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Abstract 

Prenatal alcohol exposure (PAE) can alter the development, function, and regulation of 

neurobiological and physiological systems, causing lasting cognitive alterations, behavioral 

deficits, immune dysfunction, and increased vulnerability to mental health problems. In humans, 

the spectrum of these deficits is known as fetal alcohol spectrum disorder (FASD). Although the 

molecular underpinnings are not fully elucidated, epigenetic mechanisms are a prime candidate 

for the programming of physiological systems by PAE, as they may bridge environmental stimuli 

and neurodevelopmental outcomes. DNA methylation is also emerging as a potential biomarker 

of early-life events, which may aid in earlier FASD diagnoses. Thus, my overarching aim was to 

identify epigenetic mechanisms that may contribute to the deficits associated with FASD and act 

as biosignatures of PAE. Specifically, I used genome-wide approaches to assess underlying gene 

expression programs and epigenomic profiles in a rat model of PAE and clinical cohorts of 

individuals with FASD. In the rat model, I identified alterations to gene expression programs in 

the brain of adult PAE females under steady-state and immune challenge conditions. Building on 

these long-term alterations to transcriptomic programs, I identified altered DNA methylation 

patterns persisting from birth to weaning in the hypothalamus PAE animals, suggestive of early 

reprogramming of neurobiological systems. In parallel, I found concordant alterations to DNA 

methylation profiles in the hypothalamus and white blood cells of PAE animals, which may 

reflect systemic effects and potential biomarkers of PAE. To complement the animal model, I 

also investigated DNA methylation patterns in two clinical cohorts of FASD, where I identified 

an epigenetic signature of FASD in buccal epithelial cells. As these results raised the possibility 

of an epigenetic biomarker, I investigated the relevance of DNA methylation as a diagnostic 

method for PAE, and successfully generated a predictive algorithm that could classify 
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individuals with FASD versus controls. Overall, these findings provide evidence for the 

biological embedding of PAE’s effects through changes in gene expression and DNA 

methylation, while setting the stage for the development of novel biomarkers. Ultimately, these 

may aid in the development of targeted interventions and early screening tools to mitigate the 

deficits associated with FASD. 
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Lay Summary 

Prenatal alcohol exposure can result in abnormal brain development, causing Fetal 

Alcohol Spectrum Disorder (FASD), which is linked to a number of cognitive, behavioural, and 

immune deficits that last across the lifetime. Although the lasting effects of alcohol on 

development are well studied, the molecular changes causing these deficits remain relatively 

unknown. Recent evidence suggests that modifications to DNA structure and regulation, known 

as epigenetic mechanisms, may play a role in the long-term effects of alcohol on the developing 

brain and could act as a signature of prenatal alcohol exposure. This thesis presents new evidence 

for DNA methylation, a small chemical mark added to DNA, as a mechanism in the long-term 

programming of immune and brain functions. Furthermore, it provides a framework for the use 

of DNA methylation as a marker of alcohol exposure to diagnose children at-risk for FASD and 

help lessen some of their long-term problems. 
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Preface 

Please note that all data chapters in this thesis (Chapters 2-5) are presented in manuscript format, 

as they are currently published (Chapters 2 & 4) or under submission (Chapters 3 & 5).  

 

Portions of Chapter 1 (introduction) have been adapted from previously published manuscripts:  

• Lussier AA, Weinberg J, Kobor MS. 2017. Epigenetics studies of fetal alcohol spectrum 

disorder: where are we now? Epigenomics.  

• Lussier AA*, Islam SA*, Kobor MS. Genetics and epigenetics of development. In Gibbs 

R. & Kolb B. (Eds.). The neurobiology of brain and behavioural development. Elsevier 

Inc. In press. *Authors contributed equally. 

 

A version of Chapter 2 has been published in the following manuscripts:  

• Lussier AA*, Stepien KA*, Neumann SM, Pavlidis P, Kobor MS, Weinberg J. 2015. 

Prenatal alcohol exposure alters steady-state and activated gene expression in the adult rat 

brain. Alcoholism: Clinical and Experimental Research. *Authors contributed equally.  

• Lussier AA, Stepien KA, Weinberg J, Kobor MS. 2015. Prenatal alcohol exposure alters 

gene expression in the rat brain: Experimental design and bioinformatic analysis of 

microarray data. Data in Brief.  

The experimental design and animal work for this study was primarily performed by X. Zhang, 

with assistance from other members of the Weinberg lab. S. Neumann and K. Stepien ran the 

gene expression microarrays and performed the tissue extractions alongside T. Bodnar and L. 

Ellis. K. Stepien performed the differential expression analysis, with critical insight from P. 

Pavlidis. I verified the microarrays findings by RT-qPCR, and performed the bioinformatic 
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analyses related to verification experiments and pathway identification. I also wrote the vast 

majority of the manuscript. J. Weinberg and M. Kobor provided critical insight at all steps of the 

process. John Wiley & Sons license number: 4133251106844 (ACER). 

 

Chapter 3 is original and unpublished. I developed the design for this study alongside T. 

Bodnar, J. Weinberg, and M. Kobor. I performed the animal experiments with the assistance of 

T. Bodnar, W. Comeau, and the members of the Weinberg lab. I performed the meDIP 

procedures with aid from M. Mingay from M. Hirst’s lab at the UBC, and next-generation 

sequencing was performed by the Genome Sciences Centre in Vancouver, BC. I was responsible 

for all bioinformatic analyses of the meDIP-seq data, and was assisted by A. Morin from the 

Kobor lab for the pyrosequencing analysis. I was solely responsible for manuscript preparation, 

with critical feedback from J. Weinberg and M. Kobor.  

 

A version of Chapter 4 has been published as:  

• Portales-Casamar E*, Lussier AA*, Jones MJ, MacIsaac JL, Edgar RD, Mah SM, 

Barhdadi A, Provost S, Lemieux-Perreault LP, Cynader MS, Chudley AE, Dubé MP, 

Reynolds JN, Pavlidis P, Kobor MS. 2016. DNA methylation signature of human fetal 

alcohol spectrum disorder. Epigenetics & Chromatin. *Authors contributed equally.  

This study was designed by members of NeuroDevNet, a Canadian Network of Centres for 

Excellence, and collection of samples was performed at multiple FASD clinics across Canada. I 

was responsible for a portion of the bioinformatic analyses (gene ontology and differentially 

methylated regions) and wrote the majority of the manuscript. E. Portales-Casamar performed 

the differential methylation analysis. R. Edgar performed the brain gene expression analysis. J. 
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MacIsaac and S. Mah ran the DNA methylation arrays.  A. Barhddi, S. Provost, LP Lemieux-

Perreault and MP Dubé aided in the genetic analyses. M. Jones, P. Pavlidis, A. Chudley, J. 

Reynolds, and M. Kobor aided in the interpretation of results and manuscript feedback.  

 

Chapter 5 is original and unpublished. This study was designed by members of NeuroDevNet 

and sample collection was performed in Winnipeg, MB by J. Salmon and A. Chudley. DNA 

methylation arrays were run by J. MacIsaac and A. Morin, whom also performed the 

pyrosequencing assay. I was responsible for all bioinformatic analyses and manuscript 

preparation, with critical feedback from J. Weinberg, M. Kobor, J. Reynolds, and P. Pavlidis.  

 

Chapter 6 (discussion) contains excerpts from a published review: 

• Lussier AA, Weinberg J, Kobor MS. 2017. Epigenetics studies of fetal alcohol spectrum 

disorder: where are we now? Epigenomics. The remainder is original and unpublished.   

 

All animal protocols were approved by the University of British Columbia Animal Care 

Committee and are consistent with the NIH Guide for the Care and Use of Laboratory Animals 

(certificates: A06-0017, A07-0381, A10-0136, A10-0016, A12-0032). 

 

Ethics for the clinical cohorts of FASD were reviewed and approved by the “Children's and 

Women's Research Ethics Board – Clinical” (H10-01149). Experimental procedures were 

reviewed and approved by the Health Research Ethics Boards at Queen's University, University 

of Alberta, Children's Hospital of Eastern Ontario, University of Manitoba, and the University of 

British Columbia. 
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Chapter 1: Introduction 

1.1 General overview and hypotheses 

Adverse early-life conditions have the potential to permanently imprint or program 

physiological and behavioral systems during development and lead to long-term consequences in 

offspring (Godfrey & Robinson 1998; Hanson & Gluckman 2008). In particular, prenatal alcohol 

exposure (PAE) can alter the development, function, and regulation of numerous neurobiological 

and physiological systems, giving rise to lasting cognitive and behavioral deficits, immune 

dysfunction, motor impairments, and increased vulnerability to mental health problems in over 

the life course (Zhang, Sliwowska, & Weinberg 2005; Pei et al. 2011; Mattson, Crocker, & 

Nguyen 2011). In humans, the broad spectrum of these structural, neurocognitive, physiological, 

and behavioral abnormalities or deficits is known as fetal alcohol spectrum disorder (FASD) 

(Hoyme et al. 2016; Stratton, Howe, & Battaglia 1996). Although the exact molecular 

mechanisms underlying the effects of PAE on neurobiological systems are not yet fully 

elucidated, epigenetic mechanisms are prime candidates for the programming effects of 

environmental factors on physiological systems, as they may bridge environmental stimuli and 

neurodevelopmental outcomes to influence health and behavior well into adulthood (Yuen et al. 

2011; Shulha et al. 2013; Kobor & Weinberg 2011). Furthermore, DNA methylation is emerging 

as a potential biomarker of early-life events and disease, which may prove useful in the early 

diagnosis of children at risk for FASD.  

I hypothesized that PAE alters the transcriptional profiles and DNA methylation patterns 

of genes that are functionally related to the deficits associated with FASD. As such, my 

overarching aim was to identify genetic and epigenetic mechanisms that may contribute to the 

spectrum of physiological and neurobiological alterations associated with FASD and act as 
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potential biosignatures of PAE. To this end, I used genome-wide, discovery-driven approaches to 

assess underlying gene expression programs and epigenomic profiles in animal models of PAE 

and clinical cohorts of individuals with FASD.  

I built on previous studies that showed physiological alterations following PAE. In 

particular, previous work demonstrated that female PAE rats display a more severe and 

prolonged course of adjuvant-induced arthritis (AA), suggestive of underlying alterations in 

immune regulation (Zhang et al. 2012). Following up on these results, I investigated gene 

expression profiles under basal and immune challenge conditions in the brain of adult PAE 

animals to determine whether I could identify long-term alterations to gene expression programs 

in the brain using an established rat model of PAE (Chapter 2). Based on previous research, I 

hypothesized that PAE animals would display altered baseline transcriptomic profiles in the 

hippocampus and prefrontal cortex, which have important regulatory inputs into the stress axis 

and immune system. I also hypothesized that PAE animals would show a differential gene 

expression response to AA compared to controls due to their increased vulnerability to this 

immune challenge. Building on the long-term programming effects of alcohol on the neural 

transcriptome identified through this investigation, I shifted my focus to the biological 

embedding of PAE through epigenetic mechanisms (Chapter 3). This particular study focused on 

the hypothalamus, rather than the hippocampus and prefrontal cortex, as it acts as the central 

common integrator of several physiological systems in the brain and plays key roles in the stress 

response, immune function, and homeostatic regulation. Given the persistent effects of PAE on 

these neurobiological systems, as well as the association between epigenetics and transcriptional 

regulation, I predicted that PAE would alter genome-wide DNA methylation programs in the 

hypothalamus across early development, particularly within genes associated with these vital 
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functions. I also predicted that some differential DNA methylation patterns would overlap 

between central nervous system (CNS) tissue and white blood cells (WBC), potentially reflecting 

systemic effects of alcohol and biomarkers of PAE. 

Although the animal model provides important insight into the molecular underpinnings 

of PAE-induced deficits, it may not fully reflect the epigenetic changes found in individuals with 

FASD. As such, I assessed DNA methylation profiles in a clinical cohort of FASD, 

hypothesizing that I could identify genome-wide DNA methylation alterations in the buccal 

epithelial cells (BEC) of individuals with FASD versus controls (Chapter 4). Given the 

importance of replication in epigenome-wide association studies, I further assessed the findings 

from the first clinical cohort in a second, independent sample of individuals with FASD (Chapter 

5). I predicted that some of the results from the initial study would validate here, representing a 

robust signature of PAE in humans. As DNA methylation patterns have previously been used to 

predict prenatal exposures, I further expected that the DNA methylation signature of FASD 

could be used to develop an early screening tool that could accurately classify individuals as 

FASD or controls.  

Taken together, the identification of persistent gene expression changes and stable 

epigenetic alterations in the brain and peripheral tissues may provide insight into the etiology of 

PAE-induced deficits, while building a foundation for the development of accurate biomarkers of 

FASD.  

 

1.2 Fetal alcohol spectrum disorder 

PAE can result in a harmful in utero environment that can cause numerous adverse 

developmental consequences falling under the umbrella of FASD. At the most severe end of the 
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spectrum is fetal alcohol syndrome (FAS), which can occur with chronic exposure to high doses 

of alcohol (Jones & Smith 1973). The diagnostic criteria for FAS consist of pre- and post-natal 

growth retardation, a characteristic set of facial dysmorphologies, and central nervous system 

alterations, including neurological abnormalities, developmental delays, and intellectual 

impairment (Stratton, Howe, & Battaglia 1996). Exposure to alcohol at levels that do not 

produce full FAS can result in either partial FAS (pFAS), where only some of the diagnostic 

features occur, or in numerous alcohol-related effects that can be primarily physical (alcohol-

related birth defects, ARBD) or primarily neurobehavioral (alcohol-related neurodevelopmental 

disorder, ARND), although ARBD and ARND are not mutually exclusive and both may occur in 

an individual exposed to alcohol in utero (Stratton, Howe, & Battaglia 1996). Importantly, 

neurobehavioral/-developmental deficits are consistently seen across the spectrum, and include 

neurocognitive impairment (cognitive function, learning and memory, executive function), 

impairment in self-regulation (attention, impulsivity, behavioral regulation, stress 

responsiveness, mood/affect, sleep abnormalities), and deficits in adaptive function 

(communication, social behavior, activities of daily living) (Carter et al. 2016; Lynch, Kable, & 

Coles 2015; Panczakiewicz et al. 2016; Doyle & Mattson 2015; Astley et al. 2009; Streissguth & 

O’Malley 2000).   

Despite the recognition of FAS over four decades ago, PAE remains a leading cause of 

intellectual disability in North America and worldwide. Although current global estimates place 

the prevalence of FAS and FASD at 2.9 and 22.8%, respectively, regional incidences vary 

greatly, with some populations displaying up to an estimated 55% prevalence of FAS (Roozen et 

al. 2016). By contrast, recent active case ascertainment studies in the USA, Italy, Poland, and 

Croatia have found that FASD prevalence is approximately 2-5% in the general population (May 
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et al. 2009, 2014, 2015; Petković & Barišić 2013; Okulicz-Kozaryn, Borkowska, & Brzózka 

2017; May et al. 2011). Importantly, approximately half of women under 30 years of age in the 

USA have unplanned pregnancies (May et al. 2004). As such, they may not realize they are 

pregnant until later in gestation and may continue to consume alcohol during the first trimester of 

their pregnancy. Indeed, it is estimated that 10-15% of women in Canada and the USA continue 

to drink throughout pregnancy, with approximately 3% continuing to binge drink, which is 

particularly deleterious to fetal development (Popova et al. 2017; Bonthius & West 1990).  

The degree to which alcohol affects development depends on a variety of factors such as 

timing, pattern, and level of alcohol exposure, overall maternal health and nutrition, and genetic 

background, which may influence the disparity between maternal drinking rates and the 

prevalence of FASD (Pollard 2007). Importantly, the adverse neurodevelopmental outcomes of 

children with FASD often persist well into adulthood, including metabolic changes, immune 

dysfunction, altered stress responsitivity, and vulnerability to mental health disorders, such as 

substance use, depression, anxiety, psychosis, and bipolar disorder (Famy, Streissguth, & Unis 

1998; Spohr & Steinhausen 2008; Lemoine et al. 2003; Weyrauch et al. 2017; Popova et al. 

2016; Streissguth et al. 2004; Barr et al. 2006; Moore & Riley 2015). 

 

1.3 Animal models of FASD 

Animal models of PAE were first developed in response to the skepticism that greeted the 

first description of FAS by Jones and Smith in 1973 (Jones & Smith 1973; Jones et al. 1973). 

These were particularly important in that effects of alcohol could be investigated with a level of 

control not possible in the clinical setting, including timing, pattern (acute versus chronic), and 

dose of alcohol, genetic factors, environment, nutrition, and other drugs. An additional important 
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strength of animal models is the ability to make direct correlations between central and 

peripheral tissues, as clinical studies do not have ready access to critical tissues such as the brain 

and other organs, except through biopsy or postmortem specimens, and changes in peripheral 

tissues do not always reflect alterations in the brain. Furthermore, animal models can provide 

critical insight into the molecular mechanisms underlying effects of PAE, and can thus pave the 

way for identification of novel biomarkers. Important recent studies have made significant 

progress in characterizing the neurodevelopmental, physiological, and behavioral alterations 

associated with PAE, as well as elucidating molecular mechanisms through which these 

alterations occur at different doses and patterns of alcohol exposure. In vitro studies have 

provided further vital insights into the mechanisms by which alcohol affects cellular functions, 

allowing for the dissection of molecular pathways in highly specific and controlled environments 

(Liu et al. 2009; Zhou, Zhao, et al. 2011; Hicks, Middleton, & Miller 2010; Veazey et al. 2013, 

2015; Balaraman, Winzer-Serhan, & Miranda 2012). These different strategies have provided 

key insights into the altered neurodevelopmental profiles resulting from PAE and highlight the 

complex and long-term programming effects of alcohol on numerous developmental processes. 

Overall, these studies have shown that alcohol is an early life insult that programs developing 

neurobiological systems and markedly increases risk for adverse outcomes, supporting the 

hypothesis that the effects of PAE on development may involve the reprogramming of 

physiological systems (Hellemans, Sliwowska, et al. 2010). 

 

1.4 Reprogramming of physiological systems by PAE 

1.4.1 PAE alters hypothalamic-pituitary-adrenal axis function 

The HPA axis regulates the body’s response to stress, reacting to stimuli threatening 
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homeostasis and/or survival. Briefly, stressors activate the parvocellular neurons of the 

paraventricular nucleus of the hypothalamus, resulting in secretion of corticotropin-releasing 

hormone (CRH) (reviewed in Jankord & Herman 2008). In turn, CRH stimulates release of 

adrenocorticotropic hormone (ACTH) from the anterior pituitary gland. ACTH then acts on the 

adrenal cortex, causing the secretion of glucocorticoids, cortisol in humans and mainly 

corticosterone in rodents. These feed back to multiple brain regions, such as the hypothalamus, 

to inhibit further HPA activation (Herman & Cullinan 1997). The hippocampus and prefrontal 

cortex are also important regulators of the HPA axis, partially controlling the extent of the stress 

response. While the prefrontal cortex provides both stimulatory and inhibitory inputs to the HPA 

axis, the hippocampus contains high levels of glucocorticoid receptors, dampening the stress 

response (Diorio, Viau, & Meaney 1993; Reul & De Kloet 1985; Jacobson & Sapolsky 1991). 

Under stressful conditions, glucocorticoids induce rapid physiological changes promoting 

survival, such as increased gluconeogenesis, reduced reproductive function, and suppressed 

immune response. However, prolonged exposure to high levels of glucocorticoids can produce 

deleterious effects, including metabolic, cognitive, and immune dysfunction (McEwen & Stellar 

1993).  

Furthermore, the HPA axis is highly susceptible to programming during early life 

(Matthews 2002; Eguchi 1969). Given that the pregnant mother and fetus constitute an 

interrelated functional unit, maternal exposures and hormone changes may shape developmental 

trajectories in the fetus (Weinberg 1993). In particular, the fetal HPA axis of an alcohol-

consuming mother receives conflicting signals, as ethanol crosses the placenta to directly 

activate the fetal HPA axis, while activating the maternal HPA axis in parallel, which then exerts 

negative feedback on the fetal system (Eguchi 1969). However, the influence of the HPA axis on 
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the developing organism may be partially dampened by increased 11β-HSD levels in the 

placenta of PAE animals, which may reduce the degree to which glucocorticoids can cross the 

placenta (Lan et al. 2017). Nevertheless, these signals have been shown to reprogram the fetal 

HPA axis, increasing HPA axis activation and causing deficits in recovery following stress 

(Weinberg et al. 2008).  

Importantly, data from both clinical cohorts and animal models of FASD suggest that 

PAE itself causes widespread reprogramming of HPA axis function. Infants exposed to alcohol 

in utero show elevated basal levels of cortisol at 2 and 13 months of age, as well as higher post-

stress levels at 13 months (Ramsay, Bendersky, & Lewis 1996; Jacobson, Bihun, & Chiodo 

1999). In addition, 5-7 month old children also display increased cortisol reactivity in response to 

the “still-face” procedure, which is used to assess emotion and stress regulation (Haley, 

Handmaker, & Lowe 2006). Animal models have identified a similar hyperresponsiveness to 

stressors following PAE, identifying alterations to central regulation of the HPA axis under basal 

and stress conditions (Ramsay, Bendersky, & Lewis 1996; Jacobson, Bihun, & Chiodo 1999; 

Haley, Handmaker, & Lowe 2006; Weinberg et al. 2008). Although basal serum levels of 

corticosterone and ACTH are not altered in PAE animals, CRH mRNA expression is increased 

in the hypothalamus of both weanling and adult PAE rats under basal conditions, as are POMC 

mRNA levels in the anterior pituitary (Lee et al. 1990, 2000; Lee & Rivier 1996; Gabriel et al. 

2005, 2017; Redei, Clark, & McGivem 1989; Redei et al. 1993). PAE rats also display deficits in 

the intermediate range of HPA feedback regulation (2-10h), but not in the fast response (seconds 

to minutes), suggesting that deficits in feedback regulation may act through cellular programs, 

rather than direct hormonal signaling (Osborn et al. 1996; Hofmann et al. 1999). Taken together, 

these findings suggest that PAE reprograms the HPA axis, altering its basal tone and responsivity 
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to stressors, which may be influenced by underlying alterations to cellular programs within 

regions associated with the HPA axis. 

1.4.2 PAE induces changes in homeostatic systems 

In addition to its role in the stress response, the HPA axis is also intimately connected to 

the physiological systems regulating homeostasis. In particular, the hypothalamus acts not only 

as a key regulator of endocrine function but also for autonomic regulation and homeostatic 

control, regulating growth, sleeping patterns, metabolism, body temperature levels, and other 

vital functions through its many different nuclei (Squire et al. 2008). As glucocorticoids also play 

an important role in the regulation of these metabolic and physiological processes, their 

dysregulation following PAE may be due to both direct effects of ethanol on the function of 

hypothalamic centers and indirect effects caused by HPA axis dysfunction (Dickmeis 2009). 

Nevertheless, clinical and animal studies have shown that the hypothalamus is particularly 

vulnerable to the effects of alcohol during development, displaying broad alterations to 

homeostatic functions following PAE, including disrupted sleep patterns and circadian rhythms, 

deficiencies in thermoregulation, and disordered metabolism and feeding behavior (Jones & 

Smith 1973; Chen et al. 2012; Earnest, Chen, & West 2001; Sei et al. 2003; Zimmerberg, 

Ballard, & Riley 1987; Werts et al. 2014).  

Indeed, children and adolescent with FASD show disrupted sleep patterns related to 

insomnia and parasomnia, with concomitant alterations to melatonin secretion profiles (Chen et 

al. 2012; Ipsiroglu et al. 2013; Goril et al. 2016). Rodent models have also identified sleep 

disturbances following PAE, including shorter circadian sleep-wake cycles and alterations to the 

structure and function of the suprachiasmatic nucleus (SCN) of the hypothalamus, which 
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synchronizes the circadian rhythm with light (Hilakivi 1986; Earnest, Chen, & West 2001; 

Spanagel et al. 2005; Chen et al. 2006). Additionally, PAE has lasting effects on the regulation of 

body temperature in response to circadian rhythms, while delaying the development of 

thermoregulation in rat pups, suggesting a disruption of the complex interplay between the 

different homeostatic systems of the hypothalamus (Zimmerberg, Ballard, & Riley 1987; Sei et 

al. 2003).  

Disordered eating patterns are also common in alcohol-exposed children, particularly 

within feeding behaviors related to a lack of satiety, which suggest that regulatory pathways 

regulating feeding behavior may be dysregulated (Harper et al. 2014; Werts et al. 2014). 

Furthermore, children with FASD display higher rates of glucose intolerance and 

hyperinsulemia, suggesting that they may be more vulnerable to metabolic syndrome (Castells et 

al. 1981; Lee 2012; Fan et al. 2008). Animal models show similar findings of altered glucose 

homeostasis, as PAE rats display increased insulin resistance and glucose intolerance following a 

glucose challenge (Chen & Nyomba 2003). Furthermore, adult PAE animals show elevated 

serum triglyceride levels and alterations to adiposity, which may increase the risk of 

cardiovascular disease (Pennington, Shuvaeva, & Pennington 2002; Dobson et al. 2012). 

Although it is difficult to tease apart the molecular and biological pathways that may influence 

these phenotypes, they suggest a broad reprogramming of metabolic processes and regulatory 

mechanisms, which may be mediated through alterations in the hypothalamus.  

As a whole, these findings suggest PAE may reprogram the developing homeostatic 

systems, potentially through indirect effects on HPA axis and direct effects on the hypothalamus, 

which may ultimately act as a final common integrator of the effects of PAE to mediate some of 

its widespread and lasting organizational effects on physiological systems.  
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1.4.3 PAE causes alterations to immune function and regulation 

Beyond the lasting deficits in the stress response and homeostatic regulation, clinical 

studies and animal models of PAE have also identified broad alterations to immune function and 

response. Clinical data examining alcohol-induced alterations in immune competence in children 

and adults with FAS/FASD remain limited. Early investigation found that children with FAS 

show a higher incidence of a range of major and minor infections, including recurrent otitis 

media, upper respiratory tract infections, urinary tract infections, sepsis, pneumonia, and acute 

gastroenteritis (Johnson et al. 1981; Ammann et al. 1982; Church & Gerkin 1988). In addition, 

alcohol-exposed show decreased eosinophil and neutrophil cell counts in, as well as decreased 

leukocyte response to mitogens compared to non-exposed children (Johnson et al. 1981; 

Gottesfeld & Abel 1991). More recent studies have shown that very low birth weight newborns 

exposed to alcohol in utero have a 15-fold higher incidence of early-onset sepsis as compared to 

controls matched for race, sex, gestational age, and birth weight (Gauthier, Manar, & Brown 

2004). High levels of maternal drinking (binge) during the second trimester have also been 

shown to increase the risk of infection by approximately 4-fold compared to that in unexposed 

newborns when controlling for smoking, low maternal income, and size for gestational age 

(Gauthier et al. 2005).  

Animal models have corroborated clinical findings, as fetuses and newborn PAE animals 

display decreased thymus weight, size, and cell numbers, as well as suppressed B cell 

development (Ewald & Frost 1987; Ewald & Walden 1988; Clausing et al. 1996; Moscatello et 

al. 1999). These deficits persist into adulthood, with additional alterations to the immune 

response being revealed as the animal matures, such as deficits in the response of splenic T cells 



 

 

12 

and lymphoblasts to the mitogen Concanavalin A and/or interleukin-2, as well as increased 

vulnerability to infections (Weinberg & Jerrells 1991; Norman et al. 1991; Gottesfeld et al. 1990; 

McGill et al. 2009). PAE animals also display greater susceptibility to immune and inflammatory 

challenges, showing greater increases in plasma levels of pro-inflammatory cytokines and 

reduced proliferative responses of B-cells following lipopolysaccharide exposure (Zhang, 

Sliwowska, & Weinberg 2005). In addition, PAE females display increased severity of joint 

inflammation and a prolonged course of disease in an adjuvant-induced arthritis (AA) paradigm. 

This model is used to study the interactions between the neuroendocrine and immune systems, 

mimicking human rheumatoid arthritis, an auto-immune disorder influenced by early-life 

experiences and potentially mediated through altered neuroendocrine-immune interactions 

(Harbuz, Rees, & Lightman 1993; Harbuz, Chover-Gonzalez, & Jessop 2003; Chover-Gonzalez 

et al. 1999; Bomholt et al. 2004; Colebatch & Edwards 2011; Zhang et al. 2012).  

Although the mechanisms underlying the immunoteratogenic effects of PAE on the 

immune system remain unclear, it has been shown that alcohol consumption increases cytokine 

levels with chronic alcohol consumption during pregnancy increasing levels of key cytokines in 

both the fetus and mother (Crews et al. 2006; He & Crews 2008; Ahluwalia et al. 2000). 

Evidence from other fields suggests that immune stimulation and alterations to the fine balance 

of pro- and anti-inflammatory cytokines during pregnancy is associated with increased risk for 

neurodevelopmental disorders, including schizophrenia and autism (Howard 2013; Goines et al. 

2011). However, direct links between alcohol-related alterations in the prenatal maternal 

cytokine balance and immune, neurocognitive, or behavioral outcomes associated with FASD, 

have yet to be established. Recent work from a range of animal models has shown that alcohol 

exposure generally increases cytokine production within the brain, a marker of neuroimmune 
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activation. Using third trimester equivalent exposure models, cytokine levels were shown to 

increase in the cerebellum, cortex, and hippocampus in alcohol-exposed animals (Topper, 

Baculis, & Valenzuela 2015; Drew et al. 2015). In addition, cytokine levels are altered in the 

brain following PAE, with increased levels detected in the hippocampus and prefrontal cortex, 

but decreased levels in the hypothalamus (Bodnar, Hill, & Weinberg 2016). Despite inherent 

differences between these models, such as method and timing of alcohol administration, species, 

and cytokine detection method, the concordance of these findings highlights that 

neuroinflammation may be a cross-cutting feature in both FASD and animal models of PAE.  

Importantly, exposure to stressors exacerbates immune deficits in PAE animals, 

suggesting a potential role for the stress response in these immune deficits (Giberson & 

Weinberg 1995; Giberson et al. 1997). Of note, the HPA axis and immune response display 

extensive bidirectional communication, sharing numerous ligands, receptors, and regulatory 

regions. In addition to its key role in the stress response, the hypothalamus is also an important 

feedback center for cytokines, while other brain regions regulating the HPA axis, such as 

hippocampus and prefrontal cortex display high levels of cytokine and immune receptors 

(Bernardini et al. 1990; Cunningham & De Souza 1993). Furthermore, pro-inflammatory 

cytokines can stimulate the HPA axis, which, in turn, has the ability to suppress immune function 

(Haddad, Saadé, & Safieh-Garabedian 2002). As such, PAE may affect the fine-tuned reciprocal 

interactions between these systems, leading to alterations in both HPA axis and immune 

function. Overall, the findings of persistent immune deficits and altered responses to immune 

stressors suggest a reprogramming of immune functions by PAE, potentially acting in concert 

with the rewiring of brain regions involved in both the stress and immune response. 
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1.5 Fetal programming as a framework for the interpretation of PAE-induced deficits 

Overall, the persistence of FASD-associated deficits suggests that physiological and 

neurobiological systems may be reprogrammed by PAE during early life, resulting in a markedly 

increased risk for adverse outcomes later in life (Hellemans, Sliwowska, et al. 2010). These 

findings support a role for the interpretation of PAE-induced deficits through the fetal 

programming hypothesis. This concept suggests that early environmental or non-genetic factors, 

including maternal undernutrition, stress, and exposure to drugs or other toxic agents, can 

permanently organize or imprint physiological and neurobiological systems to increase adverse 

cognitive, adaptive, and behavioral outcomes, as well as vulnerability to diseases or disorders 

later in life (Godfrey & Robinson 1998; Hanson & Gluckman 2008; Swanson et al. 2009). This 

concept was first formulated based on epidemiological evidence that low birth weight and other 

indices of poor fetal growth are associated with increased biological risk for coronary heart 

disease, hypertension, and type II diabetes/impaired glucose tolerance (i.e., metabolic syndrome) 

in adult life (Barker et al. 1989, 1993, Barker 1997, 2003, 2004; Barker & Osmond 1986; Barker 

& Thornburg 2013). Subsequent research revealed that low birth weight per se is unlikely the 

cause of these risks for disease; rather, low birth weight is a proxy for prenatal environmental 

adversity, and common factors likely underlie both intrauterine growth retardation and altered 

physiological/metabolic function (Welberg & Seckl 2001).  

Current thinking extends beyond these initial findings, suggesting that signals received 

during development, such as nutritional and hormonal status, may preemptively lead the 

organism towards a phenotype best adapted for the anticipated external environment (Hanson, 

Low, & Gluckman 2011). However, in the event of a mismatch between early and later life 

environments, this adaptive response may no longer confer a fitness advantage, but instead, lead 
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to deleterious phenotypes (Godfrey et al. 2007). This early-life programming is a manifestation 

of developmental plasticity, where a single genotype can lead to multiple phenotypic outcomes 

due to differing environmental conditions (Barker 2007). Importantly, epigenetic mechanisms 

are emerging as potential mediators for the biological embedding of these early-life 

environments, as they provide a link between in utero conditions and the genome in the 

modulation of subsequent developmental trajectories (Meaney 2010; Boyce & Kobor 2015).  

 

1.6 Epigenetic mechanisms link environmental exposures and cellular programs 

Although genetics may be considered the inscribed “blueprint” underlying the central 

dogma of molecular biology (i.e. DNA!RNA!protein), epigenetics can be thought of as the 

regulatory overlay of genetic sequence that fine-tunes gene activity during development and in 

response to external signals (Boyce & Kobor 2015). From a historical perspective, the term 

‘epigenetics’ was first introduced by Conrad Waddington in the early 1940s to describe ‘‘the 

branch of biology which studies the causal interactions between genes and their products which 

bring the phenotype into being” (Waddington 1968). Waddington argued that epigenetics play a 

critical role in the development of multicellular organisms by creating ‘epigenetic landscapes’ 

that drive cellular differentiation along a programmed trajectory towards a specific cell-type 

lineages (Waddington 1968). Since the first introduction of this concept, the field of epigenetics 

has flourished into a highly active area of study aimed at characterizing the molecular 

mechanisms underlying gene regulation and biological programming. Today, epigenetics is 

operationally defined as modifications of DNA and its regulatory components, including 

chromatin and non-coding RNA, to potentially modulate gene transcription without changing the 

DNA sequence itself (Bird 2007; Meaney 2010; Henikoff & Greally 2016). Notably, 
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Waddington’s initial hypothesis still holds true:  the ontogeny of the ~200 different cell types in 

the human body is largely shaped by the unique epigenomic profiles and transcriptional activity 

of each cellular subtype (Domcke et al. 2015; Schuebeler 2015). Accordingly, epigenetic 

regulation involves both dynamic tissue- and cell type-specific variation during development, as 

well as the preservation of the cellular memory required for developmental stability. In addition, 

epigenetic regulation is now becoming increasingly recognized as a potential biological mediator 

of environmental influences, which can contribute to sculpting the epigenome, although these 

effects tend to be subtler than those driven by cell type (Feil & Fraga 2012). Importantly, 

epigenetic mechanisms exist in a seeming paradox between the stability of cellular identity and 

plasticity of environmental responses, modulating cellular functions through both short- and 

long-term responses to stimuli (Boyce & Kobor 2015).  

 

1.6.1 DNA modifications 

Covalent modifications on DNA nucleotides, primarily cytosine, have long been an established 

form of epigenetic regulation. Specifically, DNA modifications are comprised of DNA 

methylation (which can occur in the context of cytosine-guanine (CpG) dinucleotides or at non-

CpG positions) as well as oxidized derivatives of DNA methylation such as DNA 

hydroxymethylation.  

 

1.6.1.1 DNA methylation 

DNA methylation is arguably the most studied epigenetic mark and involves the covalent 

attachment of a methyl group to the 5’ position of cytosine, typically at CpG dinucleotide sites 

(Jones & Takai 2001). These CpG dinucleotides occur relatively infrequently in the genome in 
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order to minimize the potential for DNA methylation-induced sequence mutability as methylated 

cytosines can undergo spontaneous deamination to thymine (Illingworth & Bird 2009; Weber et 

al. 2007; Gardiner-Garden & Frommer 1987). Areas with comparatively high CpG content in the 

genome have been termed “CpG islands” (CGIs) and these CGIs are thought to exist as regions 

that were either never methylated or only transiently methylated in the germline while the rest of 

the genome experienced a loss of CpGs at methylated sequences (Illingworth & Bird 2009; 

Weber et al. 2007; Gardiner-Garden & Frommer 1987). Importantly, the DNA methylation status 

of the ~ 28 million CpG sites in the human genome is often dependent on genomic context 

(Jones 2012; Ulahannan & Greally 2015). CGIs, which are associated with approximately 50-

70% of known promoters, tend to contain low levels of methylation in somatic cells, while non-

island CpGs exhibit generally higher methylation levels (Illingworth & Bird 2009; Weber et al. 

2007; Saxonov, Berg, & Brutlag 2006). Moreover, DNA methylation is associated with the 

regulation of gene expression, although its effects on transcription are highly dependent on 

genomic context (Lam et al. 2012; Jones & Baylin 2007; Edgar et al. 2014). For example, DNA 

methylation at gene promoters is generally associated with gene expression silencing, although 

its role may be more variable within gene bodies (Schuebeler 2015; Jones & Baylin 2007). 

Conversely, in regions of lower CpG density which flank CGIs, known as “island shores”, high 

DNA methylation levels are typically associated with highly expressed genes, especially if the 

associated CGI has low methylation (Edgar et al. 2014; Irizarry et al. 2008; Baubec & Schübeler 

2014). While the exact mechanisms remain mostly unknown, transcriptional silencing by DNA 

methylation may potentially occur through the direct blocking transcription factor binding or the 

recruitment of transcriptional repressors to promoter, enhancers, or insulator regions (Tate & 

Bird 1993). Although DNA methylation in promoters and enhancer regions tend to negatively 
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correlate with gene expression within an individual, emerging evidence shows that when 

comparing a single gene across a population, the association between DNA methylation and gene 

expression can be negative, positive, or non-existent, highlighting the complex relationship 

between DNA methylation and transcription (Lam et al. 2012; Gutierrez-Arcelus et al. 2013; 

Jones, Fejes, & Kobor 2013). Moreover, DNA methylation can be both active, by being a likely 

cause of gene expression variation, or passive, by being a consequence or an independent mark 

of gene expression levels (Gutierrez-Arcelus et al. 2013; Jones, Fejes, & Kobor 2013). In 

addition to its role in transcriptional control, DNA methylation within introns has been 

associated with altered mRNA splicing, and its presence within certain exons potentially 

regulates alternative transcriptional start sites (Shukla et al. 2011; Maunakea et al. 2010, 2013) . 

Finally, DNA methylation in repetitive elements, which comprise more than half of the human 

genome including intergenic sequences, tends to occur at relatively high levels and is associated 

with maintenance of chromosome structure and genomic integrity (Cordaux & Batzer 2009; 

Donnelly, Hawkins, & Moss 1999). Perhaps most importantly, in addition to its role in the 

regulation of developmental programs, DNA methylation is also emerging as a potential 

biomarker for early-life exposures due to its stability over time and malleability in response to 

environmental cues (Bock 2009). For instance, DNA methylation signatures can predict an 

individual’s risk for eczema or prenatal exposure to smoking with good accuracy, suggesting that 

DNA methylation profiles could potentially be used to screen for various environmental 

exposures or disorders (Quraishi et al. 2015; Reese et al. 2017).  

 

1.6.2 Non-CpG DNA methylation 

Although DNA methylation primarily occurs in the context of CpG dinucleotides, it can 
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also occur at CpH (where H = A/C/T) sites. Previous studies have shown that methylated CH 

dinucleotides (mCH) occur in cultured embryonic stem cells (ESCs) and induced pluripotent 

stem cells (Ramsahoye et al. 2000; Lister et al. 2009; Laurent et al. 2010; Ziller et al. 2011; 

Lister et al. 2012). Moreover, analysis of adult human and mouse CNS neurons found that mCH 

is specifically enriched in neurons compared to other cell types, as non-CpG methylation is 

nearly absent in non-neuronal adult somatic cells, but can reach up to ~ 25% of all cytosines in 

neurons of the adult mouse dentate gyrus (Guo et al. 2014; Ziller et al. 2011; Lister et al. 2013). 

Levels of mCH increase rapidly during early postnatal brain development (mouse, ~2-4 weeks; 

human 0-2 years), suggesting that it potentially plays an important role in the regulation of 

postnatal brain development. Genome-wide profiling also showed that in neurons, mCH is 

present throughout the 5’ upstream, gene-body, and 3’ downstream regions of genes, where it is 

negatively correlated with gene expression (Guo et al. 2014; Lister et al. 2013). Furthermore, in 

vitro plasmid reporter gene analyses have shown that CH methylation is associated with 

transcriptional repression in mouse neurons (Guo et al. 2014). However, mCH is not associated 

with gene silencing in all cell types, as non-CpG methylation in ESCs positively correlates with 

gene expression (Lister et al. 2009). It is thought that the distinct distribution and role in gene 

expression of mCH in different cell types relates to differences in the relative abundance and 

activity of specific “readers” and “writers” of non-CpG methylation (Kinde et al. 2015). 

Furthermore, in addition to CH methylation, very recent research has detected the presence of 

methylated adenosine nucleotides in vertebrates, suggesting that that DNA modification variants 

may be more diverse than previously thought (Meyer et al. 2012; Dominissini et al. 2013; Koziol 

et al. 2015; Meyer & Jaffrey 2016).  
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1.6.3 DNA hydroxymethylation 

In contrast to the well-characterized mechanisms underlying the establishment and 

maintenance of DNA methylation, the process of DNA demethylation remains unclear. Thought 

to involve both active and passive pathways, this phenomenon is vital for typical development 

and genetic regulation, particularly in the brain (Ooi & Bestor 2008; Wu & Zhang 2014; 

Tognini, Napoli, & Pizzorusso 2015). Active DNA demethylation may potentially occur through 

the oxidation of 5-methylcytosine, catalyzed by the Ten-Eleven-Translocation (TET) family of 

enzymes (Tahiliani et al. 2009; Santiago et al. 2014). This process generates a series of oxidized 

cytosine base variants, including hydroxymethylcytosine (hmC), formylcytosine, and 

carboxycytosine (Tahiliani et al. 2009; Ito et al. 2010; Ulahannan & Greally 2015). Although the 

exact details of active DNA demethylation remain unclear, emerging evidence points to a 

process involving the coordinated activity of a number of key enzymatic players and 

intermediate modified cytosine species. These cytosine variants may also play a role in 

modulating chromatin structure or recruiting various factors to key regions of the genome 

(Sadakierska-Chudy, Kostrzewa, & Filip 2014). For instance, various members of the methyl-

CpG-binding domain protein family display different affinities for hmC, and given their role in 

recruiting different chromatin modifying complexes, hmC could potentially alter chromatin 

landscapes throughout the genome (Pfeifer, Kadam, & Jin 2013).  

DNA hydroxymethylation (DNAhm) is also present at high levels in pluripotent cells and 

the brain, where it has been implicated in neural stem cell functions, although its exact functional 

role remains to be uncovered (Ito et al. 2010; Kriaucionis & Heintz 2009; Santiago et al. 2014). 

Genome-wide mapping of DNAhm in various brain regions, including the frontal cortex, 

hippocampus, and cerebellum, identified an enrichment of hmC in gene bodies, which was 
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positively associated with gene transcription, particularly at developmentally activated genes 

(Lister et al. 2013; Wang et al. 2012). Active DNA demethylation and TET activity is also 

associated with memory formation and addiction in mice, further supporting its functional role in 

neural activity (Alaghband, Bredy, & Wood 2016). 

 

1.7 Evidence for genetic and epigenetic changes following PAE 

1.7.1 PAE causes both transient and persistent alterations to gene expression programs  

Epigenetic factors provide an attractive mechanism to mediate the biological embedding 

of early life events, and their association with transcription makes gene expressions programs an 

easy target to first assess the molecular underpinning of PAE-induced deficits. Initial evidence of 

the genome-wide programming effects of alcohol on the genome was identified through changes 

in transcription. In particular, genome-wide investigations of gene expression programs have 

identified widespread alterations to gene expression levels in fetal, neonatal, and adult rodent 

models of PAE, providing important insight into potential mechanisms and pathways involved in 

PAE-induced deficits (Green et al. 2007; Hard et al. 2005; Zhou, Zhao, et al. 2011; Downing et 

al. 2012; Kleiber et al. 2012, 2013, 2014; Lussier et al. 2015).  

Given the importance of spaciotemporal gene expression during developmental 

patterning, it is perhaps not surprising that many of the PAE-induced alterations to the 

transcriptome are closely related to the stage of development that was assessed. For example, 

differentially expressed genes during early gestation were generally associated with functions in 

cellular patterning, growth, and development, suggesting that PAE can interfere with typical 

developmental programs. As gene expression is highly dynamic, quickly responding to 

environmental and cellular inputs, transcriptional alterations measured soon after alcohol 
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exposure may reflect the intracellular response to the teratogen, rather than stable programming 

effects of PAE on the genome. By contrast, gene expression profiling in the adult brain, long 

after the removal of ethanol, may provide additional insight into the long-term effects of PAE on 

cellular programs. Although these effects are usually subtler, long-lasting changes to the 

transcriptome have been identified in the whole brain in male adult mice, suggesting that PAE 

can have lasting effects on the neural transcriptome.  

Alterations identified in the entire embryo or brain likely reflect systemic effects of 

ethanol on the organism or CNS, respectively, and may reflect the broader alterations of PAE on 

biological functions. In particular, meta-analyses of gene expression patterns across multiple 

studies of PAE, ranging from whole embryos on embryonic day 9 in mice to the rat hippocampus 

on postnatal day 100, identified a general inhibition of transcription by PAE, regardless of the 

model (Rogic, Wong, & Pavlidis 2016). The differentially expressed genes identified in the 

combined analyses were mainly involved in protein synthesis, mRNA splicing, and chromatin 

function, suggesting that PAE may broadly influence the regulatory systems of the cell, 

irrespective of the timing and dosage of alcohol exposure. More recent studies are beginning to 

focus on specific brain regions, providing functional insight into some of the deficits observed 

following PAE. For instance, gene expression patterns in the postnatal day 70 mouse 

hippocampus are altered by a third trimester equivalent exposure to binge levels of alcohol, 

which may potentially be related to some of the deficits in spatial learning and memory 

impairment associated with PAE (Chater-Diehl et al. 2016). A recent study also profiled gene 

expression patterns in human fetal cortical tissue from late first trimester fetuses with PAE (n=2) 

(Kawasawa et al. 2017). These embryos displayed a shift in the typical balance of splicing 
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isoforms in addition to widespread alterations to transcriptomic programs, suggesting that PAE 

may influence the fine balance of splice variants in the brain.  

Taken together, these findings support that PAE can have both transient and persistent 

effects on the genome, which may influence the cellular response to ethanol and mediate the 

vulnerability to adverse long-term health outcomes. Furthermore, PAE-induced deficits may 

potentially arise through the disruption of epigenetic programs, concurrent with alterations to 

gene expression patterns.  

 

1.7.2 PAE alters DNA methylation programs 

A large number of studies have identified changes in DNA modifications in response to 

prenatal alcohol exposure, and the current thesis will present a snapshot of the different 

approaches to assess these alterations, which range from “bulk” levels to candidate gene 

approaches and genome-wide investigations (here, bulk levels are defined as measures of 

epigenetic patterns that do not delineate specific regions, but rather represent the total levels 

within a given tissue or cell population). The first evidence of alcohol-induced changes to DNA 

methylation programs was generated in a mouse model, where embryos were exposed to alcohol 

during gestational days (GD) 9-11. This study demonstrated that alcohol reduced bulk levels of 

DNA methylation in the genome, potentially by inhibiting DNA methyltransferase 1 (DNMT1) 

activity, and opened the door for future studies of epigenetic mechanisms in FASD (Garro et al. 

1991). Several studies have extended this line of evidence by studying the effects of alcohol 

exposure during various stages of development and identifying alterations to bulk levels of DNA 

methylation in different brain regions under basal and intervention conditions (Otero et al. 2012; 

Perkins et al. 2013; Chen, Ozturk, & Zhou 2013; Mukhopadhyay et al. 2013; Nagre et al. 2015; 
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Liyanage et al. 2015; Öztürk et al. 2017). For instance, PAE throughout gestation delays the 

accumulation of DNA methylation in neural stem cells, and increases DNA methylation levels in 

the mouse hippocampus, a brain region involved in learning and memory (Chen, Ozturk, & Zhou 

2013). This same study assessed bulk DNA hydroxymethylation in parallel, identifying a 

decrease in the neural progenitor cells of the hippocampus, which suggests widespread 

alterations to DNA methylation programs (Chen, Ozturk, & Zhou 2013). In addition to assessing 

the impact of PAE on bulk DNA methylation levels, a number of studies have used bulk DNA 

methylation levels as a measurable outcome for dietary or therapeutic interventions in 

combination with different behavioral tasks. For example, choline supplementation has been 

proposed as a potential intervention due to its role as a methyl donor, and has been associated 

with the partial rescue of behavioral alterations and increased DNA methylation levels in the 

hippocampus and prefrontal cortex of PAE rats (Thomas et al. 2007; Otero et al. 2012). Similar 

outcomes are also observed in embryos and neural stem cells treated with alcohol or 5-

azacytidine, a potent inhibitor of DNA methylation, suggesting that alcohol-induced deficits are 

likely related to altered epigenomic profiles and functions (Zhou, Zhao, et al. 2011). These 

findings demonstrate that developmental alcohol exposure tends to impair the establishment of 

typical DNA methylation levels, which may reprogram downstream cellular and biological 

functions.  

Proof of principle of alcohol’s programming effects was further exemplified using the 

agouti viable (Avy) yellow mouse model, which contains a DNA methylation-sensitive element 

within the Avy locus that regulates coat color (Wolff et al. 1998). In this model, PAE increased 

the incidence of pseudo-agouti animals, indicating that specific loci are responsive to the effects 

of alcohol during development and can influence phenotypic outcomes (Kaminen-Ahola et al. 
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2010). As such, more recent studies have sought to identify specific gene targets of PAE-induced 

epigenetic effects, either through hypothesis- or discovery-driven approaches. An initial study 

using cultured cells showed that, rather than a global demethylation of the genome, specific 

regions become more methylated and others less methylated in response to alcohol exposure, 

suggesting that some regions may be differentially sensitive to alcohol-induced reprogramming 

effects (Liu et al. 2009). Numerous groups have invested in targeted analyses of epigenetic 

patterns in genes associated with the deficits observed in individuals with FASD (e.g. immune, 

stress, cognitive, and otherwise-related) (Vallés et al. 1997; Maier et al. 1999; Downing et al. 

2011; Bekdash, Zhang, & Sarkar 2013; Zhang et al. 2015; Ngai et al. 2015; Marjonen et al. 2015; 

Liyanage et al. 2015). In mice, the expression of Igf2, an imprinted gene involved in growth, is 

decreased in the embryo and placenta following PAE, concomitant with increased DNA 

methylation of the differentially methylated region 1 in its promoter and growth deficits in 

offspring. Choline supplementation during gestation partially rescues the effects of PAE on 

growth and DNA methylation within this locus, further highlighting a potential role for dietary 

supplements in the attenuation of alcohol-induced deficits (Downing et al. 2011). PAE also 

results in increased DNA methylation and decreased expression of proopiomelanocortin (POMC) 

in the hypothalamus, which is a key regulator of the stress response (Bekdash, Zhang, & Sarkar 

2013). Slc6a4, an important serotonin transporter, also displays sex-dependent alterations to 

DNA methylation and gene expression patterns in the hypothalamus of adult PAE rats (Ngai et 

al. 2015). While the hypothesis-driven approach has proven fruitful in many regards, it relies 

heavily on previously identified biological pathways and has not been very successful in 

identifying novel targets of developmental alcohol exposure.  
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Researchers have also used genome-wide tools to study the effects of alcohol exposure 

beyond classical candidate pathways (Liu et al. 2009; Hicks, Middleton, & Miller 2010; F.C. 

Zhou, Chen, & Love 2011; Laufer et al. 2013; Krishnamoorthy et al. 2013; Khalid et al. 2014; 

Chater-Diehl et al. 2016; Laufer et al. 2015; Portales-Casamar et al. 2016). For example, 

widespread changes in DNA methylation patterns were identified in the brains of adult male 

mice, with some alterations overlapping with changes in gene expression profiles (Laufer et al. 

2013; Chater-Diehl et al. 2016). These findings provide evidence for the lasting effects of 

developmental alcohol exposure on the DNA methylome, as well as identifying novel genes 

associated with alcohol exposure. Moreover, these PAE-related changes in the DNA methylome 

may alter transcriptional profiles and reprogram physiological systems. The analysis of DNA 

methylation profiles in buccal epithelial cells (BECs) of children with FASD has revealed 

widespread alterations to the epigenome, and provided preliminary evidence of a DNA 

methylation “signature” of FASD (Laufer et al. 2015; Portales-Casamar et al. 2016). While the 

use of a peripheral tissue, buccal epithelial cells, makes it difficult to readily interpret these 

findings in the context of FASD-associated deficits, these studies provide important insight into 

potential biomarkers of PAE in human populations.  

These studies highlight the widespread effects of developmental alcohol exposure on 

DNA methylation patterns, although the direction of change varies depending on the model of 

alcohol exposure, the tissue analyzed, and the specific genes assessed. While most studies of 

bulk DNA methylation identify a decrease in methylation levels, potentially due to lower activity 

of DNA methyltransferases and the inhibition of 1-carbon metabolism by alcohol, results have 

varied across models due to a number of factors, including differences in levels and timing of 

alcohol exposure, developmental stage, analyzed tissue, and analysis methods. These findings 
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highlight the importance of using different models to assess the molecular mechanisms 

underlying the effects of ethanol at different stages, doses, etc. The analysis of DNA 

hydroxymethylation also remains an elusive topic of research in the context of FASD, only being 

investigated in a two studies of PAE (Chen, Ozturk, & Zhou 2013; Öztürk et al. 2017). Given its 

seemingly key role in neurons, it could potentially play an important role in the etiology of 

FASD. As a whole, multiple lines of evidence support a role for DNA methylation in the fetal 

programming of biological systems by PAE and represent an important avenue for the discovery 

of biomarkers of FASD.  

 

1.8 Current diagnostic tools and biomarkers of FASD 

Early identification and diagnosis of FASD is crucial to mitigate the long-term deficits 

caused by PAE. While FAS is readily distinguishable due to its well-characterized features 

(facial dysmorphisms, growth retardation, and CNS alterations), the identification and diagnosis 

of all individuals under the umbrella of FASD has proven more difficult, as the majority do not 

present with any physical manifestations of the disorder (Hoyme et al. 2016; Mattson et al. 

2013). A diagnosis of ARND requires confirmation of prenatal alcohol, which is not always 

readily available from medical records or the biological mother (Riley, Infante, & Warren 2011). 

However, these individuals can still have considerable neurobiological/behavioral impairments, 

which are often not diagnosed until they reach school age, when their deficits become more 

apparent in the face of increased social and cognitive pressure (Senturias & Baldonado 2014). 

Furthermore, behavioral and cognitive interventions may be effective at mitigating some of the 

deficits caused by PAE and improving long-term health in individuals with FASD (Paley & 

O’Connor 2011). As earlier diagnosis of FASD is associated with increased positive outcomes, 
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and interventions may have the greatest impact during early development, early screening tools 

are being developed to aid in the identification and diagnosis of children at-risk of FASD 

(Streissguth et al. 2004; Fox, Levitt, & Nelson III 2010).  

Self-report questionnaires and observations of alcohol-induced physical and 

neurobehavioral alterations are currently the gold standard for the initial screening of FASD. 

However, these can often lead to the underestimation of alcohol consumption behavior during 

pregnancy (Russell et al. 1996; Jones, Bailey, & Sokol 2013; Burns, Gray, & Smith 2010). 

Several groups have begun to investigate alternate molecular and physiological biomarkers of 

PAE to supplement these methods. Many of these have focused on the direct or indirect products 

of ethanol metabolism, which can be measured in a number of biological specimen, including 

maternal blood, urine, hair, saliva, and sweat; newborn blood, urine, hair, and meconium; and the 

placenta (Concheiro-Guisan & Concheiro 2014; McQuire et al. 2016). For instance, fatty acid 

ethyl esters (FAEE) are highly associated with PAE when measured in the meconium of 

newborns, but their specificity is inconsistent between different cohorts and markers, potentially 

due to the small number of cases in each study (Bakhireva et al. 2014; Bearer et al. 2003, 1999, 

2005; Kwak, Han, Choi, Ahn, Kwak, et al. 2014; Ostrea et al. 2006). A composite measure of 4 

FAEEs showed high levels of diagnostic accuracy in a very small cohort, though these results 

have yet to be fully assessed in large independent studies (Bakhireva et al. 2014). By contrast, 

FAEE measures in the placenta display high sensitivity and specificity, but 30-56% false 

positives, while maternal-based assays of ethanol metabolism blood, urine, and hair have not yet 

been shown to identify PAE at both high sensitivity and specificity (Gutierrez et al. 2015; Kwak, 

Han, Choi, Ahn, Ryu, et al. 2014; Sarkola et al. 2000).  Importantly, these methods assess in 

utero exposure to alcohol and their use is restricted to a timeframe shortly after birth, limiting 
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their use in later-life diagnoses (Cabarcos et al. 2015). As such, other measures have been 

developed in order to identify a persistent biological signature of PAE. 

Eye tracking measures have also been used in a small cohort of children to distinguish 

children with FASD, ADHD, or typically developing controls with relatively good accuracy 

using several features obtained from a short testing session (Tseng et al. 2013). Furthermore, the 

cardiac orienting response could also potentially be used to assess the effects of PAE on infants, 

as it performs slightly better than the Bayley Scales of Infant Development-II at classifying 

children as alcohol-exposure or controls (Mesa et al. 2017). A decision tree has also been 

developed using neurobehavioral and physical measures to distinguish individuals affected by 

PAE from typically developing controls (Goh et al. 2016). 

Epigenetic marks are also emerging as potential biomarkers or signatures of early-life 

exposures, as they may provide a link between environmental factors and genetic regulation. For 

example, plasma microRNA (miRNA) in alcohol-exposed pregnant mothers, either alone or in 

conjunction with other clinical variables, could predict infant outcomes (Balaraman et al. 2016). 

A combination of high variance miRNAs, smoking history, and socioeconomic status could 

classify infants affected by PAE versus unexposed controls. These findings suggest that maternal 

plasma miRNAs may predict infant outcomes, and may be useful to classify difficult-to-diagnose 

FASD subpopulations.  

These findings suggest that molecular screening tools may prove useful in early 

identification of children with FASD, although they require further optimization and validation. 

DNA methylation is now a unique position for the development of potentially accurate and stable 

biomarker of prenatal alcohol exposure given its stability over time and its malleability in 

response to environmental influences. 
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1.9 Thesis overview 

The overarching goal of this thesis was to test the hypothesis that that PAE alters the 

transcriptional profiles and DNA methylation patterns of genes that are functionally related to 

the deficits associated with FASD. The experimental data will be presented through four separate 

chapters, which will address the specific aims outlined in section 1.1. Chapter 2, entitled 

“Prenatal alcohol exposure alters steady-state and activated gene expression in the adult rat 

brain” is based on the previous identification of PAE-induced alterations to an AA challenge by 

the Weinberg lab, and seeks to identify long-term changes to gene expression patterns in the rat 

brain. Chapter 3, entitled “Prenatal alcohol exposure alters DNA methylation patterns during 

early development”, builds on the findings from the previous chapter, assessing the programming 

effects of PAE on DNA methylation patterns of the rat hypothalamus and white blood cells 

during early postnatal development. Chapter 4, entitled “DNA methylation signature of human 

fetal alcohol spectrum disorder”, takes advantage of a clinical cohort of individuals with FASD, 

determining whether PAE in humans can influence DNA methylation in peripheral tissues. 

Chapter 5, entitled “DNA methylation as a predictive tool for fetal alcohol spectrum disorder”, 

follows up on the findings from the previous chapter, attempting to validate the findings in an 

independent cohort, while simultaneously developing a predictive algorithm for the screening of 

individuals with FASD. Finally, the main findings from each data chapter will be integrated 

alongside a discussion of limitations and future directions for these studies.  



 

 

31 

Chapter 2: Prenatal alcohol exposure alters steady-state and activated gene 

expression in the adult rat brain 

 
2.1  Background and rationale 

The prevalence of fetal alcohol spectrum disorders (FASD) in North America is 

estimated at 2-5% of live births, making prenatal alcohol exposure (PAE) a leading cause of 

neurodevelopmental disorders (May et al. 2009; Sampson et al. 1997). In addition to lasting 

neurocognitive deficits, impairments in self-regulation, and deficits in adaptive functioning, 

children with FASD also display changes in a number of physiological systems, including the 

immune system, with adverse impacts on both innate and adaptive immunity (Johnson et al. 

1981; Streissguth, Clarren, & Jones 1985; Gauthier et al. 2005). 

Animal models have corroborated clinical findings, with PAE animals displaying 

behavioural and cognitive deficits, including delays in learning and memory, and altered 

responsivity to stressors (Hellemans, Sliwowska, et al. 2010). Moreover, PAE animals also 

exhibit altered development of the thymus, decreased lymphocyte proliferative responses to 

mitogens, increased susceptibility to infections, and greater vulnerability to immune and 

inflammatory challenges compared to controls (reviewed in Bodnar & Weinberg 2013). PAE 

animals also show larger increases in plasma levels of pro-inflammatory cytokines, as well as 

reduced proliferative responses of B cells to lipopolysaccharide (LPS), and splenic T cells and T 

lymphoblasts to Concanavalin A and/or interleukin-2 (Zhang, Sliwowska, & Weinberg 2005; 

Weinberg & Jerrells 1991). Likewise, in an adjuvant-induced arthritis (AA) paradigm, PAE 

animals show increased severity of joint inflammation and a prolonged course of disease (39 

days post-injection, higher incidence of arthritis in PAE compared pair-fed [PF] and control [C] 
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animals) (Zhang et al. 2012). These findings suggest that although PAE causes deficits in 

adaptive immunity, PAE offspring show increased responses to some immune/inflammatory 

challenges.  

The immune, neuroendocrine and central nervous systems have extensive bidirectional 

communication, sharing numerous ligands and receptors. Brain regions, such as the prefrontal 

cortex (PFC) and hippocampus (HPC) not only play a role in the regulation of neuroendocrine 

function, but also respond to immune/inflammatory molecules, including cytokines and 

neuropeptides (Crofford et al. 1992). For example, adjuvant injection induces c-Fos expression 

in the hippocampus for up to 4 months, suggesting a role for this region in AA (Carter et al. 

2011). Thus, long-term changes in gene expression may modulate AA manifestation and 

progression. Indeed, mounting evidence suggests a role for altered gene expression in the 

etiology of FASD (Kobor & Weinberg 2011). Widespread changes to gene expression levels in 

fetal and neonatal brains following PAE, as well as long-lasting alterations to the neural 

transcriptome following alcohol exposure during the neonatal (third-trimester equivalent) period 

or across all three trimesters have been reported (Green et al. 2007; Hard et al. 2005; Zhou, 

Zhao, et al. 2011; Kleiber et al. 2012, 2013).  

Using saline-injected animals (steady-state) as a baseline, the current study examined 

brains from adult PAE and control females from the lab’s previous AA study to determine 

whether long-term alterations in gene expression mediate the altered severity and course of 

arthritis observed in PAE females (Zhang et al. 2012). Since the PFC and HPC play key roles in 

both neuroendocrine and neuroimmune processes and show altered function following PAE, 

PAE-induced alterations in the transcriptome of these regions could result in marked downstream 

effects, including dysregulation of the immune response and neuroendocrine-neuroimmune 
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interactions (Norman et al. 2009). Whole genome microarrays were utilized to assess gene 

expression in the PFC and HPC of adult PAE, PF and C females terminated at the peak or during 

resolution of inflammation (days 16 and 39 post-adjuvant injection, respectively); cohorts of 

saline-injected PAE, PF and C females were terminated in parallel. Under steady-state condition, 

we identified changes in gene expression and altered activation states of upstream regulators 

specific to PAE. Furthermore, at the peak of inflammation, we found not only changes in genes 

related to PAE, but also, a failure of PAE animals to mount appropriate responses to the immune 

challenge, showing no change in the activation or inhibition of inflammation-related genes and 

upstream regulators identified in controls. 

 

2.2 Materials and Methods 

2.2.1 Breeding and prenatal ethanol exposure 

All animal protocols were approved by the University of British Columbia Animal Care 

Committee and are consistent with the NIH Guide for the Care and Use of Laboratory Animals 

(National Research Council 2011). Details of the breeding and feeding procedures have been 

published (Glavas et al. 2007). Briefly, male and female Sprague-Dawley rats (Animal Care 

Center, University of British Columbia) were paired; presence of a vaginal plug indicated 

gestation day (GD) 1. Pregnant dams were singly housed and assigned to experimental groups: 

Prenatal ethanol exposure (PAE; ad libitum access to liquid ethanol diet, 36% ethanol-derived 

calories); Pair-fed (PF; liquid-control diet, maltose-dextrin isocalorically substituted for ethanol, 

in the amount consumed by a PAE partner, g/kg body weight/GD); or Ad libitum-fed control (C; 

laboratory chow, ad libitum). All animals had ad libitum access to water. Experimental diets 

(Weinberg/Kiever Ethanol Diet #710324, Weinberg/Kiever Control Diet #710109, Dyets Inc., 
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Bethlehem, PA) were fed from GD 1-21, then replaced with laboratory chow. Litters were 

weighed and culled at birth to 5 males and 5 females, when possible. Following weaning 

(postnatal day 22), offspring were group-housed by litter and sex. Female offspring were used in 

the present study due to their increased susceptibility to arthritis (Whitacre 2001).  

 

2.2.2 Induction of arthritis and termination of animals 

Details of the adjuvant-induced arthritis (AA) paradigm have been published (Zhang et 

al. 2012). Female offspring (50-65 days of age) from C, PF, and PAE groups received an 

intradermal injection of 0.1 ml of a 12 mg/ml suspension of complete Freund’s adjuvant (CFA) 

or 0.1 ml physiological saline at the base of the tail. Animals were single-housed post-injection, 

and monitored for clinical signs of arthritis under light anesthesia with isofluorane. Paws were 

scored individually for redness and swelling on days 7, 10, and every other day thereafter until 

day 39 following injection (Zhang et al. 2012). Animals were terminated by decapitation, 

following brief exposure to CO2, in two cohorts: day 16 post-injection or day 39 post-injection 

(peak or resolution phase of AA, respectively). Each cohort contained 9 adjuvant-injected 

animals and 5 saline-injected animals for each group (C, PF, and PAE). Brains were rapidly 

removed, immediately frozen on dry ice, and stored at -70 °C.  
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Figure 2.1 Overview of the experimental design prior to sample collection and microarray analysis  

Adult female rats from one of three prenatal treatment groups, control (C), pair-fed (PF), and prenatal alcohol 

exposure (PAE), were injected with complete Freund’s adjuvant (CFA) to cause adjuvant-induced arthritis (AA). 

Animals were terminated 16 or 39 days post-injection and microarray analysis of gene expression was performed on 

the prefrontal cortex (PFC) and hippocampus (HPC). 

 

2.2.3 Tissue dissection and RNA extraction 

Brains were thawed to 4 °C, and the PFC and HPC were dissected, placed in RNAlater, 

and stored at -20 °C. Total RNA and DNA were simultaneously extracted from the tissues 

(Qiagen AllPrep DNA/RNA Mini kit). RNA integrity was determined using the Agilent 

BioAnalyzer mRNA Nano assay.  

 

2.2.4 Microarray assay of whole genome gene expression and quality control 

The Ambion Illumina TotalPrep RNA Amplification kit was used to generate cRNA (750 

ng) from total RNA (250 ng) for each sample. Expression data were obtained using the Illumina 
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RatRef-12 Expression BeadChip microarray with the Illumina iScan, which provides probe-level 

data for all expressed genes (~ 1 probe per gene). Datasets were filtered to remove control probes 

and probes with a detection p-value >0.05 in comparison to negative control probes. After 

filtering, 20215 and 20069 probes remained in the PFC and HPC, respectively (out of a total 

23350 probes). The filtered, log2-transformed gene expression profiles were quantile-normalized 

within each tissue. 

2.2.5 Differential gene expression analysis 

Gene expression analysis utilized the sva and limma packages in the statistical program R 

(Smyth 2005). Using sva, surrogate variables representative of heterogeneity from sources other 

than experimental treatments (e.g. batch effects) were generated. These were included in linear 

modeling of gene expression with limma, which uses moderated F- and t-statistics to identify 

significant differences. Gene expression changes were modeled in two ways using separate 

sample means: effects of prenatal treatment alone on steady state levels of gene expression 

(saline-injected animals, n=5 per C, PF, PAE group), and interaction of prenatal treatment with 

an inflammatory challenge (adjuvant- versus saline-injected animals; n=5 for saline, n=9 for 

adjuvant per C, PF, PAE group). Each probe received a moderated F-statistic, and their p-values 

were corrected for multiple testing using Benjamini-Hochberg correction. The false-discovery 

rate (FDR) was controlled at <25% due to the moderate alcohol-exposure paradigm and its 

relatively subtle effects. Significant changes in PAE compared to controls had a moderated t-

statistic p-value <0.05. Sequences for significant probes were queried against the RefSeq 

database for Rattus norvegicus to identify target transcripts. 
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2.2.6 Verification of microarray results 

Differentially expressed genes were verified using reverse-transcription quantitative real 

time PCR (RT-qPCR) on the Corbett Rotorgene 6000 for both PFC and HPC, with the same 

RNA used for microarray analysis (n=4 in both tissues for each C, PF, and PAE).  Primers were 

designed using well-established guidelines to obtain gene-level data and multiple reference genes 

were used to normalize expression data (Nolan, Hands, & Bustin 2006). Three reference genes 

across a spectrum of expression levels and no evidence for differences across groups (F-statistic 

p-value >0.05) were selected for each tissue (Supplementary table 2.4). The normalization factor 

for each sample was calculated using the geometric mean of cycle threshold (Ct) values 

(Vandesompele et al. 2002). Expression levels relative to the factor were determined, and 

analysis of variance (ANOVA) was conducted to test for significant differences between groups 

(Schmittgen & Livak 2008). 

 

2.2.7 Gene Ontology and Pathway analysis 

Gene ontology (GO) analysis was conducted to identify “Biological Processes” enriched 

for the effects of prenatal treatment and adjuvant exposure using the gene-score resampling 

(GSR) method in ermineJ (Lee et al. 2005). The set of candidate FASD genes from the curated 

Neurocarta database was included in the analysis as a custom GO term (Portales-Casamar et al. 

2013) (Supplementary table 2.1). Benjamini-Hochberg correction was used with an FDR of 1% 

within single brain regions to identify more robust functional enrichment categories. By contrast, 

a 10% cutoff was used when comparing overlapping effects between brain regions to a broader 

picture of the effects of PAE on the brain’s transcriptome. Where many GO categories were 

identified, these were mapped to their parent GO Slim terms using CateGOrizer to determine 
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common categories of altered function (Hu, Bao, & Reecy 2008). Following GO analysis, the 

Ingenuity© Upstream Regulator Analysis tool (URA, Ingenuity Systems Inc., Redwood City, 

CA) was used to predict master transcriptional regulators that explain the observed expression 

changes within the dataset. Genes with a fold-change ≥ 1.2 and p < 0.05 between treatments 

were analyzed for effects of PAE and adjuvant injection. For steady-state effects of PAE, 

prenatal groups were compared, while adjuvant effects were assessed by comparing adjuvant- to 

saline-injected animals in each prenatal group. Significantly activated and inhibited genes were 

identified through a Z-score > 2 or < -2 respectively, as well as an overlap p-value ≤ 0.1, 

calculated by Fisher’s Exact test.  

 

2.3 Results 

2.3.1 Developmental Data 

As expected, body weights of PAE dams were lower than those of controls (p<0.001) by 

the end of pregnancy (GD21) [Group x Day interaction, F(6,99)=17.2, p<0.0001], with PF dams 

intermediate to PAE and C; dams no longer differed in weight by lactation day 8. At birth, PAE 

(5.7± 0.17 g) females weighed less than their C (6.5± 0.18 g) counterparts (main effect of group, 

F(2,66)=7.02, p<0.01), which persisted until weaning (PAE, 51.2±1.4 g; PF, 55.3±1.6 g; C, 

55.2±1.5 g) (group x day, F(6,99)=1.96, p=0.079). Blood ethanol levels for dams in this paradigm 

typically average ~100-150 mg/dl (Uban et al. 2010; Lan et al. 2006).  
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2.3.2 Prenatal ethanol exposure altered steady-state levels of gene expression in the PFC 

and HPC 

PAE effects on steady-state levels of gene expression were examined in saline-injected 

females on Days 16 and 39 post-injection (~ PND 75 and 95, respectively). On Day 16, p-value 

distributions were skewed towards zero for contrasts of PAE vs C and PAE vs PF, suggesting 

gene expression differences in PAE compared to C and PF females (Supplementary figure 2.1). 

Following Benjamini-Hochberg correction, significant effects of prenatal treatment were found 

for 80 and 30 genes in the PFC and HPC, respectively, at 25% FDR (Figure 2.2). While many 

genes (43% in PFC, 37% in HPC) showed significant effects of ethanol exposure against both 

control groups, only a subset (15 in PFC, 4 in HPC; p <0.05) showed changes specific to PAE, in 

that levels were similar between C and PF animals (Tables 1.1, 1.2; Figure 2.3). These had a 

number of annotated functions in common, including neurodevelopment, differentiation, 

neuronal signaling, and regulation of cell death and transcription. 

By contrast, on day 39 post-injection, no relationship between gene expression and PAE 

was apparent in either brain region, according to p-value distributions (Supplementary figure 

2.1). Moreover, only 2 probes met a 25% FDR, but were not specific to PAE effects (data not 

shown). Thus, subsequent analyses focused on brains from Day 16 post-injection. 
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Gene Symbol Gene Name Average 
Expression F p-value q-

value 
Fold change 

EvC EvPF PFvC 
H2afv Rattus 

norvegicus 
similar to H2A 
histone family, 
member V 
isoform 1 
(LOC685909) 

10.6 18.7 4.8E-05 0.11 0.65 0.76 0.86 

Tcf4 transcription 
factor 4 

11.2 11.4 7.0E-04 0.23 0.67 0.66 1.01 

Rnasek ribonuclease, 
RNase K 

13.2 11.1 8.0E-04 0.23 0.68 0.57 1.19 

Ppp1r14a protein 
phosphatase 1, 
regulatory 
(inhibitor) 
subunit 14A 

10.0 12.6 4.1E-04 0.23 0.68 0.64 1.05 

Rps8 ribosomal 
protein S8 

13.0 11.1 7.9E-04 0.23 0.69 0.74 0.93 

ILMN_1372701 na 9.4 11.3 7.3E-04 0.23 0.71 0.79 0.90 
ILMN_1374168 na 9.1 10.7 9.4E-04 0.25 0.77 0.73 1.05 
Pex11g peroxisomal 

biogenesis 
factor 11 
gamma 

7.0 11.5 6.7E-04 0.23 0.82 0.71 1.16 

Ndfip1 Nedd4 family 
interacting 
protein 1 

11.4 12.1 5.1E-04 0.23 1.32 1.37 0.97 

Acsl3 acyl-CoA 
synthetase 
long-chain 
family member 
3 

10.2 12.2 4.9E-04 0.23 1.36 1.36 1.00 

Dusp6 dual specificity 
phosphatase 6 

9.9 12.5 4.4E-04 0.23 1.41 1.21 1.17 

Rpl7 ribosomal 
protein L7 

11.6 13.7 2.7E-04 0.22 1.44 1.36 1.05 

Med28 mediator 
complex 
subunit 28 

9.2 11.1 7.9E-04 0.23 1.48 1.29 1.15 

Atp6ap1 ATPase, H+ 
transporting, 
lysosomal 
accessory 
protein 1 

11.0 10.6 9.8E-04 0.25 1.50 1.35 1.11 

Ap1s2 adaptor-related 
protein 
complex 1, 
sigma 2 
subunit 

9.7 12.4 4.6E-04 0.23 1.60 1.35 1.19 

Table 2.1 Differentially expressed genes in the prefrontal cortex under steady-state conditions 
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Genes with a significantly expression under steady-state conditions in PAE compared to both C and PF animals (p 

<0.05) in the PFC (a) and HPC (b) at D16 post-saline injection. Bold = p <0.05. na = probe had no specific 

alignment to RefSeq RNA database. 

 

Gene 
Symbol 

Gene Name Average 
Expression 

F p-value q-
value 

Fold change 
EvC EvPF PFvC 

Cnih2 cornichon homolog 2 
(Drosophila) 

11.1 16.0 8.1E-05 0.14 0.61 0.60 1.01 

Caap1 caspase activity and 
apoptosis inhibitor 1 

9.2 15.2 1.1E-04 0.14 0.68 0.71 0.95 

LOC688637 similar to WD repeat 
domain 36 

8.8 15.4 1.0E-04 0.14 1.46 1.36 1.08 

Rgs3 regulator of G-
protein signaling 3 

9.1 14.6 1.4E-04 0.15 1.71 1.83 0.93 

Table 2.2 Differentially expressed genes in the hippocampus under steady-state conditions 

Genes with a significantly expression under steady-state conditions in PAE compared to both C and PF animals (p 

<0.05) in the PFC (a) and HPC (b) at D16 post-saline injection. Bold = p <0.05. na = probe had no specific 

alignment to RefSeq RNA database. 

 

 

Figure 2.2 Prenatal treatment alters gene expression patterns under steady-state conditions.  

Venn diagram of the number of the number of probes significantly altered in each contrast at Day 16 post-saline 

injection, with moderated F-statistic q <0.25 and moderated t-statistic p <0.05 (80 in the PFC, 30 in the HPC). The 

number of probes with unique effects in PAE versus both PF and C animals are highlighted in grey, and listed in 

Table 1. The center of each Venn diagram shows the number of probes differentially expressed among all three 
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prenatal treatment groups. The intersection on the left of each diagram shows the number of probes with a common 

effect of prenatal ethanol exposure and pair-feeding. The intersection on the right of each diagram shows the number 

of probes with a unique effect of pair-feeding.  

 

Figure 2.3 Prenatal alcohol exposure alters steady-state gene expression at Day 16 post-saline injection.  

In the prefrontal cortex (a), 15 genes were differentially expressed in response to ethanol. In the hippocampus (b), 4 

genes were differentially expressed in response to ethanol. F-statistic q-value <0.25 for all genes identified. 

