
EFFICIENT AND ACCURATE GEOMETRIC SIMULATION

OF MULTI-AXIS MILLING OPERATIONS

by

Jimin Joy

B.Tech and M.Tech Dual Degree, Indian Institute of Technology Madras, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Mechanical Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

September 2017

© Jimin Joy, 2017

ii

Abstract

Geometric modeling is an essential part of process planning and verification step in the

modern manufacturing practice that employs complex operations such as multi-axis milling.

Geometric modeling by itself is used for tool path generation and verification. It is also essential

to create important input for mechanistic simulation. Due to this great relevance, many geometric

modeling methods have been employed for machining simulation. However it is still a challenge

to obtain acceptable combination of accuracy, efficiency and robustness from most of the

existing methods. The best known modeling methods also appear to have reached a saturation

point. Yet the industrial machining cases are ever increasing in complexity and it demands for a

faster method maintaining the acceptable level of accuracy.

This thesis presents an enhanced voxel representation format for modeling the machined

workpiece geometry in general milling operations. The modeling format is named as Frame-

Sliced Voxel representation (FSV-rep) as it uses a novel concept of frame-sliced voxels to

represent the boundary of the workpiece volume in a multi-level surface voxel representation for

memory-efficient implementation. Frame-sliced voxels enables approximation of the workpiece

surface to achieve sub-voxel details. This thesis further identifies an efficient three-step update

process that can be followed to compute machined part geometry from an initial FSV-rep

workpiece model and set of tool paths. To be computationally feasible and yet robustly handling

all tool path types, suitable swept volume representations are identified for various tool path

categories. The three-step update process is then used in customized ways for the different

categories to utilize the salient features of each. A robust and efficient approach to generate

standard surface representation of the machined part geometry from the updated FSV-rep model

iii

is also developed.

Results show that the FSV-rep model is able to provide acceptable accuracy levels while

being significantly faster than popular modeling methods for machined part geometry

computation in general multi-axis machining. The specialized swept volume representation

identified for planar and 3-axis straight cut operations is further improving the FSV-rep update

performance to be up to an order of magnitude faster than possible with general sampled swept

volume representations.

iv

Lay Summary

Computational geometry is widely used for modeling and simulation of machining

processes with multi-axis milling operations. Geometric simulation is today essential to predict

the shape of the part that will be created by a machining program and also to assist in predicting

the mechanical load the machine tool will undergo. Because of these great relevance, many

geometric modeling techniques have been attempted for the same.

This thesis presents a new geometric modeling method and an efficient way to use it in

machining simulation. The work aims to outperform the existing methods in providing a better

combination of accuracy, efficiency and robustness. In order to use the new modeling method,

different ways of representing the moving cutting tool is explored and a suitable way is identified

for each type of cutter motion. A fast and robust technique to extract popular mesh-based shape

representation from the new modeling method is also developed.

v

Preface

This thesis presents details on the research work done by me for my PhD program under the

supervision of Dr. Hsi-Yung Feng. Dr. Feng suggested the research topic of geometric

machining simulation and discussed with me the need to conduct research in this area which

formed the original motivation for the work. Various parts of the thesis have been or will be

published in peer-reviewed research journals as listed below.

List of publications:

1. Joy J, Feng HY. Frame-sliced voxel representation: An accurate and memory-efficient

modeling method for workpiece geometry in machining simulation. Computer-Aided

Design. 2017;88:1-13.

2. Joy J, Feng HY. Efficient milling part geometry computation via three-step update of

frame-sliced voxel representation workpiece model. International Journal of Advanced

Manufacturing Technology. 2017;92(5-8):2365-78.

3. Joy J, Feng HY. Fast update of sliced voxel workpiece models using partitioned swept

volumes of three-axis linear tool paths. Submitted.

4. Joy J, Chen JSS, Feng HY. Fast generation of 2-manifold triangle meshes for machined

workpieces using a lookup table strategy. To be submitted.

5. Wang Z, Chen JSS, Joy J, Feng HY. Machined sharp edge restoration for triangle mesh

workpiece models derived from grid-based machining simulation. Computer-Aided

Design and Applications. Accepted.

vi

Articles 1-4 were or will be written by me. For Article 5, I contributed to the parts that relate to

grid-based machining simulation. All articles were or will be edited by my supervisor prior to

submission. Detailed descriptions of my contributions to each article and how they correspond to

the content to the thesis are provided below.

Article 1 corresponds to Chapter 3 of the thesis. I developed the new workpiece modeling format

of frame-sliced voxel representation, implemented the associated data structures and performed

the various case studies for comparative analysis.

Article 2 consists of the basic model update idea laid out in Chapter 4, tool instances model of

Chapter 5, Section 5.3, the specific update techniques of Chapter 6, Section 6.5 and the results

and discussion of Chapter 7, Section 7.2. I developed the ideas, wrote the computational

programs and performed all the case studies entirely by myself except for the industrial case

study on IBR machining for which the input files and original tool model implementation were

provided by Dr. Jack Chen in our research group.

Article 3 will be based on the basic model update idea laid out in Chapter 4, the swept volume

regions model of Chapter 5, Sections 5.4-5.10, the tool path categorization and the specific

update techniques of Chapter 6, Sections 6.3 and 6.4 respectively and the results and discussion

of Chapter 7, Section 7.3. I developed the ideas, wrote the computational programs and

performed all the involved case studies.

Article 4 will be based on Chapter 8. I developed the idea of 22 bases lookup table of FS-voxel

vii

shapes (Section 8.4) for FSV-rep surface generation after considering all the possible

assumptions and the input features (Sections 8.2 and 8.3) and formulated the proof of

applicability of the developed method (Section 8.5). Dr. Jack Chen implemented the idea into a

computational program and performed the initial validation. I later developed the case studies

and comparative analysis presented in the article and provided in Section 8.7 of the thesis.

Article 5 is primarily based on the research work of Mr. Ziqi Wang to restore sharp features on a

surface mesh from the FSV-rep workpiece model. I provided the core program required for the

work to generate the input workpiece surface mesh for the case studies and wrote the relevant

sections in this article.

viii

Table of Contents

Abstract .. ii

Lay Summary ... iv

Preface ...v

Table of Contents ... viii

List of Tables .. xiii

List of Figures ... xiv

List of Symbols ... xxi

List of Abbreviations .. xxii

Acknowledgements .. xxiii

Dedication ... xxiv

Chapter 1: Introduction ..1

1.1 Background and motivation .. 1

1.2 Existing geometric machining simulation technology .. 4

1.3 Thesis objectives ... 11

1.4 Research scope .. 11

1.5 Methodology ... 13

1.5.1 Workpiece geometry modeling ... 14

1.5.2 Tool swept volume modeling.. 15

1.5.3 Geometric machining simulation .. 15

1.5.4 Machined part surface generation ... 16

1.6 Thesis structure ... 16

ix

Chapter 2: Relevant methods ...20

2.1 Workpiece representation ... 20

2.1.1 Solid modeling .. 20

2.1.2 Vector modeling.. 23

2.1.3 Space partitioning ... 26

2.2 Tool swept volume representation .. 28

2.2.1 Analytical definition ... 29

2.2.2 Boundary representations.. 30

2.2.3 Parametric representations .. 31

2.2.4 Sampled approximations ... 32

2.3 Workpiece update methods ... 33

2.3.1 Boolean operations for solid models ... 33

2.3.2 Trimming operations for vector models ... 35

2.3.3 Binary operations for space partitioning ... 36

2.4 Workpiece surface generation ... 37

2.5 Summary ... 39

Chapter 3: Frame-sliced voxel representation ..41

3.1 Voxel identification .. 41

3.2 Surface voxels ... 43

3.3 26-separating voxel model .. 44

3.4 Multi-level voxel representation ... 45

3.5 Frame-crossing points and frame-sliced voxels .. 47

3.6 Definition .. 49

x

3.7 Triangle mesh construction from the slice fronts ... 50

3.7.1 Benefits of machined surface triangulation via FSV-rep .. 51

3.8 FSV-rep data structure implementation .. 53

3.8.1 Input shape .. 54

3.8.2 Surface voxelization.. 54

3.8.3 Multi-level surface voxel model ... 57

3.8.4 FS-voxels .. 58

3.8.5 Triangle mesh surface generation ... 61

3.9 Effective memory usage ... 63

3.10 Case studies and discussion .. 64

3.10.1 Model accuracy and memory efficiency ... 64

3.10.2 Memory usage for display .. 70

3.11 Summary ... 71

Chapter 4: Three step FSV-rep model update ..73

4.1 Objective ... 73

4.2 Coarse update .. 73

4.3 Fine update .. 79

4.4 Frame update ... 82

4.5 Summary ... 83

Chapter 5: Tool swept volume representation ..84

5.1 Requirement .. 84

5.2 Selection of tools swept volume representation .. 85

5.3 Tool instances ... 87

xi

5.4 Swept Volume Regions (SVRs).. 93

5.5 SVRs for General end mill .. 97

5.6 SVR types ... 98

5.7 Application to Flat end mill .. 100

5.8 Application to Ball end mill .. 101

5.9 Application to Taper ball end mill .. 102

5.10 Application to Bull nose end mill ... 102

5.11 Summary ... 103

Chapter 6: FSV-rep machining with tool swept volumes...105

6.1 Objective ... 105

6.2 Overall update logic .. 106

6.3 Tool paths categorization .. 109

6.4 Update using SVRs ... 113

6.4.1 Coarse update with SVRs ... 113

6.4.2 Fine update with SVRs ... 117

6.4.3 Frame update with SVRs .. 119

6.5 Update with Tool instances ... 120

6.5.1 Sampling interval selection ... 121

6.5.2 Coarse update with tool instances ... 123

6.5.3 Fine update with tool instances ... 125

6.5.4 Frame update with tool instances .. 126

6.6 Summary ... 127

Chapter 7: Simulation system implementation and case studies...128

xii

7.1 Implementation details .. 128

7.2 Simulation cases with tool path sampling ... 131

7.3 Simulation cases with SVRs ... 142

7.4 Summary ... 148

Chapter 8: FSV-rep surface generation ...149

8.1 Requirements and objective .. 149

8.2 Assumptions .. 150

8.3 Input features .. 152

8.4 Look-up table definition ... 157

8.5 Proof of applicability .. 160

8.6 Implementation ... 163

8.7 Case studies ... 165

8.8 Summary ... 167

Chapter 9: Conclusions and Future research options ..168

9.1 Conclusions ... 168

9.2 Future research options ... 170

References ...172

Appendix ...178

Appendix A ... 178

xiii

List of Tables

Table 1-1 Relative ratings of the existing modeling methods for machining simulation. 9

Table 3-1 Comparison of errors in the reconstructed triangle mesh surfaces. 66

Table 3-2 Comparison of memory usage for FSV-rep and tri-dexels. ... 70

Table 6-1 Coordinate axis characterization using the tool paths employing SVRs. 112

Table 6-2 Sampling scallop for flat side milling at various FSV-rep subdivision factors. 123

Table 7-1 Comparison of simulation time for FSV-rep and tri-dexels in pocket milling. 140

Table 7-2 Execution time comparison for the industrial case study. .. 142

Table 7-3 Execution time comparison for cases shown in Figure 7-10. 145

Table 8-1 Possible frame segment configurations on pair of coincident faces of two neighboring

FS-voxels. ... 162

Table 8-2 Deduction of frame edge configuration from the FC-points parameter pair. 164

Table 8-3 Comparison of Triangle mesh generation by algorithmic and 22-bases lookup table

approaches... 167

xiv

List of Figures

Figure 1-1 Schematic diagram showing various stages of a modern manufacturing process. 2

Figure 1-2 Schematic of the research and development workflow. .. 14

Figure 1-3 Schematic of the developed methodology. ... 17

Figure 2-1 Solid models of a typical mechanical part.(a) B-rep model (b) Triangle mesh model.

... 22

Figure 2-2 A B-rep model in a vector field (left) and the corresponding Z-map vector model

(right). ... 23

Figure 2-3 Various vector modeling types. (b) Z-map (c) Dexels (d) Tri-dexels with increased

accuracy in (e) side views and (f) top view .. 25

Figure 2-4 Space partitioning models: Uniform grid voxel model (left) and Octree hierarchical

model (right). .. 28

Figure 2-5 B-rep representation of tool swept volumes defined using different surfaces. 31

Figure 2-6 Parametric representation of tool swept volume with 2-parameter family of spheres.32

Figure 2-7 Parallel slices approximation of tool swept volume. .. 33

Figure 2-8 Boolean update of a B-rep workpiece model using a B-rep tool swept volume. 34

Figure 2-9 Clipping operation on line segments for vector model update using a swept volume B-

rep. (a) swept volume B-rep in a vector field, and (b) one vector being clipped. 36

Figure 2-10 Binary update of a voxel workpiece by simple deletion of voxel elements.............. 36

Figure 2-11 One conflicting pair of triangulation (at the shared face) from classic Marching

Cubes lookup table. ... 39

xv

Figure 3-1 A voxel with indexed vertices. .. 41

Figure 3-2 Enumeration of the voxel space with a unique index for each voxel. 42

Figure 3-3 Volume voxel model (middle) and surface voxel model (right) for a cylinder. 43

Figure 3-4 Two surface voxel representations of the same reference object (a cylinder sampled

with a very low resolution grid). (a) a closed but 6-separating voxel model, (b) one cross-section

of the model viewed along the cylinder axis and, (c) one possible tunneling situation for the

same. (d) a 26-separating voxel model for the cylinder and (e) a cross-section of the same

without any tunneling locations. ... 45

Figure 3-5 Memory-efficient multi-level sparse voxel representation of an elliptical cross-

section. .. 47

Figure 3-6 Frame-crossing (FC) points on a surface voxel from an input mesh triangle. 48

Figure 3-7 Slicing loop and slice front formation for the case in Figure 3-6. 49

Figure 3-8 Triangle mesh construction from an FSV-rep model. ... 50

Figure 3-9 FSV-rep implementation architecture. .. 53

Figure 3-10 Three-step voxelization process for a single face in a triangle mesh. 55

Figure 3-11 Placement of the FC-point parameter into the pair based on the surface normal (blue

arrows) of generating object. .. 58

Figure 3-12 Four possible configurations of two permitted FC-points on a voxel edge. 59

Figure 3-13 Simplifying fragmented FS-voxel edges: (a) small fragment ignored; and (b) small

gap ignored.. 59

Figure 3-14 A partial FS-voxel (bottom left corner at the back) with arrows to edges of

neighboring FS-voxels for FC-points on non-primary edges. .. 60

xvi

Figure 3-15 Triangle mesh surfaces generated from a basic voxel model (top) and from the FSV-

rep model (bottom) for the pocket milling case studies. ... 65

Figure 3-16 Triangle mesh surfaces generated from a basic voxel model (left) and from the FSV-

rep model (right) for a complex IBR geometry. .. 65

Figure 3-17 Memory requirement of a basic voxel model with decreasing error limit for a cubical

modeling volume of 1,024-mm side-length. ... 67

Figure 3-18 Octree subdivision to achieve a 10-micron accuracy in a cube of 1.28-mm side-

length... 68

Figure 4-1 An abstract object in a voxel space with voxels classified as Near-field (green), Inner-

field (black) and Outer-field (ash) based on the voxel centre point location with respect to the

object surface. ... 74

Figure 4-2 An abstract object with surfaces bounding the Near-field region. 75

Figure 4-3 Coarse update with a set of two abstract tools for a FSV-rep workpiece. Initial FSV-

rep on left and coarse updated FSV-rep on right. ... 77

Figure 4-4 The abstract tools with NF-voxel collection for each identified after coarse update. . 78

Figure 4-5 The abstract object in voxel space with actual surface voxels identified (blue). 79

Figure 4-6 Fine update process with the abstract tools on the coarsely updated FSV-rep (left) and

26-separating fine level surface model obtained (right). .. 81

Figure 4-7 Frame-update step creating FC-points (yellow spheres) within the fine-level surface

voxels. Zoomed in view shows the set of intersection points on voxel edges from intersecting

tool items (yellow or pale blue). ... 83

Figure 5-1 Decision diagram to select the swept volume representation based on tool path

category. .. 86

xvii

Figure 5-2 General and specific milling cutter profiles with major dimensions. 87

Figure 5-3 Projection distance for points in different zones for selected cutters. 91

Figure 5-4 Selected tools and the intersection calculation needed for various types of voxel edges

crossing it. ... 92

Figure 5-5 Top Left: Boundary representation of the swept volume in case of a linear 2-axis path

with flat end mill. Top right: The partition of the swept volume into various regions (The outer

half of the tool instances at the two ends are ignored and handled separately for simplicity).

Bottom: An exploded view showing 14 of the swept volume regions (SVRs) formed by the

swept volume portion considered. .. 95

Figure 5-6 B-rep for general end mill swept along a 3-axis path. .. 97

Figure 5-7 General swept volume B-rep and sample voxels overlapping with the three different

SVR types. .. 99

Figure 5-8 1-Axis and 3-Axis flat end mill swept volume B-reps showing different boundary

elements defining the associated SVRs. (a) 1-axis, (b) 3-axis, and (c) 3-axis side view. 100

Figure 5-9 1-Axis and 3-Axis ball end mill swept volume B-reps showing the different boundary

elements defining the associated SVRs. ... 101

Figure 5-10 1-Axis taper ball end mill swept volume B-rep showing the different boundary

elements defining the associated SVRs. ... 102

Figure 5-11 3-axis bull nose end mill swept volume B-rep showing different boundary elements

defining the associated SVRs.. 103

Figure 6-1 Overall update logic with SVRs and Tool instances used separately. 107

xviii

Figure 6-2 The tool path projected on the base plane (perpendicular to Adir) and the

Fdir(scanning direction) and Ldir (lateral sweeping direction) identified for XY as base plane.

... 111

Figure 6-3 Different steps of the coarse update for tool paths using SVRs. (a) Top view of a

planar straight cutting swept volume in voxel space, (b) different scanning regions based on

bounding elements, and (c) Inner coarse voxels deleted. ... 116

Figure 6-4 Coarse surface voxels identified for fine update using SVRs (left) and two sample

coarse surface voxels after the fine update (right). ... 118

Figure 6-5 A coarse surface voxel with frame update performed from a face based SVR viewed

along Adir. .. 120

Figure 6-6 Coarse update with a set of sampled axisymmetric tool instances along a tool path.124

Figure 6-7 Fine update with set of sampled tool instances for a tool path, creating the fine level

surface voxels.. 125

Figure 6-8 Frame update for the fine level surface voxels creating the FC-points (yellow spheres)

from the intersection points on the frame edges (yellow or blue sphere in the zoomed in view).

... 127

Figure 7-1 A sample 2D analogy of FSV-rep model and the corresponding bits and FC-points

pair for a particular FS-voxel and its parent coarse surface voxel. ... 129

Figure 7-2 Basic case studies: (I) fixed vertical tool orientation; (II) fixed tool orientation but

tilted in one axial plane; and (III) arbitrary and varying tool orientation. 133

Figure 7-3 Execution time comparison for computing the machined part geometry. 134

Figure 7-4 Execution time with the increasing total axial depth of cut for the T-section part. .. 135

xix

Figure 7-5 Execution time with the increasing forward tilt of the flat-end mill in the half-

immersion side cuts for the T-section part. ... 135

Figure 7-6 Time-splits among the coarse, fine and frame update steps in the FSV-rep method. 136

Figure 7-7 Matching of the FC-points (green) from the FSV-rep method with the end points of

dexels (blue lines) from the tri-dexel method for case I (left) and case III (right). 138

Figure 7-8 Triangle mesh surfaces generated from the FSV-rep models. 139

Figure 7-9 Industrial case study: (a) blank workpiece; and (b) in-process workpiece of an IBR

with one blade machined. ... 141

Figure 7-10 Results of case studies to compare performance of FSV-rep with SVRs (bottom

figure for 1A, 2A and 2AV and right side figure for 3A) instead of sampled tool instances (the

other figure in each case). ... 144

Figure 7-11 Performance comparison between FSV-rep update with sampled instances and SVRs

for different length per tool path. (a) in 1-Axis (b) in 2-axis .. 146

Figure 8-1 Through gaps created by different milling cutters inside voxels of comparatively large

size. ... 151

Figure 8-2 Six possible frame edge configurations possible with maximum two FC-points. 153

Figure 8-3 Different possible configurations for an FS-voxel with all corners inactive. 154

Figure 8-4 Frame edge configurations mapped to the edge corner status types. 155

Figure 8-5 Set of 20 basic partial FS-voxel shapes with associated slicing loops. 159

Figure 8-6 Selection of a suitable face boundary from two options for a particular corner points

configuration. .. 160

Figure 8-7 16 configurations for the frame segments on an FS-voxel face. 162

Figure 8-8 Ashtray model FSV-rep surface mesh (left) and edge restored mesh (right). 165

xx

Figure 8-9 Dental part FSV-rep surface mesh (left) and edge restored mesh (right). 166

Figure 8-10 Nut model FSV-rep surface mesh (left) and edge restored mesh (right). 166

Figure 8-11 Gear model. (a) FSV-rep surface mesh. (b) edge restored mesh. (c)-(d) zoomed in

view of two areas on (a). (e)-(f) zoomed in view of the corresponding areas on (b). 166

xxi

List of Symbols

Symbol Definition

V voxel

T tool

t curve parameter

O origin point

p, P general point

L voxel edge length

N grid resolution

f subdivision factor

u parameter along voxel edge

M model memory size in bytes

d distance

R tool radius

D tool diameter

𝛼, 𝛽 taper angle

h height

𝜖 scallop size

w voxel through gap width

xxii

List of Abbreviations

Abbreviation Definition

IPW In-process workpiece

CWE Cutter-Workpiece Engagement

CNC Computer Numerical Control

CAD Computer-Aided Design

CAM Computer-Aided Manufacturing

B-rep Boundary representation

NURBS Non-uniform Rational B-spline

CSG Constructive Solid Geometry

FSV-rep Frame-sliced Voxel Representation

SVR Swept Volume Region

MCS Model Coordinate System

xxiii

Acknowledgements

I offer my enduring gratitude to the faculty, staff and my fellow students at UBC, who have

inspired me to continue my research work. I owe particular thanks to Professor Hsi-Yung Feng,

whose penetrating questions taught me to think more deeply and for enlarging my vision of

science and providing coherent answers to my endless questions.

I would like to acknowledge the financial support from the Natural Sciences and Engineering

Research Council of Canada (NSERC) under the CANRIMT Strategic Network grant as well as

the Discovery grant and the International Tuition Award from UBC Faculty of Graduate and

Postdoctoral Studies. I also wish to gratefully mention the various awards I received: the Altintas

Manufacturing Graduate Scholarship, Faculty of Applied Science Graduate Excellence Award

and MECH Continuing Graduate Student Award. All of these awards kept inspiring me to

further advance in my research path.

I would also like to thank the developers, of the MeshLab software for making the mesh

generation and processing program available for open source use and, of the Qt software

development platform for making it available for academic use. I also acknowledge the

GrabCAD community (http://grabcad.com) for the part models used in Chapter 8 of the thesis.

Special thanks are owed to my parents, siblings, numerous friends and colleagues who supported

me, been by my side at difficult situations and cheered me up throughout my years of education.

xxiv

Thesis

In search of wisdom

1

Chapter 1: Introduction

Geometric modeling and simulation is a powerful tool for process verification and

optimization widely used in many fields of engineering. In particular, it is applicable for

machining process planning which is a major area of mechanical engineering which deals with

creation of mechanical parts employing different material removal processes [1]. Machining is a

very popular manufacturing process for its ability to create parts of wide range of shapes using

standard cutting tools and apparatus. It can also cater to a wide range of metals and other

engineering and structural materials. The following sections of this chapter will explain the

background and motivation for this thesis work, review the existing techniques used thereby

identifying the current requirements, establish the objectives based on the identified requirements

and finally identify the research scope and describe the methodology developed in this work.

The structure of this thesis is also provided in the end of this chapter.

1.1 Background and motivation

Modern day machining has many typical stages as shown in Figure 1-1 for a typical

Computer Numerical Control (CNC) milling task. Milling is a major machining method that uses

rotary cutting tools with one or more cutting edges along the axis on the tool periphery usually

winding up as helix. The CNC milling machine comprises of as many as five feed drives that can

be controlled using a set of instructions provided as NC-program to a digital controller. The feed

drives advance the rotating spindle holding the milling cutter along a resultant tool path. The

rotating milling cutter remove material from the workpiece on its trajectory by shearing action

thereby creating new machined part surface geometry.

In order to provide the appropriate NC program to the CNC machine, the manufacturing

2

process planning stage has to generate the tool paths accurately. For present day complex part

machining operations, it usually involves use of Computer Aided Design (CAD) and Computer

Aided Manufacturing (CAM) tools to model the workpiece geometry, the reference CAD model

for the target part geometry, and to generate the tool paths digitally. This process involves many

manual input and parameter settings for the tool path generation. Also the tool paths generated

often have cutting and operating parameters decided by the CAM software.

Even though automated systems are less error prone in general, the various parameter

settings the user has to setup can incur inadvertent errors in the tool paths generated. Further the

cutting and operating parameters decided by the CAM software can also be based on generic

machine tool definitions. Both of these creates chances for potential error-prone or sub-optimal

tool paths. Thus, it is imperative to have a verification system for the tool paths generated as NC

programs before actually run it on the machine. This is where the role of virtual machining arises

Figure 1-1 Schematic diagram showing various stages of a modern manufacturing process.

Product
design

Tool path

planning

Virtual

machining

CNC

milling

Geometric

verification
Machined part geometry

IPW CWE Mechanistic

simulation

Geometric

modeling

Mechanical aspects

3

in modern manufacturing practices.

Virtual machining essentially employs various modeling and simulation techniques to

virtually perform the machining process of a workpiece model [2]. The tool path and the cutting

conditions can be verified by inspection of the simulation results such as the predicted machined

part geometry. Virtual machining can be divided into two major class of approaches – geometric

and mechanistic.

Geometric virtual machining performs the machining simulation purely using geometric

aspects of the tool path and the workpiece. This in fact provides a powerful way to readily verify

the NC program without considering the mechanical aspects of the machine tool and the

workpiece material. Major errors in NC programs such as dimensional and tolerance errors,

collision and interference, gouging and under-cuts can be detected by geometric virtual

machining [3, 4]. Advanced techniques could be needed to avoid issues such as gouging and

warrants a good verification system [5, 6]. Geometric methods of interactive manufacturing

planning are also reported [7].

Mechanistic virtual machining further incorporates the mechanical aspects such as tool and

workpiece material properties and the structural characteristics of the machine to simulate the

forces and vibrations occurring on the tool and the workpiece [8, 9, 10]. Simulation of force and

vibration dynamics helps in prediction of excessive load on the machine tool, chatter issues and

other issues possible such as overheating of the workpiece and cutting tool.

Even for mechanistic virtual machining, apart from the mechanical aspects, the cutter-

workpiece engagement (CWE) maps is needed which is a geometric information derived from

the workpiece and NC program. It is essentially the information about the instantaneous contact

surface between the cutting tool and the in-process workpiece. In case of multi-axis machining,

4

freeform machining and even for machining of complex prismatic parts, obtaining the in-process

workpiece and CWE maps analytically is difficult and often impossible. Geometric virtual

machining is indeed needed as a prerequisite for generating these information for mechanistic

virtual machining.

With the above-mentioned relevance for geometric virtual machining, many geometric

modeling and simulation techniques have been attempted for the purpose over the years. Even

though these techniques are good in terms of some of the three primary performance aspects of

accuracy, efficiency and robustness, none of them seems to provide a suitable combination of the

three together. Thus, there exist need to consider these geometric modeling and simulation

techniques to understand their qualities and issues thereby, developing a method that can deliver

the best or a better combination of the performance aspects expected from a geometric

simulation method.

In the following section, the various geometric methods currently employed for virtual

machining are considered and evaluated in terms of their level of accuracy, efficiency and

robustness. With the observations from the evaluation, the objective, research scope and

methodology for this thesis work are defined in the following sections towards the next level of

geometric modeling and simulation technique for virtual machining.

1.2 Existing geometric machining simulation technology

A variety of geometric modeling approaches have been applied to virtual machining

implementations aiming to achieve accuracy and efficiency in modeling the machining geometry

while being robust enough to handle multi-axis tool motions. These approaches can be broadly

classified into three categories:

5

1. solid modeling,

2. vector modeling, and

3. space partitioning.

Solid modeling can achieve an exact representation of the machined workpiece geometry. Both

vector modeling and space partitioning are approximate modeling approaches [11]. They aim to

achieve faster computing results at the expense of modeling accuracy.

Evaluation criteria

An effective geometric modeling method used in machining simulation should strive to

possess all the three attributes: accuracy, efficiency and robustness. Accuracy measures how

close the model represents the actual machined workpiece. Efficiency refers to the order of

computational complexity of the algorithms involved and the resultant computational speed

obtained in creating the machined workpiece model. Robustness indicates the ability of a

modeling method to handle the various cases of machining scenarios that can arise. It would be

ideal to have a method providing the best levels of all the three attributes together. Practically

however, an effective method should aim to achieve the best possible combination of the three

attributes. This is because attempts to achieve these attributes, especially accuracy and

efficiency, often conflict with each other. Reasonable levels of accuracy and robustness are

clearly desirable and achievable. Improving the involved computational time then becomes the

critical issue for practical applications. Thus, a modeling technique toward this goal is in need.

Evaluation of existing technology

Solid modeling methods are known to be best in modeling accuracy whereas vector

6

modeling and space partitioning are good in efficiency. However, if it is attempted to increase

the accuracy of vector modeling and space partitioning by simply increasing the approximation

resolution, then the efficiency deteriorates, both memory wise and computationally.

Solid modeling based machining simulation typically uses the boundary representation (B-

rep) modeling scheme [12, 13, 14]. B-rep is a way of modeling an object by using surfaces and

curves to represent the boundary of the object. It uses parametric representations of the surfaces

and curves as well as topological information to specify the adjacency and connectivity

relationships between the geometric elements. B-rep, thus, yields an exact and easily traversable

model. Another widely used simpler B-rep scheme is the 2-manifold triangle mesh model. It

has also been used for representing the machining geometry [15,16]. Under this scheme, the

object surface is approximated by a connected set of triangles. The solid modeling schemes are

good at providing accurate machined workpiece models.

However, the intersection calculations needed for updating a NURBS based B-rep model

are computationally demanding. Identification of the relevant triangles when updating a triangle

mesh model also takes time. These issues impede their use in machining simulation which

involves intensive and repeated removal of volume from the model. The number of geometric

elements in the model also increases with each update, further decelerating the process.

Machining simulation with repeated model updates is also affected adversely by the need to

maintain the connectivity information among the boundary elements in the B-rep class of

models. To facilitate the process and also to identify the intersecting triangles faster, a

localization technique has been reported [17]. In practice, still a large number of triangles are

often needed for acceptable representations of freeform surfaces present in machining

simulation. This increases the number of triangle-triangle intersections and it is still a concern.

7

A recent research study reported by Li et al. [18] has improved the applicability of B-rep

solid modeling in machining simulation. In particular, the cutter-workpiece engagement maps,

which are essential to mechanical virtual machining, can be computed without the need to

constantly update the machined workpiece model but doing so only once after each tool path.

This much enhances the applicability of B-rep workpiece model in machining simulation.

However, B-rep solid modeling is still not a competitive method in computational efficiency for

performing distance queries and intersection calculations in complicated curved surface

machining. This advocates for a workpiece representation method that is more straightforward

to update while providing modeling results with sufficient accuracy.

Vector modeling provides a discrete representation of an object with one or more sets of

axis-aligned parallel line segments called as vectors. The Z-map representation which uses an

array of vectors in the direction of the Cartesian Z axis with one end at a fixed base plane and the

other end on the top surface of the modeled shape is a typical example [19,20]. Since the vectors

can be directly accessed via an indexed array, the machining update operation is not affected by

the model size as much as for the solid modeling approach. Hence, the Z-map method is quite

useful for simulating three-axis milling operations for shapes which do not have overhangs.

Except for the tool motions close to the Z vector direction, the Z-map method offers good

simulation accuracy. However, for general multi-axis milling with changing tool orientations

involved, overhangs in the machined workpiece model are common and the Z-map method

becomes insufficient.

