
Learning Image-based Localization

by

Lili Meng

B.Sc., University of Science and Technology Beijing, 2008

M.Sc., University of Science and Technology Beijing, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Mechanical Engineering)

The University of British Columbia

(Vancouver)

September 2017

c© Lili Meng, 2017

Abstract

Image-based localization plays a vital role in many tasks of robotics and computer

vision, such as global localization, recovery from tracking failure, and loop closure

detection. Recent methods based on regression forests for camera relocalization

directly predict 3D world locations for 2D image locations to guide camera pose

optimization. During training, each tree greedily splits the samples to minimize

the spatial variance. This thesis develops techniques to improve the performance

camera pose estimation based on regression forests method and extends its appli-

cation domains. First, random features and sparse features are combined so that

the new method only requires an RGB image in the testing. After that, a label-free

sample-balanced objective is developed to encourage equal numbers of samples

in the left and right sub-trees, and a novel backtracking scheme is developed to

remedy the incorrect 2D-3D correspondence in the leaf nodes caused by greedy

splitting. Furthermore, the methods based on regression forests are extended to use

local features in both training and test stages for outdoor applications, eliminating

their dependence on depth images. Finally, a new camera relocalization method is

developed using both points and lines. Experimental results on publicly available

indoor and outdoor datasets demonstrate the efficacy of the developed approaches,

showing superior or on-par accuracy with several state-of-the-art baselines.

Moreover, an integrated software and hardware system is presented for mo-

bile robot autonomous navigation in uneven and unstructured indoor environments.

This modular and reusable software framework incorporates capabilities of percep-

tion and autonomous navigation. The system is evaluated are in both simulation

and real-world experiments, demonstrating the efficacy and efficiency of the devel-

oped system.

ii

Lay Summary

Image-based localization plays a vital role in many robotics and computer vision

tasks. Deep learning research has attempted to overcome the challenges of using

depth images for camera relocalization, making it applicable for outdoor scenes.

The accuracy level, however, was low compared to other methods. The main con-

tributions of this work resulted in increased prediction accuracy with reduced train-

ing time and eliminating the dependence on depth images which broadened the

application to outdoor scenes.

Robots are operating in shared spaces indoors with people more and more.

However, robots still face challenges operating in uneven and unstructured envi-

ronments, such as those designed for wheelchair mobility. The other contribution

of this thesis is an integrated software and hardware system for autonomous mobile

robot navigation in uneven and unstructured environment. The thesis details the re-

sults of extensive experiments in both simulation and real-world, demonstrating the

efficacy and efficiency of the system.

iii

Preface

This dissertation is based on the research work conducted in collaboration with

multiple researchers at The University of British Columbia under the guidance and

supervision of Prof. Clarence W. de Silva.

• Chapter 3 addresses the problem of estimating camera pose relative to a

known scene, given a single RGB image. This chapter is based the fol-

lowing published work: Lili Meng, Jianhui Chen, Frederick Tung, James

J. Little, and Clarence W. de Silva. ”Exploiting Random RGB and Sparse

Features for Camera Pose Estimation.” In 27th British Machine Vision Con-

ference(BMVC), 2016.

• Chapter 4 addresses the problem of camera pose learning based on back-

tracking regression forests. This chapter is based on the accepted publi-

cation: Lili Meng, Jianhui Chen, Frederick Tung, James J. Little, Julien

Valentin and Clarence W. de Silva. ”Backtracking Regression Forests for

Accurate Camera Relocalization.” In IEEE/RSJ Intl. Conf. on Intelligent

Robots and Systems(IROS), 2017.

• Chapter 5 addresses exploiting points and lines in regression forests for

RGB-D camera relocalization. This chapter is based on the following un-

der reviewed submission: Lili Meng, Frederick Tung, James J. Little, Julien

Valentin and Clarence W. de Silva. ” Exploiting Points and Lines in Regres-

sion Forests for RGB-D Camera Relocalization.” IEEE International Con-

ference on Robotics and Automation (ICRA), 2018.

• Chapter 6 addresses the problem of mobile autonomous navigation in uneven

iv

and unstructured world with localization learning and other methods. This

chapter is based on the following accepted publication: Chaoqun Wang∗, Lili

Meng∗, Sizhen She, Ian M. Mitchell, Teng Li, Frederick Tung, Weiwei Wan,

Max. Q.-H. Meng, and Clarence W. de Silva. ”Autonomous Mobile Robot

Navigation in Uneven and Unstructured Indoor Environments.” In IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems(IROS), 2017. (∗Indicates

equal contribution)

For the BMVC, IROS on camera relocalization, and ICRA paper/submission,

the author identified the problem, formulated the solution, designed and imple-

mented most of the experiments. For the IROS paper on autonomous navigation,

the author is equally contributed. For the BMVC paper, the author implemented the

camera relocalization using a single RGB image while the implementation on the

sports camera calibration was mostly done by Jianhui Chen, which is not included

in this thesis. For the IROS backtracking regression forests and journal paper, Jian-

hui Chen contributed ideas in discussion and provided suggestions on the coding,

while the author implemented all the experiments. For all the BMVC, IROS pa-

per and ICRA submission on camera relocalization, Dr. Frederick Tung and Prof.

James J. Little helped on ideas discussion and the manuscripts edition. For the au-

tonomous navigation paper, Chaoqun Wang helped on the system experiment, and

designed the global path planning algorithm, which is not included in the thesis.

Sizhen She helps on the platform setup at the preliminary stage for the Pioneer

robot which is not included in thesis. Teng Li helped part of the robot autonomous

navigation environment setup in the Industrial Automation Lab, especially in the

period lab relocation in the ICICS building.

Prof. Clarence De Silva contributed in at all stages of the projects including

research proposal, problem identification, experimental equipment, infrastructure

and environments developments, research funding, supervision, guidance, thesis

writing and so on. Prof. James J. Little contributed ideas and provided feedback for

the camera localization learning. Prof. Ian M. Mitchell contributed ideas, discus-

sions and manuscript revision on the autonomous navigation IROS paper. Weiwei

Wan contributed the discussion and manuscript revision on the IROS autonomous

navigation paper. Julien Valentin helped on the discussion on running speed of

v

regression forests and suggested to add other experiments in IROS backtracking

regression forests paper and ICRA submission.

vi

Table of Contents

Abstract . ii

Lay Summary . iii

Preface . iv

Table of Contents . vii

List of Tables . xi

List of Figures . xiv

List of Abbreviations . xxiv

Acknowledgments . xxvi

1 Introduction . 1
1.1 Research motivation . 1

1.1.1 Image-based localization methods 1

1.1.2 Mobile robot autonomous navigation 3

1.2 Contributions . 4

1.3 Thesis outline . 5

2 Background . 6
2.1 Related work . 6

2.1.1 Image-based camera relocalization 6

vii

2.2 Random forests . 9

2.2.1 Decision tree . 10

2.2.2 The randomness model 13

2.2.3 Random forest ensemble 14

2.3 Camera pose estimation . 14

2.3.1 RGB camera pose estimation 14

2.3.2 RGB-D camera pose estimation 15

3 Image-based localization using regression forests and keyframe pose
refinement . 16
3.1 Introduction . 16

3.2 Method . 18

3.2.1 Random RGB features and labels 18

3.2.2 Random forests for 2D-3D correspondence regression . . 20

3.2.3 Pose refinement . 23

3.3 Experiments . 25

3.3.1 Camera relocalization on Microsoft 7 Scenes dataset . . . 25

3.3.2 Camera relocalization on the Stanford 4 Scenes dataset . . 27

3.3.3 Implementation details 29

3.4 Conclusions . 30

4 Image-based localization using backtracking regression forests . . . 32
4.1 Introduction . 32

4.2 Method . 34

4.2.1 Image features . 35

4.2.2 Scene coordinate labels 37

4.2.3 Backtracking regression forest training 38

4.2.4 Backtracking in regression forests prediction 39

4.2.5 Camera pose optimization 40

4.3 Experiments . 41

4.3.1 Indoor camera relocalization 42

4.3.2 Outdoor camera relocalization 53

4.3.3 Implementation details 56

viii

4.3.4 Limitations . 57

4.4 Conclusions . 58

5 Exploiting points and lines in regression forests for RGB-D camera
relocalization . 60
5.1 Introduction . 60

5.2 Related work . 61

5.3 Problem setup and method overview 62

5.4 Regression forest with point and line features 62

5.4.1 Points sampling and scene coordinate labels 62

5.4.2 Regression forest training 65

5.4.3 Weak learner model . 65

5.4.4 Training objective . 65

5.4.5 Regression forest prediction 66

5.5 Camera pose optimization . 66

5.6 Experiments . 67

5.6.1 Evaluations on Stanford 4 Scenes dataset 67

5.6.2 Evaluations on Microsoft 7 Scenes dataset 69

5.6.3 Evaluations on TUM dynamic dataset 73

5.7 Conclusions . 76

6 Mobile robot autonomous navigation in uneven and unstructured
environments . 77
6.1 Introduction . 77

6.2 Hardware and software platform 78

6.3 Environment representation . 80

6.3.1 3D SLAM . 80

6.3.2 Multilayer maps and traversable map 84

6.4 Localization . 85

6.4.1 Regression forests based global localization 86

6.4.2 Local localization . 86

6.5 Planning and execution . 86

6.5.1 Global and local planning 86

ix

6.5.2 Plan execution . 87

6.6 Experiments . 87

6.6.1 Simulation experiments 87

6.6.2 Real-world experiments 90

6.7 Conclusions . 91

7 Conclusions and future work . 92
7.1 Conclusions . 92

7.2 Future directions . 93

7.2.1 Speed up image based localization 93

7.2.2 Transfer learning . 93

7.2.3 Active image-based localization learning for autonomous

robot . 94

Bibliography . 96

x

List of Tables

Table 3.1 Relocalization results for the 7 Scenes dataset. Median per-

formance is shown for the proposed method on all scenes against

three state-of-the-art methods: SCRF [93], PoseNet [53] and

Bayesian PoseNet [51]. 27

Table 3.2 Camera relocalization results for 4 Scenes dataset. The per-

centage of correct frames is given (within 5cm translational and

5◦ angular error), and median of the proposed method on 4

Scenes dataset against three state-of-the-art methods: ORB+PnP,

SIFT+PnP, and Bayesian PoseNet[51]. The best performance is

highlighted. 30

Table 4.1 Image features. The present method uses random features [93],

SIFT features [64] and Walsh-Hadamard transform (WHT) fea-

tures [43] according to different scenarios. The choice of fea-

tures considers robustness and computational efficiency. 35

Table 4.2 Camera relocalization results for the indoor dataset. The

percentage of correct frames (within 5cm translational and 5◦

angular error) of the developed method is shown on 4 Scenes

dataset against four state-of-the-art methods: ORB+PnP, SIFT+PnP,

Random+SIFT [70], MNG [103]. The best performance is high-

lighted. 42

xi

Table 4.3 Camera relocalization results for the 7 Scenes dataset .Cor-

rect percentage performance is shown for the developed method

on all scenes against three state-of-the-art methods: Sparse base-

line [93], SCRF [93], MutliOutput [38]. The correct percentage

show the test frames within 5cm translational and 5◦ angular

error. 48

Table 4.4 Median camera relocalization performance for the 7 Scenes

dataset . Median performance for the present method on all

scenes is shown against three state-of-the-art methods: PoseNet

[53], Bayesian [51], SCRF [93]. 49

Table 4.5 Camera relocalization results for the TUM dataset . The cor-

rect percentage performance, median performance, and RMSE

of ATE are presented. 51

Table 4.6 Camera relocalization results for the outdoor Cambridge
Landmarks Dataset. The median performance for the devel-

oped method is shown against five state-of-the-art methods: Ac-

tive Search without prioritization (w/o) and with prioritization

(w/) [87], PoseNet [53], Bayesian PoseNet [51], CNN+LSTM

[108], and PoseNet+Geometric loss[52]. 55

Table 5.1 Camera relocalization results for the indoor dataset. The

percentage of correct frames (within 5cm translational and 5◦

angular error) of the developed method is shown using 4 Scenes

dataset against four state-of-the-art methods: ORB+PnP, SIFT+PnP,

Random+SIFT [70], MNG [103]. The best performance is high-

lighted. 68

Table 5.2 Relocalization results for the 7 Scenes dataset. Test frames

satisfying the error metric (within 5cm translational and 5◦ an-

gular error) are shown for the present method on all scenes

against five strong state-of-the-art methods: SCRF [93], Multi[38],

BTBRF, Uncertainty [102], AutoConext [6]. The best perfor-

mance is highlighted. 72

xii

Table 5.3 Relocalization results for the 7 Scenes dataset. Median per-

formance for the present method is shown on all scenes against

five state-of-the-art methods: PoseNet [53], Bayesian Bayesian

PoseNet [51], Active Search without prioritization [87], SCRF

[93], BTBRF. The best performance is highlighted. 72

Table 5.4 Camera relocalization results for the TUM dataset . Correct

percentage performance, median performance, RMSE of ATE

are shown. 75

xiii

List of Figures

Figure 2.1 Decision tree example. Best viewed in color. (a) A tree is

a set of split nodes and leaf nodes organized in a hierarchical

way. Split nodes are denoted with blue circles and leaf nodes

with green circles. (b) Each split node of a decision tree is a

split (or test) function to be applied to the incoming data. Each

leaf node stores the final answer (predictor). An example is

presented here on using a decision tree to classify whether an

image represents an indoor scene or an outdoor scene. 11

Figure 2.2 Decision tree test and training process Best viewed in color.

(a) In the test, a split node applies a test to the input data v and

sends it to the appropriate child. The process is proceeded until

a leaf node is reached (red path). (b) Training a decision tree is

sending the entire training set S0 into the tree and optimizing

the parameters of the split nodes so as to optimize a chosen

energy function. 11

xiv

Figure 3.1 Camera pose estimation pipeline. During training, the scene

information is encoded in a random forest. In the testing stage,

an initial camera pose is estimated using the predictions from

the random forest with real-time response. Then, the initial

camera pose is used to query a nearest neighbor (NN) image

from keyframes. Finally, the camera pose is refined by sparse

feature matching between the test image and the NN image.

In our method, the labels can constitute any information (e.g.,

scene coordinate positions) associated with pixel locations. . . 17

Figure 3.2 Random RGB pixel comparison features. The red star rep-

resents the pixel p being computed. The distance between the

red star and the blue circle represents the pixel offset as defined

in Eq. 3.2. In (a), the two example features at image position

p1 and p2 give a large color difference response. In (b), the

two features at the same image locations in a different image

give a much smaller response compared with (a). 19

Figure 3.3 Training random forests for 2D-3D coordinate correspon-
dence regression. A set St

0 of labeled sample pixels (p,m) is

randomly chosen from the entire set S0 = [S1
0, · · · ,ST

0] for each

tree, where m is the 3D world coordinate label of pixel p. The

tree grows recursively from the root node to the leaf node. The

goal is to optimize the parameters of the tree split nodes. Here

spatial-variance is used to represent entropy. 21

Figure 3.4 Test phase of random forests for 2D-3D correspondence re-
gression. In the testing stage, at each split node i, the fea-

ture fφi is compared with the feature response τi to determine

whether to go to the left or the right child node. A particular in-

put may go along different paths in different trees as indicated

by the red arrows. 22

Figure 3.5 Microsoft 7 Scenes dataset. 26

xv

Figure 3.6 Pixel-wise prediction error distribution from the regres-
sion forests. Heat maps show the prediction error distribution

directly from the regression forests on the Chess and Heads

scenes. Large errors occur on black screens and other texture-

less regions. 27

Figure 3.7 4 Scenes dataset example images[103]. Each RGB-D image

is accompanied with a camera pose. Each sequence also pro-

vides a textured 3D model (not used in the present thesis). . . 28

Figure 4.1 Depth-adaptive random RGB pixel comparison features.
The red star represents the pixel p being computed. The dis-

tance between red star and blue circle represents the offset pix-

els θ

D(p) as defined in Eq. 4.2. In (a), the two example features

at image position p1 and p2 give a large color difference re-

sponse. In (b), the two features at the same image locations in

a different image give a much smaller response compared with

(a). 36

Figure 4.2 Training random forests for 2D-3D coordinate correspon-
dence regression. A set St

0 of labeled sample pixels (p,m) is

randomly chosen from the entire set S0 = [S1
0, · · · ,ST

0] for each

tree, where m is the 3D world coordinate label of pixel p. The

tree grows recursively from the root node to the leaf node. The

goal is to optimize the parameters of the tree split nodes. The

training objective 1 is the sample-balanced objective, and the

training objective 2 is the spatial-variance objective. 37

Figure 4.3 Decision tree using two split objectives. Best viewed in color.

The split nodes are illustrated as the pie charts, which show the

percentage of samples in the left and right sub-trees. In this

five-level tree, the split nodes of the first two levels are split us-

ing the sample-balanced objective. While the rest of levels are

split using the unbalanced objectives (e.g., the spatial-variance

objective). Details are in Sect. 4.2.3. 40

xvi

Figure 4.4 Test phase of backtracking regression forests In the test,

at each split node i, the feature fφi is compared with feature

response τi to determine whether to go to the left or to the

right child node. The red arrows represent the prediction pro-

cess without backtracking while the purple arrows represent

the backtracking process. A particular input may go along dif-

ferent paths in different trees as indicated by the red and purple

arrows. 41

Figure 4.5 Impact of the sample-balanced objective and backtrack-
ing on prediction accuracy. These figures show the accu-

mulated percentage of predictions within a sequence of inlier

thresholds. The proposed method with the sample-balanced

objective (red lines) consistently has a higher percentage of

inliers compared with the unbalanced objective (blue lines).

Backtracking (green lines) further improves prediction accu-

racy. Max number of backtracking leaves is 16 here. 44

Figure 4.6 Qualitative results for indoor dataset (from office2/gates381).
Best viewed in color. The ground truth is in red and the present

estimated camera pose is in green. (a) camera trajectories. (b)

several evenly sampled camera frusta are shown for visualiza-

tion. the present method produces accurate camera locations

and orientations. Note: the 3D model is only for visualization

purposes and it is not used for the present camera relocaliza-

tion. 44

Figure 4.7 Camera relocaliztion accuracy vs. number of tree levels
using the sample-balanced objective. When the number of

levels using sample-balanced objective increases, the average

performance (dashed line) increases. 45

Figure 4.8 Camera relocalization accuracy vs. backtracking leaf node
numbers. The camera relocalization performance increases

with more backtracking leaf nodes though eventually levels

out. 46

xvii

Figure 4.9 Split ratio distribution. The heat map shows the split ratio

distribution as a function of tree depth (level). The data is

from all split nodes in a sequence. In the first 8 levels, the dis-

tribution is concentrated around 0.5 as a result of the sample-

balanced objective. From level 8 to level 25, the distribution is

almost uniform. 47

Figure 4.10 Camera relocalization accuracy VS number of trees . . . 47

Figure 4.11 Example sequence in TUM dynamic dataset. 50

Figure 4.12 Quantitative results on TUM dynamic dataset. 52

Figure 4.13 Failure cases on TUM dynamic dataset. 53

Figure 4.14 Overview of the present framework of SuperSIFT for cam-
era relocalization (a) Visual structure from motion [115] is

employed to autonomously generate training data (local fea-

tures and their corresponding 3D point positions in the world

coordinate). During training, regression forest is used to learn

the correspondence between local features and 3D world co-

ordinates. (b) At test time, local features are extracted from

query image, and then their 3D correspondences are estimated

from regression forests with backtracking. Finally the camera

pose is estimated using PnP solver and RANSAC. 54

Figure 4.15 Qualitative results for the outdoor dataset Cambridge Land-
marks, King’s College. Best viewed in color. Camera frusta

overlaid on the 3D scene. The camera poses are evenly sam-

pled every ten frames for visualization. Camera frusta with

hollow green frames show ground truth camera poses, while

red ones with light opacity show the present estimated camera

poses. The estimated camera poses of the developed method

are very close to ground truth in spite of partial occlusion,

moving objects, motion blur, large illumination and pose changes. 56

Figure 4.16 Effect of backtracking leaf node numbers on camera relocal-

ization accuracy in Cambridge landmarks dataset. 57

xviii

Figure 5.1 Line segment example. (a) original RGB image (b) with LSD

line features. In scenes with little texture and repetitive pat-

terns which are typical in indoor environments, line features

are more robust. 61

Figure 5.2 Depth corruption and discontinuity on line segments. (a)

LSD line segments overlaid on original RGB image (b) trun-

cated depth map. Effective depth information is not always

available for 2D line segments in the corresponding RGB im-

age, such as the wrong depth values shown on the desk and the

glass corridor areas. 63

Figure 5.3 3D line estimation based on sampling points. Within a pin-

hole camera model, the 2D image points are evenly sampled

on a 2D image line and then back-projected on the scene co-

ordinate to be 3D scene points. These 3D scene points contain

outliers which could be removed by RANSAC to fit a 3D line

in scene coordinate. 64

Figure 5.4 Qualitative results on Stan f ord 4 Scenes dataset. 69

Figure 5.5 Large error example on Stan f ord 4 Scenes dataset Apt2 Luke.
70

Figure 5.6 Qualitative results for the Heads scene in Microso f t 7 Scenes

dataset. 71

Figure 5.7 Large error examples on Microso f t 7 Scenes dataset. . . . 73

Figure 5.8 Qualitative results on TUM dynamic dataset. 74

Figure 5.9 Large error examples on TUM dynamic dataset. 75

Figure 6.1 The robot is navigating up the slope to the goal at the higher
platform. In the presence of staircases and slope, the robot

builds a 3D representation of the environment for the traversable

map, and then the robot can navigate through the slope and

avoid the staircases to reach the goal efficiently and safely. . . 79

xix

Figure 6.2 Robot hardware platform. (a) Segway robot in a sloped area.

The robot base is segway RMP100 with custom installed cast-

ers for safety and onboard battery pack for providing power to

sensors. (b) Xtion Pro Live RGB-D camera is capable of pro-

viding 30Hz RGB and depth images, with 640x480 resolution

and 58 HFV. (c) Hokuyo UTM-30LX laser scanner with range

10m to 30m, and 270◦ area scanning range for localization. . . 80

Figure 6.3 High-level system architecture. The robot first builds a 3D

OctoMap representation for uneven environment with the present

3D SLAM using wheel odometry, 2D laser and RGB-D data.