A 

B 

C PF PAE C PF PAE 
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2.3.3 Verification of results related to prenatal ethanol exposure with RT-qPCR 

Of 19 probes showing differential expression due to PAE (Tables 2.1, 2.2), 17 aligned to 

a sequence in the Rattus norvegicus RefSeq database (ILMN_1372701 and ILMN_1374168 were 

the exceptions). Specific RT-qPCR primers were successfully designed for 15 of the 17 genes 

(Supplementary table 2.3; Rps8 and Rpl7 were not analyzed).  

Despite differences with microarray technology, RT-qPCR verified the differential 

expression of 2/11 genes in the PFC (Ap1s2, Dusp6) and 1/4 genes in the HPC (Rgs3), all of 

which showed increased expression (p <0.1; Figure 2.4a). Moreover, for 7 significantly up-

regulated genes in the microarray, changes trended in the same direction by RT-qPCR (Figure 

2.4b). No down-regulated genes from microarray analysis showed significantly differences in 

PAE animals by RT-qPCR, but one gene (Cnih2) also trended downward.  Importantly, positive 

correlation between microarray and RT-qPCR data was obtained for PAE effects (r2=0.35, 

p<0.02 Figure 2.4b), and significant genes were corroborated by the small differences between 

methods shown in the Bland-Altman plot (Figure 2.4c). No correlation was found for PF animals 

(Supplementary figure 2.4). Collectively, the general agreement between qPCR and microarray 

data suggested that PAE caused persistent alterations to gene expression in the PFC and HPC. 
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Figure 2.4 RT-qPCR verification of genes altered by prenatal alcohol exposure. 

(a) Three genes were significantly upregulated in PAE animals (Dusp6 and Ap1s2 in PFC; Rgs3 in HPC). Graphs 

were plotted as fold change to control animals (where C animals expression = 1) ± SEM. ** = p<0.01, * = p<0.05, # 
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= p<0.1. (b) Fold-changes in expression were positively correlated between microarray and RT-qPCR results for E 

vs C animals (r2=0.3552, p<0.02). Annotated data points represent genes identified as significant in both methods. 

(c) Bland-Altman plot of genes identified by microarray analysis. Dotted lines represent the 95% limits of agreement 

(Bias = 0.06467) and annotated data points represent genes identified as significant in both methods. 

 

2.3.4 Gene Ontology and Upstream Regulator Analysis of PAE effects under steady-state 

conditions 

GO analysis was performed to ascertain the broad functional impact of PAE-induced 

changes in gene expression. Following multiple test correction, 6 processes were altered in the 

PFC of PAE compared to PF and C animals at a 1% FDR (Supplementary figure 2.2A): positive 

regulation of cell projection organization, chemical/ion homeostasis, response to virus, and 

regulation of intracellular transport. In the HPC, gene-score resampling (GSR) identified 79 

processes specific to PAE, which were involved in metabolism (24%), cell communication 

(18%), development (18%), transport (15%), and signal transduction (10%) (Supplementary 

figure 2.2A). At a 10% FDR, several PAE-specific biological processes overlapped between 

brain regions: positive regulation of neuron differentiation, dorsal/ventral pattern formation, 

circadian rhythm, regulation of lymphocyte differentiation, and regulation of lipase activity 

(Supplementary figure 2.2B). Moreover, GSR also identified the NeuroCarta candidate gene list 

for FASD in the PFC of PAE females (Portales-Casamar et al. 2013).   

As noted, gene sets were then analyzed using Ingenuity’s Upstream Regulator Analysis 

(URA) to predict master regulators driving the observed expression changes within the dataset. 

In the PFC, a significant activation of Gast and an activation of Lep that approached statistical 
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significance were identified in PAE compared to PF and C animals (Table 2.3), whereas in the 

HPC, significant differential activation of Laminin and Ifng was observed (Table 2.4).  

 

Gene 
Symbol 

Gene 
Name 

Predicted 
status 

Z-score Overlap p-value 

EvC EvPF PFvC EvC EvPF PFvC 

Gast Gastrin Activated 2.1 2.2 NA 0.05 0.009 1.00 
Lep Leptin Activated 2.5 2.6 NA 0.12 0.04 1.00 

Table 2.3 Upstream Regulator Analysis in the PFC of animals under steady-state conditions 

Genes identified using Ingenuity Pathway Analysis Upstream Regulator in the PFC of steady-state animals. Genes 

with a Z-score ≥2 or ≤-2 and an overlap p-value ≤0.1 are considered significant (bold). Those with no overlap had a 

p-value of 1 and no Z-score (NA). 

 

Gene 
Symbol 

Gene 
Name 

Predicted 
status 

Z-score Overlap p-value 

EvC EvPF PFvC EvC EvPF PFvC 

Ifng Interferon-
gamma Activated 3.8 2.5 NA 0.05 0.04 1.00 

Laminin Laminin Activated 2.0 2.0 NA 0.01 0.04 1.00 

Table 2.4 Upstream Regulator Analysis in the HPC of animals under steady-state conditions 

Genes identified using Ingenuity Pathway Analysis Upstream Regulator in the HPC of steady-state animals. Genes 

with a Z-score ≥2 or ≤-2 and an overlap p-value ≤0.1 are considered significant (bold). Those with no overlap had a 

p-value of 1 and no Z-score (NA). 

 

2.3.5 Prenatal treatments resulted in common, graded, and differential effects under 

steady state conditions 

A number of prenatal group effects not specific to PAE were observed in the microarray 

analysis (Figure 2.2). Of the probes affected by prenatal treatment, many showed the same levels 

of expression in PAE and PF compared to C animals (Supplementary table 2.5), while a handful 
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were altered in opposite directions by ethanol exposure and pair-feeding (Supplementary table 

2.6). Conversely, several genes exhibited graded effects of prenatal treatment, with effects of 

ethanol greater than those of pair-feeding (PAE>PF>C), or vice versa (PF>PAE>C) 

(Supplementary table 2.6). Pair-feeding also had some unique effects, particularly in the HPC 

(Supplementary table 2.7), on genes involved in small molecule metabolism, transport, signal 

transduction, and stress responses. At a 10% FDR, GSR identified two PF-related processes 

overlapping between the PFC and HPC: negative regulation of neuron projection development 

and positive regulation of epithelial cell migration (Supplementary figure 2.2C). Moreover, the 

curated list of candidate FASD genes from NeuroCarta was also identified in the HPC of the PF 

group (Portales-Casamar et al. 2013). 

 

2.3.6 PAE altered neural gene expression in response to an inflammatory challenge  

Consistent with the findings on steady state gene expression, the greatest effects of 

immune challenge were observed on Day 16 post-injection (peak of inflammation). The 

dominant neural response to adjuvant across prenatal treatments was an up-regulation of mRNA 

levels. However, some genes (8 in PFC, and 4 in HPC) were differentially expressed in PAE 

compared to PF and C animals (Tables 2.5 and 2.6; Figure 1.5). For all hippocampal genes 

identified, C and PF animals showed a significant up-regulation of expression, while PAE 

animals showed no change in expression levels between the saline and adjuvant conditions 

(Figure 1.6). These genes (Ctgf, Lcn2, Sgk, Vwf) were multifunctional, with roles in growth, 

proliferation, adhesion, structural organization, and cellular response to immunological or 

stressful stimuli. 
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Gene Symbol Gene Name Average 
Expression F p-value q-value 

Fold change 
(Adjuvant/Saline) 

C PF E 
ILMN_1351665 na 7.0 7.9 3.4E-04 0.17 0.80 0.80 1.12 
Ghrhr growth hormone 

releasing hormone 
receptor 

7.0 8.2 2.5E-04 0.14 0.87 0.78 1.23 

ILMN_1354124 na 6.9 7.1 7.0E-04 0.24 0.94 0.99 1.34 
ILMN_1364624 na 8.4 7.2 6.3E-04 0.24 1.22 1.06 0.51 
ILMN_1372588 na 11.1 8.7 1.7E-04 0.13 1.38 1.10 0.67 
ILMN_1351971 na 11.9 9.8 6.5E-05 0.08 1.40 1.23 0.71 
Flna filamin A, alpha 8.6 7.1 7.1E-04 0.24 1.33 1.27 0.99 
Bhlhe40 basic helix-loop-

helix family, 
member e40 

9.5 8.1 2.8E-04 0.15 1.42 1.45 1.02 

Table 2.5 Genes differentially expressed in PFC of Ethanol-exposed animals in response to adjuvant.  

Genes with a significantly different response to Adjuvant in E compared to both C and PF animals (p <0.05) in the 

PFC at the peak of inflammation (D16). Bold = p <0.05. na = probe had no specific alignment to current RefSeq 

RNA database. 

 

Gene 
Symbol Gene Name Average 

Expression F p-value q-value 
Fold change 

(Adjuvant/Saline) 
C PF E 

Sgk1 serum/glucocorticoid 
regulated kinase 1 

11.4 9.1 1.1E-04 0.18 1.63 1.67 1.01 

Vwf von Willebrand factor 8.9 15.6 7.3E-07 0.00 1.76 1.70 1.06 
Lcn2 lipocalin 2 7.4 18.6 1.1E-07 0.00 1.55 1.92 1.03 
Ctgf connective tissue growth 

factor 
10.4 11.4 1.6E-05 0.05 1.77 2.14 0.85 

Table 2.6 Genes differentially expressed in HPC of Ethanol-exposed animals in response to adjuvant.  

Genes with a significantly different response to Adjuvant in E compared to both C and PF animals (p <0.05) in the 

HPC at the peak of inflammation (D16). Bold = p <0.05. na = probe had no specific alignment to current RefSeq 

RNA database. 
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Figure 2.5 Adjuvant exposure alters gene expression at Day 16 post-injection.  

8 genes showed significant changes in expression among treatment groups in prefrontal cortex (a). 4 genes 

demonstrated significant changes among treatment groups in the hippocampus (b). F-statistic q-value <0.25 for all 

genes identified. 
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Figure 2.6 Ethanol-exposed animals show altered response to adjuvant.  

In a subset of genes, Ethanol-exposed animals showed no response to Adjuvant, although pair-fed and control 

animals responded with an upregulation of the gene (Lcn2, Sgk). In others, gene expression levels in ethanol animals 

were already elevated compared to pair-feds and controls, but did not change in response to the extent of their 

control counterparts (Ctgf, Vwf). 
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2.3.7 Gene Ontology and Upstream Regulator Analysis of PAE effects in response to 

adjuvant  

GSR identified numerous biological processes altered in response to adjuvant at a 1% 

FDR. In both the PFC and HPC, PAE animals had the fewest uniquely altered categories (8% in 

PFC, and 11% in HPC), while C animals had the most (25% in PFC and 30% in HPC) 

(Supplementary figure 2.3A). Four PAE-specific processes overlapped between brain regions 

(Supplementary figure 2.3B): regulation and positive regulation of epithelial cell proliferation, 

cellular protein complex assembly, and regulation of hormone level. In categories identified only 

in PF and C (normal response to adjuvant exposure), 6 overlapped between the PFC and HPC: 

response to organic nitrogen, actin filament-based process, actin cytoskeleton organization, 

regulation of cell morphogenesis, developmental growth, and mRNA metabolic process 

(Supplementary figure 2.3C). 

Moreover, URA of gene sets for both the PFC and HPC predicted several master 

regulators of PAE-specific response to adjuvant, as well as some present only in PF and C 

animals. In the PFC, 2 PAE-specific genes (Fn1, Dicer1) and 4 PF/C-specific genes (Agt, Foxo3, 

P38 Mapk, Osm) were significantly activated, while a single PAE-specific gene, Calmodulin, 

was significantly inhibited (Table 2.7). In the HPC, 2 PAE-specific genes (Adcyap1, Prl) showed 

significant inhibition and one, Nr1i3, showed marginally significant activation (Table 2.8). As 

well, PF/C-specific effects were found for Adamts12 (inhibited) and Foxo4 (activated). Of note, 

Foxo3 approached significance in the HPC of PF and C animals, representing the only overlap 

between brain regions. 
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Gene 
Symbol Gene Name Predicted 

status 
Z-score Overlap p-value 

C PF E C PF E 

PAE-specific         
Calmodulin Calmodulin Inhibited NA 0.4 -2.0 1.00 0.02 0.02 

Dicer1 Dicer 1, ribonuclease 
type III Activated NA NA 2.0 1.00 1.00 0.09 

Fn1 Fibronectin 1 Activated 1.3 1.1 2.1 0.03 0.0002 0.03 
NON-PAE        
Agt Angiotensinogen Activated 2.5 2.2 NA 0.02 0.002 1.00 
Foxo3 Forkhead box O3 Activated 2.3 3.1 0.2 0.02 0.002 1.00 
Osm Oncostatin M Activated 2.9 2.7 NA 0.1 0.07 1.00 

P38 Mapk p38 mitogen-activated 
protein kinase Activated 2.0 3.2 NA 0.04 0.005 1.00 

Table 2.7 Upstream Regulator Analysis of the PFC in adjuvant VS saline animals  

Genes identified using Ingenuity Pathway Analysis Upstream Regulator in the PFC of adjuvant versus control 

animals. Genes with a Z-score ≥2 or ≤-2 and an overlap p-value ≤0.1 are considered significant (bold). Those with 

no overlap had a p-value of 1 and no Z-score (NA). 

Gene 
Symbol Gene Name Predicted 

status 
Z-score Overlap p-value 

C PF E C PF E 

PAE-specific         
 
Adcyap1 

Adenylate cyclase 
activating 
polypeptide 1 

Inhibited NA NA -2.2 1.00 1.00 0.09 

Nr1i3 
Nuclear receptor 
subfamily 1, group I, 
member 3 

Activated NA NA 2.2 1.00 1.00 0.12 

Prl Prolactin Inhibited 2.3 NA -2.0 0.24 1.00 0.05 
NON-PAE        

 

Adamts12 

ADAM 
metallopeptidase with 
thrombospondin type 
1 motif, 12 

Inhibited -2.4 -2.0 NA 0.0003 0.001 1.00 

Foxo4 Forkhead box O4 Activated 2.0 2.0 NA 0.07 0.04 1.00 
Foxo3 Forkhead box O3 Activated 2.6 2.6 NA 0.13 0.13 1.00 

Table 2.8 Upstream Regulator Analysis of the HPC in adjuvant VS saline animals  

Genes identified using Ingenuity Pathway Analysis Upstream Regulator in the HPC of adjuvant versus control 

animals. Genes with a Z-score ≥2 or ≤-2 and an overlap p-value ≤0.1 are considered significant (bold). Those with 

no overlap had a p-value of 1 and no Z-score (NA). 
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2.4 Discussion 

Prenatal ethanol exposure altered patterns of neural gene expression under both steady-

state and immune challenge conditions. In saline-injected females, we identified PAE-induced 

changes in the expression of Rgs3, Dusp6, and Ap1s2, as well as activation of upstream 

regulators involved in metabolism and immune function. At the peak of inflammation, adjuvant 

injection caused PAE-specific changes in gene expression, and uncovered a failure to mount 

appropriate responses to inflammatory challenge in PAE animal, as evidenced by the absence of 

changes in inflammation-related genes and upstream regulators identified in controls.  

 

2.4.1 Prenatal ethanol exposure altered neural gene expression under steady-state 

conditions  

Microarray analysis identified unique effects of PAE on 15 and 4 genes in the PFC and 

HPC, respectively. These had roles in neurodevelopment, cell death, differentiation, 

transcriptional regulation, and neuronal signaling. Using RT-qPCR, we successfully verified the 

significant up-regulation of Dusp6 and Ap1s2 in the PFC, as well as Rgs3 in the HPC. 

Furthermore, the majority of genes not verified by RT-qPCR trended in the same direction as the 

microarray. The discrepancy in technical verification may arise from the different methods of 

measurement between the technologies and the underpowered analysis resulting from a relatively 

low number of samples. Additional large-scale experiments will be required to fully validate 

these results at the biological level. 

It is tempting to speculate that these genes play important roles in the cognitive and 

behavioural deficits observed in FASD. Ap1s2 is involved in neurodevelopment and associated 

with intellectual disability and autism spectrum disorder, while Dusp6 promotes apoptosis and is 
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linked to bipolar disorder (Borck et al. 2008; Kim et al. 2012). Activation of Laminin could also 

be involved in the altered neuronal migration patterns observed in PAE brains (Ozer, Sarioglu, & 

Gure 2000). Moreover, inappropriate feeding behaviour in children with FASD, as well as 

altered glucose metabolism and insulin tolerance in PAE animals have been reported (Werts et 

al. 2014; Harper et al. 2014). As Rgs3 negatively regulates glucose output via cAMP production 

in hepatic cells, it may also play a role in altered energy metabolism within the brain when 

combined with the activation of gastrin and leptin in the PFC (Raab et al. 2005). Furthermore, 

the activation of interferon- γ in the HPC supports a role for this cytokine in the altered immune 

system activity and response to challenge in PAE offspring.  

Previous studies on fetal and neonatal brains have uncovered ethanol-induced alterations 

in the expression of genes related to energy metabolism, adhesion, cytoskeletal remodeling, cell 

cycle, proliferation, differentiation, apoptosis, as well as neuronal growth and survival (Green et 

al. 2007; Hard et al. 2005; Zhou, Zhao, et al. 2011). Long-term PAE studies in brains of adult 

male mice identified networks related to cellular development, free radical scavenging, and small 

molecule metabolism, as well as genes involved in cognitive function, anxiety, ADHD, and 

mood disorders (Kleiber et al. 2012, 2013). Interestingly, none of the genes found here directly 

overlapped with those previously identified. These disparities are likely due to species- and sex-

specific effects, differences between exposure paradigms, and different gene expression patterns 

in whole brains versus specific regions. As such, these discrepancies highlight the importance of 

examining both sexes and targeted brain regions to gain deeper insight into PAE effects. It is also 

possible that immediate changes in gene expression in response to PAE may not persist or that 

environmental influences cause alterations over the course of development. Moreover, the 

relatively moderate levels of ethanol exposure (BALs ~120-150 mg/dl) in this paradigm are 
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consistent with those reported for children with FASD who show functional and cognitive 

deficits (Mattson, Crocker, & Nguyen 2011). Perhaps most importantly, the genes identified here 

have not previously been examined in gene expression studies, suggesting that we have 

uncovered novel candidates for the effects of PAE in females. Whether our specific changes are 

mediated through epigenetic mechanisms remains to be investigated (Kobor & Weinberg 2011). 

 

2.4.2 Prenatal ethanol exposure altered the gene expression response to adjuvant 

PAE-specific responses to adjuvant were found for 8 and 4 genes in the PFC and HPC, 

respectively. These had roles in growth, proliferation, adhesion, structural organization, and 

cellular response to immunological or stressful stimuli. Across all prenatal treatments, adjuvant 

caused a global increase in gene expression compared to saline-injected animals. Importantly, 

PAE animals failed to exhibit the up-regulation in expression observed in controls for genes 

related to immune and cellular responses to stressful stimuli (Ctgf, Lcn2, Sgk, Vwf). Up-

regulation of immune-related genes normally occurs in the CNS in response to peripheral 

inflammatory stimuli or neuroinflammation, which occurs in AA (Ousman & Kubes 2012; X. 

Liu et al. 2012). PAE animals may fail to detect these immune changes and/or launch the 

appropriate neuroendocrine/neuroimmune response, which could contribute to the prolonged 

inflammation observed in our previous AA study (Zhang et al. 2012). Consistent with this 

finding, most master regulators identified in the Upstream Regulator Analysis were involved in 

the immune response. For example, P38 Mapk plays a role in signal transduction within the 

normal inflammatory cascade and is only activated in PF and C animals (Cuadrado & Nebreda 

2010). Moreover, Adamts12 modulates neutrophil apoptosis during inflammation, while Osm 
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attenuates the inflammatory response (Dumas et al. 2012; Moncada-Pazos et al. 2012). Thus, 

inhibition of Adamts12 and activation of Osm in control animals may blunt their responses to 

adjuvant. Furthermore, Adcyap1 modulates anti-inflammatory responses and is neuroprotective 

in neurons following inflammation (Waschek 2013). Its inhibition in PAE animals suggests a 

lower level of protection against inflammation than the one that would occur in controls. In turn, 

as Prl promotes pro-inflammatory responses, its PAE-specific activation suggests an altered 

response to adjuvant (Brand et al. 2004). Failure of PAE animals to activate Foxo-related 

pathways may also play a role in their unique response to adjuvant, as knockdown of Foxo3 or 

Foxo4 increases inflammatory responses (Hwang et al. 2011; Zhou et al. 2009). The possibility 

that Foxo3 is already up-regulated in PAE animals, and thus may not change further after 

adjuvant injection remains to be investigated (Kleiber et al. 2013). The activation of fibronectin 

in PAE animals is interesting, as it is involved in the development of inflammatory arthritis 

(Barilla & Carsons 2000). Greater production or sensitivity to this protein could underlie the 

altered course and severity of AA in PAE animals. Finally, activation of Dicer1 in PAE animals 

suggests alterations to microRNA processing under stress conditions, previously demonstrated 

following PAE (Guo et al. 2011). 

 

2.4.3 Limitations 

Although these results suggest a long-term effect of PAE on the brain’s transcriptome, 

the interpretability of this study is limited by the small number of animals and variability in 

transcriptomic profiles both at baseline and in response to AA. These factors could have 

influenced the identification of differential expressed genes and reproducibility of our results by 

RT-qPCR. In addition, as the FDR was set at a more relaxed threshold (25%) to capture a greater 
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number of differentially expressed genes, more false-positives may have been identified in the 

analysis, reflected in the low number of genes verified by RT-qPCR. The animals used in the 

present study were also obtained from an outbred population, and differences in genetic 

background could have influenced both the physiological response to AA and gene expression 

profiles.  

An additional limitation of this study is that estrus stages were not determined at the time 

of termination. We have previously shown that PAE induces changes in basal levels of 

hippocampal glucocorticoid and serotonin Type 1A (5-HT1A) receptor mRNA as a function of 

estrous stage, which likely have widespread effects on global expression patterns in the brain 

(Sliwowska et al. 2008). While most females in the present study were likely in diestrus, estrus 

cycle variation might partially explain intra-group differences in gene expression (Lan et al. 

2009). Taken together, these limitations temper our interpretation of the differential expression 

results, which require further validation in independent cohorts.  

 

2.4.4 Effects of pair-feeding on neural gene expression: Pair-feeding is a treatment in 

itself 

A number of genes were similarly altered, or showed graded and differential effects in 

PAE and PF compared to C animals (Figure 2.3). These may respond to common effects of 

ethanol exposure and pair-feeding, such as reduced caloric availability or altered stress system 

regulation. While both PAE and PF animals receive the same number of calories, PAE dams eat 

ad libitum whereas PF dams receive a reduced ration, likely resulting in hunger and stress (Harris 

& Seckl 2011). Moreover, PF dams tend to consume their daily ration within a few hours and are 

deprived until the next feeding, which may have unique metabolic effects associated with 
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“disordered” eating. Our results suggest that the HPC may be susceptible to fetal programming 

in response to energy-, and stress-related environmental factors. Interestingly, the curated list of 

candidate FASD genes from NeuroCarta was identified in the HPC of PF animals, suggesting 

that these genes are potentially related to common mechanisms underlying prenatal alcohol 

exposure, nutrition, and stress (Portales-Casamar et al. 2013). Studies such as ours are critical to 

separate the effects of prenatal stress and prenatal alcohol exposure at the level of gene 

expression.  

2.4.5 Summary and conclusions  

Our results support the hypothesis that PAE has long-term effects on gene expression 

patterns in the brain, as well as on the response to a systemic inflammatory insult. As both the 

PFC and HPC play important roles in cognitive, neuroendocrine, and immune function, the 

identified changes in steady-state and activated expression likely contribute to immune-related 

alterations, as well as cognitive and behavioural deficits arising from PAE. Moreover, an 

inability to mount appropriate response to immune/inflammatory challenges may contribute to 

the increased vulnerability of individuals with FASD to infections and immune problems. These 

findings extend our previous data demonstrating that PAE animals exhibit increased 

susceptibility to and impaired recovery from an inflammatory challenge, and suggest that the 

adverse impact of prenatal ethanol exposure on the neural transcriptome may underlie long-term 

health and developmental outcomes observed in individuals with FASD. 
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Chapter 3: Prenatal alcohol exposure alters DNA methylation patterns during 

early development 

3.1 Background and rationale 

Early-life environments have the potential to influence the development of biological 

systems, leading to long-term consequences in offspring (Godfrey & Robinson 1998; Hanson & 

Gluckman 2008). Of relevance, prenatal alcohol exposure (PAE) can lead to the development of 

Fetal Alcohol Spectrum Disorders (FASD) in humans, which is associated with a wide variety of 

adverse effects. Importantly, PAE can alter the development, function, and regulation of 

numerous neurobiological and physiological systems, giving rise to lasting deficits across the 

spectrum of FASD, including, but not limited to cognitive and behavioral deficits, impairment to 

self-regulation and adaptive functioning, immune dysregulation, and increased vulnerability to 

mental health problems across the lifespan (Zhang, Sliwowska, & Weinberg 2005; Pei et al. 

2011; Mattson, Crocker, & Nguyen 2011).  

Among the affected neurobiological systems, the hypothalamus is highly susceptible to 

the programming effects of PAE (Matthews 2002; Eguchi 1969). In addition to its vital role in 

neuroendocrine regulation, the hypothalamus also acts as the main center for autonomic 

regulation and homeostatic control, regulating growth, sleep/wake behavior, circadian rhythms, 

metabolism, body temperature, and other vital functions (Squire et al. 2008). Data from both 

clinical cohorts and animal models of FASD have identified alterations to physiological 

functions associated with the hypothalamus. For example, infants exposed to alcohol in utero 

show both elevated basal and post-stress levels of cortisol, and children with FASD and early life 

adversity exhibit dysregulation of the cortisol circadian rhythm (McLachlan et al. 2016). 
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Similarly, in animal models of PAE, exposed offspring exhibit hyperresponsiveness to stressors 

as well as altered central regulation of hypothalamic-pituitary-adrenal (HPA) activity (Ramsay, 

Bendersky, & Lewis 1996; Jacobson, Bihun, & Chiodo 1999; Haley, Handmaker, & Lowe 2006; 

Weinberg et al. 2008). Furthermore, PAE also alters sleep patterns and circadian rhythms, leads 

to deficits in thermoregulation, and is associated with inappropriate feeding behavior (Jones & 

Smith 1973; Chen et al. 2012; Earnest, Chen, & West 2001; Sei et al. 2003; Zimmerberg, 

Ballard, & Riley 1987; Werts et al. 2014).  

These deficits often persist across the life course of individuals with FASD and PAE 

animals, suggesting that alcohol may alter developmental trajectories during prenatal life to 

increase the risk of adverse outcomes (Hellemans, Sliwowska, et al. 2010). Indeed, the fetal 

programming hypothesis suggests that early environmental or non-genetic factors, including 

maternal undernutrition, stress, and exposure to drugs or other toxic agents, can permanently 

organize or imprint physiological and neurobiological systems and increase adverse cognitive, 

adaptive, and behavioral outcomes, as well as vulnerability to diseases or disorders later in life 

(Godfrey & Robinson 1998; Hanson & Gluckman 2008; Swanson et al. 2009). As the underlying 

mechanisms of these effects begin to emerge, it has become apparent that epigenetic mechanisms 

are prime candidates for the programming effects of PAE on physiological systems, linking 

environmental factors and neurobiological outcomes while influencing health and behavior well 

into adulthood (Yuen et al. 2011; Shulha et al. 2013). The term epigenetics broadly refers to the 

modifications of DNA and its packaging that alter DNA accessibility, which modulate gene 

expression and cell functions without changes to underlying genomic sequences (Bird 2007). 

These include direct modifications to DNA, post-translational modification of histones, and non-

coding RNAs.  
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DNA methylation is perhaps the most studied epigenetic modification and involves the 

covalent attachment of a methyl group to the 5’ position of cytosine, typically occurring at 

cytosine-guanine dinucleotide (CpG) sites (Jones & Takai 2001). Although closely linked to the 

regulation of gene expression, the association between DNA methylation and transcription 

depends on genomic context. Whereas DNA methylation typically represses gene expression 

when located in promoter regions, its effects are more variable for CpGs residing in gene bodies 

and intergenic regions. DNA methylation can also directly control transcription factor binding to 

gene regulatory regions, such as enhancers, modulating gene expression patterns (Tate & Bird 

1993). In addition to this role in transcriptional control, DNA methylation has been associated 

altered mRNA splicing when located within introns, and its presence within certain exons may 

potentially regulate alternative transcriptional start sites (Shukla et al. 2011; Maunakea et al. 

2013, 2010). Furthermore, DNA methylation is closely linked to several crucial developmental 

processes, including genomic imprinting, as well as tissue specification and differentiation, 

suggesting a crucial role in the regulation of cellular functions and developmental trajectories 

(Ziller et al. 2013; Smith & Meissner 2013). Perhaps most importantly, DNA methylation is 

responsive to environmental influences and these changes may be inherited through cell 

divisions to potentially persist throughout the lifetime (Langevin et al. 2011; Hanson et al. 2011; 

Yuen et al. 2011). As such, an additional interesting aspect of DNA methylation is its emerging 

role as a potential biomarker of early-life exposures, as it is easily quantifiable, stable over time, 

and can be obtained from readily available peripheral tissues, such as buccal epithelial cells and 

white blood cells (Bock 2009). 

Given their role in the regulation of gene expression and cell function, as well as their 

responsiveness to environmental factors, epigenetic alterations provide an attractive mechanism 
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for the biological embedding of the persistent deficits caused by PAE. Mounting evidence 

suggests a potential role for DNA methylation in the etiology of PAE-induced deficits, as 

numerous studies have identified alterations to epigenetic programs in the central nervous system 

of animals exposed to alcohol in utero. These range from differences in bulk levels of DNA 

methylation to genome-wide changes in DNA methylation patterns, suggesting that PAE can 

alter the epigenome (Bekdash, Zhang, & Sarkar 2013; Laufer et al. 2013). For example, PAE 

alters the DNA methylation status of the POMC gene in the hypothalamus (Ngai et al. 2015; 

Bekdash, Zhang, & Sarkar 2013). As a key regulator of the stress response, alterations to this 

gene may reflect broader alterations to the regulatory functions of the hypothalamus. Although 

genome-wide studies have been performed on whole brains in mice, few studies have focused on 

targeted brain regions. Studies from clinical cohorts of children with FASD have also identified 

widespread changes to DNA methylation patterns in peripheral tissues (Laufer et al. 2015; 

Portales-Casamar et al. 2016). However, alterations to central tissue are difficult to directly 

assess in clinical populations, and while peripheral tissues are more easily accessible, changes in 

these cells may not fully reflect alterations in the brain (Berko et al. 2014). Furthermore, 

biological embedding of PAE’s effects earlier in development could potentially lead to more 

systemic effects on the epigenome, which would be reflected by alterations present across a 

variety of tissues. 

 

Currently, the genome-wide impact of PAE on DNA methylation within the 

hypothalamus remains unknown (Ngai et al. 2015; Bekdash, Zhang, & Sarkar 2013). To address 

this gap, we assessed whether PAE alters DNA methylation profiles in the early postnatal period, 

and whether altered sites of methylation could serve as biomarkers of gestational alcohol 
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exposure if also identified in peripheral tissues. Using methylated DNA immunoprecipitation and 

next-generation sequencing (meDIP-seq), we identified statistically significant PAE-specific 

differentially methylated regions (DMR) that persisted across pre-weaning development of the 

hypothalamus, in regions that could potentially reflect the neurobiological alterations caused by 

PAE. In parallel, we identified concordant DNA methylation alterations between white blood 

cells and the hypothalamus of PAE animals compared to controls on postnatal day (P) 22. Our 

findings suggest that: 1) PAE causes widespread alterations to DNA methylation patterns in both 

central and peripheral tissues, potentially reprogramming physiological systems and influencing 

the deficits observed in FASD; and 2) DNA methylation patterns in peripheral tissue reflect 

some changes in brain, which could represent systemic effects on the organism and potential 

biomarkers of PAE. 

 

3.2 Materials and methods 

3.2.1 Prenatal treatment 

Details of the procedures for breeding and handling have been published previously 

(Bodnar, Hill, & Weinberg 2016). Briefly, nulliparous females (n=39) were pair-housed with a 

male and vaginal lavage samples were collected daily for estrous cycle staging and to check for 

the presence of sperm, indicating gestation day 1 (GD1). Pregnant dams were singly housed and 

assigned to one of three prenatal treatment groups: Prenatal alcohol exposure (PAE) - ad libitum 

access to liquid ethanol diet, 36% ethanol-derived calories, 6.37% v/v, n =13; Pair-fed (PF) - 

liquid-control diet, maltose-dextrin isocalorically substituted for ethanol, in the amount 

consumed by an E partner, g/kg body weight/GD), n =14; or Control (Con) - pelleted version of 

the liquid control diet, ad libitum, n =12. All animals had ad libitum access to water. 
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Experimental diets (Weinberg/Kiever Liquid Ethanol Diet #710324, Weinberg/Kiever Liquid 

Control Diet #710109, and Pelleted Control Diet #102698, Dyets Inc., Bethlehem, PA) were fed 

from gestation days 1-21, and then replaced with laboratory chow. Litters were weighed and 

culled at birth to 6 males and 6 females, when possible.  

 

3.2.2 Sample collection 

On P1, 8, 15, and 22, female offspring (max 1/litter) were decapitated, trunk blood 

collected (at P22 only), and brains removed and weighed; the hypothalamus was then quickly 

dissected and frozen on dry ice in RNAlater (n=7-11/age/group; Figure 3.1; Qiagen, Hilden, 

Germany). WBCs were isolated using Ficoll-Paque (GE Healthcare, Uppsala, Sweden), which 

isolates peripheral blood mononuclear cells (PBMC). All tissue collected was left at 4˚C for 1 

day and then frozen at -80˚C until DNA extraction. WBCs were stored in RNAlater at -80˚C 

until DNA extraction. Due to the large number of animals associated with the experimental 

design of this study, animals were collected across four different cohorts (breedings), spanning 

January 2012 – December 2013.  
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Figure 3.1 Overview of the experimental design  

We collected the hypothalamus of female offspring from one of three prenatal treatment groups on postnatal days 

(P) 1, 8, 15, and 22. In parallel, white blood cells were collected on P22 from the same animals as the hypothalamus 

samples. Each group/age/tissue was composed of four samples for DNA methylation analysis by methylated DNA 

immunoprecipitated and next-generation sequencing (meDIP-seq). 

 

3.2.3 Blood composition analysis 

Analysis of blood composition was done on samples from a separate but parallel cohort 

of animals. Briefly, on P22, trunk blood was collected from female offspring (C: n = 6; PF: n = 

5; PAE: n = 5), and analyzed using the Advia120 hematology system, which assesses complete 

blood counts and differential WBC counts (CBC/Diff function). The reported values include 

counts for neutrophils, lymphocytes, monocytes, eosinophils, basophils, and large unclassified 

cells (Supplementary table 3.1).  
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3.2.4 Statistical analyses of developmental data 

Maternal data during gestation and lactation were analyzed using repeated measures 

analyses of variance (ANOVA), with prenatal treatment as the between-subjects factor, and 

postnatal day as the within-subjects factor. As separate cohorts of offspring from each prenatal 

group were terminated on P1, P8, P15, or P22 (n = 4/group/age/tissue), body weights were 

analyzed by ANOVAs for the factor of prenatal treatment at each age and in a group*age 

interaction model. Blood composition data were also analyzed using a two-way ANOVA to 

identify differences among groups for each WBC subtype.  

Significant main effects and interactions were further analyzed by Tukey honest 

significant difference (HSD) post hoc tests (p<0.05).  

 

3.2.5 DNA extraction 

Total RNA and DNA were simultaneously extracted from the hypothalamus and white 

blood cells (n=4/group/age/tissue; Qiagen AllPrep DNA/RNA Mini kit, Hilden, Germany). 

Frozen tissue was thawed on ice, quickly weighed and placed in lysis buffer for 5 minutes. 

Homogenization was performed by 5 strokes of an 18G needle, 10 strokes of a 20G needle, and 

10 strokes of a 23G needle. The resulting homogenate was centrifuged at 21,000g for 3 minutes 

and the supernatant was collected for DNA and RNA extraction. White blood cells were thawed 

on ice and then centrifuged at 10,000g for 10 minutes. RNAlater was carefully removed without 

disturbing the cell pellet and cells were resuspended in lysis buffer. The cells were then frozen at 

-80˚C to disrupt cell membranes and then thawed on ice. The resulting homogenate was then 

used for DNA and RNA extraction. DNA concentration was assessed using Qubit Fluorometric 

Quantitation (Life Technologies, Carlsbad, USA). Full developmental data on the animals can be 
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found in Supplementary table 3.2.  

 

3.2.6 Methylated DNA immunoprecipitation and next-generation sequencing 

Our methylated DNA immunoprecipitation following by next-generation sequencing 

(MeDIP-seq) procedures were adapted from a previously published protocol, and are outlined in 

detail below (Taiwo et al. 2012).  

 

3.2.6.1 Sequencing library preparation 

For each sample, 500 nanograms of DNA were diluted in a total volume of 60µL of EB 

buffer (Qiagen, Hilden, Germany). DNA was then transferred to a 96-well plate and sheared for 

1 hour using the Covaris Focused-ultrasonicator. DNA was purified using Ampure XP in 20% 

polyethylene glycol (PEG) beads to obtain fragments sized from 200-500 basepairs (Beckman-

Coulter, Brea, USA). Library preparation was performed on the Bravo Automated Liquid 

Handling Platform (Agilent, Santa Clara, USA) using the TruSeq DNA PCR-Free Sample 

Preparation Kit (Illumina, San Diego, USA). Following end-repair and A-tailing, adapters were 

ligated overnight at room temperature. PCR-free library preparation allowed for the conservation 

of methylated cytosines for subsequent methylated DNA immunoprecipitation. Finally, DNA 

was resuspended in 35µL of EB buffer (Qiagen, Hilden, Germany). DNA was quality controlled 

using Qubit Fluorometric Quantitation and the DNA 1000 Bioanalyzer 2100 kit (Agilent, Santa 

Clara, USA) to verify concentration and fragment size (250-550bp).  

 

3.2.6.2 Methylated DNA immunoprecipitation 

For each sample, 400 nanograms of DNA were diluted in a total volume of 50µL of IP 
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Buffer (10mM sodium phosphate buffer, pH7.0, 140mM NaCl, 0.05% triton). DNA was 

denatured by incubation at 95˚C for 10 minutes, followed by the addition of 48µL ice-cold IP 

buffer and incubation on ice for 10 minutes. 2µL of anti-5-methylcytosine antibody 

(Eurogenetec, Liège, Belgium), diluted to 1/50 in IP buffer (1µL of antibody per 1µg of DNA 

ratio), was added to each sample. Immunoprecipitation reactions were incubated for 16 hours at 

4˚C with overhead rotation. Following two 5 minute washes with 150uL of 0.1% BSA/PBS, 

50µL of Dynabeads Protein G were incubated with 5µL of secondary antibody (rabbit anti-

mouse IgG; Jackson Immunoresearch, West Grove, USA) in 45uL ice-cold IP buffer for 15 

minutes at room temperature with overhead rotation. Beads were washed twice with IP buffer to 

remove unbound secondary antibody and resuspended in 50µL IP buffer. The antibody-bound 

beads were added to the immunoprecipitation reactions and incubated for 2 hours at 4˚C with 

overhead rotation. Beads were then washed 6 times with 150µL of ice-cold IP buffer and 

resuspended in 98.97µL of Proteinase K digestion buffer (TE with 0.5% SDS). Following the 

addition of 1.25µL Proteinase K (20mg/mL; Qiagen, Hilden, Germany), samples were incubated 

in a thermomixer for 2 hours at 55˚C with a rotation speed of 1250rpm. The reaction was then 

allowed to cool at room temperature for 15 minutes. Supernatant was collected and bead cleanup 

was performed using equal volume SeraMag beads with 30% PEG. DNA was resuspended in 

35µL of EB buffer (Qiagen, Hilden, Germany). 

 

3.2.6.3 Sample amplification and indexing 

Two rounds of PCR amplification per sample were performed in order to reduce PCR 

amplification bias. The reaction mixes were as follows: 15µL DNA, 27µL H2O, 12µL 5X HF 

buffer, 1.5µL DMSO, 1.0µL paired-end primer (Illumina), 0.5µL Phusion High-Fidelity DNA 
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polymerase (New England Biolabs), 2µL indexing primer (Illumina – specific to each sample). 

The amplification cycle was as follows: 98˚C for 1 minute, 12X (98˚C for 15 seconds, 65˚C for 

30 seconds, 72˚C for 30 seconds), 72˚C for 5 minutes. Reactions from the same sample were 

pooled and bead cleanup was performed using SeraMag beads in 20% PEG (102µL of beads per 

120µL of reaction). DNA was resuspended in a final volume of 35µL of EB buffer. 

 

3.2.6.4 Next-generation sequencing 

Indexed meDIP libraries were combined in 3 pools of 20 samples each, distributing 

samples evenly by tissue, age, and prenatal treatment across all three sets. Next-generation 

sequencing was performed on the three sample pools by the Genome Sciences Centre in 

Vancouver, BC, Canada. Each sample pool was run on two HiSeq lanes, which produced 

approximately 600,000,000 paired-end reads of 125 bases per lane.   

 

3.2.6.5 Sequencing pre-processing and quality control 

Fastq files were aligned to the most current rat genome (Rn6, July 2014) using the 

Burrows-Wheeler Transform (BWA) tool to obtain .bam files (Li & Durbin 2009). Bam files 

were filtered using samtools to remove duplicate reads, unpaired reads, and reads with a 

minimum quality score below 10. Following alignment and filtering, each the two runs for each 

sample were merged using samtools to obtain a single .bam file for each sample (Li et al. 2009). 

Supplementary table 3.3 shows sequencing related information: sample pool, sample index, 

number of raw reads, number of filtered reads, and total number of reads/sample.  
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3.2.7 Bioinformatic analyses 

3.2.7.1 Peakset generation 

Model-based analysis of ChIP-seq (MACS2; version 2.1.0.20140616) was used to 

identify enriched regions of DNA methylation across the genome (Zhang et al. 2008). This 

method models the distance between paired sequencing reads by using a sliding window (twice 

the bandwidth = 600 bp) to find enriched regions throughout the genome. Without a control, this 

method calculates a dynamic regional lambda for each peak (10000bp windows) to estimate the 

local bias to enrichment and compute background levels for fold enrichment. P-values for each 

peak are calculated through a dynamic Poisson distribution, which incorporates background 

levels estimated by the local lamba. These are corrected (q-values) using the Benjamini-

Hochberg multiple-test correction method. The peak calling to identify peak regions (DNA 

methylation windows) was performed using the ‘callpeaks’ function on paired end bam files with 

no control input and the following options: –f BAMPE –m 5 50 –bw 300 –g 2.9e9 –q 0.05. Each 

sample was modeled individually, generating 60 total peaksets. These were imported into R 

using the DiffBind package (Stark & Brown 2011; Ross-Innes et al. 2012). As all samples had 

slightly different predicted peaks, peaksets were combined into common regions using the 

dba.count function in DiffBind, which removed peaks found in less than 3 samples across the 

entire dataset and provided the total number of reads within each peak/sample. This created a 

final dataset of 469,162 peaks and 48 samples from the developmental profile of the 

hypothalamus, and a final dataset of 350,960 peaks and 24 samples in the P22 hypothalamus and 

WBC (BvB) peakset.  
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3.2.7.2 Data preprocessing and normalization of the developmental dataset 

First, the total reads within each peak were adjusted to reads/kilobase by dividing the 

number of reads within each region by their length. In turn, these were converted to reads per 

kilobase per million (RPKM) by dividing the reads/kilobase by the total number of reads found 

in the predicted peaks to account for differences in sequencing depth between samples. The 

samples in the developmental dataset were highly correlated (r>0.95 for all samples), with 

samples clustering most closely with animals of the same age (Supplementary figure 3.1). No 

outliers were detected in this first pass analysis.  

Principal component analysis of the normalized RPKM data revealed significant levels of 

variation associated with batch effects. Notably, MeDIP and DNA extraction rounds were 

associated with a large proportion of variation within the dataset. However, both these factors 

were highly confounded with age, as all P22 samples were immunoprecipitated separately and 

separate ages were extracted together (Supplementary figure 3.2). Nevertheless, to account for 

these effects, ComBat correction was performed on the RPKM data from the hypothalamic 

samples to correct the effects of MeDIP round and DNA extraction round in the dataset. Age was 

also slightly confounded with the breeding from which animals were collected, as not all ages 

were samples from the different cohorts. Interestingly, some partial effects of breeding remained 

in the dataset following ComBat correction, suggesting that this covariate was not fully 

confounded with age. Furthermore, prenatal treatment accounted for a larger proportion of 

variance within the dataset following ComBat correction, suggesting that the removal of batch 

effects might allow for the identification of more subtle effects of PAE. The corrected and 



 

 

72 

normalized RPKM values obtained from ComBat were used for plotting purposes, but were 

converted back to reads/kilobase for downstream statistical analyses. 

 

3.2.7.3 Data preprocessing and normalization of the BvB dataset 

First, the total reads within each peak were adjusted to reads/kilobase by dividing the 

number of reads within each region by their length. In turn, these were converted to reads per 

kilobase per million (RPKM) by dividing the reads/kilobase by the total number of reads found 

in the predicted peaks to account for differences in sequencing depth between samples. Samples 

in the BvB peakset were highly correlated within tissue (r>0.96), the main driver of DNA 

methylation patterns, and well correlated within the same animals (r>0.92). However, one PF 

WBC sample clustered with the hypothalamus samples, suggesting that it may have been 

mislabeled during processing. As such, this sample was removed from the dataset, resulting in a 

dataset of 23 samples (Supplementary figure 3.3).  

Principal component analysis of the normalized BvB RPKM data revealed significant 

levels of variation associated with DNA extraction round batch effects (Supplementary figure 

3.4). Tissue type was the covariate most strongly associated with variance in the dataset, 

although it was slightly confounded with extraction round. While ComBat correction was used to 

account for the effects of DNA extraction round in the BvB dataset, this approach limited our 

ability to identify tissue-specific differences, as it removed the majority of tissue-associated 

variance from the dataset. Again, prenatal treatment was associated with a larger proportion of 

variance within the dataset following ComBat correction. Interestingly, breeding once again 

remained a major contributor to variability within the dataset, suggesting that differences 

between cohorts may have an important influence on epigenetic patterns. The corrected and 
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normalized RPKM values obtained from ComBat were used for plotting purposes, but were 

converted back to reads/kilobase for downstream statistical analyses. 

 

3.2.7.4 Removing cell-type specific DMRs 

Using previously characterized transcriptomic profiles from mouse neurons, 

oligodendrocytes, and astrocytes, we identified DNA methylation peaks within genes that are 

specifically expressed in each different subtype (1.5 fold expression difference compared to 

other cell types) (Cahoy et al. 2008). Given the relationship between gene expression and 

epigenetic patterns, it is possible that alterations to the DNA methylation levels of these genes 

could reflect changes in the cell-type proportions within this dataset. However, the majority of 

the peaks in the dataset were located within intergenic regions, with no annotated associations 

with these genes, reducing our ability to capture cell-type related differences. As such, only 

regions directed located within neuron-, oligodendrocytes-, or astrocyte-specific genes were 

removed from further analyses to reduce the potential confounding factor of cell type, resulting 

in a dataset of 451,112 peaks for downstream analyses of the hypothalamus.  

 

3.2.7.5 DMR identification 

Linear modeling was performed using edgeR, which is typically used to analyze RNA-

seq count data and includes a factor to account for the number of reads in each sample 

(Nikolayeva & Robinson 2014; Robinson, McCarthy, & Smyth 2010). This method was used to 

identify differentially methylated regions (DMRs) that were consistently different between PAE 

animals and both control groups across difference ages and tissues. For both analyses, the model 

accounted for the effects of collection during different breedings, and p-values were corrected for 
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multiple-testing using the Benjamini-Hochberg method. Statistically significant DMRS at a false 

discovery rate (FDR) <0.05 were obtained for the following contrasts: PAE versus C, PAE 

versus PF, and Control versus PF. The final PAE-specific DMRs were statistically significant in 

both PAEvC and PAEvPF, and were not found in the CvPF contrasts.  

 

3.2.7.6 Genomic enrichment 

Custom annotations were built for each peakset using the UCSC genome browser gene 

annotations. Briefly, genomic coordinates of all CpG islands, exons, introns, promoters (TSS -

200bp and TSS -1500bp), 3’ untranslated regions (UTR), 5’ UTRs for the rn6 genome were 

obtained as bed files from the table browser. In parallel, MeDIP-seq peaks were converted to the 

bed file format and the overlap of genomic features with MeDIP-seq peaks was computed 

iteratively using the intersectBed function from bedtools, retaining only the peaks that contained 

the assessed genomic feature (Quinlan & Hall 2010). The overlaps were concatenated into a 

single annotation set in R, where individual peaks contained information for each potential 

genomic feature. Of note, regions spanning both introns and exons were deemed intron/exons 

boundaries. P-values for genomic feature enrichment analyses were calculated by computing 

background levels of genomic features on 1,000 random subsets of DMRs, using the same 

number of PAE-specific DMRs.  

 

3.2.7.7 Transcription factor binding site analysis 

Enrichment of different transcription factors binding sites (TFBS) in PAE-specific DMRs 

was assessed using the motifEnrichment function of the PWMEnrich package (Stojnic & Diez 

2013). DMR DNA sequences were obtained from the UCSC genome browser (Rn6 genome). As 
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no binding motifs were available for the Rattus norvegicus genome, motifs from the Mus 

musculus genome were obtained from the PWMEnrich.Mmusculus.background. Motifs were 

summarized using the groupReport function. P-values were calculated by performing enrichment 

analysis on 1,000 random subsets of DMRs, using the same number of PAE-specific DMRs for 

each analysis to assess background levels of each TFBS in the different peaksets.  

 

3.2.7.8 Gene ontology analysis 

The gene-score resampling (GSR) tool of ErmineJ (version 3.0.2) was used to identify 

gene function enrichment in the differentially methylated genes including the Gene Ontology 

(GO) annotations molecular function, biological process, and cellular component (Lee et al. 

2005). The ermineJ GSR tool was set with the following parameters: max gene set size = 2,000; 

min gene set size = 2; iterations = 10,000. Once again, statistically significant associations 

(p<0.05 and multifunctionality score <0.05) were obtained for the following contrasts: PAE 

versus Control, PAE versus PF, and Control versus PF. The final PAE-specific GO terms were 

statistically significant in both PAEvC and PAEvPF, and were not found in the CvPF contrasts. 

 

3.2.8 Bisulfite pyrosequencing 

DNA from the same samples as above subjected to bisulfite conversion using the Zymo 

EZ DNA Methylation Kit (Zymo Research, Irvine, California), which converts DNA methylation 

information into sequence base differences by deaminating unmethylated cytosines to uracil 

while leaving methylated cytosines unchanged. Bisulfite pyrosequencing assays were designed 

with PyroMark Assay Design 2.0 (Qiagen, Hilden, Germany; Supplementary table 3.4). The 

regions of interest were amplified by PCR using the HotstarTaq DNA polymerase kit (Qiagen, 
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Hilden, Germany) as follows: 15 minutes at 95°C, 45 cycles of 95°C for 30s, 58°C for 30s, and 

72°C for 30s, and a 5 minute 72°C final extension step. For pyrosequencing, single-stranded 

DNA was prepared from the PCR product with the Pyromark™ Vacuum Prep Workstation 

(Qiagen, Hilden, Germany) and the sequencing was performed using sequencing primers on a 

Pyromark™ Q96 MD pyrosequencer (Qiagen, Hilden, Germany). The quantitative levels of 

methylation for each CpG dinucleotide were calculated with Pyro Q-CpG software (Qiagen, 

Hilden, Germany). Of note, only PAE and Control animals were assessed by bisulfite 

pyrosequencing. We selected several DMRs for verification by bisulfite pyrosequencing based 

on their potential role in PAE-induced deficits, mainly focusing on their associated gene. 

 

3.3 Results 

3.3.1 Developmental data  

To verify that our alcohol exposure paradigm performed as expected, we assessed 

whether our prenatal treatments influenced maternal weight gain over pregnancy and pup 

weights (Bodnar, Hill, & Weinberg 2016; Uban et al. 2010; Hellemans, Verma, et al. 2010). On 

average, alcohol intake of PAE dams was consistently high across pregnancy, ranging from 

0.208 ± 0.014 to 0.268 ± 0.022 mL/kg body weight during week 1, 0.240 ± 0.016 to 0.305 ± 

0.017 during week 2, and 0.236 ±0.014 to 0.285 ± 0.019 during week 3 of gestation (Table 3.1). 

These levels of drinking typically result in blood alcohol levels ~100-150 mg/dL (Uban et al. 

2010; Hellemans, Verma, et al. 2010). Separate analyses of maternal body weights during 

gestation (GD1, 7, 14, 21) and following parturition (P1, 8, 15, 22) showed significant main 

effects of group (F(2,143)=13.609, p =0.0000039 and F(2,91)=9.559, p =0.00017, respectively) and 

group X day interactions (F(6,143) = 2.869, p = 0.011 and F(2,91) = 2.566, p = 0.082, respectively) 
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during both gestation and lactation. Both PAE and PF dams weighed significantly less than 

controls on GD14 and 21, and following parturition (P1). However, catch-up weight gain 

occurred after birth, when the diets were normalized, and maternal weight differences among 

groups were no longer significant by P8. We did not observe any significant group differences in 

the number of live-born pups, or in the average weight of female pups/litter at any of the 

collection days. These results suggested that our paradigm was performing as expected, with 

PAE dam showing gaining less weight over the course of pregnancy, though these effects were 

not reflected in the weight of pups.  

 
C PF PAE N 

Number of pups 14.7 ± 0.5 14.0 ± 0.8 14.4 ± 0.5 39 (12C; 14PF; 13PAE)  
Dam weight 

  GD 1 295.9 ± 5.1 297.3 ± 5.1 299.4 ± 6.9 39 (12C; 14PF; 13PAE)  

 GD 7 327.8 ± 3.9 314.4 ± 5.6 313.2 ± 6.6 39 (12C; 14PF; 13PAE)  

 GD 14 380.4 ± 5.2 356.6 ± 6.1† 353.1 ± 5.4†† 39 (12C; 14PF; 13PAE)  

 GD 21 478.9 ± 9.5 446.0 ± 6.6†† 434.0 ± 5.8††† 39 (12C; 14PF; 13PAE)  

 P1 393.9 ± 9.1 365.1 ± 7.8† 348.0 ± 6.3††† 39 (12C; 14PF; 13PAE)  

 P8 373.3 ± 8.4 356.5 ± 8.4 361.6 ± 5.2 28 (9C; 10PF; 9PAE) 

 P15 367.9 ± 8.7 356.7 ± 8.6 356.9 ± 1.5 19 (6C; 7PF; 6PAE) 

 P22 346.8 ± 7.1 333.0 ± 11.4 334.0 ± 1.3 12 (4C; 4PF; 4PAE) 
Pup weight 

 

 P1 6.6 ± 0.2 6.5 ± 0.2 6.4 ± 0.1 39 (12C; 14PF; 13PAE)  

 
P8 17.4 ± 0.4 16.8 ± 0.8 16.3 ± 0.7 28 (9C; 10PF; 9PAE) 

 
P15 36.6 ± 2.4 33.1 ± 0.9 35.3 ± 1.3 19 (6C; 7PF; 6PAE) 

 
P22 59.9 ± 0.9 57.2 ± 2.7 59.1 ± 4.2 12 (4C; 4PF; 4PAE) 

†PAE = PF < C; †p < 0.05; ††p < 0.01; †††p < 0.001 
Table 3.1 Pregnancy outcomes and body weights during gestation and postnatal development  

3.3.2 The developmental profile of the rat hypothalamus 

Our initial analysis of this dataset aimed to identify persistent alterations to DNA 

methylation patterns in the rat hypothalamus across early development (P1 to P22). More 

specifically, we analyzed the hypothalamus of female offspring on P1, 8, 15, and 22 using 

methylated DNA immunoprecipitation (meDIP-seq). These ages were selected as they represent 
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key developmental periods, including birth (P1), the brain growth spurt (P8), eye opening (P15), 

and weaning (P22) and females were utilized due to their underrepresentation in molecular and 

genome-wide studies of PAE. (Dobbing & Sands 1979; McCormick & Mathews 2010).  

 

3.3.2.1 PAE caused persistent alterations to DNA methylation patterns in the 

hypothalamus 

As cell type proportions are a major driver of DNA methylation patterns, we first 

removed peaks that were located within genes specifically expressed in neurons, astrocytes, or 

oligodendrocytes, resulting in a dataset of 48 samples and 451,112 peaks. We assessed the cell-

type associated peaks independently by linear modeling (18,050 peaks), identifying few 

differences between prenatal groups, which suggested that few cell-type associated differences 

were present in the dataset (Supplementary figure 3.5). To assess persistent alterations to DNA 

methylation patterns caused by PAE, we performed linear modeling on the hypothalamic 

samples across all ages with a model that also accounted for differences across breeding cohorts. 

Using contrast analyses to assess PAE-specific alterations, we successfully identified 118 PAE-

specific DMRs at an FDR <0.05 that persisted across all four developmental ages and showed 

consistently different DNA methylation levels between PAE animals and controls (Figure 3.2; 

Supplementary table 3.2).  Of these, 47 were up-methylated and 75 were down-methylated in 

PAE animals versus control groups, and their sizes ranged from 316 to 1027bp (median = 

494.5bp). Importantly, meDIP-seq provides relative levels of DNA methylation based on 

enrichment scores, and thus, the magnitude of change (i.e. % methylation) was not assessed 

using this method. 
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Figure 3.2 PAE-specific DMRs across pre-weaning development of the hypothalamus 

A) Contrast analysis revealed 118 PAE-specific differentially methylated regions (DMR), which were significantly 

different in PAE versus C animals and PAE versus PF animals, but not significantly different between PF versus C. 

B) The DMRs showed consistent difference between PAE animals and controls across ages. Each row represents a 

different DMR, while each column shows the mean for all animals within that group/age. Reads per kilobase per 

million (RPKM) data were scaled and centered to produce a Z-score for each DMR, where those in blue showed less 

DNA methylation enrichment and those in red showed more enrichment.  

 

Overall, 34 DMRs were located in genes, particularly within those involved in dopamine 

signaling (Drd4), the immune response (Ifih1, Ccrl2, Il20ra), and blood-brain barrier function 

(Plvap).  Of note, two overlapping genes, Golga4 and Ctdspl, contained two separate DMRs, and 

were the only genes with multiple DMRs. Although the entire DMRs set did not show any 

significant differences in genomic location enrichment compared to the background of the 

dataset, the up-methylated DMRs displayed significantly less enrichment in CGI and exons 
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(p<0.05), as no up-methylated DMRs were located in these regions (Figure 3.3). Furthermore, 

the majority of DMRs were located in intergenic regions, and while these were not significantly 

enriched compared to the entire dataset, these results suggested that intergenic regions may be 

more responsive to the influence of PAE on the epigenome, and may contain important 

regulatory regions that are not yet annotated in the rat genome.  

 
Figure 3.3 Enrichment patterns of the developmental DMRs 

A) Genomic feature enrichment profile of all, up-methylated, and down-methylated DMRs. The probe counts for 

each feature (blue) were compared to the results from permutation analyses of 118 random regions (orange), which 

were used to compute the p-value. The majority of DMRs were located in intergenic regions or introns. Up-

methylated regions in PAE animals did not contain any CpG islands (CGI) or exons, which is lower than expected 

by chance (p<0.05). B) Overrepresentation analysis of transcription factor binding sites in the DMRs. Only Bhlhe40 

showed higher enrichment in the PAE-specific DMRs (blue) than by random chance (orange) (p<0.05), although 

Srebf1 and Mlx trended towards significance (p<0.1). *p<0.05, #p<0.1. 

 

3.3.2.2 PAE-specific DMRs contained a greater proportion of bioinformatically 

predicted Bhlhe40 and Srebf1 TFBS 

To follow up on the large proportion of intergenic regions in the PAE-specific DMRs, we 

assessed the enrichment of transcription factor binding sites (TFBS) within these regions using 
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binding motifs from the mouse genomes. Although the overlap between the rat and mouse 

genomes is not perfect, the rodent family shares many genomic characteristics and this analysis 

provides an important first pass analysis of potential regulatory factors within these regions. 

Following multiple-test correction (FDR<0.05), few TFBS were enriched within these regions 

compared to background levels. However, the Bhlhe40 binding motif was significantly enriched 

within the PAE-specific DMRs (p<0.05), while the Srebf1 and Mlx motifs trended towards 

significance (p<0.10) (Figure 3.3B). These results suggested that certain transcription factors 

may play a role in the long-term reprogramming of hypothalamic functions by PAE and may act 

in concert with other factors to sculpt the epigenome and downstream phenotypes.  

 

3.3.2.3 Genes in PAE-specific DMRs were enriched for biological processes associated 

with hypothalamic functions 

We performed GO analysis to ascertain the broad functional impact of PAE-induced 

changes in DNA methylation patterns of the hypothalamus across early development. We 

identified 20 PAE-specific biological processes (PAEvC and PAEvPF, p<0.05; PFvC, p>0.05; 

Table 3.2). Of note, the top GO terms were associated with steroid receptor signaling 

(GO:0042921, GO:0030518, GO:0031958, GO:0030520), a key function of the hypothalamus. 

Several processes associated with epigenetic regulation (GO:0016577, GO:0006482, 

GO:0070932) were also enriched in the PAE-specific DMRs, as were processes involved in 

immune function (GO:0030885, GO:0030886, GO:0002314), and cellular metabolism 

(GO:0050812). 
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Name ID Number 
of genes 

Multi-
functionality 

P-value Multifunctionality p-value 
PAEvC PAEvPF PFvC PAEvC PAEvPF PFvC 

Glucocorticoid receptor 
signaling pathway 0042921 4 0.475 0.00117 0.00432 0.06853 0.0011 0.00456 0.07096 

Intracellular steroid hormone 
receptor signaling pathway 0030518 27 0.681 0.00146 0.00865 0.09115 0.00148 0.00765 0.09009 

Corticosteroid receptor 
signaling pathway 0031958 5 0.442 0.0025 0.01919 0.10193 0.00269 0.01955 0.1019 

Regulation of myeloid dendritic 
cell activation 0030885 2 0.129 0.00816 0.0198 0.14194 0.00843 0.01869 0.14077 

Negative regulation of myeloid 
dendritic cell activation 0030886 2 0.129 0.00816 0.02063 0.1637 0.00843 0.01978 0.163 

Histone demethylation 0016577 13 0.397 0.01224 0.02727 0.18051 0.01204 0.02756 0.17928 
Protein demethylation 0006482 15 0.365 0.01636 0.0284 0.18496 0.01597 0.02785 0.18571 
Protein dealkylation 0008214 15 0.365 0.01636 0.02926 0.2578 0.01597 0.02805 0.26243 
Calcium ion export 1901660 3 0.345 0.0166 0.02927 0.32371 0.01739 0.02926 0.32667 
Protein sumoylation 0016925 11 0.328 0.01845 0.03449 0.33119 0.01688 0.03389 0.33539 
Regulation of protein targeting 
to membrane 0090313 11 0.631 0.01845 0.03449 0.42205 0.01688 0.03389 0.42409 

Intracellular estrogen receptor 
signaling pathway 0030520 6 0.523 0.01891 0.0354 0.42205 0.01913 0.0354 0.42409 

Histone H3 deacetylation 0070932 8 0.419 0.02819 0.04091 0.56227 0.03028 0.04161 0.56796 
Relaxation of smooth muscle 0044557 6 0.679 0.03185 0.04117 0.56279 0.03219 0.04121 0.56348 
Midbrain-hindbrain boundary 
development 0030917 3 0.267 0.03285 0.04178 0.72697 0.03382 0.04319 0.72413 

GDP-mannose metabolic 
process 0019673 5 0.252 0.03451 0.04275 0.7401 0.03368 0.04445 0.73884 

Protein deacetylation 0006476 20 0.664 0.04114 0.04456 0.76723 0.04009 0.04284 0.76878 
Regulation of acyl-CoA 
biosynthetic process 0050812 4 0.358 0.04459 0.04469 0.89405 0.04633 0.04556 0.89682 

Germinal center B cell 
differentiation 0002314 2 0.073 0.0467 0.04469 0.89405 0.04618 0.04556 0.89682 

Negative regulation of nuclear 
division 0051784 24 0.774 0.04736 0.04683 0.97779 0.04927 0.04737 0.97771 

Table 3.2 Biological processes enriched in the developmental profile DMRs 
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3.3.2.4 The Ddr4 DMR was verified by bisulfite pyrosequencing 

Given that meDIP-seq provides a relative signal of DNA methylation levels, we verified 

the PAE-specific DMRs using bisulfite pyrosequencing, a quantitative measure of DNA 

methylation, to ensure that MeDIP-seq could accurately detect alterations in DNA methylation 

patterns. Importantly, this technique also detects DNA hydroxymethylation, but cannot 

differentiate between the different cytosine modifications, while MeDIP-seq is specific to DNA 

methylation. We assessed four different DMRs, based on their potential role in the etiology of 

PAE-induced deficits.  

We first assayed 16 CpGs within the 3’ UTR of the Drd4 DMR (chr1:214,281,174-

214,281,640) in the same samples as the meDIP-seq analysis (Figure 3.4). This analysis detected 

a >5% change in DNA methylation across the DMR on P1 in PAE compared to Control animals. 

At older ages, several of the CpGs remained significantly different between PAE and controls, 

with several remaining present on P22. Overall, bisulfite pyrosequencing showed the same 

direction of change as the meDIP-seq analysis in this DMR.  

We also used this method to verify three additional DMRs, located within Ifih1 

(chr3:48,561,559-48,561,925), Mycbp (chr5:141,565,784-141,566,172), and Plvap 

(chr16:19,912,813-19,913,185) (Supplementary figure 3.6). These showed less consistent 

changes in DNA methylation between the two methods, as some ages appeared to drive DNA 

methylation patterns more than others and some CpGs showed opposite direction of change 

between meDIP-seq and pyrosequencing. Nevertheless, small differences were identified 

between groups, suggesting that meDIP may be sensitive enough to detect small changes in 

DNA methylation levels. Of note, only a portion of CpGs within each DMR were assessed by 

bisulfite pyrosequencing due to limitations in read length, suggesting that additional CpGs within 
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the DMR may partially drive some of the differential DNA methylation enrichment identified by 

meDIP-seq. 

 

 

Figure 3.4 Bisulfite pyrosequencing verification of the Drd4 DMR 

16 CpGs spanning 380 base pairs (bp) of the DMR located in the 3’ UTR of Drd4 were verified by pyrosequencing 

in the same animals as the meDIP-seq analysis. All CpGs on P1 displayed >5% change in DNA methylation levels 

between PAE (red) and controls (blue). Of these, several were consistently different across all ages and a number 

persisted until P22. The total levels of DNA methylation in the DMR also increased with age across all groups. 

 

3.3.3 Tissue-concordant alterations to DNA methylation patterns 

In parallel to the analysis of developmental DNA methylation in the hypothalamus, we 

used meDIP-seq to assay DNA methylation in the hypothalamus and WBC of the same P22 

females. This analysis aimed to identify tissue-concordant alterations present in both the CNS 

and peripheral tissue in response to PAE.  
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3.3.3.1 White blood cell proportions were not different across groups 

As noted, cell type proportions are a major driver of epigenetic variability. However, the 

volume of blood collected from P22 animals was too small to perform both epigenetic and blood 

composition analyses on the same animals. As such, we collected samples from P22 animals 

from an independent but parallel cohort to determine whether PAE alters the proportion of the 

different WBCs that would be collected using the Ficoll-Paque method. Composition analysis of 

whole blood indicated the proportions of lymphocytes, neutrophils, monocytes, basophils, 

eosinophils, and large unclassified cells. Linear modeling revealed no significant differences 

among prenatal treatment groups, suggesting that PAE does not alter the proportion of the major 

WBC subtypes (Supplementary figure 3.7). These findings suggested that WBC proportions 

might not influence differences in DNA methylation patterns between groups in the present 

dataset. 

 

3.3.3.2 Tissue-concordant alterations to DNA methylation patterns 

To identify tissue-concordant alterations to DNA methylation patterns associated with 

PAE, we performed linear modeling on the BvB dataset with a model that also accounted for 

differences across breeding cohorts: ~Group+tissue+breeding. This method results in the 

identification of 300 PAE-specific DMRs at an FDR <0.05 that were present in both tissues and 

showed the same direction of change in PAE animal compared to controls (Figure 3.5; 

Supplementary table 3.6). Of these, 105 were up-methylated and 195 were down-methylated in 

PAE animals, and their size ranged from 355 to 2038bp (median = 574). The majority of DMRs 

also displayed tissue-specific effects in the relative enrichment of DNA methylation, although 

the magnitude of change was similar between PAE and controls across both tissues (Figure 3.6). 
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Moreover, unsupervised hierarchical clustering of samples using only the PAE-specific DMRs 

caused the control groups to cluster by tissue, rather than group. By contrast, the PAE were more 

closely related than those of the PF and C animals, regardless of tissue-type, highlighting that 

these DMRs likely reflect a mark of alcohol exposure (Figure 3.5).  

 

 

Figure 3.5 PAE-specific DMRs concordant across the hypothalamus and white blood cells  

A) Contrast analysis revealed 300 PAE-specific differentially methylated regions (DMR) between both tissues, 

which were significantly different in PAE versus C animals and PAE versus PF animals, but not significantly 

different between PF versus C. B) Heatmap of the DMRs.  Each row represents a different DMR, while each column 

shows the meDIP-seq data for each animal (n=4, except PF WBC: n =3). Reads per kilobase per million (RPKM) 

data were scaled and centered to produce a Z-score for each DMR, where those in blue showed less DNA 

methylation enrichment and those in red showed more enrichment. Samples were grouped using unsupervised 

hierarchical clustering, causing PAE samples to first cluster together and samples in general to separate by tissue. 

PAE-specific DMRs showed the same direction of change in both tissues, with some graded effects of tissue type.  
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Again, the majority of DMRs were located in intergenic regions, and were not associated 

with any gene (Figure 3.6A). However, the DMRs showed decreased enrichment in intergenic 

regions compared to background levels and more enrichment in intron/exons boundaries, which 

was driven mainly by the down-methylated regions. These results may reflect the role of DNA 

methylation in the regulation of splice variants, which could potentially be affected by PAE. 

Overall, 75 DMRs were located in genes, although the majority of these were once again located 

in intronic regions. Several DMRs were located in genes involved in immune function (Fgf9, 

Il18r1) and alcohol metabolism (Adh4). Of note, one DMR spanned 9 different isoforms of the 

Utg1a family of genes, while Caln1 and Cntnap5c each contained three separate DMRs.  

 

 

Figure 3.6 Enrichment patterns of the tissue-concordant DMRs 

A) Genomic feature enrichment profile of all, up-methylated, and down-methylated DMRs. The probe counts for 

each feature (blue) were compared to the results from permutation analyses of 300 random regions (orange), which 

were used to compute the p-value. While the majority of DMRs were located in intergenic regions, they showed a 

lower proportion than expected by random change (p<0.01). By contrast, exon/intron boundaries were 

overrepresented in the DMRs, particularly within the regions that were down-methylated in PAE animals. B) 

Overrepresentation analysis of transcription factor binding sites in the DMRs. Several TFBS showed higher 

enrichment in the tissue-concordant DMRs (blue) than expected by random chance (orange), with GMEB1 showing 

the highest enrichment at 17% of all DMRs. *p<0.05, **p<0.01.  
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3.3.3.3 Several bioinformatically-predicted TFBS were enriched in cross-tissue PAE-

specific DMRs  

We assessed the enrichment of TFBS within these cross-tissue PAE-specific DMRs to 

follow up on potential regulatory regions. Following multiple-test correction (FDR<0.05), we 

identified 16 TFBS enriched within these regions compared to background levels (Figure 3.6B). 

The most frequent motif belonged to GMEB1, which was found in 16% of all DMRs. Several 

binding sites for the forkhead box (FOX) family of transcription factors were also enriched in 

these regions. Of note, the enrichment of Mlx and Srebf1 motifs in the cross-tissue DMRs 

overlapped with the results from the developmental profile.  

 

3.3.3.4 Genes in cross-tissue PAE-specific DMRs were enriched for various biological 

processes 

We performed GO analysis to ascertain the broad functional impact of PAE-induced 

changes in DNA methylation patterns across the hypothalamus and WBC. We identified 35 

PAE-specific biological processes (p<0.05 in PAEvC and PAEvPF, p>0.05 in PFvC; Table 3.3). 

Of note, the top GO terms were associated with metabolic processes, including aldehyde 

metabolism (GO:0006081). Several processes were also associated with immune function 

(GO:0045063, GO:0071351, GO:0032733, GO:0070673, GO:2674), chromatin remodelling 

(GO:6338, GO:90239), and the stress response (GO:42320).
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Name ID Number 
of genes 

Multi-
functionality 

P-value Multifunctionality p-value 
PAEvC PAEvPF PFvC PAEvC PAEvPF PFvC 

Cellular aldehyde metabolic process 6081 29 0.785 0.00089 0.00081 0.0531 0.00094 0.00093 0.05423 
T-helper 1 cell differentiation 45063 5 0.483 0.0026 0.00284 0.0531 0.00261 0.00319 0.05423 
Amino-acid betaine metabolic 
process 6577 10 0.484 0.00275 0.00383 0.05739 0.0028 0.0034 0.058 

Carnitine metabolic process 9437 7 0.36 0.00284 0.00414 0.06279 0.00321 0.00391 0.06181 
Osteoblast fate commitment 2051 2 0.224 0.0044 0.00465 0.09845 0.00413 0.00434 0.09938 
Plasma membrane repair 1778 7 0.109 0.00599 0.0051 0.1162 0.00631 0.00474 0.11789 
Negative regulation of circadian 
sleep/wake cycle, REM sleep 42322 2 0.324 0.00788 0.0051 0.14968 0.00829 0.00474 0.15006 

Chromatin remodeling 6338 43 0.753 0.01171 0.00597 0.17051 0.01135 0.00569 0.17029 
Negative regulation of axon 
regeneration 48681 3 0.41 0.01139 0.0092 0.17521 0.01204 0.00896 0.17422 

Regulation of natural killer cell 
cytokine production 2727 2 0.293 0.01217 0.01155 0.17521 0.01348 0.01048 0.17422 

Positive regulation of natural killer 
cell cytokine production 2729 2 0.293 0.01217 0.01082 0.22896 0.01348 0.01057 0.2317 

Amino-acid betaine biosynthetic 
process 6578 5 0.219 0.01428 0.01082 0.25627 0.01367 0.01057 0.25577 

Glucose 1-phosphate metabolic 
process 19255 2 0.0827 0.01405 0.0106 0.29844 0.01546 0.01064 0.30042 

Cellular response to interleukin-18 71351 2 0.23 0.01587 0.0114 0.31438 0.01748 0.01094 0.317 
Protein K63-linked deubiquitination 70536 12 0.126 0.02072 0.01396 0.33657 0.02115 0.01351 0.33588 
Carnitine biosynthetic process 45329 3 0.085 0.02242 0.01864 0.34572 0.02301 0.02005 0.34264 
Positive regulation of interleukin-10 
production 32733 15 0.81 0.02457 0.02429 0.34572 0.02509 0.02327 0.34264 

Response to jasmonic acid 9753 3 0.405 0.02597 0.02429 0.37241 0.02675 0.02327 0.36841 
Cellular response to jasmonic acid 
stimulus 71395 3 0.405 0.02597 0.02776 0.38417 0.02675 0.02755 0.38807 

Response to interleukin-18 70673 3 0.404 0.02741 0.03021 0.44431 0.02814 0.02905 0.44259 
Cofactor catabolic process 51187 13 0.638 0.0291 0.03294 0.44477 0.02836 0.03162 0.44499 
Extracellular polysaccharide 
biosynthetic process 45226 2 0.12 0.02809 0.03374 0.50515 0.02987 0.03253 0.50571 
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Table 3.3 Biological processes enriched in the tissue-concordant DMRs 

Name ID Number 
of genes 

Multi-
functionality 

P-value Multifunctionality p-value 
PAEvC PAEvPF PFvC PAEvC PAEvPF PFvC 

Extracellular polysaccharide 
metabolic process 46379 2 0.12 0.02809 0.03382 0.53397 0.02987 0.03259 0.53274 

Acetaldehyde metabolic process 6117 2 0.216 0.03048 0.03547 0.53397 0.03224 0.03553 0.53274 
Protein K48-linked deubiquitination 71108 12 0.0357 0.0314 0.03784 0.58202 0.03277 0.03703 0.57955 
Cellular response to light stimulus 71482 38 0.821 0.03665 0.03755 0.58809 0.03621 0.03751 0.58519 
Podosome assembly 71800 3 0.0518 0.03607 0.03755 0.61294 0.03643 0.03751 0.61412 
Micturition 60073 5 0.536 0.04093 0.03865 0.65836 0.03964 0.0376 0.65844 
Regulation of histone H4 acetylation 90239 5 0.465 0.04093 0.03969 0.66132 0.03964 0.03965 0.66174 
Adenylate cyclase-activating G-
protein coupled receptor signaling 
pathway 

7189 26 0.73 0.038 0.04176 0.7519 0.03969 0.04102 0.75163 

ER to Golgi ceramide transport 35621 2 0.11 0.03821 0.04171 0.76157 0.03982 0.04149 0.75818 
Ceramide transport 35627 2 0.109 0.03821 0.04174 0.81677 0.03982 0.04231 0.81613 
Glycolipid transport 46836 2 0.0288 0.03821 0.04318 0.84505 0.03982 0.0426 0.84661 
Regulation of circadian sleep/wake 
cycle, REM sleep 42320 4 0.439 0.04575 0.04318 0.86337 0.04542 0.0426 0.86292 

Negative regulation of acute 
inflammatory response 2674 6 0.674 0.04567 0.04881 0.94037 0.04575 0.04964 0.93962 
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3.3.3.5 Verification of DMRs by bisulfite pyrosequencing 

We used bisulfite pyrosequencing to compare quantitative levels of DNA methylation 

between PAE and Control animals in three cross-tissue DMRs. More specifically, we analyzed 

DNA methylation in the final exon and 3’ UTR of Adh4 (chr2: 243,719,416-243,720,233), the 

first exon and 5’ UTR of Ctnnbip1 (chr5: 166,485,057-166,485,637), and the first intron of Ffg9 

(chr15: 38,377,629-38,378,027) (Supplementary figure 3.8). The main differences in DNA 

methylation levels were identified between tissues, which sometimes showed different directions 

of change between PAE and Controls. In particular, a CpG within the Adh4 DMR showed a close 

to 5% methylation difference in the hypothalamus of PAE animals, but this effect was not 

present in WBC. Another CpG within the Adh4 locus showed small changes that were consistent 

between tissues. This pattern was also observed in the Fgf9 locus, which suggested that these 

may be small, but systemic effects of PAE. By contrast, the Ctnnbip1 locus showed opposite 

effects between tissues (decreased in the hypothalamus; increased in WBC), suggesting that 

other factors may come into play. Moreover, as we did not assess quantitative DNA methylation 

level across the entire DMR due to pyrosequencing limitations, other CpGs may drive the 

enrichment patterns previously identified by meDIP-seq.  