The dexel representation is an extension of the Z-map method and uses a list of line

segments at each vector location to model the workpiece overhangs [21]. The tri-dexels or

triple-ray representation is essentially three orthogonal dexel models used together. It is the most

8

advanced vector modeling method that resolves the issue of poor sensitivity along the vector

direction of any single vector set [22, 23]. Vector modeling with tri-dexels is thus able to

perform simulation of all milling operations with efficient update of the machined workpiece

model through direct access to the dexels corresponding to the removal volume. However, it

lacks the ability to reduce intersection calculations as the workpiece update always happens at

the same finest level grid resolution. More importantly, the intersection calculations are done for

all the dexels crossing each instantaneous tool location even if they may not be eventually part of

the final machined workpiece surface. These issues cause significant overhead in simulating the

general multi-axis milling processes.

Space partitioning is the third geometric modeling approach employed in machining

simulation. Simple uniform space decomposition methods such as a voxel grid model [24,25]

are the easiest to implement but requires a high grid resolution to achieve accuracy approaching

that of B-rep. Space partitioning has an evident advantage over vector modeling as the

fundamental computation needed to update the machined workpiece model is to classify points

as inside or outside of the cutting tool. Vector modeling, on the other hand, needs to repeatedly

compute line-surface intersections. Also, with the use of hierarchical space decomposition

methods such as a multi-level voxel grid or octree representation [26], the involved computations

can be localized much better in the case of space partitioning. These methods also provide the

potential for implementations with lower memory consumption. In fact, space partitioning using

an octree voxel grid representation and augmented with composite adaptively sampled distance

fields to improve the modeling accuracy without further increasing the voxel grid resolution has

been recently used in machining simulation [27, 28]. The method would display slower

simulation performance due to the numerical computations sometimes needed to create the

9

Modeling Approach Specific Method Accuracy Robustness Efficiency

Solid modeling
NURBS   

Triangle Mesh   

Vector modeling
Z-map/Dexels   

Tri-dexels   

Space Partitioning

Voxels   

Multi-

level/Octree
  

Table 1-1 Relative ratings of the existing modeling methods for machining simulation.

distance field in multi-axis milling and the complex procedure involved in extracting the final

machined part surface from the composite distance fields. Nonetheless, it shows the potential of

an improved space partitioning method for efficient machining simulation with sufficient

accuracy.

Table 1-1 summarizes the relative ratings of the modeling methods outlined above with

respect to the modeling accuracy, robustness, and computational efficiency.

Solid modeling with NURBS based B-rep is the most accurate but lacks computational

efficiency when dealing with a large number of tool path segments. Triangle mesh modeling

provides limited improvement in efficiency at the expense of accuracy. Vector modeling in

general gives a better efficiency. With the use of tri-dexels, vector modeling becomes robust

enough to handle multi-axis milling operations. Its efficiency, however, can still be improved as

discussed earlier. Space partitioning via voxels is robust to handle all milling operations. In

principle, it is also computationally more efficient than solid modeling and vector modeling as it

does not involve intersection calculations in updating the workpiece model and can effectively

10

use multi-level subdivision strategies such as octree. However, the comparatively higher model

size to guarantee modeling accuracy reduces the practical efficiency of the voxel space

partitioning method. Hence, the challenge is to keep the model size down by achieving a sub-

voxel modeling resolution (accuracy). A method that gives the best combination of modeling

accuracy, robustness and efficiency can then be attained.

The above evaluation is done focusing on simulation for machined part geometry

computation for the possible process verification with it. Apart from computation of the

machined part geometry, an efficient modeling method is also beneficial for other applications of

machining simulation and verification such as machine/tool collision detection and avoidance,

mechanistic simulation and online process control. Collision detection and avoidance is a crucial

part of machining simulation especially for multi-axis operations. The tool and tool-holder

motions need to be verified in order to avoid collisions. Interference checks using geometric

models of the machine structure and simulation of the entire machine tool kinematic motion have

been utilized for this purpose [29, 30, 31]. Mechanistic simulation of the machining process to

predict cutting forces and the onset of chatter have been used to verify and optimize the process

plan [32, 33, 34]. As mentioned earlier, geometric modeling is used to obtain the essential inputs

of in-process workpiece and CWE maps required for the mechanistic simulation. The online

process monitoring and control is another machining technology that calls for effective

geometric modeling. Research studies towards assistance with augmented reality to enhance

observation of an ongoing machining process have been reported [35, 36]. A CAD/CAM system

fully integrated into a machining center is also an emerging reality. All of the technological

areas stated above will benefit from an efficient method to simulate the machining operation,

apart from process verification which is the primary focus of this work.

11

1.3 Thesis objectives

Based on the study of existing geometric modeling and simulation methods, it is apparent

that virtual machining will greatly benefit from a new geometric modeling method for workpiece

modeling and update. Hence the objectives for this thesis work are set as follows:

[O1] Achieve an accurate as well as memory efficient workpiece geometry representation.

[O2] Enable efficient and accurate update of the workpiece geometry for simulation of

machined part geometry in general milling simulation.

The above objectives thus focus on the way of representing the workpiece geometry,

updating it during simulation using the tool paths and generating a standard format

representation for the simulated part geometry from the simulation specific model. It also

demands that the new methods should be broadly applicable to all categories for milling

operations involving up to 5 degrees of freedom for the tool axis.

It should also be noted that the objective of this thesis work is defined such that the

developed geometric modeling methods itself can provide valuable end results. In other words,

the use of the newly developed geometric methods for pure geometric virtual machining is given

focus. This is justified from the fact that the simulated machined part geometry obtained from

geometric virtual machining itself provide valuable support for process verification as detailed in

previous section.

1.4 Research scope

The set objectives open a number of items with research scope as follows:

 New geometry modeling format – Geometry modeling is a widely applicable

mathematical tool with utilization in many areas including machining simulation. The current

12

geometry modeling formats are unable to provide the expected level of accuracy and efficiency

together at least in machining simulation. Research to achieve the best levels of these

performance aspects have led to maximum attainable performance for existing approaches by

now. Thus, a new generation of geometric representation and modeling method is in need and

indeed demands a significant research effort as the potential new method is not trivial. Based on

the relative rating of existing methods derived in previous Section 1.2, this research work will

aim at developing the new geometric modeling method based on the voxel space partitioning.

This is because it has the inherent quality to support efficient update for material removal. Thus,

the research for this thesis work will attempt to develop a voxel based model which is accurate as

well for the purpose of machining simulation while maintaining the efficiency.

 New algorithms for model update and machined part geometry simulation – In order to

update a geometry model during the simulation of machining operations, a model update logic

has to be identified. Every geometry modeling approach has a particular way of model update for

material removal that is most suited for it as we will see in Chapter 2 Section 2.3. Thus, to

efficiently use the new modeling method we shall develop, a suitable update logic should be

identified as well. There is always a brute force way to update a model but to be efficient, a

superior algorithm with least order of complexity is expected. This in fact require in-depth

understanding of the model representation format and identification of the salient features that

can lead to an efficient update logic.

 New process for surface geometry extraction – As seen from the evaluation of existing

modeling approaches in use for machining simulation, it is apparent that a new and better

13

modeling method should be based on discrete space partitioning as it provides the best efficiency

in model update with possible leverage from use of multi-level representations. The space

partitioning methods however does not have an inherent surface information available to use for

visualization or analysis using popular and widely standard technology available to handle

surface representations such as triangle mesh models. It will be shown that currently used

techniques to generate a surface representation from discrete grid based models are either not

robust enough or are not the most efficient approaches possible. Thus a technique to efficiently

and consistently generate valid surface representation from the new simulation model is the last

but not the least research aspect considered as part of this thesis work.

1.5 Methodology

To develop and demonstrate the new geometry modeling method and its application to

machining simulation, a research workflow with four major modules as depicted in Figure 1-2

below is followed.

The four modules are essentially dealing with the four major parts of a simulation system

for geometric virtual machining. The geometric model of the workpiece has to be defined in the

preferred modeling format using the shape of the initial blank workpiece. The tool and tool path

information should be used to model the tool swept volumes that act as the Boolean material

removal tools in updating the workpiece model. To update the workpiece model, a simulation

procedure logic that can accept the workpiece model and tool swept volume representations as

input is needed. Finally, the updated workpiece model that represents the machined part should

be used to generate a standard representation of the machined part surface geometry.

14

1.5.1 Workpiece geometry modeling

Based on the blank workpiece, the geometric model that can be used as in-process

workpiece has to be created to start with. Thus, a module is identified to develop the concepts

and implementation of a suitable representation format for the workpiece geometry. This module

will satisfy the Objective [O1] defined in Section 1.3. Specifically, a workpiece definition in a

standard format will be accepted as input. The module will then generate the suitable simulation

model for the in-process workpiece. Thus there are two components for this module: (1) Concept

and data-structure development for the newly identified simulation workpiece model and, (2)

Pre-processing step to convert a standard definition input blank workpiece into the identified

simulation workpiece model.

Input workpiece

definition
Tool path information

Workpiece geometry

modeling

Tool swept volume

modeling

Geometric

workpiece

Tool swept

volume models

Geometric machining

simulation

Simulated part

geometry

Part surface

extraction
Part surface

representation

Figure 1-2 Schematic of the research and development workflow.

15

1.5.2 Tool swept volume modeling

Apart from the simulation workpiece model, the geometric representations of the tool

swept volumes are also required to perform the geometric machining simulation. Thus a module

is defined that will consider different tool swept volume representation approaches and will

make an appropriate selection for the type of workpiece representation format developed in the

“Workpiece geometry modeling” module. Another component of this module will be in fact to

implement the required pre-processing steps to generate the selected swept volume

representations from standard tool and tool path definitions after designing the suitable data

structure for the selected swept volume models.

1.5.3 Geometric machining simulation

This module will identify and develop the simulation steps for using the created swept

volume models to update the workpiece geometry model. Thus, this module involves analysis of

the favorable characteristics of the workpiece geometry model and the swept volume models to

identify the best approach for model update. Objective [O2] defined in Section 1.3 will be

achieved by the end of this module. First a generic update approach for the workpiece geometry

model shall be devised. Then this generic approach can be specialized to various swept volume

representation techniques suitable for different machining categories. This way of forming the

generic and specialized method will help in identifying a universal method for all the future use

in machining simulation and then to enable the full utilization of the specific swept volume

model characteristics.

16

1.5.4 Machined part surface generation

A final module is dedicated to study various ways of geometry representations suitable for

visualization and inspection. From the discussion in Section 1.2, it is apparent the representation

suitable for simulation and the one suitable for visualization and inspection are not necessarily

the same. Some type of surface representation is widely used for visualization. Thus, this module

will aim at considering existing techniques for surface visualization of the simulated part

geometry focusing on the applicability and efficiency of each technique. Then, developing an

efficient way to generate such a representation from the simulation model we develop is also part

of this module. Efficiency of the surface generation technique will be given high importance

after the simulation efficiency as visualization of the simulated part geometry is expected to be

readily possible after the simulation steps.

1.6 Thesis structure

The rest of the thesis is constructed as outlined below with description of the contents in

each chapter and their contribution to satisfying the afore set objectives, scopes and modular

methodology design.

 Chapter 2, “Relevant methods” will review the various geometry modeling and

simulation approaches that have been successfully applied for machining simulation. This will be

a more in depth study than the brief review done in Section 1.2. After Section 1.2, we have

identified accuracy, efficiency and robustness as the three basic performance aspects to consider.

In Chapter 2, different workpiece representation methods, tool swept volume representation

methods and the workpiece model update methods are studied in detail to identify the strength

and weakness of each and the qualities that provide each of them its specific strengths. Review

17

of the current methods used for surface generation for different simulation models will also be

done in this chapter. Chapter 2 will form the background knowledge for the rest of the thesis.

The complete methodology developed and described in this thesis is shown in Figure 1-3

and the various chapters presenting the different components is described below.

 Chapter 3, “Frame-sliced voxel representation” introduces FSV-rep, the new workpiece

geometry representation model developed in this thesis work. The definition and salient features

of the model will be laid out first in Sections 3.1 to 3.7. The algorithms to generate FSV-rep

model from standard STL geometry representation and the data structure to hold the model for

simulation is provided after in Section 3.8. Section 3.9 and 3.10 will evaluate the modeling

Input workpiece definition Tool path information

FSV-rep Sampled instances or SVRs

Geometric workpiece Tool swept volumes

Three-step update

Simulated part geometry

Lookup table based triangulation

Part surface representation

Figure 1-3 Schematic of the developed methodology.

18

method in terms of accuracy and memory efficiency using basic and practical machined part

geometries. Chapter 3 is essentially on the module “workpiece geometry modeling” to achieve

Objective [O1].

 Chapter 4, “Three step FSV-rep model update” constructs a generic logic for updating an

FSV-rep model using a set of volume removal tools in order to obtain the final machined part

FSV-rep. This logic will be developed focusing on efficiency and for utilizing all the qualities of

FSV-rep models. This chapter will thus, lay down the initial part of the module “Geometric

machining simulation” as an important first step towards achieving Objective [O2].

 Chapter 5, “Tool swept volume representation” will establish the suitable tool swept

volume models for various categories of milling operation from 1-axis to 5-axis. The optimum

swept volume representation for each case is then developed in the chapter for generic as well as

more common special milling cutter types. Specifically, a sampled tool instances approach is

used for general multi-axis tool paths whereas a customized “Swept Volume Regions (SVRs)” is

used for linear three-axis tool paths. Chapter 5 will thus complete the development of concepts

and definitions for the module “Tool swept volume modeling”.

 Chapter 6, “FSV-rep machining with tool swept volumes” develops the geometric

simulation methodology with the new FSV-rep workpiece model and the suitable swept volume

models developed in Chapter 5. The generic update logic constructed in Chapter 4 will be

appropriately adapted for the specific swept volume representations selected. With this, the

module “Geometric machining simulation” will be complete and the Objective [O2] will be

achieved as well.

 Chapter 7 provides the details of the simulation system implemented with all the modules

and discuss the results obtained for various simulation case studies for machined part geometry

19

computation. The discussions in Chapter 7 will identify the various factors contributing to the

resultant accurate and faster computational performance of FSV-rep based simulation.

 Chapter 8, “FSV-rep surface generation” provides the improved surface generation

technique based on efficient marching cube like look-up table that is most suited for surface

generation for an FSV-rep model. The chapter also contains the proof of applicability of the new

look-up table and various cases studies to show its applicability and better performance

compared to other existing methods.

20

Chapter 2: Relevant methods

This chapter will further discuss the previous techniques used for the various components

of the workflow followed by the thesis work. First it explains the major approaches used for

workpiece geometry representation. Then it describes the typical ways for modeling the tool

swept volume. The appropriate ways of update the workpiece geometry model followed for

various combination of workpiece and tool swept volume models are analyzed next. Finally it

discusses the suitable methods for the in-process workpiece and machined part surface

generation and visualization.

2.1 Workpiece representation

Workpiece geometry representation can be broadly classified into solid modeling, vector

modeling and space partitioning class of approaches. The following sub-sections discuss the

different modeling methods falling to these classes.

2.1.1 Solid modeling

Solid modeling is a traditional way of representing shape of 3D objects. Constructive solid

geometry (CSG) uses primitive shapes such as cubes, cylinders, spheres combined with different

Boolean operators to represent the shape. Since the object is only implicitly represented by a tree

of primitives, the model definition is easy. However, interaction with the model is often compute

intensive due to the required tree traversal. Solid modeling using boundary representation (B-

rep) is another way of workpiece representation widely used since initially.

In B-rep solid modeling, the surface of the object is modeled (Figure 2-1). Each surface

element is oriented with a definite normal direction at every surface location. The surface is

21

oriented such that the normal is pointing away from the object volume locally. Further the

surfaces are connected together along their intersection curves. The intersection curves terminate

at the various intersection points. The trimmed surfaces, curves and the intersection points act as

the face, edge and vertex boundary elements respectively forming the topology for the B-rep.

The orientation of the surfaces and the topology defining the limits of those surfaces as

well as the connectivity between each other is important for B-rep solid modeling. These aspects

enable B-rep solid models to maintain a valid geometry. A solid is considered valid if it is closed

and 2-manifold. 2-manifoldness essentially requires the surface to be similar to a disc within the

infinitesimal neighborhood of any point on it. Thus, when using a B-rep solid model, it is

essential to maintain the orientation and connectivity of the boundary elements to ensure 2-

manifoldness of the model.

A B-rep solid model can have any type of surfaces and curves defining its faces and edges.

Thus, it has the capability to accurately and often exactly represent the surface geometry of

objects. Often for mechanical parts, most of the faces can be modeled with simple planar,

cylindrical, spherical or conical surfaces. Edges are also often limited to line segments, circles or

conic sections. For objects with organic shapes, freeform curves and surfaces such as splines,

NURBS, and two-parameter interpolation surfaces based on such curves are used.

The wide variety of surfaces and curves that can be used, and the large number of such

elements that can be present in the topology of a B-rep model causes a difficulty as well to

represent the machined part geometry. Often with large number of tool paths, the number of

faces and edges created for the B-rep solid model can be excessively large. Large number of

boundary elements slows down interaction with a B-rep model. Further, with arbitrary shape of

swept volume and at times with self-intersections in case of multi-axis machining, it becomes

22

challenging and practically difficult to define the appropriate surfaces for the machined part

surface geometry.

Triangle mesh is another B-rep solid modeling method which can provide a good

approximation of the machined part geometry without using higher order surfaces and curves. It

uses a set of triangles to replace the surfaces. The entire surface geometry is thus defined by the

set of triangles approximating the different surfaces. As it always uses set of planar triangles to

approximate the surfaces, triangle mesh does not face the issues of inability or increased surface

complexity in representing the objects even in case of parts created by multi-axis machining.

With its reduced complexity and yet being capable of providing acceptable accuracy, triangle

mesh has become a very favorable format for visualization, rapid prototyping and machining

simulation as well.

a

b

Figure 2-1 Solid models of a typical mechanical part.(a) B-rep model (b) Triangle mesh model.

23

From the study of solid modeling approaches, we can conclude that the best quality they

possess is accuracy while their ability to provide affordable model interaction speed degrades

with large number of features.

2.1.2 Vector modeling

The basic elements of vector modeling are line segments. The original vector modeling

approach commonly known as Z-map used 2-dimensional array of line segments with each of

them starting at the base plane and extending vertically up to the top surface of the modeled

object. Z-map vector modeling is a discrete and uniform grid representation in the sense that it

uses a 2-dimensional grid of line-segment elements to represent the modeling space. The objects

are represented by activating the portion of the line-segments that is completely inside the object

volume and deactivating the rest (Figure 2-2). This enables Z-map to enable interaction with the

model at some constant access time irrespective of the model size. In order to avail that, the Z-

map and other vector modeling approaches remove the explicit boundary representation and the

associated topological connectivity information.

Figure 2-2 A B-rep model in a vector field (left) and the corresponding Z-map vector model (right).

24

The absence of explicit boundary representation does pose an issue in visualization and

other model inspection activities. However, with the Z vector end points exactly sampling the

object surface, Z-map can provide a set of exact sample points of the modeling object. These

points can be suitably used for later reconstruction of the object surface.

Apart from Z-maps, other improved types of vector modeling are also reported. Dexels and

Tri-dexels are the two main improved vector modeling methods. Dexels use a list of line

segments at each grid location on the base plane. This way dexel models can handle objects with

overhangs in the vertical direction (Figure 2-3c). Tri-dexels is still another improvement of

vector modeling and has the ability to provide higher accuracy in all the three orthogonal

directions whereas Z-maps and Dexels had limited accuracy for representing surfaces with

normal perpendicular to the Z-vector or dexel direction. Since Tri-dexels is essentially three

orthogonal dexel models, it can capture surfaces with normal along any direction with uniform

accuracy (Figure 2-3d,e,f).

There are other vector modeling concepts as well such as the view dependent depth-buffer

approaches and also the vectors along the surface normal direction of the reference part. These

are however not having a pre-defined or uniform vector direction and hence lacks the ability to

store the vectors in a uniform grid wise order. Still they are able to represent the model without

use of boundary surface elements and thus eliminate the need to maintain the topological

information.

Overall, the vector modeling approaches, especially the Tri-dexels, presents a valuable

improvement over triangle mesh models. They are able to represent the model using basic line

segments that are independent of each other but together provides a good set of sample points of

the modeled object surface through the end-points of all the line segments. With this

25

advancement, they are able to improve the efficiency in model interaction and modification

while providing the same level of accuracy as triangle mesh models. On the downside, without

explicit representation of the object surface, they lack ability to readily provide the object surface

for visualization and inspection.

Figure 2-3 Various vector modeling types. (b) Z-map (c) Dexels (d) Tri-dexels with increased accuracy in (e)

side views and (f) top view

a b c

d e f

26

2.1.3 Space partitioning

Space partitioning is the third class of modeling methods used for machining simulation.

These methods consider the entire modeling space and divides it into smaller volumetric

elements. A model is represented using many of these constituent volume elements of the

modeling space. Space subdivision with uniform grid of cubical volumetric elements called

voxels is the basic space partitioning method (Figure 2-4).

Voxel modeling has been mainly used in the field such as medical imaging and terrain

rendering where the spatial data is available from 3D scans of a surface or a volume. Voxel

models have also been used for representing computer generated models, for instance, to mix

together scanned data with synthetic models [37]. Various commercial CAD systems also

mention the use of voxel representation for real-time interactive modeling and collision

detection, which has been investigated for tool interference detection in multi-axis machining as

well [29, 30, 38]. Workpiece modeling in milling simulation has also made use of voxel

representation [24, 25, 39,40].

Voxel modeling is a spatial occupancy enumeration type of solid representation scheme

[41]. A voxel based solid model is composed of numerous small cubical elements called voxels.

Each voxel in the 3D space is uniquely identifiable by a 3D index. Voxel modeling can be

understood as activating specific voxels in the voxel space (the spatial grid of voxels) if they

belong to the interior of the solid. Active voxels for a solid can include internal voxels

(completely inside the solid) and surface voxels (only partially inside the solid) [42]. Length of

the voxel edges decides the resolution of the voxel space and hence, the number of voxels in a

model. The process of identifying the voxels that represent an object is commonly known as

voxelization or 3D scan conversion. Voxelization methods to obtain a voxel model from a

27

continuous curve, surface and volume have been reported [37,43,44]. Voxelization of a polygon

mesh has also been developed and refined to obtain a high-quality surface voxel model [45, 46].

The primary quality measures a surface voxel model shall possess are fidelity and

connectivity [46]. Fidelity is the measure of how well a voxel model matches the represented

continuous object. Connectivity is a topological quality measure based on the level of contact

between neighboring voxels and it decides the minimality and separability [47, 45] of the voxel

model. A closed surface voxel model defined by a set of voxels {𝑽𝒔} is 26-separating if it

separates the voxel space into three sets {𝑽𝒊}, {𝑽𝒔} and {𝑽𝒐} such that there is no possible

connected voxel chain {𝑽𝒑} between {𝑽𝒊} and {𝑽𝒐} without at least one common voxel with

{𝑽𝒔}. The occurrence of such a possible path as {𝑽𝒑} is called tunneling and a 26-separating

voxel model is required to avoid the occurrence of tunneling. Tunneling is undesirable as it can

cause inaccurate results during intersection of voxel models.

As discussed before, voxel modeling with its enumerative nature through spatial indexing,

is very efficient in updating the volume removal operations arising in machining simulation. It is

also robust to handle model updates due to complex tool motions as it does not have to maintain

topological information explicitly. However, memory demand of basic voxel modeling is in the

order of Ο(𝑁3) where N is the number of voxels used to subdivide each axial direction of the

Cartesian volumetric modeling space (the grid resolution). This large memory demand has been

addressed through sparse representation schemes using the octree [48] (Figure 2-4) and directed

acyclic graphs [49], and out-of-core algorithms [50]. Some supporting data can also be used to

augment a voxel model in order to achieve sub-voxel resolution. For example, bounding planes

have been used to better approximate the object surface within the voxel with significant

improvement in the voxel-based visualization [48].

28

As understood from the review of space partitioning methods, it can provide model

representation with most efficient way to interact with. Also, the concept of multi-level

representation enable space partitioning to be potentially memory efficient also. However, the

approaches for improving the accuracy without much increase in model size have been

unfavorable for machining simulation. A simpler technique is desired for voxel models which are

being repeatedly modified. This calls for a novel sparse voxel representation coupled with a

simple technique to achieve the sub-voxel resolution. Also, it should easily generate a boundary

representation such as a triangle mesh from the model for visualization and data transfer as well

as for analysis.

2.2 Tool swept volume representation

After a suitable workpiece representation, the next important input needed for machining

simulation is the tool swept volume representation. Tool swept volume representation means the

geometric model of the volume swept by the tool while it moves along a tool path trajectory.

Figure 2-4 Space partitioning models: Uniform grid voxel model (left) and Octree hierarchical model (right).

29

2.2.1 Analytical definition

Analytically the tool swept volume can be defined as the union of all the tool instances

along the tool path. Tool path can be defined using parametric curves [51, 52, 53] that gives the

tool instance location vector as 𝑳𝒕 and orientation as a unit vector 𝑨𝒕 for a time like parameter t.

Points belonging to any tool instance 𝑇𝑡 along the tool path can be then obtained in the Global

Coordinate System G as a homogeneously transformed set with the transformation matrix

[𝐶𝑡]𝐺
𝑇 applied on the points in Tool Coordinate System T as follows:

𝑃𝑡
𝐺 = [𝐶𝑡]𝐺

𝑇 × 𝑃𝑇

With, 𝑭𝒕 as a unit vector perpendicular to the axis direction in the plane containing the axis and

the feed direction of the tip of the tool instance 𝑇𝑡, and 𝑿𝒕 = 𝑭𝒕 × 𝑨𝒕 the transformation matrix

[𝐶𝑡]𝐺
𝑇 can be defined as follows:

[𝐶𝑡]𝐺
𝑇 = ([𝐶𝑡]𝑇

𝐺)−1 ; ([𝐶𝑡]𝑇
𝐺) = [

𝑋𝑡𝑥 𝑋𝑡𝑦 𝑋𝑡𝑧
𝐹𝑡𝑥 𝐹𝑡𝑦 𝐹𝑡𝑧
𝐴𝑡𝑥 𝐴𝑡𝑦 𝐴𝑡𝑧
0 0 0

−𝐿𝑡𝑥
−𝐿𝑡𝑦
−𝐿𝑡𝑧
1

]

Then, the swept volume is defined as the Boolean union of all the tool instances for all the

values of 𝑡 from 0 to 1 along the tool path (Equation 2.3).

⋃ 𝑇𝑡

𝑡𝜖[0,1]

where 𝑇𝑡 is the volume of the tool instance for the parameter t.

The simple analytical definition is enough for simple 1-axis toolpaths when a vector or

voxel based workpiece is used. For update with such tool paths, only the envelope surface

geometry and the generating curve are required. Generating curve is the locus of the grazing

(2.1)

(2.3)

(2.2)

30

points for each tool instance along the tool path. In fact for 1-axis and up to 3-axis straight

cutting tool paths, the generating curve is constant along the path which can be defined as a set

of curves. Using the constant generating curve, both the envelope surface and the intersection

points with vectors and voxel edges can be obtained. This enables update of the workpiece model

directly from the analytic definition.

However, for general tool paths occurring in multi-axis machining, the generating curve

and envelope surface are not trivial from the analytic definition. Thus, more advanced models for

the swept volume are needed. Advanced analytic definition of swept volumes are indeed

available for mathematical representation [54, 55, 56]. However, direct use of such definitions in

simulation are computationally expensive.

2.2.2 Boundary representations

Tool swept volume as a boundary representation as shown in Figure 2-5 is required when a

boundary representation workpiece is used for multi axis machining. This is because the B-rep

workpiece update requires a B-rep model itself as the Boolean tool as we will see in Section 2.3.

B-rep swept volume uses different surface elements to represent the various parts of the swept

volume boundary. Major portions defined for a swept volume B-rep are, envelope surfaces, back

instance (ingress) and front instance (egress) regions. B-rep swept volumes however have to

avoid self-intersecting surfaces that arises in multi-axis machining. Special treatment of tool

paths to split them into segments without self-intersection is one approach followed.

Triangle mesh approximation of the swept volume boundary is often used to eliminate the

above-mentioned issues with actual B-rep based swept volume representations. The triangle

mesh swept volume B-rep is generated in a number of ways. Starting from the analytic definition

31

of the swept volume, obtaining the grazing points of the tool instances along the path and

creating a triangle mesh using the set of points is the general approach followed. Ball pivoting

triangulation of point clouds, alpha shape creation, etc. has been used in the past for such

processes.

B-rep swept volumes, and especially using triangle mesh, has the benefits for being

capable of updating all type of workpiece representations. 2-manifold triangle mesh swept

volumes could be generated even in case of self-intersecting tool swept volumes [16].

However, the creation of such boundary representation swept volumes is an additional

operation for machining simulation which can add significant amount of time as a pre-processing

step of tool swept volume generation.

2.2.3 Parametric representations

Apart from the analytic definition of the swept volume in Section 2.2.1, parametric

definition of swept volume has been developed in alternative forms as well. Representation of

swept volume as a 2-parameter family of spheres is one such development (Figure 2-6). This has

been found useful for the update of workpiece representation using Z-map vector modeling.

Figure 2-5 B-rep representation of tool swept volumes defined using different surfaces.

32

The effective points of the tool instances along the tool path that ultimately contribute to

the tool swept volume are the grazing points for which the feed velocity is perpendicular to the

tool envelope surface normal. Parametric representation of these grazing points has been

developed [55,56] for swept volumes of simple as well as general tool paths.

2.2.4 Sampled approximations

Swept volume representation as a collection of tool instances at different sampling

locations along the tool path is a practical approach useful by itself as an approximation and also

as an underlying building block of many other definitions. Swept volume representation with

parallel slicing (Figure 2-7) for instance have used sampled set of tool instances to generate the

initial swept volume which was later sliced to obtain cross-section curves. Other approaches such

as parametric definitions also ultimately uses a sampled approximation of the ideal

representation for practical use.

Further, as a collection of plunging tools present along the tool path, the sampled tool

instances can itself act as a representation of the tool swept volume. Instead of updating the

model with a single swept volume object, all the tool instances are used one after the other with

this approach. Computations to update a workpiece model with each tool instance has explicit

Figure 2-6 Parametric representation of tool swept volume with 2-parameter family of spheres.

33

closed form solutions as the tool envelopes of general milling cutters has primitive surface

elements [57,58]. Thus, with sampled tool instances, only consideration to make is the suitable

sampling interval that can reduce the “sampling scallop” error from the ignored swept volume

portion between two sampled instances.

2.3 Workpiece update methods

Based on the methods used for workpiece geometry representation and the tool swept

volume representation, the model update technique has to be different. These various update

techniques is discussed in this section.

2.3.1 Boolean operations for solid models

Solid modeling approaches using CSG is the easiest to update as the model is stored as a

combinatorial tree of primitives. The material removal by a tool swept volume can be easily

added as another entry into the tree. However, the resultant updated workpiece geometry is not

explicitly stored, requiring expensive computations for model visualization and interaction. In

fact, the tree update is computationally expensive for evaluation of the surface topology though

Figure 2-7 Parallel slices approximation of tool swept volume.

34

easy to be stored.

B-rep solid model update requires trimming of the existing boundary elements and

stitching of new boundary elements for the newly machined part surface. In order to add new

boundary elements to the B-rep workpiece model, the tool swept volume also has to be defined

as a B-rep. Thus, for general NURBS B-rep workpiece update, NURBS B-rep definition of the

tool swept volume is needed and similarly for update of polyhedral workpiece representation, a

polyhedral or NURBS B-rep representation of the tool swept volume is needed.

For all the above solid model workpiece and tool swept volumes, the essential process

involved in the workpiece update is Boolean operation. As mentioned above, Boolean operation

effectively, trims away the portions of workpiece boundary elements (faces, edges and vertices)

that are completely inside the tool swept volume (Figure 2-8). It also adds new boundary

elements as replacement from the portions of the swept volume boundary elements that is inside

the original workpiece volume.

As it involves trimming operations that require intersection between surfaces, the Boolean

update of solid models is computationally involved. Even with simpler triangle mesh models, the

Figure 2-8 Boolean update of a B-rep workpiece model using a B-rep tool swept volume.

35

number of triangles grow rapidly with more machined features and surface curvature. With high

number of triangles, the time for intersection calculations also increase rapidly.

Essentially the update process for solid models are compute intensive suggesting to use an

alternative workpiece or tool swept volume representation.

