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Abstract

Blind Source Separation (BSS) methods have been attracting increasing attention

for their promising applications in signal processing. Despite recent progress on

the research of BSS, there are still remaining challenges. Specifically, this dis-

sertation focuses on developing novel Underdetermined Blind Source Separation

(UBSS) methods that can deal with several specific challenges in real applications,

including limited number of observations, self/cross dependence information and

source inference in the underdetermined case. First, by taking advantage of the

Noise Assisted Multivariate Empirical Mode Decomposition (NAMEMD) and Mul-

tiset Canonical Correlation Analysis (MCCA), we propose a novel BSS framework

and apply it to extract the heart beat signal form noisy nano-sensor signals. Further-

more, we generalize the idea of (over)determined joint BSS to that of the underde-

termined case. We explore the dependence information between two datasets and

propose an underdetermined joint BSS method for two datasets, termed as UJBSS-

2. In addition, by exploiting the cross correlation between each pair of datasets,

we develop a novel and effective method to jointly estimate the mixing matrices

from multiple datasets, referred to as Underdetermined Joint Blind Source Sepa-

ration for Multiple Datasets (UJBSS-M). In order to improve the time efficiency

and relax the sparsity constraint, we recover the latent sources based on subspace

representation when the mixing matrices are estimated. As an example application

for noise enhanced signal processing, the proposed UJBSS-M method also can be

utilized to solve the single-set UBSS problem when suitable noise is added to the

observations. Finally, considering the recent increasing need for biomedical sig-

nal processing in the ambulatory environment, we propose a novel UBSS method

for removing electromyogram (EMG) from Electroencephalography (EEG) signals.
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The proposed method for recovering the underlying sources is also applicable to

other artifact removal problems. Simulation results demonstrate that the proposed

methods yield superior performances over conventional approaches. We also eval-

uate the proposed methods on real physiological data, and the proposed methods

are shown to effectively and efficiently recover the underlying sources.
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Lay Summary

Blind source separation aims to extract underlying sources when only the mixed

observations are available. In this dissertation, we propose a set of novel underde-

termined BSS methods to jointly recover underlying sources from multiple datasets

in underdetermined cases (i.e. the number of sources is greater than that of obser-

vations). First, we propose a novel BSS framework and apply it to extract the heart

beat signal form noisy nano-sensor signals. Taking into account the dependence in-

formation between datasets, we further propose two Underdetermined Joint Blind

Source Separation (UJBSS) methods, termed as UJBSS-2 and UJBSS-m, which are

applicable to two datasets and multiple datasets respectively. Finally, considering

the recent increasing need for acquiring EEG signals with limited number of sen-

sors, we propose a novel underdetermined BSS method for removing EMG artifacts

from EEG signals. It is shown that our proposed methods outperform conventional

BSS methods on both synthetic data and real physiological signals.
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Chapter 1

Introduction

One of our most important faculties is our ability to listen to, and
follow, one speaker in the presence of others. — Colin Cherry

Blind Source Separation (BSS) refers to a general class of signal processing meth-

ods, aiming to recover the underlying source signals from their mixtures without

resorting to any prior information about the mixing matrix. In this chapter we will

review these state-of-the-art BSS methods. We begin by introducing the basic idea

of BSS and its applications. Considering different assumptions of BSS methods,

the BSS problems can be categorized in different ways, such as (over)determined

vs. underdetermined BSS, single-set vs. joint BSS, and instantaneous vs. convo-

lutional BSS. We further describe the structure of the dissertation at the end of this

chapter.

1.1 Introduction to Blind Source Separation and Its
Applications

The BSS problem appears in many multi-sensor systems, where each sensor con-

tains the mixture of several underlying sources. For instances, an electrode for

collecting Electroencephalography (EEG) signals measures a weighted sum of the

1



electrical activities of many brain regions as well as a microphone measures sounds

of different people/devices in the environment. A fundamental goal of BSS is to

recover the underlying sources which usually provide important information but

cannot be directly seen in the observed signals. The term ‘blind’ emphasizes the

fact that BSS exploits only the information carried by the observations themselves

and does not resort to any prior information about the mixing matrix.

The BSS problem can be mathematically formulated as

X(t) = AS(t)+E(t), (1.1)

where the observations are noisy instantaneous linear mixtures of the underlying

source signals. In this context, X(t) = [x1(t),x2(t), . . . ,xM(t)]T denotes the M-

dimensional observations and xm(t) is the mth channel of the observations. S(t) =

[s1(t),s2(t), . . . ,sN(t)]T denotes the underlying N-dimensional sources and sn(t) is

the nth source. E(t) = [e1(t),e2(t), . . . ,eM(t)]T represents the additive noise added

into each channel of the observations.

A classical example of BSS is the cocktail party problem. At a cocktail party,

a group of people talk at the same time over the background music. Human beings

are able to selectively focus on and recognize one auditory source in a noisy en-

vironment, where their ears capture numerous audio sources, such as the voice of

interest, the background music and many others. This refers to the cocktail party

effect [10]. The main questions of relevance are: how does the human brain solve

the cocktail party problem, and is it possible to build a machine to fulfill this task?

From an engineering perspective, separating the voice of each speaker can be

performed by using recordings of several microphones in the room, as illustrated

in Fig. 1.1. In order to pick out each voice from the observed recordings, we

can perform BSS to recover the sources. Essentially, the BSS problem is a prob-

2



Figure 1.1: Illustration of the cocktail party problem.

lem of parameter estimation. This kind of problem always contains the following

three ingredients: a parametric model, a criterion and an optimization technique.

The parametric model provides a simple representation of the mixing model and

restricts the solution to a particular space. Based on the assumption about the dis-

tribution of sources, the criterion is a specific cost function, evaluating the quality

of the potential solutions. The optimization technique is the method for obtaining

the optimal solution with respect to the criterion function. Generally, for a BSS

problem, we can find a demixing matrix W to estimate the source signals as

S(t) =WX(t). (1.2)

3



For successful blind source separation, the demixing matrix W satisfies

WA = ΦΛ, (1.3)

where Φ is an (N×N)-dimensional permutation matrix with exactly one entry of 1

in each row and each column, and 0s elsewhere. Λ is a diagonal matrix with non-

zero diagonal elements λ1,λ2, . . . ,λN . This equation explicitly shows the typical

indeterminacies of permutation and scaling. However, it is clear that, without addi-

tional assumptions, the BSS problem is still ill-posed, even if a scale-permutation

ambiguity is allowed. A commonly used BSS method is Independent Component

Analysis (ICA), which makes use of the following assumptions:

1) The source signals S(t) = [s1(t),s2(t), . . . ,sN(t)]T are assumed to be statisti-

cally independent. This assumption is critical for ICA and implies that

p(S) = p(s1,s2, . . . ,sN) = p(s1)p(s2) . . . p(sN), (1.4)

where p(S) is the joint probability Density Function (PDF) of the sources S, and

p(sn)(n = 1,2, . . . ,N) is the PDF of the nth channel of sources.

2) At most one source can be Gaussian distributed. The linear mixtures of

Gaussian signals are still Gaussian and therefore people cannot separate the source

based on the non-Gaussianity.

Besides ICA, many BSS methods based on other properties of sources and

mixing models have been proposed. For instance, Sparse Component Analysis

(SCA) is a simple but powerful framework to separate source signals from a few

sensors [47] when the sources can be represented sparsely at a given basis. In the

convolutive BSS, the mixing model is much more complex, which assumes the

mixtures are weighted and delayed. Designing a BSS system is a challenging task
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despite the fact that human ability to recover sources in noisy environments appears

a simple process for humans. The selection of a suitable separation method varies

with the assumed mixing process. In order to achieve satisfying results in real-life

applications, it is a prerequisite that [25]:

1) The real sources satisfy the assumption of the proposed BSS method, such

as independence between sources, sparsity of the sources, non-negative nature of

the sources, etc.;

2) The mixing model of the proposed method is correct, which means that the

mixing model is identical or closely resembles to the physical model generating

the observations.

If the above conditions are not satisfied, e.g., a wrong mixing model or sources’

distribution is utilized, the performance of the BSS method can not be guaranteed.

BSS methods have been attracting increasing attention for their promising ap-

plications in signal processing. Among the potential applications, four domains

have been studied intensively:

1) audio source separation, such as audio signal enhancement by removing

unwanted signal components [110];

2) biomedical applications, such as denoising of EEG, Magnetic Resonance

Imaging (MRI) and surface electromyogram (EMG) signals [80];

3) communication applications, such as co-channel interference suppression in

multiple-antenna systems [25];

4) surveillance applications, such as discovering interesting signals among a

set of mixed signals [16].

In addition, BSS methods can also be used in other domains, such as image

processing, watermarking, remote sensing, astrophysics and so on [24].
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1.2 Related Work

Depending on different assumptions of the existing BSS methods, the BSS prob-

lem can be categorized in different ways, such as (over)determined vs. underdeter-

mined BSS, single-set vs. joint BSS, and instantaneous vs. convolutive BSS. This

section describes the related work in literature for each of these categories.

1.2.1 (Over)Determined Blind Source Separation vs.
Underdetermined Blind source Separation

In order to select an appropriate BSS method, an important concern is the relation-

ship between the number of observations and the number of underlying sources. In

the (over)determined case where a sufficient number of observations are available

(i.e., the number of observations M ≥ the number of sources N), the sources can be

effectively recovered without making strong assumptions about the sources and/or

the mixing model. A typical way to solve this type of BSS problems is ICA. A wide

variety of ICA algorithms have been developed since the original work of Bell etc.