 

3.4 Discussion 

Alcohol exposure in utero appears to reprogram physiological and neurobiological 

systems, increasing the risk of adverse developmental outcomes across the lifespan (Zhang, 

Sliwowska, & Weinberg 2005; Pei et al. 2011; Mattson, Crocker, & Nguyen 2011). Given the 

potential role of epigenetic mechanisms in mediating the long-term effects of PAE, the present 

study aimed to extend previous work on the influence of in utero alcohol exposure on the 
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epigenome, using an animal model of PAE to assess genome-wide DNA methylation patterns 

during early postnatal development. We identified 118 differentially methylated regions (DMRs) 

that were altered in the hypothalamus of PAE versus control animals across the pre-weaning 

period. In parallel, we found 300 DMRs displaying concordant DNA methylation alterations 

between the hypothalamus and WBC of PAE animals at weaning. Several differentially 

methylated genes were functionally related to the PAE-induced deficits, including roles in the 

immune response, neurobiological function, and mental health, while functional enrichment 

revealed several PAE-specific biological processes, including those related to immune function, 

the stress response, and epigenetic regulation. In addition, we identified several transcription 

factor bindings sites that were enriched in the DMRs, which may potentially reflect broader 

programming effects of PAE on the epigenome. Overall, these findings suggested that PAE 

causes broad alterations to epigenomic programs in both the CNS and peripheral tissues, 

suggesting that alterations to DNA methylation patterns could influence broader neurobiological 

and physiological systems and potential act as biomarkers of PAE.  

 

Our initial analysis of the DMRs revealed several differentially methylated genes that 

could potentially be relevant to PAE-induced deficits. In particular, the dopamine receptor D4 

(Drd4) gene contained a DMR that persisted across the early developmental period. Given its 

crucial role in dopaminergic function, as well as interactions among dopaminergic, 

neuroendocrine, and immune systems, alterations to this gene could reflect broader alterations to 

signaling in the brain. Interestingly, differential DNA methylation patterns of Drd4 are also 

present in the buccal epithelial cells of individuals with FASD, suggesting that this may be a 

robust effect of PAE on the epigenome (Portales-Casamar et al. 2016; Fransquet et al. 2016). In 
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addition to this association with FASD, genetic and epigenetic variation in Drd4 has been linked 

to attention deficit hyperactivity disorder (ADHD), schizophrenia, bipolar disorder, substance-

use disorders, and several other neurobiological disorders (Dadds et al. 2016; Ji et al. 2016; 

Cheng et al. 2014; Kordi-Tamandani, Sahranavard, & Torkamanzehi 2013; Docherty et al. 2012; 

Ptáček, Kuželová, & Stefano 2011; Bau et al. 2001; Zhang H. et al. 2013; Faraone, Bonvicini, & 

Scassellati 2014; Chen et al. 2011). Moreover, Golga4 contained 2 PAE-specific DMRs across 

hypothalamic development, and is known to be overexpressed in the prefrontal cortex of 

individuals with bipolar disorder (Iwamoto et al. 2004). As a member of the Golgi secretory 

pathway, it could also potentially influence the secretion of neuropeptides by cells of the 

hypothalamus, possibly playing a role in altered function or responsivity following PAE (Wong 

& Munro 2014). Similarly, Plvap expression increases the breakdown and permeability of the 

blood-brain barrier (BBB) (Shue et al. 2008). As such, slight alterations to its DNA methylation 

profile could reflect broader effects on the BBB, which, in turn, could affect downstream 

neurobiological functions.  

The tissue-concordant DMRs also contained several genes previously associated with 

mental health disorders. In particular, Adh4 was differentially methylated across the 

hypothalamus and WBC of PAE animals, and has been previously associated with alcohol 

dependence and substance abuse (Luo et al. 2005). Importantly, it is a key component of alcohol 

metabolism pathways, and could reflect increased susceptibility to the effects of alcohol during 

development. Furthermore, Caln1 contained 3 separate DMRs, and as it contains a risk allele for 

schizophrenia in some human populations, it could also play a role in the etiology of FASD (Li 

et al. 2015).  
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Of note, two genes displayed differential DNA methylation patterns in both the 

developmental profile and tissue-concordance analysis, Cntnap5c and Ush2a, which may reflect 

robust alterations to DNA methylation patterns across both age and tissue types. In humans, 

genetic variation in Cntnap5 is associated with risk for Alzheimer’s disease and bipolar disorder, 

while its deletion is associated with autism and dyslexia, suggesting that common pathways may 

come into play between these disorders and FASD (Schott et al. 2016; Xu et al. 2014; 

Pagnamenta et al. 2010). By contrast, mutations in Ush2a cause Usher syndrome II, which is 

associated with hearing deficiencies, deficits also commonly found in individuals with FASD 

(Church & Gerkin 1988). Finally, several DMRs in both datasets were located in genes 

associated with immune function and response. In particular, Ifih1 was identified across all ages 

in the hypothalamus; as a receptor for double stranded RNA that responds to viral infections, it 

could be associated with vulnerability to neuroimmunological deficits (Rice et al. 2014). Fgf9, a 

key factor in embryonic and glial cell development, was also differentially methylated in both 

the hypothalamus and WBC (Thisse & Thisse 2005). Furthermore, this growth factor promotes 

pro-inflammatory environments through Ccl2 and Ccl7 chemokine secretion, consistent with 

several DMRs that were located in genes associated with pro-inflammatory cytokine and 

chemokine signaling (Lindner et al. 2015). These included Il20ra and Ccrl2 in the 

developmental profile, and Il18r1 in the tissue-concordance analysis, suggesting that PAE can 

influence inflammatory pathways through epigenetic pathways, and ultimately, alter the cellular 

response to immune challenges.  

 

We also assessed the functional enrichment of genes located within PAE-specific DMRs, 

identifying a number of biological processes associated with differential DNA methylation 
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patterns in PAE animals compared to controls. In the DMRs identified across hypothalamic 

development, a large number of GO processes were associated with functions in steroid receptor 

signaling. The hypothalamus is central to numerous physiological systems that function through 

steroid hormones, many of which are dysregulated by PAE. As such, this enrichment pattern 

suggests that DNA methylation may play a role in the reprogramming of hormonal systems 

during early development, potentially priming physiological systems to new set-points. In 

addition, several processes in both the developmental and tissue-concordant DMRs were 

associated with epigenetic regulation, which may reflect the complex interplay between different 

layers of the epigenetic machinery. Several studies have identified alterations to histone 

modifications in the brain following developmental alcohol exposure, further highlighting their 

potential role in FASD (Goldowitz et al. 2014; Chater-Diehl et al. 2016; Veazey et al. 2015; 

Subbanna et al. 2014, 2013; Zhang et al. 2015; Lussier, Weinberg, & Kobor 2017; Guo et al. 

2011; Govorko et al. 2012; Bekdash, Zhang, & Sarkar 2013). A large number of immune-related 

biological processes were also identified through this analysis, which further highlights the 

bidirectional communication between the stress response and immune system. Given the close 

relationship between these systems, altered responsivity of the hypothalamus to immune 

challenge could potentially alter the organism’s ability to defend against disease or infection. In 

addition, the top GO term associated with PAE in the tissue-concordant DMRs was “cellular 

aldehyde metabolic process”, which may reflect lasting effects of PAE on the organism’s ability 

to metabolize alcohol’s metabolic byproducts and possibly modulate susceptibility to substance 

abuse later in life. While no overlaps were identified between the specific biological processes 

identified in the developmental profile and tissue-concordance analyses, both contained a high 

proportion of processes with immune, endocrine, or epigenetic functions. These findings suggest 
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that PAE may cause systemic effects on the epigenome across multiple tissue types, which may, 

in turn, influence downstream neurobiological and physiological processes. 

 

Previous studies have identified subtle effects of PAE on gene expression programs and 

epigenomic patterns, which is consistent with the effects of other prenatal exposures (Laufer et 

al. 2013; Chater-Diehl et al. 2016; Zhou, Balaraman, et al. 2011; Ladd-Acosta et al. 2014; Berko 

et al. 2014; Rakyan et al. 2011; Lussier et al. 2015). Regions containing lower CpG density 

appear to be more responsive to environmental exposures, highlighting the importance of 

selecting a method that covers a large portion of the epigenome when analyzing an exposure 

with rather subtle effects (Irizarry et al. 2009a). Thus, we analyzed genome-wide DNA 

methylation using MeDIP-seq, which is unbiased towards less variable CpG-rich regions and 

simultaneously reduces the complexity of the dataset by omitting unmethylated regions. As 

expected, few DMRs across both analyses were identified in CpG-dense regions, such as 

promoters and CpG islands, while the majority of DMRs were located in intergenic regions and 

introns, and several were located in intron/exon boundaries, particularly within the down-

methylated tissue-concordant DMRs. Given that DNA methylation plays a role in regulating 

alternative splice variants, these findings may reflect alterations to the balance of different 

isoforms within the cell, which could influence downstream cellular profiles and phenotypes 

(Shukla et al. 2011; Maunakea et al. 2013, 2010). Although isoform balance has not been 

investigated in the context of PAE, studies have shown that alcohol consumption in general can 

influence the proportions of different splice variants in the brain, supporting a potential role in 

early-life exposures as well (MacKay et al. 2011; Farris et al. 2015; Lee, Mayfield, & Harris 

2014; Mathew et al. 2016). Interestingly, a larger proportion of down-methylated DMRs were 
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identified in both analyses, which is consistent with several studies showing that PAE decreases 

bulk DNA methylation levels (Otero et al. 2012; Perkins et al. 2013; Chen, Ozturk, & Zhou 

2013; Mukhopadhyay et al. 2013; Nagre et al. 2015; Liyanage et al. 2015). These findings 

provide important insight into different outcomes in different paradigms of alcohol exposure and 

suggest that similar upstream mechanisms may impact DNA methylation across models, 

potentially involving changes in one-carbon metabolism or in the activity of DNA 

methyltransferases. 

 

The large proportion of DMRs located in intergenic regions suggested that these could 

contain regulatory regions susceptible to the influence of PAE. Given that the rat genome is 

poorly annotated for regulatory features, we assessed the enrichment profiles of different 

transcription factor binding sites in the DMRs, which could be influenced by DNA methylation 

levels within specific loci. While only the binding site for the BHLHE40 transcription factor was 

significantly enriched in PAE-specific DMRs across early development, we previously identified 

this gene as differentially expressed in the adult brain of PAE (Lussier et al. 2015). This gene 

negatively regulates the circadian rhythm, a key function of the hypothalamus that is 

dysregulated in individuals with FASD (Nakashima et al. 2008). The BHLHE40 transcription 

factor could potentially play a role in early programming effects of PAE on neurobiological 

systems, with persistent expression and downstream effect into later life. By contrast, the tissue-

concordant DMRs contained a high proportion of significantly enriched TFBS, including 

SREBF1, which trended towards significance in the developmental profile DMRs. SREBF1 is 

associated with key metabolic processes for hormonal signaling, as it plays a role in the 

regulation of cholesterol production (Osborne 2001). It is also associated with Smith–Magenis 
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syndrome, which is characterized by intellectual disability, disordered sleeping, and behavioral 

problems (Smith et al. 2002). Furthermore, additional TFBS enriched in the BvB dataset 

included several members of the forkhead box (FOX) family of genes, FOXC1, FOXK1, and 

FOXO3. In particular, FOXO3 was identified as a hub gene in the brain PAE animals following 

an immune challenge, suggesting that it may prime biological systems from early in life (Lussier 

et al. 2015). Finally, the highest represented TFBS in the BvB dataset belonged to GMEB1, 

which is involved in signal transduction of the glucocorticoid response (Zeng, Kaul, & Simons 

2000). Taken together, these findings suggest that the DMRs identified in both the 

developmental and tissue-concordance analyses may contain key regulatory regions, and that 

various transcription factors likely act in concert with DNA methylation to mediate the effects of 

PAE. 

 

Although meDIP-seq allows for the investigation of more variable regions of the 

epigenome, it presents a particular caveat when assessing DNA methylation levels, as it provides 

relative levels of DNA methylation across broad regions of the genome, rather than quantitative 

and granular data. As such, we undertook to verify our findings from the meDIP-seq analysis 

through bisulfite pyrosequencing, the gold standard for targeted DNA methylation analyses. A 

limitation of this approach is that bisulfite pyrosequencing detects both methylated and 

hydroxymethylated cytosines, and there is no way to distinguish the two when analyzing the 

results from pyrosequencing, resulting in a mixed signal. By contrast, meDIP-seq specifically 

enriches DNA methylation, as the antibody is highly specific to 5-methylcytosine (Taiwo et al. 

2012). In this context, we found that some of the bisulfite pyrosequencing results did not fully 

confirm the effects observed by meDIP-seq. However, given that neuronal cells contain a high 
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proportion of DNA hydroxymethylation compared to other cell types, it is possible that the 

observed differences in methodologies are due to the confound of additional epigenetic patterns 

not assessed in the meDIP-seq analysis. Indeed, a number of studies have shown that 

developmental alcohol exposure can alter DNA hydroxymethylation programs in neuronal cells 

in addition to DNA methylation, suggesting that it may also play a role in the etiology of FASD 

(Chen, Ozturk, & Zhou 2013; Öztürk et al. 2017). In addition, the lack of confirmation could 

potentially be due to the small number of animals used in the present study, as well as increased 

variability in the enrichment profiles obtained from meDIP-seq, given the broader regions 

assessed. Nevertheless, the Drd4 locus identified in the developmental profile of the 

hypothalamus displayed consistent DNA methylation alterations in both methods, suggesting 

that meDIP-seq can capture differences in DNA methylation patterns, regardless of the influence 

of DNA hydroxymethylation. Additional studies are required to fully validate these findings and 

assess their relationship to the deficits observed following PAE. 

 

One of the main strengths of animal models derives from their ability to directly compare 

central and peripheral tissue to ascertain potential correlations between the two, which may 

identify potential biomarkers reflective of brain function in a tissue that is available for study in 

human populations. In that regard, however, cell type heterogeneity is a major driver of DNA 

methylation patterns (Farré et al. 2015). Thus, we attempted to partially correct for cellular 

heterogeneity between groups by removing regions that were associated with the major cell types 

in the brain, neurons, astrocytes, and oligodendrocytes (Cahoy et al. 2008). However, additional 

cellular subtypes, such as glia, are also present in the hypothalamus, and could have influenced 

the results here without our knowledge. We were also limited by the use of regions located 
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within genes, and thus could not correct for intergenic regions that may be associated with cell 

type.  

By contrast, we measured the proportion of different WBC subtypes in an independent 

cohort of animals. The fact that we did not identify any significant differences in WBC 

composition of whole blood among groups suggests that this may not have been a factor in 

driving the DMRs identified in the tissue-concordant analysis. However, as Ficoll-Paque is a 

highly technical procedure, differences between WBC extractions could have influenced the 

proportions of cells analyzed in the present study, and we could not correct for such effects. 

Additionally, as these subtypes can be further subdivided through more sophisticated methods 

such as fluorescence-activated cell sorting, there is still a possibility that group differences may 

exist. In contrast to clinical studies of DNA methylation, no bioinformatic tools exist to predict 

the proportion of different cell types using epigenomic profiles in rats, and future studies should 

take this into consideration. Nevertheless, we successfully identified several PAE-specific DMRs 

that showed the same direction of change between the two tissues, suggesting that these regions 

may be responsive to ethanol across multiple tissues and may represent more stable biomarkers 

of PAE.  

 

3.5 Summary and conclusions 

Our results support a role for DNA methylation in the early-life reprogramming of 

hypothalamic functions by PAE, and suggest that DNA methylation patterns in WBC could 

potentially be used as a surrogate for alterations in the central nervous system. We identified 

persistent PAE-induced alterations to the DNA methylome of the hypothalamus, including 

several DMRs that could, at least in part, underlie some of the deficits observed in FASD. 
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Although PAE-induced alterations to DNA methylation profiles at any of these development 

ages may not persist into adulthood, changes early in development could alter the developmental 

trajectory and induce lasting alterations in brain structure and connectivity, or prime 

physiological systems to different set-points. Of note, we demonstrate for the first time that PAE-

specific DMRs can occur across central and peripheral tissues, which potentially represent 

systemic effects of PAE on the epigenome, and could serve as an epigenetic biomarker or 

signature of FASD. Taken together, these findings provide insight into the important role of 

epigenetic alterations in the short and long-term deficits observed in FASD, and provide a 

foundation for the development of robust biomarkers of PAE. 
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Chapter 4: DNA methylation signature of human fetal alcohol spectrum 

disorder 

 
4.1 Background and rationale 

The prenatal environment has the potential to permanently imprint physiological and 

behavioural systems during development, leading to both short and long-term health 

consequences. In particular, prenatal alcohol exposure (PAE) can alter the development, 

function, and regulation of numerous neural and physiological systems, resulting in a variety of 

deficits falling under the umbrella of Fetal Alcohol Spectrum Disorder (FASD) (Mattson, 

Crocker, & Nguyen 2011). Over the lifetime, the effects of prenatal alcohol exposure are 

manifested through cognitive and behavioural deficits, persistent alterations to stress responsivity 

and immune function, and increased vulnerability to mental health disorders and other 

comorbidities in individuals with FASD (Zhang, Sliwowska, & Weinberg 2005; Pei et al. 2011; 

Mattson, Crocker, & Nguyen 2011; Popova et al. 2016). However, the degree to which alcohol 

exposure causes alterations during development varies, depending on factors such as timing and 

level of exposure, overall maternal health and nutrition, and genetic background (Pollard 2007). 

As such, only a small proportion of affected children present with the phenotype of Fetal Alcohol 

Syndrome (FAS), which is distinguished by growth deficits and facial dysmorphisms in addition 

to central nervous system dysfunction (Jones & Smith 1973; Astley & Clarren 2000). 

Nevertheless, the vast majority of children with FASD display physiological and 

neurobehavioral impairments lasting into adulthood, suggesting persistent programming effects 

of PAE across the spectrum of FASD (Jacobson et al. 2011).  
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While the etiology of the FASD currently remains unclear, epigenetics is emerging as an 

attractive candidate for the biological embedding of prenatal and early life experiences in 

general, and thus is a promising avenue for the study of FASD (Feil & Fraga 2012). Epigenetics 

refers to modifications of DNA and its packaging that alter the accessibility of DNA, to 

potentially regulate gene expression and cellular function without changes to the underlying 

genomic sequences (Bird 2007).  The most studied epigenetic modification in human populations 

is DNA methylation, which refers to the covalent attachment of a methyl group to the 5’ position 

of cytosine, typically occurring in the context of cytosine-guanine dinucleotide (CpG) sites 

(Jones & Takai 2001). CpG sites are relatively rare in the human genome, yet do not occur at 

random; regions containing higher than expected levels of these dinucleotides have been termed 

‘CpG islands’ (CGIs) (Illingworth & Bird 2009). The 2kb regions flanking CGIs are known as 

CGI ‘shores’, while the areas located beyond shores are known as ‘shelves’ (Doi et al. 2009; 

Irizarry et al. 2009a; Bibikova et al. 2011). Of note, these regions typically are more variable 

than CGIs themselves, as they have a greater range of DNA methylation across individuals 

(Irizarry et al. 2009a). DNA methylation is associated with the regulation of gene expression, 

although its effects on transcription are highly dependent on genomic context. For example, 

when located within gene promoters, DNA methylation generally represses gene expression, but 

this relationship is less well defined for CpGs located within gene bodies and intergenic regions 

(Jones 2012). Furthermore, DNA methylation is closely associated with several key 

developmental processes, including genomic imprinting, as well as tissue specification and 

differentiation (Ziller et al. 2013; Smith & Meissner 2013). DNA methylation patterns are also 

population-specific, as a number of CpG sites are associated with ethnicity (Fraser et al. 2012; 

Moen et al. 2013; Heyn et al. 2013). There are a number of possible reasons for this association, 
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including shared environments or associations of epigenetic marks with specific genetic variants 

(Gutierrez-Arcelus et al. 2013; Wagner et al. 2014; Banovich et al. 2014).  

Importantly, DNA methylation is malleable in response to environmental factors and 

these changes may be inherited through cell divisions, potentially persisting throughout the 

lifetime (Langevin et al. 2011; Hanson et al. 2011; Yuen et al. 2011). For example, prenatal 

exposure to cigarette smoke is associated with long-term changes in DNA methylation of the 

AHRR gene, and maternal under-nutrition during pregnancy leads to altered DNA methylation of 

IGF2 (Joubert et al. 2012; Heijmans et al. 2008). Several studies have also characterized 

epigenetic changes following prenatal and postnatal ethanol exposure (Haycock 2009; Haycock 

& Ramsay 2009; Kobor & Weinberg 2011; Ungerer, Knezovich, & Ramsay 2013; Laufer, Diehl, 

& Singh 2013; Resendiz et al. 2013; Ramsay 2010). Early work in pregnant mice demonstrated 

that acute ethanol exposure during mid-gestation (gestational days 9 to 11) causes global 

genomic loss of DNA methylation in the fetus (Garro et al. 1991). However, recent studies of 

embryonic cultures exposed to ethanol show that rather than a global demethylation of the 

genome by ethanol, some regions become more methylated and others less methylated (Liu et al. 

2009). Moreover, genome-wide studies in adult mice that were exposed to ethanol prenatally 

have also identified widespread changes in DNA methylation patterns in the entire brain, further 

suggesting an important role for epigenetics in the etiology of FASD (Laufer et al. 2013). 

Finally, a recent study characterized the DNA methylation profile in buccal epithelial cells 

(BECs) from a small cohort of human FASD samples, identifying alterations in the epigenome of 

children with FASD, particularly within the protocadherin gene clusters (Laufer et al. 2015).  

Collectively, these findings support epigenetic mechanisms as potential contributors to 

the deficits observed following PAE. However, no large-scale investigations of DNA 
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methylation in individuals with FASD have been performed to date. In order to ascertain the 

effect of PAE on the human epigenome, the present study investigated the DNA methylation 

patterns of BECs from 110 children with FASD and 96 age- and sex-matched controls, to our 

knowledge representing the largest investigation on PAE effects on the human epigenome. 

Statistically significant alterations between FASD cases and controls were successfully identified 

following ethnic background correction, with a number of differentially methylated sites and 

regions located in genes previously associated with alcohol exposure (Liu et al. 2009; Laufer et 

al. 2015). Taken together, these results support a potential role for DNA methylation in the 

etiology of the neurobiological deficits observed in children with FASD and represent a potential 

epigenetic signature of FASD. 

 

4.2 Materials and methods 

4.2.1 Participants and samples 

Children with FASD were recruited from multiple FASD diagnostic clinics across 

Canada and age- and sex-matched typically developing children were recruited in parallel. Saliva 

samples and buccal epithelial cells (BECs) were collected for genotyping and DNA methylation 

analysis respectively (Reynolds et al. 2011). Written informed consent was obtained from a 

parent or legal guardian and assent was obtained from each child before study participation. The 

majority of clinics used previously described guidelines for the diagnosis of FASD (Chudley et 

al. 2005). Briefly, samples were collected from 112 FASD and 102 age- and sex-matched control 

children aged between 5 and 18. Saliva samples were collected using the Oragene DNA kit 

(DNA Genotek Inc., Ontario, Canada) according to the manufacturer’s instructions. BECs were 

collected using the Isohelix buccal swabs and Dri-Capsule (Cell Projects Ltd., Kent, UK). To 
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collect buccal cells, the swab was inserted into the participants’ mouth and rubbed firmly against 

the inside of the left cheek for 1 minute. The swab was then placed into a sterile tube with a Dri-

Capsule and the tube sealed. An identical procedure was followed for the right cheek. 

Participants did not have any dental work performed 48 hours prior to collection, and no food 

was consumed less than 60 minutes prior to collection to avoid contamination. 

 

4.2.2 DNA methylation 450K assay 

DNA was extracted from buccal swabs using the Isohelix DNA isolation kit (Cell 

Projects, Kent, UK). 750ng of genomic DNA was subjected to bisulfite conversion using the 

Zymo EZ DNA Methylation Kit (Zymo Research, Irvine, California), which converts DNA 

methylation information into sequence base differences by deaminating unmethylated cytosines 

to uracil while leaving methylated cytosines unchanged. 160ng of converted DNA was applied to 

the HumanMethylation450 BeadChip array from Illumina (450K array), which enables the 

simultaneous quantitative measurements of 485,512 CpG sites across the human genome, 

following the manufacturer’s instructions. Chips were scanned on an Illumina HiScan, with the 

214 samples run in two batches and each containing an equal number of FASD and control 

samples, randomly distributed across the chips. Two pairs of technical replicates were included 

and showed a Pearson correlation coefficient r>0.996 in both cases, highlighting the 

technology’s reproducibility. 

 

4.2.3 DNA methylation data quality control and normalization 

The raw DNA methylation data were subjected to a set of rigorous quality controls, first 

of the samples, and then of the probes. Of the 214 initial samples, 8 were removed from the final 
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dataset due to various quality and concordance issues. Of these, five were removed based on 

poor quality data, which were identified through skewed internal controls and/or >=5 % of 

probes with a detection p-value > 0.05. One sample was removed due to a chromosomal 

abnormality identified in the genotyping and DNA methylation data (XXY; Klinefelter 

syndrome). The genotypes of the samples, based on the 65 SNP probes contained on the 450K 

array, were compared to the genotypes from the SNP arrays. The genotypes were highly 

correlated for all samples (Pearson correlation coefficient r > 0.9), except one, which was 

excluded from further analyses. Finally, as a pair of monozygotic twins was present in the 

control group, only one of their samples was chosen at random and retained in the analysis to 

remove any genetic bias. Next, probes were removed from the dataset according to the following 

criteria: (1) probes on X and Y chromosomes (N = 11648); (2) SNP probes (N = 65); (3) probes 

with beadcount <3 in 5 % of samples (N = 3029); (4) probes with 1% of samples with a detection 

p-value > 0.05 (N = 10163); or (5) probes with a polymorphic CpG and non-specific probes as 

defined by the Price annotation (N = 20869 SNP-CpG and 41937 non-specific probes; (Price et 

al. 2013)). A final filtering step was performed to set the methylation values to NA for any 

remaining probe-sample pair where beadcount <3 or detection p-value > 0.05. Data 

normalization was performed using the Beta-Mixture Quantile Normalization method on the 

final dataset, composed of 206 samples (110 FASD and 96 control) and 404,030 probes 

(Teschendorff et al. 2012). All analyses were performed using M-values, which represent the 

log2 ratio of methylated/unmethylated, where negative values indicate less than 50% methylation 

and positive values indicate more than 50% methylation (Du et al. 2010). Percent methylation 

changes (beta-values) were used in graphical representations of the data and indicate the 
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percentage of methylation calculated by methylated/(methylated + unmethylated), ranging from 

0 (fully unmethylated) to 1 (fully methylated).  

 

4.2.4 Differential methylation analysis 

Given that DNA methylation changes are typically small and that unknown sources of 

variation, including cellular heterogeneity, may influence the data, surrogate variable analysis 

(SVA) was performed to identify surrogate variables (SVs) representative of unwanted 

heterogeneity using the SVA package in R (Leek et al. 2012). Using DNA methylation data from 

all 206 samples, SVA identified 15 SVs not associated with clinical status (FASD vs control), 

which, as expected, were only partially correlated with known covariates (Supplemental methods 

& Supplementary figure 4.2). Linear regression analysis was performed on the dataset with the 

limma package in R, utilizing a model that included clinical status and all identified SVs as 

covariates (Smyth 2004). Statistically significant differences between groups were required to 

show a false-discovery rate (FDR) <0.05 following multiple test correction by the Benjamini-

Hochberg method (Benjamini & Hochberg 1995). Further evaluation of potential biological 

significance was assessed by mean percent DNA methylation differences between FASD and 

controls.  

 

4.2.5 Analysis of effects due to familial and diagnosis status 

As the cohort included several sets of siblings and cousins, a sensitivity analysis was 

performed to identify potential family effects in the dataset. However, little effect of familial 

origin was observed, indicating that the presence of families in the cohort did not significantly 

impact the study’s results or require statistical correction (Supplemental methods). Furthermore, 
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this cohort also included children with prenatal alcohol exposure (PAE) that were not formally 

diagnosed with FASD (27 children). As such, additional differential DNA methylation analyses 

were performed on the two individual subgroups of FASD cases compared to controls 

(Supplemental methods & Supplementary figure 4.9). However, as these did not reveal any 

significant differences between diagnosed FASD cases and PAE children, the PAE cases were 

included in the FASD group for all analyses. 

 

4.2.6 Genotyping  

Genomic DNA was extracted from saliva samples following standard procedures. 

Briefly, 161 DNA samples were genotyped for 2,443,177 markers using the Infinium 

HumanOmni2.5-Quad v1.0 BeadChip (Illumina Inc., San Diego, CA, USA) and 54 samples were 

genotyped for 2,379,855 markers using the Infinium HumanOmni2.5-8 v1.0 BeadChip (Illumina 

Inc., San Diego, CA, USA) according to the manufacturer’s protocol. For both microarrays, 

200ng of DNA (4uL at 50ng/uL) was independently amplified, labeled, and hybridized to 

BeadChips, then scanned with default settings using the Illumina iScan. Analysis and intra-chip 

normalization of resulting image files was performed using Illumina’s GenomeStudio 

Genotyping Module software v.2011 with default parameters. Genotype calls were generated 

using the Illumina-provided genotype cluster definitions files (HumanOmni2.5-4v1_H.egt and 

HumanOmni2.5-8v1_C.egt generated using HapMap project DNA samples) with a Gencall 

cutoff of 0.15. Only the 2 368 900 common SNPs were used for analysis. pyGenClean v1.2.2 

and PLINK v1.07 were used for quality control and genetic data cleanup process. SNPs with 

completion rate <98%, uninformative (MAF=0) and failed for Hardy-Weinberg equilibrium 
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exact test (P value <2.9x10-8) were removed. Samples with completion rate <95% were 

excluded.  

 

4.2.7 Sub-sample definition 

Multi-dimensional scaling (MDS) was performed on the participants’ genotype data 

including 83 founder individuals from the Caucasian population (CEU), 186 from the Japanese 

and Han Chinese population (JPT-CHB), and 88 from the Yoruba population (YRI) (HapMap; 

(International HapMap 3 Consortium et al. 2010)). All 195 samples that had both genotyping and 

DNA methylation data were hierarchically clustered based on the first 4 principal components 

from the MDS analysis. One individual of African descent was excluded because of their unique 

ethnicity compared to the rest. All other samples clustered in two major groups: Cluster 1 = 136 

samples (49 FASD: 87 Control; mainly Caucasian) and Cluster 2 = 58 samples (53 FASD: 5 

Control; mainly First Nations) (Supplementary figure 4.3).  

A large imbalance in ethnicities was present between groups, with the majority of 

controls being Caucasian and most FASD cases being of First Nation descent. Thus, cluster 1, 

the largest major cluster, was selected as a more balanced sub-sample, both in terms of ethnicity 

and cases vs. controls, for further analysis (See Figure 4.1 for a summary of the bioinformatic 

analyses). 
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Figure 4.1 Flowchart of bioinformatic analyses 

Two analyses were performed in parallel to assess differential DNA methylation between FASD cases and controls. 

The first analysis, using 206 samples (110 FASD and 96 controls), identified 1661 differentially methylated (DM) 

sites and 3005 differentially methylated regions (DMR). The second, using a more genetically homogenous 

subgroup composed of 49 FASD cases and 87 controls, identified 5242 DM sites and 289 DMRs. This second 

analysis used a p-value threshold of 0.01 to obtain a more conservative list of probes not associated with ethnicity. 

These were used to filter out the sites identified in the first analysis that might have been confounded by differences 

in ethnic proportions between the two groups, resulting in a final list of 658 DM CpGs and 101 DMRs free of the 

confounding effects of ethnicity. 
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4.2.8 Ethnic group adjustment  

Differential DNA methylation analysis was performed as previously described on the 

more genetically-homogenous sub-sample defined as “Cluster 1” in the MDS analysis above to 

identify difference between FASD cases and controls. SVA using this sub-sample identified 11 

SVs that were added as covariates in linear modeling as described for the full sample. In 

addition, the inclusion of principal components from the MDS analysis into the regression model 

to correct for ethnicity was also explored. However, as ethnicity was confounded with the 

phenotype of interest, direct correction in the model also removed the signal of interest. 

 

4.2.9 DNA methylation pyrosequencing assay 

Bisulfite pyrosequencing assays were designed with PyroMark Assay Design 2.0 

(Qiagen; Supplementary table 4.3). The regions of interest were amplified by PCR using the 

HotstarTaq DNA polymerase kit (Qiagen) as follows: 15 minutes at 95°C, 45 cycles of 95°C for 

30s, 58°C for 30s, and 72°C for 30s, and a 5 minute 72°C final extension step. For 

pyrosequencing, single-stranded DNA was prepared from the PCR product with the Pyromark™ 

Vacuum Prep Workstation (Qiagen) and the sequencing was performed using sequencing 

primers on a Pyromark™ Q96 MD pyrosequencer (Qiagen). The quantitative levels of 

methylation for each CpG dinucleotide were calculated with Pyro Q-CpG software (Qiagen). 

 

4.2.10 Brain concordance analysis 

Human brain and blood DNA methylation data from a previously published cohort was 

used to assess concordance, which was calculated as the Spearman correlation coefficient of 

DNA methylation at all CpGs between healthy human blood and brain (Farré et al. 2015). 
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Human brain microarray data were obtained from the Allen Brain Atlas (http://human.brain-

map.org/static/download; August 1st 2015), which contains normalized expression values for 

58,692 probes and 896 brain regions from 6 individuals. Probes were ranked based on their 

average expression level for each brain region separately and the mean was calculated across all 

brain regions. All 29,191 genes assayed (which included 389 out of our 404 differentially 

methylated genes) were sorted based on their highest ranked probe.  

 

4.2.11 CpG island distribution 

The probes categorization into “North Shelf“, “North Shore”, “Core Island”, “South 

Shore”, “South Shelf” or “Non-island” was based on the Illumina 

“RELATION_TO_UCSC_CPG_ISLAND” annotation. The expected counts were calculated 

with the 404,030 probes remaining after filtering. Statistics were calculated using multinomial 

goodness of fit chi-square test. As a post-hoc test to evaluate which category is driving the effect, 

additional chi-square tests were run on each category vs. the sum of all of the other categories.  

 

4.2.12 Functional enrichment analysis 

The list of imprinted genes was extracted from http://www.geneimprint.com/site/genes-

by-species.Homo+sapiens.imprinted-All (June 1st 2014; Supplementary table 4.4), which 

includes 80 genes with at least one probe among the 404,030 probes remaining after filtering 

(3035 probes total). The Illumina “UCSC_REFGENE_NAME” annotation was used to map the 

probes to genes (479 out of 658 DM probes had such annotation and could be mapped). In the 

event of probes mapping to several genes, the gene with the closest transcription start site (TSS) 

was selected using the Price annotation (Price et al. 2013). The over-representation analysis 
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(ORA) tool of ErmineJ (version 3.0.2) was used to identify gene function enrichment in the list 

of up- and down-methylated genes including the Gene Ontology (GO) annotations molecular 

function, biological process, and cellular component (Lee et al. 2005). The ermineJ ORA tool 

was set with the following parameters: max gene set size = 1,000; min gene set size = 2; 

background genes = all genes mapping to the 404,030 probes remaining after filtering.  

 

4.2.13 Co-expression analysis 

The Gemma tools and database for meta-analysis of functional genomics data were used 

to perform a co-expression analysis based on existing studies (Zoubarev et al. 2012). The 

methods used by Gemma have been previously described (Lee et al. 2004). Data sets were 

obtained from public sources, primarily the Gene Expression Omnibus (Wheeler et al. 2004). For 

each data set included in the meta-analysis, the Pearson correlation matrix of gene co-expression 

profiles was computed. Thresholds were applied for statistical significance of correlation, and the 

resulting sparse co-expression networks were aggregated across data sets. The degree to which a 

link is replicated across studies is a measure of its reliability; a threshold was set based on a 

benchmark permutation-based analysis, scaled to the number of data sets aggregated. Using the 

Gemma on-line tools, a co-expression network was extracted for the 199 up-methylated genes in 

the master set of microarray experiments for human (282 usable experiments across multiple 

tissues and experimental conditions) at the stringency recommended by the software, and 

visualized the results in Cytoscape (Smoot et al. 2011). The resulting network shows the co-

expression relationship of the genes in the input list only. 
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4.2.14 Differentially methylated region analysis 

The identification of differentially methylated regions (DMRs) was performed using 

previously established guidelines and the DMRcate package in R (Peters et al. 2015; Peters & 

Buckley, n.d.). Briefly, results from linear modeling with surrogate variables were analyzed 

using a Gaussian kernel smoother with a bandwith of 1000 base pairs (bp) and scaling factor of 2 

to model all CpG sites in the genome in parallel and identify broad regions of differential DNA 

methylation. P-values were corrected for multiple testing using the BH method, and an FDR 

cutoff of 0.05 was used to select significant probes between the FASD and control groups. 

DMRs were then assigned by clustering significant CpGs located within 1000 bp windows that 

contained two or more CpGs. This analysis was performed on both the full dataset and the more 

ethnically homogeneous subset of individuals, and the final list of DMRs was obtained through 

the same process as previously described in the differential methylation analysis. Genomic 

locations for all DMRs were assigned using the Illumina hg19 annotation.  

 

4.3 Results 

4.3.1 The NeuroDevNet FASD epigenetics cohort 

Participants in the NeuroDevNet Canadian FASD study cohort were recruited from six 

clinical sites across Canada (Vancouver, BC; Edmonton, AB; Cold Lake, AB; Winnipeg, MB; 

Ottawa, ON; and Kingston, ON) (Reynolds et al. 2011). More specifically, 110 children with 

FASD or confirmed PAE and 96 typically developing controls were matched for sex and age, 

ranging from 5 to 18 years of age, for the analysis of genome-wide DNA methylation patterns 

(Table 4.1). We note that self-declared ethnicity differed considerably between the FASD and 

control participants, necessitating stringent statistical corrections, as described below.  
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 FASD cases Controls 
N 110 96 
Age 11.55 ± 3.37 11.28 ± 3.38 
Sex 
! Male 
! Female 

 
41% 
59% 

 
47% 
53% 

Self-declared ethnicity 
! Caucasian 
! Other 

 
27% (48%)* 
73% (52%) 

 
91% (96%) 
9% (4%) 

*Percentages in brackets include participants with mixed ethnicities including Caucasian 

Table 4.1 Characteristics of the NeuroDevNet FASD cohort 

 

4.3.2 Children with FASD displayed altered DNA methylation patterns  

The DNA methylation profiles of BECs from the complete NeuroDevNet cohort were 

assessed using the Illumina HumanMethylation450 array, which assays DNA methylation at 

485,512 sites across the human genome. Following quality control and normalization to remove 

probes with bad detection p-values and low bead counts, or those associated with sex 

chromosomes, SNPs, and polymorphic CpGs, 404,430 sites remained in the final dataset of 206 

samples (Price et al. 2013). Although BECs typically represent a relatively homogenous 

population of cells, they can occasionally be contaminated by white blood cells during 

collection, thus possibly affecting the results of differential DNA methylation analyses (Jones et 

al. 2013). To assess whether BEC from the present study had high levels of contamination, 

principal component analysis of BECs and blood samples obtained from GEO was performed. 

This analysis did not reveal any considerable blood contamination in our dataset, as evidenced 

by the distant clustering of samples from both tissue types, though some cell type differences 

may be present (Supplementary figure 4.1).  Having thus established that cellular heterogeneity 

was unlikely to confound our results, we next set out to identify alterations in DNA methylation 

patterns specific to the FASD group.  For this, differential DNA methylation analysis using a 
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two-group design was coupled with surrogate variable analysis (SVA), which corrects for batch 

effects and any other undesirable variation in the data. This analysis identified 1661 differentially 

methylated (DM) CpG sites between the FASD group and controls at a false discovery rate 

(FDR) <0.05, indicating substantial differences in DNA methylation patterns between the two 

groups. However, self-declared ethnicity in the cohort was strongly confounded with FASD 

status (Table 4.1). Given that ethnicity has been associated with altered DNA methylation levels, 

these differences could potentially drive alterations in DNA methylation at these 1661 DM CpG 

sites (Fraser et al. 2012; Moen et al. 2013; Heyn et al. 2013). 

 

4.3.3 Ethnic background correction identified FASD-specific DNA methylation patterns  

To account for ethnicity on a genetic basis, the Illumina HumanOmni2.5 array was used 

to obtain genotypes at nearly 2.4 million single nucleotide polymorphisms (SNPs) for each child. 

Participants were clustered by multi-dimensional scaling (MDS) of genotypic data along with 

publicly accessible data from the HapMap project (Thorisson et al. 2005).  Linear regression of 

the first four genetic clusters from this analysis with the SVs revealed little correlation with the 

majority of DNA methylation variation, suggesting that further correction for differences in 

ethnicity was required to isolate the effect of PAE beyond ethnicity (Supplementary figure 4.2). 

As such, individuals clustering within the larger and more genetically homogeneous subgroup 

were selected for further analysis, consisting of 49 FASD cases and 87 controls (Table 4.2; 

Supplementary figure 4.3 & Supplementary table 4.2). Differential DNA methylation analysis 

was performed on the more genetically-homogeneous sub-sample to isolate the effects of PAE in 

the absence of an ethnic confound. In support of less ethnicity-related effects in this subsample, 

SVA identified fewer SVs compared to the full dataset. Furthermore, the results from DNA 
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methylation analysis in this subgroup displayed only a moderate correlation with those obtained 

from the full sample (Spearman rank correlation: 0.43), suggesting that ethnicity indeed may 

have influenced differential DNA methylation patterns in the full cohort, despite our efforts to 

use SVA to remove the effects of ethnicity. Therefore, the subsample was used to filter out 

ethnically confounded CpG loci to obtain a subset of DM sites unbiased for ethnicity (Figure 

4.1). More specifically, the top 5242 probes (unadjusted p-value <0.01) in the genetically-

homogeneous sub-sample were selected as a conservative set of differentially methylated CpG 

sites between FASD cases and controls that were unaffected by ethnic background. This set was 

compared to the 1661 DM sites identified in the full sample, and only the probes present in both 

lists were considered specific effects of FASD, unlikely to be related to effects of ethnicity. 

Following this strategy, a final list of 658 DM CpG sites significantly altered in FASD cases was 

obtained at an FDR<0.05  (Supplementary table 4.1), composed of 356 down-methylated and 

302 up-methylated sites compared to controls (Figure 4.2AB).  

To determine whether this corrective analysis removed some or all effects of ethnicity, 

differential DNA methylation analysis was performed on FASD cases from the two main ethnic 

clusters from MDS to tease apart ethnicity and FASD-specific effects between the groups 

(Supplemental methods). As expected, the ethnicity-corrected CpGs were less, but still partially 

associated with ethnicity differences in DNA methylation patterns than the uncorrected set of 

CpGs, as evidenced by the decreased area under the ROC curve (Supplementary figure 4.4). 

(Supplemental methods). Furthermore, reflecting the economic realities of our study populations, 

socio-economic status (SES) scores were slightly confounded between groups (p=0.00017; 

Supplementary figure 4.5), with the FASD group displaying lower overall scores than controls. 

However, the more ethnically homogeneous subgroup showed less skewing towards low SES in 
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the FASD group (p=0.16; Supplementary figure 4.5), suggesting that the effects of SES might 

also have been partially accounted for during the correction for ethnic biases between groups.  

As such, the ethnicity-corrected set of 658 CpG loci associated with FASD was used in 

all subsequent analyses. The changes observed in the absolute methylation levels of these DM 

CpGs were relatively small, consistent with previous human studies of neurological and 

neurodevelopmental disorders, with percent methylation changes ranging from 0.16% to 13.1% 

after correction for surrogate variables (Ladd-Acosta et al. 2014). However, 41 DM sites passed 

an arbitrary threshold for possible biological relevance of greater than 5% difference in DNA 

methylation levels between groups. Taken together, these results support the hypothesis that 

FASD is associated with altered DNA methylation patterns, largely free of identified 

confounding effects due to ethnicity and SES.  

 

 FASD cases Controls 
N 49 87 
Age 11.29 ± 3.16 11.29 ± 3.37 
Sex 
! Male 
! Female 

 
43% 
57% 

 
41% 
59% 

Self-declared ethnicity 
! Caucasian 
! Other 

 
51% (76%)* 
49% (24%) 

 
93% (97%) 
7% (3%) 

*Percentages in brackets include participants with mixed ethnicities including Caucasian 

Table 4.2 Characteristics of the more genetically-homogenous sub-sample 
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Figure 4.2 Visualization and verification of differentially methylated probes 

A. Volcano Plot showing mean methylation differences between FASD and control (x axis) versus log transformed 

p-values (y axis). 1661 CpG sites with an FDR<0.05 were considered significantly differently methylated between 

FASD and control, but 1003 of these were ethnically confounded, resulting in the final 658 probes shown in blue. B. 

Heatmap of top 50 most significant up- (top) and down-methylated (bottom) probes in control (left, grey) versus 

FASD cases (right, blue). The percent methylation values (ranging from 0 to 1) are adjusted for the covariates from 

the regression model, then centered, scaled, and trimmed, resulting in a standardized DNA methylation level ranging 

from -2 to +2 (black to white scale). The mean percent methylation value for each probe (red to blue scale) is the 

mean methylation value, after adjustment for covariates, for all samples.  C. Verification with pyrosequencing in 
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both FASD (blue) and control (grey) samples. The top panel displays DNA methylation levels measured by the 450k 

array, the bottom panel, the levels for the same CpG sites measured with pyrosequencing. These CpGs were located 

in the gene body of SHANK3 (cg10793758), NOS1AP (cg02858267), CACNA1A (cg24800175), and SNED1 

(cg19075225), or in the 3’UTR of NOS1AP (cg12486795). Those found in NOS1AP were located in a CpG island, 

while those in SHANK3 and CACNA1A were located in a north shelf or shore, respectively. The CpG associated 

with SNED1 was not located near any CpG island. All pyrosequencing data showed significant differences between 

FASD and controls (p<0.01). 

 

4.3.4 Technical verification of FASD DM loci by bisulfite pyrosequencing 

To ensure that the results from the differential DNA methylation analysis were not 

dependent on the method used to measure them, five CpG sites with a difference in percent 

methylation change greater than 5% in the vicinity of genes with potential biological relevance 

were selected for verification using bisulfite pyrosequencing on the same samples. 

Pyrosequencing results confirmed the DNA methylation levels observed on the 450K array, 

showing similar DNA methylation levels and significant differences between groups (p<0.01) 

for CpGs located in SHANK3, NOS1AP, CACNA1A, and SNED1 (Figure 4.2C).  Pearson 

correlations ranged from 0.421 to 0.801 and Bland-Altman plots showed little difference when 

comparing both methods, suggesting a strong concordance between DNA methylation data from 

microarray and the different pyrosequencing method (Supplementary figure 4.6). Perhaps more 

importantly, linear regression analysis of pyrosequencing data confirmed differential DNA 

methylation between FASD cases and controls in this subset of biologically relevant sites, even 

in the absence of covariates, as the p-value ranges from 3.7e-04 to 5.5e-03. Collectively, 

pyrosequencing data verified the findings from the 450K array, suggesting that individuals with 

FASD had altered DNA methylation patterns compared to typically developing children.  
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4.3.5 Overlap of BEC FASD signatures with brain tissue gene expression and DNA 

methylation 

As alterations to DNA methylation patterns in children with FASD were identified in BECs, it is 

important to note that changes in peripheral tissues do not necessarily reflect alterations in a 

relevant tissue, such as the brain, even though these two tissues originate from the same germ 

layer and thus might share some epigenetic concordance (Berko et al. 2014). Therefore, two 

complimentary approaches were used to obtain an approximation for the relationship of these 

FASD-associated DM loci to brain biology and possible the etiology of FASD.  First, DM genes 

were compared to publically available gene expression data from 896 post-mortem brain regions 

(Allen Institute for Brain Science) to determine whether they were expressed at biologically 

relevant levels in neural tissue (Hawrylycz et al. 2012). This analysis revealed that 56% of DM 

genes identified in BECs displayed mRNA expression levels in the brain above the median 

expression for all genes, with 68% ranked in the top 2/3 of the genes based on mean ranking 

across ~900 brain regions (Farré et al. 2015). These findings held true whether all DM genes or 

only the down-/up-methylated genes were considered for analysis. Next, the FASD BEC DNA 

methylation patterns were compared to DNA methylation patterns from unrelated post-mortem 

cortical brain specimens previously published by our group (Farré et al. 2015). The overall 

correlation of mean DNA methylation between BEC and brain samples for all 658 DM CpGs 

was 0.76 (Supplementary figure 4.7). Taken together, these results indicated that BEC may be a 

suitable surrogate tissue for brain cells, and that the DM loci presented here could potentially 

report on biological alterations in neural tissues.  

 



 

 

123 

4.3.6 FASD DM loci were enriched in regions of high DNA methylation variability 

Given that genomic location plays an important role in sculpting DNA methylation 

landscapes and mediating its effects, we ascertained the relative enrichment of FASD DM loci in 

distinct genomic features. Overall, DM probes had a significantly different distribution than the 

proportions present on the entire 450K array (Figure 4.3A; down-methylated probes: χ2 = 33.63, 

p = 2.8e-06; up-methylated probes: χ2 = 13.30, p = 2.1e-02). Compared to all 450K probes, both 

down- and up-methylated CpGs in FASD cases were significantly under-represented in CpG 

island cores, which generally show the least amount of variability in DNA methylation levels 

(down-methylated p= 1.62e-6; up-methylated p= 7.53e-4). By contrast, down-methylated sites 

were enriched in CpG island shores and shelves (p= 0.04; p= 0.0003), which tend to be more 

variable than CpG island cores (Irizarry et al. 2009b). Up-methylated sites were over-represented 

in non-CpG island regions (p=0.009), further supporting a greater effect of PAE on malleable 

regions of the epigenome. Moreover, the distribution of average methylation levels for DM sites 

was significantly different than that of all 404,030 sites (Student’s t test; p = 2.5e-09; 

Supplementary figure 4.8). Further analysis of this phenomenon revealed a significant 

enrichment for DM CpG sites in the intermediate 20-80% range of methylation levels, while 

showing a concordant under-representation in the hypo- (<20%) and hyper- (>80%) methylated 

categories (Figure 4.3B) (Eckhardt et al. 2006). These findings suggested that DM loci in the 

FASD cases versus controls were mostly located in more variable regions of the epigenome.  
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Figure 4.3 Differentially methylated probes are located in regions of variable and intermediate DNA 

methylation 

A. The 658 probes differentially methylated between FASD and control were under-represented in CGI cores 

(down-methylated p= 1.62e-6; up-methylated p= 7.53e-4), while down-methylated probes were overrepresented in 

CGI shores/shelves (p= 0.04; p= 0.0003) and up-methylated probes were over-represented in non-CpG island 

regions (p=0.009). B. The same probes’ average methylation levels are over-represented in the mid-range categories 

(**p<0.01, ***p<0.0001). 

 

4.3.7 Multiple DM sites were associated with imprinted genes and the protocadherin 

gene cluster 

Next, the association of DM loci with different genes was assessed, particularly with 

regards to whether some of these harbored more than one CpG differentially methylated between 

FASD and controls. Using genome location annotations from UCSC, the DM sites were mapped 

to 403 different genes. Of these, 190 were down-methylated, 208 were up-methylated, and 5 

displayed inconsistent differences between FASD cases and controls, containing both up- and 

down-methylated sites, which were likely due to different genomic locations within the genes 
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(Supplementary table 4.2). The Phenocarta resource for gene-disease associations has previously 

curated a list of susceptibility genes for FASD, identifying 123 potential candidates from both 

human and animal studies of PAE (Portales-Casamar et al. 2013). However, DNA methylation 

analysis of the 115 FASD candidate genes assayed on the 450K array did not reveal significant 

alterations in FASD cases. Nonetheless, twelve genes contained three or more DM loci, 

including several genes previously involved in studies of alcohol exposure and dependence, but 

not present in the Phenocarta list, such as SLC6A3 and DRD4 (Table 4.3) (Hillemacher et al. 

2009; Zhang H. et al. 2013; Bau et al. 2001; Sánchez-Mora et al. 2011). This short list of DM 

genes also showed a slight but statistically significant enrichment for imprinted genes (Fisher’s 

exact test; p=0.02317). The geneimprint website (www.geneimprint.com; June 1st 2014) 

currently lists 96 human genes as imprinted, 80 of which were assayed by the 404,030 filtered 

probes on the 450K array. Of these, 5 were differentially methylated in FASD cases versus 

controls (ATP10A, CPA4, H19, KCNQ1OT1, SLC22A18), with twelve out of fifteen DM CpGs 

showing lower methylation levels in the FASD group, which resulted in a strong enrichment for 

imprinted probes in the list of differentially methylated probes (Fisher’s exact test; p = 1.8e-04). 

In particular, the 6 CpGs located within the SLC22A18 promoter were clustered together, 

showing a similar pattern between FASD cases and controls, suggesting a robust regional effect 

of PAE on this gene’s DNA methylation profile (Figure 4.4). Furthermore, fifteen of the 658 DM 

sites were located within protocadherin genes, including 6 in the PCDHB cluster, 6 in the 

PCDHGA cluster, 2 in the PCDHA cluster, and 1 in PCDH9. Given the presence of multiple DM 

CpGs within these genes, these results provide support for imprinted genes and protocadherin 

clusters as strong candidates for the effects of PAE on the epigenome.  
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Gene # of probes Direction of change Previous reports 
(PMID) 

PCDHB gene cluster 6 Up - 
PCDHGA gene cluster 6 Up - 

SLC22A18 6 Down 20009564 
H19 5 Down 21382472 

19519716 
19279321 
20009564 
23580197 

HLA-DPB1 5 Up - 
DES 4 Down - 
FAM59B (GAREML) 4 Down - 
SLC38A2 4 Down - 
CAPN10 3 Up - 
DRD4 3 Down 20009564* 
RASSF4 3 Inconsistent - 
SLC6A3 3 Up 18504048 

Table 4.3 Genes containing 3 or more differentially methylated probes 

 

 
Figure 4.4  Several CpGs associated with SLC22A18 displays down-methylation in FASD cases 

The covariate-adjusted DNA methylation levels for control (grey) and FASD (blue) samples are shown for 

SLC22A18AS (top), with the gene structure aligned (bottom). Exons are represented by blocks, and transcriptional 
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direction is indicated by arrows. All CpG sites are noted, those present on the 450K array are black while CpGs not 

present are grey. The six significantly differentially methylated probes located in the SLC22A18 promoter region 

are indicated with the horizontal black bar (FDR-adjusted p-value (q) <0.05). 

 

4.3.8 Association of FASD differentially methylated loci with neurodevelopmental 

processes and disorders  

In order to identify broad biological processes associated with altered DNA methylation 

patterns in FASD children, gene function enrichment analysis was performed on the dataset. As 

no significant results were obtained from the entire list of DM genes following multiple-test 

correction, the analysis was performed separately on both the up- and down-methylated gene 

lists. Given that the up-methylated gene list included several members of the protocadherin beta 

(PCDHB) and gamma A (PCDHGA) clusters, which are not differentiated by gene function 

annotations, a single gene from each cluster was conserved for the analysis to avoid any 

redundancy that may skew the results. As such, only 199 up-methylated genes and 190 down-

methylated genes were analyzed for functional annotations using the over-representation analysis 

(ORA) tool in ermineJ (Lee et al. 2005). While no significant results were obtained using the 

Gene Ontology (GO) annotation with the list of down-methylated genes, the up-methylated gene 

list showed enrichment for genes associated with neurodevelopmental processes (Table 4.4), 

such as neuron parts (20 genes; FDR = 0.051) and projections (19 genes; FDR = 0.082) 

(Ashburner et al. 2000; Portales-Casamar et al. 2013). Furthermore, using the Phenocarta 

annotation for associations with diseases, the list of up-methylated genes was enriched for 

several neurodevelopmental disorders (Table 4.5), including ‘epilepsy syndrome’ (15 genes; 

FDR = 0.081), ‘autistic disorder’ (12 genes; FDR = 0.092), and ‘anxiety disorder’ (8 genes; FDR 
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= 0.071) (Ashburner et al. 2000; Portales-Casamar et al. 2013). Of note, the up-methylated genes 

were also marginally enriched for genes associated with substance-related disorder (15 genes; 

FDR = 0.192). To further examine the regulatory circuitry associated with FASD DM genes, a 

co-expression analysis of the up-methylated genes across 282 human expression microarray 

experiments, spanning multiple tissues and experimental conditions, was performed using the 

Gemma web tools (Zoubarev et al. 2012). Of the up-methylated genes, 86 could be included in 

the co-expression network (Figure 4.5). The most strongly co-expressed pair was caldesmon 1 

(CALD1)-Palladin (PALLD), which are both cytoskeleton-associated proteins (Jin et al. 2009). In 

addition, a small cluster of the network showed co-expression of several genes (NRXN1, 

CACNA1A, CDH10, and others) associated with autism and/or epilepsy. Taken together, these 

findings suggest that altered DNA methylation patterns may potentially relate to the 

neurobiological deficits of children with FASD.  

 

GO Name GO ID P-value FDR Genes 
neuron part GO:0097458 1.38E-05 0.051 ATP2B2, CDH13, GABRB1, 

HEPACAM, KCNAB2, KCND3, KCTD16, 
NFASC, NMU, NRSN1, NRXN1, P2RX7, 
PAM, ROBO3, SHANK1, SHANK3, SLC6A1, 
SLC6A3, SLC8A1, TIAM2, UCN3 

vocalization 
behavior 

GO:0071625 1.18E-05 0.066 NRXN1, SHANK1, SHANK3 

neuron projection GO:0043005 7.31E-06 0.082 CDH13, GABRB1, HEPACAM, KCNAB2, 
KCND3, NFASC, NMU, NRSN1, NRXN1, 
P2RX7, PAM, ROBO3, SHANK1, SHANK3, 
SLC6A1, SLC6A3, SLC8A1, 
TIAM2, UCN3 

Table 4.4 Gene ontology function enrichment in genes up-methylated in FASD  
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Disease Name Disease ID P-value FDR Genes 

anxiety disorder DOID_2030 1.44E-04 0.071 CRHR2, CYP3A4, GRM8, NOS1AP, 
P2RX7, PAM, SHANK1, SLC6A3 

pervasive 
developmental 
disorder 

DOID_0060040 1.15E-04 0.076 AGAP1, ARID1B, ATP2B2, ATP10A, 
CDH10, DCUN1D1, DPP6, ESRRB, 
GABRB1, GRM8, HEPACAM, NOS1AP, 
NRXN1, PCDHAC2, ROBO3, SDK1, 
SHANK1, SHANK3, SLC6A3, ST8SIA2 

epilepsy 
syndrome 

DOID_1826 2.07E-04 0.081 BRD2, CACNA1A, CCR3, CIT, GJD2, 
GRM1, GRM8, KCNAB2, NRXN1, NTNG2, 
P2RX7, PAM, SLC6A1, SLC6A3, SLC8A1 

autistic disorder DOID_12849 4.70E-05 0.092 AGAP1, ATP10A, CDH10, GABRB1, GRM8, 
HEPACAM, NOS1AP, NRXN1, ROBO3, 
SHANK1, SHANK3, ST8SIA2 

autism spectrum 
disorder 

DOID_0060041 1.01E-04 0.099 AGAP1, ARID1B, ATP2B2, ATP10A, 
CDH10, DCUN1D1, DPP6, ESRRB, 
GABRB1, GRM8, HEPACAM, NOS1AP, 
NRXN1, PCDHAC2, ROBO3, SDK1, 
SHANK1, SHANK3, SLC6A3, ST8SIA2 

substance-related 
disorder 

DOID_303 6.85E-04 0.192 ADARB2, ANPEP, CACNA1A, CDH13, 
CRHR2, FRMD4A, GRM8, KCND3, KISS1R, 
NMU, NRXN1, SLC6A1, SLC6A3, TIAM2, 
TRPM4 

Table 4.5 Disease-association enrichment in genes up-methylated in FASD 
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Figure 4.5  FASD up-methylated genes coexpression network 

Nodes represent the up-methylated genes while edges represent their coexpression link. Nodes colored in orange, 

green, cyan are genes associated with autism spectrum disorder, epilepsy, and anxiety, respectively. The edge width 

represents the number of experiments in which the coexpression link was identified. The green edges show positive 

correlations, while the red edges are negative correlations. 

 

4.3.9 Differentially methylated regions were identified between FASD cases and controls 

To complement the site-specific analysis of differential DNA methylation, which 

identified several genes with multiple DM CpGs, we next attempted to identify broader patterns 

of differential DNA methylation using an unbiased approach. Specifically, the identification of 

region-specific clusters of DM CpGs between children with FASD and controls was performed 

using DMRcate, an established method that uses a Gaussian kernel smoother to identify broad 

regions of differential DNA methylation (Peters et al. 2015). In the full dataset, 3005 

differentially methylated regions (DMRs) containing two or more CpGs were identified at an 
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FDR<0.05, while in the more homogeneous subset of samples, 289 statistically significant 

DMRs were identified between groups. Using the same approach to correct for the confounding 

effects of ethnicity as described in the site-specific analysis, 101 DMRs unbiased by ethnicity 

were uncovered between individuals with FASD and controls (Supplementary table 4.5).  

On average, DMRs spanned 471 nucleotides, with lower and upper limits of 31 and 2,450 

base pairs, respectively. DMRs each contained between 2 and 20 CpGs assayed on the 450K 

array, for a total of 504 unique sites, 75 of which were also identified in the first differential 

methylation analysis. Of these, 74 overlapped with 95 different genes, and 27 were located in 

intergenic regions. Of those associated with genes, 25 overlapped with promoter regions (within 

1500 bp of the transcriptional start site), 23 with the 5’UTR, 16 with the first exon, 49 with the 

gene body, and 6 with the 3’UTR, as annotated from the hg19 genome assembly. Moreover, 15 

of the top DMRs associated with one or more genes overlapped with those containing multiple 

DM CpG in the previous analysis, including SLC22A18, SLC38A2, HLA-DBP1, and NOS1AP 

(Table 4.6; Figure 4.6AB). These showed the same direction of change across the entire DMR, 

consistent with the individual CpG differential methylation analysis and verification by 

pyrosequencing, in the case of NOS1AP. Moreover, two DMRs were identified within the 

protocadherin genes, with 8 CpGs spanning the PCDHGA and PCDHGB clusters and 4 CpGs 

spanning the promoter of PCDH12, further supporting a potential role for the protocadherin 

genes in FASD. Importantly, in addition to the genes overlapping with the previous DM analysis, 

several additional DM genes were identified through this analysis, including UCN3 and ITGAL, 

key components of the stress and immune response, respectively (Figure 4.6CD). Taken 

together, these results suggested that the effects of PAE on the DNA methylation went beyond 

single CpG loci to affect broader chromosomal neighborhoods. 
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Gene symbol(s) DMR location Chr Start position End position # of 
probes 

Min    
FDR 

Mean 
FDR 

Max beta 
FC 

HLA-DPB1 Body 6 33047056 33049505 17 2.59E-50 1.61E-06 0.087 

SLC22A18, SLC22A18AS Body, TSS1500, 
TSS200, 5'UTR 11 2919689 2921176 20 1.21E-29 1.46E-05 -0.049 

PPP1R2P1 Body 6 32846924 32847845 18 1.81E-20 9.39E-10 0.026 
SLC38A2 TSS1500 12 46767132 46768016 8 1.98E-16 9.78E-09 -0.039 

HKR1 TSS1500, TSS200, 1st 
Exon, 5'UTR 19 37825307 37825679 7 7.51E-16 9.51E-16 0.022 

WDR52 5'UTR, 1st Exon, 
TSS200, TSS1500 3 113160071 113160821 10 1.34E-14 6.02E-13 -0.037 

C3orf24 5'UTR, 1st Exon, 
TSS200, TSS1500 3 10149466 10150487 11 4.41E-13 1.88E-11 0.034 

NOS1AP Body, 3'UTR 1 162336877 162337375 5 4.69E-13 8.79E-13 0.039 
KCNAB2 5'UTR 1 6093770 6094993 6 9.78E-13 2.86E-07 0.026 

F7 TSS1500, TSS200, 
Body 13 113759771 113760286 6 1.55E-10 1.96E-10 0.029 

IFT140, TMEM204 Body 16 1598866 1599150 4 1.81E-10 4.34E-10 -0.036 
RGL3 Body 19 11517079 11517436 4 3.06E-10 5.34E-10 0.036 

STRA6 5'UTR, 1st Exon, 
TSS200, TSS1500 15 74494781 74496040 12 4.80E-10 1.06E-04 0.035 

TXNRD1, EID3 
5'UTR, Body, 
TSS1500, TSS200, 1st 
Exon 

12 104697193 104697983 11 5.49E-10 3.98E-08 0.024 

RNMTL1 Body, 3'UTR 17 695156 695661 3 5.77E-10 3.23E-09 -0.026 
C22orf42 Body, TSS200 22 32554848 32555310 5 7.95E-10 7.91E-09 0.022 
RADIL Body 7 4869981 4870162 3 2.40E-09 2.48E-09 0.026 
ITGAL Body 16 30485383 30485966 6 7.18E-09 5.13E-08 0.022 
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Gene symbol(s) DMR location Chr Start position End position # of 
probes 

Min    
FDR 

Mean 
FDR 

Max beta 
FC 

ZNF710 5'UTR 15 90547692 90548043 3 4.18E-08 5.44E-07 -0.023 

PCDHA7, PCDHAC2, 
PCDHA12, PCDHA6, 
PCDHA10, PCDHA4, 
PCDHA11, PCDHA8, 
PCDHA1, PCDHA2, 
PCDHA9, PCDHA13, 
PCDHA5, PCDHAC1, 
PCDHA3 

Body, TSS1500 5 140344290 140344745 4 4.73E-08 1.20E-07 0.019 

MAL2 TSS200, 1st Exon, 
Body 8 120220410 120221797 8 1.26E-07 2.35E-03 -0.022 

UCN3 TSS1500, TSS200, 1st 
Exon, 5'UTR 10 5406543 5407020 8 1.32E-07 3.03E-07 0.016 

HKDC1 TSS1500, 5'UTR, 1st 
Exon 10 70979777 70980067 4 1.37E-07 1.40E-07 0.023 

ARHGEF19 Body 1 16533422 16534579 8 1.88E-07 1.11E-04 -0.035 
LOC154822 Body 7 158815555 158816392 3 2.36E-07 1.90E-05 -0.043 

NDST4 1st Exon, 5'UTR, 
TSS200, TSS1500 4 116034871 116035232 4 5.96E-07 6.45E-07 0.031 

SNED1 Body 2 242009513 242009588 2 6.41E-07 6.48E-07 0.040 
PRKDC Body 8 48739161 48739256 2 7.94E-07 8.04E-07 -0.045 
CASZ1 5'UTR 1 10847541 10847594 2 2.92E-06 2.92E-06 0.025 
HEATR2 Body 7 807596 809109 9 3.11E-06 3.69E-04 0.036 

Table 4.6 Top 30 gene-annotated differentially methylated regions associated with FASD  

Max fold changes (FC) represented in percent methylation change (beta) in DNA methylation levels of FASD compared to control 
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Figure 4.6  Differentially methylated regions associated with FASD. 

Percent methylation values adjusted for covariates were plotted across four statistically significant differentially 

methylated regions (DMRs) between FASD (blue) and controls (grey) identified by DMRcate. A. The HLA-DPB1 

DMR spanned 2449 base pairs (bp) of the gene body (red bar) and contained 17 CpGs from the 450K array. B. The 

NOS1AP DMR contained 5 CpGs over 498 bp, and was located within the body and 3’ UTR (green bar) of the gene. 

C. The 477 bp UCN3 DMR contained 8 CpGs. One was located within the 5’UTR (dark green dot) and 1st exon 

(light blue dot), while the remainder were located upstream of the gene’s transcriptional start site (TSS), 1 CpG 

falling within 1500 bp (black dot) of TSS and 6 located within 200 bp of the TSS (blue bar). D. The ITGAL gene 

contained 6 unique DMRs over 583 bp of the gene body (red bar). 
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4.4 Discussion 

This study aimed to assess the effects of PAE on genome-wide DNA methylation 

patterns and identify an epigenetic signature of FASD, using a large cohort of human subjects. 

Significant changes to the DNA methylation profiles in BECs of children with FASD compared 

to age- and sex-matched typically developing controls were identified, with 658 CpGs displaying 

significantly altered DNA methylation levels, of which 41 had a greater than 5% methylation 

change. Moreover, 101 DMRs containing two or more sequential DM CpGs were identified 

throughout the genome, spanning 95 different genes, overlapping with several from the initial 

differential methylation analysis at single CpG level. The majority of DM genes were highly 

expressed in postmortem brain samples from the Allen Brain Institute. Moreover, BEC and 

independent cortical samples showed relatively high concordance of DNA methylation levels. As 

discussed in more detail below, several lines of evidence converge to support the validity of our 

data.  First, a number of DM sites and regions were identified within genes and pathways 

previously associated with PAE.  Second, novel DM sites and regions tended to be involved in 

pathways implicated in functional deficits of FASD.  Third, broader patterns related to altered 

neurodevelopmental disorders were identified in sets and networks of genes associated with 

FASD in our study.  

Differential DNA methylation analysis in our case control study comparing children with 

FASD to children with normal development replicated several associations from previous studies 

of PAE. One of the most striking similarities is the altered DNA methylation patterns observed in 

imprinted genes. Several studies have demonstrated the effect of PAE on the H19 imprinted gene 

in both mice and humans (Stouder, Somm, & Paoloni-Giacobino 2011; Ouko et al. 2009; 

Haycock & Ramsay 2009). A genome-wide DNA methylation study in mouse embryos exposed 
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to ethanol also identified significant changes within several imprinted genes including both H19 

and SLC22A18 (Liu et al. 2009). Results from our study further confirmed these findings, as 5 

down-methylated probes in H19, and 6 in SLC22A18 were altered in the FASD cohort, with the 

latter being identified as a broader DMR as well. Given that imprinting plays a key role in the 

regulation of normal growth and development, its alteration by alcohol exposure could be a 

factor in the neurodevelopmental defects observed in children with FASD (Falls et al. 1999). 

Furthermore, the only other study of genome-wide DNA methylation patterns in individuals with 

FASD also identified several DM protocadherin genes within the alpha, beta, and gamma 

clusters, though only one CpG overlapped with the results presented here (Laufer et al. 2015). 

The differences in specific CpGs within these gene clusters between the two studies might be 

due to the much larger sample size of our study, as well as our use of multiple test correction to 

mitigate spurious patterns of differential DNA methylation associated with the FASD group. In 

addition, the protocadherin clusters are coordinately regulated and are highly susceptible to 

environmental influences, which may be reflected by their overrepresentation in these studies 

(Hirayama & Yagi 2017). However, we note that the single CpG site from our study that 

overlapped with the previous findings (cg21117330) was located in PCDHGA8 and displayed 

the same direction of change between FASD cases and controls, and thus might represent a 

reproducible effect of PAE.  

In addition to genes previously identified in studies of PAE, DNA methylation changes 

were also uncovered in a number of additional genes with functional relevance to the deficits 

observed in FASD. More specifically, analysis of DM probes and regions identified altered DNA 

methylation patterns within genes related to the immune response, such as HLA-DPB1, a HLA 

class II histocompatibility antigen, and ITGAL (or CD11A), the integrin alpha L chain. Given 
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that children with FASD often present with numerous deficits in immune function, epigenetic 

alterations of these genes might reflect functionally relevant underlying biology (Bodnar & 

Weinberg 2013). A DMR between FASD cases and controls was also identified in UCN3, an 

antagonist of the CRF type 2 receptor that plays a key role in the stress response. As this gene 

acts downstream of stress signaling pathways, this alteration might be linked to altered basal 

levels of corticosterone found in individuals with FASD (Mattson, Crocker, & Nguyen 2011; 

Ergang et al. 2015). Finally, two members of the dopaminergic system, SLC6A3 and DRD4, each 

contained three differentially methylated CpGs in FASD cases compared to controls. Both of 

these genes have also been proposed as modifiers and/or risk factors in alcohol abuse disorders 

and attention deficit disorder, and thus might potentially play a role in the deficits of attention 

and executive function in children with FASD (Bau et al. 2001; Sánchez-Mora et al. 2011).  

Moving beyond alterations in specific genes related to PAE, broader associations to 

neurodevelopmental processes and disorders were identified in genes containing differentially 

methylated CpGs. In particular, the gene co-expression network contained a small sub-network 

of genes associated with autism and/or epilepsy, and up-methylated genes in FASD cases were 

enriched for functions related to neurodevelopmental disorders. These results could reflect the 

pleiotropy of these genes, or perhaps their involvement in developmental functions dysregulated 

in neurodevelopmental disorders with partially overlapping phenotypes. As many of these genes 

were also functionally enriched for neuron parts and projections, they could influence processes 

necessary for typical brain development and partially underlie some deficits observed in children 

with FASD and other neurodevelopmental disorders.  

Comparing epigenetic patterns associated with FASD and autism presented an interesting 

conundrum. While we identified a small sub-network of genes associated with autism and/or 
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epilepsy in our analysis of the FASD related gene co-expression network, this relationship did 

not extent to the level of individual CpGs. Comparing the 14 DM genes from BECs recently 

reported to be associated with autism spectrum disorder, we did not find any overlap with the 

DM loci identified in our study of FASD children (Berko et al. 2014). The differences between 

the gene lists may reflect the different origins and phenotypes between the conditions, or that the 

effects of PAE are more easily identifiable in peripheral tissue than those of autism, or simply 

false positives and/or false negatives. Regardless, these results imply that at the single CpG level, 

genes showing differences in DNA methylation between FASD cases and controls are reflective 

of FASD-specific alterations, rather than broad neurodevelopmental functions. 

Although it is tempting to speculate that our collective results may be partially related to 

the functional deficits observed in FASD, it is important to consider that the DNA methylation 

patterns were derived from BECs. We feel that this concern is partially mitigated by our finding 

of the majority of DM genes in BECs being consistently expressed across multiple brain regions, 

and by the DNA methylation patterns in neural tissue displaying high correlation with those in 

BEC. Moreover, it has been noted by others that BECs might be a good surrogate tissue for 

human DNA methylation studies, as both buccal and brain cells are derived from the ectoderm 

(Lowe et al. 2013). Lastly, while our study did not measure DNA methylation in additional 

tissues, evidence from animal models is emerging to support lasting alterations to both epigenetic 

and gene expression patterns in neural tissue following PAE (Lussier et al. 2015; Kleiber et al. 

2012, 2013; Laufer et al. 2013). Nevertheless, our results must be interpreted with caution in the 

context of neurodevelopment, as additional studies in postmortem samples from humans are 

required to rigorously assess the concordance of epigenetic changes associated with FASD 

between peripheral and central tissues.  
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A further challenge in the interpretation of alterations to DNA methylation patterns in 

FASD cases versus controls lies in the small effect sizes of environmental exposures on the 

epigenome. Although the small magnitude of DNA methylation changes observed here are 

consistent with genome-wide DNA methylation studies in other neurodevelopmental and 

psychiatric disorders, it is unclear whether such small changes can have a strong effect on 

cellular functions (Ladd-Acosta et al. 2014; Berko et al. 2014; Rakyan et al. 2011). As a 5% 

change in DNA methylation levels is typically interpreted as biologically significant, the 41 

CpGs displaying >5% differences between FASD cases and controls may reflect more robust 

PAE-induced alterations to the epigenome. However, slight alterations accumulating in several 

genes involved in similar processes could combine to have strong effects on biological processes. 

For instance, as many of the up-methylated genes were co-expressed, small alterations to 

multiple members of this network could potentially affect the biological functions they regulate.  

While our data are very consistent with published work in human epigenome-wide 

association studies, it is of course possible that the relatively small changes to DNA methylation 

levels reflect biological biases or even technical noise (Rakyan et al. 2011).  These could 

originate from a variety of sources, which we attempted to address to the best of our abilities.  

For example, while differences in cell type composition can play an important role in driving 

DNA methylation variation, little to no contamination of the BEC from the present study with 

white blood cells was identified. These findings suggest that differences in cell type composition 

may not have affected the observed alterations to DNA methylation patterns in the FASD group, 

although few blood cell types were covered in our analysis and additional subtypes that were not 

assessed could potentially have been present in some samples. In addition to differences in cell 

types, differing postnatal environments between groups might also influence the observed DNA 
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methylation patterns, skewing the results to represent possibly confounding variables other than 

PAE, such as diet, socio-economic status (SES), and postnatal alcohol exposure. However, the 

majority of children in the FASD group were living in foster or adoptive homes, rather than the 

biological family, which hopefully would reduce differences in the rates of alcohol use or food 

security between groups. By contrast, SES scores were slightly confounded between groups, 

although this effect was partially mitigated by the focus on the more ethnically homogeneous 

subgroup, which showed less skewing towards low SES in the FASD cases. Finally, we feel that 

potential technical issues were reduced through the use of strict quality control and statistical 

procedures to eliminate unwanted variation in the data. As such, the technical validity of our 

approach was supported by the verification of 5 DM loci by bisulfite pyrosequencing, the gold 

standard for targeted DNA methylation analysis.  

We note that although most biological and technical issues were addressed by our study 

design and methods, a particular caveat in the identification of DM loci was manifested by the 

imbalance in ethnicity across FASD cases and control groups. Given the close relationship 

between genetic variation and DNA methylation patterns, differences in genetic background 

between groups may have contributed to the DNA methylation alterations we identified between 

FASD cases and controls. Other studies have included ethnicity as a covariate during linear 

modeling to correct for its effects, but no significant DM probes were identified using this 

approach in our study, as FASD status was confounded with ethnic background (Supplemental 

methods). Given that self-reports do not always accurately assess ethnicity, SNP genotyping data 

were used to objectively assign participants to different ethnic groups, based on HapMap 

samples of known ethnicity. This analysis resulted in the identification of a more homogeneous 

subgroup of samples, which was used as a comparative control to filter out the influences of 
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ethnicity and related effects, such as SES and cultural confounders, on differential DNA 

methylation within FASD cases. In turn, this strategy facilitated the removal of ethnically biased 

probes from the original DM loci, resulting in the successful identification DM CpG sites 

specific to children with FASD and not confounded for ethnicity. Given the prevalence of 

ethnically diverse populations in large-scale studies of DNA methylation, this unique approach 

driven by genetic stratification of subgroups might prove a useful way of dealing with the effects 

of ethnicity in case control studies beyond the one presented here.  

