
Storage System Design for Fast Nonvolatile Memories

by

Jacob Taylor Wires

M.Sc., Computer Science, The University of British Columbia, 2006

B.Sc., Computer Engineering, The University of California at Santa Barbara, 2004

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

October 2017

c© Jacob Taylor Wires, 2017

Abstract

Nonvolatile memories are transforming the data center. Over the past decade, enter-

prise flash has evolved to provide a thousand times more random-access throughput

than mechanical disks, with a thousand times lower latency and ten times more ca-

pacity. These remarkable improvements completely reshape software concerns,

allowing storage systems to take a more central role in dynamic resource manage-

ment, but demanding that they do so with significantly lower overheads.

This thesis presents several novel software techniques for managing high-density

storage systems. In particular, it describes a probabilistic approach to workload

modeling that provides guaranteed error bounds while dramatically reducing mem-

ory overheads relative to existing state-of-the-art algorithms. It also documents

the design and implementation of a storage controller that leverages dynamic con-

straint satisfaction techniques to continually optimize data and network flow place-

ment for performance, efficiency, and scale.

These advances are presented within a broader design framework that provides a

flexible and robust platform for managing all aspects of storage resource alloca-

tion. Informed by experiences and insights gained over six years of building an

enterprise scale-out storage appliance, it is based on three key ideas: light-weight

abstraction to decouple logical resources from physical hardware, online analysis

to capture workload requirements, and dynamic actuation to adjust allocations as

requirements change. Together, these capabilities allow storage software to dy-

namically adapt to changing workload behavior and allow stored data to play a

more active role in data center computing.

ii

Lay Summary

Most data center storage systems were originally designed to manage mechanical

disks, which are some of the slowest hardware components in general comput-

ing. Enterprise flash devices and other nonvolatile memories have emerged over

the past decade that are so much faster than disks that existing storage software

simply cannot keep up. These devices call for new design approaches that provide

efficient request processing to avoid costly performance penalties while also sup-

porting dynamic resource management to ensure high hardware utilization. This

thesis describes a system architecture and several novel software techniques that

together provide this efficiency and dynamism, allowing application software to

fully leverage the impressive capabilities of these new devices.

iii

Preface

Chapters 3, 4, and 5 are versions of papers published at peer-reviewed academic

conferences. They have been lightly edited for formatting.

Chapter 3

A version of Chapter 3 was published at FAST, the Usenix Conference on File and

Storage Technologies, in 2014 [34]. This was a joint work with several authors. As

the second author, I made significant contributions in building the system, evaluat-

ing the results, and composing the manuscript.

Chapter 4

A version of Chapter 4 was published at OSDI, the Usenix Conference on Op-

erating Systems Design and Implementation, also in 2014 [122]. As the primary

author, I set the research agenda, contributed to the implementation, evaluated the

results, and presented the work. My coauthors contributed to the implementation

and manuscript composition.

Chapter 5

A version of Chapter 5 was published at FAST in 2017 [120]. I was the primary

author and researcher, responsible for all aspects of implementation and evaluation.

iv

Table of Contents

Abstract . ii

Lay Summary . iii

Preface . iv

Table of Contents . v

List of Tables . ix

List of Figures . x

List of Listings . xii

Glossary . xiii

Acknowledgments . xvi

Dedication . xvii

1 Introduction . 1
1.1 Publications . 8

2 Nonvolatile Memory . 10

3 Strata: Scalable High-Performance Storage on Virtualized Non-Volatile
Memory . 14

v

3.1 Introduction . 14

3.2 Architecture . 17

3.2.1 Scope of this Work . 19

3.3 Data Paths . 20

3.3.1 The Virtual Address Map 22

3.3.2 Dispatch . 23

3.3.3 Coherence . 24

3.4 Network Attached Disks . 25

3.4.1 Network Integration . 26

3.5 Online Reconfiguration . 26

3.5.1 Object Reconfiguration 27

3.5.2 System Reconfiguration 29

3.6 Storage Protocols . 32

3.6.1 Scalable NFS . 32

3.6.2 SDN Protocol Scaling . 33

3.7 Evaluation . 34

3.7.1 Test Environment . 34

3.7.2 Baseline Performance 35

3.7.3 Scalability . 35

3.7.4 Node Failure . 38

3.7.5 Protocol Overhead . 39

3.7.6 Effect of CPU on Performance 40

3.8 Related Work . 40

3.9 Conclusion . 42

4 Characterizing Storage Workloads with Counter Stacks 44
4.1 Introduction . 44

4.2 Background . 46

4.3 Counter Stacks . 48

4.3.1 Definition . 49

4.3.2 LRU Stack Distances . 50

4.4 Practical Counter Stacks . 52

4.4.1 Downsampling . 53

vi

4.4.2 Pruning . 53

4.4.3 Probabilistic Counters 54

4.4.4 LRU Stack Distances . 55

4.5 The Counter Stack API . 56

4.5.1 On-disk Streams . 56

4.5.2 Compute Queries . 56

4.5.3 Time Slicing and Shifting 57

4.5.4 Joining . 58

4.6 Error and Uncertainty . 60

4.6.1 Counter Error . 60

4.6.2 Downsampling Uncertainty 61

4.7 Evaluation . 62

4.7.1 Performance . 62

4.7.2 Accuracy . 64

4.8 Workload Analysis . 65

4.8.1 Combined Workloads . 65

4.8.2 Erratic Workloads . 68

4.8.3 Conflicting Workloads 68

4.8.4 Periodic Workloads . 69

4.8.5 Zipfian Workloads . 71

4.9 Related Work . 72

4.10 Conclusion . 73

5 Mirador: An Active Control Plane for Datacenter Storage 75
5.1 Introduction . 75

5.2 A Control Plane for Datacenter Storage 77

5.3 Mirador . 80

5.3.1 Observation . 81

5.3.2 Optimization . 81

5.3.3 Actuation . 88

5.3.4 Platform Support . 88

5.4 Evaluation . 90

5.4.1 Optimization . 91

vii

5.4.2 Actuation . 91

5.4.3 Resource Objectives . 92

5.4.4 Workload Objectives . 96

5.5 Experience . 102

5.6 Related Work . 105

5.7 Conclusion . 107

6 Conclusion . 108

Bibliography . 113

viii

List of Tables

Table 3.1 Random IO performance on Strata versus KNFS 35

Table 3.2 Random IO performance with various CPU models 40

Table 4.1 Counter stack resource requirements 63

Table 4.2 Modelling hit rates . 68

Table 5.1 Mirador objective functions 89

Table 5.2 Greedy solver runtime . 90

ix

List of Figures

Figure 1.1 Schematic overview . 8

Figure 3.1 Strata network storage architecture 15

Figure 3.2 Hardware view of a Strata deployment 19

Figure 3.3 Virtual object to physical object range mapping 22

Figure 3.4 IOPS over time, read-only workload 36

Figure 3.5 IOPS over time, 80/20 R/W workload 37

Figure 3.6 IOPS over time, random placement 38

Figure 3.7 Aggregate bandwidth during failover and recovery 39

Figure 4.1 The counter stack library architecture 57

Figure 4.2 The counter stack join operation 59

Figure 4.3 Computing stack distances 62

Figure 4.4 Sample miss ratio curves . 66

Figure 4.5 Combined miss ratio curves 67

Figure 4.6 Counter stack fidelity . 67

Figure 4.7 Time-sliced miss ratio curves 69

Figure 4.8 Modelling shared caches . 70

Figure 4.9 Modelling workload footprints 71

Figure 4.10 Synthetic miss ratio curves 72

Figure 5.1 The Mirador system architecture and rebalance pipeline . . . 79

Figure 5.2 Rebuilding replicas after a device failure 93

Figure 5.3 Performance under three different placement policies 94

x

Figure 5.4 Performance during cluster reconfiguration 95

Figure 5.5 Footprint-aware placement 98

Figure 5.6 Noisy neighbor isolation . 100

Figure 5.7 Workload co-scheduling . 101

Figure 5.8 Optimization time versus objects inspected 102

Figure 5.9 Violations observed versus objects inspected 103

xi

List of Listings

Listing 5.1 Load balancing rule . 84

Listing 5.2 Hardware redundancy rule 84

Listing 5.3 Greedy solver implementation 87

xii

Glossary

API application programming interface

CPU central processing unit

CRUD create, read, update, delete

DIMM dual inline memory module

FCoE fibre channel over ethernet

FIO flexible IO tester

HLL hyperloglog cardinality sketch

IO input/output

IOPS IO operations per second

IP internet protocol

IPMI intelligent platform management interface

iSCSI internet SCSI

JVM java virtual machine

LRU least-recently used cache replacement algorithm

LSN log serial number

xiii

M.2 specification for internally mounted expansion cards and connectors

MRC miss ratio curve

NAD network attached disk

NAND negative-and logic gate

NFS network file system protocol

NIC network interface controller

NUMA non-uniform memory access

NVDIMM nonvolatile DIMM

NVMe nonvolatile memory express

OSD object storage device

PCIe peripheral component interconnect express

PCM phase change memory

pNFS parallel network file system protocol

RAM random access memory

RPC remote procedure call

RTT round-trip time

SAN storage area network

SAS serial attached SCSI

SATA serial AT attachment

SCSI small computer systems interface

SDN software-defined networking

SLA service level agreement

xiv

SMART self-monitoring, analysis, and reporting technology

SMB server message block, aka common internet file system

SSD solid state drive

TCP transmission control protocol

VLAN virtual local area network

VM virtual machine

VMDK virtual machine disk

VMM virtual machine monitor

xv

Acknowledgments

None of this work would have been possible without the help of my advisor, An-

drew Warfield, who has taught me a great many things about technology, business,

and life. His generosity, optimism, and enthusiasm are a wonderful inspiration,

and I look forward to many more years of collaboration together.

I owe many thanks to my committee members Norm Hutchinson and Bill Aiello,

who offered invaluable advice and support throughout my studies.

Finally, I would like to thank Stephen Ingram, Nick Harvey, Daniel Stodden, Kalan

Macrow, Mihir Nanavati, and all my past and present colleagues at Coho Data. The

laughter and discoveries shared over the years working with this team have made

all the effort worthwhile.

xvi

Dedication

To my family, for all their love and support.

xvii

Chapter 1

Introduction

This thesis documents more than five years of experience building an enterprise

storage appliance. The period it describes was one of remarkable hardware innova-

tion, in which nonvolatile memories improved on the performance of mechanical

disks by more than three orders of magnitude. It is a rare and exciting thing for

computer scientists to witness such a dramatic transformation in such a short time.

In this case, however, the advances came with a new set of problems, as existing

software techniques proved ill-equipped to fully leverage new hardware capabili-

ties. This work details some of the key challenges we faced in building a storage

system designed specifically for fast, nonvolatile memories. In particular, it de-

scribes a system architecture suitable for new low-latency devices, and it presents

several novel software techniques for obtaining high utility from these devices. It

additionally presents a model for system design that is broadly applicable to many

services within the data center. This model can be summarized by three key capa-

bilities: light-weight abstraction of hardware to provide programmatic control of

resource allocation, online analysis of workload behavior to provide insight into

performance requirements, and dynamic actuation to adjust resource allocations

as requirements change. Together, these capabilities yield robust, flexible systems.

The chapters that follow, which are edited versions of published conference papers,

detail how these capabilities are implemented in our production storage system.

1

For much of the history of computing, persistent storage has been provided by me-

chanical devices. From index cards to magnetic tape and finally rotating platters,

the operating constraints of persistent media are limited by the physics of mo-

tion in a way that transistor-based technologies like RAM and CPUs are not. The

difference is significant: while it takes roughly 100 nanoseconds to read a byte

from main memory in a modern system, it takes nearly 10 milliseconds (i.e., about

100,000 times longer) to read the same byte from an enterprise-class disk. This

vast disparity is commonly known as the IO gap, and it underpins many of the

design assumptions in modern systems, affecting everything from the caching and

prefetching strategies of operating systems to the on-disk layouts of file systems.

In the context of data center storage systems, this disparity has motivated aggre-

gated designs that place many disks behind a single network-accessible controller.

While this approach is suitable for spinning disks, it is a poor fit for new nonvolatile

memories. Enterprise NVMe flash drives today can serve sequential read workloads

at rates of 2.8 GiB per second, and they will only grow faster as hardware paral-

lelism continues to increase. At these rates, the PCIe channel capacity provided by

modern CPUs becomes a limiting factor, making single-head controllers impracti-

cal. At the same time, commodity NVMe drives exhibit access latencies as low as

20 microseconds, and NVDIMM-based alternatives like Intel’s 3DXPoint reduce la-

tencies even further. This exposes significant software inefficiencies as overheads

that were once negligible compared to the millisecond response times of mechani-

cal disks dominate overall request processing times on modern hardware.

Chapter 3 details our solution to these problems. Strata is a network-attached stor-

age system that eliminates network and controller bottlenecks by presenting flash

devices directly over the network and distributing controller logic across multiple

compute nodes. Strata employs three key techniques to make this possible. First,

it virtualizes storage devices, providing an idealized software interface that ex-

poses sparse, virtual address spaces, allowing safe sharing among multiple clients.

Second, it cleanly separates addressing from placement. Address resolution is

delegated to clients via a lightweight library that provides direct access to virtual

address spaces, while a centralized placement service controls the assignment of

virtual address spaces to physical devices. This provides a decentralized, low-

2

overhead data path while allowing coordinated responses to load imbalances and

hardware configuration changes. Finally, Strata leverages software defined net-

working to provide a scalable protocol presentation layer in support of legacy data

center clients.

Strata provides the infrastructure required to support well-balanced deployments of

storage, network, and compute, which is key to preventing any one of these com-

ponents from becoming a bottleneck. It also augments native hardware interfaces

with just enough software functionality to support safe multiplexing and dynamic

resource allocation without introducing prohibitive overheads, much in the same

way that CPU virtualization makes it possible to efficiently share expensive proces-

sors among multiple independent compute tasks. As a result, Strata performance

scales linearly with the number of available devices. However, the decentralized

architecture required to achieve this scalability adds significant engineering com-

plexity, introducing the need for robust consensus and fencing mechanisms, among

other things. Building this functionality into an enterprise storage product was a

considerable undertaking that took hundreds of developer-years to complete.

By design, Strata eliminates performance bottlenecks through balanced hardware

provisioning. The monetary cost of this provisioning, however, is beyond Strata’s

control, and the market price of NVMe devices is such that a single card can cost

as much as the combined network and compute resources with which it is pack-

aged. In other words, because the manufacturing processes of different components

advance at different rates, provisioning systems with balanced performance capa-

bilities can lead to significant imbalances in component costs. The best way to

mitigate the effect of this imbalance on the overall cost of the system is to avoid

over-provisioning expensive devices and to ensure that they achieve high utiliza-

tion. This turns out to be a challenging problem for storage systems because uti-

lization must be measured across many orthogonal dimensions, including storage

and network capacity, processing power, and device queue depths.

To take just one example, storage workloads frequently exhibit access patterns that

are heavily skewed towards a small proportion of their overall data sets. Serv-

ing such workloads entirely from expensive solid state devices incurs a high op-

3

portunity cost, because much of the devices’ capabilities may be wasted storing

idle data. In these cases, it may be preferable to place cold, infrequently-accessed

data on cheaper, more capacious media in order to make space for hot data from

other workloads. The ability to split workloads across heterogeneous devices in

this manner makes it possible to allocate performance and capacity resources in-

dependently, which in turn presents opportunities for improving the utilization of

high-performance media. In fact, these opportunities exist across the entire mem-

ory hierarchy, which will continue to combine devices with dramatically different

performance, capacity, and cost characteristics long after mechanical disks become

a thing of the past. For example, technologies like NVDIMM, 3D XPoint, and phase

change memory present trade-offs in price, latency, and capacity that are almost as

substantial as those between SSDs and disks.

Determining the optimal allocation for a particular workload is not trivial, however.

To begin with, it is difficult to arrive at a wholly satisfying definition of ‘optimal’

in this context. But setting that aside for the moment, even simply identifying hot

data can be computationally expensive. Given modern hardware, a single stor-

age workload may be capable of generating hundreds of thousands of requests per

second across billions of unique addresses – and it may remain active for weeks,

months, or even years on end. The effort involved in analyzing such voluminous

request streams can be immense. Indeed, shortly after we began investigating how

we might improve flash utilization in Strata, we ran into exactly this problem: ap-

plying classical stack distance analysis techniques to a week-long storage trace of

just a handful of machines required roughly an hour of compute time and 92 GiB

of RAM. This was inconvenient for our research, but downright prohibitive for use

in production.

Chapter 4 presents a novel locality analysis technique we developed that is compu-

tationally tractable even for very large workloads. The technique leverages prob-

abilistic data structures called counter stacks to enable approximate LRU stack

distance analysis with sublinear memory overheads. This represents a significant

improvement over the previous state of the art, allowing us to analyze the above-

mentioned week-long trace in under twenty minutes with just 80 MiB of RAM (less

than a tenth of a percent of what was previously required). Counter stacks improve

4

on existing analysis techniques in two additional ways. First, they make it possi-

ble to analyze how workload locality changes over time, revealing phase changes

and other temporal patterns that can be exploited to improve performance and ef-

ficiency. Second, they allow us to model how workloads interact with each other

on shared storage. For example, we can quickly calculate the degree to which

unrelated workloads would interfere with each other if placed on the same de-

vice, allowing us to make informed decisions when distributing data across storage

nodes.

Counter stacks get their name from the cardinality counters they rely on to track

data references over time. By combining knowledge of the unique addresses ac-

cessed over various time windows with a record of the total number of requests

over the same windows, counter stacks give an indication of a workload’s temporal

locality. For the sake of practicality, counter stacks use approximate counters that

belong to a class of streaming algorithms and data structures designed for process-

ing very large data sets. Streaming algorithms often trade accuracy for efficiency

and are well-suited for scenarios where imperfect results can be tolerated. For

example, they enable efficient estimation of join sizes when optimizing database

queries, and they support anomaly detection of traffic patterns in large networks.

We suspect that with a bit of creativity, they will prove useful for analyzing and

tuning many other aspects of system performance in unforeseen ways; indeed,

cardinality sketches form the basis of another data structure we recently devel-

oped for measuring implicit sharing among copy-on-write snapshots. Investigat-

ing further opportunities for integrating streaming algorithms into high-throughput,

performance-sensitive systems is a promising direction for future research.

Counter stacks enable a degree of continuous workload analysis that was previ-

ously impractical. The visibility they provide into capacity and performance re-

quirements help to inform decisions about how to distribute data across heteroge-

neous devices. However, these are just two of a large number of criteria that must

be considered when allocating system resources. Other salient examples include

the need to maintain hardware redundancy for replicated data and the desire to bal-

ance network load across available links. In fact, in a disaggregated, heterogeneous

system like Strata, deciding how best to accommodate all of these objectives is in

5

itself a challenging problem, especially since, in some circumstances, one objective

may directly contradict another. This is an important problem, however, because

poor decisions can have calamitous effects on system performance, reliability, and

efficiency.

Chapter 5 describes Mirador, a dynamic resource management service designed

for network-attached storage systems. Informed by the detailed profiling and anal-

ysis made possible by counter stacks and leveraging the device and protocol virtu-

alization provided by Strata, Mirador strives to achieve high hardware utilization

and system availability by dynamically migrating workloads in response to chang-

ing requirements. In many ways, it can be likened to the centralized controllers

of traditional aggregated storage systems: it maintains a global view of resource

utilization and workload behavior and it provides a unified control path for manag-

ing resource allocation. It is more sophisticated than typical controllers, however,

because its purview includes the entire back-end storage network: it controls how

client connections are routed to storage servers as well as how data is placed on

available devices. Moreover, it takes an unconventionally proactive approach to

resource management, continually seeking adjustments that might improve per-

formance and utility. This approach is made feasible by the high random-access

bandwidth of solid state devices, which dramatically lowers the performance cost

of migrating data relative to spinning disks.

Managing the many moving parts of a large system like Strata is complicated. Even

simply formulating an allocation policy that is suitable for all possible contingen-

cies is a challenging task. The configuration space is large and multidimensional,

and attempting to anticipate every potential corner case is time-consuming and

error-prone. Mirador addresses this complexity by providing a framework for cod-

ifying policies as a collection of simple, independent objective functions, each of

which describes an allocation strategy for a single resource. Objective functions

are assigned numerical costs that induce a priority ordering for situations where

not all goals can be met. Mirador combines these objective functions with es-

tablished optimization techniques to efficiently search the configuration space for

preferable alternatives while maintaining the invariants necessary to guarantee re-

siliency. This approach has a number of appealing properties. It allows domain ex-

6

perts to define specific allocation goals without prescribing how the system should

behave as a whole. It naturally supports incremental updates to allocation policies

so that new classes of workloads and hardware can be more easily accommodated.

And it makes the system more robust to workload hot spots and hardware faults by

facilitating continuous, dynamic optimization.

Strata’s design eliminates network and controller hardware as performance bottle-

necks, but it cannot eliminate the more general problem of resource scarcity. For

example, as deployments expand across racks, top-of-rack switching becomes a

limited resource that must be allocated frugally. Mirador addresses this particular

problem by leveraging its knowledge of the relative availability of local and remote

bandwidth (as codified by policy objective functions) to coordinate the migration

of data and client connections in order to avoid cross-rack traffic. But more im-

portant than the specific balance that Strata and Mirador strike with the current

generation of hardware is the support they provide for dynamically responding to

resource scarcity and workload imbalances in general.

Figure 1.1 presents a schematic overview of how the three components described

in this thesis work together to achieve this level of dynamism. By providing

carefully-considered software abstractions – both in virtualizing hardware to de-

couple logical resources from the underlying physical devices, and in cleanly sepa-

rating control- and data-path logic – Strata provides flexible, programmatic control

of storage and network resources. By enabling efficient, accurate working set anal-

ysis techniques, counter stacks provide insight into the performance and capacity

requirements of client workloads in live systems. And by leveraging these capabil-

ities to actuate system-level responses to shifting resource consumption, Mirador

is able to continuously optimize for performance, efficiency, and reliability.

Indeed, the central claim of this thesis is that data center storage systems – and

most data center services in general – should be carefully designed to enable flex-

ible, robust, and dynamic responses to changes in both workload behavior and

hardware capabilities. In a large, multi-tenant environment like a data center, di-

verse and varying workload behavior is inevitable. And as evidenced by the revo-

lutionary advances of storage devices over the past few years, even long-standing

7

DATA PATH CONTROL PATH
Strata (FAST '14)
 - decentralized architecture

 - client-side addressing

 - coordinated placement

 - scalable protocol layer

Counter Stacks (OSDI '14)
 - light-weight profiling

 - efficient workload modelling

 - accurate, compact record

 of working set size over time

Mirador (FAST '17)
 - storage network controller

 - programmatic, multi-

 dimensional policy goals

 - continuous optimization via

 dynamic search

Strata (FAST '14)
 - virtualized NVMe

 - isolated address spaces

Decibel (NSDI '17)
 - baseline 20�s write latency

 - performance SLOs

Figure 1.1: Schematic overview of system contributions (see § 1.1 and Chapter 6 for
more details about Decibel)

assumptions about the relative performance of hardware components must be re-

considered from time to time. Consequently, robust systems should be capable of

automatically adapting to changes across all of these dimensions, both at the scale

of scheduling epochs and hardware life cycles. We demonstrate in the follow-

ing chapters how abstraction, analysis, and actuation can be combined to provide

this responsiveness in a decentralized storage system with exacting performance

requirements. More generally, we believe that these capabilities provide a sound

framework for a broad class of data center services as workloads and hardware

continue to evolve.

1.1 Publications

The work presented in this thesis is based on a selection of three closely-related

publications. Below I present the complete list of research papers to which I con-

tributed over the course of my studies.

8

Strata is our scale-out storage architecture for fast nonvolatile memories [34].

Mirador codifies allocation policies as individual objective functions and uses es-

tablished constraint satisfaction techniques to continually optimize the placement

of data and network flows in Strata [120].

Decibel extends the work of Strata to present a new volume abstraction that man-

ages compute and network resources to provide contention-free request processing

for ultra low-latency devices [85].

Counter Stacks are a novel probabilistic data structure for recording working sets

over time. They enable the calculation of miss ratio curves with sublinear memory

overheads, a dramatic improvement over the previous state of the art [122].

Approximating Hit Rate Curves Using Streaming Algorithms is a companion

paper that presents a thorough analysis of the accuracy and computational com-

plexity of counter stacks [41].

Ownership Sketches are a novel data structure, inspired by counter stacks, that

enable efficient tracking of implicit sharing in copy on write snapshots [123].

MapFS explores the possibility of exposing file system address space mappings

to userspace by providing efficient splice operations on file data [121]. This work

helped motivate the flexible addressing schemes provided by Strata.

Capo demonstrates how local disks can be used as client-side caches to reduce

load on shared storage servers [101]. It also stands as an early example of the

data-driven design approach that ultimately led to counter stacks.

Dovetail presents a framework for safely upgrading on-disk data structures in cloud

storage platforms while minimizing the impact on client workloads [82]. Its sup-

port for non-disruptive system reconfiguration was a precursor to the dynamic re-

source management provided by Mirador.

Block Mason is a virtual block device framework that supports modular, stackable

userspace implementations for enhanced flexibility and portability [81]. Its com-

posable data path served as a model for Strata’s request dispatching architecture.

9

Chapter 2

Nonvolatile Memory

The reign of spinning disks as the predominant technology in enterprise storage is

coming to an end. While hard drives have stagnated because of physical limitations

on rotational speed, nonvolatile technologies like NAND flash and phase change

memory (PCM) have flourished, bridging the gap between RAM and disk. NAND

flash, long common in cameras and mobile phones, has recently become a viable

alternative to magnetic disks thanks to dramatic improvements in performance, re-

liability, and affordability: enterprise flash devices today provide random-access

throughput that is a thousand times greater than mechanical disks at latencies that

are a thousand times lower, while remaining cost-competitive with their rotating

counterparts. Emerging technologies like phase change and spin-transfer torque

memories avoid transistor scaling difficulties by using entirely different physical-

chemical mechanisms to provide bit storage, promising additional performance

and endurance improvements. The impact of these innovations can be broadly cat-

egorized according to three trends, each of which is changing the data center in

important ways. First, increased performance density has effectively inverted the

IO gap, violating many of the assumptions behind conventional storage designs.