Mixing matrices are optimally estimated based on different criteria, such as kurto-

sis, mutual information, negentropy and log-likelihood [51]. Even though they are

presented in different formalisms, these ICA-based BSS methods are shown to be

mathematically equivalent [51].

However, in the underdetermined case, where the number of sensors M is

smaller than the number of sources N, the BSS problem is much more complex

than that in the (over)determined case and ICA-based methods may not work. The

main reason is that the mixing matrix is not invertible and hence the estimation of

the mixing matrix is not equivalent to the reconstruction of the sources. The perfor-

mances of most (over)determined BSS algorithms are often degraded adversely or

even are no longer applicable to Underdetermined Blind Source Separation (UBSS)

problems. Instead, additional prior knowledge about the sources is required to
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recover the underlying sources, such as the sparsity of the sources.

Generally speaking, in the underdetermined case, the recovery of the underly-

ing sources consists of two steps: The mixing matrix is first estimated, and then

the underlying sources are separated based on the estimated result of the mixing

matrix. A large class of algorithms to estimate the mixing matrix in the underdeter-

mined cases starts from the assumption that the sources are sparse. The scatter plot

shows high signal values in the direction of the mixing vectors [31]. Some clus-

tering methods, such as K-means and fuzzy c-means, are widely used to estimate

the mixing matrix. The clustering-based methods generally perform an exhaustive

search in the mixing vector space. Therefore, they are time-consuming, especially

when the number of observations is greater than two [31, 37]. In addition, in reality,

sources are usually not sufficiently sparse. They can have sparser representations

in some transformed domains, such as the Time-Frequency (TF) domain via Short-

Time Fourier transform (STFT), Wavelet Transform (WT) and Wigner-Ville distri-

bution (WVD) etc. However, clustering-based methods cannot estimate the mixing

matrix precisely if the sources are still insufficiently sparse in the transformed do-

main. To improve the accuracy of mixing matrix estimation, many algorithms have

been proposed for detecting the single source points (SSPS) in the TF domain [37].

Initially, the SSPs denote the regions where only one source is active. However,

this condition is noted as too strict and the assumption is relaxed by many re-

searchers. For instance, the SSPS denote the TF regions where only one source is

dominant [71]. Several algorithms were proposed to detect the SSPS. Abrard et

al. proposed the TIFROM method to detect the single source points by identifying

the regions where the complex ratio of the TF transform remains constant [1]. In

[7] and [9], the SSPs were detected based on the eigenvalue decomposition of the

covariance matrices of the mixtures. After the detection of SSPs, the clustering

method can be utilized to estimate the mixing matrix. As an illustrative example,
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Figure 1.2: Illustrative example of a scatter plot of the mixtures with the num-
ber of observations M =2 and the number of sources N =6. (a) is for all
DFT coefficients, and (b) is for samples at single source points.

Fig.1.2 shows a scatter diagram of the mixtures taking samples from 40 frequency

bins with M = 2 and N = 6 [91]. Fig.1.2(a) shows the distribution of all the dis-

crete Fourier transform coefficients whereas Fig.1.2(b) shows the result based on

the SSPs. It is apparent that the scatter plot in Fig.1.2(b) has a clearer orientation

towards the directions of the mixing vectors [91].

Another category of methods to estimate the mixing matrix exploit the sta-

tistical properties of the sources. Based on the fourth-order cumulant of the sig-

nals, De Lathauwer et al. proposed the FOOBI algorithm [32]. He further ex-

ploited the second-order correlation of the sources and applied simultaneous matrix

diagonalization-based techniques to estimate the mixing matrix in the underdeter-

mined case [31]. Similar algorithms can also be found in more recent references

[84, 111, 124].

In the UBSS problems, the sources are not obtained easily and must be inferred

even when the mixing matrix is known or estimated. The sources generally are in-

ferred via the maximum posterior approach or the maximum-likelihood approach.
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In order to model the underlying source distributions, Cemgil et al. utilized the

student-distribution [15], and Snoussi et al. used the generalized hyperbolic distri-

bution [97], respectively. In order to model a wide class of signals, such as audio

and biological signals, Kim modeled the sources’ distributions via the General-

ized Gaussian Distribution (GGD) and recovered the underlying sources based on

subspace representation [59]. Another commonly used method to infer sources is

sparse representation. For instance, Li et al. considered the sparse representation

of sources via l1-norm minimization [70, 71]. In order to design overcomplete dic-

tionaries for sparse representation, Aharon et al. proposed a novel algorithm based

on K-means clustering and singular value decomposition (K-SVD) [6]. Recently,

Zhen et al. exploited the sparse coding of TF representations of observations and

proposed a UBSS strategy based on sparse coding [119].

However, all the UBSS algorithms mentioned above have been developed for

extracting the sources from a single dataset. To the best of our knowledge, there

has been very limited work on UBSS methods specifically proposed for exploring

the correlations between multiple datasets and extracting sources simultaneously.

1.2.2 Single Set Blind Source Separation vs. Joint Blind Source
Separation

BSS was originally designed for extracting the sources from mixed signals in a sin-

gle dataset. However, in recent years blind separation of multiple datasets simulta-

neously (i.e., Joint Blind Source Separation (JBSS)), has been increasingly impor-

tant in many applications, such as the group data analysis of multi-subject/multi-

session Functional Magnetic Resonance Imaging (FMRI) [67]. For the case of K

datasets, the mixing process can be modeled as

X [k] = A[k]S[k], k = 1,2, ...,K (1.5)
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where X [k] ∈ RM×T represents the M-dimensional observations, S[k] ∈ RN×T are

the N-dimensional sources, Ak ∈ RM×N is the mixing matrix, and it is assumed

that M ≥ N (i.e., the (over)determined case). T is the number of data samples. In

this problem formulation, traditional BSS techniques face the following challenge:

even if common sources can be extracted when we apply the BSS to each dataset

individually, the mixing matrix of each dataset could have an arbitrary permutation

[8]. In addition, this individual strategy also neglects the correlations between the

multiple datasets. To address these concerns, JBSS methods have recently been

proposed, aiming to extract underlying sources so that the estimated sources are

aligned across datasets [8].

There have been a number of methods proposed for JBSS [49, 56, 67, 68, 72].

Among them, Canonical Correlation Analysis (CCA) has been a powerful JBSS

tool, whereas originally it was proposed only to analyze the correlation structure

between two datasets and not for the joint analysis of multiple datasets [49]. Mul-

tiset Canonical Correlation Analysis (MCCA), an extension of CCA, was proposed

by Kettenring et al. to analyze the linear relationships between multiple variates

by only using second-order statistics [56]. MCCA has been quite effective for the

analysis of multi-subject fMRI data [67]. Another extension of CCA, the joint

diagonalization using second-order statistics (JDIAG-SOS), provided a computa-

tionally efficient way to solve JBSS problems and avoid the deflationary procedure

of MCCA [68].

The group ICA and the joint ICA are the extensions of the ICA from one to

multiple datasets [14]. The group ICA assumes that different datasets share a com-

mon signal subspace and maximizes the statistical independence of the sources

within the extracted source subspace [14]. The joint ICA was developed to max-

imize the independence of joint sources of multiple datasets by assuming that K

datasets share the same mixing matrix [14]. Fig. 1.3 shows the difference between
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Figure 1.3: Graphical comparison between (a) Group ICA and (b) Joint ICA.

these two methods. Both methods were demonstrated to be powerful in a variety

of applications and can provide meaningful results [14]. However, these two ap-

proaches rely on stringent assumptions, which may not be satisfied in some studies

and applications [19].

It should be noted that the exiting JBSS algorithms mentioned above generally

assume that the number of sources equals to or is less than that of the observation

signals (i.e., (over)determined case). This assumption may not be true in certain

applications. However, to the best of our knowledge, there are no JBSS methods

specifically designed for the underdetermined case when the number of sources is

greater than that of observation signals.

1.2.3 Instantaneous Blind Source Separation vs. Convolutional Blind
Source Separation

In instantaneous BSS, the observations are weighted sums of the individual sources

without time delay, as shown in 1.1. However, in many real-life situations, the

mixing model is much more complex. For instance, in acoustics, the microphones

not only pick up the original sources but also the attenuated and delayed versions

of the sources corresponding to the sound waves bouncing back from the wall and

ceiling. Therefore, the assumption of the instantaneous mixing model does not

hold in this scenario. Then the instantaneous mixing model is converted to the

convolutive mixing model, as
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Figure 1.4: Graphical comparison between instantaneous BSS and convolu-
tive BSS: (a) for instantaneous BSS without time delay and (b) for con-
volutive BSS with reverberation.

X(t) =
K−1

∑
k=0

AkS(t− k), (1.6)

where X(t) = [x1(t),x2(t), . . . ,xM(t)]T denotes the M-dimensional observations,

S(t) = [s1(t),s2(t), . . . ,sN(t)]T denotes the underlying N-dimensional sources and

[s1(t − k),s2(t − k), . . . ,sN(t − k)]T is the delayed version of the original sources

S(t). The observations are the linear mixture of the delayed version of the sources,

and the matrix Ak ∈ RM×N denotes the mixing matrix corresponding to the time

delay k. A graphical comparison between instantaneous and convolutive models is

shown in Fig.1.4. In convolutive BSS, each microphone records filtered versions

of the sources, which can be written as,

xm(t) =
K−1

∑
k=0

N

∑
n=1

Ak(m,n)sn(t− k). (1.7)

Each source contributes to the sum with multiple delays corresponding to multiple

paths by which the signal from the corresponding speaker propagates to a micro-

phone. Various attempts have been made to tackle this type of convolutive BSS
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problem [95]. A commonly used way is based on frequency-domain [6][13], which

converts time-domain observation signals into frequency-domain time-series sig-

nals by a STFT.