 

4.4.1 Summary and conclusions 

Despite the recognition of FAS over 40 years ago, PAE remains the leading cause of 

developmental disability in the developed world. While several animal studies have investigated 

the role of epigenetic mechanisms in context of PAE, most human studies have been limited to 

alcohol consumption and dependence in adults, or a small cohort of children with FASD (Zhang 

H. et al. 2013; Zhang R. et al. 2013; Philibert et al. 2012; Laufer et al. 2015). As such, this study 

is the single largest investigation of genome-wide DNA methylation patterns in children with 

FASD. While one of the greatest challenges with this large cohort was the ethnicity imbalance 

between the FASD and Control groups, ethnic background correction reduced this confound and 

allowed the reliable identification of 658 DM CpG sites specific to children with FASD. 

Although the effect size of changes was small in most cases, 41 sites displayed a greater than 5% 

change in DNA methylation, which is consistent with previous studies and may reflect the subtle 

effects of PAE on the epigenome. We also identified 101 DMRs containing two or more DM 

CpGs, located within 95 different genes and spanning promoter regions, gene bodies, and both 3’ 

and 5’ UTRs. While these data were collected from BEC, rather than neural tissue, the vast 
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majority of DM genes were highly expressed in the brain, suggesting a potential concordance 

between peripheral and central tissues. These alterations occurred in several genes previously 

implicated with PAE and altered neurodevelopment, and displayed functional enrichments for 

neural process and neurodevelopmental disorders. Although it will be essential to validate these 

changes in separate cohorts from a different population, these findings provide initial insight into 

the molecular mechanisms underlying the effects of PAE on children and present a potential role 

for role for DNA methylation in the etiology of FASD. 
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Chapter 5: DNA methylation as a predictive tool for fetal alcohol spectrum 

disorder 

5.1 Introduction 

Prenatal alcohol exposure (PAE) can alter the development, function, and regulation of 

numerous neural and physiological systems, giving rise to lasting cognitive and behavioural 

deficits, immune dysfunction, motor impairments, and increased vulnerability to mental health 

problems in adulthood (Zhang, Sliwowska, & Weinberg 2005; Pei et al. 2011; Mattson, Crocker, 

& Nguyen 2011). In humans, PAE can result in fetal alcohol spectrum disorder (FASD), a 

leading preventable cause of developmental disability with a North American prevalence 

currently estimated between 2-5% (May et al. 2009, 2014, 2015). FASD presents through a wide 

spectrum of phenotypes, ranging from growth deficits and physical abnormalities to cognitive 

and behavioral deficits.  On the most severe end of the spectrum lies Fetal Alcohol Syndrome 

(FAS), which is characterized by growth retardation, microcephaly, a distinct set of facial 

dismorphisms, and central nervous system abnormalities (Jones & Smith 1973; Astley & Clarren 

2000). By contrast, Alcohol-Related Birth Defects (ARBD) and Alcohol-Related 

Neurodevelopmental Disorders (ARND) describe the less severe end of the spectrum, where 

individuals with confirmed maternal drinking during pregnancy show primarily physical 

abnormalities or behavioural and/or cognitive abnormalities, respectively (Jacobson et al. 2011).  

Although the degree of alcohol’s effects during development varies among individuals, 

depending on factors such as timing and level of alcohol exposure, overall maternal health and 

nutrition, and genetic background, individuals across the spectrum show cognitive and 

behavioral deficits, which can be as serious in those with full FAS as those without any physical 
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features (Pollard 2007). Importantly, FASD has proven difficult to identify at an early age in the 

absence of overt physical manifestations of the disorder, as ARND requires confirmation of 

maternal alcohol consumption for diagnosis. As such, many children with FASD are not 

identified until they reach school age, where they begin to struggle with increased social pressure 

and cognitive challenges (Senturias & Baldonado 2014). However, early cognitive and 

behavioral interventions may potentially alleviate some of the deficits caused by PAE and 

improve the long-term outcomes of individuals with FASD (Paley & O’Connor 2011). As earlier 

diagnosis is a strong predictor of positive outcomes in individuals with FASD and habilitative 

care may be have a greater impact during infancy, early screening tools are necessary to help 

identify at-risk children at a young age and potentially buffer some of the deficits caused by 

prenatal alcohol exposure (Streissguth et al. 2004; Fox, Levitt, & Nelson III 2010).  

Self-report methods are most commonly used to assess PAE and the child’s risk of 

FASD, these are not always accurate and can lead to underestimation of alcohol consumption 

behavior during pregnancy (Russell et al. 1996; Jones, Bailey, & Sokol 2013; Burns, Gray, & 

Smith 2010). Over the past decades, various biomarkers of PAE have been developed to 

complement self-report questionnaires in the absence of direct alcohol-induced pathologies. 

More specifically, the latter have focused on the direct or indirect products of ethanol 

metabolism, which can be measured in biological specimens from both the mother and infant 

(Concheiro-Guisan & Concheiro 2014). Although these biomarkers are very sensitive to fetal 

alcohol exposure, they may not be directly related to the biological underpinnings of PAE-

induced deficits or the developmental profiles associated with FASD. Furthermore, their use is 

limited to a short window after birth, which may not be useful in cases where alcohol exposure is 
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not suspected (Cabarcos et al. 2015). As such, objective measures of PAE are needed to aid in 

the screening and diagnosis of children at risk for FASD. 

 

Importantly, epigenetic marks are now emerging as potential biomarkers or signatures of 

early-life exposures. Broadly defined, epigenetics refers to modifications of DNA and its 

regulatory components, including chromatin and non-coding RNA, that potentially modulate 

gene transcription without changing underlying DNA sequences (Bird 2007; Meaney 2010; 

Henikoff & Greally 2016). In addition to their role in the regulation of cellular processes, these 

may also bridge environmental factors and genetic regulation to capture a lasting signature of 

early environments. In particular, DNA methylation is emerging as a candidate biomarker for 

environmental exposures and disease. Typically found on the cytosine residues of cytosine-

guanine dinucleotides (CpG), this epigenetic mark is both stable over time and dynamic in 

response to environmental factors (Boyce & Kobor 2015). Several pre- and postnatal 

environmental influences have been associated with altered DNA methylation patterns, such as 

maternal nutrition and smoking, supporting their responsiveness to early-life environments and 

potential use as biomarkers (Joubert et al. 2012; Heijmans et al. 2008). For example, prenatal 

exposure to cigarette smoke is associated with lasting alterations to DNA methylation patterns, 

which are now being used as biomarkers of cigarette smoke exposure in infants (Reese et al. 

2017). 

While in its infancy in relation to PAE, this field shows promise for FASD, as the DNA 

methylome retains a lasting signature of prenatal alcohol exposure in both the central nervous 

system and peripheral tissues (reviewed in Lussier, Weinberg, & Kobor 2017). Numerous studies 

have been performed using animal models, and have shown both short term and persistent 
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alterations to DNA methylation patterns in the brain, suggesting that this epigenetic mark may 

play a role in PAE-induced deficits (Chater-Diehl et al. 2016; Laufer et al. 2013; Liu et al. 2009; 

Hicks, Middleton, & Miller 2010; Zhou, Chen, & Love 2011; Lussier, Weinberg, & Kobor 

2017). By contrast, fewer studies have investigated DNA methylation patterns in children with 

FASD. More targeted methods identified changes in DNA methylation levels in the promoter 

region of DRD4 among a large cohort of children exposure to alcohol during breastfeeding in 

Australia (Fransquet et al. 2016). Others have employed discovery-driven approaches, assessing 

genome-wide DNA methylation patterns in case-control studies of FASD. The first of these 

came from a small cohort of children, where the main findings were alterations to DNA 

methylation patterns in the protocadherin (PCDH) gene clusters (Laufer et al. 2015). Recently, 

we analyzed DNA methylation profiles in a large cohort of children with FASD, identifying a 

signature of 658 differentially methylated CpGs (Portales-Casamar et al. 2016). Although few 

results have been validated across different cohorts, these findings have set the stage for broader 

applications of DNA methylation in the context of FASD, creating a framework upon which to 

build future epigenomic studies of PAE.  

To validate the findings from our previous DNA methylation signature of FASD, we 

assessed the genome-wide DNA methylation profiles of buccal epithelial cells (BEC) from an 

independent cohort of 24 individuals with FASD and 24 sex- and age-matched typically 

developing controls. Given that our initial study provided a robust framework for genome-wide 

assessment of DNA methylation patterns in FASD, we used the findings from our initial study as 

a foundation for the identification of replicable epigenetic alterations following PAE. Notably, 

nearly 25% of statistically significant associations from the NDN study were validated in this 

new cohort at a false-discovery rate (FDR) <0.05. In addition to the validation analyses, we also 
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assessed whether DNA methylation profiles could be used to identify individuals with FASD, 

generating classification algorithms that use DNA methylation levels to predict FASD status 

with high accuracy. Taken together, these results support a role for DNA methylation in FASD 

and suggest that it could potentially be used as an early screening tool for at-risk children. 

 

5.2 Materials and methods 

5.2.1 The Kids Brain Health Network cohort of children with FASD 

The present cohort was collected as a replication study by Kids Brain Health Network 

(KBHN), formerly NeuroDevNet, and is hereby referred to as the KBHN cohort (Reynolds et al. 

2011). Written informed consent was obtained from a parent or legal guardian and assent was 

obtained from each child before study participation. The clinics used previously described 

guidelines for the diagnosis of FASD (Chudley et al. 2005). Children with FASD and age- and 

sex-matched typically developing children were recruited from FASD diagnostic clinics in 

Winnipeg, Manitoba, Canada. Briefly, buccal epithelial cell (BEC) samples were collected for 

DNA methylation analysis from 25 FASD and 26 age- and sex-matched control children aged 

between 5 and 18 (Table 1). BECs were collected using the Isohelix buccal swabs and Dri-

Capsule (Cell Projects Ltd., Kent, UK). To collect buccal cells, the swab was inserted into the 

participants’ mouth and rubbed firmly against the inside of the left cheek for 1 minute. The swab 

was then placed into a sterile tube with a Dri-Capsule and the tube sealed. An identical procedure 

was followed for the right cheek. Participants did not have any dental work performed 48 hours 

prior to collection, and no food was consumed less than 60 minutes prior to collection to avoid 

contamination. 
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5.2.2 DNA methylation 450K assay  

DNA was extracted from BECs using the Isohelix DNA isolation kit (Cell Projects, Kent, 

UK). 750ng of genomic DNA was subjected to bisulfite conversion using the Zymo EZ DNA 

Methylation Kit (Zymo Research, Irvine, California), which converts DNA methylation 

information into sequence base differences by deaminating unmethylated cytosines to uracil 

while leaving methylated cytosines unchanged. 160ng of converted DNA was applied to the 

HumanMethylation450 BeadChip array from Illumina (450K array), which enables the 

simultaneous quantitative measurements of 485,512 CpG sites across the human genome, 

following the manufacturer’s instructions. Chips were scanned on an Illumina HiScan, with the 

53 samples run in two batches and each containing a similar number of FASD and control 

samples, randomly distributed across the chips. Two pairs of technical replicates were included 

and showed a Pearson correlation coefficient r>0.994 in both cases, highlighting the 

technology’s reproducibility on our in house-platform. Inter-sample correlations ranged from 

0.926-0.99.  

 

5.2.3 DNA methylation data quality control and normalization 

The raw DNA methylation data was subjected to a rigorous set of quality controls, first of 

the samples, and then of the probes. Of the 51 initial samples, 3 were removed from the final 

dataset based on poor quality data, which was identified through skewed internal controls and/or 

>=5 % of probes with a detection p-value > 0.05 (2 controls and 1 FASD). Next, probes were 

removed from the dataset according to the following criteria: (1) probes on X and Y 

chromosomes (n = 11,648); (2) SNP probes (n = 65); (3) probes with beadcount <3 in 10 % of 

samples (n = 726); (4) probes with 10% of samples with a detection p-value > 0.01 (n = 11,864); 
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or (5) probes with a polymorphic CpG and non-specific probes (N = 19,337 SNP-CpG and 

10,484 non-specific probes) (Price et al. 2013). A final filtering step was performed to set the 

methylation values to NA for any remaining probe-sample pair where beadcount <3 or detection 

p-value > 0.01. Data normalization was performed using the SWAN method on the final dataset, 

composed of 48 samples (24 FASD and 24 control) and 431,544 probes (Teschendorff et al. 

2012). Finally, batch effects (chip number and chip position) were removed using the ComBat 

function from the SVA package in R. All analyses were performed using on ComBat-corrected 

M-values, which represent the log2 ratio of methylated/unmethylated, where negative values 

indicate less than 50% methylation and positive values indicate more than 50% methylation (Du 

et al. 2010). Percent methylation changes (beta-values) were used in graphical representations of 

the data and indicate the percentage of methylation calculated by methylated/(methylated + 

unmethylated), ranging from 0 (fully unmethylated) to 1 (fully methylated).  

 

5.2.4 Differential methylation analysis and validation of NeuroDevNet (NDN) findings 

Cell type deconvolution was performed to assess the proportions of CD14, CD34, and 

buccal epithelial cells in each sample using DNA methylation levels at CpGs highly correlated 

with these cell types (Smith et al. 2015). Surrogate variable analysis (SVA) was also performed 

on ComBat-corrected, normalized data using the SVA package in R to identify surrogate 

variables (SVs) representative of unwanted heterogeneity (Leek et al. 2012). Using DNA 

methylation data from all 48 samples, SVA identified 6 SVs not associated with clinical status 

(FASD vs control). As these were partially associated with known covariates, such as cell type 

proportions and age, the SVs were included in the linear regression analysis to account for their 

effects. More specifically, linear modeling was performed on the 648 differentially methylated 
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probes identified in the initial NDN study and found in the present dataset using the limma 

package in R and a model that included clinical status and all identified SVs as covariates(Smyth 

2004; Portales-Casamar et al. 2016). Significant differentially methylated probes between groups 

were identified at a false-discovery rate (FDR) <0.05 following multiple test correction by the 

Benjamini-Hochberg method and were required to show the same direction of change as the 

NDN cohort’s findings (Benjamini & Hochberg 1995). Further evaluation of potential biological 

significance was performed using an arbitrary threshold of >5% mean percent DNA methylation 

differences between FASD and controls.  

 

5.2.5 DNA methylation pyrosequencing assay 

Bisulfite pyrosequencing assays were designed with PyroMark Assay Design 2.0 

(Qiagen; Supplementary table 5.1). The regions of interest were amplified by PCR using the 

HotstarTaq DNA polymerase kit (Qiagen) as follows: 15 minutes at 95°C, 45 cycles of 95°C for 

30s, 58°C for 30s, and 72°C for 30s, and a 5 minute 72°C final extension step. For 

pyrosequencing, single-stranded DNA was prepared from the PCR product with the Pyromark™ 

Vacuum Prep Workstation (Qiagen) and the sequencing was performed using sequencing 

primers on a Pyromark™ Q96 MD pyrosequencer (Qiagen). The quantitative levels of 

methylation for each CpG dinucleotide were calculated with Pyro Q-CpG software (Qiagen). 

 

5.2.6 The NDN cohort of children with FASD 

DNA methylation data from the our previous cohort of children with FASD were 

obtained from GEO (GSE80261), and normalized as in described in our original publication 

(Portales-Casamar et al. 2016). This cohort was collected by NeuroDevNet, a Canadian Network 
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of Centers for Excellence, and is hereby referred to as the NDN cohort (Portales-Casamar et al. 

2016). Briefly, this dataset was composed of 110 children with FASD or confirmed PAE and 96 

age- and sex-matched typically developing controls. The mean age (in years) for individuals with 

FASD was 11.55 and 11.28 for controls, both ranging from 5-18 years old. A skew in self-

declared ethnicity was present between the groups, as the majority of controls identified as 

Caucasian, while the majority of children in the FASD group identified as First Nations. This 

skew was addressed in the initial epigenome-wide association study through the use of a more 

ethnically homogeneous subset of the cohort. DNA methylation data were obtained from buccal 

epithelial cells using the Illumina 450K array and were normalized using the beta-mixture 

quantile normalization method.  

 

5.2.7 Cohort of individuals with autism spectrum disorder 

Normalized DNA methylation data from a publically available dataset of individuals with 

autism spectrum disorder (ASD) were obtained from GEO (GSE50759). Briefly, this dataset was 

composed of 48 individuals with ASD and 48 typically developing controls. The samples 

consisted of 57 males and 39 females, consistent with the skew towards males in ASD. The mean 

age (8.84) and range (1-28 years old) differed from the NDN and KBHN studies and the genetic 

ancestry of most individuals was Caucasian (European), though a proportion of the cohort was of 

Nigerian ancestry. DNA methylation data of these samples were obtained from buccal epithelial 

cells using the Illumina 450K array. 
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5.2.8 DNA methylation as a predictor of FASD status  

A predictive model of FASD status was created using DNA methylation data and the 

caret package in R. First, a predictive model was created using stochastic gradient boosting on 

the NDN cohort (110 FASD: 96 control) using both the differentially methylated probes 

identified in the NDN study (648 probes) and those validated in the KBHN validation cohort 

(161 probes) (Portales-Casamar et al. 2016). The parameters of the modeling were optimized for 

area under the receiver operating characteristic (ROC) curve by grid tuning for repeated cross-

validation (number of trees 50-1500; 1,5, or 9 interaction depth; 0.1 shrinkage). The optimal 

model for predicting clinical FASD status using 648 probes was 1500 trees, 5 of interaction 

depth, and 20 minimum observations per node.  The optimal model for predicting clinical FASD 

status using 161 probes was 1400 trees, 1 of interaction depth, and 20 minimum observations per 

node. Next, the KBHN cohort (24 FASD: 24 control) was used as a positive control to verify the 

predicted sensitivity and specificity of the predictive model. In parallel, 450K data from a cohort 

of children with autism spectrum disorder (ASD) were tested as a negative control of the model 

to verify the predicted specificity of the models. Verification of the predictor with these datasets 

was performed on normalized, uncorrected data to better mimic the potential use of the 

predictive model by independent groups. 

 

5.3 Results 

5.3.1 The KBHN cohort of children with FASD 

As noted, we analyzed genome-wide DNA methylation patterns from 24 children with 

FASD or confirmed PAE and 24 typically developing controls, matched for sex and age, ranging 

from 2 to 18 years of age (Table 5.1). We found that self-declared ethnicity, primary caregiver, 
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and mean age were significantly different between the FASD and control participants (p<0.05). 

We corrected for the potential effects of age on DNA methylation through the statistical methods 

outlined below. However, given the heavy confound in self-declared ethnicity and caregiver 

status, we could not correct for these effects, and relied on the previous correction of ethnic bias 

in the initial NDN study (see below) (Portales-Casamar et al. 2016). 

    FASD cases Controls 
N 24 24 
Age     

 
Range 2-18 5-17 

 
Mean 9.1 11.6 

Sex      

 
Female 9 13 

 
Male 15 11 

Self-declared ethnicity     

 
Caucasian 4 (2)* 22 

 
First Nations 17 (20)* 1 

 
Asian 1 (0)* 1 

 
Not reported 2 0 

Caregiver status     

 
Biological parents 7 24 

 
Biological grandparents 3 0 

 
Adopted/legal guardian 8 0 

  Foster care 6 0 
*including individuals with mixed First Nations lineage 

Table 5.1 Characteristics of the NeuroDevNet II FASD cohort  

 

5.3.2 Children with FASD and typically developing controls showed differential DNA 

methylation patterns 

Following quality control and normalization, 431,544 sites of the 485,512 sites remained 

in the final dataset of 48 samples, which were corrected for batch effects using ComBat. While 

BECs are mostly homogeneous population of cells, they contain small proportions of CD34- and 

CD14-positive white blood cells, which can potentially skew DNA methylation analyses. As 
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such, cell type deconvolution was performed to identify any blood contamination in the samples, 

identifying a trend toward significance in the proportions of different cells types between groups 

(CD34: p = 0.115; CD14: p = 0.224; BEC: p = 0.068). To account for this factor in addition to 

other additional potential confounding variables within the dataset, we performed surrogate 

variable analysis to identify patterns of variation, identifying 6 surrogate variables when 

protecting the effects of group (FASD vs Control). These were correlated with known sources of 

variation within the data, including cell type proportions and age (Supplementary figure 5.1).  

To identify alterations in DNA methylation patterns specific to the FASD group, we 

coupled differential DNA methylation analysis using a two-group design with the surrogate 

variables to correct for undesirable variation in the data. Given that ethnicity-related probes were 

already accounted for in the NDN study as much as possible, it was concluded that the effects of 

ethnic background would be lessened by using the final 658 differentially methylated CpGs 

(Portales-Casamar et al. 2016).  As such, we performed linear modeling on the probes that were 

differentially methylated in the first study and remained in the dataset after pre-processing (648 

CpGs of 658 from NDN). Of these, 161 CpGs displayed differential methylation in the same 

direction as the initial cohort in the KBHN FASD group compared to the controls at a FDR<0.05  

(Figure 5.1A; Supplementary table 5.2). To assess the probability of validating this many probes, 

random group subsampling and probe subsampling were performed 10,000 times. As none 

showed more differentially methylated probes than the original replication cohort (maximum = 

31 differentially methylated probes), the probability of validating 161/648 probes was < 1e-4 

(Supplementary figure 5.2).  Of the 161 validated probes, 82 were up-methylated while 79 were 

down-methylated in FASD compared to control samples. Several genes contained multiple 

differentially methylated CpGs across both cohorts, including HLA-DPB1 (5), FAM59B (4), 
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CAPN10 (3), DES (3), SLC6A3 (3), SLC38A2 (3), FAM24A (2), H19 (2), and TGFB1I1 (2) 

(Table 5.2). Moreover, 53 CpGs showed >5% change in methylation, an arbitrary cutoff often 

used to gauge potential biological significance. Of note, three genes contained 2 or more DM 

probes that showed both an FDR<0.05 and change in percent methylation >5%, FAM59B (4 

probes), HLA-DPB1 (2 probes), and SLC6A3 (2 probes). In particular, the FAM59B CpGs were 

located within a CpG island and showed very strong differences in DNA methylation levels 

between FASD and control groups, with an average 13% methylation change across the array 

probes in the CpG island (Figure 5.2).  

Overall, the percent methylation changes between groups of the 648 analyzed probes 

were highly correlated between the NDN and KBHN cohorts (r=0.638; figure 5.1B). Across the 

entire 648 probes analyzed, 462 had the same direction of change, even though the majority did 

not achieve statistical significance. We also compared the ranking of probes by p-value from 

linear modeling between the NDN and KBHN cohorts; no significant similarities were identified 

(p=0.91). Of note, 21 of the significant probes with >5% methylation change in the NDN study 

were validated in the present analysis (39 of 41 were present in KBHN). This proportion (54%) 

was much higher than all validated probes (25%), suggesting that these represented potentially 

more robust effects of alcohol exposure on the epigenome. When using a 5% methylation change 

as a cutoff, rather than an FDR < 0.05, 62 probes were validated in the KBHN cohort (p<0.1, 

max FDR = 0.177), of which 25 displayed > 5% change in both cohorts (64% of the NDN 

probes).  
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Gene # of CpGs Direction of change 
HLA-DPB1 5 UP 
FAM59B 4 DOWN 
DES 3 DOWN 
SLC6A3 3 UP 
SLC38A2 3 DOWN 
CAPN10 3 UP 
FAM24A 2 UP 
H19 2 DOWN 
TGFB1I1 2 DOWN 

Table 5.2 Genes containing multiple differentially methylated CpGs in FASD   

 

 
Figure 5.1 Visualization and verification of the differentially methylated probes  

A) Heatmap of the 161 validated probes validated in the KBHN cohort at an FDR <0.05 (79 hypermethylated in 

FASD; 82 hypomethylated in FASD). The percent methylation values (ranging from 0 to 100) were centered, scaled, 

and trimmed, resulting in a standardized DNA methylation level ranging from −2 to +2 (blue-red scale). B) Scatter 

plot of the differences in percent methylation between FASD and controls for the 648 differentially probes identified 

in the NDN cohort. The mean changes between groups were highly correlated between both the NDN and KBHN 
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cohorts (r = 0.638). C) Verification by bisulfite pyrosequencing in FASD (blue) and control (gray) samples verified 

the difference observed on the 450K array (p=0.0501). The left panel shows the DNA methylation levels from the 

pyrosequencing assay, while the right panel shows the results from the 450K array. The CpG assayed was located in 

the CACNA1A gene body (cg24800175). 

 

 
Figure 5.2 Several differentially methylated CpGs were located in the FAM59B gene body  

DNA methylation levels for FASD (blue) and controls (grey) are shown for 10 CpGs within the gene, with the red 

circles representing the validated hits in KBHN (FDR <0.05). These were located in a CpG island, illustrated by the 

green bar at the bottom, which showed an average 13% change in DNA methylation levels in individuals with 

FASD versus controls across all 5 CpGs covered by the 450K array.  

 

5.3.3 Bisulfite pyrosequencing verified the differential DNA methylation of CACNA1A 

To verify that the differential DNA methylation results did not depend on the method 

used to measure them, we assessed DNA methylation levels of the cg24800175 probe in 

CACNA1A. We selected this probes as it was also verified in the initial NDN study, where it 

similarly showed a >5% change in DNA methylation between individuals with FASD and 
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controls (p=0.0501). Pyrosequencing results confirmed the DNA methylation levels observed on 

the 450K array, showing similar DNA methylation levels and differences between groups for 

CpGs located in CACNA1A (Figure 5.1C). The Pearson correlation between these two methods 

was 0.826 and the Bland–Altman plot showed little difference when comparing the 450K array 

to pyrosequencing, suggesting good concordance between DNA methylation data from the two 

methods (Supplementary figure 5.3). Linear regression analysis of pyrosequencing data between 

FASD cases and controls confirmed differential DNA methylation in this site, even without 

correcting for covariates (p = 0.04).  

5.3.4 DNA methylation patterns classified individuals with FASD versus controls 

To assess whether DNA methylation data could be used to predict FASD status, we 

created a predictive algorithm of FASD using machine learning approaches.  First, we selected 

normalized DNA methylation data from the 206 samples in the NDN cohort (110 FASD: 96 

control) in both the 648 initial probes that were also found in the KBHN data. In addition, we 

also assessed the 161 probes that were validated across both cohorts, though this model may 

have resulted in over-fitting of the data. Our strategy was to build both predictors (648 probes vs 

161 probes) using an initial training cohort (NDN), followed by subsequent testing in the test 

cohort (KBHN). See Figure 5.3 for an overview of steps used to build the FASD predictor. 
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Figure 5.3 Flowchart of bioinformatic analyses for the DNA methylation predictor of FASD  

Briefly, samples from the NDN cohort were used as the training set, and machine learning was performed on either 

the 648 probes from the initial NDN study, or the 161 probes validated in the present study. The resulting FASD 

predictor was tested on the KBHN test set, as well as a negative control set composed of individuals with autism 

spectrum disorder and typically developing controls. 

 

Using a gradient boosting model in the caret package to optimize both sensitivity and 

specificity (area under the ROC curve), we created two predictive models to assess the 

probability of FASD based on DNA methylation patterns (Supplementary table 5.3). For the 648 

initial probes model, the predicted sensitivity and specificity for the training cohort were 0.922 

and 0.978, respectively, for an area under the curve of 0.993 (95% confidence intervals: 0.990-

0.995; Figure 5.4A). By contrast, for the 161 probes model, the predicted sensitivity and 

specificity were 0.887 and 0.892, respectively, forming an area under the curve of 0.955 (95% 

Training cohort (NDN) 
110 FASD: 96 Control 

648 initial probes (NDN) 
OR 

161 validated probes (NDN & KBHN) 

Machine learning 

FASD predictor 

Positive control 
KBHN FASD cohort 
24 FASD: 24 Control 

Testing 

Negative control 
ASD cohort 

48 ASD: 48 Control 
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confidence intervals: 0.947-0.963; Figure 5.4B). As expected, the 648 model performed much 

better in the training set, given that the NDN cohort was used to generate these findings.  

We next assessed the predictive models using the normalized, batch-corrected DNA 

methylation data of the KBHN cohort as a test set. Of note, these data were not corrected for any 

covariates or surrogate variables other than batch correction. In this cohort, the 648 initial probes 

model performed more poorly, displaying 0.875 sensitivity, 0.542 specificity, and 0.819 area 

under the ROC curve (Table 5.3; Figure 5.4A). The balanced accuracy of the model in this 

cohort was 0.708% (95% CI: 0.559-0.830), and the ROC curve was significantly different from 

the one obtained in the training cohort (p=0.0051). Overall, 11 controls were misclassified as 

FASD and 3 children with FASD were misclassified as controls, giving a negative predictive 

value (NPV) of 81.3% and a positive predictive value (PPV) of 65.6%. In contrast to the 648 

probes model, the test set confirmed the predictive accuracy of the 161 probes model, though it 

was potential over-fitting the data. This model displayed 0.917 sensitivity, 0.875 specificity, and 

0.944 area under the ROC curve, while the balanced accuracy in this cohort was 0.896% (95% 

CI: 0.773-0.965), similar to the training dataset (Table 5.3; Figure 5.4B). Overall, 3 controls 

were misclassified as FASD and 2 children with FASD were misclassified as controls, giving a 

negative predictive value (NPV) of 88% and a positive predictive value of 91.3%. Moreover, the 

ROC from the training set and test set were not significantly different (p=0.78), suggesting that 

the predictor functioned correctly in a similar dataset. Given the discrepancies in ethnic 

backgrounds between FASD and control groups, the misclassified samples were assessed for 

differences in self-reported ethnicity, caregiver status, age, or cell-type proportions in the 

classification. However, no patterns emerged between the correctly and incorrectly classified 
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individuals, suggesting that differences in demographic variables between the groups do not 

drive their classification.  

 

 
 

Figure 5.4 Visualization of the training and test set performance for both DNA methylation predictors  

A) The DNA methylation predictor created using the 648 probes identified in NDN showed high accuracy in the 

training cohort (dark grey; area under the curve = 0.99), but poorer accuracy in the KBHN test set (blue; area under 

the curve = 0.82; p<0.01). In particular, 11 control samples in the test set were misclassified as FASD, while only 3 

individuals with FASD were classified as controls. B) The DNA methylation predictor created using the 161 

validated probes also showed high accuracy in the training cohort (dark grey; area under the curve = 0.96), and 

similar accuracy in the test set (blue; area under the curve = 0.94, p=0.77). Only 3 controls were misclassified as 

FASD and 2 individuals with FASD were classified as controls.   
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Table 5.3 Summarized results from the classification algorithms 

 

5.3.5 The DNA methylation predictors were not biased by ASD in an independent cohort  

BEC samples from an independent ASD cohort served as a negative control to assess the 

validity of the model in the FASD cohorts. To this end, we used a publically available dataset of 

450K array data from the BECs of 48 individuals with autism spectrum disorder (ASD) and 48 

typically developing controls from the gene expression omnibus (GSE50759). Using 

uncorrected, normalized data from this cohort, the two predictors correctly identified the vast 

majority of individuals in the cohort as non-FASD. The 648 initial probes model misclassified 17 

individuals (9 ASD and 8 controls) as FASD, for a specificity of 0.823 (95% CI: 0.732-0.893), 

slightly lower than the predicted specificity in the training set. By contrast, 12 individuals (7 

ASD and 5 controls) were misclassified as individuals with FASD using the 161 probes model, 

for a specificity of 0.875 (95% CI: 0.792-0.934), which was consistent with predicted values 

from the model (Table 5.3). The samples did not have any distinguishing features from the 

    648 probes 161 probes 
Training set (NDN)     
  AUC 0.993 0.955 
  Accuracy 0.943 0.890 
  Sensitivity 0.922 0.887 
  Specificity 0.978 0.892 
Test set (KBHN)     
  AUC 0.819 0.944 
  Accuracy 0.708 0.896 
  Sensitivity 0.875 0.917 
  Specificity 0.542 0.875 
  False positives 11 3 
  False negatives 3 2 
  PPV 0.656 0.880 
  NPV 0.813 0.913 
Negative control (ASD)     
  Accuracy 0.823 0.875 
  Sensitivity NA NA 
  Specificity 0.823 0.875 
  False positives 17 12 
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correctly classified sample, suggesting that the predictive model is not biased for ASD, sex, age, 

or Nigerian ancestry in independent cohorts.  

 

5.4 Discussion 

 Epigenetic mechanisms are emerging as potential biomarkers and mediators of 

environmental exposures, and a growing body of literature suggests that epigenetic factors may 

be involved in the etiology of FASD. In particular, our recent study using the largest cohort of 

children with FASD to date identified a signature of 658 differentially methylated CpGs in the 

BEC of individuals with FASD compared to typically developing controls (Portales-Casamar et 

al. 2016). Here, we present the first validation of genome-wide DNA methylation data in a small 

cohort of individuals with FASD, where we successfully validated 161 of the 658 differentially 

methylated CpGs identified in the initial NDN cohort. Furthermore, we demonstrated that DNA 

methylation data could be utilized to successfully generate predictive algorithms to classify 

individuals as FASD or controls with high accuracy. These results indicated that DNA 

methylation in BEC could potentially be used as a biomarker of PAE to screen children at risk 

for FASD. 

 

Our present findings represent the first validation of genome-wide DNA methylation 

alterations in individuals with FASD. Of the 161 validated CpGs at an FDR<0.05, 53 had >5% 

change in DNA methylation levels, the arbitrary threshold for potential biological relevance. 

When using a DNA methylation change >5% as a cutoff, rather than a stringent FDR, 62 CpGs 

were validated, with 25 of those showing this magnitude of change in the NDN cohort as well, 

suggesting that these regions are more responsive to alcohol’s effects. Importantly, the majority 
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of the CpGs showed the same direction of change between FASD and controls in both cohorts 

(462/648), and while they did not achieve statistical significance, potentially due to the small size 

of this cohort, they may reflect consistent alterations of PAE on the epigenome. In addition, we 

verified the results from the 450K array by bisulfite pyrosequencing, confirming the differential 

DNA methylation results for a CpG located in CACNA1A and supporting that our findings were 

not an artifact of array technology. 

Although the effects of alcohol on the epigenome were relatively subtle, we note that 

several genes previously associated with PAE or FASD contained multiple differentially CpGs, 

including FAM59B, H19, HLA-DPB1, and SLC6A3. In particular, DNA methylation alterations 

in the imprinted gene H19 have been previously associated with PAE in both animal models and 

clinical cohorts of FASD, and may reflect broader alterations to imprinted genes caused by PAE 

(Stouder, Somm, & Paoloni-Giacobino 2011; Ouko et al. 2009; Haycock & Ramsay 2009; 

Portales-Casamar et al. 2016). Moreover, the HLA-DPB1 locus, a member of the major 

histocompatibility complex proteins, contained several differentially methylated CpGs, which 

overlapped with a differentially methylated region identified in the NDN study. Given its key 

function in immune regulation and potential role in rheumatoid arthritis, these alterations could 

potentially reflect some of the immune changes associated with FASD (Liu et al. 2013). 

Furthermore, the FAM59B gene contained several CpGs with large changes in DNA methylation 

levels between individuals with FASD and controls, potentially representing a particularly 

sensitive locus with regards to PAE. Of note, only one validated CpG was located in a 

protocadherin gene (PCDHB18), which were considerably enriched in previous genome-wide 

studies of DNA methylation in individuals with FASD (Laufer et al. 2015; Portales-Casamar et 

al. 2016). Given that these only showed one overlapping probe, this could indicate higher 
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variability within these gene clusters that may be associated with other variables not present in 

the current dataset, such as differences in age, BMI, ethnicity, and SES. 

Of particular interest, we replicated the differential DNA methylation patterns of the two 

genes involved in dopamine signaling from the NDN cohort, the dopamine transporter SLC6A3 

and the dopamine receptor D4 (DRD4). Given the key role of the dopaminergic system in brain 

development and its interactions with neuroendocrine and immune systems, these alterations 

could potentially reflect broader changes to signaling pathways in the organism. Of note, the 

buccal epithelial cells of children exposed to alcohol during prenatal life and breastfeeding also 

display altered DNA methylation patterns in the promoter region of DRD4 (Fransquet et al. 

2016). Furthermore, several disorders previously associated with allelic variation and DNA 

methylation in this gene show either overlaps or co-morbidities with FASD, including ADHD, 

bipolar disorder, anxiety disorder, schizophrenia, and substance abuse (Sánchez-Mora et al. 

2011; Dadds et al. 2016; Ji et al. 2016; Cheng et al. 2014; Kordi-Tamandani, Sahranavard, & 

Torkamanzehi 2013; Docherty et al. 2012; Ptáček, Kuželová, & Stefano 2011; Bau et al. 2001; 

Zhang et al. 2013; Faraone, Bonvicini, & Scassellati 2014; Chen et al. 2011). Given that 

dopamine signaling plays a key role in brain development and function, it is tempting to interpret 

these findings in the context of PAE-induced deficits. However, DNA methylation alterations in 

buccal epithelial cells may not fully reflect alterations in the central nervous system. 

Nevertheless, it has been suggested that BEC may act as a suitable surrogate tissue in human 

studies of DNA methylation, as they are also derived from the ectoderm (Lowe et al. 2013). 

While we did not measure these genes in additional tissues, evidence from animal models 

suggest that PAE can cause lasting alterations to the epigenome of central nervous system 
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tissues, and as such, these results may represent potentially broader alterations to epigenomic 

patterns in the brain (Lussier, Weinberg, & Kobor 2017).   

Although these findings represent the first validation of genome-wide DNA methylation 

data in children with FASD, a few particularities of the KBHN cohort limit the interpretability 

and generalizability of these results. Similar to the initial cohort, the KBHN replication cohort 

was heavily confounded by ethnicity, as the vast majority of FASD cases were from First 

Nations communities, while controls were mainly Caucasian. Given that ethnicity influences 

DNA methylation patterns, differences between groups may have been due to genetic 

background. Unfortunately, the KBHN cohort was too small to separate the groups into more 

ethnically homogeneous subsets, a method we had previously used to account for ethnicity-

related differences in DNA methylation. As such, we performed linear modeling on the sites that 

had been previously identified in the NDN study, which were partially filtered for ethnicity-

related differences during the analysis of the first cohort. However, some of the top differentially 

methylated genes could potentially be influenced by ethnicity differences between groups in 

spite of our best efforts. For instance, three known polymorphisms are located within the 

FAM59B locus (dbSNP minor allele frequencies: rs774397935: 1.04%; rs4665833: 5.1%; 

rs181971256: 21.4%). Although none of these are known methylation quantitative trait loci 

(mQTL), the FAM59B gene body contains several mQTLs in the developing human brain, and 

genetic variation outside the region could potentially influence DNA methylation levels (Hannon 

et al. 2015). In addition, nearby genetic variation can also influence DNA methylation patterns in 

the promoter of DRD4, which may be reflected in this cohort through the skew in ethnicity 

between groups (Docherty et al. 2012). Although the frequencies of these alleles in First Nation 

populations have not been assessed, genetic differences between groups could potentially 
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influence DNA methylation levels within this differentially methylated region. Nonetheless, our 

results suggest that the regulation of these genes might be altered in individuals with FASD, 

which may potentially occur through direct effects of alcohol on the epigenome or through 

increased susceptibility to the effects of alcohol due to genetic variation.  

In addition to self-declared ethnicity, significant differences in the primary caregiver 

were present between groups, as all controls lived with their biological families, while the 

majority of children with FASD were typically in foster care. While the effects of this disparity 

on the epigenome are unclear, they could influence DNA methylation patterns through a number 

of factors, including nutrition, early-life adversity, and socio-economic status (SES) (Esposito et 

al. 2016). However, we also used SVA to account for differences between groups that may have 

influenced DNA methylation, including cell type proportions, age, and sex. As such, we feel that 

the potential confounds associated with the cohort design were reduced through our statistical 

procedures, though future studies with groups balanced for ethnicity and additional variables will 

be necessary to tease out these differences and further validate our findings.  

 

Finally, we show for the first time that DNA methylation patterns could be used as 

biomarkers of PAE in clinical populations and can be utilized as predictive variables for FASD. 

These findings complement and extend previous studies that investigated different molecular and 

physiological markers to help screen children for potential prenatal alcohol exposure, including 

alcohol metabolites in mothers and children, circulating miRNA in mothers, and cardiac 

orienting response in children (Balaraman et al. 2016; Mesa et al. 2017; Goh et al. 2016; 

McQuire et al. 2016) . In particular, eye tracking measures have been used in a small cohort of 

children to distinguish children with FASD, ADHD, or typically developing controls with 
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relatively good accuracy (Tseng et al. 2013). In contrast to these studies, the present cohorts were 

composed of both children diagnosed with FASD and some with confirmed PAE/high-risk of 

developing FASD. As no follow-up was performed to determine if all children with PAE were 

ultimately diagnosed with FASD at a later date, the classification models were essentially tuned 

to screen children at a higher risk for developing FASD with both high sensitivity and 

specificity. Importantly, our results suggest that DNA methylation predictors can achieve high 

accuracy in the classification of individuals with FASD versus controls across multiple cohorts. 

Although the prediction algorithm that used the 161 validated probes showed more consistent 

results across different cohorts (NDN: 88.9%; KBHN: 89.6%; ASD: 87.5 %) than the 648 probes 

algorithm (NDN: 94.3%; KBHN: 70.8%; ASD: 82.3%), the use of the validated probes may have 

caused some over-fitting in the KBHN test set. Nevertheless, it provides an important second 

validation of the strongest associations with FASD, which likely represent the more robust DNA 

methylation alterations caused by PAE. Moreover, both predictive algorithms appear to be 

largely independent of typical confounding factors, such as age, sex, ethnicity, and cell type 

composition of the samples, as well as ASD. Collectively, these results support the use of DNA 

methylation as a potential biomarker of PAE and screening tool for FASD.  

 

5.4.1 Summary and conclusions 

Given the broad spectrum of cognitive, behavioral, and biological deficits caused by PAE, FASD 

places an important strain on both societal resources and the affected individuals and families. 

As such, accurate biomarkers are necessary to identify children at risk for FASD at an early age, 

when interventions are most effective. Our findings provide an important stepping-stone towards 

epigenetic biomarkers of FASD and set the stage for broader screening tools for 
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neurodevelopmental disorders. Nevertheless, validation of these tools across different cohorts, 

with varying ages, ethnicities, and environmental exposures will be essential to parse out the 

strongest associations and create a successful molecular diagnostic tool for FASD.  
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Chapter 6: Conclusion 

6.1 Summary and cross-cutting features 

The work presented in this dissertation highlights the programming effects of PAE on the 

developing organism, and provides a framework for the use of DNA methylation as a biomarker 

for FASD. More specifically, I took advantage of an animal model of PAE and two clinical 

cohorts of children with FASD to identify genome-wide alterations to gene expression programs 

and DNA methylation patterns.  

I profiled genome-wide transcriptomic alterations using gene expression microarrays in 

the hippocampus and prefrontal cortex of adult female PAE rats under steady-state (basal, saline-

injected) and immune challenge (adjuvant-injected) conditions. I identified significant changes in 

gene expression in PAE compared to controls in response to ethanol exposure alone (saline-

injected females), including genes involved in neurodevelopment, apoptosis, and energy 

metabolism. Moreover, in response to an adjuvant-induced arthritis challenge, PAE animals 

showed unique gene expression patterns, while failing to exhibit the activation of genes and 

regulators involved in the immune response observed in control and pair-fed animals. These 

results support the hypothesis that PAE affects neuroimmune function at the level of gene 

expression, demonstrating long-term effects of PAE on the CNS response under steady-state 

conditions and following an inflammatory insult.  

Building on these findings of persistent alterations to the brain’s transcriptome, I 

investigated the early programming effects of PAE on the brain’s epigenome. Specifically, I 

probed for alterations to DNA methylation programs across early postnatal development in the 

hypothalamus. As a key regulatory region of the stress response, immune system, and both 

autonomic and homeostatic regulation, the hypothalamus is a central target for the biological 
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embedding of PAE and I hypothesized that this region would be more responsive to the effects of 

PAE on the epigenome. I identified numerous differentially methylated regions (DMRs) that 

showed persistent differences in PAE compared to control animals across pre-weaning 

development. Importantly, these contained genes enriched for functions in immune regulation, 

hormonal response, and epigenetic mechanisms, suggesting that epigenetic mechanisms may 

play a role in PAE-induced alterations to hypothalamic functions. Furthermore, these DMRs also 

contained a higher proportion of BHLHE40 binding sites, a transcription factor that was also 

differentially expressed in the prefrontal cortex of PAE animals exposed to adjuvant compared to 

controls. As BHLHE40 is an important regulator of the circadian rhythm, it could potentially 

play a role in mediating some of the long-term deficits associated with FASD (Nakashima et al. 

2008). Given that central nervous system tissue is not accessible in clinical settings, other than in 

postmortem specimens, I also assessed the concordance of PAE-induced differential DNA 

methylation patterns between the hypothalamus and WBC. I identified 300 DMRs that showed 

the same direction of change in response to PAE in both tissues, which contained genes enriched 

for functions in immune regulation, the stress response, and chromatin remodeling. These may 

represent systemic effects of PAE on the developing organism and suggest that WBC could 

potentially act as a surrogate for CNS alterations in a subset of the epigenome.  

Overall, the epigenomic analyses revealed more differential DNA methylation in 

intergenic regions, suggestive of underlying regulatory regions that could have subtle but broader 

effects on gene expression profiles and cellular regulation. Furthermore, a number of DMRs 

were located around intron/exon boundaries, which have been associated with alternative 

splicing of genes (Shukla et al. 2011; Maunakea et al. 2013, 2010). Although I could not measure 

the proportions of different isoforms through the gene expression microarray analyses, these 
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findings suggests that PAE could potentially alter the balance of gene isoforms in the developing 

organism, which could have important ramifications on the developmental trajectories of 

neurobiological systems.  

Finally, across the three different analyses in our rat model of PAE, I identified several 

alterations to genes involved in immune regulation, suggesting that, even at baseline levels, PAE 

animals display differential overall cellular responses to immune factors. In addition, the 

differentially expressed genes in the brain of adult PAE rats were enriched for functions related 

to lymphocyte differentiation, further highlighting the prevalence of immune-related changes 

across different studies. Furthermore, all three analyses identified alterations to genes involved in 

epigenetic regulation, highlighting the complex interplay between the various layers of genetic 

regulation and stressing the importance of investigating multiple levels of regulatory 

mechanisms following PAE.  

 

To complement the findings from animal models of PAE, I investigated DNA 

methylation patterns in a cohort of children and adolescents with FASD. After correcting for the 

effects of ethnicity, I found 658 significantly differentially methylated CpGs between FASD 

cases and controls in buccal epithelial cells. Furthermore, over-representation analysis of genes 

with up-methylated CpGs revealed a significant enrichment for neurodevelopmental processes 

and diseases, such as anxiety, epilepsy, and autism spectrum disorders. These findings suggest 

that prenatal alcohol exposure is associated with distinct DNA methylation patterns in children 

and adolescents. Importantly, I validated these findings in an independent cohort of individuals 

with FASD, replicating the differential DNA methylation levels at 161 CpGs throughout the 
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genome. These were located in several genes involved in immune function, highlighting the 

parallels between animal models and clinical cohorts of FASD.  

Of particular note, children and adolescents with FASD had altered DNA methylation 

levels in several genes from the complement system (C1RL), and cytokine/chemokine signaling 

(CXXC11, IL1R1), as well as alterations to HLA-DPB1, a component of the major 

histocompatibility complex previously associated with rheumatoid arthritis (Liu et al. 2013; 

Raychaudhuri et al. 2012). While these findings were identified in a peripheral tissue not directly 

involved in immune modulation, they may provide insight into changes in global epigenetic 

patterns associated with altered immune profiles in individuals with FASD. Furthermore, DRD4, 

a crucial regulator of the dopaminergic system, had altered DNA methylation levels associated 

with PAE in both the hypothalamus of PAE animals and BEC of individuals with FASD. Given 

that genetic variation and DNA methylation in this gene has previously been associated with 

several disorders comorbid with FASD, such as ADHD, depression, schizophrenia, and 

substance use, this finding suggests that it could potentially play a role in the etiology of several 

PAE-induced deficits (Ptáček, Kuželová, & Stefano 2011; Bau et al. 2001; Sánchez-Mora et al. 

2011; Abdolmaleky et al. 2008; Cheng et al. 2014; Faraone, Bonvicini, & Scassellati 2014; D. 

Chen et al. 2011; Dadds et al. 2016; Ji et al. 2016; Kordi-Tamandani, Sahranavard, & 

Torkamanzehi 2013). Taken together, these results highlight the value of animal models in 

assessing the molecular underpinnings of FASD in the central nervous system, and suggest a 

potential role for DNA methylation in the etiology of some PAE-induced deficits, including 

those in self-regulation and immune function. 

Finally, as these findings raised the possibility of an epigenetic biomarker of FASD, I 

investigated the potential relevance of DNA methylation in developing a predictive algorithm for 
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PAE. Using these the two clinical cohorts at our disposal, I successfully generated a 

bioinformatic tool that could classify individuals with FASD versus controls. Importantly, this 

algorithm could also successfully differentiate between autism spectrum disorder and FASD, 

suggesting that these epigenetic patterns were likely specific to individuals with PAE.  

 As a whole, I propose that PAE can leave a lasting impression on the epigenome of 

central and peripheral tissues, which may potentially influence the deficits observed in 

individuals with FASD. In turn, these could also be used a biomarkers of PAE to identify 

individuals with FASD earlier in life, or aid in diagnoses at later ages.  

 

6.2 Limitations 

These results represent an important step towards understanding the molecular 

underpinnings of fetal programming by PAE and the deficits associated with FASD. However, 

their interpretation may be limited by our use of female offspring in the animal model, tissue and 

cell-type differences in epigenetic patterns, genetic background, and their correlative nature. In 

addition, while these findings also suggest a potential role for DNA methylation as a biomarker 

of FASD, our clinical cohorts also contained several individuals with confirmed PAE, but were 

not yet diagnosed with an FASD. 

 

6.2.1 Sexual dimorphisms 

In the animal model, I focused our investigation of PAE-induced gene expression and 

epigenetic alterations on female animals, partially due to their increased vulnerability to 

autoimmune disorders such as rheumatoid arthritis and the underrepresentation of females in 

molecular and genome-wide studies of FASD. However, this approach presents an important 
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caveat in the interpretation of our results, as males and females often display sexually dimorphic 

responses to the effects on alcohol on various neurobiological systems. In particular, males 

generally show different cognitive and behavioral phenotypes, as well as differential 

susceptibilities to stressors and mental health disorders compared to their female counterparts 

(Hellemans et al. 2008; Bale & Epperson 2015; Oldehinkel & Bouma 2011). Given that genetic 

and epigenetic patterns are highly associated with sex, our findings must also be validated in 

male animals to fully assess the effects of PAE on the transcriptome and DNA methylome and to 

understand the sexually dimorphic effects that may exist (Zhang et al. 2011).  

 

6.2.2 Tissue specificity and cellular heterogeneity 

Given the key role of epigenetic mechanisms in driving cellular identity, cellular 

heterogeneity is a major drivers of epigenetic variation in large datasets, which may influence the 

differences identified between groups (Smith & Meissner 2013). As PAE causes neuronal 

apoptosis, it is possible that slight differences in cell composition are present between prenatal 

treatment groups (Ikonomidou et al. 2000). As such, DMRs identified in the animal model could 

potentially be due to underlying differences in cell composition of the hypothalamus or total 

WBC. Furthermore, as the entire hypothalamus was analyzed, the impact of PAE on its different 

nuclei, which have widely varying functions, cannot be conclusively assessed (Squire et al. 

2008). Nevertheless, differences in genes related to the functions of a particular hypothalamic 

center could be tentatively assigned and validated in independent studies. Additionally, while 

cellular composition could also have affected the results obtained from the tissue concordance 

analysis, I did not identify any difference in the proportions of different WBC subtypes. While 

these result may suggest few differences between groups, more sensitive methods could 
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potentially subdivide these cell types further to provide a more granular signal of cellular 

heterogeneity (De Souza et al. 2016).  

Furthermore, alterations to the epigenetic patterns of central tissues are not easily 

measurable in humans, other than in postmortem brain samples. Thus, the vast majority of 

epigenome-wide association studies are performed in peripheral tissues such as blood and buccal 

epithelial cells in the hope that they reflect epigenomic variation in the brain. As epigenetic 

patterns are highly dependent on cell types that may respond differently in the face of the same 

exposures, these surrogate tissues may not fully portray the true changes driving disease. 

However, the establishment of common epigenetic profiles between central and peripheral 

tissues is an ongoing and essential topic of research, and several studies suggest that peripheral 

tissue could potentially be used as a surrogate for CNS alterations in humans (Walton et al. 2016; 

Farré et al. 2015; Kaminsky et al. 2012; Davies et al. 2012; Smith et al. 2015; Horvath et al. 

2012). These further highlight the power of our animal model study, as it allowed us to make 

direct correlations between central and peripheral tissue in the same animals and identify 

concordant alterations to DNA methylation patterns in the hypothalamus and WBC. 

 

6.2.3 Genetic background  

Genetic background can also influence DNA methylation patterns throughout the 

genome, as a large number of CpG sites are associated with genetic variation (Fraser et al. 2012; 

Moen et al. 2013; Heyn et al. 2013). Of note, our animal model is based on an outbred 

population of Sprague-Dawley rats, which display a range of genetic diversity. As such, differing 

genetic backgrounds among prenatal treatment groups could potentially have influenced the 

DMRs identified in the developmental and tissue-concordant analyses. This issue was further 
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highlighted in the clinical cohorts, where the majority of individuals with FASD were of First 

Nation descent, while the controls were primarily of Caucasian descent. Although this limitation 

was at least partially mitigated through the use of statistical methods, they could potentially have 

influenced the PAE-induced epigenetic alterations identified in these studies. By contrast, I could 

not account for this potential genetic influence in the animal model, and further studies are 

required to fully investigate the interaction between genetic variants and epigenomic patterns in 

the context of PAE. 

 

6.2.4 Correlation versus causation 

Although the data presented in this thesis lend support to hypothesis that PAE can 

influence neurobiological systems through epigenetic alterations, they were not designed to 

examine the exact mechanisms of alcohol’s effects. More specifically, even though gene 

expression profiles and epigenetic mechanisms are correlated with PAE in cross-sectional 

clinical cohorts and animal models, it is not yet clear whether their reversal would dampen PAE 

phenotypes, which would indicate a more causal role. Emerging technologies, such as CRISPR 

fused to chromatin modifiers, could potentially be used to selectively alter the epigenetic profiles 

of key genes and provide a more causal link between epigenetic alterations and PAE-induced 

deficits (Enríquez 2016). Moreover, while epigenetic patterns are associated with gene 

expression, these relationships are inconsistent across individuals and the functional implications 

of epigenetic alterations have yet to be fully established (Lam et al. 2012; Gutierrez-Arcelus et 

al. 2013). In particular, it is not yet clear whether DNA methylation regulates transcription or if it 

is a result of thereof, making its functional interpretation difficult. As such, prior to making 

inferences concerning cognitive, behavioral, or physiological outcomes from alcohol-induced 
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epigenetic alterations, a direct line of evidence must first be established between epigenetic 

patterns, gene expression profiles, and the phenotype in question, either through genetic 

manipulation or therapeutic interventions in model organisms. 

 

6.2.5 PAE versus FASD biomarkers 

The present clinical cohorts were composed of both children diagnosed with FASD and 

some with confirmed PAE/high-risk of developing FASD. Due to constraints of the clinical 

situation, it was not possible to do follow-up assessments to determine if all children with PAE 

were ultimately diagnosed with FASD at a later date. As such, the classification models were 

tuned to screen children at a higher risk for developing FASD, rather than act as a diagnostic 

tool. Conversely, this method may cast a wider net and help identify children who might benefit 

from early interventions. Furthermore, it remains unclear whether higher specificity (low false-

negative rate) or specificity (low false-positive rate) is preferable when screening for FASD. On 

the one hand, higher sensitivity would promote early interventions in a greater number of at-risk 

children, which could mitigate some of their deficits. On the other hand, high specificity would 

potentially prevent unnecessary interventions with some individuals and reduce the strain on 

health care resources. As both issues are important for child health and wellbeing, it appears that 

a balance between the two may be the best compromise, although much higher values and 

overall accuracy will be necessary before these methods are implemented in the clinic.  

 

6.3 Broader considerations for future epigenome-wide studies of FASD 

Much headway has been made in characterizing the epigenetic patterns associated with 

developmental alcohol exposure and their role in fetal programing by PAE. However, a number 
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of key considerations will be crucial for the next wave of genetic and epigenetic studies in 

FASD. First, most studies of alcohol exposure in animal models focus exclusively on male 

animals or do not highlight sex-specific differences, an issue found throughout many research 

fields and recently highlighted by the new funding guidelines from the National Institutes of 

Health (Clayton & Collins 2014). Since epigenetic patterns are highly associated with sex, this 

further reduces the generalizability and applicability of findings from animal models of PAE to 

clinical settings (Zhang et al. 2011). This is particularly relevant to the domain of FASD, as 

males in general typically display different cognitive and behavioral phenotypes, as well as 

differential susceptibilities to stressors and mental health disorders compared to their female 

counterparts (Hellemans et al. 2008; Bale & Epperson 2015; Oldehinkel & Bouma 2011). As 

such, the paucity of data on females in the FASD research field must be addressed in order to 

fully assess the role of epigenetics in the etiology of alcohol-induced deficits. Given the wide 

variety of PAE models, we must also begin to integrate findings from different models of 

exposure, which vary in terms of dosage (low to high), pattern of exposure (acute or chronic), 

trimester of exposure, and type of ethanol administration, to identify the most robust epigenetic 

signatures of PAE.  

Additionally, a large portion of whole-genome analyses of genomic and epigenomic 

patterns have been performed either in cell culture or whole brains, which does not necessarily 

reflect the downstream functional implications of alcohol-induced alterations. Future studies 

should begin to assess changes within specific brain regions and primary tissues to further dissect 

the role of the transcriptome and epigenetics in the various deficits associated with 

developmental alcohol exposure. Cell type differences must also be taken into account when 

analyzing these data, as tissue type and cellular heterogeneity are major drivers of epigenetic 
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patterns and may be altered by alcohol exposure. Various strategies can be used to address this 

issue, including the isolation of single cell types prior to genome-wide analyses, the inclusion of 

cell type proportions in statistical models, or bioinformatic methods such as cell type 

deconvolution and surrogate variable analysis. Large-scale network analyses may also provide an 

alternative method to analyze these types of data, allowing researchers to identify broader 

patterns of PAE-induced alterations and draw links between the different changes observed 

(Zoubarev et al. 2012; Zhang & Horvath 2005). 

In addition, robust statistical methods must be used in the analysis of genome-wide 

alterations to prevent spurious associations with alcohol exposure. These considerations include 

the use of multiple-test correction and other methods to correct for discrepancies between groups 

(age, ethnicity, smoking, etc.), which tend to occur frequently in population studies. Of note, the 

phenotypes associated with FASD have been rather heterogeneous in human studies. This is 

perhaps not surprising, given that numerous environmental and genetic influences can modulate 

the effects of alcohol on the developing organism, including maternal nutrition, dose and timing 

of alcohol exposure, as well as overall maternal health and genetics (Pollard 2007). Furthermore, 

these phenotypes are also possibly confounded with genetic ancestry, highlighting our need for 

large and diverse cohorts to tease apart the subtle influences of PAE on the genome and identify 

critical periods of vulnerability.  

Finally, to fully assess the role of epigenetic mechanisms in PAE-induced associated 

physiological functions, we must begin to integrate the multiple layers of genetic and epigenetic 

machinery, from chromatin alterations and DNA methylation to miRNA and lncRNA expression 

(Lister et al. 2013). Future studies should also assess the concordance of these changes with 

mRNA expression, as the relationship between epigenetic patterns and transcription is highly 
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complex and has yet to be fully elucidated. Some studies of PAE have already begun to fill this 

niche, identifying concomitant changes in gene expression, histone modification levels, and 

DNA methylation patterns of POMC and VGLUT2 (Bekdash, Zhang, & Sarkar 2013; Zhang et 

al. 2015). However, much work is needed before we can successfully integrate the multiple 

layers of genome-wide epigenomic regulation in the etiology of FASD.  

 

6.4 Future directions  

Although the study of genetic and epigenetic patterns following PAE is progressing at a 

relatively rapid rate, a number of key issues remain elusive in regards to both mechanisms of 

fetal programming and biomarkers of FASD. For one, early evidence from some groups suggests 

that developmental alcohol exposure could potentially have lasting impacts on the epigenome of 

future generations, suggesting a possible role for inter- or transgenerational epigenetic 

inheritance (Govorko et al. 2012). While these data are certainly intriguing and raise important 

ethical considerations in the study and prevention of FASD, they must be interpreted with 

relative caution due to severe limitations in studying such effects. First, the interpretation of 

these results must take into consideration the number of generations to determine whether they 

are considered inter or transgenerational, which are commonly confounded due to the presence 

of cells for the F2 generation in the pregnant F0 female (van Otterdijk & Michels 2016). Second, 

these studies were performed in rodent models, which have not yet been shown to display the 

same inheritance patterns as humans. Third, no cohorts are currently available for the study of 

transgenerational inheritance in humans, and the current evidence remains tenuous at best. 

Nevertheless, although much work must be done to fully assess the implications of inter- or 
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transgenerational epigenetic inheritance in FASD, this remains an intriguing and important area 

of research that certainly warrants further investigation.   

Another issue facing the field is that as of yet, and perhaps not surprisingly at this time, 

the vast majority of epigenetic studies rely on correlation, rather than causation. Given that 

different environmental factors have been shown to modulate PAE-induced deficits, including 

stress, immune challenges, nutrition, and early-life adversity, futures studies must also begin to 

address the differences and similarities between basal and inducible alterations to gene 

expression and epigenetic patterns. Model organisms, such as mice, rats, zebrafish, M. 

drosophila, C. elegans, etc. will play a crucial role in addressing this issue, as they allow for 

finer manipulations of biological systems and tighter control of environmental conditions. 

Perhaps most importantly, we must begin to position epigenetic mechanisms at the nexus of 

exposure paradigms and phenotypic outcomes to provide better insight into the etiology of 

FASD. Furthermore, analysis of both central and peripheral tissues in animal models will be vital 

before we can begin to make functional inferences in clinical settings, as human epigenetic 

studies mainly rely on peripheral tissues such as BEC and blood.  

Although the degree to which peripheral alterations are linked to the mechanisms 

underlying FASD remains unknown, they may present a unique opportunity to develop accurate 

epigenetic biomarkers of PAE. In many cases, the deficits associated with FASD only become 

evident long after exposure, highlighting the importance of early biomarkers as tools to identify 

at risk children and mitigate the long-term effects of alcohol. More recent studies in animal 

models and clinical populations of individuals with FASD are beginning to provide a solid 

foundation for biomarker discovery with hopes for definitive markers in the relatively near 

future. Of the utmost importance in this line of research are additional studies to validate current 



 

 

183 

findings and to begin to assess the accuracy and specificity of these types of markers. While a 

characteristic epigenomic signature appears to occur in the buccal cells of children with FASD, 

these finding requires additional validation and testing in a clinical setting. Furthermore, strong 

correlations have been identified between genetic background and epigenetic patterns, 

particularly in the case of gene by environment (GxE) interactions (Fraser et al. 2012; Heyn et al. 

2013; Moen et al. 2013). This work also points to the functional effects of methylation 

quantitative trait loci (mQTL), defined as an allelic variant that correlates with CpG methylation 

levels in its vicinity ( Jones, Fejes, & Kobor 2013). A number of studies have explored the 

occurrence of mQTLs in the human brain, showing that mQTLs tend to occur as cis associations 

in different brain regions and may underlie risk loci of various neuropsychiatric diseases, such as 

schizophrenia and bipolar disorder ( Zhang et al. 2010; Gibbs et al. 2010; Gamazon et al. 2013; 

Hannon et al. 2015; Jaffe et al. 2015). Given the challenges in obtaining cohorts of children with 

homogenous ethnicities, it will be vital to assess the relevance and implications of methylation 

quantitative trait loci or allelic variants correlating with nearby CpG methylation levels in the 

context of FASD. 

Longitudinal studies will also be integral to the identification of PAE-associated 

alterations to epigenetic profiles, as cross-sectional studies may not fully reflect the diversity of 

individuals with FASD across development and aging. Importantly, the field must also begin to 

move beyond early life outcomes and extend its focus into adolescence and adulthood, as data on 

adolescents and adults with FASD remain sparse. These studies will further develop a role for 

altered epigenetic programming in FASD and long-term health outcomes, be they immune, 

neurological, or stress-related (Moore & Riley 2015). In addition, these may prove crucial to our 

understanding of the etiology of FASD, particularly given the relationship between aging, 



 

 

184 

disease, and DNA methylation (Jones, Goodman, & Kobor 2015). These longitudinal cohorts 

will also be necessary to assess the persistence of epigenetic reprogramming by PAE and the 

potential validity of biomarkers over time. Epigenetic profiles may also serve as better markers 

of FASD if they are developed in conjunction with different stratification tools, such as magnetic 

resonance imaging (MRI), eye tracking, physical and mental health diagnostics, and immune 

markers, to parse out the wide range of deficits associated with FASD and create more accurate 

diagnostic tools. Finally, we must also begin to assess the overlaps, or lack thereof, in epigenetic 

patterns among different neurodevelopmental disorders, as they may display similar deficits and 

share common or overlapping molecular etiologies (Kelleher & Corvin 2015). The integration of 

these findings will provide important insight into the root causes of these disorders and may 

provide additional strategies for both diagnostic tools and therapeutic interventions.  

 

6.5 Conclusions 

Despite the recognition of FAS over 40 years ago, PAE remains the leading cause of 

developmental disability in the developed world, as recent North American estimates place the 

incidence between 2-5% ( Jones & Smith 1973; Lemoine et al. 1968; May & Gossage 2001; May 

et al. 2014, 2015). However, early identification of individuals with FASD remains difficult, 

limiting the effectiveness of current interventions, which still lack specific molecular or 

neurobiological targets (Murawski et al. 2015). Although the study of genetic and epigenetic 

patterns in FASD remains an emerging field, it has provided important contributions to our 

understanding of the molecular underpinnings of FASD. To date, epigenetic research has 

identified numerous alterations to gene expression, DNA methylation patterns, chromatin states, 

and ncRNA expression levels, which provide important neurobiological insight into the deficits 
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associated with FASD, while also potentially uncovering targets for therapeutic intervention. 

This work has also begun to lay the groundwork for the development of epigenetic biomarkers of 

PAE, which may be the key to identifying children at risk for FASD. In turn, the identification of 

valid biomarkers will eventually support the creation of strategies for earlier diagnoses and 

targeted interventions to improve the lives of children and families affected by FASD. 



 

 

186 

References 

Abdolmaleky H.M., Smith C.L., Zhou J.-R., & Thiagalingam S. 2008. “Epigenetic Alterations of 
the Dopaminergic System in Major Psychiatric Disorders.” Methods in Molecular Biology 
448: 187–212. 

Ahluwalia B., Wesley B., Adeyiga O., Smith D.M., Da-Silva A., & Rajguru S. 2000. “Alcohol 
Modulates Cytokine Secretion and Synthesis in Human Fetus: An in Vivo and in Vitro 
Study.” Alcohol 21 (3): 207–13. 

Alaghband Y., Bredy T.W., & Wood M.A. 2016. “The Role of Active DNA Demethylation and 
Tet Enzyme Function in Memory Formation and Cocaine Action.” Neuroscience Letters 
625 (June): 40–46. 

Ammann A., Wara D., Cowan M., Barrett D., & Stiehm E. 1982. “The Digeorge Syndrome and 
the Fetal Alcohol Syndrome.” American Journal of Diseases of Children 136 (10): 906–8. 

Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., et al. 2000. 
“Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium.” 
Nature Genetics 25 (1): 25–29. 

Astley S.J., & Clarren S.K. 2000. “Diagnosing the Full Spectrum of Fetal Alcohol-Exposed 
Individuals: Introducing the 4-Digit Diagnostic Code.” Alcohol and Alcoholism 35 (4): 400–
410. 

Astley S.J., Olson H.C., Kerns K., Brooks A., Aylward E.H., Coggins T.E., Davies J., et al. 
2009. “Neuropyschological and Behavioral Outcomes from a Comprehensive Magnetic 
Resonance Study of Children with Fetal Alcohol Spectrum Disorders.” Canadian Journal of 
Clinical Pharmacology 16 (1): e178-201. 

Bakhireva L.N., Leeman L., Savich R.D., Cano S., Gutierrez H., Savage D.D., & Rayburn W.F. 
2014. “The Validity of Phosphatidylethanol in Dried Blood Spots of Newborns for the 
Identification of Prenatal Alcohol Exposure.” Alcoholism: Clinical and Experimental 
Research 38 (4): 1078–85. 

Balaraman S., Schafer J.J., Tseng A.M., Wertelecki W., Yevtushok L., Zymak-Zakutnya N., 
Chambers C.D., & Miranda R.C. 2016. “Plasma miRNA Profiles in Pregnant Women 
Predict Infant Outcomes Following Prenatal Alcohol Exposure.” PLoS One 11 (11): 
e0165081. 

Balaraman S., Winzer-Serhan U.H., & Miranda R.C. 2012. “Opposing Actions of Ethanol and 
Nicotine on MicroRNAs Are Mediated by Nicotinic Acetylcholine Receptors in Fetal 
Cerebral Cortical-Derived Neural Progenitor Cells.” Alcoholism: Clinical and Experimental 
Research 36 (10): 1669–77. 

Bale T.L., & Epperson C.N. 2015. “Sex Differences and Stress across the Lifespan.” Nature 
Neuroscience 18 (10): 1413–20. 

Banovich N.E., Lan X., McVicker G., Geijn B. van de, Degner J.F., Blischak J.D., Roux J., 
Pritchard J.K., & Gilad Y. 2014. “Methylation QTLs Are Associated with Coordinated 
Changes in Transcription Factor Binding, Histone Modifications, and Gene Expression 
Levels.” PLoS Genetics 10 (9): e1004663. 

Barilla M.L., & Carsons S.E. 2000. “Fibronectin Fragments and Their Role in Inflammatory 
Arthritis.” Seminars in Arthritis and Rheumatism 29 (4): 252–65. 

Barker D.J.P. 1997. “Fetal Nutrition and Cardiovascular Disease in Later Life.” British Medical 
Bulletin 53 (1): 96–108. 



 

 

187 

Barker D.J.P. 2003. “Editorial: The Developmental Origins of Adult Disease.” European Journal 
of Epidemiology 18 (8): 733–36. 

———. 2004. “The Developmental Origins of Adult Disease.” Journal of the American College 
of Nutrition 23 (sup6). Taylor & Francis: 588S–595S. 

———. 2007. “The Origins of the Developmental Origins Theory.” Journal of Internal 
Medicine 261 (5): 412–17. 

Barker D.J.P., Godfrey K.M., Gluckman P.D., Harding J.E., Owens J.A., & Robinson J.S. 1993. 
“Fetal Nutrition and Cardiovascular Disease in Adult Life.” The Lancet 341 (8850): 938–
41. 

Barker D.J.P., & Osmond C. 1986. “Infant Mortality, Childhood Nutrition, and Ischaemic Heart 
Disease in England and Wales.” The Lancet 327 (8489): 1077–81. 

Barker D.J.P., Osmond C., Winter P.D., Margetts B., & Simmonds S.J. 1989. “Weight in Infancy 
and Death from Ischaemic Heart Disease.” The Lancet 334 (8663): 577–80. 

Barker D.J.P., & Thornburg K.L. 2013. “The Obstetric Origins of Health for a Lifetime.” 
Clinical Obstetrics and Gynecology 56 (3). 

Barr H.M., Bookstein F.L., O’Malley K.D., Connor P.D., Huggins J.E., & Streissguth A.P. 2006. 
“Binge Drinking during Pregnancy as a Predictor of Psychiatric Disorders on the Structured 
Clinical Interview for DSM-IV in Young Adult Offspring.” American Journal of Psychiatry 
163 (6): 1061–65. 

Bau C.H., Almeida S., Costa F.T., Garcia C.E., Elias E.P., Ponso A.C., Spode A., & Hutz M.H. 
2001. “DRD4 and DAT1 as Modifying Genes in Alcoholism: Interaction with Novelty 
Seeking on Level of Alcohol Consumption.” Molecular Psychiatry 6 (1): 7–9. 

Baubec T., & Schübeler D. 2014. “Genomic Patterns and Context Specific Interpretation of 
DNA Methylation.” Current Opinion in Genetics and Development 25 (1): 85–92. 

Bearer C.F., Jacobson J.L., Jacobson S.W., Barr D., Croxford J., Molteno C.D., Viljoen D.L., 
Marais A.-S., Chiodo L.M., & Cwik A.S. 2003. “Validation of a New Biomarker of Fetal 
Exposure to Alcohol.” The Journal of Pediatrics 143 (4): 463–69. 

Bearer C.F., Lee S., Salvator A.E., Minnes S., Swick A., Yamashita T., & Singer L.T. 1999. 
“Ethyl Linoleate in Meconium: A Biomarker for Prenatal Ethanol Exposure.” Alcoholism: 
Clinical and Experimental Research 23 (3): 487–93. 

Bearer C.F., Santiago L.M., O’Riordan M.A., Buck K., Lee S.C., & Singer L.T. 2005. “Fatty 
Acid Ethyl Esters: Quantitative Biomarkers for Maternal Alcohol Consumption.” The 
Journal of Pediatrics 146 (6): 824–30. 

Bekdash R.A., Zhang C., & Sarkar D.K. 2013. “Gestational Choline Supplementation 
Normalized Fetal Alcohol-Induced Alterations in Histone Modifications, DNA Methylation, 
and Proopiomelanocortin (POMC) Gene Expression in Beta-Endorphin-Producing POMC 
Neurons of the Hypothalamus.” Alcoholism: Clinical and Experimental Research 37 (7): 
1133–42. 

Benjamini Y., & Hochberg Y. 1995. “Controlling the False Discovery Rate: A Practical and 
Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society. Series B 
(Methodological) 57 (1): 289–300. 

Berko E.R., Suzuki M., Beren F., Lemetre C., Alaimo C.M., Calder R.B., Ballaban-Gil K., et al. 
2014. “Mosaic Epigenetic Dysregulation of Ectodermal Cells in Autism Spectrum 
Disorder.” PLoS Genetics 10 (5): e1004402. 

Bernardini R., Kamilaris T.C., Calogero A.E., Johnson E.O., Gomez M.T., Gold P.W., & 



 

 

188 

Chrousos G.P. 1990. “Interactions between Tumor Necrosis Factor-Alpha, Hypothalamic 
Corticotropin-Releasing Hormone, and Adrenocorticotropin Secretion in the Rat.” 
Endocrinology 126 (6): 2876–81. 

Bibikova M., Barnes B., Tsan C., Ho V., Klotzle B., Le J.M., Delano D., et al. 2011. “High 
Density DNA Methylation Array with Single CpG Site Resolution.” Genomics 98 (4): 288–
95. 

Bird A. 2007. “Perceptions of Epigenetics.” Nature 447 (7143): 396–98. 
Bock C. 2009. “Epigenetic Biomarker Development.” Epigenomics 1 (1): 99–110. 
Bodnar T.S., Hill L.A., & Weinberg J. 2016. “Evidence for an Immune Signature of Prenatal 

Alcohol Exposure in Female Rats.” Brain, Behavior, and Immunity 58: 130–41. 
Bodnar T.S., & Weinberg J. 2013. Neural-Immune Interactions in Brain Function and Alcohol 

Related Disorders. Edited by Changhai Cui, Lindsey Grandison, and Antonio Noronha. 
Boston, MA: Springer US. 

Bomholt S.F., Harbuz M.S., Blackburn-Munro G., & Blackburn-Munro R.E. 2004. “Involvement 
and Role of the Hypothalamo-Pituitary-Adrenal (HPA) Stress Axis in Animal Models of 
Chronic Pain and Inflammation.” Stress 7 (1): 1–14. 

Bonthius D.J., & West J.R. 1990. “Alcohol-Induced Neuronal Loss in Developing Rats: 
Increased Brain Damage with Binge Exposure.” Alcoholism: Clinical and Experimental 
Research 14 (1): 107–18. 

Borck G., Mollà-Herman A., Boddaert N., Encha-Razavi F., Philippe A., Robel L., Desguerre I., 
et al. 2008. “Clinical, Cellular, and Neuropathological Consequences of AP1S2 Mutations: 
Further Delineation of a Recognizable X-Linked Mental Retardation Syndrome.” Human 
Mutation 29 (7): 966–74. 

Boyce W.T., & Kobor M.S. 2015. “Development and the Epigenome: The ‘synapse’ of Gene-
Environment Interplay.” Developmental Science 18 (1): 1–23. 

Brand J.M., Frohn C., Cziupka K., Brockmann C., Kirchner H., & Luhm J. 2004. “Prolactin 
Triggers pro-Inflammatory Immune Responses in Peripheral Immune Cells.” European 
Cytokine Network 15 (2): 99–104. 

Burns E., Gray R., & Smith L.A. 2010. “Brief Screening Questionnaires to Identify Problem 
Drinking during Pregnancy: A Systematic Review.” Addiction 105 (4): 601–14. 

Cabarcos P., Álvarez I., Tabernero M.J., & Bermejo A.M. 2015. “Determination of Direct 
Alcohol Markers: A Review.” Analytical and Bioanalytical Chemistry 407 (17): 4907–25. 

Cahoy J.D., Emery B., Kaushal A., Foo L.C., Zamanian J.L., Christopherson K.S., Xing Y., et al. 
2008. “A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New 
Resource for Understanding Brain Development and Function.” The Journal of 
Neuroscience 28 (1): 264–78. 

Carter J.L., Lubahn C., Lorton D., Osredkar T., Der T.C., Schaller J., Evelsizer S., et al. 2011. 
“Adjuvant-Induced Arthritis Induces c-Fos Chronically in Neurons in the Hippocampus.” 
Journal of Neuroimmunology 230 (1–2): 85–94. 

Carter R.C., Jacobson J.L., Molteno C.D., Dodge N.C., Meintjes E.M., Jacobson S.W., May P., 
et al. 2016. “Fetal Alcohol Growth Restriction and Cognitive Impairment.” Pediatrics 138 
(2): 176192. 

Castells S., Mark E., Abaci F., & Schwartz E. 1981. “Growth Retardation in Fetal Alcohol 
Syndrome. Unresponsiveness to Growth-Promoting Hormones.” Developmental 
Pharmacology and Therapeutics 3 (4): 232–41. 



 

 

189 

Chater-Diehl E.J., Laufer B.I., Castellani C.A., Alberry B.L., & Singh S.M. 2016. “Alteration of 
Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging 
Networks in Adult Mouse Hippocampus Following Fetal Alcohol Exposure.” PLoS ONE 11 
(5): e0154836. 

