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Abstract

Nonvolatile memories are transforming the data center. Over the past decade, enter-
prise flash has evolved to provide a thousand times more random-access throughput
than mechanical disks, with a thousand times lower latency and ten times more ca-
pacity. These remarkable improvements completely reshape software concerns,
allowing storage systems to take a more central role in dynamic resource manage-

ment, but demanding that they do so with significantly lower overheads.

This thesis presents several novel software techniques for managing high-density
storage systems. In particular, it describes a probabilistic approach to workload
modeling that provides guaranteed error bounds while dramatically reducing mem-
ory overheads relative to existing state-of-the-art algorithms. It also documents
the design and implementation of a storage controller that leverages dynamic con-
straint satisfaction techniques to continually optimize data and network flow place-

ment for performance, efficiency, and scale.

These advances are presented within a broader design framework that provides a
flexible and robust platform for managing all aspects of storage resource alloca-
tion. Informed by experiences and insights gained over six years of building an
enterprise scale-out storage appliance, it is based on three key ideas: light-weight
abstraction to decouple logical resources from physical hardware, online analysis
to capture workload requirements, and dynamic actuation to adjust allocations as
requirements change. Together, these capabilities allow storage software to dy-
namically adapt to changing workload behavior and allow stored data to play a

more active role in data center computing.
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Lay Summary

Most data center storage systems were originally designed to manage mechanical
disks, which are some of the slowest hardware components in general comput-
ing. Enterprise flash devices and other nonvolatile memories have emerged over
the past decade that are so much faster than disks that existing storage software
simply cannot keep up. These devices call for new design approaches that provide
efficient request processing to avoid costly performance penalties while also sup-
porting dynamic resource management to ensure high hardware utilization. This
thesis describes a system architecture and several novel software techniques that
together provide this efficiency and dynamism, allowing application software to

fully leverage the impressive capabilities of these new devices.
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Preface

Chapters 3, 4, and 5 are versions of papers published at peer-reviewed academic

conferences. They have been lightly edited for formatting.

Chapter 3

A version of Chapter 3 was published at FAST, the Usenix Conference on File and
Storage Technologies, in 2014 [34]. This was a joint work with several authors. As
the second author, I made significant contributions in building the system, evaluat-

ing the results, and composing the manuscript.

Chapter 4

A version of Chapter 4 was published at OSDI, the Usenix Conference on Op-
erating Systems Design and Implementation, also in 2014 [122]. As the primary
author, I set the research agenda, contributed to the implementation, evaluated the
results, and presented the work. My coauthors contributed to the implementation

and manuscript composition.
Chapter 5

A version of Chapter 5 was published at FAST in 2017 [120]. I was the primary
author and researcher, responsible for all aspects of implementation and evaluation.
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Chapter 1

Introduction

This thesis documents more than five years of experience building an enterprise
storage appliance. The period it describes was one of remarkable hardware innova-
tion, in which nonvolatile memories improved on the performance of mechanical
disks by more than three orders of magnitude. It is a rare and exciting thing for
computer scientists to witness such a dramatic transformation in such a short time.
In this case, however, the advances came with a new set of problems, as existing
software techniques proved ill-equipped to fully leverage new hardware capabili-
ties. This work details some of the key challenges we faced in building a storage
system designed specifically for fast, nonvolatile memories. In particular, it de-
scribes a system architecture suitable for new low-latency devices, and it presents
several novel software techniques for obtaining high utility from these devices. It
additionally presents a model for system design that is broadly applicable to many
services within the data center. This model can be summarized by three key capa-
bilities: light-weight abstraction of hardware to provide programmatic control of
resource allocation, online analysis of workload behavior to provide insight into
performance requirements, and dynamic actuation to adjust resource allocations
as requirements change. Together, these capabilities yield robust, flexible systems.
The chapters that follow, which are edited versions of published conference papers,

detail how these capabilities are implemented in our production storage system.



For much of the history of computing, persistent storage has been provided by me-
chanical devices. From index cards to magnetic tape and finally rotating platters,
the operating constraints of persistent media are limited by the physics of mo-
tion in a way that transistor-based technologies like RAM and CPUs are not. The
difference is significant: while it takes roughly 100 nanoseconds to read a byte
from main memory in a modern system, it takes nearly 10 milliseconds (i.e., about
100,000 times longer) to read the same byte from an enterprise-class disk. This
vast disparity is commonly known as the 10 gap, and it underpins many of the
design assumptions in modern systems, affecting everything from the caching and

prefetching strategies of operating systems to the on-disk layouts of file systems.

In the context of data center storage systems, this disparity has motivated aggre-
gated designs that place many disks behind a single network-accessible controller.
While this approach is suitable for spinning disks, it is a poor fit for new nonvolatile
memories. Enterprise NVMe flash drives today can serve sequential read workloads
at rates of 2.8 GiB per second, and they will only grow faster as hardware paral-
lelism continues to increase. At these rates, the PCle channel capacity provided by
modern CPUs becomes a limiting factor, making single-head controllers impracti-
cal. At the same time, commodity NVMe drives exhibit access latencies as low as
20 microseconds, and NVDIMM-based alternatives like Intel’s 3DXPoint reduce la-
tencies even further. This exposes significant software inefficiencies as overheads
that were once negligible compared to the millisecond response times of mechani-

cal disks dominate overall request processing times on modern hardware.

Chapter 3 details our solution to these problems. Strata is a network-attached stor-
age system that eliminates network and controller bottlenecks by presenting flash
devices directly over the network and distributing controller logic across multiple
compute nodes. Strata employs three key techniques to make this possible. First,
it virtualizes storage devices, providing an idealized software interface that ex-
poses sparse, virtual address spaces, allowing safe sharing among multiple clients.
Second, it cleanly separates addressing from placement. Address resolution is
delegated to clients via a lightweight library that provides direct access to virtual
address spaces, while a centralized placement service controls the assignment of

virtual address spaces to physical devices. This provides a decentralized, low-



overhead data path while allowing coordinated responses to load imbalances and
hardware configuration changes. Finally, Strata leverages software defined net-
working to provide a scalable protocol presentation layer in support of legacy data

center clients.

Strata provides the infrastructure required to support well-balanced deployments of
storage, network, and compute, which is key to preventing any one of these com-
ponents from becoming a bottleneck. It also augments native hardware interfaces
with just enough software functionality to support safe multiplexing and dynamic
resource allocation without introducing prohibitive overheads, much in the same
way that CPU virtualization makes it possible to efficiently share expensive proces-
sors among multiple independent compute tasks. As a result, Strata performance
scales linearly with the number of available devices. However, the decentralized
architecture required to achieve this scalability adds significant engineering com-
plexity, introducing the need for robust consensus and fencing mechanisms, among
other things. Building this functionality into an enterprise storage product was a

considerable undertaking that took hundreds of developer-years to complete.

By design, Strata eliminates performance bottlenecks through balanced hardware
provisioning. The monetary cost of this provisioning, however, is beyond Strata’s
control, and the market price of NVvMe devices is such that a single card can cost
as much as the combined network and compute resources with which it is pack-
aged. In other words, because the manufacturing processes of different components
advance at different rates, provisioning systems with balanced performance capa-
bilities can lead to significant imbalances in component costs. The best way to
mitigate the effect of this imbalance on the overall cost of the system is to avoid
over-provisioning expensive devices and to ensure that they achieve high utiliza-
tion. This turns out to be a challenging problem for storage systems because uti-
lization must be measured across many orthogonal dimensions, including storage

and network capacity, processing power, and device queue depths.

To take just one example, storage workloads frequently exhibit access patterns that
are heavily skewed towards a small proportion of their overall data sets. Serv-

ing such workloads entirely from expensive solid state devices incurs a high op-



portunity cost, because much of the devices’ capabilities may be wasted storing
idle data. In these cases, it may be preferable to place cold, infrequently-accessed
data on cheaper, more capacious media in order to make space for hot data from
other workloads. The ability to split workloads across heterogeneous devices in
this manner makes it possible to allocate performance and capacity resources in-
dependently, which in turn presents opportunities for improving the utilization of
high-performance media. In fact, these opportunities exist across the entire mem-
ory hierarchy, which will continue to combine devices with dramatically different
performance, capacity, and cost characteristics long after mechanical disks become
a thing of the past. For example, technologies like NvDIMM, 3D XPoint, and phase
change memory present trade-offs in price, latency, and capacity that are almost as

substantial as those between SSDs and disks.

Determining the optimal allocation for a particular workload is not trivial, however.
To begin with, it is difficult to arrive at a wholly satisfying definition of ‘optimal’
in this context. But setting that aside for the moment, even simply identifying hot
data can be computationally expensive. Given modern hardware, a single stor-
age workload may be capable of generating hundreds of thousands of requests per
second across billions of unique addresses — and it may remain active for weeks,
months, or even years on end. The effort involved in analyzing such voluminous
request streams can be immense. Indeed, shortly after we began investigating how
we might improve flash utilization in Strata, we ran into exactly this problem: ap-
plying classical stack distance analysis techniques to a week-long storage trace of
just a handful of machines required roughly an hour of compute time and 92 GiB
of RAM. This was inconvenient for our research, but downright prohibitive for use

in production.

Chapter 4 presents a novel locality analysis technique we developed that is compu-
tationally tractable even for very large workloads. The technique leverages prob-
abilistic data structures called counter stacks to enable approximate LRU stack
distance analysis with sublinear memory overheads. This represents a significant
improvement over the previous state of the art, allowing us to analyze the above-
mentioned week-long trace in under twenty minutes with just 80 MiB of RAM (less

than a tenth of a percent of what was previously required). Counter stacks improve

4



on existing analysis techniques in two additional ways. First, they make it possi-
ble to analyze how workload locality changes over time, revealing phase changes
and other temporal patterns that can be exploited to improve performance and ef-
ficiency. Second, they allow us to model how workloads interact with each other
on shared storage. For example, we can quickly calculate the degree to which
unrelated workloads would interfere with each other if placed on the same de-
vice, allowing us to make informed decisions when distributing data across storage

nodes.

Counter stacks get their name from the cardinality counters they rely on to track
data references over time. By combining knowledge of the unique addresses ac-
cessed over various time windows with a record of the total number of requests
over the same windows, counter stacks give an indication of a workload’s temporal
locality. For the sake of practicality, counter stacks use approximate counters that
belong to a class of streaming algorithms and data structures designed for process-
ing very large data sets. Streaming algorithms often trade accuracy for efficiency
and are well-suited for scenarios where imperfect results can be tolerated. For
example, they enable efficient estimation of join sizes when optimizing database
queries, and they support anomaly detection of traffic patterns in large networks.
We suspect that with a bit of creativity, they will prove useful for analyzing and
tuning many other aspects of system performance in unforeseen ways; indeed,
cardinality sketches form the basis of another data structure we recently devel-
oped for measuring implicit sharing among copy-on-write snapshots. Investigat-
ing further opportunities for integrating streaming algorithms into high-throughput,

performance-sensitive systems is a promising direction for future research.

Counter stacks enable a degree of continuous workload analysis that was previ-
ously impractical. The visibility they provide into capacity and performance re-
quirements help to inform decisions about how to distribute data across heteroge-
neous devices. However, these are just two of a large number of criteria that must
be considered when allocating system resources. Other salient examples include
the need to maintain hardware redundancy for replicated data and the desire to bal-
ance network load across available links. In fact, in a disaggregated, heterogeneous

system like Strata, deciding how best to accommodate all of these objectives is in



itself a challenging problem, especially since, in some circumstances, one objective
may directly contradict another. This is an important problem, however, because
poor decisions can have calamitous effects on system performance, reliability, and

efficiency.

Chapter 5 describes Mirador, a dynamic resource management service designed
for network-attached storage systems. Informed by the detailed profiling and anal-
ysis made possible by counter stacks and leveraging the device and protocol virtu-
alization provided by Strata, Mirador strives to achieve high hardware utilization
and system availability by dynamically migrating workloads in response to chang-
ing requirements. In many ways, it can be likened to the centralized controllers
of traditional aggregated storage systems: it maintains a global view of resource
utilization and workload behavior and it provides a unified control path for manag-
ing resource allocation. It is more sophisticated than typical controllers, however,
because its purview includes the entire back-end storage network: it controls how
client connections are routed to storage servers as well as how data is placed on
available devices. Moreover, it takes an unconventionally proactive approach to
resource management, continually seeking adjustments that might improve per-
formance and utility. This approach is made feasible by the high random-access
bandwidth of solid state devices, which dramatically lowers the performance cost

of migrating data relative to spinning disks.

Managing the many moving parts of a large system like Strata is complicated. Even
simply formulating an allocation policy that is suitable for all possible contingen-
cies is a challenging task. The configuration space is large and multidimensional,
and attempting to anticipate every potential corner case is time-consuming and
error-prone. Mirador addresses this complexity by providing a framework for cod-
ifying policies as a collection of simple, independent objective functions, each of
which describes an allocation strategy for a single resource. Objective functions
are assigned numerical costs that induce a priority ordering for situations where
not all goals can be met. Mirador combines these objective functions with es-
tablished optimization techniques to efficiently search the configuration space for
preferable alternatives while maintaining the invariants necessary to guarantee re-

siliency. This approach has a number of appealing properties. It allows domain ex-



perts to define specific allocation goals without prescribing how the system should
behave as a whole. It naturally supports incremental updates to allocation policies
so that new classes of workloads and hardware can be more easily accommodated.
And it makes the system more robust to workload hot spots and hardware faults by

facilitating continuous, dynamic optimization.

Strata’s design eliminates network and controller hardware as performance bottle-
necks, but it cannot eliminate the more general problem of resource scarcity. For
example, as deployments expand across racks, top-of-rack switching becomes a
limited resource that must be allocated frugally. Mirador addresses this particular
problem by leveraging its knowledge of the relative availability of local and remote
bandwidth (as codified by policy objective functions) to coordinate the migration
of data and client connections in order to avoid cross-rack traffic. But more im-
portant than the specific balance that Strata and Mirador strike with the current
generation of hardware is the support they provide for dynamically responding to

resource scarcity and workload imbalances in general.

Figure 1.1 presents a schematic overview of how the three components described
in this thesis work together to achieve this level of dynamism. By providing
carefully-considered software abstractions — both in virtualizing hardware to de-
couple logical resources from the underlying physical devices, and in cleanly sepa-
rating control- and data-path logic — Strata provides flexible, programmatic control
of storage and network resources. By enabling efficient, accurate working set anal-
ysis techniques, counter stacks provide insight into the performance and capacity
requirements of client workloads in live systems. And by leveraging these capabil-
ities to actuate system-level responses to shifting resource consumption, Mirador

is able to continuously optimize for performance, efficiency, and reliability.

Indeed, the central claim of this thesis is that data center storage systems — and
most data center services in general — should be carefully designed to enable flex-
ible, robust, and dynamic responses to changes in both workload behavior and
hardware capabilities. In a large, multi-tenant environment like a data center, di-
verse and varying workload behavior is inevitable. And as evidenced by the revo-

lutionary advances of storage devices over the past few years, even long-standing
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Figure 1.1: Schematic overview of system contributions (see § 1.1 and Chapter 6 for
more details about Decibel)

assumptions about the relative performance of hardware components must be re-
considered from time to time. Consequently, robust systems should be capable of
automatically adapting to changes across all of these dimensions, both at the scale
of scheduling epochs and hardware life cycles. We demonstrate in the follow-
ing chapters how abstraction, analysis, and actuation can be combined to provide
this responsiveness in a decentralized storage system with exacting performance
requirements. More generally, we believe that these capabilities provide a sound
framework for a broad class of data center services as workloads and hardware

continue to evolve.

1.1 Publications

The work presented in this thesis is based on a selection of three closely-related
publications. Below I present the complete list of research papers to which I con-

tributed over the course of my studies.



Strata is our scale-out storage architecture for fast nonvolatile memories [34].

Mirador codifies allocation policies as individual objective functions and uses es-
tablished constraint satisfaction techniques to continually optimize the placement

of data and network flows in Strata [120].

Decibel extends the work of Strata to present a new volume abstraction that man-
ages compute and network resources to provide contention-free request processing

for ultra low-latency devices [85].

Counter Stacks are a novel probabilistic data structure for recording working sets
over time. They enable the calculation of miss ratio curves with sublinear memory

overheads, a dramatic improvement over the previous state of the art [122].

Approximating Hit Rate Curves Using Streaming Algorithms is a companion
paper that presents a thorough analysis of the accuracy and computational com-

plexity of counter stacks [41].

Ownership Sketches are a novel data structure, inspired by counter stacks, that

enable efficient tracking of implicit sharing in copy on write snapshots [123].

MapFS explores the possibility of exposing file system address space mappings
to userspace by providing efficient splice operations on file data [121]. This work

helped motivate the flexible addressing schemes provided by Strata.

Capo demonstrates how local disks can be used as client-side caches to reduce
load on shared storage servers [101]. It also stands as an early example of the

data-driven design approach that ultimately led to counter stacks.

Dovetail presents a framework for safely upgrading on-disk data structures in cloud
storage platforms while minimizing the impact on client workloads [82]. Its sup-
port for non-disruptive system reconfiguration was a precursor to the dynamic re-

source management provided by Mirador.

Block Mason is a virtual block device framework that supports modular, stackable
userspace implementations for enhanced flexibility and portability [81]. Its com-

posable data path served as a model for Strata’s request dispatching architecture.



Chapter 2
Nonvolatile Memory

The reign of spinning disks as the predominant technology in enterprise storage is
coming to an end. While hard drives have stagnated because of physical limitations
on rotational speed, nonvolatile technologies like NAND flash and phase change
memory (PCM) have flourished, bridging the gap between RAM and disk. NAND
flash, long common in cameras and mobile phones, has recently become a viable
alternative to magnetic disks thanks to dramatic improvements in performance, re-
liability, and affordability: enterprise flash devices today provide random-access
throughput that is a thousand times greater than mechanical disks at latencies that
are a thousand times lower, while remaining cost-competitive with their rotating
counterparts. Emerging technologies like phase change and spin-transfer torque
memories avoid transistor scaling difficulties by using entirely different physical-
chemical mechanisms to provide bit storage, promising additional performance
and endurance improvements. The impact of these innovations can be broadly cat-
egorized according to three trends, each of which is changing the data center in
important ways. First, increased performance density has effectively inverted the
10 gap, violating many of the assumptions behind conventional storage designs.
Second, increased capacity density is placing new demands on device connectiv-
ity and raising serious concerns about failure recovery times. And third, reduced

power and space requirements are altering the physical and logistical constraints
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of hardware deployment. These advances solve many long-standing problems in

storage design, but they also present new challenges.

Perhaps the most remarkable characteristic of nonvolatile memories is their radical
performance density. The difference relative to magnetic disks in this regard is re-
ally one of kind rather than degree. By eliminating the mechanical component of
storage hardware, solid state technologies remove the single largest contributor to
the 10 gap. This reduces access times in absolute terms, but, more importantly, it
does away with the armature movement and rotational latency that together impose
additive, millisecond-granularity penalties under random-access workloads. This
makes spatial locality much less important than it used to be, allowing nonvolatile
memory to be virtualized without significant performance degradation. Indeed,
flash firmware does just this in the translation layers that manage erase cycles and
provide wear levelling, as does storage software in providing deduplication to in-
crease effective capacity. High random-access throughput also makes it feasible
to migrate data to balance load and improve efficiency without affecting primary

workloads, allowing stored data to play a much more active role in computation.

This increase in performance density has been enabled in part by the migration of
storage devices onto wider, faster interfaces as nonvolatile memories have moved
from SAS and SATA buses to PCIe and DIMM alternatives that provide higher through-
put at much lower latency. In fact, the latency of modern PCle flash devices is so
low that avoiding processing overhead has become a significant challenge. A simi-
lar trend has emerged in networking software as commodity Ethernet transmission
rates have increased by a thousandfold, from 100 megabits per second in 1995 to
100 gigabits per second today. But the transformation has been more profound for
storage systems, which have become a million times faster over the same period.
This has important consequences for storage software, which can no longer as-
sume that processing is effectively free but must instead contend with nanosecond

request deadlines.