The instantaneous mixing model is a special case of the convolutive model

where the delay is set to be 0. The instantaneous BSS methods can be extended

to solve the convolutive BSS problem with more constraints. In this dissertation,

the focus is on novel BSS methods for instantaneous mixtures, especially for the

underdetermined cases.

1.3 Research Objectives and Methodologies

The goal of this dissertation is to develop a set of novel underdetermined blind

source separation methods which are able to cope with several challenges present

in real applications. As we introduced previously, the underdetermined BSS prob-

lem is generally more difficult than the (over)determined BSS problem where the

number of observations is equal to or greater than that of underlying sources. It is a

difficult topic with some challenges including limited observations, the convolutive

mixing model, an unknown number of sources, dependence information, temporal

dynamics, efficiency and so on.

Considering the recent research progress in underdetermined BSS, we are in-

terested in addressing the following concerns and challenges. First, although some

recent overcomplete representation methods have been proposed, the problem to

recover the underlying sources from limited number of observations remains a dif-

ficulty. Traditional underdetermined BSS methods, both the methods based on the

sparse properties and the methods based on the statistical properties of source sig-

nals, may fail to work when the number of sources is greatly larger than that of

the observations. Second, the sources may be mixed with a time delay way rather

than in an instantaneous way. The sources corresponding to different observations
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may be correlated with each other rather than identical as in the instantaneous BSS

mixing model. In that case, traditional BSS methods will fail to solve the BSS

problem. Third, the dependence information across multiple datasets should be

taken into account in solving the underdetermined BSS problems. Joint analysis

in BSS has attracted great attention owing to its ability to simultaneously recover

the underlying sources from multiple datasets. However, to the best of our knowl-

edge, existing JBSS methods in the literature consistently assume that the number

of observations is equal to or greater than that of the underlying sources. There-

fore, these methods are not suitable for solving underdetermined BSS problems.

In addition, it is a challenge to obtain the underlying sources in the underdeter-

mined BSS even when the mixing matrix is known. As a result, methods that can

effectively and efficiently infer the underlying sources are highly desired.

In this research work, we attempt to develop novel underdetermined BSS meth-

ods to address the aforementioned challenges, including limited number of ob-

servations, presence of highly correlated sources across observations (rather than

identical sources), and self/cross dependence and source inferences. Specifically,

the main research contributions of this dissertation are summarized as follows:

• For the case of the underdetermined BSS, we propose a two-step source ex-

traction method termed as NAMEMD-MCCA. Considering the multichan-

nel nature of the measured signals, Noise Assisted Multivariate Empirical

Mode Decomposition (NAMEMD) is utilized to decompose each channel of

these signals into a series of Intrinsic Mode Functions (IMFS). Then the

underdetermined problem is converted into the determined problem, as we

have a sufficient number of IMFs. In addition, the sources corresponding

to different observations may be highly correlated rather than identical. We

decompose each channel into a series of IMFs, which can be regarded as
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a dataset. Considering the correlations between the sources across multi-

ple observations, a classical JBSS method is employed to solve this problem.

Benefiting from cross-channel information and its increased robustness to ar-

tifacts, the proposed method can achieve superior performance in recovering

the underlying sources.

• Inspired by the canonical correlation analysis model and the simultaneous

matrix diagonalization, we exploit the second order statistics of the observa-

tions in two datasets and propose a novel UBSS method which can accurately

estimate the mixing matrices in the underdetermined case. In addition, we

employ a novel time-frequency analysis method to recover the sources. The

proposed method is referred to as the Underdetermined Joint Blind Source

Separation for Two Datasets (UJBSS-2).

• Exploiting the cross correlation between each pair of datasets, we propose a

novel and effective method to jointly estimate the mixing matrices for multi-

ple datasets in the underdetermined case. We further recover the underlying

sources individually based on subspace representation. We extend the idea

of (over)determined JBSS to that of the underdetermined case. The proposed

BSS method is referred to as Underdetermined Joint Blind Source Separa-

tion for Multiple Datasets (UJBSS-M). The basic idea of UJBSS for multiple

datasets is shown in Fig.1.5.

• We further explore the second-order statistics of the underlying sources,

including autocorrelation and cross correlation information, and propose a

novel EMG artifact removal method. The proposed method can recover the

latent sources and reconstruct noise-free EEG signals with a limited number

of observations.
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Figure 1.5: The basic idea of UJBSS for multiple datasets. M is the number
of observations and N is the number of sources in each dataset. T rep-
resents the number of data samples, and K represents the number of
datasets. r(k1,k2)(n) denotes the correlation between the nth source in the
kth

1 dataset and that in the kth
2 dataset.

Figure 1.6: The overview of the challenges, objectives and contributions of
this research work.
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Fig.1.6 illustrates the challenges, objectives and contributions of this research

work.

1.4 Thesis Outline

The remainder of this dissertation is structured as follows:

In Chapter 2, in order to address certain concerns of the currently available

EMD-BSS based methods, we propose a novel blind source separation framework

by combining NAMEMD and MCCA. The proposed method takes advantage of the

multivariate data-adaptive nature of the NAMEMD and MCCA, which contributes to

accurate extraction of the desired signal. The experimental results on both sim-

ulated data and real data demonstrate the superior performance of the proposed

method.

In Chapter 3, we extend the idea of (over)determined JBSS to that of the un-

derdetermined case and introduce a novel blind source separation method, termed

as UJBSS-2. Considering the dependence information between two datasets, the

problem of jointly estimating the mixing matrices is tackled via Canonical Polyadic

Decomposition (CPD) of a specialized tensor in which a set of spatial covariance

matrices are stacked. Furthermore, the estimated mixing matrices are used to re-

cover sources from each dataset separately.

In Chapter 4, as a generalization of our previous work on two datasets in Chap-

ter 3, we exploit the cross-correlation between each pair of datasets and present

another novel blind source separation method, referred to as UJBSS-m. In this

chapter, the cross correlation between each pair of datasets is modeled by a third-

order tensor in which a set of spatial covariance matrices corresponding to dif-

ferent time delays are stacked. Considering the latent common structure of these

constructed tensors, the mixing matrices are jointly estimated via joint canoni-

cal polyadic decomposition of these specialized tensors. Furthermore, we recover
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the sources from each dataset separately based on the estimated mixing matrices.

Simulation results demonstrate that the proposed UJBSS-m method yields supe-

rior performances when compared to commonly used single-set UBSS and JBSS

methods.

In order to efficiently acquire physiological signals in the ambulatory environ-

ment, a small number of sensors is usually desired. Conventional artifact removal

methods based on BSS, such as CCA and ICA, could fail to remove the artifacts

in this case. In Chapter 5, we further explore the cross correlation and autocorrela-

tion of the underlying sources and propose a novel underdetermined BSS method

to remove the EMG artifacts from EEG signals. We conduct a performance com-

parison through numerical simulations in which EEG recordings are contaminated

with muscle artifacts. The results demonstrate that the proposed method can effec-

tively and efficiently remove muscle artifacts while successfully preserve the EEG

activity.

Finally, Chapter 6 summarizes the contributions of this dissertation, and dis-

cusses future research directions.
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Chapter 2

A Blind Source Separation

Framework Based on NAMEMD

and MCCA

A recently developed novel nanofiber based strain sensor is introduced as a poten-

tial alternative to conventional measurement tools for Heart Beat Rate (HBR) mon-

itoring. Since the measured signals in real-life are often contaminated by certain

artifacts, in this chapter, to overcome limitations of currently available EMD-BSS

based methods and recover the buried heart beat signal accurately, we propose a

novel blind source separation framework by combining NAMEMD and MCCA.

The proposed method takes advantage of the multivariate data-adaptive nature of

the NAMEMD and MCCA, which contributes to accurate extraction of the desired

signal. The absolute correlation coefficients (ACC) between the extracted signal

and the original source signal are adopted to evaluate the performance of the pro-

posed method in the simulation study. The average of the ACC yielded by the pro-

posed method is 0.902, which is significantly higher than that by state-of-the-art
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approaches. We also examine the proposed method on the nano-sensor data col-

lected when the subject performs 11 tasks. It is shown that the proposed method

can achieve better performance, especially for preserving the shape of the heart

beat signal.

2.1 Motivation and Objectives

As health costs are increasing and the world population is aging [96], monitoring

physiological signals, such as body temperature, oxygen concentration, weight and

fat levels, has drawn a lot of attention and has been used as an important tool for

accessing people’s fitness and health [54]. Resting heart beat rate (RHBR), one type

of vital physiological signs, indicates the speed of the heart beat in the relaxed con-

dition and can provide an assessment of health status [53]. It has been clinically

approved that there is a direct relation between higher RHBR and higher mortal-

ity for the elderly and patients with cardiovascular problems, hypertension, and

metabolic syndromes [63, 85, 86], whereas a relatively lower RHBR is probably a

signature of better fitness and health condition. Therefore, it is of great importance

to monitor health condition by measuring and tracking the RHBR.