Multi-layer maps from OctoMap are used for generating the

traversable map, which serves as the input for autonomous

navigation. The robot employs a variable step size RRT ap-

proach for global planning, adaptive Monte Carlo localization

method to localize itself, and elastic bands method as the local

planner to gap the global planning and real-time sensor-based

robot control. 81

Figure 6.4 3D environment representation of simulated world. (a) Sim-

ulated environment model in Gazebo (b) 3D OctoMap environ-

ment built by our 3D SLAM using wheel odometry, a 2D laser

scanner and an RGB-D sensor. 82

Figure 6.5 Octomap representation for f r1/room of TUM RGB-D SLAM
benchmark [98] with visual SLAM. (a) the sparse map from

original ORB-SLAM [72], map points (black, red), keyframes

(blue). (b) OctoMap representation 83

Figure 6.6 Generation of traversable map from multilayer maps for
the Gazebo Caffe environment. (a) slope and staircase visu-

alization with occupied voxels, (b) multi-layer maps and traversable

map. In the traversable map, the staircases are occupied space,

while the slope area except the edge is free space, which is safe

for robot to navigate. For details please refer to Sec. 6.3.2. . . 84

xx

Figure 6.7 Autonomous navigation in the simulated environment. The

first row shows images of autonomous navigation in Gazebo,

and the second row shows the Rviz views of the process. . . . 88

Figure 6.8 Real environment. (a) a photo of the real environment. (b)

3D representation of the environment with OctoMap. Only

occupied voxels are shown for visualization. 89

Figure 6.9 Multilayer maps and traversable map for real environment.
(a)-(d) multiple projected layers from OctoMap, (e) the traversable

map. The staircases and slope edge are occupied while the

slope is free space. 89

Figure 6.10 Robot autonomous navigation example in real environ-
ment. The first row shows images of robot autonomous nav-

igation, and the second row shows screenshots of Rviz views

of the process. 89

Figure 6.11 Dynamic obstacle avoidance. (a) a dynamic obstacle is ap-

proaching the robot. (b) The human suddenly blocks the way

in front of the robot. (c) The robot changes direction to avoid

the human. 90

xxi

Nomenclature

(µ,Σ) mean and covariance

ŷp estimated world coordinate associated to image location p

Λ(S) covariance matrix of the labels in S

p a 2D location in image coordinates

Pc a 3D point in camera coordinates

Pw a 3D point in world coordinates

t translation vector

v a feature vector

D(p) depth in image location p

I(p,c) pixel lookup at location p, channel c

K camera matrix

R rotation matrix

Θ space of split parameters

θ j split parameter in tree node j

{p,mp} a 2D image location and its associated 3D world location

f (.) a regression function

xxii

h(p;θ) decision tree binary feature indication function

H(S) entropy of examples in set S

I j Information in tree node j

j tree node index

S j set of examples in tree node j

SL
j set of examples in the left child of tree node j

SR
j set of examples in the right child of tree node j

xxiii

List of Abbreviations

AMCL adaptive Monte Carlo localization

AR augmented reality

ATE absolute trajectory error

BRF balanced regression forests

BTRF backtracking regression forests

CNN convolutional neural network

DOF degree of freedom

EPnP efficient perspective-n point (camera pose estimation)

GPS global positioning system

LSD Line Segment Detector

LSTM long short-term memory

NN nearest neighbor

ORB Oriented FAST and rotated BRIEF

PnP perspecative-n point (camera pose estimation)

PLForests point line regression forests

RANSAC ransom sample consensus

RFs random forests

RMSE root mean squared error

ROS robot operating system

SCRF scene coordinate regression forest

SfM structure from motion

SIFT scale invariant feature transformation

SLAM simultaneous localization and mapping

SURF speeded up robust features

xxiv

VR virtual reality

WHT Walsh-Hadamard transform

xxv

Acknowledgments

It would be an impossible task to list everyone who has contributed to my research

and study during my PhD, but I am sincerely grateful to everyone who has helped

me in various of ways.

I am very fortunate to be in The Institute for Computing, Information and Cogni-

tive Systems (ICICS) which is a multidisciplinary research institute that promotes

collaborative research in advanced technologies systems. I am exposed both to

mechatronics and computer science here, and most importantly, the great people in

both fields.

I’d like to express my sincere gratitude to my supervisor Prof. Clarence de Silva

for providing me the research freedom and supporting my research in various of

ways all these years in UBC. I’d like to express my deep gratitude to Prof. Jim

Little who provides many delightful encouragements, insightful views and inspira-

tional discussions not only for my doctoral research but also my view on robotics.

I’d like to thank Prof. Bob Woodham who introduced me to the field of Computer

Vision in his vivid computer vision course with candies (students who ask and an-

swer questions in his class could get candies!). I’d like to thank Prof. Ian Mitchell

for introducing me to the computational robotics field, for his kind support and

numerous of discussions on various of ideas in robotics.

I would like to express my sincere gratitude to Jianhui Chen and Frederich Tung

on the numerous of inspirational and fruitful discussions, patient coding reviews,

detailed paper writing suggestions and warm friendship. I would like to express

my gratitude to Chaoqun Wang for a great collaborator on autonomous navigation

and I learned a lot of path planning from him. Thanks Sizhen She a lot for helping

setup the robot platform together. Thanks a lot Victor Gan, Neil Traft and Ankur

xxvi

Gupta on the discussion of various questions on robotics with long distance run-

ning. Julieta Martinez and Alireza Shafaei, thank you so much for your insightful

views and helpful discussion on many computer vision problems.

Thanks Ji Zhang and Weiwei Wan for contributing fruitful discussion and pro-

viding valuable suggestions on visual odometry and paper writing.

I would like to express my sincere gratitude to Yu Du, Yunfei Zhang, Teng Li,

Min Xia, Yanjun Wang, Haoxiang Lang Muhammad Tufail, Jiahong Chen, Simon

Gong and all the labmates for the great time and various of support.

Lastly, and most importantly, I wish to acknowledge my gratitude for my fam-

ily and Jesus Christ. I deeply thank my family for their unconditional love, pa-

tience, and support. Lord Jesus, thank you so much for coming into my life and

being in me, for lighting my life and career, for filling me with your love, peace

and grace, and for bringing all these amazing people in my life!

xxvii

Chapter 1

Introduction

We keep moving forward, opening new doors, and doing new things,
because we’re curious and curiosity keeps leading us down new

paths. — Walt Disney

1.1 Research motivation

1.1.1 Image-based localization methods

With the advance of machine learning methods, the field of robotics is undergoing

a transformation from sensing and executing fixed tasks in fixed environments to

exhibiting increased adaptability for autonomous operation in dynamic, unknown,

unstructured and flexible environments. In order to operate autonomously in un-

structured environments, the robot must be capable of interacting with its environ-

ment in an intelligent way, which implies that an autonomous robot must be able

to correctly and comprehensively sense the environment and then perform actions

based on the sensed information. Sensing is the preliminary step for all tasks in

a sense-plan-act scheme. Localization, which is the problem of determining the

location and orientation of a robot relative to a known environment, is a basic per-

ceptual problem for mobile robots [101].

Image-based localization (also referred to as camera relocalization in literature)

is one of the fundamental problems in robotics, computer vision and virtual reality.

1

It is the problem of estimating the position and orientation of the camera relative

a known scene, given a single RGB/RGB-D image. The global positioning system

(GPS), which is widely used in outdoor environments, is not available in indoor

environments and with the presence of skyscrapers and other interfering structures

in outdoor environments. Moreover, the GPS may have approximately 2−10 me-

ters of error. As a result, it poses serious problem for autonomous robots, such

as mobile robots, self-driving cars and unmanned aerial vehicles. Light-weight

and affordable visual sensors are an appealing alternative to GPS and other expen-

sive sensors. Recent consumer robotics products such as iRobot 980 and Dyson

360 eyes are already equipped with visual simultaneous localization and mapping

(SLAM) techniques, enabling them to effectively navigate in complex environ-

ments. Meanwhile, in order to insert virtual objects in an image sequence (i.e., in

augmented reality applications), camera poses have to be estimated in a visually

acceptable way.

Camera relocalization with a single RGB-D image or RGB image belongs to

the subject of global localization in robotics research and development. However,

global localization may also use other sensors such as laser or sonar. Local and

global localization are two types of localization [101]. Local localization concerns

estimation of the relative robot pose from a previous state. It aims to compensate

for robot motion noise from sensors (e.g., wheel odometry). In global localization,

the initial pose and previous motion information are unknown. Global localiza-

tion is more difficult than local localization as there is no previous pose/motion

information available and the environment can be extensive and have repeatable

objects. It plays a critical role as it can help solve the kidnapped robot problem

and allow the robot to recover from severe pose errors, which is essential for truly

autonomous robots.

The image-based camera localization with machine learning methods is an at-

tractive field for advancing the state-of-the-art of intelligent robotics because of the

low cost of vision sensors and scalability of machine learning methods. Random

forests (RFs) are popular and successful machine learning method because of their

speed, robustness and learning abilities [21]. RFs have been used for camera relo-

calization by Shotton et al.[93]. In Scene Coordinate Regression Forests (SCRF),

a regression forest is employed, which is trained to have capabilities of predicting

2

any pixel’s correspondence to its 3D point position in the scene’s world coordi-

nate. Then the camera pose is estimated using a robust optimization scheme with

predicted world points. Methods based on deep learning also have been used in

camera re-localization. For example, PoseNet [53] trains a convolutional neural

network to regress the 6-DOF camera pose from a single RGB image in real-time.

However, the accuracy is much worse than the methods based on random forests.

Therefore, this thesis focuses on a machine learning method random forests for

image-based camera relocalization.

1.1.2 Mobile robot autonomous navigation

With a rapidly aging population and a shortage of workforce, autonomous robots

such as self-driving cars, autonomous delivery robots, smart wheelchairs, and home

assistant robots play a more an more important role in our life. According to the

UNs population projections, the older population (aged 65 and over) in 2050 will

be about 16.7 percent of the total population in many parts of the world, which is

more than double that of 2015 [42]. The “old-age dependency ratio”, which is the

ratio of old people to those of working age, will grow even faster. In 2015 the world

had 15 persons aged 65 and over for every 100 adults between the ages of 25 and

64. By 2050 that number is projected to have risen to 30 [42]. A significant por-

tion of the aging population is expected to need physical and cognitive assistance.

Confidence in the ability to undertake various tasks is core to one’s psychological

functioning [69], and a greater sense of control of life can be positively correlated

with a reduced mortality rate. Yet, the shortage of space and staff in nursing homes

and other care facilities is already causing problems. Therefore, there exists an

urgent need to develop robot-assisted systems. A great deal of attention and re-

search is directed to assistive systems aimed at promoting aging-in-place, thereby

facilitating living independently as long as possible.

Significant progress has been achieved in recent decades in advancing the state-

of-the-art of mobile robot technologies. These robots are operating more and more

in unknown and unstructured environments, which requires a high degree of flex-

ibility, perception, motion and control. Companies such as Google and Uber are

developing advanced self-driving cars and expecting to present them to market in

3

the next few years. Various mobile robots are roaming in factories and warehouses

to automate the production lines and inventory, saving workers from walking daily

marathons [25]. Robot vacuum cleaners such as Roomba and Dyson360 eyes are

moving around in the house to help clean the floors. Personal robots such as PR2

[46, 67] and Care-O-bot [82] have demonstrated the ability to perform a variety of

integrated tasks such as long-distance navigation and complex manipulation.

Mobile robots that work safely and autonomously in uneven and unstructured

environments still pose great challenges, such as navigation through sloped areas

instead of staircases. However, little work has focused on an integrated system of

autonomous navigation in sloped and unstructured indoor areas, which are com-

mon in many modern buildings.

In this backdrop, the present thesis focuses on an integrated software and hard-

ware system for autonomous mobile robot navigation in indoor environments that

are designed for and shared with people. It is believed that a functioning robot sys-

tem of this type will inspire and benefit technology development and the general

public.

1.2 Contributions
The main contributions of this thesis can be summarized as follows:

• Three camera relocalization methods are developed in this thesis. The first

one is to use just RGB images in the testing stage to estimate camera pose.

The second one contains a sample balanced decision-tree objective function

and a backtracking search scheme. The third one employs both point and

line features to estimate the camera pose. The state-of-the-art performances

of the developed methods are demonstrated on publicly available camera

relocalization benchmarks against several strong baselines.

• For autonomous navigation, an integrated software and hardware architec-

ture for autonomous mobile robot navigation in 3D uneven and unstructured

indoor environments is presented. The integrated system is evaluated both in

simulation and on real scenarios, demonstrating the efficacy of our methods,

providing some insight for more autonomous mobile robots and wheelchairs

working around us.

4

1.3 Thesis outline
The thesis is organized into seven chapters. It starts with an introduction to the

importance of camera relocalization and motivation for image-based localization

learning methods. Chapter 2 introduces related work and background on the re-

gression forests and camera pose estimation that are used in our work. Chapter 3

presents the proposed camera relocalization method, which only uses a single RGB

image in testing. Chapter 4 discusses the problem of accurate camera relocalization

with the developed sample-balance scheme and backtracking technique. Chapter

5 presents the developed method that uses both point and line features in camera

pose estimation. Chapter 6 presents an integrated system for autonomous robot

navigation. Chapter 7 provides conclusions on the topic of image-based localiza-

tion learning, and presents several promising avenues for possible future work.

5

Chapter 2

Background

If I have seen farther it is by standing on the shoulders of Giants.
— Isaac Newton

This chapter presents an overview of previous work on image-based camera

re-localization and autonomous navigation of mobile robots. Moreover, some

background is provided of the random forests method and camera pose estima-

tion which represents the foundation for the localization method that is developed

in the present work.

2.1 Related work

2.1.1 Image-based camera relocalization

Image-based camera relocalization has been widely studied in the context of large

scale global localization [53, 75], recovery from tracking failure [33, 54], loop

closure detection in visual SLAM [111], global localization in mobile robotics

[23, 89], and sports camera calibration [17]. Moreover, place recognition[4, 30,

99, 100] could be seen as a special case of camera relocalization with the focus

on recognizing whether the places have been visited or not, without providing an

accurate 6D pose estimation. Approaches based on local features, keyframes, ran-

dom forests and deep learning are four categories of camera pose estimation. Other

successful variants and hybrid methods also [83] exist.

6

Local feature based approaches

Local feature based methods [75, 89] usually match the descriptors extracted from

the incoming frame and the descriptors stored in the database. Then the combina-

tion of the perspective-three-point [31] and RANSAC [28] is usually employed to

determine camera poses. The local features (e.g. commonly used SIFT [64] and

SURF [5]), can represent the image local properties, so they are more robust to

viewpoint changes as long as a sufficient number of keypoints can be recognized.

However, these methods have to store a large database of descriptors and require

efficient approximate nearest neighbor search methods for feature matching. Much

recent work has focused on efficiency [87], scalability [88], and learning of feature

detection, description, and matching [60].

Keyframe based approaches

Methods based on keyframes [27, 32] hypothesize an approximate camera pose

by computing whole-image similarity between a query image and keyframes. For

example, randomized ferns encode an RGB-D image as a string of binary codes.

They have been used to recover from tracking failure [33] and detect loop closure

in SLAM [111]. Place recognition [30, 100] uses keyframe based camera relo-

calization [72, 110]. First, the incoming frame is encoded by bag of visual words

[96], and the keyframe database is queried for the most similar keyframe [72]. Sec-

ond, the sparse features are extracted from the incoming frame and the most similar

keyframe in the database, and the camera pose is estimated through the 2D-3D cor-

respondence. However, these methods provide inaccurate matches when the query

frame is significantly different from the stored keyframes.

Random forests based approaches

Approaches based on random forests for image-based camera relocalization have

gained interest since the introduction of scene coordinate regression forests (SCRF)

[93]. Random forests are used as regression for camera relocalization so we also

refer to them as regression forests. These approaches first employ a regression

forest to learn an estimation of each 2D image pixel’s corresponding 3D points in

the scene’s world coordinates with training RGB-D images and their corresponding

7

ground truth poses. Then camera pose optimization is conducted by an adapted

version of preemptive RANSAC. The features in random forests are based on fast

random pixel comparisons. A similar technique has been developed by Lepetit and

Fua [60] for keypoint recognition and image registration. These simple and fast

pixel comparison features suffice to work for detection and tracking even under

large perspective and scale variations.

Random forests based methods do not need to compute ad hoc descriptors and

search for nearest-neighbors, which are time-consuming steps common in local

feature based and key-frame based methods by shifting much computational bur-

den to the training stage. They have been used in many applications. For example,

Shotton et al.[94] use the random pixel comparison feature from the depth image

in the random forests for per-pixel classification with the application of classifying

which body parts the pixel belongs. Both [60] and [94] use synthetic images under

different views for data augmentation in the training set. In contrast to [60, 94]

using random features in random forests as a classification, scene coordinate re-

gression forests (SCRF) formulate the 2D-3D correspondence search problem as a

regression problem which is solved by random forests. Because the environment

generally has repeated objects, such as similar chairs in an office room, the random

forests have multi-outputs from an input, resulting in ambiguities. To solve this

problem, Guzman et al.[38] proposed a hybrid discriminative-generative learning

architecture to choose the optimal camera poses in SCRF. To improve the camera

relocation accuracy, Valentin et al.[102] exploit uncertainty from regression forests

by using a Gaussian mixture model in leaf nodes.

However, these methods need RGB-D images for both training and test, con-

straining their applications. [6, 70, 103] extended the random forest based meth-

ods to use RGB images at test time, while depth images are still needed to get the

ground truth labels. Valentin et al.[103] proposed multiple accurate initial solu-

tions and defined a navigational structure over the solution space that can be used

for efficient gradient-free local search. However, their method needs an explicit 3D

model as the auxiliary of the RGB image at the testing stage. We have proposed

a method that only require RGB pixel comparison features in [70], eliminating the

dependency on the depth image at test time. Furthermore, the method integrates

random RGB features and sparse feature matching in an efficient and accurate way,

8

allowing the method to be applied to highly dynamic scenes. Cavallari et al.[14]

have extended SCRF for online camera relocalization by adapting a pre-trained

forest to a new scene on the fly.

Deep learning based approaches

Deep learning [59] has led to rapid progress and impressive performance on a va-

riety of computer vision tasks, such as visual recognition [41, 95] and object de-

tection [80]. There is emerging work [51, 53, 108] for camera re-localization.

For example, PoseNet [53] trains a convolutional neural network to regress the

6 degree-of-freedom (DOF) camera pose from a single RGB image in real time.

Bayesian PoseNet [51] applies an uncertainty framework to the PoseNet by aver-

aging Monte Carlo dropout samples from the posterior Bernoulli distribution of

the Bayesian ConvNet’s weights. Besides the camera pose, it also estimates the

model’s relocalization uncertainty. [116] uses CNNs to regress pixels world coor-

dinates, and it has larger camera relocalization error but better performance on pre-

dicting world coordinates of pixels compared to SCRF, which indicates that better

prediction on world coordinate does not necessarily lead to better final camera pose

estimation due to the outlier removal capability of camera pose optimation using

Preemptive RANSAC. [62] presents a dual-stream CNN with both color images

and depth images as the network inputs, but still has almost an order of magnitude

of error compared to methods based on regression forests. To improve the PoseNet

accuracy, geometric loss functions is explored in [52] and LSTM units are used on

the CNN output to capture the contextual information. However, these methods

based on deep learning have much lower overall accuracy compared with methods

based on random forests in indoor scenes and methods based on local features in

outdoor scenes. Moreover, high-end GPU dependency and high power consump-

tion make these deep learning based methods less favorable for energy sensitive

applications such as mobile robots.

2.2 Random forests
Random forests (RFs) are one of the most popular machine learning tools because

of their speed, robustness and generalization [9, 19]. RFs are broadly applied in

9

many domains, including natural language processing tasks such as language mod-

eling [117] and financial tasks such as stock price prediction [77] and computer

vision tasks such as human pose recognition [94]. A random forest is an ensemble

of decision trees. In a random forest, a fraction of data and a particular number of

features are selected at random to train a decision tree. Now a single decision tree

is discussed, followed by the tree ensemble method.

2.2.1 Decision tree

A decision tree is a binary tree data structure made of a collection of nodes orga-

nized in a hierarchical way as shown in Fig. 2.1 (a). The decision tree solves a

complex problem by running a sequence of simpler tests. For a given input object,

a decision tree estimates an unknown property of the object by asking successive

questions about its known properties. Which question to ask next depends on the

answer of the previous question and this relationship is represented graphically as

a path through the tree [19]. The final answer is stored in the leaf node which is the

terminal node of the path that the object follows. Consider the simple example of

deciding whether a photo represents an indoor scene or an outdoor scene as illus-

trated in Fig. 2.1 (b). Suppose that only the image pixel information is available.

Then, the questions can start from whether the top of the image is blue or not. If

the answer is yes, then that part might be the sky, and the whole image data is then

sent to the right child. Based on this answer, another question can be asked, for in-

stance if the bottom part is green. If it is, it might be the grass, which indicates that

the photo has high probability of showing outdoor scene. Successive questions and

answers are followed up to the leaf node. The more questions asked and answered,

the higher the confidence on the final prediction.

Data Points and Features: In decision trees, a generic data point is denoted by

a vector v = (x1,x2, ...,xd) ∈ Rd , where the components xi represent an individual

measurable attribute of a data point, called feature. The number of features depends

on the property of the data point. In theory, the dimensionality of d can be very

large, or even infinite. In practice, only a small important portion of d is used as

needed.

10

true

Is top part blue?

true

true

true

false

fal
se

fa
lse

fa
lse

truefa
lse

Is bottom !
part green?

Is bottom !
part blue?

OutdoorIndoor

S split node

leaf node

(a) (b)

Figure 2.1: Decision tree example. Best viewed in color. (a) A tree is a set of
split nodes and leaf nodes organized in a hierarchical way. Split nodes
are denoted with blue circles and leaf nodes with green circles. (b) Each
split node of a decision tree is a split (or test) function to be applied
to the incoming data. Each leaf node stores the final answer (predic-
tor). An example is presented here on using a decision tree to classify
whether an image represents an indoor scene or an outdoor scene.

split node

leaf node 0

1 2

3 4 5 6

node 0

node 1 node 2
S2 = SR

0
S1 = SL

0

S0VTest Training

(a) (b)

SL
1 SR

1 SL
2 SR

2

Figure 2.2: Decision tree test and training process Best viewed in color.
(a) In the test, a split node applies a test to the input data v and sends
it to the appropriate child. The process is proceeded until a leaf node
is reached (red path). (b) Training a decision tree is sending the entire
training set S0 into the tree and optimizing the parameters of the split
nodes so as to optimize a chosen energy function.

11

Training Points and Training Sets: A training point is a data point with a known

ground truth label, and these feature-label correspondence can be used to compute

the tree parameters. A training set S0 is a collection of different training data points

as shown in Fig. 2.2 (b).

Training a Decision Tree: The training entails finding the parameters of split

functions stored in the split nodes by optimizing a specified objective function

given the feature-label correspondences. The process proceeds in a greedy manner.

At each node j, depending on the subset of the incoming training set S, the function

that best splits S j into SL
j and SR

j is learned. Fig. 2.1 (b) shows the training process.

S j represents the subset of incoming training data before split, while SL
j and SR

j

represent the subset after the split at the node j. SL
j = S2 j+1 and S j=SL

j ∪ SR
j . The

selection of the “best” split parameters can be formulated as the maximization of

an objective function I j at the split node:

θ
∗
j = argmax

θ∈Θ

I j(S j,θ j) (2.1)

where Θ represents the space of all split parameters.

Given the set S j and the split parameters θ j, the corresponding left and right

sets are uniquely determined as:{
SL

j = ((v, ·) ∈ S j|h(v,θ j) = 0)

SR
j = ((v, ·) ∈ S j|h(v,θ j) = 1)

(2.2)

where (v,) denotes the feature-label pair, and · can represent either continuous la-

bels for the regression problem or the discrete labels for the classification problem.

The objective function I j is essential in constructing a decision tree that will

perform the desired task. In fact, the result of the optimization problem in Eq. 2.1

determines the parameters of the split functions, which, in turn, determine the path

followed by a data point. The split functions determine the prediction behavior of

a decision tree. Here a generic information gain associated with a tree split node

is used as the objective function, which is defined as the reduction in uncertainty

achieved by splitting the training data S j that arrives at the node j into multiple

child subsets.

12

I j = H(S j)− ∑
i∈{L,R}

|Si
j|

S j
H(Si

j) (2.3)

where H is the entropy.

H(S) =−∑
c∈C

p(c)log(p(c) (2.4)

where p(c) is calculated as the normalized empirical histogram of labels corre-

sponding to the training points in S.

The split procedure described above proceeds recursively to all the newly con-

structed nodes and the training phase continues until a stopping criterion is met.

There are various stopping criteria such as stopping the tree when a maximum

number of levels has reached or a node contains too few training points. In the leaf

node, the statistic of labels are stored to predict the unknown data points. When the

training phase is done, we can get the split functions associated with each internal

node and label distributions in each leaf node.