In addition to offering lower latency, the increased parallelism of PCIe devices
makes it easier to share hardware among many workloads. The NvVMe specifica-

tion allows up to 65,000 queues per device, and while few vendors actually provide
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anywhere near this many, most offer enough to make it possible to completely parti-
tion data structures, interrupt handling, and request processing across cores without
any need for thread synchronization. Exposing this parallelism directly to software
layers inverts the traditional model of a single elevator scheduler mediating access

to multiple spindles, but it is crucial for achieving full device saturation.

The increasing capacity density of nonvolatile memories, while perhaps less spec-
tacular than the coincident performance improvements, is also changing the data
center in important ways. Although magnetic disk capacity has plateaued at about
10 TB, with shingled magnetic recording offering further marginal improvements
suitable primarily for read-mostly workloads, nonvolatile memory capacity is in-
creasing at a steady pace. Transistor-based media like NAND flash continue to ben-
efit from die process improvements that lead to smaller, denser memories at a rate
roughly in line with Moore’s Law, even as processors have already pushed these
gains close to the limit. Additional innovations like multi-level cells on NAND flash
and the three-dimensional circuit layouts of 3D XPoint lead to even further capac-
ity gains, although often at the expense of increased bit error rates and reduced
write performance. Thanks to these advances, the single-device capacity of non-
volatile memories will soon surpass that of spinning disks by more than an order

of magnitude.

This capacity density poses new challenges, however. Modern enterprise CPU mi-
croarchitectures like Intel’s Skylake series provide around 40 PCIe lanes per con-
troller hub. In a typical network-facing server, roughly half of these might be
dedicated to NICs, leaving only twenty lanes to connect to storage hardware. This
means that PCle switching is needed to host even a moderate number of NvMe
devices (which consume four lanes each) in a single machine. Under these con-
straints, PCIe throughput quickly becomes an issue as device capacity scales. Given
their compact size, it is not unreasonable to imagine hosting upwards of 32 flash
cards in a single 1U server; at 128 TB per device, this would mean exposing 4 PB
of storage over PCIe lanes with a combined throughput of just 200 GB/sec, severely
limiting overall data access rates. This problem extends beyond individual hosts
as well: links between top-of-rack switches are typically oversubscribed at a ratio

of three or four to one, presenting another potential bottleneck. Capacious devices
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also present new difficulties in maintaining data resiliency. Repairing redundancy
when multi-terabyte devices fail can be time-consuming, increasing exposure to
permanent data loss. These factors put new demands on storage software, which
must place data carefully to mitigate transport bottlenecks and arrange for fast re-

covery times.

These performance and capacity gains come with significant reductions in power
consumption and physical size. Because nonvolatile memories contain no mov-
ing parts, they consume only around half a watt when idle, and twice that under
load. Rotating disks, on the other hand, consume around 5 watts per spindle when
idle, and twice that again under load. Furthermore, opportunistic efforts to reduce
power consumption by powering down idle disks are generally impractical without
advanced knowledge of workload patterns, because disks take seconds to spin back
up. Combined with the fact that large arrays of spindles are typically required to
achieve even moderate random-access performance, this places tremendous bur-
dens on data center power and cooling systems. At the same time, nonvolatile
memories can be packaged much more compactly than spinning platters. For ex-
ample, thanks to new form factors like M.2, it is reasonable to imagine a single 2U
enclosure providing adequate flash storage for an entire rack of machines, replacing
many hundreds of disks in so doing. Along with the performance and capacity den-
sity described above, this physical compactness makes disaggregated architectures

a much more natural fit for nonvolatile memories than traditional SAN designs.

Nonvolatile memories provide orders of magnitude more performance and capac-
ity than mechanical disks while requiring substantially less power and physical
space. In so doing, they completely reshape storage software concerns. Rather
than batching requests to avoid seeks, software must restrict processing times to
microseconds or less. Rather than aggregating disk arrays to increase parallelism,
systems need to expose individual device queues with minimal cross-core syn-
chronization. Rather than uniformly distributing data across spindles, controllers
should consider migrating data in response to load imbalances and hot spots. In
short, storage software needs to become significantly more efficient, flexible, and
dynamic if it is to fully realize the potential of these exciting new hardware tech-

nologies.
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Chapter 3

Strata: Scalable
High-Performance Storage on
Virtualized Non-Volatile Memory

A version of this chapter was published at the 12th USENIX Conference on File
and Storage Technologies in 2014 [34].

3.1 Introduction

Flash-based storage devices are fast, expensive, and demanding: a single device
is capable of saturating a 10Gb/s network link (even for random 10), consuming
significant CPU resources in the process. That same device may cost as much as
(or more than) the server in which it is installed!. The cost and performance char-
acteristics of fast, non-volatile media have changed the calculus of storage system
design and present new challenges for building efficient and high-performance dat-

acenter storage.

Enterprise-class PCle flash drives in the 1TB capacity range currently carry list prices in the
range of $3-5K USD. Large-capacity, high-performance cards are available for list prices of up to
$160K.
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This chapter describes the architecture of a commercial flash-based network-attached
storage system, built using commodity hardware. In designing the system around
PCle flash, we begin with two observations about the effects of high-performance
drives on large-scale storage systems. First, these devices are fast enough that in
most environments, many concurrent workloads are needed to fully saturate them,
and even a small degree of processing overhead will prevent full utilization. Thus,
we must change our approach to the media from aggregation to virtualization. Sec-
ond, aggregation is still necessary to achieve properties such as redundancy and
scale. However, it must avoid the performance bottleneck that would result from
the monolithic controller approach of a traditional storage array, which is designed
around the obsolete assumption that media is the slowest component in the system.
Further, to be practical in existing datacenter environments, we must remain com-
patible with existing client-side storage interfaces and support standard enterprise

features like snapshots and deduplication.

Layer name, core abstraction, and responsibility: Implementation in Strata:
Protocol Virtualization Layer (§6) Scalable NFSv3
Scalable Protocol Presentation Presents a single external NFS IP address, integrates with SDN
Responsibility: Allow the transparently scalable implementation of switch to transparently scale and manage connections across
traditional IP- and Ethernet-based storage protocols. controller instances hosted on each microArray.
Global Address Space Virtualization Layer (§3,5) libDataPath
Delegated Data Paths NFSv3 instance on each microarray links as a dispatch library.
Responsibility: Compose device level objects into richer storage Data path descriptions are read from a cluster-wide registry
primitives. Allow clients to dispatch requests directly to NADs and instantiated as dispatch state machines. NFS forwards
while preserving centralized control over placement, requests through these SMs, interacting directly with NADs.
reconfiguration, and failure recovery. Central services update data paths in the face of failure, etc.
Device Virtualization Layer (§4) CLOS (Coho Log-structured Object Store)
Network Attached Disks (NADs) Implements a flat object store, virtualizing the PCle flash
Responsibility: Virtualize a PCle flash device into multiple address device’s address space and presents an OSD-like interface to
spaces and allow direct client access with controlled sharing. clients.

Figure 3.1: Strata network storage architecture

In this chapter we explore the implications of these two observations on the design
of a scalable, high-performance NFSv3 implementation for the storage of virtual
machine images. Our system is based on the building blocks of PCIe flash in com-
modity x86 servers connected by 10 gigabit switched Ethernet. We describe two
broad technical contributions that form the basis of our design:

1. A delegated mapping and request dispatch interface from client data to phys-

ical resources through global data address virtualization, which allows clients

15



to directly address data while still providing the coordination required for

online data movement (e.g., in response to failures or for load balancing).

2. SDN-assisted storage protocol virtualization that allows clients to address a
single virtual protocol gateway (e.g., NFS server) that is transparently scaled
out across multiple real servers. We have built a scalable NFS server using
this technique, but it applies to other protocols (such as iSCSI, SMB, and
FCOE) as well.

At its core, Strata uses device-level object storage and dynamic, global address-
space virtualization to achieve a clean and efficient separation between control
and data paths in the storage system. Flash devices are split into virtual address
spaces using an object storage-style interface, and clients are then allowed to di-
rectly communicate with these address spaces in a safe, low-overhead manner. In
order to compose richer storage abstractions, a global address space virtualization
layer allows clients to aggregate multiple per-device address spaces with mappings
that achieve properties such as striping and replication. These delegated address
space mappings are coordinated in a way that preserves direct client communi-
cations with storage devices, while still allowing dynamic and centralized control

over data placement, migration, scale, and failure response.

Serving this storage over traditional protocols like NFS imposes a second scalabil-
ity problem: clients of these protocols typically expect a single server 1P address,
which must be dynamically balanced over multiple servers to avoid being a perfor-
mance bottleneck. In order to both scale request processing and to take advantage
of full switch bandwidth between clients and storage resources, we developed a
scalable protocol presentation layer that acts as a client to the lower layers of our
architecture, and that interacts with a software-defined network switch to scale the
implementation of the protocol component of a storage controller across arbitrar-
ily many physical servers. By building protocol gateways as clients of the address
virtualization layer, we preserve the ability to delegate scale-out access to device
storage without requiring interface changes on the end hosts that consume the stor-

age.
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3.2 Architecture

The performance characteristics of emerging storage hardware demand that we
completely reconsider storage architecture in order to build scalable, low-latency
shared persistent memory. The reality of deployed applications is that interfaces
must stay exactly the same in order for a storage system to have relevance. Strata’s
architecture aims to take a step toward the first of these goals, while keeping a

pragmatic focus on the second.

Figure 3.1 characterizes the three layers of Strata’s architecture. The goals and
abstractions of each layer of the system are on the left-hand column, and the con-
crete embodiment of these goals in our implementation is on the right. At the base,
we make devices accessible over an object storage interface, which is responsible
for virtualizing the device’s address space and allowing clients to interact with in-
dividual virtual devices. This approach reflects our view that system design for
these storage devices today is similar to that of CPU virtualization ten years ago:
devices provide greater performance than is required by most individual work-
loads and so require a lightweight interface for controlled sharing in order to allow
multi-tenancy. We implement a per-device object store that allows a device to be
virtualized into an address space of 2'?® sparse objects, each of which may be up
to 26% bytes in size. Our implementation is similar in intention to the 0SD specifi-
cation, itself motivated by network attached secure disks [50]. While not broadly
deployed to date, device-level object storage is receiving renewed attention today
through pNFS’s use of OSD as a backend, the NVMe namespace abstraction, and
in emerging hardware such as Seagate’s Kinetic drives [99]. Our object storage
interface as a whole is not a significant technical contribution, but it does have
some notable interface customizations described in § 3.4. We refer to this layer as
a Network Attached Disk, or NAD.

The middle layer of our architecture provides a global address space that supports
the efficient composition of /0O processors that translate client requests on a vir-
tual object into operations on a set of NAD-level physical objects. We refer to the
graph of 10 processors for a particular virtual object as its data path, and we main-

tain the description of the data path for every object in a global virtual address
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map. Clients use a dispatch library to instantiate the processing graph described
by each data path and perform direct 10 on the physical objects at the leaves of
the graph. The virtual address map is accessed through a coherence protocol that
allows central services to update the data paths for virtual objects while they are
in active use by clients. More concretely, data paths allow physical objects to be
composed into richer storage primitives, providing properties such as striping and
replication. The goal of this layer is to strike a balance between scalability and
efficiency: it supports direct client access to device-level objects, without sacrific-
ing central management of data placement, failure recovery, and more advanced

storage features such as deduplication and snapshots.

Finally, the top layer performs protocol virtualization to allow clients to access
storage over standard protocols (such as NFS) without losing the scalability of di-
rect requests from clients to NADs. The presentation layer is tightly integrated with
a 10Gb software-defined Ethernet switching fabric, allowing external clients the
illusion of connecting to a single TCP endpoint, while transparently and dynami-
cally balancing traffic to that single 1P address across protocol instances on all of
the NADs. Each protocol instance is a thin client of the layer below, which may
communicate with other protocol instances to perform any additional synchroniza-

tion required by the protocol (e.g., to maintain NFS namespace consistency).

The mapping of these layers onto the hardware that our system uses is shown in
Figure 3.2. Requests travel from clients into Strata through an OpenFlow-enabled
switch, which dispatches them according to load to the appropriate protocol han-
dler running on a MicroArray (UArray) — a small host configured with flash de-
vices and enough network and CPU to saturate them, containing the software stack
representing a single NAD. For performance, each of the layers is implemented as
a library, allowing a single process to handle the flow of requests from client to
media. The NFSv3 implementation acts as a client of the underlying dispatch layer,
which transforms requests on virtual objects into one or more requests on physi-
cal objects, issued through function calls to local physical objects and by RPC to
remote objects. While the focus of the rest of this chapter is on this concrete imple-
mentation of scale-out NFS, it is worth noting that the design is intended to allow

applications the opportunity to link directly against the same data path library that
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the NFS implementation uses, resulting in a multi-tenant, multi-presentation stor-

3.2.1 Scope of this Work

19

age system with a minimum of network and device-level overhead.

There are three aspects of our design that are not considered in detail within this
presentation. First, we only discuss NFS as a concrete implementation of protocol
virtualization. Strata has been designed to host and support multiple protocols and
tenants, but our initial product release is specifically NFSv3 for VMware clients,
so we focus on this type of deployment in describing the implementation. Second,
Strata was initially designed to be a software layer that is co-located on the same

physical servers that host virtual machines. We have moved to a separate physical



hosting model where we directly build on dedicated hardware, but there is nothing
that prevents the system from being deployed in a more co-located (or “converged”)
manner. Finally, our full implementation incorporates a tier of spinning disks on
each of the storage nodes to allow cold data to be stored more economically behind
the flash layer. However, in this chapter we configure and describe a single-tier, all-

flash system to simplify the exposition.

In the next sections we discuss three relevant aspects of Strata—address space
virtualization, dynamic reconfiguration, and scalable protocol support—in more
detail. We then describe some specifics of how these three components interact in
our NFSv3 implementation for VM image storage before providing a performance

evaluation of the system as a whole.

3.3 Data Paths

Strata provides a common library interface to data that underlies the higher-level,
client-specific protocols described in § 3.6. This library presents a notion of vir-
tual objects, which are available cluster-wide and may comprise multiple physical
objects bundled together for parallel data access, fault tolerance, or other reasons
(e.g., data deduplication). The library provides a superset of the object storage
interface provided by the NADs (§ 3.4), with additional interfaces to manage the
placement of objects (and ranges within objects) across NADs, to maintain data
invariants (e.g., replication levels and consistent updates) when object ranges are
replicated or striped, and to coordinate both concurrent access to data and concur-

rent manipulation of the virtual address maps describing their layout.

To avoid 10 bottlenecks, users of the data path interface (which may be native
clients or protocol gateways such as our NFS server) access data directly. To do so,
they map requests from virtual objects to physical objects using the virtual address
map. This is not simply a pointer from a virtual object (id, range) pair to a set
of physical object (id, range) pairs. Rather, each virtual range is associated with
a particular processor for that range, along with processor-specific context. Strata

uses a dispatch-oriented programming model in which a pipeline of operations is
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performed on requests as they are passed from an originating client, through a set
of transformations, and eventually to the appropriate storage device(s). Our model
borrows ideas from packet processing systems such as X-Kernel [60], Scout [84],
and Click [69], but adapts them to a storage context, in which modules along the
pipeline perform translations through a set of layered address spaces, and may fork

and/or collect requests and responses as they are passed.

The dispatch library provides a collection of request processors, which can stand
alone or be combined with other processors. Each processor takes a storage re-
quest (e.g., a read or write request) as input and produces one or more requests
to its children. NADs expose isolated sparse objects; processors perform transla-
tions that allow multiple objects to be combined for some functional purpose, and
present them as a single object, which may in turn be used by other processors. The
idea of request-based address translation to build storage features has been used in
other systems [74, 75, 80], often as the basis for volume management; Strata disen-
tangles it from the underlying storage system and treats it as a first-class dispatch

abstraction.

The composition of dispatch modules bears similarity to Click [69], but the ap-
plication in a storage domain carries a number of differences. First, requests are
generally acknowledged at the point that they reach a storage device, and so as a
result they differ from packet forwarding logic in that they travel both down and
then back up through a dispatch stack; processors contain logic to handle both re-
quests and responses. Second, it is common for requests to be split or merged as
they traverse a processor — for example, a replication processor may duplicate a
request and issue it to multiple nodes, and then collect all responses before pass-
ing a single response back up to its parent. Finally, while processors describe fast,
library-based request dispatching logic, they typically depend on additional facil-
ities from the system. Strata allows processor implementations access to APIs for
shared, cluster-wide state which may be used on a control path to, for instance,
store replica configuration. It additionally provides facilities for background func-
tionality such as NAD failure detection and response. The intention of the processor
organization is to allow dispatch decisions to be pushed out to client implementa-

tions and be made with minimal performance impact, while still benefiting from
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common system-wide infrastructure for maintaining the system and responding to
failures. The responsibilities of the dispatch library are described in more detail in

the following subsections.

3.3.1 The Virtual Address Map

/objects/112:
type=regular dispatch={object=111
type=dispatch}

/objects/111:
type=dispatch
stripe={stripecount=8 chunksize=524288
0={object=103 type=dispatch}
1={object=104 type=dispatch}}

/objects/103:
type=dispatch
rpl={policy=mirror storecount=2
{storeid=a98f2... state=in-sync}
{storeid=fc89f... state=in-sync}}

Figure 3.3: Virtual object to physical object range mapping

Figure 3.3 shows the relevant information stored in the virtual address map for a
typical object. Each object has an identifier, a type, some type-specific context, and
may contain other metadata such as cached size or modification time information

(which is not canonical, for reasons discussed below).

The entry point into the virtual address map is a regular object. This contains no
location information on its own, but delegates to a top-level dispatch object. In
Figure 3.3, object 112 is a regular object that delegates to a dispatch processor
whose context is identified by object 111 (the IDs are in reverse order here because
the dispatch graph is created from the bottom up, but traversed from the top down).
Thus when a client opens file 112, it instantiates a dispatcher using the data in
object 111 as context. This context informs the dispatcher that it will be delegating
10 through a striped processor, using 2 stripes for the object and a stripe width of
512K. The dispatcher in turn instantiates 8 processors (one for each stripe), each

configured with the information stored in the object associated with each stripe
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(e.g., stripe 0 uses object 103). Finally, when the stripe dispatcher performs 10 on
stripe 0, it will use the context in the object descriptor for object 103 to instantiate
a replicated processor, which mirrors writes to the NADs listed in its replica set,
and issues reads to the nearest in sync replica (where distance is currently simply

local or remote).

In addition to the striping and mirroring processors described here, the map can
support other more advanced processors, such as erasure coding, or byte-range
mappings to arbitrary objects (which supports among other things data deduplica-

tion).

3.3.2 Dispatch

10 requests are handled by a chain of dispatchers, each of which has some com-
mon functionality. Dispatchers may have to fragment requests into pieces if they
span the ranges covered by different subprocessors, or clone requests into multiple
subrequests (e.g., for replication), and they must collect the results of subrequests

and deal with partial failures.

The replication and striping modules included in the standard library are represen-
tative of the ways processors transform requests as they traverse a dispatch stack.
The replication processor allows a request to be split and issued concurrently to
a set of replica objects. The request address remains unchanged within each ob-
ject, and responses are not returned until all replicas have acknowledged a request
as complete. The processor prioritizes reading from local replicas, but forwards
requests to remote replicas in the event of a failure (either an error response or
a timeout). It imposes a global ordering on write requests and streams them to
all replicas in parallel. It also periodically commits a light-weight checkpoint to
each replica’s log to maintain a persistent record of synchronization points; these

checkpoints are used for crash recovery (§ 3.5.1).

The striping processor distributes data across a collection of sparse objects. It is pa-
rameterized to take a stripe size (in bytes) and a list of objects to act as the ordered

stripe set. In the event that a request crosses a stripe boundary, the processor splits
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that request into a set of per-stripe requests and issues those asynchronously, col-
lecting the responses before returning. Static, address-based striping is a relatively
simple load balancing and data distribution mechanism as compared to placement
schemes such as consistent hashing [64]. Our experience has been that the ap-
proach is effective, because data placement tends to be reasonably uniform within
an object address space, and because using a reasonably large stripe size (we de-
fault to 512KB) preserves locality well enough to keep request fragmentation over-

head low in normal operation.