2.3.2 Trimming operations for vector models

Vector models of Z-map, dexels, and Tri-dexels, are all composed of line segments. Hence

update of vector models ultimately involves the trimming of these line segments. In order to trim

the line segments for update using a tool swept volume, the portion of these line segments falling

inside the tool swept volume has to be identified. There are two approaches followed for this.

In one method, the vector model for the tool swept volume is generated first. Then the line

segments forming the vector tool swept volume model is used to subtract overlapping portions of

the line segments forming the vector workpiece model. Thus, once the vector model of the tool

swept volume is available, the update of the vector workpiece model involves simple line

segment clipping by end point modifications.

In another approach, the line segments forming the vector workpiece model is directly

updated with the standard tool swept volume representations such as those covered in previous

Section 2.2. This involves identification of the workpiece vectors crossing the tool swept volume

efficiently to avoid unnecessary attempts on all workpiece vectors. Often the bounding box of

the tool swept volume is used for this localization.

In either approach, intersection of line segments with tool swept volume envelope surface

is involved (Figure 2-9b). Often the envelope surface do not have explicit representation for

intersection with line segments. To ease the process, the various alternate swept volumes such as

36

polyhedral B-rep, parametric family of spheres, parallel slices etc. are used.

2.3.3 Binary operations for space partitioning

Space partitioning based workpiece models such as with voxels and octree are composed

of volumetric elements which has a definite number of possible states. In case of binary voxel

models, they can be either active or inactive. In case of octree models, the leaf nodes can be

either active or inactive whereas the higher level nodes can additionally be marked as partially

occupied.

Figure 2-9 Clipping operation on line segments for vector model update using a swept

volume B-rep. (a) swept volume B-rep in a vector field, and (b) one vector being clipped.

Figure 2-10 Binary update of a voxel workpiece by simple deletion of voxel elements.

(a) (b)

37

As a result, update of space partitioning models is binary in nature. For a voxel workpiece,

the voxels falling inside the tool swept volume are immediately turned inactive (Figure 2-10).

For octree models, the leaf nodes falling inside are deleted and all higher level nodes completely

emptied as a result are deleted recursively.

Alternatively for the voxel workpiece representation the voxel model of the tool swept

volume can be generated first and a binary Boolean subtraction update can be done with voxel

tool swept volume as the Boolean tool and the voxel workpiece as the target. Similar procedure

is possible with octree creation of workpiece and tool swept volumes.

Either way, the major operation involved is to check whether a voxel or an octree node is

completely within a tool swept volume representation. This involves computations to classify the

voxel centre or corner points with respect to the tool swept volume. Such computations are

always simpler than those involved for update of solid model and vector workpiece

representations.

2.4 Workpiece surface generation

Surface generation for solid models such as NURBS and polyhedral B-rep is trivial as the

geometry definition itself is based on the boundary surface elements. Usually NURBS B-rep

models are tessellated to a triangle soup or mesh for easier visualization and inspection pipeline.

Surface generation is of real relevance for vector and space partitioning models.

Voxel based space partitioning has been used for simulation and model visualization.

Dedicated volume rendering hardware is reported as the natural choice for voxel model

visualization [59]. This applies for octree model as well. However, such hardware is not yet

common and alternative visualization techniques are still in need. Volume rendering with ray

38

casting is attempted on regular graphics hardware as well. However, this can prove to be

computationally costly for view independent interactive model display. Thus, a surface

generation technique is of good use for voxel and octree models.

Spatial range data collected from 3D scanning and medical imaging has been converted to

surface models using the popular marching cube method [60]. They all rely upon specific

distance field values at each corner point of a voxel to create the surface patch within by tri-

linear or higher order interpolation techniques. In case of binary voxel models with information

available only to infer the corner occupancy status, the surface generation needs to approximate

the patch using the mid-points of the edges as patch boundary vertices and subsequent smoothing

[61]. This can however, add unnecessary deviation onto the generated mesh. Point cloud

triangulation technique using the centre points of the voxels with surface crossing is another

alternative used.

The marching cube method is fast once the corner occupancy status is identified for the

voxel. This is because, it utilizes a look-up table of pre-defined triangulation for each

configuration of voxel corner point occupancies. The number of such configurations are definite

and has many symmetry groups reducing the look-up table to only 15 different unique

configurations. Thus the lookup table method is fast and has wide application. However, there

are conflicting triangulations for some configurations (as one shown in Figure 2-11) which when

occur in neighboring voxels cause the mesh to have holes and become non-manifold. In order to

handle this, improved look-up tables and robust implementation have been developed [62, 63].

Those techniques need additional range data at the voxel corner points and are therefore not

directly applicable to binary voxel models.

39

Other surface reconstruction approaches reported for vector model based simulation

systems are worth considering. However, many of them are applicable to Z-map or dexel models

only [64, 65, 66]. A recent work for generating surface representation from tri-dexel models has

identified an algorithmic approach to triangulate surface patches within grid cells generated from

the tri-dexel model [67]. This algorithmic approach appear to be robust to handle all practical

cases and is a good alternative to use instead of the classical marching cubes for surface

generation in case of voxel models as well. However, because the triangle patch has to be

obtained computationally within each voxel, this prove to be a costly choice especially when

triangulation on the fly for machining simulation has to be fast enough to provide enough display

frames per second. A minimum of 15 frames per second display requirement leaves only about

66 milliseconds per frame. This demands the surface generation to be as fast as possible.

2.5 Summary

The various classes of workpiece geometry representation are solid modeling, vector

modeling and space partitioning. Solid modeling provides the best accuracy whereas space

Figure 2-11 One conflicting pair of triangulation (at the shared face)

from classic Marching Cubes lookup table.

40

partitioning with multi-level representation can be the most efficient. A new approach that can

merge the qualities of the two can help to achieve the next level of efficiency and accuracy

combinations. Tool swept volume models can be from purely analytical to B-rep based solid

models to approximate sampled tool instances. While the analytical and B-rep approaches can be

exact, the sampled instances can cater to all type of tool paths. The workpiece model update

depends upon the workpiece geometry and tool swept volume models and can be Boolean

operations of solid models, vector trimming or binary update of voxel models. The workpiece

surface representation can also be using surface or volume rendering based on the underlying

workpiece geometry model.

41

Chapter 3: Frame-sliced voxel representation

In this chapter we will define and establish a new geometry modeling format that possess

the qualities needed to be efficient and accurate enough for machining simulation. From the

review of existing methods in the previous chapter, we identified the strengths and weakness of

solid modeling, vector modeling and space partitioning classes of modeling methods. A better

method is derived in this chapter using the lessons learned about the different methods. In the

following sections the new geometry representation format is defined and discussed after

identification of the salient features.

3.1 Voxel identification

The basic building element of the FSV-rep is a voxel. The numbering convention is shown

in Figure 3-1 for the voxel vertices. The edges and faces can be identified based on the indices

of the bounding vertices. This convention helps query for neighbors of each voxel and facilitate

the involved computations.

𝑣0

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣7

𝑣6

X

𝑌

𝑍

Figure 3-1 A voxel with indexed vertices.

42

Each voxel in the voxel space will be uniquely identified by a voxel id, 𝑉𝑖𝑑, that is obtained

from the coordinates of 𝑣0. For a voxel space with origin at O(𝑂𝑥, 𝑂𝑦, 𝑂𝑧) and a voxel with 𝑣0 at

𝒑𝟎(𝑝0𝑥, 𝑝0𝑦, 𝑝0𝑧),

𝑥𝑖𝑑 = 𝑓𝑙𝑜𝑜𝑟 (
𝑝0𝑥 – 𝑂𝑥

𝐿𝑣
) ; 𝑦𝑖𝑑 = 𝑓𝑙𝑜𝑜𝑟 (

𝑝0𝑦 – 𝑂𝑦

𝐿𝑣
) ; 𝑧𝑖𝑑 = 𝑓𝑙𝑜𝑜𝑟 (

𝑝0𝑧 – 𝑂𝑧
𝐿𝑣

)

𝑉𝑖𝑑 = 𝑧𝑖𝑑 ∙ 𝑁
2 + 𝑦𝑖𝑑 ∙ 𝑁 + 𝑥𝑖𝑑

where 𝐿𝑣 is the voxel edge length and N the grid resolution of the voxel modeling space. The

floor function returns the largest integer smaller than the real number argument. This unique

indexing of voxels helps in enumerating the modeling space as shown in Figure 3-2 and also in

the random access of any voxel at consistent query time.

(3.1)

(3.2)

Figure 3-2 Enumeration of the voxel space with a unique index for each voxel.

𝑋 𝑌

𝑍

𝑧𝑖𝑑

𝑦𝑖𝑑
𝑥𝑖𝑑

Voxel with id = 𝑧𝑖𝑑 ∙ 𝑁
2 + 𝑦𝑖𝑑 ∙ 𝑁 + 𝑥𝑖𝑑

𝑁 𝑁

43

3.2 Surface voxels

The FSV-rep is essentially a sparse voxel representation as it uses only the surface voxels

to represent a solid. The surface voxel model for a solid object is to be made up of only the

voxels through which the boundary surfaces of the object pass. As the FSV-rep uses a binary

voxel representation, each voxel in the voxel modeling space can only be set to an active or

inactive state. The binary voxel representation essentially limits the voxels to have only the

occupancy information as their attribute and no other information such as material properties is

present [42]. Since a surface voxel model is to be constructed, the voxels through which the

boundary surfaces of the modeled object pass are deemed to be active while the voxels either

completely inside or outside the object are deemed inactive (Figure 3-3).

A surface voxel can be identified using the signed distance [68] of its corner points from

the object surface. If 𝑑𝑖 is the signed distance of the ith corner point, a sign value can be

assigned to that corner as

Figure 3-3 Volume voxel model (middle) and surface voxel model (right) for a cylinder.

44

𝑠𝑖 =
𝑑𝑖
|𝑑𝑖 |

Then, a voxel is a surface voxel if

−8 <∑𝑠𝑖

7

𝑖=0

 < 8

3.3 26-separating voxel model

The FSV-rep uses a surface voxel model which is 26-separating. Such a model is needed

to avoid tunneling as explained earlier as well as for proper reconstruction of the machined part

surface as a closed 2-manifold triangle mesh. During the subtraction Boolean operations

between surface voxel models, tunneling can cause incorrect or computationally unstable results

and thus, has to be avoided.

Having a 26-separating voxel model assures that tunneling does not occur (as shown in

Figure 3-4). In Figure 3-4c, an arrowed line is piercing through the cross-section of a 6-

separating surface voxel model. It is observed that the voxel chain {𝑉𝑝} along the arrowed line is

not intersecting (not having any voxel in common) with the {𝑉𝑠} surface voxel model. This is

avoided using a 26-separating surface voxel model (as shown in Figure 3-4d) which provides a

cross-section (as shown in Figure 3-4e) that always ensures an intersection.

It should be noted that the FSV-rep surface voxels (identified with Equation 3.4 above)

will not include voxels with just their faces or edges intersecting the modeled object surface.

(3.3)

(3.4)

45

This is acceptable as the resulting surface voxel model is still 26-separating.

3.4 Multi-level voxel representation

Even though a single uniform grid at the required resolution can enable the volume

removal operations at a computational cost independent of the model complexity, the cost is still

affected by the grid resolution. For a grid resolution 𝑁, the number of voxels in the voxel space

is 𝑁3. For a model update, the number of voxels to be updated is thus of the order of 𝚶(𝑁3).

Thus, increasing the grid resolution not only increases the memory requirement but also slows

Figure 3-4 Two surface voxel representations of the same reference object (a cylinder sampled with a very

low resolution grid). (a) a closed but 6-separating voxel model, (b) one cross-section of the model viewed

along the cylinder axis and, (c) one possible tunneling situation for the same. (d) a 26-separating voxel

model for the cylinder and (e) a cross-section of the same without any tunneling locations.

a b c

d e

46

down the update of the single-level voxel model. In order to address this issue, a multi-level

voxel representation can be used such as the octree subdivision.

The octree subdivision will be the most efficient in collectively removing the bulk volume

and then further removing at finer levels towards the boundary of the removed volume.

However, for the machining simulation application where the cutting tool volume is fixed and

often much less than the overall voxel space volume, it is ineffective to use the octree

subdivision. This is because many of the leaf nodes corresponding to the workpiece volume

removed by the tool may be bigger than the tool size. Further subdivision will be required in

order to make those nodes small enough to be completely removable by the tool. Hence, the

higher octree levels in effect become an overhead in repeated workpiece model update.

To avoid the overhead of traversing the octree subdivision but still reduce the

computational cost of using only the finest grid resolution, the FSV-rep uses a multi-level voxel

representation. The multi-level representation uses more than one voxel grids of increasing

resolution to subdivide the same modeling space by a local finer grid within the voxels of coarser

grid that need refinement. For the machining simulation application, the grid resolution at the

coarse level can be set according to the cutting tool size. There can be one or more finer level

grids to reach the desired fine grid resolution once the coarse level is set. The multi-level along

with sparse voxel representation as depicted in Figure 3-5 makes the FSV-rep efficient in

memory usage and potentially efficient in terms of the computational cost.

Given a surface voxel model at a particular grid resolution, a surface voxel model at a

lower resolution can be obtained simply by identifying the voxels of the lower resolution grid in

which each surface voxel from the higher resolution grid resides. Hence, for the FSV-rep,

voxelization at lower resolutions is trivial once the surface voxels at the finest resolution are

47

identified. Although it is a bottom-up approach, it is simpler and faster once the finest level

voxelization is done as the actual voxelization needs not be done for the coarser levels.

For implementation simplicity, a two level sparse voxel representation is used in this thesis

work for the FSV-rep model.

3.5 Frame-crossing points and frame-sliced voxels

The finest resolution that can be used for a voxel model is limited due to the computer

memory and computational load restrictions. An alternative, thus, has to be developed if further

accuracy is desired. The FSV-rep uses sampled points from the modeled object’s boundary

surface along the surface voxel edges as the alternative (Figure 3-6). These points are referred to

as the frame-crossing (FC) points as they are the locations where the boundary surface of the

modeled object crosses the edge-frame of the surface voxels. For an object model with a

triangle-mesh representation of the boundary surface available, these points can be computed

with straightforward line-triangle intersections. For NURBS-based curved surface boundary

Figure 3-5 Memory-efficient multi-level sparse voxel representation

of an elliptical cross-section.

48

representations, either a triangle mesh approximation is to be generated first or line-NURBS

surface intersections are to be computed.

With the set of FC-points obtained for a surface voxel, one or more 3D loops or closed

chains 𝐿𝑖 (𝑖 ≥ 1) can be formed from the FC-points. Each edge segment in 𝐿𝑖 is on a face of the

surface voxel and has the FC-points as its end points. A 3D piecewise linear surface with 𝐿𝑖 as

its boundary can then be defined, which is within the surface voxel. This 3D surface is named as

the slice front because it can be seen as slicing the surface voxel into an interior and an exterior

part. The boundary loop 𝐿𝑖 of a slice front is the slicing loop polygon for the edge-frame of the

surface voxel, dividing it into frame slices completely within the modeled object or completely

outside.

The frame slice that is interior to the modeled object along with the associated slice

front(s) defines a partial voxel named as the frame-sliced (FS) voxel as it is derived from a sliced

frame (Figure 3-7). All such FS-voxels act as boundary elements for the modeled object and

Surface voxel

FC-points on

the surface voxel

Input mesh triangle

Figure 3-6 Frame-crossing (FC) points on a surface voxel from an input mesh triangle.

49

together form a connected surface-voxel boundary representation which is named in this work as

the frame-sliced voxel representation or FSV-rep in short.

3.6 Definition

To utilize the efficiency and robustness of a voxel model in repeated model updates and to

achieve the accuracy and boundary representation similar to those of a triangle mesh, the frame-

sliced voxel representation (FSV-rep) introduced in this work is defined as below:

Definition 1: FSV-rep for a solid object is a collection of one or more 26-separating

voxel sets with a different voxel grid resolution for each set together with a set of sample

points of the object surface along the voxel edges for each surface voxel at the finest

resolution.

The core of an FSV-rep model is a sparse voxel representation with more than one uniform grid

of voxels to enumerate the modeling space. As discussed earlier, use of voxel models with high

resolutions is undesirable due to the large memory demand. Hence, the FSV-rep does not aim at

setting the finest voxel grid resolution according to the desired accuracy but use sample points

from the object surface to achieve the sub-voxel resolution. These sample points are taken such

Figure 3-7 Slicing loop and slice front formation for the case in Figure 3-6.

Slicing

loop

Slice front

50

that they are also on the edge-frame of the finest resolution surface voxels. As a result, these

points are named as the frame-crossing (FC) points.

3.7 Triangle mesh construction from the slice fronts

The slice fronts of each sliced surface voxel has its boundary edges on one of the 6 voxel

faces. In fact, there is only one slice front within each sliced surface voxel containing the

specific boundary edge. More importantly, each boundary edge of a slice front is shared with a

slice front of the neighboring sliced voxel coincident on the voxel face containing the boundary

edge. This is true for all the slice front boundary edges because the surface voxel model is 26-

separating. As a result, the slice fronts connected along the shared boundary edges form a closed

2-manifold mesh of slice fronts. Each slice front can then be triangulated to readily obtain a 2-

manifold triangle mesh (Figure 3-8).

A triangle mesh has to satisfy various topological and geometric conditions in order to be a

Figure 3-8 Triangle mesh construction from an FSV-rep model.

51

valid representation of a physically possible object [69]. The most important topological

condition for a valid triangle mesh representation of a solid object is being a closed 2-manifold

mesh. It essentially means that every edge shall be shared by two triangles. An FSV-rep model

guarantees to provide a 2-manifold triangle mesh. The number of triangles present in the

resulting mesh corresponds to the size of the model. High-curvature features will need many

small triangles in order to have a quality representation. The triangle mesh constructed from the

FS-voxels is sized relative to the finest voxel size. Hence, as long as the finest voxels are small

enough to capture the surface curvature, the created triangle mesh will also be able to capture it.

3.7.1 Benefits of machined surface triangulation via FSV-rep

Triangle mesh itself has been used for machining simulation [15,16] for its major

advantage of being able to represent the object surface with simple triangles. With varying size

of the triangle to adapt to different curvature, the model size can be optimized when using a

triangle mesh directly for machining simulation. However, as pointed out earlier in Section 2, it

is inefficient to update a triangle mesh directly during repeated updates of a simulated workpiece

with a large number of tool paths. It is mainly due to the difficulty to identify candidate triangles

for update per tool path from the entire set of triangles in the mesh. Without the use of some

localization technique such as octree, the computational complexity is high for the workpiece

model update as every triangle will have to be considered for update with every tool path.

Even after using an applicable localization technique to reduce the computational

complexity, the update process always involves triangle-triangle intersection calculations which

are still much costlier than computing operations needed for updating a voxel or vector based

model. Further, integrating the newly machined triangle mesh surface with the existing

52

workpiece surface is also a computationally expensive step. An existing research study has

confirmed that triangle mesh based machining simulation tends to be slower due to the

computational tasks stated above [16]. Nonetheless, triangle mesh is deemed the most suitable

format for model visualization and is, thus, widely used for this purpose in current CAM

software.

On the other hand, using an FSV-rep model for the repeatedly updated workpiece and

generating a triangle mesh representation only when needed for model visualization, eliminate

the above mentioned drawbacks. First, with the voxel based model structure, it is

computationally simpler to identify the voxels that need modification per tool path as it involves

only the classification of voxel corner and center points with respect to the specific tool position.

Second, the potential subset of voxels that can possibly interact with the tool can be easily

estimated by utilizing the correspondence of voxel id, as identified by Equation 3.2, to its spatial

location.

However, the use of FSV-rep for simulation and the generation of a triangle mesh from the

FSV-rep model only at the end will result in a mesh with triangle size decided by the finest voxel

size. There will be small triangles used even for surfaces with low curvature, resulting in a

higher than optimal number of triangles. Existing mesh simplification techniques can be used to

address this issue. Another potential issue from the use of FSV-rep is the classical chamfering

effect of voxel based representations whereby the sharp edge/corner features of a model gets

“chamfered”. This is an artifact of FSV-rep models as FS-voxels can improve accuracy of the

object surface but still cannot catch the sharp features at the interface of two surfaces. There are

already developed methods to detect sharp features for triangle mesh models generated from

grid-based models [70, 71] and these methods can be applied to the triangle mesh generated from

53

FSV-rep as well.

In summary, the FSV-rep provides a model representation format which is voxel based to

retain the computational efficiency and robustness of space partitioning methods in volume

removal operations and also significantly improves the modeling accuracy through the FS-voxels

without being limited by the finest voxel grid resolution. An FSV-rep model can also be readily

converted into a triangle mesh based boundary representation model to facilitate subsequent

visualization, analysis and processing tasks of the created model.

3.8 FSV-rep data structure implementation

Figure 3-9 illustrates the basic implementation architecture to create the FSV-rep from an

input shape and then produce a triangle mesh output from the FSV-rep model.

 The FSV-rep has been implemented and coded in C++. A one-dimensional array of

binary variables (bit-array) is used to represent the three-dimensional grid of voxels making the

voxel space. The voxel id formulated in Equation 3.2 is used as the index of the bit-array to

represent each voxel. During the surface voxelization step, the bits corresponding to the surface

Figure 3-9 FSV-rep implementation architecture.

54

voxels are set to 1 (all the bits are set to 0 initially). To hold the FC-points, a binary tree with the

voxel id as the key and the set of FC-points for each voxel as the value is created.

3.8.1 Input shape

The preferred input shape is taken as a triangle mesh as it is composed of simple triangular

faces and voxelization of a triangle mesh to create a 26-separating surface voxel model is

comparatively straightforward as all the faces are planar. Also, triangle mesh is a common

format which can be readily exported from all CAD systems used to create the related solid

model. It should be noted that the triangle mesh is an approximate representation and using it

will cause some approximation error in the input. However, an appropriate triangle size can be

used to limit the approximation error relative to the intended voxel size. This can ensure the

surface voxel model generated from the triangle mesh to be almost the same as that generated

from the exact surface representation.

3.8.2 Surface voxelization

A boundary-first flood-voxelization approach for creating the surface voxel model is

employed in this work. Under this approach, voxelizing a given triangle is a three-step process

as depicted in Figure 3-10.

First, the three voxels in which the three vertices of the triangle reside are identified. After

that, the voxels through which each of the three edges passes are obtained via binary subdivision

of the edges. The voxel for the mid-point of each subdivided edge is marked until both end

points of the subdivided edge are in the same voxel or the voxels are neighbors. The voxel chain

for each edge is made to be 6-connected by adding extra voxels as needed. Voxelization of the

55

face interior is done starting with a seed voxel through which the interior of the triangle passes.

The set of voxels through which the triangle face passes is obtained by propagating outward

from the seed voxel into the neighboring voxels through the voxel edges that are crossing the

triangle face plane and continuing the process for all such neighbors.

This set of voxels identified will be 6-connected as all neighboring voxels for all the

intersecting voxel edges are used. With all such voxel sets from all the triangles in the input

mesh, a 6-connected surface voxel model is generated for the boundary surface of the input

shape, which is commonly the blank geometry in machining. It should be noted that the model is

also 26-separating as all the voxels with edges crossing the input mesh are present in the surface

voxel model.

Vertex voxels Edge voxelization Edge voxels

Face interior voxelization Face voxels

Figure 3-10 Three-step voxelization process for a single face in a triangle mesh.

56

The procedure followed to voxelize a triangle mesh is illustrated as Algorithm 3-1 below.

Algorithm 3-1: Triangle mesh voxelization

{𝑭}  all faces of input triangle mesh

for each face 𝐹 in {𝑭} do for-loop-1:

 for each vertex 𝑉 of 𝐹 do for-loop-1.1:

 𝐼𝐷  voxel identifier from vertex coordinates using Equations 3.1 and 3.2

 {𝑰𝑫_𝒃}  {𝑰𝑫_𝒃} + 𝐼𝐷

 end for-loop-1.1

 for each edge 𝐸 of 𝐹 do for-loop-1.2:

 {𝑺}  line segment from start vertex 𝑣𝑠 to end vertex 𝑣𝑒 of 𝐸

 𝑐𝑜𝑢𝑛𝑡  1

 while 𝑐𝑜𝑢𝑛𝑡 ≤ size of {S} do while-loop-1.2.1:

 𝑣𝑠  start vertex of 𝑐𝑜𝑢𝑛𝑡𝑡ℎ segment in {𝑺}
 𝑣𝑒  end vertex of 𝑐𝑜𝑢𝑛𝑡𝑡ℎ segment in {𝑺}
 𝐼𝐷1  voxel identifier from 𝑣𝑠 coordinates using Equations 3.1 and 3.2

 𝐼𝐷2  voxel identifier from 𝑣𝑒 coordinates using Equations 3.1 and 3.2

 if 𝐼𝐷1 ≠ 𝐼𝐷2 and Voxel(𝐼𝐷1) not neighbor to Voxel(𝐼𝐷2) then

 𝑝𝑚𝑖𝑑 = mid-point between 𝑣𝑠 and 𝑣𝑒

 𝐼𝐷3  voxel identifier from 𝑝𝑚𝑖𝑑 coordinates using Equations 3.1 and 3.2

 {𝑰𝑫_𝒃}  {𝑰𝑫_𝒃} + 𝐼𝐷3

 {𝑺}  {𝑺} + line segment from 𝑣𝑠 to 𝑝𝑚𝑖𝑑

 {𝑺}  {𝑺} + line segment from 𝑝𝑚𝑖𝑑 to 𝑣𝑒

 end if

 𝑐𝑜𝑢𝑛𝑡  𝑐𝑜𝑢𝑛𝑡 + 1

 end while-loop-1.2.1

 end for-loop-1.2

 /*Voxels({𝑰𝑫_𝒃}) are assumed to be 6-connected in the below code*/

 𝐼𝐷  voxel identifier of a seed voxel entirely on face interior area

 (e.g., from face centroid)

 {𝑰𝑫_𝒊𝟏}  {𝑰𝑫_𝒊𝟏} + 𝐼𝐷

 𝑐𝑜𝑢𝑛𝑡  1

 while 𝑐𝑜𝑢𝑛𝑡 ≤ size of {𝑰𝑫_𝒊𝟏} do while-loop-1.1:

 𝐼𝐷  𝑐𝑜𝑢𝑛𝑡𝑡ℎ element in {𝑰𝑫_𝒊𝟏}

 {𝑬_𝑽}  edges of Voxel(𝐼𝐷) intersecting the face interior area

 {𝑰𝑫_𝑵}  edge neighbors of Voxel(𝐼𝐷) through edges in {𝑬_𝑽}
 {𝑰𝑫_𝒊𝟏}  {𝑰𝑫_𝒊𝟏} + ({𝑰𝑫_𝑵} – {𝑰𝑫_𝒃})
 𝑐𝑜𝑢𝑛𝑡  𝑐𝑜𝑢𝑛𝑡 + 1

 end while-loop-1.1

 for each 𝐼𝐷 in {𝑰𝑫_𝒃} not hit by above propagation do for-loop-1.3:

 {𝑬_𝑽}  edges of Voxel(𝐼𝐷) intersecting the face interior area

 {𝑰𝑫_𝑵}  edge neighbors of Voxel(𝐼𝐷) through edges in {𝑬_𝑽}

57

 {𝑰𝑫_𝒊𝟐}  {𝑰𝑫_𝒊𝟐} + ({𝑰𝑫_𝑵} – {𝑰𝑫_𝒃})
 end for-loop-1.3

 𝑐𝑜𝑢𝑛𝑡  1

 while 𝑐𝑜𝑢𝑛𝑡 ≤ size of {𝑰𝑫_𝒊𝟐} do while-loop-1.2:

 𝐼𝐷  𝑐𝑜𝑢𝑛𝑡𝑡ℎ element in {𝑰𝑫_𝒊𝟐}
 {𝑬_𝑽}  edges of Voxel(𝐼𝐷) intersecting the face interior area

 {𝑰𝑫_𝑵}  edge neighbors of Voxel(𝐼𝐷) through edges in {𝑬_𝑽}
 {𝑰𝑫_𝒊𝟐}  {𝑰𝑫_𝒊𝟐} + ({𝑰𝑫_𝑵} – {𝑰𝑫_𝒃} – {𝑰𝑫_𝒊𝟏})
 𝑐𝑜𝑢𝑛𝑡  𝑐𝑜𝑢𝑛𝑡 + 1

 end while-loop-1.2

 {𝑨𝒍𝒍_𝑰𝑫𝒔}  {𝑨𝒍𝒍_𝑰𝑫𝒔} + {𝑰𝑫_𝒃} + {𝑰𝑫_𝒊𝟏} + {𝑰𝑫_𝒊𝟐}

end for-loop-1

return {𝑨𝒍𝒍_𝑰𝑫𝒔}

3.8.3 Multi-level surface voxel model

FSV-rep uses a sparse multi-level representation with the finer resolution voxel grid

defined only within the surface voxels of the coarser grid. The simple voxelization method

described in the previous subsection is not enough to obtain the surface voxels at all the grid

levels. It can be done in two ways. In a top-down approach, the surface voxelization is

performed at the coarse level first and then within each resulting surface voxel, a similar process

is carried out at the finer grid resolution. This, however, requires voxelization at multiple levels.

Hence, an alternate bottom-up approach has been used in the current implementation. In the

bottom-up approach, all the surface voxels at the finest grid resolution can be identified first

using an imaginary voxel space spanning the entire modeling space with the finest resolution.

The coarser surface voxels can then be identified according to where each fine voxel resides.

For a given fine voxel identified with any 𝑥𝑖𝑑, 𝑦𝑖𝑑 and 𝑧𝑖𝑑, the coarser voxel in which it resides is

identified as

𝑋𝑖𝑑 = 𝑓𝑙𝑜𝑜𝑟 (
𝑥𝑖𝑑
𝑓
) ; 𝑌𝑖𝑑 = 𝑓𝑙𝑜𝑜𝑟 (

𝑦𝑖𝑑
𝑓
) ; 𝑍𝑖𝑑 = 𝑓𝑙𝑜𝑜𝑟 (

𝑧𝑖𝑑
𝑓
) (3.5)

58

where 𝑓 is the subdivision factor between the fine and coarse grid resolutions 𝑁𝐹 and 𝑁𝐶 as

𝑓 =
𝑁𝐹
𝑁𝐶

In the equations above, 𝑓 needs to be an integer as it corresponds to the number of subdivisions

of a coarse voxel into the corresponding set of fine voxels. Further, for memory efficiency in the

fine voxel sub-space within each coarse surface voxel, it is preferable if the number of fine

voxels within each coarse voxel is a multiple of 8 as it can then use an integer number of bytes to

represent the sub-space. This further demands 𝑓 to be a positive even integer and the

corresponding appropriate values for 𝑁𝐹 and 𝑁𝐶.

3.8.4 FS-voxels

To generate the FS-voxels, a map between each fine surface voxel and the triangles of the

input mesh passing through it, is to be kept. The FS-voxel data structure is defined as having a

pair of FC-parameter values (𝑢1, 𝑢2) along each of the primary edges of the voxel. In this work,

the primary edges are the edges between 𝑣0 and 𝑣1, 𝑣0 and 𝑣3, and 𝑣0 and 𝑣4 (Figure 3-1).

The parameter pairs are to hold the location of the FC-points with respect to the line

segment of the corresponding voxel edge. As in Figure 3-11, If the intersecting triangle is such

that the component of its face normal along the primary edge is positive, the parameter for the

(3.6)

𝑢1 , 𝑢2

Figure 3-11 Placement of the FC-point parameter into the pair

based on the surface normal (blue arrows) of generating object.

59

resulting FC-point is stored as 𝑢2. If the component is negative, the parameter is stored as 𝑢1.

These particular locations to store the FC-point parameter will later help in the proper

identification of the occupancy status of the voxel corners during surface mesh generation.

It is evident that an FS-voxel permits two FC-points along each voxel edge in the

implementation. It can handle four possible edge crossing cases as shown in Figure 3-12. If

there are more than two crossing locations, they are simplified into two crossing locations which

are chosen based on comparing the missing portions against the active portions of the voxel

edge. If the sum of the missing portions is longer, then the small fragments are ignored (Figure

3-13a). If the sum of the active segments is longer, then the small gaps are ignored (Figure 3-

13b). With appropriate size for fine level voxels, it can be ensured such simplification will not

cause loss of any required features as will be shown later in Chapter 8.

