it cannot be that both Sep’s have bonds to the same Sep. Hence, each
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Sep domain of Lf is bound to a distinct Sep support of Bf (5′), and Bf (5′)
contains exactly three xyz-supports and two Sep supports, completing the
proof of the Lemma.

Lemma 8.4.7. Suppose that in Opt(Lf ), Bf (5′) ≤ 5. ACT-unpairedness
of Lf is less than (log2 n)/3. Then for any constant α < 1/7, the ACT-
unpairedness of Opt(Lf ) is at least α log2 n.

Proof. Let α < 1/7. Suppose to the contrary that the ACT-unpairedness of
Opt(Lf ) is less than α log2 n. By Lemma 8.4.6, Bf (5′) must contain three
xyz-supports, say a, b, and c, with a bound to x, b bound to y, and c bound
to x.

We first show that in Opt(Lf ), there can be at most α log2 n/5 bases
between a Sep domain of Lf and one of the domains x, y, or z adjacent to
the Sep domain. Otherwise, by Lemma 8.4.5, at least α log2 n bases of a
would be unpaired, and we get a contradiction. Similarly, there can be at
most α log2 n/5 bases between a Sep domain of Lf and one of the domains
a, b, or c adjacent to the Sep domain.

Since Lf is the flank of a flawed triple, either a 6= x̄, b 6= ȳ, or c 6= z̄.
First suppose that a 6= x̄. Since the set of domains is log2 n-robust, there
can be at most E − log2 n base pairs between a and x. By the argument in
the previous paragraph, x has at most α(log2 n)/5 bases to Sepxy. Similarly,
if Sepab is the separator complement between a and b, then a has at most
α(log2 n)/5 bases to Sepab. If a has base pairs with Sepxy, then x cannot
have base pairs with Sepab and vice versa, in order to avoid pseudoknots.
Therefore, either a or x has at least log2 n − α(log2 n)/5 ≥ 34(log2 n)/35
bases that are either unpaired or form intramolecular bonds. By Lemma
8.2.6, either a or x has unpairedness at least 11(log2 n)/35 ≥ (log2 n)/4,
proving the lemma. The argument when c 6= z̄ is similar to that when
a 6= x̄.

Finally, suppose that a = x̄ and c = z̄ but b 6= ȳ. As noted earlier,
b has at most α(log2 n)/5 bonds with each Sep adjacent to it. Also, at
least log2 n bases of b are not paired with y, since the set of domains is
log2 n-robust. Of these, at most αlog2n can be unpaired, or again we get a
contradiction. Therefore, b has at least log2 n − 2α(log2 n)/5 − α log2 n =
log2 n− 7α(log2 n)/5 bonds to the Sep’s adjacent to y, and so b has at least
1
2(log2 n− 7α(log2 n)/5) bonds to Sepxy.

Moreover, Sepab must have at least 6E − α log2 n(12/5) base pairs with
Sepxy. This is because Sepab has at most α(log2 n)/5 bases with each of a
and b, and Sepab has at most 3α log2 n bases paired with x. To see why
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the latter assertion holds, note that otherwise at least 3α log2 bases of a
are not paired with any strand other than a and thus by Lemma 8.2.6,
at least α log2 n bases of a are unpaired, which again is a contradiction.
Therefore, Sepab has at most α log2(2/5 + 3) pairs in total with a, x, and b,
and since at most α log2 n bases of Sepab can be unpaired, Sepab has at least
6E − α log2 n(2/5 + 3− 1) = 6E − α log2 n(12/5) base pairs with Sepxy.

Therefore the total number of bases that are paired with bases of Sepxy
is at least 1

2(log2 n − 7α(log2 n)/5) (with b) plus 6E − α log2 n(12/5) (with
Sepab). The total is

6E + log2 n(1/2− 7α/10− α(12/5)) ≥ 6E + log2 n(1/2− α(31/10)).

Since α ≤ 1/7, this quantity is greater than 6E, again a contradiction since
the length of Sepxy is 6E.

Lemma 8.4.8. If the optimal matching of I has size at most n − i, then
Opt(I ′) has P − Ω(iE) base pairs.

Proof. By Lemma 8.4.3, Opt(I ′) either has at least m − n + i/22 trim-
deprived triples, or at least i/22 flawed triples.