3.3.3 Coherence

Strata clients also participate in a simple coordination protocol in order to allow
the virtual address map for a virtual object to be updated even while that object
is in use. Online reconfiguration provides a means for recovering from failures,
responding to capacity changes, and even moving objects in response to observed
or predicted load (on a device basis — this is distinct from client load balancing,

which we also support through a switch-based protocol described in § 3.6.2).

The virtual address maps are stored in a distributed, synchronized configuration
database implemented over Apache Zookeeper, which is also available for any
low-bandwidth synchronization required by services elsewhere in the software
stack. The coherence protocol is built on top of the configuration database. It
is currently optimized for a single writer per object, and works as follows: when a
client wishes to write to a virtual object, it first claims a lock for it in the configu-
ration database. If the object is already locked, the client requests that the holder
release it so that the client can claim it. If the holder does not voluntarily release
it within a reasonable time, the holder is considered unresponsive and fenced from
the system using the mechanism described in § 3.6.2. This is enough to allow
movement of objects, by first creating new, out of sync physical objects at the de-
sired location, then requesting a release of the object’s lock holder if there is one.
The user of the object will reacquire the lock on the next write, and in the process
discover the new out of sync replica and initiate resynchronization. When the new

replica is in sync, the same process may be repeated to delete replicas that are at
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undesirable locations.

3.4 Network Attached Disks

The unit of storage in Strata is a Network Attached Disk (NAD), consisting of a
balanced combination of CPU, network and storage components. In our current
hardware, each NAD has two 10 gigabit Ethernet ports, two PCIe flash cards capa-
ble of 10 gigabits of throughput each, and a pair of Xeon processors that can keep
up with request load and host additional services alongside the data path. Each
NAD provides two distinct services. First, it efficiently multiplexes the raw storage
hardware across multiple concurrent users, using an object storage protocol. Sec-
ond, it hosts applications that provide higher level services over the cluster. Object
rebalancing (§ 3.5.2) and the NFS protocol interface (§ 3.6.1) are examples of these

services.

At the device level, we multiplex the underlying storage into objects, named by

128-bit identifiers and consisting of sparse 254

byte data address spaces. These
address spaces are currently backed by a garbage-collected log-structured object
store, but the implementation of the object store is opaque to the layers above
and could be replaced if newer storage technologies made different access patterns
more efficient. We also provide increased capacity by allowing each object to flush
low priority or infrequently used data to disk, but this is again hidden behind the
object interface. The details of disk tiering, garbage collection, and the layout of

the file system are beyond the scope of this chapter.

The physical object interface is for the most part a traditional object-based storage
device [98, 99] with a CRUD interface for sparse objects, as well as a few exten-
sions to assist with our clustering protocol (§ 3.5.1). It is significantly simpler
than existing block device interfaces, such as the SCSI command set, but is also in-
tended to be more direct and general purpose than even narrower interfaces such as
those of a key-value store. Providing a low-level hardware abstraction layer allows
the implementation to be customized to accommodate best practices of individual

flash implementations, and also allows more dramatic design changes at the media
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interface level as new technologies become available.

3.4.1 Network Integration

As with any distributed system, we must deal with misbehaving nodes. We address
this problem by tightly coupling with managed Ethernet switches, which we dis-
cuss at more length in § 3.6.2. This approach borrows ideas from systems such as
Sane [26] and Ethane [27], in which a managed network is used to enforce isolation
between independent endpoints. The system integrates with both OpenFlow-based
switches and software switching at the VMM to ensure that Strata objects are only

addressable by their authorized clients.

Our initial implementation used Ethernet VLANSs, because this form of hardware-
supported isolation is in common use in enterprise environments. In the current
implementation, we have moved to OpenFlow, which provides a more flexible tun-

neling abstraction for traffic isolation.

We also expose an isolated private virtual network for out-of-band control and
management operations internal to the cluster. This allows NADs themselves to
access remote objects for peer-wise resynchronization and reorganization under

the control of a cluster monitor.

3.5 Online Reconfiguration

There are two broad categories of events to which Strata must respond in order
to maintain its performance and reliability properties. The first category includes
faults that occur directly on the data path. The dispatch library recovers from such
faults immediately and automatically by reconfiguring the affected virtual objects
on behalf of the client. The second category includes events such as device fail-
ures and load imbalance. These are handled by a dedicated cluster monitor which
performs large-scale reconfiguration tasks to maintain the health of the system as
a whole. In all cases, reconfiguration is performed online and has minimal impact

on client availability.
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3.5.1 Object Reconfiguration

A number of error recovery mechanisms are built directly into the dispatch library.
These mechanisms allow clients to quickly recover from failures by reconfiguring

individual virtual objects on the data path.

10 Errors

The replication IO processor responds to read errors in the obvious way: by im-
mediately resubmitting failed requests to different replicas. In addition, clients
maintain per-device error counts; if the aggregated error count for a device exceeds
a configurable threshold, a background task takes the device offline and coordinates

a system-wide reconfiguration (§ 3.5.2).

10 processors respond to write errors by synchronously reconfiguring virtual ob-
jects at the time of the failure. This involves three steps. First, the affected replica
is marked out of sync in the configuration database. This serves as a global, persis-
tent indication that the replica may not be used to serve reads because it contains
potentially stale data. Second, a best-effort attempt is made to inform the NAD
of the error so that it can initiate a background task to resynchronize the affected
replica. This allows the system to recover from transient failures almost immedi-
ately. Finally, the IO processor allocates a special patch object on a separate device
and adds this to the replica set. Once a replica has been marked out of sync, no fur-
ther writes are issued to it until it has been resynchronized; patches prevent device
failures from impeding progress by providing a temporary buffer to absorb writes
under these degraded conditions. With the patch object allocated, the 10 processor
can continue to meet the replication requirements for new writes while out of sync
replicas are repaired in the background. A replica set remains available as long as

an in sync replica or an out of sync replica and all of its patches are available.
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Resynchronization

In addition to providing clients direct access to devices via virtual address maps,
Strata provides a number of background services to maintain the health of individ-
ual virtual objects and the system as a whole. The most fundamental of these is the
resync service, which provides a background task that can resynchronize objects

replicated across multiple devices.

Resync is built on top of a special NAD resync API that exposes the underlying
log structure of the object stores. NADs maintain a Log Serial Number (LSN) with
every physical object in their stores; when a record is appended to an object’s log,
its LSN is monotonically incremented. The IO processor uses these LSNs to impose
a global ordering on the changes made to physical objects that are replicated across

stores and to verify that all replicas have received all updates.

If a write failure causes a replica to go out of sync, the client can request the system
to resynchronize the replica. It does this by invoking the resync RPC on the NAD
which hosts the out of sync replica. The server then starts a background task which
streams the missing log records from an in sync replica and applies them to the
local out of sync copy, using the LSN to identify which records the local copy is

missing.

During resync, the background task has exclusive write access to the out of sync
replica because all clients have been reconfigured to use patches. Thus the resync
task can chase the tail of the in sync object’s log while clients continue to write.
When the bulk of the data has been copied, the resync task enters a final stop-and-
copy phase in which it acquires exclusive write access to all replicas in the replica
set, finalizes the resync, applies any client writes received in the interim, marks the

replica as in sync in the configuration database, and removes the patch.

It is important to ensure that resync makes timely progress to limit vulnerability to
data loss. Very heavy client write loads may interfere with resync tasks and, in the
worst case, result in unbounded transfer times. For this reason, when an object is

under resync, client writes are throttled and resync requests are prioritized.
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Crash Recovery

Special care must be taken in the event of an unclean shutdown. On a clean
shutdown, all objects are released by removing their locks from the configuration
database. Crashes are detected when replica sets are discovered with stale locks
(i.e., locks identifying unresponsive 10 processors). When this happens, it is not
safe to assume that replicas marked in sync in the configuration database are truly
in sync, because a crash might have occured midway through a the configuration
database update; instead, all the replicas in the set must be queried directly to de-

termine their states.

In the common case, the IO processor retrieves the LSN for every replica in the
set and determines which replicas, if any, are out of sync. If all replicas have the
same LSN, then no resynchronization is required. If different LSNs are discovered,
then the replica with the highest LSN is designated as the authoritative copy, and

all other replicas are marked out of sync and resync tasks are initiated.

If a replica cannot be queried during the recovery procedure, it is marked as di-
verged in the configuration database and the replica with the highest LSN from the
remaining available replicas is chosen as the authoritative copy. In this case, writes
may have been committed to the diverged replica that were not committed to any
others. If the diverged replica becomes available again some time in the future,
these extra writes must be discarded. This is achieved by rolling the replica back
to its last checkpoint and starting a resync from that point in its log. Consistency
in the face of such rollbacks is guaranteed by ensuring that objects are successfully
marked out of sync in the configuration database before writes are acknowledged
to clients. Thus write failures are guaranteed to either mark replicas out of sync in
the configuration database (and create corresponding patches) or propagate back to

the client.

3.5.2 System Reconfiguration

Strata also provides a highly-available monitoring service that watches over the

health of the system and coordinates system-wide recovery procedures as neces-
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sary. Monitors collect information from clients, SMART diagnostic tools, and NAD
RPCs to gauge the status of the system. Monitors build on the per-object recon-
figuration mechanisms described above to respond to events that individual clients
don’t address, such as load imbalance across the system, stores nearing capacity,

and device failures.

Rebalance

Strata provides a rebalance facility which is capable of performing system-wide
reconfiguration to repair broken replicas, prevent NADs from filling to capacity,
and improve load distribution across NADs. This facility is in turn used to recover

from device failures and expand onto new hardware.

Rebalance proceeds in two stages. In the first stage, the monitor retrieves the cur-
rent system configuration, including the status of all NADs and virtual address map
of every virtual object. It then constructs a new layout for the replicas according
to a customizable placement policy. This process is scriptable and can be easily
tailored to suit specific performance and durability requirements for individual de-
ployments (see § 3.7.3 for some analysis of the effects of different placement poli-
cies). The default policy uses a greedy algorithm that considers a number of criteria
designed to ensure that replicated physical objects do not share fault domains, ca-
pacity imbalances are avoided as much as possible, and migration overheads are
kept reasonably low. The new layout is formulated as a rebalance plan describing
what changes need to be applied to individual replica sets to achieve the desired

configuration.

In the second stage, the monitor coordinates the execution of the rebalance plan by
initiating resync tasks on individual NADs to effect the necessary data migration.

When replicas need to be moved, the migration is performed in three steps:
1. A new replica is added to the destination NAD
2. A resync task is performed to transfer the data

3. The old replica is removed from the source NAD
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This requires two reconfiguration events for the replica set, the first to extend it to
include the new replica, and the second to prune the original after the resync has
completed. The monitor coordinates this procedure across all NADs and clients for

all modified virtual objects.

Device Failure

Strata determines that a NAD has failed either when it receives a hardware failure
notification from a responsive NAD (such as a failed flash device or excessive error
count) or when it observes that a NAD has stopped responding to requests for more
than a configurable timeout. In either case, the monitor responds by taking the NAD

offline and initiating a system-wide reconfiguration to repair redundancy.

The first thing the monitor does when taking a NAD offline is to disconnect it from
the data path VLAN. This is a strong benefit of integrating directly against an
Ethernet switch in our environment: prior to taking corrective action, the NAD is
synchronously disconnected from the network for all request traffic, avoiding the
distributed systems complexities that stem from things such as overloaded com-
ponents appearing to fail and then returning long after a timeout in an inconsis-
tent state. Rather than attempting to use completely end-host mechanisms such
as watchdogs to trigger reboots, or agreement protocols to inform all clients of a
NAD’s failure, Strata disables the VLAN and requires that the failed NAD reconnect

on the (separate) control VLAN in the event that it returns to life in the future.

From this point, the recovery logic is straight forward. The NAD is marked as failed
in the configuration database and a rebalance job is initiated to repair any replica

sets containing replicas on the failed NAD.

Elastic Scale Out

Strata responds to the introduction of new hardware much in the same way that
it responds to failures. When the monitor observes that new hardware has been

installed, it uses the rebalance facility to generate a layout that incorporates the
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new devices. Because replication is generally configured underneath striping, we
can migrate virtual objects at the granularity of individual stripes, allowing a sin-
gle striped file to exploit the aggregated performance of many devices. Objects,
whether whole files or individual stripes, can be moved to another NAD even while
the file is online, using the existing resync mechanism. New NADs are populated
in a controlled manner to limit the impact of background 10 on active client work-

loads.

3.6 Storage Protocols

Strata supports legacy protocols by providing an execution runtime for hosting
protocol servers. Protocols are built as thin presentation layers on top of the dis-
patch interfaces; multiple protocol instances can operate side by side. Implementa-
tions can also leverage SDN-based protocol scaling to transparently spread multiple

clients across the distributed runtime environment.

3.6.1 Scalable NFS

Strata is designed so that application developers can focus primarily on implement-
ing protocol specifications without worrying much about how to organize data on
disk. We expect that many storage protocols can be implemented as thin wrappers
around the provided dispatch library. Our NFS implementation, for example, maps
very cleanly onto the high-level dispatch APIs, providing only protocol-specific ex-
tensions like RPC marshalling and NFS-style access control. It takes advantage of
the configuration database to store mappings between the NFS namespace and the
backend objects, and it relies exclusively on the striping and replication processors
to implement the data path. Moreover, Strata allows NFS servers to be instantiated
across multiple backend nodes, automatically distributing the additional processing

overhead across backend compute resources.
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3.6.2 SDN Protocol Scaling

Scaling legacy storage protocols can be challenging, especially when the protocols
were not originally designed for a distributed back end. Protocol scalability limi-
tations may not pose significant problems for traditional arrays, which already sit
behind relatively narrow network interfaces, but they can become a performance

bottleneck in Strata’s distributed architecture.

A core property that limits scale of access bandwidth of conventional IP storage
protocols is the presentation of storage servers behind a single 1P address. For-
tunately, emerging “software defined” network (SDN) switches provide interfaces
that allow applications to take more precise control over packet forwarding through

Ethernet switches than has traditionally been possible.

Using the OpenFlow protocol, a software controller is able to interact with the
switch by pushing flow-specific rules onto the switch’s forwarding path. Open-
Flow rules are effectively wild-carded packet filters and associated actions that tell
a switch what to do when a matching packet is identified. SDN switches (our imple-
mentation currently uses an Arista Networks 7050T-52) interpret these flow rules
and push them down onto the switch’s TCAM or L2/L.3 forwarding tables.

By manipulating traffic through the switch at the granularity of individual flows,
Strata protocol implementations are able to present a single logical 1P address to
multiple clients. Rules are installed on the switch to trigger a fault event whenever
a new NFS session is opened, and the resulting exception path determines which
protocol instance to forward that session to initially. A service monitors network
activity and migrates client connections as necessary to maintain an even workload

distribution.

The protocol scaling APT wraps and extends the conventional socket API, allowing
a protocol implementation to bind to and listen on a shared IP address across all
of its instances. The client load balancer then monitors the traffic demands across
all of these connections and initiates flow migration in response to overload on any

individual physical connection.
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In its simplest form, client migration is handled entirely at the transport layer.
When the protocol load balancer observes that a specific NAD is overloaded, it up-
dates the routing tables to redirect the busiest client workload to a different NAD.
Once the client’s traffic is diverted, it receives a TCP RST from the new NAD and
establishes a new connection, thereby transparently migrating traffic to the new
NAD.

Strata also provides hooks for situations where application layer coordination is
required to make migration safe. For example, our NFS implementation registers a
pre-migration routine with the load balancer, which allows the source NFS server
to flush any pending, non-idempotent requests (such as create or remove) before

the connection is redirected to the destination server.

3.7 Evaluation

In this section we evaluate our system both in terms of effective use of flash re-
sources, and as a scalable, reliable provider of storage for NFS clients. First, we
establish baseline performance over a traditional NFS server on the same hardware.
Then we evaluate how performance scales as nodes are added and removed from
the system, using VM-based workloads over the legacy NFS interface, which is
oblivious to cluster changes. In addition, we compare the effects of load balancing
and object placement policy on performance. We then test reliability in the face
of node failure, which is a crucial feature of any distributed storage system. We
also examine the relation between CPU power and performance in our system as a

demonstration of the need to balance node power between flash, network and CPU.

3.7.1 Test Environment

Evaluation was performed on a cluster of the maximum size allowed by our 48-port
switch: 12 NADs, each of which has two 10 gigabit Ethernet ports, two 800 GB In-
tel 910 pClIe flash cards, 6 3 TB SATA drives, 64 GB of RAM, and 2 Xen E5-2620
processors at 2 GHz with 6 cores/12 threads each, and 12 clients, in the form of
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Server | Read IOPS | Write IOPS
Strata | 40287 9960
KNEFS | 23377 5796

Table 3.1: Random 10 performance on Strata versus KNFS

Dell PowerEdge R420 servers running ESXi 5.0, with two 10 gigabit ports each,
64 GB of RAM, and 2 Xeon E5-2470 processors at 2.3 GHz with 8 cores/16 threads
each. We configured the deployment to maintain two replicas of every stored ob-
ject, without striping (since it unnecessarily complicates placement comparisons
and has little benefit for symmetric workloads). Garbage collection is active, and
the deployment is in its standard configuration with a disk tier enabled, but the
workloads have been configured to fit entirely within flash, as the effects of cache

misses to magnetic media are not relevant to this chapter.

3.7.2 Baseline Performance

To provide some performance context for our architecture versus a typical NFS
implementation, we compare two minimal deployments of NFS over flash. We set
Strata to serve a single flash card, with no replication or striping, and mounted it
loopback. We ran a FIO [14] workload with a 4K 10 size 80/20 read-write mix at
a queue depth of 128 against a fully allocated file. We then formatted the flash
card with ext4, exported it with the linux kernel NFS server, and ran the same test.
The results are in Table 3.1. As the table shows, we offer good NFS performance
at the level of individual devices. In the following section we proceed to evaluate

scalability.

3.7.3 Scalability

In this section we evaluate how well performance scales as we add NADs to the
cluster. We begin each test by deploying 96 VMs (8 per client) into a cluster of 2
NADs. We choose this number of VMs because ESXi limits the queue depth for a

VM to 32 outstanding requests, but we do not see maximum performance until a
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Figure 3.4: 10Ps over time, read-only workload

queue depth of 128 per flash card. The VMs are each configured to run the same
FIO workload for a given test. In Figure 3.4, FIO generates 4K random reads to
focus on 10PS scalability. In Figure 3.5, FIO generates an 80/20 mix of reads and
writes at 128K block size in a Pareto distribution such that 80% of requests go to
20% of the data. This is meant to be more representative of real vM workloads, but

with enough offered load to completely saturate the cluster.

As the tests run, we periodically add NADs, two at a time, up to a maximum of
twelve?. When each pair of NADs comes online, a rebalancing process automat-
ically begins to move data across the cluster so that the amount of data on each
NAD is balanced. When it completes, we run in a steady state for two minutes
and then add the next pair. In both figures, the periods where rebalancing is in
progress are reflected by a temporary drop in performance (as the rebalance pro-
cess competes with client workloads for resources), followed by a rapid increase

in overall performance when the new nodes are marked available, triggering the

2ten for the read/write test due to an unfortunate test harness problem
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Figure 3.5: 10Ps over time, 80/20 R/W workload

switch to load-balance clients to them. A cluster of 12 NADs achieves over 1 mil-
lion TOPS in the 10PS test, and 10 NADs achieve 70,000 IOPS (representing more
than 9 gigabytes/second of throughput) in the 80/20 test.