Second, increased capacity density is placing new demands on device connectiv-

ity and raising serious concerns about failure recovery times. And third, reduced

power and space requirements are altering the physical and logistical constraints

10

of hardware deployment. These advances solve many long-standing problems in

storage design, but they also present new challenges.

Perhaps the most remarkable characteristic of nonvolatile memories is their radical

performance density. The difference relative to magnetic disks in this regard is re-

ally one of kind rather than degree. By eliminating the mechanical component of

storage hardware, solid state technologies remove the single largest contributor to

the IO gap. This reduces access times in absolute terms, but, more importantly, it

does away with the armature movement and rotational latency that together impose

additive, millisecond-granularity penalties under random-access workloads. This

makes spatial locality much less important than it used to be, allowing nonvolatile

memory to be virtualized without significant performance degradation. Indeed,

flash firmware does just this in the translation layers that manage erase cycles and

provide wear levelling, as does storage software in providing deduplication to in-

crease effective capacity. High random-access throughput also makes it feasible

to migrate data to balance load and improve efficiency without affecting primary

workloads, allowing stored data to play a much more active role in computation.

This increase in performance density has been enabled in part by the migration of

storage devices onto wider, faster interfaces as nonvolatile memories have moved

from SAS and SATA buses to PCIe and DIMM alternatives that provide higher through-

put at much lower latency. In fact, the latency of modern PCIe flash devices is so

low that avoiding processing overhead has become a significant challenge. A simi-

lar trend has emerged in networking software as commodity Ethernet transmission

rates have increased by a thousandfold, from 100 megabits per second in 1995 to

100 gigabits per second today. But the transformation has been more profound for

storage systems, which have become a million times faster over the same period.

This has important consequences for storage software, which can no longer as-

sume that processing is effectively free but must instead contend with nanosecond

request deadlines.

In addition to offering lower latency, the increased parallelism of PCIe devices

makes it easier to share hardware among many workloads. The NVMe specifica-

tion allows up to 65,000 queues per device, and while few vendors actually provide

11

anywhere near this many, most offer enough to make it possible to completely parti-

tion data structures, interrupt handling, and request processing across cores without

any need for thread synchronization. Exposing this parallelism directly to software

layers inverts the traditional model of a single elevator scheduler mediating access

to multiple spindles, but it is crucial for achieving full device saturation.

The increasing capacity density of nonvolatile memories, while perhaps less spec-

tacular than the coincident performance improvements, is also changing the data

center in important ways. Although magnetic disk capacity has plateaued at about

10 TB, with shingled magnetic recording offering further marginal improvements

suitable primarily for read-mostly workloads, nonvolatile memory capacity is in-

creasing at a steady pace. Transistor-based media like NAND flash continue to ben-

efit from die process improvements that lead to smaller, denser memories at a rate

roughly in line with Moore’s Law, even as processors have already pushed these

gains close to the limit. Additional innovations like multi-level cells on NAND flash

and the three-dimensional circuit layouts of 3D XPoint lead to even further capac-

ity gains, although often at the expense of increased bit error rates and reduced

write performance. Thanks to these advances, the single-device capacity of non-

volatile memories will soon surpass that of spinning disks by more than an order

of magnitude.

This capacity density poses new challenges, however. Modern enterprise CPU mi-

croarchitectures like Intel’s Skylake series provide around 40 PCIe lanes per con-

troller hub. In a typical network-facing server, roughly half of these might be

dedicated to NICs, leaving only twenty lanes to connect to storage hardware. This

means that PCIe switching is needed to host even a moderate number of NVMe

devices (which consume four lanes each) in a single machine. Under these con-

straints, PCIe throughput quickly becomes an issue as device capacity scales. Given

their compact size, it is not unreasonable to imagine hosting upwards of 32 flash

cards in a single 1U server; at 128 TB per device, this would mean exposing 4 PB

of storage over PCIe lanes with a combined throughput of just 200 GB/sec, severely

limiting overall data access rates. This problem extends beyond individual hosts

as well: links between top-of-rack switches are typically oversubscribed at a ratio

of three or four to one, presenting another potential bottleneck. Capacious devices

12

also present new difficulties in maintaining data resiliency. Repairing redundancy

when multi-terabyte devices fail can be time-consuming, increasing exposure to

permanent data loss. These factors put new demands on storage software, which

must place data carefully to mitigate transport bottlenecks and arrange for fast re-

covery times.

These performance and capacity gains come with significant reductions in power

consumption and physical size. Because nonvolatile memories contain no mov-

ing parts, they consume only around half a watt when idle, and twice that under

load. Rotating disks, on the other hand, consume around 5 watts per spindle when

idle, and twice that again under load. Furthermore, opportunistic efforts to reduce

power consumption by powering down idle disks are generally impractical without

advanced knowledge of workload patterns, because disks take seconds to spin back

up. Combined with the fact that large arrays of spindles are typically required to

achieve even moderate random-access performance, this places tremendous bur-

dens on data center power and cooling systems. At the same time, nonvolatile

memories can be packaged much more compactly than spinning platters. For ex-

ample, thanks to new form factors like M.2, it is reasonable to imagine a single 2U

enclosure providing adequate flash storage for an entire rack of machines, replacing

many hundreds of disks in so doing. Along with the performance and capacity den-

sity described above, this physical compactness makes disaggregated architectures

a much more natural fit for nonvolatile memories than traditional SAN designs.

Nonvolatile memories provide orders of magnitude more performance and capac-

ity than mechanical disks while requiring substantially less power and physical

space. In so doing, they completely reshape storage software concerns. Rather

than batching requests to avoid seeks, software must restrict processing times to

microseconds or less. Rather than aggregating disk arrays to increase parallelism,

systems need to expose individual device queues with minimal cross-core syn-

chronization. Rather than uniformly distributing data across spindles, controllers

should consider migrating data in response to load imbalances and hot spots. In

short, storage software needs to become significantly more efficient, flexible, and

dynamic if it is to fully realize the potential of these exciting new hardware tech-

nologies.

13

Chapter 3

Strata: Scalable
High-Performance Storage on
Virtualized Non-Volatile Memory

A version of this chapter was published at the 12th USENIX Conference on File

and Storage Technologies in 2014 [34].

3.1 Introduction

Flash-based storage devices are fast, expensive, and demanding: a single device

is capable of saturating a 10Gb/s network link (even for random IO), consuming

significant CPU resources in the process. That same device may cost as much as

(or more than) the server in which it is installed1. The cost and performance char-

acteristics of fast, non-volatile media have changed the calculus of storage system

design and present new challenges for building efficient and high-performance dat-

acenter storage.

1Enterprise-class PCIe flash drives in the 1TB capacity range currently carry list prices in the
range of $3-5K USD. Large-capacity, high-performance cards are available for list prices of up to
$160K.

14

This chapter describes the architecture of a commercial flash-based network-attached

storage system, built using commodity hardware. In designing the system around

PCIe flash, we begin with two observations about the effects of high-performance

drives on large-scale storage systems. First, these devices are fast enough that in

most environments, many concurrent workloads are needed to fully saturate them,

and even a small degree of processing overhead will prevent full utilization. Thus,

we must change our approach to the media from aggregation to virtualization. Sec-

ond, aggregation is still necessary to achieve properties such as redundancy and

scale. However, it must avoid the performance bottleneck that would result from

the monolithic controller approach of a traditional storage array, which is designed

around the obsolete assumption that media is the slowest component in the system.

Further, to be practical in existing datacenter environments, we must remain com-

patible with existing client-side storage interfaces and support standard enterprise

features like snapshots and deduplication.

Device Virtualization Layer (§4)

Network Attached Disks (NADs)

Responsibility: Virtualize a PCIe �ash device into multiple address

spaces and allow direct client access with controlled sharing.

Protocol Virtualization Layer (§6)

Scalable Protocol Presentation

Responsibility: Allow the transparently scalable implementation of

traditional IP- and Ethernet-based storage protocols.

Scalable NFSv3

Presents a single external NFS IP address, integrates with SDN

switch to transparently scale and manage connections across

controller instances hosted on each microArray.

CLOS (Coho Log-structured Object Store)

Implements a !at object store, virtualizing the PCIe !ash

device’s address space and presents an OSD-like interface to

clients.

libDataPath

NFSv3 instance on each microarray links as a dispatch library.

Data path descriptions are read from a cluster-wide registry

and instantiated as dispatch state machines. NFS forwards

requests through these SMs, interacting directly with NADs.

Central services update data paths in the face of failure, etc.

Global Address Space Virtualization Layer (§3,5)

Delegated Data Paths

Responsibility: Compose device level objects into richer storage

primitives. Allow clients to dispatch requests directly to NADs

while preserving centralized control over placement,

recon!guration, and failure recovery.

Layer name, core abstraction, and responsibility: Implementation in Strata:

Figure 3.1: Strata network storage architecture

In this chapter we explore the implications of these two observations on the design

of a scalable, high-performance NFSv3 implementation for the storage of virtual

machine images. Our system is based on the building blocks of PCIe flash in com-

modity x86 servers connected by 10 gigabit switched Ethernet. We describe two

broad technical contributions that form the basis of our design:

1. A delegated mapping and request dispatch interface from client data to phys-

ical resources through global data address virtualization, which allows clients

15

to directly address data while still providing the coordination required for

online data movement (e.g., in response to failures or for load balancing).

2. SDN-assisted storage protocol virtualization that allows clients to address a

single virtual protocol gateway (e.g., NFS server) that is transparently scaled

out across multiple real servers. We have built a scalable NFS server using

this technique, but it applies to other protocols (such as iSCSI, SMB, and

FCoE) as well.

At its core, Strata uses device-level object storage and dynamic, global address-

space virtualization to achieve a clean and efficient separation between control

and data paths in the storage system. Flash devices are split into virtual address

spaces using an object storage-style interface, and clients are then allowed to di-

rectly communicate with these address spaces in a safe, low-overhead manner. In

order to compose richer storage abstractions, a global address space virtualization

layer allows clients to aggregate multiple per-device address spaces with mappings

that achieve properties such as striping and replication. These delegated address

space mappings are coordinated in a way that preserves direct client communi-

cations with storage devices, while still allowing dynamic and centralized control

over data placement, migration, scale, and failure response.

Serving this storage over traditional protocols like NFS imposes a second scalabil-

ity problem: clients of these protocols typically expect a single server IP address,

which must be dynamically balanced over multiple servers to avoid being a perfor-

mance bottleneck. In order to both scale request processing and to take advantage

of full switch bandwidth between clients and storage resources, we developed a

scalable protocol presentation layer that acts as a client to the lower layers of our

architecture, and that interacts with a software-defined network switch to scale the

implementation of the protocol component of a storage controller across arbitrar-

ily many physical servers. By building protocol gateways as clients of the address

virtualization layer, we preserve the ability to delegate scale-out access to device

storage without requiring interface changes on the end hosts that consume the stor-

age.

16

3.2 Architecture

The performance characteristics of emerging storage hardware demand that we

completely reconsider storage architecture in order to build scalable, low-latency

shared persistent memory. The reality of deployed applications is that interfaces

must stay exactly the same in order for a storage system to have relevance. Strata’s

architecture aims to take a step toward the first of these goals, while keeping a

pragmatic focus on the second.

Figure 3.1 characterizes the three layers of Strata’s architecture. The goals and

abstractions of each layer of the system are on the left-hand column, and the con-

crete embodiment of these goals in our implementation is on the right. At the base,

we make devices accessible over an object storage interface, which is responsible

for virtualizing the device’s address space and allowing clients to interact with in-

dividual virtual devices. This approach reflects our view that system design for

these storage devices today is similar to that of CPU virtualization ten years ago:

devices provide greater performance than is required by most individual work-

loads and so require a lightweight interface for controlled sharing in order to allow

multi-tenancy. We implement a per-device object store that allows a device to be

virtualized into an address space of 2128 sparse objects, each of which may be up

to 264 bytes in size. Our implementation is similar in intention to the OSD specifi-

cation, itself motivated by network attached secure disks [50]. While not broadly

deployed to date, device-level object storage is receiving renewed attention today

through pNFS’s use of OSD as a backend, the NVMe namespace abstraction, and

in emerging hardware such as Seagate’s Kinetic drives [99]. Our object storage

interface as a whole is not a significant technical contribution, but it does have

some notable interface customizations described in § 3.4. We refer to this layer as

a Network Attached Disk, or NAD.

The middle layer of our architecture provides a global address space that supports

the efficient composition of IO processors that translate client requests on a vir-

tual object into operations on a set of NAD-level physical objects. We refer to the

graph of IO processors for a particular virtual object as its data path, and we main-

tain the description of the data path for every object in a global virtual address

17

map. Clients use a dispatch library to instantiate the processing graph described

by each data path and perform direct IO on the physical objects at the leaves of

the graph. The virtual address map is accessed through a coherence protocol that

allows central services to update the data paths for virtual objects while they are

in active use by clients. More concretely, data paths allow physical objects to be

composed into richer storage primitives, providing properties such as striping and

replication. The goal of this layer is to strike a balance between scalability and

efficiency: it supports direct client access to device-level objects, without sacrific-

ing central management of data placement, failure recovery, and more advanced

storage features such as deduplication and snapshots.

Finally, the top layer performs protocol virtualization to allow clients to access

storage over standard protocols (such as NFS) without losing the scalability of di-

rect requests from clients to NADs. The presentation layer is tightly integrated with

a 10Gb software-defined Ethernet switching fabric, allowing external clients the

illusion of connecting to a single TCP endpoint, while transparently and dynami-

cally balancing traffic to that single IP address across protocol instances on all of

the NADs. Each protocol instance is a thin client of the layer below, which may

communicate with other protocol instances to perform any additional synchroniza-

tion required by the protocol (e.g., to maintain NFS namespace consistency).

The mapping of these layers onto the hardware that our system uses is shown in

Figure 3.2. Requests travel from clients into Strata through an OpenFlow-enabled

switch, which dispatches them according to load to the appropriate protocol han-

dler running on a MicroArray (µArray) — a small host configured with flash de-

vices and enough network and CPU to saturate them, containing the software stack

representing a single NAD. For performance, each of the layers is implemented as

a library, allowing a single process to handle the flow of requests from client to

media. The NFSv3 implementation acts as a client of the underlying dispatch layer,

which transforms requests on virtual objects into one or more requests on physi-

cal objects, issued through function calls to local physical objects and by RPC to

remote objects. While the focus of the rest of this chapter is on this concrete imple-

mentation of scale-out NFS, it is worth noting that the design is intended to allow

applications the opportunity to link directly against the same data path library that

18

VMware

ESX Host

VMware

ESX Host

VMware

ESX Host

Virtual NFS server 10.150.1.1

Protocol Virtualizaiton

(Scalable NFSv3)

Arrows show NFS

connections and

associated requests.

Middle host connection

omited for clarity.

Global Address Space

Virtualization

(libDataDispatch)

Device Virtualization

(CLOS)

microArray

NFS Instance

libDataPath

CLOS

microArray

NFS Instance

libDataPath

CLOS

microArray

NFS Instance

libDataPath

CLOS

10Gb SDN Switch

Figure 3.2: Hardware view of a Strata deployment

the NFS implementation uses, resulting in a multi-tenant, multi-presentation stor-

age system with a minimum of network and device-level overhead.

3.2.1 Scope of this Work

There are three aspects of our design that are not considered in detail within this

presentation. First, we only discuss NFS as a concrete implementation of protocol

virtualization. Strata has been designed to host and support multiple protocols and

tenants, but our initial product release is specifically NFSv3 for VMware clients,

so we focus on this type of deployment in describing the implementation. Second,

Strata was initially designed to be a software layer that is co-located on the same

physical servers that host virtual machines. We have moved to a separate physical

19

hosting model where we directly build on dedicated hardware, but there is nothing

that prevents the system from being deployed in a more co-located (or “converged”)

manner. Finally, our full implementation incorporates a tier of spinning disks on

each of the storage nodes to allow cold data to be stored more economically behind

the flash layer. However, in this chapter we configure and describe a single-tier, all-

flash system to simplify the exposition.

In the next sections we discuss three relevant aspects of Strata—address space

virtualization, dynamic reconfiguration, and scalable protocol support—in more

detail. We then describe some specifics of how these three components interact in

our NFSv3 implementation for VM image storage before providing a performance

evaluation of the system as a whole.

3.3 Data Paths

Strata provides a common library interface to data that underlies the higher-level,

client-specific protocols described in § 3.6. This library presents a notion of vir-

tual objects, which are available cluster-wide and may comprise multiple physical

objects bundled together for parallel data access, fault tolerance, or other reasons

(e.g., data deduplication). The library provides a superset of the object storage

interface provided by the NADs (§ 3.4), with additional interfaces to manage the

placement of objects (and ranges within objects) across NADs, to maintain data

invariants (e.g., replication levels and consistent updates) when object ranges are

replicated or striped, and to coordinate both concurrent access to data and concur-

rent manipulation of the virtual address maps describing their layout.

To avoid IO bottlenecks, users of the data path interface (which may be native

clients or protocol gateways such as our NFS server) access data directly. To do so,

they map requests from virtual objects to physical objects using the virtual address

map. This is not simply a pointer from a virtual object (id, range) pair to a set

of physical object (id, range) pairs. Rather, each virtual range is associated with

a particular processor for that range, along with processor-specific context. Strata

uses a dispatch-oriented programming model in which a pipeline of operations is

20

performed on requests as they are passed from an originating client, through a set

of transformations, and eventually to the appropriate storage device(s). Our model

borrows ideas from packet processing systems such as X-Kernel [60], Scout [84],

and Click [69], but adapts them to a storage context, in which modules along the

pipeline perform translations through a set of layered address spaces, and may fork

and/or collect requests and responses as they are passed.

The dispatch library provides a collection of request processors, which can stand

alone or be combined with other processors. Each processor takes a storage re-

quest (e.g., a read or write request) as input and produces one or more requests

to its children. NADs expose isolated sparse objects; processors perform transla-

tions that allow multiple objects to be combined for some functional purpose, and

present them as a single object, which may in turn be used by other processors. The

idea of request-based address translation to build storage features has been used in

other systems [74, 75, 80], often as the basis for volume management; Strata disen-

tangles it from the underlying storage system and treats it as a first-class dispatch

abstraction.

The composition of dispatch modules bears similarity to Click [69], but the ap-

plication in a storage domain carries a number of differences. First, requests are

generally acknowledged at the point that they reach a storage device, and so as a

result they differ from packet forwarding logic in that they travel both down and

then back up through a dispatch stack; processors contain logic to handle both re-

quests and responses. Second, it is common for requests to be split or merged as

they traverse a processor — for example, a replication processor may duplicate a

request and issue it to multiple nodes, and then collect all responses before pass-

ing a single response back up to its parent. Finally, while processors describe fast,

library-based request dispatching logic, they typically depend on additional facil-

ities from the system. Strata allows processor implementations access to APIs for

shared, cluster-wide state which may be used on a control path to, for instance,

store replica configuration. It additionally provides facilities for background func-

tionality such as NAD failure detection and response. The intention of the processor

organization is to allow dispatch decisions to be pushed out to client implementa-

tions and be made with minimal performance impact, while still benefiting from

21

common system-wide infrastructure for maintaining the system and responding to

failures. The responsibilities of the dispatch library are described in more detail in

the following subsections.

3.3.1 The Virtual Address Map

/objects/112:
type=regular dispatch={object=111

type=dispatch}

/objects/111:
type=dispatch
stripe={stripecount=8 chunksize=524288

0={object=103 type=dispatch}
1={object=104 type=dispatch}}

/objects/103:
type=dispatch
rpl={policy=mirror storecount=2

{storeid=a98f2... state=in-sync}
{storeid=fc89f... state=in-sync}}

Figure 3.3: Virtual object to physical object range mapping

Figure 3.3 shows the relevant information stored in the virtual address map for a

typical object. Each object has an identifier, a type, some type-specific context, and

may contain other metadata such as cached size or modification time information

(which is not canonical, for reasons discussed below).

The entry point into the virtual address map is a regular object. This contains no

location information on its own, but delegates to a top-level dispatch object. In

Figure 3.3, object 112 is a regular object that delegates to a dispatch processor

whose context is identified by object 111 (the IDs are in reverse order here because

the dispatch graph is created from the bottom up, but traversed from the top down).

Thus when a client opens file 112, it instantiates a dispatcher using the data in

object 111 as context. This context informs the dispatcher that it will be delegating

IO through a striped processor, using 2 stripes for the object and a stripe width of

512K. The dispatcher in turn instantiates 8 processors (one for each stripe), each

configured with the information stored in the object associated with each stripe

22

(e.g., stripe 0 uses object 103). Finally, when the stripe dispatcher performs IO on

stripe 0, it will use the context in the object descriptor for object 103 to instantiate

a replicated processor, which mirrors writes to the NADs listed in its replica set,

and issues reads to the nearest in sync replica (where distance is currently simply

local or remote).

In addition to the striping and mirroring processors described here, the map can

support other more advanced processors, such as erasure coding, or byte-range

mappings to arbitrary objects (which supports among other things data deduplica-

tion).

3.3.2 Dispatch

IO requests are handled by a chain of dispatchers, each of which has some com-

mon functionality. Dispatchers may have to fragment requests into pieces if they

span the ranges covered by different subprocessors, or clone requests into multiple

subrequests (e.g., for replication), and they must collect the results of subrequests

and deal with partial failures.

The replication and striping modules included in the standard library are represen-

tative of the ways processors transform requests as they traverse a dispatch stack.

The replication processor allows a request to be split and issued concurrently to

a set of replica objects. The request address remains unchanged within each ob-

ject, and responses are not returned until all replicas have acknowledged a request

as complete. The processor prioritizes reading from local replicas, but forwards

requests to remote replicas in the event of a failure (either an error response or

a timeout). It imposes a global ordering on write requests and streams them to

all replicas in parallel. It also periodically commits a light-weight checkpoint to

each replica’s log to maintain a persistent record of synchronization points; these

checkpoints are used for crash recovery (§ 3.5.1).

The striping processor distributes data across a collection of sparse objects. It is pa-

rameterized to take a stripe size (in bytes) and a list of objects to act as the ordered

stripe set. In the event that a request crosses a stripe boundary, the processor splits

23

that request into a set of per-stripe requests and issues those asynchronously, col-

lecting the responses before returning. Static, address-based striping is a relatively

simple load balancing and data distribution mechanism as compared to placement

schemes such as consistent hashing [64]. Our experience has been that the ap-

proach is effective, because data placement tends to be reasonably uniform within

an object address space, and because using a reasonably large stripe size (we de-

fault to 512KB) preserves locality well enough to keep request fragmentation over-

head low in normal operation.

3.3.3 Coherence

Strata clients also participate in a simple coordination protocol in order to allow

the virtual address map for a virtual object to be updated even while that object

is in use. Online reconfiguration provides a means for recovering from failures,

responding to capacity changes, and even moving objects in response to observed

or predicted load (on a device basis — this is distinct from client load balancing,

which we also support through a switch-based protocol described in § 3.6.2).

The virtual address maps are stored in a distributed, synchronized configuration

database implemented over Apache Zookeeper, which is also available for any

low-bandwidth synchronization required by services elsewhere in the software

stack. The coherence protocol is built on top of the configuration database. It

is currently optimized for a single writer per object, and works as follows: when a

client wishes to write to a virtual object, it first claims a lock for it in the configu-

ration database. If the object is already locked, the client requests that the holder

release it so that the client can claim it. If the holder does not voluntarily release

it within a reasonable time, the holder is considered unresponsive and fenced from

the system using the mechanism described in § 3.6.2. This is enough to allow

movement of objects, by first creating new, out of sync physical objects at the de-

sired location, then requesting a release of the object’s lock holder if there is one.

The user of the object will reacquire the lock on the next write, and in the process

discover the new out of sync replica and initiate resynchronization. When the new

replica is in sync, the same process may be repeated to delete replicas that are at

24

undesirable locations.

3.4 Network Attached Disks

The unit of storage in Strata is a Network Attached Disk (NAD), consisting of a

balanced combination of CPU, network and storage components. In our current

hardware, each NAD has two 10 gigabit Ethernet ports, two PCIe flash cards capa-

ble of 10 gigabits of throughput each, and a pair of Xeon processors that can keep

up with request load and host additional services alongside the data path. Each

NAD provides two distinct services. First, it efficiently multiplexes the raw storage

hardware across multiple concurrent users, using an object storage protocol. Sec-

ond, it hosts applications that provide higher level services over the cluster. Object

rebalancing (§ 3.5.2) and the NFS protocol interface (§ 3.6.1) are examples of these

services.

At the device level, we multiplex the underlying storage into objects, named by

128-bit identifiers and consisting of sparse 264 byte data address spaces. These

address spaces are currently backed by a garbage-collected log-structured object

store, but the implementation of the object store is opaque to the layers above

and could be replaced if newer storage technologies made different access patterns

more efficient. We also provide increased capacity by allowing each object to flush

low priority or infrequently used data to disk, but this is again hidden behind the

object interface. The details of disk tiering, garbage collection, and the layout of

the file system are beyond the scope of this chapter.

The physical object interface is for the most part a traditional object-based storage

device [98, 99] with a CRUD interface for sparse objects, as well as a few exten-

sions to assist with our clustering protocol (§ 3.5.1). It is significantly simpler

than existing block device interfaces, such as the SCSI command set, but is also in-

tended to be more direct and general purpose than even narrower interfaces such as

those of a key-value store. Providing a low-level hardware abstraction layer allows

the implementation to be customized to accommodate best practices of individual

flash implementations, and also allows more dramatic design changes at the media

25

interface level as new technologies become available.