Chen C.P., Kuhn P., Advis J.P., & Sarkar D.K. 2006. “Prenatal Ethanol Exposure Alters the 
Expression of Period Genes Governing the Circadian Function of β-Endorphin Neurons in 
the Hypothalamus.” Journal of Neurochemistry 97 (4): 1026–33. 

Chen D., Liu F., Shang Q., Song X., Miao X., & Wang Z. 2011. “Association between 
Polymorphisms of DRD2 and DRD4 and Opioid Dependence: Evidence from the Current 
Studies.” American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 156 
(6): 661–70. 

Chen L., & Nyomba B.L.G. 2003. “Effects of Prenatal Alcohol Exposure on Glucose Tolerance 
in the Rat Offspring.” Metabolism 52 (4): 454–62. 

Chen M., Olson H., Picciano J., Starr J., & Owens J. 2012. “Sleep Problems in Children with 
Fetal Alcohol Spectrum Disorders.” Journal of Clinical Sleep Medicine 8: 421–29. 

Chen Y., Ozturk N.C., & Zhou F.C. 2013. “DNA Methylation Program in Developing 
Hippocampus and Its Alteration by Alcohol.” PLoS ONE 8 (3): 1–11. 

Cheng J., Wang Y., Zhou K., Wang L., Li J., Zhuang Q., Xu X., et al. 2014. “Male-Specific 
Association between Dopamine Receptor D4 Gene Methylation and Schizophrenia.” PLoS 
ONE 9 (2): e89128. 

Chover-Gonzalez A.J., Harbuz M.S., Tejedor-Real P., Gibert-Rahola J., Larsen P.J., & Jessop 
D.S. 1999. “Effects of Stress on Susceptibility and Severity of Inflammation in Adjuvant-
Induced Arthritis.” In Annals of the New York Academy of Sciences, 876:276–86. 

Chudley A.E., Conry J., Cook J.L., Loock C., Rosales T., & LeBlanc N. 2005. “Fetal Alcohol 
Spectrum Disorder: Canadian Guidelines for Diagnosis.” Canadian Medical Association 
Journal 172 (5 Suppl): S1–21. 

Church M.W., & Gerkin K.P. 1988. “Hearing Disorders in Children with Fetal Alcohol 
Syndrome: Findings from Case Reports.” Pediatrics 82 (2): 147–54. 

Clausing P., Ali S.F., Taylor L.D., Newport G.D., Rybak S., & Paule M.G. 1996. “Central and 
Peripheral Neurochemical Alterations and Immune Effects of Prenatal Ethanol Exposure in 
Rats.” International Journal of Developmental Neuroscience 14 (4): 461–69. 

Clayton J. a., & Collins F.S. 2014. “NIH to Balance Sex in Cell and Animal Studies.” Nature 
509 (7500): 282–83. 

Colebatch A.N., & Edwards C.J. 2011. “The Influence of Early Life Factors on the Risk of 
Developing Rheumatoid Arthritis.” Clinical and Experimental Immunology 163 (1): 11–16. 

Concheiro-Guisan A., & Concheiro M. 2014. “Bioanalysis during Pregnancy: Recent Advances 
and Novel Sampling Strategies.” Bioanalysis 6 (23): 3133–53. 

Cordaux R., & Batzer M.A. 2009. “The Impact of Retrotransposons on Human Genome 
Evolution.” Nature Reviews Genetics 10 (10): 691–703. 

Crews F.T., Bechara R., Brown L.A., Guidot D.M., Mandrekar P., Oak S., Qin L., Szabo G., 
Wheeler M., & Zou J. 2006. “Cytokines and Alcohol.” Alcoholism: Clinical and 
Experimental Research 30 (4): 720–30. 

Crofford L.J., Sano H., Karalis K., Webster E.L., Goldmuntz E.A., Chrousos G.P., & Wilder 
R.L. 1992. “Local Secretion of Corticotropin-Releasing Hormone in the Joints of Lewis 
Rats with Inflammatory Arthritis.” Journal of Clinical Investigation 90 (6): 2555–64. 



 

 

190 

Cuadrado A., & Nebreda A.R. 2010. “Mechanisms and Functions of p38 MAPK Signalling.” 
The Biochemical Journal 429 (3): 403–17. 

Cunningham E.T., & Souza E.B. De. 1993. “Interleukin 1 Receptors in the Brain and Endocrine 
Tissues.” Immunology Today 14 (4): 171–76. 

Dadds M.R., Schollar-Root O., Lenroot R., Moul C., & Hawes D.J. 2016. “Epigenetic 
Regulation of the DRD4 Gene and Dimensions of Attention-Deficit/hyperactivity Disorder 
in Children.” European Child & Adolescent Psychiatry 25 (10): 1081–89. 

Davies M.N., Volta M., Pidsley R., Lunnon K., Dixit A., Lovestone S., Coarfa C., et al. 2012. 
“Functional Annotation of the Human Brain Methylome Identifies Tissue-Specific 
Epigenetic Variation across Brain and Blood.” Genome Biology 13 (6): R43. 

De Souza R.A.G., Islam S.A., McEwen L.M., Mathelier A., Hill A., Mah S.M., Wasserman 
W.W., Kobor M.S., & Leavitt B.R. 2016. “DNA Methylation Profiling in Human 
Huntington’s Disease Brain.” Human Molecular Genetics 25 (10): 2013–30. 

Dickmeis T. 2009. “Glucocorticoids and the Circadian Clock.” Journal of Endocrinology 200 
(1): 3–22. 

Diorio D., Viau V., & Meaney M.J. 1993. “The Role of the Medial Prefrontal Cortex (Cingulate 
Gyrus) in the Regulation of Hypothalamic-Pituitary-Adrenal Responses to Stress.” The 
Journal of Neuroscience 13 (9): 3839–47. 

Dobbing J., & Sands J. 1979. “Comparative Aspects of the Brain Growth Spurt.” Early Human 
Development 3 (1): 79–83. 

Dobson C.C., Mongillo D.L., Brien D.C., Stepita R., Poklewska-Koziell M., Winterborn A., 
Holloway A.C., Brien J.F., & Reynolds J.N. 2012. “Chronic Prenatal Ethanol Exposure 
Increases Adiposity and Disrupts Pancreatic Morphology in Adult Guinea Pig Offspring.” 
Nutrition and Diabetes 2 (December): e57. 

Docherty S.J., Davis O.S.P., Haworth C.M. a, Plomin R., D’Souza U., & Mill J. 2012. “A 
Genetic Association Study of DNA Methylation Levels in the DRD4 Gene Region Finds 
Associations with Nearby SNPs.” Behavioral and Brain Functions 8 (1): 31. 

Doi A., Park I.H., Wen B., Murakami P., Aryee M.J., Irizarry R., Herb B., et al. 2009. 
“Differential Methylation of Tissue- and Cancer-Specific CpG Island Shores Distinguishes 
Human Induced Pluripotent Stem Cells, Embryonic Stem Cells and Fibroblasts.” Nature 
Genetics 41 (12): 1350–53. 

Domcke S., Bardet A.F., Ginno P.A., Hartl D., Burger L., & Schuebeler D. 2015. “Competition 
between DNA Methylation and Transcription Factors Determines Binding of NRF1.” 
Nature 528 (7583): 575–79. 

Dominissini D., Moshitch-Moshkovitz S., Schwartz S., Salmon-Divon M., Ungar L., Osenberg 
S., Cesarkas K., et al. 2013. “Topology of the Human and Mouse m6A RNA Methylomes 
Revealed by m6A-Seq.” Nature 485 (7397): 201–6. 

Donnelly S.R., Hawkins T.E., & Moss S.E. 1999. “A Conserved Nuclear Element with a Role in 
Mammalian Gene Regulation.” Human Molecular Genetics 8 (9): 1723–28. 

Downing C., Flink S., Florez-McClure M.L., Johnson T.E., Tabakoff B., & Kechris K.J. 2012. 
“Gene Expression Changes in C57BL/6J and DBA/2J Mice Following Prenatal Alcohol 
Exposure.” Alcoholism: Clinical and Experimental Research 36 (9): 1519–29. 

Downing C., Johnson T.E., Larson C., Leakey T.I., Siegfried R.N., Rafferty T.M., & Cooney 
C.A. 2011. “Subtle Decreases in DNA Methylation and Gene Expression at the Mouse Igf2 
Locus Following Prenatal Alcohol Exposure: Effects of a Methyl-Supplemented Diet.” 



 

 

191 

Alcohol 45 (1): 65–71. 
Doyle L.R., & Mattson S.N. 2015. “Neurobehavioral Disorder Associated with Prenatal Alcohol 

Exposure (ND-PAE): Review of Evidence and Guidelines for Assessment.” Current 
Developmental Disorders Reports 2 (3): 175–86. 

Drew P.D., Johnson J.W., Douglas J.C., Phelan K.D., & Kane C.J. 2015. “Pioglitazone Blocks 
Ethanol Induction of Microglial Activation and Immune Responses in the Hippocampus, 
Cerebellum, and Cerebral Cortex in a Mouse Model of Fetal Alcohol Spectrum Disorders.” 
Alcoholism: Clinical & Experimental Research 39. 

Du P., Zhang X., Huang C.-C., Jafari N., Kibbe W.A., Hou L., & Lin S.M. 2010. “Comparison 
of Beta-Value and M-Value Methods for Quantifying Methylation Levels by Microarray 
Analysis.” BMC Bioinformatics 11 (1): 587. 

Dumas A., Lagarde S., Laflamme C., & Pouliot M. 2012. “Oncostatin M Decreases Interleukin-1 
β Secretion by Human Synovial Fibroblasts and Attenuates an Acute Inflammatory 
Reaction in Vivo.” Journal of Cellular and Molecular Medicine 16 (6): 1274–85. 

Earnest D.J., Chen W.J., & West J.R. 2001. “Developmental Alcohol and Circadian Clock 
Function.” Alcohol Research & Health!: The Journal of the National Institute on Alcohol 
Abuse and Alcoholism 25 (2): 136–40. 

Eckhardt F., Lewin J., Cortese R., Rakyan V.K., Attwood J., Burger M., Burton J., et al. 2006. 
“DNA Methylation Profiling of Human Chromosomes 6, 20 and 22.” Nature Genetics 38 
(12): 1378–85. 

Edgar R., Tan P.P., Portales-Casamar E., & Pavlidis P. 2014. “Meta-Analysis of Human 
Methylomes Reveals Stably Methylated Sequences Surrounding CpG Islands Associated 
with High Gene Expression.” Epigenetics & Chromatin 7 (1): 28. 

Eguchi Y. 1969. Physiology and Pathology of Adaptation Mechanisms. Edited by E. Bajusz. 
Pergamon Press. 

Enríquez P. 2016. “CRISPR-Mediated Epigenome Editing.” The Yale Journal of Biology and 
Medicine 89 (4). YJBM: 471–86. 

Ergang P., Vodička M., Soták M., Klusoňová P., Behuliak M., Řeháková L., Zach P., & Pácha J. 
2015. “Differential Impact of Stress on Hypothalamic-Pituitary-Adrenal Axis: Gene 
Expression Changes in Lewis and Fisher Rats.” Psychoneuroendocrinology 53: 49–59. 

Esposito E.A., Jones M.J., Doom J.R., MacIsaac J.L., Gunnar M.R., & Kobor M.S. 2016. 
“Differential DNA Methylation in Peripheral Blood Mononuclear Cells in Adolescents 
Exposed to Significant Early but Not Later Childhood Adversity.” Development and 
Psychopathology 28 (4pt2): 1385–99. 

Ewald S.J., & Frost W.W. 1987. “Effect of Prenatal Exposure to Ethanol on Development of the 
Thymus.” Thymus 9 (4): 211–15. 

Ewald S.J., & Walden S.M. 1988. “Flow Cytometric and Histological Analysis of Mouse 
Thymus in Fetal Alcohol Syndrome.” Journal of Leukocyte Biology 44 (5): 434–40. 

Falls J.G., Pulford D.J., Wylie A.A., & Jirtle R.L. 1999. “Genomic Imprinting: Implications for 
Human Disease.” The American Journal of Pathology 154 (3): 635–47. 

Famy C., Streissguth A.P., & Unis A.S. 1998. “Mental Illness in Adults with Fetal Alcohol 
Syndrome or Fetal Alcohol Effects.” The American Journal of Psychiatry 155 (4): 552–54. 

Fan A.Z., Russell M., Naimi T., Li Y., Liao Y., Jiles R., & Mokdad A.H. 2008. “Patterns of 
Alcohol Consumption and the Metabolic Syndrome.” The Journal of Clinical 
Endocrinology & Metabolism 93 (10): 3833–38. 



 

 

192 

Faraone S. V, Bonvicini C., & Scassellati C. 2014. “Biomarkers in the Diagnosis of ADHD – 
Promising Directions.” Current Psychiatry Reports 16 (11): 497. 

Farré P., Jones M.J., Meaney M.J., Emberly E., Turecki G., & Kobor M.S. 2015. “Concordant 
and Discordant DNA Methylation Signatures of Aging in Human Blood and Brain.” 
Epigenetics & Chromatin 8 (1): 19. 

Farris S.P., Arasappan D., Hunicke-Smith S., Harris R.A., & Mayfield R.D. 2015. 
“Transcriptome Organization for Chronic Alcohol Abuse in Human Brain.” Molecular 
Psychiatry 20 (11): 1438–47. 

Feil R., & Fraga M.F. 2012. “Epigenetics and the Environment: Emerging Patterns and 
Implications.” Nature Reviews Genetics 13 (2): 97–109. 

Fox S.E., Levitt P., & Nelson III C.A. 2010. “How the Timing and Quality of Early Experiences 
Influence the Development of Brain Architecture.” Child Development 81 (1): 28–40. 

Fransquet P.D., Hutchinson D., Olsson C.A., Wilson J., Allsop S., Najman J., Elliott E., Mattick 
R.P., Saffery R., & Ryan J. 2016. “Perinatal Maternal Alcohol Consumption and 
Methylation of the Dopamine Receptor DRD4 in the Offspring: The Triple B Study.” 
Environmental Epigenetics 2 (4): dvw023-dvw023. 

Fraser H.B., Lam L.L., Neumann S.M., & Kobor M.S. 2012. “Population-Specificity of Human 
DNA Methylation.” Genome Biology 13 (2): R8. 

Gabriel K.I., Glavas M.M., Ellis L., & Weinberg J. 2005. “Postnatal Handling Does Not 
Normalize Hypothalamic Corticotropin-Releasing Factor mRNA Levels in Animals 
Prenatally Exposed to Ethanol.” Developmental Brain Research 157 (1): 74–82. 

Gabriel K.I., Yu C.L., Osborn J.A., & Weinberg J. 2017. “Prenatal Ethanol Exposure Alters 
Sensitivity to the Effects of Corticotropin-Releasing Factor (CRF) on Behavior in the 
Elevated plus-Maze.” Psychoneuroendocrinology 31 (9): 1046–56. 

Gamazon E.R., Badner J.A., Cheng L., Zhang C., Zhang D., Cox N.J., Gershon E.S., et al. 2013. 
“Enrichment of Cis-Regulatory Gene Expression SNPs and Methylation Quantitative Trait 
Loci among Bipolar Disorder Susceptibility Variants.” Molecular Psychiatry 18 (3): 340–
46. 

Gardiner-Garden M., & Frommer M. 1987. “CpG Islands in Vertebrate Genomes.” Journal of 
Molecular Biology 196 (2): 261–82. 

Garro A.J., McBeth D.L., Lima V., & Lieber C.S. 1991. “Ethanol Consumption Inhibits Fetal 
DNA Methylation in Mice: Implications for the Fetal Alcohol Syndrome.” Alcoholism: 
Clinical and Experimental Research 15 (3): 395–98. 

Gauthier T.W., Drews-Botsch C., Falek A., Coles C., & Brown L.A.S. 2005. “Maternal Alcohol 
Abuse and Neonatal Infection.” Alcoholism: Clinical and Experimental Research 29 (6): 
1035–43. 

Gauthier T.W., Manar M.H., & Brown L.A.S. 2004. “Is Maternal Alcohol Use a Risk Factor for 
Early-Onset Sepsis in Premature Newborns?” Alcohol 33 (2): 139–45. 

Gibbs J.R., Brug M.P. van der, Hernandez D.G., Traynor B.J., Nalls M.A., Lai S.-L.L., Arepalli 
S., et al. 2010. “Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene 
Expression in Human Brain.” PLoS Genetics 6 (5): 29. 

Giberson P.K., Kim C.K., Hutchison S., Yu W., Junker A., & Weinberg J. 1997. “The Effect of 
Cold Stress on Lymphocyte Proliferation in Fetal Ethanol-Exposed Rats.” Alcoholism: 
Clinical and Experimental Research 21 (8): 1440–47. 

Giberson P.K., & Weinberg J. 1995. “Effects of Prenatal Ethanol Exposure and Stress in 



 

 

193 

Adulthood on Lymphocyte Populations in Rats.” Alcoholism: Clinical and Experimental 
Research 19 (5): 1286–94. 

Glavas M.M., Ellis L., Yu W.K., & Weinberg J. 2007. “Effects of Prenatal Ethanol Exposure on 
Basal Limbic-Hypothalamic-Pituitary-Adrenal Regulation: Role of Corticosterone.” 
Alcoholism: Clinical and Experimental Research 31 (9): 1598–1610. 

Godfrey K.M., Lillycrop K.A., Burdge G.C., Gluckman P.D., & Hanson M.A. 2007. “Epigenetic 
Mechanisms and the Mismatch Concept of the Developmental Origins of Health and 
Disease.” Pediatric Research 61 (5R–10R). 

Godfrey K.M., & Robinson S. 1998. “Maternal Nutrition, Placental Growth and Fetal 
Programming.” Proceedings of the Nutrition Society 57 (1): 105–11. 

Goh P.K., Doyle L.R., Glass L., Jones K.L., Riley E.P., Coles C.D., Hoyme H.E., et al. 2016. “A 
Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure.” The Journal of 
Pediatrics 177 (October): 121–127.e1. 

Goines P.E., Croen L.A., Braunschweig D., Yoshida C.K., Grether J., Hansen R., Kharrazi M., 
Ashwood P., & Water J. Van de. 2011. “Increased Midgestational IFN-Γ, IL-4 and IL-5 in 
Women Bearing a Child with Autism: A Case-Control Study.” Molecular Autism 2 
(August): 13. 

Goldowitz D., Lussier A.A., Boyle J.K., Wong K., Lattimer S.L., Dubose C., Lu L., Kobor M.S., 
& Hamre K.M. 2014. “Molecular Pathways Underpinning Ethanol-Induced 
Neurodegeneration.” Frontiers in Genetics 5 (July): 203. 

Goril S., Zalai D., Scott L., & Shapiro C.M. 2016. “Sleep and Melatonin Secretion 
Abnormalities in Children and Adolescents with Fetal Alcohol Spectrum Disorders.” Sleep 
Medicine 23 (July): 59–64. 

Gottesfeld Z., & Abel E.L. 1991. “Maternal and Paternal Alcohol Use: Effects on the Immune 
System of the Offspring.” Life Sciences 48 (1): 1–8. 

Gottesfeld Z., Christie R., Felten D.L., & LeGrue S.J. 1990. “Prenatal Ethanol Exposure Alters 
Immune Capacity and Noradrenergic Synaptic Transmission in Lymphoid Organs of the 
Adult Mouse.” Neuroscience 35 (1): 185–94. 

Govorko D., Bekdash R.A., Zhang C., & Sarkar D.K. 2012. “Male Germline Transmits Fetal 
Alcohol Adverse Effect on Hypothalamic Proopiomelanocortin Gene across Generations.” 
Biological Psychiatry 72 (5): 378–88. 

Green M.L., Singh A. V., Zhang Y., Nemeth K.A., Sulik K.K., & Knudsen T.B. 2007. 
“Reprogramming of Genetic Networks during Initiation of the Fetal Alcohol Syndrome.” 
Developmental Dynamics 236 (2): 613–31. 

Guo J.U., Su Y., Shin J.H., Shin J., Li H., Xie B., Zhong C., et al. 2014. “Distribution, 
Recognition and Regulation of Non-CpG Methylation in the Adult Mammalian Brain.” 
Nature Neuroscience 17 (2): 215–22. 

Guo W., Crossey E.L., Zhang L., Zucca S., George O.L., Valenzuela C.F., & Zhao X. 2011. 
“Alcohol Exposure Decreases CREB Binding Protein Expression and Histone Acetylation 
in the Developing Cerebellum.” PLoS ONE 6 (5): e19351. 

Gutierrez-Arcelus M., Lappalainen T., Montgomery S.B., Buil A., Ongen H., Yurovsky A., 
Bryois J., et al. 2013. “Passive and Active DNA Methylation and the Interplay with Genetic 
Variation in Gene Regulation.” eLife 2 (2): e00523. 

Gutierrez H.L., Hund L., Shrestha S., Rayburn W.F., Leeman L., Savage D.D., & Bakhireva 
L.N. 2015. “Ethylglucuronide in Maternal Hair as a Biomarker of Prenatal Alcohol 



 

 

194 

Exposure.” Alcohol 49 (6): 617–23. 
Haddad J.J., Saadé N.E., & Safieh-Garabedian B. 2002. “Cytokines and Neuro-Immune-

Endocrine Interactions: A Role for the Hypothalamic-Pituitary-Adrenal Revolving Axis.” 
Journal of Neuroimmunology 133 (1–2): 1–19. 

Haley D.W., Handmaker N.S., & Lowe J. 2006. “Infant Stress Reactivity and Prenatal Alcohol 
Exposure.” Alcoholism: Clinical and Experimental Research 30 (12): 2055–64. 

Hannon E., Spiers H., Viana J., Pidsley R., Burrage J., Murphy T.M., Troakes C., et al. 2015. 
“Methylation QTLs in the Developing Brain and Their Enrichment in Schizophrenia Risk 
Loci.” Nature Neuroscience 19 (1): 48–54. 

Hanson M.A., & Gluckman P.D. 2008. “Developmental Origins of Health and Disease: New 
Insights.” Basic & Clinical Pharmacology & Toxicology 102 (2): 90–93. 

Hanson M.A., Godfrey K.M., Lillycrop K.A., Burdge G.C., & Gluckman P.D. 2011. 
“Developmental Plasticity and Developmental Origins of Non-Communicable Disease: 
Theoretical Considerations and Epigenetic Mechanisms.” Progress in Biophysics and 
Molecular Biology 106 (1): 272–80. 

Hanson M.A., Low F.M., & Gluckman P.D. 2011. “Epigenetic Epidemiology: The Rebirth of 
Soft Inheritance.” Annals of Nutrition and Metabolism 58 (SUPPL. 2): 8–15. 

Harbuz M.S., Chover-Gonzalez A.J., & Jessop D.S. 2003. “Hypothalamo-Pituitary-Adrenal Axis 
and Chronic Immune Activation.” Annals of the New York Academy of Sciences 992: 99–
106. 

Harbuz M.S., Rees R.G., & Lightman S.L. 1993. “HPA Axis Responses to Acute Stress and 
Adrenalectomy during Adjuvant-Induced Arthritis in the Rat.” The American Journal of 
Physiology 264 (1 Pt 2): R179–85. 

Hard M.L., Abdolell M., Robinson B.H., & Koren G. 2005. “Gene-Expression Analysis after 
Alcohol Exposure in the Developing Mouse.” Journal of Laboratory and Clinical Medicine 
145 (1): 47–54. 

Harper K.M., Tunc-Ozcan E., Graf E.N., & Redei E.E. 2014. “Intergenerational Effects of 
Prenatal Ethanol on Glucose Tolerance and Insulin Response.” Physiological Genomics 46 
(5). Bethesda, MD: American Physiological Society: 159–68. 

Harris A., & Seckl J. 2011. “Glucocorticoids, Prenatal Stress and the Programming of Disease.” 
Hormones and Behavior 59 (3): 279–89. 

Hawrylycz M.J., Lein E.S., Guillozet-Bongaarts A.L., Shen E.H., Ng L., Miller J. a., Lagemaat 
L.N. van de, et al. 2012. “An Anatomically Comprehensive Atlas of the Adult Human Brain 
Transcriptome.” Nature 489 (7416): 391–99. 

Haycock P.C. 2009. “Fetal Alcohol Spectrum Disorders: The Epigenetic Perspective.” Biology of 
Reproduction 81 (4): 607–17. 

Haycock P.C., & Ramsay M. 2009. “Exposure of Mouse Embryos to Ethanol during 
Preimplantation Development: Effect on DNA Methylation in the h19 Imprinting Control 
Region.” Biology of Reproduction 81 (4): 618–27. 

He J., & Crews F.T. 2008. “Increased MCP-1 and Microglia in Various Regions of the Human 
Alcoholic Brain.” Experimental Neurology 210 (2): 349–58. 

Heijmans B.T., Tobi E.W., Stein A.D., Putter H., Blauw G.J., Susser E.S., Slagboom P.E., & 
Lumey L.H. 2008. “Persistent Epigenetic Differences Associated with Prenatal Exposure to 
Famine in Humans.” Proceedings of the National Academy of Sciences of the United States 
of America 105 (44): 17046–49. 



 

 

195 

Hellemans K.G.C., Sliwowska J.H., Verma P., & Weinberg J. 2010. “Prenatal Alcohol 
Exposure: Fetal Programming and Later Life Vulnerability to Stress, Depression and 
Anxiety Disorders.” Neuroscience and Biobehavioral Reviews 34 (6): 791–807. 

Hellemans K.G.C., Verma P., Yoon E., Yu W., & Weinberg J. 2008. “Prenatal Alcohol Exposure 
Increases Vulnerability to Stress and Anxiety-like Disorders in Adulthood.” Annals of the 
New York Academy of Sciences 1144: 154–75. 

Hellemans K.G.C., Verma P., Yoon E., Yu W.K., Young A.H., & Weinberg J. 2010. “Prenatal 
Alcohol Exposure and Chronic Mild Stress Differentially Alter Depressive- and Anxiety-
Like Behaviors in Male and Female Offspring.” Alcoholism: Clinical and Experimental 
Research 34 (4): 633–45. 

Henikoff S., & Greally J.M. 2016. “Epigenetics, Cellular Memory and Gene Regulation.” 
Current Biology 26 (14): R644–48. 

Herman J.P., & Cullinan W.E. 1997. “Neurocircuitry of Stress: Central Control of the 
Hypothalamo-Pituitary-Adrenocortical Axis.” Trends in Neurosciences 20 (2): 78–84. 

Heyn H., Moran S., Hernando-Herraez I., Sayols S., Gomez A., Sandoval J., Monk D., et al. 
2013. “DNA Methylation Contributes to Natural Human Variation.” Genome Research 23 
(9): 1363–72. 

Hicks S.D., Middleton F.A., & Miller M.W. 2010. “Ethanol-Induced Methylation of Cell Cycle 
Genes in Neural Stem Cells.” Journal of Neurochemistry 114 (6): 1767–80. 

Hilakivi L. 1986. “Effects of Prenatal Alcohol Exposure on Neonatal Sleep-Wake Behaviour and 
Adult Alcohol Consumption in Rats.” Acta Pharmacologica et Toxicologica 59 (1): 36–42. 

Hillemacher T., Frieling H., Hartl T., Wilhelm J., Kornhuber J., & Bleich S. 2009. “Promoter 
Specific Methylation of the Dopamine Transporter Gene Is Altered in Alcohol Dependence 
and Associated with Craving.” Journal of Psychiatric Research 43 (4): 388–92. 

Hirayama T., & Yagi T. 2017. “Regulation of Clustered Protocadherin Genes in Individual 
Neurons.” Seminars in Cell & Developmental Biology 69 (September): 122–30. 

Hofmann C., Glavas M., Yu W., & Weinberg J. 1999. “Glucocorticoid Fast Feedback Is Not 
Altered in Rats Prenatally Exposed to Ethanol.” Alcoholism: Clinical and Experimental 
Research 23 (5): 891–900. 

Horvath S., Zhang Y., Langfelder P., Kahn R.S., Boks M.P., Eijk K. van, Berg L.H. van den, & 
Ophoff R.A. 2012. “Aging Effects on DNA Methylation Modules in Human Brain and 
Blood Tissue.” Genome Biology 13 (10): R97. 

Howard J. 2013. “The Cytokine Hypothesis: A Neurodevelopmental Explanation for the 
Emergence of Schizophrenia Later in Life.” Advances in Bioscience and Biotechnology 4 
(8): 81–88. 

Hoyme H.E., Kalberg W.O., Elliott A.J., Blankenship J., Buckley D., Marais A.-S., Manning 
M.A., et al. 2016. “Updated Clinical Guidelines for Diagnosing Fetal Alcohol Spectrum 
Disorders.” Pediatrics 138 (2). 

Hu Z.-L., Bao J., & Reecy J. 2008. “CateGOrizer: A Web-Based Program to Batch Analyze 
Gene Ontology Classification Categories.” Online Journal of Bioinformatics 9: 108–12. 

Hwang J., Rajendrasozhan S., Yao H., Chung S., Sundar I.K., Huyck H.L., Pryhuber G.S., 
Kinnula V.L., & Rahman I. 2011. “FOXO3 Deficiency Leads to Increased Susceptibility to 
Cigarette Smoke-Induced Inflammation, Airspace Enlargement, and Chronic Obstructive 
Pulmonary Disease.” Journal of Immunology (Baltimore, Md.!: 1950) 187 (2): 987–98. 

Ikonomidou C., Bittigau P., Ishimaru M.J., Wozniak D.F., Koch C., Genz K., Price M.T., et al. 



 

 

196 

2000. “Ethanol-Induced Apoptotic Neurodegeneration and Fetal Alcohol Syndrome.” 
Science 287 (5455): 1056–60. 

Illingworth R.S., & Bird A.P. 2009. “CpG Islands--’a Rough Guide’.” Federation of European 
Biochemical Societies Letters 583 (11): 1713–20. 

International HapMap 3 Consortium, Altshuler D.M., Gibbs R.A., Peltonen L., Altshuler D.M., 
Gibbs R.A., Peltonen L., et al. 2010. “Integrating Common and Rare Genetic Variation in 
Diverse Human Populations.” Nature 467 (7311): 52–58. 

Ipsiroglu O.S., McKellin W.H., Carey N., & Loock C. 2013. “‘They Silently Live in Terror…’ 
Why Sleep Problems and Night-Time Related Quality-of-Life Are Missed in Children with 
a Fetal Alcohol Spectrum Disorder.” Social Science & Medicine 79: 76–83. 

Irizarry R.A., Ladd-Acosta C., Carvalho B., Wu H., Brandenburg S.A., Jeddeloh J.A., Wen B., & 
Feinberg A.P. 2008. “Comprehensive High-Throughput Arrays for Relative Methylation 
(CHARM).” Genome Research 18 (5): 780–90. 

Irizarry R.A., Ladd-Acosta C., Wen B., Wu Z., Montano C., Onyango P., Cui H., et al. 2009a. 
“The Human Colon Cancer Methylome Shows Similar Hypo- and Hypermethylation at 
Conserved Tissue-Specific CpG Island Shores.” Nature Genetics 41 (2): 178–86. 

Irizarry R.A., Ladd-Acosta C., Wen B., Wu Z., Montano C., Onyango P., Cui H., et al. 2009b. 
“Genome-Wide Methylation Analysis of Human Colon Cancer Reveals Similar Hypo- and 
Hypermethylation at Conserved Tissue-Specific CpG Island Shores.” Nature Genetics 41 
(2): 178–86. 

Ito S., D’Alessio A.C., Taranova O. V, Hong K., Sowers L.C., & Zhang Y. 2010. “Role of Tet 
Proteins in 5mC to 5hmC Conversion, ES-Cell Self-Renewal and Inner Cell Mass 
Specification.” Nature 466 (7310). Howard Hughes Medical Institute.: 1129–33. 

Iwamoto K., Kakiuchi C., Bundo M., Ikeda K., & Kato T. 2004. “Molecular Characterization of 
Bipolar Disorder by Comparing Gene Expression Profiles of Postmortem Brains of Major 
Mental Disorders.” Molecular Psychiatry 9 (4): 406–16. 

Jacobson L., & Sapolsky R. 1991. “The Role of the Hippocampus in Feedback Regulation of the 
Hypothalamic-Pituitary-Adrenocortical Axis.” Endocrine Reviews 12 (2): 118–34. 

Jacobson S.W., Bihun J.T., & Chiodo L.M. 1999. “Effects of Prenatal Alcohol and Cocaine 
Exposure on Infant Cortisol Levels.” Development and Psychopathology 11 (2): 195–208. 

Jacobson S.W., Jacobson J.L., Stanton M.E., Meintjes E.M., & Molteno C.D. 2011. 
“Biobehavioral Markers of Adverse Effect in Fetal Alcohol Spectrum Disorders.” 
Neuropsychology Review 21 (2): 148–66. 

Jaffe A.E., Gao Y., Deep-Soboslay A., Tao R., Hyde T.M., Weinberger D.R., & Kleinman J.E. 
2015. “Mapping DNA Methylation across Development, Genotype and Schizophrenia in 
the Human Frontal Cortex.” Nature Neuroscience 19 (1): 40–47. 

Jankord R., & Herman J.P. 2008. “Limbic Regulation of Hypothalamo-Pituitary-Adrenocortical 
Function during Acute and Chronic Stress.” Annals of the New York Academy of Sciences 
1148: 64–73. 

Ji H., Wang Y., Jiang D., Liu G., Xu X., Dai D., Zhou X., et al. 2016. “Elevated DRD4 Promoter 
Methylation Increases the Risk of Alzheimer’s Disease in Males.” Molecular Medicine 
Reports 14 (3): 2732–38. 

Jin L., Yoshida T., Ho R., Owens G.K., & Somlyo A. V. 2009. “The Actin-Associated Protein 
Palladin Is Required for Development of Normal Contractile Properties of Smooth Muscle 
Cells Derived from Embryoid Bodies.” The Journal of Biological Chemistry 284 (4): 2121–



 

 

197 

30. 
Johnson S., Knight R., Marmer D.J., & Steele R.W. 1981. “Immune Deficiency in Fetal Alcohol 

Syndrome.” Pediatric Research 15 (6): 908–11. 
Jones K.L., & Smith D.W. 1973. “Recognition of the Fetal Alcohol Syndrome in Early Infancy.” 

Lancet 302 (7836): 999–1001. 
Jones K.L., Smith D.W., Ulleland C.N., & Streissguth P. 1973. “Pattern of Malformation in 

Offspring of Chronic Alcoholic Mothers.” Lancet 1 (7815): 1267–71. 
Jones M.J., Farré P., McEwen L.M., Macisaac J.L., Watt K., Neumann S.M., Emberly E., 

Cynader M.S., Virji-Babul N., & Kobor M.S. 2013. “Distinct DNA Methylation Patterns of 
Cognitive Impairment and Trisomy 21 in Down Syndrome.” BMC Medical Genomics 6: 58. 

Jones M.J., Fejes A.P., & Kobor M.S. 2013. “DNA Methylation, Genotype and Gene 
Expression: Who Is Driving and Who Is along for the Ride?” Genome Biology 14 (7): 126. 

Jones M.J., Goodman S.J., & Kobor M.S. 2015. “DNA Methylation and Healthy Human Aging.” 
Aging Cell 14 (6): 924–32. 

Jones P.A. 2012. “Functions of DNA Methylation: Islands, Start Sites, Gene Bodies and 
beyond.” Nature Reviews Genetics 13 (7): 484–92. 

Jones P.A., & Baylin S.B. 2007. “The Epigenomics of Cancer.” Cell 128 (4): 683–92. 
Jones P.A., & Takai D. 2001. “The Role of DNA Methylation in Mammalian Epigenetics.” 

Science 293 (5532): 1068–70. 
Jones T.B., Bailey B. a, & Sokol R.J. 2013. “Alcohol Use in Pregnancy: Insights in Screening 

and Intervention for the Clinician.” Clinical Obstetrics and Gynecology 56 (1): 114–23. 
Joubert B.R., Håberg S.E., Nilsen R.M., Wang X., Vollset S.E., Murphy S.K., Huang Z., et al. 

2012. “450K Epigenome-Wide Scan Identifies Differential DNA Methylation in Newborns 
Related to Maternal Smoking during Pregnancy.” Environmental Health Perspectives 120 
(10): 1425–31. 

Kaminen-Ahola N., Ahola A., Maga M., Mallitt K.A., Fahey P., Cox T.C., Whitelaw E., & 
Chong S. 2010. “Maternal Ethanol Consumption Alters the Epigenotype and the Phenotype 
of Offspring in a Mouse Model.” PLoS Genetics 6 (1). 

Kaminsky Z., Tochigi M., Jia P., Pal M., Mill J., Kwan A., Ioshikhes I., et al. 2012. “A Multi-
Tissue Analysis Identifies HLA Complex Group 9 Gene Methylation Differences in Bipolar 
Disorder.” Molecular Psychiatry 17 (7): 728–40. 

Kawasawa Y.I., Mohammad S., Son A.I., Morizono H., Basha A., Salzberg A.C., Torii M., & 
Hashimoto-Torii K. 2017. “Genome-Wide Profiling of Differentially Spliced mRNAs in 
Human Fetal Cortical Tissue Exposed to Alcohol.” Alcohol 62: 1–9. 

Kelleher E., & Corvin A. 2015. “Overlapping Etiology of Neurodevelopmental Disorders.” In 
The Genetics of Neurodevelopmental Disorders, 29–48. John Wiley & Sons, Inc. 

Khalid O., Kim J.J., Kim H.S., Hoang M., Tu T.G., Elie O., Lee C., et al. 2014. “Gene 
Expression Signatures Affected by Alcohol-Induced DNA Methylomic Deregulation in 
Human Embryonic Stem Cells.” Stem Cell Research 12 (3): 791–806. 

Kim S.H., Shin S.Y., Lee K.Y., Joo E.J., Song J.Y., Ahn Y.M., Lee Y.H., & Kim Y.S. 2012. 
“The Genetic Association of DUSP6 with Bipolar Disorder and Its Effect on ERK 
Activity.” Progress in Neuro-Psychopharmacology and Biological Psychiatry 37 (1): 41–
49. 

Kinde B., Gabel H.W., Gilbert C.S., Griffith E.C., & Greenberg M.E. 2015. “Reading the Unique 
DNA Methylation Landscape of the Brain: Non-CpG Methylation, Hydroxymethylation, 



 

 

198 

and MeCP2.” Proceedings of the National Academy of Sciences 112 (22): 6800–6806. 
Kleiber M.L., Laufer B.I., Stringer R.L., & Singh S.M. 2014. “Third Trimester-Equivalent 

Ethanol Exposure Is Characterized by an Acute Cellular Stress Response and an 
Ontogenetic Disruption of Genes Critical for Synaptic Establishment and Function in 
Mice.” Developmental Neuroscience 36 (6): 499–519. 

Kleiber M.L., Laufer B.I., Wright E., Diehl E.J., & Singh S.M. 2012. “Long-Term Alterations to 
the Brain Transcriptome in a Maternal Voluntary Consumption Model of Fetal Alcohol 
Spectrum Disorders.” Brain Research 1458 (June): 18–33. 

Kleiber M.L., Mantha K., Stringer R.L., & Singh S.M. 2013. “Neurodevelopmental Alcohol 
Exposure Elicits Long-Term Changes to Gene Expression That Alter Distinct Molecular 
Pathways Dependent on Timing of Exposure.” Journal of Neurodevelopmental Disorders 5 
(1): 6. 

Kobor M.S., & Weinberg J. 2011. “Focus on: Epigenetics and Fetal Alcohol Spectrum 
Disorders.” Alcohol Research & Health!: The Journal of the National Institute on Alcohol 
Abuse and Alcoholism 34 (1): 29–37. 

Kordi-Tamandani D.M., Sahranavard R., & Torkamanzehi A. 2013. “Analysis of Association 
between Dopamine Receptor Genes’ Methylation and Their Expression Profile with the 
Risk of Schizophrenia.” Psychiatric Genetics 23 (5): 183–87. 

Koziol M.J., Bradshaw C.R., Allen G.E., Costa A.S.H., Frezza C., & Gurdon J.B. 2015. 
“Identification of Methylated Deoxyadenosines in Vertebrates Reveals Diversity in DNA 
Modifications.” Nature Structural & Molecular Biology 23 (1). Nature Publishing Group: 
24–30. 

Kriaucionis S., & Heintz N. 2009. “The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present 
in Purkinje Neurons and the Brain.” Science 324 (5929): 929–30. 

Krishnamoorthy M., Gerwe B.A., Scharer C.D., Sahasranaman V., Eilertson C.D., Nash R.J., 
Usta S.N., et al. 2013. “Ethanol Alters Proliferation and Differentiation of Normal and 
Chromosomally Abnormal Human Embryonic Stem Cell-Derived Neurospheres.” Birth 
Defects Research Part B - Developmental and Reproductive Toxicology 98 (3): 283–95. 

Kwak H.-S., Han J.-Y., Choi J.-S., Ahn H.-K., Kwak D.-W., Lee Y.-K., Koh S.-Y., Jeong G.-U., 
Velázquez-Armenta E.Y., & Nava-Ocampo A.A. 2014. “Dose-Response and Time-
Response Analysis of Total Fatty Acid Ethyl Esters in Meconium as a Biomarker of 
Prenatal Alcohol Exposure.” Prenatal Diagnosis 34 (9): 831–38. 

Kwak H.-S., Han J.-Y., Choi J.-S., Ahn H.-K., Ryu H.-M., Chung H.-J., Cho D.-H., Shin C.-Y., 
Velazquez-Armenta E.Y., & Nava-Ocampo A.A. 2014. “Characterization of 
Phosphatidylethanol Blood Concentrations for Screening Alcohol Consumption in Early 
Pregnancy.” Clinical Toxicology 52 (1): 25–31. 

Ladd-Acosta C., Hansen K.D., Briem E., Fallin M.D., Kaufmann W.E., & Feinberg A.P. 2014. 
“Common DNA Methylation Alterations in Multiple Brain Regions in Autism.” Molecular 
Psychiatry 19: 862–71. 

Lam L.L., Emberly E., Fraser H.B., Neumann S.M., Chen E., Miller G.E., & Kobor M.S. 2012. 
“Factors Underlying Variable DNA Methylation in a Human Community Cohort.” 
Proceedings of the National Academy of Sciences 109 (Supplement_2): 17253–60. 

Lan N., Chiu M.P.Y., Ellis L., & Weinberg J. 2017. “Prenatal Alcohol Exposure and Prenatal 
Stress Differentially Alter Glucocorticoid Signaling in the Placenta and Fetal Brain.” 
Neuroscience 342 (February): 167–79. 



 

 

199 

Lan N., Yamashita F., Halpert A.G., Sliwowska J.H., Viau V., & Weinberg J. 2009. “Effects of 
Prenatal Ethanol Exposure on Hypothalamic-Pituitary-Adrenal Function across the Estrous 
Cycle.” Alcoholism: Clinical and Experimental Research 33 (6): 1075–88. 

Lan N., Yamashita F., Halpert  a G., Ellis L., Yu W.K., Viau V., & Weinberg J. 2006. “Prenatal 
Ethanol Exposure Alters the Effects of Gonadectomy on Hypothalamic-Pituitary-Adrenal 
Activity in Male Rats.” Journal of Neuroendocrinology 18 (9): 672–84. 

Langevin S.M., Houseman E.A., Christensen B.C., Wiencke J.K., Nelson H.H., Karagas M.R., 
Marsit C.J., & Kelsey K.T. 2011. “The Influence of Aging, Environmental Exposures and 
Local Sequence Features on the Variation of DNA Methylation in Blood.” Epigenetics 6 
(7): 908–19. 

Laufer B.I., Diehl E.J., & Singh S.M. 2013. “Neurodevelopmental Epigenetic Etiologies: 
Insights from Studies on Mouse Models of Fetal Alcohol Spectrum Disorders.” 
Epigenomics 5 (5): 465–68. 

Laufer B.I., Kapalanga J., Castellani C.A., Diehl E.J., Yan L., & Singh S.M. 2015. “Associative 
DNA Methylation Changes in Children with Prenatal Alcohol Exposure.” Epigenomics 7 
(August): 1–16. 

Laufer B.I., Mantha K., Kleiber M.L., Diehl E.J., Addison S.M.F., & Singh S.M. 2013. “Long-
Lasting Alterations to DNA Methylation and ncRNAs Could Underlie the Effects of Fetal 
Alcohol Exposure in Mice.” Disease Models & Mechanisms 6 (4): 977–92. 

Laurent L., Wong E., Li G., Huynh T., Tsirigos A., Ong C.T., Low H.M., et al. 2010. “Dynamic 
Changes in the Human Methylome during Differentiation.” Genome Research 20 (3): 320–
31. 

Lee C., Mayfield R.D., & Harris R.A. 2014. “Altered Gamma-Aminobutyric Acid Type B 
Receptor Subunit 1 Splicing In Alcoholics.” Biological Psychiatry 75 (10): 765–73. 

Lee H.K., Braynen W., Keshav K., & Pavlidis P. 2005. “ErmineJ: Tool for Functional Analysis 
of Gene Expression Data Sets.” BMC Bioinformatics 6 (1): 269. 

Lee H.K., Hsu A.K., Sajdak J., Qin J., & Pavlidis P. 2004. “Coexpression Analysis of Human 
Genes across Many Microarray Data Sets.” Genome Research 14 (6): 1085–94. 

Lee K. 2012. “Gender-Specific Relationships between Alcohol Drinking Patterns and Metabolic 
Syndrome: The Korea National Health and Nutrition Examination Survey 2008.” Public 
Health Nutrition 15 (10): 1917–24. 

Lee S., Imaki T., Vale W., & Rivier C. 1990. “Effect of Prenatal Exposure to Ethanol on the 
Activity of the Hypothalamic-Pituitary-Adrenal Axis of the Offspring: Importance of the 
Time of Exposure to Ethanol and Possible Modulating Mechanisms.” Molecular and 
Cellular Neuroscience 1 (2): 168–77. 

Lee S., & Rivier C. 1996. “Gender Differences in the Effect of Prenatal Alcohol Exposure on the 
Hypothalamic-Pituitary-Adrenal Axis Response to Immune Signals.” 
Psychoneuroendocrinology 21 (2): 145–55. 

Lee S., Schmidt D., Tilders F., & Rivier C. 2000. “Increased Activity of the Hypothalamic-
Pituitary-Adrenal Axis of Rats Exposed to Alcohol in Utero: Role of Altered Pituitary and 
Hypothalamic Function.” Molecular and Cellular Neuroscience 16 (4): 515–28. 

Leek J.T., Johnson W.E., Parker H.S., Jaffe A.E., & Storey J.D. 2012. “The Sva Package for 
Removing Batch Effects and Other Unwanted Variation in High-Throughput Experiments.” 
Bioinformatics 28 (6): 882–83. 

Lemoine P., Harousseau H., Borteyru J., & Menuet J. 1968. “Les Enfants Des Parents 



 

 

200 

Alcoholiques: Anomalies Observées a Propos de 127 Cas.” Ouest Médical 8: 476–82. 
Lemoine P., Harousseau H., Borteyru J.P., & Menuet J.C. 2003. “Children of Alcoholic Parents--

Observed Anomalies: Discussion of 127 Cases.” Therapeutic Drug Monitoring 25 (2): 132–
36. 

Li H., & Durbin R. 2009. “Fast and Accurate Short Read Alignment with Burrows-Wheeler 
Transform.” Bioinformatics 25 (14): 1754–60. 

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., & 
Durbin R. 2009. “The Sequence Alignment/Map Format and SAMtools.” Bioinformatics 25 
(16): 2078–79. 

Li Z., Xiang Y., Chen J., Li Q., Shen J., Liu Y., Li W., et al. 2015. “Loci with Genome-Wide 
Associations with Schizophrenia in the Han Chinese Population.” The British Journal of 
Psychiatry 207 (6): 490–94. 

Lindner M., Thümmler K., Arthur A., Brunner S., Elliott C., McElroy D., Mohan H., et al. 2015. 
“Fibroblast Growth Factor Signalling in Multiple Sclerosis: Inhibition of Myelination and 
Induction of pro-Inflammatory Environment by FGF9.” Brain 138 (7): 1875–93. 

Lister R., Mukamel E.A., Nery J.R., Urich M., Puddifoot C.A., Johnson N.D., Lucero J., et al. 
2013. “Global Epigenomic Reconfiguration during Mammalian Brain Development.” 
Science 341 (6146): 1237905. 

Lister R., Pelizzola M., Dowen R.H., Hawkins R.D., Hon G., Tonti-Filippini J., Nery J.R., et al. 
2009. “Human DNA Methylomes at Base Resolution Show Widespread Epigenomic 
Differences.” Nature 462 (7271): 315–22. 

Lister R., Pelizzola M., Kida Y.S., Hawkins R.D., Nery J.R., Hon G., Antosiewicz-Bourget J., et 
al. 2012. “Hotspots of Aberrant Epigenomic Reprogramming in Human Induced Pluripotent 
Stem Cells.” Nature 470 (7336): 68–73. 

Liu X., Wu Z., Hayashi Y., & Nakanishi H. 2012. “Age-Dependent Neuroinflammatory 
Responses and Deficits in Long-Term Potentiation in the Hippocampus during Systemic 
Inflammation.” Neuroscience 216 (August): 133–42. 

Liu Y., Aryee M.J., Padyukov L., Fallin M.D., Hesselberg E., Runarsson A., Reinius L., et al. 
2013. “Epigenome-Wide Association Data Implicate DNA Methylation as an Intermediary 
of Genetic Risk in Rheumatoid Arthritis.” Nature Biotechnology 31 (2): 142–47. 

Liu Y., Balaraman Y., Wang G., Nephew K.P., & Zhou F.C. 2009. “Alcohol Exposure Alters 
DNA Methylation Profiles in Mouse Embryos at Early Neurulation.” Epigenetics 4 (7): 
500–511. 

Liyanage V.R.B., Zachariah R.M., Davie J.R., & Rastegar M. 2015. “Ethanol Deregulates 
Mecp2/MeCP2 in Differentiating Neural Stem Cells via Interplay between 5-
Methylcytosine and 5-Hydroxymethylcytosine at the Mecp2 Regulatory Elements.” 
Experimental Neurology 265 (March): 102–17. 

Lowe R., Gemma C., Beyan H., Hawa M.I., Bazeos A., Leslie R.D., Montpetit A., Rakyan V.K., 
& Ramagopalan S. V. 2013. “Buccals Are Likely to Be a More Informative Surrogate 
Tissue than Blood for Epigenome-Wide Association Studies.” Epigenetics 8 (4): 445–54. 

Luo X., Kranzler H.R., Zuo L., Lappalainen J., Yang B., & Gelernter J. 2005. “ADH4 Gene 
Variation Is Associated with Alcohol Dependence and Drug Dependence in European 
Americans: Results from HWD Tests and Case-Control Association Studies.” 
Neuropsychopharmacology 31 (5): 1085–95. 

Lussier A.A., Stepien K.A., Neumann S.M., Pavlidis P., Kobor M.S., & Weinberg J. 2015. 



 

 

201 

“Prenatal Alcohol Exposure Alters Steady-State and Activated Gene Expression in the 
Adult Rat Brain.” Alcoholism: Clinical and Experimental Research 39 (2): 251–61. 

Lussier A.A., Weinberg J., & Kobor M.S. 2017. “Epigenetics Studies of Fetal Alcohol Spectrum 
Disorder: Where Are We Now?” Epigenomics 9 (3). Future Medicine: 291–311. 

Lynch M.E., Kable J.A., & Coles C.D. 2015. “Prenatal Alcohol Exposure, Adaptive Function, 
and Entry into Adult Roles in a Prospective Study of Young Adults.” Neurotoxicology and 
Teratology 51 (August): 52–60. 

MacKay R.K., Colson N.J., Dodd P.R., & Lewohl J.M. 2011. “Differential Expression of 14-3-3 
Isoforms in Human Alcoholic Brain.” Alcoholism: Clinical and Experimental Research 35 
(6): 1041–49. 

Maier S.E., Cramer J.A., West J.R., & Sohrabji F. 1999. “Alcohol Exposure during the First Two 
Trimesters Equivalent Alters Granule Cell Number and Neurotrophin Expression in the 
Developing Rat Olfactory Bulb.” Journal of Neurobiology 41 (3): 414–23. 

Marjonen H., Sierra A., Nyman A., Rogojin V., Gröhn O., Linden A.M., Hautaniemi S., & 
Kaminen-Ahola N. 2015. “Early Maternal Alcohol Consumption Alters Hippocampal DNA 
Methylation, Gene Expression and Volume in a Mouse Model.” PLoS ONE 10 (5). 

Mathew D.E., Larsen K., Janeczek P., & Lewohl J.M. 2016. “Expression of 14-3-3 Transcript 
Isoforms in Response to Ethanol Exposure and Their Regulation by miRNAs.” Molecular 
and Cellular Neuroscience 75 (September): 44–49. 

Matthews S.G. 2002. “Early Programming of the Hypothalamo-Pituitary-Adrenal Axis.” Trends 
in Endocrinology and Metabolism 13 (9): 373–80. 

Mattson S.N., Crocker N., & Nguyen T.T. 2011. “Fetal Alcohol Spectrum Disorders: 
Neuropsychological and Behavioral Features.” Neuropsychology Review 21 (2): 81–101. 

Mattson S.N., Roesch S.C., Glass L., Deweese B.N., Coles C.D., Kable J.A., May P.A., et al. 
2013. “Further Development of a Neurobehavioral Profile of Fetal Alcohol Spectrum 
Disorders.” Alcoholism: Clinical and Experimental Research 37 (3): 517–28. 

Maunakea A.K., Chepelev I., Cui K., & Zhao K. 2013. “Intragenic DNA Methylation Modulates 
Alternative Splicing by Recruiting MeCP2 to Promote Exon Recognition.” Cell Research 
23 (11): 1256–69. 

Maunakea A.K., Nagarajan R.P., Bilenky M., Ballinger T.J., D’Souza C., Fouse S.D., Johnson 
B.E., et al. 2010. “Conserved Role of Intragenic DNA Methylation in Regulating 
Alternative Promoters.” Nature 466 (7303): 253–57. 

May P.A., Baete A., Russo J., Elliott A.J., Blankenship J., Kalberg W.O., Buckley D., et al. 
2014. “Prevalence and Characteristics of Fetal Alcohol Spectrum Disorders.” Pediatrics 
134 (5): 855–66. 

May P.A., Fiorentino D., Coriale G., Kalberg W.O., Hoyme H.E., Aragón A.S., Buckley D., et 
al. 2011. “Prevalence of Children with Severe Fetal Alcohol Spectrum Disorders in 
Communities Near Rome, Italy: New Estimated Rates Are Higher than Previous 
Estimates.” International Journal of Environmental Research and Public Health 8 (6): 
2331–51. 

May P.A., & Gossage J.P. 2001. “Estimating the Prevalence of Fetal Alcohol Syndrome. A 
Summary.” Alcohol Research & Health!: The Journal of the National Institute on Alcohol 
Abuse and Alcoholism 25 (3): 159–67. 

May P.A., Gossage J.P., Kalberg W.O., Robinson L.K., Buckley D., Manning M., & Hoyme 
H.E. 2009. “Prevalence and Epidemiologic Characteristics of FASD from Various Research 



 

 

202 

Methods with an Emphasis on Recent in-School Studies.” Developmental Disabilities 
Research Reviews 15 (3): 176–92. 

May P.A., Gossage J.P., White-Country M., Goodhart K., Decoteau S., Trujillo P.M., Kalberg 
W.O., Viljoen D.L., & Hoyme H.E. 2004. “Alcohol Consumption and Other Maternal Risk 
Factors for Fetal Alcohol Syndrome among Three Distinct Samples of Women Before, 
During, and after Pregnancy: The Risk Is Relative.” American Journal of Medical Genetics 
Part C: Seminars in Medical Genetics 127C (1): 10–20. 

May P.A., Keaster C., Bozeman R., Goodover J., Blankenship J., Kalberg W.O., Buckley D., et 
al. 2015. “Prevalence and Characteristics of Fetal Alcohol Syndrome and Partial Fetal 
Alcohol Syndrome in a Rocky Mountain Region City.” Drug & Alcohol Dependence 155: 
118–27. 

McCormick C.M., & Mathews I.Z. 2010. “Adolescent Development, Hypothalamic-Pituitary-
Adrenal Function, and Programming of Adult Learning and Memory.” Progress in Neuro-
Psychopharmacology and Biological Psychiatry 34 (5): 756–65. 

McEwen B., & Stellar E. 1993. “Stress and the Individual. Mechanisms Leading to Disease.” 
Archives of Internal Medicine 153 (18): 2093–2101. 

McGill J., Meyerholz D.K., Edsen-Moore M., Young B., Coleman R.A., Schlueter A.J., 
Waldschmidt T.J., Cook R.T., & Legge K.L. 2009. “Fetal Exposure to Ethanol Has Long-
Term Effects on the Severity of Influenza Virus Infections.” Journal of Immunology 182 
(12): 7803–8. 

McLachlan K., Rasmussen C., Oberlander T.F., Loock C., Pei J., Andrew G., Reynolds J., & 
Weinberg J. 2016. “Dysregulation of the Cortisol Diurnal Rhythm Following Prenatal 
Alcohol Exposure and Early Life Adversity.” Alcohol 53 (June): 9–18. 

McQuire C., Paranjothy S., Hurt L., Mann M., Farewell D., & Kemp A. 2016. “Objective 
Measures of Prenatal Alcohol Exposure: A Systematic Review.” Pediatrics 138 (3). 

Meaney M.J. 2010. “Epigenetics and the Biological Definition of Gene X Environment 
Interactions.” Child Development 81 (1): 41–79. 

Mesa D.A., Kable J.A., Coles C.D., Jones K.L., Yevtushok L., Kulikovsky Y., Wertelecki W., 
Coleman T.P., Chambers C.D., & CIFASD  the. 2017. “The Use of Cardiac Orienting 
Responses as an Early and Scalable Biomarker of Alcohol-Related Neurodevelopmental 
Impairment.” Alcoholism: Clinical and Experimental Research 41 (1): 128–38. 

Meyer K.D., & Jaffrey S.R. 2016. “Expanding the Diversity of DNA Base Modifications with 
N6-Methyldeoxyadenosine.” Genome Biology 17 (5). 

Meyer K.D., Saletore Y., Zumbo P., Elemento O., Mason C.E., & Jaffrey S.R. 2012. 
“Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3’ UTRs and near 
Stop Codons.” Cell 149 (7): 1635–46. 

Moen E.L., Zhang X., Mu W., Delaney S.M., Wing C., McQuade J., Myers J., Godley L.A., 
Dolan M.E., & Zhang W. 2013. “Genome-Wide Variation of Cytosine Modifications 
Between European and African Populations and the Implications for Complex Traits.” 
Genetics 194 (4): 987–96. 

Moncada-Pazos A., Obaya A.J., Llamazares M., Heljasvaara R., Suárez M.F., Colado E., Noël 
A., Cal S., & López-Otín C. 2012. “ADAMTS-12 Metalloprotease Is Necessary for Normal 
Inflammatory Response.” The Journal of Biological Chemistry 287 (47): 39554–63. 

Moore E.M., & Riley E.P. 2015. “What Happens When Children with Fetal Alcohol Spectrum 
Disorders Become Adults?” Current Developmental Disorders Reports 2 (3): 219–27. 



 

 

203 

Moscatello K.M., Biber K.L., Jennings S.R., Chervenak R., & Wolcott R.M. 1999. “Effects of in 
Utero Alcohol Exposure on B Cell Development in Neonatal Spleen and Bone Marrow.” 
Cellular Immunology 191 (2): 124–30. 

Mukhopadhyay P., Rezzoug F., Kaikaus J., Greene R.M., & Pisano M.M. 2013. “Alcohol 
Modulates Expression of DNA Methyltranferases and Methyl CpG-/CpG Domain-Binding 
Proteins in Murine Embryonic Fibroblasts.” Reproductive Toxicology 37: 40–48. 

Murawski N., Moore E., Thomas J., & Riley E. 2015. “Advances in Diagnosis and Treatment of 
Fetal Alcohol Spectrum Disorders From Animal Models to Human Studies.” Alcohol 
Research: Current Reviews 37 (1): 97–108. 

Nagre N.N., Subbanna S., Shivakumar M., Psychoyos D., & Basavarajappa B.S. 2015. “CB1-
Receptor Knockout Neonatal Mice Are Protected against Ethanol-Induced Impairments of 
DNMT1, DNMT3A, and DNA Methylation.” Journal of Neurochemistry 132 (4): 429–42. 

Nakashima A., Kawamoto T., Honda K.K., Ueshima T., Noshiro M., Iwata T., Fujimoto K., et 
al. 2008. “DEC1 Modulates the Circadian Phase of Clock Gene Expression.” Molecular and 
Cellular Biology 28 (12): 4080–92. 

National Research Council. 2011. Guide for the Care and Use of Laboratory Animals. Eighth. 
Washington, DC: The National Academies Press. 

Ngai Y.F., Sulistyoningrum D.C., O’Neill R., Innis S.M., Weinberg J., & Devlin A.M. 2015. 
“Prenatal Alcohol Exposure Alters Methyl Metabolism and Programs Serotonin Transporter 
and Glucocorticoid Receptor Expression in Brain.” American Journal of Physiology. 
Regulatory, Integrative and Comparative Physiology 309 (5): R613-22. 

Nikolayeva O., & Robinson M.D. 2014. “edgeR for Differential RNA-Seq and ChIP-Seq 
Analysis: An Application to Stem Cell Biology.” Methods in Molecular Biology 1150: 45–
79. 

Nolan T., Hands R.E., & Bustin S. a. 2006. “Quantification of mRNA Using Real-Time RT-
PCR.” Nature Protocols 1 (3): 1559–82. 

Norman A.L., Crocker N., Mattson S.N., & Riley E.P. 2009. Neuroimaging and Fetal Alcohol 
Spectrum Disorders. Developmental Disabilities Research Reviews. Vol. 15. 

Norman D.C., Chang M.P., Wong C.M., Branch B.J., Castle S., & Taylor A.N. 1991. “Changes 
with Age in the Proliferative Response of Splenic T Cells from Rats Exposed to Ethanol in 
Utero.” Alcoholism: Clinical and Experimental Research 15 (3): 428–32. 

Okulicz-Kozaryn K., Borkowska M., & Brzózka K. 2017. “FASD Prevalence among 
Schoolchildren in Poland.” Journal of Applied Research in Intellectual Disabilities 30 (1): 
61–70. 

Oldehinkel A.J., & Bouma E.M.C. 2011. “Sensitivity to the Depressogenic Effect of Stress and 
HPA-Axis Reactivity in Adolescence: A Review of Gender Differences.” Neuroscience & 
Biobehavioral Reviews 35 (8): 1757–70. 

Ooi S.K.T., & Bestor T.H. 2008. “The Colorful History of Active DNA Demethylation.” Cell 
133 (7): 1145–48. 

Osborn J.A., Kim C.K., Yu W., Herbert L., & Weinberg J. 1996. “Fetal Ethanol Exposure Alters 
Pituitary-Adrenal Sensitivity to Dexamethasone Suppression.” Psychoneuroendocrinology 
21 (2): 127–43. 

Osborne T.F. 2001. “CREating a SCAP-Less Liver Keeps SREBPs Pinned in the ER Membrane 
and Prevents Increased Lipid Synthesis in Response to Low Cholesterol and High Insulin.” 
Genes & Development  15 (15): 1873–78. 



 

 

204 

Ostrea E.M., Hernandez J.D., Bielawski D.M., Kan J.M., Leonardo G.M., Abela M.B., Church 
M.W., et al. 2006. “Fatty Acid Ethyl Esters in Meconium: Are They Biomarkers of Fetal 
Alcohol Exposure and Effect?” Alcoholism: Clinical and Experimental Research 30 (7): 
1152–59. 

Otero N.K.H., Thomas J.D., Saski C.A., Xia X., & Kelly S.J. 2012. “Choline Supplementation 
and DNA Methylation in the Hippocampus and Prefrontal Cortex of Rats Exposed to 
Alcohol During Development.” Alcoholism: Clinical and Experimental Research 36 (10): 
1701–9. 

Ouko L.A., Shantikumar K., Knezovich J., Haycock P., Schnugh D.J., & Ramsay M. 2009. 
“Effect of Alcohol Consumption on CpG Methylation in the Differentially Methylated 
Regions of H19 and IG-DMR in Male Gametes: Implications for Fetal Alcohol Spectrum 
Disorders.” Alcoholism: Clinical and Experimental Research 33 (9): 1615–27. 

Ousman S.S., & Kubes P. 2012. “Immune Surveillance in the Central Nervous System.” Nature 
Neuroscience 15 (8): 1096–1101. 

Ozer E., Sarioglu S., & Gure A. 2000. “Effects of Prenatal Ethanol Exposure on Neuronal 
Migration, Neuronogenesis and Brain Myelination in the Mice Brain.” Clinical 
Neuropathology 19 (1): 21–25. 

Öztürk N.C., Resendiz M., Öztürk H., & Zhou F.C. 2017. “DNA Methylation Program in 
Normal and Alcohol-Induced Thinning Cortex.” Alcohol 60 (May): 135–47. 

Pagnamenta A.T., Bacchelli E., Jonge M. V de, Mirza G., Scerri T.S., Minopoli F., Chiocchetti 
A., et al. 2010. “Characterization of a Family with Rare Deletions in CNTNAP5 and 
DOCK4 Suggests Novel Risk Loci for Autism and Dyslexia.” Biological Psychiatry 68 (4): 
320–28. 

Paley B., & O’Connor M.J. 2011. “Behavioral Interventions for Children and Adolescents With 
Fetal Alcohol Spectrum Disorders.” Alcohol Research & Health 34 (1): 64–75. 

Panczakiewicz A.L., Glass L., Coles C.D., Kable J.A., Sowell E.R., Wozniak J.R., Jones K.L., 
Riley E.P., & Mattson S.N. 2016. “Neurobehavioral Deficits Consistent Across Age and 
Sex in Youth with Prenatal Alcohol Exposure.” Alcoholism: Clinical and Experimental 
Research 40 (9): 1971–81. 

Pei J., Denys K., Hughes J., & Rasmussen C. 2011. “Mental Health Issues in Fetal Alcohol 
Spectrum Disorder.” Journal of Mental Health 20 (5): 473–83. 

Pennington J.S., Shuvaeva T.I., & Pennington S.N. 2002. “Maternal Dietary Ethanol 
Consumption Is Associated With Hypertriglyceridemia in Adult Rat Offspring.” 
Alcoholism: Clinical and Experimental Research 26 (6): 848–55. 

Perkins A., Lehmann C., Lawrence R.C., & Kelly S.J. 2013. “Alcohol Exposure during 
Development: Impact on the Epigenome.” International Journal of Developmental 
Neuroscience 31 (6): 391–97. 

Peters T.J., & Buckley M. n.d. “DMRcate: Illumina 450 K Methylation Array Apatial Analysis 
Methods. R Package Version 1.2.0.” 

Peters T.J., Buckley M.J., Statham A.L., Pidsley R., Samaras K., Lord R. V, Clark S.J., & 
Molloy P.L. 2015. “De Novo Identification of Differentially Methylated Regions in the 
Human Genome.” Epigenetics & Chromatin 8 (1): 1–31. 

Petković G., & Barišić I. 2013. “Prevalence of Fetal Alcohol Syndrome and Maternal 
Characteristics in a Sample of Schoolchildren from a Rural Province of Croatia.” 
International Journal of Environmental Research and Public Health 10 (4): 1547–61. 



 

 

205 

Pfeifer G.P., Kadam S., & Jin S.-G. 2013. “5-Hydroxymethylcytosine and Its Potential Roles in 
Development and Cancer.” Epigenetics & Chromatin 6 (1): 10. 

Philibert R.A., Plume J.M., Gibbons F.X., Brody G.H., & Beach S.R.H. 2012. “The Impact of 
Recent Alcohol Use on Genome Wide DNA Methylation Signatures.” Frontiers in Genetics 
3: 54. 

Pollard I. 2007. “Neuropharmacology of Drugs and Alcohol in Mother and Fetus.” Seminars in 
Fetal and Neonatal Medicine 12 (2): 106–13. 

Popova S., Lange S., Probst C., Gmel G., & Rehm J. 2017. “Estimation of National, Regional, 
and Global Prevalence of Alcohol Use during Pregnancy and Fetal Alcohol Syndrome: A 
Systematic Review and Meta-Analysis.” Lancet Global Health 5 (3): e290–99. 

Popova S., Lange S., Shield K., Mihic A., Chudley A.E., Mukherjee R.A.S., Bekmuradov D., & 
Rehm J. 2016. “Comorbidity of Fetal Alcohol Spectrum Disorder: A Systematic Review 
and Meta-Analysis.” Lancet 6736 (15): 1–10. 

Portales-Casamar E., Ch Ng C., Lui F., St-Georges N., Zoubarev A., Lai A.Y., Lee M., et al. 
2013. “Neurocarta: Aggregating and Sharing Disease-Gene Relations for the 
Neurosciences.” BMC Genomics 14 (1): 129. 

Portales-Casamar E., Lussier A.A., Jones M.J., MacIsaac J.L., Edgar R.D., Mah S.M., Barhdadi 
A., et al. 2016. “DNA Methylation Signature of Human Fetal Alcohol Spectrum Disorder.” 
Epigenetics & Chromatin 9 (25): 81–101. 

Price M.E., Cotton A.M., Lam L.L., Farré P., Emberly E., Brown C.J., Robinson W.P., & Kobor 
M.S. 2013. “Additional Annotation Enhances Potential for Biologically-Relevant Analysis 
of the Illumina Infinium HumanMethylation450 BeadChip Array.” Epigenetics & 
Chromatin 6 (1): 4. 

Ptáček R., Kuželová H., & Stefano G.B. 2011. “Dopamine D4 Receptor Gene DRD4 and Its 
Association with Psychiatric Disorders.” Medical Science Monitor!: International Medical 
Journal of Experimental and Clinical Research 17 (9): RA215-RA220. 

Quinlan A.R., & Hall I.M. 2010. “BEDTools: A Flexible Suite of Utilities for Comparing 
Genomic Features.” Bioinformatics 26 (6): 841–42. 

Quraishi B.M., Zhang H., Everson T.M., Ray M., Lockett G.A., Holloway J.W., Tetali S.R., et 
al. 2015. “Identifying CpG Sites Associated with Eczema via Random Forest Screening of 
Epigenome-Scale DNA Methylation.” Clinical Epigenetics 7 (1): 68. 

Raab R.M., Bullen J., Kelleher J., Mantzoros C., & Stephanopoulos G. 2005. “Regulation of 
Mouse Hepatic Genes in Response to Diet Induced Obesity, Insulin Resistance and Fasting 
Induced Weight Reduction.” Nutrition & Metabolism 2 (1): 15. 

Rakyan V.K., Down T.A., Balding D.J., & Beck S. 2011. “Epigenome-Wide Association Studies 
for Common Human Diseases.” Nature Reviews Genetics 12 (8): 529–41. 

Ramsahoye B.H., Biniszkiewicz D., Lyko F., Clark V., Bird A.P., & Jaenisch R. 2000. “Non-
CpG Methylation Is Prevalent in Embryonic Stem Cells and May Be Mediated by DNA 
Methyltransferase 3a.” Proceedings of the National Academy of Sciences 97 (10): 5237–42. 

Ramsay D.S., Bendersky M.I., & Lewis M. 1996. “Effect of Prenatal Alcohol and Cigarette 
Exposure on Two- and Six-Month-Old Infants’ Adrenocortical Reactivity to Stress.” 
Journal of Pediatric Psychology 21 (6): 833–40. 

Ramsay M. 2010. “Genetic and Epigenetic Insights into Fetal Alcohol Spectrum Disorders.” 
Genome Medicine 2 (4). BioMed Central Ltd: 27. 

Raychaudhuri S., Sandor C., Stahl E.A., Freudenberg J., Lee H.-S., Jia X., Alfredsson L., et al. 



 

 

206 

2012. “Five Amino Acids in Three HLA Proteins Explain Most of the Association between 
MHC and Seropositive Rheumatoid Arthritis.” Nature Genetics 44 (3): 291–96. 

Redei E., Clark W.R., & McGivem R.F. 1989. “Alcohol Exposure in Utero Results in 
Diminished T-Cell Function and Alterations in Brain Corticotropin-Releasing Factor and 
ACTH Content.” Alcoholism: Clinical and Experimental Research 13 (3): 439–43. 

Redei E., Halasz I., Li L.F., Prystowsky M.B., & Aird F. 1993. “Maternal Adrenalectomy Alters 
the Immune and Endocrine Functions of Fetal Alcohol-Exposed Male Offspring.” 
Endocrinology 133 (2): 452–60. 

Reese S.E., Zhao S., Wu M.C., Joubert B.R., Parr C.L., Håberg S.E., Ueland P.M., et al. 2017. 
“DNA Methylation Score as a Biomarker in Newborns for Sustained Maternal Smoking 
during Pregnancy.” Environmental Health Perspectives 125 (4): 760–66. 

Resendiz M., Chen Y., Ozturk N.C., & Zhou F.C. 2013. “Epigenetic Medicine and Fetal Alcohol 
Spectrum Disorders.” Epigenomics 5 (1): 73–86. 

Reul J.M.H.M., & Kloet E.R. De. 1985. “Two Receptor Systems for Corticosterone in Rat Brain: 
Microdistribution and Differential Occupation.” Endocrinology 117 (6): 2505–11. 

Reynolds J.N., Weinberg J., Clarren S., Beaulieu C., Rasmussen C., Kobor M., Dube M.-P., & 
Goldowitz D. 2011. “Fetal Alcohol Spectrum Disorders: Gene-Environment Interactions, 
Predictive Biomarkers, and the Relationship Between Structural Alterations in the Brain and 
Functional Outcomes.” Seminars in Pediatric Neurology 18 (1): 49–55. 

Rice G.I., Toro Duany Y. del, Jenkinson E.M., Forte G.M.A., Anderson B.H., Ariaudo G., 
Bader-Meunier B., et al. 2014. “Gain-of-Function Mutations in IFIH1 Cause a Spectrum of 
Human Disease Phenotypes Associated with Upregulated Type I Interferon Signaling.” 
Nature Genetics 46 (5): 503–9. 

Riley E.P., Infante M.A., & Warren K.R. 2011. “Fetal Alcohol Spectrum Disorders: An 
Overview.” Neuropsychology Review 21 (2): 73–80. 

Robinson M.D., McCarthy D.J., & Smyth G.K. 2010. “edgeR: A Bioconductor Package for 
Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26 (1): 
139–40. 

Rogic S., Wong A., & Pavlidis P. 2016. “Meta-Analysis of Gene Expression Patterns in Animal 
Models of Prenatal Alcohol Exposure Suggests Role for Protein Synthesis Inhibition and 
Chromatin Remodeling.” Alcoholism: Clinical and Experimental Research 40 (4): 717–27. 

Roozen S., Peters G.-J.Y., Kok G., Townend D., Nijhuis J., & Curfs L. 2016. “Worldwide 
Prevalence of Fetal Alcohol Spectrum Disorders: A Systematic Literature Review Including 
Meta-Analysis.” Alcoholism: Clinical and Experimental Research 40 (1): 18–32. 

Ross-Innes C.S., Stark R., Teschendorff A.E., Holmes K.A., Ali H.R., Dunning M.J., Brown 
G.D., et al. 2012. “Differential Oestrogen Receptor Binding Is Associated with Clinical 
Outcome in Breast Cancer.” Nature 481 (7381): 389–93. 

Russell M., Martier S.S., Sokol R.J., Mudar P., Jacobson S., & Jacobson J. 1996. “Detecting 
Risk Drinking during Pregnancy: A Comparison of Four Screening Questionnaires.” 
American Journal of Public Health 86 (10): 1435–39. 

Sadakierska-Chudy A., Kostrzewa R.M., & Filip M. 2014. “A Comprehensive View of the 
Epigenetic Landscape Part I: DNA Methylation, Passive and Active DNA Demethylation 
Pathways and Histone Variants.” Neurotoxicity Research 27 (1): 84–97. 

Sampson P.D., Streissguth A.P., Bookstein F.L., Little R.E., Clarren S.K., Dehaene P., Hanson 
J.W., & Graham J.M. 1997. “Incidence of Fetal Alcohol Syndrome and Prevalence of 



 

 

207 

Alcohol-Related Neurodevelopmental Disorder.” Teratology 56 (5): 317–26. 
Sánchez-Mora C., Ribasés M., Casas M., Bayés M., Bosch R., Fernàndez-Castillo N., Brunso L., 

et al. 2011. “Exploring DRD4 and Its Interaction with SLC6A3 as Possible Risk Factors for 
Adult ADHD: A Meta-Analysis in Four European Populations.” American Journal of 
Medical Genetics. Part B, Neuropsychiatric Genetics 156B (5): 600–612. 

Santiago M., Antunes C., Guedes M., Sousa N., & Marques C.J. 2014. “TET Enzymes and DNA 
Hydroxymethylation in Neural Development and Function — How Critical Are They?” 
Genomics 104 (5): 334–40. 

Sarkola T., Eriksson P.C.J., Niemelä O., Sillanaukee P., & Halmesmäki E. 2000. “Mean Cell 
Volume and Gamma-Glutamyl Transferase Are Superior to Carbohydrate-Deficient 
Transferrin and Hemoglobin-Acetaldehyde Adducts in the Follow-up of Pregnant Women 
with Alcohol Abuse.” Acta Obstetricia et Gynecologica Scandinavica 79 (5): 359–66. 

Saxonov S., Berg P., & Brutlag D.L. 2006. “A Genome-Wide Analysis of CpG Dinucleotides in 
the Human Genome Distinguishes Two Distinct Classes of Promoters.” Proceedings of the 
National Academy of Sciences of the United States of America 103 (5): 1412–17. 

Schmittgen T.D., & Livak K.J. 2008. “Analyzing Real-Time PCR Data by the Comparative CT 
Method.” Nature Protocols 3 (6): 1101–8. 

Schott J.M., Crutch S.J., Carrasquillo M.M., Uphill J., Shakespeare T.J., Ryan N.S., Yong K.X., 
et al. 2016. “Genetic Risk Factors for the Posterior Cortical Atrophy Variant of Alzheimer’s 
Disease.” Alzheimer’s & Dementia 12 (8): 862–71. 

Schuebeler D. 2015. “Function and Information Content of DNA Methylation.” Nature 517 
(7534): 321–26. 

Sei H., Sakata-Haga H., Ohta K., Sawada K., Morita Y., & Fukui Y. 2003. “Prenatal Exposure to 
Alcohol Alters the Light Response in Postnatal Circadian Rhythm.” Brain Research 987 
(1): 131–34. 

Senturias Y., & Baldonado M. 2014. “Fetal Spectrum Disorders: An Overview of Ethical and 
Legal Issues for Healthcare Providers.” Current Problems in Pediatric and Adolescent 
Health Care 44 (4): 102–4. 