We also test the effect of placement and load balancing on overall performance.
If the location of a workload source is unpredictable (as in a VM data center with
virtual machine migration enabled), we need to be able to migrate clients quickly
in response to load. However, if the configuration is more static or can be predicted
in advance, we may benefit from attempting to place clients and data together to
reduce the network overhead incurred by remote 10 requests. As discussed in
§ 3.5.2, the load-balancing and data migration features of Strata make both ap-
proaches possible. Figure 3.4 is the result of an aggressive local placement policy,
in which data is placed on the same NAD as its clients, and both are moved as
the number of devices changes. This achieves the best possible performance at the
cost of considerable data movement. In contrast, Figure 3.6 shows the performance

of an otherwise identical test configuration when data is placed randomly (while
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Figure 3.6: 10PS over time, read-only workload with random placement

still satisfying fault tolerance and even distribution constraints), rather than being
moved according to client requests. The pareto workload (Figure 3.5) is also con-
figured with the default random placement policy, which is the main reason that it
does not scale linearly: as the number of nodes increases, so does the probability

that a request will need to be forwarded to a remote NAD.

3.7.4 Node Failure

As a counterpoint to the scalability tests run in the previous section, we also tested
the behaviour of the cluster when a node is lost. We configured a 10 NAD cluster
with 10 clients hosting 4 VMs each, running the 80/20 Pareto workload described
earlier. Figure 3.7 shows the behaviour of the system during this experiment. After
the vMs had been running for a short time, we powered off one of the NADs by
IPMI, waited 60 seconds, then powered it back on. During the node outage, the

system continued to run uninterrupted but with lower throughput. When the node
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came back up, it spent some time resynchronizing its objects to restore full repli-
cation to the system, and then rejoined the cluster. The client load balancer shifted
clients onto it and throughput was restored (within the variance resulting from the

client load balancer’s placement decisions).
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Figure 3.7: Aggregate bandwidth for 80/20 clients during failover and recovery

3.7.5 Protocol Overhead

The benchmarks up to this point have all been run inside VMs whose storage is
provided by a virtual disk that Strata exports by NFS to ESXi. This configuration
requires no changes on the part of the clients to scale across a cluster, but does im-
pose overheads. To quantify these overheads we wrote a custom FIO engine that is
capable of performing 10 directly against our native dispatch interface (that is, the
API by which our NFS protocol gateway interacts with the NADs). We then com-
pared the performance of a single VM running a random 4k read FI0 workload (for
maximum possible IOPS) against a VMDK exported by NFS to the same workload
run against our native dispatch engine. In this experiment, the VMDK-based exper-
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CPU I0OPS Freq (Cores) | Price
E5-2620 127K 2 GHz (6) | $406
E5-2640 153K (+20%) | 2.5GHz (6) | $885
E5-2650v2 | 188K (+48%) | 2.6 GHz (8) | $1166
E5-2660v2 | 183K (+44%) | 2.2 GHz (10) | $1389

Table 3.2: Achieved 10PS on an 80/20 random 4K workload across 2 NADs

iment produced an average of 50240 10PS, whereas direct access achieved 54060

I0PS, for an improvement of roughly 8%.

3.7.6 Effect of CPU on Performance

A workload running at full throttle with small requests completely saturates the
CPU. This remains true despite significant development effort in performance de-
bugging, and a great many improvements to minimize data movement and con-
tention. In this section we report the performance improvements resulting from
faster CPUs. These results are from random 4K NFS requests in an 80/20 read-
write mix at 128 queue depth over four 10Gb links to a cluster of two NADs, each

equipped with 2 physical CPUs.

Table 3.2 shows the results of these tests. In short, it is possible to “buy” ad-
ditional storage performance under full load by upgrading the CPUs into a more
“balanced” configuration. The wins are significant and carry a non-trivial increase
in the system cost. As a result of this experimentation, we elected to use a higher

performance CPU in the shipping version of the product.

3.8 Related Work

Strata applies principles from prior work in server virtualization, both in the form of
hypervisor [18, 118] and lib-OS [45] architectures, to solve the problem of sharing
and scaling access to fast non-volatile memories among a heterogeneous set of
clients. Our contributions build upon the efforts of existing research in several

areas.
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Recently, researchers have begin to investigate a broad range of system perfor-
mance problems posed by storage class memory in single servers [15], including
current PCle flash devices [113], next generation PCM [5], and byte addressabil-
ity [33]. Moneta [28] proposed solutions to an extensive set of performance bottle-
necks over the PCIe bus interface to storage, and others have investigated improving
the performance of storage class memory through polling [127], and avoiding sys-
tem call overheads altogether [29]. We draw from this body of work to optimize
the performance of our dispatch library, and use this baseline to deliver a high
performance scale-out network storage service. In many cases, we would benefit
further from these efforts—for example, our implementation could be optimized
to offload per-object access control checks, as in Moneta-D [29]. There is also
a body of work on efficiently using flash as a caching layer for slower, cheaper
storage in the context of large file hosting. For example, S-CAVE [76] optimizes
cache utilization on flash for multiple virtual machines on a single VMware host
by running as a hypervisor module. This work is largely complementary to ours;
we support using flash as a caching layer and would benefit from more effective

cache management strategies.

Prior research into scale-out storage systems, such as FAWN [9], and Corfu [16]
has considered the impact of a range of NV memory devices on cluster storage per-
formance. However, to date these systems have been designed towards lightweight
processors paired with simple flash devices. It is not clear that this balance is
the correct one, as evidenced by the tendency to evaluate these same designs on
significantly more powerful hardware platforms than they are intended to oper-
ate [16]. Strata is explicitly designed for dense virtualized server clusters backed
by performance-dense PCIe-based nonvolatile memory. In addition, like older com-
modity disk-oriented systems including Petal [71, 112] and FAB [95], prior storage
systems have tended to focus on building aggregation features at the lowest level of
their designs, and then adding a single presentation layer on top. Strata in contrasts
isolates shares each powerful PCIe-based storage class memory as its underlying
primitive. This has allowed us to present a scalable runtime environment in which
multiple protocols can coexist as peers without sacrificing the raw performance that

today’s high performance memory can provide. Many scale-out storage systems,
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including NV-Heaps [32], Ceph/RADOS [115, 117], and even pNFS [56] are un-
able to support the legacy formats in enterprise environments. Our agnosticism to
any particular protocol is similar to approach used by Ursa Minor [1], which also
boasted a versatile client library protocol to share access to a cluster of magnetic
disks.

Strata does not attempt to provide storage for datacenter-scale environments, un-
like systems including Azure [25], FDS [88], or Bigtable [30]. Storage systems in
this space differ significantly in their intended workload, as they emphasize high
throughput linear operations. Strata’s managed network would also need to be
extended to support datacenter-sized scale out. We also differ from in-RAM ap-
proaches such a RAMCloud [91] and memcached [46], which offer a different class

of durability guarantee and cost.

3.9 Conclusion

Storage system design faces a sea change resulting from the dramatic increase in
the performance density of its component media. Distributed storage systems com-
posed of even a small number of network-attached flash devices are now capable of
matching the offered load of traditional systems that would have required multiple

racks of spinning disks.

Strata is an enterprise storage architecture that responds to the performance char-
acteristics of PCle storage devices. Using building blocks of well-balanced flash,
compute, and network resources and then pairing the design with the integration
of SDN-based Ethernet switches, Strata provides an incrementally deployable, dy-

namically scalable storage system.

Strata’s initial design is specifically targeted at enterprise deployments of VMware
ESX, which is one of the dominant drivers of new storage deployments in enter-
prise environments today. The system achieves high performance and scalabil-
ity for this specific NFS environment while allowing applications to interact di-
rectly with virtualized, network-attached flash hardware over new protocols. This

is achieved by cleanly partitioning our storage implementation into an underly-

42



ing, low-overhead virtualization layer and a scalable framework for implementing
storage protocols. Over the next year, we intend to extend the system to provide
general-purpose NFS support by layering a scalable and distributed metadata ser-
vice and small object support above the base layer of coarse-grained storage prim-

itives.
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Chapter 4

Characterizing Storage
Workloads with Counter Stacks

A version of this chapter was published at the 11th USENIX Conference on Oper-
ating Systems Design and Implementation in 2014 [122].

4.1 Introduction

Caching is poorly understood. Despite being a pervasive element of computer sys-
tem design — one that spans processor, storage system, operating system, and even
application architecture — the effective sizing of memory tiers and the design of
algorithms that place data within them remains an art of characterizing and ap-

proximating common case behaviors.

The design of hierarchical memories is complicated by two factors: First, the col-
lection of live workload-specific data that might be analyzed to make “application
aware” decisions is generally too expensive to be worthwhile. Approaches that
model workloads to make placement decisions risk consuming the computational
and memory resources that they are trying to preserve. As a result, systems in

many domains have tended to use simple, general purpose algorithms such as LRU
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to manage cache placement. Second, attempting to perform offline analysis of ac-
cess patterns suffers from the performance overheads imposed in trace collection,
and the practical challenges of both privacy and sheer volume, in sharing and ana-

lyzing access traces.

Today, these problems are especially pronounced in designing enterprise storage
systems. Flash memories are now available in three considerably different form
factors: as SAS or SATA-attached solid state disks, as NVMe devices connected
over the PCIe bus, and finally as flash-backed nonvolatile RAM, accessible over
a DIMM interface. These three connectivity models all use the same underlying
flash memory, but present performance and pricing that are pairwise 1-2 orders
of magnitude apart. Further, in addition to solid-state memories, spinning disks

remain an economical option for the storage of cold data.

This chapter describes an approach to modeling, analyzing, and reasoning about
memory access patterns that has been motivated through our experience in de-
signing a hierarchical storage system [34] that combines these varying classes of
storage media. The system is a scalable, network-attached storage system that can
benefit from workload awareness in two ways: First, the system can manage allo-
cation of the memory hierarchy in response to workload characteristics. Second,
the capacity at each level of the hierarchy can be independently expanded to sat-
isfy application demands, by adding additional hardware. Both of these properties
require a more precise ability to understand and characterize individual storage

workloads, and in particular their working set sizes over time.

Miss ratio curves (MRCs) are an effective tool for assessing working set sizes, but
the space and time required to generate them make them impractical for large-scale
storage workloads. We present a new data structure, the counter stack, which can
generate approximate LRU MRCs in sublinear space, for the first time making this

type of analysis feasible in the storage domain.

Counter stacks use probabilistic counters [47] to estimate LRU MRCs. The origi-
nal approach to generating MRCs is based on the observation that a block’s ‘stack
distance’ (also known as its ‘reuse distance’) gives the capacity needed to cache it,

and this distance is exactly the number of unique blocks accessed since the previ-
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ous request for the block. The key idea behind counter stacks is that probabilistic
counters can be used to efficiently estimate stack distances, allowing us to compute

approximate MRCs at a fraction of the cost of traditional techniques.

Counter stacks are fast. Our Java implementation can process a week-long trace of
13 enterprise servers in 17 minutes using just 80 MB of RAM; at a rate of 2.3 million
requests per second, the approach is practical for online analysis in production sys-
tems. By comparison, a recent C implementation of a tree-based optimization [89]
of Mattson’s original stack algorithm [78] takes roughly an hour and 92 GB of

RAM to process the same trace.

Our contributions in this chapter are threefold. First, we introduce a novel tech-
nique for estimating miss ratio curves using counter stacks, and we evaluate the
performance and accuracy of this technique. Second, we show how counter stacks
can be periodically checkpointed and streamed to disk to provide a highly com-
pressed representation of storage workloads. Counter stack streams capture im-
portant details that are discarded by statistical aggregation while at the same time
requiring orders of magnitude less storage and processing overhead than full re-
quest traces; a counter stack stream of the compressed 2.9 GB trace mentioned
above consumes just 11 MB. Third, we present techniques for working with mul-
tiple independent counter stacks to estimate miss ratio curves for new workload
combinations. Our library implements slice, shift, and join operations, enabling
the nearly-instantaneous computation of MRCs for arbitrary workload combina-
tions over arbitrary windows in time. These capabilities extend the functionality of
MRC analysis and provide valuable insight into live workloads, as we demonstrate

with a number of case studies.

4.2 Background

The many reporting facilities embedded in the modern Linux storage stack [21, 23,
61, 83] are testament to the importance of being able to accurately characterize live
workloads. Common characterizations typically fall into one of two categories:

coarse-grain aggregate statistics and full request traces. While these representa-
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tions have their uses, they can be problematic for a number of reasons: averages
and histograms discard key temporal information; sampling is vulnerable to the
often bursty and irregular nature of storage workloads; and full traces impose im-
practical storage and processing overheads. New representations are needed which
preserve the important features of full traces while remaining manageable to col-

lect, store, and query.

Working set theory [36] provides a useful abstraction for describing workloads
more concisely, particularly with respect to how they will behave in hierarchical
memory systems. In the original formulation, working sets were defined as the set
of all pages accessed by a process over a given epoch. This was later refined by
using LRU modelling to derive an MRC for a given workload and restricting the
working set to only those pages that exhibit strong locality. Characterizing work-
loads in terms of the unique, ‘hot” pages they access makes it easier to understand
their individual hardware requirements, and has proven useful in CPU cache man-
agement for many years [68, 93, 109]. These concepts hold for storage workloads

as well, but their application in this domain is challenging for two reasons.

First, until now it has been prohibitively expensive to calculate the working set of
storage workloads due to their large sizes. Mattson’s original stack algorithm [78]
required O(NM) time and O(M) space for a trace of N requests and M unique
elements. An optimization using a balanced tree to maintain stack distances [7] re-
duces the time complexity to O(Nlog M), and recent approximation techniques [38,
126] reduce the time complexity even further, but they still have O(M) space over-
heads, making them impractical for storage workloads that may contain billions of

unique blocks.

Second, the extended duration of storage workloads leads to subtleties when rea-
soning about their working sets. CPU workloads are relatively short-lived, and in
many cases it is sufficient to consider their working sets over small time intervals
(e.g., a scheduling quantum) [132]. Storage workloads, on the other hand, can span
weeks or months and can change dramatically over time. MRCs at this scale can be
tricky: if they include too little history they may fail to capture important recurring

patterns, but if they include too much history they can significantly misrepresent
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recent behavior.

This phenomenon is further exacerbated by the fact that storage workloads already
sit behind a file system cache and thus typically exhibit longer reuse distances
than CPU workloads [133]. Consequently, cache misses in storage workloads may
have a more pronounced effect on miss ratios than CPU cache misses, because
subsequent re-accesses are likely to be absorbed by the file system cache rather

than contributing to hits at the storage layer.

One implication of this is that MRC analysis needs to be performed over various
time intervals to be effective in the storage domain. A workload’s MRC over the
past hour may differ dramatically from its MRC over the past day; both data points

are useful, but neither provides a complete picture on its own.

This leads naturally to the notion of a history of locality: a workload represen-
tation which characterizes working sets as they change over time. Ideally, this
representation contains enough information to produce MRCs over arbitrary ranges
in time, in much the same way that full traces support statistical aggregation over
arbitrary intervals. A naive implementation could produce this representation by
periodically instantiating new Mattson stacks at fixed intervals of a trace, thereby
modelling independent LRU caches with various amounts of history, but such an

approach would be impractical for real-world workloads.

In the following section we describe a novel technique for computing stack dis-
tances (and by extension, MRCs), from an inefficient, idealized form of counter
stacks. § 4.4 explains several optimizations which allow a practical counter stack
implementation that requires sublinear space, and § 4.5 presents the additional op-

erations that counter stacks support, such as slicing and joining.

4.3 Counter Stacks

Counter stacks capture locality properties of a sequence of accesses within an ad-
dress space. In the context of a storage system, accesses are typically read or write

requests to physical disks, logical volumes, or individual files. A counter stack can
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process a sequence of requests as they occur in a live storage system, or it can pro-
cess, in a single pass, a trace of a storage workload. The purpose of a counter stack
is to represent specific characteristics of the stream of requests in a form that is ef-
ficient to compute and store, and that preserves enough information to characterize

aspects of the workload, such as cache behaviour.

Rather than representing a trace as a sequence of requests for specific addresses,
counter stacks maintain a list of counters, which are periodically instantiated while
processing the trace. Each counter records the number of unique trace elements
observed since the inception of that counter; this captures the size of the working
set over the corresponding portion of the trace. Computing and storing samples of
working set size, rather than a complete access trace, yields a very compact repre-
sentation of the trace that nevertheless reveals several useful properties, such as the
number of unique blocks requested, or the stack distances of all requests, or phase
changes in the working set. These properties enable computation of MRCs over
arbitrary portions of the trace. Furthermore, this approach supports composition
and extraction operations, such as joining together multiple traces or slicing traces

by time, while examining only the compact representation, not the original traces.

4.3.1 Definition

A counter stack is an in-memory data structure that is updated while processing
a trace. At each time step, the counter stack can report a list of values giving the
numbers of distinct blocks that were requested between the current time and all
previous points in time. This data structure evolves over time, and it is convenient
to display its history as a matrix, in which each column records the values reported

by the counter stack at some point in time.

Formally, given a trace sequence (e; ...ey), where ¢; is the ith trace element, con-
sider an N x N matrix C whose entry in the ith row and jth column is the number
of distinct elements in the set {el~ ...e j}. For example, the trace (a,b,c,a) yields

the following matrix.
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The j" column of this matrix gives the values reported by the counter stack at time
step j, i.e., the numbers of distinct blocks that were requested between that time
and all previous times. The i row of the matrix can be viewed as the sequence of

values produced by the counter that was instantiated at time step i.

The in-memory counter stack only stores enough information to produce, at any
point in time, a single column of the matrix. To compute our desired properties
over arbitrary portions of the trace, we need to store the entire history of the data
structure, i.e., the entire matrix. However, the history does not need be stored in
memory. Instead, at each time step we write to disk the current column of values
reported by the counter stack. This can be viewed as checkpointing, or incremen-
tally updating, the on-disk representation of the matrix. This on-disk representation
is called a counter stack stream; for conciseness we will typically refer to it simply

as a stream.

4.3.2 LRU Stack Distances

Stack distances and MRCs have numerous applications in cache sizing [78], mem-
ory partitioning between processes or VMs [62, 107, 109, 132], garbage collection
frequency [128], program analysis [38, 131], workload phase detection [102], etc.
A significant obstacle to the widespread use of MRCs is the cost of computing them,
particularly the high storage cost [20, 89, 103, 106, 129] — all existing methods re-
quire linear space. Counter stacks eliminate this obstacle by providinge extremely

efficient MRC computation while using sublinear space.

In this subsection we explain how stack distances, and hence MRCs, can be derived
from counter stack streams. Recall that the stack distance of a given request is
the number of distinct elements observed since the last reference to the requested

element. Because a counter stack stores information about distinct elements, de-
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termining the stack distance is straightforward. At time step j one must find the
last position in the trace, i, of the requested element, then examine entry C;; of the
matrix to determine the number of distinct elements requested between times i and
Jj. For example, let us consider the matrix given in § 4.3.1. To determine the stack
distance for the second reference to trace element a at position 4, whose previous

reference was at position 1, we look up the value C; 4 and get a stack distance of 3.

This straightforward method ignores a subtlety: how can one find the last position
in the trace of the requested element? It turns out that this information is implicitly
contained in the counter stack. To explain this, suppose that the counter that was
instantiated at time i does not increase during the processing of element e;. Since
this counter reports the number of distinct elements that it has seen, we can infer
that this counter has already seen element e;. On the other hand, if the counter
instantiated at time i + 1 does increase while processing e;, then we can infer that
this counter has not yet seen element e¢;. Combining those inferences, we can

conclude that i is the position of last reference.

These observations lead to a finite-differencing scheme that can pinpoint the po-
sitions of last reference. At each time step, we must determine how much each
counter increases during the processing of the current element of the trace. This is

called the intra-counter change, and it is defined to be
Axij = G j—Cij

To pinpoint the position of last reference, we must find the newest counter that does
not increase. This can be done by comparing the intra-counter change of adjacent

counters. This difference is called the inter-counter change, and it is defined to be

Ay Axiyy j—Axij ifi<j
i =
ifi=j

Let us illustrate these definitions with an example. Restricting our focus to the first

four elements of the example trace from § 4.3.1, the matrices Ax and Ay are
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{ a b, ¢, a } { a b, ¢, a }
1 1 0 0O 0 0 1
1 1 1 0 0 O
1 1 0 O
1 0
Ax Ay

Every column of Ay either contains only zeros, or contains a single 1. The former
case occurs when the element requested in this column has never been requested
before. In the latter case, if the single 1 appears in row i, then the last request for
that element was at time i. For example, because Ayj4 = 1, the last request for

element a before time 4 was at time 1.