For real-world applications such as the emerging wearable health monitoring

systems [118], there is a need for developing and testing novel, inexpensive, non-

invasive and miniature sensors for heart rate monitoring purposes. In this work, we

adopt a novel type of nanofiber based strain sensors recently developed by Flexible

Electronics and Energy Lab (FEEL). The compliant and conformable nature of this

type of sensors, in addition to their sensitivity, stable behavior and low performance

power [98], makes them a great choice for home health monitoring systems. Its

high sensitivity of such sensors enables us to detect very small deformations such

as those induced in the wrist by radial pulses.

To measure the RHBR, 3 nanofiber based strain sensors are deployed on the
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wrist. Yet, the signals measured by the nanofiber based sensors are often con-

taminated by instrumentation noise, motion artifacts and other types of interfer-

ence. It is challenging to remove artifacts and obtain clean radial pulse signal,

especially when the subject might be moving. Although there exists a great va-

riety of artifact reducing or removal techniques based on WT, Empirical Mode

Decomposing (EMD) and BSS [29, 66, 93, 108], they have certain limitations in

recovering the underlying unknown source signals. Also, it is worth emphasizing

that different systems (sensors) will generate different types of bio-signals, such

as EEG and EMG, and generally will pose different challenges for signal denois-

ing, artifact removal and data analysis. For a particular problem, the appropriate

approach is generally sensor-dependent and application dependent. Since the type

of nanofiber-based sensor used in this chapter is novel and its application to heart

beat rate estimation is also new, it is not clear which method is more suitable for

our specific problem (i.e., RHBR monitoring using a novel type of nano-sensor

signals) and whether a new method is desired.

In wavelet-based approaches [13], researchers need to select a set of basis com-

ponents in advance and then calculate the related coefficients for each component.

The performance of these methods heavily depends on the predefined basis compo-

nents [13]. Given that the ground truth is generally unknown, the predefined basis

components can not be guaranteed to match the signals of interest. EMD was first

introduced by Huang et al. [50] as a technique for processing nonlinear and non-

stationary time series, such as biomedical signals [66]. It decomposes a time series

signal into a number of spectrally independent oscillatory components, defined as

IMFS. EMD is nonparametric in the sense that all the IMFs are derived empirically

from the data. Thus, it is a fully data-driven method [77]. However, this method

is very sensitive to noise, making it ineffective in low signal-to-noise ratio (SNR)

situations [81]. BSS methods, such as ICA and CCA, are increasingly being used as
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artifact removal tools for analyzing multivariate biomedical signals [39]. They can

recover the underlying sources of interest when there are sufficient channels. How-

ever, these BSS methods commonly assume that the number of sources cannot be

greater than that of channels/sensors. In fact, this assumption may not be satisfied

in practice, especially when minimal instrumentation is required [19], such as the

RHBR measurement case.

To overcome these limitations, WT and Ensemble Empirical Mode Decom-

posing (EEMD) [114] were generally used to decompose the unidimensional signal

from each sensor into multichannel signals before applying BSS methods. Lin

et al. proposed a method called wavelet-ICA expanding the 1-D signal into 2-

D signal by WT and then extracted independent features from the 2-D signal by

FastICA [74]. Considering the advantage of data-driven methods, Mijovic et al.

introduced a single-channel technique by combining EEMD and ICA (EEMD-

ICA) [81]. It decomposed the single-channel signal into spectrally independent

components and then extracted statistically independent source signals. This tech-

nique was shown to be more effective compared to wavelet-ICA. Recently, a more

efficient method combining EEMD with CCA (EEMD-CCA) was proposed by

Sweeney et al. [103]. It provided superior performance for source recovery and

artifact suppression. However, these existing methods only focus on one single

channel each time and neglect the possible inter-channel information when mul-

tiple sensors are available. Two significant obstacles of these methods in dealing

with multichannel signals are the problem of uniqueness and mode mixing with the

channel-wise EMD, such as EEMD. There is no guarantee that the decomposition

results of different channel signals are matched [87], either in the number or their

frequency, making the multichannel analysis often very difficult. In addition, it

was shown that the multivariate signal processing can provide more insights into

complex and nonstationary real-world process [76]. The essences of dynamical
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behavior are intrinsic correlations, within a single-channel and more importantly

across multiple channels. Therefore, the above methods including EEMD-ICA and

EEMD-CCA may not be good choices for multichannel artifacts removal.

Considering the above concerns, in this chapter, we propose a novel frame-

work for extracting heart beat signals by combining NAMEMD [90] with MCCA

[49, 72], termed as NAMEMD-MCCA. NAMEMD, which processes the input sig-

nal directly in the high dimensional space and considers the inter-channel infor-

mation, can effectively overcome the problems of uniqueness and mode mixing

[77]. MCCA, as an extension of CCA, is developed to find linear transforms that

simplify the correlation structure among a group of random vectors [72]. It can

jointly extract the sources from each dataset through maximizing the correlations

of the extracted sources across datasets. The combination of these two methods

benefit from the use of inter-channel information and increased robustness to arte-

facts. Considering the multichannel nature of the measured signals, NAMEMD

is first utilized to decompose each channel of these signals into a series of IMFs.

The IMFs with dominant frequencies close to that of typical heart beat signals are

selected to form corresponding datasets. These datasets are further employed as

the input to MCCA for recovering the heart beat signals, and finally the RHBR can

be detected.

We evaluate the performance of the proposed method in both synthetic data and

real data. We first validate it on simulated data and illustrate its performance. These

simulations are performed under realistic assumptions in which mixed signals are

linear mixture of photoplethysmogram (PPG), EMG, motion signals, power fre-

quency signals and Gaussian white noises. We then apply the method to nanofiber

sensor signals collected when the subject was performing 11 tasks. RHBRs are

estimated by the proposed framework and comparison also suggests its superior-

ity. The main contributions of this chapter are manifold: we explore a novel type
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of nanofiber based strain sensor for potential RHBR monitoring; we investigate

the state-of-the-art EMD-BSS based methods for exacting RHBR information ac-

curately based on the nano-sensor data; and we further propose the NAMEMD-

MCCA for improved RHBR monitoring.

2.2 Methods

In this section, we first briefly introduce the EMD related methods and the BSS

techniques. We then present a novel heart beat rate detection method based on

the combination of NAMEMD and MCCA. Finally, both synthetic data and real

nano-sensor data are described.

2.2.1 Related Methods

Empirical mode decomposition

EMD is a fully data driven method which adaptively decomposes a signal into a

residue and a finite set of spectrally independent oscillatory components, called

IMFs. As it is adaptive in nature, the IMFs usually offer a physically meaningful

representation of the underlying process [113], which render its wide application

in the biomedical signal processing.

However, the standard EMD method may suffer from the problem of unique-

ness and mode mixing. To overcome these issues, EEMD, a noise assisted version

of EMD, was proposed and has been demonstrated to be more robust in real-life

applications. It defines each IMF component as the mean of the IMFs extracted

by applying standard EMD on the signal corrupted by added white noise of finite

amplitude. The noise of each trail is different and its effect in the ensemble mean

can be canceled out when there are enough trials. This contributes to establish a

uniformly distributed reference scale and then perform a quasi-dyadic structure of
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the corresponding filter bank [90]. However, despite being a significant step for-

ward, the EEMD is still a univariate method, which cannot solve the uniqueness

problem. In addition, it is further limited by its computational complexity.

Multivariate empirical mode decomposition

The issues of common mode alignment and nonuniqueness have been the major

obstacles for applications of these channel-wise EMD methods in multivariate data

analysis. The bivariate EMD (BEMD) and rotation-invariant EMD (RI-EMD) were

proposed considering the information between two channels whereas these two al-

gorithms can cater only 2-channel signals [11, 92]. To cope with this problem,

Multivariate Empirical Mode Decomposition (MEMD) was introduced by Rehman

and Mandic in [89], which also demonstrated its ability to do matched-scale de-

composition across multichannel signals, preserving the multichannel properties.

The input multivariate signals are mapped into multiple real-valued ‘projected’ sig-

nals along directions in m-dimensional spaces. The detail of the MEMD algorithm

is described in Algorithm 1.

Similar to the EEMD, Rehman et al., taking the advantage of MEMD, proposed

a noise assisted extension of the MEMD, namely NAMEMD. Firstly, based on the

MEMD method, it decomposes the original signals along with n-channel multi-

variate independent Gaussian white noise. At the end of this process, it discards

the IMFs corresponding to the n-channel white noise and obtains a set of IMFs

for the original signal. It should be noted that it is different from the EEMD, in

which the noise is directly added to the observed signals, as the noise here resides

in a different subspace. The Gaussian white noise can be used to enforce a filter

bank structure and provide better definition of frequency bands inherent to the data.

Therefore, the NAMEMD can accurately align the common oscillatory modes in

the IMFs from multichannel signals and effectively alleviate the problem of mode
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Algorithm 1 The MEMD algorithm

Input: m-dimensional signal X(t) = [x1(t),x2(t), ...,xm(t)]T

Output: the IMFs corresponding to each channel of the X(t)

1: Generate a suitable point set based on Hammersley sequences for sampling on
(m-1) dimension sphere;

2: Calculate the projections {pk}K
k=1 of the original signal along all the K direc-

tion vectors {vk}K
k=1, where K represents the number of direction vectors;

3: Identify the time points {tk
i }K

k=1 correspond to the maxima of each projects;
4: Interpolate each maxima of each projection [tk

i , pk] and get the multivariate
envelops {ek(t)}K

k = 1;
5: Calculate the mean by mean(t) = 1/K ∑

K
k=1 ek(t);

6: Calculate the detail signal d(t) = x(t)−mean(t). If d(t) satisfies the stopping
criterion for a multivariate IMF, then obtain an IMF c(t) = d(t) and repeat step
2 to step 6 on x(t)−d(t), otherwise apply them on d(t).

mixing within the resulted IMFs [90].