Shue E.H., Carson-Walter E.B., Liu Y., Winans B.N., Ali Z.S., Chen J., & Walter K.A. 2008. 
“Plasmalemmal Vesicle Associated Protein-1 (PV-1) Is a Marker of Blood-Brain Barrier 
Disruption in Rodent Models.” BMC Neuroscience 9 (1): 29. 

Shukla S., Kavak E., Gregory M., Imashimizu M., Shutinoski B., Kashlev M., Oberdoerffer P., 
Sandberg R., & Oberdoerffer S. 2011. “CTCF-Promoted RNA Polymerase II Pausing Links 
DNA Methylation to Splicing.” Nature 479 (7371): 74–79. 

Shulha H.P., Cheung I., Guo Y., Akbarian S., & Weng Z. 2013. “Coordinated Cell Type-Specific 
Epigenetic Remodeling in Prefrontal Cortex Begins before Birth and Continues into Early 
Adulthood.” PLoS Genetics 9 (4): e1003433. 

Sliwowska J.H., Lan N., Yamashita F., Halpert A.G., Viau V., & Weinberg J. 2008. “Effects of 
Prenatal Ethanol Exposure on Regulation of Basal Hypothalamic-Pituitary-Adrenal Activity 
and Hippocampal 5-HT1A Receptor mRNA Levels in Female Rats across the Estrous 
Cycle.” Psychoneuroendocrinology 33 (8): 1111–23. 

Smith A.C.M., Gropman A.L., Bailey-Wilson J.E., Goker-Alpan O., Elsea S.H., Blancato J., 
Lupski J.R., & Potocki L. 2002. “Hypercholesterolemia in Children with Smith-Magenis 
Syndrome: Del (17)(p11.2p11.2).” Genetics in Medicine 4 (3): 118–25. 

Smith A.K., Kilaru V., Klengel T., Mercer K.B., Bradley B., Conneely K.N., Ressler K.J., & 



 

 

208 

Binder E.B. 2015. “DNA Extracted from Saliva for Methylation Studies of Psychiatric 
Traits: Evidence Tissue Specificity and Relatedness to Brain.” American Journal of Medical 
Genetics, Part B: Neuropsychiatric Genetics 168 (1): 36–44. 

Smith Z.D., & Meissner A. 2013. “DNA Methylation: Roles in Mammalian Development.” 
Nature Reviews Genetics 14 (3): 204–20. 

Smoot M.E., Ono K., Ruscheinski J., Wang P.-L., & Ideker T. 2011. “Cytoscape 2.8: New 
Features for Data Integration and Network Visualization.” Bioinformatics 27 (3): 431–32. 

Smyth G.K. 2004. “Linear Models and Empirical Bayes Methods for Assessing Differential 
Expression in Microarray Experiments.” Statistical Applications in Genetics and Molecular 
Biology 3: Article3. 

Smyth G.K. 2005. “Limma: Linear Models for Microarray Data.” In Bioinformatics and 
Computational Biology Solutions Using R and Bioconductor, edited by Robert Gentleman, 
Vincent J. Carey, Wolfgang Huber, Rafael A. Irizarry, and Sandrine Dudoit, 397–420. 
Springer New York. 

Spanagel R., Rosenwasser A.M., Schumann G., & Sarkar D.K. 2005. “Alcohol Consumption and 
the Body’s Biological Clock.” Alcoholism: Clinical and Experimental Research 29 (8): 
1550–57. 

Spohr H.-L., & Steinhausen H.-C. 2008. “Fetal Alcohol Spectrum Disorders and Their Persisting 
Sequelae in Adult Life.” Deutsches Ärzteblatt International 105 (41): 693–98. 

Squire L., Bloom F.E., Spitzer N.C., Squire L.R., Berg D., Lac S. du, & Ghosh A. 2008. 
Fundamental Neuroscience. Fundamental Neuroscience Series. Elsevier Science. 

Stark R., & Brown G. 2011. “DiffBind: Differential Binding Analysis of ChIP-Seq Peak Data.” 
Stojnic R., & Diez D. 2013. “PWMEnrich: PWM Enrichment Analysis.” R Package Version 4. 
Stouder C., Somm E., & Paoloni-Giacobino A. 2011. “Prenatal Exposure to Ethanol: A Specific 

Effect on the H19 Gene in Sperm.” Reproductive Toxicology 31 (4): 507–12. 
Stratton K., Howe C., & Battaglia F. 1996. Fetal Alcohol Syndrome: Diagnosis, Epidemiology, 

Prevention and Treatment. Washington, DC: National Academy Press. 
Streissguth A.P., Bookstein F., Barr H., Sampson P., O’Malley K., & Young J. 2004. “Risk 

Factors for Adverse Life Outcomes in Fetal Alcohol Syndrome and Fetal Alcohol Effects.” 
Journal of Developmental and Behavioral Pediatrics 25 (4): 228–38. 

Streissguth A.P., & O’Malley K. 2000. “Neuropsychiatric Implications and Long-Term 
Consequences of Fetal Alcohol Spectrum Disorders.” Seminars in Clinical Neuropsychiatry 
5 (3): 177–90. 

Streissguth A P, Clarren S.K., & Jones K.L. 1985. “Natural History of the Fetal Alcohol 
Syndrome: A 10-Year Follow-up of Eleven Patients.” Lancet 2 (8446): 85–91. 

Subbanna S., Nagre N.N., Shivakumar M., Umapathy N.S., Psychoyos D., & Basavarajappa B.S. 
2014. “Ethanol Induced Acetylation of Histone at G9a exon1 and G9a-Mediated Histone 
H3 Dimethylation Leads to Neurodegeneration in Neonatal Mice.” Neuroscience 258: 422–
32. 

Subbanna S., Shivakumar M., Umapathy N.S., Saito M., Mohan P.S., Kumar A., Nixon R. a., 
Verin A.D., Psychoyos D., & Basavarajappa B.S. 2013. “G9a-Mediated Histone 
Methylation Regulates Ethanol-Induced Neurodegeneration in the Neonatal Mouse Brain.” 
Neurobiology of Disease 54: 475–85. 

Swanson J.M., Entringer S., Buss C., & Wadhwa P.D. 2009. “Developmental Origins of Health 
and Disease: Environmental Exposures.” Seminars in Reproductive Medicine 27 (5): 391–



 

 

209 

402. 
Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., Agarwal S., et al. 

2009. “Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA 
by MLL Partner TET1.” Science 324 (5929): 930–35. 

Taiwo O., Wilson G., Morris T., Seisenberger S., Reik W., Pearce D., Beck S., & Butcher L. 
2012. “Methylome Analysis Using MeDIP-Seq with Low DNA Concentrations.” Nature 
Protocols 7 (4): 617–36. 

Tate P.H., & Bird A.P. 1993. “Effects of DNA Methylation on DNA-Binding Proteins and Gene 
Expression.” Current Opinion in Genetics & Development 3 (2): 226–31. 

Teschendorff A.E., Marabita F., Lechner M., Bartlett T., Tegner J., Gomez-Cabrero D., & Beck 
S. 2012. “A Beta-Mixture Quantile Normalisation Method for Correcting Probe Design 
Bias in Illumina Infinium 450k DNA Methylation Data.” Bioinformatics 29 (2): 189–96. 

Thisse B., & Thisse C. 2005. “Functions and Regulations of Fibroblast Growth Factor Signaling 
during Embryonic Development.” Developmental Biology 287 (2): 390–402. 

Thomas J.D., Biane J.S., O’Bryan K.A., O’Neill T.M., & Dominguez H.D. 2007. “Choline 
Supplementation Following Third-Trimester-Equivalent Alcohol Exposure Attenuates 
Behavioral Alterations in Rats.” Behavioral Neuroscience 121 (1): 120–30. 

Thorisson G. a., Smith A. V., Krishnan L., & Stein L.D. 2005. “The International HapMap 
Project Web Site.” Genome Research 15 (11): 1592–93. 

Tognini P., Napoli D., & Pizzorusso T. 2015. “Dynamic DNA Methylation in the Brain: A New 
Epigenetic Mark for Experience-Dependent Plasticity.” Frontiers in Cellular Neuroscience 
9 (August): 611–71. 

Topper L.A., Baculis B.C., & Valenzuela C.F. 2015. “Exposure of Neonatal Rats to Alcohol Has 
Differential Effects on Neuroinflammation and Neuronal Survival in the Cerebellum and 
Hippocampus.” Journal of Neuroinflammation 12 (1): 160. 

Tseng P.-H., Cameron I.G.M., Pari G., Reynolds J.N., Munoz D.P., & Itti L. 2013. “High-
Throughput Classification of Clinical Populations from Natural Viewing Eye Movements.” 
Journal of Neurology 260 (1): 275–84. 

Uban K.A., Sliwowska J.H., Lieblich S., Ellis L.A., Yu W.K., Weinberg J., & Galea L.A.M. 
2010. “Prenatal Alcohol Exposure Reduces the Proportion of Newly Produced Neurons and 
Glia in the Dentate Gyrus of the Hippocampus in Female Rats.” Hormones and Behavior 58 
(5): 835–43. 

Ulahannan N., & Greally J.M. 2015. “Genome-Wide Assays That Identify and Quantify 
Modified Cytosines in Human Disease Studies.” Epigenetics & Chromatin 8 (January): 5. 

Ungerer M., Knezovich J., & Ramsay M. 2013. “In Utero Alcohol Exposure, Epigenetic 
Changes, and Their Consequences.” Alcohol Research: Current Reviews 35 (1): 37–46. 

Vallés S., Pitarch J., Renau-Piqueras J., & Guerri C. 1997. “Ethanol Exposure Affects Glial 
Fibrillary Acidic Protein Gene Expression and Transcription during Rat Brain 
Development.” Journal of Neurochemistry 69: 2484–93. 

Vandesompele J., Preter K. De, Pattyn F., Poppe B., Roy N. Van, Paepe A. De, & Speleman F. 
2002. “Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric 
Averaging of Multiple Internal Control Genes.” Genome Biology 3 (7): RESEARCH0034. 

van Otterdijk S.D., & Michels K.B. 2016. “Transgenerational Epigenetic Inheritance in 
Mammals: How Good Is the Evidence?” Federation of American Societies for Experimental 
Biology Journal 30: 1–9. 



 

 

210 

Veazey K.J., Carnahan M.N., Muller D., Miranda R.C., & Golding M.C. 2013. “Alcohol-
Induced Epigenetic Alterations to Developmentally Crucial Genes Regulating Neural 
Stemness and Differentiation.” Alcoholism: Clinical and Experimental Research 37 (7): 
1111–22. 

Veazey K.J., Parnell S.E., Miranda R.C., & Golding M.C. 2015. “Dose-Dependent Alcohol-
Induced Alterations in Chromatin Structure Persist beyond the Window of Exposure and 
Correlate with Fetal Alcohol Syndrome Birth Defects.” Epigenetics & Chromatin 8 (1): 39. 

Waddington C.H. 1968. “Towards a Theoretical Biology.” Nature 218 (5141): 525–27. 
Wagner J.R., Busche S., Ge B., Kwan T., Pastinen T., & Blanchette M. 2014. “The Relationship 

between DNA Methylation, Genetic and Expression Inter-Individual Variation in 
Untransformed Human Fibroblasts.” Genome Biology 15 (2): R37. 

Walton E., Hass J., Liu J., Roffman J.L., Bernardoni F., Roessner V., Kirsch M., Schackert G., 
Calhoun V., & Ehrlich S. 2016. “Correspondence of DNA Methylation Between Blood and 
Brain Tissue and Its Application to Schizophrenia Research.” Schizophrenia Bulletin 42 (2). 
US: 406–14. 

Wang T., Pan Q., Lin L., Szulwach K.E., Song C.X., He C., Wu H., et al. 2012. “Genome-Wide 
DNA Hydroxymethylation Changes Are Associated with Neurodevelopmental Genes in the 
Developing Human Cerebellum.” Human Molecular Genetics 21 (26): 5500–5510. 

Waschek J.A. 2013. “VIP and PACAP: Neuropeptide Modulators of CNS Inflammation, Injury, 
and Repair.” British Journal of Pharmacology 169 (3): 512–23. 

Weber M., Hellmann I., Stadler M.B., Ramos L., Pääbo S., Rebhan M., & Schübeler D. 2007. 
“Distribution, Silencing Potential and Evolutionary Impact of Promoter DNA Methylation 
in the Human Genome.” Nature Genetics 39 (4): 457–66. 

Weinberg J. 1993. “Neuroendocrine Effects of Prenatal Alcohol Exposure.” Annals of the New 
York Academy of Sciences 697: 86–96. 

Weinberg J., & Jerrells T.R. 1991. “Suppression of Immune Responsiveness: Sex Differences in 
Prenatal Ethanol Effects.” Alcoholism: Clinical and Experimental Research 15 (3): 525–31. 

Weinberg J., Sliwowska J.H., Lan N., & Hellemans K.G.C. 2008. “Prenatal Alcohol Exposure: 
Foetal Programming, the Hypothalamic-Pituitary-Adrenal Axis and Sex Differences in 
Outcome.” Journal of Neuroendocrinology 20 (4): 470–88. 

Welberg L.A.M., & Seckl J.R. 2001. “Prenatal Stress, Glucocorticoids and the Programming of 
the Brain.” Journal of Neuroendocrinology 13 (2): 113–28. 

Werts R.L., Calcar S.C. Van, Wargowski D.S., & Smith S.M. 2014. “Inappropriate Feeding 
Behaviors and Dietary Intakes in Children with Fetal Alcohol Spectrum Disorder or 
Probable Prenatal Alcohol Exposure.” Alcoholism: Clinical and Experimental Research 38 
(3): 871–78. 

Weyrauch D., Schwartz M., Hart B., Klug M.G., & Burd L. 2017. “Comorbid Mental Disorders 
in Fetal Alcohol Spectrum Disorders: A Systematic Review.” Journal of Developmental & 
Behavioral Pediatrics 38 (4): 283–91. 

Wheeler D.L., Church D.M., Edgar R., Federhen S., Helmberg W., Madden T.L., Pontius J.U., et 
al. 2004. “Database Resources of the National Center for Biotechnology Information: 
Update.” Nucleic Acids Research 32 (Database issue): D35–40. 

Whitacre C.C. 2001. “Sex Differences in Autoimmune Disease.” Nature Immunology 2 (9): 777–
80. 

Wolff G.L., Kodell R.L., Moore S.R., & Cooney C.A. 1998. “Maternal Epigenetics and Methyl 



 

 

211 

Supplements Affect Agouti Gene Expression in Avy/a Mice.” Federation of American 
Societies for Experimental Biology Journal 12 (11): 949–57. 

Wong M., & Munro S. 2014. “The Specificity of Vesicle Traffic to the Golgi Is Encoded in the 
Golgin Coiled-Coil Proteins.” Science 346 (6209): 1256898. 

Wu H., & Zhang Y. 2014. “Reversing DNA Methylation: Mechanisms, Genomics, and 
Biological Functions.” Cell 156 (1–2): 45–68. 

Xu W., Cohen-Woods S., Chen Q., Noor A., Knight J., Hosang G., Parikh S. V, et al. 2014. 
“Genome-Wide Association Study of Bipolar Disorder in Canadian and UK Populations 
Corroborates Disease Loci Including SYNE1 and CSMD1.” BMC Medical Genetics 15 
(January): 2. 

Yuen R.K.C., Neumann S.M.A., Fok A.K., Peñaherrera M.S., McFadden D.E., Robinson W.P., 
& Kobor M.S. 2011. “Extensive Epigenetic Reprogramming in Human Somatic Tissues 
between Fetus and Adult.” Epigenetics & Chromatin 4 (January): 7. 

Zeng H., Kaul S., & Simons S.S. 2000. “Genomic Organization of Human GMEB-1 and Rat 
GMEB-2: Structural Conservation of Two Multifunctional Proteins.” Nucleic Acids 
Research 28 (8): 1819–29. 

Zhang B., & Horvath S. 2005. “A General Framework for Weighted Gene Co-Expression 
Network Analysis.” Statistical Applications in Genetics and Molecular Biology 4: 
Article17. 

Zhang C.R., Ho M.-F., Vega M.C.S., Burne T.H.J., & Chong S. 2015. “Prenatal Ethanol 
Exposure Alters Adult Hippocampal VGLUT2 Expression with Concomitant Changes in 
Promoter DNA Methylation, H3K4 Trimethylation and miR-467b-5p Levels.” Epigenetics 
& Chromatin 8 (1): 40. 

Zhang D., Cheng L., Badner J.A., Chen C., Chen Q., Luo W., Craig D.W., Redman M., Gershon 
E.S., & Liu C. 2010. “Genetic Control of Individual Differences in Gene-Specific 
Methylation in Human Brain.” The American Journal of Human Genetics 86 (3): 411–19. 

Zhang F.F., Cardarelli R., Carroll J., Fulda K.G., Kaur M., Gonzalez K., Vishwanatha J.K., 
Santella R.M., & Morabia A. 2011. “Significant Differences in Global Genomic DNA 
Methylation by Gender and Race/ethnicity in Peripheral Blood.” Epigenetics 6 (5): 623–29. 

Zhang H., Herman A.I., Kranzler H.R., Anton R.F., Zhao H., Zheng W., & Gelernter J. 2013. 
“Array-Based Profiling of DNA Methylation Changes Associated with Alcohol 
Dependence.” Alcoholism: Clinical and Experimental Research 37 Suppl 1 (January): 
E108-115. 

Zhang R., Miao Q., Wang C., Zhao R., Li W., Haile C.N., Hao W., & Zhang X.Y. 2013. 
“Genome-Wide DNA Methylation Analysis in Alcohol Dependence.” Addiction Biology 18 
(2): 392–403. 

Zhang X., Lan N., Bach P., Nordstokke D., Yu W., Ellis L., Meadows G.G., & Weinberg J. 
2012. “Prenatal Alcohol Exposure Alters the Course and Severity of Adjuvant-Induced 
Arthritis in Female Rats.” Brain, Behavior, and Immunity 26 (3): 439–50. 

Zhang X., Sliwowska J.H., & Weinberg J. 2005. “Prenatal Alcohol Exposure and Fetal 
Programming: Effects on Neuroendocrine and Immune Function.” Experimental Biology 
and Medicine 230 (6): 376–88. 

Zhang Y., Liu T., Meyer C. a, Eeckhoute J., Johnson D.S., Bernstein B.E., Nusbaum C., et al. 
2008. “Model-Based Analysis of ChIP-Seq (MACS).” Genome Biology 9 (9): R137. 

Zhou F.C., Balaraman Y., Teng M., Liu Y., Singh R.P., & Nephew K.P. 2011. “Alcohol Alters 



 

 

212 

DNA Methylation Patterns and Inhibits Neural Stem Cell Differentiation.” Alcoholism: 
Clinical and Experimental Research 35 (4): 735–46. 

Zhou F.C., Chen Y., & Love A. 2011. “Cellular DNA Methylation Program during Neurulation 
and Its Alteration by Alcohol Exposure.” Birth Defects Research Part A - Clinical and 
Molecular Teratology 91 (8): 703–15. 

Zhou F.C., Zhao Q., Liu Y., Goodlett C.R., Liang T., McClintick J.N., Edenberg H.J., & Li L. 
2011. “Alteration of Gene Expression by Alcohol Exposure at Early Neurulation.” BMC 
Genomics 12: 124. 

Zhou W., Cao Q., Peng Y., Zhang Q.J., Castrillon D.H., DePinho R.A., & Liu Z.P. 2009. 
“FoxO4 Inhibits NF-κB and Protects Mice Against Colonic Injury and Inflammation.” 
Gastroenterology 137 (4): 1403–14. 

Ziller M.J., Gu H., Müller F., Donaghey J., Tsai L.T.-Y., Kohlbacher O., Jager P.L. De, et al. 
2013. “Charting a Dynamic DNA Methylation Landscape of the Human Genome.” Nature 
500 (7463): 477–81. 

Ziller M.J., Müller F., Liao J., Zhang Y., Gu H., Bock C., Boyle P., et al. 2011. “Genomic 
Distribution and Inter-Sample Variation of Non-CpG Methylation across Human Cell 
Types.” PLoS Genetics 7 (12): e1002389-15. 

Zimmerberg B., Ballard G.A., & Riley E.P. 1987. “The Development of Thermoregulation after 
Prenatal Exposure to Alcohol in Rats.” Psychopharmacology 91 (4): 479–84. 

Zoubarev A., Hamer K.M., Keshav K.D., McCarthy E.L., Santos J.R.C., Rossum T. Van, 
McDonald C., et al. 2012. “Gemma: A Resource for the Reuse, Sharing and Meta-Analysis 
of Expression Profiling Data.” Bioinformatics 28 (17): 2272–73. 

 
  



 

 

213 

Appendices 

Appendix A  Supplementary materials for chapter 2 

A.1 Supplementary figures 

 

Supplementary figure 2.1: Plot of p-value distributions for gene expression differences among 

prenatal treatment groups, within the steady-state conditions, in a) PFC at Day 16 post-saline 

injection, b) PFC at Day 39 post-saline injection, c) HPC at Day 16 post-saline injection, and d) 

HPC at Day 39 post-saline injection. The greatest effects of prenatal ethanol exposure on gene 
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expression p-values were exhibited at D16 in PFC, followed by D16 HPC, as exhibited by 

enrichment of p-values towards zero for the ethanol contrasts (E-C, E-PF). No change in p-

values was apparent in Day 39 PFC, and only a pair-fed effect was apparent in Day 39 HPC. 

 

 

Supplementary figure 2.2: Venn diagrams demonstrating the number of Biological Processes 

significant for each contrast in Day 16 animals under steady-state conditions, and overlap of 

processes between different contrasts for PFC and HPC at FDR <1% (a). FDR was increased to 

10% to identify Biological Processes that showed overlapping changes in both tissues, specific to 

prenatal alcohol exposure (b) and pair-feeding (c). FDR <10%. 
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Supplementary figure 2.3: Venn diagrams demonstrating the number of Biological Processes 

significantly altered in the response to Adjuvant within each prenatal treatment group, and the 

overlap of processes enriched between groups (a). Many Biological Processes showed changes 

specific to prenatal alcohol exposure, and several overlapped between tissues (b). Other 

processes were common to the PF and C response to adjuvant, and several overlapped between 

tissues (c). FDR <1%. 
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Supplementary figure 2.4: Fold changes in expression were not correlated between microarray 

and RT-qPCR results for PF vs C animals (r2=0.02528, p=0.5714).  
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Supplementary figure 2.5:  Overview of analyses and main findings for gene expression 

analysis. 
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A.2 Supplementary tables 

Supplementary table 2.1 Candidate genes involved in the etiology of FASD, catalogued in 
NeuroCarta 
 

Symbol Gene name Probe 
Abca1 ATP-binding cassette, subfamily A (ABC1), member 1 ILMN_1650701 
Abcg1 ATP-binding cassette, subfamily G (WHITE), member 1 ILMN_1354046 
Actb actin, beta ILMN_1355039 
Actb actin, beta ILMN_2038798 
Actb actin, beta ILMN_2038799 
Adcy8 adenylate cyclase 8 (brain) ILMN_1350196 
Akt1 v-akt murine thymoma viral oncogene homolog 1 ILMN_1353102 
Alpl alkaline phosphatase, liver/bone/kidney ILMN_1372113 
Apoe apolipoprotein E ILMN_1367529 
Atoh1 atonal homolog 1 (Drosophila) ILMN_1368168 
Bad BCL2-associated agonist of cell death ILMN_1369751 
Bcl2 B-cell CLL/lymphoma 2 ILMN_1366150 
Bcl2l1 Bcl2-like 1 ILMN_1355163 
Bcl2l1 Bcl2-like 1 ILMN_1365285 
Bdnf brain-derived neurotrophic factor ILMN_1360447 
Cacna1c calcium channel, voltage-dependent, L type, alpha 1C subunit ILMN_1370304 
Casp3 caspase 3 ILMN_1349218 
Cat catalase ILMN_1369530 
Ccnd1 cyclin D1 ILMN_1350372 
Ccnd2 cyclin D2 ILMN_1362471 
Chat choline O-acetyltransferase ILMN_1363883 
Creb1 cAMP responsive element binding protein 1 ILMN_1649829 
Creb1 cAMP responsive element binding protein 1 ILMN_1376791 
Cyba cytochrome b-245, alpha polypeptide ILMN_1366276 
Dlg4 discs, large homolog 4 (Drosophila) ILMN_1650748 
Duox1 dual oxidase 1 ILMN_1367874 
E2f1 E2F transcription factor 1 ILMN_1360877 
Egfr epidermal growth factor receptor ILMN_1362571 
Erbb2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, 

neuro/glioblastoma derived oncogene homolog (avian) 
ILMN_1350020 

Fgfr2 fibroblast growth factor receptor 2 ILMN_1371701 
Gad1 glutamate decarboxylase 1 ILMN_1351478 
Gfap glial fibrillary acidic protein ILMN_1376423 
Gpx1 glutathione peroxidase 1 ILMN_1372510 
Gpx3 glutathione peroxidase 3 ILMN_1365802 
Gria2 glutamate receptor, ionotropic, AMPA 2 ILMN_1356417 
Gria3 glutamate receptor, ionotrophic, AMPA 3 ILMN_1368538 
Gria4 glutamate receptor, ionotrophic, AMPA 4 ILMN_1371769 
Grin1 glutamate receptor, ionotropic, N-methyl D-aspartate 1 ILMN_1365529 
Grin2b glutamate receptor, ionotropic, N-methyl D-aspartate 2B ILMN_1366396 
Grm5 glutamate receptor, metabotropic 5 ILMN_1361607 
Gsk3b glycogen synthase kinase 3 beta ILMN_1349648 
Gsr glutathione reductase ILMN_1352580 
Gstm2 glutathione S-transferase mu 2 ILMN_1350896 
Gstm3 glutathione S-transferase mu 3 ILMN_1374835 
Hoxa1 homeo box A1 ILMN_1353666 
Hoxb4 homeo box B4 ILMN_1363620 
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Symbol Gene name Probe 
Hoxd4 homeo box D4 ILMN_1367426 
Hoxd4 homeo box D4 ILMN_1353520 
Igf1r insulin-like growth factor 1 receptor ILMN_1374575 
Igf2 insulin-like growth factor 2 ILMN_1359301 
Igf2r insulin-like growth factor 2 receptor ILMN_1349413 
Insr insulin receptor ILMN_1360127 
Irs1 insulin receptor substrate 1 ILMN_1360680 
L1cam L1 cell adhesion molecule ILMN_1376861 
Mapk1 mitogen activated protein kinase 1 ILMN_1349290 
Mapt microtubule-associated protein tau ILMN_1354816 
Ncf2 neutrophil cytosolic factor 2 ILMN_1365484 
Ndufv1 NADH dehydrogenase (ubiquinone) flavoprotein 1 ILMN_1365082 
Neurod1 neurogenic differentiation 1 ILMN_1363838 
Ngfr nerve growth factor receptor (TNFR superfamily, member 16) ILMN_1365512 
Notch1 notch 1 ILMN_1359640 
Nox3 NADPH oxidase 3 ILMN_1376975 
Noxa1 NADPH oxidase activator 1 ILMN_1365297 
Noxo1 NADPH oxidase organizer 1 ILMN_1368197 
Ntf3 neurotrophin 3 ILMN_1371735 
Ntf4 neurotrophin 4 ILMN_1363013 
Ntrk1 neurotrophic tyrosine kinase, receptor, type 1 ILMN_1370831 
Ntrk2 neurotrophic tyrosine kinase, receptor, type 2 ILMN_1366426 
Ntrk3 neurotrophic tyrosine kinase, receptor, type 3 ILMN_1362434 
Plat plasminogen activator, tissue ILMN_1358127 
Rac1 ras-related C3 botulinum toxin substrate 1 ILMN_1355225 
Rara retinoic acid receptor, alpha ILMN_1368986 
Rbp1 retinol binding protein 1, cellular ILMN_1375320 
S100b S100 calcium binding protein B ILMN_1373043 
Sdha succinate dehydrogenase complex, subunit A, flavoprotein (Fp) ILMN_1357678 
Serpine1 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 

1), member 1 
ILMN_1376417 

Serpine1 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 
1), member 1 

ILMN_2040557 

Sod1 superoxide dismutase 1, soluble ILMN_1353544 
Sod2 superoxide dismutase 2, mitochondrial ILMN_1367263 
Sod3 superoxide dismutase 3, extracellular ILMN_1361581 
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Supplementary table 2.2A Correlation of expression profiles among all samples and among 
replicates in PFC microarray dataset 
 

  Quantiles for Pearson correlations among samples 
  0% 25% 50% 75% 100% n 
All PFC samples 0.897 0.966 0.971 0.976 1.000 96 
Hybridization replicate group 1 0.957 0.971 0.979 0.982 1.000 9 
Amplification replicate 0.980 0.980 0.990 1.000 1.000 2 

 
 
Supplementary table 2.2B Correlation of expression profiles among all samples and among 
replicates in HPC microarray dataset 
 

  Quantiles for Pearson correlations among samples 
  0% 25% 50% 75% 100% n 
All HPC samples 0.925 0.958 0.965 0.971 1.000 96 
Hybridization replicate group 1 0.964 0.970 0.974 0.984 1.000 4 
Hybridization replicate group 2 0.971 0.972 0.986 0.990 1.000 4 
Hybridization replicate group 3 0.957 0.963 0.980 0.989 1.000 4 
Hybridization replicate group 4 0.961 0.968 0.971 0.982 1.000 4 
Mean of replicates 0.963 0.968 0.978 0.986 1.000 
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Supplementary table 2.3 Sequences of primers used for RT-qPCR. 

Gene Type Accession Forward primer (5'-3') Reverse primer (5'-3') 

Actb Ref NM_031144.2 CTGCCCTGGCTCCTAG
CACCAT 

CTCAGTAACAGTCCGCCTA
GAAGCA 

Hprt1 Ref NM_012583.2 TGTGGCCAGTAAAGAA
CTAGCAGACGTT 

GTGCAAATCAAAAGGGACG
CAGCAACA 

Pgk1 Ref NM_053291.3 AGTCCTTCCTGGGGTG
GATGCTCT 

AGGGTTCCTGGTGCTGCGT
CTT 

Sdha Ref NM_130428.1 TGCCAGGGAAGATTAC
AAGGTGCGG 

AGAGGGTGTGCTTCCTCCA
GTGTTC 

Ubc Ref NM_017314.1 CACCAAGAAGGTCAAA
CAGGA 

GCAAGAACTTTATTCAAAG
TGCAA 

Acsl3 Target NM_057107.1 ACTCCCGAAACTGGTC
TGGTGACTGATG 

ATCCGCTCAATGTCTGCCTG
GTAGTGT 

Ap1s2 Target NM_001127531.2 TGTCACTGCCTAGTCG
TCGGA 

GCCAACCAATGCCACTTTG
CTTCAG 

Atp6ap1 Target NM_031785.1 GGGTTAAGAATGAGCG
GTACACTGGGG 

ACTTCTGGCTTCTTGACAGG
CAATCCTT 

Dusp6 Target NM_053883.2 GTGGGATGCGACAGGT
TGTGAGGA 

ACACCACGAACATCATGGA
GCAAGTGAA 

H2afv Target NM_001106019.1 CTGATCGGAAAGAAGG
GGCAGCAGA 

CACACACAGTGAGGACAGC
AGGTCA 

Med28 Target NM_001107217.1 TGCAGCACAAGAAGCC
AGCCGA 

GGTCTGCTTCAGAGGTGCA
GGTATGTT 

Ndfip1 Target NM_001013059.1 ACTGGCTCTGGTGGGT
GTTCTTGGT 

AGAACTCTGGTCCTGGGGA
GATTTGAGA 

Pex11g Target NM_001105902.1 AACGAGACTCAGATTC
CCAGAGCGG 

ATTTGAGCCCCTTTCCCACC
CCA 

Ppp1r14a Target NM_130403.1 GACGAGCTGCTGGAAT
TGGACAGTGA 

GGACGAAGTCCTCTGTGGG
ATTCAGG 

Rnasek Target NM_001137561.2 TTGGGACTGTTACCCT
GGCGAGAC 

TCCAGGGGTTGGGCAGCAG
TTT 

Tcf4 Target NM_053369.1 AGAGAAGGTGTCCTCA
GAGCCTCCC 

GGTGGCAACTTGGACCCTT
TCACATC 

Cnih2 Target NM_001025132.1 GGGCCAGGCAAAGCTC
TAAACAGGG 

GGCCCAAATTCCCCTGAAA
CGGACA 

Loc688637 Target XM_001067706.2 AGAGGCCATGCGGAGC
TTTTTGAGT 

AAATCACGCTTTCTGTCCAG
CATCACCC 

MCG125002 Target NM_001034154.1 TCTAGCCCAAAGGAAC
CCAAAGCGG 

GGCTGAACGTCTTCTGGTG
GAGGA 

Rgs3 Target NM_019340.1 TGGCACATGAACGGTA
ATAGGAGAGCC 

TGGGACCAGCAAATGCCCT
GAAACT 
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Supplementary table 2.4A: Microarray expression results for common reference genes in 
PFC of Day 16 Saline animals.  
 

Gene Symbol Probe_ID  
(ILMN_) 

Fold change Average  
log2(exp) F p-value q-value E:C PF:C E:PF 

Polr2a_mappe
d 1372495 0.0043 -0.0666 0.0709 7.71 0.24 0.79 0.94 
Tbp 1349379 0.0576 -0.0107 0.0683 8.04 0.29 0.75 0.93 
Ubc 1350494 0.0879 -0.0244 0.1123 13.83 0.33 0.72 0.93 
Pgk1 1369074 0.0624 0.1493 -0.0869 12.30 0.52 0.60 0.89 
Sdha 1357678 0.1627 -0.0170 0.1797 10.53 0.83 0.45 0.84 
Hmbs 1353365 0.0689 -0.0863 0.1552 8.13 0.96 0.40 0.82 
Actb 1355039 -0.1662 -0.1925 0.0263 12.13 1.12 0.35 0.79 
Hprt1 1367708 0.1953 0.1306 0.0647 11.73 1.17 0.33 0.79 
Gusb 1350544 0.0857 0.1865 -0.1008 7.78 1.24 0.31 0.78 
H2A.1 1372198 -0.1490 -0.0356 -0.1134 7.41 1.33 0.29 0.77 
Gapdh 1649859 0.2458 -0.0535 0.2992 13.33 1.61 0.23 0.73 
Tfrc 1360908 0.2191 0.1764 0.0427 7.13 2.02 0.16 0.70 
Actb 2038799 -0.2469 -0.1103 -0.1366 13.74 2.12 0.15 0.68 
Actb 2038798 -0.3199 -0.4015 0.0816 11.87 2.89 0.083 0.63 
B2m 1368656 0.2073 -0.2072 0.4144 12.99 3.62 0.049 0.57 
Ywhaz 1373913 -0.3891 0.1622 -0.5513 13.53 4.93 0.020 0.49 

* Genes in bold were used as reference genes for RT-qPCR. 

 

Supplementary table 2.4B: Microarray expression results for common reference genes in 
HPC of Day 16 Saline animals.   
 

* Genes in bold were used as reference genes for RT-qPCR. 

 

Gene Symbol Probe ID  
(ILMN_) 

Fold change Average 
log2(exp) F p-value q-value E:C E:PF PF:C 

Sdha 1357678 0.0006 0.0201 -0.0195 10.24 0.01 0.99 1.00 
Gusb 1350544 -0.0643 -0.0581 -0.0062 7.83 0.18 0.84 0.98 
Pgk1 1369074 -0.1403 -0.0156 -0.1248 12.36 0.46 0.64 0.96 
Gapdh 1649859 0.1529 -0.0998 0.2527 12.95 0.64 0.54 0.95 
Tfrc 1360908 0.0033 -0.1165 0.1198 7.01 0.65 0.54 0.95 
Actb 1355039 0.2317 -0.1115 0.3431 12.27 0.90 0.42 0.93 
Actb 2038798 0.2406 -0.2054 0.4460 11.87 1.19 0.33 0.91 
Ubc 1350494 0.3358 0.2165 0.1194 13.49 1.29 0.30 0.91 
Polr2a_mappe
d 1372495 0.0352 -0.1551 0.1903 7.83 1.57 0.23 0.89 
Hmbs 1353365 -0.1870 0.0817 -0.2686 8.22 1.68 0.21 0.88 
Actb 2038799 0.2694 -0.1511 0.4205 13.81 2.12 0.15 0.85 
Tbp 1349379 -0.1822 0.1249 -0.3070 8.32 2.49 0.11 0.83 
H2A.1 1372198 0.0125 0.2517 -0.2391 7.83 3.00 0.07 0.78 
Ywhaz 1373913 -0.3770 -0.2804 -0.0966 13.58 3.23 0.06 0.76 
Hprt1 1367708 -0.3556 0.0844 -0.4400 11.66 3.49 0.05 0.75 
B2m 1368656 -0.0322 0.2943 -0.3265 12.96 4.31 0.03 0.72 
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Supplementary table 2.5A: Genes showing common change in expression in PFC of E and 
PF compared to C animals under steady state conditions.  
 

Gene Symbol Gene Name Average 
expression F p-value q-value 

Fold change 
E:C E:PF PF:C 

Rpusd1 RNA pseudouridylate synthase 
domain containing 1 

9.4 11.9 5.7E-04 0.23 0.68 0.93 0.73 

Nme2 NME/NM23 nucleoside 
diphosphate kinase 2 

11.5 10.7 9.7E-04 0.25 0.70 0.89 0.79 

Klhl24 kelch-like 24 (Drosophila) 9.6 10.7 9.4E-04 0.25 0.69 0.91 0.75 
Ndrg2 N-myc downstream regulated 

gene 2 
13.5 11.2 7.6E-04 0.23 0.71 0.95 0.75 

ILMN_1370609 na 7.1 12.3 4.8E-04 0.23 0.60 1.10 0.55 
Rasl10a RAS-like, family 10, member A 8.5 13.3 3.2E-04 0.23 0.74 1.14 0.64 
ILMN_1359879 na 9.2 10.9 8.6E-04 0.24 0.76 1.17 0.65 
Grik5 glutamate receptor, ionotropic, 

kainate 5 
9.4 12.6 4.3E-04 0.23 1.33 0.84 1.58 

RGD1309651 similar to 1190005I06Rik protein 7.7 14.0 2.4E-04 0.22 1.31 0.88 1.49 
ILMN_1368369 na 7.6 11.1 7.8E-04 0.23 1.38 0.92 1.50 
Satb1 SATB homeobox 1 10.2 12.2 5.0E-04 0.23 1.42 0.91 1.55 
Tmem178b transmembrane protein 178B 9.5 15.5 1.4E-04 0.16 1.37 0.87 1.56 
ILMN_1356747 na 14.1 10.7 9.7E-04 0.25 1.41 0.97 1.45 
ILMN_1351805 na 12.1 12.0 5.4E-04 0.23 1.45 0.95 1.53 
Mapkapk2 mitogen-activated protein kinase-

activated protein kinase 2 
8.4 11.9 5.7E-04 0.23 1.33 0.97 1.38 

Igfbp7 insulin-like growth factor binding 
protein 7 

11.9 11.2 7.6E-04 0.23 1.43 0.99 1.45 

Nrxn3 neurexin 3 10.7 16.5 9.8E-05 0.13 1.46 0.86 1.69 
Ywhaq tyrosine 3-

monooxygenase/tryptophan 5-
monooxygenase activation 
protein, theta polypeptide 

11.8 11.4 7.0E-04 0.23 1.38 1.01 1.37 

ILMN_1352779 na 7.1 11.7 6.0E-04 0.23 1.35 1.00 1.36 
Gpkow G patch domain and KOW motifs 7.1 10.9 8.8E-04 0.24 1.37 1.04 1.32 
LOC685828 hypothetical protein LOC685828 7.6 12.6 4.3E-04 0.23 1.47 0.99 1.49 
Gabrr2 gamma-aminobutyric acid 

(GABA) A receptor, rho 2 
7.1 12.5 4.3E-04 0.23 1.37 1.01 1.36 

Chn1 chimerin (chimaerin) 1 13.3 11.6 6.5E-04 0.23 1.51 1.08 1.40 
RGD1565784 RGD1565784 9.4 11.8 5.9E-04 0.23 1.37 1.05 1.30 
ILMN_1366825 na 9.9 13.1 3.4E-04 0.23 1.42 1.01 1.41 
Rpl27-l1 ribosomal protein L27-like 1 9.9 11.5 6.8E-04 0.23 1.40 1.16 1.21 
ILMN_1366004 na 8.2 11.8 5.8E-04 0.23 1.42 1.11 1.28 
ILMN_1359502 na 8.5 13.0 3.7E-04 0.23 1.53 1.06 1.44 
ILMN_1366169 na 9.3 16.6 9.3E-05 0.13 1.55 0.98 1.58 
ILMN_1367588 na 9.4 13.2 3.3E-04 0.23 1.61 1.18 1.37 
ILMN_1359650 na 8.2 14.1 2.3E-04 0.22 1.48 1.10 1.34 
RGD1309730 similar to RIKEN cDNA 

B230118H07 
9.2 16.7 9.2E-05 0.13 1.57 1.02 1.53 

Sep15 selenoprotein 15 11.3 18.0 5.9E-05 0.12 1.55 1.00 1.55 
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* Bold = p<0.05. na = probe had no specific alignment to current RefSeq RNA database 
 

Supplementary table 2.5B: Genes showing common change in expression in HPC of E and 
PF compared to C animals under steady-state conditions.  
 

Gene Symbol Gene Name Average 
Expression F p-value q-

value 
Fold change 

E:C E:PF PF:C 
LOC100360417 RUN and SH3 

domain containing 1-
like 

10.4 12.8 2.9E-04 0.21 1.65 1.10 1.50 

Atp5a1 ATP synthase, H+ 
transporting, 
mitochondrial F1 
complex, alpha 
subunit 1, cardiac 
muscle 

13.1 13.5 2.2E-04 0.20 1.35 0.91 1.48 

Acsl1 acyl-CoA synthetase 
long-chain family 
member 1 

9.5 13.0 2.7E-04 0.21 1.34 0.91 1.47 

Sqle squalene epoxidase 10.0 14.1 1.7E-04 0.17 1.44 1.01 1.42 
* Bold = p<0.05. na = probe had no specific alignment to current RefSeq RNA database 
 

  

Gene Symbol Gene Name Average 
expression F p-value q-value Fold change 

E:C E:PF PF:C 
Hint3 histidine triad nucleotide binding 

protein 3 
9.0 16.2 1.1E-04 0.14 1.52 1.07 1.43 

ILMN_1352441 na 13.1 15.0 1.7E-04 0.18 1.74 1.19 1.46 
ILMN_1366381 na 10.5 16.5 9.9E-05 0.13 1.55 1.07 1.45 
Psma7 proteasome (prosome, macropain) 

subunit, alpha type 7 
11.8 25.5 6.9E-06 0.06 1.68 0.86 1.97 

ILMN_1368258 na 10.5 19.8 3.4E-05 0.10 1.76 1.05 1.68 
LOC301193 similar to Discs large homolog 5 

(Placenta and prostate DLG) 
(Discs large protein P-dlg) 

10.5 21.4 2.1E-05 0.07 1.74 1.04 1.67 
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Supplementary table 2.6A: Genes differentially expressed in PFC among all 3 prenatal 
treatment groups under steady-state conditions. 
 

Gene Symbol Gene Name Average 
expression F p-

value 
q-

value 

Fold change 

E:C E:PF PF:C 

Baiap2 BAI1-associated 
protein 2 

10.8 10.6 9.8E-
04 

0.25 0.69 0.83 0.83 

Lxn latexin 8.3 15.8 1.2E-
04 

0.15 0.77 1.42 0.54 

Tuba1a tubulin, alpha 1A 14.1 25.2 7.5E-
06 

0.06 0.77 1.38 0.56 

Tom1 target of myb1 
homolog (chicken) 

8.2 10.7 9.3E-
04 

0.25 0.83 1.17 0.71 

Sumf1 sulfatase modifying 
factor 1 

8.3 12.8 3.8E-
04 

0.23 1.17 1.45 0.81 

Acat1 acetyl-CoA 
acetyltransferase 1 

8.3 12.5 4.3E-
04 

0.23 1.20 0.80 1.49 

Dynlrb1 dynein light chain 
roadblock-type 1 

12.2 11.4 6.8E-
04 

0.23 1.21 0.79 1.54 

Rnd2 Rho family GTPase 2 11.0 11.0 8.1E-
04 

0.23 1.22 0.85 1.43 

Epn1 Epsin 1 8.7 22.7 1.4E-
05 

0.06 1.24 0.75 1.66 

LOC100361558 histone H3.3B-like 11.4 11.8 5.9E-
04 

0.23 1.24 0.79 1.56 

Acly ATP citrate lyase 10.0 11.4 7.1E-
04 

0.23 1.25 0.78 1.60 

Peo1 progressive external 
ophthalmoplegia 1 

8.7 13.9 2.6E-
04 

0.22 1.26 0.80 1.58 

Hbb-b1 hemoglobin, beta 
adult major chain 

10.8 24.7 8.6E-
06 

0.06 1.28 1.73 0.74 

Anxa4 annexin A4 9.8 13.7 2.7E-
04 

0.22 1.29 0.84 1.54 

Ckb creatine kinase, brain 12.8 16.5 9.8E-
05 

0.13 1.34 0.72 1.86 

Scd stearoyl-Coenzyme A 
desaturase 1 

13.2 12.6 4.1E-
04 

0.23 1.36 0.78 1.75 

LOC501223 similar to Discs large 
homolog 5 (Placenta 
and prostate DLG) 
(Discs large protein 
P-dlg) 

11.2 13.9 2.5E-
04 

0.22 1.55 1.21 1.27 

Rps27l3 ribosomal protein 
S27-like 3 

7.4 18.5 5.0E-
05 

0.11 1.65 1.21 1.37 

LOC363320 

similar to Discs large 
homolog 5 (Placenta 
and prostate DLG) 
(Discs large protein 
P-dlg) 

9.4 22.6 1.5E-
05 

0.06 1.90 1.26 1.50 

*white fill (E<PF<C; C<PF<E), light grey fill (PF<E<C; C<E<PF), dark grey fill (E<C<PF; 
PF<C<E). 
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Supplementary table 2.6B: Genes differentially expressed in HPC among all 3 prenatal 
treatment groups under steady-state conditions.  
  

Gene Symbol Gene Name Average 
expression F p-value q-

value 

Fold change 

E:C E:PF PF:C 

Phlpp1 PH domain and leucine 
rich repeat protein 
phosphatase 1 

10.2 12.7 3.1E-04 0.21 0.78 0.63 1.24 

RGD1565117 similar to 40S 
ribosomal protein S26 

9.6 22.4 9.5E-06 0.04 1.24 1.61 0.77 

Trpv4 transient receptor 
potential cation 
channel, subfamily V, 
member 4 

7.4 27.0 2.6E-06 0.02 1.26 1.84 0.69 

Agap1 ArfGAP with GTPase 
domain, ankyrin repeat 
and PH domain 1 

10.1 12.7 3.0E-04 0.21 1.30 0.81 1.59 

Mgp matrix Gla protein 9.0 12.9 2.8E-04 0.21 1.42 1.97 0.72 
Col8a1 collagen, type VIII, 

alpha 1 
7.9 17.2 5.2E-05 0.12 1.46 2.47 0.59 

Igf2 insulin-like growth 
factor 2 

11.8 13.4 2.3E-04 0.20 1.63 2.80 0.58 

* light grey fill (PF<E<C; C<E<PF), dark grey fill (E<C<PF; PF<C<E). 
 

Supplementary table 2.7A: Genes differentially expressed in PFC of Pair-fed vs both E and 
C animals under steady-state conditions. 
 

Gene Symbol Gene name Average 
Expression F p-value q-

value 

Fold change 

PF:C E:PF E:C 

ILMN_1358743 na 8.0 11.5 6.8E-04 0.23 0.81 1.44 1.17 
Lrp1 low density lipoprotein 

receptor-related protein 
1 

8.8 12.4 4.6E-04 0.23 1.38 0.69 0.95 

ILMN_1361625 na 9.8 11.4 6.9E-04 0.23 1.58 0.72 1.13 
Ak2 adenylate kinase 2 9.9 13.4 3.1E-04 0.23 1.69 0.67 1.13 
ILMN_1359487 na 10.6 11.0 8.3E-04 0.24 1.53 0.76 1.16 
Ppp1r1b protein phosphatase 1, 

regulatory (inhibitor) 
subunit 1B 

10.8 11.7 6.2E-04 0.23 1.47 0.72 1.06 

Park7 parkinson protein 7 12.2 12.5 4.4E-04 0.23 0.70 1.38 0.97 
* Bold = p <0.05. na = probe had no specific alignment to current RefSeq RNA database. 
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Supplementary table 2.7B: Genes differentially expressed in HPC of Pair-fed vs both E and 
C animals under steady-state conditions. 
 

Gene Symbol Gene Name Average 
Expression F p-

value 
q-

value 

Fold change 

PF:C E:PF E:C 

ILMN_1351851 na 8.9 12.4 
3.5E-

04 0.24 0.77 1.49 1.15 

Sostdc1 
sclerostin domain 
containing 1 8.7 26.4 

3.1E-
06 0.02 0.28 4.40 1.23 

Nt5dc2 
5'-nucleotidase domain 
containing 2 7.8 14.6 

1.4E-
04 0.15 0.68 1.70 1.16 

Retsat 
retinol saturase (all trans 
retinol 13,14 reductase) 8.4 15.8 

8.7E-
05 0.14 1.68 0.49 0.82 

ILMN_1356875 na 10.0 22.2 
1.0E-

05 0.04 0.46 2.68 1.22 

Aqp1 aquaporin 1 7.6 15.9 
8.6E-

05 0.14 0.63 1.75 1.10 

Igfbp2 
insulin-like growth factor 
binding protein 2 10.0 14.7 

1.4E-
04 0.15 0.47 3.45 1.62 

Lxn latexin 8.3 15.4 
1.0E-

04 0.14 0.57 1.69 0.96 

Ttr transthyretin 11.7 19.3 
2.5E-

05 0.08 0.20 9.87 1.96 

Slco1a5 

solute carrier organic 
anion transporter family, 
member 1a5 8.2 15.4 

1.0E-
04 0.14 0.43 2.57 1.11 

Glb1l galactosidase, beta 1-like 7.4 18.6 
3.2E-

05 0.09 0.68 1.47 1.00 

Epn3 epsin 3 7.5 12.8 
2.9E-

04 0.21 0.76 1.46 1.11 

F5 

coagulation factor V 
(proaccelerin, labile 
factor) 8.6 17.8 

4.3E-
05 0.11 0.33 4.27 1.39 

Cox8b 
cytochrome c oxidase, 
subunit VIIIb 7.4 13.5 

2.1E-
04 0.20 0.71 1.48 1.06 

Enpp2 

ectonucleotide 
pyrophosphatase/phospho
diesterase 2 12.7 27.2 

2.5E-
06 0.02 0.47 2.45 1.16 

* Bold = p <0.05. na = probe had no specific alignment to current RefSeq RNA database. 
 

 

!
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Appendix B  Supplementary materials for chapter 3 

B.1 Supplementary figures 

 

Supplementary figure 3.1. Pairwise Pearson correlations of meDIP-seq data for the 

developmental hypothalamus samples. Samples were generally highly correlated (r<0.95), 

with samples clustering most closely with animals of the same age. 

Developmental(pearson(correlaBons(
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Supplementary figure 3.2. Principal component analysis of meDIP-seq data for the 

hypothalamus samples before and after ComBat correction. A) Principal component analysis 

of the normalized RPKM data revealed significant levels of variation associated with batch 

effects. MeDIP and DNA extraction rounds were significantly associated with a large proportion 

of variation within the dataset, and were also confounded with age. B) ComBat correction was 

performed on the RPKM data from the hypothalamic samples to correct the effects of MeDIP 

round and DNA extraction round. Partial effects of breeding remained in the dataset and prenatal 
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treatment was associated with a larger proportion of variance within the dataset after ComBat 

correction. 

 

Supplementary figure 3.3. Pairwise Pearson correlations of meDIP-seq data for the 

hypothalamus and white blood cell samples on postnatal day 22. Samples in the BvB peakset 

were highly correlated within tissue (r>0.96), the main driver of DNA methylation patterns, and 

well correlated within the same animals (r>0.92). However, one PF WBC sample clustered with 

the hypothalamus samples, suggesting that it may have been mislabeled during processing.  

BvB(pearson(correlaBons(
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Supplementary figure 3.4. Principal component analysis of meDIP-seq data for the 

postnatal day 22 hypothalamus and white blood cell samples before and after ComBat 

correction. A) Principal component analysis of the normalized BvB RPKM data revealed 

significant levels of variation associated with DNA extraction round batch effects. Tissue type 

was the covariate most strongly associated with variance in the dataset, although it was slightly 

confounded with extraction round. B) ComBat correction was used to account for the effects of 

DNA extraction round in the BvB dataset, though this also removed cell-type associated 
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variation. Prenatal treatment was associated with a larger proportion of variance within the 

dataset following ComBat correction. 

 

 

 

Supplementary figure 3.5. Cell-type associated DMRs. Linear modeling was performed on the 

18,050 peaks located in cell-type associated meDIP-seq peaks, correcting for age and breeding. 

At an FDR<0.05, 11 DMRs were identified between PAE and controls (C; 6 neuron-, 3 

oligodendrocyte-, 2 astrocyte-related), while 2 DMRs were found between PAE and PF (1 

neuron-, 1 oligodendrocyte-related). No DMRs were identified between PF and controls, and no 

overlaps were identified.  
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Supplementary figure 3.6. Additional bisulfite pyrosequencing data for the developmental 

hypothalamus samples. Three additional DMRs were verified by bisulfite pyrosequencing 

using the hypothamaus samples at P1, P8, P15, and P22. These were located within Ifih1 

(chr3:48,561,559-48,561,925), Mycbp (chr5:141,565,784-141,566,172), and Plvap 

(chr16:19,912,813-19,913,185). PAE = red; Control = blue. 
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Supplementary figure 3.7. White blood cell composition on postnatal day 22. The 

composition of white blood cells from PAE, PF, and C animals on P22 was analyzed to obtain 

the proportions of lymphocytes, neutrophils, monocytes, basophils, eosoniphils, and large 

unclassified cells. No significant differences were observed between groups.  
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Supplementary figure 3.8. Bisulfite pyrosequencing data for the postnatal day 22 

hypothalamus and white blood cell samples. DNA methylation patterns were analyzed in the 

final exon and 3’ UTR of Adh4 (chr2: 243,719,416-243,720,233), the first exon and 5’ UTR of 

Ctnnbip1 (chr5: 166,485,057-166,485,637), and the first intron of Ffg9 (chr15: 38,377,629-

38,378,027). PAE = red, Control = blue. 
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B.2 Supplementary tables 

Supplementary table 3.1. White blood cell composition data in percentages 

Group Control PF PAE 
N 7 5 5 
Neutrophils 20.4 ± 1 21.3 ± 1.4 19.9 ± 2.5 
Lymphocytes 74.2 ± 1 73.4 ± 1.9 74.3 ± 2.4 
Monocytes 3 ± 0.3 2.9 ± 0.4 3.4 ± 0.3 
Eosinophils 1.2 ± 0.3 0.8 ± 0.1 0.8 ± 0.2 
Basophils 0.8 ± 0.1 0.9 ± 0.2 1 ± 0.3 
Large unclassified cells 0.5 ± 0.1 0.7 ± 0.2 0.5 ± 0.1 
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Supplementary table 3.2. MeDIP-seq sample developmental data 

Code Age Group Tissue Breeding  Animal 
Number 

Dam initial 
weight (g) 

Dam final 
weight (g) 

Average 
weight/pup (g) 

Extraction  
round 

meDIP 
round 

P0-hyp-C3 1 Con hypo NYB 42 313 491 7.41 5 2 
P0-hyp-C1 1 Con hypo Dev-3 52 272 438 6.69 5 2 
P0-hyp-C4 1 Con hypo NYB 51 299 474 5.8 6 2 
P0-hyp-C2 1 Con hypo Dev-3 57 289 470 6.35 6 2 
P0-hyp-E1 1 PAE hypo Dev-3 1 274 412 6.42 5 2 
P0-hyp-E2 1 PAE hypo Dev-3 5 277 435 6.38 6 2 
P0-hyp-E4 1 PAE hypo NYB 13 292 441 6.76 5 2 
P0-hyp-E3 1 PAE hypo NYB 1 319 462 6.5 6 2 
P0-hyp-PF4 1 PF hypo NYB 35 305 455 6.5 5 2 
P0-hyp-PF1 1 PF hypo Dev-3 26 293 451 7.09 5 2 
P0-hyp-PF3 1 PF hypo NYB 24 319 479 6.59 6 2 
P0-hyp-PF2 1 PF hypo Dev-3 31 298 433 6.76 6 2 
P8-hyp-C5 8 Con hypo Dev-4 41 312 496 6.63 3 2 
P8-hyp-C7 8 Con hypo Dev-5 45 285 475 6.73 3 2 
P8-hyp-C8 8 Con hypo Dev-5 46 274 530 7.29 4 2 
P8-hyp-C6 8 Con hypo Dev-4 46 303 433 6.67 4 2 
P8-hyp-E6 8 PAE hypo Dev-4 9 355 479 6.54 4 2 
P8-hyp-E5 8 PAE hypo Dev-4 1 311 434 7 3 2 
P8-hyp-E8 8 PAE hypo Dev-5 7 265 413 6.62 4 2 
P8-hyp-E7 8 PAE hypo Dev-5 6 288 432 6.33 3 2 
P8-hyp-PF6 8 PF hypo Dev-4 26 322.8 469 6.44 4 2 
P8-hyp-PF8 8 PF hypo Dev-5 28 311 471 7.25 4 2 
P8-hyp-PF5 8 PF hypo Dev-4 24 293 433 6.73 3 2 
P8-hyp-PF7 8 PF hypo Dev-5 27 256 391 6.54 3 2 
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Code Age Group Tissue Breeding  Animal 
Number 

Dam initial 
weight (g) 

Dam final 
weight (g) 

Average 
weight/pup (g) 

Extraction  
round 

meDIP 
round 

P15-hyp-C12 15 Con hypo Dev-4 47 324 510 7.71 2 2 
P15-hyp-C11 15 Con hypo Dev-4 44 304 446 6.64 1 2 
P15-hyp-C9 15 Con hypo Dev-4 41 312 496 6.63 1 2 
P15-hyp-C10 15 Con hypo Dev-4 43 303 529 6.69 2 2 
P15-hyp-E11 15 PAE hypo Dev-4 3 300 455 6.61 1 2 
P15-hyp-E10 15 PAE hypo Dev-4 2 306 411 6.78 2 2 
P15-hyp-E12 15 PAE hypo Dev-4 6 330 431 6.7 2 2 
P15-hyp-E9 15 PAE hypo Dev-4 1 311 434 7 1 2 
P15-hyp-PF10 15 PF hypo Dev-4 24 293 433 6.73 2 2 
P15-hyp-PF12 15 PF hypo Dev-4 28 319 461 9.22 1 2 
P15-hyp-PF11 15 PF hypo Dev-4 27 304 479 6.8 2 2 
P15-hyp-PF9 15 PF hypo Dev-4 22 298 470 5.76 1 2 
P22-hyp-C14 22 Con hypo Dev-3 57 289 470 6.35 8 1 
P22-hyp-C13 22 Con hypo Dev-3 54 290 466 6.75 7 1 
P22-hyp-C15 22 Con hypo Dev-4 41 312 496 6.63 7 1 
P22-hyp-C16 22 Con hypo Dev-4 44 304 446 6.66 11 1 
P22-hyp-E15 22 PAE hypo Dev-4 1 311 434 7 7 1 
P22-hyp-E13 22 PAE hypo Dev-3 13 283 413 6.49 8 1 
P22-hyp-E14 22 PAE hypo Dev-3 14 292 424 6 8 1 
P22-hyp-E16 22 PAE hypo Dev-4 3 300 455 6.61 8 1 
P22-hyp-PF13 22 PF hypo Dev-3 35 282 425 6.414 11 1 
P22-hyp-PF14 22 PF hypo Dev-3 36 270 418 5.24 8 1 
P22-hyp-PF15 22 PF hypo Dev-4 22 298 470 5.76 8 1 
P22-hyp-PF16 22 PF hypo Dev-4 25 291 404 7.29 7 1 
P22-wbc-C16 22 Con WBC Dev-4 44 304 446 6.66 11 1 
P22-wbc-C13 22 Con WBC Dev-3 54 290 466 6.75 9 1 
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Code Age Group Tissue Breeding  Animal 
Number 

Dam initial 
weight (g) 

Dam final 
weight (g) 

Average 
weight/pup (g) 

Extraction  
round 

meDIP 
round 

P22-wbc-C15 22 Con WBC Dev-4 41 312 496 6.63 9 1 
P22-wbc-C14 22 Con WBC Dev-3 57 289 470 6.35 9 1 
P22-wbc-E14 22 PAE WBC Dev-3 14 292 424 6 9 1 
P22-wbc-E16 22 PAE WBC Dev-4 3 300 455 6.61 10 1 
P22-wbc-E13 22 PAE WBC Dev-3 13 283 413 6.49 10 1 
P22-wbc-E15 22 PAE WBC Dev-4 1 311 434 7 9 1 
P22-wbc-PF14 22 PF WBC Dev-3 36 270 418 5.24 9 1 
P22-wbc-PF13 22 PF WBC Dev-3 35 282 425 6.414 10 1 
P22-wbc-PF16 22 PF WBC Dev-4 25 291 404 7.29 9 1 
P22-wbc-PF15 22 PF WBC Dev-4 22 298 470 5.76 9 1 
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Supplementary table 3.3. Sequencing information 

Tissue Age Group Identifier Index Pool Run Raw reads Filtered reads Merged reads 

Hypothalamus P1 

Control 

C1 ATCACG 1 1 33,113,860 18,020,244 35,373,269 
2 31,784,264 17,353,025 

C2 GATCAG 3 1 27,192,236 14,734,297 28,526,047 
2 25,679,030 13,791,750 

C3 AACCCC 1 1 26,646,068 14,525,492 28,281,710 
2 25,133,374 13,756,218 

C4 ACCCAG 2 1 25,186,902 13,665,101 26,376,060 
2 23,731,912 12,710,959 

PAE 

E1 AGCGCT 1 1 26,429,786 14,202,238 27,783,599 
2 25,157,078 13,581,361 

E2 CAAAAG 2 1 27,380,852 14,706,678 28,436,281 
2 25,891,126 13,729,603 

E3 CCAACA 2 1 31,992,216 17,277,335 33,361,893 
2 30,208,954 16,084,558 

E4 CTAGCT 3 1 26,569,012 14,332,586 27,839,904 
2 25,246,104 13,507,318 

PF 

PF1 GATGCT 1 1 27,760,330 15,452,657 30,105,294 
2 26,223,882 14,652,637 

PF2 TAATCG 3 1 30,779,018 16,827,587 32,670,305 
2 29,178,264 15,842,718 

PF3 TGAATG 2 1 31,917,074 17,071,209 33,044,316 
2 30,248,814 15,973,107 

PF4 AGTTCC 3 1 24,193,448 13,302,170 25,994,763 
2 23,266,440 12,692,593 
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Tissue Age Group Identifier Index Pool Run Raw reads Filtered reads Merged reads 

Hypothalamus P8 

Control 

C5 CGATGT 1 1 30,518,248 17,138,881 33,314,585 
2 28,796,732 16,175,704 

C6 TAGCTT 2 1 31,254,738 17,351,755 33,473,392 
2 29,465,300 16,121,637 

C7 AACTTG 3 1 28,431,432 15,611,842 30,284,774 
2 27,008,606 14,672,932 

C8 ACCGGC 3 1 32,449,760 18,921,725 36,679,903 
2 30,725,390 17,758,178 

PAE 

E5 AGGCCG 1 1 33,548,916 19,547,947 38,470,718 
2 32,360,588 18,922,771 

E6 CAACTA 2 1 35,583,836 19,250,990 37,249,626 
2 33,743,720 17,998,636 

E7 CCACGC 3 1 34,376,176 18,454,863 35,902,562 
2 32,835,226 17,447,699 

E8 CTATAC 1 1 34,721,986 18,826,227 36,717,315 
2 33,018,664 17,891,088 

PF 

PF5 GCAAGG 1 1 33,644,026 19,266,595 37,763,951 
2 32,201,456 18,497,356 

PF6 TACAGC 2 1 32,825,210 18,529,959 35,897,122 
2 31,166,606 17,367,163 

PF7 TGCCAT 3 1 35,456,476 19,656,204 38,177,496 
2 33,786,654 18,521,292 

PF8 ATGTCA 2 1 29,446,168 16,802,092 32,429,973 
2 27,786,980 15,627,881 
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Tissue Age Group Identifier Index Pool Run Raw reads Filtered reads Merged reads 

Hypothalamus PN15 

Control 

C10 GGCTAC 2 1 35,268,414 20,979,814 40,584,612 
2 33,481,480 19,604,798 

C11 AAGACT 1 1 38,296,066 22,439,953 43,542,043 
2 36,008,304 21,102,090 

C12 ACGATA 3 1 36,590,934 21,441,076 41,501,439 
2 34,632,866 20,060,363 

C9 TTAGGC 2 1 35,600,020 21,234,427 41,081,852 
2 33,762,840 19,847,425 

PAE 

E10 CACCGG 2 1 30,695,160 17,867,138 34,488,414 
2 28,993,480 16,621,276 

E11 CCCATG 1 1 30,467,386 17,737,556 34,609,228 
2 28,955,916 16,871,672 

E12 CTCAGA 3 1 38,501,180 23,567,190 45,620,926 
2 36,324,260 22,053,736 

E9 ATAATT 3 1 37,520,694 22,115,457 42,698,321 
2 35,359,184 20,582,864 

PF 

PF10 TATAAT 1 1 37,575,902 22,133,777 42,876,537 
2 35,260,306 20,742,760 

PF11 TGCTGG 2 1 34,648,014 20,322,751 39,225,192 
2 32,674,258 18,902,441 

PF12 CCGTCC 1 1 25,605,012 15,284,658 29,763,216 
2 24,238,924 14,478,558 

PF9 GCACTT 3 1 34,185,162 20,363,976 39,364,187 
2 32,217,998 19,000,211 
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Tissue Age Group Identifier Index Pool Run Raw reads Filtered reads Merged reads 

Hypothalamus P22 

Control 

C13 TGACCA 2 1 28,414,894 17,418,312 33,672,075 
2 26,924,380 16,253,763 

C14 CTTGTA 1 1 29,515,800 17,903,092 34,695,180 
2 27,668,210 16,792,088 

C15 AAGCGA 3 1 29,504,840 17,739,529 34,399,305 
2 28,037,190 16,659,776 

C16 ACTCTC 1 1 30,471,106 18,210,924 35,346,488 
2 28,691,626 17,135,564 

PAE 

E13 ATACGG 1 1 30,684,776 17,630,787 34,240,873 
2 28,938,122 16,610,086 

E14 CACGAT 2 1 30,423,746 18,388,642 35,419,868 
2 28,642,648 17,031,226 

E15 GAGTGG 2 1 31,173,234 18,761,333 36,161,961 
2 29,292,372 17,400,628 

E16 CTGCTG 3 1 32,570,020 19,094,631 36,832,208 
2 30,637,412 17,737,577 

PF 

PF13 GCCGCG 3 1 30,521,646 18,514,525 35,903,586 
2 28,936,906 17,389,061 

PF14 TCATTC 2 1 29,311,830 17,565,565 33,861,425 
2 27,649,446 16,295,860 

PF15 TGGCGC 1 1 30,520,304 17,902,814 34,882,050 
2 28,939,276 16,979,236 

PF16 GTAGAG 3 1 29,568,090 18,172,937 35,013,277 
2 27,737,436 16,840,340 
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Tissue Age Group Identifier Index Pool Run Raw reads Filtered reads Merged reads 

WBC P22 

Control 

C13 ACAGTG 2 1 26,906,928 13,919,764 26,311,548 
2 25,535,086 12,391,784 

C14 AAACAT 3 1 30,292,844 16,375,542 31,854,398 
2 28,983,878 15,478,856 

C15 AAGGAC 3 1 27,956,550 14,821,280 28,956,709 
2 26,934,482 14,135,429 

C16 ACTGAT 1 1 29,229,892 15,389,413 29,941,324 
2 27,646,582 14,551,911 

PAE 

E13 ATCCTA 3 1 28,367,834 15,486,836 30,100,768 
2 27,096,260 14,613,932 

E14 CACTCA 2 1 28,585,764 15,081,785 29,259,531 
2 27,220,480 14,177,746 

E15 CCGCAA 1 1 29,201,324 15,607,538 30,584,097 
2 28,006,024 14,976,559 

E16 GAAACC 1 1 29,717,654 15,563,021 30,396,206 
2 28,278,420 14,833,185 

PF 

PF13 GCCTTA 3 1 28,467,842 15,798,190 30,752,305 
2 27,253,066 14,954,115 

PF14 TCCCGA 1 1 29,075,498 15,667,697 30,472,297 
2 27,526,446 14,804,600 

PF15 TTCGAA 2 1 29,904,506 16,430,391 31,722,602 
2 28,300,216 15,292,211 

PF16 GTCCGC 2 
1 24,674,412 12,894,418 

24,427,455 
2 23,617,458 11,533,037 

* Pool 1 = PX0182, Pool 2 = PX0183, Pool 3 = PX0184, Run 1 = C5DN1ANXX, Run 2 = C5DWPANXX
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Supplementary table 3.4. Primer sequences for bisulfite pyrosequencing 

Analysis DMR Primer Sequence 

Developmental 

Plvap 
chr16:19912813-

19913185 

F1 TTGGGTTAGGATTTGATTTAGTGT 
R1 Biotin-AATCTCATATTTTCCCCACTAATTTATT 
S1 GGATTTGATTTAGTGTTAGATA 
S2 GGTGATTTGAGTTTAGTTTTTAG 

Mycbp 
chr5:141565784-

141566172 

F1 TTGTAGTTGGTAGTTGTTTTGTAGAT 
R1 Biotin-TTCTATATTATCCTTCTTAAACCATTCACT 
S1 ATTTTTTGGTATTTTTAAAGTTAGA 

Drd4 
chr1:214281174-

214281640 

F1 AGTTTGGAAGGGTGAAAGG 
R1 Biotin)AACAAAAAACCTCCCTCTTTTC 
S1 GTTTTTTTTAGTGGTGTATAT 
S2 ATAGTGTTTTTAATTTTATTATTTATAT 
S3 GAGGTTAAGGGGTTTTA 

Ifih1 
chr3:48561559-

48561925 

F1 AGTTGGTAATTTAGTGTAATTTTTGTTTG 
R1 biotin)AACACAACACTTCCTTTCTTTATT 
S1 TTGTTTGAAGAAGTAGTTATATAG 
S2 ATTTTATGTGTATATTTTTTTGGT 
S3 AATTTTAGAGTTATTGTTGGTAATTA 

Tissue-
concordant 

Adh4 
chr2:243719416-

243720233 
 

F1 TGATGTTATAGATGGGGAAAGAT 
R1 Biotin-ATACTTAAACTCATAACTTTCCTTAACT 
S1 ATGGGGAAAGATGATAATA 
S2 AGATAAGTAGTATTTATTGTTGTATT 

Fgf9 
chr15:38377629-

38378027 
 

F1 TGTATATATTTAGGGGGTATTGTGAA 
R1 Biotin-ACAAACAAATTTTCCTACTACCT 
S1 TTTGGGTTATTGTTGTTAAA 
S2 TTGAATATATTTATTTTTTTTGAAAATTATAG 

Ctnnbip1 
chr5:166485057-

166485637 
 

F1 GGGAGGTTATTTGTTATAGTGAGT 
R1 Biotin-TATCCCAAATCCTTACCTACTTCT 
S1 TGTGTGGAGTAGTAGA 
S2 GTATTTTTAGATTATGATAGAGTTATG 

 

Supplementary table 3.5. Annotated PAE-specific DMRs persisting across pre-weaning 

development of the hypothalamus 

DMR Direction Gene symbol Location CpG Island 

chr1:139741953:139742431 down   Intergenic   
chr1:15191610:15192035 down Il20ra Intron   
chr1:176085084:176085420 down   Intergenic   
chr1:214281174:214281640 up Drd4 Exon; 3'UTR   
chr1:234096707:234097209 up   Intergenic   
chr1:24164308:24164875 up   Intergenic   
chr1:262677894:262678380 down Hpse2 Intron   
chr10:86515501:86516299 up Zpbp2 Intron/exon boundary   
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DMR Direction Gene symbol Location CpG Island 

chr11:10724344:10725282 down   Intergenic   
chr11:31024852:31025512 up   Intergenic   
chr11:71219854:71220604 up   Intergenic   
chr11:78732072:78732415 down   Intergenic   
chr12:43921015:43921537 up RGD1562310 Exon; 3'UTR   
chr13:106810181:106810590 down Ush2a Intron/exon boundary   
chr13:62397424:62397837 down   Intergenic   
chr13:6442080:6442489 down Cntnap5c Intron   
chr14:15247402:15247937 down   Intergenic   
chr14:29220684:29221181 up   Intergenic   
chr14:35716091:35716595 up Chic2 Intron   
chr14:89701233:89701608 down Abca13 Intron   
chr15:10340174:10340716 down   Intergenic   
chr15:17047963:17048371 down   Intergenic   
chr15:66140998:66141718 down   Intergenic   
chr15:92709763:92710079 down   Intergenic   
chr16:17170588:17171040 up   Intergenic   
chr16:19912813:19913185 down Plvap Intron   
chr16:37619224:37619733 down   Intergenic   
chr16:41856506:41856951 down   Intergenic   
chr16:74651704:74652117 up Tpte2 Intron   
chr16:8103352:8103846 up   Intergenic   
chr17:12596528:12597167 up   Intergenic   
chr17:40321029:40321439 down   Intergenic   
chr17:52612600:52612944 down   Intergenic   
chr17:70713643:70714128 down   Intergenic   
chr18:19915102:19915521 up   Intergenic   
chr18:41469757:41470143 down   Intergenic   
chr18:48789602:48790549 down   Intergenic   
chr19:11660067:11660621 down Gnao1 Intron   
chr19:15777433:15777911 down   Intergenic   
chr19:42387827:42388317 down   Intergenic   
chr2:110616915:110617442 down   Intergenic   
chr2:127088880:127089374 down   Intergenic   
chr2:137850374:137850759 down   Intergenic   
chr2:140050486:140050870 down   Intergenic   
chr2:143692596:143693157 down   Intergenic   
chr2:161497496:161498141 down   Intergenic   
chr2:20558992:20559432 down   Intergenic   
chr2:215843043:215843572 down   Intergenic   



 

 

247 

DMR Direction Gene symbol Location CpG Island 

chr2:220525192:220525573 down Palmd Intron   
chr2:22513687:22514572 up   Intergenic   
chr2:229836382:229836753 down   Intergenic   
chr2:252425659:252425984 down   Intergenic   
chr2:25609554:25610159 up   Intergenic   
chr2:257310351:257310990 up Gipc2 Intron   
chr2:38646120:38646704 down   Intergenic   
chr2:51638197:51638867 down   Intergenic   
chr2:75595569:75596105 up   Intergenic   
chr2:9358335:9358733 up   Intergenic   
chr20:2457035:2457456 down   Intergenic   
chr20:33453367:33454162 up   Intergenic   
chr20:47637214:47638161 up Scml4 Intron   
chr3:104747852:104748440 down   Intergenic   
chr3:12053316:12053939 down   Intergenic   
chr3:138519119:138519451 down Csrp2bp Intron   
chr3:143201451:143202220 up   Intergenic   
chr3:156648220:156648604 down Top1 Intron   
chr3:165424304:165424865 up   Intergenic   
chr3:167934957:167935603 up   Intergenic   
chr3:22603206:22603863 down   Intergenic   
chr3:24872200:24872928 down   Intergenic   
chr3:48561559:48561925 down Ifih1 Intron/exon boundary   
chr3:65105079:65105674 up   Intergenic   
chr3:65324783:65325278 down   Intergenic   
chr3:70184226:70184782 down   Intergenic   
chr3:7434738:7435286 up Ddx31 Intron   
chr4:150624486:150624887 up   Intergenic   
chr4:168837031:168837647 down Gprc5a Intron   
chr4:174485430:174486141 down   Intergenic   
chr4:182990407:182991016 down   Intergenic   
chr4:20511403:20511733 down   Intergenic   
chr4:43208183:43208612 down   Intergenic   
chr4:66719830:66720182 down Tbxas1 Intron   
chr4:7482909:7483332 up   Intergenic   
chr5:118777373:118777836 up Pgm1 Intron/exon boundary   
chr5:138504681:138505315 up Zmynd12 Intron   
chr5:141565784:141566172 up Mycbp Intron   
chr5:156145583:156146099 down   Intergenic   
chr5:24846296:24847023 up   Intergenic   
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chr5:37607753:37608583 down   Intergenic   
chr5:37986026:37986464 up   Intergenic   
chr5:60856339:60856751 down Trmt10b Intron/exon boundary   
chr5:68802664:68803213 down   Intergenic   
chr5:75657944:75658519 down Lpar1 Intron   
chr6:119447228:119447764 up   Intergenic   
chr6:124978630:124979533 up   Intergenic   
chr6:141054659:141054986 up   Intergenic   
chr7:10808734:10809177 up   Intergenic   
chr7:110539701:110540189 down   Intergenic   
chr7:119688957:119689624 down Tmprss6 Intron   
chr7:12861503:12862530 up Hcn2 Intron/exon boundary Yes 
chr7:29983394:29984038 up Ano4 Intron   
chr7:34231579:34231996 down   Intergenic   
chr7:39701627:39702039 down   Intergenic   
chr7:42660017:42660479 down   Intergenic   
chr7:58691577:58691930 up   Intergenic   
chr7:85674914:85675377 down   Intergenic   
chr8:119324904:119325855 up Ccrl2 Intron/exon boundary   
chr8:127199227:127199648 up Ctdspl Intron   
chr8:127199227:127199648 up Golga4 Intron   
chr8:127241188:127241611 down Ctdspl Intron   
chr8:127241188:127241611 down Golga4 Intron   
chr8:21395317:21395763 down   Intergenic   
chr8:63476543:63476951 up Rec114 Intron   
chr9:15545565:15546379 up   Intergenic   
chr9:20969820:20970520 up   Intergenic   
chr9:57883751:57884249 down   Intergenic   
chrUn_KL568409v1:220261:220784 up   Intergenic   
chrX:112031256:112031901 down Mid2 Intron   
chrX:123442588:123443064 up   Intergenic   
chrX:9184168:9184644 down   Intergenic   
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Supplementary table 3.6. Annotated PAE-specific tissue-concordant DMRs 