Determining the stack distance is now simple, as before. While processing column
J of the stream, we infer that the last request for the element e; occurred at time
i by observing that Ay;; = 1. The stack distance for the 7" request is the number
of distinct elements that were requested between time i and time j, which is C;;.
Recall that the MRC at cache size x is the fraction of requests with stack distance
exceeding x. Therefore given all the stack distances, we can easily compute the
MRC.

4.4 Practical Counter Stacks

The idealized counter stack stream defined in § 4.3 stores the entire matrix C, so
it requires space that is quadratic in the length of the trace. This is actually more
expensive than storing the original trace. In this section we introduce several ideas

that allow us to dramatically reduce the space of counter stacks and streams.

§ 4.4.1 discusses the natural idea of decreasing the time resolution, i.e., keeping
only every d™ row and column of the matrix C. § 4.4.2 discusses the idea of
pruning: eventually a counter may have observed the same set of elements as its
adjacent counter, at which point maintaining both of them becomes unnecessary.
Finally, § 4.4.3 introduces the crucial idea of using probabilistic counters to effi-

ciently and compactly estimate the number of distinct elements seen in the trace.
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4.4.1 Downsampling

The simplest way to improve the space used by counter stacks and streams is to
decrease the time resolution. This idea is not novel, and similar techniques have

been used in previous work [42].

In our context, decreasing the time resolution amounts to keeping only a small
submatrix of C that provides enough data, and of sufficient accuracy, to be useful
for applications. For example, one could start a new counter only at every d™
position in the trace; this amounts to keeping only every d™ row of the matrix C.
Next, one could update the counters only at every d™ position in the trace; this
amounts to keeping only every d™ column of the matrix C. We call this process

downsampling.

Adjacent entries in the original matrix C can differ only by 1, so adjacent entries in
the downsampled matrix can differ only by d. Thus, any entry that is missing from
the downsampled matrix can be estimated using nearby entries that are present, up
to additive error d. For large-scale workloads with billions of distinct elements,
even choosing a very large value of d has negligible impact on the estimated stack
distances and MRCSs.

Our implementation uses a slightly more elaborate form of downsampling because
we wish to combine traces that may have activity bursts in disjoint time intervals
and avoid writing columns during idle periods. As well as starting a new counter
and updating the old counters after every d™ request, we also start a new counter
and update the old counters every s seconds with one exception: we do not output
a column if the previous s seconds contain no activity. Our experiments reported
in § 4.7 pick d = 10% and s € {60,3600}.

4.4.2 Pruning

Recall that every row of the matrix contains a sequence of values reported by some
counter. For any two adjacent counters, the older one (the upper row) will always

emit values larger than or equal to the younger one (the lower row). Let us consider
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the difference of these counters. Initially, at the time the younger one is created,
their difference is simply the number of distinct elements seen by the older counter
so far. If any of these elements reappears in the trace, the older counter will not
increase (as it has seen this element before), but the younger counter will increase,

so the difference of the counters shrinks.

If at some point the younger counter has seen every element seen by the older
counter, then their difference becomes zero and will remain zero forever. In this
case, the younger counter provides no additional information, so it can be deleted.
An extension of this idea is that, when the difference between the counters becomes
sufficiently small, the younger counter provides negligible additional information.
In this case, the younger counter can again be deleted, and its value can be approx-

imated by referring to the older counter. We call this process pruning.

The simplest pruning strategy is to delete the younger counter whenever its value
differs from its older neighbor by at most p. This strategy ensures that the number
of active counters at any point in time is at most M/ p. (Recall that M is the number
of distinct blocks in the entire trace.) In our current implementation, in order to fix
a set of parameters that work well across many workloads of varying sizes, we
instead delete the younger counter whenever its value is at least (1 — §) times the
older counter’s value. This ensures that the number of active counters is at most
O(log(M)/98). Our experiments reported in § 4.7 pick 6 € {0.1,0.02}.

4.4.3 Probabilistic Counters

Counter stack streams contain the number of distinct blocks seen in the trace be-
tween any two points in time (neglecting the effects of downsampling and pruning).
The on-disk stream only needs to store this matrix of counts, as the examples in
§ 4.3 suggested. The in-memory counter stack has a more difficult job — it must be
able to update these counts while processing the trace, so each counter must keep

an internal representation of the set of blocks it has seen.

The naive approach is for each counter to represent this set explicitly, but this would

require quadratic memory usage (again, neglecting downsampling and pruning).
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A slight improvement can be obtained through the use of Bloom filters [22], but
for an acceptable error tolerance, the space would still be prohibitively large. Our
approach is to use a tool, called a probabilistic counter or cardinality estimator, that
was developed over the past thirty years in the streaming algorithms and database

communities.

Probabilistic counters consume extremely little space and have guaranteed accu-
racy. The most practical of these is the HyperLoglog counter [47], which we
use in our implementation. Each count appearing in our on-disk stream is not the
true count of distinct blocks, but rather an estimate produced by a HyperLogLog
counter which is correct up to multiplicative factor 1 4+ €. The memory usage of
each HyperLogl.og counter is roughly logarithmic in M, with more accurate coun-
ters requiring more space. More concretely, our evaluation discussed in § 4.7 uses
as little as 53 MB of memory to process traces containing over a hundred million

requests and distinct blocks.

4.4.4 LRU Stack Distances

The technique in § 4.3.2 for computing stack distances and MRCs using idealized
counter stacks can be adapted to use practical counter stacks. The matrices Ax and
Ay are defined as before, but are now based on the downsampled, pruned matrix
containing probabilistic counts. Previously we asserted that every column of Ay is
either all zeros or contains a single 1. This is no longer true. The entry Ay;; now
reports the number of requests since the counters were last updated whose stack

distance was approximately C;;.

To approximate the stack distances of all requests, we process all columns of the
stream. As there may be many non-zero entries in the j® column of Ay, we record
Ay;; occurrences of stack distance C;; for every i. As before, given all stack dis-

tances we can compute the MRC.

An online version of this approach which does not emit streams can produce an
MRC of guaranteed accuracy using provably sublinear memory. In a companion

paper [41] we prove the following theorem. The key point is that the space depends
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polynomially on ¢ and &, the parameters controlling the precision of the MRC, but

only logarithmically on N, the length of the trace.

Theorem 1 The online algorithm produces an estimated MRC that is correct to
within additive error € at cache sizes %M, %M, %M, ...,M using only
O((*1og(M)1og?(N)/€?) bits of space, with high probability.

4.5 The Counter Stack API

The previous two sections have given an abstract view of counter stacks. In this sec-
tion we describe the system that we have implemented based on those ideas. The
system is a flexible, memory-efficient library that can be used to process traces,
produce counter stack streams, and perform queries on those streams. The work-

flow of applications that use this library is illustrated in Figure 4.1.

4.5.1 On-disk Streams

The on-disk streams output by the library are produced by periodically outputting
a new column of the matrix. As discussed in § 4.4, a new column is produced if
either d requests have been observed in the trace or s seconds have elapsed (in the
trace’s time) since the last column was produced, except for idle periods, which
are elided. Each column is written to disk in a sparse format to incorporate the fact

that pruning may cause numerous entries to be missing.

In addition, the on-disk matrix C includes an extra row, called row R, which records
the raw number of requests observed in the stream. That is, Cg; contains the total
number of requests processed at the time that the j® column is output. Finally, the

on-disk stream also records the trace’s time of the current request.

4.5.2 Compute Queries

The counter stack library supports three computational queries on streams: Request

Count, Unique Request Count and MRC.
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Figure 4.1: The counter stack library architecture

The first two query operations are straightforward but useful, as we will show in
§ 4.8.4. The Request Count query simply asks for the total number of requests
that occur in the stream, which is Cg; where j is the index of the last column. The
Unique Request Count query is similar except that it asks for the total number of

unique requests, which is Cy ;.

The most complicated stream operation is the MRC query, which asks for the miss
ratio curve of the given stream. This query is processed using the method described
in § 4.4.4.

4.5.3 Time Slicing and Shifting

It is often useful to analyze only a subset of a given trace within a specific time
interval. We refer to this time-based selection as slicing. It is similarly useful when

joining traces to alter the time signature by a constant time interval. We refer to
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this alteration as shifting.

The counter stack library supports slicing and shifting as specification operations.
Given a stream containing a matrix C, the stream for the time slice between time
step i and j is the submatrix with corners at C;; and C;;. Likewise, to obtain the
stream for the trace shifted forward/backward s time units, we simply add/subtract

s to each of the time indices associated with the rows and columns of the matrix.

4.5.4 Joining

Given two or more workloads, it is often useful to understand the behavior that
would result if they were combined into a single workload. For example, if each
workload is an 10 trace of a different process, one may want to investigate the cache

performance of those processes with a shared LRU cache.

Counter stacks enable such analyses through the join operation. Given two counter
stack streams, the desired output of the join operation is what one would obtain
by merging the original two traces according to the traces’ times, then producing a
new counter stack stream from that merged trace. Our library can produce this new
stream using only the two given streams, without examining the original traces.
The only assumption we require is that the two streams must access disjoint sets of
blocks.

The join process would be simple if, for every i, the time of the i" request were
the same in both traces; in this case, we could simply add the matrices stored in
the two streams. Unfortunately that assumption is implausible, so more effort is

required. The main ideas are to:

e FExpand the two matrices so that each has a row and column for every time

that appears in either trace.
e [nterpolate to fill in the new matrix entries.

e Add the resulting matrices together.

Let us illustrate this process with an example. Consider a trace A that requests
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time 1:00 1:02 1:05 1:14 1:17
A a b b
Ca 1 1 2 2 2
0 1 1 1
1 1 1
0 1
1

B d d

Cgs 0 1 1 1 1
1 1 1 1
0 1 1
1 1
0
merge a d b d b
Ca+Cp 1 2 3 3 3
1 2 2 2
1 2 2
1 2
1

Figure 4.2: An example illustrating the join operation

blocks (a,b,b) at times 1:00, 1:05, 1:17, and a trace B requests blocks (d,d) at
times 1:02 and 1:14. The merge of the two traces is as follows:

time | 1:00 1:02 1:.05 1:14 1:17
A a b b
B d d

merge a d b d b

To join these streams, we must expand the matrices in the two streams so that
each has five rows and columns, corresponding to the five times that appear in the
traces. After this expansion, each matrix is missing entries corresponding to times
that were missing in its trace. We fill in those missing entries by an interpolation
process: a missing row is filled by copying the nearest row beneath it, and a missing
column is filled by copying the nearest column to the left of it. Figure 4.2 shows

the resulting matrices; interpolated values are shown in bold blue.

Pruned counters can sometimes create negative values in Ax. For example, after

pruning a counter in row j at time ¢, the interpolated value of the pruned counter at
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t 41 is set to the nearest row beneath it, representing a younger counter. Often, this
lower counter has a smaller value than the pruned counter. The interpolated value at
t 41 will then be less than its previous value at ¢, producing a negative intra-counter
change. We can avoid introducing negative values in Ax by replacing any negative
values in Ax by the nearest nonnegative value beneath it. This replacement has the
same effect of changing the value of the pruned counter to the lower counter in
column ¢ prior to calculating the intra-counter change for the column representing
r+1.

4.6 Error and Uncertainty

While each of the optimizations described in § 4.4 dramatically reduce the storage
requirements of counter stacks, they may also introduce uncertainty and error into
the final calculations. In this section, we discuss potential sources of error, as well
as how to modify the different operations described in § 4.3 to compute lower and

upper bounds on the stack distances.

4.6.1 Counter Error

HyperLoglog counters introduce error in two ways: count estimation and simulta-
neous register updates. HyperLogl.og counters report a count of distinct elements
that is only correct up to multiplicative factor &, which is determined by a preci-
sion parameter. This uncertainty produces deviation from the true MRC and can be
controlled by increasing the precision of the HyperLogl.og counters, at the cost of

a greater memory requirement.

Simultaneous register updates introduce a subtler form of error. A HyperLogLog
counter estimates unique counts by taking the harmonic mean of a set of internal
variables called registers. Due to the design of HLLs, sometimes a register update
might cause the older counter to increase in value more than the younger counter.
This phonemoneon leads to negative updates in Ay, because older counters are

expected to change more slowly than younger counters. Theorem 1 implies that
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the negative entries in the Ay matrix introduced by simultaneous register updates
are offset by corresponding over-estimates when register modifications between

counters are not simultaneous.

In some cases, the histogram of stack distances may accumulate enough negative
entries that there are bins with negative counts. The cumulative sum of such a his-
togram will result in a non-monotonic MRC. We can enforce a monotonic MRC by
accumulating any negative histogram bins in a separate counter, carrying the differ-
ence forward in the cumulative sum and discounting positive bins by the negative
count. In practice, negative histogram entries make up less then one percent of the

reported stack distances, with little to no visible effect on the accumulated MRC.

4.6.2 Downsampling Uncertainty

Whereas the scheme of § 4.3.2 computes stack distances exactly, the modified
scheme of § 4.4.4 only computes approximations. This uncertainty in the stack
distances is caused by downsampling, pruning and use of probabilistic counters.
To illustrate this, consider the example shown in Figure 4.3, and for simplicity let

us ignore pruning and any probabilistic error.

At every time step j, the finite differencing scheme uses the matrix Ay to help esti-
mate the stack distances for all requests that occurred since time step j — 1. More
concretely, if such a request increases the (i -+ 1) counter but does not increase the
i" counter, then we know that the most recent occurrence of the requested block
lies somewhere between time step i and time step i + 1. Since there may have been
many requests between time i and time i + 1, we do not have enough information
to determine the stack distance exactly, but we estimate it up to additive error d
(the downsampling factor). A careful analysis can show that the request must have

stack distance at least C; 1 ;1 + 1 and at most C;;.
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Figure 4.3: An example of computing stack distances using a downsampled matrix.
The entries of Ay show the number of requests and the parenthesized values
show the bounds on the stack distances that we can infer for those requests.

4.7 Evaluation

In this section we empirically validate two claims: (1) the time and space require-
ments of counter stack processing are sufficiently low that it can be used for online
analysis of real storage workloads, and (2) the technique produces accurate, mean-

ingful results.

We use a well-studied collection of storage traces released by Microsoft Research
in Cambridge (MSR) [86] for much of our evaluation. The MSR traces record the
disk activity (captured beneath the file system cache) of 13 servers with a combined
total of 36 volumes. Notable workloads include a web proxy (prxy), a filer serving
project directories (proj), a pair of source control servers (srcl and src2), and a
web server (web). The raw traces comprise 417 million records and consume just

over 5 GB in compressed CSV format.

We compare our technique to the ‘ground truth’ obtained from full trace analysis
(using trace trees, the tree-based optimization of Mattson’s algorithm [78, 89]),
and, where applicable, to a recent approximation technique [125] which derives
estimated MRCs from average footprints (see § 4.9 for more details). For fairness,
we modify the original implementation [37] by using a sparse dictionary to reduce

memory overhead.

4.7.1 Performance

The following experiments were conducted on a Dell PowerEdge R720 with two

six-core Intel Xeon processors and 96 GB of RAM. Traces were read from high-
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Fidelity Time Memory  Throughput Storage

low 17.10m 78.5MB 2.31Mreqgs/sec 747 KB
high 1724m 80.6 MB 2.29Mreqs/sec 11 MB

Table 4.1: The resources required to create low and high fidelity counter stacks for
the combined MSR workload (64 MB heap)

performance flash to eliminate disk 10 bottlenecks.

Throughout this section we present figures for both ‘low’ and ‘high’ fidelity streams.
We control the fidelity by adjusting the number of counters maintained in each
stream; the parameters used in these experiments represent just two points of a
wide spectrum, and were chosen in part to illustrate how accuracy can be traded

for performance to meet individual needs.

We first report the resources required to convert a raw storage trace to a counter
stack stream. The memory footprint for the conversion process is quite modest:
converting the entire set of MSR traces to high-fidelity counter stacks can be done
with about 80 MB of RAM . The processing time is low as well: our Java im-
plementation can convert a trace to a high-fidelity stream at a rate of 2.3 million
requests per second with a 64 MB heap and 2.7 million requests per second with a
256 MB heap.

The size of counter stack streams can also be controlled by adjusting fidelity. Ig-
noring write requests, the full MSR workload consumes 2.9 GB in a compressed,
binary format. We can reduce this to 854 MB by discarding latency values and
capping timestamp resolutions at one second, and we can shave off another 50 MB
through domain-specific compaction techniques like delta-encoding time and offset
values. But as Table 4.1 shows, this is more than 70 times larger than a high-fidelity

counter stack representation.

The compression achieved by counter stack streams is workload-dependent. High-

IThis is not a lower bound. Additional reductions can be achieved at the expense of increased
garbage collection activity in the JVM; for example, enforcing a heap limit of 32 MB increases
processing time for the high-fidelity counter stack by about 30% and results in a peak resident set
size of 53 MB.
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fidelity streams of the MSR workloads are anywhere from 12 (hm) to 1,024 (prxy)
times smaller than their compressed binary counterparts, with larger traces tending
to compress better. A stream of the combined traces consumes just over 1.5 MB
per day, meaning that weeks or even months of workload history can be retained at

very reasonable storage costs.

Once a trace has been converted to a counter stack stream, performing queries
is very quick. For example, an MRC for the entire week-long MSR trace can be
computed from the counter stack stream in just seconds, with negligible memory
overheads. By comparison, computing the same MRC using a trace tree takes about
an hour and reaches a peak memory consumption of 92 GB, while the average

footprint technique requires 8 and a half minutes and 23 GB of RAM.

4.7.2 Accuracy

Figure 4.4 shows miss ratio curves for each of the individual workloads contained
in the MSR traces as well as the combined master trace; superimposed on the
baseline curves (showing the exact MRCs) are the curves computed using footprint
averages and counter stacks. Some of the workloads feature MRCs that are notably
different from the convex functions assumed in the past [109]. The web workload
is the most obvious example of this, and it is also the workload which causes the

most trouble for the average footprint technique.

Figure 4.5 shows three examples of MRCs produced by joining individual counter
stacks. The choice of workloads is somewhat arbitrary; we elected to join work-
loads of commensurate size so that each would contribute equally to the resulting
merged MRC. As described in § 4.5.4, the join operation can introduce additional
uncertainty due to the need to infer the values of missing counters, but the effects

are not prominent with the high-fidelity counter stacks used in these examples.

We performed an analysis of curve errors at different fidelities, with verylow (0 =
0.46, d = 19M, s = 32K) at one extreme and high (6 = 0.01, d = IM, s = 60) at
the other. To measure curve error, we use the Mean Absolute Error (MAE) between

a given curve and its ground-truth counterpart. The MAE is defined as the average
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absolute difference between two series mrc and mrc’, or %Z |mre(x) — mrc (x)].
Because MRCs range between 0 and 1, the MAEs are also confined to the same
range, where a value of 0 implies perfectly corresponding curves. At the other
extreme, it is difficult to know what constitutes a “bad” MAE because it is unlikely
to be close to 1 except in singular cases. For example, the MAE between the hm
and the ts Mattson curves is only 0.15. For the high fidelity counter stacks, we
observe MAEs between 0.002 and 0.02, and for the average footprint algorithm,
we observe MAEs between 0.001 and 0.04.

We find that curve error under compression is highly workload-dependent. We
observed the largest errors on “jagged” workloads with sharp discontinuities, such
as srcl and web, while workloads with “flatter” MRCs such as stg and usr are
almost invariant to compression. Figure 4.6 summarizes our findings on two such
workloads. On the left, we illustrate the difference in the change in error as fidelity
decreases for a jagged workload, srcl, and a flat workload, usr. On the right, we
show the smoothing effect of decreasing the counter stack fidelity by comparing

the verylow and high fidelity curves against Mattson on srcl.