First suppose that Opt(I ′) has at least m − n + i/22 trim-deprived
triples. Then by Lemma 8.4.4, the strands of Opt(I ′) have ACT-unpairedness
Ω(iE). Similarly, if Opt(I ′) has at least i/22 flawed triples, then by Lemma
8.4.7, each flawed triple has ACT-unpairedness Ω(log2 n) = Ω(E), since
E = Θ(log2 n). Again, the total ACT-unpairedness is Ω(iE).

Recall that all A’s, C’s and T’s must be paired in order for the total
number of base pairs to be P . Since the total ACT-unpairedness is Ω(iE), it
must be that the number of base pairs in Opt(I ′) is at most P −Ω(iE).

Theorem 8.4.9. Multi-Pkf-SSP is NP-complete.

Proof. Let I be any instance of Multi-Pkf-SSP, i.e, m nucleic acid strands
and a positive integer k. Given a secondary structure S for I, we can
check in time polynomial in the total length of the strands whether S is a
valid, pseudoknot-free secondary structure and whether it has k base pairs.
Therefore, Multi-Pkf-SSP is in NP.

Moreover, in the last section we provided a a polynomial time reduction
from any instance I of 3dm(3) to an instance I ′ of Multi-Pkf-SSP. The
optimal structure Opt(I ′) has P base pairs if I has a perfect matching, by
Lemma 8.4.1, and Opt(I ′) has less than P base pairs if I does not have a
perfect matching (by Lemma 8.4.8), where P is the total number of A, T and
C bases of the strands of instance I ′.
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Putting these together, we can conclude that Multi-Pkf-SSP is NP-
complete.

Until now, we have only considered the number of base pairs in the
MFE structure under the assumption that there is no penalty for strand
association, i.e., Kassoc = 0. Our construction has the property that struc-
ture Opt(I ′) is a single complex when I has a perfect matching. When
Kassoc > 0 the penalty to bring the 2m+ 11n+ 1 strands into a single com-
plex is (2m + 11n)Kassoc. However, the number of base pairs formed is at
least E, the total length of the xyz-support strands, where E = Θ(log2 n).
Thus, for any positive constant Kassoc the value of E can be scaled by a
constant to ensure that a single domain binding is always favourable, even
when decreasing the number of complexes by one.

8.5 Approximability

We proved that the Multi-Pkf-SSP problem is NP-complete in Theo-
rem 8.4.9. Given this result, it is natural to investigate that if there is a
polynomial-time algorithm to approximate the optimal secondary structure
of multi-stranded systems. In this section we show that the Max-Multi-Pkf-SSP

problem is APX-hard as well — see Theorem 8.5.2. This result asserts that
there exists no PTAS for this problem, unless P = NP.

To show the hardness result, we first verify that our reduction from
Max-3dm(3), which itself is APX-hard by Theorem 8.1.2, to Max-Multi-Pkf-SSP

is a PTAS–reduction, i.e., an approximation-preserving reduction which
transforms one optimization problem into another one. For this purpose,
we map instances of Max-3dm(3) to instances of Max-Multi-Pkf-SSP
with the same polynomial time construction used for reducing 3dm(3) to
Multi-Pkf-SSP. We then prove that this construction also maps a solution
of Max-Multi-Pkf-SSP to a solution of Max-3dm(3) using Lemma 8.5.1.

Lemma 8.5.1. Our reduction from an instance I of Max-3dm(3) to an
instance I ′ of Max-Multi-Pkf-SSP yields that

• if I has a matching of size n then |Opt(I ′)| = P ;

• if I has a matching of size at most (1−ε0)n then |Opt(I ′)| ≤ P−αε0nE
where α > 0 is a constant.

Proof. This lemma directly follows from Lemmas 8.4.1 and 8.4.8.
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Given an overview of our approach, we formally prove the main result
of this section in what follows.

Theorem 8.5.2. Max-Multi-Pkf-SSP is APX-hard.

Proof. Let’s be more specific about the values of P and E. Theorem 8.2.8 as-
sures that parameter E, the length of each xyz-support domain, is Θ(log2 n).
Using our sequence design and Lemma 8.3.1, we also get that instance
I ′ includes Θ(n) + Θ(m) domains of length Θ(E). Since we are working
with instances of Max-3dm(3), we know that the number of triples in the
instance is m ≤ 3n. From all of our assumptions we can conclude that
P = Θ(n log2 n).