3.4.1 Network Integration

As with any distributed system, we must deal with misbehaving nodes. We address

this problem by tightly coupling with managed Ethernet switches, which we dis-

cuss at more length in § 3.6.2. This approach borrows ideas from systems such as

Sane [26] and Ethane [27], in which a managed network is used to enforce isolation

between independent endpoints. The system integrates with both OpenFlow-based

switches and software switching at the VMM to ensure that Strata objects are only

addressable by their authorized clients.

Our initial implementation used Ethernet VLANs, because this form of hardware-

supported isolation is in common use in enterprise environments. In the current

implementation, we have moved to OpenFlow, which provides a more flexible tun-

neling abstraction for traffic isolation.

We also expose an isolated private virtual network for out-of-band control and

management operations internal to the cluster. This allows NADs themselves to

access remote objects for peer-wise resynchronization and reorganization under

the control of a cluster monitor.

3.5 Online Reconfiguration

There are two broad categories of events to which Strata must respond in order

to maintain its performance and reliability properties. The first category includes

faults that occur directly on the data path. The dispatch library recovers from such

faults immediately and automatically by reconfiguring the affected virtual objects

on behalf of the client. The second category includes events such as device fail-

ures and load imbalance. These are handled by a dedicated cluster monitor which

performs large-scale reconfiguration tasks to maintain the health of the system as

a whole. In all cases, reconfiguration is performed online and has minimal impact

on client availability.

26

3.5.1 Object Reconfiguration

A number of error recovery mechanisms are built directly into the dispatch library.

These mechanisms allow clients to quickly recover from failures by reconfiguring

individual virtual objects on the data path.

IO Errors

The replication IO processor responds to read errors in the obvious way: by im-

mediately resubmitting failed requests to different replicas. In addition, clients

maintain per-device error counts; if the aggregated error count for a device exceeds

a configurable threshold, a background task takes the device offline and coordinates

a system-wide reconfiguration (§ 3.5.2).

IO processors respond to write errors by synchronously reconfiguring virtual ob-

jects at the time of the failure. This involves three steps. First, the affected replica

is marked out of sync in the configuration database. This serves as a global, persis-

tent indication that the replica may not be used to serve reads because it contains

potentially stale data. Second, a best-effort attempt is made to inform the NAD

of the error so that it can initiate a background task to resynchronize the affected

replica. This allows the system to recover from transient failures almost immedi-

ately. Finally, the IO processor allocates a special patch object on a separate device

and adds this to the replica set. Once a replica has been marked out of sync, no fur-

ther writes are issued to it until it has been resynchronized; patches prevent device

failures from impeding progress by providing a temporary buffer to absorb writes

under these degraded conditions. With the patch object allocated, the IO processor

can continue to meet the replication requirements for new writes while out of sync

replicas are repaired in the background. A replica set remains available as long as

an in sync replica or an out of sync replica and all of its patches are available.

27

Resynchronization

In addition to providing clients direct access to devices via virtual address maps,

Strata provides a number of background services to maintain the health of individ-

ual virtual objects and the system as a whole. The most fundamental of these is the

resync service, which provides a background task that can resynchronize objects

replicated across multiple devices.

Resync is built on top of a special NAD resync API that exposes the underlying

log structure of the object stores. NADs maintain a Log Serial Number (LSN) with

every physical object in their stores; when a record is appended to an object’s log,

its LSN is monotonically incremented. The IO processor uses these LSNs to impose

a global ordering on the changes made to physical objects that are replicated across

stores and to verify that all replicas have received all updates.

If a write failure causes a replica to go out of sync, the client can request the system

to resynchronize the replica. It does this by invoking the resync RPC on the NAD

which hosts the out of sync replica. The server then starts a background task which

streams the missing log records from an in sync replica and applies them to the

local out of sync copy, using the LSN to identify which records the local copy is

missing.

During resync, the background task has exclusive write access to the out of sync

replica because all clients have been reconfigured to use patches. Thus the resync

task can chase the tail of the in sync object’s log while clients continue to write.

When the bulk of the data has been copied, the resync task enters a final stop-and-

copy phase in which it acquires exclusive write access to all replicas in the replica

set, finalizes the resync, applies any client writes received in the interim, marks the

replica as in sync in the configuration database, and removes the patch.

It is important to ensure that resync makes timely progress to limit vulnerability to

data loss. Very heavy client write loads may interfere with resync tasks and, in the

worst case, result in unbounded transfer times. For this reason, when an object is

under resync, client writes are throttled and resync requests are prioritized.

28

Crash Recovery

Special care must be taken in the event of an unclean shutdown. On a clean

shutdown, all objects are released by removing their locks from the configuration

database. Crashes are detected when replica sets are discovered with stale locks

(i.e., locks identifying unresponsive IO processors). When this happens, it is not

safe to assume that replicas marked in sync in the configuration database are truly

in sync, because a crash might have occured midway through a the configuration

database update; instead, all the replicas in the set must be queried directly to de-

termine their states.

In the common case, the IO processor retrieves the LSN for every replica in the

set and determines which replicas, if any, are out of sync. If all replicas have the

same LSN, then no resynchronization is required. If different LSNs are discovered,

then the replica with the highest LSN is designated as the authoritative copy, and

all other replicas are marked out of sync and resync tasks are initiated.

If a replica cannot be queried during the recovery procedure, it is marked as di-

verged in the configuration database and the replica with the highest LSN from the

remaining available replicas is chosen as the authoritative copy. In this case, writes

may have been committed to the diverged replica that were not committed to any

others. If the diverged replica becomes available again some time in the future,

these extra writes must be discarded. This is achieved by rolling the replica back

to its last checkpoint and starting a resync from that point in its log. Consistency

in the face of such rollbacks is guaranteed by ensuring that objects are successfully

marked out of sync in the configuration database before writes are acknowledged

to clients. Thus write failures are guaranteed to either mark replicas out of sync in

the configuration database (and create corresponding patches) or propagate back to

the client.

3.5.2 System Reconfiguration

Strata also provides a highly-available monitoring service that watches over the

health of the system and coordinates system-wide recovery procedures as neces-

29

sary. Monitors collect information from clients, SMART diagnostic tools, and NAD

RPCs to gauge the status of the system. Monitors build on the per-object recon-

figuration mechanisms described above to respond to events that individual clients

don’t address, such as load imbalance across the system, stores nearing capacity,

and device failures.

Rebalance

Strata provides a rebalance facility which is capable of performing system-wide

reconfiguration to repair broken replicas, prevent NADs from filling to capacity,

and improve load distribution across NADs. This facility is in turn used to recover

from device failures and expand onto new hardware.

Rebalance proceeds in two stages. In the first stage, the monitor retrieves the cur-

rent system configuration, including the status of all NADs and virtual address map

of every virtual object. It then constructs a new layout for the replicas according

to a customizable placement policy. This process is scriptable and can be easily

tailored to suit specific performance and durability requirements for individual de-

ployments (see § 3.7.3 for some analysis of the effects of different placement poli-

cies). The default policy uses a greedy algorithm that considers a number of criteria

designed to ensure that replicated physical objects do not share fault domains, ca-

pacity imbalances are avoided as much as possible, and migration overheads are

kept reasonably low. The new layout is formulated as a rebalance plan describing

what changes need to be applied to individual replica sets to achieve the desired

configuration.

In the second stage, the monitor coordinates the execution of the rebalance plan by

initiating resync tasks on individual NADs to effect the necessary data migration.

When replicas need to be moved, the migration is performed in three steps:

1. A new replica is added to the destination NAD

2. A resync task is performed to transfer the data

3. The old replica is removed from the source NAD

30

This requires two reconfiguration events for the replica set, the first to extend it to

include the new replica, and the second to prune the original after the resync has

completed. The monitor coordinates this procedure across all NADs and clients for

all modified virtual objects.

Device Failure

Strata determines that a NAD has failed either when it receives a hardware failure

notification from a responsive NAD (such as a failed flash device or excessive error

count) or when it observes that a NAD has stopped responding to requests for more

than a configurable timeout. In either case, the monitor responds by taking the NAD

offline and initiating a system-wide reconfiguration to repair redundancy.

The first thing the monitor does when taking a NAD offline is to disconnect it from

the data path VLAN. This is a strong benefit of integrating directly against an

Ethernet switch in our environment: prior to taking corrective action, the NAD is

synchronously disconnected from the network for all request traffic, avoiding the

distributed systems complexities that stem from things such as overloaded com-

ponents appearing to fail and then returning long after a timeout in an inconsis-

tent state. Rather than attempting to use completely end-host mechanisms such

as watchdogs to trigger reboots, or agreement protocols to inform all clients of a

NAD’s failure, Strata disables the VLAN and requires that the failed NAD reconnect

on the (separate) control VLAN in the event that it returns to life in the future.

From this point, the recovery logic is straight forward. The NAD is marked as failed

in the configuration database and a rebalance job is initiated to repair any replica

sets containing replicas on the failed NAD.

Elastic Scale Out

Strata responds to the introduction of new hardware much in the same way that

it responds to failures. When the monitor observes that new hardware has been

installed, it uses the rebalance facility to generate a layout that incorporates the

31

new devices. Because replication is generally configured underneath striping, we

can migrate virtual objects at the granularity of individual stripes, allowing a sin-

gle striped file to exploit the aggregated performance of many devices. Objects,

whether whole files or individual stripes, can be moved to another NAD even while

the file is online, using the existing resync mechanism. New NADs are populated

in a controlled manner to limit the impact of background IO on active client work-

loads.

3.6 Storage Protocols

Strata supports legacy protocols by providing an execution runtime for hosting

protocol servers. Protocols are built as thin presentation layers on top of the dis-

patch interfaces; multiple protocol instances can operate side by side. Implementa-

tions can also leverage SDN-based protocol scaling to transparently spread multiple

clients across the distributed runtime environment.

3.6.1 Scalable NFS

Strata is designed so that application developers can focus primarily on implement-

ing protocol specifications without worrying much about how to organize data on

disk. We expect that many storage protocols can be implemented as thin wrappers

around the provided dispatch library. Our NFS implementation, for example, maps

very cleanly onto the high-level dispatch APIs, providing only protocol-specific ex-

tensions like RPC marshalling and NFS-style access control. It takes advantage of

the configuration database to store mappings between the NFS namespace and the

backend objects, and it relies exclusively on the striping and replication processors

to implement the data path. Moreover, Strata allows NFS servers to be instantiated

across multiple backend nodes, automatically distributing the additional processing

overhead across backend compute resources.

32

3.6.2 SDN Protocol Scaling

Scaling legacy storage protocols can be challenging, especially when the protocols

were not originally designed for a distributed back end. Protocol scalability limi-

tations may not pose significant problems for traditional arrays, which already sit

behind relatively narrow network interfaces, but they can become a performance

bottleneck in Strata’s distributed architecture.

A core property that limits scale of access bandwidth of conventional IP storage

protocols is the presentation of storage servers behind a single IP address. For-

tunately, emerging “software defined” network (SDN) switches provide interfaces

that allow applications to take more precise control over packet forwarding through

Ethernet switches than has traditionally been possible.

Using the OpenFlow protocol, a software controller is able to interact with the

switch by pushing flow-specific rules onto the switch’s forwarding path. Open-

Flow rules are effectively wild-carded packet filters and associated actions that tell

a switch what to do when a matching packet is identified. SDN switches (our imple-

mentation currently uses an Arista Networks 7050T-52) interpret these flow rules

and push them down onto the switch’s TCAM or L2/L3 forwarding tables.

By manipulating traffic through the switch at the granularity of individual flows,

Strata protocol implementations are able to present a single logical IP address to

multiple clients. Rules are installed on the switch to trigger a fault event whenever

a new NFS session is opened, and the resulting exception path determines which

protocol instance to forward that session to initially. A service monitors network

activity and migrates client connections as necessary to maintain an even workload

distribution.

The protocol scaling API wraps and extends the conventional socket API, allowing

a protocol implementation to bind to and listen on a shared IP address across all

of its instances. The client load balancer then monitors the traffic demands across

all of these connections and initiates flow migration in response to overload on any

individual physical connection.

33

In its simplest form, client migration is handled entirely at the transport layer.

When the protocol load balancer observes that a specific NAD is overloaded, it up-

dates the routing tables to redirect the busiest client workload to a different NAD.

Once the client’s traffic is diverted, it receives a TCP RST from the new NAD and

establishes a new connection, thereby transparently migrating traffic to the new

NAD.

Strata also provides hooks for situations where application layer coordination is

required to make migration safe. For example, our NFS implementation registers a

pre-migration routine with the load balancer, which allows the source NFS server

to flush any pending, non-idempotent requests (such as create or remove) before

the connection is redirected to the destination server.

3.7 Evaluation

In this section we evaluate our system both in terms of effective use of flash re-

sources, and as a scalable, reliable provider of storage for NFS clients. First, we

establish baseline performance over a traditional NFS server on the same hardware.

Then we evaluate how performance scales as nodes are added and removed from

the system, using VM-based workloads over the legacy NFS interface, which is

oblivious to cluster changes. In addition, we compare the effects of load balancing

and object placement policy on performance. We then test reliability in the face

of node failure, which is a crucial feature of any distributed storage system. We

also examine the relation between CPU power and performance in our system as a

demonstration of the need to balance node power between flash, network and CPU.

3.7.1 Test Environment

Evaluation was performed on a cluster of the maximum size allowed by our 48-port

switch: 12 NADs, each of which has two 10 gigabit Ethernet ports, two 800 GB In-

tel 910 PCIe flash cards, 6 3 TB SATA drives, 64 GB of RAM, and 2 Xen E5-2620

processors at 2 GHz with 6 cores/12 threads each, and 12 clients, in the form of

34

Server Read IOPS Write IOPS
Strata 40287 9960
KNFS 23377 5796

Table 3.1: Random IO performance on Strata versus KNFS

Dell PowerEdge R420 servers running ESXi 5.0, with two 10 gigabit ports each,

64 GB of RAM, and 2 Xeon E5-2470 processors at 2.3 GHz with 8 cores/16 threads

each. We configured the deployment to maintain two replicas of every stored ob-

ject, without striping (since it unnecessarily complicates placement comparisons

and has little benefit for symmetric workloads). Garbage collection is active, and

the deployment is in its standard configuration with a disk tier enabled, but the

workloads have been configured to fit entirely within flash, as the effects of cache

misses to magnetic media are not relevant to this chapter.

3.7.2 Baseline Performance

To provide some performance context for our architecture versus a typical NFS

implementation, we compare two minimal deployments of NFS over flash. We set

Strata to serve a single flash card, with no replication or striping, and mounted it

loopback. We ran a FIO [14] workload with a 4K IO size 80/20 read-write mix at

a queue depth of 128 against a fully allocated file. We then formatted the flash

card with ext4, exported it with the linux kernel NFS server, and ran the same test.

The results are in Table 3.1. As the table shows, we offer good NFS performance

at the level of individual devices. In the following section we proceed to evaluate

scalability.

3.7.3 Scalability

In this section we evaluate how well performance scales as we add NADs to the

cluster. We begin each test by deploying 96 VMs (8 per client) into a cluster of 2

NADs. We choose this number of VMs because ESXi limits the queue depth for a

VM to 32 outstanding requests, but we do not see maximum performance until a

35

Seconds

0 420 840 1260 1680 2100 2520 2940 3360 3780 4200 4620 5040 5460 5880 6300 6720 7140

IO
P

S

 0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

Figure 3.4: IOPS over time, read-only workload

queue depth of 128 per flash card. The VMs are each configured to run the same

FIO workload for a given test. In Figure 3.4, FIO generates 4K random reads to

focus on IOPS scalability. In Figure 3.5, FIO generates an 80/20 mix of reads and

writes at 128K block size in a Pareto distribution such that 80% of requests go to

20% of the data. This is meant to be more representative of real VM workloads, but

with enough offered load to completely saturate the cluster.

As the tests run, we periodically add NADs, two at a time, up to a maximum of

twelve2. When each pair of NADs comes online, a rebalancing process automat-

ically begins to move data across the cluster so that the amount of data on each

NAD is balanced. When it completes, we run in a steady state for two minutes

and then add the next pair. In both figures, the periods where rebalancing is in

progress are reflected by a temporary drop in performance (as the rebalance pro-

cess competes with client workloads for resources), followed by a rapid increase

in overall performance when the new nodes are marked available, triggering the

2ten for the read/write test due to an unfortunate test harness problem

36

Seconds

0 360 720 1080 1440 1800 2160 2520 2880 3240 3600 3960 4320 4680 5040 5400 5760 6120 6480 6840

IO
P

S

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

Figure 3.5: IOPS over time, 80/20 R/W workload

switch to load-balance clients to them. A cluster of 12 NADs achieves over 1 mil-

lion IOPS in the IOPS test, and 10 NADs achieve 70,000 IOPS (representing more

than 9 gigabytes/second of throughput) in the 80/20 test.

We also test the effect of placement and load balancing on overall performance.

If the location of a workload source is unpredictable (as in a VM data center with

virtual machine migration enabled), we need to be able to migrate clients quickly

in response to load. However, if the configuration is more static or can be predicted

in advance, we may benefit from attempting to place clients and data together to

reduce the network overhead incurred by remote IO requests. As discussed in

§ 3.5.2, the load-balancing and data migration features of Strata make both ap-

proaches possible. Figure 3.4 is the result of an aggressive local placement policy,

in which data is placed on the same NAD as its clients, and both are moved as

the number of devices changes. This achieves the best possible performance at the

cost of considerable data movement. In contrast, Figure 3.6 shows the performance

of an otherwise identical test configuration when data is placed randomly (while

37

Seconds

0 420 840 1260 1680 2100 2520 2940 3360 3780 4200 4620 5040 5460 5880 6300 6720 7140 7560

IO
P

S

 0

100000

200000

300000

400000

Figure 3.6: IOPS over time, read-only workload with random placement

still satisfying fault tolerance and even distribution constraints), rather than being

moved according to client requests. The pareto workload (Figure 3.5) is also con-

figured with the default random placement policy, which is the main reason that it

does not scale linearly: as the number of nodes increases, so does the probability

that a request will need to be forwarded to a remote NAD.

3.7.4 Node Failure

As a counterpoint to the scalability tests run in the previous section, we also tested

the behaviour of the cluster when a node is lost. We configured a 10 NAD cluster

with 10 clients hosting 4 VMs each, running the 80/20 Pareto workload described

earlier. Figure 3.7 shows the behaviour of the system during this experiment. After

the VMs had been running for a short time, we powered off one of the NADs by

IPMI, waited 60 seconds, then powered it back on. During the node outage, the

system continued to run uninterrupted but with lower throughput. When the node

38

came back up, it spent some time resynchronizing its objects to restore full repli-

cation to the system, and then rejoined the cluster. The client load balancer shifted

clients onto it and throughput was restored (within the variance resulting from the

client load balancer’s placement decisions).

Seconds

0 60 120 180 240 300 360 420

G
B

/s

0

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3.7: Aggregate bandwidth for 80/20 clients during failover and recovery

3.7.5 Protocol Overhead

The benchmarks up to this point have all been run inside VMs whose storage is

provided by a virtual disk that Strata exports by NFS to ESXi. This configuration

requires no changes on the part of the clients to scale across a cluster, but does im-

pose overheads. To quantify these overheads we wrote a custom FIO engine that is

capable of performing IO directly against our native dispatch interface (that is, the

API by which our NFS protocol gateway interacts with the NADs). We then com-

pared the performance of a single VM running a random 4k read FIO workload (for

maximum possible IOPS) against a VMDK exported by NFS to the same workload

run against our native dispatch engine. In this experiment, the VMDK-based exper-

39

CPU IOPS Freq (Cores) Price
E5-2620 127K 2 GHz (6) $406
E5-2640 153K (+20%) 2.5 GHz (6) $885
E5-2650v2 188K (+48%) 2.6 GHz (8) $1166
E5-2660v2 183K (+44%) 2.2 GHz (10) $1389

Table 3.2: Achieved IOPS on an 80/20 random 4K workload across 2 NADs

iment produced an average of 50240 IOPS, whereas direct access achieved 54060

IOPS, for an improvement of roughly 8%.

3.7.6 Effect of CPU on Performance

A workload running at full throttle with small requests completely saturates the

CPU. This remains true despite significant development effort in performance de-

bugging, and a great many improvements to minimize data movement and con-

tention. In this section we report the performance improvements resulting from

faster CPUs. These results are from random 4K NFS requests in an 80/20 read-

write mix at 128 queue depth over four 10Gb links to a cluster of two NADs, each

equipped with 2 physical CPUs.

Table 3.2 shows the results of these tests. In short, it is possible to “buy” ad-

ditional storage performance under full load by upgrading the CPUs into a more

“balanced” configuration. The wins are significant and carry a non-trivial increase

in the system cost. As a result of this experimentation, we elected to use a higher

performance CPU in the shipping version of the product.

3.8 Related Work

Strata applies principles from prior work in server virtualization, both in the form of

hypervisor [18, 118] and lib-OS [45] architectures, to solve the problem of sharing

and scaling access to fast non-volatile memories among a heterogeneous set of

clients. Our contributions build upon the efforts of existing research in several

areas.

40

Recently, researchers have begin to investigate a broad range of system perfor-

mance problems posed by storage class memory in single servers [15], including

current PCIe flash devices [113], next generation PCM [5], and byte addressabil-

ity [33]. Moneta [28] proposed solutions to an extensive set of performance bottle-

necks over the PCIe bus interface to storage, and others have investigated improving

the performance of storage class memory through polling [127], and avoiding sys-

tem call overheads altogether [29]. We draw from this body of work to optimize

the performance of our dispatch library, and use this baseline to deliver a high

performance scale-out network storage service. In many cases, we would benefit

further from these efforts—for example, our implementation could be optimized

to offload per-object access control checks, as in Moneta-D [29]. There is also

a body of work on efficiently using flash as a caching layer for slower, cheaper

storage in the context of large file hosting. For example, S-CAVE [76] optimizes

cache utilization on flash for multiple virtual machines on a single VMware host

by running as a hypervisor module. This work is largely complementary to ours;

we support using flash as a caching layer and would benefit from more effective

cache management strategies.

Prior research into scale-out storage systems, such as FAWN [9], and Corfu [16]

has considered the impact of a range of NV memory devices on cluster storage per-

formance. However, to date these systems have been designed towards lightweight

processors paired with simple flash devices. It is not clear that this balance is

the correct one, as evidenced by the tendency to evaluate these same designs on

significantly more powerful hardware platforms than they are intended to oper-

ate [16]. Strata is explicitly designed for dense virtualized server clusters backed

by performance-dense PCIe-based nonvolatile memory. In addition, like older com-

modity disk-oriented systems including Petal [71, 112] and FAB [95], prior storage

systems have tended to focus on building aggregation features at the lowest level of

their designs, and then adding a single presentation layer on top. Strata in contrasts

isolates shares each powerful PCIe-based storage class memory as its underlying

primitive. This has allowed us to present a scalable runtime environment in which

multiple protocols can coexist as peers without sacrificing the raw performance that

today’s high performance memory can provide. Many scale-out storage systems,

41

including NV-Heaps [32], Ceph/RADOS [115, 117], and even pNFS [56] are un-

able to support the legacy formats in enterprise environments. Our agnosticism to

any particular protocol is similar to approach used by Ursa Minor [1], which also

boasted a versatile client library protocol to share access to a cluster of magnetic

disks.

Strata does not attempt to provide storage for datacenter-scale environments, un-

like systems including Azure [25], FDS [88], or Bigtable [30]. Storage systems in

this space differ significantly in their intended workload, as they emphasize high

throughput linear operations. Strata’s managed network would also need to be

extended to support datacenter-sized scale out. We also differ from in-RAM ap-

proaches such a RAMCloud [91] and memcached [46], which offer a different class

of durability guarantee and cost.

3.9 Conclusion

Storage system design faces a sea change resulting from the dramatic increase in

the performance density of its component media. Distributed storage systems com-

posed of even a small number of network-attached flash devices are now capable of

matching the offered load of traditional systems that would have required multiple

racks of spinning disks.

Strata is an enterprise storage architecture that responds to the performance char-

acteristics of PCIe storage devices. Using building blocks of well-balanced flash,

compute, and network resources and then pairing the design with the integration

of SDN-based Ethernet switches, Strata provides an incrementally deployable, dy-

namically scalable storage system.

Strata’s initial design is specifically targeted at enterprise deployments of VMware

ESX, which is one of the dominant drivers of new storage deployments in enter-

prise environments today. The system achieves high performance and scalabil-

ity for this specific NFS environment while allowing applications to interact di-

rectly with virtualized, network-attached flash hardware over new protocols. This

is achieved by cleanly partitioning our storage implementation into an underly-

42

ing, low-overhead virtualization layer and a scalable framework for implementing

storage protocols. Over the next year, we intend to extend the system to provide

general-purpose NFS support by layering a scalable and distributed metadata ser-

vice and small object support above the base layer of coarse-grained storage prim-

itives.

43

Chapter 4

Characterizing Storage
Workloads with Counter Stacks

A version of this chapter was published at the 11th USENIX Conference on Oper-

ating Systems Design and Implementation in 2014 [122].

4.1 Introduction

Caching is poorly understood. Despite being a pervasive element of computer sys-

tem design – one that spans processor, storage system, operating system, and even

application architecture – the effective sizing of memory tiers and the design of

algorithms that place data within them remains an art of characterizing and ap-

proximating common case behaviors.

The design of hierarchical memories is complicated by two factors: First, the col-

lection of live workload-specific data that might be analyzed to make “application

aware” decisions is generally too expensive to be worthwhile. Approaches that

model workloads to make placement decisions risk consuming the computational

and memory resources that they are trying to preserve. As a result, systems in

many domains have tended to use simple, general purpose algorithms such as LRU

44

to manage cache placement. Second, attempting to perform offline analysis of ac-

cess patterns suffers from the performance overheads imposed in trace collection,

and the practical challenges of both privacy and sheer volume, in sharing and ana-

lyzing access traces.