4.8 Workload Analysis

We have shown that counter stacks can be used to produce accurate MRC estima-
tions in a fraction of the time and space used by existing techniques. We now
demonstrate some of the capabilities of the counter stack query interface through a

series of case studies of the MSR traces.

4.8.1 Combined Workloads

Hit rates are often used to gauge the health of a storage system: high hit rates are
considered a sign that a system is functioning properly, while poor hit rates suggest
that tuning or configuration changes may be required. One problem with this sim-
plistic view is that the combined hit rates of multiple independent workloads can

be dominated by a single workload, thereby hiding potential problems.
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We find this is indeed the case for the MSR traces. The prxy workload features a

small working set and a high activity rate — it accesses only 2 GB of unique data

over the entire week but issues 15% of all read requests in the combined trace.

Table 4.2 puts this in perspective: the combined workload achieves a hit rate of

50% with a 550 GB cache; more than 250 GB of additional cache capacity would

be required to achieve this same hit rate without the prxy workload. This illustrates

why combined hit rate is not an adequate metric of system behavior. Diagnostic

tools which present hit rates as an indicator of storage well-being should be careful

to consider workloads independently as well as in combination.
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Desired Hit Rate Required Cache Size

With prxy  Without prxy

30% 2.5GB 21.6 GB
40% 19.2 GB 525.5 GB
50%  566.6 GB 816.0 GB

Table 4.2: Cache sizes required to obtain desired hit rates for combined MSR work-
loads with and without prxy

4.8.2 Erratic Workloads

MRCs can be very sensitive to anomalous events. A one-off bulk read in the middle
of an otherwise cache-friendly workload can produce an MRC with high miss rates,
arguably mischaracterizing the workload. We wrote a simple script that identifies
erratic workloads by searching for hour-long slices with unusually high miss ratios.
The script found several workloads, including mds, stg, ts, and prn, whose week-

long MRCs are dominated by just a few hours of intense activity.

Figure 4.7 shows the effect these bursts can have on workload performance. The
full-week MRC for prn (Figure 4.4) shows a maximum achievable hit rate of 60%
at a cache size of 83 GB. The workload features a two-hour read burst starting 102
hours into the trace which accounts for 29% of the total requests and 69% of the
unique blocks. Time-sliced MRCs before and after this burst feature hit rates of
60% at cache sizes of 10 GB and 12 GB, respectively. This is a clear example
of how anomalous events can significantly distort MRCs, and it shows why it is
important to consider MRCs over various intervals in time, especially for long-lived

workloads.

4.8.3 Conflicting Workloads

Many real-world workloads exhibit pronounced diurnal patterns: interactive work-
loads typically reflect natural trends in business hours, while automatic workloads

are often scheduled at regular intervals throughout the day [43, 72, 101]. When
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Figure 4.7: Time-sliced prn workload

such workloads are served by the same shared storage, it makes sense to try to

limit the degree to which they interfere with one another.

The time-shifting functionality of counter stacks provides a powerful tool for ex-
ploring coarse-grain scheduling of workloads. To demonstrate this, we wrote a
script which computes the MRCs of the combined MSR trace (excluding prxy) in
which the start times of a few of the larger workloads (proj, srcl, and usr) are
shifted by up to six hours. Figure 4.8 plots the best and worst MRCs computed by
this script. As is evident, workload scheduling can significantly affect hit rates. In
this case, shifting workloads by just a few hours changes the capacity needed for a
50% hit rate by almost 50%.

4.8.4 Periodic Workloads

MRCs are good at characterizing the raw capacity needed to accommodate a given
working set, but they provide very little information about how that capacity is
used over time. In environments where many workloads share a common cache,
this lack of temporal information can be problematic. For example, as Figure 4.4
shows, the entire working set of web is less than 80 GB, and it exhibits a hit rate
of 75% with a dedicated cache at this size. However, as shown in Figure 4.9, the

workload is highly periodic and is idle for all but a few hours every day.
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Figure 4.8: Best and worst time-shifted MRCs for MSR workloads (excluding prxy).
We omit cache sizes greater than 1.5 TB to preserve details in the plot.

This behavior is characteristic of automated tasks like nightly backups and index-
ing jobs, and it can be problematic because periodic workloads with long reuse
distances tend to perform poorly in shared caches. The cost of this is twofold:
first, the periodic workloads exhibit low hit rates because their long reuse distances
give them low priority in LRU caches; and second, they can penalize other work-
loads by repeatedly displacing ‘hotter’ data. This is exactly what happens to web
in a cache shared with the rest of the MSR workloads: despite its modest working
set size and high locality, it achieves a hit rate of just 7.5% in a 250 GB cache and
20% in a 500 GB cache.

Scan-resistant replacement policies like ARC [79] and CAR [17] offer one defense
against this poor behavior by limiting the cache churn induced by periodic work-
loads. But a better approach might be to the exploit the highly regular nature of
such workloads — assuming they can be identified — through intelligent prefetch-
ing. Counter stacks are well-suited for this task because they make it easy to detect
periodic accesses to non-unique data. While this alone would not be sufficient

to implement intelligent prefetching (because the counters do not indicate which
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blocks should be prefetched), it could be used to alert the system of the recurring
pattern and initiate the capture of a more detailed trace for subsequent analysis.

4.8.5 Zipfian Workloads

We end with a brief discussion of synthetic workload generators like FIO [14] and
IOMeter [105]. These tools are commonly used to test and validate storage sys-
tems. They are capable of generating 10 workloads based on parameters describing,
among other things, read/write mix, queue depth, request size, and sequentiality.
The simpler among them support various combinations of random and sequential
patterns; FIO recently added support for pareto and zipfian distributions, with the

goal of better approximating real-world workloads.

Moving from uniform to zipfian distributions is a step in the right direction. In-
deed, many of the MSR workloads, including hm, mds, and prn, exhibit roughly
zipfian distributions. However, as is evident in Figure 4.4, the MRCs of these work-
loads vary dramatically. Figure 4.10 plots the MRC of a perfectly zipfian workload

produced by FIO alongside two permutations of the same workload; as expected,
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Figure 4.10: MRCs for three permutations of a single zipfian distribution: random,
series (a concatenation of sorted series of unique requests), and sorted
(truncated to preserve detail).

request ordering has a significant impact on locality and cache behavior. These
figures show that synthetic zipfian workloads do not necessarily produce ‘realistic’
MRCs, emphasizing the importance of using real-world workloads when evaluating

storage performance.

4.9 Related Work

Mattson et al. [78] defined stack distances and presented a simple O(NM) time,
O(M) space algorithm to calculate them. Bennett and Kruskal [20] used a tree-
based implementation to bring the runtime to O(Nlog(N)). Almési et al. improved
this to O(Nlog(M)), and Niu et al. [89] introduced a parallel algorithm.

A different line of work explores techniques to efficiently approximate stack dis-
tances. Eklov and Hagersten [42] proposed a method to estimate stack distances
based on sampling. Ding and Zhong [38] use an approximation technique inspired
by the tree-based algorithms. Xiang et al. [125] define the footprint of a given trace

window to be the number of distinct blocks occurring in the window. Using reuse
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distances, they estimate the average footprint across a logarithmic scale of window
lengths. Xiang et al. [126] then develop a theory connecting the average footprint
and the miss ratio, contingent on a regularity condition they call the reuse-window
hypothesis. In comparison, counter stacks use dramatically less memory while

producing MRCs with comparable accuracy.

A large body of work from the storage community explores methods for repre-
senting workloads concisely. Chen et al. [31] use machine learning techniques
to extract workload features, Tarasov et al. [111] describe workloads with feature
matrices, and Delimitrou et al. [35] model workloads with Markov Chains. These
representations are largely incomparable to counter stacks — they capture many de-
tails that are not preserved in counter stack streams, but they discard much of the

temporal information required to compute accurate MRCSs.

Many domain-specific compression techniques have been proposed to reduce the
cost of storing and processing workload traces. These date back to Smith’s stack
deletion [106] and include Burtscher’s VPC compression algorithms [24]. They
generally preserve more information than counter stacks but achieve lower com-

pression ratios. They do not offer new techniques for MRC computation.

4.10 Conclusion

Sizing the tiers of a hierarchical memory system and managing data placment
across them is a difficult, workload dependent problem. Techniques such as miss
ratio curve estimation have existed for decades as a method of modeling workload
behaviors offline, but their computational and memory overheads have prevented
their incorporation as a means to make live decisions in real systems. Even as an
offline tool, practical issues such as the overheads associated with trace collection

and storage often prevent the sharing and analysis of memory access traces.

Counter stacks provide a powerful software tool to address these issues. They are
a compact form of locality characterization that allow workloads to be studied in
new interactive ways, for instance by searching for anomalies or shifting workloads

to identify pathological load possibilities. They can also be incorporated directly
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into system design as a means of making more informed and workload-specific

decisions about resource allocation across multiple tenants.

While the design and implementation of counter stacks described in this chapter
have been motivated through the design of an enterprise storage system, the tech-
niques are relevant in other domains, such as processor architecture, where the
analysis of working set size over time and across workloads is critical to the design

of efficient, high-performance systems.
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Chapter 5

Mirador: An Active Control
Plane for Datacenter Storage

A version of this chapter was published at the 15th USENIX Conference on File
and Storage Technologies in 2017 [120].

5.1 Introduction

In becoming an active resource within the datacenter, storage is now similar to
the compute and network resources to which it attaches. For those resources, re-
cent years have seen a reorganization of software stacks to cleanly disentangle the
notions of control and data paths. This thrust toward “software defined” systems
aims for designs in which virtualized resources may be provisioned on demand and
in which central control logic allows the programmatic management of resource

placement in support of scale, efficiency, and performance.

This chapter observes that modern storage systems both warrant and demand ex-
actly this approach to design. The emergence of high-performance rack-scale hard-
ware [13, 44, 92] is amplifying the importance of connectivity between application

workloads and their data as a critical aspect of efficient datacenter design. Fortu-
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nately, the resource programmability introduced by software defined networks and
the low cost of data migration on non-volatile memory means that the dynamic

reconfiguration of a storage system is achievable.

How is dynamic placement useful in the context of storage? First, consider that
network topology has become a very significant factor in distributed storage de-
signs. Driven by the fact that intra-rack bandwidth continues to outpace east/west
links and that storage device latencies are approaching that of Ethernet round-trip
times, efficient storage placement should ensure that data is placed in the same rack
as the workloads that access it, and that network load is actively balanced across

physical links.

A separate goal of distributing replicas across isolated failure domains requires a
similar understanding of physical and network topology, but may act in opposition
to the goal of performance and efficiency mentioned above. While placement goals
such as these examples can be motivated and described in relatively simple terms,
the resulting placement problem is multi-dimensional and continuously changing,

and so very challenging to solve.

Mirador is a dynamic storage placement service that addresses exactly this prob-
lem. Built as a component within a scale-out enterprise storage product [34], Mi-
rador’s role is to translate configuration intention as specified by a set of objective
functions into appropriate placement decisions that continuously optimize for per-
formance, efficiency, and safety. The broader storage system that Mirador controls
is capable of dynamically migrating both the placement of individual chunks of
data and the client network connections that are used to access them. Mirador bor-
rows techniques from dynamic constraint satisfaction to allow multi-dimensional
goals to be expressed and satisfied dynamically in response to evolutions in envi-

ronment, scale, and workloads.

This chapter describes our experience in designing and building Mirador, which is
the second full version of a placement service we have built. Our contributions are
threefold: We demonstrate that robust placement policies can be defined as sim-
ple declarative objective functions and that general-purpose solvers can be used to

find solutions that apply these constraints to both network traffic and data place-
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ment in a production storage system, advancing the application of optimization
techniques to the storage configuration problem [1, 8, 10, 11, 110]. We show that
for performance-dense storage clusters, placement decisions informed by the rel-
ative capabilities of network and storage tiers can yield improvements over more
static layouts originally developed for large collections of disks. And finally, we
investigate techniques for exploiting longitudinal workload profiling to craft cus-
tom placement policies that lead to additional improvements in performance and

cost-efficiency.

5.2 A Control Plane for Datacenter Storage

Mirador implements the control plane of a scale-out enterprise storage system
which presents network-attached block devices for use by virtual machines (VMs),
much like Amazon’s Elastic Block Store [19]. A typical deployment consists of
one or more independent storage nodes populated with performance-dense NvMe
devices, each capable of sustaining random-access throughputs of hundreds of
thousands of 10PS. In order to capitalize on the low latency of these devices, stor-
age nodes are commonly embedded horizontally throughout the datacenter along-
side the compute nodes they serve. In this environment, Mirador’s role is to pro-
vide a centralized placement service that continuously monitors the storage system
and coordinates the migration of both data and network connections in response to

workload and environmental changes.

A guiding design principle of Mirador is that placement decisions should be dy-

namic and flexible.

Dynamic placement decisions allow the system to adapt to environmental change.
We regularly observe deployments of hundreds to thousands of VMs where only
a small number of workloads dominate resource consumption across the cluster
at any given time. Moreover, the membership of this set often changes as VMs
are created and deleted or they transition through different workload phases. For
these reasons, the initial choices made when placing data in the cluster may not

always be the best ones; significant improvements can often be had by periodically

77



re-evaluating placement decisions over time in response to changes in workload

behavior.

Flexible placement decisions allow the system to articulate complex and multidi-
mensional policy. Rather than trying to combine diverse and often conflicting goals
in a single monolithic description, Mirador approaches system configuration as a
search problem. Policies are composed of one or more objective functions, simple
rules that express how resources should be allocated by computing numerical costs
for specific configurations. A planning engine employs established constraint sat-
isfaction techniques to efficiently search the configuration space for a minimal-cost

solution.

In our experience, policies expressed as simple independent rules are substantially
more perspicuous and robust than their monolithic alternatives. For example, after
upgrading the customized planning engine that shipped in an early version of the
product to a generic constraint solver, we were able to replace a load balancing
policy originally defined in 2,000 lines of imperative Python with a similar policy
composed of seven simple rules each expressed in less than thirty lines of code (see
§ 5.3.2 for examples). Much of the complexity of the original policy came from
describing how it should be realized rather than what it intended to achieve. By
disentangling these two questions and answering the former with a generic search
algorithm, we arrived at a policy description that is equally efficient as the first

version, yet much easier to reason about and maintain.

Mirador implements the configuration changes recommended by the planning en-
gine by coordinating a cluster-wide schedule of data and network migration tasks,
taking care to minimize the performance impact on client workloads. It communi-
cates directly with switches and storage nodes to effect these migrations, continu-
ally monitoring system performance as it does so. In this way it actively responds
to environmental and workload changes and results in a more responsive, robust

system.
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5.3 Mirador

Mirador is a highly-available data placement service that is part of a commercial
scale-out storage product. Figure 5.1 presents a typical cluster composed of mul-
tiple storage nodes. Each node is a regular server populated with one or more
directly-attached, non-volatile storage devices. Nodes implement an object inter-
face on top of these devices and manage virtual to physical address translations
internally. Objects present sparse 63-bit address spaces and are the primary unit of
placement. A virtual block device interface is presented to clients. Virtual devices
may be composed of one or more objects distributed across multiple nodes; by
default, they are striped across 16 objects, resulting in typical object sizes on the
order of tens to hundreds of GiB.

The storage cluster is fronted by a set of Software Defined Network (SDN) switches
that export the cluster over a single virtual 1P address. Clients connect to the virtual
IP and are directed to storage nodes by a custom SDN controller. Nodes are con-
nected in a mesh topology, and any node is capable of servicing requests from any

client, allowing the mapping between clients and nodes to be modified arbitrarily.

One or more nodes in the cluster participate as a Mirador service provider. Service
providers work together to monitor the state of the cluster and initiate rebalance
Jjobs in response to topology and load changes. Rebalance jobs are structured as
a control pipeline that generates and executes plans for dynamically reconfiguring
the placement of data and client connections in order to optimize for performance,
efficiency, and safety. Job state is periodically checkpointed in a replicated state

machine [59], providing strong resliency against failures.

The rebalance pipeline is composed of three stages:

Observation A system monitor collects resource metrics like device and network

load along with detailed workload profiles to construct a model of the cluster.
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Optimization A planning engine computes a numerical cost for the current con-
figuration and searches for alternative configurations that would reduce or elimi-
nate this cost. If a lower-cost arrangement is identified, a plan is constructed that

yields the desired results.

Actuation A scheduler implements the plan by coordinating the migration of data

and client connections.

5.3.1 Observation

The system monitor maintains a storage system model that captures all relevant
properties of the physical system, including static features like cluster topology
(e.g., the number of devices and nodes, the capacity of their network links, and
user-defined failure domains) and dynamic features like the current free space and

10 load of devices and the utilization of network ports.

The monitor also collects highly-compressed sketches of individual workload be-
havior [122]. These summaries are collected by a dedicated workload analysis ser-
vice, and they include features such as miss ratio curves and windowed footprints.
Unlike hardware utilization levels, this data cannot be computed from instanta-
neous measurements, but instead requires detailed profiling of workloads over ex-

tended periods of time.

The monitor synchronizes the model by polling the cluster; sampling frequencies
vary from every few seconds for metrics like link load to tens of minutes for work-
load footprint measurements, while exceptional events such as device failures are

signalled via special alerts.

5.3.2 Optimization

The planning engine implements the logic responsible for generating rebalance
plans. Placement logic is encapsulated in one or more objective functions that

specify rules for how data and flows should be distributed across the cluster. The
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engine invokes a solver to search for new configurations that reduce placement

costs, as defined by the objective functions.

The planning engine manipulates a copy of the storage model when considering
alternative configurations. For example, if a decision is made to move an object
from one device to another, the modelled free space and load of each device is

adjusted to reflect the change.

Modelling data migration within the cluster is a challenging problem. While an
object’s size serves as a rough approximation of the cost of migrating it, the actual
time required to move the data depends on many things, including the type and
load of the source and destination devices, network contention along the migration
path, and fragmentation of the data being migrated. This is important, however,
because system resources like free space and bandwidth may be consumed at both
the source and destination devices during migration, and the solver may make poor
decisions if this usage is modelled incorrectly. For this reason, migrations initiated
during the optimization stage are modelled conservatively by reserving space on
the destination device at the beginning of operation and only releasing it from the

source device once the migration has completed.

Objective Functions

Data placement is expressed as an optimization problem by representing objects
and flows as variables and devices and links as the values these variables can take,
respectively. Within this framework, objective functions model the cost (or ben-
efit) of assigning a value to a given variable (e.g., placing a replica on a specific

device). !

Mirador objective functions can assign arbitrary numerical costs to a given configu-
ration. Hard constraints, implemented by rules imposing an infinite cost, can never
be violated — any configuration with an infinite cost is rejected outright. Negative

costs can also be used to express affinities for preferred assignments. An optimal

IFor clarity of exposition, we use the terms objective function and rule interchangably throughout
the chapter.

82



configuration is one that minimizes the cumulative cost of all assignments; solvers
employ various search strategies to find minimal-cost solutions. In the case that no
finite-cost configuration can be found (e.g., due to catastrophic hardware failure),

Mirador raises an alert that manual intervention is required.

Objective functions are expressed as simple Python functions operating on the stor-
age system model described above. Listing 5.1 shows a rule designed to minimize
load imbalances by stipulating that the spread between the most- and least-loaded
devices falls within a given range. (Note that this formulation codifies a system-
level notion of balance by assigning costs to all objects located on overloaded de-
vices; moving just one such object to a different device may be enough to eliminate
the cost for all the remaining objects.) During the optimization stage, the plan-
ning engine converts the storage model into an abstract representation of variables,
values, and objectives, and computes the cost of each assignment by invoking its

associated rules (see § 5.3.2).

A special annotation specifies the scope of the rule, indicating which components
it affects (e.g., objects, connections, devices, links). Solvers refer to these annota-
tions when determining which rules need to be re-evaluated during configuration
changes. For example, the Load_balanced rule affects devices, and must be

invoked whenever the contents of a device changes.