 (a)

 (b)

Figure 3-12 Four possible configurations of two permitted FC-points on a voxel edge.

Figure 3-13 Simplifying fragmented FS-voxel edges: (a) small fragment ignored; and

(b) small gap ignored.

60

It should be noted that the FC-point parameter pair is set only for the primary edges of a

given FS-voxel. Other edges are in fact primary to some neighboring FS-voxels and thus the

FC-point parameter pairs on all edges for an FS-voxel are effectively present in the data structure

(Figure 3-14). Further the FC-parameter is limited to a range of [0,1) to ensure unique parent

voxels for FC-points even when the point is exactly at a corner of the voxel.

The overall procedure for the creation of an FSV-rep model from an input triangle mesh is

illustrated as Algorithm 3-2 below.

Algorithm 3-2: FSV-rep model creation

𝑇  input mesh

{𝑭𝑽}  fine surface voxels by Algorithm 3-1

{𝑪𝑽: {𝑭𝑽_𝒔𝒖𝒃}}  map from a coarse voxel to fine voxels within it

Figure 3-14 A partial FS-voxel (bottom left corner at the back) with arrows to edges of

neighboring FS-voxels for FC-points on non-primary edges.

61

for each fine surface voxel 𝐹𝑉 in {𝑭𝑽} do for-loop-1:

 𝐶𝑉  coarse voxel for 𝐹𝑉 using Equations 3.5 and 3.6

 {𝑪𝑽: {𝑭𝑽_𝒔𝒖𝒃}}  {𝑪𝑽: {𝑭𝑽_𝒔𝒖𝒃}} + [𝑪𝑽, 𝑭𝑽]

end for-loop-1

{𝑪𝑽: {𝑭𝑺}}  map from a coarse voxel to FS-voxels within it

for each [𝑪𝑽, {𝑭𝑽_𝒔𝒖𝒃}] pair in {𝑪𝑽: {𝑭𝑽_𝒔𝒖𝒃}} map do for-loop-2:

 for each local fine voxel 𝐹𝑉 in {𝑭𝑽_𝒔𝒖𝒃} do for loop-2.1:

 {𝑷𝑬}  primary edges of 𝐹𝑉

 for each edge 𝐸 in {𝑷𝑬} do for-loop-2.1.2:

 {𝒖𝟏, 𝒖𝟐}  FC-parameters on 𝐸 from triangles of 𝑇 intersecting 𝐸

 {𝑭𝑪}  {𝑭𝑪} + [𝑬, {𝒖𝟏, 𝒖𝟐}]

 end for-loop-2.1.2

 {𝑭𝑺}  {𝑭𝑺} + [𝑭𝑽, {𝑭𝑪}]

 end for-loop-2.1

 {𝑪𝑽: {𝑭𝑺}}  {𝑪𝑽: {𝑭𝑺}} + [𝑪𝑽, {𝑭𝑺}]

end for-loop-2

initiate FSV-rep coarse and fine voxel-space bit-fields using the {𝑪𝑽: {𝑭𝑺}} map

3.8.5 Triangle mesh surface generation

A closed 2-manifold triangle mesh representing the boundary of the modeled object can be

easily generated from the FSV-rep model as previously described in Section 3.7. For this

purpose, each FS-voxel with the FC-point parameters on all of its edges is considered

individually. The closed slicing loops which define an FS-voxel are obtained from the FC-point

parameters. The triangle mesh patch boundary creation algorithm used is developed later in

Chapter 8. In order to create the patch boundary, the occupancy information of each voxel

corner point has to be deduced from the FC-points. Using this occupancy information, a lookup

table provided in Chapter 8 can be used to create the slicing loops which are in fact the patch

boundaries. Considering each slicing loop as a triangle mesh patch boundary, the corresponding

triangle mesh patch is created. All of these patches together form a closed 2-manifold triangle

mesh. The procedure for the generation of a triangle mesh from an FSV-rep model is illustrated

62

as Algorithm 3-3 below.

Algorithm 3-3: Triangle mesh generation from FSV-rep

for each [𝑪𝑽, {𝑭𝑺}] pair in {𝑪𝑽: {𝑭𝑺}} map do for-loop-1:

 for each local FS-voxel 𝐹𝑆 in {𝑭𝑺} do for-loop-1.1:

 {𝑬𝑺}  active edge segments along primary edges of 𝐹𝑆

 {𝑵𝑽}  neighbor voxels of 𝐹𝑆 that are parent voxels of its other edges

 for each voxel 𝑁𝑉 in {𝑵𝑽} do for-loop-1.1.1

 {𝑬𝑺_𝑵}  active edge segments along primary edges of 𝑁𝑉 shared with 𝐹𝑆

 {𝑬𝑺}  {𝑬𝑺} + {𝑬𝑺_𝑵}

 end for-loop-1.1.1

 for each corner point 𝐶𝑃 of 𝐹𝑆 do for-loop-1.1.2

 if any of {𝑬𝑺} attached to 𝐶𝑃 then

 set 𝐶𝑃 occupied

 else

 set 𝐶𝑃 unoccupied

 end if

 end for-loop-1.1.2

 {𝑳}  slice front boundary loop

 (using Algorithm 8-1 in Chapter 8)

 {𝒕}  triangulation with {𝑳} as boundary

 {𝑻}  {𝑻} + {𝒕}

 {𝑭𝑺_𝒆𝒎𝒑𝒕𝒚}  fine-level surface voxels neighbors through the primary edge of 𝐹𝑆

 for each 𝐹𝑆_𝑒𝑚𝑝𝑡𝑦 in {𝑭𝑺_𝒆𝒎𝒑𝒕𝒚} do for-loop-1.1.3

 if 𝐹𝑆_𝑒𝑚𝑝𝑡𝑦 not in {𝑪𝑽: {𝑭𝑺}} then

 𝐶𝑉_𝑝𝑎𝑟𝑒𝑛𝑡  coarse voxel for 𝐹𝑆_𝑒𝑚𝑝𝑡𝑦

 {𝑪𝑽: {𝑭𝑺}}  {𝑪𝑽: {𝑭𝑺}} + [𝑪𝑽_𝒑𝒂𝒓𝒆𝒏𝒕, 𝑭𝑺_𝒆𝒎𝒑𝒕𝒚]

 end if

 end for-loop-1.1.3

 end for-loop-1.1

end for-loop-1

return {𝑻}

63

3.9 Effective memory usage

FSV-rep is voxel based and voxel sub-division of the modeling space generates 𝑁3 voxels

where 𝑁 is the uniform grid resolution. For a voxel model representation, one byte can represent

8 voxels using 1 bit per voxel. For FSV-rep, the uniform grid of voxels is needed only at the

coarse resolution. Hence, the memory usage for the coarse level is 𝑁𝐶
3/ 8 = 𝑁𝐹

3/ (8𝑓3) . The rest of

the memory requirement is only per coarse-level surface voxel. First, on a 64-bit machine, a

map from coarse voxel ids (of 4 bytes size) to pointer (of 8 bytes size) to the coarse voxel object

is needed. With 𝑛𝐶𝑆 coarse-level surface voxels, this map needs 12𝑛𝐶𝑆 bytes. Each coarse voxel

object has a pointer to its sub-space bit-field and a map of local fine surface voxels within it

together adding 24𝑛𝐶𝑆 bytes. Each sub-space bit-field needs 𝑓3/ 8 bytes and a coarse voxel

with 𝑛𝐹𝑆_𝑠𝑢𝑏 fine-level surface voxels within it needs 26𝑛𝐹𝑆_𝑠𝑢𝑏 bytes where 26 is from 2 bytes

for the local id of the fine-level surface voxel and 24 bytes for the 6 FC-parameters (2 per

primary edge). Thus, the effective total memory usage in bytes of an FSV-rep model is

𝑀𝐹 =
𝑁𝐹
3

8𝑓3
+ (36 +

𝑓3

8
)𝑛𝐶𝑆 + 26∑𝑛𝐹𝑆_𝑠𝑢𝑏,𝑖

𝑛𝐶𝑆

𝑖=1

In Equation 3.7, the summation in the last term yields the total number of fine-level surface

voxels, 𝑛𝐹𝑆, for the entire model. Thus, the expression reduces to

𝑀𝐹 =
𝑁𝐹
3

8𝑓3
+ (36 +

𝑓3

8
)𝑛𝐶𝑆 + 26𝑛𝐹𝑆

Further, 𝑛𝐶𝑆 ≅
𝑛𝐹𝑆

𝑓2
 and 𝑛𝐹𝑆 is of the order of 𝑘 × 𝐎(NF

2), giving the approximate value for 𝑀𝐹 in

terms of the fine level grid resolution as

𝑀𝐹 ≅ (
𝑁𝐹
8𝑓3

+ 𝑘 (
36

𝑓2
+
𝑓

8
+ 26)) × 𝜪(𝑁𝐹

2)

(3.7)

(3.8)

(3.9)

64

where 𝑘 is a factor dependent on the shape of the object and size of the modeling space with

respect to the bounding box of the object.

3.10 Case studies and discussion

Four case studies are presented in this section to demonstrate the improved accuracy in the

reconstructed surface from the FSV-rep model. Case 1, 2 and 3 are from different pocket milling

operations with increasing complexity in the cavity shape. Case 1 is a standard 2½-D pocket,

Case 2 a cone-shaped pocket, and Case 3 a hemispherical pocket. Case 4 is a typical integrally

bladed rotor which is a geometrically complex part with free-form surfaces. A triangle mesh

surface is to be generated from the FSV-rep model and also from a basic voxel model, which is

of the same resolution as the fine grid resolution of the FSV-rep model. In place of the exact FC-

points used in the FSV-rep model, the basic voxel model uses mid-points of the edges crossing

the object boundary surface as simple approximates of the FC-points. This is to illustrate the

significance of the FC-points in the FSV-rep model. Connecting these approximated FC-points

into a triangle mesh patch is then done for each surface voxel following the same procedure

outlined in Section 3.8.5.

3.10.1 Model accuracy and memory efficiency

It is evident from Figure 3-15 and 3-16 that the FSV-rep models yield much smoother

surfaces. The reconstructed triangle mesh surfaces from the FSV-rep models are also much

more accurate as compared with the input mesh models. Hausdorff distance analysis was

performed in Meshlab software [72] between each reconstructed mesh surface and the

corresponding input mesh surface at 2 million uniformly sampled points. As can be seen in

65

Table 3-1, both the mean and root mean square (RMS) errors are much smaller for the meshes

generated from the FSV-rep models. The maximum errors are of similar magnitudes to those in

the basic voxel models due to the incapability of FSV-rep to correctly model sharp edges. This

is, however, easily resolved by available existing sharp edge restoration techniques [70, 71].

Figure 3-15 Triangle mesh surfaces generated from a basic voxel model (top) and from the FSV-

rep model (bottom) for the pocket milling case studies.

Figure 3-16 Triangle mesh surfaces generated from a basic voxel model (left) and from the

FSV-rep model (right) for a complex IBR geometry.

66

The memory efficiency of the FSV-rep model compared to other voxel models can be

demonstrated via a simple quantitative comparison. For a single-level basic voxel model, the

grid resolution 𝑁 is inversely proportional to the permitted error. As the associated memory

requirement is of the order of 𝚶(𝑁3), the memory load quickly becomes unbearable if the

permitted error keeps reducing. Figure 3-17 plots the memory requirement of a basic voxel

model using 1 bit per voxel with decreasing error limit. It is clear from the figure that for a basic

voxel model, it becomes exorbitant to further reduce the error due to the huge memory cost. The

FSV-rep model, which uses sparse and multi-level voxel representation, is able to reach a desired

grid resolution with a much less memory requirement.

For a cubical modeling space of a fine grid resolution of 1,024, a basic voxel model will

need 128 MB. Instead, an FSV-rep model with a coarse grid resolution of 256 and a fine grid

resolution of 1,024 (a sub-division factor of 4) will only need 2 MB for the coarse grid voxel

representation along with additional memory for the fine-grid voxel sub-space within each

surface voxel of the coarse grid. For the sub-division factor of 4, each of these voxel sub-spaces

will need only 8 bytes for the bit field, 8 bytes for a pointer to the bit field, and 4 bytes for

holding the coarse voxel id, totaling 20 bytes. Even with 1 million coarse surface voxels, it will

only use 19.07 MB memory. This yields a significant reduction in memory usage by a factor of

Case

Study

Maximum (mm) Mean (mm) RMS (mm)

Basic FSV-rep Basic FSV-rep Basic FSV-rep

1 0.900 0.751 0.234 0.005 0.242 0.036

2 0.903 0.805 0.218 0.005 0.230 0.033

3 0.925 0.785 0.214 0.005 0.228 0.032

4 0.841 0.635 0.177 0.005 0.202 0.025

Table 3-1 Comparison of errors in the reconstructed triangle mesh surfaces.

67

6 for the FSV-rep model compared against the basic voxel model.

Since the error levels of FSV-rep reduces drastically with the addition of FC-points for

each fine level surface voxels, the resolution of basic voxel models will need to be excessively

high as indicated by the trend in Figure 3-17 to provide comparable accuracy. Thus, it is

irrelevant to compare memory requirement of FSV-rep model of a workpiece and a basic voxel

model that can provide comparable accuracy. The only conclusion we shall make is that basic

voxel models cannot produce models with acceptable visual accuracy.

More importantly, after reaching a limiting fine-grid resolution, the FSV-rep model uses

the FC-points to define the FS-voxels which then lead to a reconstructed triangle mesh surface

with much better accuracy as presented earlier. It is far superior to the common octree

subdivision within the fine-grid surface voxels to improve the accuracy. For the basic voxel

representation using the crossing edge mid-points for surface reconstruction, the accuracy can be

Figure 3-17 Memory requirement of a basic voxel model with decreasing error limit for a

cubical modeling volume of 1,024-mm side-length.

68

quantified as half of the voxel side-length. A simple case is shown in Figure 3-18 with the

smallest octants created with 20-micron side-length within a fine-grid surface voxel of 1.28-mm

side-length in order to obtain 10-micron accuracy. A quantitative evaluation can be made about

the number of octants needed in this simple case. In order to reach the smallest octants across

the black plane boundary within the cubical volume considered, 10,920 octants has to be created

for the whole octree from the root to leaf octants. Computing the FC-points instead for the

cubical volume in this case would involve only 4 point location parameters on the 4 intersecting

edges of the voxel’s edge-frame. This clearly shows that the FSV-rep model will be much more

memory-efficient than an Octree subdivision method for improved accuracy.

As shown in Table 1-1, apart from voxel based models, B-rep solid modeling and vector

modeling have also been used for machining simulation. Out of computational performance

limitations, B-rep is less preferred than the other classes of methods. Among the vector

modeling methods, tri-dexels is a robust and accurate enough method for general milling cases.

Figure 3-18 Octree subdivision to achieve a 10-micron accuracy in a cube of 1.28-mm side-length.

69

FSV-rep is seen to be superior among the voxel space partitioning methods. FSV-rep in fact

gives similar level of accuracy as tri-dexels. This is because both methods are able to sample the

object surface at the intersection points with the grid lines. In case of tri-dexels, the dexels are

along the grid lines and its end points are on the object surface. In case of FSV-rep, the voxel

edges are along the grid lines and the FC-points on the edges of each FS-voxel are also on the

object surface. Given an object, and the tri-dexels and FSV-rep models created for it, for each

dexel that spans across at least one grid point (a point where three orthogonal grid lines

intersect), the end points will have their corresponding FC-points in one of the FS-voxel of the

FSV-rep model. For dexels shorter than the fine voxel edge of FSV-rep and not crossing any

grid point, the corresponding frame-edge segments in the FSV-rep model may get ignored or

fused with another frame-edge segment as shown in Figure 3-13 and described in Section 3.8.4.

This can cause some dexel end points to have no corresponding FC-points but it is statistically

insignificant as seen from our extensive computational tests. For the cases shown in this section,

only 1 out of 54,128 dexel end points in Case 3 and 3 out of 294,562 dexel end points in Case 4

are missing the corresponding FC-points in the FSV-rep model.

The tri-dexel model size in terms of number of dexel end points has been reported to be

roughly of the order of 𝑘𝑇 × 𝐎(𝑁𝐹
2) where 𝑁𝐹 is the fixed grid resolution, same as the finest grid

resolution of FSV-rep, and 𝑘𝑇 is a factor similar to 𝑘 in Equation 3.9 [73]. 𝑘 ≅ 𝑘𝑇 = 6 is true or

an ideal case of an axis-aligned cube just fitting in the tight modeling space. In order to store the

tri-dexel model of the cube in the ideal case using 4-byte long floating point number per end

point and an 𝑁𝐹 × 𝑁𝐹 array of dexel list pointers per coordinate axis direction, this results in

𝑀𝑇 = 48 × 𝚶(𝑁𝐹
2) bytes of memory. The effective memory usage of an FSV-rep model for the

same cube using Equation 3.9 with a sub-division factor 𝑓 = 4 gives,

70

𝑀𝐹 ≅ (
𝑁𝐹

512
+ 172.5) × 𝜪(𝑁𝐹

2) bytes.

For all practical cases

𝑁𝐹

512
< 10, implying 𝑀𝐹 ≅ 182.5 × 𝜪(𝑁𝐹

2).

Thus, 𝑀𝐹:𝑀𝑇 ≅ 3.8 is the approximate ratio of tri-dexels and FSV-rep memory usage for

the ideal case. This is indicative of the ratios observed for all the practical cases in this section as

listed in Table 3-2. Table 3-2 contains an additional Case 5 which is a 500 × 500 × 300 mm3

rectangular block, included to show the scalability of the methods in terms of memory usage. It

is clear that even though FSV-rep takes more memory than tri-dexels, they are both of the same

order of magnitude of 𝐎(𝑁𝐹
2).

The higher memory usage of FSV-rep compared to tri-dexels is justified by its

significantly higher computational speed in model update which will be demonstrated in Chapter

7.

3.10.2 Memory usage for display

As for memory usage for display, the FSV-rep model is superior to other voxel-based

Case

Study

Memory (MB) Ratio

(FSV-rep/Tri-dexels) Tri-dexels FSV-rep

1 0.57 1.68 2.95

2 0.56 1.63 2.91

3 0.56 1.60 2.86

4 3.53 14.80 4.19

5 10.49 32.79 3.12

Table 3-2 Comparison of memory usage for FSV-rep and tri-dexels.

71

models and equivalent to the vector-based tri-dexel model. Direct voxel display without

generating an envelope surface representation will have to render a large number of elements

proportional to 𝑁3 in the case of basic voxel models and proportional to 𝑁2 in the case of

hierarchical voxel models using the octree subdivision. Here, 𝑁 is the grid resolution for the

overall modeling space in each case. To achieve display quality comparable to that of an FSV-

rep model, 𝑁 will have to be much higher for these traditional voxel models as discussed earlier

in this section. This will certainly affect the memory usage for the display in a similar manner.

If a triangle mesh surface is generated from these traditional voxel models for improved

visualization quality, the memory usage for display then becomes that of the triangle mesh being

generated.

For triangle mesh based models, the model size is in general proportional to the number of

triangles in the model. For FSV-rep, the number of mesh triangles generated is proportional to

the number of FC-points. For traditional voxel models, the number of mesh triangles generated

is proportional to the number of voxel edges crossing the modeled object surface. The involved

FC-points and crossing voxel edges have essentially the same count for the triangle mesh

generation. For the case of a tri-dexel model, the number of mesh triangles generated is

proportional to the number of dexel end points. As identified earlier in the section, the number

of dexel end points is almost the same as the number of FC-points in the corresponding FSV-rep

model. As a result, the memory usage for display is deemed equivalent for all of the above

methods for a given fine grid resolution when a triangle mesh is employed for display.

3.11 Summary

The FSV-rep workpiece geometry modeling method developed in this chapter is able to

72

combine the efficiency of multi-level sparse voxel models and the accuracy of boundary

representation approaches such as triangle meshes. Thus we can have model update that are

efficient irrespective of the surface complexities and achieve surface representation accuracy

close to that possible by triangle mesh based B-rep models. In the following chapters, the

efficient way of updating an FSV-rep model and its use for milling simulation is developed.

73

Chapter 4: Three step FSV-rep model update

In this chapter a general efficient method to update an FSV-rep model to reflect volume

removal by a set of abstract volume removal tools is developed. Here “tool” stands for “Boolean

tools” that update an FSV-rep model rather than just a “milling cutter”.

4.1 Objective

Geometry of the final machined part can be accurately and efficiently computed via a

three-step update process for the involved FSV-rep model. The coarse level voxels are to be

updated first to quickly remove the bulk of unwanted material from the workpiece model for a

given set of tool paths. The fine level surface voxels and their corresponding FC-points are then

updated in sequence in order to attain the desired model accuracy without much added

computational load.

4.2 Coarse update

The coarse voxels in an FSV-rep model are used for quickly removing the bulk volume

from the workpiece. Such an update only needs to be approximate and the objective is to ensure

that all the coarse voxels are classified (or marked) properly.

Using set of Boolean volume removal tools {𝑻𝒓𝒆𝒎} for the model update, the coarse level

voxels can be classified as:

(I) definitely inside a 𝑇𝑟𝑒𝑚 (black in Figure 4-1);

(II) definitely outside all the 𝑇𝑟𝑒𝑚 (ash in Figure 4-1); or

(III) possibly intersecting the envelope surface of a 𝑇𝑟𝑒𝑚 (green in Figure 4-1).

The coarse update step will delete the category I voxels from the FSV-rep model and mark the

74

category III voxels as the near-field (NF) voxels for each corresponding 𝑇𝑟𝑒𝑚. The category II

voxels shall be untouched and remain in their current state.

In addition, the coarse update will classify voxels inside the workpiece as category I, II, or

III and then perform the associated marking/unmarking operations in order to reflect the

removed volume from the workpiece. The volume voxel model at coarse level can be used

efficiently for this purpose. Technically the FSV-rep model has only the surface voxels as part of

it. However the coarse level voxel grid is defined for the entire modeling space. Thus converting

the coarse level surface voxel model bit representation does not have any additional memory

cost. Also with the surface voxels already set active, the inner volume voxels can be identified

easily by a linear scan along the voxel space taking one coordinate axis direction as the scanning

direction. From every odd surface voxel encountered to the next even surface voxel, the voxels

in between can be activated. Doing so for all the stacks of voxels along the X axis of the voxel

space at every grid point on YC-ZC coordinate system plane perpendicular to X axis, for

Figure 4-1 An abstract object in a voxel space with voxels classified as Near-field (green), Inner-field (black) and

Outer-field (ash) based on the voxel centre point location with respect to the object surface.

75

instance, the volume voxel model at the coarse level can be obtained for the update purpose.

Without the volume voxel model at the coarse level, the workpiece interior coarse voxels can

still be obtained, but with more involved search methods.

The category III NF-voxels identified from the workpiece interior contain the surface

voxels for the newly machined surface whereas the NF-voxels identified from the already

existing coarse surface voxels are those which are just partially affected. In fact the NF-voxels

identified from such voxels contain the boundary between the newly machined surface and the

unaffected workpiece surface regions. A relaxed proximity check of the voxel center against the

Boolean volume removal tool 𝑇𝑟𝑒𝑚’s envelope surface is used to identify the NF-voxels. If the

voxel side length is 𝐿𝑣𝑐 and the distance of the voxel center from the surface is 𝑑𝑡𝑒, a voxel is

deemed to be an NF-voxel for the tool 𝑇𝑟𝑒𝑚 if

𝑑𝑡𝑒 <
√3𝐿𝑣𝑐
2

where √3𝐿𝑣𝑐 is the “thickness” of the near-field region for the tool envelope which sits in the

middle of the near-field region, which is between the offset surfaces in Figure 4-2.

(4.1)

Figure 4-2 An abstract object with surfaces bounding the Near-field region.

√3𝐿𝑣𝑐

76

The overall coarse update step is outlined in the Algorithm 4-1 below. The coarse update

step is done in two parts. In Part 1, all the interior voxels interior to the Boolean tools are

deactivated as not part of the workpiece volume. Then in Part 2, a list of near-field voxels

{NFV} is created for each Boolean tool 𝑇𝑟𝑒𝑚 according to Equation 4.1. After the two parts are

done for all the Boolean tools, the coarse voxels along the final machined part surface are present

in the resulting {NFV} sets. It should be noted that Part 2 of the algorithm should be done after

Part 1 for all the Boolean tools in order to avoid a coarse voxel from entering into the {NFV} of a

Boolean tool if some subsequent Boolean tool will deactivate it. Such voxels do not need to be

considered as they will not contribute to the final machined part surface geometry.

Algorithm 4-1. Coarse Update

//Part 1

{𝑻𝒓𝒆𝒎} ← set of abstract Boolean volume removal tools

for each 𝑇𝑟𝑒𝑚 in {𝑻𝒓𝒆𝒎} do

 {BV} ← coarse voxels inside/intersecting 𝑇𝑟𝑒𝑚’s bounding box

 for each V in {BV} do

 if V active and V completely inside 𝑇𝑟𝑒𝑚 then

 Set V inactive

 end if

 end for

end for

//Part 2

for each 𝑇𝑟𝑒𝑚 in {𝑻𝒓𝒆𝒎} do

 {BV} ← coarse voxels inside/intersecting 𝑇𝑟𝑒𝑚’s bounding box

 for each V in {BV} do

 p ← center point of V

 if V active and p inside near-field of 𝑇𝑟𝑒𝑚’s envelope then

 {NFV} ← {NFV} + V

 end if

 end for

end for

77

After part 1 of Algorithm 4-1, the intermediate FSV-rep model will be as shown in right

side of Figure 4-3 with all the category I coarse voxels with respect to any of the volume removal

tools deleted.

Also for the coarse update, even though the coarse voxels across the entire bounding box

of each of the volume removal tool 𝑇𝑟𝑒𝑚 has to be considered in Algorithm 4-1, it will not a

critical concern for efficiency. This is because, the voxels associated with the bounding boxes are

directly identifiable from the bounding box corner points and the additional operations to

perform to classify the voxels as Category I, II and III are simple point classification operations.

For the typical tools involved in machining simulation these operations are very simple as we

will see in Chapter 5.

An important output of the coarse update step is the mapping of a specific 𝑇𝑟𝑒𝑚 to its

corresponding {NFV} as shown in Figure 4-4. Part 2 of Algorithm 4-1 creates this mapping and

it can now be used for the fine update step. Further to note, a given coarse voxel can be present

in the {NFV} list of more than one 𝑇𝑟𝑒𝑚.

Figure 4-3 Coarse update with a set of two abstract tools for a FSV-rep workpiece. Initial FSV-rep on left and

coarse updated FSV-rep on right.

78

Recall that the coarse update is a collective voxel removal at a lower resolution. Since the

model update is done at the lower resolution, the involved computational time is not linked to the

accuracy-dependent finest voxel resolution. The coarse update time is only dependent on the

resolution for the coarse voxel level and the number of Boolean tools. More specifically, if the

ratio of the fine to coarse voxel size is 1:4, each coarse voxel removal from the model

corresponds to 64 fine voxels. Thus, voxel removal at the coarse level has 64 times fewer

number of voxels to consider than at the fine level. This will be the case for all the voxels falling

in category I of the coarse voxel update. Thus, the majority of the coarse update is performed at

an execution time faster by a cubic power of the subdivision factor from the coarse to fine levels

when compared to the update of a voxel model with a single fine-level voxel grid.

It is also important to have the multi-level voxel model starting at a coarse resolution

governed by the tool dimensions rather than a complete octree subdivision of the entire modeling

space. This is because only those levels with voxel sizes smaller than the cutting tool size will

contribute to fast removal of the model volume. In particular, only voxels completely inside the

cutting tool will be marked as removed and this will not happen for any higher levels with the

Figure 4-4 The abstract tools with NF-voxel collection for each

identified after coarse update.

79

voxel size larger than the tool size. Thus, if an octree model is used, even if the model size is

overall smaller, all the octants in it will have to undergo subdivision to a particular level during

the simulation adding extra computational load for simulation. This justifies the use of coarse

level surface voxel space as the top most level for FSV-rep models.

4.3 Fine update

From all the 𝑇𝑟𝑒𝑚  {𝑵𝑭𝑽} mappings obtained after the coarse update, inverse mappings

of NFV  {𝑻𝒓𝒆𝒎} is obtained between each coarse NF-voxel and the set of volume removal

tools possibly crossing it.

 Then, in the fine update step for each coarse NF-voxel, the finer voxels within each coarse

NF-voxel have to be classified with respect to each item in {𝑻𝒓𝒆𝒎} as: (I) definitely inside (ash

voxels in Figure 4-5); (II) definitely outside (white voxels in Figure 4-5); or, (III) intersecting

the tool instance envelope surface (blue voxels in Figure 4-5).

Figure 4-5 The abstract object in voxel space with actual surface voxels identified (blue).

80

Algorithm 4-2 outlines the overall fine update step.

Algorithm 4-2. Fine Update

NVR ← number of coarse voxels to refine

for i from 1 to NVR do

 CV ← ith coarse voxel to refine

 {𝑻𝒓𝒆𝒎} ← the volume removal tools crossing CV

 {FV} ← fine-level voxels within CV

 for each FV in {FV} do

 p ← center point of FV

 for each 𝑇𝑟𝑒𝑚 in {𝑻𝒓𝒆𝒎} do //Part 1

 if FV active and FV an interior voxel for 𝑇𝑟𝑒𝑚 then

 Set FV inactive

 end if

 end for

 for each 𝑇𝑟𝑒𝑚 in {𝑻𝒓𝒆𝒎} do //Part 2

 if FV active and p inside near-field of 𝑇𝑟𝑒𝑚’s envelope then

 if FV a surface voxel for 𝑇𝑟𝑒𝑚 then

 Add FV to surface voxel model

 end if

 end if

 end for

 end for

end for

Like in the coarse update step, category I of the fine voxels is removed from the model

(Part 1 of Algorithm 4-2 above) and category II voxels are untouched. Category III voxels are

the new surface voxels for the updated model which are now identified as those voxels with

confirmed intersection with the final machined part surface.

The category III voxels in Fine update are identified by exactly classifying every corner

point with respect to the volume removal tool as inside or outside. For this purpose, a signed

distance value [68], 𝑑𝑖, from the tool surface for each corner point can been used. A voxel is

81

deemed as category III only if the condition,

−8 < ∑
𝑑𝑖

|𝑑𝑖|
7
𝑖=0 < 8

is satisfied.

As mentioned in Chapter 3, Section 3.3, some voxels through which the tool envelope

surface passes are missed in this definition of surface voxels. Those are the voxels for which the

envelope surface either penetrates the faces of the voxels alone or just trims the interior portion

of the voxel frame edges. This is acceptable as such intersections do not add any useful

information to the FSV-rep model. Without such voxels itself the model is 26-separating.

Further, for the voxels with face only penetration, there is no slicing loop or slice-front formed to

define an FS-voxel. For edge-interior only trimmings, this could change the set of FC-points for

the FS-voxel. However, as we will see in Chapter 8, such gaps are eventually closed for

generating a surface approximation efficiently. Thus, in order to keep the fine update process

also efficient, identification of these voxels is not attempted.

Figure 4-6 Fine update process with the abstract tools on the coarsely updated FSV-rep (left) and 26-separating

fine level surface model obtained (right).

82

The FSV-rep model is updated (Part 2 of Algorithm 4-2 above) with the new surface

voxels to get the machined part geometry represented as a surface voxel model at the finest

resolution (Figure 4-6). It should be noted that the surface voxel model obtained after the fine

update step is 26-separating. A 26-separating voxel model is one that ensures all the voxels

which an object surface passes through by crossing the edge-frames of the voxels is part of the

model. This facilitates the generation of a closed 2-manifold triangle mesh for the desired model

accuracy as will be shown in Chapter 8.

4.4 Frame update

Once all of the surface voxels at the finest resolution are obtained, frame update has to be

done to these fine surface voxels in order to create the FS-voxels. The FS-voxels are created by

computing the FC-points for all the fine surface voxels. For a fine surface voxel edge, all the

tools intersecting it can be retrieved from the NFV  {𝑻𝒓𝒆𝒎} mapping. Line-surface intersection

points are then calculated between each voxel edge and the tool item in {𝑻𝒓𝒆𝒎} as a set of

potential FC-points. From that set, those intersection points not inside of any tool item are the

actual FC-points on the surface of the final machined part (Figure 4-7).