Today, these problems are especially pronounced in designing enterprise storage

systems. Flash memories are now available in three considerably different form

factors: as SAS or SATA-attached solid state disks, as NVMe devices connected

over the PCIe bus, and finally as flash-backed nonvolatile RAM, accessible over

a DIMM interface. These three connectivity models all use the same underlying

flash memory, but present performance and pricing that are pairwise 1-2 orders

of magnitude apart. Further, in addition to solid-state memories, spinning disks

remain an economical option for the storage of cold data.

This chapter describes an approach to modeling, analyzing, and reasoning about

memory access patterns that has been motivated through our experience in de-

signing a hierarchical storage system [34] that combines these varying classes of

storage media. The system is a scalable, network-attached storage system that can

benefit from workload awareness in two ways: First, the system can manage allo-

cation of the memory hierarchy in response to workload characteristics. Second,

the capacity at each level of the hierarchy can be independently expanded to sat-

isfy application demands, by adding additional hardware. Both of these properties

require a more precise ability to understand and characterize individual storage

workloads, and in particular their working set sizes over time.

Miss ratio curves (MRCs) are an effective tool for assessing working set sizes, but

the space and time required to generate them make them impractical for large-scale

storage workloads. We present a new data structure, the counter stack, which can

generate approximate LRU MRCs in sublinear space, for the first time making this

type of analysis feasible in the storage domain.

Counter stacks use probabilistic counters [47] to estimate LRU MRCs. The origi-

nal approach to generating MRCs is based on the observation that a block’s ‘stack

distance’ (also known as its ‘reuse distance’) gives the capacity needed to cache it,

and this distance is exactly the number of unique blocks accessed since the previ-

45

ous request for the block. The key idea behind counter stacks is that probabilistic

counters can be used to efficiently estimate stack distances, allowing us to compute

approximate MRCs at a fraction of the cost of traditional techniques.

Counter stacks are fast. Our Java implementation can process a week-long trace of

13 enterprise servers in 17 minutes using just 80 MB of RAM; at a rate of 2.3 million

requests per second, the approach is practical for online analysis in production sys-

tems. By comparison, a recent C implementation of a tree-based optimization [89]

of Mattson’s original stack algorithm [78] takes roughly an hour and 92 GB of

RAM to process the same trace.

Our contributions in this chapter are threefold. First, we introduce a novel tech-

nique for estimating miss ratio curves using counter stacks, and we evaluate the

performance and accuracy of this technique. Second, we show how counter stacks

can be periodically checkpointed and streamed to disk to provide a highly com-

pressed representation of storage workloads. Counter stack streams capture im-

portant details that are discarded by statistical aggregation while at the same time

requiring orders of magnitude less storage and processing overhead than full re-

quest traces; a counter stack stream of the compressed 2.9 GB trace mentioned

above consumes just 11 MB. Third, we present techniques for working with mul-

tiple independent counter stacks to estimate miss ratio curves for new workload

combinations. Our library implements slice, shift, and join operations, enabling

the nearly-instantaneous computation of MRCs for arbitrary workload combina-

tions over arbitrary windows in time. These capabilities extend the functionality of

MRC analysis and provide valuable insight into live workloads, as we demonstrate

with a number of case studies.

4.2 Background

The many reporting facilities embedded in the modern Linux storage stack [21, 23,

61, 83] are testament to the importance of being able to accurately characterize live

workloads. Common characterizations typically fall into one of two categories:

coarse-grain aggregate statistics and full request traces. While these representa-

46

tions have their uses, they can be problematic for a number of reasons: averages

and histograms discard key temporal information; sampling is vulnerable to the

often bursty and irregular nature of storage workloads; and full traces impose im-

practical storage and processing overheads. New representations are needed which

preserve the important features of full traces while remaining manageable to col-

lect, store, and query.

Working set theory [36] provides a useful abstraction for describing workloads

more concisely, particularly with respect to how they will behave in hierarchical

memory systems. In the original formulation, working sets were defined as the set

of all pages accessed by a process over a given epoch. This was later refined by

using LRU modelling to derive an MRC for a given workload and restricting the

working set to only those pages that exhibit strong locality. Characterizing work-

loads in terms of the unique, ‘hot’ pages they access makes it easier to understand

their individual hardware requirements, and has proven useful in CPU cache man-

agement for many years [68, 93, 109]. These concepts hold for storage workloads

as well, but their application in this domain is challenging for two reasons.

First, until now it has been prohibitively expensive to calculate the working set of

storage workloads due to their large sizes. Mattson’s original stack algorithm [78]

required O(NM) time and O(M) space for a trace of N requests and M unique

elements. An optimization using a balanced tree to maintain stack distances [7] re-

duces the time complexity to O(N logM), and recent approximation techniques [38,

126] reduce the time complexity even further, but they still have O(M) space over-

heads, making them impractical for storage workloads that may contain billions of

unique blocks.

Second, the extended duration of storage workloads leads to subtleties when rea-

soning about their working sets. CPU workloads are relatively short-lived, and in

many cases it is sufficient to consider their working sets over small time intervals

(e.g., a scheduling quantum) [132]. Storage workloads, on the other hand, can span

weeks or months and can change dramatically over time. MRCs at this scale can be

tricky: if they include too little history they may fail to capture important recurring

patterns, but if they include too much history they can significantly misrepresent

47

recent behavior.

This phenomenon is further exacerbated by the fact that storage workloads already

sit behind a file system cache and thus typically exhibit longer reuse distances

than CPU workloads [133]. Consequently, cache misses in storage workloads may

have a more pronounced effect on miss ratios than CPU cache misses, because

subsequent re-accesses are likely to be absorbed by the file system cache rather

than contributing to hits at the storage layer.

One implication of this is that MRC analysis needs to be performed over various

time intervals to be effective in the storage domain. A workload’s MRC over the

past hour may differ dramatically from its MRC over the past day; both data points

are useful, but neither provides a complete picture on its own.

This leads naturally to the notion of a history of locality: a workload represen-

tation which characterizes working sets as they change over time. Ideally, this

representation contains enough information to produce MRCs over arbitrary ranges

in time, in much the same way that full traces support statistical aggregation over

arbitrary intervals. A naïve implementation could produce this representation by

periodically instantiating new Mattson stacks at fixed intervals of a trace, thereby

modelling independent LRU caches with various amounts of history, but such an

approach would be impractical for real-world workloads.

In the following section we describe a novel technique for computing stack dis-

tances (and by extension, MRCs), from an inefficient, idealized form of counter

stacks. § 4.4 explains several optimizations which allow a practical counter stack

implementation that requires sublinear space, and § 4.5 presents the additional op-

erations that counter stacks support, such as slicing and joining.

4.3 Counter Stacks

Counter stacks capture locality properties of a sequence of accesses within an ad-

dress space. In the context of a storage system, accesses are typically read or write

requests to physical disks, logical volumes, or individual files. A counter stack can

48

process a sequence of requests as they occur in a live storage system, or it can pro-

cess, in a single pass, a trace of a storage workload. The purpose of a counter stack

is to represent specific characteristics of the stream of requests in a form that is ef-

ficient to compute and store, and that preserves enough information to characterize

aspects of the workload, such as cache behaviour.

Rather than representing a trace as a sequence of requests for specific addresses,

counter stacks maintain a list of counters, which are periodically instantiated while

processing the trace. Each counter records the number of unique trace elements

observed since the inception of that counter; this captures the size of the working

set over the corresponding portion of the trace. Computing and storing samples of

working set size, rather than a complete access trace, yields a very compact repre-

sentation of the trace that nevertheless reveals several useful properties, such as the

number of unique blocks requested, or the stack distances of all requests, or phase

changes in the working set. These properties enable computation of MRCs over

arbitrary portions of the trace. Furthermore, this approach supports composition

and extraction operations, such as joining together multiple traces or slicing traces

by time, while examining only the compact representation, not the original traces.

4.3.1 Definition

A counter stack is an in-memory data structure that is updated while processing

a trace. At each time step, the counter stack can report a list of values giving the

numbers of distinct blocks that were requested between the current time and all

previous points in time. This data structure evolves over time, and it is convenient

to display its history as a matrix, in which each column records the values reported

by the counter stack at some point in time.

Formally, given a trace sequence (e1 . . .eN), where ei is the ith trace element, con-

sider an N×N matrix C whose entry in the ith row and jth column is the number

of distinct elements in the set
{

ei . . .e j
}

. For example, the trace (a,b,c,a) yields

the following matrix.

49

(a, b, c, a,)
1 2 3 3

1 2 3
1 2

1

The jth column of this matrix gives the values reported by the counter stack at time

step j, i.e., the numbers of distinct blocks that were requested between that time

and all previous times. The ith row of the matrix can be viewed as the sequence of

values produced by the counter that was instantiated at time step i.

The in-memory counter stack only stores enough information to produce, at any

point in time, a single column of the matrix. To compute our desired properties

over arbitrary portions of the trace, we need to store the entire history of the data

structure, i.e., the entire matrix. However, the history does not need be stored in

memory. Instead, at each time step we write to disk the current column of values

reported by the counter stack. This can be viewed as checkpointing, or incremen-

tally updating, the on-disk representation of the matrix. This on-disk representation

is called a counter stack stream; for conciseness we will typically refer to it simply

as a stream.

4.3.2 LRU Stack Distances

Stack distances and MRCs have numerous applications in cache sizing [78], mem-

ory partitioning between processes or VMs [62, 107, 109, 132], garbage collection

frequency [128], program analysis [38, 131], workload phase detection [102], etc.

A significant obstacle to the widespread use of MRCs is the cost of computing them,

particularly the high storage cost [20, 89, 103, 106, 129] – all existing methods re-

quire linear space. Counter stacks eliminate this obstacle by providinge extremely

efficient MRC computation while using sublinear space.

In this subsection we explain how stack distances, and hence MRCs, can be derived

from counter stack streams. Recall that the stack distance of a given request is

the number of distinct elements observed since the last reference to the requested

element. Because a counter stack stores information about distinct elements, de-

50

termining the stack distance is straightforward. At time step j one must find the

last position in the trace, i, of the requested element, then examine entry Ci j of the

matrix to determine the number of distinct elements requested between times i and

j. For example, let us consider the matrix given in § 4.3.1. To determine the stack

distance for the second reference to trace element a at position 4, whose previous

reference was at position 1, we look up the value C1,4 and get a stack distance of 3.

This straightforward method ignores a subtlety: how can one find the last position

in the trace of the requested element? It turns out that this information is implicitly

contained in the counter stack. To explain this, suppose that the counter that was

instantiated at time i does not increase during the processing of element e j. Since

this counter reports the number of distinct elements that it has seen, we can infer

that this counter has already seen element e j. On the other hand, if the counter

instantiated at time i+1 does increase while processing e j, then we can infer that

this counter has not yet seen element e j. Combining those inferences, we can

conclude that i is the position of last reference.

These observations lead to a finite-differencing scheme that can pinpoint the po-

sitions of last reference. At each time step, we must determine how much each

counter increases during the processing of the current element of the trace. This is

called the intra-counter change, and it is defined to be

∆xi j = Ci, j−Ci, j−1

To pinpoint the position of last reference, we must find the newest counter that does

not increase. This can be done by comparing the intra-counter change of adjacent

counters. This difference is called the inter-counter change, and it is defined to be

∆yi j =

∆xi+1, j−∆xi, j if i < j

0 if i = j

Let us illustrate these definitions with an example. Restricting our focus to the first

four elements of the example trace from § 4.3.1, the matrices ∆x and ∆y are

51

{ a, b, c, a }
1 1 1 0

1 1 1
1 1

1
∆x

{ a, b, c, a }
0 0 0 1

0 0 0
0 0

0
∆y

Every column of ∆y either contains only zeros, or contains a single 1. The former

case occurs when the element requested in this column has never been requested

before. In the latter case, if the single 1 appears in row i, then the last request for

that element was at time i. For example, because ∆y14 = 1, the last request for

element a before time 4 was at time 1.

Determining the stack distance is now simple, as before. While processing column

j of the stream, we infer that the last request for the element e j occurred at time

i by observing that ∆yi j = 1. The stack distance for the jth request is the number

of distinct elements that were requested between time i and time j, which is Ci j.

Recall that the MRC at cache size x is the fraction of requests with stack distance

exceeding x. Therefore given all the stack distances, we can easily compute the

MRC.

4.4 Practical Counter Stacks

The idealized counter stack stream defined in § 4.3 stores the entire matrix C, so

it requires space that is quadratic in the length of the trace. This is actually more

expensive than storing the original trace. In this section we introduce several ideas

that allow us to dramatically reduce the space of counter stacks and streams.

§ 4.4.1 discusses the natural idea of decreasing the time resolution, i.e., keeping

only every dth row and column of the matrix C. § 4.4.2 discusses the idea of

pruning: eventually a counter may have observed the same set of elements as its

adjacent counter, at which point maintaining both of them becomes unnecessary.

Finally, § 4.4.3 introduces the crucial idea of using probabilistic counters to effi-

ciently and compactly estimate the number of distinct elements seen in the trace.

52

4.4.1 Downsampling

The simplest way to improve the space used by counter stacks and streams is to

decrease the time resolution. This idea is not novel, and similar techniques have

been used in previous work [42].

In our context, decreasing the time resolution amounts to keeping only a small

submatrix of C that provides enough data, and of sufficient accuracy, to be useful

for applications. For example, one could start a new counter only at every dth

position in the trace; this amounts to keeping only every dth row of the matrix C.

Next, one could update the counters only at every dth position in the trace; this

amounts to keeping only every dth column of the matrix C. We call this process

downsampling.

Adjacent entries in the original matrix C can differ only by 1, so adjacent entries in

the downsampled matrix can differ only by d. Thus, any entry that is missing from

the downsampled matrix can be estimated using nearby entries that are present, up

to additive error d. For large-scale workloads with billions of distinct elements,

even choosing a very large value of d has negligible impact on the estimated stack

distances and MRCs.

Our implementation uses a slightly more elaborate form of downsampling because

we wish to combine traces that may have activity bursts in disjoint time intervals

and avoid writing columns during idle periods. As well as starting a new counter

and updating the old counters after every dth request, we also start a new counter

and update the old counters every s seconds with one exception: we do not output

a column if the previous s seconds contain no activity. Our experiments reported

in § 4.7 pick d = 106 and s ∈ {60,3600}.

4.4.2 Pruning

Recall that every row of the matrix contains a sequence of values reported by some

counter. For any two adjacent counters, the older one (the upper row) will always

emit values larger than or equal to the younger one (the lower row). Let us consider

53

the difference of these counters. Initially, at the time the younger one is created,

their difference is simply the number of distinct elements seen by the older counter

so far. If any of these elements reappears in the trace, the older counter will not

increase (as it has seen this element before), but the younger counter will increase,

so the difference of the counters shrinks.

If at some point the younger counter has seen every element seen by the older

counter, then their difference becomes zero and will remain zero forever. In this

case, the younger counter provides no additional information, so it can be deleted.

An extension of this idea is that, when the difference between the counters becomes

sufficiently small, the younger counter provides negligible additional information.

In this case, the younger counter can again be deleted, and its value can be approx-

imated by referring to the older counter. We call this process pruning.

The simplest pruning strategy is to delete the younger counter whenever its value

differs from its older neighbor by at most p. This strategy ensures that the number

of active counters at any point in time is at most M/p. (Recall that M is the number

of distinct blocks in the entire trace.) In our current implementation, in order to fix

a set of parameters that work well across many workloads of varying sizes, we

instead delete the younger counter whenever its value is at least (1− δ) times the

older counter’s value. This ensures that the number of active counters is at most

O(log(M)/δ). Our experiments reported in § 4.7 pick δ ∈ {0.1,0.02}.

4.4.3 Probabilistic Counters

Counter stack streams contain the number of distinct blocks seen in the trace be-

tween any two points in time (neglecting the effects of downsampling and pruning).

The on-disk stream only needs to store this matrix of counts, as the examples in

§ 4.3 suggested. The in-memory counter stack has a more difficult job – it must be

able to update these counts while processing the trace, so each counter must keep

an internal representation of the set of blocks it has seen.

The naïve approach is for each counter to represent this set explicitly, but this would

require quadratic memory usage (again, neglecting downsampling and pruning).

54

A slight improvement can be obtained through the use of Bloom filters [22], but

for an acceptable error tolerance, the space would still be prohibitively large. Our

approach is to use a tool, called a probabilistic counter or cardinality estimator, that

was developed over the past thirty years in the streaming algorithms and database

communities.

Probabilistic counters consume extremely little space and have guaranteed accu-

racy. The most practical of these is the HyperLogLog counter [47], which we

use in our implementation. Each count appearing in our on-disk stream is not the

true count of distinct blocks, but rather an estimate produced by a HyperLogLog

counter which is correct up to multiplicative factor 1+ ε . The memory usage of

each HyperLogLog counter is roughly logarithmic in M, with more accurate coun-

ters requiring more space. More concretely, our evaluation discussed in § 4.7 uses

as little as 53 MB of memory to process traces containing over a hundred million

requests and distinct blocks.

4.4.4 LRU Stack Distances

The technique in § 4.3.2 for computing stack distances and MRCs using idealized

counter stacks can be adapted to use practical counter stacks. The matrices ∆x and

∆y are defined as before, but are now based on the downsampled, pruned matrix

containing probabilistic counts. Previously we asserted that every column of ∆y is

either all zeros or contains a single 1. This is no longer true. The entry ∆yi j now

reports the number of requests since the counters were last updated whose stack

distance was approximately Ci j.

To approximate the stack distances of all requests, we process all columns of the

stream. As there may be many non-zero entries in the jth column of ∆y, we record

∆yi j occurrences of stack distance Ci j for every i. As before, given all stack dis-

tances we can compute the MRC.

An online version of this approach which does not emit streams can produce an

MRC of guaranteed accuracy using provably sublinear memory. In a companion

paper [41] we prove the following theorem. The key point is that the space depends

55

polynomially on ` and ε , the parameters controlling the precision of the MRC, but

only logarithmically on N, the length of the trace.

Theorem 1 The online algorithm produces an estimated MRC that is correct to

within additive error ε at cache sizes 1
`M, 2

`M, 3
`M, . . . ,M using only

O(`2 log(M) log2(N)/ε2) bits of space, with high probability.

4.5 The Counter Stack API

The previous two sections have given an abstract view of counter stacks. In this sec-

tion we describe the system that we have implemented based on those ideas. The

system is a flexible, memory-efficient library that can be used to process traces,

produce counter stack streams, and perform queries on those streams. The work-

flow of applications that use this library is illustrated in Figure 4.1.

4.5.1 On-disk Streams

The on-disk streams output by the library are produced by periodically outputting

a new column of the matrix. As discussed in § 4.4, a new column is produced if

either d requests have been observed in the trace or s seconds have elapsed (in the

trace’s time) since the last column was produced, except for idle periods, which

are elided. Each column is written to disk in a sparse format to incorporate the fact

that pruning may cause numerous entries to be missing.

In addition, the on-disk matrix C includes an extra row, called row R, which records

the raw number of requests observed in the stream. That is, CR j contains the total

number of requests processed at the time that the jth column is output. Finally, the

on-disk stream also records the trace’s time of the current request.

4.5.2 Compute Queries

The counter stack library supports three computational queries on streams: Request

Count, Unique Request Count and MRC.

56

I/O Trace
(per-device, volume, or object)

CStack

Stream

Writer

CS1 Reader

Reader

Reader

Request Count

Miss Ratio Curve

Unique Request Count
CS2

CSm

slice

shift

...
join

specify compute

Counter Stack Creation

Query Execution

CS1 CS2

CSmCS3

Figure 4.1: The counter stack library architecture

The first two query operations are straightforward but useful, as we will show in

§ 4.8.4. The Request Count query simply asks for the total number of requests

that occur in the stream, which is CR j where j is the index of the last column. The

Unique Request Count query is similar except that it asks for the total number of

unique requests, which is C1 j.

The most complicated stream operation is the MRC query, which asks for the miss

ratio curve of the given stream. This query is processed using the method described

in § 4.4.4.

4.5.3 Time Slicing and Shifting

It is often useful to analyze only a subset of a given trace within a specific time

interval. We refer to this time-based selection as slicing. It is similarly useful when

joining traces to alter the time signature by a constant time interval. We refer to

57

this alteration as shifting.

The counter stack library supports slicing and shifting as specification operations.

Given a stream containing a matrix C, the stream for the time slice between time

step i and j is the submatrix with corners at Cii and C j j. Likewise, to obtain the

stream for the trace shifted forward/backward s time units, we simply add/subtract

s to each of the time indices associated with the rows and columns of the matrix.

4.5.4 Joining

Given two or more workloads, it is often useful to understand the behavior that

would result if they were combined into a single workload. For example, if each

workload is an IO trace of a different process, one may want to investigate the cache

performance of those processes with a shared LRU cache.

Counter stacks enable such analyses through the join operation. Given two counter

stack streams, the desired output of the join operation is what one would obtain

by merging the original two traces according to the traces’ times, then producing a

new counter stack stream from that merged trace. Our library can produce this new

stream using only the two given streams, without examining the original traces.

The only assumption we require is that the two streams must access disjoint sets of

blocks.

The join process would be simple if, for every i, the time of the ith request were

the same in both traces; in this case, we could simply add the matrices stored in

the two streams. Unfortunately that assumption is implausible, so more effort is

required. The main ideas are to:

• Expand the two matrices so that each has a row and column for every time

that appears in either trace.

• Interpolate to fill in the new matrix entries.

• Add the resulting matrices together.

Let us illustrate this process with an example. Consider a trace A that requests

58

time 1:00 1:02 1:05 1:14 1:17
A a b b

CA 1 1 2 2 2
0 1 1 1

1 1 1
0 1

1
B d d

CB 0 1 1 1 1
1 1 1 1

0 1 1
1 1

0

merge a d b d b
CA +CB 1 2 3 3 3

1 2 2 2
1 2 2

1 2
1

Figure 4.2: An example illustrating the join operation

blocks (a,b,b) at times 1:00, 1:05, 1:17, and a trace B requests blocks (d,d) at
times 1:02 and 1:14. The merge of the two traces is as follows:

time 1:00 1:02 1:05 1:14 1:17
A a b b
B d d

merge a d b d b

To join these streams, we must expand the matrices in the two streams so that

each has five rows and columns, corresponding to the five times that appear in the

traces. After this expansion, each matrix is missing entries corresponding to times

that were missing in its trace. We fill in those missing entries by an interpolation

process: a missing row is filled by copying the nearest row beneath it, and a missing

column is filled by copying the nearest column to the left of it. Figure 4.2 shows

the resulting matrices; interpolated values are shown in bold blue.

Pruned counters can sometimes create negative values in ∆x. For example, after

pruning a counter in row j at time t, the interpolated value of the pruned counter at

59

t+1 is set to the nearest row beneath it, representing a younger counter. Often, this

lower counter has a smaller value than the pruned counter. The interpolated value at

t+1 will then be less than its previous value at t, producing a negative intra-counter

change. We can avoid introducing negative values in ∆x by replacing any negative

values in ∆x by the nearest nonnegative value beneath it. This replacement has the

same effect of changing the value of the pruned counter to the lower counter in

column t prior to calculating the intra-counter change for the column representing

t +1.

4.6 Error and Uncertainty

While each of the optimizations described in § 4.4 dramatically reduce the storage

requirements of counter stacks, they may also introduce uncertainty and error into

the final calculations. In this section, we discuss potential sources of error, as well

as how to modify the different operations described in § 4.3 to compute lower and

upper bounds on the stack distances.

4.6.1 Counter Error

HyperLogLog counters introduce error in two ways: count estimation and simulta-

neous register updates. HyperLogLog counters report a count of distinct elements

that is only correct up to multiplicative factor ε , which is determined by a preci-

sion parameter. This uncertainty produces deviation from the true MRC and can be

controlled by increasing the precision of the HyperLogLog counters, at the cost of

a greater memory requirement.

Simultaneous register updates introduce a subtler form of error. A HyperLogLog

counter estimates unique counts by taking the harmonic mean of a set of internal

variables called registers. Due to the design of HLLs, sometimes a register update

might cause the older counter to increase in value more than the younger counter.

This phonemoneon leads to negative updates in ∆y, because older counters are

expected to change more slowly than younger counters. Theorem 1 implies that

60

the negative entries in the ∆y matrix introduced by simultaneous register updates

are offset by corresponding over-estimates when register modifications between

counters are not simultaneous.

In some cases, the histogram of stack distances may accumulate enough negative

entries that there are bins with negative counts. The cumulative sum of such a his-

togram will result in a non-monotonic MRC. We can enforce a monotonic MRC by

accumulating any negative histogram bins in a separate counter, carrying the differ-

ence forward in the cumulative sum and discounting positive bins by the negative

count. In practice, negative histogram entries make up less then one percent of the

reported stack distances, with little to no visible effect on the accumulated MRC.

4.6.2 Downsampling Uncertainty

Whereas the scheme of § 4.3.2 computes stack distances exactly, the modified

scheme of § 4.4.4 only computes approximations. This uncertainty in the stack

distances is caused by downsampling, pruning and use of probabilistic counters.

To illustrate this, consider the example shown in Figure 4.3, and for simplicity let

us ignore pruning and any probabilistic error.

At every time step j, the finite differencing scheme uses the matrix ∆y to help esti-

mate the stack distances for all requests that occurred since time step j−1. More

concretely, if such a request increases the (i+1)th counter but does not increase the

ith counter, then we know that the most recent occurrence of the requested block

lies somewhere between time step i and time step i+1. Since there may have been

many requests between time i and time i+ 1, we do not have enough information

to determine the stack distance exactly, but we estimate it up to additive error d

(the downsampling factor). A careful analysis can show that the request must have

stack distance at least Ci+1, j−1 +1 and at most Ci j.