Testing of a Decision Tree In the testing stage, the new data point v travels the

decision tree from the root node to a particular leaf node using the splitting values

in the tree (see Fig 2.2 (a)). The leaf node predicts a label for the input data point

v.

2.2.2 The randomness model

Randomness is injected into the decision trees at the training stage, while testing is

almost always considered to be deterministic [19]. Random training set sampling

[8, 9] and randomized node optimization [3, 44] are two popular methods for inject-

ing randomness. A short introduction is provided here, and detailed explanations

are found in [3, 8, 9, 22, 44, 63] for more detailed explanation. Random training set

sampling (e.g. bagging) concerns training each tree in a forest on different training

subset, sampled at random from the same labeled database. It can help improve

generalization. Randomized node optimization concerns selecting a small random

set of split node parameters rather than the entire set. Random training set splitting

13

and randomized node optimization could also be used together.

2.2.3 Random forest ensemble

Because a single tree has weak prediction capabilities, a combination of trees (i.e.,

a forest) is used in practice. A random forest F = {F1,F2, ...,TN} is an ensemble of

N randomly and independently trained decision trees. The independence between

these trees lead to de-correlation between the individual tree predictions, resulting

in better generalization and robustness compared with a single tree. In the test

phase, each test point v is simultaneously pushed through all trees until it reaches

the leaf node. Combining all tree predictions into a single forest prediction can be

done by a simple averaging scheme.

p(c|v) = 1
N

N

∑
k=1

pk(c|v) (2.5)

where pk(c|v) denotes the posterior distribution of the kth tree.

Random forests used as regression is referred as regression forests.

2.3 Camera pose estimation

2.3.1 RGB camera pose estimation

An RGB camera projects a 3D point Pw = [X ,Y,Z,1]T in world coordinate to a 2D

point p = [x,y,w]T in image coordinate. Here homogeneous coordinates are used,

which are suitable for projective geometry. The perspective projection is:

p = K[R|t]Pw, (2.6)

where K is a 3×3 camera matrix, R is a 3×3 rotation matrix and t is a 3×1 trans-

lation vector. In the camera relocalization problem, the camera matrix is known

from camera calibration and its value is fixed. The goal is to estimate the rigid

transformation [R|t] from 2D-3D correspondences {p↔ P}. Because the freedom

of rigid transformation is 6 and each correspondence provides 2 constraints (one

in the image X coordinate and the other in the image Y coordinate), at least three

14

correspondences are required to solve this problem. To robustly solve this prob-

lem, Lepetit [61] et al.have developed the EPnP method which requires at least 4

correspondences. This method has been implemented in OpenCV [7] library.

2.3.2 RGB-D camera pose estimation

In RGB-D cameras, an image location p = [x,y,w] has a depth d in the camera

coordinate. So the back-projection is

Pc = K−1p,subject to Pc
z = d (2.7)

where Pc is a 3D point in the camera coordinate. As a result, the camera relocal-

ization is to estimate the rigid transform from world coordinates to camera coordi-

nates:

Pc = [R|t]Pw. (2.8)

The constraint is 3D-3D correspondences {Pc ↔ P}. Given at least 3 correspon-

dences, the Karbsh algorithm [49] can robustly solve this problem with a closed

form solution.

In practice, the correspondences have outliers because of the errors of mea-

surement of sensors and predictions from machine learning method. The RANSAC

method is used to remove these outliers and estimate the camera pose in an iterative

way.

15

Chapter 3

Image-based localization using
regression forests and keyframe
pose refinement

This chapter addresses the problem of estimating the camera pose relative to a

known scene, given a single incoming RGB image. The recent advances in scene

coordinate regression forests for camera relocalization in RGB-D images are ex-

tended to use RGB features, enabling camera relocalization from a single RGB

image. Furthermore, regression forests and sparse feature matching are integrated

in an efficient and accurate way. The developed method is evaluated using both

small scale and large scale publicly available datasets with challenging camera

poses against several strong baselines. Experimental results demonstrate the ef-

ficacy of the developed approach, showing superior or on-par performance with

several strong baselines.

3.1 Introduction
The present work is mainly inspired by recent advances in the methods based on

scene coordinate regression forests (SCRF) [38, 93, 102] for camera relocalization.

The present method also benefits from privilege learning [18, 90, 104] in which

additional information only exists at the training stage. The SCRF-based methods

16

Figure 3.1: Camera pose estimation pipeline. During training, the scene
information is encoded in a random forest. In the testing stage, an initial
camera pose is estimated using the predictions from the random forest
with real-time response. Then, the initial camera pose is used to query a
nearest neighbor (NN) image from keyframes. Finally, the camera pose
is refined by sparse feature matching between the test image and the NN
image. In our method, the labels can constitute any information (e.g.,
scene coordinate positions) associated with pixel locations.

use an efficient regression forest to guide the camera pose optimization using RGB-

D images, achieving high accuracy. In these SCRF-based methods, much of the

computational burden is shifted to a training phase, while the test phase is very

efficient. The method developed in the present thesis learns from RGB-D images

during training but does not require depth images at test time, enabling it to be

more accessible for end users.

Fig.3.1 illustrates the present pipeline. A regression forest is trained using

RGB images and pixel-wise labels. In the testing stage, an initial camera pose

is estimated using predicted labels from the random forest. The accuracy of the

camera pose is refined by sparse feature matching.

The main contributions of this chapter are:

• Extend the SCRF-based methods to only use RGB features (without depth)

in the testing stage.

• Integrate random features and sparse features, ensuring both efficiency and

accuracy.

17

• Evaluate using publicly available datasets against several strong baselines,

showing superior or on-par performance.

3.2 Method
In the initial camera pose estimation, the problem is modeled as a structural regres-
sion problem:

ŷp = f (I,p|θ) (3.1)

where I is an RGB image, p ∈ R2 is a 2D pixel location and θ contains model

parameters. In the training stage, {p,mp} represent the paired training data. The

label mp can represent any information associated with that pixel. For example, it

is the world coordinate in camera re-localization. In the testing stage, ŷp denotes

the prediction associated with pixel p.

Random regression forests [22] are chosen here to implement the regression

function as it naturally handles structure regression, while being robust and rea-

sonably easy to train.

3.2.1 Random RGB features and labels

Random RGB Features: Here features based on pairwise pixel comparison are

used as in [60, 93]. At a given 2D pixel location p of an image, the feature fφ (p)
computes the color intensity difference between the pixel p in a random color chan-

nel c1 and the pixel with a 2D offset δ in a random color channel c2:

fφ (p) = I(p,c1)−I(p+δ ,c2) (3.2)

where δ is a 2D offset and I(p,c) represents an RGB pixel lookup in channel c.

The φ contains feature response parameters {δ ,c1,c2}. Pixels outside the image

boundary are marked and not used as samples for both training and testing. A sig-

nificant difference here with the depth-adaptive feature used by Shotton et al.[93]

is that the present feature does not require depth information.

Fig. 3.2 illustrates two random RGB features at different pixel locations p1 and

p2. Feature fφ1 looks rightwards and Eq.3.2 will give a large response for 3.2(a) and

small response for 3.2(b) according to different color changes. Feature fφ2 looks

18

P2 P2

(a) (b)

�1 �1P1

�2

P1

�2

f�1
(p) f�1

(p)

f�2
(p) f�2

(p)

Figure 3.2: Random RGB pixel comparison features. The red star repre-
sents the pixel p being computed. The distance between the red star and
the blue circle represents the pixel offset as defined in Eq. 3.2. In (a),
the two example features at image position p1 and p2 give a large color
difference response. In (b), the two features at the same image locations
in a different image give a much smaller response compared with (a).

upwards and Eq.3.2 will give a large response for 3.2(a) and a small response for

3.2(b). In this way, the pixel comparison feature distinguishes fφ1 from fφ2 .

Individually each feature only provides a weak description about which part of

the scene the pixel belongs to. But with thousands of such features per image in

combination in a random forest, these features are accurate enough to describe all

the trained images. These features are very efficient. Each feature needs only 2

arithmetic operations without pre-processing.

Labels: For scenarios where RGB-D images are available in the training stage,

the training set contains sequences of RGB-D frames with associated known cam-

era poses P which includes 3×3 rotation matrix R and 3×1 translation vector T

from the camera coordinate to world coordinate as shown in Eq. 3.3.

P=

[
R T

0 1

]
=


R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz

0 0 0 1

∈ SE(3) (3.3)

19

The 3D point x in camera coordinate of the corresponding pixel p is computed

by back-projecting the depth image pixels:

x =

 x

y

z

=

 (u− cx)×d/ fx

(v− cy)×d/ fy

d

 (3.4)

where [u,v]T is the pixel p position in image plane, and [x,y,z]T is the point position

in camera coordinate, [cx,cy]
T and [fx, fy]

T are the camera principal point and focal

length respectively. di = depthimage[v,u]/ f actor, and depthimage[v,u] is the measured

depth value at image point [v,u]. The factor is RGB-D camera depth factor, usually

f actor = 5000 for the 16−bit PNG files.

The scene’s world coordinate position m of the corresponding pixel p could be

computed by:

m = Px (3.5)

The associated camera pose P for each RGB-D image in the training data can

be obtained through camera tracking method KinectFusion[73] or visual SLAM

method [58].

3.2.2 Random forests for 2D-3D correspondence regression

A regression forest is an ensemble of T independently trained decision trees. Each

decision tree is a binary-tree-structured regressor consisting of decision (or split)

nodes and prediction (or leaf) nodes. We grow the regression forest using greedy

forest training [22].

Weak Learner Model: Each split node i represents a ‘weak learner’ parameter-

ized by θi = {φi,τi} that splits the data to the left or the right child. In the training

phase as shown in Fig. 3.3, a set St
0 of labeled sample pixels (p,m) is randomly

chosen for each tree, where m is the 3D world coordinate label of pixel p. The

tree grows recursively from the root node to the leaf node. At each split node, the

parameter θi is sampled from a set of randomly sampled candidates Θi. At each

split node i, for the incoming training set Si, samples are evaluated on split nodes

20

0

1 2

node 0

split node
leaf node

…

0

1 2

node 0

Tree 1 … Tree T

SR
1

Reduce
entropy

SR
1

SL
1

SL
1

SL
2

SL
2

SR
2

SR
2

S1 = SL
0

S1 = SL
0 S2 = SR

0 S2 = SR
0

S1
0 = {(p1, m1), ...(pn, mn)} ST

0 = {(p1, m1), ...(pn, mn)}

Figure 3.3: Training random forests for 2D-3D coordinate correspon-
dence regression. A set St

0 of labeled sample pixels (p,m) is randomly
chosen from the entire set S0 = [S1

0, · · · ,ST
0] for each tree, where m is the

3D world coordinate label of pixel p. The tree grows recursively from
the root node to the leaf node. The goal is to optimize the parameters of
the tree split nodes. Here spatial-variance is used to represent entropy.

to learn the split parameter θi that best splits the left child subset SL
i and the right

child subset SR
i as follows:

h(p;θi) =

{
0, if fφi(p)≤ τi, then go to the left subset SL

i .

1, if fφi(p)> τi, then go to the right subset SR
i .

(3.6)

Here, τi is a threshold on random feature fφi(p).
At each split node i, for the incoming training set Si, the training comprises

learning of the split parameter θi that best splits the left child subset SL
i and the right

child subset SR
i . The selection of the “best” split parameters can be formulated as

the maximization of an information gain Ii:

θ
∗
i = arg max

θi∈Θi
Ii(Si,θi) (3.7)

Ii =V (Si)− ∑
j∈{L,R}

|S j
i (θi)|
|Si|

V (S j
i (θi)) (3.8)

21

node 1

0

1 2

node 0

node 2

f�0
(p)  ⌧0 f�0

(p) > ⌧0

f�2
(p) > ⌧2f�2

(p)  ⌧2

p split node
leaf node

…

node 1

0

1 2

node 0

node 2

f�0
(p)  ⌧0 f�0

(p) > ⌧0

p

Tree 1 … Tree T

f�1
(p)  ⌧1 f�1

(p) > ⌧1

Figure 3.4: Test phase of random forests for 2D-3D correspondence re-
gression. In the testing stage, at each split node i, the feature fφi is
compared with the feature response τi to determine whether to go to the
left or the right child node. A particular input may go along different
paths in different trees as indicated by the red arrows.

V (Si) =
1
|Si| ∑

(p,m)∈Si

||m− m̄||22 (3.9)

where V (Si) is the spatial variance of the labels in Si, subset S j
i is conditioned on

the split parameter θi, and m̄ represents the mean of m in Si.

Fig. 3.4 shows the test phrase. At each split node i, the feature fφi is compared

with the feature response τi to determine whether to go to the left or right child

node. This process proceeds until it reaches the leaf node.

Leaf Prediction: Training terminates when a node reaches a maximum depth D

or contains too few examples. In tree t, one leaf node contains a set of samples

whose distribution is described by the leaf model parameter θ f . During the testing

stage, the leaf generates an estimated vector:

v∗t = argmax
v

p(v|θ f) (3.10)

with

22

p(v|θ f) = N(v; µ,Σ) (3.11)

where µ,Σ are the mean and covariance of a Gaussian distribution of labels. Be-

sides the pixel location in 3D world coordinate, the present method also stores the

color distribution of samples in the leaf node to reduce color ambiguities.

Forest Ensemble: A forest is an ensemble of independently trained decision

trees. Since the number of training samples and possible split node tests are large

in the present work, building the optimal tree quickly can become intractable. In-

stead, multiple trees are grown so that each tree yields a different partition of the

space. Furthermore, multiple trees can have better generalization in the test phase.

Once the trees are built, the 3D world coordinate prediction in the leaf node that has

the most similar color distribution with the test pixel is used as the final prediction

because the present method stores RGB color distribution in leaf nodes.

3.2.3 Pose refinement

The downside of the RGB random feature is that it is not naturally scale-invariant.

A naive way to solve this problem is to train the random forest using image pyra-

mids. However, it was found that the pyramid method was too time-consuming

and did not significantly improve the accuracy.

Based on this observation, a hybrid pipeline is designed. First, the 2D-3D

correspondence from the above regression forests is used to get an initial camera

pose P0. Then, accurate SIFT features [64] are used to refine the initial camera

pose. The second step requires an image from the training set that shares similar

camera parameters with the test image. Searching for the nearest neighbor (NN)

image whose camera is closest to the location of P0 while having an orientation

difference no greater than a predefined threshold τ0 (1/4 of the field of view) is

done.

The dimension of the camera pose space (which is ≤ 6) is much smaller than

the image descriptor space (which can be up to several hundreds [16]). Therefore,

the present method is much more efficient than the methods that use bag of words

[30, 72]. Once the NN image is found, the camera pose is refined by minimizing the

23

reprojection error, which is a geometric error corresponding to the image distance

between a projected point x̂k and a measured one xk:

P∗ = argmin
P

∑
k

d(xk, x̂k)
2 = argmin

P
∑
k

d(xk,PXk)
2 (3.12)

where P is a 3× 4 matrix including the camera intrinsic and extrinsic parameters,

xk and x̂k are the kth observed and projected feature point locations in the image,

respectively. Xk = [Xk,Yk,Zk] is the corresponding 3D world coordinate from the

NN image.

Here, a pinhole camera model is used in which a scene view is formed by

projecting 3D points into the image plane using a perspective transformation [39].

Therefore, each projected feature point x̂ can be obtained by:

x̂≈ PX = K[R|T]X =

 fx 0 cx

0 fy cy

0 0 1


 R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz




X

Y

Z

1

 (3.13)

where X ,Y,Z are the coordinates of a 3D point in the world coordinate space,

K is a known camera intrinsic parameters, [R|T] is a camera matrix of extrinsic

parameters in which R is a 3×3 matrix which represents rotation and T is a 1×3

matrix which represents translation, (cx,cy) is a principal point that is usually at

the image center, and fx, fy are the focal lengths expressed in pixel units. We use

≈ to indicate that the image location x is transformed from a 3× 1 homogeneous

vector.

Because correspondences contain outliers, Eq.3.12 is optimized using EPnP

[61] and RANSAC[28]. The Perspective-n-Point (PnP) is to determine the position

and orientation of a camera given its intrinsic parameters and a set of n correspon-

dences between 3D points and their 2D projections. The complexity of EPnP is

linear with the number of 2D-3D correspondences .

Algorithm 1 briefly summarizes the proposed method step by step.

24

Algorithm 1 Camera pose estimation from a single RGB image

Require: A set SI = {I1,I2, · · ·In} of images with pixel-wise labels
Require: An RGB image I
Ensure: The camera pose P of image I

1: Si = a set of randomly sampled pixel-wise training samples;
2: train a regression forest using Si; //
3: P0 = initial camera pose from the regression forest predictions;
4: search nearest neighbor image Inn in SI using P0;
5: match I and Inn to obtain 2D-3D correspondences;
6: estimate P using the 2D-3D correspondences and solvePnPRansac; // Sec.

3.2.3
7: return P

3.3 Experiments
The proposed method is evaluated using both a small scale (about 2− 6m3) Mi-

crosoft 7 Scenes dataset and a considerably larger (14− 79m3) Stanford 4 Scenes

dataset.

3.3.1 Camera relocalization on Microsoft 7 Scenes dataset

Dataset: The 7 Scenes dataset as shown in Fig. 3.5 is from [93] and consists of 7

scenes which were recorded with a handheld Kinect RGB-D camera at 640×480

resolution. Each scene includes several camera sequences that contain RGB-D

frames together with the corresponding ground-truth camera poses. The ground

truth camera pose is obtained from an implementation of the KinectFusion [73]

system. The dataset exhibits shape/color ambiguities, specularities and motion

blur, which present great challenges for the proposed RGB-only random features.

Baselines and Error Metric: Three strong methods are used as the baselines:

SCRF [93], PoseNet [53] and Bayesian PoseNet [51]. SCRF employs a scene

coordinate regression forest to guide camera pose optimization using RANSAC

with RGB-D images. PoseNet trains a ConvNet as a pose regressor to estimate the

6-DOF pose from a single RGB image. Bayesian PoseNet improved the accuracy

of PoseNet through an uncertainty framework by averaging Monte Carlo dropout

25

(a) (b) (c) (d) (e) (f) (g)

Figure 3.5: Example sequence in Microsoft 7 Scenes dataset. (a) Chess,
(b) Fire, (c) Heads, (d) Office, (e) Pumpkin, (f) Red Kitchen, (g) Stairs.
The upper row shows the 3D reconstructed scenes and the lower row
shows the RGB image example.

samples. The same median translational error and rotational error are used as in

[51, 53] for fair comparison.

Results and Analysis: The main results of the proposed work are given in Table

3.1. The proposed method considerably outperforms the PoseNet and Bayesian

PoseNet on all scenes. It is noted, however, that the PoseNet based methods need

only RGB images for both training and testing. The proposed method is not as

accurate as the SCRF method. However, the proposed approach does not require

the depth image in the testing stage, which greatly lightens the requirements of end

users.

The best performance of the proposed method is found on the Heads Scene.

The worst performance is for the Stairs in which the SCRF approach has the same

problem due to the repetitive properties of the scene. The second worst scene is

Pumpkin in which there are large uniformly colored planes, such as the cabinet or

the ground. The lack of color distinction degrades the localization capability.

To separately evaluate the performance of random RGB features, the pixel-

wise prediction error is visualized using heat maps as shown in Fig. 3.6. The error

is the truncated distance between the predicted 3D locations and the ground truth.

The typical large error areas are black screens and other texture-less regions, which

are intractable for low-level visual features.

The pose refinement step by integrating sparse feature matching proved crucial

to achieve good results. With this turned off, our RGB forest achieves only median

26

Table 3.1: Relocalization results for the 7 Scenes dataset. Median perfor-
mance is shown for the proposed method on all scenes against three state-
of-the-art methods: SCRF [93], PoseNet [53] and Bayesian PoseNet [51].

Frames Spatial Baselines Ours
Scene Train Test Extent SCRF PoseNet Bayesian
Training — — — RGB-D RGB RGB RGB-D
Test — — — RGB-D RGB RGB RGB
Chess 4k 2k 3x2x1m 0.03m, 0.66◦ 0.32m, 8.12◦ 0.37m, 7.24◦ 0.12m, 3.92◦

Fire 2k 2k 2.5x1x1m 0.05m, 1.50◦ 0.47m, 14.4◦ 0.43m, 13.7◦ 0.14m, 4.64◦

Heads 1k 1k 2x0.5x1m 0.06m, 5.50◦ 0.29m, 12.0◦ 0.31m, 12.0◦ 0.10m, 6.82◦

Office 6k 4k 2.5x2x1.5m 0.04m, 0.78◦ 0.48m, 7.68◦ 0.48m, 8.04◦ 0.15m, 4.23◦

Pumpkin 4k 2k 2.5x2x1m 0.04m, 0.68◦ 0.47m, 8.42◦ 0.61m, 7.08◦ 0.22m, 5.40◦

Red Kitchen 7k 5k 4x3x1.5m 0.04m, 0.76◦ 0.59m, 8.64◦ 0.58m, 7.54◦ 0.14m, 3.71◦

Stairs 2k 1k 2.5x2x1.5m 0.32m, 1.32◦ 0.47m, 13.8◦ 0.48m, 13.1◦ 0.30m, 8.08◦

Average — — — 0.08m, 1.60◦ 0.44m, 10.4◦ 0.47m, 9.81◦ 0.17m, 5.26◦

Figure 3.6: Pixel-wise prediction error distribution from the regression
forests. Heat maps show the prediction error distribution directly from
the regression forests on the Chess and Heads scenes. Large errors
occur on black screens and other texture-less regions.

localization result 0.21m,6.09◦ for Chess and 0.25m,8.53◦ on Fire, for instance.

3.3.2 Camera relocalization on the Stanford 4 Scenes dataset

Dataset: The 4 Scenes dataset was introduced in [103] to push the boundaries

of RGB-D and RGB camera relocalization. It contains two apartment scenes and

two office scenes which are very common indoor environments. The recorded

environment is significantly larger than the 7 Scenes dataset [93] (14−79m3 versus

about 2− 6m3). This large environment is more practical for the application of

robot indoor localization. The scenes were captured by a Structure.io depth sensor

with an iPad RGB camera. Both cameras have been calibrated and temporally

27

Figure 3.7: 4 Scenes dataset example images[103]. Each RGB-D image is
accompanied with a camera pose. Each sequence also provides a tex-
tured 3D model (not used in the present thesis).

synchronized. The RGB image sequences were recorded at a resolution of 1296×
968 pixels, and the depth resolution is 640×480. The depth image is re-sampled to

the RGB resolution to align the RGB and depth images. The ground truth camera

poses are from BundleFusion [24], which is a real-time globally consistent 3D

reconstruction system.

Baselines and Error Metric: Three state-of-the-art methods of camera relocal-

ization with a single RGB image are used as the baselines: SIFT+PnP, ORB+PnP,

Bayesian PoseNet[51]. The SIFT+PnP and ORB+PnP are based on matching lo-

cal features, following mainstream feature-based relocalization approaches such as

[72, 112]. SIFT+PnP uses SIFT[64] as features for feature description and match-

ing while ORB+PnP uses ORB[84] as features.

These implementations are from [103]. As PoseNet [53] and Bayesian PoseNet

[51] have similar performance in [51], here only the performance of Bayesian

PoseNet is shown as the baseline. For error metric, the percentage of “correct

frames” is used for SIFT+PnP, ORB+PnP and the proposed method, while the me-

dian performance is used for Bayesian PoseNet and our method. The “correct

frames” is defined as the camera pose estimation error is within 5cm translational

and 5o rotational error compared with the ground truth. This accuracy is suffi-

cient for augmented reality applications such as restarting any good model-based

28

tracking system [93].