DMR Gene symbol Location CpG Island 

chr1:101817110:101817545 Grwd1 Intron   
chr1:107194560:107195008   Intergenic   
chr1:15837095:15837641 LOC100911069 Intron   
chr1:15864955:15865332   Intergenic   
chr1:15923790:15924741 Pde7b Intron   
chr1:196969305:196969803   Intergenic   
chr1:200209635:200210301 Sec23ip Exon; 3' UTR   
chr1:204458884:204459389   Intergenic   
chr1:213019370:213019881   Intergenic   
chr1:213182167:213182721   Intergenic   
chr1:213270269:213271271   Intergenic   
chr1:242498350:242499595   Intergenic   
chr1:255332476:255332935   Intergenic   
chr1:28781411:28781929   Intergenic   
chr1:41175032:41175758   Intergenic   
chr1:47870742:47871490   Intergenic   
chr1:52860166:52860642   Intergenic   
chr1:74540044:74540657   Intergenic   
chr1:75812889:75813428   Intergenic   
chr1:99958512:99959133 Klk1c6 Intron   
chr10:10073982:10074605   Intergenic   
chr10:10909785:10910457   Intergenic   
chr10:22047700:22048388   Intergenic   
chr10:2521025:2521416   Intergenic   
chr10:26162626:26163113   Intergenic   
chr10:33049713:33050300   Intergenic   
chr10:33173764:33174779   Intergenic   
chr10:48610216:48610577 Ttc19 Intron   
chr10:52319608:52320654   Intergenic   
chr10:54524382:54524791 Stx8 Intron   
chr10:55465564:55466302   Intergenic   
chr10:56142404:56143430   Intergenic   
chr10:57734995:57735716 Nlrp1a Intron   
chr10:68822951:68823429 Asic2 Intron   
chr10:98420150:98420680   Intergenic   
chr11:15449907:15450412 Usp25 Intron   
chr11:25607394:25608249   Intergenic   
chr11:37563059:37563612 Dscam Intron   
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chr11:53503523:53503944   Intergenic   
chr11:61199083:61199628   Intergenic   
chr11:61430001:61430590   Intergenic   
chr11:67451724:67452162   Intergenic   
chr11:73414606:73415256   Intergenic   
chr11:76843682:76844303 Uts2b Intron   
chr11:82797763:82799768 Map3k13 Intron   
chr11:83023533:83024287   Intergenic   
chr12:15761494:15761955   Intergenic   
chr12:16828715:16829354   Intergenic   
chr12:29637821:29639566 Caln1 Intron   
chr12:29643946:29645192 Caln1 Intron   
chr12:29736869:29737477 Caln1 Intron   
chr12:29850352:29850897 Tyw1 Intron   
chr12:31065961:31066795   Intergenic   
chr12:34020071:34020891   Intergenic   
chr12:36232881:36233380 Tmem132b Intron   
chr12:41558900:41559424 Tpcn1 Intron/exon boundary   
chr12:42210123:42210669   Intergenic   
chr12:43079102:43079674   Intergenic   
chr12:50909305:50909846   Intergenic   
chr13:100868490:100869695   Intergenic Yes 
chr13:102617677:102619172   Intergenic   
chr13:104818539:104818957   Intergenic   
chr13:10527965:10528451   Intergenic   
chr13:106979664:106980368 Ush2a Intron   
chr13:107502115:107502538   Intergenic   
chr13:108465373:108465786   Intergenic   
chr13:108788476:108789657 Ptpn14 Intron   
chr13:12180618:12181092   Intergenic   
chr13:1790670:1791570   Intergenic   
chr13:19095660:19097231   Intergenic   
chr13:19116741:19118626   Intergenic   
chr13:2214879:2215562   Intergenic   
chr13:2440179:2440838   Intergenic   
chr13:2538677:2539280   Intergenic   
chr13:2550524:2551087   Intergenic   
chr13:2629949:2630705   Intergenic   
chr13:2632729:2633630   Intergenic   
chr13:3080853:3081925   Intergenic   
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chr13:3518363:3519243   Intergenic   
chr13:35925680:35926363   Intergenic   
chr13:3714645:3715057   Intergenic   
chr13:43079999:43080407   Intergenic   
chr13:47698582:47699050   Intergenic   
chr13:48019856:48020481 Rassf5 Intron   
chr13:5171220:5172835   Intergenic   
chr13:6426133:6427027 Cntnap5c Intron   
chr13:68800527:68801151 Trmt1l Intron/exon boundary   
chr13:7043768:7044321 Cntnap5c Intron   
chr13:70592814:70594019 Lamc2 Intron/exon boundary   
chr13:7065420:7065812 Cntnap5c Intron   
chr13:8060704:8061382   Intergenic   
chr13:8090191:8090877   Intergenic   
chr13:8145292:8146028   Intergenic   
chr13:8386986:8387812   Intergenic   
chr13:8840844:8841233   Intergenic   
chr13:8865962:8866561   Intergenic   
chr13:9352429:9352926   Intergenic   
chr13:94516637:94517272   Intergenic   
chr13:95415525:95416328   Intergenic   
chr14:110799613:110800210 Vrk2 Intron   
chr14:15472278:15472836   Intergenic   
chr14:23719630:23720791   Intergenic   
chr14:88803125:88803626 Tns3 Intron   
chr14:88947856:88948313   Intergenic   
chr15:1541743:1542263 LOC681383 Intron   
chr15:24397254:24398708   Intergenic   
chr15:33965082:33965730   Intergenic   
chr15:38377629:38378027 Fgf9 Intron   
chr15:43112675:43113090   Intergenic   
chr15:47717609:47718058 Msra Intron   
chr15:4941954:4942353 Nid2 Intron   
chr15:53469145:53469631   Intergenic   
chr15:54480009:54480746 Fndc3a Intron   
chr15:55395690:55396182   Intergenic   
chr15:58360852:58361276   Intergenic   
chr15:73473804:73474268   Intergenic   
chr15:79218098:79218498   Intergenic   
chr16:22774739:22775525   Intergenic   
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chr16:48479863:48480487   Intergenic   
chr16:59627092:59627549   Intergenic   
chr16:74994208:74994642   Intergenic   
chr16:88869199:88869771   Intergenic   
chr16:9998609:9999896   Intergenic   
chr17:1930700:1931243   Intergenic   
chr17:28755608:28756898   Intergenic   
chr17:29654228:29654663   Intergenic   
chr17:47853966:47854804   Intergenic   
chr17:51741559:51742069   Intergenic   
chr17:5174301:5174841   Intergenic   
chr17:67611431:67612810   Intergenic   
chr17:7443952:7444476   Intergenic   
chr17:74543902:74544458   Intergenic   
chr18:19561122:19561713   Intergenic   
chr18:26479481:26480151   Intergenic   
chr18:3755389:3755936   Intergenic   
chr18:40928839:40929459   Intergenic   
chr18:46337881:46338456   Intergenic   
chr18:46385964:46386475   Intergenic   
chr18:68973064:68973512 LOC361346 Intron   
chr18:86851313:86851845 Dok6 Intron   
chr19:24418007:24418408 Tbc1d9 Intron/exon boundary   
chr19:29358573:29359218   Intergenic   
chr19:30582479:30583315   Intergenic   
chr19:50583058:50583838   Intergenic   
chr19:54909295:54910046   Intergenic   
chr19:57264897:57265288   Intergenic   
chr19:58684491:58684952   Intergenic   
chr19:8001271:8001672   Intergenic   
chr19:9101115:9101871   Intergenic   
chr2:100576453:100577172   Intergenic   
chr2:120989562:120990862   Intergenic   
chr2:166074267:166074911 Ppm1l Intron   
chr2:190076979:190077385   Intergenic   
chr2:20022744:20023453 Atg10 Intron   
chr2:203648149:203648573   Intergenic   
chr2:208075637:208076365 Kcnd3 Intron   
chr2:208075637:208076365 Kcnd3 Intron   
chr2:208075637:208076365 Kcnd3 Intron   
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chr2:221348157:221348954   Intergenic   
chr2:228184208:228184842   Intergenic   
chr2:232135456:232136325 Tifa Intron/exon boundary; 3' UTR   
chr2:24085832:24086430 Ap3b1 Intron   
chr2:243719416:243720233 Adh4 Intron/exon boundary; 3' UTR   
chr2:24721584:24722093 Pde8b 1st exon; Intron/exon boundary   
chr2:262708655:262709229   Intergenic   
chr2:266273656:266274228   Intergenic   
chr2:29291143:29291653   Intergenic   
chr2:32368744:32370108   Intergenic   
chr2:51832185:51832666   Intergenic   
chr2:52082131:52082682   Intergenic   
chr2:52863844:52864889   Intergenic Yes 
chr2:58622700:58623608   Intergenic   
chr2:6066999:6067900   Intergenic   
chr2:63210285:63210771 Cdh6 Intron   
chr2:72457804:72458303   Intergenic   
chr2:93469803:93470472   Intergenic   
chr20:31704044:31704497   Intergenic   
chr20:34367734:34368494 Slc35f1 Intron   
chr20:34470735:34471347   Intergenic   
chr20:49211454:49211905   Intergenic   
chr20:49627593:49628407   Intergenic   
chr3:121061430:121062178 LOC102550367 Intron   
chr3:122457208:122457945   Intergenic   
chr3:147572419:147573029   Intergenic   
chr3:157471957:157472440   Intergenic   
chr3:158114409:158114938 Ptprt Intron   
chr3:163488431:163489121   Intergenic   
chr3:164180896:164181993 Slc9a8 Intron   
chr3:165828704:165829059   Intergenic   
chr3:171962462:171962893   Intergenic   
chr3:175607906:175608395   Intergenic   
chr3:21597908:21598331   Intergenic   
chr3:39088951:39089428   Intergenic   
chr3:45454549:45454984   Intergenic   
chr3:48004879:48005517 Slc4a10 Intron   
chr3:79256750:79257619 Ptprj Intron/exon boundary   
chr3:84947374:84947867   Intergenic   
chr3:95269262:95269821 LOC691083 Intron   
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chr3:95670322:95670727   Intergenic   
chr3:96090057:96090668   Intergenic   
chr4:10998474:10999573 Magi2 Intron   
chr4:111477535:111477970 Lrrtm4 Intron   
chr4:122270876:122271391   Intergenic   
chr4:124668174:124668889 Adamts9 Intron   
chr4:124873518:124873897   Intergenic   
chr4:141760520:141760948   Intergenic   
chr4:161260559:161261093   Intergenic   
chr4:167803157:167804132 Etv6 Intron   
chr4:17516038:17516612 Sema3e Intron   
chr4:17791405:17791861   Intergenic   
chr4:17792850:17794297   Intergenic   
chr4:17798464:17800049   Intergenic   
chr4:17825133:17825775   Intergenic   
chr4:18650248:18650703   Intergenic   
chr4:26911942:26912456   Intergenic   
chr4:41088494:41089248   Intergenic   
chr4:51418020:51419045   Intergenic   
chr4:51892608:51893466 Pot1 Intron/exon boundary   
chr4:58840091:58840538 Podxl Intron   
chr4:61955808:61956663   Intergenic   
chr4:65683298:65683739 Trim24 Intron/exon boundary   
chr4:81152751:81153537   Intergenic   
chr4:8719110:8719492   Intergenic   
chr4:89204967:89205584 Fam13a Intron/exon boundary   
chr5:106393982:106394394   Intergenic   
chr5:147440928:147441720   Intergenic   
chr5:166485057:166485637 Ctnnbip1 5'UTR; 1st exon   
chr5:168677499:168679243 Camta1 Intron   
chr5:169919769:169920236   Intergenic   
chr5:26047051:26047604   Intergenic   
chr5:35366183:35366617   Intergenic   
chr5:35464085:35464515   Intergenic   
chr5:61882239:61882863   Intergenic   
chr5:67629981:67630562   Intergenic   
chr5:83060298:83060916   Intergenic   
chr5:83602076:83602690   Intergenic   
chr5:83649671:83650115   Intergenic   
chr5:84618382:84619503   Intergenic   
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chr6:103914403:103916441   Intergenic   
chr6:109082698:109083739 Mlh3 Intron/exon boundary   
chr6:15773315:15773852   Intergenic   
chr6:28511897:28512337   Intergenic   
chr6:43218158:43218792   Intergenic   
chr6:44613686:44614353   Intergenic   
chr6:51046971:51047809   Intergenic   
chr6:53108700:53109636   Intergenic   
chr6:53112915:53113435   Intergenic   
chr6:54255811:54256413   Intergenic   
chr6:60514118:60515029   Intergenic   
chr6:60635422:60635989   Intergenic   
chr6:63841942:63842362   Intergenic   
chr7:104239546:104240006   Intergenic   
chr7:109815764:109816325   Intergenic   
chr7:110539631:110540182   Intergenic   
chr7:127168356:127168885   Intergenic   
chr7:145339032:145339991 Spt1 Promoter   
chr7:145556126:145556659   Intergenic   
chr7:18280334:18281065   Intergenic   
chr7:20723095:20723689   Intergenic   
chr7:25016890:25017352   Intergenic   
chr7:31345082:31345585 Anks1b Intron   
chr7:42435928:42436444   Intergenic   
chr7:59493923:59494405 Kcnmb4 Intron   
chr7:66837966:66838405   Intergenic   
chr7:76318035:76318554   Intergenic   
chr7:79416202:79416811   Intergenic   
chr7:81043458:81044076   Intergenic   
chr7:92294378:92295000   Intergenic   
chr7:96399886:96400449   Intergenic   
chr8:101557978:101558429   Intergenic   
chr8:104109151:104109770 Tfdp2 Intron   
chr8:110166628:110167472   Intergenic   
chr8:110252343:110252979   Intergenic   
chr8:119867043:119867715   Intergenic   
chr8:128478205:128478631 Scn11a Intron/exon boundary   
chr8:34038720:34039295   Intergenic   
chr8:39860982:39861801   Intergenic   
chr8:60106908:60107447   Intergenic   



 

 

256 

DMR Gene symbol Location CpG Island 

chr8:7686400:7686908   Intergenic   
chr8:79706784:79707311 Pigb Intron   
chr8:79839132:79840191   Intergenic   
chr8:96809632:96810068   Intergenic   
chr9:102613562:102614340   Intergenic   
chr9:113942634:113943096   Intergenic   
chr9:118717195:118717715 Dlgap1 Intron   
chr9:22522883:22523779   Intergenic   
chr9:37463415:37463844 Lgsn Intron   
chr9:40835:41323   Intergenic   
chr9:47189340:47190123 Il18r1 Intron   
chr9:54282336:54282842 Gls Exon; 3' UTR   
chr9:68420676:68421163 Pard3b Intron   
chr9:83955944:83956465   Intergenic   
chr9:86655782:86656259   Intergenic   
chr9:95301397:95301957 Ugt1a1 Intron/exon boundary   
chr9:95301397:95301957 Ugt1a2 Intron/exon boundary   
chr9:95301397:95301957 Ugt1a3 Intron/exon boundary   
chr9:95301397:95301957 Ugt1a5 Intron/exon boundary   
chr9:95301397:95301957 Ugt1a6 Intron/exon boundary   
chr9:95301397:95301957 Ugt1a6 Intron/exon boundary   
chr9:95301397:95301957 Ugt1a7c Intron/exon boundary   
chr9:95301397:95301957 Ugt1a8 Intron/exon boundary   
chr9:95301397:95301957 Ugt1a9 Intron/exon boundary   
chrUn_KL568295v1:15331:15829   Intergenic Yes 
chrUn_KL568307v1:11609:12122   Intergenic   
chrX:123235748:123236195   Intergenic   
chrX:27175013:27175448   Intergenic   
chrX:3922367:3922843   Intergenic   
chrX:83281162:83281867   Intergenic   
chrX:85550227:85551402   Intergenic   
chrX:87313178:87313849   Intergenic   
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Appendix C  Supplementary materials for chapter 4 

C.1 Supplementary methods 

Surrogate variable analysis (SVA) 

The SVA with the full sample resulted in the identification of 15 surrogate variables 

(SVs), with the first 2 SVs representing 27 and 20% of the variance respectively and the others 

less than 6% each (Supplementary figure 4.2A). We applied linear regression to each SV using 

each known covariate as potential predictor. We tested 8 known covariates: Run (2 levels = dates 

when 450k arrays were processed), Chip (18 levels = Chip carrying the sample), location (96 

levels = sample location on the array in each run), Plate_column (8 levels = column in 96-well 

plates), Plate_row (12 levels = row in 96-well plates), Sex (2 levels), Race (24 levels = self-

declared ethnicity), and Age (continuous). For the discrete variables with more than two levels, 

the multiple regression model was built with dummy variables. This results in models that 

include different amounts of variables. To compare the different models against each other, we 

obtained the R squared values, adjusted for the number of variables in each model 

(Supplementary figure 4.2B). Most surrogate variables are best explained by technical covariates 

and less by biological covariates. However, it is clear that a lot of the variance remains 

unexplained by known covariates and justifies our use of the SVs in our model to better account 

for unknown undesirable variation. 

 

Sensitivity analysis for family effect 

The data includes 44 sets of siblings/cousins. To investigate whether this impacts our 

results, we ran an additional differential methylation analysis on the full sample, using the same 

model that includes the clinical factor (FASD vs. Control) + all 15 SVs identified, with the 
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addition of ‘Family’ as a random effect, using the lme4 R package. We compared the results 

from this analysis to the original analysis. The Spearman rank correlation is 0.9996. There are 

1658 significant probes, 1601 overlap with the 1661 probes from the original analysis, 639 

overlap with the 658 final probes after ethnicity adjustment (Supplementary table 1). The 

difference is minor and we conclude that the presence of families in our cohort do not impact 

significantly our results. 

 

PAE vs FASD analysis 

We performed an additional differential methylation analysis after excluding 27 FASD 

samples with no official diagnosis (denoted PAE for Prenatal Alcohol Exposure). This analysis, 

including 96 controls and 83 FASDd (FASD with diagnosis), resulted in 502 significant DM 

probes at a FDR of 0.05, 461 of which overlap with the 1661 probes from the original analysis. 

The Spearman rank correlation between the results from the original analysis and the analysis 

without PAE is 0.7927. In addition, we ran ANOVA analyses for the 658 significant probes after 

ethnicity adjustment, on Control vs. FASDd, Control vs. PAE, and FASDd vs. PAE. We 

observed that, for most of the probes, methylation in controls is significantly different from 

either FASDd or PAE, while FASDd vs. PAE doesn’t lead to any significant results 

(Supplementary figure 4.9). We concluded from these results that the PAE samples are not 

significantly different from the FASDd samples and should be kept in the analysis as part of the 

broad FASD group. 
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Investigating ethnically-biased probes 

To investigate ethnically-biased probes (denoted “ethnic” probes below), we ran a 

differential methylation analysis on the FASD samples, looking for differences between samples 

from the 2 ethnic clusters identified in the MDS analysis (49 samples in cluster 1 vs. 53 samples 

in cluster 2). It is important to note that the ethnicity bias is directional – the FASD Group is 

confounded with the ethnic cluster 2 and this is only problematic when the direction of change is 

the same (e.g. higher in FASD and higher in cluster 2). We thus calculated the one-sided p values 

and rank for all probes in the above analysis and investigated separately the up-methylated and 

down-methylated “ethnic” probes. We obtained 1105 probes significantly differentially up-

methylated (FDR<0.05) and 594 probes differentially down-methylated (FDR<0.05) in the 

ethnic cluster 2. These overlap with 5 up-methylated and 4 down-methylated probes in FASD 

respectively, out of the 658 significant probes after ethnicity adjustment (Supplementary table 1). 

To investigate whether the ethnicity adjustment we performed was efficient at removing “ethnic” 

probes, we looked at the “ethnic” ranking of our significant FASD DM probes (Supplementary 

figure 4.4A). We performed a Receiver Operating Characteristic (ROC) analysis with the ethnic 

probes (Supplementary figure 4.4B). Our approach was to question how good the ethnic ranking 

was at predicting the 658 FASD DM probes, a high AUC indicating that the DM probes are in 

the top of the “ethnic” rank and thus very highly biased. Our results show that while the “ethnic” 

ranking can somewhat predict our 1661 FASD DM probes (AUC = 0.819 and 0.773 for up- and 

down-methylated probes respectively), it is much less effective at predicting our 658 FASD DM 

probes after ethnicity adjustment (AUC = 0.656 and 0.594 for up- and down-methylated probes 

respectively). These results confirm that our ethnicity adjustment is reducing the ethnic bias as 

expected. 
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Incorporating ethnicity as a set of covariates in the regression model 

We investigated the option of incorporating the ethnicity as a covariate in the model, 

using the genotyping data available. There are 195 samples with both genotyping and 

methylation data, 103 FASD and 92 controls. We tested different models and decided to perform 

a linear regression analysis using Limma with a model that includes the clinical factor (FASD vs. 

Control) + Gender + C1 + C2 + C3 (First 3 components from the MDS analysis) + family as a 

random factor. The multiple-testing adjusted significance threshold was established at p =  1.2 x 

10-7 (0.05/404030). No significant probes could be identified. This is expected because the 

FASD status is confounded with ethnicity and correcting for one will erase the small changes the 

can be observed in the other. 
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C.2 Supplementary figures 

 

Supplementary figure 4.1. Principal component analysis of buccal epithelial cell and blood 

samples. The first two principal components, which typically associate with cell type, are 

depicted for the buccal epithelial cell (BEC) samples from the present study and blood samples 

obtained from the Gene Expression Omnibus (those beginning with GSM). As shown here, both 

tissue types cluster separately and little to no blood contamination of BECs is apparent in the 

dataset, though may be slightly contaminated (samples near center of graph).  
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Supplementary figure 4.2. Exploration of surrogate variables. A. Scree plot of the percentage 

of variance represented by each surrogate variable generated from the entire dataset. B. Heatmap 

of R squared values from linear regression modeling of each SV with each known covariate. C. 

A 

B 

C 
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Heatmap of adjusted p-values from linear regression modeling of each SV with known 

covariates and genetic clusters (C1 to C4). 

 

 

 

Supplementary figure 4.3. Hierarchical clustering of individuals based on MDS analysis of 

genotyping data. Children with FASD (red) and controls (black) were clustered based on 

genetic scores from SNP genotyping. Two major clusters were identified from the unsupervised 

hierarchical clustering, which were further subdivided into the genetic clusters C1 to C4.  

 

C1 C2 

C3 C4 
Cluster 1 Cluster 2 
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Supplementary figure 4.4. Analysis of ethnically-biased probes in the 658 DM probes. A. 

Distribution of “ethnic” rank in the significantly up- and down-methylated probes before and 

after ethnicity adjustment. B. ROC curve demonstrating that the “ethnic” probes are less able to 

predict the FASD DM probes after ethnicity adjustment. 

 

A 

B 
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Supplementary figure 4.5. Distribution of socio-economic status scores for children in the 

FASD and control groups. A. In the full dataset, the distribution of socio-economic status 

(SES) scores is significantly different between groups (p=0.00017). B. By contrast, in the more 

ethnically homogeneous subgroup, the difference is no longer significant (p=0.16), suggesting 

A 

B 
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that these effects may have been partially corrected through the method used for genetic 

background correction.  

 

 

Supplementary figure 4.6. Pyrosequencing verification. Top row are Bland-Altman plots with 

the difference between the methylation values from the array and the pyrosequencing on the Y 

axis, and the average Beta values on the X axis. Bottom row are plots with the methylation level 

from the array on the Y axis and from the pyrosequencing on the X axis, with linear regression 

lines drawn as well as the Pearson correlation coefficient r. 
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Supplementary figure 4.7. Correlation of buccal and brain methylation at 658 DM CpGs. 

Points represent an individual CpG methylation in brain and buccal. The overall correlation of 

mean methylation between buccal and brain samples was 0.76. 
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Supplementary figure 4.8. Average distribution of DNA Methylation. The distribution of 

average DNA methylation for all probes on the 450K array displayed a bimodal distribution, 

with probes clustering in the lowly (0-20%) and highly (80-100%) methylated ranges. By 

contrast, probes that were significantly differentially methylated in children with FASD versus 

controls were more prevalent in intermediately methylated regions (Student’s t test; p = 2.5e-09). 
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Supplementary figure 4.9. P-value distributions from ANOVA analyses on 658 significant 

probes. P-value distributions obtained from linear regression analyses were skewed to the left in 

controls versus both diagnosed FASD cases (FASDd) and children with PAE, but undiagnosed 

for FASD. By contrast, the p-value distribution comparing both groups of children with PAE 

revealed a relatively flat distribution, suggesting that there little differences in DNA methylation 

patterns between diagnosed and undiagnosed children with PAE.Supplementary tables 
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C.3 Supplementary tables 

Supplementary table 4.1. Differentially methylated probes 

Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg10482532 3.96E-07 2.44E-03 0.795 0.733 0.061 
cg09895009 3.07E-05 2.13E-02 0.542 0.518 0.024 
cg01655958 5.56E-07 2.84E-03 0.509 0.378 0.131 
cg26693693 2.60E-08 6.92E-04 0.820 0.784 0.037 
cg22691119 6.14E-06 9.73E-03 0.836 0.799 0.037 
cg16414821 8.08E-05 3.25E-02 0.900 0.885 0.015 
cg10793758 2.45E-06 6.40E-03 0.796 0.753 0.043 
cg04707706 1.12E-05 1.25E-02 0.516 0.477 0.039 
cg26736200 3.54E-05 2.30E-02 0.729 0.691 0.038 
cg19075225 7.20E-06 1.01E-02 0.691 0.651 0.040 
cg20293942 3.38E-05 2.24E-02 0.681 0.653 0.029 
cg08064292 5.76E-06 9.66E-03 0.166 0.133 0.033 
cg04833646 2.46E-05 1.88E-02 0.048 0.039 0.010 
cg10946573 5.74E-05 2.76E-02 0.527 0.472 0.055 
cg18715709 6.78E-05 2.97E-02 0.813 0.800 0.013 
cg12893780 8.32E-08 1.41E-03 0.316 0.260 0.056 
cg11959399 7.04E-05 3.01E-02 0.316 0.281 0.035 
cg08329753 2.08E-08 6.45E-04 0.476 0.449 0.027 
cg24511341 6.64E-09 3.36E-04 0.167 0.152 0.015 
cg23418467 4.30E-05 2.47E-02 0.838 0.789 0.049 
cg19360675 1.24E-04 3.92E-02 0.092 0.071 0.021 
cg00043790 1.90E-05 1.66E-02 0.858 0.841 0.017 
cg27120934 3.28E-05 2.21E-02 0.230 0.206 0.023 
cg04456916 1.26E-04 3.94E-02 0.800 0.785 0.015 
cg22239534 3.26E-07 2.44E-03 0.782 0.749 0.033 
cg18057887 2.39E-05 1.86E-02 0.933 0.916 0.017 
cg02728342 3.96E-05 2.39E-02 0.839 0.827 0.013 
cg22129122 1.56E-07 1.63E-03 0.718 0.693 0.025 
cg15339164 2.26E-05 1.82E-02 0.564 0.536 0.028 
cg23660182 8.63E-05 3.36E-02 0.852 0.838 0.014 
cg11030744 5.97E-07 2.84E-03 0.580 0.510 0.070 
cg22910295 3.01E-06 6.79E-03 0.249 0.217 0.032 
cg22010140 8.02E-06 1.07E-02 0.538 0.514 0.024 
cg08212266 5.47E-06 9.48E-03 0.678 0.654 0.025 
cg15073666 3.32E-06 7.18E-03 0.607 0.570 0.038 
cg00012960 4.78E-05 2.57E-02 0.754 0.728 0.026 
cg19092735 3.28E-06 7.17E-03 0.719 0.685 0.034 
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Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg12536502 9.81E-06 1.15E-02 0.085 0.074 0.011 
cg24834889 6.84E-05 2.99E-02 0.107 0.091 0.017 
cg02642958 1.79E-09 1.45E-04 0.478 0.405 0.073 
cg02052956 3.74E-05 2.33E-02 0.455 0.440 0.016 
cg22123885 1.07E-04 3.65E-02 0.823 0.783 0.039 
cg01345586 3.86E-07 2.44E-03 0.592 0.560 0.032 
cg20906524 3.99E-05 2.39E-02 0.734 0.714 0.020 
cg21879102 2.33E-05 1.84E-02 0.556 0.523 0.033 
cg08701816 6.65E-09 3.36E-04 0.734 0.695 0.039 
cg03611029 1.08E-06 3.96E-03 0.685 0.650 0.035 
cg19901523 2.14E-06 5.88E-03 0.729 0.689 0.039 
cg01015062 1.46E-05 1.43E-02 0.828 0.809 0.019 
cg25491704 7.29E-06 1.02E-02 0.889 0.859 0.031 
cg18479249 2.45E-07 2.19E-03 0.385 0.351 0.034 
cg20506745 9.72E-06 1.15E-02 0.760 0.734 0.027 
cg12515485 5.36E-06 9.46E-03 0.553 0.507 0.046 
cg27247225 4.88E-05 2.58E-02 0.509 0.484 0.025 
cg09767675 1.82E-04 4.70E-02 0.768 0.753 0.016 
cg13809095 1.11E-05 1.23E-02 0.487 0.460 0.027 
cg09837169 2.54E-07 2.19E-03 0.806 0.777 0.029 
cg14765933 1.40E-04 4.13E-02 0.841 0.827 0.015 
cg25609517 1.39E-05 1.39E-02 0.716 0.613 0.103 
cg08271366 1.40E-04 4.13E-02 0.524 0.482 0.043 
cg24269657 5.89E-06 9.66E-03 0.290 0.262 0.028 
cg03967266 9.99E-05 3.56E-02 0.783 0.761 0.022 
cg15150463 1.13E-04 3.74E-02 0.734 0.715 0.019 
cg02197634 8.11E-07 3.48E-03 0.792 0.705 0.087 
cg21047695 6.45E-06 9.79E-03 0.408 0.367 0.042 
cg24317217 3.36E-05 2.24E-02 0.755 0.739 0.017 
cg00892368 1.88E-04 4.81E-02 0.487 0.464 0.023 
cg22659953 2.75E-06 6.49E-03 0.771 0.737 0.034 
cg24800175 4.18E-06 8.36E-03 0.294 0.234 0.059 
cg12880095 6.89E-05 3.00E-02 0.232 0.180 0.052 
cg01290710 7.35E-05 3.09E-02 0.770 0.753 0.017 
cg17848054 1.93E-05 1.68E-02 0.270 0.234 0.036 
cg13741289 1.89E-04 4.81E-02 0.029 0.027 0.002 
cg08489410 1.25E-05 1.33E-02 0.921 0.904 0.017 
cg01663696 1.04E-04 3.61E-02 0.629 0.603 0.026 
cg05532178 2.80E-05 2.00E-02 0.730 0.707 0.023 
cg07654559 7.14E-06 1.01E-02 0.118 0.106 0.011 
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Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg24506604 1.29E-04 3.99E-02 0.864 0.844 0.020 
cg23161492 9.04E-05 3.41E-02 0.722 0.696 0.026 
cg07470694 1.97E-04 4.89E-02 0.849 0.833 0.016 
cg10804974 1.00E-05 1.15E-02 0.680 0.648 0.032 
cg09459548 1.94E-05 1.68E-02 0.811 0.785 0.026 
cg07007080 7.52E-06 1.04E-02 0.122 0.113 0.010 
cg02814482 1.05E-04 3.62E-02 0.769 0.740 0.029 
cg14549524 5.58E-06 9.53E-03 0.855 0.841 0.014 
cg07500347 4.50E-06 8.48E-03 0.730 0.665 0.065 
cg09066361 9.90E-05 3.55E-02 0.468 0.432 0.035 
cg06812861 9.69E-07 3.93E-03 0.841 0.820 0.020 
cg26231094 1.02E-06 3.96E-03 0.556 0.505 0.052 
cg18174404 2.65E-05 1.95E-02 0.281 0.252 0.028 
cg04151826 3.11E-05 2.14E-02 0.803 0.779 0.024 
cg13881341 2.91E-06 6.72E-03 0.339 0.310 0.029 
cg17352045 1.43E-05 1.41E-02 0.518 0.491 0.027 
cg25236277 3.99E-07 2.44E-03 0.808 0.788 0.020 
cg08535756 5.03E-06 8.99E-03 0.743 0.723 0.020 
cg27409974 1.88E-06 5.50E-03 0.563 0.517 0.045 
cg14556787 9.22E-05 3.44E-02 0.900 0.892 0.008 
cg08102508 6.80E-06 9.99E-03 0.159 0.145 0.014 
cg06915053 2.56E-05 1.91E-02 0.056 0.052 0.004 
cg00464520 1.39E-04 4.13E-02 0.555 0.528 0.027 
cg16096766 4.54E-06 8.48E-03 0.727 0.704 0.023 
cg11253737 1.09E-04 3.68E-02 0.617 0.597 0.020 
cg05665581 9.67E-05 3.52E-02 0.745 0.716 0.029 
cg01206944 3.28E-05 2.21E-02 0.598 0.565 0.033 
cg03411938 7.55E-05 3.12E-02 0.657 0.636 0.021 
cg24499411 1.28E-04 3.97E-02 0.903 0.893 0.010 
cg05252487 2.35E-06 6.19E-03 0.303 0.274 0.029 
cg12192797 5.31E-05 2.70E-02 0.839 0.816 0.023 
cg00610991 1.07E-04 3.64E-02 0.567 0.529 0.038 
cg16614020 6.89E-06 1.00E-02 0.686 0.650 0.036 
cg02487233 1.25E-04 3.94E-02 0.554 0.527 0.027 
cg02361459 4.25E-06 8.45E-03 0.889 0.875 0.014 
cg16409039 4.47E-05 2.50E-02 0.808 0.792 0.015 
cg13557373 2.93E-05 2.05E-02 0.749 0.730 0.020 
cg06121352 9.83E-07 3.93E-03 0.775 0.737 0.038 
cg27135984 3.76E-05 2.33E-02 0.847 0.831 0.015 
cg00971737 9.04E-05 3.41E-02 0.366 0.351 0.015 
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Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg19555986 4.60E-05 2.52E-02 0.054 0.047 0.008 
cg17921548 1.05E-04 3.63E-02 0.746 0.723 0.023 
cg11770664 1.28E-05 1.35E-02 0.622 0.596 0.026 
cg19308397 5.76E-05 2.76E-02 0.823 0.807 0.016 
cg17248961 1.06E-04 3.64E-02 0.842 0.828 0.013 
cg19275200 3.83E-05 2.35E-02 0.909 0.899 0.011 
cg10822352 1.13E-04 3.73E-02 0.517 0.491 0.026 
cg06154313 8.25E-05 3.29E-02 0.267 0.253 0.014 
cg02309230 9.28E-05 3.44E-02 0.882 0.868 0.015 
cg03928546 9.21E-05 3.43E-02 0.103 0.093 0.010 
cg19402173 8.13E-05 3.27E-02 0.079 0.073 0.006 
cg01862688 9.27E-06 1.12E-02 0.578 0.552 0.027 
cg26127778 4.31E-05 2.47E-02 0.046 0.040 0.005 
cg08772837 2.92E-05 2.05E-02 0.798 0.782 0.016 
cg23356309 9.01E-05 3.41E-02 0.876 0.859 0.017 
cg04217218 6.23E-06 9.73E-03 0.672 0.649 0.023 
cg02096656 2.35E-05 1.84E-02 0.179 0.163 0.015 
cg08072202 6.24E-05 2.84E-02 0.583 0.563 0.020 
cg14219900 2.81E-05 2.01E-02 0.407 0.382 0.026 
cg12680326 1.28E-04 3.98E-02 0.071 0.066 0.005 
cg00227156 2.26E-06 6.04E-03 0.080 0.070 0.010 
cg25353064 1.36E-05 1.36E-02 0.857 0.847 0.010 
cg16418105 9.31E-06 1.12E-02 0.764 0.736 0.028 
cg21257581 8.05E-06 1.07E-02 0.730 0.714 0.016 
cg24033103 2.53E-05 1.91E-02 0.829 0.804 0.026 
cg04785587 7.12E-06 1.01E-02 0.778 0.752 0.027 
cg27295595 5.98E-06 9.66E-03 0.535 0.501 0.035 
cg08039322 2.03E-05 1.71E-02 0.082 0.075 0.007 
cg25799797 1.15E-05 1.26E-02 0.746 0.719 0.027 
cg10078335 8.90E-06 1.10E-02 0.796 0.737 0.059 
cg05358814 8.79E-06 1.09E-02 0.053 0.042 0.010 
cg08589214 5.62E-06 9.53E-03 0.834 0.797 0.037 
cg27438218 3.99E-05 2.39E-02 0.588 0.560 0.028 
cg09084256 4.15E-05 2.43E-02 0.484 0.465 0.019 
cg00736201 1.31E-04 4.02E-02 0.909 0.901 0.008 
cg17163363 1.03E-04 3.59E-02 0.303 0.280 0.022 
cg01216369 2.27E-05 1.82E-02 0.878 0.864 0.014 
cg10209089 9.99E-06 1.15E-02 0.525 0.505 0.019 
cg14228272 1.76E-05 1.61E-02 0.644 0.617 0.027 
cg02411950 1.09E-04 3.68E-02 0.088 0.080 0.008 
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Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg22940961 5.06E-05 2.64E-02 0.913 0.906 0.007 
cg08796706 8.49E-05 3.33E-02 0.829 0.808 0.021 
cg24127414 3.83E-05 2.35E-02 0.694 0.655 0.040 
cg27129048 4.58E-06 8.48E-03 0.699 0.675 0.024 
cg22070991 6.48E-05 2.90E-02 0.117 0.105 0.013 
cg05178654 5.79E-05 2.76E-02 0.073 0.065 0.008 
cg15032166 2.00E-05 1.71E-02 0.359 0.341 0.018 
cg12856447 1.58E-05 1.50E-02 0.135 0.116 0.019 
cg12734820 2.14E-05 1.75E-02 0.874 0.814 0.060 
cg07626033 3.62E-06 7.65E-03 0.874 0.860 0.014 
cg00648582 7.98E-05 3.23E-02 0.947 0.943 0.004 
cg15928534 4.85E-05 2.58E-02 0.055 0.051 0.004 
cg14841350 5.75E-05 2.76E-02 0.868 0.855 0.013 
cg18147104 5.76E-05 2.76E-02 0.927 0.913 0.014 
cg14166009 4.50E-05 2.50E-02 0.196 0.174 0.022 
cg07723921 1.62E-04 4.45E-02 0.481 0.464 0.017 
cg04622001 1.17E-06 4.11E-03 0.462 0.437 0.026 
cg12486795 1.77E-04 4.63E-02 0.774 0.735 0.039 
cg19037350 5.09E-05 2.65E-02 0.321 0.302 0.019 
cg21048669 9.15E-05 3.42E-02 0.440 0.422 0.018 
cg16782174 3.48E-05 2.29E-02 0.927 0.922 0.005 
cg05813818 7.90E-07 3.47E-03 0.558 0.486 0.071 
cg09681675 4.74E-06 8.70E-03 0.757 0.718 0.038 
cg08076108 2.78E-05 2.00E-02 0.171 0.156 0.015 
cg22672067 6.18E-05 2.83E-02 0.451 0.419 0.032 
cg10350263 2.93E-06 6.72E-03 0.375 0.345 0.030 
cg25059434 4.29E-05 2.47E-02 0.898 0.885 0.012 
cg21857190 3.29E-05 2.21E-02 0.616 0.577 0.039 
cg18489195 3.96E-05 2.39E-02 0.134 0.119 0.015 
cg18054674 8.66E-11 1.97E-05 0.479 0.436 0.043 
cg18865832 1.34E-05 1.36E-02 0.826 0.805 0.022 
cg27384070 7.33E-06 1.02E-02 0.777 0.760 0.017 
cg13712818 5.49E-06 9.48E-03 0.649 0.619 0.030 
cg25182501 1.30E-04 4.01E-02 0.907 0.899 0.007 
cg22702960 1.06E-04 3.64E-02 0.899 0.887 0.012 
cg02666302 1.20E-04 3.85E-02 0.481 0.459 0.022 
cg14379630 1.35E-05 1.36E-02 0.095 0.083 0.012 
cg02858267 2.79E-05 2.00E-02 0.749 0.719 0.030 
cg06913501 7.64E-06 1.04E-02 0.074 0.069 0.005 
cg21117330 2.46E-07 2.19E-03 0.422 0.376 0.046 
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cg14905731 7.70E-05 3.16E-02 0.902 0.890 0.012 
cg20138186 3.35E-05 2.24E-02 0.749 0.730 0.019 
cg21040775 7.70E-06 1.04E-02 0.227 0.203 0.024 
cg07324496 1.41E-04 4.13E-02 0.694 0.651 0.044 
cg09229169 1.53E-04 4.30E-02 0.847 0.839 0.007 
cg01181415 3.49E-05 2.29E-02 0.309 0.294 0.016 
cg06114363 5.33E-05 2.70E-02 0.846 0.830 0.016 
cg01595666 9.21E-05 3.43E-02 0.622 0.606 0.015 
cg16006738 8.66E-05 3.36E-02 0.753 0.737 0.016 
cg25075776 1.14E-04 3.75E-02 0.654 0.628 0.025 
cg05477514 1.94E-04 4.86E-02 0.134 0.126 0.009 
cg01578398 4.86E-05 2.58E-02 0.139 0.131 0.008 
cg20254763 1.38E-04 4.12E-02 0.724 0.699 0.026 
cg26416341 6.57E-05 2.91E-02 0.067 0.059 0.008 
cg16904330 9.04E-05 3.41E-02 0.612 0.592 0.021 
cg00202441 1.78E-04 4.65E-02 0.268 0.251 0.017 
cg12014113 1.00E-05 1.15E-02 0.889 0.879 0.010 
cg13416249 2.12E-06 5.88E-03 0.817 0.766 0.051 
cg09879382 1.99E-04 4.92E-02 0.766 0.738 0.029 
cg14898768 5.21E-05 2.68E-02 0.843 0.826 0.017 
cg01346077 2.03E-05 1.71E-02 0.122 0.107 0.015 
cg00690809 7.75E-05 3.17E-02 0.749 0.728 0.021 
cg03465782 8.95E-05 3.40E-02 0.022 0.020 0.002 
cg02580969 6.17E-05 2.83E-02 0.707 0.690 0.017 
cg03318904 4.55E-05 2.52E-02 0.572 0.556 0.016 
cg05938607 5.03E-05 2.64E-02 0.627 0.598 0.028 
cg16567202 6.82E-05 2.98E-02 0.823 0.812 0.012 
cg13521077 1.35E-05 1.36E-02 0.757 0.734 0.023 
cg07377907 8.87E-05 3.39E-02 0.809 0.794 0.015 
cg09176023 1.39E-04 4.13E-02 0.822 0.788 0.033 
cg25600027 4.78E-05 2.57E-02 0.045 0.041 0.004 
cg26656658 1.88E-04 4.81E-02 0.798 0.777 0.022 
cg11262093 8.39E-06 1.08E-02 0.859 0.847 0.012 
cg11210069 4.03E-05 2.40E-02 0.700 0.674 0.026 
cg10824677 1.20E-04 3.85E-02 0.911 0.901 0.010 
cg12768523 2.03E-05 1.71E-02 0.666 0.640 0.025 
cg05627398 3.71E-07 2.44E-03 0.663 0.635 0.028 
cg20699141 1.47E-04 4.23E-02 0.480 0.459 0.021 
cg08019384 1.56E-04 4.36E-02 0.701 0.676 0.025 
cg21222426 4.29E-05 2.47E-02 0.183 0.166 0.017 
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Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg25842763 1.01E-04 3.56E-02 0.903 0.890 0.012 
cg07880854 8.08E-06 1.07E-02 0.201 0.178 0.023 
cg13502252 1.38E-04 4.12E-02 0.772 0.756 0.016 
cg00408773 6.89E-05 3.00E-02 0.408 0.387 0.021 
cg00063773 6.14E-05 2.83E-02 0.424 0.398 0.026 
cg08108641 5.80E-05 2.76E-02 0.788 0.767 0.021 
cg26880735 6.13E-06 9.73E-03 0.517 0.467 0.050 
cg26723162 4.00E-05 2.39E-02 0.389 0.370 0.019 
cg12008047 7.44E-05 3.11E-02 0.891 0.879 0.012 
cg04234014 8.87E-05 3.39E-02 0.748 0.729 0.019 
cg12285605 7.00E-06 1.00E-02 0.776 0.750 0.026 
cg18237551 3.54E-05 2.30E-02 0.095 0.087 0.008 
cg19748485 9.97E-05 3.55E-02 0.389 0.369 0.020 
cg00956573 1.96E-04 4.89E-02 0.080 0.075 0.005 
cg07251128 5.22E-05 2.68E-02 0.844 0.832 0.012 
cg27151362 1.83E-05 1.63E-02 0.456 0.438 0.017 
cg02760112 1.16E-05 1.26E-02 0.100 0.090 0.010 
cg07830534 8.32E-05 3.30E-02 0.929 0.921 0.008 
cg11944462 1.91E-04 4.83E-02 0.723 0.695 0.027 
cg17059564 5.81E-07 2.84E-03 0.843 0.821 0.023 
cg05491767 6.04E-05 2.80E-02 0.777 0.751 0.026 
cg15734436 7.63E-05 3.14E-02 0.392 0.360 0.032 
cg21462934 7.01E-06 1.00E-02 0.871 0.850 0.021 
cg21030607 1.41E-04 4.14E-02 0.747 0.714 0.033 
cg03359468 6.28E-05 2.86E-02 0.098 0.091 0.007 
cg04009441 1.37E-04 4.11E-02 0.670 0.647 0.023 
cg02773588 8.08E-05 3.25E-02 0.709 0.685 0.024 
cg17914838 1.10E-04 3.68E-02 0.875 0.855 0.020 
cg15023038 1.50E-04 4.26E-02 0.855 0.839 0.016 
cg26614816 1.27E-04 3.96E-02 0.114 0.102 0.012 
cg23978358 4.19E-05 2.45E-02 0.832 0.819 0.014 
cg20306534 1.04E-04 3.62E-02 0.945 0.940 0.004 
cg21051972 7.68E-06 1.04E-02 0.113 0.101 0.012 
cg21785245 9.32E-05 3.45E-02 0.862 0.841 0.021 
cg21225504 1.82E-04 4.70E-02 0.855 0.842 0.012 
cg15636421 1.16E-04 3.78E-02 0.530 0.503 0.027 
cg04180046 2.21E-07 2.12E-03 0.230 0.203 0.027 
cg09436545 2.48E-05 1.88E-02 0.550 0.509 0.041 
cg08388455 7.04E-05 3.01E-02 0.592 0.573 0.018 
cg04089332 1.47E-04 4.22E-02 0.604 0.590 0.014 
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Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg12333845 3.62E-06 7.65E-03 0.511 0.485 0.026 
cg02163378 4.70E-05 2.55E-02 0.637 0.609 0.028 
cg21324308 2.05E-05 1.72E-02 0.734 0.712 0.022 
cg09761265 9.43E-05 3.46E-02 0.786 0.766 0.019 
cg21591807 5.44E-06 9.48E-03 0.874 0.861 0.013 
cg23492399 5.18E-05 2.68E-02 0.151 0.127 0.025 
cg03670369 7.14E-05 3.04E-02 0.961 0.956 0.004 
cg02527881 9.91E-05 3.55E-02 0.630 0.585 0.045 
cg00246301 1.28E-04 3.97E-02 0.915 0.906 0.010 
cg18082362 5.40E-05 2.71E-02 0.234 0.216 0.019 
cg05115862 1.93E-04 4.85E-02 0.884 0.860 0.024 
cg02376887 7.56E-05 3.13E-02 0.861 0.843 0.018 
cg14724749 1.44E-04 4.17E-02 0.449 0.413 0.036 
cg10598595 1.02E-04 3.57E-02 0.043 0.039 0.004 
cg05435295 7.66E-05 3.15E-02 0.630 0.612 0.018 
cg20821838 1.65E-04 4.48E-02 0.906 0.894 0.012 
cg09511421 7.32E-05 3.09E-02 0.346 0.315 0.031 
cg16962008 4.51E-05 2.50E-02 0.152 0.138 0.014 
cg18920097 1.09E-05 1.22E-02 0.271 0.254 0.017 
cg19470832 4.41E-05 2.48E-02 0.780 0.756 0.024 
cg15225534 1.43E-04 4.15E-02 0.921 0.915 0.006 
cg21496518 5.87E-05 2.77E-02 0.308 0.295 0.013 
cg10755035 1.25E-04 3.93E-02 0.470 0.447 0.023 
cg26487259 1.73E-05 1.60E-02 0.689 0.644 0.044 
cg11552868 1.11E-04 3.71E-02 0.785 0.768 0.017 
cg19734433 1.00E-04 3.56E-02 0.566 0.539 0.027 
cg20130789 1.20E-04 3.85E-02 0.916 0.904 0.012 
cg20360285 1.40E-04 4.13E-02 0.845 0.834 0.011 
cg27100140 4.22E-05 2.45E-02 0.498 0.480 0.018 
cg20524128 4.29E-05 2.47E-02 0.194 0.182 0.012 
cg23228529 5.43E-05 2.71E-02 0.341 0.276 0.065 
cg10930290 1.70E-04 4.54E-02 0.799 0.778 0.021 
cg22132788 8.87E-05 3.39E-02 0.295 0.261 0.034 
cg05834603 1.15E-04 3.76E-02 0.848 0.835 0.013 
cg03584351 1.81E-04 4.69E-02 0.678 0.650 0.028 
cg06711175 1.07E-05 1.20E-02 0.663 0.639 0.024 
cg15497724 1.75E-04 4.61E-02 0.748 0.713 0.035 
cg12559474 2.01E-04 4.94E-02 0.648 0.622 0.026 
cg22455271 9.64E-05 3.51E-02 0.735 0.712 0.023 
cg03062564 2.68E-07 2.21E-03 0.164 0.144 0.020 
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Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg00812096 1.22E-04 3.87E-02 0.751 0.729 0.022 
cg22924796 2.09E-05 1.73E-02 0.894 0.876 0.018 
cg27370131 4.15E-05 2.43E-02 0.070 0.063 0.007 
cg02539153 1.92E-04 4.83E-02 0.523 0.488 0.035 
cg14204430 4.33E-05 2.47E-02 0.577 0.549 0.028 
cg03667083 2.12E-05 1.75E-02 0.672 0.649 0.024 
cg08268892 1.26E-04 3.94E-02 0.852 0.840 0.012 
cg04450459 3.63E-05 2.31E-02 0.311 0.279 0.032 
cg21481662 9.74E-05 3.53E-02 0.073 0.068 0.005 
cg03829194 1.80E-04 4.67E-02 0.244 0.231 0.013 
cg19100988 1.86E-04 4.76E-02 0.598 0.579 0.019 
cg14827832 8.62E-06 1.09E-02 0.583 0.563 0.020 
cg10831285 2.64E-05 1.95E-02 0.617 0.590 0.027 
cg01353941 2.04E-04 4.98E-02 0.829 0.802 0.027 
cg25967612 1.69E-04 4.52E-02 0.835 0.817 0.018 
cg11024687 6.78E-05 2.97E-02 0.728 0.708 0.020 
cg15484354 1.61E-04 4.43E-02 0.865 0.852 0.013 
cg01787574 3.73E-05 2.33E-02 0.281 0.261 0.021 
cg13118072 1.96E-04 4.88E-02 0.063 0.058 0.005 
cg10135520 2.04E-04 4.98E-02 0.054 0.048 0.006 
cg11353300 1.21E-04 3.85E-02 0.860 0.850 0.011 
cg23348582 9.13E-05 3.42E-02 0.337 0.326 0.011 
cg02139853 2.03E-04 4.98E-02 0.854 0.843 0.011 
cg11663289 5.35E-07 2.84E-03 0.130 0.121 0.009 
cg08289525 5.09E-07 2.78E-03 0.658 0.631 0.027 
cg23930711 2.74E-07 2.21E-03 0.192 0.169 0.023 
cg04417556 6.24E-05 2.84E-02 0.081 0.075 0.005 
cg03817911 1.16E-04 3.77E-02 0.068 0.062 0.006 
cg03357547 4.42E-06 8.48E-03 0.440 0.413 0.026 
cg13010014 4.88E-06 8.81E-03 0.498 0.468 0.029 
cg09914773 1.21E-05 1.30E-02 0.661 0.636 0.024 
cg05389922 5.43E-05 2.71E-02 0.351 0.338 0.013 
cg22573118 7.89E-05 3.21E-02 0.926 0.920 0.006 
cg03625515 6.25E-06 9.73E-03 0.784 0.769 0.015 
cg27105390 1.14E-04 3.75E-02 0.301 0.284 0.017 
cg21838625 9.78E-05 3.53E-02 0.340 0.321 0.019 
cg03032816 4.88E-05 2.58E-02 0.919 0.910 0.010 
cg13785189 8.51E-05 3.34E-02 0.051 0.046 0.005 
cg01134643 1.51E-04 4.27E-02 0.838 0.822 0.016 
cg13485320 1.71E-09 1.45E-04 0.252 0.291 -0.039 
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Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg01031400 4.23E-09 2.85E-04 0.104 0.117 -0.013 
cg02822788 9.85E-09 4.35E-04 0.435 0.477 -0.042 
cg11900509 1.18E-08 4.35E-04 0.778 0.821 -0.042 
cg01628053 2.07E-08 6.45E-04 0.652 0.704 -0.052 
cg19566764 2.74E-08 6.92E-04 0.115 0.130 -0.016 
cg15527515 4.26E-08 9.55E-04 0.165 0.214 -0.049 
cg20307184 4.07E-08 9.55E-04 0.574 0.629 -0.055 
cg13423554 5.17E-08 1.10E-03 0.121 0.147 -0.027 
cg09245003 6.33E-08 1.28E-03 0.852 0.877 -0.025 
cg23190089 8.73E-08 1.41E-03 0.624 0.663 -0.040 
cg03919488 9.20E-08 1.43E-03 0.155 0.199 -0.044 
cg14219124 1.02E-07 1.47E-03 0.061 0.073 -0.013 
cg09939948 1.36E-07 1.60E-03 0.069 0.081 -0.012 
cg05767421 1.43E-07 1.60E-03 0.165 0.186 -0.022 
cg10944833 1.43E-07 1.60E-03 0.442 0.486 -0.044 
cg13323489 1.57E-07 1.63E-03 0.649 0.674 -0.025 
cg03663556 1.55E-07 1.63E-03 0.305 0.348 -0.043 
cg08580187 2.28E-07 2.14E-03 0.769 0.792 -0.023 
cg04134048 3.11E-07 2.41E-03 0.067 0.075 -0.008 
cg24218620 3.16E-07 2.41E-03 0.248 0.279 -0.031 
cg11966524 4.28E-07 2.44E-03 0.776 0.795 -0.020 
cg09345786 3.93E-07 2.44E-03 0.446 0.477 -0.031 
cg13075295 4.09E-07 2.44E-03 0.144 0.177 -0.033 
cg04195855 4.04E-07 2.44E-03 0.196 0.261 -0.064 
cg24033661 4.50E-07 2.53E-03 0.539 0.585 -0.046 
cg21853021 4.67E-07 2.59E-03 0.341 0.390 -0.049 
cg09654116 5.62E-07 2.84E-03 0.569 0.612 -0.043 
cg09292069 5.86E-07 2.84E-03 0.704 0.735 -0.031 
cg06711306 5.95E-07 2.84E-03 0.541 0.583 -0.042 
cg25702651 6.47E-07 2.97E-03 0.250 0.335 -0.085 
cg06382028 6.41E-07 2.97E-03 0.329 0.451 -0.122 
cg24292665 7.71E-07 3.42E-03 0.357 0.383 -0.026 
cg11953516 8.02E-07 3.48E-03 0.681 0.706 -0.026 
cg00939684 9.75E-07 3.93E-03 0.768 0.785 -0.017 
cg10537821 9.75E-07 3.93E-03 0.845 0.866 -0.021 
cg11130630 1.04E-06 3.96E-03 0.673 0.711 -0.038 
cg17098979 1.16E-06 4.11E-03 0.809 0.831 -0.022 
cg05512869 1.29E-06 4.33E-03 0.680 0.718 -0.037 
cg25949338 1.33E-06 4.33E-03 0.398 0.457 -0.059 
cg20684180 1.40E-06 4.50E-03 0.110 0.126 -0.015 
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Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg01715680 1.54E-06 4.76E-03 0.646 0.687 -0.040 
cg16072777 1.53E-06 4.76E-03 0.136 0.216 -0.080 
cg19995899 1.70E-06 5.05E-03 0.860 0.884 -0.024 
cg00371301 1.89E-06 5.50E-03 0.949 0.954 -0.005 
cg27298830 1.97E-06 5.57E-03 0.862 0.883 -0.021 
cg20703671 2.14E-06 5.88E-03 0.431 0.449 -0.017 
cg02207200 2.23E-06 6.04E-03 0.090 0.112 -0.022 
cg10070864 2.33E-06 6.19E-03 0.438 0.490 -0.052 
cg07386859 2.49E-06 6.43E-03 0.851 0.874 -0.022 
cg06297194 2.59E-06 6.46E-03 0.862 0.886 -0.024 
cg23976431 2.55E-06 6.46E-03 0.472 0.503 -0.031 
cg14195115 2.69E-06 6.49E-03 0.510 0.557 -0.047 
cg04398451 2.73E-06 6.49E-03 0.796 0.855 -0.059 
cg07927540 2.71E-06 6.49E-03 0.221 0.280 -0.059 
cg19872095 2.81E-06 6.57E-03 0.603 0.641 -0.038 
cg04099543 2.86E-06 6.64E-03 0.659 0.685 -0.026 
cg04760708 3.06E-06 6.87E-03 0.852 0.872 -0.021 
cg18064714 3.10E-06 6.92E-03 0.098 0.112 -0.015 
cg08857221 3.14E-06 6.96E-03 0.615 0.657 -0.042 
cg13916255 3.84E-06 8.08E-03 0.529 0.590 -0.061 
cg17970176 3.94E-06 8.20E-03 0.739 0.769 -0.029 
cg09245872 4.02E-06 8.21E-03 0.680 0.697 -0.018 
cg01895612 4.01E-06 8.21E-03 0.724 0.751 -0.027 
cg26112661 3.99E-06 8.21E-03 0.205 0.247 -0.041 
cg23588928 4.11E-06 8.30E-03 0.909 0.921 -0.012 
cg00588297 4.27E-06 8.45E-03 0.509 0.538 -0.029 
cg14054283 4.31E-06 8.46E-03 0.352 0.397 -0.045 
cg08570472 4.41E-06 8.48E-03 0.476 0.526 -0.050 
cg17995197 4.54E-06 8.48E-03 0.463 0.519 -0.057 
cg23948825 4.80E-06 8.73E-03 0.898 0.909 -0.011 
cg20065463 4.78E-06 8.73E-03 0.163 0.195 -0.032 
cg27118929 4.87E-06 8.81E-03 0.800 0.824 -0.024 
cg12692682 5.87E-06 9.66E-03 0.629 0.662 -0.033 
cg10707081 6.21E-06 9.73E-03 0.704 0.739 -0.034 
cg17496887 6.08E-06 9.73E-03 0.759 0.800 -0.040 
cg00077566 6.30E-06 9.73E-03 0.909 0.955 -0.046 
cg00092400 6.42E-06 9.78E-03 0.623 0.656 -0.032 
cg03757387 6.42E-06 9.78E-03 0.479 0.537 -0.058 
cg02704570 6.53E-06 9.83E-03 0.733 0.749 -0.016 
cg22893791 6.73E-06 9.94E-03 0.378 0.429 -0.051 
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Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg22283925 6.90E-06 1.00E-02 0.412 0.434 -0.022 
cg22338356 6.87E-06 1.00E-02 0.509 0.555 -0.046 
cg10238145 7.06E-06 1.00E-02 0.487 0.527 -0.040 
cg06864895 7.76E-06 1.05E-02 0.200 0.239 -0.039 
cg03230711 8.13E-06 1.07E-02 0.079 0.095 -0.016 
cg18681352 7.99E-06 1.07E-02 0.195 0.214 -0.019 
cg20961387 8.18E-06 1.07E-02 0.650 0.673 -0.023 
cg08621957 8.19E-06 1.07E-02 0.503 0.542 -0.039 
cg15867428 8.49E-06 1.08E-02 0.128 0.144 -0.016 
cg16848712 8.75E-06 1.09E-02 0.241 0.260 -0.019 
cg17198772 9.33E-06 1.12E-02 0.776 0.799 -0.023 
cg17343167 9.29E-06 1.12E-02 0.431 0.461 -0.030 
cg13055001 1.03E-05 1.16E-02 0.228 0.253 -0.025 
cg04108939 1.10E-05 1.23E-02 0.076 0.083 -0.007 
cg03583111 1.16E-05 1.26E-02 0.394 0.426 -0.032 
cg26821681 1.16E-05 1.26E-02 0.573 0.606 -0.032 
cg23069297 1.15E-05 1.26E-02 0.762 0.837 -0.075 
cg05249460 1.23E-05 1.31E-02 0.771 0.791 -0.020 
cg23586138 1.23E-05 1.31E-02 0.426 0.461 -0.035 
cg07519373 1.24E-05 1.32E-02 0.711 0.757 -0.045 
cg18235690 1.28E-05 1.35E-02 0.387 0.414 -0.027 
cg01099220 1.34E-05 1.36E-02 0.124 0.141 -0.017 
cg11737831 1.35E-05 1.36E-02 0.302 0.320 -0.018 
cg17491622 1.32E-05 1.36E-02 0.260 0.287 -0.027 
cg11335335 1.33E-05 1.36E-02 0.437 0.492 -0.056 
cg19273668 1.36E-05 1.36E-02 0.938 0.944 -0.006 
cg14387743 1.44E-05 1.41E-02 0.320 0.364 -0.044 
cg24640156 1.50E-05 1.44E-02 0.768 0.830 -0.062 
cg07266431 1.58E-05 1.50E-02 0.518 0.550 -0.032 
cg26523175 1.61E-05 1.51E-02 0.301 0.350 -0.049 
cg17121120 1.77E-05 1.62E-02 0.065 0.073 -0.007 
cg20164964 1.81E-05 1.63E-02 0.318 0.354 -0.036 
cg00625443 1.94E-05 1.68E-02 0.921 0.930 -0.009 
cg26371345 1.96E-05 1.68E-02 0.332 0.389 -0.057 
cg22767461 2.06E-05 1.72E-02 0.721 0.750 -0.028 
cg23987134 2.09E-05 1.73E-02 0.704 0.733 -0.030 
cg07527324 2.13E-05 1.75E-02 0.844 0.857 -0.013 
cg15835339 2.21E-05 1.79E-02 0.825 0.847 -0.022 
cg02467382 2.29E-05 1.82E-02 0.871 0.884 -0.014 
cg08072217 2.28E-05 1.82E-02 0.466 0.503 -0.038 
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Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg08244301 2.30E-05 1.83E-02 0.729 0.743 -0.014 
cg12604031 2.31E-05 1.83E-02 0.459 0.493 -0.034 
cg12386061 2.35E-05 1.84E-02 0.094 0.107 -0.012 
cg06261066 2.43E-05 1.87E-02 0.621 0.658 -0.037 
cg01479187 2.63E-05 1.94E-02 0.100 0.115 -0.015 
cg06943912 2.68E-05 1.96E-02 0.647 0.696 -0.050 
cg04609875 2.84E-05 2.01E-02 0.636 0.664 -0.028 
cg17132030 2.83E-05 2.01E-02 0.387 0.421 -0.035 
cg18458509 2.86E-05 2.02E-02 0.772 0.797 -0.025 
cg26470501 2.91E-05 2.05E-02 0.337 0.363 -0.026 
cg26369418 2.98E-05 2.09E-02 0.762 0.781 -0.019 
cg16046375 3.05E-05 2.13E-02 0.782 0.798 -0.016 
cg11710912 3.11E-05 2.14E-02 0.219 0.240 -0.021 
cg04656451 3.14E-05 2.16E-02 0.563 0.604 -0.041 
cg05645661 3.21E-05 2.19E-02 0.837 0.851 -0.014 
cg07043604 3.28E-05 2.21E-02 0.393 0.430 -0.037 
cg04787675 3.39E-05 2.24E-02 0.090 0.100 -0.010 
cg13430464 3.50E-05 2.29E-02 0.171 0.198 -0.027 
cg17386185 3.51E-05 2.29E-02 0.098 0.109 -0.011 
cg03626746 3.55E-05 2.30E-02 0.950 0.954 -0.005 
cg02855981 3.55E-05 2.30E-02 0.926 0.933 -0.007 
cg17342588 3.60E-05 2.30E-02 0.107 0.120 -0.013 
cg27592868 3.58E-05 2.30E-02 0.529 0.554 -0.025 
cg23617193 3.64E-05 2.31E-02 0.252 0.283 -0.030 
cg25963822 3.76E-05 2.33E-02 0.056 0.062 -0.006 
cg23476401 3.73E-05 2.33E-02 0.773 0.803 -0.030 
cg15044041 3.69E-05 2.33E-02 0.572 0.604 -0.032 
cg19697239 3.80E-05 2.35E-02 0.096 0.109 -0.013 
cg21931938 3.81E-05 2.35E-02 0.740 0.755 -0.015 
cg16439948 3.84E-05 2.35E-02 0.069 0.078 -0.009 
cg02860108 3.85E-05 2.36E-02 0.896 0.904 -0.008 
cg06814616 3.88E-05 2.36E-02 0.451 0.478 -0.027 
cg01855013 3.90E-05 2.37E-02 0.362 0.379 -0.018 
cg01746878 4.11E-05 2.42E-02 0.938 0.945 -0.006 
cg17787876 4.11E-05 2.42E-02 0.386 0.415 -0.029 
cg08506585 4.20E-05 2.45E-02 0.896 0.914 -0.018 
cg04037470 4.22E-05 2.45E-02 0.053 0.062 -0.009 
cg04215256 4.33E-05 2.47E-02 0.046 0.053 -0.007 
cg27300742 4.36E-05 2.47E-02 0.854 0.872 -0.018 
cg25670376 4.49E-05 2.50E-02 0.469 0.498 -0.029 
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Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg13439596 4.60E-05 2.52E-02 0.271 0.286 -0.015 
cg04420752 4.61E-05 2.52E-02 0.877 0.900 -0.022 
cg26932623 4.63E-05 2.52E-02 0.622 0.657 -0.035 
cg11274371 4.68E-05 2.55E-02 0.085 0.096 -0.011 
cg20359202 4.82E-05 2.58E-02 0.461 0.494 -0.033 
cg06747543 4.83E-05 2.58E-02 0.163 0.197 -0.035 
cg01439568 4.99E-05 2.63E-02 0.777 0.796 -0.019 
cg21202862 5.22E-05 2.68E-02 0.910 0.917 -0.007 
cg15026243 5.31E-05 2.70E-02 0.797 0.817 -0.020 
cg20366110 5.28E-05 2.70E-02 0.544 0.570 -0.027 
cg05769975 5.33E-05 2.70E-02 0.823 0.835 -0.012 
cg26373071 5.38E-05 2.71E-02 0.852 0.867 -0.015 
cg24630957 5.40E-05 2.71E-02 0.721 0.742 -0.021 
cg02342791 5.44E-05 2.71E-02 0.276 0.310 -0.034 
cg25954235 5.42E-05 2.71E-02 0.337 0.398 -0.060 
cg08062387 5.63E-05 2.76E-02 0.694 0.728 -0.034 
cg02030270 5.76E-05 2.76E-02 0.936 0.944 -0.008 
cg09847753 5.80E-05 2.76E-02 0.105 0.116 -0.012 
cg23237801 5.83E-05 2.76E-02 0.492 0.515 -0.023 
cg26340050 5.71E-05 2.76E-02 0.616 0.644 -0.029 
cg20876010 5.83E-05 2.76E-02 0.349 0.381 -0.032 
cg04380576 5.81E-05 2.76E-02 0.539 0.571 -0.032 
cg24927800 5.70E-05 2.76E-02 0.182 0.217 -0.035 
cg00689651 5.95E-05 2.78E-02 0.051 0.057 -0.007 
cg02413040 5.94E-05 2.78E-02 0.091 0.109 -0.018 
cg09386376 5.92E-05 2.78E-02 0.596 0.651 -0.055 
cg08376368 5.97E-05 2.79E-02 0.045 0.050 -0.005 
cg05210798 6.00E-05 2.79E-02 0.064 0.072 -0.007 
cg12438037 6.03E-05 2.80E-02 0.470 0.492 -0.022 
cg04831327 6.06E-05 2.81E-02 0.817 0.840 -0.023 
cg15887927 6.26E-05 2.85E-02 0.120 0.143 -0.023 
cg02770683 6.31E-05 2.86E-02 0.950 0.954 -0.004 
cg02512395 6.39E-05 2.88E-02 0.918 0.924 -0.006 
cg00153543 6.41E-05 2.89E-02 0.526 0.560 -0.034 
cg07107130 6.45E-05 2.90E-02 0.555 0.579 -0.024 
cg18419977 6.47E-05 2.90E-02 0.713 0.741 -0.029 
cg27110491 6.56E-05 2.91E-02 0.612 0.646 -0.034 
cg13294084 6.73E-05 2.96E-02 0.878 0.907 -0.029 
cg18182475 7.00E-05 3.01E-02 0.874 0.889 -0.014 
cg18362003 6.97E-05 3.01E-02 0.843 0.860 -0.017 
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Probe p-value FDR Mean beta FASD Mean beta Control ∆beta 

cg05539265 6.99E-05 3.01E-02 0.762 0.802 -0.040 
cg11107212 7.22E-05 3.06E-02 0.116 0.132 -0.016 
cg03888765 7.40E-05 3.10E-02 0.970 0.972 -0.002 
cg21008530 7.43E-05 3.10E-02 0.613 0.651 -0.038 
cg27413421 7.73E-05 3.17E-02 0.730 0.748 -0.018 
cg01291665 8.02E-05 3.24E-02 0.551 0.586 -0.035 
cg17654567 8.04E-05 3.25E-02 0.897 0.907 -0.010 
cg21563683 8.05E-05 3.25E-02 0.166 0.195 -0.029 
cg24351857 8.15E-05 3.27E-02 0.133 0.141 -0.008 
cg17324128 8.14E-05 3.27E-02 0.437 0.459 -0.021 
cg08598287 8.19E-05 3.28E-02 0.688 0.707 -0.019 
cg05206657 8.36E-05 3.30E-02 0.925 0.931 -0.006 
cg04730355 8.35E-05 3.30E-02 0.151 0.178 -0.027 
cg00686823 8.35E-05 3.30E-02 0.545 0.584 -0.039 
cg20335425 8.44E-05 3.32E-02 0.301 0.330 -0.029 
cg13625026 8.46E-05 3.32E-02 0.494 0.514 -0.020 
cg13675051 8.53E-05 3.34E-02 0.733 0.760 -0.027 
cg00945507 8.58E-05 3.36E-02 0.193 0.224 -0.030 
cg11500660 8.66E-05 3.36E-02 0.044 0.048 -0.004 
cg23358740 8.65E-05 3.36E-02 0.095 0.109 -0.014 
cg17559809 8.71E-05 3.37E-02 0.104 0.117 -0.013 
cg01074767 8.80E-05 3.38E-02 0.485 0.520 -0.035 
cg22495058 9.04E-05 3.41E-02 0.473 0.494 -0.020 
cg20143982 9.60E-05 3.51E-02 0.089 0.097 -0.008 
cg12593541 9.76E-05 3.53E-02 0.176 0.208 -0.032 
cg01784614 9.90E-05 3.55E-02 0.424 0.453 -0.029 
cg02988698 9.93E-05 3.55E-02 0.124 0.150 -0.026 
cg04060128 9.95E-05 3.55E-02 0.163 0.186 -0.023 
cg23203302 1.01E-04 3.56E-02 0.882 0.891 -0.009 
cg15825321 1.01E-04 3.56E-02 0.603 0.637 -0.034 
cg10001715 1.02E-04 3.57E-02 0.850 0.862 -0.012 
cg25230117 1.03E-04 3.59E-02 0.513 0.538 -0.026 
cg06749854 1.06E-04 3.63E-02 0.735 0.752 -0.016 
cg09412782 1.06E-04 3.64E-02 0.951 0.955 -0.005 
cg14321284 1.06E-04 3.64E-02 0.494 0.514 -0.020 
cg23495441 1.07E-04 3.65E-02 0.927 0.933 -0.006 
cg01091565 1.07E-04 3.65E-02 0.468 0.498 -0.030 
cg22873986 1.10E-04 3.68E-02 0.936 0.941 -0.006 
cg07440826 1.10E-04 3.68E-02 0.083 0.091 -0.009 
cg18776287 1.10E-04 3.68E-02 0.252 0.276 -0.024 
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cg18153869 1.11E-04 3.70E-02 0.271 0.304 -0.033 
cg03221025 1.11E-04 3.70E-02 0.760 0.775 -0.015 
cg00756748 1.13E-04 3.73E-02 0.873 0.887 -0.013 
cg01359236 1.13E-04 3.73E-02 0.191 0.205 -0.014 
cg24330379 1.13E-04 3.74E-02 0.479 0.498 -0.019 
cg05881135 1.15E-04 3.77E-02 0.171 0.197 -0.026 
cg09187107 1.19E-04 3.84E-02 0.840 0.850 -0.010 
cg00360077 1.19E-04 3.84E-02 0.678 0.722 -0.043 
cg00839333 1.20E-04 3.85E-02 0.788 0.833 -0.045 
cg25306006 1.22E-04 3.87E-02 0.785 0.798 -0.012 
cg08864105 1.24E-04 3.90E-02 0.342 0.377 -0.035 
cg06327965 1.26E-04 3.95E-02 0.226 0.243 -0.017 
cg18728780 1.30E-04 4.01E-02 0.668 0.690 -0.022 
cg26621408 1.34E-04 4.06E-02 0.873 0.882 -0.009 
cg24605090 1.34E-04 4.06E-02 0.664 0.683 -0.019 
cg07343703 1.35E-04 4.08E-02 0.659 0.681 -0.022 
cg27491190 1.36E-04 4.08E-02 0.263 0.296 -0.033 
cg25850044 1.39E-04 4.13E-02 0.140 0.155 -0.015 
cg16558770 1.40E-04 4.13E-02 0.651 0.675 -0.024 
cg26955579 1.40E-04 4.13E-02 0.852 0.863 -0.011 
cg07179981 1.40E-04 4.13E-02 0.317 0.345 -0.028 
cg00787726 1.42E-04 4.15E-02 0.308 0.336 -0.028 
cg04439622 1.44E-04 4.16E-02 0.787 0.805 -0.018 
cg13946872 1.44E-04 4.18E-02 0.870 0.880 -0.010 
cg24212392 1.46E-04 4.20E-02 0.931 0.936 -0.005 
cg17827803 1.46E-04 4.20E-02 0.781 0.799 -0.019 
cg23978357 1.48E-04 4.23E-02 0.143 0.162 -0.019 
cg08089041 1.50E-04 4.26E-02 0.106 0.127 -0.022 
cg03078972 1.50E-04 4.27E-02 0.175 0.187 -0.012 
cg14616251 1.50E-04 4.27E-02 0.207 0.224 -0.017 
cg21032583 1.52E-04 4.30E-02 0.639 0.676 -0.037 
cg26986871 1.54E-04 4.32E-02 0.573 0.611 -0.038 
cg07234199 1.57E-04 4.38E-02 0.743 0.764 -0.021 
cg23078194 1.57E-04 4.38E-02 0.146 0.159 -0.013 
cg01812045 1.58E-04 4.39E-02 0.414 0.431 -0.017 
cg18778727 1.58E-04 4.39E-02 0.810 0.825 -0.015 
cg09311683 1.59E-04 4.39E-02 0.131 0.154 -0.024 
cg15876968 1.60E-04 4.42E-02 0.343 0.369 -0.026 
cg09133032 1.62E-04 4.45E-02 0.373 0.443 -0.070 
cg09133511 1.64E-04 4.47E-02 0.574 0.595 -0.021 
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cg11895451 1.65E-04 4.47E-02 0.370 0.405 -0.035 
cg13109911 1.70E-04 4.52E-02 0.606 0.625 -0.020 
cg16985708 1.73E-04 4.60E-02 0.182 0.209 -0.027 
cg02510729 1.75E-04 4.61E-02 0.949 0.953 -0.004 
ch.1.186147687F 1.77E-04 4.63E-02 0.038 0.044 -0.006 
cg20003976 1.77E-04 4.63E-02 0.703 0.723 -0.020 
cg16099687 1.77E-04 4.63E-02 0.583 0.624 -0.042 
cg08937612 1.79E-04 4.66E-02 0.892 0.902 -0.010 
cg04690793 1.82E-04 4.70E-02 0.933 0.938 -0.005 
cg14499058 1.83E-04 4.71E-02 0.198 0.214 -0.016 
cg05097643 1.83E-04 4.71E-02 0.225 0.247 -0.022 
cg18437839 1.90E-04 4.82E-02 0.354 0.379 -0.025 
cg19497798 1.90E-04 4.83E-02 0.730 0.747 -0.017 
cg22118082 1.91E-04 4.83E-02 0.822 0.844 -0.022 
cg22510032 1.91E-04 4.83E-02 0.102 0.113 -0.011 
cg23406407 1.94E-04 4.86E-02 0.622 0.648 -0.025 
cg23555395 1.95E-04 4.87E-02 0.610 0.638 -0.028 
cg09278098 1.96E-04 4.89E-02 0.462 0.490 -0.027 
cg15678825 2.00E-04 4.94E-02 0.200 0.245 -0.045 
cg20694545 2.05E-04 5.00E-02 0.815 0.849 -0.033 
cg20511832 2.05E-04 5.00E-02 0.214 0.229 -0.015 
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Supplementary table 4.2. Differentially methylated genes 

EntrezGene ID HGNC symbol Direction of change Alias 
154664 ABCA13 DOWN 

 34 ACADM DOWN 
 311 ANXA11 DOWN 
 312 ANXA13 DOWN 
 163 AP2B1 DOWN 
 334 APLP2 DOWN 
 55082 ARGLU1 DOWN 
 57636 ARHGAP23 DOWN 
 128272 ARHGEF19 DOWN 
 9915 ARNT2 DOWN 
 192134 B3GNT6 DOWN 
 440465 BAIAP2-AS1 DOWN FLJ90757 

54971 BANP DOWN 
 602 BCL3 DOWN 
 266675 BEST4 DOWN 
 55727 BTBD7 DOWN 
 84419 C15orf48 DOWN 
 716 C1S DOWN 
 57685 CACHD1 DOWN 
 799 CALCR DOWN 
 84674 CARD6 DOWN 
 863 CBFA2T3 DOWN 
 79879 CCDC134 DOWN 
 54462 CCSER2 DOWN FAM190B 