61

C 10 20 50
15 50

40
RRR 100 200 300

→

∆x 10 10 30
15 35

40
∆∆∆RRR 100 100 100

→

∆y 90 (1,10) 5 (1,20) 5 (16,50)
85 (1,15) 5 (1,50)

60 (1,40)

Figure 4.3: An example of computing stack distances using a downsampled matrix.
The entries of ∆y show the number of requests and the parenthesized values
show the bounds on the stack distances that we can infer for those requests.

4.7 Evaluation

In this section we empirically validate two claims: (1) the time and space require-

ments of counter stack processing are sufficiently low that it can be used for online

analysis of real storage workloads, and (2) the technique produces accurate, mean-

ingful results.

We use a well-studied collection of storage traces released by Microsoft Research

in Cambridge (MSR) [86] for much of our evaluation. The MSR traces record the

disk activity (captured beneath the file system cache) of 13 servers with a combined

total of 36 volumes. Notable workloads include a web proxy (prxy), a filer serving

project directories (proj), a pair of source control servers (src1 and src2), and a

web server (web). The raw traces comprise 417 million records and consume just

over 5 GB in compressed CSV format.

We compare our technique to the ‘ground truth’ obtained from full trace analysis

(using trace trees, the tree-based optimization of Mattson’s algorithm [78, 89]),

and, where applicable, to a recent approximation technique [125] which derives

estimated MRCs from average footprints (see § 4.9 for more details). For fairness,

we modify the original implementation [37] by using a sparse dictionary to reduce

memory overhead.

4.7.1 Performance

The following experiments were conducted on a Dell PowerEdge R720 with two

six-core Intel Xeon processors and 96 GB of RAM. Traces were read from high-

62

Fidelity Time Memory Throughput Storage

low 17.10 m 78.5 MB 2.31M reqs/sec 747 KB

high 17.24 m 80.6 MB 2.29M reqs/sec 11 MB

Table 4.1: The resources required to create low and high fidelity counter stacks for
the combined MSR workload (64 MB heap)

performance flash to eliminate disk IO bottlenecks.

Throughout this section we present figures for both ‘low’ and ‘high’ fidelity streams.

We control the fidelity by adjusting the number of counters maintained in each

stream; the parameters used in these experiments represent just two points of a

wide spectrum, and were chosen in part to illustrate how accuracy can be traded

for performance to meet individual needs.

We first report the resources required to convert a raw storage trace to a counter

stack stream. The memory footprint for the conversion process is quite modest:

converting the entire set of MSR traces to high-fidelity counter stacks can be done

with about 80 MB of RAM 1. The processing time is low as well: our Java im-

plementation can convert a trace to a high-fidelity stream at a rate of 2.3 million

requests per second with a 64 MB heap and 2.7 million requests per second with a

256 MB heap.

The size of counter stack streams can also be controlled by adjusting fidelity. Ig-

noring write requests, the full MSR workload consumes 2.9 GB in a compressed,

binary format. We can reduce this to 854 MB by discarding latency values and

capping timestamp resolutions at one second, and we can shave off another 50 MB

through domain-specific compaction techniques like delta-encoding time and offset

values. But as Table 4.1 shows, this is more than 70 times larger than a high-fidelity

counter stack representation.

The compression achieved by counter stack streams is workload-dependent. High-

1This is not a lower bound. Additional reductions can be achieved at the expense of increased
garbage collection activity in the JVM; for example, enforcing a heap limit of 32 MB increases
processing time for the high-fidelity counter stack by about 30% and results in a peak resident set
size of 53 MB.

63

fidelity streams of the MSR workloads are anywhere from 12 (hm) to 1,024 (prxy)

times smaller than their compressed binary counterparts, with larger traces tending

to compress better. A stream of the combined traces consumes just over 1.5 MB

per day, meaning that weeks or even months of workload history can be retained at

very reasonable storage costs.

Once a trace has been converted to a counter stack stream, performing queries

is very quick. For example, an MRC for the entire week-long MSR trace can be

computed from the counter stack stream in just seconds, with negligible memory

overheads. By comparison, computing the same MRC using a trace tree takes about

an hour and reaches a peak memory consumption of 92 GB, while the average

footprint technique requires 8 and a half minutes and 23 GB of RAM.

4.7.2 Accuracy

Figure 4.4 shows miss ratio curves for each of the individual workloads contained

in the MSR traces as well as the combined master trace; superimposed on the

baseline curves (showing the exact MRCs) are the curves computed using footprint

averages and counter stacks. Some of the workloads feature MRCs that are notably

different from the convex functions assumed in the past [109]. The web workload

is the most obvious example of this, and it is also the workload which causes the

most trouble for the average footprint technique.

Figure 4.5 shows three examples of MRCs produced by joining individual counter

stacks. The choice of workloads is somewhat arbitrary; we elected to join work-

loads of commensurate size so that each would contribute equally to the resulting

merged MRC. As described in § 4.5.4, the join operation can introduce additional

uncertainty due to the need to infer the values of missing counters, but the effects

are not prominent with the high-fidelity counter stacks used in these examples.

We performed an analysis of curve errors at different fidelities, with verylow (δ =

0.46, d = 19M, s = 32K) at one extreme and high (δ = 0.01, d = 1M, s = 60) at

the other. To measure curve error, we use the Mean Absolute Error (MAE) between

a given curve and its ground-truth counterpart. The MAE is defined as the average

64

absolute difference between two series mrc and mrc′, or 1
N ∑ |mrc(x)−mrc′(x)|.

Because MRCs range between 0 and 1, the MAEs are also confined to the same

range, where a value of 0 implies perfectly corresponding curves. At the other

extreme, it is difficult to know what constitutes a “bad” MAE because it is unlikely

to be close to 1 except in singular cases. For example, the MAE between the hm

and the ts Mattson curves is only 0.15. For the high fidelity counter stacks, we

observe MAEs between 0.002 and 0.02, and for the average footprint algorithm,

we observe MAEs between 0.001 and 0.04.

We find that curve error under compression is highly workload-dependent. We

observed the largest errors on “jagged” workloads with sharp discontinuities, such

as src1 and web, while workloads with “flatter” MRCs such as stg and usr are

almost invariant to compression. Figure 4.6 summarizes our findings on two such

workloads. On the left, we illustrate the difference in the change in error as fidelity

decreases for a jagged workload, src1, and a flat workload, usr. On the right, we

show the smoothing effect of decreasing the counter stack fidelity by comparing

the verylow and high fidelity curves against Mattson on src1.

4.8 Workload Analysis

We have shown that counter stacks can be used to produce accurate MRC estima-

tions in a fraction of the time and space used by existing techniques. We now

demonstrate some of the capabilities of the counter stack query interface through a

series of case studies of the MSR traces.

4.8.1 Combined Workloads

Hit rates are often used to gauge the health of a storage system: high hit rates are

considered a sign that a system is functioning properly, while poor hit rates suggest

that tuning or configuration changes may be required. One problem with this sim-

plistic view is that the combined hit rates of multiple independent workloads can

be dominated by a single workload, thereby hiding potential problems.

65

hm mds prn

proj prxy rsrch

src1 src2 stg

ts usr wdev

web master

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0 0 25 50 75 0 20 40 60 80

0 400 800 1200 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6

0 50 100 150 200 250 0 10 20 30 40 0 25 50 75

0.0 0.1 0.2 0.3 0.4 0.5 0 250 500 750 1000 0.00 0.05 0.10 0.15 0.20

0 20 40 60 80 0 1000 2000

Cache Size (GB)

M
is

s
 R

a
ti
o

Algorithm

avgfp

cs−high

cs−low

mattson

Figure 4.4: MSR miss ratio curves

66

hm−rsrch−merged src2−prn−merged stg−web−merged

0.00

0.25

0.50

0.75

1.00

0 1 2 0 30 60 90 120 0 50 100 150

Cache Size (GB)

M
is

s
 R

a
ti
o

Algorithm cs mattson

Figure 4.5: MRCs for various combinations of MSR workloads (produced by the join
operation)

verylow

Counter Stack Error Trends

0.00

0.02

0.04

0.06

0.08

0 20 40 60

Counter Stack Size (KB)

M
e

a
n

 A
b

o
s
lu

te
 E

rr
o

r

VM

src1

usr

src1

0.25

0.50

0.75

1.00

0 50 100 150 200 250

Cache Size (GB)

M
is

s
 R

a
te

Quality

high

mattson

verylow

Figure 4.6: The qualitative effect of counter stack fidelity is workload-dependent.
On the left, we show the curve error and file sizes of different fidelities. The
usr workload is robust to compression to very low fidelity, while the src1
workload degrades progressively. On the right, we show the visual outcome of
compression to both high and verylow fidelity on src1.

We find this is indeed the case for the MSR traces. The prxy workload features a

small working set and a high activity rate – it accesses only 2 GB of unique data

over the entire week but issues 15% of all read requests in the combined trace.

Table 4.2 puts this in perspective: the combined workload achieves a hit rate of

50% with a 550 GB cache; more than 250 GB of additional cache capacity would

be required to achieve this same hit rate without the prxyworkload. This illustrates

why combined hit rate is not an adequate metric of system behavior. Diagnostic

tools which present hit rates as an indicator of storage well-being should be careful

to consider workloads independently as well as in combination.

67

Desired Hit Rate Required Cache Size

With prxy Without prxy

30% 2.5 GB 21.6 GB

40% 19.2 GB 525.5 GB

50% 566.6 GB 816.0 GB

Table 4.2: Cache sizes required to obtain desired hit rates for combined MSR work-
loads with and without prxy

4.8.2 Erratic Workloads

MRCs can be very sensitive to anomalous events. A one-off bulk read in the middle

of an otherwise cache-friendly workload can produce an MRC with high miss rates,

arguably mischaracterizing the workload. We wrote a simple script that identifies

erratic workloads by searching for hour-long slices with unusually high miss ratios.

The script found several workloads, including mds, stg, ts, and prn, whose week-

long MRCs are dominated by just a few hours of intense activity.

Figure 4.7 shows the effect these bursts can have on workload performance. The

full-week MRC for prn (Figure 4.4) shows a maximum achievable hit rate of 60%

at a cache size of 83 GB. The workload features a two-hour read burst starting 102

hours into the trace which accounts for 29% of the total requests and 69% of the

unique blocks. Time-sliced MRCs before and after this burst feature hit rates of

60% at cache sizes of 10 GB and 12 GB, respectively. This is a clear example

of how anomalous events can significantly distort MRCs, and it shows why it is

important to consider MRCs over various intervals in time, especially for long-lived

workloads.

4.8.3 Conflicting Workloads

Many real-world workloads exhibit pronounced diurnal patterns: interactive work-

loads typically reflect natural trends in business hours, while automatic workloads

are often scheduled at regular intervals throughout the day [43, 72, 101]. When

68

hours 0 − 101 hours 101 − 103 hours 103 − 168

0.00

0.25

0.50

0.75

1.00

0 5 10 15 0 20 40 0 5 10 15 20

Cache Size (GB)

M
is

s
 R

a
ti
o

Figure 4.7: Time-sliced prn workload

such workloads are served by the same shared storage, it makes sense to try to

limit the degree to which they interfere with one another.

The time-shifting functionality of counter stacks provides a powerful tool for ex-

ploring coarse-grain scheduling of workloads. To demonstrate this, we wrote a

script which computes the MRCs of the combined MSR trace (excluding prxy) in

which the start times of a few of the larger workloads (proj, src1, and usr) are

shifted by up to six hours. Figure 4.8 plots the best and worst MRCs computed by

this script. As is evident, workload scheduling can significantly affect hit rates. In

this case, shifting workloads by just a few hours changes the capacity needed for a

50% hit rate by almost 50%.

4.8.4 Periodic Workloads

MRCs are good at characterizing the raw capacity needed to accommodate a given

working set, but they provide very little information about how that capacity is

used over time. In environments where many workloads share a common cache,

this lack of temporal information can be problematic. For example, as Figure 4.4

shows, the entire working set of web is less than 80 GB, and it exhibits a hit rate

of 75% with a dedicated cache at this size. However, as shown in Figure 4.9, the

workload is highly periodic and is idle for all but a few hours every day.

69

675 GB

1 TB

combined workloads

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500

Cache Size (GB)

M
is

s
 R

a
ti
o

Schedule

best

worst

Figure 4.8: Best and worst time-shifted MRCs for MSR workloads (excluding prxy).
We omit cache sizes greater than 1.5 TB to preserve details in the plot.

This behavior is characteristic of automated tasks like nightly backups and index-

ing jobs, and it can be problematic because periodic workloads with long reuse

distances tend to perform poorly in shared caches. The cost of this is twofold:

first, the periodic workloads exhibit low hit rates because their long reuse distances

give them low priority in LRU caches; and second, they can penalize other work-

loads by repeatedly displacing ‘hotter’ data. This is exactly what happens to web

in a cache shared with the rest of the MSR workloads: despite its modest working

set size and high locality, it achieves a hit rate of just 7.5% in a 250 GB cache and

20% in a 500 GB cache.

Scan-resistant replacement policies like ARC [79] and CAR [17] offer one defense

against this poor behavior by limiting the cache churn induced by periodic work-

loads. But a better approach might be to the exploit the highly regular nature of

such workloads – assuming they can be identified – through intelligent prefetch-

ing. Counter stacks are well-suited for this task because they make it easy to detect

periodic accesses to non-unique data. While this alone would not be sufficient

to implement intelligent prefetching (because the counters do not indicate which

70

web

0e+00

3e+06

6e+06

9e+06

0 50 100 150

Hour

R
e

q
u

e
s
ts Type

total

unique

Figure 4.9: web total and unique requests per hour

blocks should be prefetched), it could be used to alert the system of the recurring

pattern and initiate the capture of a more detailed trace for subsequent analysis.

4.8.5 Zipfian Workloads

We end with a brief discussion of synthetic workload generators like FIO [14] and

IOMeter [105]. These tools are commonly used to test and validate storage sys-

tems. They are capable of generating IO workloads based on parameters describing,

among other things, read/write mix, queue depth, request size, and sequentiality.

The simpler among them support various combinations of random and sequential

patterns; FIO recently added support for pareto and zipfian distributions, with the

goal of better approximating real-world workloads.

Moving from uniform to zipfian distributions is a step in the right direction. In-

deed, many of the MSR workloads, including hm, mds, and prn, exhibit roughly

zipfian distributions. However, as is evident in Figure 4.4, the MRCs of these work-

loads vary dramatically. Figure 4.10 plots the MRC of a perfectly zipfian workload

produced by FIO alongside two permutations of the same workload; as expected,

71

zipf

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20

Cache Size (GB)

M
is

s
 R

a
ti
o Order

random

series

sorted

Figure 4.10: MRCs for three permutations of a single zipfian distribution: random,
series (a concatenation of sorted series of unique requests), and sorted
(truncated to preserve detail).

request ordering has a significant impact on locality and cache behavior. These

figures show that synthetic zipfian workloads do not necessarily produce ‘realistic’

MRCs, emphasizing the importance of using real-world workloads when evaluating

storage performance.

4.9 Related Work

Mattson et al. [78] defined stack distances and presented a simple O(NM) time,

O(M) space algorithm to calculate them. Bennett and Kruskal [20] used a tree-

based implementation to bring the runtime to O(N log(N)). Almási et al. improved

this to O(N log(M)), and Niu et al. [89] introduced a parallel algorithm.

A different line of work explores techniques to efficiently approximate stack dis-

tances. Eklov and Hagersten [42] proposed a method to estimate stack distances

based on sampling. Ding and Zhong [38] use an approximation technique inspired

by the tree-based algorithms. Xiang et al. [125] define the footprint of a given trace

window to be the number of distinct blocks occurring in the window. Using reuse

72

distances, they estimate the average footprint across a logarithmic scale of window

lengths. Xiang et al. [126] then develop a theory connecting the average footprint

and the miss ratio, contingent on a regularity condition they call the reuse-window

hypothesis. In comparison, counter stacks use dramatically less memory while

producing MRCs with comparable accuracy.

A large body of work from the storage community explores methods for repre-

senting workloads concisely. Chen et al. [31] use machine learning techniques

to extract workload features, Tarasov et al. [111] describe workloads with feature

matrices, and Delimitrou et al. [35] model workloads with Markov Chains. These

representations are largely incomparable to counter stacks – they capture many de-

tails that are not preserved in counter stack streams, but they discard much of the

temporal information required to compute accurate MRCs.

Many domain-specific compression techniques have been proposed to reduce the

cost of storing and processing workload traces. These date back to Smith’s stack

deletion [106] and include Burtscher’s VPC compression algorithms [24]. They

generally preserve more information than counter stacks but achieve lower com-

pression ratios. They do not offer new techniques for MRC computation.

4.10 Conclusion

Sizing the tiers of a hierarchical memory system and managing data placment

across them is a difficult, workload dependent problem. Techniques such as miss

ratio curve estimation have existed for decades as a method of modeling workload

behaviors offline, but their computational and memory overheads have prevented

their incorporation as a means to make live decisions in real systems. Even as an

offline tool, practical issues such as the overheads associated with trace collection

and storage often prevent the sharing and analysis of memory access traces.

Counter stacks provide a powerful software tool to address these issues. They are

a compact form of locality characterization that allow workloads to be studied in

new interactive ways, for instance by searching for anomalies or shifting workloads

to identify pathological load possibilities. They can also be incorporated directly

73

into system design as a means of making more informed and workload-specific

decisions about resource allocation across multiple tenants.

While the design and implementation of counter stacks described in this chapter

have been motivated through the design of an enterprise storage system, the tech-

niques are relevant in other domains, such as processor architecture, where the

analysis of working set size over time and across workloads is critical to the design

of efficient, high-performance systems.

74

Chapter 5

Mirador: An Active Control
Plane for Datacenter Storage

A version of this chapter was published at the 15th USENIX Conference on File

and Storage Technologies in 2017 [120].

5.1 Introduction

In becoming an active resource within the datacenter, storage is now similar to

the compute and network resources to which it attaches. For those resources, re-

cent years have seen a reorganization of software stacks to cleanly disentangle the

notions of control and data paths. This thrust toward “software defined” systems

aims for designs in which virtualized resources may be provisioned on demand and

in which central control logic allows the programmatic management of resource

placement in support of scale, efficiency, and performance.

This chapter observes that modern storage systems both warrant and demand ex-

actly this approach to design. The emergence of high-performance rack-scale hard-

ware [13, 44, 92] is amplifying the importance of connectivity between application

workloads and their data as a critical aspect of efficient datacenter design. Fortu-

75

nately, the resource programmability introduced by software defined networks and

the low cost of data migration on non-volatile memory means that the dynamic

reconfiguration of a storage system is achievable.

How is dynamic placement useful in the context of storage? First, consider that

network topology has become a very significant factor in distributed storage de-

signs. Driven by the fact that intra-rack bandwidth continues to outpace east/west

links and that storage device latencies are approaching that of Ethernet round-trip

times, efficient storage placement should ensure that data is placed in the same rack

as the workloads that access it, and that network load is actively balanced across

physical links.

A separate goal of distributing replicas across isolated failure domains requires a

similar understanding of physical and network topology, but may act in opposition

to the goal of performance and efficiency mentioned above. While placement goals

such as these examples can be motivated and described in relatively simple terms,

the resulting placement problem is multi-dimensional and continuously changing,

and so very challenging to solve.

Mirador is a dynamic storage placement service that addresses exactly this prob-

lem. Built as a component within a scale-out enterprise storage product [34], Mi-

rador’s role is to translate configuration intention as specified by a set of objective

functions into appropriate placement decisions that continuously optimize for per-

formance, efficiency, and safety. The broader storage system that Mirador controls

is capable of dynamically migrating both the placement of individual chunks of

data and the client network connections that are used to access them. Mirador bor-

rows techniques from dynamic constraint satisfaction to allow multi-dimensional

goals to be expressed and satisfied dynamically in response to evolutions in envi-

ronment, scale, and workloads.

This chapter describes our experience in designing and building Mirador, which is

the second full version of a placement service we have built. Our contributions are

threefold: We demonstrate that robust placement policies can be defined as sim-

ple declarative objective functions and that general-purpose solvers can be used to

find solutions that apply these constraints to both network traffic and data place-

76

ment in a production storage system, advancing the application of optimization

techniques to the storage configuration problem [1, 8, 10, 11, 110]. We show that

for performance-dense storage clusters, placement decisions informed by the rel-

ative capabilities of network and storage tiers can yield improvements over more

static layouts originally developed for large collections of disks. And finally, we

investigate techniques for exploiting longitudinal workload profiling to craft cus-

tom placement policies that lead to additional improvements in performance and

cost-efficiency.

5.2 A Control Plane for Datacenter Storage

Mirador implements the control plane of a scale-out enterprise storage system

which presents network-attached block devices for use by virtual machines (VMs),

much like Amazon’s Elastic Block Store [19]. A typical deployment consists of

one or more independent storage nodes populated with performance-dense NVMe

devices, each capable of sustaining random-access throughputs of hundreds of

thousands of IOPS. In order to capitalize on the low latency of these devices, stor-

age nodes are commonly embedded horizontally throughout the datacenter along-

side the compute nodes they serve. In this environment, Mirador’s role is to pro-

vide a centralized placement service that continuously monitors the storage system

and coordinates the migration of both data and network connections in response to

workload and environmental changes.

A guiding design principle of Mirador is that placement decisions should be dy-
namic and flexible.

Dynamic placement decisions allow the system to adapt to environmental change.

We regularly observe deployments of hundreds to thousands of VMs where only

a small number of workloads dominate resource consumption across the cluster

at any given time. Moreover, the membership of this set often changes as VMs

are created and deleted or they transition through different workload phases. For

these reasons, the initial choices made when placing data in the cluster may not

always be the best ones; significant improvements can often be had by periodically

77

re-evaluating placement decisions over time in response to changes in workload

behavior.

Flexible placement decisions allow the system to articulate complex and multidi-

mensional policy. Rather than trying to combine diverse and often conflicting goals

in a single monolithic description, Mirador approaches system configuration as a

search problem. Policies are composed of one or more objective functions, simple

rules that express how resources should be allocated by computing numerical costs

for specific configurations. A planning engine employs established constraint sat-

isfaction techniques to efficiently search the configuration space for a minimal-cost

solution.

In our experience, policies expressed as simple independent rules are substantially

more perspicuous and robust than their monolithic alternatives. For example, after

upgrading the customized planning engine that shipped in an early version of the

product to a generic constraint solver, we were able to replace a load balancing

policy originally defined in 2,000 lines of imperative Python with a similar policy

composed of seven simple rules each expressed in less than thirty lines of code (see

§ 5.3.2 for examples). Much of the complexity of the original policy came from

describing how it should be realized rather than what it intended to achieve. By

disentangling these two questions and answering the former with a generic search

algorithm, we arrived at a policy description that is equally efficient as the first

version, yet much easier to reason about and maintain.

Mirador implements the configuration changes recommended by the planning en-

gine by coordinating a cluster-wide schedule of data and network migration tasks,

taking care to minimize the performance impact on client workloads. It communi-

cates directly with switches and storage nodes to effect these migrations, continu-

ally monitoring system performance as it does so. In this way it actively responds

to environmental and workload changes and results in a more responsive, robust

system.

78

79

Observe (§3.1) Optimize (§3.2)

Platform Support (§3.4)

Actuate (§3.3)
System Monitor Planning Engine Scheduler

Physical System

In-memory storage
system model Objective Functions

data placement

notification migrationprioritization

Storage Node Storage Node Storage Node Storage Node Storage Node Storage Node

network connections

physical topology

load / liveness

Client ClientClient

SDN Switch SDN Switch

object object object object object objectobject object object objectobject object object object

Solver Plugin
(e.g. greedy, branch+bound)

Task Scheduler

Data placement actuation
Data migrated by triggering
peer-wise background copies.

Network flow actuation
Network reconfigurations sent
to SDN controller.

Monitoring Daemon
notifications polling

active

plan subtasks work queues

rule ReplicaPlacement:

 solutionHints[]

 dependentVariables[]

 eval(proposedModel):

 ...

 return score

planning
request

environ-
mental
changes

new
active plan

actuation
requests

background object migration

overloaded
physical link

Figure 5.1: The storage system architecture (below) and the Mirador rebalance pipeline (above). The figure shows two examples of
the system performing actuations in response to observed state. First, the fourth storage node has become disproportionately
full relative to the other nodes. To balance capacity in the system, the rightmost object on that node is undergoing background
migration to the third node. Second, the physical network link into the left side port of the second storage node has come
under pressure from two high-volume flows from the first two clients. The system will observe this overload, and then chose
one of the flows to migrate to a different physical link.

5.3 Mirador

Mirador is a highly-available data placement service that is part of a commercial

scale-out storage product. Figure 5.1 presents a typical cluster composed of mul-

tiple storage nodes. Each node is a regular server populated with one or more

directly-attached, non-volatile storage devices. Nodes implement an object inter-

face on top of these devices and manage virtual to physical address translations

internally. Objects present sparse 63-bit address spaces and are the primary unit of

placement. A virtual block device interface is presented to clients. Virtual devices

may be composed of one or more objects distributed across multiple nodes; by

default, they are striped across 16 objects, resulting in typical object sizes on the

order of tens to hundreds of GiB.

The storage cluster is fronted by a set of Software Defined Network (SDN) switches

that export the cluster over a single virtual IP address. Clients connect to the virtual

IP and are directed to storage nodes by a custom SDN controller. Nodes are con-

nected in a mesh topology, and any node is capable of servicing requests from any

client, allowing the mapping between clients and nodes to be modified arbitrarily.

One or more nodes in the cluster participate as a Mirador service provider. Service

providers work together to monitor the state of the cluster and initiate rebalance

jobs in response to topology and load changes. Rebalance jobs are structured as

a control pipeline that generates and executes plans for dynamically reconfiguring

the placement of data and client connections in order to optimize for performance,

efficiency, and safety. Job state is periodically checkpointed in a replicated state

machine [59], providing strong resliency against failures.