Results and Analysis Table 3.2 shows the camera relocalization results for the

4 Scenes dataset. From this dataset, it can be seen that the proposed method is al-

most one order of magnitude more accurate than the Bayesian PoseNet. Compared

with ORB+PnP and SIFT+PnP, our method has the best performance on some

scenes, such as Apt1/living, Apt2/Kitchen, Office1/Floor5a, while ORB+PnP and

SIFT+PnP also have the best performance on some scenes. It shows that the per-

formance is highly dependent on the data properties. It is noticed that the proposed

method has much better accuracy on the 4 Scenes dataset than on the 7 Scenes

dataset, although the 4 Scenes dataset has a spatial extent that is an order of mag-

nitude larger than those of 7 Scenes. This is probably due to the following reasons.

First, the 4 Scenes dataset has much better RGB image quality, including higher

resolution and less motion blur. The RGB image quality is critical for the proposed

method as this method is using RGB pixel comparison feature. Second, the camera

poses in 4 Scenes are not as challenging as 7 Scenes. For instance, the Stairs scene

in 7 Scenes dataset contains too many similar and repetitive steps, which increases

the inherent ambiguity.

Although SIFT+PnP and ORB+PnP have some best performance scenes com-

pared with the proposed method, the proposed method has much better overall per-

formance considering both speed and accuracy. The proposed method has similar

efficiency with ORB+PnP but has 6% higher accuracy. Compared with SIFT+PnP,

the proposed method is more efficient as it uses 32 dimension SIFT and searches

only in the camera pose space of 6 dimensions rather than the SIFT feature space

of 128 dimensions.

3.3.3 Implementation details

The approach developed in the present work is implemented with C++ using OpenCV

[7] and VXL [1] on an Intel 2.3 GHz, 8GB memory Mac System. For the random

forest, the parameter settings are: tree number T = 10 for 7 Scenes and T = 5 for

4 Scenes; 500 and 200 training images per tree for 7 Scenes and 4 Scenes datasets,

respectively; 5,000 randomly sampled example pixels per training image. The

29

Table 3.2: Camera relocalization results for 4 Scenes dataset. The percent-
age of correct frames is given (within 5cm translational and 5◦ angular
error), and median of the proposed method on 4 Scenes dataset against
three state-of-the-art methods: ORB+PnP, SIFT+PnP, and Bayesian
PoseNet[51]. The best performance is highlighted.

Frame numbers Spatial Baselines Ours
Sequence training test Extent ORB+PnP SIFT+PnP Bayesian PoseNet Random+Sparse
Training — — RGB-D RGB-D RGB RGB-D
Test — — RGB RGB RGB RGB
Kitchen 744 357 33m3 66.39% 71.43% 0.423m, 5.19◦ 0.030m, 1.73◦, 70.3%
Living 1035 493 30m3 41.99% 56.19% 0.611m, 3.70◦ 0.040m, 1.56◦, 60.0%
Bed 868 244 14m3 71.72% 72.95% 0.626m, 7.68◦ 0.039m, 1.81◦, 65.7%
Kitchen 768 230 21m3 63.91% 71.74% 0.175m, 11.92◦ 0.030m, 1.45◦, 76.7%
Living 725 359 42m3 45.40% 56.19% 0.294m, 10.10◦ 0.047m, 1.89◦, 52.2%
Luke 1370 624 53m3 54.65% 70.99% 0.649m, 7.71◦ 0.056m, 2.35◦, 46.0%
Floor5a 1001 497 38m3 28.97% 38.43% 0.437m, 8.43◦ 0.050m, 2.06◦, 49.5%
Floor5b 1391 415 79m3 56.87% 45.78% 0.899m, 6.87◦ 0.042m, 1.42◦, 56.4%
Gates362 2981 386 29m3 49.48% 67.88% 0.223m, 6.77◦ 0.033m, 1.41◦, 67.7%
Gates381 2949 1053 44m3 43.87% 62.77% 0.410m, 10.35◦ 0.044m, 1.91◦, 54.6%
Lounge 925 327 38m3 61.16% 58.72% 0.602m, 7.75◦ 0.046m, 1.61◦, 54.0%
Manolis 1613 807 50m3 60.10% 72.86% 0.034m, 2.02◦ 0.034m, 1.56◦, 65.1%
Average — — — 53.7% 62.2% 0.483m, 8.08◦ 0.041m, 1.73◦, 59.9%

maximum tree depth is 16. A modified 32-dimension SIFT feature is used from

the VLFeat library [105] for sparse feature matching. The SIFT feature computa-

tion is still the bottleneck of the current implementation, the frame-rate response

can be achieved with the GPU SIFT [114]. For the camera pose optimization,

off-the-shelf solvePnPRansac is used in OpenCV.

In the present work, the PoseNet and Bayesian PoseNet baselines are run using

the code by their original author on a Linux machine with an Nvidia GeForce

GTX670 GPU. The pre-trained weights are used to initialize the network weights.

3.4 Conclusions
This chapter presented a hybrid method using random RGB features and sparse

features for camera pose estimation. The method used RGB-only images in the test

and achieves near real-time response. The comparisons on the challenging 7 Scenes

30

and 4 Scenes dataset with several strong baselines demonstrated the efficacy of the

developed method, showing comparable results with state-of-the-art methods.

Future work may include improving the prediction accuracy using deep fea-

tures. It is also planned to investigate the possibility of integrating accurate sparse

features with the random features in the training phase so that the prediction accu-

racy could be further improved from random regression forests.

31

Chapter 4

Image-based localization using
backtracking regression forests

This chapter presents a backtracking technique that improves the accuracy of cam-

era relocalization. Methods based on random forests for camera relocalization di-

rectly predict 3D world locations for 2D image locations to guide the camera pose

optimization. During training, each tree greedily splits the samples to minimize the

spatial variance. However, these greedy splits often produce uneven sub-trees or in-

correct 2D-3D correspondences predictions. To address these problems, a sample-

balanced objective is proposed to encourage equal numbers of samples in the left

and right sub-trees, and a novel backtracking scheme to remedy the incorrect 2D-

3D correspondence in the leaf nodes caused by greedy splitting. Furthermore, the

regression forests based methods are extended to use local features in both train-

ing and test stages for outdoor applications. Experimental results using publicly

available indoor and outdoor datasets demonstrate the efficacy of the developed

approach, showing superior or on-par accuracy with several state-of-the-art base-

lines.

4.1 Introduction
Methods based on local features and keyframes have been extensively studied and

are still very active approaches for image-based camera relocalization [54, 87, 89].

32

Recent advances in machine learning methods, especially random forests and deep

learning, have led to rapid progress on their application to camera relocalization.

Methods based on random forests are among the first machine learning meth-

ods for camera relocalization [38, 93, 102]. In these methods, the forest is trained

to directly predict correspondences from any image pixel to points in the scene’s

3D world coordinate, which removes the traditional pipeline of feature detection,

description and matching. These correspondences are then used for camera pose

estimation based on an efficient RANSAC algorithm without an explicit 3D model

of the scene, which is very attractive when a 3D model is not available. Further-

more, these methods can localize the camera from a single RGB-D frame without

tracking. The latest work [6, 70] extends these random forests based methods to

test with just RGB images. However, depth images are still necessary to get 3D

world coordinate labels in the training stage.

In the training stage of these methods based on random forests, each tree greed-

ily splits the samples to minimize the spatial variance. However, these greedy

splits usually produce uneven left and right sub-trees, or incorrect 2D-3D cor-

respondences in the test. To address this problem, a label-free sample-balanced

objective is proposed here to encourage equal numbers of samples in the left and

right sub-trees, and a novel backtracking scheme to remedy the incorrect 2D-3D

correspondence in the leaf nodes caused by greedy splitting. The efficacy of the de-

veloped methods is demonstrated through evaluations on publicly available indoor

and outdoor datasets.

Some recent methods based on deep learning [51, 53, 108] overcome the chal-

lenges of using depth images for camera relocalization, extending their application

to outdoor scenes. These methods train a convolutional neural network to regress

the 6-DOF camera pose from a single RGB image in an end-to-end manner in real

time. However, even integrating LSTM units on the CNN output [108], these meth-

ods still generate much lower accuracy compared with methods based on random

forests [93] in indoor scenes and methods based on local features [87] in outdoor

scenes in general. To eliminate the dependency on depth images while ensuring

high accuracy, the present method integrates local features in the random forests,

broadening the application of random forests methods to outdoor scenes for the

first time while achieving the best accuracy against several strong state-of-the-art

33

baselines.

To summarize, the main contributions of the work in this chapter are as follows:

• The present work proposes a sample-balanced objective that encourages equal

numbers of samples in the sub-trees, increasing prediction accuracy while

reducing training time.

• The present work proposes a novel backtracking scheme to remedy incorrect

2D-3D correspondence in the leaf nodes caused by greedy splitting, further

improving prediction accuracy.

• The present work integrates local features in the regression forests, enabling

the use of just RGB images for both training and testing. The elimination of

the dependence on depth images broadens the present scope of application

to outdoor scenes.

4.2 Method
The present work models the world coordinate prediction problem as a regression

problem:

m̂p = fr(I,D,p|θ) (4.1)

where I is an RGB image, D is an optional depth image, p ∈ R2 is a 2D pixel lo-

cation in the image I, mp ∈R3 is the corresponding 3D scene coordinate of p, and

θ is the model parameter. In training, {p,mp} are paired training data. In testing,

the 3D world location m̂p is predicted by the model θ . Then, the camera param-

eters are estimated using predicted image-world correspondences in a RANSAC

framework.

The novelty of the present method lies in both the regression forest training

and prediction. First, the present work uses a sample-balanced split objective in

training. This objective function encourages equal numbers of samples in the left

and right sub-trees. In practice, it acts as a regularization term in the training and

thus improving prediction accuracy. Second, the present work presents a novel

backtracking technique in prediction. The backtracking searches the tree using a

priority queue and decreases the chance of falling in a local minimum.

34

Table 4.1: Image features. The present method uses random features [93],
SIFT features [64] and Walsh-Hadamard transform (WHT) features [43]
according to different scenarios. The choice of features considers robust-
ness and computational efficiency.

Feature Types
Dataset Split Backtrack Local descriptor
RGB-D Random Random WHT
RGB SIFT SIFT SIFT

4.2.1 Image features

The present method employs different image feature fφi(p) that associates with

pixel location p as shown in Table 4.1 according to different application scenarios.

Image Features on RGB-D Images

For indoor scenes, the present method uses random pixel comparison features[93]

and Walsh-Hadamard transform (WHT) features [43]. Random features and WHT

features do not require expensive feature detection so they can speed up the process.

Also they provide a sufficient number of robust features in texture-less areas, which

is especially important for indoor camera relocalization.

In the present method, random features are used for splitting decision trees

in internal nodes, while WHT features are used to describe local patches Pr(p)
centered at the pixel p. The random features as shown in Fig. 4.1 are based on

pairwise pixel comparison as in [93, 102]:

fφ (p) = I(p,c1)−I(p+
δ

D(p)
,c2) (4.2)

where δ is a 2D offset and I(p,c) indicates an RGB pixel lookup in channel c.

The φ contains feature response parameters {δ ,c1,c2}. The D(p) is the depth at

pixel p in image D of the corresponding RGB image I. Pixels with undefined depth

and those outside the image boundary are marked and not used as samples for both

training and test.

35

P2 P2

(a) (b)
P1 P1

f�1
(p) f�1

(p)

f�2
(p) f�2

(p)

�1
D(P1)

�1
D(P1)

�2
D(P2)

�2
D(P2)

Figure 4.1: Depth-adaptive random RGB pixel comparison features. The
red star represents the pixel p being computed. The distance between
red star and blue circle represents the offset pixels θ

D(p) as defined in
Eq. 4.2. In (a), the two example features at image position p1 and p2
give a large color difference response. In (b), the two features at the
same image locations in a different image give a much smaller response
compared with (a).

For WHT features, the Walsh-Hadamard Transform [43] is calculated for all

patches Pr(p) centered at all pixel positions p. We choose the first 20 Walsh-

Hadamard projection vectors for each color channel, thus the total WHT feature

dimension is 60 for all the three color channels in the present case. The reason of

choosing the first 20 projection vectors that they correspond to the ones with largest

average magnitude of responses, while the rest mainly capture very fine details and

thus do not influence performance too much. The fixed patch size of 64×64 pixels

is used for the WHT feature.

Image Features on RGB images

For scenarios where only RGB images are available in both training and test phase,

the present method uses SIFT features [64] as local feature descriptors. The 64

dimension SIFT features are used to decrease the trained model size as our back-

tracking regression forests method stores the mean vector of feature descriptors.

36

…

Tree 1 … Tree T

SR
1 SR

1
SL

1
SL

1

SL
2

SL
2

SR
2

SR
2

S1 = SL
0

S1 = SL
0 S2 = SR

0 S2 = SR
0

split node with objective1

leaf node
split node with objective2

1 2

S1
0 = {(p1, m1), ...(pn, mn)} ST

0 = {(p1, m1), ...(pn, mn)}

Figure 4.2: Training random forests for 2D-3D coordinate correspon-
dence regression. A set St

0 of labeled sample pixels (p,m) is randomly
chosen from the entire set S0 = [S1

0, · · · ,ST
0] for each tree, where m is the

3D world coordinate label of pixel p. The tree grows recursively from
the root node to the leaf node. The goal is to optimize the parameters
of the tree split nodes. The training objective 1 is the sample-balanced
objective, and the training objective 2 is the spatial-variance objective.

4.2.2 Scene coordinate labels

The labels for image features are the pixel p’s corresponding world coordinate

point position m.

Labels for RGB-D Images

For scenarios where RGB-D images are available in the training stage, please refer

to Sec. 3.2.1 on the label details.

Labels for RGB Images

For scenarios where only RGB images are available in the test stage, for each

feature point at pixel p, the scene’s world coordinate position m could be obtained

from visual structure from motion [115].

37

Algorithm 2 Building the random forests
Input: Feature-3D dataset D . from Visual Structure from Motion
Input: Number of trees N
Output: The random forest data structure

1: procedure BUILDRANDOMFOREST(D,N)
2: trees←{}
3: for i←{1 · · ·N} do
4: Di← random subset o f D . e.g., data from 200 frames
5: treesi← BUILDTREE(D)
6: end for
7: return trees
8: end procedure
9: procedure BUILDTREE(D)

10: if |D|== 1 then . or satisfying other criterion
11: CREATELEAFNODE(D) . store mean values of labels and features
12: else
13: Φ← a set of random split dimension and value
14: {o∗,φ ∗}← {∞, /0} . φ has splitDim and splitValue
15: for each φ in Φ do
16: o← objective value by splitting D using φ

17: if o < o∗ then
18: φ ∗ = φ . update the optimal splitting
19: end if
20: end for
21: {Dl,Dr}← splitted dataset using φ ∗

22: Tl ← BUILDTREE(Dl) . left subtree
23: Tr← BUILDTREE(Dr) . right subtree
24: CREATEINNERNODE(φ ∗,Tl,Tr) . Store splitting parameters
25: end if
26: end procedure

4.2.3 Backtracking regression forest training

Weak learner model

A regression forest is an ensemble of T independently trained decision trees. Each

tree is a binary tree structure consisting of split nodes and leaf nodes. We use the

same weak learner as in Chapter 3.2.2.

38

Training objectives

At each split node i, for the incoming training set Si, the training is to learn the

split parameter θi that best splits the left child subset SL
i and the right child subset

SR
i . The selecting “best” split parameters can be formulated as the minimize the

training objective Qi:

θ
∗
i = arg min

θi∈Θi
Qi(Si,θi) (4.3)

The present regression forest uses two objectives depending on the levels of the de-

cision tree. At upper levels of a decision tree (tree depth is smaller than a threshold

Lmax), the present work uses a sample-balanced objective:

Qb(Si,θ) =
abs(|SL

i |− |SR
i |)

|SL
i |+ |SR

i |
(4.4)

where abs(.) is the absolute value operator and |S| represents the size of set S.

This objective penalizes uneven splitting. The sample-balanced objective has two

advantages. First, it makes the training faster as it only counts the number of

samples in sub-trees. Second, it produces more accurate predictions in practice,

which will be shown in the experiments Sec. 4.3. When the tree depth is larger

than a threshold Lmax, the present work uses the spatial-variance objective Eqn.

3.8.

Fig.4.3 illustrates the idea of using two objectives in a five-level tree. The

first two levels use the sample-balanced objective while the next two levels use the

spatial-variance objective.

At the end of training, all samples reach to the leaf nodes. In a leaf node, the

present method not only stores a mean vector of 3D positions but also a mean vector

of local patch descriptors. The local patch descriptor will be used to choose the

optimal predictions in a backtracking process which will be described in Sec.4.2.4.

4.2.4 Backtracking in regression forests prediction

In the testing phase, a regression tree predicts 3D locations by comparing the fea-

ture value and the feature response at the split nodes. Because the comparison is

conducted on a single dimension at a time and all these parameters are optimized

greedily during the training, making mistakes is inevitable.

39

Figure 4.3: Decision tree using two split objectives. Best viewed in color.
The split nodes are illustrated as the pie charts, which show the percent-
age of samples in the left and right sub-trees. In this five-level tree, the
split nodes of the first two levels are split using the sample-balanced ob-
jective. While the rest of levels are split using the unbalanced objectives
(e.g., the spatial-variance objective). Details are in Sect. 4.2.3.

To mitigate this drawback, the present work has developed a backtracking

scheme in the testing phase as shown in Fig. 4.4 to find the optimal prediction

within time budgets using a priority queue. The priority queue stores the sibling

nodes that are not visited along the path when a testing sample travels from the root

node to the leaf node. The priority queue is ordered by increasing distance to the

split value of each split node. The backtracking continues until a predefined num-

ber Nmax of leaf nodes are visited. Algorithm 3 illustrates the detailed procedure of

the present backtracking scheme.

4.2.5 Camera pose optimization

The backtracking regression forest described above is capable of predicting the

3D world coordinate for any 2D image pixel. The present work uses this 2D−3D

correspondence to estimate the camera pose. The problem of estimating the camera

pose is formulated as the energy minimization:

P∗ = argmin
P

E(P) (4.5)

40

node 1

0

1 2

node 0

node 2

f�0
(p)  ⌧0 f�0

(p) > ⌧0

f�2
(p) > ⌧2f�2

(p)  ⌧2

p split node
leaf node

…

node 1

0

1 2

node 0

node 2

f�0
(p)  ⌧0 f�0

(p) > ⌧0

p

Tree 1 … Tree T

f�1
(p)  ⌧1 f�1

(p) > ⌧1

Figure 4.4: Test phase of backtracking regression forests In the test, at
each split node i, the feature fφi is compared with feature response τi

to determine whether to go to the left or to the right child node. The
red arrows represent the prediction process without backtracking while
the purple arrows represent the backtracking process. A particular input
may go along different paths in different trees as indicated by the red
and purple arrows.

where P is a camera pose matrix. The energy function can be solved in different

ways depending on whether depth information is available in the test phase.

When depth images are available (i.e., indoor application), we use the Kabsch

algorithm [49] to estimate camera poses. Otherwise, the solvePnPRansac method

from OpenCV [7] is used. Because predictions from the regression forests may still

have large errors, the preemptive RANSAC method [74] is used to remove outliers.

4.3 Experiments
This section evaluates the present camera relocalization methods using publicly

available indoor and outdoor datasets against several strong state-of-the-art meth-

ods.

41

Table 4.2: Camera relocalization results for the indoor dataset. The per-
centage of correct frames (within 5cm translational and 5◦ angular error)
of the developed method is shown on 4 Scenes dataset against four state-
of-the-art methods: ORB+PnP, SIFT+PnP, Random+SIFT [70], MNG
[103]. The best performance is highlighted.

Spatial Baselines Our Results
Sequence Extent ORB+PnP SIFT+PnP Random+SIFT[70] MNG[103] BTBRF UBRF BRF BTBRF
Training RGB-D RGB-D RGB-D RGB-D RGB-D RGB-D RGB-D RGB-D
Test RGB RGB RGB RGB+3D model RGB RGB-D RGB-D RGB-D
Kitchen 33m3 66.39% 71.43% 70.3% 85.7% 77.1% 82.6% 88.2% 92.7%
Living 30m3 41.99% 56.19% 60.0% 71.6% 69.6% 81.7% 90.5% 95.1%
Bed 14m3 71.72% 72.95% 65.7% 66.4% 60.8% 71.6% 81.3% 82.8%
Kitchen 21m3 63.91% 71.74% 76.7% 76.7% 82.9% 80.0% 85.7% 86.2%
Living 42m3 45.40% 56.19% 52.2% 66.6% 62.5% 65.3% 92.3% 99.7%
Luke 53m3 54.65% 70.99% 46.0% 83.3% 39.3% 50.5% 71.5% 84.6%
Floor5a 38m3 28.97% 38.43% 49.5% 66.2% 50.3% 68.0% 85.7% 89.9%
Floor5b 79m3 56.87% 45.78% 56.4% 71.1% 58.5% 83.2% 92.3% 98.9%
Gates362 29m3 49.48% 67.88% 67.7% 51.8% 82.1% 88.9% 90.4% 96.7%
Gates381 44m3 43.87% 62.77% 54.6% 52.3% 51.4% 73.9% 82.3% 92.9%
Lounge 38m3 61.16% 58.72% 54.0% 64.2% 59.6% 74.6% 91.4% 94.8%
Manolis 50m3 60.10% 72.86% 65.1% 76.0% 68.5% 87.2% 93.9% 98.0%
Average — 53.7% 62.2% 59.9% 69.3% 63.6% 75.6% 87.1% 92.7%

4.3.1 Indoor camera relocalization

Indoor camera relocalization on Stanford 4 Scenes Dataset

Baselines: The present method uses four state-of-the-art methods as the base-

lines: SIFT+PnP, ORB+PnP, Random+SIFT [70], Multiscale Navigation Graph

(MNG) [103]. The SIFT+PnP and ORB+PnP are based on matching local features,

following mainstream feature-based relocalization approaches such as [72, 112].

These methods have to store a large database of descriptors. Random+SIFT [70]

uses both random features and sparse features but in two separate steps. The sparse

feature is used as post-processing in this method. The present method is differ-

ent from this method by simultaneously using both random feature and sparse

features within the framework of regression forests. The multiscale navigation

graph (MNG) method [103] estimates the camera pose by maximizing the photo-

consistency between the query frame and the synthesized image which is condi-

tioned on the camera pose. In the testing stage, the MNG method requires the

42

trained model (retrieval forests) and the 3D model of the scene.

Error Metric: The percentage of test frames for which the estimated camera pose

is essentially ‘correct’ is reported. A pose is correct when it is within 5cm transla-

tional error and 5o angular error of the ground truth.

Main Results and Analysis: For the indoor dataset, the present work uses ran-

dom features and Walsh-Hadamard transform (WHT) features [43]. The obtained

main camera relocalization results are presented in Table 4.2. The results of ORB+PnP,

SIFT+PnP and MNG are from Valentin et al.[103]. Besides the developed fi-

nal method BTBRF, presented here are the results of unbalanced regression forest

(UBRF) which does not use the sample-balanced objective, and balanced regres-

sion forest (BRF) which uses both sample-balanced objective and spatial-variance

objective in training but does not use backtracking in testing.