1021 CDK6 DOWN 
 25884 CHRDL2 DOWN 
 1143 CHRNB4 DOWN 
 81037 CLPTM1L DOWN 
 84570 COL25A1 DOWN 
 51200 CPA4 DOWN 
 1397 CRIP2 DOWN 
 1437 CSF2 DOWN 
 10217 CTDSPL DOWN 
 221955 DAGLB DOWN 
 79961 DENND2D DOWN 
 1674 DES DOWN 
 147015 DHRS13 DOWN 
 9940 DLEC1 DOWN 
 1815 DRD4 DOWN 
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EntrezGene ID HGNC symbol Direction of change Alias 
10085 EDIL3 DOWN 

 30844 EHD4 DOWN 
 8178 ELL DOWN 
 55140 ELP3 DOWN 
 1969 EPHA2 DOWN 
 7957 EPM2A DOWN 
 115704 EVI5L DOWN 
 11336 EXOC3 DOWN 
 58489 FAM108C1 DOWN 
 57579 FAM135A DOWN 
 115572 FAM46B DOWN 
 2175 FANCA DOWN 
 85302 FBF1 DOWN 
 730971 FLJ36777 DOWN 
 2335 FN1 DOWN 
 2350 FOLR2 DOWN 
 442117 GALNTL6 DOWN 
 150946 GAREML DOWN FAM59B 

2646 GCKR DOWN 
 51608 GET4 DOWN C7orf20 

132158 GLYCTK DOWN 
 2783 GNB2 DOWN 
 60313 GPBP1L1 DOWN 
 9687 GREB1 DOWN 
 57822 GRHL3 DOWN 
 283120 H19 DOWN 
 3029 HAGH DOWN 
 3083 HGFAC DOWN 
 59269 HIVEP3 DOWN 
 57594 HOMEZ DOWN 
 3373 HYAL1 DOWN 
 3632 INPP5A DOWN 
 25896 INTS7 DOWN 
 84223 IQCG DOWN 
 26145 IRF2BP1 DOWN 
 93107 KCNG4 DOWN 
 27345 KCNMB4 DOWN 
 9132 KCNQ4 DOWN 
 83892 KCTD10 DOWN 
 23325 KIAA1033 DOWN 
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EntrezGene ID HGNC symbol Direction of change Alias 
57576 KIF17 DOWN 

 3797 KIF3C DOWN 
 3827 KNG1 DOWN 
 3910 LAMA4 DOWN 
 254251 LCORL DOWN 
 145200 LINC00239 DOWN C14orf72 

154822 LINC00689 DOWN LOC154822 
285696 LOC285696 DOWN 

 401010 LOC401010 DOWN 
 4035 LRP1 DOWN 
 9684 LRRC14 DOWN 
 79705 LRRK1 DOWN 
 284348 LYPD5 DOWN 
 8379 MAD1L1 DOWN 
 4116 MAGOH DOWN 
 114569 MAL2 DOWN 
 54799 MBTD1 DOWN 
 4209 MEF2D DOWN 
 4221 MEN1 DOWN 
 55897 MESP1 DOWN 
 399959 MIR100HG DOWN LOC399959 

64928 MRPL14 DOWN 
 51116 MRPS2 DOWN 
 51168 MYO15A DOWN 
 4641 MYO1C DOWN 
 23138 N4BP3 DOWN 
 54550 NECAB2 DOWN 
 4772 NFATC1 DOWN 
 4784 NFIX DOWN 
 4815 NINJ2 DOWN 
 23530 NNT DOWN 
 79400 NOX5 DOWN 
 9315 NREP DOWN C5orf13 

9972 NUP153 DOWN 
 220064 ORAOV1 DOWN 
 114884 OSBPL10 DOWN 
 5031 P2RY6 DOWN 
 80227 PAAF1 DOWN 
 124222 PAQR4 DOWN 
 5101 PCDH9 DOWN 
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EntrezGene ID HGNC symbol Direction of change Alias 
10954 PDIA5 DOWN 

 10158 PDZK1IP1 DOWN 
 8682 PEA15 DOWN 
 5830 PEX5 DOWN 
 148479 PHF13 DOWN 
 5330 PLCB2 DOWN 
 5359 PLSCR1 DOWN 
 25953 PNKD DOWN 
 57460 PPM1H DOWN 
 5499 PPP1CA DOWN 
 5591 PRKDC DOWN 
 254427 PROSER2 DOWN C10orf47 

5799 PTPRN2 DOWN 
 22821 RASA3 DOWN 
 29890 RBM15B DOWN 
 9904 RBM19 DOWN 
 54502 RBM47 DOWN 
 3516 RBPJ DOWN 
 55920 RCC2 DOWN 
 25897 RNF19A DOWN 
 55178 RNMTL1 DOWN 
 861 RUNX1 DOWN 
 338324 S100A7A DOWN 
 6279 S100A8 DOWN 
 60485 SAV1 DOWN 
 51435 SCARA3 DOWN 
 23480 SEC61G DOWN 
 207107 SFTA1P DOWN 
 6457 SH3GL3 DOWN 
 6461 SHB DOWN 
 9120 SLC16A6 DOWN 
 5002 SLC22A18 DOWN 
 376497 SLC27A1 DOWN 
 54407 SLC38A2 DOWN 
 57153 SLC44A2 DOWN 
 6542 SLC7A2 DOWN 
 23428 SLC7A8 DOWN 
 54471 SMCR7L DOWN 
 64094 SMOC2 DOWN 
 6615 SNAI1 DOWN 
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EntrezGene ID HGNC symbol Direction of change Alias 
100124539 SNORA11B DOWN 

 677839 SNORA71C DOWN 
 6631 SNRPC DOWN 
 440352 SNX29P2 DOWN RUNDC2C 

221833 SP8 DOWN 
 80725 SRCIN1 DOWN 
 6430 SRSF5 DOWN 
 23336 SYNM DOWN 
 6869 TACR1 DOWN 
 7041 TGFB1I1 DOWN 
 343641 TGM6 DOWN 
 8793 TNFRSF10D DOWN 
 131601 TPRA1 DOWN 
 83696 TRAPPC9 DOWN 
 10107 TRIM10 DOWN 
 10867 TSPAN9 DOWN 
 7296 TXNRD1 DOWN 
 7326 UBE2G1 DOWN 
 7378 UPP1 DOWN 
 7384 UQCRC1 DOWN 
 55350 VNN3 DOWN 
 391123 VSIG8 DOWN 
 64856 VWA1 DOWN 
 55779 WDR52 DOWN 
 51741 WWOX DOWN 
 64131 XYLT1 DOWN 
 80149 ZC3H12A DOWN 
 132625 ZFP42 DOWN 
 79088 ZNF426 DOWN 
 284346 ZNF575 DOWN 
 374655 ZNF710 DOWN 
 51279 C1RL INCONSISTENT 
 1740 DLG2 INCONSISTENT 
 8448 DOC2A INCONSISTENT 
 165545 DQX1 INCONSISTENT 
 83937 RASSF4 INCONSISTENT 
 105 ADARB2 UP 
 221442 ADCY10P1 UP LOC221442 

141 ADPRH UP 
 116987 AGAP1 UP 
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EntrezGene ID HGNC symbol Direction of change Alias 
26289 AK5 UP 

 1109 AKR1C4 UP 
 285 ANGPT2 UP 
 286 ANK1 UP 
 290 ANPEP UP 
 57514 ARHGAP31 UP CDGAP 

9639 ARHGEF10 UP 
 57492 ARID1B UP 
 9311 ASIC3 UP ACCN3 

57194 ATP10A UP 
 491 ATP2B2 UP 
 10331 B3GNT3 UP 
 80114 BICC1 UP 
 665 BNIP3L UP 
 6046 BRD2 UP 
 153579 BTNL9 UP 
 715 C1R UP 
 150297 C22orf42 UP 
 255119 C4orf22 UP 
 154791 C7orf55 UP 
 136288 C7orf57 UP 
 773 CACNA1A UP 
 800 CALD1 UP 
 813 CALU UP 
 11132 CAPN10 UP 
 79587 CARS2 UP 
 54897 CASZ1 UP 
 126402 CCDC105 UP 
 84865 CCDC142 UP 
 1232 CCR3 UP 
 961 CD47 UP 
 993 CDC25A UP 
 1008 CDH10 UP 
 1012 CDH13 UP 
 1032 CDKN2D UP 
 1951 CELSR3 UP 
 11113 CIT UP 
 10143 CLEC3A UP 
 22818 COPZ1 UP 
 1353 COX11 UP 
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EntrezGene ID HGNC symbol Direction of change Alias 
1369 CPN1 UP 

 1395 CRHR2 UP 
 1523 CUX1 UP 
 1576 CYP3A4 UP 
 10858 CYP46A1 UP 
 54165 DCUN1D1 UP 
 1804 DPP6 UP 
 493861 EID3 UP 
 1995 ELAVL3 UP 
 24139 EML2 UP 
 957 ENTPD5 UP 
 2103 ESRRB UP 
 2113 ETS1 UP 
 5393 EXOSC9 UP 
 2155 F7 UP 
 118670 FAM24A UP 
 129804 FBLN7 UP 
 26291 FGF21 UP 
 92973 FP588 UP LOC92973 

55691 FRMD4A UP 
 2560 GABRB1 UP 
 9518 GDF15 UP 
 389400 GFRAL UP 
 100126793 GHRLOS UP 
 57369 GJD2 UP 
 2788 GNG7 UP 
 2794 GNL1 UP 
 257202 GPX6 UP 
 2911 GRM1 UP 
 2918 GRM8 UP 
 2968 GTF2H4 UP 
 3038 HAS3 UP 
 54919 HEATR2 UP 
 220296 HEPACAM UP 
 341208 HEPHL1 UP 
 147746 HIPK4 UP 
 80201 HKDC1 UP 
 284459 HKR1 UP 
 3115 HLA-DPB1 UP 
 51155 HN1 UP 
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EntrezGene ID HGNC symbol Direction of change Alias 
7087 ICAM5 UP 

 152404 IGSF11 UP 
 22997 IGSF9B UP 
 9922 IQSEC1 UP 
 8514 KCNAB2 UP 
 3752 KCND3 UP 
 10984 KCNQ1OT1 UP 
 57528 KCTD16 UP 
 84634 KISS1R UP 
 162605 KRT28 UP 
 144501 KRT80 UP 
 3908 LAMA2 UP 
 389541 LAMTOR4 UP C7orf59 

51056 LAP3 UP 
 9113 LATS1 UP 
 353142 LCE3A UP 
 55679 LIMS2 UP 
 100133205 LINC00240 UP C6orf41 

283521 LINC00282 UP FLJ37307 
151300 LINC00608 UP LOC151300 
200879 LIPH UP 

 55885 LMO3 UP 
 9053 MAP7 UP 
 4146 MATN1 UP 
 79143 MBOAT7 UP 
 693139 MIR554 UP 
 693233 MIR648 UP 
 54148 MRPL39 UP 
 64005 MYO1G UP 
 79923 NANOG UP 
 79804 NBLA00301 UP 
 57727 NCOA5 UP 
 64579 NDST4 UP 
 58158 NEUROD4 UP 
 23114 NFASC UP 
 4798 NFRKB UP 
 286183 NKAIN3 UP 
 137814 NKX2-6 UP 
 129521 NMS UP 
 10874 NMU UP 
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EntrezGene ID HGNC symbol Direction of change Alias 
9722 NOS1AP UP 

 55666 NPLOC4 UP 
 140767 NRSN1 UP 
 9378 NRXN1 UP 
 84628 NTNG2 UP 
 4948 OCA2 UP 
 390201 OR10V1 UP 
 255725 OR52B2 UP 
 100309464 OTX2-AS1 UP OTX2OS1 

5027 P2RX7 UP 
 23022 PALLD UP 
 5066 PAM UP 
 89932 PAPLN UP 
 399968 PATE4 UP 
 56134 PCDHAC2 UP 
 56125 PCDHB11 UP 
 56122 PCDHB14 UP 
 57717 PCDHB16 UP 
 54660 PCDHB18 UP 
 56132 PCDHB3 UP 
 56127 PCDHB9 UP 
 56111 PCDHGA4 UP 
 56110 PCDHGA5 UP 
 56109 PCDHGA6 UP 
 56108 PCDHGA7 UP 
 9708 PCDHGA8 UP 
 64773 PCED1A UP FAM113A 

192111 PGAM5 UP 
 168507 PKD1L1 UP 
 5357 PLS1 UP 
 151742 PPM1L UP 
 100507444 PPP1R2P1 UP 
 84432 PROK1 UP 
 51334 PRR16 UP 
 5745 PTH1R UP 
 55698 RADIL UP 
 23551 RASD2 UP 
 55147 RBM23 UP 
 5950 RBP4 UP 
 57139 RGL3 UP 
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EntrezGene ID HGNC symbol Direction of change Alias 
56963 RGMA UP 

 64221 ROBO3 UP 
 221935 SDK1 UP 
 6400 SEL1L UP 
 137868 SGCZ UP 
 9467 SH3BP5 UP 
 50944 SHANK1 UP 
 85358 SHANK3 UP 
 284369 SIGLECL1 UP C19orf75 

113278 SLC52A3 UP C20orf54 
6529 SLC6A1 UP 

 6531 SLC6A3 UP 
 6546 SLC8A1 UP 
 25992 SNED1 UP 
 100033450 SNORD115-13 UP 
 100033414 SNORD116-2 UP 
 26765 SNORD12C UP 
 692205 SNORD89 UP 
 83893 SPATA16 UP 
 8128 ST8SIA2 UP 
 64220 STRA6 UP 
 252983 STXBP4 UP 
 10454 TAB1 UP MAP3K7IP1 

6886 TAL1 UP 
 125058 TBC1D16 UP 
 202500 TCTE1 UP 
 339669 TEX33 UP C22orf33 

26230 TIAM2 UP 
 64759 TNS3 UP 
 7726 TRIM26 UP 
 54795 TRPM4 UP 
 80727 TTYH3 UP 
 114131 UCN3 UP 
 9706 ULK2 UP 
 55245 UQCC UP 
 55339 WDR33 UP 
 84128 WDR75 UP 
 9671 WSCD2 UP 
 11060 WWP2 UP 
 340481 ZDHHC21 UP 
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EntrezGene ID HGNC symbol Direction of change Alias 
7730 ZNF177 UP 

 7571 ZNF23 UP 
 91975 ZNF300 UP 
 257101 ZNF683 UP 
  

Supplementary table 4.3. Pyrosequencing primer sequences 

Primer Sequence  
SNED1_cg19075225 F* /5BiodT/TG TTG GAG GTT TAT GTT ATT AAT GTG 
SNED1_cg19075225 R CAA ACC CCT ACA AAA CCA AAT CAA T 
SNED1_cg19075225 S ACT ACT ATC ACA AAA AAC TAA TAC 
SHANK3_cg10793758 R* /5BiodT/TA CCA ACC CCC TCC TAC CTA AT 
SHANK3_cg10793758 F TAA TTT GAA GGG GGA GGT ATA GTT 
SHANK3_cg10793758 S GTT GTA AGA GGA GAA AGA 
CACNAIA_cg24800175 F* /5BiodT/GG GAA AAG AAG GAT AAG AGT ATA TTT G 
CACNAIA_cg24800175 R AAA TTC CAA ATC ACT AAA CAC AAT AAC 
CACNAIA_cg24800175 S CCT CCT TCT CTT CTA AC 
NOSIAP_cg02858267 R*  /5BiodT/CC CCT CTA CTA CCT CTT ATC TCC 
NOSIAP_cg02858267 F GTA GGG TGG GTA AAG TTA GTT AAG T 
NOSIAP_cg02858267 S GTA GGT TTT TTG GTT TAG G 
NOSIAP_cg12486795 F* /5BiodT/TT TTG GGA GGT TTG GAG TTT ATT AAG T 
NOSIAP_cg12486795 R ACT TTA CCC TCC AAA ACA AAA TCT CAA TA 
NOSIAP_cg12486795 S ATA CAC ATT CAC TAA ACA TC 
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Supplementary table 4.4. List of imprinted genes  

Gene Aliases Location Expressed allele 
DIRAS3 ARHI, NOEY2 1p31 AS Paternal 
RNU5D-1 U5DL, U5DS, RNU5D 1p34.1 AS Paternal 
TP73 P73 1p36.3 Maternal 
LRRTM1 

 
2p12 AS Paternal 

GPR1 
 

2q33.3 AS Paternal 
ZDBF2 

 
2q33.3 Paternal 

NAP1L5 DRLM 4q22.1 AS Paternal 
FAM50B X5L, D6S2654E 6p25.2 Paternal 
AIM1 ST4, CRYBG1 6q21 Paternal 
LIN28B CSDD2 6q21 Paternal 

PLAGL1 
ZAC, LOT1, ZAC1, MGC126275, MGC126276, 
DKFZp781P1017 6q24-q25 AS Paternal 

HYMAI NCRNA00020 6q24.2 AS Paternal 
SLC22A2* OCT2, MGC32628 6q26 AS Maternal 
IGF2R MPR1, MPRI, CD222, CIMPR, M6P-R 6q26 Biallelic 
SLC22A3* EMT, EMTH, OCT3 6q26-q27 Maternal 
GRB10 RSS, IRBP, MEG1, GRB-IR, Grb-10, KIAA0207 7p12-p11.2 AS Isoform Dependent 
DDC AADC 7p12.2 AS Isoform Dependent 
MAGI2 AIP1, AIP-1, ARIP1, SSCAM, MAGI-2, ACVRIP1 7q21 AS Maternal 
PEG10 EDR, HB-1, Mar2, MEF3L, Mart2, RGAG3 7q21 Paternal 
SGCE ESG, DYT11 7q21-q22 AS Paternal 
PPP1R9A NRB1, NRBI, FLJ20068, KIAA1222, Neurabin-I 7q21.3 Maternal 
DLX5 

 
7q22 AS Maternal 

TFPI2 PP5, REF1, TFPI-2, FLJ21164 7q22 AS Maternal 

COPG2IT1 
CIT1, COPG2AS, FLJ41646, NCRNA00170, 
DKFZP761N09121 7q32 Paternal 

CPA4 CPA3 7q32 Maternal 
MEST PEG1, MGC8703, MGC111102, DKFZp686L18234 7q32 Paternal 

MESTIT1 
MEST-IT, PEG1-AS, MEST-AS1, MEST-IT1, 
NCRNA00040 7q32.2 AS Paternal 

KLF14 BTEB5 7q32.3 AS Maternal 
DLGAP2 DAP2, SAPAP2 8p23 Paternal 

KCNK9 
KT3.2, TASK3, K2p9.1, TASK-3, MGC138268, 
MGC138270 8q24.3 AS Maternal 

ZFAT-AS1 ZFATAS, ZFAT-AS, SAS-ZFAT, NCRNA00070 8q24.22 Paternal 
ZFAT AITD3, ZFAT1, ZNF406 8q24.22 AS Paternal 
GLIS3 ZNF515 9p24.2 AS Paternal 

INPP5F V2 
SAC2, hSAC2, MSTP007, MSTPO47, FLJ13081, 
KIAA0966, MGC59773, MGC131851 10q26.11 Paternal 

WT1-Alt 
trans WT1, GUD, WAGR, WT33, WIT-2 11p13 AS Paternal 
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Gene Aliases Location Expressed allele 

KCNQ1OT1 
LIT1, KvDMR1, KCNQ10T1, KvLQT1-AS, long QT 
intronic transcript 1 11p15 Paternal 

KCNQ1DN BWRT, HSA404617 11p15.4 Maternal 
OSBPL5 ORP5, OBPH1, FLJ42929 11p15.4 AS Maternal 
IGF2 INSIGF, pp9974, C11orf43, FLJ22066, FLJ44734 11p15.5 AS Paternal 
IGF2AS PEG8, MGC168198 11p15.5 Paternal 
PHLDA2 IPL, BRW1C, BWR1C, HLDA2, TSSC3 11p15.5 AS Maternal 
CDKN1C BWS, WBS, p57, BWCR, KIP2 11p15.5 AS Maternal 

KCNQ1 

LQT, RWS, WRS, LQT1, SQT2, ATFB1, ATFB3, 
JLNS1, KCNA8, KCNA9, Kv1.9, Kv7.1, KVLQT1, 
FLJ26167 11p15.5 Maternal 

H19 
ASM, BWS, ASM1, MGC4485, PRO2605, 
D11S813E 11p15.5 AS Maternal 

SLC22A18 

HET, ITM, BWR1A, IMPT1, TSSC5, ORCTL2, 
BWSCR1A, SLC22A1L, p45-BWR1A, 
DKFZp667A184 11p15.5 Maternal 

INS ILPR, IRDN 11p15.5 AS Paternal 
ANO1 DOG1, TAOS2, ORAOV2, TMEM16A 11q13.3 Maternal 
ZC3H12C MCPIP3 11q22.3 Paternal 
NTM HNT, NTRI, IGLON2 11q25 Maternal 
RBP5 CRBP3, CRBPIII, CRBP-III 12p13.31 AS Maternal 
RB1 RB, pRb, OSRC, pp110, p105-Rb 13q14.2 Maternal 
DLK1 DLK, FA1, ZOG, pG2, PREF1, Pref-1 14q32 Paternal 

MEG3 
GTL2, FP504, prebp1, PRO0518, PRO2160, 
FLJ31163, FLJ42589 14q32 Maternal 

RTL1 MART1, PEG11, LOC388015 14q32.31 AS Paternal 
MEG8 Rian 14q32.31 Maternal 
MAGEL2 nM15, NDNL1 15q11-q12 AS Paternal 
NPAP1 C15orf2 15q11-q13 Unknown 
UBE3A AS, ANCR, E6-AP, HPVE6A, EPVE6AP, FLJ26981 15q11-q13 AS Maternal 
MKRN3 D15S9, RNF63, ZFP127, ZNF127, MGC88288 15q11-q13 Paternal 

PWCR1 
PET1, non-coding RNA in the Prader-Willi critical 
region 15q11.2 Paternal 

SNORD108 HBII-437, HBII-437 C/D box snoRNA 15q11.2 Paternal 
SNORD107 HBII-436, HBII-436 C/D box snoRNA 15q11.2 Paternal 
SNORD116@ PET1, PWCR1, HBII-85 15q11.2 Paternal 

SNRPN 

SMN, PWCR, SM-D, RT-LI, HCERN3, SNRNP-N, 
FLJ33569, FLJ36996, FLJ39265, MGC29886, 
SNURF-SNRPN, DKFZp762N022, 
DKFZp686C0927, DKFZp761I1912, 
DKFZp686M12165 15q11.2 Paternal 

ATP10A ATPVA, ATPVC, ATP10C, KIAA0566 15q11.2 AS Maternal 
SNORD115@ HBII-52 15q11.2 Paternal 
SNORD115-
48 HBII-52-48 15q11.2 Paternal 
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Gene Aliases Location Expressed allele 
SNORD109B HBII-438B, HBII-438B C/D box snoRNA 15q11.2 Paternal 
SNORD109A HBII-438A 15q11.2 Paternal 
NDN HsT16328 15q11.2-q12 AS Paternal 
SNURF 

 
15q12 Paternal 

SNORD64 HBII-13, HBII-13 snoRNA 15q12 Paternal 
ZNF597 

 
16p13.3 AS Maternal 

NAA60 HAT4, NAT15 16p13.3 Maternal 
TCEB3C HsT829, TCEB3L2, Elongin A3 18q21.1 AS Maternal 
DNMT1 AIM, DNMT, MCMT, CXXC9, HSN1E, ADCADN 19p13.2 AS Paternal 
ZIM2 ZNF656 19q13.4 AS Paternal 
MIMT1 MIM1, LINC00067, NCRNA00067 19q13.4 Paternal 
PEG3 PW1, ZNF904, ZSCAN24 19q13.4 AS Paternal 

MIR371A 
C19MC, MIR371, MIRN371, hsa-mir-371, hsa-mir-
371a 19q13.42 Paternal 

NLRP2 NBS1, PAN1, NALP2, PYPAF2, CLR19.9 19q13.42 Maternal 
PSIMCT-1 

 
20q11.2 Paternal 

BLCAP BC10 20q11.2-q12 AS Isoform Dependent 
NNAT Peg5 20q11.2-q12 Paternal 
MCTS2 

 
20q11.21 Paternal 

GDAP1L1 dJ881L22.1, dJ995J12.1.1 20q12 Paternal 
SGK2 H-SGK2, dJ138B7.2 20q13.2 Paternal 

GNAS 

AHO, GSA, GSP, POH, GPSA, NESP, GNAS1, 
PHP1A, PHP1B, C20orf45, MGC33735, 
dJ309F20.1.1, dJ806M20.3.3 20q13.3 Isoform Dependent 

L3MBTL 
L3MBTL1, FLJ41181, KIAA0681, H-L(3)MBT, 
dJ138B7.3, DKFZp586P1522 20q13.12 Paternal 

MIR296 MIRN296, miRNA296 20q13.32 AS Paternal 
MIR298 MIRN298, hsa-mir-298 20q13.32 AS Paternal 
SANG SANG, Nespas 20q13.32 Paternal 
GNASAS SANG, NESPAS, GNAS1AS, NCRNA00075 20q13.32 AS Paternal 
DGCR6 

 
22q11.21 Random 

DGCR6L 
 

22q11.21 AS Random 
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Supplementary table 4.5. Differentially methylated regions associated with FASD 

Rank Chr Start End Length # probes Associated 
gene Location Min FDR Mean FDR Mean 

beta FC 
Max  

beta FC 
1 chr6 33047056 33049505 2450 17 HLA-DPB1 Body 2.59E-50 1.61E-06 0.0348 0.0868 

2 chr11 2919689 2921176 1488 20 SLC22A18AS, 
SLC22A18 

Body, 
TSS1500, 
TSS200, 
5'UTR 

1.21E-29 1.46E-05 -0.0122 -0.0485 

3 chr6 32846924 32847845 922 18 PPP1R2P1 Body 1.81E-20 9.39E-10 0.0156 0.0264 

4 chr12 46767132 46768016 885 8 SLC38A2 TSS1500 1.98E-16 9.78E-09 -0.0201 -0.0389 

5 chr19 37825307 37825679 373 7 HKR1 

TSS1500, 
TSS200, 
1stExon, 
5'UTR 

7.51E-16 9.51E-16 0.0156 0.0219 

6 chr3 113160071 113160821 751 10 WDR52 

5'UTR, 
1stExon, 
TSS200, 
TSS1500 

1.34E-14 6.02E-13 -0.0206 -0.0366 

7 chr6 19180718 19181082 365 4   4.44E-14 5.05E-14 0.0311 0.0397 

8 chr5 159894868 159895160 293 4   9.40E-14 1.18E-13 -0.0363 -0.0524 

9 chr3 193587264 193587939 676 5   1.53E-13 2.47E-12 -0.0174 -0.0416 

10 chr3 10149466 10150487 1022 11 C3orf24 

5'UTR, 
1stExon, 
TSS200, 
TSS1500 

4.41E-13 1.88E-11 0.0211 0.0341 

11 chr1 162336877 162337375 499 5 NOS1AP Body,  
3'UTR 4.69E-13 8.79E-13 0.0318 0.0391 

12 chr1 6093770 6094993 1224 6 KCNAB2 5'UTR 9.78E-13 2.86E-07 0.0177 0.0261 

13 chr13 113759771 113760286 516 6 F7 
TSS1500,  
TSS200,  
Body 

1.55E-10 1.96E-10 0.0181 0.0286 

14 chr16 1598866 1599150 285 4 IFT140,  
TMEM204 Body 1.81E-10 4.34E-10 -0.0267 -0.0364 

15 chr19 11517079 11517436 358 4 RGL3 Body 3.06E-10 5.34E-10 0.0256 0.0362 

16 chr2 2581285 2581557 273 5   4.07E-10 1.00E-09 0.0191 0.0272 
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Rank Chr Start End Length # probes Associated 
gene Location Min FDR Mean FDR Mean 

beta FC 
Max  

beta FC 

17 chr15 74494781 74496040 1260 12 STRA6 

5'UTR, 
1stExon, 
TSS200, 
TSS1500 

4.80E-10 1.06E-04 0.0137 0.0347 

18 chr12 104697193 104697983 791 11 TXNRD1, 
EID3 

5'UTR, 
Body, 
TSS1500, 
TSS200, 
1stExon 

5.49E-10 3.98E-08 0.0089 0.0237 

19 chr17 695156 695661 506 3 RNMTL1 Body, 
3'UTR 5.77E-10 3.23E-09 -0.0187 -0.0263 

20 chr22 32554848 32555310 463 5 C22orf42 Body, 
TSS200 7.95E-10 7.91E-09 0.0142 0.0224 

21 chr16 29796373 29796798 426 5   1.08E-09 1.49E-09 0.0247 0.0346 

22 chr10 96990543 96991505 963 6   2.23E-09 2.12E-04 0.0223 0.0394 

23 chr7 4869981 4870162 182 3 RADIL Body 2.40E-09 2.48E-09 0.0209 0.0259 

24 chr16 30485383 30485966 584 6 ITGAL Body 7.18E-09 5.13E-08 0.0154 0.0216 

25 chr7 98099806 98100419 614 7   2.14E-08 7.07E-07 -0.0079 -0.0166 

26 chr15 90547692 90548043 352 3 ZNF710 5'UTR 4.18E-08 5.44E-07 -0.0117 -0.0232 

27 chr5 140344290 140344745 456 4 

PCDHA7, 
PCDHAC2, 
PCDHA12, 
PCDHA6, 
PCDHA10, 
PCDHA4, 
PCDHA11, 
PCDHA8, 
PCDHA1, 
PCDHA2, 
PCDHA9, 
PCDHA13, 
PCDHA5, 
PCDHAC1, 
PCDHA3 

Body, 
TSS1500 4.73E-08 1.20E-07 0.0125 0.0187 

28 chr8 120220410 120221797 1388 8 MAL2 
TSS200, 
1stExon, 
Body 

1.26E-07 2.35E-03 -0.0036 -0.0218 
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Rank Chr Start End Length # probes Associated 
gene Location Min FDR Mean FDR Mean 

beta FC 
Max  

beta FC 

29 chr10 5406543 5407020 478 8 UCN3 

TSS1500, 
TSS200, 
1stExon, 
5'UTR 

1.32E-07 3.03E-07 0.0128 0.0160 

30 chr10 70979777 70980067 291 4 HKDC1 
TSS1500, 
5'UTR, 
1stExon 

1.37E-07 1.40E-07 0.0171 0.0231 

31 chr1 16533422 16534579 1158 8 ARHGEF19 Body 1.88E-07 1.11E-04 -0.0150 -0.0351 

32 chr7 158815555 158816392 838 3 LOC154822 Body 2.36E-07 1.90E-05 -0.0083 -0.0433 

33 chr4 116034871 116035232 362 4 NDST4 

1stExon, 
5'UTR, 
TSS200, 
TSS1500 

5.96E-07 6.45E-07 0.0221 0.0310 

34 chr2 242009513 242009588 76 2 SNED1 Body 6.41E-07 6.48E-07 0.0379 0.0403 

35 chr10 102642531 102642752 222 3   7.68E-07 8.96E-07 0.0199 0.0280 

36 chr8 48739161 48739256 96 2 PRKDC Body 7.94E-07 8.04E-07 -0.0401 -0.0453 

37 chr6 30848807 30848846 40 4   1.81E-06 1.82E-06 0.0196 0.0245 

38 chr1 10847541 10847594 54 2 CASZ1 5'UTR 2.92E-06 2.92E-06 0.0184 0.0254 

39 chr7 807596 809109 1514 9 HEATR2 Body 3.11E-06 3.69E-04 0.0181 0.0358 

40 chr17 37123638 37124558 921 10 FBXO47 

1stExon, 
5'UTR, 
TSS200, 
TSS1500 

3.94E-06 1.49E-04 0.0235 0.0343 

41 chr11 69065333 69065779 447 3   5.59E-06 1.06E-04 -0.0126 -0.0255 

42 chr20 741723 741937 215 3 C20orf54 Body 6.56E-06 7.34E-06 0.0232 0.0337 

43 chr2 2797483 2797612 130 2   1.04E-05 1.22E-05 0.0221 0.0278 

44 chr17 38183170 38184257 1088 7 MED24, 
SNORD124 

Body, 
TSS1500, 
TSS200 

1.52E-05 2.61E-04 -0.0048 0.0581 

45 chr19 17918795 17919173 379 3 B3GNT3 Body 2.03E-05 2.37E-05 0.0143 0.0267 

46 chr1 47688728 47689193 466 2 TAL1 Body 2.44E-05 2.57E-05 0.0180 0.0204 

47 chr5 149980526 149980674 149 3 SYNPO 
TSS200, 
1stExon, 
5'UTR 

3.34E-05 3.69E-05 -0.0222 -0.0296 
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Rank Chr Start End Length # probes Associated 
gene Location Min FDR Mean FDR Mean 

beta FC 
Max  

beta FC 
48 chr19 18589848 18589894 47 2 ELL Body 4.28E-05 4.30E-05 -0.0304 -0.0338 

49 chr2 47382287 47382739 453 7 C2orf61 

Body, 
1stExon, 
5'UTR, 
TSS200, 
TSS1500 

4.40E-05 7.18E-05 0.0096 0.0205 

50 chr5 141339086 141339777 692 4 PCDH12 TSS1500 4.48E-05 6.14E-04 0.0078 0.0128 

51 chr16 69951706 69951820 115 2 WWP2 Body 5.32E-05 5.50E-05 0.0340 0.0365 

52 chr3 50350760 50350790 31 3 HYAL1 TSS1500 5.49E-05 5.51E-05 -0.0211 -0.0323 

53 chr8 105342214 105342491 278 4   6.39E-05 6.47E-05 -0.0240 -0.0349 

54 chr12 111855825 111856652 828 7 SH2B3 5'UTR, 
Body 7.48E-05 3.26E-04 0.0162 0.0305 

55 chr5 78365255 78366076 822 6 BHMT2, 
DMGDH 

TSS1500, 
Body, 
TSS200 

1.91E-04 3.86E-04 0.0136 0.0169 

56 chr2 47915862 47916139 278 2   5.04E-04 5.06E-04 -0.0258 -0.0300 

57 chr18 21852118 21852436 319 4 OSBPL1A 

Body, 
1stExon, 
5'UTR, 
TSS200, 
TSS1500 

6.26E-04 7.39E-04 -0.0058 -0.0089 

58 chr7 922051 922235 185 3 C7orf20 Body 7.47E-04 1.24E-03 -0.0124 -0.0206 

59 chr8 3141844 3141907 64 2 CSMD1 Body 1.19E-03 1.20E-03 0.0219 0.0263 

60 chr19 23253218 23254131 914 6   1.36E-03 7.04E-03 0.0062 0.0175 

61 chr1 24648203 24648984 782 5 GRHL3 TSS1500, 
Body 1.84E-03 5.18E-03 -0.0100 -0.0219 

62 chr19 1472936 1473179 244 3 APC2 3'UTR 2.17E-03 2.25E-03 0.0154 0.0190 

63 chr1 243645911 243647204 1294 8 SDCCAG8 Body 2.40E-03 1.23E-02 0.0101 0.0185 

64 chr6 17016226 17016484 259 3   2.58E-03 2.95E-03 -0.0267 -0.0300 

65 chr7 48131586 48132109 524 2 UPP1 5'UTR 2.67E-03 2.58E-02 -0.0154 -0.0327 

66 chr7 48075568 48076004 437 5 C7orf57 5'UTR, 
Body 2.67E-03 9.45E-03 0.0051 0.0129 
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Rank Chr Start End Length # probes Associated 
gene Location Min FDR Mean FDR Mean 

beta FC 
Max  

beta FC 

67 chr2 121223534 121224327 794 8 LOC84931 
Body, 
TSS200, 
TSS1500 

3.01E-03 4.19E-03 0.0067 0.0158 

68 chr2 242648702 242648761 60 3 ING5 Body 3.10E-03 3.12E-03 0.0007 0.0044 

69 chr2 202901045 202901470 426 5 FZD7 1stExon, 
3'UTR 3.22E-03 4.13E-03 0.0183 0.0277 

70 chr15 32933661 32934185 525 7 SCG5 

TSS1500, 
TSS200, 
1stExon, 
5'UTR 

3.29E-03 1.73E-02 0.0090 0.0168 

71 chr17 77965915 77966262 348 3 TBC1D16 Body 3.43E-03 3.92E-03 0.0069 0.0120 

72 chr13 25085301 25085776 476 4 PARP4 5'UTR 4.35E-03 5.97E-03 -0.0122 -0.0173 

73 chr16 7855305 7855622 318 3   4.53E-03 5.45E-03 0.0235 0.0321 

74 chr13 49879669 49879770 102 3   4.91E-03 4.91E-03 0.0199 0.0232 

75 chr4 95679808 95680414 607 3 BMPR1B 5'UTR 5.20E-03 1.18E-02 0.0100 0.0175 

76 chr12 122396633 122396687 55 3 WDR66 Body 6.37E-03 6.39E-03 0.0120 0.0168 

77 chr6 31148332 31148666 335 14   6.74E-03 7.19E-03 0.0134 0.0198 

78 chr9 137251825 137252129 305 3 RXRA Body 6.89E-03 9.87E-03 -0.0091 -0.0191 

79 chr20 32255491 32256071 581 3 NECAB3, 
C20orf134 

Body, 
1stExon, 
3'UTR 

7.97E-03 1.00E-02 -0.0454 -0.0592 

80 chr11 102638432 102638778 347 6   8.78E-03 9.34E-03 0.0098 0.0213 

81 chr12 129309117 129309376 260 5 SLC15A4 TSS1500 9.67E-03 1.44E-02 -0.0058 -0.0128 

82 chr1 21586831 21587174 344 3 ECE1 Body 1.02E-02 1.21E-02 0.0038 0.0051 

83 chr15 100274128 100274248 121 3 LYSMD4 TSS1500 1.10E-02 1.43E-02 -0.0092 -0.0105 

84 chr8 70855046 70855146 101 3   1.16E-02 1.19E-02 -0.0236 -0.0289 

85 chr11 2596300 2596606 307 4 KCNQ1 Body 1.16E-02 1.64E-02 0.0016 -0.0097 

86 chr17 40558061 40558245 185 3 PTRF Body 1.48E-02 1.51E-02 0.0097 0.0218 

87 chr14 32671389 32671882 494 3   1.66E-02 2.37E-02 -0.0068 -0.0116 

88 chr7 48129814 48130197 384 5 UPP1 5'UTR 1.69E-02 2.96E-02 -0.0099 -0.0218 

89 chr7 5536937 5537036 100 3 MIR589, 
FBXL18 

TSS1500, 
Body 1.70E-02 1.85E-02 -0.0134 -0.0187 
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Rank Chr Start End Length # probes Associated 
gene Location Min FDR Mean FDR Mean 

beta FC 
Max  

beta FC 
90 chr18 14178949 14179364 416 2   1.79E-02 1.87E-02 -0.0324 -0.0334 

91 chr19 10655622 10655686 65 2 ATG4D Body 1.87E-02 1.88E-02 -0.0160 -0.0164 

92 chr21 38074393 38074478 86 2 SIM2 Body 1.96E-02 2.13E-02 0.0167 0.0177 

93 chr15 42371635 42371967 333 6 PLA2G4D Body 2.03E-02 2.06E-02 -0.0118 -0.0162 

94 chr3 9996954 9997177 224 2   2.31E-02 2.45E-02 0.0147 0.0187 

95 chr19 49520450 49520532 83 3 LHB TSS200 2.41E-02 2.53E-02 -0.0056 -0.0084 

96 chr5 314553 314642 90 4 AHRR, 
PDCD6 

Body, 
3'UTR 2.50E-02 2.51E-02 -0.0021 -0.0053 

97 chr12 30354611 30354663 53 2   2.56E-02 2.60E-02 -0.0196 -0.0235 

98 chr1 76082568 76082888 321 3   2.63E-02 3.37E-02 0.0082 0.0107 

99 chr11 129183160 129183282 123 4   3.08E-02 3.19E-02 0.0122 0.0171 

100 chr14 104743900 104744168 269 3   3.22E-02 3.36E-02 0.0048 0.0109 

101 chr17 76719591 76719640 50 4 CYTH1 Body 4.61E-02 4.74E-02 0.0104 0.0118 
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Appendix D  Supplementary materials for chapter 5 

D.1 Supplementary figures 

 

Supplementary figure 5.1. Surrogate variables were correlated with known sources of 

variation. Pearson correlations were performed between the 6 surrogate variables identified in 

the DNA methylation data and known covariates: age and predicted CD34+/CD14+/buccal 

proportions. SV2 and SV4 were highly correlated with cell type proportions, while SV3 and SV4 

were correlated with age, suggesting that these SVs could be used to correct for these known 

sources of variance in the dataset. Squares with and X were not significant (p>0.05). 
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Supplementary figure 5.2. Number of hits in a random selection of sample group. Random 

group subsampling was performed 10,000 times to obtain the probability of validating differential 

methylation at 161/648 probes. As none showed more differentially methylated probes than the original 

replication cohort (maximum = 31 differentially methylated probes), the probability of validated 161/648 

probes was < 1e-4.  

 

Supplementary figure 5.3. Scatter plot and Bland-Altman plots of bisulfite pyrosequencing 

and 450K array data. A) The values for the two methods were highly correlated (p = 0.826) for 

individuals with FASD (blue) and controls (grey). B) The Bland–Altman plot showed little difference 

when comparing the 450K array to pyrosequencing, suggesting good concordance between DNA 

methylation data from the two methods.  



 

 

309 

D.2 Supplementary tables 

Supplementary table 5.1. Pyrosequencing primers 

CpG Primer Sequence 

cg24800175 
CACNA1 F1-Biotin GGGAAAAGAAGGATAAGAGTATATTTG 
CACNA1 R1 TCCCAACCTTCTTCCAAACCCTCATA 
CACNA1 S1 CCTCCTCTTCCAATAC 

 

Supplementary table 5.2. Validated probes at a false-discovery rate (FDR) <0.05 

CpG p-value FDR ∆beta Closest TSS UCSC gene UCSC location 
cg21785245 5.54E-04 4.56E-03 0.033 AK5 AK5 Body 
cg20130789 8.59E-03 3.48E-02 0.013 AKR1C4 AKR1C4 3'UTR 
cg23161492 1.30E-05 3.11E-04 0.063 ANPEP ANPEP 5'UTR 
cg11900509 2.51E-03 1.35E-02 -0.048 ANXA11 ANXA11 5'UTR 
cg09345786 1.98E-07 9.88E-06 -0.066 AP2B1 AP2B1 TSS1500 
cg01206944 3.23E-03 1.63E-02 0.042 MIR4715 ATP10A Body 
cg05938607 1.43E-04 1.62E-03 0.055 BICC1 BICC1 Body 
cg01715680 9.84E-05 1.36E-03 -0.089 BTBD7 BTBD7 Body 
cg02666302 3.54E-03 1.72E-02 0.029 BTNL9 BTNL9 5'UTR 
cg01291665 3.24E-04 3.00E-03 -0.064 LOC219731 C10orf47 Body 

cg01074767 2.34E-03 1.29E-02 -0.048 C1RL 
C1RL; 
LOC283314 TSS1500; Body 

cg09084256 9.82E-05 1.36E-03 0.022 C22orf42 C22orf42 TSS200 
cg02096656 1.08E-02 4.14E-02 0.014 LUC7L2 C7orf55 TSS1500 
cg20876010 1.01E-02 3.95E-02 -0.030 CACHD1 CACHD1 Body 
cg24800175 1.05E-04 1.36E-03 0.092 CACNA1A CACNA1A Body 
cg19402173 4.68E-03 2.17E-02 0.009 CALU CALU 1stExon;  5'UTR 
cg13416249 3.59E-05 7.26E-04 0.061 CAPN10 CAPN10 Body 
cg10078335 4.42E-05 8.43E-04 0.082 GPR35 CAPN10 Body 
cg08589214 2.77E-03 1.47E-02 0.034 GPR35 CAPN10 Body 
cg04622001 1.23E-02 4.62E-02 0.021 CASZ1 CASZ1 5'UTR 
cg04833646 4.89E-03 2.25E-02 0.009 CDKN2D CDKN2D TSS200 
cg02773588 1.20E-07 7.79E-06 0.044 CELSR3 CELSR3 1stExon 

cg09847753 2.90E-03 1.50E-02 -0.014 PAAF1 
CHCHD8; 
PAAF1 TSS1500; Body 

cg19360675 4.83E-05 8.47E-04 0.040 COX11 
COX11; 
STXBP4 TSS200 

cg04439622 9.03E-03 3.59E-02 -0.027 CRIP2 CRIP2 Body 
cg22873986 1.13E-03 7.47E-03 -0.008 DAGLB DAGLB Body 
cg20699141 1.26E-03 8.18E-03 0.029 DCUN1D1 DCUN1D1 TSS1500 
cg24927800 9.38E-05 1.35E-03 -0.052 DES DES 1stExon 
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CpG p-value FDR ∆beta Closest TSS UCSC gene UCSC location 
cg03583111 3.12E-04 2.93E-03 -0.045 DES DES 1stExon 
cg01812045 9.14E-03 3.61E-02 -0.028 DES DES 1stExon 
cg24218620 8.26E-07 2.68E-05 -0.060 DHRS13 DHRS13 Body 
cg20694545 2.66E-05 5.75E-04 -0.051 DLG2 DLG2 Body 
cg09386376 8.99E-03 3.59E-02 -0.068 DRD4 DRD4 Body 
cg17559809 7.38E-03 3.08E-02 -0.011 EDIL3 EDIL3 TSS1500 
cg06747543 1.35E-02 4.92E-02 -0.028 ELL ELL Body 
cg02510729 3.04E-03 1.56E-02 -0.010 ELP3 ELP3 Body 
cg00625443 1.88E-03 1.07E-02 -0.011 FAM108C1 FAM108C1 Body 
cg23588928 7.96E-04 6.07E-03 -0.026 FAM135A FAM135A Body 
cg05665581 1.94E-09 4.19E-07 0.056 FAM24A FAM24A TSS1500 
cg05252487 9.72E-04 6.92E-03 0.026 FAM24A FAM24A 5'UTR 
cg08570472 8.92E-09 1.45E-06 -0.149 FAM59B FAM59B Body 
cg25949338 1.89E-08 2.04E-06 -0.160 FAM59B FAM59B Body 
cg17995197 1.13E-07 7.79E-06 -0.143 FAM59B FAM59B Body 
cg22893791 2.62E-07 1.17E-05 -0.130 FAM59B FAM59B Body 
cg19497798 2.67E-08 2.47E-06 -0.055 MRPL38 FBF1 Body 

cg11030744 3.48E-03 1.72E-02 0.069 GHRLOS 
GHRL; 
GHRLOS Body 

cg17386185 6.84E-05 1.11E-03 -0.015 GLYCTK GLYCTK TSS1500 
cg08329753 4.73E-05 8.47E-04 0.022 GTF2H4 GTF2H4 Body 
cg27300742 3.77E-03 1.81E-02 -0.016 H19 H19 TSS1500 
cg23476401 4.10E-03 1.94E-02 -0.027 H19 H19 TSS1500 
cg02814482 1.06E-02 4.10E-02 0.038 PANX1 HEPHL1 Body 
cg01290710 3.84E-06 1.08E-04 0.031 HIPK4 HIPK4 Body 
cg13423554 5.21E-03 2.35E-02 -0.020 HIVEP3 HIVEP3 5'UTR 
cg25491704 1.63E-04 1.76E-03 0.041 HLA-DPA1 HLA-DPB1 Body 
cg12893780 3.86E-04 3.34E-03 0.058 HLA-DPA1 HLA-DPB1 Body 
cg02197634 4.38E-04 3.74E-03 0.086 HLA-DPA1 HLA-DPB1 Body 
cg08796706 1.08E-03 7.27E-03 0.038 HLA-DPA1 HLA-DPB1 Body 
cg15734436 2.34E-03 1.29E-02 0.030 HLA-DPB1 HLA-DPB1 Body 
cg03611029 8.47E-04 6.38E-03 0.028 IQSEC1 IQSEC1 TSS1500 
cg00043790 7.30E-05 1.15E-03 0.031 KCNAB2 KCNAB2 5'UTR 
cg15867428 4.63E-05 8.47E-04 -0.021 KCNQ4 KCNQ4 Body 
cg07830534 3.88E-03 1.85E-02 0.008 KRT28 KRT28 Body 

cg24506604 1.69E-03 1.01E-02 0.026 KRT80 
KRT80; 
KRT80 Body; Body 

cg09895009 1.16E-04 1.44E-03 0.036 LCE3A LCE3A TSS1500 
cg21032583 7.11E-03 3.01E-02 -0.045 IQCG LMLN; IQCG TSS1500; 5'UTR 
cg23987134 1.05E-03 7.27E-03 -0.052 LOC285696 LOC285696 Body 
cg24640156 5.26E-04 4.42E-03 -0.077 LOC401010 LOC401010 Body 
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cg04195855 2.89E-07 1.17E-05 -0.077 LRRK1 LRRK1 Body 
CpG p-value FDR ∆beta Closest TSS UCSC gene UCSC location 

cg26112661 1.71E-03 1.01E-02 -0.041 LOC100507564 MAGOH TSS1500 
cg26231094 2.89E-03 1.50E-02 0.050 TMC4 MBOAT7 Body; 3'UTR 
cg01091565 5.45E-03 2.42E-02 -0.049 MESP1 MESP1 TSS1500 

cg00227156 1.56E-03 9.80E-03 0.007 MIR648 
MIR648; 
MICAL3 Body; 5'UTR 

cg26371345 1.17E-02 4.44E-02 -0.068 MRPL14 MRPL14 5'UTR 
cg12438037 9.04E-04 6.66E-03 -0.039 MRPS2 MRPS2 Body 
cg18776287 3.27E-03 1.63E-02 -0.027 MRPS2 MRPS2 Body 
cg14204430 1.07E-03 7.27E-03 0.046 NDST4 NDST4 TSS200 
cg09511421 1.42E-07 8.37E-06 0.051 NDST4 NDST4 1stExon; 5'UTR 
cg19470832 5.90E-04 4.67E-03 0.029 NEUROD4 NEUROD4 5'UTR 
cg00689651 8.15E-03 3.32E-02 -0.006 LYL1 NFIX 3'UTR 
cg19697239 1.20E-04 1.44E-03 -0.019 NINJ2 NINJ2 Body 
cg21047695 1.38E-03 8.82E-03 0.037 UG0898H09 NKAIN3 Body 
cg02858267 2.07E-03 1.17E-02 0.037 NOS1AP NOS1AP Body 
cg27298830 3.75E-03 1.81E-02 -0.028 ZNF860 OSBPL10 Body 
cg02163378 1.07E-04 1.36E-03 0.059 OTX2OS1 OTX2OS1 Body 
cg23492399 1.83E-04 1.90E-03 0.030 PAM PAM 5'UTR; 1stExon 
cg05097643 1.75E-04 1.86E-03 -0.034 PAQR4 PAQR4 TSS1500 
cg02539153 2.80E-07 1.17E-05 0.078 PCDHB18 PCDHB18 Body 
cg22338356 1.06E-03 7.27E-03 -0.061 CEBPD PRKDC Body 
cg17059564 1.72E-03 1.01E-02 0.032 RASD2 RASD2 5'UTR 
cg11770664 4.11E-07 1.48E-05 0.036 C10orf10 RASSF4 Body 
cg19566764 1.85E-04 1.90E-03 -0.012 RASSF4 RASSF4 5'UTR 
cg09245003 8.59E-04 6.40E-03 -0.032 AX748314 RNMTL1 3'UTR 
cg15835339 9.82E-04 6.92E-03 -0.037 SFTA1P SFTA1P Body 
cg10793758 1.65E-03 1.01E-02 0.038 SHANK3 SHANK3 Body 
cg14195115 2.48E-03 1.35E-02 -0.063 SHB SHB Body 
cg06864895 1.03E-04 1.36E-03 -0.040 SLC38A2 SLC38A2 TSS1500 
cg16848712 3.62E-04 3.21E-03 -0.032 SLC38A2 SLC38A2 TSS1500 
cg27491190 6.51E-03 2.81E-02 -0.032 SLC38A2 SLC38A2 TSS1500 
cg16614020 1.23E-08 1.59E-06 0.086 SLC6A3 SLC6A3 Body 
cg22659953 1.10E-07 7.79E-06 0.060 SLC6A3 SLC6A3 Body 
cg14765933 1.18E-04 1.44E-03 0.024 SLC6A3 SLC6A3 Body 
cg07927540 5.19E-05 8.62E-04 -0.076 SMOC2 SMOC2 Body 
cg19075225 3.53E-03 1.72E-02 0.031 SNED1 SNED1 Body 
cg27592868 5.62E-03 2.48E-02 -0.047 SRCIN1 SRCIN1 Body 

cg22672067 3.18E-03 1.62E-02 0.026 STRA6 STRA6 
5'UTR; TSS1500; 
TSS200 

cg05881135 1.82E-03 1.05E-02 -0.025 SYNM SYNM TSS1500 
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CpG p-value FDR ∆beta Closest TSS UCSC gene UCSC location 
cg16006738 3.45E-04 3.11E-03 0.014 TAL1 TAL1 Body 
cg15023038 1.10E-03 7.33E-03 0.017 TCTE1 TCTE1 Body 
cg01855013 1.59E-03 9.88E-03 -0.033 TGFB1I1 TGFB1I1 3'UTR 
cg04060128 1.70E-03 1.01E-02 -0.036 TGFB1I1 TGFB1I1 Body 
cg09837169 7.55E-03 3.12E-02 0.029 TIAM2 TIAM2 TSS1500 

cg16414821 9.34E-04 6.76E-03 0.025 MIR554 
TUFT1; 
MIR554 Body; TSS1500 

cg16567202 6.73E-04 5.19E-03 0.028 ULK2 ULK2 TSS1500 
cg24330379 6.07E-04 4.74E-03 -0.037 UQCRC1 UQCRC1 TSS1500 
cg15044041 8.54E-06 2.13E-04 -0.066 WDR52 WDR52 5'UTR; 1stExon 
cg00736201 1.89E-04 1.92E-03 0.018 WSCD2 WSCD2 3'UTR 
cg07519373 1.64E-03 1.01E-02 -0.056 OR7D2 ZNF426 TSS1500 
cg17970176 1.41E-04 1.62E-03 -0.072 ZNF575 ZNF575 Body 
cg19901523 4.63E-11 3.00E-08 0.063 LOC90925     
cg09311683 5.51E-10 1.78E-07 -0.056 TMEM239     
cg12880095 1.87E-07 9.88E-06 0.124 FAM57A     
cg25230117 3.99E-07 1.48E-05 -0.079 OTUD4     
cg13809095 7.28E-07 2.48E-05 0.069 REEP3     
cg00464520 1.78E-06 5.50E-05 0.057 VAX1     
cg03584351 2.77E-06 8.15E-05 0.070 C7orf50     
cg12192797 5.24E-06 1.36E-04 0.032 ZNF20     
cg08064292 5.26E-06 1.36E-04 0.037 BC024169     
cg14228272 2.26E-05 5.23E-04 0.056 KLC1     
cg21008530 2.61E-05 5.75E-04 -0.104 SNORA67     
cg03663556 3.32E-05 6.94E-04 -0.056 GRB10     
cg13323489 4.25E-05 8.34E-04 -0.045 AK091265     
cg04785587 4.99E-05 8.51E-04 0.039 TBRG4     
cg13712818 7.53E-05 1.16E-03 0.047 ANKFN1     
cg06382028 8.13E-05 1.22E-03 -0.130 LOC339166     
cg07343703 8.42E-05 1.24E-03 -0.054 AKT3     
cg01628053 1.22E-04 1.44E-03 -0.080 FGFR2     
cg18437839 1.52E-04 1.70E-03 -0.049 PHLDA3     
cg22239534 1.62E-04 1.76E-03 0.044 AK123632     
cg17198772 2.04E-04 2.03E-03 -0.036 PTDSS2     
cg22010140 2.18E-04 2.14E-03 0.046 AGT     
cg26932623 3.32E-04 3.03E-03 -0.053 ELF3     
cg15073666 3.85E-04 3.34E-03 0.046 BC036258     
cg15150463 5.56E-04 4.56E-03 0.026 GJA10     
cg06711306 9.38E-04 6.76E-03 -0.050 DQ658414     
cg23069297 1.19E-03 7.80E-03 -0.085 CXXC11     
cg02467382 1.41E-03 8.96E-03 -0.025 AK128400     
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CpG p-value FDR ∆beta Closest TSS UCSC gene UCSC location 
cg11737831 2.28E-03 1.27E-02 -0.017 WDR18     
cg18147104 2.79E-03 1.47E-02 0.008 BC011773     
cg10755035 4.35E-03 2.04E-02 0.034 MIR4472-1     
cg04009441 4.46E-03 2.08E-02 0.047 IPO11     
cg05539265 5.22E-03 2.35E-02 -0.063 IL1R1     
cg13625026 5.32E-03 2.38E-02 -0.025 MUC5B     
cg02376887 6.63E-03 2.85E-02 0.020 ERGIC2     
cg01353941 6.90E-03 2.94E-02 0.037 FGF12     
cg10209089 7.41E-03 3.08E-02 0.021 KCNA5     
cg14827832 7.42E-03 3.08E-02 0.019 DD413682     
cg13502252 8.86E-03 3.57E-02 0.036 SLC27A3     
cg26693693 1.09E-02 4.15E-02 0.025 COPS8     
cg26986871 1.21E-02 4.56E-02 -0.033 KLRK1     
cg25075776 1.27E-02 4.73E-02 0.027 DDR1     
cg10070864 1.28E-02 4.74E-02 -0.059 CGNL1     

 
Supplementary table 5.3. Weighting of probes for the DNA methylation predictors of 

FASD 

Probe 648 probes 161 probes 

cg00012960 0.00000   
cg00043790 0.00000 0.00068 
cg00063773 1.17612   
cg00077566 0.00000   
cg00092400 0.00000   
cg00153543 0.00000   
cg00202441 0.00000   
cg00227156 0.49768 7.46591 
cg00246301 0.00000   
cg00360077 4.04679   
cg00371301 0.00000   
cg00408773 0.00000   
cg00464520 1.08721 0.00007 
cg00588297 0.00000   
cg00610991 0.50687   
cg00625443 0.28734 0.02802 
cg00648582 0.08104   
cg00686823 0.00000   
cg00689651 0.00002 0.09672 
cg00690809 0.00000   
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Probe 648 probes 161 probes 
cg00736201 0.00000 0.96332 
cg00756748 5.82481   
cg00787726 1.07391   
cg00812096 0.81892   
cg00839333 3.28220   
cg00892368 0.00439   
cg00939684 0.00000   
cg00945507 23.05227   
cg00956573 0.04197   
cg00971737 0.00000   
cg01015062 0.05733   
cg01031400 17.49456   
cg01074767 0.00002 0.00614 
cg01091565 0.00231 1.03663 
cg01099220 0.10910   
cg01134643 0.00000   
cg01181415 0.00000   
cg01206944 0.95850 21.58166 
cg01216369 0.00011   
cg01290710 0.00000 0.00000 
cg01291665 0.65303 13.67013 
cg01345586 0.83387   
cg01346077 0.00001   
cg01353941 22.20864 18.80239 
cg01359236 0.00000   
cg01439568 0.00000   
cg01479187 4.66293   
cg01578398 0.00002   
cg01595666 0.00000   
cg01628053 1.06050 7.81963 
cg01655958 13.92185   
cg01663696 0.01121   
cg01715680 18.84690 0.00000 
cg01746878 0.04259   
cg01784614 0.00000   
cg01787574 0.00000   
cg01812045 0.00000 0.00054 
cg01855013 0.00000 0.00987 
cg01862688 5.08079   
cg01895612 1.35728   
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Probe 648 probes 161 probes 
cg02030270 10.74329   
cg02052956 0.00000   
cg02096656 0.00000 0.28157 
cg02139853 1.36191   
cg02163378 0.00000 0.06075 
cg02197634 12.84074 0.00004 
cg02207200 0.00000   
cg02309230 0.00008   
cg02342791 5.11872   
cg02361459 0.00535   
cg02376887 0.00000 0.68816 
cg02411950 0.00000   
cg02413040 0.00000   
cg02467382 0.00000 13.88709 
cg02487233 0.00038   
cg02510729 1.48918 0.06494 
cg02512395 0.00006   
cg02527881 0.00000   
cg02539153 36.24702 34.42112 
cg02580969 0.00001   
cg02642958 100.00000   
cg02666302 0.68335 16.58075 
cg02704570 0.00000   
cg02728342 0.00000   
cg02760112 0.00000   
cg02770683 0.00001   
cg02773588 0.00000 0.40718 
cg02814482 0.00000 0.22423 
cg02822788 0.00079   
cg02855981 9.03960   
cg02858267 0.61141 0.01587 
cg02860108 0.02204   
cg02988698 0.00000   
cg03032816 0.00000   
cg03062564 0.00267   
cg03078972 0.81981   
cg03221025 0.02095   
cg03230711 2.52466   
cg03318904 0.00000   
cg03357547 0.00000   
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Probe 648 probes 161 probes 
cg03359468 22.79089   
cg03411938 0.00000   
cg03465782 0.00003   
cg03583111 0.00000 0.00000 
cg03584351 0.42552 0.55664 
cg03611029 0.29287 9.42709 
cg03625515 0.00000   
cg03626746 0.78799   
cg03663556 69.54965 67.39943 
cg03667083 0.00000   
cg03670369 0.00000   
cg03757387 0.00000   
cg03817911 0.00000   
cg03829194 0.00000   
cg03888765 0.00000   
cg03919488 1.71264   
cg03928546 0.00000   
cg03967266 2.75830   
cg04009441 0.00000 1.86221 
cg04037470 0.00010   
cg04060128 0.00000 0.00000 
cg04089332 0.00000   
cg04099543 0.00007   
cg04108939 0.00203   
cg04134048 0.00000   
cg04151826 0.00000   
cg04180046 0.00003   
cg04195855 34.78051 36.74883 
cg04215256 0.00488   
cg04217218 4.12964   
cg04234014 1.01250   
cg04380576 0.00000   
cg04398451 13.97304   
cg04417556 0.00000   
cg04420752 0.00000   
cg04439622 0.00000 0.17927 
cg04450459 0.00118   
cg04456916 0.00000   
cg04609875 0.00000   
cg04622001 0.00000 0.00000 
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Probe 648 probes 161 probes 
cg04656451 0.00000   
cg04690793 0.00000   
cg04707706 0.00000   
cg04760708 6.03592   
cg04785587 0.00001 19.11033 
cg04787675 0.00000   
cg04831327 0.00000   
cg04833646 0.38761 5.58295 
cg05097643 0.00000 0.06231 
cg05115862 0.00000   
cg05178654 0.00000   
cg05206657 0.00005   
cg05210798 0.00000   
cg05249460 16.79878   
cg05252487 68.85872 83.95361 
cg05358814 0.00000   
cg05389922 0.00000   
cg05435295 0.00000   
cg05477514 0.00007   
cg05491767 31.42415   
cg05512869 0.00000   
cg05532178 0.00000   
cg05539265 0.00000 0.00007 
cg05627398 23.01080   
cg05645661 0.00000   
cg05665581 0.00000 0.02406 
cg05767421 13.62842   
cg05769975 0.00000   
cg05813818 8.40983   
cg05834603 0.00000   
cg05881135 0.65302 28.56234 
cg05938607 0.10129 6.82553 
cg06114363 0.42088   
cg06121352 0.00007   
cg06154313 3.25425   
cg06261066 0.00000   
cg06297194 0.00465   
cg06327965 0.00000   
cg06382028 8.29293 25.76629 
cg06711175 11.17201   
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Probe 648 probes 161 probes 
cg06711306 0.00000 31.30020 
cg06747543 0.00002 12.88855 
cg06749854 0.00000   
cg06812861 0.00000   
cg06814616 0.22572   
cg06864895 0.00062 0.07451 
cg06913501 0.00000   
cg06915053 0.00000   
cg06943912 0.00000   
cg07007080 0.01942   
cg07043604 0.00000   
cg07107130 0.00000   
cg07179981 0.00000   
cg07234199 0.05023   
cg07251128 0.00000   
cg07266431 0.00000   
cg07324496 0.33269   
cg07343703 0.00587 0.00012 
cg07377907 0.00001   
cg07386859 0.25275   
cg07440826 0.00000   
cg07470694 0.00000   
cg07500347 0.01216   
cg07519373 0.00000 0.00037 
cg07527324 0.00000   
cg07626033 98.80679   
cg07654559 0.00000   
cg07723921 0.00000   
cg07830534 7.77909 0.00000 
cg07880854 11.28588   
cg07927540 6.18036 39.51676 
cg08019384 0.00000   
cg08039322 0.54838   
cg08062387 0.00000   
cg08064292 0.00002 0.35367 
cg08072202 0.00000   
cg08076108 0.00003   
cg08089041 0.00865   
cg08102508 0.00000   
cg08108641 0.00000   



 

 

319 

Probe 648 probes 161 probes 
cg08212266 0.00000   
cg08244301 0.00000   
cg08268892 0.00016   
cg08271366 0.00069   
cg08289525 0.96240   
cg08329753 0.00000 0.00000 
cg08376368 0.00000   
cg08388455 0.00000   
cg08489410 0.17000   
cg08506585 0.00000   
cg08535756 0.02216   
cg08570472 0.00000 0.00000 
cg08580187 0.00000   
cg08589214 0.00000 0.83765 
cg08598287 0.00000   
cg08621957 0.00000   
cg08701816 33.59962   
cg08772837 0.00000   
cg08796706 0.00005 0.00145 
cg08857221 0.00000   
cg08864105 2.85052   
cg08937612 0.00000   
cg09066361 0.00000   
cg09084256 0.15651 6.27706 
cg09133032 27.31250   
cg09133511 0.00000   
cg09176023 0.00000   
cg09187107 0.00000   
cg09229169 1.42973   
cg09245003 0.00000 0.00000 
cg09245872 3.13916   
cg09278098 0.00000   
cg09292069 0.00000   
cg09311683 0.02951 0.00001 
cg09345786 0.00001 9.56301 
cg09386376 0.00000 4.40759 
cg09412782 0.18267   
cg09459548 0.00000   
cg09511421 31.51291 15.10552 
cg09654116 46.78914   



 

 

320 

Probe 648 probes 161 probes 
cg09681675 19.30044   
cg09761265 0.00000   
cg09767675 0.00000   
cg09837169 0.00002 7.44888 
cg09847753 0.00013 7.37818 
cg09879382 1.78318   
cg09895009 0.00000 0.00000 
cg09914773 0.00000   
cg09939948 0.00000   
cg10001715 0.00000   
cg10070864 0.92799 12.33404 
cg10078335 0.49192 0.08805 
cg10135520 0.20719   
cg10209089 0.00000 0.00000 
cg10350263 0.00000   
cg10482532 0.00000   
cg10537821 0.73299   
cg10598595 9.16912   
cg10707081 2.51648   
cg10755035 0.00000 0.16147 
cg10793758 0.33452 28.44001 
cg10822352 0.00000   
cg10824677 0.20032   
cg10831285 0.00000   
cg10930290 0.03257   
cg10944833 0.00000   
cg11024687 0.85601   
cg11030744 0.00005 23.31113 
cg11107212 0.00011   
cg11210069 2.06212   
cg11253737 0.00000   
cg11262093 8.08014   
cg11274371 0.00000   
cg11335335 0.00000   
cg11353300 0.00000   
cg11500660 0.00994   
cg11552868 1.33438   
cg11663289 0.00035   
cg11710912 0.00001   
cg11737831 0.00000 0.00000 



 

 

321 

Probe 648 probes 161 probes 
cg11770664 0.00000 0.37258 
cg11895451 5.76743   
cg11900509 51.93379 55.68059 
cg11944462 0.00000   
cg11953516 0.00000   
cg11959399 1.20531   
cg11966524 0.11451   
cg12008047 0.00000   
cg12014113 4.71907   
cg12192797 18.72447 0.00736 
cg12285605 0.00995   
cg12333845 0.00015   
cg12386061 0.01917   
cg12438037 0.00054 13.85449 
cg12486795 0.00000   
cg12515485 6.34865   
cg12536502 0.00000   
cg12559474 0.16138   
cg12593541 0.00000   
cg12604031 0.00000   
cg12680326 0.70995   
cg12692682 0.00000   
cg12734820 0.00000   
cg12768523 0.00003   
cg12856447 0.00000   
cg12880095 0.00220 0.00000 
cg12893780 0.31078 13.05657 
cg13010014 1.52952   
cg13055001 0.00074   
cg13075295 33.53036   
cg13109911 0.00390   
cg13118072 0.00000   
cg13294084 0.00000   
cg13323489 0.00000 18.05434 
cg13416249 0.03831 14.90409 
cg13423554 0.00000 0.06305 
cg13430464 0.00000   
cg13439596 0.00157   
cg13485320 39.64723   
cg13502252 0.00000 0.00007 



 

 

322 

Probe 648 probes 161 probes 
cg13521077 8.45023   
cg13557373 0.00000   
cg13625026 0.00001 0.41028 
cg13675051 0.00000   
cg13712818 0.00000 0.83343 
cg13741289 0.00000   
cg13785189 0.00009   
cg13809095 0.61630 48.01921 
cg13881341 0.00000   
cg13916255 0.44023   
cg13946872 0.00000   
cg14054283 35.08442   
cg14166009 0.00000   
cg14195115 0.26895 0.00000 
cg14204430 0.00000 0.00000 
cg14219124 0.52544   
cg14219900 0.00000   
cg14228272 0.09008 4.90270 
cg14321284 0.00500   
cg14379630 4.13801   
cg14387743 0.00000   
cg14499058 0.00000   
cg14549524 0.00000   
cg14556787 0.00459   
cg14616251 1.21307   
cg14724749 74.22211   
cg14765933 0.00858 9.67642 
cg14827832 0.12076 0.97822 
cg14841350 0.00000   
cg14898768 0.00002   
cg14905731 0.00000   
cg15023038 0.00246 0.02988 
cg15026243 0.00000   
cg15032166 0.00000   
cg15044041 0.01092 4.52516 
cg15073666 19.39050 15.52385 
cg15150463 0.00000 0.00141 
cg15225534 2.93032   
cg15339164 0.00000   
cg15484354 12.21490   



 

 

323 

Probe 648 probes 161 probes 
cg15497724 0.00000   
cg15527515 0.00000   
cg15636421 0.00918   
cg15678825 0.06049   
cg15734436 0.03062 39.82044 
cg15825321 0.00000   
cg15835339 0.00000 21.57562 
cg15867428 0.00000 0.00129 
cg15876968 0.00000   
cg15887927 0.00000   
cg15928534 0.00000   
cg16006738 0.00000 0.00000 
cg16046375 0.00000   
cg16072777 23.36600   
cg16096766 0.14362   
cg16099687 0.00000   
cg16409039 0.00000   
cg16414821 0.01193 12.22966 
cg16418105 1.42428   
cg16439948 0.00000   
cg16558770 0.00000   
cg16567202 0.00000 0.80691 
cg16614020 99.61657 100.00000 
cg16782174 0.20554   
cg16848712 0.01337 0.00872 
cg16904330 0.00000   
cg16962008 4.86780   
cg16985708 2.86232   
cg17059564 0.00000 0.00699 
cg17098979 0.00027   
cg17121120 0.06018   
cg17132030 22.13905   
cg17163363 0.00000   
cg17198772 0.00000 2.13934 
cg17248961 5.82034   
cg17324128 0.00001   
cg17342588 0.00001   
cg17343167 0.00000   
cg17352045 12.14537   
cg17386185 0.00000 16.54185 



 

 

324 

Probe 648 probes 161 probes 
cg17491622 0.00002   
cg17496887 0.00013   
cg17559809 0.00000 0.02259 
cg17654567 0.00010   
cg17787876 0.00000   
cg17827803 0.00040   
cg17848054 0.53249   
cg17914838 2.82849   
cg17921548 61.39770   
cg17970176 10.28054 5.45559 
cg17995197 0.27074 0.00000 
cg18054674 10.46978   
cg18057887 0.00000   
cg18064714 0.00000   
cg18082362 0.00000   
cg18147104 0.00000 0.00181 
cg18153869 9.61999   
cg18174404 0.00246   
cg18182475 0.00601   
cg18235690 14.38877   
cg18237551 0.00001   
cg18362003 0.27925   
cg18419977 0.65485   
cg18437839 0.00030 0.37884 
cg18458509 0.00448   
cg18479249 0.00000   
cg18489195 0.17847   
cg18681352 0.00548   
cg18715709 0.00000   
cg18728780 0.00000   
cg18776287 0.00000 0.00000 
cg18778727 2.32960   
cg18865832 0.00000   
cg18920097 0.00860   
cg19037350 0.01806   
cg19075225 0.00000 35.02488 
cg19092735 0.03776   
cg19100988 0.00000   
cg19273668 4.66018   
cg19275200 0.06645   



 

 

325 

Probe 648 probes 161 probes 
cg19308397 0.00000   
cg19360675 0.56822 6.49140 
cg19402173 39.01580 59.94469 
cg19470832 1.33875 0.65186 
cg19497798 0.00000 0.00059 
cg19555986 0.00039   
cg19566764 52.61003 32.57136 
cg19697239 0.98875 14.12348 
cg19734433 0.00000   
cg19748485 0.33894   
cg19872095 13.06488   
cg19901523 0.00158 12.16287 
cg19995899 0.00000   
cg20003976 0.00000   
cg20065463 0.00000   
cg20130789 0.00003 0.00316 
cg20138186 0.00000   
cg20143982 0.00379   
cg20164964 3.73359   
cg20254763 0.00000   
cg20293942 0.01203   
cg20306534 0.00488   
cg20307184 0.00000   
cg20335425 0.00000   
cg20359202 1.47786   
cg20360285 0.00000   
cg20366110 0.11306   
cg20506745 0.00186   
cg20511832 0.00000   
cg20524128 0.06560   
cg20684180 0.00000   
cg20694545 0.00003 5.33391 
cg20699141 0.00000 22.74435 
cg20703671 0.01010   
cg20821838 0.00020   
cg20876010 0.00000 0.00000 
cg20906524 0.00000   
cg20961387 0.00039   
cg21008530 0.00000 0.02070 
cg21030607 0.00000   



 

 

326 

Probe 648 probes 161 probes 
cg21032583 0.00000 0.00000 
cg21040775 0.00000   
cg21047695 9.30228 9.56906 
cg21048669 0.00000   
cg21051972 0.00000   
cg21117330 2.25839   
cg21202862 0.00004   
cg21222426 0.00000   
cg21225504 0.00100   
cg21257581 0.00000   
cg21324308 0.00000   
cg21462934 0.00000   
cg21481662 0.00000   
cg21496518 0.00000   
cg21563683 0.00000   
cg21591807 0.00687   
cg21785245 0.00000 0.00000 
cg21838625 0.00018   
cg21853021 0.00000   
cg21857190 4.54511   
cg21879102 0.00000   
cg21931938 0.00001   
cg22010140 0.09034 0.00099 
cg22070991 0.03633   
cg22118082 0.00000   
cg22123885 0.01278   
cg22129122 0.02426   
cg22132788 0.00000   
cg22239534 3.69895 36.49658 
cg22283925 4.55643   
cg22338356 0.04435 0.00000 
cg22455271 0.00000   
cg22495058 0.00000   
cg22573118 0.00232   
cg22659953 74.01385 63.47089 
cg22672067 3.66660 24.33809 
cg22691119 28.08275   
cg22702960 0.00000   
cg22767461 0.47417   
cg22873986 0.52182 0.00188 



 

 

327 

Probe 648 probes 161 probes 
cg22893791 0.00000 0.00000 
cg22910295 0.00000   
cg22924796 1.78218   
cg22940961 0.00000   
cg23069297 0.04743 1.69723 
cg23078194 0.00011   
cg23161492 6.88320 1.95704 
cg23190089 0.43797   
cg23203302 0.00000   
cg23237801 0.00023   
cg23348582 0.00000   
cg23356309 0.00087   
cg23358740 0.00000   
cg23406407 0.00331   
cg23418467 0.00000   
cg23476401 0.01139 29.00413 
cg23492399 0.06470 9.85625 
cg23495441 0.00000   
cg23555395 0.00000   
cg23586138 0.00000   
cg23588928 0.00000 8.16590 
cg23617193 0.00000   
cg23660182 0.00000   
cg23930711 17.57175   
cg23948825 0.18447   
cg23976431 2.51551   
cg23978357 0.00000   
cg23978358 0.00000   
cg23987134 0.00000 5.87866 
cg24033103 0.02845   
cg24033661 0.00000   
cg24127414 0.18084   
cg24212392 0.00000   
cg24218620 11.13353 67.87875 
cg24269657 0.00000   
cg24292665 0.00000   
cg24317217 0.00000   
cg24330379 0.00000 0.96532 
cg24351857 0.00000   
cg24499411 0.00000   



 

 

328 

Probe 648 probes 161 probes 
cg24506604 0.00001 0.52984 
cg24511341 11.73251   
cg24605090 0.00197   
cg24630957 0.19737   
cg24640156 69.97644 8.86757 
cg24800175 76.84194 97.00374 
cg24834889 0.00068   
cg24927800 0.00014 0.00000 
cg25059434 14.40706   
cg25075776 0.00000 0.08255 
cg25182501 0.00043   
cg25230117 0.00000 0.00004 
cg25236277 54.52399   
cg25306006 0.00000   
cg25353064 0.37468   
cg25491704 0.00000 0.00000 
cg25600027 0.00681   
cg25609517 0.10902   
cg25670376 0.16097   
cg25702651 10.55334   
cg25799797 14.15587   
cg25842763 0.00607   
cg25850044 0.00000   
cg25949338 0.00000 0.00000 
cg25954235 30.68469   
cg25963822 9.90976   
cg25967612 0.19579   
cg26112661 0.00000 20.69830 
cg26127778 9.48272   
cg26231094 23.31026 5.73678 
cg26340050 0.01099   
cg26371345 0.00000 0.00000 
cg26373071 0.08629   
cg26416341 0.00000   
cg26470501 0.00000   
cg26487259 0.08703   
cg26523175 0.03505   
cg26614816 3.26983   
cg26621408 1.16135   
cg26656658 0.00000   



 

 

329 

Probe 648 probes 161 probes 
cg26693693 0.00000 0.16349 
cg26723162 0.00000   
cg26736200 6.22025   
cg26821681 0.25361   
cg26880735 4.85119   
cg26932623 0.00000 0.00000 
cg26955579 0.00004   
cg26986871 0.00076 2.11947 
cg27100140 0.00000   
cg27105390 0.11649   
cg27110491 20.53513   
cg27118929 0.00000   
cg27120934 0.00000   
cg27129048 0.67213   
cg27135984 0.00000   
cg27151362 0.00000   
cg27247225 0.00000   
cg27295595 0.00000   
cg27298830 0.00000 0.02450 
cg27300742 0.00007 31.35286 
cg27370131 0.00000   
cg27384070 0.00000   
cg27409974 0.00008   
cg27413421 0.00003   
cg27438218 0.61344   
cg27491190 0.00000 0.00209 
cg27592868 1.72669 0.00001 
ch.1.186147687F 0.00532   

 

 

 