The rebalance pipeline is composed of three stages:

Observation A system monitor collects resource metrics like device and network

load along with detailed workload profiles to construct a model of the cluster.

80

Optimization A planning engine computes a numerical cost for the current con-

figuration and searches for alternative configurations that would reduce or elimi-

nate this cost. If a lower-cost arrangement is identified, a plan is constructed that

yields the desired results.

Actuation A scheduler implements the plan by coordinating the migration of data

and client connections.

5.3.1 Observation

The system monitor maintains a storage system model that captures all relevant

properties of the physical system, including static features like cluster topology

(e.g., the number of devices and nodes, the capacity of their network links, and

user-defined failure domains) and dynamic features like the current free space and

IO load of devices and the utilization of network ports.

The monitor also collects highly-compressed sketches of individual workload be-

havior [122]. These summaries are collected by a dedicated workload analysis ser-

vice, and they include features such as miss ratio curves and windowed footprints.

Unlike hardware utilization levels, this data cannot be computed from instanta-

neous measurements, but instead requires detailed profiling of workloads over ex-

tended periods of time.

The monitor synchronizes the model by polling the cluster; sampling frequencies

vary from every few seconds for metrics like link load to tens of minutes for work-

load footprint measurements, while exceptional events such as device failures are

signalled via special alerts.

5.3.2 Optimization

The planning engine implements the logic responsible for generating rebalance

plans. Placement logic is encapsulated in one or more objective functions that

specify rules for how data and flows should be distributed across the cluster. The

81

engine invokes a solver to search for new configurations that reduce placement

costs, as defined by the objective functions.

The planning engine manipulates a copy of the storage model when considering

alternative configurations. For example, if a decision is made to move an object

from one device to another, the modelled free space and load of each device is

adjusted to reflect the change.

Modelling data migration within the cluster is a challenging problem. While an

object’s size serves as a rough approximation of the cost of migrating it, the actual

time required to move the data depends on many things, including the type and

load of the source and destination devices, network contention along the migration

path, and fragmentation of the data being migrated. This is important, however,

because system resources like free space and bandwidth may be consumed at both

the source and destination devices during migration, and the solver may make poor

decisions if this usage is modelled incorrectly. For this reason, migrations initiated

during the optimization stage are modelled conservatively by reserving space on

the destination device at the beginning of operation and only releasing it from the

source device once the migration has completed.

Objective Functions

Data placement is expressed as an optimization problem by representing objects

and flows as variables and devices and links as the values these variables can take,

respectively. Within this framework, objective functions model the cost (or ben-

efit) of assigning a value to a given variable (e.g., placing a replica on a specific

device). 1

Mirador objective functions can assign arbitrary numerical costs to a given configu-

ration. Hard constraints, implemented by rules imposing an infinite cost, can never

be violated – any configuration with an infinite cost is rejected outright. Negative

costs can also be used to express affinities for preferred assignments. An optimal

1For clarity of exposition, we use the terms objective function and rule interchangably throughout
the chapter.

82

configuration is one that minimizes the cumulative cost of all assignments; solvers

employ various search strategies to find minimal-cost solutions. In the case that no

finite-cost configuration can be found (e.g., due to catastrophic hardware failure),

Mirador raises an alert that manual intervention is required.

Objective functions are expressed as simple Python functions operating on the stor-

age system model described above. Listing 5.1 shows a rule designed to minimize

load imbalances by stipulating that the spread between the most- and least-loaded

devices falls within a given range. (Note that this formulation codifies a system-

level notion of balance by assigning costs to all objects located on overloaded de-

vices; moving just one such object to a different device may be enough to eliminate

the cost for all the remaining objects.) During the optimization stage, the plan-

ning engine converts the storage model into an abstract representation of variables,

values, and objectives, and computes the cost of each assignment by invoking its

associated rules (see § 5.3.2).

A special annotation specifies the scope of the rule, indicating which components

it affects (e.g., objects, connections, devices, links). Solvers refer to these annota-

tions when determining which rules need to be re-evaluated during configuration

changes. For example, the load_balanced rule affects devices, and must be

invoked whenever the contents of a device changes.

Mutual objectives can be defined over multiple related objects. For instance, List-

ing 5.2 gives the implementation of a rule stipulating that no two objects in a replica

set reside on the same device; it could easily be extended to include broader knowl-

edge of rack and warehouse topology as well. Whenever a solver assigns a new

value to a variable affected by a mutual objective, it must also re-evaluate all re-

lated variables (e.g., all other replicas in the replica set), as their costs may have

changed as a consequence of the reassignment.

Rules can provide hints to the solver to help prune the search space. Rule imple-

mentations accept a domain argument, which gives a dictionary of the values that

can be assigned to the variable under consideration, and is initially empty. Rules

are free to update this dictionary with the expected cost that would be incurred by

assigning a particular value. For example, the rule in Listing 5.2 populates a given

83

replica’s domain with the pre-computed cost of moving it onto any device already

hosting one of its copies, thereby deprioritizing these devices during the search.

The intuition behind this optimization is that most rules in the system only affect a

small subset of the possible values a variable can take, and consequently, a handful

of carefully chosen hints can efficiently prune a large portion of the solution space.

A policy consists of one or more rules, which can be restricted to specific hardware

components or object groups in support of multi-tenant deployments.

@rule(model.Device)
def load_balanced(fs, device, domain):

cost, penalty = 0, DEVICE_BALANCED_COST
compute load of current device
for the current sample interval
load = device.load()
compute load of least-loaded device
minload = fs.mindevice().load()
if load − minload > LOAD_SPREAD:

if the difference is too large,
the current device is overloaded
cost = penalty

return cost

Listing 5.1: Load balancing rule

@rule(model.ReplicaSet)
def rplset_devices_unique(fs, replica, domain):

cost, penalty = 0, INFINITY
for rpl in replica.rplset:

if rpl is replica:
skip current replica
continue

if rpl.device is replica.device:
two replicas on the same device
violate redundancy constraint
cost = penalty

provide a hint to the solver that the
devices already hosting this replica set
are poor candidates for this replica.
domain[rpl.device] += penalty

return cost

Listing 5.2: Hardware redundancy rule

84

Solvers

The planning engine is written in a modular way, making it easy to implement

multiple solvers with different search strategies. Solvers accept three arguments: a

dictionary of assignments mapping variables to their current values, a dictionary of

domains mapping variables to all possible values they can take, and a dictionary of

objectives mapping variables to the rules they must satisfy. Newly-added variables

may have no assignment to start with, indicating that they have not yet been placed

in the system. Solvers generate a sequence of solutions, dictionaries mapping vari-

ables to their new values. The planning engine iterates through this sequence of

solutions until it finds one with an acceptable cost, or no more solutions can be

found.

Mirador provides a pluggable solver interface that abstracts all knowledge of the

storage model described abover. Solvers implement generic search algorithms and

are free to employ standard optimization techniques like forward checking [54] and

constraint propagation [77] to improve performance and solution quality.

We initially experimented with a branch and bound solver [97] because at first

glance it fits well with our typical use case of soft constraints in a dense solution

space [48]. A key challenge to using backtracking algorithms for data placement,

however, is that these algorithms frequently yield solutions that are very different

from their initial assignments. Because reassigning variables in this context may

imply migrating a large amount of data from one device to another, this property

can be quite onerous in practice. One way to address this is to add a rule whose

cost is proportional to the difference between the solution and its initial assign-

ment (as measured, for example, by its Hamming distance) [55]. However, this

technique precludes zero-cost reconfigurations (since every reassignment incurs a

cost) and thus requires careful tuning when determining whether a solution with an

acceptable cost has been found.

We eventually adopted a simpler greedy algorithm. While it is not guaranteed to

identify optimal solutions in every case, we find in practice that it yields quality

solutions with fewer reassignments and a much more predictable run time. In fact,

85

the greedy algorithm has been shown to be a 2-approximate solution for the related

makespan problem [52], and it is a natural fit for load rebalancing as well [3].

Listing 5.3 presents a simplified implementation of the greedy solver. It main-

tains a priority queue of variables that are currently violating rules, ordered by the

cost of the violations, and a priority-ordered domain for each variable specifying

the possible values it can take. A pluggable module updates domain priorities in

response to variable reassignments, making it possible to model capacity and load

changes as the solver permutes the system searching for a solution. The current im-

plementation prioritizes values according to various utilization metrics, including

free space and load.

As described in § 5.3.2, objective functions can provide hints to the solver about

potential assignments. The greedy algorithm uses these hints to augment the pri-

ority order defined by the storage system model, so that values that would violate

rules are deprioritized. The search is performed in a single pass over all variables,

starting with the highest-cost variables. First the rules for the variable are invoked

to determine whether any values in its domain violate the prescribed placement

objectives (or alternatively, satisfy placement affinities). If the rules identify a zero

or negative-cost assignment, this is chosen. Otherwise, the highest-priority uncon-

strained value is selected from the variable’s domain. The search yields its solution

once all violations have been resolved or all variables have been evaluated.

Besides its predictable run time, the greedy algorithm generally yields low mi-

gration overheads, since only variables that are violating rules are considered for

reassignment. However, if the initial assignments are poor, the algorithm can get

trapped in local minima and fail to find a zero-cost solution. In this case, a sec-

ond pass clears the assignment of a group of the costliest variables collectively,

providing more freedom for the solver, but potentially incurring higher migration

costs. We find that this second pass is rarely necessary given the typically under-

constrained policies we use in production and is limited almost exclusively to unit

tests that intentionally stress the planning engine (see § 5.5 for more details).

86

def greedy(assignments, domains, objectives):
rank variables according to cost
queue = PriorityQueue(domains)

while queue.cost() > 0:
select the highest-cost variable
val = None
var = queue.pop()
cur = assignments.get(var)
domain = domains[var]

retrieve the variable’s current cost and any domain hints provided
by the rules
cost, hints = score(var, cur, objectives)
if cost <= 0:

continue # current assignment is good

if hints:
find the lowest-cost hint; typically, most values are
unconstrained, so this linear scan adds a small constant overhead
try:

val = min(v for v in hints if v in domain and v ! = cur)
except ValueError:
pass

if val is None or hints[val] > 0:
if we have no hints, or the best hints are costly, choose the
lowest-cost unconstrained value in the domain
val = next((v for v in domain if v not in hints and v ! = cur), val)

if val is None:
c = infinity # couldn’t find a value

else:
c, _ = score(var, val, objectives) # compute cost of new value

if c >= cost:
continue # no benefit to re-assigning

assignments[var] = val # we found a better assignment

recompute the cost of any mutually-constrained variables that
haven’t already been evaluated
for v in rulemap(var, objectives):

if v in queue:
queue.reschedule(v)

return assignments # we’ve arrived at a solution

Listing 5.3: Greedy solver

87

5.3.3 Actuation

Mirador can migrate both data and client connections. The scheduler models the

cost of data migration conservatively, and attempts to minimize the impact of such

migrations on client performance whenever possible. Connection migrations are

generally cheaper to perform and as such occur much more frequently – on the

order of minutes rather than hours.

Optimally scheduling data migration tasks is NP-hard [65–67]; Mirador imple-

ments a simple global scheduler that parallelizes migrations as much as possible

without overloading individual devices or links.

Data migrations are performed in two steps: first, a background task copies an

object to the destination device, and then, only after the object is fully replicated

at the destination, it is removed from the source. This ensures that the durability

of the object is never compromised during migration. Client connections are mi-

grated using standard SDN routing APIs augmented by custom protocol handlers

that facilitate session state handover.

5.3.4 Platform Support

Mirador executes rebalance jobs in batches by (1) selecting a group of objects

and/or client connections to inspect, (2) invoking the planning engine to search

for alternative configurations for these entities, and (3) coordinating the migration

tasks required to achieve the new layout. Batches can overlap, allowing parallelism

across the three stages. Mirador attempts to prioritize the worst offenders in early

batches in order to minimize actuation costs, but it guarantees that every object is

processed at least once during every job.

Mirador is able to perform its job efficiently thanks to three unique features pro-

vided by the storage platform. First, the system monitor relies on a notification

facility provided by the cluster metadata service to quickly identify objects that

have been recently created or modified. This allows nodes in the cluster to make

quick, conservative placement decisions on the data path while making it easy for

88

Name Objective Cost Lines of Code

device_has_space devices are not filled beyond capacity ∞ 4
rplset_durable replica sets are adequately replicated on

healthy devices
∞ 4

load_balanced load is balanced across devices 70 13
links_balanced load is balanced across links 20 13
node_local client files are co-located on common

nodes
60 30

direct_connect client connections are routed directly to
their most-frequently accessed nodes

10 14

wss_best_fit active working set sizes do not exceed
flash capacities

40 4

isolated cache-unfriendly workloads are
co-located

20 30

co_scheduled competing periodic workloads are
isolated

20 35

Table 5.1: Objective functions used in evaluation section; cost gives the penalty in-
curred for violating the rule.

Mirador to inspect and modify these decisions in a timely manner, providing a

strong decoupling of data and control paths. Second, the planning engine makes

use of a prioritization interface implemented at each node that accepts a metric

identifier as an argument (e.g., network or disk throughput, storage IOPS or capac-

ity) and returns a list of the busiest workloads currently being serviced by the node.

Mirador can use this to inspect problematic offenders first when attempting to min-

imize specific objective functions (such as load balancing and capacity constraints)

rather than inspecting objects in arbitrary order. Finally, the actuation scheduler

implements plans with the help of a migration routine that performs optimized

background copies of objects across nodes and supports online reconfiguration of

object metadata. This interface also provides hooks to the network controller to

migrate connections and session state across nodes.

89

Objects Devices Reconfigurations Time (seconds)

1K 10 6.40±2.72 0.40±0.06
1K 100 145.50±33.23 0.83±0.08
1K 1000 220.00±12.53 10.11±0.49

10K 10 0.00±0.00 1.61±0.01
10K 100 55.70±5.46 5.54±0.37
10K 1000 1475.00±69.70 16.71±0.88

100K 10 0.00±0.00 17.10±0.37
100K 100 9.30±4.62 22.37±5.38
100K 1000 573.80±22.44 77.21±2.87

Table 5.2: Greedy solver runtime for various deployment sizes with a basic load-
balancing policy; reconfigurations gives the number of changes made to yield a
zero-cost solution.

5.4 Evaluation

In this section we explore both the expressive power of Mirador policies and the

impact such policies can have on real storage workloads. Table 5.1 lists the rules

featured in this section; some have been used in production deployments for over

a year, while others are presented to demonstrate the breadth and variety of place-

ment strategies enabled by Mirador.

§ 5.4.1 measures the performance and scalability of the planning engine, indepen-

dent of storage hardware. § 5.4.2 shows how Mirador performs in representative

enterprise configurations; storage nodes in this section are equipped with 12 1 TB

SSDs, two 10 gigabit Ethernet ports, 64 GiB of RAM, and 2 Xeon E5-2620 proces-

sors at 2 GHz with 6 cores each and hyperthreading enabled. § 5.4.3 and § 5.4.4

highlight the flexibility of rule-based policies, as measured on a smaller develop-

ment cluster where 2 800 GB Intel 910 PCIe flash cards replace the 12 SSDs on

each node.

Client workloads run in virtual machines hosted on four Dell PowerEdge r420

boxes running VMware ESXi 6.0, each with two 10 gigabit Ethernet ports, 64 GiB

of RAM, and 2 Xeon ES-2470 processors at 2.3 GHz with 8 cores and hyperthread-

ing enabled. Clients connect to storage nodes using NFSv3 via a dedicated 48-port

SDN-controlled Arista 7050Tx switch, and VM disk images are striped across six-

90

teen objects.

5.4.1 Optimization

We begin by benchmarking the greedy solver, which is used in all subsequent ex-

periments. Given rules that run in constant time, this solver has a computational

complexity of O(N logN logM) for a system with N objects and M devices.

We measure solver runtime when enforcing a simple load-balancing policy (based

on the device_has_space and load_balanced rules, with the latter enforcing

a LOAD_SPREAD of 20%) in deployments of various sizes. In each experiment, a

simulated cluster is modelled with fixed-capacity devices (no more than ten per

node) randomly populated with objects whose sizes and loads are drawn from a

Pareto distribution, scaled such that no single object exceeds the capacity of a de-

vice and the cluster is roughly 65% full. For each configuration we present the

time required to find a zero-cost solution as well as the number of reconfigurations

required to achieve the solution, averaged over ten runs. Some experiments require

no reconfigurations because their high object-to-device ratios result in very small

objects that yield well-balanced load distributions under the initial, uniformly ran-

dom placement; the runtimes for these experiments measure only the time required

to validate the initial configuration.

As Table 5.2 shows, the flexibility provided by Python-based rules comes with

a downside of relatively high execution times (more than a minute for a system

with 100K objects and 1K devices). While we believe there is ample opportunity

to improve our unoptimized implementation, we have not yet done so, primarily

because rebalance jobs run in overlapping batches, allowing optimization and ac-

tuation tasks to execute in parallel, and actuation times typically dominate.

5.4.2 Actuation

In the following experiment we measure actuation performance by demonstrat-

ing how Mirador restores redundancy in the face of hardware failures. We pro-

91

vision four nodes, each with 12 1 TB SSDs, for a total of 48 devices. We deploy

1,500 client VMs, each running fio [14] with a configuration modelled after virtual

desktop workloads. VMs issue 4 KiB requests against 1 GiB disks. Requests are

drawn from an 80/20 Pareto distribution with an 80:20 read:write ratio; read and

write throughputs are rate-limited to 192 KiB/sec and 48 KiB/sec, respectively,

with a maximum queue depth of 4, generating an aggregate throughput of roughly

100K IOPS.

Five minutes into the experiment, we take a device offline and schedule a rebal-

ance job. The rplset_durable rule assigns infinite cost to objects placed on

failed devices, forcing reconfigurations, while load-balancing and failure-domain

rules prioritize the choice of replacement devices. The job defers actuation until

a 15 minute stabilization interval expires so that transient errors do not trigger un-

necessary migrations. During this time it inspects more than 118,000 objects, and

it eventually rebuilds 3053 in just under 20 minutes, with negligible effect on client

workloads, as seen in Figure 5.2.

5.4.3 Resource Objectives

We now shift our attention to the efficacy of specific placement rules, measuring the

degree to which they can affect client performance in live systems. We first focus

on resource-centric placement rules that leverage knowledge of cluster topology

and client configurations to improve performance and simplify lifecycle operations.

Topology-Aware Placement

In this experiment we measure the value of topology-aware placement policies in

distributed systems. We deploy four storage nodes and four clients, with each

client hosting 8 VMs running a FIO workload issuing random 4 KiB reads against

dedicated 2 GiB virtual disks at queue depths ranging between 1 and 32.

Figure 5.3a presents the application-perceived latency achieved under three dif-

ferent placement policies when VMs issue requests at a queue depth of one. The

92

0 10 20 30 40 50

Time (minutes)

0

20

40

60

80

100

120

O
b

je
ct

 C
o
u

n
t

(t
h

o
u

sa
n

d
s)

d
e
vi

ce
 f

a
il

u
re

a
ct

u
a
ti

o
n

 i
n

it
ia

te
d

re
b

u
il

d
 c

o
m

p
le

te
d

Failure Recovery Timeline

0

20

40

60

80

100

120

A
g

g
re

g
a
te

 C
li

e
n

t
K

IO
P

S

Objects Inspected

Objects Reconfigured

Objects Rebuilt

Client IOPS

Figure 5.2: Rebuilding replicas after a device failure

random policy distributes stripes across backend devices using a simple consistent

hashing scheme and applies a random one-to-one mapping from clients to storage

nodes. This results in a configuration where each node serves requests from ex-

actly one client, and with four nodes, roughly 75% of reads access remotely-hosted

stripes. This topology-agnostic strategy is simple to implement, and, assuming

workload uniformity, can be expected to achieve even utilization across the cluster,

although it does require significant backend network communication. Indeed, as

the number of storage nodes in a cluster increases, the likelihood that any node is

able to serve requests locally decreases; in the limit, all requests require a backend

RTT. This behavior is captured by the remote policy, which places stripes such that

no node has a local copy of any of the data belonging to the clients it serves. The

local policy follows the opposite strategy, placing all stripes for a given VM on a

single node and ensuring that clients connect directly to the nodes hosting their

93

500 550 600 650 700 750 800 850

Request Latency (µsecs)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
E

st
im

a
te

d
 P

ro
b

a
b

il
it

y
Latency Distributions

local

random

remote

(a) Latency distributions at queue depth of 1

1 4 8 16 32

VM Queue Depth

0

50K

100K

150K

200K

250K

300K

350K

IO
P

S

Aggregate IOPS

local

random

remote

(b) Mean throughput at various queue depths

Figure 5.3: Performance under three different placement strategies. The local policy
yields a median latency 18% and 22% lower than the random and remote poli-
cies, respectively, resulting in an average throughput increase of 26%. (Error
bars in Figure 5.3b give 95% confidence intervals.)

94

0 20 40 60 80 100 120

Time (minutes)

0

50K

100K

150K

200K

250K

300K

350K
A

g
g

re
g

a
te

 I
O

P
S

node added

node added

node added

workloads
deactivated

load
rebalanced

IOPS Timeline

Figure 5.4: Mirador responds to changes in cluster topology and workload behavior.
Data is immediately migrated to new storage nodes as they are introduced in
20 minute increments, starting at time t20; the brief throughput drops are due to
competition with background data copies. At time t85, two of the four client ma-
chines are deactivated; the remaining client load is subsequently redistributed,
at which point performance is limited by client resources.

data. Notably, all three policies are implemented in less than twenty lines of code,

demonstrating the expressiveness of Mirador’s optimization framework.

By co-locating VM stripes and intelligently routing client connections, the local

policy eliminates additional backend RTTs and yields appreciable performance

improvements, with median latencies 18% and 22% lower than those of the ran-

dom and remote policies, respectively. Similar reductions are obtained across all

measured queue depths, leading to comparable increases in throughput, as shown

in Figure 5.3b.

Elastic Scale Out

In addition to improving application-perceived performance, minimizing cross-

node communication enables linear scale out across nodes. While a random place-

ment policy would incur proportionally more network RTTs as a cluster grows

in size (potentially consuming oversubscribed cross-rack bandwidth), local place-

ment strategies can make full use of new hardware with minimal communication

overhead. This is illustrated in Figure 5.4, which presents a timeline of aggregate

client IOPS as storage nodes are added to a cluster. At time t0 the cluster is config-

ured with a single storage node serving four clients, each hosting 16 VMs issuing

95

random 4 KiB reads at a queue depth of 32; performance is initially bottlenecked

by the limited storage. At time t20, an additional node is introduced, and the place-

ment service automatically rebalances the data and client connections to make use

of it. It takes just over two minutes to move roughly half the data in the clus-

ter onto the new node. This migration is performed as a low-priority background

task to limit interference with client IO. Two additional nodes are added at twenty

minute intervals, and in each case, after a brief dip in client performance caused by

competing migration traffic, throughput increases linearly.

The performance and scalability benefits of the local policy are appealing, but to

be practical, this approach requires a truly dynamic placement service. While both

local and random policies are susceptible to utilization imbalances caused by non-

uniform workload patterns (e.g., workload ‘hot spots’), the problem is exacerbated

in the local case. For example, if all workloads placed on a specific node happen

to become idle at the same time, that node will be underutilized. Figure 5.4 shows

exactly this scenario at time t85, where two clients are deactivated and the nodes

serving them sit idle, halving overall throughput. After waiting for workload be-

havior to stabilize, the placement service responds to this imbalance by migrating

some of the remaining VMs onto the idle storage, at which point the clients become

the bottleneck.

5.4.4 Workload Objectives

Placement policies informed by resource monitoring can provide significant im-

provements in performance and efficiency, but they are somewhat reactive in the

sense that they must constantly try to ‘catch up’ to changes in workload behavior.

In this section we introduce and evaluate several techniques for improving data

placement based on longitudinal observations of workload behavior.

The following examples are motivated by an analysis of hundreds of thousands of

workload profiles collected from production deployments over the course of more

than a year. The synthetic workloads evaluated here, while relatively simple, reflect

some of the broad patterns we observe in these real-world profiles.

96

For these experiments, we extend the storage configuration described in § 5.4.3

with a disk-based capacity tier. The placement service controls how objects are

assigned to flash devices as before; nodes manage the flash cards as LRU caches

and page objects to disk in 512 KiB blocks. We artificially reduce the capacity of

each flash device to 4 GiB to stress the tiering subsystem. While our evaluation fo-

cuses on conventional tiered storage, we note that the techniques presented here are

applicable to a wide variety of hierarchical and NUMA architectures in which ex-

pensive, high-performance memories are combined with cheaper, more capacious

alternatives, possibly connected by throughput-limited networks.

Footprint-Aware Placement

Many real-world workloads feature working sets (roughly defined as the set of

data that is frequently accessed over a given period of time) that are much smaller

than their total data sets [36, 124]. Policies that make decisions based only on

knowledge of the latter may lead to suboptimal configurations. We show how

augmenting traditional capacity rules with knowledge of working set sizes can lead

to improved placement decisions.

We begin by deploying eight VMs across two clients connected to a cluster of two

nodes. Each VM disk image holds 32 GiB, but the VMs are configured to run

random 4 KiB read workloads over a fixed subset of the disks, such that working

set sizes range from 500 MiB to 4 GiB. Given two nodes with 8 GiB of flash each,

it is impossible to store all 256 GiB of VM data in flash; however, the total workload

footprint as measured by the analysis service is roughly 17 GiB, and if carefully

arranged, it can fit almost entirely in flash without exceeding the capacity of any

single device by more than 1 GiB.

We measure the application-perceived latency for these VMs in two configurations.

In the first, VMs are partitioned evenly among the two nodes using the local policy

described in § 5.4.3 to avoid network RTTs. In the second, the same placement

policy is used, but it is extended with one additional rule that discourages configu-

rations where combined working set sizes exceed the capacity of a given flash card.