For each FC-point, its location on the voxel edge has to be stored in a way to facilitate the

subsequent reconstruction of the closed 2-manifold triangle mesh surface from the FS-voxels.

The FSV-rep model uses a pair of point locations on each voxel edge to define the FS-voxels.

An FC-point is to be stored as the first or second point in the pair according to the surface normal

of the generating tool instance. If the surface normal component along the voxel edge is

positive, the FC-point is stored at the second location in the pair and at the first location if the

surface normal component is negative. This ensures proper orientation of the triangles in the

83

reconstructed triangle mesh surface.

4.5 Summary

The three-step update logic developed in this chapter is a generic approach that can be used

to obtain the FSV-rep model of a part created by material removal from an initial blank

workpiece. It has the quality to perform the model update in three steps utilizing the coarse, fine

and frame levels of the FSV-rep model. The coarse update with all the volume removal tools

before fine and frame updates helps fast model update without much influence by overlapping

tools performing bulk volume removal. Further the frame update to achieve sub-voxel accuracy

via FC-points involves simple line-surface intersections for the frame edges of already identified

fine surface voxels.

Figure 4-7 Frame-update step creating FC-points (yellow spheres) within the fine-level surface voxels. Zoomed in

view shows the set of intersection points on voxel edges from intersecting tool items (yellow or pale blue).

84

Chapter 5: Tool swept volume representation

In the previous chapters we have developed FSV-rep, a new modeling method for

machining simulation, and a three-step update process to update an FSV-rep model with a set of

volume removal tools. The tool paths used for milling operations using the milling cutters has

some characteristic features that can be used to develop specific models of the volume removal

tools to update the FSV-rep workpiece in such cases. In this chapter we will consider various

categories of milling cutters and tool paths and develop suitable representation of the volume

removal tool models.

5.1 Requirement

Tool path sampling which takes tool instances along a tool path at a regular interval is one

option to update the in-process workpiece in milling simulation and has been previously used to

generate approximate cutter swept volumes [16,74]. Other approaches such as solid modeling

[75, 76], two-parameter family of spheres [19] and analytical definitions [28] also have been

used to obtain the cutter swept volume and update the in-process workpiece. Nonetheless, this

work employs the method of sampled tool instances for general cases as it is a generic method

that is applicable to all type of tools and tool paths and comparatively simple to implement for

the voxel model update. And for the simple swept volumes, a more suitable representation

named as Swept volume regions (SVRs) is developed that can provide faster and more accurate

results in FSV-rep update.

The use of sampled tool instances is beneficial for tool paths involving combined

translation and rotation of tool axis. For such tool paths, the swept volume definition as a

boundary representation using envelope surfaces is complicated. In fact the intersection of voxel

85

frame edges with envelope surfaces of such swept volumes do not always have closed form

solutions. Thus from practical point of view, the usage of sampled tool instances is the optimal

option for such tool paths.

However, for a specific set of simple but widely used categories of tool paths, the envelope

surfaces are available as surfaces with closed form solutions for their intersection with the voxel

frame edges. Thus the boundary representation of the swept volumes for such tool paths can be

directly used for FSV-rep workpiece update without sampling the tool paths. There are two

benefits from doing so.

(1) First, it will effectively reduce the number of intersection operations needed per voxel

frame edge involved in the frame update step. Instead of updating the frame edge using

all the sampled tool instances crossing it, intersection with the envelope surfaces of the

swept volume alone will be enough.

(2) Second, the FC-points obtained will be exact for the surfaces created by such tool

paths. This is possible as the “sampling scallop” that would occur from the use of

sampled tool instances is not an issue anymore for update with the swept volume itself.

5.2 Selection of tools swept volume representation

The beneficial use of swept volume for FSV-rep update is possible in case of all straight

cutting tool paths up to 3-axis machining. It is possible in case of planar arc tool paths also to

update FSV-rep directly with the swept volume as there exist closed form solution for

intersection of frame edges with all the envelope surfaces possible in these cases.

The swept volume B-rep is applicable to certain other cases like tool paths with pure

rotation of the tool axis as well as some tool paths with combined rotation and translations of the

86

tool path but with no translation along the screw axis. However these are not significant

categories to consider with not much operations involving such tool paths. The general 5-axis

milling tool path definitely have envelope surfaces that do not have closed form solution for

intersection with the voxel frame edges. Thus for all these cases a general sampled tool instances

along the tool path is decided to be used as the approximation.

The flow chart in Figure 5-1 below shows the suggested choice of tool swept volume

representation based on the analysis above.

For uniformity of the initial concepts developed the circular arcs are not included above for

swept volume B-rep. It should be possible to extend the concepts developed to such paths as well

in the future. The following sections provide the model of the sampled tool instances and the

specific definition of tool swept volume as Swept Volume Regions (SVRs) for use in the update

of FSV-rep with the various types of tool paths as they are fit for.

Tool

path

Is tool path category

planar or 3-axis straight cutting?

Use sampled tool instances

Use swept volume B-rep

No

Yes

Figure 5-1 Decision diagram to select the swept volume representation based on tool

path category.

87

5.3 Tool instances

An easy-to-use cutter envelope formulation utilizing the distinct features of a milling cutter

is employed in this work to facilitate machining simulation with an FSV-rep workpiece model.

For general voxel based modeling, to perform a model update according to a Boolean operation

between a target model and a tool model, the approach is to derive the voxel representation of the

tool and perform a voxel space Boolean operation for the target voxel model. However, for a

milling cutter, it is axis-symmetric with a parametric profile of revolution commonly defined by

the APT specification [57] as shown in Figure 5-2.

𝛼

ℎ

𝑅𝑟

𝑅𝑧

𝑅

𝛽 0.5𝐷

𝐷 𝐷

𝑅 𝑅

0.5𝐷

𝐷

Flat end mill Ball end mill Taper ball end mill Bull nose end mill

Figure 5-2 General and specific milling cutter profiles with major dimensions.

88

This regularity of the cutting tool profile can be efficiently used without the need to

generate an explicit voxel model for the tool at every tool location along the tool path. The FSV-

rep workpiece model voxels can be directly classified with respect to the tool surface envelope

using simple algebraic expressions that involve the classification of voxel center and corner

points in relation to the tool axis and cutting profile. Further, an axis-aligned bounding box of

the milling tool can be used to reduce the search for the nearby model voxels to consider.

The basic operations to perform using the tool instances are voxel center and corner point

classification and intersection of the voxel frame edges with the tool envelope surfaces.

Point classification

For a tool instance with tool location at 𝑃 (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) and axis orientation along

𝐴𝑑𝑖𝑟(𝑖𝑎, 𝑗𝑎, 𝑘𝑎), the tool co-ordinate system [𝐶]𝑇
𝑀 is defined by Equation 2.2 (the parameter t is

omitted here and Model coordinate system M is used in place of Global coordinate system G).

The point to be classified 𝑃(𝑥𝑝, 𝑦𝑝, 𝑧𝑝) can be transformed into the Tool coordinate system

from the Model coordinate system as below:

𝑃𝑇 = [𝐶]𝑇
𝑀 × 𝑃𝑀

If L is the perpendicular distance of the point from the tool axis given by,

𝐿 = ((𝑦𝑝
𝑇)
2
 + (𝑥𝑝

𝑇)
2
)

1
2

The point can be classified as follows:

𝑃𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = {

𝑖𝑛𝑠𝑖𝑑𝑒, 𝑖𝑓 𝐿 < 𝑅(𝑧𝑝
𝑇)

𝑜𝑢𝑡𝑠𝑖𝑑𝑒, 𝑖𝑓 𝐿 > 𝑅(𝑧𝑝
𝑇)

 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑜𝑜𝑙 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

were 𝑅(𝑧𝑝
𝑇) is the tool radius at height of 𝑧′ = 𝑧𝑝

𝑇 along the axis which is calculated for the

(5.1)

(5.2)

(5.3)

89

selected tools on a case specific basis in Appendix A.

Voxel classification

Similar to a point, a voxel as a whole also has to be classified according the volume

removal tools as we saw in Chapter 4, Sections 4.2 and 4.3. Specifically, we are interested in

classifying the voxels as near/inner/outer field voxels during the coarse update. Also in the fine

update step we require further classification as surface voxels or not for the near-field voxels.

Identification of a voxel as surface voxel is possible using the above point classification

approach performed on each of the voxel corner points. A class value, 𝑐𝑣𝑎𝑙,𝑖 can be given to the

ith corner point according to the following rule:

𝑐𝑣𝑎𝑙,𝑖 = {
−1, 𝑖𝑓 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛𝑠𝑖𝑑𝑒
 1, 𝑖𝑓 𝑝𝑜𝑖𝑛𝑡 𝑜𝑢𝑡𝑠𝑖𝑑𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

Then the voxel is a surface voxel if the following condition holds:

−8 < ∑𝑐𝑣𝑎𝑙,𝑖

7

𝑖=0

< 8

In order to identify the field of the voxel as near/inner/outer field, a more involved check

is required as shown below:

The idea of the near field is defined to swiftly collect a very good candidate set of voxels

such that all the surface voxels are present in the set and the set size is minimal. In this work,

near-field voxel identification based on the consideration of voxel center point alone is

attempted. The condition followed is to consider any voxel as a near-field voxel if its center

point’s perpendicular distance from the tool envelope surface is less than the maximum possible

value for that distance. The maximum possible distance of the center point, 𝑑𝑚𝑎𝑥,𝑐𝑝 is half of the

(5.4)

(5.5)

90

body diagonal,

𝑑𝑚𝑎𝑥,𝑐𝑝 =
√3𝐿𝑣
2

Now we define a voxel as a Near-field voxel if the perpendicular distance of its center point from

the tool envelope surface, 𝑑⊥,𝑐𝑝 is less than or equal to 𝑑𝑚𝑎𝑥,𝑐𝑝,

𝑑⊥,𝑐𝑝 ≤ 𝑑𝑚𝑎𝑥,𝑐𝑝

𝑑⊥,𝑐𝑝 ≤
√3𝐿𝑣
2

The value of 𝑑⊥,𝑐𝑝 is thus required to be computable for all the tools considered for a given

voxel space. Again the coordinates of the voxel center point in the tool coordinate system, 𝑃𝑣𝑐𝑒𝑛
𝑇

is obtained from the point coordinates in the model coordinate system using the Equation 5.1.

Then the expression for 𝑑⊥,𝑐𝑝 in case of different tool types considered is listed below in Figure

5-3. Since the center point is transformed to tool coordinate system, this classification is easy for

any tool orientation and thus application for multi-axis milling tool paths.

A voxel identified as not a near-filed voxel can be further classified as outer-field or inner-

field by considering the center point classification as interior or exterior. If class value for the

centre point 𝑃𝑣𝑐𝑒𝑛
𝑇 is 𝑐𝑣𝑎𝑙, a voxel is inner-field if,

𝑐𝑣𝑎𝑙 = -1 and 𝑑⊥,𝑐𝑝 > 𝑑𝑚𝑎𝑥,𝑐𝑝

and it is outer-field if,

𝑐𝑣𝑎𝑙 = 1 and 𝑑⊥,𝑐𝑝 > 𝑑𝑚𝑎𝑥,𝑐𝑝

Also, it is to be noted that the classification of a voxel as inner-field is only applicable

provided the voxel is small enough to be completely fitted within the tool volume in any

(5.7)

(5.8)

(5.9)

(5.6)

(5.10)

91

arbitrary tool orientation. Otherwise, it is only meaningful to classify the voxel as Near-field or

outer-field.

 Zone1

𝑑⊥,𝑐𝑝

 Zone3

 Zone2

Zone1

Zone2

Zone1

 Zone2

Zone1

Zone3

 Zone2

Figure 5-3 Projection distance for points in different zones for selected cutters.

Frame edge intersections

Actual intersection of the frame edges of the surface voxels with the envelope surfaces of

the tool instances is required during the frame update step to create the final FS-voxels. Because

𝐷

 𝑑⊥,𝑐𝑝

 𝑑⊥,𝑐𝑝 𝑑⊥,𝑐𝑝
 𝑑⊥,𝑐𝑝

 𝑑⊥,𝑐𝑝

 𝑑⊥,𝑐𝑝

 𝑑⊥,𝑐𝑝
 𝑑⊥,𝑐𝑝

 𝑑⊥,𝑐𝑝 𝑑⊥,𝑐𝑝

92

the tool instances are all volumes of revolutions of simple profile curves, the envelope surfaces

are all primitive shapes with explicit expression for their intersection with the frame edges.

Further, the frame edges in consideration are of a definite small size based on the fine voxel size.

This can be easily used to identify which of the set of side and bottom envelope surfaces are

intersecting with the frame edge in consideration. Following Figure 5-4 list out for the various

tools in consideration, the potential envelope surfaces to consider for intersections with the frame

edges based on the zone for the edge end points.

*inside implies “inside tool volume”

Figure 5-4 Selected tools and the intersection calculation needed for various types of voxel edges crossing it.

If one end point in zone1 and

other inside*,

 Intersect with side surface.

If one end point in zone2 and

other inside,

 Intersect with bottom.

Otherwise,

 Intersect with complete tool

If one end point in zone1 and

other inside above ball center,

 Intersect with side surface.

If one end point in zone2 and

other inside below ball center,

 Intersect with bottom.

Otherwise,

 Intersect with complete tool

If one end point in zone1 and

other inside above point C2,

 Intersect with side surface.

If one end point in zone2 and

other inside below point C2,

 Intersect with bottom.

Otherwise,

 Intersect with complete tool

𝐶2

If one end point in zone1 and other

inside above torus center line,

 Intersect with side surface.

If one end point in zone2 and other

inside below torus center line,

 Intersect with bottom.

Otherwise,

 Intersect with complete tool

93

5.4 Swept Volume Regions (SVRs)

Using swept volume boundary representation directly is not the best possible option to

update the FSV-rep workpiece. It will then require the operation similar to those that were

involved in the generic update using the sampled tool instances. Those operations, the point

classification with respect to the tool envelope volume and frame edge trimming again with the

same are simple in case of a single tool instance. But for a swept volume boundary

representation, the operations will be more involved as explained below.

For point classification, unlike the tool instance, the swept volume does not have an axis of

symmetry in general. Therefore, the classification operation will require to consider all the

envelope surfaces or at least the ruled surface generated by the tool axis swept along the path.

More importantly, the later trimming operation of the voxel frame edges in order to update the

FC-points becomes much more affected. For each frame edge the envelope surfaces intersecting

it has to be identified. A simple swept volume boundary representation will need some additional

operations to identify the candidate surfaces from all of its envelope surfaces.

Furthermore, in order to localize the workpiece voxels considered for update, the bounding

box of the tool instance could be efficiently used. But for a tool swept volume with the path in 2

or 3-axis, the bounding box can become much bigger with longer tool paths. This will not be a

problem for 1-axis tool paths as the bounding box is axis-aligned. But for 2-axis and 3-axis tool

paths, the bounding box localization will be less effective with longer tool paths as many voxels

entirely outside the swept volume will be considered. This can adversely affect the coarse update

which has its efficiency greatly relying on the localization using the bounding box for bulk

volume removal.

In order to address the above identified problems, we need a concept that is less intensive

94

than the sampling approach in terms of the number of volume removal tools involved but more

effective in localization than a single swept volume boundary representation. For this purpose,

we define the Swept Volume Regions (SVRs) with a given tool swept volume in a voxel space.

Swept volume of 1-axis and 2-axis linear and arc tool paths can be represented as boundary

representation using envelope surfaces having parametric expressions as detailed in following

sections. The boundary representation divides the surface of the swept volume into different

areas characterized by the boundary elements present over there. Here boundary elements are the

envelope surfaces, the edges formed by the intersection of these envelope surfaces and the

vertices formed further by the intersection of these boundary edges.

For a general APT tool moving along a 3-axis linear tool path, there are 43 boundary

elements to consider as shown in Figure 5.6. Out of these, 12 are surfaces, 21 are curves and 10

are points. In order to effectively use the swept volume B-rep elements for the FSV-rep update,

intersection calculation of the voxel frame edges with all these surfaces has to be possible

without iterative solution techniques. For the general end mill swept along a 3-axis linear tool

path, 4 of the boundary surfaces are planar and 4 are conical. All of these surfaces are quadric or

simpler and has reasonably simple calculation of intersection with a frame edge.

Apart from these, there are two toroidal surfaces and two envelope surfaces formed by the

sweeping of the toroidal section of the cutter. These four surfaces have higher degree quartic

surface representations. Still there are already available techniques in the literature with closed

form solution for the intersection of these surfaces with line segments representing z-vectors [58,

77]. These techniques can be applied to voxel frame edges as well with minor modifications to

apply them for the frame edges along the horizontal axes.

Thus, with the assurance that it is possible to perform direct intersections with all the

95

envelope surfaces of the swept volume B-reps in consideration, we now attempt to ensure these

computations are done localized with the definition of Swept Volume Regions (SVRs). SVRs are

defined with respect to the different boundary elements of the swept volume boundary

representation as follows:

SVRs: The distinct portions of the swept volume overlapping with a set of voxels of the

considered voxel space such that same boundary elements of the swept volume is present

in all of these voxels and the number of these elements is the minimum possible.

Figure 5-5 Top Left: Boundary representation of the swept volume in case of a linear 2-axis path with flat end

mill. Top right: The partition of the swept volume into various regions (The outer half of the tool instances at the

two ends are ignored and handled separately for simplicity). Bottom: An exploded view showing 14 of the swept

volume regions (SVRs) formed by the swept volume portion considered.

96

The above definition of SVRs enables to consider only a minimum number of boundary

elements from the swept volume B-rep during the fine and frame updates of the FSV-rep

workpiece within each coarse surface voxel. More clearly, for fine and frame update of a voxel,

only the portion of the envelope surface passing through it shall be considered. In other words,

once a voxel is identified as associated with a particular SVR type, it is fully known what is the

boundary condition inside the voxel from the swept volume passing through it (Figure 5-5). This

aspect ensures that the calculations in the fine and frame updates are minimal in terms of the

number of envelope boundary elements that should be considered once the SVRs and associated

coarse voxels are identified in the coarse update step of FSV-rep model update.

In earlier works the Boolean operations between triangle mesh or B-rep solid models and

other models have been accelerated using octree localization. Each octree node would be

provided with the boundary elements from models of the Boolean targets and tools. Then in

order to update the target geometry, the intersection calculation within an octree node for each of

its boundary elements has to consider only the boundary elements from the tools that is present

inside the same node. But this poses an issue to create the new surfaces for the updated

geometry. Essentially the space subdivision methods have been used so far only to accelerate the

Boolean operation. The model for the updated geometry would have to be still in a B-rep format.

This would require additional stitching process and associated topology manipulations.

With the use of SVRs to update an FSV-rep model and generate the triangle mesh model

for the machined surface only when it is required, the above-mentioned issues can be resolved.

In the following sections, SVRs for general end mill and for usually used milling cutters will be

developed.

97

5.5 SVRs for General end mill

The general end mill is parametrically represented by the APT definition using 7

parameters as shown in Figure 5-2. The most general tool path that need to be considered for a

general SVRs case is the 3-axis linear case. SVRs for all other cases is a reduced version of the

general case. For developing the general case SVRs, the swept volume boundary representation

shown in Figure 5-6 can be used.

As can be seen from the boundary representation, there are 12 faces, 21 edges and 10

vertices for the B-rep (excluding those forming the top cover, which is irrelevant for model

update). Corresponding to each of the boundary element, there is an SVR as well generating a

total of 43 boundary SVRs. The internal volume of the swept volume also creates an additional

internal SVR. Together there are 44 SVRs for the general linear tool path case.

It should be noted that there are 44 SVRs assuming the voxels of the voxel space are small

enough to keep them as separate. If the voxel space grid spacing is such that there can be no

voxels which can have just the portions of one face alone, then the corresponding SVR type will

“merge” to other SVR types around. However, in the following section we assume that the

Figure 5-6 B-rep for general end mill swept along a 3-axis path.

98

voxels are small enough such that the SVRs doesn’t merge and all SVRs that is possible are

present for the considered tool swept volume. The various SVR types and their distinguishing

feature in terms of the boundary condition within the associated voxels is provided in the next

section.

5.6 SVR types

The different SVRs can be categorized based on type of primary boundary element present

in it. Thus as shown in Figure 5-7, there are

(1) face based SVRs,

(2) edge based SVRs and

(3) vertex based SVRs.

For face based SVRs, there is just one surface element of the swept volume B-rep that

passes through the constituent voxels. This surface portion will divide each of the SVR voxels

into two portions – one portion completely overlapping with the SVR and the other portion

completely outside. Based on the envelope surface whose portion is present in the particular

SVR voxel, the surface can be planar, cylindrical, spherical, conical, toroidal or a toric silhouette

sweep. All these surfaces can be favorably used for updating the voxel frame edge. The same

operations can be used for the fine/frame update as well within the coarse surface voxels

identified as associated with the face based SVRs.

For edge based SVRs, there are two surfaces incident on the edge passing through the

constituent voxels. Thus the portion of the voxel completely overlapping with the SVR is defined

by the intersection of inner portions of both the surfaces. Here inner portion is defined for a

surface element as one from which the surface normal is pointing away. In order to perform fine

99

and frame updates within the edge based SVRs, the specific surface to be considered to update a

fine voxel or its frame has to be identified from the two surfaces incident on the edge. This can

be done reasonably easily with the single valued nature of the surface elements along the axial

direction.

And for vertex based SVRs, there can be up to 4 surfaces passing through the constituent

voxels as incident on a given vertex. Consequently, the update operation within the vertex based

SVRs are the most involved. However, the general approach will be similar to that possible for

edge based SVRs.

The basic flow of the operations inside an SVR is same for all SVRs of a given type. Only

difference will be the type of surfaces to use. As a result the conceptual definition of SVRs

provide a suitable way to device the update operations at various regions of the swept volume in

a localized and generic manner.

1

2

3

1. Face based SVR voxel

2. Edge based SVR voxel

3. Vertex based SVR voxel

1

Figure 5-7 General swept volume B-rep and sample voxels overlapping with the three different SVR types.

100

5.7 Application to Flat end mill

The SVRs developed for general end mill can be reduced to simpler definition when the

end mill geometry is simpler. This reduced definition helps for practical usage for a pre-defined

tool while still following the general nature of SVRs for a tool swept volume. As shown in

Figure 5-8, it can be seen that there will be 17 SVRs for a flat end mill moving along a 1-axis or

2-axis planar tool path. For a 3-axis straight cutting tool path, the flat end mill will create 19

SVRs. Out of the 17 SVRs in the planar case, 5 are face based, 8 are edge based and 4 are vertex

based. For the 3-axis case, 6 are surface based, 9 are edge based and 4 are vertex based. Further

the surfaces involved are planar or cylindrical alone for the planar case. For the 3-axis case, the

bottom SVR has a surface that is elliptical cylinder. All these enable fast and simpler intersection

calculations for FSV-rep update with SVRs.

Figure 5-8 1-Axis and 3-Axis flat end mill swept volume B-reps showing different boundary

elements defining the associated SVRs. (a) 1-axis, (b) 3-axis, and (c) 3-axis side view.

Elliptic cylinder

(a)

(b)

F4 F2 F3

F1

F5
E1

E2

E3

E4 E5

E6

E7

E8

(c)

F: Face, E: Edge, Vertex

E9

F6

101

5.8 Application to Ball end mill

The Swept volume for a ball end mill in 1-axis tool path will consist of 21 SVRs of which

7 are surface based, 10 are edge based and 4 are vertex based. The swept volume B-rep is

topologically different from that of a flat end mill in 1-axis as the bottom has to be spilt into

three partitions. Unlike flat end mill, the SVRs stay the same for ball end mill on 2-axis and 3-

axis tool paths (Figure 5-9). The surfaces of the swept volume B-rep can be composed of planes,

cylinders, and spheres in case of ball end mill on 1-axis and 2-axis linear toolpaths. For 2-axis

circular tool paths, the bottom surface is toroidal in place of cylindrical which causes more

computations. For 3-axis tool paths, the bottom surface is still a cylinder as the silhouette of the

spherical bottom along the toolpath direction is a circle (Figure 5-9). Thus the intersection

computations involved for FSV-rep update with ball end mill up to 3 Axis linear tool paths are

also simple and computationally fast as will be shown with results in Chapter 7, Section 7.3.

Figure 5-9 1-Axis and 3-Axis ball end mill swept volume B-reps showing the different

boundary elements defining the associated SVRs.

102

5.9 Application to Taper ball end mill

Taper ball end mill swept volume has the same topology as that of the cylindrical ball end

mill (Figure 5-10). Thus the number and type of SVRs required is also the same. However

instead of the cylindrical surfaces at the ends, the taper end mill swept volume has conical

surfaces. Also the two planar surfaces on the sides are no more vertical. Still the computational

complexity for intersection of voxel frame edges with the surfaces is similar to that of the ball

end mill thus having potential to be efficient in FSV-rep update with SVRs.

5.10 Application to Bull nose end mill

Bull nose end mill with a filleted bottom edge is another popularly used milling cutter. It

has application for pocket milling with ability to generate both the rounded corners and planar

face for the pocket floors.

The swept volume B-rep of bull nose end mill moving along 1-Axis or 2-Axis tool paths

have simple boundary surfaces even though there are more of them compared to other simpler

Figure 5-10 1-Axis taper ball end mill swept volume B-rep showing the different

boundary elements defining the associated SVRs.

103

milling cutters considered above. More specifically, there can be 9 face based SVRs, 16 edge

based SVRs and 8 vertex based SVRs. Nevertheless, the surfaces are still primitive types of

planes, cylinders and torus. Even for torus, as the tool axis is along one of the coordinate system

axis, the intersection calculation with the voxel frame edges are still involving quadratic

equations.

However, for bull nose end mill machining in 3-axis, the bottom surface has a fourth

degree swept surface (Figure 5-11). It has been modeled as a silhouette sweep in earlier works

[58] to update Z-map models. This procedure can be adapted for the intersection calculations

involved in the FSV-rep update as well.

5.11 Summary

The tool swept volume representation has to be decided considering the possibility to

update the FSV-rep workpiece model with simple and closed form equations. It should also be

selected based on the accuracy required for the generated surface. From all the considerations, it

Figure 5-11 3-axis bull nose end mill swept volume B-rep showing different

boundary elements defining the associated SVRs.

104

is identified that sampled tool instances along the tool path are the feasible approach for general

multi axis tool paths. For simple linear tool paths, an advanced “Swept Volume Regions”

definition is possible that can utilize the multi-level voxel model of FSV-rep workpiece for

localized computations during the fine and frame updates.

105

Chapter 6: FSV-rep machining with tool swept volumes

In Chapter 4 we have seen how to perform the three-step update of FSV-rep workpiece

with a set of abstract Boolean tools. In Chapter 5 we have seen that for tool paths with arbitrarily

varying orientation such as with tool axis rotation and in case of curved planar tool paths the

intersection operations between voxel edges and the swept volume is not direct. Thus, we

decided to use sampled tool instances along such tool paths. However, for simple linear tool

paths with fixed axis orientation, the sampled tool instances approach is unnecessary. First, there

are explicit solutions for the intersection operations. Second, the tool instances approach is

inferior to swept volume approach in case of accuracy. Further, when the explicit closed form

solutions are available, the computations will be far less when one single swept volume

boundary representation is used instead of a set of tool instance envelope surfaces. Thus, this

chapter aims at selectively using the swept volume and the derived SVRs in case of compatible

tool paths and the sampled tool instances in case of other tool paths for the FSV-rep workpiece

update via the three-step process.

Hence forth, “simple swept volume” will mean swept volume for straight cutting tool paths

with fixed tool orientation. When speaking about swept volumes for tool paths in general,

“general swept volume” will be used.

6.1 Objective

In order to efficiently update the FSV-rep workpiece using simple swept volumes, a

specific way of using it is apparently required. As seen in previous Chapter 5, using the whole B-

rep for updating all the FS-voxels is not minimal in number of intersection checks needed. Thus,

we had developed the concept of Swept Volume Regions in the Chapter 5 that has the inherent

106

property of localization to consider the least number of boundary elements of the swept volume

while updating the workpiece voxels associated with it. Further to use the SVRs effectively, the

three-step update process can be adapted to work for them.

Also for the update with sampled tool instances, the FSV-rep update steps can utilize the

axisymmetric nature of the milling cutters to improve the calculations involved. The basic

queries possible on such a tool instance such as point classification, voxel classification and

frame edge intersections can be efficiently combined to have an efficient update logic with tool

instances.

The basic objectives in either case are the following:

 Utilize three-step update possibility of FSV-rep to localize and minimize the

intersection operations,

 Utilize swept volume representations that provide closed form solutions for the

intersection calculations whenever applicable.

In the following sections, the modifications required for the three-step update process will

be identified, in order to efficiently use the simple swept volumes with SVRs or the sampled tool

instances as the required case may be for a particular tool path. The overall logic is laid out in

Section 6.2. Then in the following sections, the specific changes required for each of the steps

and the additional steps needed are developed.

6.2 Overall update logic

The essential philosophy of the three-step update process is to minimize intersection

calculations, maximize the binary update of voxels and further accelerate the binary operations

using coarse voxel grids for the bulk volume removal. This should be preserved for use of SVRs

107

and tool instances. The overall concept of the update logic selectively using SVRs or sampled

tool instances is schematically shown in Figure 6-1.

The swept volume representations should first perform the bulk volume removal by binary

update of the coarse voxel model. For this an efficient approach is needed to identify the coarse

voxels that need update. For simple swept volumes with SVRs, it is inefficient to consider the

coarse voxels in the entire bounding box of the swept volume representations as the bounding

volume can be very large for long tool paths even in case of 2-axis machining. Thus, a better

technique to perform the coarse update is required which can identify the voxels to be updated

without considering the entire axis aligned bounding box region.

In case of the sampled tool instances, the axis-aligned bounding box itself is the optimal

localization option. This is because any alternative to first obtain the voxel model of the tool

instance will involve intersection calculations or some voxelization approach as done for the

TSVs

Blank

model

Coarse

update

{CSV  {SVRs}}

{TI  {NFVs}}

Coarse updated

simulation model

Fine

update

{CSV  {SVRs}}

{TI  {NFVs}}

Fine updated

simulation model

Frame

update

Machined

model

Figure 6-1 Overall update logic with SVRs and Tool instances used separately.

108

original triangle mesh. Directly considering all the voxels in the tool instance bounding box will

avoid the intermediate voxelization step. The additional computation to perform for all the

voxels in the bounding box is simple point classification operations developed in Chapter 5,

Section 5.3.

Once the coarse voxel model is updated, the voxels that need fine update should be

identified. In the generic update method developed in Chapter 4, the “near-field (NF) voxels”

were used for this purpose to identify the candidate voxels without much overhead.

However, the NF-voxels are not necessarily having any fine level surface voxels and were

utilized to avoid costlier intersection calculations or more involved checks needed to identify the

actual surface voxels. In case of simple swept volume representation with SVRs, the exact coarse

surface voxels (CSVs) itself can be obtained with acceptable computational load. Also with the

number of boundary elements drastically reducing with use of one swept volume in place of

many sampled tool instances, the overhead from intersection calculations are in a way negligible.

This makes it viable to obtain actual coarse surface voxels itself for fine and frame update in case

of the SVR based approach.

For sampled tool instances, due to the same reasons, use of NF-voxels itself is the efficient

way for collecting the candidate voxels which will contain the potential coarse surface voxels

that need further refinement.

In order to perform the fine update for the coarse voxels, a technique utilizing the specific

qualities of SVRs or tool instances is to be developed. In case of tool instances, the fine update

can use the axisymmetric nature of the tool envelope geometry to perform the voxel

classification operations involved. However, it will have to consider all fine voxels of the

subspace within a coarse voxel. This is not a requirement when using SVRs for fine update. The

109

directional factor of the definite envelope surfaces and the fact that all the envelope surfaces

present within a coarse surface voxel together divide it into two subspace portions, one inside the

swept volume and the other outside, can be used together to perform the fine update without

considering all the voxels of the subspace.

Similar to the fine update, frame update can also utilize the uniformity and definiteness of

SVRs to directly update the fine level surface voxels. Further to note, the frame update can still

be performed with computations of same complexity as those in case of tool instances. This is

courtesy of the fact that the swept volumes in considerations always have envelope surfaces with

closed form solution for intersection with voxel frame edges. For tool instances as well, the

frame update is computationally feasible as the tool geometry is composed of arc and line

revolutions alone.