We now apply Lemma 8.5.1 to show APX-hardness of Max-Multi-Pkf-SSP.
Suppose by contradiction that for some ε > 0, there is a (1−ε)–approximation
algorithm for this problem. Then,

• if I of Max-3dm(3) has a matching of size n, on instance I ′ of
Max-Multi-Pkf-SSP the algorithm returns a solution with value at least
(1− ε)|Opt(I ′)| = (1− ε)P ;

• if I has a matching of size at most (1−ε0)n, on instance I ′ the algorithm
returns a solution with value at most |Opt(I ′)| ≤ P − αε0nE.

Therefore, if
P − αε0nE < (1− ε)P (8.5.1)

the algorithm can distinguish between the cases where I has a matching of
size n or of size at most (1− ε0)n. By our current assumptions about P and
E, equation 8.5.1 holds if

ε <
αε0nE

P
. (8.5.2)

This contradicts the APX-hardness of Max-3dm(3) (Theorem 8.1.2).

8.6 Conclusion

A basic question that has remained open from over three decades of work
on computational pseudoknot-free secondary structure prediction of nu-
cleic acids is: can we efficiently compute the minimum free energy (MFE)
pseudoknot-free secondary structure for a multi-set of DNA or RNA strands?
We have shown that this problem is NP-hard, and is therefore computation-
ally intractable, unless P = NP. A natural question then is whether solutions
to the problem can be efficiently approximated, if P 6= NP. Unfortunately,
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there is a limit to the accuracy of any such method. We have shown that
the optimization problem of finding the MFE structure for a multi-set of
nucleic acid strands is hard for the complexity class APX, the class of NP
optimization problems that have constant factor approximation algorithms.
The result implies that there does not exist a polynomial time approxima-
tion scheme for this problem, unless P = NP. Given these results, it suggests
that heuristic methods, such as stochastic local search, and randomized algo-
rithms should be investigated for structure prediction of multiple interacting
strands.
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Chapter 9

Summary and Future Work

9.1 Summary

Many problems of practical interest rely on continuous-time Markov chains
(CTMCs) defined over combinatorial state spaces, rendering the computa-
tion of transition probabilities, and hence probabilistic inference, difficult
or impossible with existing methods. For these problems, where classical
methods are not applicable, the main alternative has been particle Markov
chain Monte Carlo methods. In Chapter 7, we have proposed an efficient
particle-based Monte Carlo method, called TIPS, to approach inference in
CTMCs with weak assumptions on the state space using an importance
sampling approach. Our method requires a user-specified potential function
centered at the target end point and satisfying some certain conditions. We
have defined our proposal sampling based on this potential function and
proved that our proposal hits the target with probability one. We have also
showed that our method (TIPS) outperforms the forward sampling method
on nucleic acid folding pathways which is an important examples of CTMCs
and demonstrated that in a range of realistic inferential setups, our scheme
dramatically reduces the variance of the Monte Carlo approximation.

In Chapter 8, we have showed that, while efficient thermodynamics-based
approaches are well known for prediction of pseudoknot-free secondary struc-
tures of single strands, the problem of predicting pseudoknot-free secondary
structures of multiple interacting strands is computationally intractable un-
less P = NP. Our proof uses a polynomial time reduction from a variant of
3-dimensional matching to our problem Multi-Pkf-SSP. To provide this
reduction, we have designed our sequences employing code word designs with
high pairwise edit distance of Schulman and Zukerman [91]. However, we
encountered an issue in their proof and fixed it in Lemma 8.2.4. Moreover,
we have also proved that there are no polynomial time algorithms to pro-
vide an approximation for the MFE structure of a set of nucleic-acid strands
unless P = NP and therefore the problem is APX-hard as well.
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9.2 Future Work

Our work in this part of thesis can be extended as follows.

9.2.1 Nucleic Acid Folding Pathways

Parameter Tuning One caveat of our results is that our method, TIPS,
was sensitive to a range of values of the tuning parameters α and β. For
example, we simply tried different values for parameter α and found that
the accuracy of our sampling in RNA folding pathways was susceptible to
the setting of this parameter (see Figure 9.1).