Independent component analysis

In this section, we illustrate the basic idea of ICA. The observed signal can be

denoted as X(t) = [x1(t),x2(t), ...,xm(t)]T whose elements are linear mixtures of n

independent elements of the source component vector S = [s1(t),s2(t), ...,sn(t)]T

and m is greater than or equal to n. We can model the mixing process as follows:

X = AS (2.1)

where the matrix A represents the linear mixture of the source components. The

goal of ICA is to find the unmixing matrix W to recover the original source by

assuming that they are independent and no more than one component is Gaussian-

signal. The FastICA is a commonly used way to do the independent component

analysis and we also evaluate its performance in this work.
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Multiset canonical correlations analysis

CCA has been a powerful BSS tool, however, it can only analyze the correlation

structure between two datasets [49]. Therefore, it cannot be used in this work, in-

volving three datasets. MCCA, an extension of CCA, was proposed by Kettenring

et al. to analyze the linear relationships between multiple variates [56, 72]. Con-

sidering the case for K datasets, the observed vector of each dataset contains the

linear mixtures of the corresponding l sources. We can model the mixing process

as following,

Xk = AkSk k = 1,2, ...,K (2.2)

Where Xk and Sk ∈ Rl are l dimensional observed vector and underlying sources re-

spectively, Ak ∈ Rl×l is the non-singular mixing matrix. Then the source canonical

vector can be unmixed based on linear combination of the observed vector by:

Sk =W kXk k = 1,2, ...,K, (2.3)

where W k is the canonical transformation unmixing matrix of the kth dataset. It can

be obtained by optimizing objective functions related to the overall correlation. The

MCCA ensures that the corresponding latent sources are highly correlated across

datasets, and meanwhile the latent sources are uncorrelated within each dataset.

One thing should be noted is that MCCA reduces to CCA when the number of

datasets m equals to 2.

EEMD-ICA

The use of EEMD in combination with ICA for source separation was first pro-

posed by Mijovi et al. in [81] and was employed for the removal of artifacts

from single channel EEG and EMG signals. The EEMD was used to decom-
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pose a single-channel signal into a multichannel signal, comprised of IMFs. Then

these IMFs can be employed as the input to the ICA method with the aim of

estimating the underlying true source signal. Finally, the sources determined to

be artifacts were discarded and the remaining sources were used to reconstruct

the signal-channel signal free of artifacts. Mijovi et al. applied the proposed

method EEMD-ICA on simulated data and the real EEG as well as EMG signals

and compared it with the other two signal-channel artifacts removing methods,

namely Single-Channel Independent Component Analysis (SCICA) and Wavelet-

Independent Component Analysis (WICA). It was shown that their proposed method

achieved the best performance [81].

EEMD-MCCA

The EEMD-MCCA [123] is an extension of the previously introduced method,

namely EEMD-CCA, which was first detailed by Sweeny et al. as a novel single-

channel artifact removal technique [103]. Similar to these two signal-channel de-

noising methods, including EEMD-ICA and EEMD-CCA, it decomposed the sin-

gle channel signal into multichannel IMFs components and then input the IMFs of

interest into the BSS method. However, one thing should be noted is that MCCA

does not extract the source signals channel-wisely. Considering the inter-channel

information, it can jointly extract the underlying source signals from multiple chan-

nels.

2.2.2 Proposed Framework

NAMEMD-MCCA

To extract the heart beat signal from the nanofiber based strain sensor signals, we

propose taking advantage of both NAMEMD and MCCA by exploring their com-
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bination and denote the proposed method as NAMEMD-MCCA, which is shortly

outlined in Algorithm 2. Firstly, NAMEMD is applied to the observed signals.

Each channel of the observed signals is decomposed into multiple IMFs compo-

nents. Utilizing the dyadic filter bank property of MEMD, NAMEMD can effec-

tively improve the performance of frequency localization and reduce mode-mixing.

In addition, it is shown that NAMEMD can alleviate the effects of noise in EEMD

method [105]. Then the IMFs components determined to be artifacts are discarded

and these observed signals are converted into groups of datasets, denoted by X1,

X2, . . . , XK . These datasets are selected as input to the MCCA algorithm. MCCA

provides an effective way to jointly extract the group of underlying sources while

maximizing the correlations among different datasets and retaining the intersubject

source variability. Then the source signals are extracted and the potential heart beat

signal is selected.

We evaluate the effects of the noise size n and the number of interesting IMFs

l. Increasing the size of the independent noise in the NAMEMD generally helps

enforce the desired quasi-dyadic structure and reduces the degree of the overlap

between the IMFs’ spectra. Intuitively a larger noise size n is preferred. However,

the computational cost also increases if we add more channels of noise. In our

preliminary study, we investigated the performances when the noise size n varies

from 1 to 10 and observed that the estimated RHBR is not sensitive to n. We

therefore heuristically set n to be 1 for computational efficiency. We also estimated

the RHBR when l varies from 3 to 6, and obtained the best performance when we

select 4 IMFs for each channel. Therefore, we heuristically set l to be 4 in this

chapter when analyzing the nanofiber-based strain sensor signals.
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Algorithm 2 The proposed NAMEMD-MCCA algorithm
Input: a m-dimensional signal
X(t) = [x1(t),x2(t), ...,xm(t)]T , the size of the noise n and the number of interesting
IMFs for each channel signal l
Output: The extracted k source components for each channel

1: Generate n-channel multivariate independent white noise and combine with
the original signal X(t) to obtain a (m+n)-channel signal X

′
(t);

2: Decompose the noise-combined signal X
′
(t) into IMFs based on the MEMD

method and obtain multivariate IMFs;
3: Discard the IMFs corresponding to the n-channel white noise and obtain m set

of IMFs for the original signal X(t);
4: Calculate the frequency spectral for each IMF and select l interesting IMFs for

each channel based on their dominant frequencies. These IMFs should have
the common scale and the same index among channels. Then, combine these
IMFs from each channel to be a single dataset and then get m datasets, each of
which contains l channel signals;

5: Apply the MCCA method to these m datasets and extract the l source signals
for each dataset.

Heart beat rate estimation

We aim to retrieve the heart beat rate from the obtained heart beat source sig-

nal, which can be obtained by different BSS methods mentioned above, including

EEMD-ICA, EEMD-MCCA and the proposed NAMEMD-MCCA. The heart beat

rate estimation method [123] can be divided into 3 steps, including peak detection,

peak filtering and calculating the mean of the peak intervals. The details of the

detection method are shown in Algorithm 3. We calculate the derivate of the ex-

tracted heart beat signal and identify the local extrema. Considering the shape of

the typical heart beat signal, the peaks should be larger than the surrounding ex-

trema to some extent. In this work, we measure the difference between some peaks

and the corresponding closest valleys and finally set (2ndmax− 2ndmin)/4 as the

threshold to detect the potential peaks. In addition, we filter the fake peaks and
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Algorithm 3 The heart beat rate estimation method
Input: heart beat signal si(t) and sampling frequency f s
Output: heart beat rate HBR

1: Peak Detection:
i) calculate the derivate of si(t) and detect the local maxima and minima;
ii) considering typical heart beat signals, only the maxima satisfying the fol-
lowing specific condition can be regarded as a peak,

Peak > Nearest minima+
2ndmax−2ndmin

4
,

in which the nearest minima represents the left and the right minimum which
is closest to the potential peak, the 2ndmax and 2ndmin mean the second largest
and the second smallest magnitude of the heart beat signal.

2: Peak filtering, including:
i) exclude the endpoints from the potential peaks;
ii) exclude the fake peaks which are quite close to each other. The threshold
we set here is 800 while the sampling frequency is 1600Hz. This implies that
the HBR is no more than 120 bpm.

3: Calculate the mean of the peak intervals:
i) calculate the peak interval and discard the intervals which are larger than
1.2fs, which corresponds to 50 bpm;
ii) calculate the mean of the effective peak interval (MPI) as HBR:

HBR =
f s

MPI
×60

invalid peak intervals according to the normal RHBR ranging from 50-120 bpm.

Then we get the estimate of the RHBR based on the mean of the effective peak

intervals.
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2.2.3 Data Description

Synthetic Data

In this simulation, we apply the proposed NAMEMD-MCCA method to synthetic

data and also implement EEMD-MCCA and EEMD-ICA for comparison. In or-

der to simulate the real physiological signal, we generate m groups of sources us-

ing real PPG from [55], EMG from [52], Motion signals from [82] as well as

power frequency signal and Gaussian white noise simulated by MATLAB (ver-

sion R2014a). The clean PPG signal was obtained from pulse oximeter [55] and

the EMG signal was monitored by using VEST(Capintec) [52]. The motion sig-

nal, which is usually the result of intermittent mechanical forces, was obtained by

using a Holter recorder on an active subject [82]. Considering the difference of

their sampling frequencies, we scale them into 300Hz. Each group contains the

Figure 2.1: Three groups of source signals and mixed signals. In each sub-
figure, the horizontal axis represents the time index and the vertical axis
represents the amplitude of the signal in microvolt.
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following 5 sources:

s1 = PPG signal

s2 = EMG signal

s3 = Motion signal

s4 = Power frequency signal (60Hz)

s5 = Gaussian white noise

(2.4)

There is 0.01 second time-shift between the PPG signals in successive groups.