The specific details of the revised coarse-fine-frame update steps are provided in the

following sections. First, the technique to easily identify the tool paths that can use SVRs is

developed in Section 6.3. Next the reformed three-step update process to use SVRs and tool

instances are provided separately in Sections 6.4 and 6.5 respectively.

6.3 Tool paths categorization

Identifying the category for a given tool path is crucial for the effective use of the category

specific SVRs definition. Here category refers to whether the tool path is for 1, 2 or 3 axis

machining, and whether the tool axis is along positive or negative direction of one of the

coordinate system axis. The tool type and the path curve type should also be used along with the

path category for effective implementation of the selective update using SVRs or sampled tool

instances.

110

All the tool paths should be considered in the model coordinate system (MCS) for FSV-rep

update. Therefore, we have to take into account the cases where the tool axis is along any of the

three axes of MCS. Further the tool axis can be along the positive or negative direction of the

particular coordinate axis. Thus, there are 6 possible alignment for the tool axis along the tool

path. All these are with the prior limitation that only linear tool paths with axis aligned tool

orientation is considered. The term “axis aligned” here meant along one of the MCS coordinate

axes. Further, for such toolpaths, there can be translation along any of the three MCS coordinate

axis directions.

For the convenience of the techniques used later in the coarse update, it is also beneficial to

distinguish the three MCS coordinate axes as “feed direction coordinate axis, 𝐹𝑑𝑖𝑟”, “lateral

direction coordinate axis, 𝐿𝑑𝑖𝑟” and “axial direction coordinate axis, 𝐴𝑑𝑖𝑟” with respect to the

path as follows: In case of 1-axis tool paths, the distinction is apparent. The tool path is aligned

along a particular MCS axis which becomes the 𝐹𝑑𝑖𝑟 axis. The MCS axis along which the tool is

oriented becomes 𝐴𝑑𝑖𝑟 axis and the third axis becomes 𝐿𝑑𝑖𝑟. In case of 2-axis and 3-axis paths

the 𝐴𝑑𝑖𝑟 is still apparent. However, the distinction of the other two MCS axis needs further

considerations as explained next.

For 2 and 3 axis tool paths, once the 𝐴𝑑𝑖𝑟 is set, the coordinate plane containing the other

two MCS axis is clear. The projection of the tool path curve onto this plane, 𝑡𝑝𝑝𝑟𝑜𝑗 gives the

necessary information to identify the 𝐹𝑑𝑖𝑟 and 𝐿𝑑𝑖𝑟. It is apparent that 𝑡𝑝𝑝𝑟𝑜𝑗 is identical to the

path curve 𝑡𝑝 itself in case of 2-axis tool paths. Here 𝑡𝑝𝑝𝑟𝑜𝑗 is used to treat 2-axis and 3-axis tool

paths in the same way. With 𝑡𝑝𝑝𝑟𝑜𝑗 identified, the MCS axis in the projection plane to which the

𝑡𝑝𝑝𝑟𝑜𝑗 is more inclined is the preferred scanning direction, 𝐹𝑑𝑖𝑟 and the other MCS axis has to be

the Lateral sweeping direction, 𝐿𝑑𝑖𝑟 as shown in Figure 6-2.

111

The MCS origin for FSV-rep model is preferably set at the lower-left corner of the back

extreme of the blank workpiece bounding box. This effectively ensures that all the tool paths

transformed into the MCS are in the first octant. Further for the purpose of identifying 𝐹𝑑𝑖𝑟,

𝐿𝑑𝑖𝑟, and 𝐴𝑑𝑖𝑟, the tool path direction along the positive and negative direction of a particular

MCS axis is immaterial.

To apply all these conditions and distinguish the MCS axes as 𝐴𝑑𝑖𝑟, 𝐹𝑑𝑖𝑟 and 𝐿𝑑𝑖𝑟, a four-

component anaylsis of the path curves can be used as follows:

For tool path defined by two lines 𝑐1 and 𝑐2 for the trajectory of two points on the tool

axis, 𝑑𝑋𝑐1 = 𝑥(𝑐1(1)) − 𝑥(𝑐1(0)), 𝑑𝑋𝑐2 = 𝑥(𝑐2(1)) − 𝑥(𝑐2(0)), 𝑑𝑋𝐴1 = 𝑥(𝑐2(0)) −

𝑥(𝑐1(0)), and 𝑑𝑋𝐴2 = 𝑥(𝑐2(1)) − 𝑥(𝑐1(1)). Then,

[𝑑𝑋] = {𝑑𝑋𝑐1, 𝑑𝑋𝑐2, 𝑑𝑋𝐴1, 𝑑𝑋𝐴2}

𝑋𝐿𝑎𝑏𝑒𝑙 = 𝛿(𝑑𝑋𝑐1) × 8 + 𝛿(𝑑𝑋𝑐2) × 4 + 𝛿(𝑑𝑋𝐴1) × 2 + 𝛿(𝑑𝑋𝐴1)

(6.1)

(6.2)

Figure 6-2 The tool path projected on the base plane (perpendicular to 𝐴𝑑𝑖𝑟) and the 𝐹𝑑𝑖𝑟(scanning direction) and 𝐿𝑑𝑖𝑟

(lateral sweeping direction) identified for XY as base plane.

112

where 𝛿(𝑥) is equal to 0 if 𝑥 is 0 and is equal to 1 otherwise. Similarly, 𝑌𝐿𝑎𝑏𝑒𝑙 and 𝑍𝐿𝑎𝑏𝑒𝑙 are

also obtained from [𝑑𝑌] and [𝑑𝑍]. Then Table 6-1 provides the 𝐴𝑑𝑖𝑟, 𝐿𝑑𝑖𝑟 and 𝐹𝑑𝑖𝑟 for the valid

combinations of 𝑋𝐿𝑎𝑏𝑒𝑙, 𝑌𝐿𝑎𝑏𝑒𝑙 and 𝑍𝐿𝑎𝑏𝑒𝑙.

Table 6-1 Coordinate axis characterization using the tool paths employing SVRs.

XLabel YLabel ZLabel 𝐴𝑑𝑖𝑟 𝐹𝑑𝑖𝑟 𝐿𝑑𝑖𝑟

0 3 12 Y Z X

0 12 3 Z Y X

0 12 15 Z Y X

0 15 12 Y Z X

3 0 12 X Z Y

3 12 0 X Y Z

3 12 12 X Y if |𝑑𝑌𝑐1| >

|𝑑𝑍𝑐1|

Z otherwise

Z if |𝑑𝑌𝑐1| >

|𝑑𝑍𝑐1|

Y otherwise

12 0 3 Z X Y

12 0 15 Z X Y

12 3 0 Y X Z

12 3 12 Y X if |𝑑𝑋𝑐1| >

|𝑑𝑍𝑐1|

Z otherwise

Z if |𝑑𝑋𝑐1| >

|𝑑𝑍𝑐1|

X otherwise

12 12 3 Z X if |𝑑𝑋𝑐1| >

|𝑑𝑌𝑐1|

Y if |𝑑𝑋𝑐1| >

|𝑑𝑌𝑐1|

113

XLabel YLabel ZLabel 𝐴𝑑𝑖𝑟 𝐹𝑑𝑖𝑟 𝐿𝑑𝑖𝑟

Y otherwise X otherwise

12 12 15 Z X if |𝑑𝑋𝑐1| >

|𝑑𝑌𝑐1|

Y otherwise

Y if |𝑑𝑋𝑐1| >

|𝑑𝑌𝑐1|

X otherwise

12 15 0 Y X Z

12 15 12 Y X if |𝑑𝑋𝑐1| >

|𝑑𝑍𝑐1|

Z otherwise

Z if |𝑑𝑋𝑐1| >

|𝑑𝑍𝑐1|

X otherwise

15 0 12 X Z Y

15 12 0 X Y Z

15 12 12 X Y if |𝑑𝑌𝑐1| >

|𝑑𝑍𝑐1|

Z otherwise

Z if |𝑑𝑌𝑐1| >

|𝑑𝑍𝑐1|

Y otherwise

6.4 Update using SVRs

The FSV-rep model update with SVRs for linear three axis tool paths shall follow the

general three-step update logic but with some necessary customization for each step as described

in the following sub-sections.

6.4.1 Coarse update with SVRs

In this step of FSV-rep update, all the coarse level surface voxels of the FSV-rep

workpiece model that are completely inside any tool swept volume have to be deleted. The new

114

coarse level surface voxels for the newly generated workpiece surface area has to be identified as

well. As identified previously, the approach of considering all the voxels in the bounding box of

the tool swept volume is not optimal because of the possibility that bounding box can be

unfavorably big and less localizing in case of 2 and 3 axis tool paths. The most efficient way will

be some operation which will explicitly solve for the set of voxels belonging to the tool swept

volume. This operation of identifying the parent voxel is well defined for a point by Equations

3.1 and 3.2. For curves and surfaces, the point on the geometric element should be defined

parametrically and the Equations 3.1 and 3.2 should be used for each of the point. To solve for

all the voxels through which a curve or surface passes, this approach should sample enough

points irrespective of the surface curvature and orientation. For the triangle mesh voxelization

done in order to create the initial FSV-rep, a variant of this approach was done for the edges of

each triangle. And for the face interior area, an advancing front approach could be used

effectively. It could be efficient and appropriate for a triangle voxelization because the surface

voxel identification for a planar element is possible without intersection calculations. In case of

swept volume boundary representation, this is not guaranteed always as the envelope surfaces

can be cylindrical or other shapes with curvature even in case of the simple tool paths in

consideration. Thus, a computationally simpler approach is required for the purpose of coarse

update with tool swept volume.

Without scanning the entire bounding box voxels, the approach essentially becomes one of

a type of voxelization. Still it should be applicable to swept volumes with any boundary elements

but with constant swept tool orientation. Since the tool orientation is fixed, we have a case where

the voxelization approach can be done localized using the swept volume projection 𝑠𝑣𝑝𝑟𝑜𝑗 on to

the base plane perpendicular to the tool orientation (Figure 6-2). Essentially, we are moving from

115

axis aligned bounding box to a tighter envelope provided by the boundary of 𝑠𝑣𝑝𝑟𝑜𝑗.

The boundary of 𝑠𝑣𝑝𝑟𝑜𝑗 defines a set of voxels {𝑽𝑺𝑽𝒑𝒓𝒐𝒋 } covered by its extrusion along

the tool orientation direction 𝐴𝑑𝑖𝑟. The voxels we are interested in, specifically the surface and

volume voxels of the swept volume are a subset of {𝑽𝑺𝑽𝒑𝒓𝒐𝒋 }. In order to avoid scanning through

all of the voxels in {𝑽𝑺𝑽𝒑𝒓𝒐𝒋 }, we can perform a simple 2D scan in the base plane within the

𝑠𝑣𝑝𝑟𝑜𝑗 and consider the vertical stack of voxels at each step along the 2D scan. This is

convenient as our swept volumes has a fixed tool orientation and their projection onto the base

plane will consistently generate a well-defined 𝑠𝑣𝑝𝑟𝑜𝑗 without self-intersecting boundary.

The 2D scanning of shapes with simple boundary is a problem with many popular

solutions of which the sweep line approach is of special attraction for its computational and data

structural efficiency [78]. Thus, our approach of swept volume voxelization is an extension of

sweep line algorithm into a “sweeping plane voxelization algorithm” for swept volumes of fixed

tool orientation.

The distinction of 𝐹𝑑𝑖𝑟 and 𝐿𝑑𝑖𝑟 comes to benefit for a computationally favorable definition

of the sweeping plane voxelization algorithm. The 𝐹𝑑𝑖𝑟 is the preferred primary sweeping

direction and 𝐿𝑑𝑖𝑟 is the preferred secondary or lateral sweeping direction. The choice of primary

and secondary sweeping directions is in fact after a trade-off consideration between

computational benefit and implementation efforts and following the law of diminishing returns.

Algorithm 6-1 for the sweeping plane based coarse update in case of 1, 2 and 3 axis tool

swept volumes with general and typical tools is provided below:

Algorithm 6-1: Coarse update with a swept volume

For each step iF along 𝐹𝑑𝑖𝑟

 For each step iL along 𝐿𝑑𝑖𝑟

116

 B ← base plane perpendicular to 𝐴𝑑𝑖𝑟

 {L} ← 4 grid lines along 𝐴𝑑𝑖𝑟 at locations {iF, iF+1} × {iL, iL+1}

 {P} ← intersection points of {L} with the current bottom surface element

 V ← voxel containing the max({P})

 𝐼𝑑𝑥𝐴 ← 𝐴𝑑𝑖𝑟 index of V voxel

 For all voxels with 𝐴𝑑𝑖𝑟 index from 𝐼𝑑𝑥𝐴+1 to 𝐼𝑑𝑥𝐴𝑡𝑜𝑝 // 𝐼𝑑𝑥𝐴𝑡𝑜𝑝 is current𝐴𝑑𝑖𝑟index of top cover

 Delete the voxel from workpiece model

 End

 End

End

In the above algorithm, once the sweeping direction is identified, each swept volume will

have different scanning sections based on the boundary elements at the two extremes along the

lateral direction. For the 2-axis case shown in Figure 6-3a, there can be 3 to 7 sections based on

the angle between feed and scanning directions (Figure 6-3b). The boundary element at the

bottom can vary along the lateral direction for tools like bull nose end mill and taper ball end

mill. A sub-range for the sweep along the lateral direction has to be identified to separately

handle these sub-sections.

 (a) (b) (c)

The basic idea of scanning with sweeping-plane is as follows: First the range for scanning

is obtained in terms of the start and end voxels layer along the primary sweeping direction. For

Figure 6-3 Different steps of the coarse update for tool paths using SVRs. (a) Top view of a planar

straight cutting swept volume in voxel space, (b) different scanning regions based on bounding

elements, and (c) Inner coarse voxels deleted.

117

each layer, the bound for lateral sweeping is then identified. For each step along the lateral sweep

direction, the bottom and top voxels for the stack of swept volume voxels are then identified. The

coarse update then essentially deletes the workpiece voxels falling in this stack.

6.4.2 Fine update with SVRs

After the coarse update, we have the mapping of each SVR to the set of coarse surface

voxels {𝑪𝑺𝑽} of the FSV-rep model associated with it. It is noteworthy that this mapping is

superior to the 𝑇𝑟𝑒𝑚  {𝑵𝑭𝑽} mapping we had conceptualized as possible in Chapter 4. Similar

to the inversion applied to the 𝑇𝑟𝑒𝑚  {𝑵𝑭𝑽}, an inversion for the current map gives a CSV 

{𝑺𝑽𝑹} mapping. Here CSVs are actual surface voxels with definite presence of envelope

surfaces inside unlike the NFVs. Further for each SVR present inside a CSV, the portion of the

CSV overlapping with it is apparent from the nature and type of the particular SVR as detailed in

Chapter 5, Section 5.6.

With the definiteness of SVRs, the fine update for a CSV is in a similar scanning fashion

as the coarse update but within the additional bounds from the CSV subspace. Essentially the

aim of fine update of each CSV is to delete the fine voxels of the subspace within it if the fine

voxel is completely within any of the SVRs passing through it (Figure 6-4). The Algorithm 6-2

for fine update within a CSV is provided below:

Algorithm 6-2: Fine update within a coarse surface voxel using SVRs

For each SVR present in the CSV

 For each step iF along 𝐹𝑑𝑖𝑟

 For each step iL along 𝐿𝑑𝑖𝑟

 B ← base plane perdicular to 𝐴𝑑𝑖𝑟

 {L} ← 4 grid lines along 𝐴𝑑𝑖𝑟 at locations {iF, iF+1} × {iL, iL+1}

 𝑆𝑢𝑟𝑓𝑏𝑡𝑚 ← the active bottom surface elements of the SVR for {L}

118

 {P} ← intersection points of {L} with 𝑆𝑢𝑟𝑓𝑏𝑡𝑚

 V ← voxel containing the max({P})

 𝐼𝑑𝑥𝐴 ← 𝐴𝑑𝑖𝑟 index of V voxel

 For all voxels with 𝐴𝑑𝑖𝑟 index from 𝐼𝑑𝑥𝐴+1 to 𝐼𝑑𝑥𝐴𝑡𝑜𝑝

 Delete the voxel from workpiece model

 End

 End

 End

End

In the above algorithm the active bottom surface element is the bottom bound for the SVR

within the coarse surface voxel considered that is present across the particular stack of fine

voxels considered. For side face based SVRs, this can be the bottom floor of the subspace within

the voxel as the side face is vertical for cylindrical end mills (flat/ball/bull-nose end mills). Also

the above algorithm reduces to simpler versions based on the SVR types. For face based SVRs

there is only one swept volume surface element within the associated voxels. Thus, intersection

Figure 6-4 Coarse surface voxels identified for fine update using SVRs (left) and two sample coarse

surface voxels after the fine update (right).

119

points computation is needed only with one surface. For edge and vertex based SVRs, two or up

to four surface elements may be present. The active bottom surface element has to be identified

for each stack of voxels based on the location of the stack of voxels with respect to the projection

of the edge elements onto the subspace floor.

6.4.3 Frame update with SVRs

The objective of frame update is to refine the final fine surface voxels. This requires

intersection of the voxel edge frame with the SVRs passing through each fine level surface

voxel. We can once again utilize the CSV  {𝑺𝑽𝑹} mapping available and used previously for

fine update. After the fine update, the subspace within a particular CSV is having correct status

for all the fine level voxels within. Performing frame update within a CSV only after fine update

with all the SVRs present within has a merit. This ensures that a fine voxel that is a surface voxel

with respect to a particular SVR shall not be frame updated if it was deleted by the fine update

by another SVR within the CSV. This is beneficial as fine update requires only intersection of

the voxel frame edge along the 𝐴𝑑𝑖𝑟 as we saw in previous Section 6.4.2 whereas frame update

for a particular surface voxel will need intersection of all the primary edges with the SVR

envelope boundary.

The common idea for frame update with any SVR within a CSV again starts with scanning

over a base plane within the CSV. In this case, instead of performing delete operation for a range

of voxels in each vertical stack, the surface voxels at the end are only updated with trimming

operation for the frame edges (Figure 6-5). Further this is done provided the surface voxel is still

an active part of the FSV-rep workpiece. The following Algorithm 6-3 detail the general update

logic for various categories of SVRs:

120

Algorithm 6-3: Frame update within coarse surface voxels

For each SVR present in the CSV

 For each step iF along 𝐹𝑑𝑖𝑟

 For each step iL along 𝐿𝑑𝑖𝑟

 B ← base plane perpendicular to 𝐴𝑑𝑖𝑟

 {L} ← 4 grid lines along 𝐴𝑑𝑖𝑟 at locations {iF, iF+1} × {iL, iL+1}

 𝑆𝑢𝑟𝑓𝑏𝑡𝑚 ← the active bottom surface elements of the SVR for {L}

 {P} ← intersection points of {L} with 𝑆𝑢𝑟𝑓𝑏𝑡𝑚

 {V} ← surface voxels from voxels for min({P}) to max({P})

 For each V in {V}

 If V voxel not active

 Skip to next V

 Update FC-points for the V voxel’s edge frame

 End

 End

 End

End

6.5 Update with Tool instances

In the previous sections, the specific methodology for performing the three-step update

using SVRs were developed. It required some specialized techniques to enable the coarse fine

and frame level updates efficiently using the salient features of SVRs for localization. In this

Figure 6-5 A coarse surface voxel with frame update performed from a face

based SVR viewed along 𝐴𝑑𝑖𝑟 .

121

section, the three-step update methodology will be specialized for use of sampled tool instances

having axisymmetric geometry.

Sampled tool instances are the suitable approach for approximating general multi-axis tool

paths as we saw from the discussion in Chapter 5. With sampled tool instances for tool paths,

swept volume is approximated with a set of tool instances sampled sufficiently along the tool

path such that the union of all these tool instance volumes is as close as possible to the swept

volume. Each tool instance along the tool path, 𝑇𝑖 has a specific orientation and tip location. The

swept volume 𝑉𝑠𝑤𝑒𝑝𝑡 is then,

𝑉𝑠𝑤𝑒𝑝𝑡 ≈∑{𝑇𝑖}

where the approximation error depends on the forward sampling interval along the tool path and

hence on the range of 𝑖 in the above equation,

6.5.1 Sampling interval selection

The sampling interval along the tool path is the deciding factor of the effectiveness of

sampled tool instance in closely approximating the swept volume. Any sampling interval will

have an associated sampling scallop which is the error from approximation present only on the

simulation part surface and not on the actual machined. The sampling scallop 𝜖𝑓𝑙𝑎𝑡 for a given

sampling interval, 𝐿𝑠 or conversely the minimum sampling interval for a given sampling scallop

limit is easy to derive in case of a flat end mill (of radius 𝑅𝑡) creating a planar face by side

milling:

𝜖𝑓𝑙𝑎𝑡 = 𝑅𝑡 − √𝑅𝑡
2 −

𝐿𝑠2

4

(6.3)

(6.4)

122

However, for general tool paths and cutter types, it is complicated to obtain due to the

varying curvature of the machined surface and the and tool radius along the axis. Thus, for

general cases a different guideline for sampling interval is required. In this work the sampling

interval is set to be less than or equal to the spacing of the grid for which the tool path is sampled

– coarse grid spacing for coarse update and fine grid spacing for the fine and frame updates.

A sampling interval less than or equal to the relevant grid spacing ensures that almost all

the voxels that are affected by an ideal swept volume are collected by the set of sampled tool

instances as well. This also gives a very much acceptable sampling scallop in the case of planar

face machining by side milling considered above:

In this work, the maximum voxel size for the coarse grid is set via the cutting tool size as

𝐿𝑣𝑐 <
𝐷

√3
≈ 𝑅𝑡

where D is the diameter of selected cutting tool. This is to ensure the voxel is small enough to

be completely inside a tool instance and thus be removed by the coarse update part 1. With this

value, the sampling interval and the resultant sampling scallop in the above case becomes,

𝐿𝑠 = 𝐿𝑣𝑓 =
𝐿𝑣𝑐
𝑓
=
𝑅𝑡
𝑓

𝜖𝑓𝑙𝑎𝑡 =
𝑅𝑡
2𝑓
(2𝑓 − √4𝑓2 − 1)

The sampling scallop as a percentage of cutter radius, 𝑅𝑡 for typical values of sub-division factor

𝑓 are given in Table 6-2. Even though this is the value for planar side machining, it is quite

representative as the value for simulation of a convex surface machining will be lesser than this.

For simulation of concave surface machining, the sampling scallop will be higher related to the

(6.5)

(6.6)

(6.7)

123

curvature of the concave surface. This can however be reduced by sampling along the cutter

contact curve instead of the cutter location curve.

Table 6-2 Sampling scallop for flat side milling at various FSV-rep subdivision factors.

𝑓 𝜖𝑓𝑙𝑎𝑡 as % of 𝑅𝑡

2 3.17

4 0.78

8 0.19

16 0.05

6.5.2 Coarse update with tool instances

The main operation involved in the first part of coarse update to bulk remove the coarse

voxels completely inside any tool instance as shown in Figure 6-6 is to classify the voxel with

respect to the tool instances as inner-field or otherwise. Equations 5.7-5.10 developed in Chapter

5, Section 5.3 gives the field classification of a voxel with respect to a tool instance. This can be

used for the purpose.

The second part of coarse update to collect the Near-field voxels of each tool instance that

is active part of FSV-rep workpiece after the first part can also use the same set of equations.

Thus, the coarse update Algorithm 4-1 developed for the set of general volume removal

tools in Chapter 4, can be used with the appropriate equations in place as below:

Algorithm 6-4. Coarse Update with tool instances

{TP} ← list of the milling tool paths

for each TP in {TP} do //Part 1

124

 {TI} ← set of sampled tool instances along the TP

 for each TI in {TI} do

 {BV} ← coarse voxels inside/intersecting TI’s bounding box

 for each V in {BV} do

 if V active and V completely inside (Equation 5.9) TI then

 Set V inactive

 end if

 end for

 end for

end for

for each TP in {TP} do //Part 2

 {TI} ← set of sampled tool instances along the TP

 for each TI in {TI} do

 {BV} ← coarse voxels inside/intersecting TI’s bounding box

 for each V in {BV} do

 p ← center point of V

 if V active and p inside near-field (Equations 5.7) of TI’s envelope then

 {NFV} ← {NFV} + V

 end if

 end for

 end for

end for

 Figure 6-6 Coarse update with a set of sampled axisymmetric tool instances along a tool path.

125

6.5.3 Fine update with tool instances

Fine update for the NF-voxels has to perform essentially the same activity as the coarse

update but now within each NF-voxel using the set of tool instances passing by them (Figure 6-

7). Algorithm 4-2 developed in Chapter 4, Section 4.3 is to be reused with changes to utilize the

exact equations available for tool instances. Also, all the fine voxels within the coarse NF-voxel

has to be checked against each tool instances unlike the fine update using SVRs. This is because

the tool instance orientation can be in any arbitrary direction and there is no fixed 𝐴𝑑𝑖𝑟 as that

could be used for SVRs.

Unlike the coarse update which had to only classify voxels as near-field and inner-field,

fine update has to further categorize the near-field voxels as surface voxels or not. Equation 5.5

developed in Chapter 5, Section 5.3 can be used for this.

Figure 6-7 Fine update with set of sampled tool instances for a tool path, creating the fine level surface

voxels.

126

The modified fine update algorithm for sampled tool instances is given below:

Algorithm 6-5. Fine Update

NVR ← number of coarse voxels to refine

for i from 1 to NVR do

 CV ← ith coarse voxel to refine

 {TI} ← tool instances crossing CV

 {FV} ← fine-level voxels within CV

 for each FV in {FV} do

 p ← center point of FV

 for each TI in {TI} do //Part 1

 if FV active and FV an interior voxel (Equation 5.9) for TI then

 Set FV inactive

 end if

 end for

 for each TI in {TI} do //Part 2

 if FV active and p inside near-field of TI’s envelope (Equation 5.7) then

 if FV a surface voxel (Equation 5.5) for TI then

 Add FV to surface voxel model

 end if

 end if

 end for

 end for

end for

6.5.4 Frame update with tool instances

The frame update concept developed in Chapter 4, Section 4.4 can be used with exact

equations for the intersection of frame edges with tool instances. The axisymmetric nature of the

milling cutters provides quadric or toroidal surfaces for the tool envelope. The intersection

calculations are all feasible and thus frame update can be done in definite steps.

The representation process of frame update for a set of sampled tool instances is given in

127

Figure 6-8 Frame update for the fine level surface voxels creating the FC-points (yellow spheres) from

the intersection points on the frame edges (yellow or blue sphere in the zoomed in view).

Figure 6-8. Each tool that is crossing a fine level surface voxel is used to obtain the intersection

points on the frame edges that tool instance is intersecting. Finally the intersection point that is

not inside any of the tool instance is kept as the FC-point on that frame edge as shown in the

zoomed in view in Figure 6-8.

6.6 Summary

In this chapter we could identify the appropriate ways in which the FSV-rep workpiece

should be updated using sampled tool instances for general multi-axis tool paths and SVRs for

linear three-axis tool paths. In both cases, the efficient three-step update logic could be suitably

employed. This ensures potential mixed use of the two type of swept volume representations for

appropriate tool paths in a general machining operation.

128

Chapter 7: Simulation system implementation and case studies

In order to evaluate the performance of FSV-rep in use for machining simulation a

prototype system was implemented and a series of case studies were done. The prototype was

developed with C++ programming in Qt environment using Microsoft VC++ compiler. All case

studies were done on a Windows 10 PC with 8 GB RAM and 3.3 GHz processor. The following

sections provides the details of the implemented simulation system for machined part geometry

computation and also the discussion of result for various case studies.

7.1 Implementation details

The FSV-rep model with two levels of voxel grids (a coarse grid and a fine grid) was

employed in the implementation of this work. The ratio of the fine-grid voxel size to the coarse-

grid voxel size was set as 1:4. A fine grid spacing of 1 mm was used resulting in a 4 mm coarse

grid spacing. One-dimensional array of binary variables (bit-array) was used to represent the 3-

dimensional grid of voxels making the voxel spaces. As stated previously, the coarse grid is to

span the entire modeling space and the fine-level voxel grids are needed only within the coarse

surface voxels that need refinement.

 In the FSV-rep model, an integer ID is used to identify the bit in the bit-array

corresponding to a specific voxel, thereby achieving access to any voxel for activation or

deactivation with a constant computing time. Since a single bit is used for a voxel, the voxel ID

has to be converted into a (byte ID, bit ID) combination as below for using bit operators to

access the corresponding bit for a voxel:

𝑏𝑦𝑡𝑒𝐼𝐷 = 𝑓𝑙𝑜𝑜𝑟 (
𝑣𝑜𝑥𝑒𝑙𝐼𝐷

8
) (7.1)

129

𝑏𝑖𝑡𝐼𝐷 = 𝑣𝑜𝑥𝑒𝑙𝐼𝐷 – 𝑏𝑦𝑡𝑒𝐼𝐷 × 8

Since bit operations are very fast and the above conversions are simple, this does not pose a

noticeable computational load in voxel bit access. On the other hand, the memory requirement to

represent the voxel space reduce by a factor of 8 compared to using one byte per voxel.

For the surface voxelization of the original input workpiece shape, the bits corresponding

to the surface voxels are set to 1 after setting all the bits to 0 initially (Figure 7-1). To facilitate

the model update process, a volume voxel model for the coarse voxels is also needed which is

generated by setting the bits corresponding to the voxels inside the model volume to 1 as well.

All the tool paths specified in the milling operation are processed to identify which tool

Figure 7-1 A sample 2D analogy of FSV-rep model and the corresponding bits and

FC-points pair for a particular FS-voxel and its parent coarse surface voxel.

(7.2)

130

path can use SVRs and which shall use sampled instances. Those requiring sampling are sampled

individually with the sampling distance sufficiently small to make sure that all of the affected

voxels are included in the model update process as described in Chapter 6, Section 6.5.1. A tool

path is to be defined by the trajectories of two points on the tool axis with one point being the

tool tip and the other being the point along the tool axis at a particular height from the tool tip

[51]. The sampling interval length on the tool path trajectories has to be set equal to or less than

the voxel edge length in order to capture all of the affected voxels. The tool path is then sampled

to follow this on both of the trajectory curves between two sampled tool instances. The list of

tool instances and swept volumes as appropriate from all the tool paths for the entire milling

operation is thus generated and used to update the FSV-rep model created for the original input

workpiece.

During the update process of an FSV-rep workpiece model at the coarse level, the bits

corresponding to the coarse voxels completely inside any tool instances or SVRs are set to 0 in

the bit-array. The NF-voxel lists are created for the tool instances according to Algorithm 6-4

and Coarse surface voxels lists are created for SVRs according to Algorithm 6-1. Both of these

list are inverted to obtain the mapping from NF voxel to tool instances passing by them,

NFV{𝑻𝒊} and the mapping from Coarse surface voxels to SVRs passing through them,

CSV{𝑺𝑽𝑹}. Both these mappings are created as STL maps using binary search trees that has

Ο(log 𝑛) complexity for element wise operations such as insertions and search. This ensures that

the creation and later use of these mappings are optimal in the system.

Once the mappings are obtained, the bit-array representations of the fine-level voxel grid

within each coarse voxel having an entry in one of the mappings is also updated similarly

according to Algorithm 6-2 or 6-5. Using Algorithm 6-5 an active bit in the bit-array for the fine-

131

level voxel grid is set to 0 if the fine voxel is inside any of the tool instances in the list. Using

Algorithm 6-2 similar operation is done for fine-level voxels within all the voxels having an

entry in the CSV{𝑺𝑽𝑹} mapping.

After the fine updates using all the tool instances and SVRs, the frame update is done for

all the fine level surface voxels finally active within the NF or CSV voxels using the tool

instances or SVRs from the corresponding {𝑻𝒊} or {SVR} lists.

Computing the FC-points for all the edges of a fine surface voxel is not an efficient task as

the computation will be repeatedly done for the same edge from all the four incident voxels. To

avoid the redundant computations, the FS-voxel holding the FC-points only on the primary edges

is to be used. In essence, an edge is deemed as the primary edge with respect to only one voxel.