In this dataset, sparse baselines do a reasonable job and the SIFT+PnP method

is better than the ORB+PnP method. The present method using RGB-only im-

ages in the testing stage achieves higher accuracy than SIFT+PnP, ORB+PnP, and

Random+Sparse, and is less accurate than the MNG method. However, the MNG

method needs a explicit 3D model to render synthetic images to refine the pose

while the present method does not need. Moreover, the MNG method needs a

large number of synthetic images (9 times of the original training images) for data

augmentation while the present method does not need them. The present method

using RGB-D images at test time considerably outperforms all the baselines in

accuracy for camera relocalization.

To demonstrate that the improvement is indeed from the sample-balanced ob-

jective and backtracking, the present work compares the world coordinate pre-

diction accuracy from the present UBRF, BRF and BTBRF. Fig. 4.5 shows the

accumulated percentage of predictions within different error thresholds for four

sequences. For a particular threshold, the higher the percentage, the more accu-

rate the prediction is. The figure clearly shows that the present method with the

sample-balanced objective and the backtracking technique is consistently better

than the method without sample-balanced objective and without backtracking.

43

Error threshold (m)

(a) Apt1/living

0 0.1 0.2 0.3 0.4 0.5

Pe
rc

en
ta

ge

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Un-balanced
Balanced
Balanced + Backtracking

Error threshold (m)

(b) Apt2/living

0 0.1 0.2 0.3 0.4 0.5

Un-balanced
Balanced
Balanced + Backtracking

Error threshold (m)

(c) Office1/gates362

0 0.1 0.2 0.3 0.4 0.5

Un-balanced
Balanced
Balanced + Backtracking

Error threshold (m)

(d) Office2/5a

0 0.1 0.2 0.3 0.4 0.5

Un-balanced
Balanced
Balanced + Backtracking

Figure 4.5: Impact of the sample-balanced objective and backtracking
on prediction accuracy. These figures show the accumulated percent-
age of predictions within a sequence of inlier thresholds. The proposed
method with the sample-balanced objective (red lines) consistently has
a higher percentage of inliers compared with the unbalanced objective
(blue lines). Backtracking (green lines) further improves prediction ac-
curacy. Max number of backtracking leaves is 16 here.

(a) (b)

Figure 4.6: Qualitative results for indoor dataset (from office2/gates381).
Best viewed in color. The ground truth is in red and the present es-
timated camera pose is in green. (a) camera trajectories. (b) several
evenly sampled camera frusta are shown for visualization. the present
method produces accurate camera locations and orientations. Note: the
3D model is only for visualization purposes and it is not used for the
present camera relocalization.

44

Balance levels
0 2 4 6 8 10

Pe
rc

en
ta

ge

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Apt1/living
Apt2/living
Office1/gates362
Office2/5a
Mean

Figure 4.7: Camera relocaliztion accuracy vs. number of tree levels us-
ing the sample-balanced objective. When the number of levels using
sample-balanced objective increases, the average performance (dashed
line) increases.

Fig. 4.6 shows examples of qualitative results of the present method. In Fig.

4.6 (a), the estimated camera trajectory and the ground truth trajectory are highly

overlapped in the scene, illustrating the high accuracy of predicted camera loca-

tions. In Fig. 4.6 (b), several camera frusta show the accuracy of estimated camera

orientation. These results show that the estimated camera poses are accurate in

both location and orientation.

Tree Structure Analysis

The structure of the developed decision trees is analyzed to explore the influence

of several important parameters.

Maximum tree depth of using the sample-balanced objective Lmax : Fig.

4.7 shows relocalization accuracy against tree levels with the sample-balanced

objectives. The sample-balanced level is increased from 0 (no sample-balanced

level) to 10. The mean accuracy gradually increases from around 80% to around

95%. Analyzing the four sequences separately, we find that the performance on the

apt2/living and offce2/5a sequences improved significantly while the performance

on the other two sequences improve moderately. Please note the accuracy in this

figure is measured without using backtracking.

45

Backtracking leaf node numbers
0 5 10 15 20 25 30

C
or

re
ct

 fr
am

es
 p

er
ce

nt
ag

e

0.85

0.9

0.95

1

Apt1/living
Apt2/living
Office2/5a
Office1/gates362
Mean

Figure 4.8: Camera relocalization accuracy vs. backtracking leaf node
numbers. The camera relocalization performance increases with more
backtracking leaf nodes though eventually levels out.

Backtracking number Nmax: Fig. 4.8 shows the camera relocalization accu-

racy against different Nmax. The accuracy is significantly improved within the first

(about) 10 leaf nodes and saturates after that. Because the processing time linearly

increases with the backtracking number, a small number of Nmax is preferred.

Split Ratio Distribution: In internal nodes, the split ratio measures the balance

of the number of samples. Fig. 4.9 shows an example of split ratio distribution.

The tree uses the sample-balanced objectives in the first 8 levels. After level 8,

the distribution is close to a uniform distribution. The present method successfully

guides the tree to have a sample-balanced structure at designated levels. Compared

with the unbalanced tree structure, the present method has relatively shallower

trees. As it has been pointed out, deeper trees lead to over-fitting [20].

Tree Numbers: Fig. 4.10 plots regression forests method on apt1/kitchen

scene. It illustrates that the camera relocalization performance increases with the

number of trees while eventually leveling out. Other random forest variants for

different tasks [20, 92] also have similar findings. It has been proved that the ran-

dom forests have less danger of overfitting when the number of trees increases [9].

However, the memory overhead and training time of using multiple trees increase

46

Figure 4.9: Split ratio distribution. The heat map shows the split ratio dis-
tribution as a function of tree depth (level). The data is from all split
nodes in a sequence. In the first 8 levels, the distribution is concentrated
around 0.5 as a result of the sample-balanced objective. From level 8 to
level 25, the distribution is almost uniform.

Figure 4.10: Camera relocalization accuracy VS number of trees

47

Table 4.3: Camera relocalization results for the 7 Scenes dataset .Correct
percentage performance is shown for the developed method on all scenes
against three state-of-the-art methods: Sparse baseline [93], SCRF [93],
MutliOutput [38]. The correct percentage show the test frames within
5cm translational and 5◦ angular error.

Baselines Ours
Scene Sparse [93] SCRF [93] MultiOutput[38] BRF BTBRF
Training RGB-D RGB-D RGB-D RGB-D RGB-D
Test RGB RGB RGB-D RGB-D RGB-D
Chess 70.7% 92.6% 96% 97.8% 99.6%
Fire 49.9% 82.9% 90% 92.1% 95.2%
Heads 67.6% 49.4% 56% 77.3% 90.4%
Office 36.6% 74.9% 92% 91.3% 95.9%
Pumpkin 21.3% 73.7% 80% 76.5% 75.7%
Kitchen 29.8% 71.8% 86% 85.4% 89.4%
Stairs 9.2% 27.8% 55% 51.3% 60.8%
Average 40.7% 67.6% 79.3% 81.7% 86.7%

linearly with the number of trees, so at some point the accuracy increase may not

justify the additional memory used. Fig. 4.10 shows the relocalization accuracy

increases steeply at first several trees but slowly after around 5 trees. Similar trends

are observed on other sequences. As a result, the present work uses 5 trees to strike

a trade off between speed and accuracy.

Indoor camera relocalization on 7 Scenes Dataset

The developed method is also evaluated using the widely used Microsoft 7 Scenes

dataset. Also the present method is compared against a sparse feature based method

reported from [93], SCRF [93] and a multi-output version of SCRF [38] in terms

of correct frame percentage. The present method is compared with PoseNet and

Bayesian PoseNet in terms of median translation error and rotation error.

Main results and analysis: The main results and comparisons are presented in

Table 4.3. The developed method BTBRF outperforms all the baselines on all

48

Table 4.4: Median camera relocalization performance for the 7 Scenes
dataset . Median performance for the present method on all scenes is
shown against three state-of-the-art methods: PoseNet [53], Bayesian
[51], SCRF [93].

Baselines Ours
Scene PoseNet [53] Bayesian [51] SCRF [93] BRF BTBRF
Training RGB RGB RGB-D RGB-D RGB-D
Test RGB RGB RGB-D RGB-D RGB-D
Chess 0.32m, 8.12◦ 0.37m, 7.24◦ 0.03m, 0.66◦ 0.017m, 0.69◦ 0.015m, 0.59◦

Fire 0.47m, 14.4◦ 0.43m, 13.7◦ 0.05m, 1.50◦ 0.018m, 0.99◦ 0.016m, 0.89◦

Heads 0.29m, 12.0◦ 0.31m, 12.0◦ 0.06m, 5.50◦ 0.028m, 2.66◦ 0.020m, 1.84◦

Office 0.48m, 7.68◦ 0.48m, 8.04◦ 0.04m, 0.78◦ 0.022m, 0.90◦ 0.018m, 0.75◦

Pumpkin 0.47m, 8.42◦ 0.61m, 7.08◦ 0.04m, 0.68◦ 0.024m, 0.90◦ 0.023m, 0.84◦

Kitchen 0.59m, 8.64◦ 0.58m, 7.54◦ 0.04m, 0.76◦ 0.027m, 1.22◦ 0.025m, 1.02◦

Stairs 0.47m, 13.8◦ 0.48m, 13.1◦ 0.32m, 1.32◦ 0.047m, 1.40◦ 0.040m, 1.22◦

Average 0.44m, 10.4◦ 0.47m, 9.81◦ 0.08m, 1.60◦ 0.261m, 1.25◦ 0.022m, 1.02◦

scenes except the Pumpkin scene in terms of correct percentage. The sparse base-

line tends to perform poorly when there exists severe motion blur, or textureless

areas in which situations few features are detected. The SCRF performs better

than the present BRF but worse than BTBRF. The main reason is that mean shift

is not used, which may improve the leaf prediction. Only the balanced objective

cannot deal with the ambiguities on the leaf prediction but the backtracking scheme

helps more. All these three methods perform poorly on the Stairs due to the inher-

ently repetitive and ambiguous property of the scene. However, the present method

achieves 35% more in correct percentage accuracy compared with the SCRF, 86%

more with AutoContext and 308% more with Spare baseline. The performance

boost may be attributed to the balanced objective and backtracking could help to

correct the severely wrong prediction.

To gain some insight into the translation and rotation error, the median perfor-

mance is also presented in Table 4.4. It is can be seen that SCRF and the present

methods are significantly more accurate than PoseNet and Bayesian PoseNet. The

reason may be that both PoseNet and Bayesian PoseNet consider the holistic im-

ages which tends to fail when occlusions occurred. The other reason may be that

49

(a-1) (b-1) (c-1) (d-1)

(a-2) (b-2) (c-2) (d-2)
Figure 4.11: Example sequence in TUM dynamic dataset. (a) sitting xyz,

(b) sitting rpy, (c) walking halfsphere, (d) walking xyz. The upper
row shows the training image example. The training images also con-
tain severe motion blur, occlusion and rotated images. The lower row
shows the training (blue) and test (red) sequences. The camera frus-
tums are uniformely sampled in every tenth image.

they do not use the depth image and lose more information. The present method

BTBRF has much better performance on translational error but inferior perfor-

mance on angular error.

Indoor camera relocalization on TUM Dynamic Dataset

TUM RGB-D dynamic dataset: TUM RGB-D Dataset [98] is mainly for the

evaluation of RGB-D SLAM systems. A large set of image sequences of vari-

ous of characteristics (e.g. non-texture, dynamic objects, hand-held SLAM, robot

SLAM) from a Microsoft Kinect RGB-D sensor with highly accurate and time-

synchronized ground truth camera poses from a motion capture system. The se-

quences contain both the color and depth images in image resolution of 640×480.

Here, just the dynamic objects dataset is used to complement the previous static

Microso f t 7 Scenes dataset and Stan f ord 4 Scenes dataset where no dynamic ob-

jects existed. This dynamic dataset is very challenging as there are severe occlu-

sions and moving dynamic objects in the scene. The training set is from the scenes

as listed in Table 4.5 while the test set is from the respective evaluation sequences.

50

Table 4.5: Camera relocalization results for the TUM dataset . The correct
percentage performance, median performance, and RMSE of ATE are
presented.

Frames BTBRF
Scene Train Test Correct Median RMSE

sitting static 676 715 64.6% 0.015m, 0.99◦ 0.018m
sitting xyz 1216 829 70.2% 0.029m, 0.72◦ 0.039m
sitting halfsphere 1069 944 44.4% 0.056m, 1.59◦ 0.046m
sitting rpy 792 753 74.6% 0.029m, 0.98◦ 0.065m
walking halfsphere 1018 1171 61.7% 0.042m, 1.03◦ 0.085m
walking rpy 864 777 53.7% 0.047m, 1.14◦ 0.551m
walking static 714 785 89.2% 0.019m, 0.49◦ 0.027m
walking xyz 826 897 41.7% 0.048m, 1.24◦ 0.064m
Average — — 62.5% 0.036m, 1.02◦ 0.119m

Fig. 4.11 show several RGB example for training sequences.

Error metric Three error metrics are used for this evaluation: ’Correct frames’

which is the percentage of test frames within 5cm and 5◦, median translational and

angular error, and root mean squared error (RMSE) for Absolute Trajectory Error

(ATE) [98] which is commonly used in many SLAM systems [72, 98]. Unlike the

Microso f t 7 Scenes and Stan f ord 4 Scenes datasets, the training and evaluation

data are in different world coordinate systems. The estimated trajectory is still

in the training data world coordinate. For alignment, TUM dataset benchmark

provide tools using Horn’s method [45] to align the estimated trajectory P1:n and

ground truth trajectory Q1:n. The ATE at time step i is computed as

Fi = Q−1
i SPi (4.6)

The root mean square error (RMSE) over all time indices of the translational com-

ponents is computed as:

RMSE(F1:n) = (
1
n

n

∑
i=1
||trans(Fi)||2)

1
2 (4.7)

51

(a) (b)

(c) (d)
Figure 4.12: Quantitative results on TUM dynamic dataset. Here we show

two good scenes and two bad scenes. (a) sitting xyz, (b) walking xyz,
(c) walking halfsphere, (d) walking rpy.

However, this ATE could only be used an auxilliary error metric, as it only con-

siders the translational error while ignoring rotational errors. The translational and

rotational error are simultaneously optimized.

Main results and analysis The main results are presented in Table 4.5. It shows

the developed method is somewhat robust in front of dynamic obstacles, with

62.5% average correct images. Fig. 4.12 (a) and (b) show that the present method

stays close to ground truth trajectory. However, there are failure cases which cause

the RMSE to be very large. For instance in walking hal f sphere as shown in Fig.

4.12 (c) and (d), it can be seen that several failure images caused large RMSE. Fig.

4.13 show the failure image examples. There are many possible reasons for the

52

(a) (b)

Figure 4.13: Failure cases on TUM dynamic dataset. (a) walk-
ing halfsphere. Dynamic objects dominate the image and severe mo-
tion blur exists. (b) walking rpy. No similar image in the training
sequence and severe motion blur.

relocalization failure, such as severe motion blur, no similar image in the training

sequence and dominating dynamic objects.

4.3.2 Outdoor camera relocalization

Fig.4.14 illustrates our framework of camera relocalization for outdoor scenes. Vi-

sual structure from motion is leveraged to autonomously generate training data

(local features and their corresponding 3D point positions in the world coordinate).

During training, regression forest is used to learn the correspondence between lo-

cal features and 3D world coordinates. At test time, local features are extracted

from query image, and then estimate their 3D correspondences from regression

forests with backtracking. Finally the camera pose is estimated using PnP solver

and RANSAC.

Dataset: The Cambridge Landmarks dataset [53] is used to evaluate the devel-

oped method. It consists of data in a large scale outdoor urban environment. Scenes

are recorded by a smart phone RGB camera at 1920×1080 resolution. The dataset

also contains the structure-from-motion (SfM) models reconstructed with all im-

ages to get the ground truth camera pose. The dataset exhibits motion blur, moving

pedestrians and vehicles, and occlusion, which pose great challenges for camera

53

VisualSfM

local features !
& 3D points

Supervised Learning!
(random forests)

Stree TMonocular!
Images

Query Image

Stree T

local feature !
detection & extraction

Random forests !
with backtracking

2D-3D!
correspondences!

Camera pose estimation!
using PnP solver & RANSAC

 local !
features

(a)

VisualSfM

local features !
& 3D points

Supervised Learning!
(random forests)

Stree TMonocular!
Images

Query Image

Stree T

local feature !
detection & extraction

Random forests !
with backtracking

2D-3D!
correspondences!

Camera pose estimation!
using PnP solver & RANSAC

 local !
features

(b)

Figure 4.14: Overview of the present framework of SuperSIFT for cam-
era relocalization (a) Visual structure from motion [115] is employed
to autonomously generate training data (local features and their corre-
sponding 3D point positions in the world coordinate). During training,
regression forest is used to learn the correspondence between local
features and 3D world coordinates. (b) At test time, local features are
extracted from query image, and then their 3D correspondences are es-
timated from regression forests with backtracking. Finally the camera
pose is estimated using PnP solver and RANSAC.

relocalization.

Baselines: Five state-of-the-art methods are used as our baselines: Active Search

[87], PoseNet [53], Bayesian PoseNet [51], CNN+LSTM [108], and PoseNet+Geometric

error[52]. Active Search employs a prioritized matching step that first considers

features more likely to yield 2D-to-3D matches and then terminates the correspon-

dence search once enough matches have been found. PoseNet trains a ConvNet

as a pose regressor to estimate the 6-DOF camera pose from a single RGB im-

age. Bayesian PoseNet improved the accuracy of PoseNet through an uncertainty

framework by averaging Monte Carlo dropout samples from the posterior Bernoulli

54

Table 4.6: Camera relocalization results for the outdoor Cambridge
Landmarks Dataset. The median performance for the devel-
oped method is shown against five state-of-the-art methods: Ac-
tive Search without prioritization (w/o) and with prioritization (w/)
[87], PoseNet [53], Bayesian PoseNet [51], CNN+LSTM [108], and
PoseNet+Geometric loss[52].

Baselines Ours
Scene Spatial Active Search Active Search PoseNet [53] Bayesian CNN+ PoseNet+ BTBRF

Extent (w/o) [87] (w/)[87] PoseNet[51] LSTM[108] Geometric loss[52]
King’s 140x40m 0.59m, 0.48◦ 0.67m, 0.52◦ 1.92m, 5.40◦ 1.74m, 4.06◦ 0.99m, 3.65◦ 0.88m, 1.04◦ 0.39m, 0.36◦

Hospital 50x40m 1.25m, 0.71◦ 1.29m, 0.79◦ 2.31m, 5.38◦ 2.57m, 5.14◦ 1.51m, 4.29◦ 3.20m, 3.29◦ 0.30m, 0.41◦

Shop 35x25m 0.18m, 0.65◦ 0.17m, 0.53◦ 1.46m, 8.08◦ 1.25m, 7.54◦ 1.18m, 7.44◦ 0.88m, 3.78◦ 0.15m, 0.31◦

St Mary 80x60m 0.26m, 0.50◦ 0.29m, 0.55◦ 2.65m, 8.48◦ 2.11m, 8.38◦ 1.52m, 6.68◦ 1.57m, 3.32◦ 0.20m, 0.40◦

Average 0.57m, 0.59◦ 0.61m, 0.60◦ 2.08m, 6.83◦ 1.92m, 6.28◦ 1.30m, 5.52◦ 1.63m, 2.86◦ 0.27m, 0.39◦

distribution of the Bayesian ConvNet’s weights. CNN+LSTM [108] uses a CNN

to learn feature representations and LSTM units on the CNN output in spatial coor-

dinates to capture the contextual information. PoseNet+Geometric error[52] which

is based on PoseNet[53] uses geometric reprojection error instead of the manually

tuned weighted loss as the regression loss to balance the rotational and positional

quantities in a single scalar loss.

Error metric The median translational error and rotational error are used here

as in previous work [51–53, 108] for fair comparison.

Main results and analysis Table 4.6 shows the median camera relocalization

errors for the present method and the baseline methods. The results of PoseNet

and Bayesian PoseNet are from the original papers. The results of active search

and CNN+LSTM are from [108]. The present method considerably outperforms all

these baselines for all scenes in terms of median translational and rotational errors.

It is about an order of magnitude improvement in accuracy compared with PoseNet,

five times as accurate as CNN+LSTM and twice as accurate as Active Search.

Timings are not directly compared here as all these baselines are implemented on

different high-end GPUs while the current implementation is on a single CPU core.

To gain insight on how backtracking helps to improve the accuracy, the camera

55

Figure 4.15: Qualitative results for the outdoor dataset Cambridge Land-
marks, King’s College. Best viewed in color. Camera frusta over-
laid on the 3D scene. The camera poses are evenly sampled every ten
frames for visualization. Camera frusta with hollow green frames show
ground truth camera poses, while red ones with light opacity show the
present estimated camera poses. The estimated camera poses of the
developed method are very close to ground truth in spite of partial
occlusion, moving objects, motion blur, large illumination and pose
changes.

relocalization accuracy is plotted against backtracking leaf node numbers in Fig.

4.16. It shows that the camera relocalization errors significantly decrease within

about 5 backtracking leaf nodes, which indicates that the relocalization accuracy

can be improved by backtracking only a small number of leaf nodes.

Fig. 4.15 shows the qualitative results for the King’s College Scene. We uni-

formly resampled the camera poses every ten frames to improve visualization.

4.3.3 Implementation details

The proposed method is implemented with C++ using OpenCV [7] on an Intel

3GHz i7 CPU, 16GB memory Mac system. The parameter settings for regression

forest are: tree number T = 5; 500 (indoor) and 300 (outdoor) training images per

tree; 5,000 randomly sampled pixels per training image (indoor); the number of

SIFT features per image varies from around 500 to 1,500 (outdoor); the maximum

depth of tree is 25; the maximum backtracking leaves is 16. For the test, the present

56

Number of backtracking leaf nodes
0 5 10 15 20M

ed
ia

n
tra

ns
la

tio
na

l e
rro

r (
m

et
er

s)

0

0.2

0.4

0.6

0.8

1

1.2
Kings
Old Hospital
Shop Facade
St Marys

(a)
Number of backtracking leaf nodes

0 5 10 15 20

M
ed

ia
n

ro
ta

tio
na

l e
rro

r (
de

gr
ee

s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Kings
Old Hospital
Shop Facade
St Marys

(b)

Figure 4.16: Effect of backtracking leaf node numbers on camera relo-
calization accuracy in Cambridge Landmarks Dataset. (a) median
translational error vs. backtracking leaf numbers (b) median rotational
error vs. backtracking leaf numbers. Both median translational and
rotational errors decrease with more backtracking leaf nodes though
eventually level out.

unoptimized implementation takes approximately 1 second (indoor) and 2 seconds

(outdoor) on a single CPU core. Most of the time is on the backtracking and the

camera pose optimization part. It should be noted that the current implementation

is not heavily optimized for speed and no GPU is used, which makes it possible to

speed up with GPU implementation. There is empirical evidence supporting that

a decent GPU implementation of the forest would not exceed 1ms [91], and even

with backtracking it still can achieve fast response.

4.3.4 Limitations

The present BTBRF method has two limitations. First, it has to store mean local

patch descriptors in leaf nodes, which doubles the trained model size. Second, the

time complexity of the backtracking is proportional to the value of Nmax, making

the prediction process slower than the conventional regression forests method. It is

important to find ways of adaptively setting the value of Nmax to avoid unnecessary

backtracking.

57

4.4 Conclusions
This chapter developed a sample-balanced objective and a backtracking scheme to

improve the accuracy for camera relocalization. The proposed methods are applica-

ble to regression forests both for RGB-D and RGB camera relocalization, showing

state-of-the-art accuracy in publicly available datasets. Furthermore, we integrated

local features in regression forests, advancing regression forests based methods to

use RGB-only images for both training and test, and broadening the application to

outdoor scenes while achieving the best accuracy against several strong state-of-

the-art baselines. In the future, the present work may be implemented on a parallel

computation architecture for higher efficiency.