Considering the different locations of sensors in reality, we make EMG signals

and the Motion signals distinct among groups, as shown in Fig. 2.1. The signal

recorded by each sensor is simulated as the linear mixture of the corresponding

group of sources. m mixed signals are generated as follows,

X i = AiSi, i = 1,2, . . . ,m (2.5)

where the Si = [s1;s2;s3;s4;s5] denotes the ith group of sources and the Ai is the

mixture matrix randomly generated for the ith group of sources. An example with

three channels of the mixed signals is shown in Fig. 2.1. For easy visualization,

we just plot the first 100 points of the power frequency signal. As can be seen

from Fig. 2.1, the mixed signals in channels 2 and 3 are much noisier than that of

channel 1. The related mixture matrices are

A1 =
[
−0.2435 0.2262 0.3538 −0.0721 −0.1044

]
, (2.6)

A2 =
[
−0.2433 −0.2397 −0.0670 −0.2155 0.2345

]
, (2.7)

A3 =
[
−0.3305 −0.1377 −0.0518 0.1027 −0.3773

]
. (2.8)
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Real Data

The fabrication of core-shell nanofiber (NF) mesh strain sensors was explained in

detail in our previous paper [98]. In brief, Polyacrylonitrile (PAN) NFs were fab-

ricated using a conventional electrospinning technique. PAN (average molecular

weight of 100000 g/mol, Scientific Polymer Products) is dissolved in DMF (99.9%,

Fisher Scientific) with concentration of 10 wt% and stirred at 60oC for 24 h to form

a homogenous solution. It is then loaded into a plastic syringe with a blunted G18

needle. An electrospinning unit (KATO TECH CO. LTD.) is used to prepare the

nanofibrous samples from the solution. A constant volume of the solution is deliv-

ered to the needle at a flow rate of 0.6 ml/h and a high potential of 17 kV is applied

to the needle. The non-woven fibers are collected on the collector (aluminum foil,

17 cm far from the needle) connected to the ground to form NF network. The

nanofiber mesh is then coated with a thin layer of gold by sputtering, which pro-

vides a uniform conformal coating on the surface of NFs. Ribbons of coated NFs

with desired dimension of about 2 mm width and 10-50 mm length is then cut and

transferred to the surface of a desired elastomer substrate, Polydimethylsiloxane

(PDMS), with the thickness of ≈1 mm. Electrical contact pads and wirings are

prepared by application of silver pint to both ends of the NF ribbon. A PDMS

layer is then poured on the top of the NF mesh, followed by degassing and curing

process at 90oC for 45 minutes. It was demonstrated that this novel and comfort-

able NF-based sensor is highly sensitive and provides exceptional performance for

accurate health monitoring [98]. Fig. 2.2(a) and (b) shows the dimensions and the

compliant nature of typical NF sensors. The small, soft and comfortable nature

highlights the suitability of the NF sensor for wearable health monitoring.

Radial pulse sensing was performed by attaching NF-based sensors to epider-

mis on the wrist using a double-sided tape. The minute deformation of the skin
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caused by radial pulse results in change in resistance of the sensors. Considering

the low deformation level, to obtain strong signals, the strain sensor should be at-

tached to a location close to the radial artery. Due to the anatomical variation of

different subjects, the location of the radial artery slightly varies in different peo-

ple. In order to cover a larger area and ensure that at least one sensor is located

on the right position, we have used three sensors as depicted in Fig. 2.2 (c) and

simultaneously recorded their responses. The measurement set-up is schematically

shown in Fig. 2.3. Wires are connected to the end contact pads of the sensors and

connected to a costume-made multichannel resistance measurement system, which

was designed and developed in our lab. The multichannel resistance measurement

system, consisting of an analog circuit, a Wheatstone bridge and an amplifier for

each channel, provides the possibility of real-time measurement of multiple sensors

simultaneously. It also includes a USB 1608FS-PLUS (Measurement Computing)

to convert the analog signal of the circuit to its digital representation for real-time

recording of the signals. A LabVIEW program was used for operating and record-

ing the data.

The NF sensor signals were collected when the subject sat or stood steadily. In

Figure 2.2: Photographs of NF sensors: (a) Dimensions of NF sensors; (b)
Flexibility of NF sensors; (c) Three NF sensors used for monitoring the
RHBR.
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Figure 2.3: Illustration of the measurement system.

addition, to evaluate the robustness of the proposed algorithm, the sensor responses

to pulse when the subject was doing the following 9 tasks were also collected. The

time duration of each task is 12.5 seconds. The task of ‘Fix type1’ serves as an

example in this chapter.

(1) Finger Flex and Wrist Flex: flexion of all fingers together and flexion of the

wrist.

(2) Fix type key1: type key 1 using the index finger while the wrist and forearm

was fixed.

(3) Fix type1 and Fix type2: type key 1 and 2 alternatively using the index

finger while the forearm was fixed. We repeat this task twice.

(4) Fix type: randomly type while keeping the forearm and wrist fixed.

(5) Fix writing: randomly write using a pen with fixed forearm.

(6) Fix writing1 and Fix writing2: write the number 1 and 2 using a pen while

the forearm is fixed respectively.

To better describe the NAMEMD-MCCA-based procedure for monitoring the

RHBR from the NF sensor signals, we summarize the entire procedure in Algo-

rithm 4. Since the signals of interest lie in the low frequency band, the original

signals are preprocessed by low pass filtering (to 20Hz) and down sampling (by

5) for computational efficiency. Then the NAMEMD-MCCA method is applied to

the preprocessed signals. 4 source components for each sensor are extracted by
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Algorithm 4 The resting heart beat detection method based on NAMEMD-MCCA

Input: The raw 3-channel nanofiber signals X(t) = [x1(t),x2(t),x3(t)]T , the
number of the multivariate independent white noises (n = 1 here), and the number
of interesting IMFs for each channel signal (l = 4 here)
Output: The estimated resting heart beat rate RHBR

1: Preprocess the raw nanofiber sensor signals x(t) by low-pass filtering (to 20Hz)
and down sampling (with decimation factor = 5) to obtain g(t);

2: Apply the proposed NAMEMD-MCCA algorithm to the preprocessed data
g(t) and extract the source signals s(t);

3: Select the heart beat signal si(t) from the extracted source signals s(t);
4: Apply the proposed HBR estimation method, based on the peak detection, peak

filtering and calculating the mean of the peak intervals, on the extracted heart
beat signal. Then the RHBR is detected.

MCCA and the potential heart beat signal is selected from them. Finally, the HBR

estimation method is applied to the potential heart beat signal and the RHBR is

detected.

2.3 Experimental Results

In this section, the performance of two currently available EMD-BSS methods and

the proposed method is evaluated on synthetic datasets. We then examine these

three methods on real nano-sensor data to obtain the heart beat signal and estimate

the corresponding RHBR.

2.3.1 Simulation Study

We test the performances of three methods, including EEMD-ICA, EEMD-MCCA

and the proposed NAMEMD-MCCA, on synthetic data. An example of the syn-

thetic data is shown in Fig.2.1, in which each channel of the mixed signals is sim-

ulated as a linear mixture of the corresponding 5 sources. As seen from Fig. 2.1,

the signal in channel 2 and 3 are noisier than that in channel 1. It is challenging to
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recover the pulse wave signal from these two channels. To this aim, we attempt to

incorporate these three channel signals. We test the proposed NAMEMD-MCCA

method as well as other two existing methods on this simulated data. The extracted

pulse waves corresponding to channel 1 are shown in Fig. 2.4. Compared with the

other two methods, NAMEMD-MCCA provides the best performance in preserv-

ing the shape of the original signal. The extracted signal by EEMD-ICA conveys

more noise and it is nothing like the shape of pulse wave. Although we can get

the heart beat from the result of EEMD-MCCA, it would be more difficult or even

impossible to get more physical information from this signal.

We also utilize the correlation coefficient (CC) between the original PPG and

the extracted pulse waves as an evaluation measure to the effect of these three

methods. The CC corresponding to the NAMEMD-MCCA method is 0.978 which

is higher than that of EEMD-ICA by 36% and that of EEMD-MCCA by 3%. For

definiteness and without loss of generality, we generate 100 synthetic datasets and

compare these three methods on them.

As shown in Fig. 2.5, NAMEMD-MCCA and EEMD-MCCA can obtain com-

parable performance in recovering the pulse wave and they generally performs

better than EEMD-ICA, although EEMD-ICA performs better than the other two

methods occasionally. As to NAMEMD-MCCA, the average of the absolute CCs is

0.902, whereas that of EEMD-ICA and EEMD-MCCA is just 0.623 and 0.873 re-

spectively. In addition, it should be noted that the extracted source signals obtained

by ICA are not unique. Even repeating the analysis on the same datasets, we may

get different independent components [20]. In addition, EEMD does not consider

the inter-relationship among the signals while MEMD does. Thus, NAMEMD-

MCCA performs better than EEMD-MCCA on average.
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Figure 2.4: Extracted pulse waves based on the synthetic data.

2.3.2 Real Data Study

In this section, we apply the proposed novel NAMEMD-MCCA method to extract

the heart beat signal from some noisy nanofiber based strain sensor signals. Then

the HBR estimation method is used to detect the RHBR from the obtained heart

beat signal.