As a result, every intersecting voxel edge will be the primary edge for just one of the fine surface

voxels. In order to calculate the FC-points for a primary edge, a wire body corresponding to the

portion of the primary edge inside the original workpiece volume is defined first. Then, a

Boolean subtraction operation is performed on that wire body using the solid bodies of the tool

instances or SVRs crossing the primary edge as the Boolean tools. The end points of the

resultant wire bodies (excluding those coinciding with the voxel corners) are the FC-points for

the primary edge. All these Boolean operations for FC-points computation are done with line-

surface intersection operations.

7.2 Simulation cases with tool path sampling

Machining simulation using FSV-rep outperforms other voxel based methods in terms of

computational performance as well other than accuracy and memory efficiency. This is

intuitively apparent from the fact that with more elements to update, the computational time also

132

increases. All basic voxel modeling methods will require significantly higher resolution to

achieve model accuracy comparable to that of FSV-rep. As noted in the Section 3.10.1 of

Chapter 3, an octree sub-division of a fine-level voxel needed 10,920 octants in place of 4 FC-

points of an FS-voxel to achieve the comparable accuracy. It will, thus, be much more time

consuming as well to update such an octree sub-division compared to updating the FS-voxel.

A series of case studies have been carried out using sampled tool instances to demonstrate

the improvement in the computational time of the present method based on the FSV-rep

modeling to compute the milling part geometry as compared to that of the existing method based

on the tri-dexel modeling. The tri-dexel method is employed as a comparison benchmark as it

has been recognized as providing the best combination of modeling accuracy, robustness, and

computational speed among the reported methods in the literature.

In all the case studies in this section, sampled tool instances are used for all the tool paths.

A separate set of case studies is later done with SVRs in Section 7.3. This is to first understand

the performance of FSV-rep vs Tri-dexel for same type of swept volume approximation in both

cases. Sampled tool instances is the appropriate approximation equally applicable to both FSV-

rep and Tri-dexels and also suitable for multi-axis milling simulation. Similar to the way the

FSV-rep workpiece model is updated, the tri-dexel workpiece model is also updated using

sampled tool instances along the milling tool paths. However, as there had been no development

of multi-level representations of tri-dexels, the model update had to be done at the finest

resolution with incremental updates of the affected dexels with each sampled tool instance.

Three basic case studies were devised to illustrate the increasing complexity of the milling

tool paths (Figure 7-2). In all these cases, the machining was done by flank milling with a flat-

end mill of 12 mm diameter. Only one flat-end mill was used to make sure that the computing

133

time results were not dependent on the tool type but on the tool paths and tool orientations. In

Case I, the tool axis was always vertical along the tool paths in the machining of the T-section

part. The bounding box for each tool instance was the minimal in this case. Case II used a tilted

tool with a constant orientation along each tool path and the tool axis being parallel to one of the

axial planes of the workpiece coordinate system. The tool bounding box became larger in this

case. Case III had the tool axis changing along each tool path and thus attaining an arbitrary 3D

orientation. Compared with cases I and II, case III had the largest bounding boxes for the

involved tool instances. Here Cases II and III involve multi-axis toolpaths.

.

Figure 7-3 shows the computational time of the FSV-rep and tri-dexel methods for the

three basic milling cases. It can be seen that the FSV-rep method gives faster performance in all

the three cases and the faster performance is more pronounced from case I to case III. The

improvements are primarily from two factors as shown in Figures 7-4 and 7-5. Figure 7-4 shows

100

200

180
200

160

80

Figure 7-2 Basic case studies: (I) fixed vertical tool orientation; (II) fixed tool orientation but

tilted in one axial plane; and (III) arbitrary and varying tool orientation.

All

dimensions

in mm =
=

=

134

the execution time for simulating the machining of the T-section (case I) part with the increasing

value of the total axial depth of cut ℎ𝑐. For very small values of ℎ𝑐, the tri-dexel method is faster

as the multi-level coarse and fine update of the FSV-rep method does not have much advantage.

However, after ℎ𝑐 is larger than the coarse voxel grid spacing, the FSV-rep method becomes

faster and as ℎ𝑐 further increases, the advantage of the FSV-rep method becomes evident. The

FSV-rep method achieves this via the collective volume removal by batch processing at the

coarse voxel level first before moving to the fine voxel update and FC-points computation. This

facilitates the bulk material removal simulation at a much faster rate as compared to the sole

procedure of intensive intersection calculations of the tri-dexel method to reach the final

machined surface geometry. With the coarse update and identification of the NF-voxels of the

FSV-rep method, only those coarse voxels in the vicinity of the final machined surface are

considered for the subsequent fine and frame update steps. As a result, fine surface voxels and

FC-points are computed only within the coarse voxels relevant to the final machined part

surface.

Figure 7-3 Execution time comparison for computing the machined part geometry.

135

Figure 7-4 Execution time with the increasing total axial depth of cut for the T-section part.

Figure 7-5 Execution time with the increasing forward tilt of the flat-end mill in the

half-immersion side cuts for the T-section part.

136

An analysis has been performed to know the separate execution time for the coarse, fine

and frame update steps in order to have a better understanding of the proportional workload of

the three different steps. As seen in Figure 7-6, most of the execution time is spent on the coarse

update. Since the coarse update step mostly involves a simple binary marking/unmarking

operation, the large proportional workload gives the reason to the much faster performance of the

FSV-rep method. The results also confirm that to obtain the FS-voxels via the frame update to

yield the higher model accuracy, the computational time needed is relatively acceptable after the

coarse and fine updates.

Figure 7-5 illustrates the second factor contributing to the observed performance

improvement of the FSV-rep method. It shows the execution time for simulating the machining

Figure 7-6 Time-splits among the coarse, fine and frame update steps in the FSV-rep method.

137

of the T-section part with the width of the side cuts being only half of the tool diameter. The

machining simulation was done for different values of the forward tilt angle of the flat-end mill

along the tool path. It should be noted that the side cuts were completed using only one half-

immersion tool pass with no tool path overlap. Hence, there is no advantage present for the

FSV-rep method from the aspect of bulk volume removal. As can be seen from Figure 7-5, after

a particular forward tilt angle of the tool axis, the FSV-rep method becomes faster than the tri-

dexel method and the time difference gets bigger with further increase in the tool tilt. This is due

to the volume increase of the tool bounding box as the end mill becomes more and more tilted.

With a larger bounding box, more elements (dexels or voxels) need to be considered and

processed. Nonetheless, in the case of the FSV-rep method, rapid check at the coarse voxel level

is attainable and hence, the effect of the increased bounding box volume is much less.

Furthermore, only point-to-tool distance classifications are involved in the identification of near-

field and surface voxels whereas for the tri-dexels, actual intersection calculations on those

dexels covered by the bounding box are needed to even confirm the intersections.

Figure 7-7 depicts the matching of the FC-points determined in the FSV-rep method with

the end points of the dexel line segments from the tri-dexel method for cases I and III with two

representative zoom-in views. Close to perfect matching was obtained with virtually all of the

FC-points coincident with all of the tri-dexel end points except for some rare cases. Specifically,

all of the tri-dexel end points were attained by the FSV-rep method in case I, and only 6 out of

103,270 tri-dexel end points were not attainable via the FSV-rep update process in case II and 4

out of 60,448 unattainable in case III. The minute difference is caused by an implementation

restriction in the FSV-rep method which limits a maximum of two FC-points to be stored on a

voxel edge. The restriction is put in place for easier data management and subsequent

138

identification of the surface orientation in reconstructing the triangle mesh from the FS-voxels.

The number of mismatch is seen to be fairly insignificant in general as noted from the extensive

computational tests.

Generation of a triangle mesh surface for the machined part geometry is quite

straightforward from an FSV-rep model as we will see in Chapter 8. The triangle mesh surfaces

obtained for the machined part geometry in the three test cases are shown in Figure 7-8. The

meshes are all of good quality and thus useful for the visual verification of the associated

machining operations. More importantly, the meshes will be useful when preforming a

quantitative comparison against their reference design models for identifying potential

machining errors such as gouging and undercuts. It should be pointed out, however, that the

triangle mesh models obtained do not have sharp machined edges between faces. The improved

accuracy of the FSV-rep model over the basic voxel model is due to the triangle mesh surface

Figure 7-7 Matching of the FC-points (green) from the FSV-rep method with the end points of dexels (blue lines)

from the tri-dexel method for case I (left) and case III (right).

139

generated from the FS-voxels and the associated FC-points. The FS-voxels are still not sensitive

enough to capture the sharp machined edges and corners that are not coincident with the voxel

edge-frame. This is in fact a well-known issue for the discrete dexel or voxel representations.

Since the deviation is only along the sharp edges of the machined part, this is a localized issue

and only affects a relatively small area of the model. It can thus be easily resolved by a variety

of triangle mesh processing methods, for example, the method developed and demonstrated by

Ren et al. [67] or Wang et al. [71].

The case studies presented above only involve workpiece model updates with a flat-end

mill. Nonetheless, the overall model update process is general and all types of milling cutters

can be used. As the use of sampled tool instances along a tool path for the workpiece model

update represents an approximation to the exact tool swept volume, it will result in a series of

‘sampling scallops’ left between sampled tool instances as we saw from the discussion in

Chapter 6, Section 6.5.1. It is evident from Figure 7-8 that with a conservative value for the

sampling interval length, the resulting sampling scallop size will be relatively small and not

visible.

Figure 7-8 Triangle mesh surfaces generated from the FSV-rep models.

140

The basic cases considered above were all creating convex shapes. In order to demonstrate

the machining of concave surfaces, two pocket machining cases are done. Table 7-1 shows the

simulation time for Cases 1 and 2 from Chapter 3 to compute the final machined part geometry.

It also shows that FSV-rep is up to 2 times faster than tri-dexels. Here, Case 1 is machined with

simple 2½-D linear tool passes whereas Case 2 uses five-axis contour machining for the conical

side wall. Both machining cases were simulated with a flat-end mill of 12-mm diameter. The

level-based 2½-D milling of Case 1 (machining a 80 × 80 × 40 mm3 square pocket) used a 5-

mm cutting depth per level. Each level was completed via contour-parallel milling tool paths

with a 2-mm side step. For Case 2 (machining a cone-shaped pocket of 40-mm depth, 80-mm

top diameter and 60-mm bottom diameter), the employed milling operations included: (1) level-

based zig-zag 2½-D milling tool paths for roughing as well as for forming the bottom face; (2) a

circular tool path to finish the perimeter of the bottom face; and (3) five-axis surface contouring

tool paths for finishing the side wall. The zig-zag roughing tool paths used a 4-mm side step.

The surface contouring was also completed in multiple steps of 5-mm vertical depth each.

In order to demonstrate the applicability of FSV-rep based simulation in a real industrial

scenario, another case study was done to compute the in-process workpiece (IPW) geometry of

an integrally bladed rotor (IBR). The case study was to obtain the IPW geometry after the

machining operations to create one blade. Figure 7-9 shows the blank workpiece as the initial

Case

Study

Simulation Time (ms) Ratio

(FSV-rep/Tri-dexels) Tri-dexels FSV-rep

1 550 399 0.72

2 3,253 1,564 0.48

Table 7-1 Comparison of simulation time for FSV-rep and tri-dexels in pocket milling.

141

input and the IPW geometry as a triangle mesh generated from the updated FSV-rep model. The

case study involved three milling operations using three ball-end mills (with roughing tool

diameter of 13 mm and two finishing tools of 7 mm and 6 mm diameter) and involving 41,616

tool motion commands. The tool motions were mostly multi-axis. The simulation execution

time for both FSV-rep and tri-dexel based IPW generation is listed in Table 7-2. It can be seen

that the execution speed of FSV-rep is about 2.3 times faster than that of tri-dexels for this case.

The portions of execution time spent for the three FSV-rep model update steps are also given in

Table 7-2. The time split across the three update steps is consistent with the general trend

observed for the basic case studies in Figure 7-6. Also, it is worth noting that the improvement

in execution speed for FSV-rep is mainly from the tilted tool orientation as depicted in Figure 7-

5. The other factor due to bulk volume removal as depicted in Figure 7-4 has less effect here.

This is because the machining operations created more surface area per unit volume removed,

thereby effectively having less bulk volume removed. Nevertheless, contributions from both

factors give a combined faster performance.

Figure 7-9 Industrial case study: (a) blank workpiece; and (b) in-process

workpiece of an IBR with one blade machined.

50 mm

142

As for model accuracy in terms of the sample points on the machined part surface, the

FSV-rep based IPW in the above case is very much comparable to tri-dexels with only 830 out of

196,794 dexel-end points not matched with the FC-points in the FSV-rep model. The

discrepancy is higher than that observed in the basic cases. The reason is mainly due to the

relatively large scallop areas produced by the ball-end mill. The tip of the scallop may create a

small hanging voxel frame segment (shorter than the edge length of the fine-level voxel in FSV-

rep and not attached to any voxel corner point). These hanging frame segments are ignored in

FSV-rep if no other portion of the edge-frame of that particular FS-voxel is active. This is

permitted as a computational compromise in the implementation of the FSV-rep model update.

It leads to the small difference of only 0.42% in the complex industrial case. Ignoring such small

hanging segments does not create much impact on the model geometry. Also, any sharp features

that are lost due to this will be restored via post-processing the generated triangle mesh.

7.3 Simulation cases with SVRs

In order to demonstrate the improvements SVRs can bring to FSV-rep simulation, different

Modeling Method Execution Time (Second)

Tri-dexels Total 28.198

FSV-rep

Coarse update 4.731

Fine update 4.866

Frame update 2.516

Total 12.113

Table 7-2 Execution time comparison for the industrial case study.

143

cases are shown in this section that employ a certain type of tool path alone in each case but with

increasing complexity of the SVRs involved. For each case the performance is compared with

FSV-rep update using sampled tool instances in each case. As SVRs based update is specifically

designed for improving FSV-rep update in case of simple tool paths, it is appropriate to compare

its performance with FSV-rep update using a conventional approach. And, if it were compared

with other methods such as Tri-dexels updated by tool instances or by another swept volume

approximation appropriate for them, it would not be a pure one-to-one comparison. These

aspects justifies the evaluation of SVRs update performance by comparison against sampled tool

instances used for FSV-rep itself.

Since it is to demonstrate the performance improvement in case of pure translational tool

paths, each case study devised is to involve purely of such tool paths. As shown in Figure 7-10,

case 1A is to machine the T-section part that was used as a case study in previous section as well.

This case involves 1-axis tool paths alone and requires only flat end mill. Hence this is the first

and the simplest case study. Case 2A is a rotated T-section and require all tool paths to be

involving 2-axis motions. Case 2AV is again involving flat end mill and 2-axis motion but in this

case, one of the axis of motion is along the vertical tool axis direction. This change the envelope

surfaces for the bottom to an elliptic cylinder and causes the associated SVRs to have more

complex boundary elements. Case 3A involves a ball end mill moving along 3-axis tool paths

and has the most involved operations for the update steps among the four cases.

From the resulting machined part geometry after FSV-rep simulation in each case using

sampled tool instances along the tool paths and using SVRs shown below in Figure 7-10, it is

visually noticeable that the SVRs based update is improving the generated surface quality as it

no longer has the sampling scallop. The computational performance comparison in terms of the

144

execution time is also shown in Table 7-3 to further emphasis the relevance of SVRs. The

computational speed increases by up to an order of magnitude in case of 1-axis and 2-axis

machining cases.

It is worth noting that the performance improvement measured as ratio of time for update

3A

1A 2A 2AV

Figure 7-10 Results of case studies to compare performance of FSV-rep with SVRs (bottom figure for 1A, 2A

and 2AV and right side figure for 3A) instead of sampled tool instances (the other figure in each case).

145

by sampled instances and by SVRs shows a decrease in value from case 1A towards case 3A.

This is as expected as the involved envelope surfaces and SVRs boundary elements increase in

complexity in that direction.

Another aspect to evaluate is the change in the ratio of the computation times for a single

case itself but with reducing length of the tool paths involved. This study is done for 1-axis and

2-axis tool paths by repeating each with tool paths bisected for every iteration. Thus, each has the

same machining work load but has double the number of shorter tool paths used compared to its

previous case. As shown in Figure 7-11, SVRs is faster for both 1-axis and 2-axis cases even for

small tool paths. There is however one unhandled aspect for the sampled tool instance approach

that is partially responsible for this consistent outperformance of SVRs as explained next.

The sampled tool instances approach loses part of its speed when the coarse update is done

at sampling interval shorter than the coarse grid spacing. Ideally, the total tool path length over

consecutive tool paths should be used for the sampling purpose when all the tool paths are

sampled. However, the results in above figures are using independent sampling for each tool

path. This causes the sampling approach to slow down once the tool path length reaches the

coarse grid spacing.

Case sampled

instances

(T1 ms)

SVRs

(T2 ms)

T1/T2

1A 364 18 20.50

2A 409 27 14.95

2AV 186 17 10.91

3A 192 27 7.23

Table 7-3 Execution time comparison for cases shown in Figure 7-10.

146

(a)

(b)

Figure 7-11 Performance comparison between FSV-rep update with sampled instances and

SVRs for different length per tool path. (a) in 1-Axis (b) in 2-axis

147

We can however make a simple approximate measure from the existing chart itself to

understand the performance of sampled tool instances approach with sampling considering the

cumulative tool path length. When the sampling is ideal using cumulative path length, the

performance of the sampled instances approach should be independent of the individual path

length barring some minute overheads. The computational time of the case with the original

longest tool paths itself will be the time for sampled tool instances approach at each iteration.

Thus, the horizontal dashed line shown in each graph is a very good approximation for

performance of sampled tool instances with cumulative sampling.

The SVRs methods does cross the sampled instances approach with ideal cumulative

sampling as seen in the chart. This indicates, that SVRs is computationally favorable when the

tool paths are of some minimum length. The SVRs are still useful from accuracy point of view at

all tool path lengths nevertheless.

However, the approach of obtaining the SVR{𝑪𝑺𝑽𝒔} mapping in the coarse update part

2 using the sweeping plane we developed in Chapter 6, Section 6.4.1 is applicable only when the

path length is large enough to avoid the boundary elements at two extreme ends along the 𝐹𝑑𝑖𝑟

direction occurring in the same scanning section. For shorter tool paths, some SVR types can

vanish and requires more rigorous identification techniques and may not be feasible at all. Thus

we can only tell confidently that the SVRs based update is faster than sampled instances

approach when the individual path lengths are larger than a particular threshold which is

different for each tool path category and tool type. Nevertheless the observed threshold minimum

tool path length is small enough to enable SVRs to advantageously handle a wide range of planar

straight cutting roughing operations.

As it is seen from the 2-axis case that the SVRs generation technique is applicable only

148

after a threshold path length, the analysis of the trend in case of 3-axis linear tool paths for

different path length is irrelevant. This is because, long 3-axis linear paths are not common in

machining operations. Only applicability of SVRs for 3-axis linear paths would be to

approximate 3-axis helical and freeform paths as many linear 3D segments and apply SVRs

based update for those linear segments. This could improve the accuracy by reducing the

sampling scallop. However, the minimum threshold length of tool path is greater than the tool

radius as per observation. As the linear segments needed to approximate the curved tool paths are

much shorter, the SVRs approach would not be applicable for that purpose. Hence the valuable

information we can have is that the SVRs approach is applicable to majority of the tool path

lengths in planar straight cutting operations.

7.4 Summary

The case studies in this chapter has shown that FSV-rep model update with sampled tool

instances outperforms the best known methods using Tri-dexels. It is primarily because FSV-rep

model update can utilize the coarse update for faster bulk volume removal and the frame update

for easy addition of FC-points on to the fine level surface voxels. For simple linear three axis

tool paths, the FSV-rep model update could be made further efficient and more accurate with the

use of SVRs.

149

Chapter 8: FSV-rep surface generation

FSV-rep is a model exclusively for simulation purpose. It is designed such that the

characteristics suit efficient and accurate update during simulation of a machining process.

However, the quality of the model can be appreciated completely only when a visual

representation is available. The need of a visual representation is crucial in case of process

verification as visual inspection of the simulated part geometry is an important step in validating

the process. Thus, in this Chapter we develop a method that can generate a model representation

that can be rendered from the FSV-rep.

8.1 Requirements and objective

Triangle mesh models are widely used in graphics and display modules for its suitability to

render any geometry with acceptable accuracy. The constituent elements being many triangles

and often small in size enables the rendering logic to perform many of the operations in parallel

on multi core Graphics Processing Units (GPU). This is very beneficial as rendering is somewhat

a compute intensive operation that can take significant time if done sequentially for many large

geometric elements. Thus, in this work also, the aim is to ensure that a triangle mesh model can

be created from FSV-rep workpiece without much additional processing requirements.

Generating a triangle mesh from FSV-rep has other merits as well. Triangle mesh is a well-

established representation format for which analysis and processing algorithms have been

developed and improved to a mature level after decades of research and work in the area. Many

of the analysis steps required to evaluate the machined part geometry obtained from simulation

can make use of the available methods if the model is represented as a triangle mesh. Machining

error analysis by surface comparison is one such activity. Data transfer to other systems and

150

reverse engineering to make design changes is another scenario that can make use of a triangle

mesh of the machined part geometry. Thus, the generation of a triangle mesh model from the

FSV-rep workpiece after simulation is a very beneficial step.

In order to cater to the different purposes listed above, the generated triangle mesh should

be satisfying various conditions as identified in Chapter 3, Section 3.7. Being a closed 2-

manifold is one basic requirement so that the mesh is acceptable for downstream operations such

as error analysis. Post processing operations on the mesh model in order to restore sharp details

that is required for the surface models obtainable from FSV-rep model will also benefit from a 2-

manifold mesh [71].

As we saw from the review done in Chapter 2, Section 2.4, the existing algorithms for

mesh generation from a grid structured information have shortcomings or do not have direct

applicability to the data FSV-rep representation provides. Thus, this chapter develops a technique

specifically to serve for mesh generation from an FSV-rep model. It is inspired by the classic

marching cubes [60] technique and is indeed an extended version suitable for models generated

by machining operations. There are certain assumptions that can be made about such models as

we will see in Section 8.2. Those assumptions help to resolve many ambiguous cases that arises

while using the technique. Later in the results of Section 8.7, we will see that the assumptions are

indeed safe to be made and does not create any global deviation for the shape.

8.2 Assumptions

We can assume that there are no thin “through gaps” in the shape such as shown in Figure

8-1. These are gaps with the gap width smaller than the edge length of the fine level voxel. The

machining cases we are to deal with are limited to use a set of tools which have some

151

characteristic size parameters. The parameter D pertaining to the “tool diameter” is the major

dimension we have to take into consideration. It is the only radial size factor present for the

major milling cutters like flat , ball and bull nose end mill. For other major types like taper ball

end mill this parameter still provides the lower limit of the radial size of the tool except towards

the tip.

.

Even at the tip of the tool, the tool has no way to create a through gap of width smaller

than the fine level voxel edge length. If at all there can be a through gap feature that is machined

for a voxel, it will be of width at least equal to a minimum value based on the tool type as below:

𝑤𝑡𝑎𝑝𝑒𝑟𝐺𝑎𝑝 =
2𝑅(1−𝑠𝑖𝑛𝛼)

𝑐𝑜𝑠𝛼−2𝑠𝑖𝑛𝛼
 for taper ball end mill

𝑤𝑔𝑎𝑝 = 𝐷 for flat, ball and bull nose end mill

The above expression shows the voxel size has to be greater than or equal to the main diameter

of the tool for a through gap to be formed. From Chapter 6, Section 6.5.1, we have decided the

coarse grid spacing based on D (Equation 6.5). The fine gird spacing and hence the fine level

voxel size are definitely smaller based on the subdivision factor (Equation 3.6). All the

Figure 8-1 Through gaps created by different milling cutters inside voxels of comparatively large size.

(8.1)

(8.2)

152

triangulation is done within each fine level surface voxel as we will see in the following sections.

Since the voxel size is much smaller than the characteristic tool size D, it is safe to assume there

are no through gaps of width smaller than the edge length of the fine level voxel. This is further

supported by the value we get for the gap width, 𝑤𝑔𝑎𝑝 in terms of tool radius and subdivision

factor for a single voxel layer penetration along the axial direction of a ball end mill:

𝑤𝑔𝑎𝑝 = 2𝑅𝑡√1 − (1 −
1

𝑓
)
2

>
𝑅𝑡
𝑓

Other assumptions that we make without affecting majority of the machining cases are as

below:

1) The partial gaps and floating segments on the FS-voxels (as shown in Figure 8-2) can

be ignored. This is not a major feature of the machined surface and ignoring such gaps

does not alter the global surface a lot.

2) The surface of the machined part is such that the valid feature edges are not many

compared to the smooth surface area. This means the sharp features and thin faces are

less compared to smooth areas. This is indeed the case in most of the mechanical parts

with flat, freeform or blended surfaces.

3) The thin features are wide enough to be occupying more than one fine level voxel

along the feature width dimension. This can be assured by setting an appropriate fine

grid spacing based on the thin features that could be machined or present on the

workpiece.

8.3 Input features

There are certain features of FSV-rep model that can be used favorably to generate a

(8.3)

153

closed 2-manifold mesh model. First of all, with the composition of independent FS-voxels

making up the boundary of the model, it is potentially possible to perform a triangulation on a

per FS-voxel base. Further for each FS-voxels there are the frame details which can be used as

further aid in the process. Of the frame details, it is the FC-points present on the frame edges that

is essential here. Moreover, the FC-points are stored as a pair for each frame edge, which can be

used to infer the orientation of the surface patch within the voxel.

Since each frame edge can have up to 2 FC-points and there are 12 frame edges for a

voxel, there can be 224 theoretically possible configurations for the FC-points collection of an

FS-voxel if just the status of the FC-point of being present or absent is only considered.

Alternatively, if we take the configuration possible for each frame edge independently, there are

6 configurations as shown below in Figure 8-2. Thus, with total of 12 frame edges for an FS-

voxel, there are 612 theoretical configurations for the frame edges segments forming an FS-

voxel.

But in practice the actual configurations that can occur is limited from the following

condition:

Condition 8-1: For a corner point of an FS-voxel, and considering only the frame edge

segments on that particular FS-voxel frame, there will be either three frame edge

segments connected to it or none.

Figure 8-2 Six possible frame edge configurations possible with maximum two FC-

points.

154

This condition occurs from the more global condition we see when all the 8 voxels sharing the

corner point is considered together. There are 6 voxel edges incident on that corner point. For

FS-voxels corresponding to the 8 voxels, there can be only 6 frame edge segments or none

connected to the corner point. This condition leads to Condition 8-1 when applied together with

fact that each voxel incident at the corner point has 3 of its edges connected to it. Here “voxel

edge” is a fixed line segment between two voxel corner points. “Frame edge segments” are

portions of it that can be active or inactive. “Frame edge” corresponding to a “voxel edge” is

composed of all the “frame edge segments” lying on the “voxel edge”.

Condition 8-1 gives us an alternate way to look at the FS-voxel: from the perspective of

the corner points as active or inactive. Irrespective of the condition of the frame edge in between

two corner points, the corner points can only be either active with three edge segments of the FS-

voxel in consideration connected to it or inactive with no edge segments connected to it. Thus

with 8 corner points there are 28 =256 configurations with respect to the corner point status.

However, each of the 256 configurations correspond to many frame segments

configurations even with the practical limitation from Condition 8-1. For instance, a simple

configuration with all corners inactive has many frame segment configurations as shown in

Figure 8-3.

 , ,….

Figure 8-3 Different possible configurations for an FS-voxel with

all corners inactive.

155

In fact this is the case for all of the 256 configurations based on corner point status. It

arises from the fact that for a given frame edge, with the corner points at its ends given a status

there are more than one possible configurations for the frame edge segments in between as

shown in Figure 8-2 above. However, the total number of 612 for the possible FS-voxel

configurations is without considering the practical limitation from Condition 8-1. We can

compute the total practical number of FS-voxel configurations possible in a more elaborate

approach as shown below.

For a given configuration of corner point statuses, we can designate the frame edges as

𝑡𝑦𝑝𝑒00, 𝑡𝑦𝑝𝑒01, 𝑡𝑦𝑝𝑒10 and 𝑡𝑦𝑝𝑒11 types. Here 𝑡𝑦𝑝𝑒00 has both end corner points inactive.

𝑡𝑦𝑝𝑒01 has start point inactive and end point active. 𝑡𝑦𝑝𝑒10 has start point active and end point

inactive and 𝑡𝑦𝑝𝑒11 has both end points active. The 6 configurations of frame edges can be

mapped to the types as shown in Figure 8-4.

𝑡𝑦𝑝𝑒00

𝑡𝑦𝑝𝑒01

𝑡𝑦𝑝𝑒10

𝑡𝑦𝑝𝑒11

Figure 8-4 Frame edge configurations mapped to the edge corner status types.

Thus 𝑡𝑦𝑝𝑒00 and 𝑡𝑦𝑝𝑒11 types frame edges has two possibilities each and 𝑡𝑦𝑝𝑒01 and

𝑡𝑦𝑝𝑒10 types has one each.

Now for a given corner points configuration for an FS-voxel, the number of frame edges

falling into each type is fixed and can be counted as 𝑛00, 𝑛01, 𝑛10 and 𝑛11 where 𝑛00 + 𝑛01 +

 𝑛10 + 𝑛11 = 12. Thus, the total number of FS-voxel frame segments configurations

corresponding to this particular corner points configuration is essentially

156

𝑛𝐹𝑆𝑐𝑜𝑛𝑓𝑖𝑔𝑠 = 2
𝑛00 × 2𝑛11 × 1𝑛01 × 1𝑛10

Thus, running Equation 8.4 for all the 256 corner points configurations, the total practical

number of frame segments configurations is

𝑛𝑇𝑜𝑡𝑎𝑙𝐹𝑆𝑐𝑜𝑛𝑓𝑖𝑔𝑠 = ∑𝑛𝐹𝑆𝑐𝑜𝑛𝑓𝑖𝑔𝑠,𝑖

256

𝑖=1

where 𝑛𝐹𝑆𝑐𝑜𝑛𝑓𝑖𝑔𝑠,𝑖 is the number of frame segments configurations corresponding to ith

corner points configurations.

Actual computation of Equation 8.5 leads to the number as 36,450. This is less than the

value of 612 predicted previously though still a large number.

Hence to have a definite situation which can handle almost all of the practical machining

cases, following two simplifications are applied to the frame edge segments:

1) Gaps are filled

2) Floating segments are deleted

With the above simplifications, we have a situation where there is only one frame

segments configuration corresponding to each of the 256 corner status configurations. This is

because the number of variants for 𝑡𝑦𝑝𝑒00 and 𝑡𝑦𝑝𝑒11 types have also reduced to 1 each and

Equation 8.5 gives 𝑛𝐹𝑆𝑐𝑜𝑛𝑓𝑖𝑔𝑠 as 1 for all the 256 corner point configurations.

The above simplifications are justified by some other aspects as well: The triangulation of

the slice fronts within an FS-voxel with gaps in the frame edges is ineffective without further

information such as the surface normal or so. The features causing such gaps and also the

floating segments are in fact insignificant as they only add the minor dents and sharp features. As

the fine level voxel size is already about 12.5% of the tool diameter with a subdivision factor of

(8.4)

(8.5)

157

4, the details we may lose from making the above simplification are minor. The case studies in

the later Section 8.7 will be validating this justification. Also it is challenging to preserve the

floating frame edge segments which will require advanced algorithmic or excessively extended

treatment of the configurations possible.

8.4 Look-up table definition

From the review done in Section 2.4 of Chapter 2 we have seen both look-up table based

and algorithmic approaches for generating triangle mesh from grid based models. The look-up

table based approach currently available (MC-15 and its improvements) are in fact very efficient

as they have a direct triangulation ready once the specific configuration status of the particular

voxel is identified. However, there are still ambiguous cases for the classical look-up table and

the improved approaches require additional information not readily available from the FSV-rep

model. And for the algorithmic approaches the computational time involved is significant

compared to a look-up table approach even though the algorithmic approach is capable of

handling more cases.

In order to improve upon the current lookup table and algorithmic approaches in

generating a well-defined triangle mesh for machined part geometry and to eliminate the

additional time for algorithmic methods, in this work we identify a new look-up table for the

unique FS-voxel shapes possible.

The 256 configurations we counted as possible are the elaborate set of FS-voxel shapes

possible after the two simplifications for the frame edges. However, after rigorous analysis of the

256 configurations, it is identified that these configurations are in fact, variants of 22 basic

configurations. All the FS-voxel shapes can be generated by rotational and mirror

158

transformations of the 22 basic configurations.