Mutual objectives can be defined over multiple related objects. For instance, List-
ing 5.2 gives the implementation of a rule stipulating that no two objects in a replica
set reside on the same device; it could easily be extended to include broader knowl-
edge of rack and warehouse topology as well. Whenever a solver assigns a new
value to a variable affected by a mutual objective, it must also re-evaluate all re-
lated variables (e.g., all other replicas in the replica set), as their costs may have

changed as a consequence of the reassignment.

Rules can provide hints to the solver to help prune the search space. Rule imple-
mentations accept a domain argument, which gives a dictionary of the values that
can be assigned to the variable under consideration, and is initially empty. Rules
are free to update this dictionary with the expected cost that would be incurred by

assigning a particular value. For example, the rule in Listing 5.2 populates a given

83



replica’s domain with the pre-computed cost of moving it onto any device already
hosting one of its copies, thereby deprioritizing these devices during the search.
The intuition behind this optimization is that most rules in the system only affect a
small subset of the possible values a variable can take, and consequently, a handful

of carefully chosen hints can efficiently prune a large portion of the solution space.

A policy consists of one or more rules, which can be restricted to specific hardware

components or object groups in support of multi-tenant deployments.

@rule(model.Device)
def load_balanced(fs, device, domain):
cost, penalty = 0, DEVICE_BALANCED_COST
# compute load of current device
# for the current sample interval
load = device.load()
# compute load of least-loaded device
minload = fs.mindevice().load()
if load — minload > LOAD_SPREAD:
# 1f the difference 1is too large,
# the current device is overloaded
cost = penalty
return cost

Listing 5.1: Load balancing rule

@rule(model.ReplicaSet)
def rplset_devices_ unique(fs, replica, domain):
cost, penalty = 0, INFINITY
for rpl in replica.rplset:
if rpl is replica:
# skip current replica
continue
if rpl.device is replica.device:
# two replicas on the same device
# violate redundancy constraint
cost = penalty
# provide a hint to the solver that the
# devices already hosting this replica set
# are poor candidates for this replica.
domain[rpl.device] + = penalty
return cost

Listing 5.2: Hardware redundancy rule
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Solvers

The planning engine is written in a modular way, making it easy to implement
multiple solvers with different search strategies. Solvers accept three arguments: a
dictionary of assignments mapping variables to their current values, a dictionary of
domains mapping variables to all possible values they can take, and a dictionary of
objectives mapping variables to the rules they must satisfy. Newly-added variables
may have no assignment to start with, indicating that they have not yet been placed
in the system. Solvers generate a sequence of solutions, dictionaries mapping vari-
ables to their new values. The planning engine iterates through this sequence of
solutions until it finds one with an acceptable cost, or no more solutions can be

found.

Mirador provides a pluggable solver interface that abstracts all knowledge of the
storage model described abover. Solvers implement generic search algorithms and
are free to employ standard optimization techniques like forward checking [54] and

constraint propagation [77] to improve performance and solution quality.

We initially experimented with a branch and bound solver [97] because at first
glance it fits well with our typical use case of soft constraints in a dense solution
space [48]. A key challenge to using backtracking algorithms for data placement,
however, is that these algorithms frequently yield solutions that are very different
from their initial assignments. Because reassigning variables in this context may
imply migrating a large amount of data from one device to another, this property
can be quite onerous in practice. One way to address this is to add a rule whose
cost is proportional to the difference between the solution and its initial assign-
ment (as measured, for example, by its Hamming distance) [55]. However, this
technique precludes zero-cost reconfigurations (since every reassignment incurs a
cost) and thus requires careful tuning when determining whether a solution with an

acceptable cost has been found.

We eventually adopted a simpler greedy algorithm. While it is not guaranteed to
identify optimal solutions in every case, we find in practice that it yields quality

solutions with fewer reassignments and a much more predictable run time. In fact,
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the greedy algorithm has been shown to be a 2-approximate solution for the related

makespan problem [52], and it is a natural fit for load rebalancing as well [3].

Listing 5.3 presents a simplified implementation of the greedy solver. It main-
tains a priority queue of variables that are currently violating rules, ordered by the
cost of the violations, and a priority-ordered domain for each variable specifying
the possible values it can take. A pluggable module updates domain priorities in
response to variable reassignments, making it possible to model capacity and load
changes as the solver permutes the system searching for a solution. The current im-
plementation prioritizes values according to various utilization metrics, including

free space and load.

As described in § 5.3.2, objective functions can provide hints to the solver about
potential assignments. The greedy algorithm uses these hints to augment the pri-
ority order defined by the storage system model, so that values that would violate
rules are deprioritized. The search is performed in a single pass over all variables,
starting with the highest-cost variables. First the rules for the variable are invoked
to determine whether any values in its domain violate the prescribed placement
objectives (or alternatively, satisfy placement affinities). If the rules identify a zero
or negative-cost assignment, this is chosen. Otherwise, the highest-priority uncon-
strained value is selected from the variable’s domain. The search yields its solution

once all violations have been resolved or all variables have been evaluated.

Besides its predictable run time, the greedy algorithm generally yields low mi-
gration overheads, since only variables that are violating rules are considered for
reassignment. However, if the initial assignments are poor, the algorithm can get
trapped in local minima and fail to find a zero-cost solution. In this case, a sec-
ond pass clears the assignment of a group of the costliest variables collectively,
providing more freedom for the solver, but potentially incurring higher migration
costs. We find that this second pass is rarely necessary given the typically under-
constrained policies we use in production and is limited almost exclusively to unit

tests that intentionally stress the planning engine (see § 5.5 for more details).
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def greedy(assignments, domains, objectives):
# rank variables according to cost
queue = PriorityQueue(domains)

while queue.cost() > 0:
# select the highest-cost variable
val = None
var = queue.pop()
cur = assignments.get(var)
domain = domains[var]

# retrieve the variable’s current cost and any domain hints provided
# by the rules
cost, hints = score(var, cur, objectives)
if cost <=0:
continue # current assignment is good

if hints:
# find the lowest-cost hint; typically, most values are
# unconstrained, so this linear scan adds a small constant overhead

try:

val = min(v for v in hints if v in domain and v != cur)
except ValueError:

pass

if val is None or hints[val]l > 0:
# if we have no hints, or the best hints are costly, choose the
# lowest-cost unconstrained value in the domain
val = next((v for v in domain if v not in hints and v != cur), val)

if val is None:
¢ = infinity # couldn’t find a value
else:
c, - = score(var, val, objectives) # compute cost of new value

if ¢ >= cost:
continue # no benefit to re-assigning

assignments[var] = val # we found a better assignment

# recompute the cost of any mutually-constrained variables that
# haven’t already been evaluated
for v in rulemap(var, objectives):
if v in queue:
queue.reschedule(v)

return assignments # we’ve arrived at a solution
Listing 5.3: Greedy solver
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5.3.3 Actuation

Mirador can migrate both data and client connections. The scheduler models the
cost of data migration conservatively, and attempts to minimize the impact of such
migrations on client performance whenever possible. Connection migrations are
generally cheaper to perform and as such occur much more frequently — on the

order of minutes rather than hours.

Optimally scheduling data migration tasks is NP-hard [65-67]; Mirador imple-
ments a simple global scheduler that parallelizes migrations as much as possible

without overloading individual devices or links.

Data migrations are performed in two steps: first, a background task copies an
object to the destination device, and then, only after the object is fully replicated
at the destination, it is removed from the source. This ensures that the durability
of the object is never compromised during migration. Client connections are mi-
grated using standard SDN routing APIs augmented by custom protocol handlers

that facilitate session state handover.

5.3.4 Platform Support

Mirador executes rebalance jobs in batches by (1) selecting a group of objects
and/or client connections to inspect, (2) invoking the planning engine to search
for alternative configurations for these entities, and (3) coordinating the migration
tasks required to achieve the new layout. Batches can overlap, allowing parallelism
across the three stages. Mirador attempts to prioritize the worst offenders in early
batches in order to minimize actuation costs, but it guarantees that every object is

processed at least once during every job.

Mirador is able to perform its job efficiently thanks to three unique features pro-
vided by the storage platform. First, the system monitor relies on a notification
facility provided by the cluster metadata service to quickly identify objects that
have been recently created or modified. This allows nodes in the cluster to make

quick, conservative placement decisions on the data path while making it easy for
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Name Objective Cost  Lines of Code

device_has_space devices are not filled beyond capacity oo 4

rplset_durable replica sets are adequately replicated on oo 4
healthy devices

load_balanced load is balanced across devices 70 13

links_balanced load is balanced across links 20 13

node_local client files are co-located on common 60 30
nodes

direct_connect client connections are routed directly to 10 14
their most-frequently accessed nodes

wss_best_fit active working set sizes do not exceed 40 4
flash capacities

isolated cache-unfriendly workloads are 20 30
co-located

co_scheduled competing periodic workloads are 20 35
isolated

Table 5.1: Objective functions used in evaluation section; cost gives the penalty in-
curred for violating the rule.

Mirador to inspect and modify these decisions in a timely manner, providing a
strong decoupling of data and control paths. Second, the planning engine makes
use of a prioritization interface implemented at each node that accepts a metric
identifier as an argument (e.g., network or disk throughput, storage I0PS or capac-
ity) and returns a list of the busiest workloads currently being serviced by the node.
Mirador can use this to inspect problematic offenders first when attempting to min-
imize specific objective functions (such as load balancing and capacity constraints)
rather than inspecting objects in arbitrary order. Finally, the actuation scheduler
implements plans with the help of a migration routine that performs optimized
background copies of objects across nodes and supports online reconfiguration of
object metadata. This interface also provides hooks to the network controller to

migrate connections and session state across nodes.
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Objects Devices Reconfigurations Time (seconds)

1K 10 6.40£2.72 0.40+0.06
1K 100 145.50+33.23 0.83+0.08
IK 1000  220.00+12.53 10.114+0.49
10K 10 0.00+0.00 1.61+0.01
10K 100 55.70+£5.46 5.54+0.37
10K 1000 1475.00£69.70 16.71+£0.88
100K 10 0.00+0.00 17.10£0.37
100K 100 9.30+4.62 22.37£5.38

100K 1000 573.80+22.44 77.21+£2.87

Table 5.2: Greedy solver runtime for various deployment sizes with a basic load-
balancing policy; reconfigurations gives the number of changes made to yield a
zero-cost solution.

5.4 Evaluation

In this section we explore both the expressive power of Mirador policies and the
impact such policies can have on real storage workloads. Table 5.1 lists the rules
featured in this section; some have been used in production deployments for over
a year, while others are presented to demonstrate the breadth and variety of place-

ment strategies enabled by Mirador.

§ 5.4.1 measures the performance and scalability of the planning engine, indepen-
dent of storage hardware. § 5.4.2 shows how Mirador performs in representative
enterprise configurations; storage nodes in this section are equipped with 12 1 TB
SSDs, two 10 gigabit Ethernet ports, 64 GiB of RAM, and 2 Xeon E5-2620 proces-
sors at 2 GHz with 6 cores each and hyperthreading enabled. § 5.4.3 and § 5.4.4
highlight the flexibility of rule-based policies, as measured on a smaller develop-
ment cluster where 2 800 GB Intel 910 pcle flash cards replace the 12 SSDs on

each node.

Client workloads run in virtual machines hosted on four Dell PowerEdge r420
boxes running VMware ESXi 6.0, each with two 10 gigabit Ethernet ports, 64 GiB
of RAM, and 2 Xeon ES-2470 processors at 2.3 GHz with 8 cores and hyperthread-
ing enabled. Clients connect to storage nodes using NFSv3 via a dedicated 48-port
SDN-controlled Arista 7050Tx switch, and VM disk images are striped across six-
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teen objects.

5.4.1 Optimization

We begin by benchmarking the greedy solver, which is used in all subsequent ex-
periments. Given rules that run in constant time, this solver has a computational

complexity of O(NlogNlogM) for a system with N objects and M devices.

We measure solver runtime when enforcing a simple load-balancing policy (based
on the device_has_space and load_balanced rules, with the latter enforcing
a LOAD_SPREAD of 20%) in deployments of various sizes. In each experiment, a
simulated cluster is modelled with fixed-capacity devices (no more than ten per
node) randomly populated with objects whose sizes and loads are drawn from a
Pareto distribution, scaled such that no single object exceeds the capacity of a de-
vice and the cluster is roughly 65% full. For each configuration we present the
time required to find a zero-cost solution as well as the number of reconfigurations
required to achieve the solution, averaged over ten runs. Some experiments require
no reconfigurations because their high object-to-device ratios result in very small
objects that yield well-balanced load distributions under the initial, uniformly ran-
dom placement; the runtimes for these experiments measure only the time required

to validate the initial configuration.

As Table 5.2 shows, the flexibility provided by Python-based rules comes with
a downside of relatively high execution times (more than a minute for a system
with 100K objects and 1K devices). While we believe there is ample opportunity
to improve our unoptimized implementation, we have not yet done so, primarily
because rebalance jobs run in overlapping batches, allowing optimization and ac-

tuation tasks to execute in parallel, and actuation times typically dominate.

5.4.2 Actuation

In the following experiment we measure actuation performance by demonstrat-

ing how Mirador restores redundancy in the face of hardware failures. We pro-
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vision four nodes, each with 12 1 TB SSDs, for a total of 48 devices. We deploy
1,500 client vMs, each running fio [14] with a configuration modelled after virtual
desktop workloads. vMs issue 4 KiB requests against 1 GiB disks. Requests are
drawn from an 80/20 Pareto distribution with an 80:20 read:write ratio; read and
write throughputs are rate-limited to 192 KiB/sec and 48 KiB/sec, respectively,
with a maximum queue depth of 4, generating an aggregate throughput of roughly
100K 10PS.

Five minutes into the experiment, we take a device offline and schedule a rebal-
ance job. The rplset_durable rule assigns infinite cost to objects placed on
failed devices, forcing reconfigurations, while load-balancing and failure-domain
rules prioritize the choice of replacement devices. The job defers actuation until
a 15 minute stabilization interval expires so that transient errors do not trigger un-
necessary migrations. During this time it inspects more than 118,000 objects, and
it eventually rebuilds 3053 in just under 20 minutes, with negligible effect on client

workloads, as seen in Figure 5.2.

5.4.3 Resource Objectives

‘We now shift our attention to the efficacy of specific placement rules, measuring the
degree to which they can affect client performance in live systems. We first focus
on resource-centric placement rules that leverage knowledge of cluster topology

and client configurations to improve performance and simplify lifecycle operations.

Topology-Aware Placement

In this experiment we measure the value of topology-aware placement policies in
distributed systems. We deploy four storage nodes and four clients, with each
client hosting 8 VMs running a F1IO workload issuing random 4 KiB reads against

dedicated 2 GiB virtual disks at queue depths ranging between 1 and 32.

Figure 5.3a presents the application-perceived latency achieved under three dif-

ferent placement policies when VMs issue requests at a queue depth of one. The
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Figure 5.2: Rebuilding replicas after a device failure

random policy distributes stripes across backend devices using a simple consistent
hashing scheme and applies a random one-to-one mapping from clients to storage
nodes. This results in a configuration where each node serves requests from ex-
actly one client, and with four nodes, roughly 75% of reads access remotely-hosted
stripes. This topology-agnostic strategy is simple to implement, and, assuming
workload uniformity, can be expected to achieve even utilization across the cluster,
although it does require significant backend network communication. Indeed, as
the number of storage nodes in a cluster increases, the likelihood that any node is
able to serve requests locally decreases; in the limit, all requests require a backend
RTT. This behavior is captured by the remote policy, which places stripes such that
no node has a local copy of any of the data belonging to the clients it serves. The
local policy follows the opposite strategy, placing all stripes for a given VM on a

single node and ensuring that clients connect directly to the nodes hosting their
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Figure 5.3: Performance under three different placement strategies. The local policy
yields a median latency 18% and 22% lower than the random and remote poli-
cies, respectively, resulting in an average throughput increase of 26%. (Error
bars in Figure 5.3b give 95% confidence intervals.)
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Figure 5.4: Mirador responds to changes in cluster topology and workload behavior.
Data is immediately migrated to new storage nodes as they are introduced in
20 minute increments, starting at time f5; the brief throughput drops are due to
competition with background data copies. At time fgs, two of the four client ma-
chines are deactivated; the remaining client load is subsequently redistributed,
at which point performance is limited by client resources.

data. Notably, all three policies are implemented in less than twenty lines of code,

demonstrating the expressiveness of Mirador’s optimization framework.

By co-locating VM stripes and intelligently routing client connections, the local
policy eliminates additional backend RTTs and yields appreciable performance
improvements, with median latencies 18% and 22% lower than those of the ran-
dom and remote policies, respectively. Similar reductions are obtained across all
measured queue depths, leading to comparable increases in throughput, as shown
in Figure 5.3b.

Elastic Scale Out

In addition to improving application-perceived performance, minimizing cross-
node communication enables linear scale out across nodes. While a random place-
ment policy would incur proportionally more network RTTs as a cluster grows
in size (potentially consuming oversubscribed cross-rack bandwidth), local place-
ment strategies can make full use of new hardware with minimal communication
overhead. This is illustrated in Figure 5.4, which presents a timeline of aggregate
client TOPS as storage nodes are added to a cluster. At time ¢ the cluster is config-

ured with a single storage node serving four clients, each hosting 16 VMs issuing
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random 4 KiB reads at a queue depth of 32; performance is initially bottlenecked
by the limited storage. At time #;9, an additional node is introduced, and the place-
ment service automatically rebalances the data and client connections to make use
of it. It takes just over two minutes to move roughly half the data in the clus-
ter onto the new node. This migration is performed as a low-priority background
task to limit interference with client 10. Two additional nodes are added at twenty
minute intervals, and in each case, after a brief dip in client performance caused by

competing migration traffic, throughput increases linearly.

The performance and scalability benefits of the local policy are appealing, but to
be practical, this approach requires a truly dynamic placement service. While both
local and random policies are susceptible to utilization imbalances caused by non-
uniform workload patterns (e.g., workload ‘hot spots’), the problem is exacerbated
in the local case. For example, if all workloads placed on a specific node happen
to become idle at the same time, that node will be underutilized. Figure 5.4 shows
exactly this scenario at time fgs, where two clients are deactivated and the nodes
serving them sit idle, halving overall throughput. After waiting for workload be-
havior to stabilize, the placement service responds to this imbalance by migrating
some of the remaining VMs onto the idle storage, at which point the clients become
the bottleneck.

5.4.4 Workload Objectives

Placement policies informed by resource monitoring can provide significant im-
provements in performance and efficiency, but they are somewhat reactive in the
sense that they must constantly try to ‘catch up’ to changes in workload behavior.
In this section we introduce and evaluate several techniques for improving data

placement based on longitudinal observations of workload behavior.

The following examples are motivated by an analysis of hundreds of thousands of
workload profiles collected from production deployments over the course of more
than a year. The synthetic workloads evaluated here, while relatively simple, reflect

some of the broad patterns we observe in these real-world profiles.
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For these experiments, we extend the storage configuration described in § 5.4.3
with a disk-based capacity tier. The placement service controls how objects are
assigned to flash devices as before; nodes manage the flash cards as LRU caches
and page objects to disk in 512 KiB blocks. We artificially reduce the capacity of
each flash device to 4 GiB to stress the tiering subsystem. While our evaluation fo-
cuses on conventional tiered storage, we note that the techniques presented here are
applicable to a wide variety of hierarchical and NUMA architectures in which ex-
pensive, high-performance memories are combined with cheaper, more capacious

alternatives, possibly connected by throughput-limited networks.

Footprint-Aware Placement

Many real-world workloads feature working sets (roughly defined as the set of
data that is frequently accessed over a given period of time) that are much smaller
than their total data sets [36, 124]. Policies that make decisions based only on
knowledge of the latter may lead to suboptimal configurations. We show how
augmenting traditional capacity rules with knowledge of working set sizes can lead

to improved placement decisions.