97

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035

policy = local

103 104

Request Latency (µsecs)

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035

policy = best fit

E
st

im
a
te

d
 P

ro
b

a
b

il
it

y

Latency Distributions

Figure 5.5: Fitting working sets to flash capacities (‘best fit’) yields a median latency
of 997 µsecs, compared to 2088 µsecs for the ‘local’ policy that eliminates
backend network RTTs but serves more requests from disk.

The cost of violating this rule is higher than the cost of violating the node-local

rule, codifying a preference for remote flash accesses over local disk accesses. The

greedy solver is a good fit for this problem and arrives at a configuration in which

only one flash device serves a combined working set size larger than its capacity.

As Figure 5.5 shows, the best-fit policy results in significantly lower latencies,

because the cost of additional network hops is dwarfed by the penalty incurred by

cache misses. The purely local policy exhibits less predictable performance and a

long latency tail because of cumulative queuing effects at the disk tier. This is a

clear example of how combining knowledge of the relative capabilities of network

links and storage tiers with detailed workload profiling can improve placement

decisions.

98

Noisy Neighbor Isolation

We next introduce four cache-unfriendly workloads each with 4 GiB disks. The

workloads perform linear scans that, given 4 GiB LRU caches, are always served

from disk and result in substantial cache pollution. These workloads make it im-

possible to completely satisfy the working set size rule of the previous experiment.

We measure the request latency of the original workloads as they compete with

these new cache-unfriendly workloads under two policies: a fair share policy that

distributes the cache-unfriendly workloads evenly across the flash devices, and an

isolation policy that attempts to limit overall cache pollution by introducing a new

rule that encourages co-locating cache-unfriendly workloads on common nodes,

regardless of whether or not they fit within flash together. As Figure 5.6 shows, this

latter policy exhibits a bimodal latency distribution, with nearly 48% of requests

enjoying latencies less than one millisecond while a handful of ‘victim’ workloads

experience higher latencies due to contention with cache-unfriendly competitors.

The fair share policy, on the other hand, features a more uniform distribution, with

all workloads suffering equally, and a median latency more than three times higher

than that of the isolated policy.

Workload Co-scheduling

Finally, we introduce a technique for leveraging long-term temporal patterns in

workload behavior to improve data placement. We frequently see storage work-

loads with pronounced diurnal patterns of high activity at key hours of the day

followed by longer periods of idleness. This behavior typically correlates with

workday habits and regularly scheduled maintenance tasks [43, 87, 101]. Similar

effects can be seen at much smaller scales in CPU caches, where the strategy of

co-locating applications to avoid contention is called ‘co-scheduling’ [114].

We present a simple algorithm for reducing cache contention of periodic work-

loads. The workload analysis service maintains an extended time series of the

footprint of each workload, where footprint is defined as the number of unique

blocks accessed over some time window; in this experiment we use a window of

99

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016

policy = fair share

103 104

Request Latency (µsecs)

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016

policy = isolated

E
st

im
a
te

d
 P

ro
b

a
b

il
it

y

Latency Distributions

Figure 5.6: Isolating cache-unfriendly workloads on a single device yields a median
latency of 1036 µsecs, compared to 3220 µsecs for the ‘fair’ policy that dis-
tributes these workloads uniformly across all devices.

ten minutes. Given a set of workloads, we compute the degree to which they con-

tend by measuring how much their bursts overlap. Specifically, we model the cost

of co-locating two workloads W1 and W2 with corresponding footprint functions

f1(t) and f2(t) as
∫

min(f1(t), f2(t)). We use this metric to estimate the cost of

placing workloads together on a given device, and employ a linear first-fit algo-

rithm [39] to search for an arrangement of workloads across available devices that

minimizes the aggregate cost. Finally, we introduce the co_scheduled rule which

encodes an affinity for assignments that match this arrangement.

We evaluate this heuristic by deploying 8 VMs with 4 GiB disks across two storage

nodes each with two 4 GiB flash devices. The VMs perform IO workloads featur-

ing periodic hour-long bursts of random reads followed by idle intervals of roughly

3 hours, with the periodic phases shifted in some VMs such that not all workloads

are active at the same time. The combined footprint of any two concurrent bursts

100

103 104 105 106

Request Latency (µsecs)

0.0

0.2

0.4

0.6

0.8

1.0
Latency CDFs

optimal

pessimal

first-fit

random

Figure 5.7: Co-scheduling periodic workloads

exceeds the size of any single flash device, and if co-located, will incur significant

paging. We measure request latency under a number of different configurations:

random, in which stripes are randomly distributed across devices, optimal and pes-

simal, in which VMs are distributed two to a device so as to minimize and maximize

contention, respectively, and first-fit, as described above.

Figure 5.7 plots latency CDFs for each of these configurations. The penalty of

concurrent bursts is evident from the pronounced disparity between the optimal

and pessimal cases; in the latter configuration, contention among co-located work-

loads is high, drastically exceeding the available flash capacity. The first-fit ap-

proximation closely tracks optimal in the first two quartiles but performs more like

random in the last two, suggesting room for improvement either by developing a

more sophisticated search algorithm or responding more aggressively to workload

changes.

101

101 102 103 104 105 106 107

Objects Inspected

100

101

102

103

104

105
O

p
ti

m
iz

a
ti

o
n

 T
im

e
 (

se
co

n
d

s) Optimization Time vs Objects Inspected

Figure 5.8: Optimization time versus objects inspected

5.5 Experience

To see how Mirador performs in real-world environments, we sample logs detailing

more than 8,000 rebalance jobs in clusters installed across nearly 50 customer sites

and ranging in size from 8 to 96 devices. Figure 5.8 illustrates how time spent

in the optimization stage scales in proportion to the number of objects inspected;

these measurements include rate-limiting delays imposed to prevent Mirador from

impacting client workloads when reading metadata. Figure 5.9 plots the number of

observed violations against the number of objects inspected per job, and highlights

jobs that fail to find a zero-cost solution after a single optimization pass. This

occurs in only 2.5% of sampled jobs in which objective functions are violated, and

in 71% of these cases, no zero-cost solutions are possible due to environmental

circumstances (some log samples cover periods in which devices were intentionally

taken offline for testing or maintenance).

We have found Mirador’s flexibility and extensibility to be two of its best attributes.

Over the nearly 18 months in which it has been in production, we have adapted it

102

101 102 103 104 105 106

Objects Inspected

100

101

102

103

104

105
V

io
la

ti
o
n

s
O

b
se

rv
e
d

Violations Observed vs Objects Inspected

zero cost

non-zero cost

Figure 5.9: Violations observed versus objects inspected (jobs where no zero-cost
solution was found after a single optimization round are marked with a red x)

to new replication policies and storage architectures simply by modifying existing

rules and adding new ones. It has also been straightforward to extend Mirador

to support new functionality: in addition to providing capacity balancing across

storage devices and network links, it now plays a central role in cluster expansion,

hardware retirement, failure recovery, health monitoring, and disk scrubbing fea-

tures. For example, upon discovering an invalid data checksum, our disk scrubbing

service simply marks the affected object as corrupt and notifies the placement ser-

vice, where a custom rule forces the migration of marked objects to new locations,

effectively rebuilding them from valid replicas in the process.

Our deployment strategy to date has been conservative: we ship a fixed set of rules

(currently seven) and control how and when they are used. Assigning appropriate

costs to rules requires domain knowledge, since rules often articulate conflicting

objectives and poorly chosen costs can lead to unintended behavior. As an example,

if solvers fail to identify a zero-cost solution, they yield the one with the lowest

aggregate cost – if multiple rules conflict for a given assignment, the assignment

103

which minimizes the overall cost is chosen. It is thus important to know which

objective functions a replica set may violate so that high priority rules are assigned

costs sufficiently large enough to avoid priority inversion in the face of violations

of multiple lower-priority rules.

While objective functions neatly encapsulate individual placement goals and are

relatively easy to reason about, comprehensive policies are more complex and must

be carefully vetted. We validate rules, both in isolation and combination, with hun-

dreds of policy tests. Declarative test cases specify a cluster configuration and

initial data layout along with an expected optimization plan; the test harness gen-

erates a storage system model from the specification, invokes the planning engine,

and validates the output. We have also built a fuzz tester that can stress policies

in unanticipated ways. The test induces a sequence of random events (such as

the addition and removal of nodes, changes in load, etc.) and invokes the policy

validation tool after each step. Any cluster configuration that generates a policy

violation is automatically converted into a test case to be added to the regression

suite after the desired behavior is determined by manual inspection. Validating any

non-trivial placement policy can require a fair amount of experimentation, but in

our experience, the cost-based framework provided by Mirador provides knobs that

greatly simplify this task.

In production, rebalance jobs run in two passes: the first enforces critical rules

related to redundancy and fault tolerance, while the second additionally enforces

rules related to load-balancing and performance. This is done because the planning

engine must inspect objects in batches (batches are limited to roughly 10,000 ob-

jects to keep memory overheads constant), and we want to avoid filling a device in

an early batch in order to satisfy low-priority rules when that same device may be

necessary to satisfy higher-priority rules in a later batch.

Early testing revealed the importance of carefully tuning data migration rates. Our

migration service originally provided two priorities, with the higher of these in-

tended for failure scenarios in which replicas need to be rebuilt. In practice, how-

ever, we found that such failures place additional stress on the system, often driv-

ing latencies up. Introducing high-priority migration traffic in these situations can

104

lead to timeouts that only make things worse, especially under load. We have

since adopted a single migration priority based on an adaptive queuing algorithm

that aims to isolate migration traffic as much as possible while ensuring forward

progress is made.

5.6 Related Work

Researchers have proposed a wide variety of strategies for addressing the data

placement problem, also known as the file assignment problem [40]. Determinis-

tic approaches are common in large-scale systems [88, 94, 108, 115, 117] because

they are decentralized and impose minimal metadata overheads, and they achieve

probabilistically uniform load distribution for large numbers of objects [96, 100].

Consistent hashing [64] provides relatively stable placement even as storage tar-

gets are added and removed [51, 130]. Related schemes offer refinements like the

ability to prioritize storage targets and modify replication factors [57, 58, 116], but

these approaches are intrinsically less flexible than dynamic policies.

Non-deterministic strategies maintain explicit metadata in order to locate data.

Some of these systems employ random or semi-random placement policies for the

sake of simplicity and scalability [70, 90, 95], but others manage placement with

hard-coded policies [49, 104]. Customized policies provide better control over

properties such as locality and fault tolerance, which can be particularly important

as clusters expand across racks [63].

Explicit metadata also make it easier to perform fine-grain migrations in response

to topology and workload changes, allowing systems to redistribute load and ame-

liorate hot spots [73, 87]. Hierarchical Storage Management and multi-tier sys-

tems dynamically migrate data between heterogeneous devices, typically employ-

ing policies based on simple heuristics intended to move infrequently accessed data

to cheaper, more capacious storage or slower, more compact encodings [4, 119].

Mirador has much in common with recent systems designed to optimize specific

performance and efficiency objectives. Guerra et al. [53] describe a tiering system

that makes fine-grain placement decisions to reduce energy consumption in SANs

105

by distributing workloads among the most power-efficient devices capable of sat-

isfying measured performance requirements. Janus [6] is a cloud-scale system that

uses an empirical cacheability metric to arrange data across heterogeneous media in

a manner that maximizes reads from flash, using linear programming to compute

optimal layouts. Volley [2] models latency and locality using a weighted spring

analogy and makes placement suggestions for geographically distributed cloud ser-

vices. Tuba [12] is a replicated key-value store designed for wide area networks

that allows applications to specify latency and consistency requirements via service

level agreements (SLAs). It collects hit ratios and latency measurements and peri-

odically reconfigures replication and placement settings to maximize system utility

(as defined by SLAs) while honoring client-provided constraints on properties like

durability and cost. Mirador supports arbitrary cost-function optimizations using a

generic framework and supports policies that control network flows as well as data

placement.

Mirador also resembles resource planning systems [8, 11] like Hippodrome [10],

which employ a similar observe/optimize/actuate pipeline to design cost-efficient

storage systems. Given a set of workload descriptions and an inventory of avail-

able hardware, these tools search for low-cost array configurations and data layouts

that satisfy performance and capacity requirements. Like Mirador, they simplify

a computationally challenging multidimensional bin-packing problem by combin-

ing established optimization techniques with domain-specific heuristics. However,

while these systems employ customized search algorithms with built-in heuristics,

Mirador codifies heuristics as rules with varying costs and relies on generic solvers

to search for low-cost solutions, making it easier to add new heuristics over time.

Ursa Minor [1] is a clustered storage system that supports dynamically config-

urable m-of-n erasure codes, extending the data placement problem along multiple

new dimensions. Strunk et al. [110] describe a provisioning tool for this system

that searches for code parameters and data layouts that maximize user-defined util-

ity for a given set of workloads, where utility quantifies metrics such as availability,

reliability, and performance. Utility functions and objective functions both provide

flexibility when evaluating potential configurations; however, Mirador’s greedy al-

gorithm and support for domain-specific hints may be more appropriate for online

106

rebalancing than the randomized genetic algorithm proposed by Strunk et al.

5.7 Conclusion

Mirador is a placement service designed for heterogeneous distributed storage sys-

tems. It leverages the high throughput of non-volatile memories to actively migrate

data in response to workload and environmental changes. It supports flexible, ro-

bust policies composed of simple objective functions that specify strategies for

both data and network placement. Combining ideas from constraint satisfaction

with domain-specific language bindings and APIs, it searches a high-dimension so-

lution space for configurations that yield performance and efficiency gains over

more static alternatives.

107

Chapter 6

Conclusion

As a commercial product, one of the features that sets Strata apart from its many

competitors is the architectural support it provides for dynamic cluster reconfigura-

tion. This is valuable for a number of reasons. First, it abolishes the much-loathed

five year refresh cycle imposed by many incumbent vendors. Allowing adminis-

trators to expand clusters in response to growing demand relieves them of the bur-

den of estimating at purchase time what their storage requirements will be many

years down the road. And supporting rolling upgrades and heterogeneous clusters

eliminates the need for disruptive ‘forklift’ upgrades in which existing systems are

migrated to new hardware en masse. Second, deferring purchases until hardware is

actually needed can dramatically reduce capital and operating expenses, both by al-

lowing Moore’s Law to accrue longer before money is exchanged, and by reducing

the number of devices that sit idle in initially over-provisioned systems. Finally,

the ability to provision performance and capacity independently gives storage ad-

ministrators the flexibility they need to adapt to changing requirements within the

data center.

These advantages are natural consequences of the design advocated in this thesis.

The platform provided by Strata decouples logical resources from physical hard-

ware and separates control- and data-path logic, enabling dynamic configuration

changes without degrading performance, and the robust policy engine provided

108

by Mirador arranges for hardware resources to be allocated where they are most

needed. This paradigm of abstraction, analysis, and actuation helps systems to au-

tomatically respond to changes in workload behavior and hardware configurations,

a valuable capability in data center environments serving diverse workloads across

large, heterogeneous clusters. It has been incredibly rewarding to see this approach

succeed in real customer deployments, but it has also been instructive to observe

some of its limitations. Indeed, there is still ample opportunity – and need – to

continue innovating storage software, especially as hardware continues to evolve.

Below I enumerate what I see as some of the most interesting directions for future

improvements, some of which we have already begun to explore.

Volume Management Strata’s departure from traditional aggregated designs was

a response to the unprecedented performance of new PCIe flash devices like the

Intel 910, which provides 800 GB of storage and serves 180,000 random read re-

quests per second. Three years after we published the Strata paper, the Intel p3700,

providing 2 TB of storage and serving 460,000 random read requests per second,

hit the market at roughly the same price as the original 910. This rapid rate of

progress reinforces many of the design choices we made, particularly regarding the

need to efficiently virtualize hardware in support of dynamic workload multiplex-

ing. But these new devices place even more stringent constraints on the data path:

access latencies have dropped from 65 microseconds in the 910 to 20 microsec-

onds in the p3700, and NVDIMM modules currently operate at latencies of just 10

nanoseconds. At these speeds, software overheads imposed by context switches

and thread synchronization become problematic. In response, we built Decibel,

a device virtualization layer designed to completely eliminate cross-core commu-

nication along the data path. Decibel’s disaggregated architecture is similar to

Strata’s, but rather than presenting individual devices over the network, it presents

a volume abstraction that encapsulates storage, network, and compute resources.

Decibel volumes bind chunks of storage to dedicated cores and NIC queues; flow

steering based on an explicit network addressing scheme ensures that client re-

quests are automatically directed to the appropriate cores, eliminating the need for

forwarding or synchronization in software. This, combined with a userspace net-

109

working stack that bypasses kernel scheduling and context switches, allows Deci-

bel to serve remote workloads from p3700 devices at saturation with an overhead

relative to local access of just 20 microseconds.

Hybrid Placement Decibel both refines and complements Strata’s separation of

control- and data-path logic, and it naturally benefits from the optimization tech-

niques in Mirador that correct load imbalances and mitigate hot spots. However,

while a centralized placement engine simplifies the difficult task of optimizing re-

source allocation, it also presents some challenges, particularly when scaling to

very large deployments with billions of objects. Individually optimizing the place-

ment of so many objects can be prohibitively expensive. Fortunately, the tech-

niques employed by Mirador can naturally be combined with less computation-

ally expensive approaches like statistical multiplexing to good effect. Under this

regime, a deterministic policy such as consistent hashing can be used to decide

the default placement of the vast majority of objects, while dynamic optimization

techniques can be applied only to objects that actively contribute to performance

and utilization problems. Strata’s clean separation of addressing and placement fa-

cilities would naturally accommodate this hybrid approach, improving scalability

without sacrificing flexibility.

Demand Swap Optimizing the placement of data in heterogeneous clusters is par-

ticularly challenging because of the huge performance variations across devices.

The demand fault strategy conventionally used by cache replacement policies can

lead to surprisingly poor performance when the combined size of active working

sets is even marginally larger than the available fast storage. This technique has

a tendency to penalize many workloads a small amount, which can become prob-

lematic as data dependencies exacerbate the effects of even a few cache misses per

workload. The data we have collected from real-world deployments of production

virtual machines, which comprises thousands of workload-years of detailed profil-

ing, suggests that a better approach might be to swap entire workloads in and out

of fast storage as they cycle between active and idle phases, which regularly last

110

hours at a time. Preliminary investigation confirms that phase changes are easily

identified via counter stack analysis and that they can be predicted with fairly high

confidence for a large class of workloads. We have further found that online clas-

sifiers generally identify active phases less than a minute after they begin. Given

that we can reasonably expect to load entire working sets, which are typically on

the order of a few dozens of gigabytes, from disk in a matter of seconds (so long

as transfers are carefully scheduled across large numbers of spindles), the idea of

swapping entire workloads in and out of fast storage, either reactively or specu-

latively, is alluring. This would leverage the sequential throughput of disks much

more effectively than the demand fault approach, and would additionally make it

easier to isolate ill-behaved or under-provisioned workloads.

Programmable Storage Heterogeneous clusters expose a tension between cost

and performance. In many cases, purely economic constraints make this tension

inevitable. However, in our experience, providing predictable performance is of-

ten more important than achieving device-rate speeds. Mirador uses a number of

heuristics to attempt to automatically infer the optimal allocation of resources at

any given time, but these heuristics do not always align with the business needs of

individual customers. In situations where resources are scarce, it may be preferable

to delegate allocation decisions higher up the stack, either to application developers

or storage administrators. This is in keeping with recent trends in software design

that have shifted traditional storage responsibilities like replication and consistency

to application-level services like key/value stores and databases. These services un-

derstand the performance and placement requirements of their data better than the

underlying storage system, so providing them with an interface for safely influ-

encing resource allocation decisions, while protecting against buggy and malicious

applications, could present new opportunities to improve performance and elimi-

nate unwelcome surprises. Mirador’s support for arbitrary soft and hard constraints

provides a good starting point for this approach; exposing more of this functionality

to applications would extend many of the benefits introduced by software defined

networking to the storage domain.

Strata provides a solid platform for exploring these and other techniques because

111

of the design abstractions it provides. Implementing these abstractions in an en-

terprise storage product has been a labor-intensive task, but one that has yielded

many benefits. In addition to producing a system that solves real problems for our

customers, it has provided an opportunity to explore novel techniques for optimiz-

ing performance and efficiency within the data center, and its organizing principles

offer a useful model for future system designers.

112

Bibliography

[1] M. Abd-El-Malek, W. V. C. Courtright II, C. Cranor, G. R. Ganger,
J. Hendricks, A. J. Klosterman, M. P. Mesnier, M. Prasad, B. Salmon, R. R.
Sambasivan, S. Sinnamohideen, J. D. Strunk, E. Thereska, M. Wachs, and
J. J. Wylie. Ursa minor: Versatile cluster-based storage. In Proceedings of
the 4th USENIX Conference on File and Storage Technologies, FAST ’05.
USENIX, 2005. → pages 42, 77, 106

[2] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, and A. Wolman. Volley:
Automated data placement for geo-distributed cloud services. In
Proceedings of the 7th USENIX Conference on Networked Systems Design
and Implementation, NSDI ’10, pages 17–32. USENIX Association, 2010.
→ pages 106

[3] G. Aggarwal, R. Motwani, and A. Zhu. The load rebalancing problem.
Journal of Algorithms, 60(1):42–59, 2006. → pages 86

[4] M. K. Aguilera, K. Keeton, A. Merchant, K.-K. Muniswamy-Reddy, and
M. Uysal. Improving recoverability in multi-tier storage systems. In
Proceedings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 677–686. IEEE Computer
Society, 2007. → pages 105

[5] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Swanson.
Onyx: a protoype phase change memory storage array. In Proceedings of
the 3rd USENIX Conference on Hot Topics in Storage and File Systems,
HotStorage ’11, pages 2–2, Berkeley, CA, USA, 2011. USENIX
Association. → pages 41

[6] C. Albrecht, A. Merchant, M. Stokely, M. Waliji, F. Labelle, N. Coehlo,
X. Shi, and E. Schrock. Janus: Optimal flash provisioning for cloud storage

113

workloads. In USENIX Annual Technical Conference, ATC ’13, pages
91–102. USENIX Association, 2013. → pages 106

[7] G. S. Almási, C. Caşcaval, and D. A. Padua. Calculating stack distances
efficiently. In Proceedings of the 2002 Workshop on Memory System
Performance, MSP ’02, pages 37–43, 2002. → pages 47

[8] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. A. Becker-Szendy,
R. A. Golding, A. Merchant, M. Spasojevic, A. C. Veitch, and J. Wilkes.
Minerva: An automated resource provisioning tool for large-scale storage
systems. ACM Transactions on Computer Systems, 19(4):483–518, 2001.
→ pages 77, 106

[9] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan. Fawn: a fast array of wimpy nodes. In Proceedings of the
22nd ACM SIGOPS Symposium on Operating Systems Principles, SOSP
’09, pages 1–14, 2009. → pages 41

[10] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. C. Veitch.
Hippodrome: Running circles around storage administration. In
Proceedings of the 1st USENIX Conference on File and Storage
Technologies, FAST ’02, pages 175–188. USENIX, 2002. → pages 77, 106

[11] E. Anderson, S. Spence, R. Swaminathan, M. Kallahalla, and Q. Wang.
Quickly finding near-optimal storage designs. ACM Transactions on
Computer Systems, 23(4):337–374, 2005. → pages 77, 106

[12] M. S. Ardekani and D. B. Terry. A self-configurable geo-replicated cloud
storage system. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation, OSDI ’14, pages 367–381.
USENIX Association, 2014. → pages 106

[13] K. Asanovic. Firebox: A hardware building block for 2020
warehouse-scale computers. Keynote presentation, 12th USENIX
Conference on File and Storage Technologies (FAST ’14), 2014. → pages
75

[14] J. Axboe. Fio–flexible I/O tester, 2011. https://github.com/axboe/fio.
Visited July 2017. → pages 35, 71, 92

[15] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy. Operating system
implications of fast, cheap, non-volatile memory. In Proceedings of the
13th USENIX Conference on Hot Topics in Operating Systems, HotOS’13,
pages 2–2, Berkeley, CA, USA, 2011. USENIX Association. → pages 41

114

https://github.com/axboe/fio

[16] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber, M. Wei, and J. D.
Davis. Corfu: a shared log design for flash clusters. In Proceedings of the
9th USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, 2012. → pages 41

[17] S. Bansal and D. S. Modha. CAR: Clock with adaptive replacement. In
Proceedings of the 4th USENIX Conference on File and Storage
Technologies, FAST ’04, pages 187–200, 2004. → pages 70

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtualization.
In Proceedings of the 19th ACM symposium on Operating systems
principles, SOSP ’03, pages 164–177, 2003. ISBN 1-58113-757-5. →
pages 40

[19] J. Barr. Amazon EBS (elastic block store) - bring us your data, August
2008. https://aws.amazon.com/blogs/aws/amazon-elastic. Visited July
2017. → pages 77

[20] B. T. Bennett and V. J. Kruskal. LRU stack processing. IBM Journal of
Research and Development, 19(4):353–357, 1975. → pages 50, 72

[21] M. Blaze. NFS tracing by passive network monitoring. In Proceedings of
the USENIX Winter 1992 Technical Conference, pages 333–343, 1992. →
pages 46

[22] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970. → pages 55

[23] A. D. Brunelle. Block I/O Layer Tracing: blktrace. HP, Gelato-Cupertino,
CA, USA, 2006. → pages 46

[24] M. Burtscher, I. Ganusov, S. J. Jackson, J. Ke, P. Ratanaworabhan, and
N. B. Sam. The vpc trace-compression algorithms. IEEE Transactions on
Computers, 54(11):1329–1344, 2005. → pages 73

[25] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. u. Haq,
M. I. u. Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett,
S. Sankaran, K. Manivannan, and L. Rigas. Windows azure storage: a
highly available cloud storage service with strong consistency. In
Proceedings of the 23rd ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 143–157, 2011. → pages 42