58

Algorithm 3 Tree Prediction with Backtracking
Input: A decision tree T , testing sample S, maximum number of leaf to examine

Nmax

Output: Predicted label and minimum feature distance
1: procedure TREEPREDICTION(T,S,Nmax)
2: count← 0
3: PQ← empty priority queue
4: R← /0 . the prediction result
5: call TRAVERSETREE(S,T,PQ,R)
6: while PQ not empty and count < Nmax do
7: T ← top of PQ
8: call TRAVERSETREE(S,T,PQ,R)
9: end while

10: return R
11: end procedure
12: procedure TRAVERSETREE(S,T,PQ,R)
13: if T is a leaf node then
14: dist← distance(T. f eature,S. f eature) . e.g., L2 norm
15: if R is /0 or dist < R.dist then
16: {R.label,R.dist}← {T.label,dist} . update
17: end if
18: count = count +1
19: else
20: splitDim← T.splitDim
21: splitValue← T.splitValue
22: if S(splitDim)< splitValue then
23: closestNode← T.le f t
24: otherNode← T.right
25: else
26: closestNode← T.right
27: otherNode← T.le f t
28: end if
29: add otherNode to PQ
30: call TRAVERSETREE(S,closestNode,PQ,R)
31: end if
32: end procedure

59

Chapter 5

Exploiting points and lines in
regression forests for RGB-D
camera relocalization

This chapter presents a camera pose relocalization method that uses both points

and lines. Previous chapters used Perspective-n-Point (PnP) to estimate the pose of

a calibrated camera from n 3D-to-2D or 3D-to-3D point correspondences. There

are situations where point correspondences cannot be reliably estimated, for ex-

ample in a texture-less office. In such scenarios, one can still exploit alternative

geometric entities, such as lines, yielding the Perspective-n-Line (PnL) algorithms.

This chapter presents a method that uses both point and line features to relocalize

a RGB-D camera.

5.1 Introduction
Most existing camera relocalization approaches are designed with the assumption

that many point features can be accurately tracked. However, it is not the case in

the real world. Textureless areas are common in human environments and motion

blur also often happens when moving the camera too fast. Recent camera relo-

calization methods based on deep learning [40, 51–53] are more robust when the

sparse features such as SIFT [64] fail in the existence of motion blur or poorly

60

(a) (b)

Figure 5.1: Line segment example. (a) original RGB image (b) with LSD
line features. In scenes with little texture and repetitive patterns which
are typical in indoor environments, line features are more robust.

textured areas. However, the overall camera relocalization accuracy of these deep

learning methods has almost an order of magnitude in error over the point-based

methods or random forest based methods in publicly available datasets.

To solve this problem, this chapter proposes to use both line and point features

in regression forests for camera relocalization. In motion blur and textureless areas

where the points are struggled [85], the line segments provide important geomet-

ric information and are more robust features. Furthermore, 3D edges which are

composed of many line segments are robust to viewpoint changes.

5.2 Related work
This section provides a literature review of the related work on the line and/or

point feature for camera pose estimation. For more generated related work, please

refer the reader to Sec. 2.1.1. Line segment detection and exploitation in many

computer vision tasks such as camera pose estimation [81, 85], stereo analysis

[15, 48] and crack detection [66] could date back to three decades [12, 50] and are

still a very active area [36, 68, 85, 107]. Robust gradient orientations of the line

segment rather than robust endpoints or gradient magnitudes play a crucial role in

the line segment literature [11, 50, 85, 107]. Besides line segment detection, the

present work is highly related to pose estimation using line and/or point features

[26, 37, 81, 85].

61

5.3 Problem setup and method overview
The following three assumptions of the RGB-D camera and input data are made: (i)

the camera intrinsics are known; (ii) the RGB and depth frames are synchronized;

(iii) the training set contains both RGB-D frames and their corresponding 6 DOF

camera pose encoding the 3D rotation and translation from camera coordinates to

world coordinates.

The problem is formulated as: given only a single acquired RGB-D image

{I,D}, infer the pose H of an RGB-D camera relative to a known scene.

To solve the problem, we propose to exploit both line and point features in un-

certainty driven regression forests. Our method consists of two major components.

The first component is two regression forests trained using general points and line

points respectively. These two forests predict general points and line points in the

testing. The second component is a camera pose optimization scheme using both

point-to-point constraints and point-on-line constraints.

The novelty of our method lies in both the regression forests and camera pose

estimation. First, point and line features are integrated in the training, modeling

the uncertainty both in the line and point predictions. Second, the uncertainty of

points and lines are simultaneously used to optimize the camera pose.

5.4 Regression forest with point and line features

5.4.1 Points sampling and scene coordinate labels

To take advantage of the complementary properties of lines and points, the present

method differentiates the points on the line segments and general points.

Line Segment Sampling: Directly back-projecting the two endpoints to 3D line

using the depth information will cause large errors due to discontinuous depth on

object boundaries or lack of depth information as shown in Fig. 5.2. To avoid this

problem, the Line Segment Detector (LSD) is employed [107] to extract a set of

2D line segments L = {l1,l2, · · ·} from image I as shown in Fig. 5.1, and then

uniformly sample points from the line as shown in Fig. 5.3. Using this sample

scheme, one could discard the sample points whose depths are unavailable, and

62

(a) (b)

Figure 5.2: Depth corruption and discontinuity on line segments. (a) LSD
line segments overlaid on original RGB image (b) truncated depth map.
Effective depth information is not always available for 2D line segments
in the corresponding RGB image, such as the wrong depth values shown
on the desk and the glass corridor areas.

only back-project the remaining points to the camera coordinate. The 3D back-

projected points could contain outliers which could be removed by RANSAC [28]

and fit a 3D line.

Random points sampling: Besides the points sampled on the line segments, the

present work also randomly samples general image points.

The same method is used to train both point and line point models.

Image features Here the proposed method uses the pixel comparison feature [93]

that associates with each pixel location p:

fφ (p) = I(p,c1)−I(p+
δ

D(p)
,c2) (5.1)

where δ is a 2D offset and I(p,c) indicates an RGB pixel lookup in channel c.

The φ contains feature response parameters {δ ,c1,c2}. The D(p) is the depth at

pixel p in image D of the corresponding RGB image I. Pixels with undefined depth

and those outside the image boundary are marked and not used as samples for both

training and test.

63

z

y
x

u
v

image plane

camera optical center

image points

scene points

scene inlier points

scene outlier points

2D line

3D line

Figure 5.3: 3D line estimation based on sampling points. Within a pinhole
camera model, the 2D image points are evenly sampled on a 2D image
line and then back-projected on the scene coordinate to be 3D scene
points. These 3D scene points contain outliers which could be removed
by RANSAC to fit a 3D line in scene coordinate.

Besides the random pixel comparison feature, we also use Walsh-Hadamard

Transform (WHT) features [43] to describe the local patch associated with the

pixel p.

Scene coordinate labels: For both random sampled points and points sampled on

the line segment, the 3D points x in camera coordinate of the corresponding pixel

p are computed by back-projecting the depth image pixels. The scene’s world

coordinate position m of the corresponding pixel p is computed through m = Hx.

With the present sampling method, one can train both the point prediction

model and line prediction model in the same way. An alternative way is to use

two different models. One model predicts point-to-point correspondences and an-

other model directly predicts line-to-line correspondences. The difficult part of

this method is that there are few robust and efficient representations of lines in

the feature space. Therefore, the proposed method predicts line-point-to-line-point

correspondences and employs point-on-line constraint in the camera optimization

64

process, which greatly simplifies the model learning and prediction process.

5.4.2 Regression forest training

A regression forest is an ensemble of T independently trained decision trees. Each

tree is a binary tree structure consisting of split nodes and leaf nodes.

5.4.3 Weak learner model

Each split node i represents a weak learner parameterized by θi = {φi,τi} where φi

is one dimension in features and τi is a threshold. The tree grows recursively from

the root node to the leaf node. At each split node, the parameter θi is sampled from

a set of randomly sampled candidates Θi. At each split node i, for the incoming

training set Si, samples are evaluated on split nodes to learn the split parameter θi

that best splits the left child subset SL
i and the right child subset SR

i as follows:

h(p;θi) =

{
0, if fφi(p)≤ τi, then go to the left subset SL

i .

1, if fφi(p)> τi, then go to the right subset SR
i .

(5.2)

Here, τi is a threshold on feature fφi(p). Although here we use random pixel com-

parison features as in Eq. 5.1, the weak learner model can use other general features

to adapt application scenarios.

5.4.4 Training objective

In the training, each split node i uses the randomly generated Θi to greedily opti-

mize the parameters θ ∗i that will be used as the weak learner in the test phase by

maximizing the information gain Ii:

θ
∗
i = arg max

θi∈Θi
Ii(Si,θi) (5.3)

with

Ii = E(Si)− ∑
j∈{L,R}

|S j
i (θi)|
|Si|

E(S j
i (θi)) (5.4)

65

where E(Si) is the entropy of the labels in Si, and subset S j
i is conditioned on the

split parameter θi. The present work employs a single full-covariances Gaussian

model, with the entropy defined as:

E(S) =
1
2

log((2πe)d |Λ(S)|) (5.5)

with dimensionality d = 3 and Λ is the full covariance of the labels in S.

At the end of training, all samples reach leaf nodes. In a leaf node, the present

work uses the mean shift method to estimate a set of modes. Each mode has a mean

vector µ and a covariance matrix Λ to described the clustered 3D points. Mean-

while, the present method stores a mean vector of local patch descriptors for each

mode. The local patch descriptor will be used to choose the optimal predictions.

5.4.5 Regression forest prediction

In testing, we use the backtracking technique in chapter 4 to find the optimal pre-

diction within time budgets using a priority queue. In backtracking, the optimal

mode has the minimum feature distance from the patch descriptor. Fig. 4.4 shows

the prediction process. To speed up, the maximum backtracking leaf number is set

to be 8 instead of 16 as in the previous chapter. The point-on-line segment forests

and the general point forests make point-on-line and general points predictions re-

spectively.

5.5 Camera pose optimization
Our method optimizes the camera pose using two types of constraints. The first

constraint is point-to-point correspondence. For each sampled camera coordinate

point xc
i , the mode is found in Mi that concurrently best explains the transformed

observation Hxc
i :

(µ∗i ,Σ
∗
i) = arg max

(µ,Σ)∈Mi

N (Hxc
i ; µ,Σ). (5.6)

This can be optimized by minimizing the sum of Mahalanobis distances in world

coordinates:

Ep = ∑
i∈Ip

‖(Hxc
i −µ

∗
i)

T
Σ
∗−1
xi

(Hxc
i −µ

∗
i)‖. (5.7)

66

The second constraint is point-on-line constraint. For each predicted edge point

xw
i , the present work transforms its location to the camera coordinate H−1xw

i and

measures the Mahalanobis distance to the associated line Li. This can be optimized

by minimizing:

El = ∑
i∈Il

‖(H−1xw
i −Q)T

Σ
−1
i (H−1xw

i −Q)‖ (5.8)

where Qi is the closest point on Li to the transformed point H−1xw
i . The covariance

matrix Σi is rotated from the world coordinate to the camera coordinate by

Σc = RΣRT (5.9)

where R is the rotation matrix in H−1.

The proposed method jointly optimizes these two constraints by using the sum

over the Mahalanobis distances as the performance index:

H∗ = argmin
H

(Ep +El) (5.10)

This energy is optimized by a Levenberg-Marquardt optimizer [71] and the result

is used as the refined camera pose hypothesis in the next RANSAC iterations.

5.6 Experiments
This section evaluates the developed method on three publicly available datasets

for camera relocalization against several state-of-the-art baselines.

5.6.1 Evaluations on Stanford 4 Scenes dataset

Dataset: See Secection 3.3.2 for the introduction of 4 Scenes dataset for a brief

introduction or [103] for detailed description.

Baselines: Please refer Sec. 4.3.1 for details of ORB+PnP, SIFT+PnP, Ran-

dom+SIFT [70], MNG [103]. The BTBRF is the present backtracking regression

forest in Section. 4, but only random point features are used.

67

Table 5.1: Camera relocalization results for the indoor dataset. The per-
centage of correct frames (within 5cm translational and 5◦ angular error)
of the developed method is shown using 4 Scenes dataset against four
state-of-the-art methods: ORB+PnP, SIFT+PnP, Random+SIFT [70],
MNG [103]. The best performance is highlighted.

Spatial Baselines Our Results
Sequence Extent ORB+PnP SIFT+PnP Hybrid[70] MNG[103] BTBRF PLForest
Kitchen 33m3 66.39% 71.43% 70.3% 85.7% 92.7% 98.9%
Living 30m3 41.99% 56.19% 60.0% 71.6% 95.1% 100%
Bed 14m3 71.72% 72.95% 65.7% 66.4% 82.8% 99.0%
Kitchen 21m3 63.91% 71.74% 76.7% 76.7% 86.2% 99.0%
Living 42m3 45.40% 56.19% 52.2% 66.6% 99.7% 100%
Luke 53m3 54.65% 70.99% 46.0% 83.3% 84.6% 98.9%
Floor5a 38m3 28.97% 38.43% 49.5% 66.2% 89.9% 98.8%
Floor5b 79m3 56.87% 45.78% 56.4% 71.1% 98.9% 99.0%
Gates362 29m3 49.48% 67.88% 67.7% 51.8% 96.7% 100%
Gates381 44m3 43.87% 62.77% 54.6% 52.3% 92.9% 98.8%
Lounge 38m3 61.16% 58.72% 54.0% 64.2% 94.8% 99.1%
Manolis 50m3 60.10% 72.86% 65.1% 76.0% 98.0% 100%
Average — 53.7% 62.2% 59.9% 69.3% 92.7% 99.3%

Error metric: The correct percentage is used, which represents the proportion of

test frames within 5cm translational and 5◦angular error as the present error metric.

Main results and analysis Table 5.1 shows the main quantitative result on the

4 Scenes dataset. The present method PLForest considerably outperforms all the

baselines and achieved the highest accuracy for all the sequences, with the average

correct frame percentage of 99.3%. Fig. 5.4 shows some qualitative results of the

present camera pose estimation. The estimated camera poses including translations

and orientations are very similar to the ground truth camera poses. However, for

some scenes, such as Luke, there still exists still a few large error camera pose

estimates. To further investigate the large error, the RGB images and their large

error poses are shown in Fig. 5.5. From the RGB images, it is seen that only

a very little color information is available from which the present random pixel

comparison features in Eq. 5.1 needed to differentiate each other.

68

(a) (b)

(c) (d)

Figure 5.4: Qualitative results on Stan f ord 4 Scenes dataset. Best viewed
in color. (a) apt1 living, (b) apt2 living, (c) office1 lounge, (d) of-
fice2 5b. The evenly sampled every 20th frames in 3D reconstructed
scenes are shown for visualization. The ground truth (hollow red frusta)
and the present estimated camera pose (green with light opacity) are
very similar. Please note the 3D scenes are only used for visualization
purposes and are not used in the present algorithm.

5.6.2 Evaluations on Microsoft 7 Scenes dataset

The developed method is also evaluated on the widely used Microsoft 7 Scenes

dataset.

Dataset Please refer to Sec. 3.3.1 for the introduction of Microsoft 7 Scenes

dataset for a brief introduction or [93] for detailed description.

69

(a) (b)

Figure 5.5: Large error examples on Stan f ord 4 Scenes dataset
Apt2 Luke. (a) an RGB image, (b) ground truth (red) and estimated
camera pose (blue) in the 3D scene. Dominating white color sheet and
some color information caused large camera pose error.

Baselines and error metric: The developed method is compared against a sparse

feature based method reported from [93], SCRF [93], a multi-output version of

SCRF [38], an uncertainty version of SCRF [102] and an autocontext version of

SCRF [6], the present backtracking regression forests in Chapter 4 in terms of

correct frame percentage. The presented method is also compared with PoseNet

and Bayesian PoseNet in terms of median translation error and rotation error.

Main results and analysis: The main results are shown in comparison with strong

state-of-the-art baselines in terms of correct frames in Table 5.2, and in terms of

median performance in Table. 5.3. The present method achieves the best average

accuracy in both criteria. Compared with Stan f ord 4 Scenes dataset, the average

accuracy on Microso f t 7 Scenes dataset is relatively low. Several reasons may

account for this: (i) the training and testing sequences in Stan f ord 4 Scenes are

recorded at the same time as a whole sequence by the same person while the train-

ing and test sequences of Microso f t 7 Scenes dataset are recorded by different

users as different sequences, and split into distinct training and testing sequence

sets. (ii) the depth and RGB image have better quality, and have better registration

in Stan f ord4 Scenes. (iii) the scenes in Microso f t 7 Scenes are more challeng-

ing due to high ambiguity especially in Stairs scene and severe motion blur. Fig.

5.6 show some qualitative results for the Heads scene of the Microso f t 7 Scenes

70

(a)

(c)

(d)

Figure 5.6: Qualitative results for the Heads scene in Microso f t 7 Scenes
dataset. Best viewed in color. (a) Training (blue), test ground truth
(red), and test estimated camera poses (green) are evenly sampled for
every 20th images. The present estimated camera pose is similar to
ground truth in both translation and rotation. The large errors occur in
places where training poses are very different from test poses. (b) the
3D volume scene representation (c) large error image due to its pose is
different from training poses, motion blur and texture-less areas.

71

Table 5.2: Relocalization results for the 7 Scenes dataset. Test frames sat-
isfying the error metric (within 5cm translational and 5◦ angular error)
are shown for the present method on all scenes against five strong state-
of-the-art methods: SCRF [93], Multi[38], BTBRF, Uncertainty [102],
AutoConext [6]. The best performance is highlighted.

Baselines Ours
Scene Space SCRF[93] Multi[38] BTBRF Uncertainty[102] AutoContext [6] PLForest
Training RGB-D RGB-D RGB-D RGB-D RGB-D RGB-D
Test RGB-D RGB-D RGB-D RGB-D RGB-D RGB-D
Chess 6m3 92.6% 96% 99.6% 99.4% 99.6% 99.5%
Fire 2.5m3 82.9% 90% 95.2% 94.6% 94.0% 97.6%
Heads 1m3 49.4% 56% 90.4% 95.9% 89.3% 95.5%
Office 7.5m3 74.9% 92% 95.9% 97.0% 93.4% 96.2%
Pumpkin 5m3 73.7% 80% 75.7% 85.1% 77.6% 81.4%
Kitchen 18m3 71.8% 86% 89.4% 89.3% 91.1% 89.3%
Stairs 7.5m3 27.8% 55% 60.8% 63.4% 71.7% 72.7%
Average — 67.6% 79.3% 86.7% 89.5% 88.1% 90.3%

Table 5.3: Relocalization results for the 7 Scenes dataset. Median perfor-
mance for the present method is shown on all scenes against five state-of-
the-art methods: PoseNet [53], Bayesian Bayesian PoseNet [51], Active
Search without prioritization [87], SCRF [93], BTBRF. The best perfor-
mance is highlighted.

Baselines Ours
Scene PoseNet[53] Bayesian[51] AC[87] SCRF[93] BTBRF PLForest
Training RGB RGB RGB RGB-D RGB-D RGB-D
Test RGB RGB RGB RGB-D RGB-D RGB-D
Chess 0.32m, 8.12◦ 0.37m, 7.24◦ 0.04m, 1.96◦ 0.03m, 0.66◦ 0.015m, 0.59◦ 0.014m, 0.57◦

Fire 0.47m, 14.4◦ 0.43m, 13.7◦ 0.03m, 1.53◦ 0.05m, 1.50◦ 0.016m, 0.89◦ 0.009m, 0.48◦

Heads 0.29m, 12.0◦ 0.31m, 12.0◦ 0.02m, 1.45◦ 0.06m, 5.50◦ 0.020m, 1.84◦ 0.008m, 0.68◦

Office 0.48m, 7.68◦ 0.48m, 8.04◦ 0.09m, 3.61◦ 0.04m, 0.78◦ 0.018m, 0.75◦ 0.017m, 0.73◦

Pumpkin 0.47m, 8.42◦ 0.61m, 7.08◦ 0.08m, 3.10◦ 0.04m, 0.68◦ 0.023m, 0.84◦ 0.019m, 0.65◦

Kitchen 0.59m, 8.64◦ 0.58m, 7.54◦ 0.07m, 3.37◦ 0.04m, 0.76◦ 0.025m, 1.02◦ 0.025m, 1.02◦

Stairs 0.47m, 13.8◦ 0.48m, 13.1◦ 0.03m, 2.22◦ 0.32m, 1.32◦ 0.040m, 1.22◦ 0.027m, 0.71◦

Average 0.44m, 10.4◦ 0.47m, 9.81◦ 0.05m, 2.46◦ 0.08m, 1.60◦ 0.022m, 1.02◦ 0.017m, 0.70◦

72

(a) (b) (c)

Figure 5.7: Large error examples for O f f ice scene on Microso f t 7 Scenes.
(a) Fire Scene. 3D Volume with training (green) and test (red) camera
trajectory. It is seen that test sequence on the upper right part of the
scene is very different from training sequence, which caused the large
pose estimation errors for several frames. (b) an RGB image example
corresponding to the upper right of the camera trajectory in (a). (c)
qualitative comparison of ground truth (red) and estimated camera pose
in similar spatial scale (2m in x axis, 2m in y axis and 1m of y axis) as
(a).

dataset. The present estimated camera pose is similar to ground truth. The large

error occur in places where the test poses are very different from training poses.

Similar findings are also seen in some other scenes, such as the Fire scene case as

shown in Fig. 5.7.

5.6.3 Evaluations on TUM dynamic dataset

To demonstrate the efficacy and robustness against dynamic objects, the developed

method is evaluated using TUM dynamic dataset.

Dataset: Section. 4.3.1 gives a brief introduction. Also, [98] provides a detailed

description.

Baselines and error metric: Correct percentage of test frames are used within

5cm and 5◦, median translational and angular error, and root mean squared error

(RMSE) for Absolute Trajectory Error (ATE).

73

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Quantitative results on TUM dynamic dataset. Two good
scenes, two moderate scenes and two bad scenes are shown. The cam-
era trajecotry is plotted on XY plane. Ground truth camera trajectory is
shown in black line, estimated trajectory is shown in blue line and the
difference is shown in red line. (a) sitting xyz, (b) walking xyz, (c) sit-
ting halfsphere, (d) walking halfsphere, (e) sitting rpy, (f) walking rpy

74

Table 5.4: Camera relocalization results for the TUM dataset . Correct
percentage performance, median performance, RMSE of ATE are shown.

BTBRF PLForest
Scene Correct Median RMSE Correct Median RMSE

sitting static 64.6% 0.015m, 0.99◦ 0.018m 72.2% 0.012m, 0.93◦ 0.016m
sitting xyz 70.2% 0.029m, 0.72◦ 0.039m 74.1% 0.028m, 0.73◦ 0.047m
sitting halfsphere 44.4% 0.056m, 1.59◦ 0.046m 39.8% 0.061m, 1.76◦ 0.072m
sitting rpy 74.6% 0.029m, 0.98◦ 0.065m 77.9% 0.026m, 0.94◦ 0.069m
walking halfsphere 61.7% 0.042m, 1.03◦ 0.085m 46.6% 0.052m, 1.26◦ 0.111m
walking rpy 53.7% 0.047m, 1.14◦ 0.551m 53.4% 0.047m, 1.01◦ 0.169m
walking static 89.2% 0.019m, 0.49◦ 0.027m 97.3% 0.017m, 0.35◦ 0.021 m
walking xyz 41.7% 0.048m, 1.24◦ 0.064m 46.6 % 0.047m, 1.22◦ 0.063m
Average 62.5% 0.036m, 1.02◦ 0.119m 63.5% 0.036m, 1.02◦ 0.071m

(a) (b)

Figure 5.9: Failure cases on TUM dynamic dataset. (a) walk-
ing halfsphere. Dynamic objects dominates the image and severe mo-
tion blur exists. (b) walking rpy. Large rotation angle changes.