We believe that the behavior of our method is sensitive to α, β, because
the sampled jump chains are typically longer in RNA folding pathways.
Intuitively, for longer folding times, the transition probabilities are more
influenced by the low probability particles or paths, as these low proba-
bility paths comprise a greater percent of all possible paths. This means
that any setting of α that heavily biases the sampled paths to be from the
region just around x and y will need to sample a large number of paths
in order to approximate the contribution of paths with a low probability.
This situation is analogous to the well-known problems in importance sam-
pling of mismatches between the proposal and actual distributions. Similar
sampling considerations apply to parameter β which controls the number of
excursions from y. If β is too restrictive, again, paths will be sampled that
do not well reflect the actual probability of excursions. Parameter tuning
is therefore an important area of future work. It might be possible to use
some automated tuners [52, 105] or to approach the problem by essentially
creating mixtures of proposals each with its own tuning parameters.

Subset Selection In Section 7.1.1, we mentioned that the choice of subset
S, a subset of secondary structures for a given nucleic acid, is an important
decision, but we didn’t argue how to choose the connected set S to optimize
the accuracy of a given subset model. In fact, there are many possible
choices of S. For example in Tang et al. [97], subset S is randomly sampled
according to the Boltzmann distribution of the structures. In Kirkpatrick et
al. [60], instead, subset S is a mixture of suboptimal structures (i.e., those
with the closest free energy to the MFE structure) and structures sampled
from the Boltzmann distribution, which is also used as our selection model
in Section 7.3. As another example, Wolfinger et al. [108] use the set of
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Figure 9.1: Tuning parameter α. Performance of our method (TIPS) using
different values of α compared to forward sampling (FS) for estimating the
folding pathway of the 1XV6 molecule on its full state space. The minimum
number of particles required to perform each sampling method is shown on
the y-axis.
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local minima or metastable structures20 and their connecting structures,
known as saddle points, as subset S. Finding the best choice of S of a given
size m that would minimize the inaccuracy of a particular subset model
is still an intractable and open problem. However, we believe the optimal
subsets have some tractable and explorable properties (such as connectivity,
probability, diversity, inclusion of saddle points, etc.), and understanding
these properties can be very helpful for modelling RNA folding pathways on
subset S. As a future work, we are interested to study the impact of these
properties in the quality of a subset.

9.2.2 Multi-stranded Nucleic Acid Secondary Structure
Prediction

Computational Experiments We proved our results using a simple en-
ergy model. Although it would seem unlikely to have an easier prediction
problem if a more complicated energy model is employed, it is still valuable
to provide some computational experiments using a realistic energy model.
For example, we are interested to run the following useful experiment: 1)
consider an arbitrary 3DM(3) matching instance, 2) reduce it using our se-
quence design algorithm in Section 8.2, and 3) use some available software
such as NUPACK [110] for predicting the MFE structure of multiple inter-
acting strands under the use of the Turner energy model. This way, e.g.,
for the small 3DM(3) instance shown in Figure 8.2, we will end up with 42
strands with a total length of 4427. Unfortunately, there is no feasible way
to conduct such an experiment at this stage, because there is no software
capable of handling so many large sequences. We also thought about simpli-
fying our experiment by calculating the MFE structure using a fixed order
of strands. However, the number of sequences and their total length are too
large to be handled by any existing software suites. Therefore, a possible
future work can be our contribution for extending the NUPACK source code
to support larger multi-stranded nucleic acid systems.

Another variant of the multi-stranded prediction problem In our
work, we studied the hardness of the general prediction problem where there
is no restriction (except pseudoknot-free constraint) on the multiple inter-
acting strands. However, we can consider another variant of the problem
where the goal is to find the MFE structure of a restricted mutli-set of

20Formally, structure x is called a local minimum if E(x) ≤ E(y) for all y ∈ N(x) where
E(x) is the free energy and N(x) is the set of all neighbours of x.
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strands, e.g., a set of strands containing only specific types of nucleotides
or a set with arbitrary edit distances (with no lower bound) between its
strands. Then, this alternative problem may be more manageable and the
hardness result may be avoided. We can investigate the complexity of this
new problem as another area of future work.
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