Empirical mode decomposition of the signal

Before performing dedicated analysis, we preprocess the raw data, shown in the

first row of Fig. 2.6, by low-pass filtering and down sampling. Then we decom-

pose the preprocessed signal utilizing the NAMEMD method. For graphical pre-

sentation, we just include 4 IMF components for each sensor. The number of these

zero-crossings is a rough indication of the mean frequency of each IMF component
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Figure 2.5: The absolute correlation coefficients between the original PPG
signals and the extracted pulse waves on 100 synthetic datasets. The
blue asterisks represent the averages and the red lines stand for the me-
dians. The edges of the box are the lower and upper quartiles. Outliers
beyond the upper whisker or under the lower whiskers are indicated by
the red plus signs.

[42]. As shown in Fig. 2.6, the mean frequencies decrease with the component’s

indexes increase and it is a further indication of the hierarchical structure of the

equivalent filter bank. It is suspected that the high frequency noise is appeared in

the first several components whereas relative low frequency noise resides in the last

several components. We eliminate those components whose frequency contents are

irrelevant to that of the heat beat signal. It acts as the first step of denoising and

leads to the major advantages of high efficiency in the next step.

The NAMEMD has the ability to align ‘common scales’ present within multi-

variate data [90] and it is the main difference with the classical channel-wise EMD

methods. To highlight this, we also decompose the preprocessed signal using the
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Figure 2.6: Time domain analysis of the NAMEMD results. In each subfig-
ure, the horizontal axis represents the time index and the vertical axis
represents the amplitude of the signal.

powerful EEMD method and compare its results with the results of NAMEMD in

the frequency domain, shown in Fig.2.7 and Fig. 2.8. As can be seen from Fig.2.7,

the common scales are shown in the IMF components with the same indexes. The

alleviation of mode mixing mainly benefits from the use of inter-channel informa-

tion and the Gaussian white noise which residues in a separated subspace from the

useful data. Such mode alignment property helps to utilize the similar scales from

multiple sources. However, for the EEMD method, the IMF components with the

same index always have different scales, as shown in Fig. 2.8. Take the IMF7 as an

example, the dominant frequency of IMF7 from sensor 1 is about 3.5 Hz, whereas

that from sensor 2 and 3 is about 10 Hz and 7 Hz respectively. Therefore, it is ar-

bitrary to select the IMF components with the same index from the EEMD results
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Figure 2.7: Frequency domain analysis of the NAMEMD results.

as the input of the subsequent analysis, such as BSS methods.

Another interesting finding is that we can observe some repetitive signals whose

periods are similar to the heart beat signals in the decomposition results of sensor 2

and sensor 3 by NAMEMD, such as IMF10 from sensor 2 and IMF 7 from sensor

3 shown in Fig. 2.6, even though these two sensor signals are polluted by the noise

heavily. However, we could not find that similarity in the decomposition results

by EEMD. This maybe benefit from the inter-channel information considered by

NAMEMD whereas EEMD is channel-wise method. In addition, it also suggests

that we must put the sensor at the ideal location if we want to get the heart signal

from only one sensor, otherwise it would be much more difficult or even impossible

to obtain that signal.

42



Figure 2.8: Frequency domain analysis of the EEMD results.

Extracted Heart Beat Signals Based on the MCCA

The artifacts components can be selected and removed from the obtained IMF com-

ponents. Then 12 IMF components (4 from each sensor) are used to be the inputs of

the blind source separation techniques, including MCCA and ICA. For the case of

MCCA, those IMF components from 3 sensors form 3 datasets, acting as the input

of the MCCA. However, for the case of ICA, we combine these 12 IMF compo-

nents together and try to extract the heart beat signal from the noisy signals by the

FastICA. Then the underlying source signals resembling the heart beat signals are

selected and displayed. The separation results of NAMEMD-MCCA and some pre-

vious methods including EEMD-ICA and EEMD-MCCA are compared in Fig.2.9.

Generally, these three techniques can recover the heart beat signals and the heart
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Figure 2.9: Extracted heart beat signals when employing three different
methods.

beat rates can be retrieved from them. However, the results of EEMD-ICA and

EEMD-MCCA seem to convey more noise. As we can see from the 2nd subfigure

of Fig.2.9, there are stark disparities between the magnitudes of different cycles,

which may obscure the physical meaning of the heart beat signal. As to the result

of EEMD-MCCA method, the gaps between peaks and base line are too small and

this may increase the difficulty to detect the peaks sometimes. In contrast, the ex-

tracted signal of NAMEMD-MCCA highly resembles the heart beat signal. The

similarity between them also suggests the effectiveness of the proposed two-step

strategy to recover the underlying source signal.
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Table 2.1: The estimated RHBR results when employing three different
methods.

Task NAMEMD-MCCA EEMD-ICA EEMD-MCCA
Finger Flex 67.6 68.5 65.4

Fix type 66.1 62.5 65.1
Fix type key1 70.7 60.3 60.9

Fix type1 69.6 69.2 69.7
Fix type2 68.2 71.1 68.3

Fix writing 69.9 68.7 71.3
Fix writing1 68.5 65.7 66.1
Fix writing2 63.6 64.6 63.8
Wrist Flex 70.9 72.1 71.4

Fix Sit 72.1 70.1 71.1
Fix Stand 70.8 70.1 68.8

AVG* 68.9 67.5 67.4
STD* 2.47 3.75 3.44

* AVG and STD represent the average and the standard deviation re-
spectively.

Heart Beat Estimation

We apply the heart beat rate estimation method mentioned in Algorithm 3 to the

extracted heart beat signals of 11 tasks and the estimated results are shown in Table

1. To evaluate the reliability of the results, we also asked an experienced physician

to measure the pulse rate of the subject during each task manually, from which

the average resting pulse rate of the subject derived to be 70 bpm. For the pro-

posed method, the average of the RHBR results is closer to the ground truth and

the related standard variation is 2.47, which is the smallest one among the three

variations.

2.4 Discussions

In this chapter, we explore the potential of using novel nanofiber based strain sen-

sors for monitoring heart beat signals. Three NF sensors are attached to different
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locations on the wrist. These sensors can cover a large area to ensure getting good

signals from the right position. Even though the acquired signals may be contam-

inated, it is still possible to recover the heart beat signal from multi-sensors by

exploring the inter-channel information. The nano-sensor signals are recorded un-

der different conditions. Similar to other types of biomedical measurement tools,

detecting and extracting source signals from back ground noises is challenging for

wearable technologies. The proposed NAMEMD-MCCA method provides supe-

rior performances for detecting RHBR from the measured nano-sensor data, as it

mainly benefits from the appropriate combination of the NAMEMD and MCCA.

At the first step, the NAMEMD works as adaptive filter banks with scale align-

ment of channels and can overcome the limitations of classical channel-wise EMD

methods, such as standard EMD and the EEMD which can only cater for univari-

ate signals, when dealing with data from multiple sources. If multiple signals are

processed separately, the EEMD fails to align the frequency responses from IMFs

with same index of multichannel signals, making the subsequent analysis meaning-

less [90]. However, the NAMEMD method is able to accurately align the common

oscillatory modes in corresponding IMFs from multivariate signals, and therefore

providing an intuitive and effective way for the analysis of narrowband but non-

stationary rhythms from the multichannel nanofiber based strain sensor signals. In

addition, unlike the EEMD, the noise in NAMEMD is not added directly to the

original signal. Instead it is kept in separate channels of a multivariate signal. In

this way, the physically disjointed input signal and the added noise can alleviate the

effects of noise interference, a unique property of NAMEMD. Compared with the

other two existing algorithms including EEMD-ICA and EEMD-MCCA, the bet-

ter performance of the proposed method is credited to the use of the inter-channel

information, enhanced localization properties and increased robustness to artifacts

of the NAMEMD method.
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At the second step, the IMFs from each sensor whose dominant frequencies

are close to that of typical heart beat signals are analyzed further by the follow-

ing BSS methods. MCCA can be used to efficiently separate the source signals.

Under certain assumptions, the group of corresponding sources from each dataset

can be jointly extracted by MCCA through maximizing the correlations among the

extracted sources [20, 72]. Yet, ICA always aims to find a linear projection of the

multivariate signals that maximize the mutual independence. Comparing with ICA

which is based on high order statistics (HOS), MCCA uses the second order statis-

tics and thus yields higher computational efficiency. For the health monitoring

system, people always desire a direct feedback, and thus ensuring a lower com-

putational complexity is often of great importance. In addition, the ICA method

always fails to converge which may render that some source signals still are mixed

with noisy components. A few comparisons have shown that MCCA are more

competitive in solving multivariate blind source separation problems [72].

After obtaining the heart beat signal, the HBR estimation method can be ap-

plied to detect the subject’s RHBR. It should be noted that the selection of the

heart beat signal from the separation results of BSS methods is based on visual

inspection. In real-world application, a selection criteria or an automated selection

method is needed. We are currently working on this issue based on some machine

learning strategies.

2.5 Conclusions

The ability to accurately detect flexions and extensions is critical for wearable

health monitoring. In this chapter, we propose performing radial pulse sensing

using three nanofiber based strain sensors, and we aim to extract the heart beat

signal and estimate the corresponding RHBR from the recorded NF-based Sen-

sor data. Since the type of nanofiber-based sensors used in this chapter is novel
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and its application to heart beat rate estimation is also new, we need to investigate

which approach is more appropriate to analyze this new type of nano sensor signals

for estimating the heart beat rate. In addition to investigating two state-of-the-art

EMD-BSS based methods, to better address the artifact removal challenge for our

specific application, a novel framework based on the NAMEMD and MCCA is

proposed to extract the heart beat signal from the multi-channel NF-based sensor

signals. It is shown that the proposed method provides the best performance, espe-

cially for preserving the shape of the heart beat signal.