75

Main results and analysis: Table 5.4 show the main results of the present method

for TUM Dynamic dataset. Compared with the static Stan f ord 4 Scenes and

Microso f t 7 Scenes, the performance is much lower due to high dynamics, but

still could perform in most cases. The present method is more accurate than BT-

BRF in terms of average correct frames and RMSE of ATE, and have the same

average median performance. The present method could work satisfactorily with

highly dynamic scenes, but still struggles in some extreme cases. Fig. 5.8 show

the qualitative results on two good, two moderate and two bad sequences. Dy-

namic occlusions dominate the scene. They cause too few inliers and therefore

lead to failure cases. Moreover, severe motion blur is also quite apparent in dy-

namic scenes due to the movement of both camera and objects such as in Fig. 5.9

(a). The other important failure case is large rotation angle changes, as shown in

Fig. 5.9 (b). This is because the present random RGB comparison feature is not

invariant to rotation.

5.7 Conclusions
This chapter presented to exploit both line and point features within the framework

of uncertainty driven regression forests. We simultaneously consider the point and

line predictions in a unified camera pose optimization framework. We extensively

evaluate the proposed approach in three datasets with different space scale and

dynamics. Experimental results demonstrate the efficacy of the developed method,

showing superior state-of-the-art or on-par performance. Furthermore, different

failure cases are thoroughly demonstrated, throwing some light into possible future

work.

76

Chapter 6

Mobile robot autonomous
navigation in uneven and
unstructured environments

This chapter presents an integrated software and hardware architecture for au-

tonomous mobile robot navigation in 3D uneven and unstructured indoor envi-

ronment. (Video link: https://www.youtube.com/watch?v=Bh-cHpbn3zEt=10s)

6.1 Introduction
Autonomous mobile robot navigation plays a vital role in self-driving cars, ware-

house robots, personal assistant robots and smart wheelchairs, especially with in

view of the shortage of a trained workforce and an ever-increasing aging popu-

lation. Significant progress has been achieved in recent decades advancing the

state-of-the-art of mobile robot technologies. These robots are operating more and

more in unknown and unstructured environments, which requires a high degree of

flexibility, perception, motion and control. Companies such as Google and Uber

are developing advanced self-driving cars and expecting to move them into the

market in the next few years. Various mobile robots are roaming in factories and

warehouses to automate the production lines and inventory, saving workers from

walking daily marathons [25]. Robot vacuums such as Roomba and Dyson360

77

eyes are moving around in the house to help clean the floors. Personal robots such

as PR2 [46, 67] and Care-O-bot [82] have demonstrated the ability to perform a

variety of integrated tasks such as long-distance navigation and complex manipu-

lation.

Mobile robots navigating autonomously and safely in uneven and unstructured

environments still face great challenges. Fortunately, more and more environments

are designed and built for wheelchairs, providing sloped areas for wheeled robots

to navigate through. However, little work focuses on an integrated system of au-

tonomous navigation in sloped and unstructured indoor areas, especially narrow

sloped areas and cluttered space in many modern buildings. The robots are re-

quired to safely navigate in narrow uneven areas such as those shown in Fig. 6.1

while avoiding static and dynamic obstacles such as people and pets.

This chapter presents an integrated software and hardware framework for au-

tonomous mobile robot navigation in uneven and unstructured indoor environments

that are designed for and shared with people. Fig. 6.3 shows a high-level system ar-

chitecture of the present work. The robot first builds a 3D OctoMap representation

for an uneven environment with the present 3D simultaneous localization and map-

ping (SLAM) using wheel odometry, 2D laser and RGB-D data. Then the present

work projects multi-layer maps from OctoMap to generate the traversable map,

which serves as the input for the present path planning and navigation. The robot

employs a variable step size RRT approach for global planning, adaptive Monte

Carlo localization method to localize itself, and elastic bands method as the local

planner to close the gap between global path planning and real-time sensor-based

robot control. The present focus is especially on efficient and robust environment

representation and path planning. It is believed that reliable autonomous naviga-

tion in uneven and unstructured environments is not only useful for mobile robots

but could also provide helpful insight on smart wheelchair design in the future.

6.2 Hardware and software platform
The development of a mobile robot system to work around us and assist people is

the long-term goal. The main design principle for this system is that each hardware

and software component could work as both a single module and a part of an inte-

78

Figure 6.1: The robot is navigating up the slope to the goal at the higher
platform. In the presence of staircases and slope, the robot builds a 3D
representation of the environment for the traversable map, and then the
robot can navigate through the slope and avoid the staircases to reach
the goal efficiently and safely.

grated system. To realize this principle, these hardware components are assembled

using screws and adjustable frames, while the software uses the Robot Operating

System (ROS) [78].

Fig. 6.2 shows the hardware platform for the present robot. It includes a Seg-

way RMP100 mobile base, an ASUS Xtion on the upper base, a Hokuyo UTM-

30LX laser scanner mounted on the lower base, and a DELL laptop with Intel Core

i7-4510U at 2GHz, 16GB memory (without GPU).

The software system is implemented in ROS Indigo release on top of an Ubuntu

version 14.04LTS operating system. The 3D simulation experiments are performed

on Gazebo [55]. Fig. 6.3 illustrates a high-level software architecture, and detailed

key components of the software architecture will be described in Sec 6.3 and 6.5.

79

Figure 6.2: Robot hardware platform. (a) Segway robot in a sloped area.
The robot base is segway RMP100 with custom installed casters for
safety and onboard battery pack for providing power to sensors. (b)
Xtion Pro Live RGB-D camera is capable of providing 30Hz RGB and
depth images, with 640x480 resolution and 58 HFV. (c) Hokuyo UTM-
30LX laser scanner with range 10m to 30m, and 270◦ area scanning
range for localization.

6.3 Environment representation
A consistent and accurate representation of the environment is a crucial compo-

nent of autonomous systems as it serves as input for motion planning to generate

collision-free and optimal motions for the robot.

6.3.1 3D SLAM

3D SLAM pipelines commonly consist of localization and mapping components.

Localization is the process to estimate robot pose, and mapping (or fusion) involves

integrating new sensor observations into the 3D reconstruction of the environment.

For an environment which lacks of feature points (such as SIFT, ORB) the present

work uses a 2D laser to localize and an RGB-D camera to provide point clouds

for building 3D maps. For environment which has rich feature points, the present

work uses RGB-D camera to both localize the robot and build the map.

80

Figure 6.3: High-level system architecture. The robot first builds a 3D
OctoMap representation for uneven environment with the present 3D
SLAM using wheel odometry, 2D laser and RGB-D data. Multi-layer
maps from OctoMap are used for generating the traversable map, which
serves as the input for autonomous navigation. The robot employs a
variable step size RRT approach for global planning, adaptive Monte
Carlo localization method to localize itself, and elastic bands method as
the local planner to gap the global planning and real-time sensor-based
robot control.

3D SLAM using wheel odometry, 2D laser and RGB-D camera

To overcome the challenge that vision-based SLAM is not robust when the envi-

ronment lacks local features, the present work employs wheel odometry, a 2D laser

and an RGB-D camera concurrently to complement each other.

The present 3D SLAM framework builds on top of Karto SLAM [2], a robust

method containing scan matching, loop detection, Sparse Pose Adjustment [57]

as the solver for pose optimization and 2D occupancy grid construction. Karto

SLAM takes in data from the laser range finder and wheel odometry. It is the best

performing ROS-enabled SLAM technique in the real world, being less affected by

noise [86, 106] compared with other 2D SLAM methods, such as gmapping [35],

Hector SLAM [56], Lago SLAM [13], and GraphSLAM [101].

Instead of using Karto SLAM’s default 2D occupancy map, which we found

cannot represent an uneven environment reliably, the present work builds the en-

vironment based on OctoMap [47]. It is a probabilistic, flexible, and compact 3D

mapping method which can represent a free, occupied and unknown environment.

At each time step, the algorithm accepts point clouds of the environment from the

81

(a) (b)

Figure 6.4: 3D environment representation of simulated world. (a) Simu-
lated environment model in Gazebo (b) 3D OctoMap environment built
by our 3D SLAM using wheel odometry, a 2D laser scanner and an
RGB-D sensor.

RGB-D sensor and the localization information. Fig. 6.4(b) shows an OctoMap

representation of the simulated world generated by our 3D SLAM. Note that free

space is explicitly modeled in the experiment but is not shown in the figure for

clarity.

3D SLAM using RGB-D camera

For environments that have rich feature points, the present work uses an architec-

ture based on top of a variant of ORB-SLAM [72] and Octomap [47]. In order

to satisfy our need in the subsequent global localization and path planning pro-

cedures, the present work has two main differences compared with the original

ORB-SLAM: more keyframes and 3D probabilistic OctoMap representation.

Different from ORB-SLAM which uses the survival o f the f ittest strategy for

selecting keyframes, the present work keeps as many keyframes as possible in order

to obtain more camera poses for the training data in the camera relocalization in the

autonomous navigation stage. As for the regression forest based global localization

stage detailed in Sec. 6.4.1, the time spent on global pose optimization in SLAM

may be sacrificed to obtain more keyframe poses for more training data and more

accurate global localization. Therefore, the present work includes all the edges

provided by the covisibility graph [97] rather than using the essential graph in

ORB-SLAM.

82

(a)
(b)

Figure 6.5: Octomap representation for f r1/room of TUM RGB-D
SLAM benchmark [98] with visual SLAM. (a) the sparse map from
original ORB-SLAM [72], map points (black, red), keyframes (blue).
(b) OctoMap representation

The output map from ORB-SLAM is the sparse feature map which is shown

in Fig. 6.5 (a). It cannot directly used for path planning and navigation. To over-

come this problem, the present work employs the keyframe camera poses described

above and point cloud as the input for OctoMap to generate 3D environment repre-

sentation. The raw point cloud generated from whether from RGB and depth image

or directly from consumer RGB-D camera is very noisy due to varying point den-

sities, measurement error, wrong registrations etc, posing great challenges for the

subsequent surface/volume reconstruction stage. Therefore, the present work em-

ploys outlier removal based on the distribution of point to neighbors distances. For

each raw point, the mean distance from a number of its neighbors is computed.

It is assumed that the resulted distances are Gaussian distributed, and all points

whose mean distances are larger than a threshold (One standard deviation is used

here) are treated as outliers and removed. Then the inlier point cloud is sent to the

OctoMap. The result is shown in 6.5 (b).

83

(a)

(b)

Figure 6.6: Generation of traversable map from multilayer maps for the
Gazebo Caffe environment. (a) slope and staircase visualization with
occupied voxels, (b) multi-layer maps and traversable map. In the
traversable map, the staircases are occupied space, while the slope area
except the edge is free space, which is safe for robot to navigate. For
details please refer to Sec. 6.3.2.

6.3.2 Multilayer maps and traversable map

After the environment is represented by OctoMap as mentioned above, the Oc-

toMap is cut from bottom to top with several layers depending on the environment

and the required accuracy. Then these multilayers are integrated into a traversable

map, which is safe and efficient for the robot to navigate through. Both the multi-

layer maps and the traversable map are represented as 2D grid occupancy maps, in

which black represents occupied space, white as free space, and gray as unknown

space. A flag F is used to mark the map traversablility and decide whether an area

84

is traversable:

F =

{
0, if αi ≥ θ , untraversable area

1, if αi < θ , slope, traversable area
(6.1)

where θ represents the angle threshold which can be set according to the robot

climbing capability, and αi is the ith layer gradient:

αi = arctan
d

l j
i

= arctan
d

rv j
i

(6.2)

where d represents the distance between projected layers as shown in Fig. 6.6

(a). It can be set to be as small as the resolution of the OctoMap for accurate

representation. l j
i represents the length of the edge difference between different

layers, and it can be obtained through the number of voxels v j
i in that area and

OctoMap resolution r. Take the environment in Fig. 6.4 (a) as an example, the

first four layers of the 2D map from the OctoMap is shown in Fig. 6.6 (a) and

the left four maps in Fig. 6.6 (b). Then the gradient between layers are checked.

For instance, in Fig. 6.6 (a), both α1 and α2 are less than θ , and that area is

marked as a slope while β1 and β2 are larger than θ , And that area is marked as

an untraversable area. At the same time, the left and right edges of the slope are

marked as occupied for safety. The integration of all these multi-layer maps will

generate the traversable map as shown in Fig. 6.6 (b).

6.4 Localization
Mobile robot localization comprises the problem of determining the pose of a robot

relative to a known environment [101]. Local and global localization are two types

of localization [101]. The former aims at compensating for robot motion noise

which is usually small, and it requires the initial location of the robot. While the

latter can localize without any information about the previous motion. In global

localization, the initial pose and previous motion information are unknown [101].

Global localization is more difficult than local localization. However, it plays a

critical role as it can help to solve the kidnapped robot problem and allow the robot

to recover from severe pose errors, which is essential for truly autonomous robots.

85

6.4.1 Regression forests based global localization

The present work uses the backtracking regression forests method in Chapter 4 as

it is a faster than the method in Chapter 5, and more appropriate for real robot nav-

igation which needs fast response. To further increase the speed, the backtracking

number 4 is used. As shown in Fig. 4.8, the accuracy increases quickly as the

backtracking leaf node number increases before 4, and slowly thereafter, eventu-

ally saturating. In order to communicate with other modules, the present work uses

ROS subscriber to accept RGB and depth images from RGB-D camera, and ROS

publisher to send the camera pose to the path planning unit.

6.4.2 Local localization

The present robot employs adaptive Monte Carlo localization (AMCL) [29] for

local localization. AMCL is a method that uses a particle filter to track the pose of

the robot with a known map. It takes laser scans, the wheel odometry information

and the traversable map, and then outputs pose estimation.

6.5 Planning and execution

6.5.1 Global and local planning

The traversable map serves as the input for the present planning and navigation

framework. The present work applies an efficient variable step size RRT planner

[109] as the global planner to construct a plan in a configuration space C to reach

the goal. The global planner generates a list of way-points for the overall optimal

path from the starting position to the goal position through the map, while ignoring

the kinematic and dynamic constraints of the robot. Then the local planner takes

into account the robot kinematic and dynamic constraints, and generates a series

of feasible local trajectories that can be executed from the current position, while

avoiding obstacles and staying close to the global plan. the present work uses

Elastic Bands method [79] as our local planner to close the gap between global

path planning and real-time sensor-based robot control.

86

6.5.2 Plan execution

During execution, the short and smooth path from the local planner is converted

into motion commands for the robot mobile base. The local planner computes the

velocities required to reach the next pose along the path and checks for collisions

in the updated local cost-map.

6.6 Experiments
Extensive experiments are conducted to evaluate the developed system both in

simulation and real-world, demonstrating its efficacy for real-time mobile robot

autonomous navigation in uneven and unstructured environments. Note that the

present work also focuses on an integrated system besides the component meth-

ods.

6.6.1 Simulation experiments

Environment representation: The simulation is conducted in Caffe using an en-

vironment of size 13m x 10m x 3m, which was built in Gazebo. A visualization

is shown in Fig. 4. The simulated robot model is equipped with wheel odometry,

a 2D laser range finder and an RGB-D sensor. For this simulated environment,

the present work only uses SLAM with a 2D laser and an RGB-D camera as the

Gazebo environment has very few visual features. The robot is tele-operated to

move around the environment. Fig. 6.4 (b) shows the OctoMap generated by the

present 3D SLAM with 2D laser and RGB-D camera. The resolution of the Oc-

toMap is set as 0.05m to strike a trade-off between speed and accuracy, and the

threshold on the occupancy probability is 0.7. Note that free space is explicitly

modeled in the experiment but is not shown in the figure for clarity. To evaluate

the present 3D SLAM with only the RGB-D camera, the present work uses the

standard TUM RGB-D SLAM benchmark [98]. Fig. 6.5 (b) shows our Octomap

representation for the f r1/room scene. For the Gazebo environment, the present

work chooses four layers of projected maps as shown in the left part of Fig. 6.6 (b).

It can be seen that the staircase area shows steeper changes than the sloped area.

Therefore, in the generation of the present traversable map, the steeper changes are

87

(a) (b) (c) (d) (e)

Figure 6.7: Autonomous navigation in the simulated environment. The
first row shows images of autonomous navigation in Gazebo, and the
second row shows the Rviz views of the process.

treated as untraversable area and the area with slower changes as the slope. The

right part of Fig. 6.6 (b) shows the generated traversable map, which will be used

for the present robot autonomous navigation.

Autonomous navigation For autonomous navigation, the present work uses the

traversable map and sensors data as the input for path planning and localization.

Various autonomous navigation experiments are conducted in which the robot starts

and reaches goals at different positions. Fig. 6.7 illustrates an example of the

present robot autonomous robot navigation process in which the robot starts at

lower ground and reaches the goal in the higher platform. The blue and green

lines show the exploration process of the global planner. This process ended after

a global path connecting start point and end point is found, as shown by the red

line. The local path planner can smooth the global path if it is not optimal, and the

optimal path is marked as a concatenation of green bubbles. Fig.6.7 (b) – Fig.6.7

(c) show the re-planning process when an obstacle is found. If the height of a slope

is higher than the laser on the robot, then the robot would expect that there is an ob-

stacle ahead. The robot can replan its path when this occurs. Fig.6.7 (d) – Fig.6.7

(e) show the re-planning process of the local planner when a real obstacle appears.

The robot can avoid the obstacle and reach the target position.

88

(a) (b)

Figure 6.8: Real environment. (a) a photo of the real environment. (b) 3D
representation of the environment with OctoMap. Only occupied voxels
are shown for visualization.

(a) (b) (c) (d) (e)

Figure 6.9: Multilayer maps and traversable map for real environment.
(a)-(d) multiple projected layers from OctoMap, (e) the traversable map.
The staircases and slope edge are occupied while the slope is free space.

(a) (b) (c) (d) (e)

Figure 6.10: Robot autonomous navigation example in real environment.
The first row shows images of robot autonomous navigation, and the
second row shows screenshots of Rviz views of the process.

89

(a) (b) (c) (b) (c)

Figure 6.11: Dynamic obstacle avoidance. (a) a dynamic obstacle is ap-
proaching the robot. (b) The human suddenly blocks the way in front
of the robot. (c) The robot changes direction to avoid the human.

6.6.2 Real-world experiments

Extensive experiments are conducted with a Segway Robot in a real-world envi-

ronment of the Industrial Automation Laboratory. Fig. 6.8 shows the present real

environment with dimension of 11m× 5m× 3m, and the 3D OctoMap generated

from the present 3D SLAM with wheel odometry, a 2D laser and an RGB-D data.

At this 3D SLAM stage, we teleoperate the present Segway robot to move around

the environment. Compared with the simulated environment, the real environment

features challenges such as narrower slopes, different lighting conditions, and glass

windows. The real robot is much more noisy due to long-term wear-and-tear, un-

calibrated wheel odometry, and the disturbance of casters. The sensors are also

more noisy. Therefore, the OctoMap of the real environment and projected multi-

layer maps in Fig. 6.9 tend to have some distortions and inconsistent registrations

compared with the simulated environment. The noisy environment, robot and sen-

sors demand robustness from the present system. The resolution of the OctoMap

is experimentally set to 0.05m to strike a trade-off between speed and accuracy.

Four layers of projected maps are used to generate the traversable map in the real

environment. The traversable map in Fig. 6.9 (e) will serve as the input for path

planning and localization in autonomous navigation.

One important parameter for robot navigating up a slope is the size of the local

costmap [65]. If the local costmap size is set too large, the far away ray sweep of

the laser scan on the slope will intersect with the higher part of the slope, creating

90

an obstacle in the local costmap, which will block the robot’s path. It is especially

obvious in the more noisy real experiment in which the robot is prone to fail in lo-

calizing itself than in simulated environment. Facing localization failure, the robot

will initiate the rotation recovery mode, in which the robot rotates and laser-sweeps

in a circle. If the local costmap size is too small, the obstacles may not be consid-

ered in time, which may cause unsafe collision. The present work experimentally

determined the costmap of 3 meters width and 4 meters length to work best for the

use in this use case.

6.7 Conclusions
This chapter presented an integrated software and hardware architecture for au-

tonomous mobile robot navigation in 3D uneven and unstructured indoor environ-

ments. This modular and reusable software framework incorporated capabilities of

perception and navigation. The present work employed an efficient path planner

which uses variable step size RRT in 3D environment with an octree-based repre-

sentation. The present work generated a safe and feasible 2D map from multi-layer

maps of 3D OctoMap for efficient planning and navigation. It is demonstrated and

evaluated the developed integrated system in both simulation and real-world exper-

iments. Both simulation and real-robot experiments demonstrated the efficacy and

efficiency of the present methods, providing some insight for more autonomous

mobile robots and wheelchairs working around us. Future work may integrate

more accurate global localization and optimized path planning methods into the

present system. Furthermore, it is desirable to explore the possibility of using 3D

semantic scene parsing to understand the uneven areas.

91

Chapter 7

Conclusions and future work

It is good to have an end to journey toward; but it is the journey that
matters, in the end. — Ursula K. Leguin

7.1 Conclusions
This thesis addressed the problem of image based RGB/RGB-D camera relocal-

ization, one of the core problems in computer vision and robotics. The thesis pre-

sented a number of techniques based on regression forests that could improve the

performance of camera relocalization. Experiments against many strong baselines

using various of publicly available datasets demonstrated the efficacy of the devel-

oped approach, showing superior performance with respect to the state-of-the-art.

This thesis also presented an integrated software and hardware architecture for

autonomous mobile robot navigation in 3D uneven and unstructured indoor envi-

ronments. This modular and reusable software framework incorporated capabilities

of perception and navigation. The present work employed an efficient path planner

which used variable step size RRT in 3D environment with an octree-based rep-

resentation. The presented work also generated a safe and feasible 2D map from

multi-layer maps of 3D OctoMap for efficient planning and navigation. The work

demonstrated and evaluated the developed integrated system in both simulation and

real-world experiments. Both simulation and real-robot experiments demonstrated

the efficacy and efficiency of the developed methods, providing some insight for

92

more autonomous mobile robots and wheelchairs working around us.

7.2 Future directions
This thesis is concluded by proposing several directions for possible future explo-

ration.

7.2.1 Speed up image based localization

The speed of the developed method can be improved for real-time robotic appli-

cations. The bottleneck is in the tree predictions, which has to backtracking many

leaf nodes. One solution is by using a GPU decision tree implementation [91],

which greatly speeds up the prediction through parallel computing. An alternative

method is to sample a few testing points but still correctly estimate the camera

poses. It requires that the samples points have more precise predictions. Fur-

thermore, adaptively selecting the backtracking number will reduce unnecessary

backtracking times and will speed up the prediction process.

7.2.2 Transfer learning

For a new environment, the developed method requires an offline training process,

which usually costs much time (up to hours). Transfer learning can speed up the

training process so that the method would become useful. Transfer learning aims

to extract knowledge from one or more source tasks and apply the knowledge to

a target task. A major assumption in statistical machine learning is that training

data and test data must be in the same feature space, independently and identi-

cally distributed. When the distribution changes, most statistical models need to

be rebuilt using newly collected training data. In many real-world applications, it

is expensive or impossible to recollect the required training data again and rebuild

the models. Transfer learning can be very beneficial in such cases.