Figure 8-5 below lists the 20 partial FS-voxel shapes that act as the basic set for generating

all the other partial FS-voxels. The other two shapes are one with no frame segments present thus

a voxel completely outside the shape and another with all the frame edges active and thus a voxel

completely inside the shape.

159

Figure 8-5 Set of 20 basic partial FS-voxel shapes with associated slicing loops.

160

As seen from the table above, there are some ambiguous cases for which we have made a

choice based on the most probable condition that can occur on machined surfaces. Specifically,

for all the FS-voxels with the following possible face boundary configuration, the one on the

right in Figure 8-6 is chosen.

  

The selection is made based on two criteria:

1) Most volume preserving shape is preferred to enable more feature preservation.

2) The selected shapes are more suitable for ensuring conformality between the shapes

possible for neighboring FS-voxels as will be shown in next section.

8.5 Proof of applicability

It can be proven that the developed FS-voxels look-up table will ensure closed 2-manifold

triangle mesh generation for all FSV-rep models after the two simplifications are applied. This

can be done in two steps: First, by verifying the condition within each FS-voxel is valid for

generating a 2-manifold mesh. And then by verifying the interfaces between each neighboring

FS-voxels are having matching topology.

The triangle patch within all the FS-voxels are certainly composed of triangulation that is

well-defined. This is guaranteed as all the 256 FS-voxel shapes are rotational and mirror

Figure 8-6 Selection of a suitable face boundary from two options for a particular corner points configuration.

161

transformations of the basic 22 shapes. Rotational transformations only change the global

orientation of the FC-points without changing their relative locations. That is, there exist a

coordinate system with respect to which the relative location of the FC-points of the latter FS-

voxel is identical to that of the base one. Mirror transformations only change the FC-points

orientation such that the relative location is preserved if a left-handed coordinate system is used

instead of the a right handed system. Thus it is guaranteed that all the possible 256 FS-voxel

shapes have valid triangulation once the basic 22 FS-voxel slice front triangulations are valid.

The next requirement is to have matching situation across the shared faces of two

neighboring FS-voxels. This is ensured by the particular set of FS-voxel shapes chosen as the

basic shapes. It can be appreciated by considering the possible cases for each FS-voxel face. For

the FS-voxel faces, there are only 16 possible situations as shown in Figure 8-7.

0

1

2

3

4

5

6

7

8

9

10

11

162

12

13

14

15

Figure 8-7 16 configurations for the frame segments on an FS-voxel face.

This ensures that for a given face of a FS-voxel the configuration is such that the

configuration for the coincident face of a neighboring FS-voxels is conforming as shown below

in Table 8-1. The numbers in the table points to the different FS-voxel face configurations in

Figure 8-7. Each pair of numbers separated by  symbol are for the possible FS-voxel face

configurations that can be present on the coincident faces of two neighboring FS-voxels.

Table 8-1 Possible frame segment configurations on pair of coincident faces of two neighboring FS-voxels.

0  0

1  2, 1  8

3  3, 3 12, 12 12

48, 42

510

66, 69, 99

711, 714

1113, 1314

1515

The above conformity is available from the fact that a point acting as a voxel corner is

163

either active for all the voxels incident on it or inactive for all of them and also from the fact that

the FS-voxel shapes is set so that the faces always have one of the above configurations in Figure

8-7.

Finally, the fact that the FSV-rep model is 26-separating ensures that all the FS-voxels has

a face-neighbor across a face with at least one slicing loop segment.

All the three points above together guarantee that the triangle mesh models generated from

FSV-rep using the 22-bases lookup table are always, closed and 2-manifold.

The applicability of triangle mesh model from a simplified set of FS-voxels is only

complete if it can reasonably represent all the machining cases that may arise. The main

simplifications we apply are to connect the gaps and ignore floating frame edge segments.

Closing of gaps causes some concave features to disappear. Ignoring floating segments remove

very sharp edge regions or pointed tips. All these lost features are however with characteristic

dimensions less than the fine level voxel size. Thus, it is appropriate to assume such features

form only very small fraction of the machined part geometry and does not add to the functional

aspects of the part that needs to be preserved. The case studies in the later sections will further

justify these views.

8.6 Implementation

In order to perform triangulation of the FSV-rep model, by the marching cube like per

voxel processing, all the information necessary for a voxel need to be collected together. As

described in the implementation of FSV-rep data structure (Chapter 3, Section 3.8), the FS-

voxels are stored as partial elements with FC-points held only on the primary edges. For

identifying the specific configuration of a particular FS-voxel, the FC-points on all the edges

164

have to be obtained. The neighbors shown in Figure 3-14 are the relevant neighbors to query.

From the binary search tree holding the FC-points information per FS-voxel, the data from the

neighbors can be obtained in Ο(log 𝑛) time cost per FS-voxel and thus Ο(𝑛 log 𝑛) time cost for

the whole model.

With the FC-points available for all the frame edges, the occupancy status of each corner

point can be identified. Based on the relative value of the FC-point parameters for a frame edge,

the frame edge segments can be deduced as in Table 8-2 for parameter pair [𝑢1, 𝑢2] on each

frame edge. For each frame edge configuration, solid dots and hollow dots on the extreme ends

are active corner points and inactive corner points respectively. The solid dots in between are

FC-points.

Table 8-2 Deduction of frame edge configuration from the FC-points parameter pair.

{𝑢1 and 𝑢2} 𝜖 [0, 1) and 𝑢1 < 𝑢2

{𝑢1 and 𝑢2} 𝜖 [0, 1) and 𝑢1 > 𝑢2

𝑢1 𝜖 [0, 1) and 0 > 𝑢2

𝑢2 𝜖 [0, 1) and 0 > 𝑢1

{𝑢1 and 𝑢2} ≥ 1

{𝑢1 and 𝑢2} < 0

This deduction is possible as the FC-points are stored as parameters at particular location

in the pair based on the surface normal of the generating tool as shown in Figure 3-11. Using the

above mapping table to deduce the frame edge segments on all the voxel frame edges, the frame

segments and corner points to which any active segments are attached are identified. Any corner

with a segment attached is set active and others are set inactive. A completely alive edge

165

(𝑡𝑦𝑝𝑒11) is assumed between to active corners and a completely absent edge is assumed between

two inactive corners (𝑡𝑦𝑝𝑒00). This way the simplification of closing the gaps and ignoring the

floating segments is implicitly done when the occupancy status is identified.

Once the occupancy status is obtained, the corresponding FS-voxel and the slice front

boundary can be obtained front the lookup table defined in Section 8.4 with appropriate rotations

and mirroring.

8.7 Case studies

In order to demonstrate the applicability of the identified 22-bases lookup table, a number

of mechanical parts with simple and freeform shapes were converted to FSV-rep format from an

input STL and the surface generation from FSV-rep was done using the approach described

above. Additionally, the feature detection technique developed by Wang et al. [71] was

performed on the generated model to reconstruct sharp edge features. The results of the mesh

generated directly from FSV-rep model and the processed mesh with sharp features is provided

in the Figures 8-8 to 8-11 below.

Figure 8-8 Ashtray model FSV-rep surface mesh (left) and edge restored mesh (right).

166

.

Figure 8-11 Gear model. (a) FSV-rep surface mesh. (b) edge restored mesh. (c)-(d) zoomed in view of two

areas on (a). (e)-(f) zoomed in view of the corresponding areas on (b).

a

b

c

d

e

f

Figure 8-9 Dental part FSV-rep surface mesh (left) and edge restored mesh (right).

Figure 8-10 Nut model FSV-rep surface mesh (left) and edge restored mesh (right).

167

In order to evaluate the computational gain possible from use of the 22-bases look-up

instead of the algorithmic approaches available, its performance is compared against that of

method the method by Ren et al. [67]. The algorithmic approach by Ren et al. has shown to be

generating valid manifold meshes in most practical cases. It can be seen from Table 8-3 below,

the 22-bases lookup table approach is consistently faster by a factor of 2 or more.

8.8 Summary

The look up table based triangle mesh generation from FSV-rep is fast and robust in

generating a closed 2-manifold triangle mesh. It is fast as the triangulation is readily available

from a pre-defined lookup table for which only the status of the voxel corner points as active or

inactive is needed for its usage. This information is directly obtainable from the FC-points.

Further from the FS-voxels shapes selected such that the slice front boundaries on the shared

faces of neighboring FS-voxels are always coincident, the generated triangle meshes are proven

to be closed 2-manifold as well.

model
grid

spacing
(mm)

number
of

triangles

number
of

vertices

Algorithmic
triangulation, A

(ms)

22-bases
triangulation, M

(ms)
M/A

ashtray 1 139,024 69,516 160.31 77.96 0.49

gear 0.5 138,552 69,276 159.45 75.84 0.48

dental 0.1 81,280 40,654 101.80 45.14 0.44

nut 0.5 39,708 19,856 46.17 20.90 0.45

Table 8-3 Comparison of Triangle mesh generation by algorithmic and 22-bases lookup table approaches.

168

Chapter 9: Conclusions and Future research options

Following conclusions can be made about the FSV-rep model based machining simulation

developed in this thesis work. The potential future research options are also identified later in the

chapter.

9.1 Conclusions

A review of the existing modeling methods used for machining simulation has shown that

the voxel-based space partitioning approach is the most computationally efficient. However, this

approach is limited by the need of a very large grid resolution to attain a reasonable accuracy,

which makes voxel modeling infeasible in terms of the resulting huge model size and memory

requirement. The FSV-rep model introduced in this thesis work overcomes this issue by using a

multi-level sparse voxel model representation and the FS-voxels. The FSV-rep model is deemed

a very suitable modeling method for machining simulation due to its modeling accuracy and

memory efficiency.

To use FSV-rep workpiece in machining simulation, an efficient three-step update process

has been identified. After evaluation of various tool path categories, a new concept of swept

volume regions (SVRs) was developed to update FSV-rep workpiece with straight cutting tool

paths in case of 1-axis to 3-axis machining. And for other tool paths, a conservative sampled

instances approach was adopted. Customized three-step update process in case of using SVRs or

sampled instances could also be developed to exploit specific qualities of those representations.

The developed FSV-rep method has demonstrated to be faster than popular methods such

as with tri-dexels in case of update with sampled instances for tool path. This is a very common

scenario in multi-axis machining and thus becomes very relevant. The observed better

169

performance is due to two primary factors: (1) the bulk volume removal can be made faster with

the coarse update of the FSV-rep model; and (2) the tilted tool orientation has less effect on

updating the FSV-rep model again thanks to the coarse update. Further, the FSV-rep method is

able to carry out the majority of the voxel model update steps involving only simple point

classifications and binary marking/unmarking operations. The computationally demanding

intersection calculations are just used for the frame-update step, thereby limiting the calculations

to the final machined surface.

Use of SVRs for straight cutting planar and 3-axis tool paths shows further improvement

for FSV-rep update. It is possible due to drastic reduction in number of surfaces to perform when

sampled instances are replaced by a single swept volume. The quality of SVR types to

immediately deduce the specific surface elements from the swept volume forming it further help

in avoiding consideration of all the swept volume boundary elements while updating a particular

voxel or its frame. This localization effect of SVRs also contribute to the enhanced FSV-rep

update performance. SVRs concept is also shown to be applicable with better performance to a

wide range of tool path lengths occurring in planar machining. Further, all intersection

calculations are ensured to be with closed form solutions in general for FSV-rep update.

The triangle mesh model for the machined part surface is a straightforward output from the

FSV-rep model using the FS-voxels. An improved lookup table based triangle mesh generation

could be developed which can provide topologically valid surface representation from the FSV-

rep model for the machined part geometry. The computational cost is also minimal from the use

of direct access lookup tables.

Two issues occur on the simulated machined part geometry based on the FSV-rep model.

First, the triangle mesh obtained from the FSV-rep model has missing sharp machined features.

170

A robust triangle mesh post-processing algorithm could be applied to restore the sharp features

on wide variety of mechanical parts created by milling processes. Second, sampling scallops are

present on the triangle mesh surface due to the use of sampled tool instances to approximate the

exact tool swept volume. To attain visually smooth surfaces, the tool path sampling interval has

to remain small but this can hurt the overall computational efficiency. With the use of SVRs this

issue is partially addresses at least for many planar milling operations. However, for other tool

path types, the scallop size observed is not critical with the affordable grid resolutions used thus

alleviating this issue to some extent.

9.2 Future research options

In the future, machining simulation with FSV-rep workpiece can be used for assisting

mechanistic machining simulation with the input of CWE maps. Current thesis work focused on

generating the final machined part geometry. To obtain CWE maps, the developed method itself

can be used in theory with the model finalized at every point along the tool paths a CWE map is

needed. However, this may affect the efficiency of update available from the bulk volume

removal at the coarse level as the CWE maps are usually required at very small forward steps.

Still the multi-level nature of FSV-rep and simple operations involved for voxels can be

potentially used for CWE region identification in an efficient way. Further research is needed to

get a feasible methodology to exploit this aspect of FSV-rep for fast and accurate CWE map

computations. Once an incremental FSV-rep update and surface generation technique which is

computationally affordable is developed, apart for CWE maps, FSV-rep workpiece can also be

used in a complete machining simulation environment for the visual geometric process

animation. Also, in the present work, a simple two-level grid structure has been employed for the

171

FSV-rep model. To take full advantage of the multi-level voxel representation, an octree type of

sub-division from the coarsest to the finest grid level will be needed in order to make the

modeling format scalable.

172

References

[1] Altintas Y. Manufacturing automation: metal cutting mechanics, machine tool vibrations,

and CNC design. 2nd ed. Cambridge University Press; 2012.

[2] Altintas Y, Kersting P, Biermann D, Budak E, Denkena B, Lazoglu I. Virtual process

systems for part machining operations. CIRP Annals - Manufacturing Technology.

2014;63(2):585–605.

[3] Zhang Y, Xu X, Liu Y. Numerical control machining simulation: a comprehensive

survey. International Journal of Computer Integrated Manufacturing. 2011;24(7):593–609.

[4] Oliver JH, Goodman ED. Direct dimensional NC verification. Computer-Aided Design.

1990;22(1):3–9.

[5] Du J, Yan XG, Tian XT. The avoidance of cutter gouging in five-axis machining with a

fillet-end milling cutter. International Journal of Advanced Manufacturing Technology.

2012;62(1–4):89–97.

[6] OuYang D, Feng H-Y, van Nest BA, Buchal RO. Effective gouge-free tool selection for

free-form surface machining. Computer-Aided Design and Applications. 2009;6(6):839–49.

[7] Ren Y, Lai-Yuen S, Lee Y-S. Virtual prototyping and manufacturing planning by using

tri-dexel models and haptic force feedback. Virtual and Physical Prototyping. 2006;1(1):3–18.

[8] Erkorkmaz K, Katz A, Hosseinkhani Y, Plakhotnik D, Stautner M, Ismail F. Chip

geometry and cutting forces in gear shaping. CIRP Annals - Manufacturing Technology.

2016;65(1):133–6.

[9] Lee SW, Nestler A. Mechanistic Model Based on the Actual Removal Volume during

Simultaneous Five-Axis Milling. Advanced Materials Research. 2011;223:713–22.

[10] Luo S, Dong Z, Jun MBG. Chip volume and cutting force calculations in 5-axis CNC

machining of free-form surfaces using flat-end mills. International Journal of Advanced

Manufacturing Technology. 2017;90:1145–54.

[11] Jerard RB, Hussaini SZ, Drysdale RL, Schaudt B. Approximate methods for simulation

and verification of numerically controlled machining programs. The Visual Computer.

1989;5(6):329–48.

[12] El Mounayri H, Spence AD, Elbestawi MA. Milling Process Simulation—A Generic

Solid Modeller Based Paradigm. Journal of Manufacturing Science and Engineering.

1998;120(2):213–21.

[13] El-Mounayri H, Elbestawi MA, Spence AD, Bedi S. General geometric modelling

173

approach for machining process simulation. International Journal of Advanced Manufacturing

Technology. 1997;13:237–47.

[14] Spence AD, Abrari F, Elbestawi MA. Integrated solid modeller based solutions for

machining. Computer-Aided Design. 2000;32(8–9):553–68.

[15] Aras E, Yip-Hoi D. Geometric modeling of cutter/workpiece engagements in three-axis

milling using polyhedral representations. Journal of Computing and Information Science in

Engineering. 2008;8(3):31007.

[16] Gong X, Feng H-Y. Cutter-workpiece engagement determination for general milling

using triangle mesh modeling. Journal of Computational Design and Engineering.

2016;3(2):151–60.

[17] Roy U, Xu Y. Computation of a geometric model of a machined part from its NC

machining programs. Computer Aided Design. 1999;31(6):401–11.

[18] Li Z-L, Wang X-Z, Zhu L-M. Arc-surface intersection method to calculate cutter-

workpiece engagements for generic cutter in five-axis milling. Computer Aided Design.

2016;73:1–10.

[19] Aras E, Feng H-Y. Vector model-based workpiece update in multi-axis milling by

moving surface of revolution. International Journal of Advanced Manufacturing Technology.

2011;52(9–12):913–27.

[20] Fussell BK, Jerard RB, Hemmett JG. Modeling of cutting geometry and forces for 5-axis

sculptured surface machining. Computer Aided Design. 2003;35(4):333–46.

[21] Stifter S. Simulation of NC machining based on the dexel model: A critical analysis.

International Journal of Advanced Manufacturing Technology. 1995;10:149–57.

[22] Benouamer MO, Michelucci D. Bridging the gap between CSG and Brep via a triple ray

representation. In: Proceedings of the fourth ACM symposium on Solid modeling and

applications. 1997. p. 68–79.

[23] Lee SW, Nestler A. Virtual workpiece: workpiece representation for material removal

process. International Journal of Advanced Manufacturing Technology. 2012;58(5–8):443–63.

[24] Jang D, Kim K, Jung J. Voxel-based virtual multi-axis machining. International Journal

of Advanced Manufacturing Technology. 2000;16:709–13.

[25] Wou SJ, Shin YC, El-Mounayri H. Ball end milling mechanistic model based on a voxel-

based geometric representation and a ray casting technique. Journal of Manufacturing Processes.

2013;15(3):338–47.

[26] Karunakaran KP, Shringi R, Ramamurthi D, Hariharan C. Octree-based NC simulation

system for optimization of feed rate in milling using instantaneous force model. International

174

Journal of Advanced Manufacturing Technology. 2010;46(5–8):465–90.

[27] Frisken SF, Perry RN, Rockwood AP, Jones TR. Adaptively sampled distance fields: a

general representation of shape for computer graphics. In: Proceedings of the 27th Annual

Conference on Computer Graphics and Interactive Techniques. 2000. p. 249–54.

[28] Sullivan A, Erdim H, Perry RN, Frisken SF. High accuracy NC milling simulation using

composite adaptively sampled distance fields. Computer Aided Design. Elsevier Ltd;

2012;44(6):522–36.

[29] Ding S, Mannan MA, Poo AN. Oriented bounding box and octree based global

interference detection in 5-axis machining of free-form surfaces. Computer Aided Design.

2004;36(13):1281–94.

[30] Ilushin O, Elber G, Halperin D, Wein R. Precise global collision detection in multi-axis

NC-machining. Computer-Aided Design. 2005;37:909–20.

[31] Lee Y-S, Chang T-C. 2-Phase approach to global tool interference avoidance in 5-axis

machining. Computer-Aided Design. 1995;27(10):715–29.

[32] Erkorkmaz K, Altintas Y, Yeung CH. Virtual computer numerical control system. CIRP

Annals - Manufacturing Technology. 2006;55(1):399–403.

[33] Merdol SD, Altintas Y. Virtual cutting and optimization of three-axis milling processes.

International Journal of Machine Tools and Manufacture. 2008;48(10):1063–71.

[34] Yousefian O, Tarbutton JA. Prediction of cutting force in 3-Axis CNC milling machines

based on voxelization framework for digital manufacturing. Procedia Manufacturing. Elsevier

B.V.; 2015;1:512–21.

[35] Mujber TS, Szecsi T, Hashmi MSJ. Virtual reality applications in manufacturing process

simulation. Journal of Materials Processing Technology. 2004;155–156(1–3):1834–8.

[36] Ong SK, Yuan ML, Nee AYC. Augmented reality applications in manufacturing: a

survey. International Journal of Production Research. 2008;46(10):2707–42.

[37] Wang SW, Kaufman AE. Volume sampled voxelization of geometric primitives. In:

Proceedings of IEEE Visualization. 1993. p. 78–85.

[38] Tang TD. Algorithms for collision detection and avoidance for five-axis NC machining:

A state of the art review. Computer-Aided Design. 2014;51:1–17.

[39] Yau HT, Tsou LS, Tong YC. Adaptive NC simulation for multi-axis solid machining.

Computer-Aided Design and Applications. 2005;2(1–4):95–104.

[40] Liu C, Esterling DM, Fontdecaba J, Mosel E. Dimensional verification of NC machining

profiles using extended quadtrees. Computer Aided Design. 1996;28(11):845–52.

175

[41] Requicha AG. Representations for Rigid Solids: Theory, Methods, and Systems. ACM

Computing Surveys. 1980;12(4):437–64.

[42] Kaufman A, Cohen D, Yagel R. Volume Graphics. Computer. 1993;26(7):51–64.

[43] Karabassi E-A, Papaioannou G, Theoharis T. A fast depth-buffer-based voxelization

algorithm. Journal of Graphics Tools. Natick, MA, USA: A. K. Peters, Ltd.; 1999 Dec;4(4):5–10.

[44] Kaufman A. Efficient algorithms for 3D scan-conversion of parametric curves, surfaces,

and volumes. ACM SIGGRAPH Computer Graphics. 1987;21(4):171–9.

[45] Huang J, Yagel R, Filippov V, Kurzion Y. An accurate method for voxelizing polygon

meshes. In: Proceedings of the 1998 IEEE Symposium on Volume Visualization. 1998. p. 119–

26.

[46] Kaufman A. Efficient algorithms for scan-converting 3D polygons. Computers and

Graphics. 1988;12(2):213–9.

[47] Cohen-Or D, Kaufman A. Fundamentals of Surface Voxelization. Vol. 57, Graphical

Models and Image Processing. 1995. p. 453–61.

[48] Laine S, Karras T. Efficient sparse voxel octrees. IEEE Transactions on Visualization and

Computer Graphics. 2011;17:1048–59.

[49] Kämpe V, Sintorn E, Assarsson U. High Resolution Sparse Voxel DAGs. ACM Trans

Graph. 2013;32(4):101:1--101:13.

[50] Baert J, Lagae A, Dutré P. Out-of-core construction of sparse voxel octrees. In:

Proceedings of the 5th High-Performance Graphics Conference. 2013. p. 27–32.

[51] Langeron JM, Duc E, Lartigue C, Bourdet P. A new format for 5-axis tool path

computation, using Bspline curves. Computer-Aided Design. 2004;36(12):1219–29.

[52] Fleisig R V, Spence AD. A constant feed and reduced angular acceleration interpolation

algorithm for multi-axis machining. Computer-Aided Design. 2001;33(1):1–15.

[53] Sencer B. Five-axis trajectory generation methods. Master Thesis. The Univresity of

British Columbia; 2005.

[54] Blackmore D, Leu MC, Wang LP. The sweep-envelope differential equation algorithm

and its application to NC machining verification. Computer-Aided Design. 1997;29(9):629–37.

[55] Lee SW, Nestler A. Complete swept volume generation, Part I: swept volume of a

piecewise C1-continuous cutter at five-axis milling via Gauss map. Computer-Aided Design.

2011;43(4):427–41.

[56] Lee SW, Nestler A. Complete swept volume generation — Part II: NC simulation of self-

176

penetration via comprehensive analysis of envelope profiles. Computer-Aided Design.

2011;43(4):442–56.

[57] Altintas Y, Engin S. Generalized modeling of mechanics and dynamics of milling cutters.

CIRP Annals - Manufacturing Technology. 2001;50(1):25–30.

[58] Chung YC, Park JW, Shin H, Choi BK. Modeling the surface swept by a generalized

cutter for NC verification. Computer-Aided Design. 1998;30(8):587–94.

[59] Pfister H, Hardenbergh J, Knittel J, Lauer H, Seiler L. The VolumePro Real-time Ray-

casting System. In: Proceedings of the 26th Annual Conference on Computer Graphics and

Interactive Techniques. 1999. p. 251–60.

[60] Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction

algorithm. SIGGRAPH Computer Graphics. 1987;21(4):163–9.

[61] Cohen-Or D, Kadosh A, Levin D, Yagel R. Smooth Boundary Surfaces from Binary 3D

Datasets. In: Volume Graphics. Springer London; 2000. p. 71–8.

[62] Chernyaev E V. Marching cubes 33: construction of topologically correct isosurfaces.

CERN Report, CN/95-17. 1995.

[63] Lewiner T, Lopes H, Vieira AW, Tavares G. Efficient implementation of marching

cubes’ cases with topological guarantees. Journal of Graphics Tools. 2003;8:1-15.

[64] Leu MC, Peng X, Zhang W. Surface reconstruction for interactive modeling of freeform

solids by virtual sculpting. CIRP Annals - Manufacturing Technology. 2005;54(1):131–4.

[65] Zhang W, Peng X, Leu MC, Zhang W. A novel contour generation algorithm for surface

reconstruction from dexel data. Journal of Computing and Information Science in Engineering.

2007;7(3):203–10.

[66] Zhu W, Lee Y-S. A visibility sphere marching algorithm of constructing polyhedral

models for haptic sculpting and product prototyping. Robotics and Computer-Integrated

Manufacturing. 2005;21(1):19–36.

[67] Ren Y, Zhu W, Lee Y-S. Feature conservation and conversion of tri-dexel volumetric

models to polyhedral surface models for product prototyping. Computer-Aided Design and

Applications. 2008;5(6):932–41.

[68] Osher S, Fedkiw R, Piechor K. Signed distance functions. In: Level Set Methods and

Dynamic Implicit Surfaces. 2003. p. 17–22.

[69] Mäntylä M. Topological analysis of polygon meshes. Computer-Aided Design.

1983;15(4):228–34.

[70] Huang H, Ascher U. Surface mesh smoothing, regularization, and feature detection.

177

SIAM Journal on Scientific Computing. 2013;31(1):74–93.

[71] Wang S, Chen JSS, Joy J, Feng H-Y. Machined sharp edge restoration for triangle mesh

workpiece models derived from grid-based machining simulation. Computer-Aided Design and

Applications. Accepted..

[72] Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G. Meshlab: an

open-source 3d mesh processing system. In: Sixth Eurographics Italian Chapter Conference.

2008. p. 129–36.

[73] Muller H, Surmann T, Stautner M, Albersmann F, Weinert K. Online sculpting and

visualization of multi-dexel volumes. In: Proceedings of the Eighth ACM Symposium on Solid

Modeling and Applications. 2003. p. 258–61.

[74] Ferry W, Yip-Hoi D. Cutter-workpiece engagement calculations by parallel slicing for

five-axis flank milling of jet engine impellers. ASME Journal of Manufacturing Science and

Engineering. 2008;130:51011.

[75] Weinert K, Du S, Damm P, Stautner M. Swept volume generation for the simulation of

machining processes. International Journal of Machine Tools and Manufacture. 2004;44(6):617–

28.

[76] Yang Y, Zhang W, Wan M, Ma Y. A solid trimming method to extract cutter--workpiece

engagement maps for multi-axis milling. International Journal of Advanced Manufacturing

Technology. 2013;68(9):2801–13.

[77] Shmakov SL. A universal method of solving quartic equations. International Journal of

Pure and Applied Mathematics. 2011;71(2):251–9.

[78] Fortune S. A sweepline algorithm for Voronoi diagrams. Algorithmica. 1987;2:153–74.

178

Appendix

Appendix A

Expression for the cross section radius of the selected cutters along the axis as a function of axial

height, z.

Flat end mill:

𝑅(𝑧) =
𝐷

2
 ∀ 𝑧

Ball end mill:

𝑅(𝑧) =

{

𝐷

2
 𝑖𝑓 𝑧 ≥

𝐷

2

√
𝐷2

4
− (

𝐷

2
− 𝑧)

2

 𝑖𝑓 0 < 𝑧 <
𝐷

2

Taper ball end mill:

𝑅(𝑧) = {
𝑅𝑐𝑜𝑠(𝛼) + (𝑧 − 𝑅(1 − sin(𝛼))) tan(𝛼) 𝑖𝑓 𝑧 ≥ 𝑅(1 − sin(𝛼))

√𝑅2 − (𝑅 − 𝑧)2 𝑖𝑓 0 < 𝑧 < 𝑅(1 − sin(𝛼))

Bull nose end mill:

(𝑧) =

{

𝐷

2
 𝑖𝑓 𝑧 ≥

𝐷

4

𝐷

4
+ √

𝐷2

16
− (

𝐷

4
− 𝑧)

2

 𝑖𝑓 0 < 𝑧 <
𝐷

4

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	List of Abbreviations
	Acknowledgements
	Thesis
	Chapter 1: Introduction
	1.1 Background and motivation
	1.2 Existing geometric machining simulation technology
	1.3 Thesis objectives
	1.4 Research scope
	1.5 Methodology
	1.5.1 Workpiece geometry modeling
	1.5.2 Tool swept volume modeling
	1.5.3 Geometric machining simulation
	1.5.4 Machined part surface generation

	1.6 Thesis structure

	Chapter 2: Relevant methods
	2.1 Workpiece representation
	2.1.1 Solid modeling
	2.1.2 Vector modeling
	2.1.3 Space partitioning

	2.2 Tool swept volume representation
	2.2.1 Analytical definition
	2.2.2 Boundary representations
	2.2.3 Parametric representations
	2.2.4 Sampled approximations

	2.3 Workpiece update methods
	2.3.1 Boolean operations for solid models
	2.3.2 Trimming operations for vector models
	2.3.3 Binary operations for space partitioning

	2.4 Workpiece surface generation
	2.5 Summary

	Chapter 3: Frame-sliced voxel representation
	3.1 Voxel identification
	3.2 Surface voxels
	3.3 26-separating voxel model
	3.4 Multi-level voxel representation
	3.5 Frame-crossing points and frame-sliced voxels
	3.6 Definition
	3.7 Triangle mesh construction from the slice fronts
	3.7.1 Benefits of machined surface triangulation via FSV-rep

	3.8 FSV-rep data structure implementation
	3.8.1 Input shape
	3.8.2 Surface voxelization
	3.8.3 Multi-level surface voxel model
	3.8.4 FS-voxels
	3.8.5 Triangle mesh surface generation

	3.9 Effective memory usage
	3.10 Case studies and discussion
	3.10.1 Model accuracy and memory efficiency
	3.10.2 Memory usage for display

	3.11 Summary

	Chapter 4: Three step FSV-rep model update
	4.1 Objective
	4.2 Coarse update
	4.3 Fine update
	4.4 Frame update
	4.5 Summary

	Chapter 5: Tool swept volume representation
	5.1 Requirement
	5.2 Selection of tools swept volume representation
	5.3 Tool instances
	5.4 Swept Volume Regions (SVRs)
	5.5 SVRs for General end mill
	5.6 SVR types
	5.7 Application to Flat end mill
	5.8 Application to Ball end mill
	5.9 Application to Taper ball end mill
	5.10 Application to Bull nose end mill
	5.11 Summary

	Chapter 6: FSV-rep machining with tool swept volumes
	6.1 Objective
	6.2 Overall update logic
	6.3 Tool paths categorization
	6.4 Update using SVRs
	6.4.1 Coarse update with SVRs
	6.4.2 Fine update with SVRs
	6.4.3 Frame update with SVRs

	6.5 Update with Tool instances
	6.5.1 Sampling interval selection
	6.5.2 Coarse update with tool instances
	6.5.3 Fine update with tool instances
	6.5.4 Frame update with tool instances

	6.6 Summary

	Chapter 7: Simulation system implementation and case studies
	7.1 Implementation details
	7.2 Simulation cases with tool path sampling
	7.3 Simulation cases with SVRs
	7.4 Summary

	Chapter 8: FSV-rep surface generation
	8.1 Requirements and objective
	8.2 Assumptions
	8.3 Input features
	8.4 Look-up table definition
	8.5 Proof of applicability
	8.6 Implementation
	8.7 Case studies
	8.8 Summary

	Chapter 9: Conclusions and Future research options
	9.1 Conclusions
	9.2 Future research options

	References
	Appendix
	Appendix A