We begin by deploying eight VMs across two clients connected to a cluster of two
nodes. Each vM disk image holds 32 GiB, but the VMs are configured to run
random 4 KiB read workloads over a fixed subset of the disks, such that working
set sizes range from 500 MiB to 4 GiB. Given two nodes with 8 GiB of flash each,
it is impossible to store all 256 GiB of VM data in flash; however, the total workload
footprint as measured by the analysis service is roughly 17 GiB, and if carefully
arranged, it can fit almost entirely in flash without exceeding the capacity of any

single device by more than 1 GiB.

We measure the application-perceived latency for these VMs in two configurations.
In the first, VMs are partitioned evenly among the two nodes using the local policy
described in § 5.4.3 to avoid network RTTs. In the second, the same placement
policy is used, but it is extended with one additional rule that discourages configu-

rations where combined working set sizes exceed the capacity of a given flash card.
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Figure 5.5: Fitting working sets to flash capacities (‘best fit’) yields a median latency
of 997 usecs, compared to 2088 psecs for the ‘local’ policy that eliminates
backend network RTTs but serves more requests from disk.

The cost of violating this rule is higher than the cost of violating the node-local
rule, codifying a preference for remote flash accesses over local disk accesses. The
greedy solver is a good fit for this problem and arrives at a configuration in which

only one flash device serves a combined working set size larger than its capacity.

As Figure 5.5 shows, the best-fit policy results in significantly lower latencies,
because the cost of additional network hops is dwarfed by the penalty incurred by
cache misses. The purely local policy exhibits less predictable performance and a
long latency tail because of cumulative queuing effects at the disk tier. This is a
clear example of how combining knowledge of the relative capabilities of network
links and storage tiers with detailed workload profiling can improve placement

decisions.
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Noisy Neighbor Isolation

We next introduce four cache-unfriendly workloads each with 4 GiB disks. The
workloads perform linear scans that, given 4 GiB LRU caches, are always served
from disk and result in substantial cache pollution. These workloads make it im-

possible to completely satisfy the working set size rule of the previous experiment.

We measure the request latency of the original workloads as they compete with
these new cache-unfriendly workloads under two policies: a fair share policy that
distributes the cache-unfriendly workloads evenly across the flash devices, and an
isolation policy that attempts to limit overall cache pollution by introducing a new
rule that encourages co-locating cache-unfriendly workloads on common nodes,
regardless of whether or not they fit within flash together. As Figure 5.6 shows, this
latter policy exhibits a bimodal latency distribution, with nearly 48% of requests
enjoying latencies less than one millisecond while a handful of ‘victim’ workloads
experience higher latencies due to contention with cache-unfriendly competitors.
The fair share policy, on the other hand, features a more uniform distribution, with
all workloads suffering equally, and a median latency more than three times higher

than that of the isolated policy.

Workload Co-scheduling

Finally, we introduce a technique for leveraging long-term temporal patterns in
workload behavior to improve data placement. We frequently see storage work-
loads with pronounced diurnal patterns of high activity at key hours of the day
followed by longer periods of idleness. This behavior typically correlates with
workday habits and regularly scheduled maintenance tasks [43, 87, 101]. Similar
effects can be seen at much smaller scales in CPU caches, where the strategy of

co-locating applications to avoid contention is called ‘co-scheduling’ [114].

We present a simple algorithm for reducing cache contention of periodic work-
loads. The workload analysis service maintains an extended time series of the
footprint of each workload, where footprint is defined as the number of unique

blocks accessed over some time window; in this experiment we use a window of
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Figure 5.6: Isolating cache-unfriendly workloads on a single device yields a median
latency of 1036 psecs, compared to 3220 usecs for the ‘fair’ policy that dis-
tributes these workloads uniformly across all devices.

ten minutes. Given a set of workloads, we compute the degree to which they con-
tend by measuring how much their bursts overlap. Specifically, we model the cost
of co-locating two workloads W) and W, with corresponding footprint functions
f1(t) and f>(¢) as [min(fi(¢), f>(¢)). We use this metric to estimate the cost of
placing workloads together on a given device, and employ a linear first-fit algo-
rithm [39] to search for an arrangement of workloads across available devices that
minimizes the aggregate cost. Finally, we introduce the co_scheduled rule which

encodes an affinity for assignments that match this arrangement.

We evaluate this heuristic by deploying 8 VMs with 4 GiB disks across two storage
nodes each with two 4 GiB flash devices. The vMs perform 10 workloads featur-
ing periodic hour-long bursts of random reads followed by idle intervals of roughly
3 hours, with the periodic phases shifted in some vMs such that not all workloads

are active at the same time. The combined footprint of any two concurrent bursts
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Figure 5.7: Co-scheduling periodic workloads

exceeds the size of any single flash device, and if co-located, will incur significant
paging. We measure request latency under a number of different configurations:
random, in which stripes are randomly distributed across devices, optimal and pes-
simal, in which VMs are distributed two to a device so as to minimize and maximize

contention, respectively, and first-fit, as described above.

Figure 5.7 plots latency CDFs for each of these configurations. The penalty of
concurrent bursts is evident from the pronounced disparity between the optimal
and pessimal cases; in the latter configuration, contention among co-located work-
loads is high, drastically exceeding the available flash capacity. The first-fit ap-
proximation closely tracks optimal in the first two quartiles but performs more like
random in the last two, suggesting room for improvement either by developing a
more sophisticated search algorithm or responding more aggressively to workload

changes.
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Figure 5.8: Optimization time versus objects inspected

5.5 Experience

To see how Mirador performs in real-world environments, we sample logs detailing
more than 8,000 rebalance jobs in clusters installed across nearly 50 customer sites
and ranging in size from 8 to 96 devices. Figure 5.8 illustrates how time spent
in the optimization stage scales in proportion to the number of objects inspected;
these measurements include rate-limiting delays imposed to prevent Mirador from
impacting client workloads when reading metadata. Figure 5.9 plots the number of
observed violations against the number of objects inspected per job, and highlights
jobs that fail to find a zero-cost solution after a single optimization pass. This
occurs in only 2.5% of sampled jobs in which objective functions are violated, and
in 71% of these cases, no zero-cost solutions are possible due to environmental
circumstances (some log samples cover periods in which devices were intentionally

taken offline for testing or maintenance).

We have found Mirador’s flexibility and extensibility to be two of its best attributes.

Over the nearly 18 months in which it has been in production, we have adapted it
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Figure 5.9: Violations observed versus objects inspected (jobs where no zero-cost
solution was found after a single optimization round are marked with a red x)

to new replication policies and storage architectures simply by modifying existing
rules and adding new ones. It has also been straightforward to extend Mirador
to support new functionality: in addition to providing capacity balancing across
storage devices and network links, it now plays a central role in cluster expansion,
hardware retirement, failure recovery, health monitoring, and disk scrubbing fea-
tures. For example, upon discovering an invalid data checksum, our disk scrubbing
service simply marks the affected object as corrupt and notifies the placement ser-
vice, where a custom rule forces the migration of marked objects to new locations,

effectively rebuilding them from valid replicas in the process.

Our deployment strategy to date has been conservative: we ship a fixed set of rules
(currently seven) and control how and when they are used. Assigning appropriate
costs to rules requires domain knowledge, since rules often articulate conflicting
objectives and poorly chosen costs can lead to unintended behavior. As an example,
if solvers fail to identify a zero-cost solution, they yield the one with the lowest

aggregate cost — if multiple rules conflict for a given assignment, the assignment
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which minimizes the overall cost is chosen. It is thus important to know which
objective functions a replica set may violate so that high priority rules are assigned
costs sufficiently large enough to avoid priority inversion in the face of violations

of multiple lower-priority rules.

While objective functions neatly encapsulate individual placement goals and are
relatively easy to reason about, comprehensive policies are more complex and must
be carefully vetted. We validate rules, both in isolation and combination, with hun-
dreds of policy tests. Declarative test cases specify a cluster configuration and
initial data layout along with an expected optimization plan; the test harness gen-
erates a storage system model from the specification, invokes the planning engine,
and validates the output. We have also built a fuzz tester that can stress policies
in unanticipated ways. The test induces a sequence of random events (such as
the addition and removal of nodes, changes in load, etc.) and invokes the policy
validation tool after each step. Any cluster configuration that generates a policy
violation is automatically converted into a test case to be added to the regression
suite after the desired behavior is determined by manual inspection. Validating any
non-trivial placement policy can require a fair amount of experimentation, but in
our experience, the cost-based framework provided by Mirador provides knobs that

greatly simplify this task.

In production, rebalance jobs run in two passes: the first enforces critical rules
related to redundancy and fault tolerance, while the second additionally enforces
rules related to load-balancing and performance. This is done because the planning
engine must inspect objects in batches (batches are limited to roughly 10,000 ob-
jects to keep memory overheads constant), and we want to avoid filling a device in
an early batch in order to satisfy low-priority rules when that same device may be

necessary to satisfy higher-priority rules in a later batch.

Early testing revealed the importance of carefully tuning data migration rates. Our
migration service originally provided two priorities, with the higher of these in-
tended for failure scenarios in which replicas need to be rebuilt. In practice, how-
ever, we found that such failures place additional stress on the system, often driv-

ing latencies up. Introducing high-priority migration traffic in these situations can
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lead to timeouts that only make things worse, especially under load. We have
since adopted a single migration priority based on an adaptive queuing algorithm
that aims to isolate migration traffic as much as possible while ensuring forward

progress is made.

5.6 Related Work

Researchers have proposed a wide variety of strategies for addressing the data
placement problem, also known as the file assignment problem [40]. Determinis-
tic approaches are common in large-scale systems [88, 94, 108, 115, 117] because
they are decentralized and impose minimal metadata overheads, and they achieve
probabilistically uniform load distribution for large numbers of objects [96, 100].
Consistent hashing [64] provides relatively stable placement even as storage tar-
gets are added and removed [51, 130]. Related schemes offer refinements like the
ability to prioritize storage targets and modify replication factors [57, 58, 116], but
these approaches are intrinsically less flexible than dynamic policies.

Non-deterministic strategies maintain explicit metadata in order to locate data.
Some of these systems employ random or semi-random placement policies for the
sake of simplicity and scalability [70, 90, 95], but others manage placement with
hard-coded policies [49, 104]. Customized policies provide better control over
properties such as locality and fault tolerance, which can be particularly important

as clusters expand across racks [63].

Explicit metadata also make it easier to perform fine-grain migrations in response
to topology and workload changes, allowing systems to redistribute load and ame-
liorate hot spots [73, 87]. Hierarchical Storage Management and multi-tier sys-
tems dynamically migrate data between heterogeneous devices, typically employ-
ing policies based on simple heuristics intended to move infrequently accessed data

to cheaper, more capacious storage or slower, more compact encodings [4, 119].

Mirador has much in common with recent systems designed to optimize specific
performance and efficiency objectives. Guerra et al. [53] describe a tiering system

that makes fine-grain placement decisions to reduce energy consumption in SANs
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by distributing workloads among the most power-efficient devices capable of sat-
isfying measured performance requirements. Janus [6] is a cloud-scale system that
uses an empirical cacheability metric to arrange data across heterogeneous media in
a manner that maximizes reads from flash, using linear programming to compute
optimal layouts. Volley [2] models latency and locality using a weighted spring
analogy and makes placement suggestions for geographically distributed cloud ser-
vices. Tuba [12] is a replicated key-value store designed for wide area networks
that allows applications to specify latency and consistency requirements via service
level agreements (SLAs). It collects hit ratios and latency measurements and peri-
odically reconfigures replication and placement settings to maximize system utility
(as defined by SLAs) while honoring client-provided constraints on properties like
durability and cost. Mirador supports arbitrary cost-function optimizations using a
generic framework and supports policies that control network flows as well as data

placement.

Mirador also resembles resource planning systems [8, 11] like Hippodrome [10],
which employ a similar observe/optimize/actuate pipeline to design cost-efficient
storage systems. Given a set of workload descriptions and an inventory of avail-
able hardware, these tools search for low-cost array configurations and data layouts
that satisfy performance and capacity requirements. Like Mirador, they simplify
a computationally challenging multidimensional bin-packing problem by combin-
ing established optimization techniques with domain-specific heuristics. However,
while these systems employ customized search algorithms with built-in heuristics,
Mirador codifies heuristics as rules with varying costs and relies on generic solvers

to search for low-cost solutions, making it easier to add new heuristics over time.

Ursa Minor [1] is a clustered storage system that supports dynamically config-
urable m-of-n erasure codes, extending the data placement problem along multiple
new dimensions. Strunk et al. [110] describe a provisioning tool for this system
that searches for code parameters and data layouts that maximize user-defined util-
ity for a given set of workloads, where utility quantifies metrics such as availability,
reliability, and performance. Utility functions and objective functions both provide
flexibility when evaluating potential configurations; however, Mirador’s greedy al-

gorithm and support for domain-specific hints may be more appropriate for online

106



rebalancing than the randomized genetic algorithm proposed by Strunk et al.

5.7 Conclusion

Mirador is a placement service designed for heterogeneous distributed storage sys-
tems. It leverages the high throughput of non-volatile memories to actively migrate
data in response to workload and environmental changes. It supports flexible, ro-
bust policies composed of simple objective functions that specify strategies for
both data and network placement. Combining ideas from constraint satisfaction
with domain-specific language bindings and APIs, it searches a high-dimension so-
lution space for configurations that yield performance and efficiency gains over

more static alternatives.
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Chapter 6

Conclusion

As a commercial product, one of the features that sets Strata apart from its many
competitors is the architectural support it provides for dynamic cluster reconfigura-
tion. This is valuable for a number of reasons. First, it abolishes the much-loathed
five year refresh cycle imposed by many incumbent vendors. Allowing adminis-
trators to expand clusters in response to growing demand relieves them of the bur-
den of estimating at purchase time what their storage requirements will be many
years down the road. And supporting rolling upgrades and heterogeneous clusters
eliminates the need for disruptive ‘forklift’ upgrades in which existing systems are
migrated to new hardware en masse. Second, deferring purchases until hardware is
actually needed can dramatically reduce capital and operating expenses, both by al-
lowing Moore’s Law to accrue longer before money is exchanged, and by reducing
the number of devices that sit idle in initially over-provisioned systems. Finally,
the ability to provision performance and capacity independently gives storage ad-
ministrators the flexibility they need to adapt to changing requirements within the

data center.

These advantages are natural consequences of the design advocated in this thesis.
The platform provided by Strata decouples logical resources from physical hard-
ware and separates control- and data-path logic, enabling dynamic configuration

changes without degrading performance, and the robust policy engine provided
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by Mirador arranges for hardware resources to be allocated where they are most
needed. This paradigm of abstraction, analysis, and actuation helps systems to au-
tomatically respond to changes in workload behavior and hardware configurations,
a valuable capability in data center environments serving diverse workloads across
large, heterogeneous clusters. It has been incredibly rewarding to see this approach
succeed in real customer deployments, but it has also been instructive to observe
some of its limitations. Indeed, there is still ample opportunity — and need — to
continue innovating storage software, especially as hardware continues to evolve.
Below I enumerate what I see as some of the most interesting directions for future

improvements, some of which we have already begun to explore.

Volume Management Strata’s departure from traditional aggregated designs was
a response to the unprecedented performance of new PCle flash devices like the
Intel 910, which provides 800 GB of storage and serves 180,000 random read re-
quests per second. Three years after we published the Strata paper, the Intel p3700,
providing 2 TB of storage and serving 460,000 random read requests per second,
hit the market at roughly the same price as the original 910. This rapid rate of
progress reinforces many of the design choices we made, particularly regarding the
need to efficiently virtualize hardware in support of dynamic workload multiplex-
ing. But these new devices place even more stringent constraints on the data path:
access latencies have dropped from 65 microseconds in the 910 to 20 microsec-
onds in the p3700, and NVDIMM modules currently operate at latencies of just 10
nanoseconds. At these speeds, software overheads imposed by context switches
and thread synchronization become problematic. In response, we built Decibel,
a device virtualization layer designed to completely eliminate cross-core commu-
nication along the data path. Decibel’s disaggregated architecture is similar to
Strata’s, but rather than presenting individual devices over the network, it presents
a volume abstraction that encapsulates storage, network, and compute resources.
Decibel volumes bind chunks of storage to dedicated cores and NIC queues; flow
steering based on an explicit network addressing scheme ensures that client re-
quests are automatically directed to the appropriate cores, eliminating the need for

forwarding or synchronization in software. This, combined with a userspace net-
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working stack that bypasses kernel scheduling and context switches, allows Deci-
bel to serve remote workloads from p3700 devices at saturation with an overhead

relative to local access of just 20 microseconds.

Hybrid Placement Decibel both refines and complements Strata’s separation of
control- and data-path logic, and it naturally benefits from the optimization tech-
niques in Mirador that correct load imbalances and mitigate hot spots. However,
while a centralized placement engine simplifies the difficult task of optimizing re-
source allocation, it also presents some challenges, particularly when scaling to
very large deployments with billions of objects. Individually optimizing the place-
ment of so many objects can be prohibitively expensive. Fortunately, the tech-
niques employed by Mirador can naturally be combined with less computation-
ally expensive approaches like statistical multiplexing to good effect. Under this
regime, a deterministic policy such as consistent hashing can be used to decide
the default placement of the vast majority of objects, while dynamic optimization
techniques can be applied only to objects that actively contribute to performance
and utilization problems. Strata’s clean separation of addressing and placement fa-
cilities would naturally accommodate this hybrid approach, improving scalability

without sacrificing flexibility.

Demand Swap Optimizing the placement of data in heterogeneous clusters is par-
ticularly challenging because of the huge performance variations across devices.
The demand fault strategy conventionally used by cache replacement policies can
lead to surprisingly poor performance when the combined size of active working
sets is even marginally larger than the available fast storage. This technique has
a tendency to penalize many workloads a small amount, which can become prob-
lematic as data dependencies exacerbate the effects of even a few cache misses per
workload. The data we have collected from real-world deployments of production
virtual machines, which comprises thousands of workload-years of detailed profil-
ing, suggests that a better approach might be to swap entire workloads in and out

of fast storage as they cycle between active and idle phases, which regularly last
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hours at a time. Preliminary investigation confirms that phase changes are easily
identified via counter stack analysis and that they can be predicted with fairly high
confidence for a large class of workloads. We have further found that online clas-
sifiers generally identify active phases less than a minute after they begin. Given
that we can reasonably expect to load entire working sets, which are typically on
the order of a few dozens of gigabytes, from disk in a matter of seconds (so long
as transfers are carefully scheduled across large numbers of spindles), the idea of
swapping entire workloads in and out of fast storage, either reactively or specu-
latively, is alluring. This would leverage the sequential throughput of disks much
more effectively than the demand fault approach, and would additionally make it

easier to isolate ill-behaved or under-provisioned workloads.

Programmable Storage Heterogeneous clusters expose a tension between cost
and performance. In many cases, purely economic constraints make this tension
inevitable. However, in our experience, providing predictable performance is of-
ten more important than achieving device-rate speeds. Mirador uses a number of
heuristics to attempt to automatically infer the optimal allocation of resources at
any given time, but these heuristics do not always align with the business needs of
individual customers. In situations where resources are scarce, it may be preferable
to delegate allocation decisions higher up the stack, either to application developers
or storage administrators. This is in keeping with recent trends in software design
that have shifted traditional storage responsibilities like replication and consistency
to application-level services like key/value stores and databases. These services un-
derstand the performance and placement requirements of their data better than the
underlying storage system, so providing them with an interface for safely influ-
encing resource allocation decisions, while protecting against buggy and malicious
applications, could present new opportunities to improve performance and elimi-
nate unwelcome surprises. Mirador’s support for arbitrary soft and hard constraints
provides a good starting point for this approach; exposing more of this functionality
to applications would extend many of the benefits introduced by software defined

networking to the storage domain.

Strata provides a solid platform for exploring these and other techniques because
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of the design abstractions it provides. Implementing these abstractions in an en-
terprise storage product has been a labor-intensive task, but one that has yielded
many benefits. In addition to producing a system that solves real problems for our
customers, it has provided an opportunity to explore novel techniques for optimiz-
ing performance and efficiency within the data center, and its organizing principles

offer a useful model for future system designers.
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