An early survey [76] provides a comprehensive overview of transfer learn-

ing for classification, regression and clustering. Recently, the transferability of

deep convolutional neural networks has been successfully demonstrated for object

recognition [118], place recognition [99] and camera relocalization [53] through

pre-training on large source data and fine-tuning on small target data. However,

93

it is not adequately studied in the context of random forests, especially for regres-

sion. Lee et al.[113] build a prediction model incrementally from a partial decision

tree model. Goussies et al.[34] present a transfer learning decision forests method

to recognize gestures and characters, where random forests are used as classifiers.

To the best of the present knowledge, random forests as a regressor for camera

relocalization have not been studied.

It is believed that valuable knowledge can be transferred from the source tasks

S = {S1,S2, ...SN} to the target task T in the camera relocalization, as it happens

with localization in humans. For instance, it is easier to learn to localize in the

new environment if a similar environment has already been localized. In other

words, there exists latent information (or experience) that is common in similar

environment that can be understood as common sense.

In the case of transfer learning of regression forests, it is believed that there

are common tree structures and parameters among different scenes, which can be

shared. This information can then be included in the process of growing each tree

of forest when it encounters new information. The main idea, therefore, is to find

the parameters θ of weak learners for each tree in order to obtain a partition of the

feature space.

7.2.3 Active image-based localization learning for autonomous robot

Currently all the methods based on regression forests and deep learning only con-

sider the image-based localization re-localization for the passive camera sensor,

which exclusively addresses the localization estimation based on an incoming stream

of sensor data rather than for the camera sensor mounted on an active robot. These

methods assume that neither the camera motion, nor the pointing direction of the

camera sensor can be controlled. Therefore they do not exploit the opportunity to

control robot’s active motion during localization. Active localization needs to set

the robot’s motion direction and determine the pointing direction of the sensors

to more efficiently localize the robot [10]. It is a promising research direction for

more efficient and more robust camera localization methods. Active localization

for mobile robot navigation was first studied in [10] on top of Markov localiza-

tion using sonar sensor. Active localization has been studied in the spare-feature-

94

based camera re-localization methods, but has never been studied in the machine

learning-based camera re-localization methods. As in sparse-feature feature based

methods, the number of sparse features is an important signature to indicate the

localization quality. When the number of sparse features is small, the robot will

change motion till enough sparse features appear. Here, in the machine learning-

based method, it is difficult to have a criterion to indicate the localization quality

while the robot is navigating through the environment. It will be important to

find the criteria to decide ”where the robot should move” and ”where the camera

should look” for these machine learning-based camera re-localization methods so

as to best localize the robot. In the current study, severe motion blur and repeti-

tive environments such as corridors or stairs (as shown in the 7 Scenes dataset in

previous chapters) are very adverse situations for machine learning-based camera

re-localization methods.

95

Bibliography

[1] VXL C++ libraries for computer vision research and implementation.
http://vxl.sourceforge.net. Accessed: 2016-08-03.

[2] Karto SLAM, ROS package. accessed Nov, 2016. [online],
wiki.ros.org/slam karto. 2010.

[3] Y. Amit and D. Geman. Randomized inquiries about shape: An application
to handwritten digit recognition. Technical report, CHICAGO UNIV IL
DEPT OF STATISTICS, 1994.

[4] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. Netvlad: Cnn
architecture for weakly supervised place recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
5297–5307, 2016.

[5] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features
(surf). Computer Vision and Image Understanding (CVIU), 110(3):
346–359, 2008.

[6] E. Brachmann, F. Michel, A. Krull, M. Ying Yang, S. Gumhold, et al.
Uncertainty-driven 6d pose estimation of objects and scenes from a single
rgb image. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3364–3372, 2016.

[7] G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[8] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[9] L. Breiman. Random forests. Machine learning, 2001.

[10] W. Burgard, D. Fox, and S. Thrun. Active mobile robot localization. In
IJCAI, pages 1346–1352, 1997.

96

http://vxl.sourceforge.net

[11] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun. The interactive museum tour-guide robot. In
AAAI, 1998.

[12] J. B. Burns, A. R. Hanson, and E. M. Riseman. Extracting straight lines.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
(4):425–455, 1986.

[13] L. Carlone, R. Aragues, J. A. Castellanos, and B. Bona. A linear
approximation for graph-based simultaneous localization and mapping.
Robotics: Science and Systems VII, pages 41–48, 2012.

[14] T. Cavallari, S. Golodetz, N. A. Lord, J. Valentin, L. Di Stefano, and P. H.
Torr. On-the-fly adaptation of regression forests for online camera
relocalisation. 2017.

[15] M. Chandraker, J. Lim, and D. Kriegman. Moving in stereo: Efficient
structure and motion using lines. In Proceedings of the IEEE international
conference on computer vision(ICCV), pages 1741–1748. IEEE, 2009.

[16] K. Chatfield, V. S. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is
in the details: an evaluation of recent feature encoding methods. In British
Machine Vision Conference (BMVC), 2011.

[17] J. Chen and P. Carr. Mimicking human camera operators. In Applications
of Computer Vision (WACV), 2015 IEEE Winter Conference on, pages
215–222. IEEE, 2015.

[18] L. Chen, W. Li, and D. Xu. Recognizing RGB images by learning from
RGB-D data. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1418–1425, 2014.

[19] A. Criminisi and J. Shotton. Decision forests for computer vision and
medical image analysis. Springer Science & Business Media, 2013.

[20] A. Criminisi, J. Shotton, D. Robertson, and E. Konukoglu. Regression
forests for efficient anatomy detection and localization in ct studies. In
International MICCAI Workshop on Medical Computer Vision. Springer,
2010.

[21] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests for
classification, regression, density estimation, manifold learning and
semi-supervised learning. Technical Report MSR-TR-2011-114, Microsoft
Research, 2011.

97

[22] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified
framework for classification, regression, density estimation, manifold
learning and semi-supervised learning. Foundations and Trends in
Computer Graphics and Vision, 7(2–3):81–227, 2012.

[23] M. Cummins and P. Newman. Appearance-only SLAM at large scale with
fab-map 2.0. The International Journal of Robotics Research, 30(9):
1100–1123, 2011.

[24] A. Dai, M. Nießner, M. Zollöfer, S. Izadi, and C. Theobalt. Bundlefusion:
Real-time globally consistent 3D reconstruction using on-the-fly surface
re-integration. ACM Transactions on Graphics, 2017.

[25] R. D’Andrea. Guest editorial: A revolution in the warehouse: A
retrospective on Kiva systems and the grand challenges ahead. IEEE
Transactions on Automation Science and Engineering, 2012.

[26] E. Dubrofsky and R. Woodham. Combining line and point
correspondences for homography estimation. Advances in Visual
Computing, pages 202–213, 2008.

[27] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale direct
monocular slam. In European Conference on Computer Vision (ECCV),
pages 834–849. Springer, 2014.

[28] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography. Communications of the ACM, 1981.

[29] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization:
Efficient position estimation for mobile robots. AAAI/IAAI, 1999(343-349):
2–2, 1999.

[30] D. Gálvez-López and J. D. Tardos. Bags of binary words for fast place
recognition in image sequences. IEEE Trans. on Robotics, 2012.

[31] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete solution
classification for the perspective-three-point problem. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 25(8):930–943,
2003.

[32] A. P. Gee and W. W. Mayol-Cuevas. 6D relocalisation for RGBD cameras
using synthetic view regression. In British Machine Vision Conference
(BMVC), 2012.

98

[33] B. Glocker, J. Shotton, A. Criminisi, and S. Izadi. Real-time RGB-D
camera relocalization via randomized ferns for keyframe encoding.
Visualization and Computer Graphics, IEEE Trans. on, 2015.

[34] N. A. Goussies, S. Ubalde, and M. Mejail. Transfer learning decision
forests for gesture recognition. Journal of Machine Learning Research,
2014.

[35] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid
mapping with rao-blackwellized particle filters. IEEE Transactions on
Robotics, 23(1):34–46, 2007.

[36] R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall. On
straight line segment detection. Journal of Mathematical Imaging and
Vision, 32(3):313–347, 2008.

[37] A. Gupta, J. J. Little, and R. J. Woodham. Using line and ellipse features
for rectification of broadcast hockey video. In Computer and Robot Vision
(CRV), Canadian Conf. on, 2011.

[38] A. Guzman-Rivera, P. Kohli, B. Glocker, J. Shotton, T. Sharp,
A. Fitzgibbon, and S. Izadi. Multi-output learning for camera
relocalization. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2014.

[39] R. Hartley and A. Zisserman. Multiple view geometry in computer vision.
Cambridge university press, 2003.

[40] F. W. C. Hazirbas, L. L.-T. T. Sattler, S. Hilsenbeck, and D. Cremers.
Image-based localization using lstms for structured feature correlation.
2017.

[41] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[42] W. He, D. Goodkind, and P. Kowal. An aging world: 2015. US Census
Bureau, pages 1–165, 2016.

[43] Y. Hel-Or and H. Hel-Or. Real-time pattern matching using projection
kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 27(9):1430–1445, 2005.

99

[44] T. K. Ho. The random subspace method for constructing decision forests.
IEEE transactions on pattern analysis and machine intelligence (PAMI), 20
(8):832–844, 1998.

[45] B. K. Horn. Closed-form solution of absolute orientation using unit
quaternions. JOSA A, 4(4):629–642, 1987.

[46] A. Hornung, M. Phillips, E. G. Jones, M. Bennewitz, M. Likhachev, and
S. Chitta. Navigation in three-dimensional cluttered environments for
mobile manipulation. In Robotics and Automation (ICRA), Proceedings of
IEEE International Conference on, 2012.

[47] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard.
Octomap: An efficient probabilistic 3D mapping framework based on
octrees. Autonomous Robots, 2013.

[48] C.-X. Ji and Z.-P. Zhang. Stereo match based on linear feature. In Pattern
Recognition, 1988., 9th International Conference on, pages 875–878.
IEEE, 1988.

[49] W. Kabsch. A solution for the best rotation to relate two sets of vectors.
Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical
and General Crystallography, 32(5):922–923, 1976.

[50] P. Kahn, L. Kitchen, and E. M. Riseman. A fast line finder for
vision-guided robot navigation. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 12(11):1098–1102, 1990.

[51] A. Kendall and R. Cipolla. Modelling uncertainty in deep learning for
camera relocalization. In Robotics and Automation (ICRA), Proceedings of
IEEE International Conference on, pages 4762–4769. IEEE, 2016.

[52] A. Kendall and R. Cipolla. Geometric loss functions for camera pose
regression with deep learning. arXiv preprint arXiv:1704.00390, 2017.

[53] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional network
for real-time 6-dof camera relocalization. In Proceedings of the IEEE
international conference on computer vision(ICCV), pages 2938–2946,
2015.

[54] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In Mixed and Augmented Reality., 2007.

100

[55] N. Koenig and A. Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In Intelligent Robots and Systems
(IROS), 2004 IEEE/RSJ International Conference on, 2004.

[56] S. Kohlbrecher, J. Meyer, T. Graber, K. Petersen, U. Klingauf, and O. von
Stryk. Hector open source modules for autonomous mapping and
navigation with rescue robots. In Robot Soccer World Cup. Springer, 2013.

[57] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and
R. Vincent. Efficient sparse pose adjustment for 2D mapping. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RASJ International Conference on,
2010.

[58] M. Labbe and F. Michaud. Appearance-based loop closure detection for
online large-scale and long-term operation. IEEE Transactions on
Robotics, 29(3):734–745, 2013.

[59] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 2015.

[60] V. Lepetit and P. Fua. Keypoint recognition using randomized trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 28(9):
1465–1479, 2006.

[61] V. Lepetit, F. Moreno-Noguer, and P. Fua. Epnp: An accurate o (n) solution
to the pnp problem. International journal of computer vision, 81(2):155,
2009.

[62] R. Li, Q. Liu, J. Gui, D. Gu, and H. Hu. Indoor relocalization in
challenging environments with dual-stream convolutional neural networks.
IEEE Transactions on Automation Science and Engineering, 2017.

[63] Y. Lin and Y. Jeon. Random forests and adaptive nearest neighbors.
Journal of the American Statistical Association, 101(474):578–590, 2006.

[64] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[65] D. V. Lu, D. Hershberger, and W. D. Smart. Layered costmaps for
context-sensitive navigation. In Intelligent Robots and Systems (IROS),
2014 IEEE/RASJ International Conference on, 2014.

[66] S. Mahadevan and D. P. Casasent. Detection of triple junction parameters
in microscope images. In Proc. SPIE, volume 4387, pages 204–214, 2001.

101

[67] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige. The
office Marathon. In Robotics and Automation (ICRA), Proceedings of IEEE
International Conference on, 2010.

[68] J. Matas, C. Galambos, and J. Kittler. Robust detection of lines using the
progressive probabilistic hough transform. Computer Vision and Image
Understanding (CVIU), 78(1):119–137, 2000.

[69] K. M. Mathieson, J. J. Kronenfeld, and V. M. Keith. Maintaining
functional independence in elderly adults the roles of health status and
financial resources in predicting home modifications and use of mobility
equipment. The Gerontologist, 42(1):24–31, 2002.

[70] L. Meng, J. Chen, F. Tung, J. J. Little, and C. W. de Silva. Exploiting
random RGB and sparse features for camera pose estimation. In 27th
British Machine Vision Conference (BMVC), 2016.

[71] J. J. Moré. The levenberg-marquardt algorithm: implementation and
theory. In Numerical analysis, pages 105–116. Springer, 1978.

[72] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. ORB-SLAM: a versatile
and accurate monocular SLAM system. IEEE Transactions on Robotics
(T-RO), 31(5):1147–1163, 2015.

[73] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion:
Real-time dense surface mapping and tracking. In Mixed and augmented
reality (ISMAR), IEEE international symp. on, 2011.

[74] D. Nistér. Preemptive RANSAC for live structure and motion estimation.
Machine Vision and Applications, 2005.

[75] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 2, pages 2161–2168. IEEE, 2006.

[76] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Trans. on
Knowledge and Data Engineering, 2010.

[77] J. Patel, S. Shah, P. Thakkar, and K. Kotecha. Predicting stock and stock
price index movement using trend deterministic data preparation and
machine learning techniques. Expert Systems with Applications, 42(1):
259–268, 2015.

102

[78] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng. ROS: an open-source robot operating system. In Robotics
and Automation (ICRA) workshop on open source software, Proceedings of
IEEE International Conference on, 2009.

[79] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and
control. In Robotics and Automation (ICRA), Proceedings of IEEE
International Conference on, 1993.

[80] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[81] H. Rehbinder and B. K. Ghosh. Pose estimation using line-based dynamic
vision and inertial sensors. IEEE Transactions on Automatic Control, 48
(2):186–199, 2003.

[82] U. Reiser, T. Jacobs, G. Arbeiter, C. Parlitz, and K. Dautenhahn.
Care-o-bot R© 3–vision of a robot butler. In Your virtual butler. 2013.

[83] A. Rubio, M. Villamizar, L. Ferraz, A. Penate-Sanchez, A. Ramisa,
E. Simo-Serra, A. Sanfeliu, and F. Moreno-Noguer. Efficient monocular
pose estimation for complex 3d models. In Robotics and Automation
(ICRA), Proceedings of IEEE International Conference on, pages
1397–1402. IEEE, 2015.

[84] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient
alternative to sift or surf. In Proceedings of the IEEE international
conference on computer vision(ICCV), pages 2564–2571. IEEE, 2011.

[85] Y. Salaün, R. Marlet, and P. Monasse. Robust and accurate line-and/or
point-based pose estimation without manhattan assumptions. In European
Conference on Computer Vision (ECCV), pages 801–818. Springer, 2016.

[86] J. M. Santos, D. Portugal, and R. P. Rocha. An evaluation of 2D slam
techniques available in robot operating system. In SSRR, 2013.

[87] T. Sattler, B. Leibe, and L. Kobbelt. Efficient & effective prioritized
matching for large-scale image-based localization. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 2016.

[88] G. Schindler, M. Brown, and R. Szeliski. City-scale location recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2007.

103

[89] S. Se, D. G. Lowe, and J. J. Little. Vision-based global localization and
mapping for mobile robots. IEEE Transactions on Robotics (T-RO), 21(3):
364–375, 2005.

[90] V. Sharmanska, N. Quadrianto, and C. H. Lampert. Learning to rank using
privileged information. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 825–832, 2013.

[91] T. Sharp. Implementing decision trees and forests on a gpu. In European
conference on computer vision, pages 595–608. Springer, 2008.

[92] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image
categorization and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, 2008.

[93] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon.
Scene coordinate regression forests for camera relocalization in rgb-d
images. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2930–2937, 2013.

[94] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake,
M. Cook, and R. Moore. Real-time human pose recognition in parts from
single depth images. Communications of the ACM, 56(1):116–124, 2013.

[95] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[96] J. Sivic, A. Zisserman, et al. Video google: A text retrieval approach to
object matching in videos. In Computer Vision (ICCV), 2003 IEEE
International Conference on, volume 2, pages 1470–1477, 2003.

[97] H. Strasdat, A. J. Davison, J. M. Montiel, and K. Konolige. Double window
optimisation for constant time visual slam. In Computer Vision (ICCV),
2011 IEEE International Conference on, pages 2352–2359. IEEE, 2011.

[98] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
benchmark for the evaluation of rgb-d slam systems. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE,
2012.

[99] N. Sünderhauf, S. Shirazi, F. Dayoub, B. Upcroft, and M. Milford. On the
performance of convnet features for place recognition. In Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on,
pages 4297–4304. IEEE, 2015.

104

[100] N. Sunderhauf, S. Shirazi, A. Jacobson, F. Dayoub, E. Pepperell,
B. Upcroft, and M. Milford. Place recognition with convnet landmarks:
Viewpoint-robust, condition-robust, training-free. Proceedings of Robotics:
Science and Systems XII, 2015.

[101] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.

[102] J. Valentin, M. Nießner, J. Shotton, A. Fitzgibbon, S. Izadi, and P. H. Torr.
Exploiting uncertainty in regression forests for accurate camera
relocalization. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4400–4408, 2015.

[103] J. Valentin, A. Dai, M. Nießner, P. Kohli, P. Torr, S. Izadi, and C. Keskin.
Learning to navigate the energy landscape. In International Conf. on 3D
Vision (3DV), 2016.

[104] V. Vapnik and A. Vashist. A new learning paradigm: Learning using
privileged information. Neural networks, 22(5):544–557, 2009.

[105] A. Vedaldi and B. Fulkerson. Vlfeat: An open and portable library of
computer vision algorithms. In ACM international conf. on Multimedia,
2010.

[106] R. Vincent, B. Limketkai, and M. Eriksen. Comparison of indoor robot
localization techniques in the absence of GPS. In SPIE Defense, Security,
and Sensing, 2010.

[107] R. G. von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall. Lsd: A fast
line segment detector with a false detection control. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 32(4):722–732, 2010.

[108] F. Walch, C. Hazirbas, L. Leal-Taixé, T. Sattler, S. Hilsenbeck, and
D. Cremers. Image-based localization with spatial LSTMs. arXiv preprint
arXiv:1611.07890, 2016.

[109] C. Wang, L. Meng, S. She, I. M. Mitchell, T. Li, F. Tung, W. Wan, M. Q. H.
Meng, and C. de Silva. Autonomous mobile robot navigation in uneven
and unstructured indoor environments. In Intelligent Robots and Systems
(IROS), 2017 IEEE/RSJ International Conference on, 2017.

[110] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and
J. McDonald. Real-time large-scale dense rgb-d slam with volumetric
fusion. The International Journal of Robotics Research (IJRR), 34(4-5):
598–626, 2015.

105

[111] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J.
Davison. Elasticfusion: Dense slam without a pose graph. In Robotics:
science and systems (RSS), volume 11, 2015.

[112] B. Williams, G. Klein, and I. Reid. Automatic relocalization and loop
closing for real-time monocular slam. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 33(9):1699–1712, 2011.

[113] J. won Lee and C. Giraud-Carrier. Transfer learning in decision trees. In
Neural Networks, 2007. IJCNN 2007. International Joint Conference on,
pages 726–731. IEEE, 2007.

[114] C. Wu. SiftGPU: A GPU implementation of scale invariant feature
transform (SIFT). 2007.

[115] C. Wu et al. VisualSFM: A visual structure from motion system. 2011.

[116] J. Wu, L. Ma, and X. Hu. Predicting world coordinates of pixels in rgb
images using convolutional neural network for camera relocalization. In
Intelligent Control and Information Processing (ICICIP), 2016 Seventh
International Conference on, pages 161–166. IEEE, 2016.

[117] P. Xu and F. Jelinek. Random forests in language modeling. In EMNLP,
pages 325–332, 2004.

[118] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are
features in deep neural networks? In Advances in neural information
processing systems (NIPS), pages 3320–3328, 2014.

106

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgments
	1 Introduction
	1.1 Research motivation
	1.1.1 Image-based localization methods
	1.1.2 Mobile robot autonomous navigation

	1.2 Contributions
	1.3 Thesis outline

	2 Background
	2.1 Related work
	2.1.1 Image-based camera relocalization

	2.2 Random forests
	2.2.1 Decision tree
	2.2.2 The randomness model
	2.2.3 Random forest ensemble

	2.3 Camera pose estimation
	2.3.1 RGB camera pose estimation
	2.3.2 RGB-D camera pose estimation

	3 Image-based localization using regression forests and keyframe pose refinement
	3.1 Introduction
	3.2 Method
	3.2.1 Random RGB features and labels
	3.2.2 Random forests for 2D-3D correspondence regression
	3.2.3 Pose refinement

	3.3 Experiments
	3.3.1 Camera relocalization on Microsoft 7 Scenes dataset
	3.3.2 Camera relocalization on the Stanford 4 Scenes dataset
	3.3.3 Implementation details

	3.4 Conclusions

	4 Image-based localization using backtracking regression forests
	4.1 Introduction
	4.2 Method
	4.2.1 Image features
	4.2.2 Scene coordinate labels
	4.2.3 Backtracking regression forest training
	4.2.4 Backtracking in regression forests prediction
	4.2.5 Camera pose optimization

	4.3 Experiments
	4.3.1 Indoor camera relocalization
	4.3.2 Outdoor camera relocalization
	4.3.3 Implementation details
	4.3.4 Limitations

	4.4 Conclusions

	5 Exploiting points and lines in regression forests for RGB-D camera relocalization
	5.1 Introduction
	5.2 Related work
	5.3 Problem setup and method overview
	5.4 Regression forest with point and line features
	5.4.1 Points sampling and scene coordinate labels
	5.4.2 Regression forest training
	5.4.3 Weak learner model
	5.4.4 Training objective
	5.4.5 Regression forest prediction

	5.5 Camera pose optimization
	5.6 Experiments
	5.6.1 Evaluations on Stanford 4 Scenes dataset
	5.6.2 Evaluations on Microsoft 7 Scenes dataset
	5.6.3 Evaluations on TUM dynamic dataset

	5.7 Conclusions

	6 Mobile robot autonomous navigation in uneven and unstructured environments
	6.1 Introduction
	6.2 Hardware and software platform
	6.3 Environment representation
	6.3.1 3D SLAM
	6.3.2 Multilayer maps and traversable map

	6.4 Localization
	6.4.1 Regression forests based global localization
	6.4.2 Local localization

	6.5 Planning and execution
	6.5.1 Global and local planning
	6.5.2 Plan execution

	6.6 Experiments
	6.6.1 Simulation experiments
	6.6.2 Real-world experiments

	6.7 Conclusions

	7 Conclusions and future work
	7.1 Conclusions
	7.2 Future directions
	7.2.1 Speed up image based localization
	7.2.2 Transfer learning
	7.2.3 Active image-based localization learning for autonomous robot

	Bibliography