115

https://aws.amazon.com/blogs/aws/amazon-elastic

[26] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh,
N. McKeown, and S. Shenker. Sane: a protection architecture for enterprise
networks. In Proceedings of the 15th USENIX Security Symposium, SS ’06,
Berkeley, CA, USA, 2006. USENIX Association. → pages 26

[27] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Mckeown, and S. Shenker.
Ethane: Taking control of the enterprise. In Proceedings of the 2007
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications. ACM, 2007. → pages 26

[28] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and
S. Swanson. Moneta: A high-performance storage array architecture for
next-generation, non-volatile memories. In Proceedings of the 2010 43rd
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO ’43, pages 385–395, 2010. → pages 41

[29] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and
S. Swanson. Providing safe, user space access to fast, solid state disks. In
Proceedings of the 17th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XVII,
pages 387–400, 2012. → pages 41

[30] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage
system for structured data. ACM Transactions on Computer Systems, 26(2):
4:1–4:26, June 2008. → pages 42

[31] Y. Chen, K. Srinivasan, G. Goodson, and R. Katz. Design implications for
enterprise storage systems via multi-dimensional trace analysis. In
Proceedings of the 23rd ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 43–56. ACM, 2011. → pages 73

[32] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson. Nv-heaps: making persistent objects fast and safe with
next-generation, non-volatile memories. In Proceedings of the 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVI, pages 105–118, New
York, NY, USA, 2011. ACM. → pages 42

[33] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee. Better i/o through byte-addressable, persistent memory. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems

116

Principles, SOSP ’09, pages 133–146, New York, NY, USA, 2009. ACM.
→ pages 41

[34] B. Cully, J. Wires, D. T. Meyer, K. Jamieson, K. Fraser, T. Deegan,
D. Stodden, G. Lefebvre, D. Ferstay, and A. Warfield. Strata: scalable
high-performance storage on virtualized non-volatile memory. In
Proceedings of the 12th USENIX Conference on File and Storage
Technologies, FAST ’14, pages 17–31. USENIX, 2014. → pages iv, 9, 14,
45, 76

[35] C. Delimitrou, S. Sankar, K. Vaid, and C. Kozyrakis. Decoupling
datacenter studies from access to large-scale applications: A modeling
approach for storage workloads. In Proceedings of the 2011 IEEE
International Symposium on Workload Characterization, IISWC ’11, pages
51–60. IEEE, 2011. → pages 73

[36] P. Denning. working set model of program behavior. Communications of
the ACM, 1968. → pages 47, 97

[37] C. Ding. Program locality analysis tool, 2014.
https://github.com/dcompiler/loca. Visited July 2017. → pages 62

[38] C. Ding and Y. Zhong. Predicting whole-program locality through reuse
distance analysis. In Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation, PLDI ’03, pages
245–257. ACM, 2003. → pages 47, 50, 72

[39] G. Dósa. The tight bound of first fit decreasing bin-packing algorithm is
FFD(i) <= 11/9OPT(i) + 6/9. In ESCAPE, volume 4614 of Lecture Notes
in Computer Science, pages 1–11. Springer, 2007. → pages 100

[40] L. W. Dowdy and D. V. Foster. Comparative models of the file assignment
problem. ACM Computing Surveys, 14(2):287–313, 1982. → pages 105

[41] Z. Drudi, N. J. A. Harvey, S. Ingram, A. Warfield, and J. Wires.
Approximating hit rate curves using streaming algorithms. In Proceedings
of the 18th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, APPROX ’15, pages 225–241,
2015. → pages 9, 55

[42] D. Eklov and E. Hagersten. StatStack: Efficient modeling of LRU caches.
In Proceedings of the 2010 IEEE International Symposium on Performance
Analysis of Systems & Software, ISPASS ’10, pages 55–65. IEEE, 2010. →
pages 53, 72

117

https://github.com/dcompiler/loca

[43] D. Ellard, J. Ledlie, P. Malkani, and M. I. Seltzer. Passive nfs tracing of
email and research workloads. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, FAST ’03. USENIX, 2003.
→ pages 68, 99

[44] EMC. DSSD D5, 2016.
https://www.emc.com/en-us/storage/flash/dssd/dssd-d5/index.htm. Visited
July 2017. → pages 75

[45] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: an operating
system architecture for application-level resource management. In
Proceedings of the 15th ACM Symposium on Operating Systems Principles,
SOSP ’95, pages 251–266, 1995. → pages 40

[46] B. Fitzpatrick. Distributed caching with memcached. Linux Journal, 2004
(124):5–, Aug. 2004. → pages 42

[47] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. HyperLogLog: the
analysis of a near-optimal cardinality estimation algorithm. In Proceedings
of the 2007 Conference on Analysis of Algorithms, AofA ’07, pages
127–146, 2007. → pages 45, 55

[48] E. Freuder. A sufficient condition for backtrack-free search.
Communications of the ACM, 29(1):24–32, 1982. → pages 85

[49] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
ACM SIGOPS Operating Systems Review, volume 37, pages 29–43, 2003.
→ pages 105

[50] G. A. Gibson, K. Amiri, and D. F. Nagle. A case for network-attached
secure disks. Technical Report CMU-CS-96-142, Carnegie-Mellon
University.Computer science. Pittsburgh (PA US), Pittsburgh, 1996. →
pages 17

[51] A. Goel, C. Shahabi, S.-Y. D. Yao, and R. Zimmermann. SCADDAR: An
efficient randomized technique to reorganize continuous media blocks. In
Proceedings of the 18th International Conference on Data Engineering,
ICDE ’02, pages 473–482. IEEE, 2002. → pages 105

[52] R. L. Graham. Bounds on multiprocessing anomalies and related packing
algorithms. In Proceedings of the May 16-18, 1972, Spring Joint Computer
Conference, AFIPS ’72 (Spring), pages 205–217, New York, NY, USA,
1972. ACM. → pages 86

118

https://www.emc.com/en-us/storage/flash/dssd/dssd-d5/index.htm

[53] J. Guerra, H. Pucha, J. S. Glider, W. Belluomini, and R. Rangaswami. Cost
effective storage using extent based dynamic tiering. In Proceedings of the
9th USENIX Conference on File and Storage Technologies, FAST ’11,
pages 273–286. USENIX, 2011. → pages 105

[54] R. Haralick and G. Elliot. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14(3):263–313, 1980. →
pages 85

[55] E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh. Finding diverse and
similar solutions in constraint programming. In Proceedings of the 20th
National Conference on Artificial Intelligence, AAAI ’05, pages 372–377.
MIT Press, 2005. → pages 85

[56] D. Hildebrand and P. Honeyman. Exporting storage systems in a scalable
manner with pnfs. In Proceedings of the 22nd IEEE/13th NASA Goddard
Conference on Mass Storage Systems and Technologies, MSST ’05, 2005.
→ pages 42

[57] R. J. Honicky and E. L. Miller. A fast algorithm for online placement and
reorganization of replicated data. In Proceedings of the 17th International
Symposium on Parallel and Distributed Processing, IPDPS ’03, page 57.
IEEE Computer Society, 2003. → pages 105

[58] R. J. Honicky and E. L. Miller. Replication under scalable hashing: A
family of algorithms for scalable decentralized data distribution. In
Proceedings of the 18th International Symposium on Parallel and
Distributed Processing, IPDPS ’04. IEEE Computer Society, 2004. →
pages 105

[59] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free
coordination for internet-scale systems. In Proceedings of the 2010
USENIX Annual Technical Conference, ATC ’10. USENIX Association,
2010. → pages 80

[60] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for
implementing network protocols. IEEE Transactions on Software
Engineering, 17(1):64–76, Jan. 1991. → pages 21

[61] B. Jacob, P. Larson, B. Leitao, and S. da Silva. SystemTap: instrumenting
the Linux kernel for analyzing performance and functional problems. IBM
Redbook, 2008. → pages 46

119

[62] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Geiger:
Monitoring the buffer cache in a virtual machine environment. In
Proceedings of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XII, pages
14–24. ACM, 2006. → pages 50

[63] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
nature of data center traffic: measurements & analysis. In Proceedings of
the 9th ACM SIGCOMM Conference on Internet Measurement, IMC ’09,
pages 202–208, New York, NY, USA, 2009. ACM. → pages 105

[64] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web. In Proceedings of
the 29th Annual ACM Symposium on Theory of Computing, STOC ’97,
pages 654–663, New York, NY, USA, 1997. ACM. → pages 24, 105

[65] S. R. Kashyap, S. Khuller, Y.-C. J. Wan, and L. Golubchik. Fast
reconfiguration of data placement in parallel disks. In Proceedings of the
Meeting on Algorithm Engineering and Experiments, ALENEX ’06, pages
95–107. SIAM, 2006. → pages 88

[66] S. Khuller, Y. A. Kim, and Y.-C. J. Wan. Algorithms for data migration
with cloning. In Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’03, pages 27 – 36,
2003. → pages

[67] S. Khuller, Y.-A. Kim, and A. Malekian. Improved approximation
algorithms for data migration. Algorithmica, 63(1-2):347–362, 2012. →
pages 88

[68] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning in
a chip multiprocessor architecture. In Proceedings of the 13th International
Conference on Parallel Architectures and Compilation Techniques, pages
111–122. IEEE Computer Society, 2004. → pages 47

[69] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click
modular router. ACM Transactions on Computer Systems, 18(3):263–297,
Aug. 2000. → pages 21

[70] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and

120

B. Zhao. OceanStore: an architecture for global-scale persistent storage.
SIGPLAN Notices, 35(11):190–201, 2000. → pages 105

[71] E. K. Lee and C. A. Thekkath. Petal: distributed virtual disks. In
Proceedings of the 7th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS VII, pages
84–92, 1996. → pages 41

[72] A. W. Leung, S. Pasupathy, G. R. Goodson, and E. L. Miller. Measurement
and analysis of large-scale network file system workloads. In USENIX
Annual Technical Conference, ATC ’08, pages 213–226, 2008. → pages 68

[73] L. Lin, Y. Zhu, J. Yue, Z. Cai, and B. Segee. Hot random off-loading: A
hybrid storage system with dynamic data migration. In Proceedings of the
2011 IEEE 19th Annual International Symposium on Modelling, Analysis,
and Simulation of Computer Telecommunication Systems, MASCOTS ’11,
pages 318–325. IEEE Computer Society, 2011. → pages 105

[74] Linux Device Mapper Resource Page. http://sourceware.org/dm/. Visited
July 2017. → pages 21

[75] Linux Logical Volume Manager (LVM2) Resource Page.
http://sourceware.org/lvm2/. Visited July 2017. → pages 21

[76] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou. S-cave: Effective
ssd caching to improve virtual machine storage performance. In Parallel
Architectures and Compilation Techniques, PACT ’13, pages 103–112,
2013. → pages 41

[77] A. K. Mackworth. Consistency in networks of relations. Artificial
Intelligence, 8(1):99–118, 1977. → pages 85

[78] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems journal, 9(2):78–117,
1970. → pages 46, 47, 50, 62, 72

[79] N. Megiddo and D. S. Modha. ARC: A self-tuning, low overhead
replacement cache. In Proceedings of the 2nd USENIX Conference on File
and Storage Technologies, FAST ’03, pages 115–130, 2003. → pages 70

[80] D. T. Meyer, B. Cully, J. Wires, N. C. Hutchinson, and A. Warfield. Block
mason. In Proceedings of the First Conference on I/O Virtualization,
WIOV ’08, 2008. → pages 21

121

http://sourceware.org/dm/
http://sourceware.org/lvm2/

[81] D. T. Meyer, B. Cully, J. Wires, N. C. Hutchinson, and A. Warfield. Block
mason. In First Workshop on I/O Virtualization, WIOV ’08. USENIX
Association, 2008. → pages 9

[82] D. T. Meyer, M. Shamma, J. Wires, Q. Zhang, N. C. Hutchinson, and
A. Warfield. Fast and cautious evolution of cloud storage. In Proceedings
of the 2nd USENIX Workshop on Hot Topics in Storage and File Systems,
HotStorage ’10. USENIX Association, 2010. → pages 9

[83] P. Mochel. The sysfs Filesystem. In Linux Symposium, page 313, 2005. →
pages 46

[84] D. Mosberger and L. L. Peterson. Making paths explicit in the scout
operating system. In Proceedings of the 2nd USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’96, pages 153–167,
1996. → pages 21

[85] M. Nanavati, J. Wires, and A. Warfield. Decibel: Isolation and sharing in
disaggregated rack-scale storage. In Proceedings of the 14th USENIX
Symposium on Networked Systems Design and Implementation, NSDI ’17,
pages 17–33. USENIX Association, 2017. → pages 9

[86] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading: Practical
power management for enterprise storage. ACM Transactions on Storage
(TOS), 4(3):10, 2008. → pages 62

[87] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and A. I. T.
Rowstron. Everest: Scaling down peak loads through i/o off-loading. In
Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’08, pages 15–28. USENIX Association, 2008.
→ pages 99, 105

[88] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and Y. Suzue.
Flat datacenter storage. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation, OSDI ’12, pages 1–15,
Berkeley, CA, USA, 2012. USENIX Association. → pages 42, 105

[89] Q. Niu, J. Dinan, Q. Lu, and P. Sadayappan. Parda: A fast parallel reuse
distance analysis algorithm. In Proceedings of the 2012 IEEE 26th
International Parallel & Distributed Processing Symposium, IPDPS ’12,
pages 1284–1294. IEEE, 2012. → pages 46, 50, 62, 72

122

[90] D. Ongaro, S. M. Rumble, R. Stutsman, J. K. Ousterhout, and
M. Rosenblum. Fast crash recovery in RAMCloud. In Proceedings of the
23rd ACM Symposium on Operating Stystems Principles, SOSP ’11, pages
29–41. ACM, 2011. → pages 105

[91] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, D. Ongaro, G. Parulkar,
M. Rosenblum, S. M. Rumble, E. Stratmann, and R. Stutsman. The case
for ramcloud. Communications of the ACM, 54(7):121–130, July 2011. →
pages 42

[92] C. Petersen. Introducing Lightning: A flexible NVMe JBOF, March 2016.
https://code.facebook.com/posts/989638804458007/introducing-lightning-
a-flexible-nvme-jbof/. Visited July 2017. → pages 75

[93] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches. In Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 423–432. IEEE Computer Society,
2006. → pages 47

[94] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Proceedings
of the IFIP/ACM International Conference on Distributed Systems
Platforms, Middleware 2001, pages 329–350. Springer, 2001. → pages 105

[95] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence. Fab: building
distributed enterprise disk arrays from commodity components. In
Proceedings of the 11th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XI, pages
48–58, New York, NY, USA, 2004. ACM. → pages 41, 105

[96] J. R. Santos, R. R. Muntz, and B. A. Ribeiro-Neto. Comparing random
data allocation and data striping in multimedia servers. In Proceedings of
the 2000 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’00, pages 44–55.
ACM, 2000. → pages 105

[97] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction
problems: Hard and easy problems. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence, IJCAI ’95, pages
631–639. Morgan Kaufmann, 1995. → pages 85

123

https://code.facebook.com/posts/989638804458007/introducing-lightning-a-flexible-nvme-jbof/
https://code.facebook.com/posts/989638804458007/introducing-lightning-a-flexible-nvme-jbof/

[98] SCSI Object-Based Storage Device Commands - 2, 2011.
http://www.t10.org/members/w_osd-.htm. Visited July 2017. → pages 25

[99] Seagate Kinetic Open Storage Documentation. http:
//www.seagate.com/ca/en/tech-insights/kinetic-vision-how-seagate-new-
developer-tools-meets-the-needs-of-cloud-storage-platforms-master-ti/.
Visited July 2017. → pages 17, 25

[100] B. Seo and R. Zimmermann. Efficient disk replacement and data migration
algorithms for large disk subsystems. ACM Transactions on Storage, 1(3):
316–345, 2005. → pages 105

[101] M. Shamma, D. T. Meyer, J. Wires, M. Ivanova, N. C. Hutchinson, and
A. Warfield. Capo: Recapitulating storage for virtual desktops. FAST ’11,
pages 31–45. USENIX, 2011. → pages 9, 68, 99

[102] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In Proceedings
of the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XI, pages
165–176. ACM, 2004. → pages 50

[103] X. Shen, J. Shaw, B. Meeker, and C. Ding. Locality approximation using
time. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’07, pages
55–61. ACM, 2007. → pages 50

[104] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed
file system. In Proceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies, MSST ’10, pages 1–10, Washington,
DC, USA, 2010. IEEE Computer Society. → pages 105

[105] J. Sievert. Iometer: The I/O performance analysis tool for servers, 2004.
http://www.iometer.org. Visited July 2017. → pages 71

[106] A. J. Smith. Two methods for the efficient analysis of memory address
trace data. IEEE Transactions on Software Engineering, 3(1):94–101,
1977. → pages 50, 73

[107] G. Soundararajan, D. Lupei, S. Ghanbari, A. D. Popescu, J. Chen, and
C. Amza. Dynamic resource allocation for database servers running on
virtual storage. In Proceedings of the 7th USENIX Conference on File and
Storage Technologies, FAST ’09. USENIX, 2009. → pages 50

124

http://www.t10.org/members/w_osd-.htm
http://www.seagate.com/ca/en/tech-insights/kinetic-vision-how-seagate-new-developer-tools-meets-the-needs-of-cloud-storage-platforms-master-ti/
http://www.seagate.com/ca/en/tech-insights/kinetic-vision-how-seagate-new-developer-tools-meets-the-needs-of-cloud-storage-platforms-master-ti/
http://www.seagate.com/ca/en/tech-insights/kinetic-vision-how-seagate-new-developer-tools-meets-the-needs-of-cloud-storage-platforms-master-ti/
http://www.iometer.org

[108] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
In Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, SIGCOMM
’01, Aug. 2001. → pages 105

[109] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of cache
memory. IEEE Transactions on Computers, 41(9):1054–1068, 1992. →
pages 47, 50, 64

[110] J. D. Strunk, E. Thereska, C. Faloutsos, and G. R. Ganger. Using utility to
provision storage systems. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies, FAST ’08, pages 313–328. USENIX,
2008. → pages 77, 106

[111] V. Tarasov, S. Kumar, J. Ma, D. Hildebrand, A. Povzner, G. Kuenning, and
E. Zadok. Extracting flexible, replayable models from large block traces.
In Proceedings of the 10th USENIX Conference on File and Storage
Technologies, FAST ’12, 2012. → pages 73

[112] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: a scalable distributed
file system. In Proceedings of the 16th ACM Symposium on Operating
Systems Principles, SOSP ’97, pages 224–237, 1997. → pages 41

[113] V. Vasudevan, M. Kaminsky, and D. G. Andersen. Using vector interfaces
to deliver millions of iops from a networked key-value storage server. In
Proceedings of the 3rd ACM Symposium on Cloud Computing, SoCC ’12,
pages 8:1–8:13, New York, NY, USA, 2012. ACM. → pages 41

[114] X. Wang, Y. Li, Y. Luo, X. Hu, J. Brock, C. Ding, and Z. Wang. Optimal
footprint symbiosis in shared cache. In 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, CCGRID ’15, pages
412–422. IEEE Computer Society, 2015. → pages 99

[115] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Proceedings
of the 7th Symposium on Operating Systems Design and Implementation,
OSDI ’06, pages 307–320. USENIX Association, 2006. → pages 42, 105

[116] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. CRUSH:
Controlled, scalable, decentralized placement of replicated data. In
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC
’06, New York, NY, USA, 2006. ACM. → pages 105

125

[117] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn. RADOS: a
scalable, reliable storage service for petabyte-scale storage clusters. In
Proceedings of the 2nd International Workshop on Petascale Data Storage,
PDSW ’07, pages 35–44. ACM Press, 2007. → pages 42, 105

[118] A. Whitaker, M. Shaw, and S. D. Gribble. Denali: A scalable isolation
kernel. In Proceedings of the 10th ACM SIGOPS European Workshop,
2002. → pages 40

[119] J. Wilkes, R. A. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID
hierarchical storage system. ACM Transactions on Computer Systems, 14
(1):108–136, 1996. → pages 105

[120] J. Wires and A. Warfield. Mirador: An active control plane for datacenter
storage. In Proceedings of the 15th USENIX Conference on File and
Storage Technologies, FAST ’17, pages 213–228. USENIX Association,
2017. → pages iv, 9, 75

[121] J. Wires, M. Spear, and A. Warfield. Exposing file system mappings with
mapfs. In Proceedings of the 3rd USENIX Workshop on Hot Topics in
Storage and File Systems, HotStorage ’11. USENIX Association, 2011. →
pages 9

[122] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and A. Warfield.
Characterizing storage workloads with counter stacks. In Proceedings of
the 11th USENIX Conference on Operating Systems Design and
Implementation, OSDI ’14, pages 335–349. USENIX Association, 2014.
→ pages iv, 9, 44, 81

[123] J. Wires, P. Ganesan, and A. Warfield. Sketches of space: Ownership
accounting for shared storage. In Proceedings of the 8th ACM Symposium
on Cloud Computing, SoCC ’17. ACM, 2017. → pages 9

[124] T. M. Wong and J. Wilkes. My cache or yours? making storage more
exclusive. In USENIX Annual Technical Conference, ATC ’02, pages
161–175. USENIX, 2002. → pages 97

[125] X. Xiang, B. Bao, C. Ding, and Y. Gao. Linear-time modeling of program
working set in shared cache. In Proceedings of the 2011 International
Conference on Parallel Architectures and Compilation Techniques, PACT
’11, pages 350–360. IEEE, 2011. → pages 62, 72

126

[126] X. Xiang, C. Ding, H. Luo, and B. Bao. HOTL: a higher order theory of
locality. In Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’13, pages 343–356. ACM, 2013. → pages 47, 73

[127] J. Yang, D. B. Minturn, and F. Hady. When poll is better than interrupt. In
Proceedings of the 10th USENIX Conference on File and Storage
Technologies, FAST ’12, pages 3–10, Berkeley, CA, USA, 2012. USENIX
Association. → pages 41

[128] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. CRAMM: Virtual
memory support for garbage-collected applications. In Proceedings of the
7th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’06, pages 103–116. ACM, 2006. → pages 50

[129] W. Zhao, X. Jin, Z. Wang, X. Wang, Y. Luo, and X. Li. Low cost working
set size tracking. In Annual Technical Conference, ATC ’11, pages
223–228. USENIX, 2011. → pages 50

[130] W. Zheng and G. Zhang. Fastscale: Accelerate RAID scaling by
minimizing data migration. In Proceedings of the 9th USENIX Conference
on File and Storage Technologies, FAST ’11, pages 149–161. USENIX,
2011. → pages 105

[131] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array regrouping and
structure splitting using whole-program reference affinity. In Proceedings
of the ACM SIGPLAN 2004 Conference on Programming Language Design
and Implementation, PLDI ’04, pages 255–266. ACM, 2004. → pages 50

[132] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Kumar.
Dynamic tracking of page miss ratio curve for memory management. In
Proceedings of the 11th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XI, pages
177–188. ACM, 2004. → pages 47, 50

[133] Y. Zhou, J. Philbin, and K. Li. The multi-queue replacement algorithm for
second level buffer caches. In USENIX Annual Technical Conference, ATC
’01, pages 91–104, 2001. → pages 48

127

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Glossary
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Publications

	2 Nonvolatile Memory
	3 Strata: Scalable High-Performance Storage on Virtualized Non-Volatile Memory
	3.1 Introduction
	3.2 Architecture
	3.2.1 Scope of this Work

	3.3 Data Paths
	3.3.1 The Virtual Address Map
	3.3.2 Dispatch
	3.3.3 Coherence

	3.4 Network Attached Disks
	3.4.1 Network Integration

	3.5 Online Reconfiguration
	3.5.1 Object Reconfiguration
	3.5.2 System Reconfiguration

	3.6 Storage Protocols
	3.6.1 Scalable NFS
	3.6.2 SDN Protocol Scaling

	3.7 Evaluation
	3.7.1 Test Environment
	3.7.2 Baseline Performance
	3.7.3 Scalability
	3.7.4 Node Failure
	3.7.5 Protocol Overhead
	3.7.6 Effect of CPU on Performance

	3.8 Related Work
	3.9 Conclusion

	4 Characterizing Storage Workloads with Counter Stacks
	4.1 Introduction
	4.2 Background
	4.3 Counter Stacks
	4.3.1 Definition
	4.3.2 LRU Stack Distances

	4.4 Practical Counter Stacks
	4.4.1 Downsampling
	4.4.2 Pruning
	4.4.3 Probabilistic Counters
	4.4.4 LRU Stack Distances

	4.5 The Counter Stack API
	4.5.1 On-disk Streams
	4.5.2 Compute Queries
	4.5.3 Time Slicing and Shifting
	4.5.4 Joining

	4.6 Error and Uncertainty
	4.6.1 Counter Error
	4.6.2 Downsampling Uncertainty

	4.7 Evaluation
	4.7.1 Performance
	4.7.2 Accuracy

	4.8 Workload Analysis
	4.8.1 Combined Workloads
	4.8.2 Erratic Workloads
	4.8.3 Conflicting Workloads
	4.8.4 Periodic Workloads
	4.8.5 Zipfian Workloads

	4.9 Related Work
	4.10 Conclusion

	5 Mirador: An Active Control Plane for Datacenter Storage
	5.1 Introduction
	5.2 A Control Plane for Datacenter Storage
	5.3 Mirador
	5.3.1 Observation
	5.3.2 Optimization
	5.3.3 Actuation
	5.3.4 Platform Support

	5.4 Evaluation
	5.4.1 Optimization
	5.4.2 Actuation
	5.4.3 Resource Objectives
	5.4.4 Workload Objectives

	5.5 Experience
	5.6 Related Work
	5.7 Conclusion

	6 Conclusion
	Bibliography