This chapter is the first work during my PhD study. It was motivated by the

particular application to extract the heart beat signal from the nanofiber sensor

signals. We specifically designed this method for this application. However, it is

still applicable to the general cases when: 1) the number of observations is smaller

than that of sources; 2) there is cross correlation between each pair of observations.
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Chapter 3

Underdetermined Joint Blind

Source Separation for 2 datasets

based on Tensor Decomposition

In this chapter, we aim to jointly separate the underdetermined mixtures of latent

sources from two datasets, where the number of sources exceeds the number of

observations in each dataset. Currently available BSS methods, including JBSS and

UBSS, cannot address this underdetermined problem effectively. We exploit the

second-order statistics of observations and introduce a novel blind source sepa-

ration method, termed as UJBSS-2. Considering the dependence information be-

tween two datasets, the problem of jointly estimating the mixing matrices is tack-

led via CPD of a specialized tensor in which a set of spatial covariance matrices

are stacked. Furthermore, the estimated mixing matrices are used to recover the

sources from each dataset separately. Numerical results demonstrate the compet-

itive performance of the proposed method when compared to a commonly used

JBSS method, multiset canonical correlation analysis (MCCA), and the single-set
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UBSS method, UBSS-FAS.

3.1 Motivation and Objectives

With the advances of sensor technologies, we now have access to a large amount of

multiset or multimodal data which needs to be jointly analyzed to extract the latent

and physiologically meaningful components [5, 17, 121, 122]. Hence, JBSS algo-

rithms which can jointly retrieve the source components are of great interest. JBSS

exploits the dependence information across datasets and generally could yield bet-

ter performances than that of single-set blind source separation (BSS) methods

applied to each dataset separately [69]. JBSS also can keep the extracted compo-

nents aligned across different datasets, an important feature that is not provided by

single-set BSS methods.

Numerous models have been introduced to generalize the idea of single-set

BSS to JBSS. For example, ICA has been extended to handle multiple datasets

[5]. Group ICA and joint ICA attempt to concatenate multiple datasets into one

dataset in the vertical and horizontal dimension respectively. Then the standard

ICA can be performed on the concatenated single dataset. Independent Vector

Analysis (IVA) generalizes ICA to multiple datasets by exploring the statistical

dependence across datasets [5]. In addition, CCA has been popular to analyze

relationships between two sets of variables [56]. It seeks a linear transformation of

the observations such that the obtained corresponding source components across

two datasets are maximally correlated. A generalization of CCA from two datasets

to multiple datasets, MCCA, is shown to be flexible and powerful for discovering

associations across multiple datasets [72]. Another recent extension of CCA is the

joint diagonalization of many cross-cumulate matrices [69], which is especially

effective when there is no explicit source distribution known in advance [69] .

It is worth noting that the above mentioned JBSS algorithms were originally
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proposed for the determined case, since they generally assume that the number of

sources is equal to or less than that of observations. This assumption may not be

true in some practical applications, due to concerns such as the cost or time issues

[60]. However, to our best knowledge, in the current literature there is no JBSS

method specifically designed for the underdetermined case (i.e., the number of

sources is greater than that of observations), even though there are some single-set

underdetermined BSS (UBSS) methods [31, 62, 116] which can be used to separate

the mixtures from each dataset separately. To fill this gap, in this chapter, we plan

to extend the idea of JBSS to the underdetermined case for two datasets.

More specifically, inspired by the CCA model and the simultaneous matrix

diagonalization [31], we exploit the second-order statistics of the observations in

two datasets and propose a novel BSS method, referred to as the UJBSS-2. It

is based on tensor decomposition which is attractive for our problem due to its

ability to estimate the mixing matrix in UBSS for a single dataset[122]. Unlike

the traditional (over)determined JBSS methods, the proposed UJBSS consists of

two steps. Firstly, the mixing matrices are jointly estimated through a specialized

tensor decomposition of the set of spatial covariance matrices of the observations.

This step is the main emphasis of this chapter. Then the estimated mixing matrices

are used to recover the sources from each dataset. In this work, we employ a novel

time-frequency (TF) analysis method [116] to recover the sources.

3.2 Problem Formulation and Proposed Method

3.2.1 Signal Generation Model and Problem Statement

The problem of interest here is the underdetermined JBSS problem for 2 datasets.

For the case of UJBSS for 2 datasets, the observed vector of each dataset contains

the linear mixtures of the corresponding N sources. We can model the mixing
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process as follows,

X [k] = A[k]S[k]+ e[k], k = 1,2 (3.1)

where X [k] = [x[k]1 ,x[k]2 , . . . ,x[k]M ]T represents the M-dimensional observations, s[k] =

[s[k]1 ,s[k]2 , . . . ,s[k]N ]T means the underlying N-dimensional sources which are assumed

to be mutually uncorrelated, A[k] ∈ RM×N with M < N (i.e., the underdetermined

case) represents the unknown mixing matrix for dataset k, E [k] means the possible

additive noise which is generally assumed to be zero mean, temporally white and

uncorrelated with the source signals.

The problem under consideration is to estimate the two mixing matrices A[1]

and A[2] jointly up to permutation and scaling. In order to demonstrate the perfor-

mance of the proposed mixing matrices estimation method, we also implement an

approach for further source recovering based on the estimated A[1] and A[2].

3.2.2 Mixing Matrices Estimation

We have the following assumptions concerning the sources:

(1) The sources are uncorrelated within each dataset.

E{s[k]i (t)(s[k]j (t + τ))H}= 0

∀τ, 1≤ i 6= j ≤ N,k = 1,2,
(I)

where τ represents the time delay and ·H denotes the complex conjugate transpose.

(2) The corresponding sources from two different datasets have non-zero cor-

relations and the sources with different indices across datasets are not correlated.

D[τ] =E{S[1](t)(S[2](t + τ))H}

=diag[ρ1(τ), ...,ρN(τ)].
(II)

Considering the correlations within and between the two datasets, we have the
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spatial covariance matrices of the observations with delays, e.g., C[l], satisfy,

C[1] = E{X [1](t)X [2](t + τ1)
H}= (A[1])D[τ1](A[2])H ,

C[2] = E{X [1](t)X [2](t + τ2)
H}= (A[1])D[τ2](A[2])H ,

...

C[L] = E{X [1](t)X [2](t + τL)
H}= (A[1])D[τL](A[2])H ,

(3.2)

in which τl means the time delay and the matrix D[τl ] = E{S[1](t)S[2](t + τl)
H} is

diagonal, for l = 1,2, ...,L.

We stack the matrices C[1],C[2], ...,C[L] in a tensor C ∈ RM×M×L as follows:

(C )i, j,l = (C[l])i, j, i = 1,2,...,M, j = 1,2,...,M, l = 1,2,...,L. We define the matrix D of

size L×N with the element Dl,n = (D[τl ])n,n, for l = 1,2,...,L, n = 1,2,...,N. Then we

can represent C as:

C =
N

∑
n=1

a[1]n ◦a[2]n ◦dn, (3.3)

in which the symbol ◦ denotes the tensor outer product operation, and a[1]n and a[2]n

are the nth column of the mixing matrices A[1] and A[2] respectively. With this ten-

sor format, now the problem of estimating the mixing matrices A[1] and A[2] can

be reformulated as a problem of CPD, which aims to decompose a higher-order

tensor as a linear combination of a minimal number of rank-one tensors [61, 120].

In (3.3), each rank-one tensor is associated with a single source. Therefore, the

mixing matrices A[1] and A[2] can be estimated via the unique CPD of C . Actu-

ally, the power of CPD mainly stems from its uniqueness property. The uniqueness

means that the decomposition is the only possible combination of rank-one tensors

which sum to the objective tensor with the exception of permutation and scaling.

The uniqueness is based on the rank of tensors. De Lathauwer et al. have studied

different methods to determine the rank of a tensor and concluded that the de-
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composition of a three-order tensor is unique [30, 61] if the number of sources N

satisfies

N ≤ L and N(N−1)≤M2(M−1)2/2. (3.4)

The CPD of the tensor can be calculated by minimizing the Frobenius norm

of the difference between the original tensor and its estimated results using the

Alternating Least Squares (ALS) algorithm due to its programming simplicity and

popularity. In this chapter, the Enhanced Line Search (ELS) is used to enhance the

convergence of the ALS [31, 88]. It should be mentioned that the choices of τ1,

τ2, . . . , τL may affect the estimation precision of the mixing matrices. Here, we

heuristically choose the time delay as τl ∈ [0,60] samples. If τl is too large, the

correlation between two related sources with delay will be close to 0 and then the

matrix D might be ill conditioned. It is desired to select τ1, τ2, . . . , τL such that

D is well conditioned. In addition, if the time delay τ is too large, the covariance

matrix of the sources in two datasets (i.e., D[τ]) will be close to a null matrix and

thus the assumption (II) may not hold.

3.2.3 Source Extraction Based on The Estimated Mixing Matrices

A complete JBSS approach consists of both mixing matrix estimation and source

extraction, even though our main focus in this chapter is the estimation of mixing

matrices. In order to demonstrate the performance of the proposed mixing matri-

ces estimation method, we adopt a recently-developed TF analysis method [116]

to recover the latent sources based on the estimated mixing matrices. For any un-

derdetermined and instantaneous mixing model, priori knowledge is essential to

restore the latent sources. In this chapter, we assume that the number of sources

satisfies N ≤ 2M− 1. WVD [12, 112] is firstly applied to the observations and

sparser representation in the TF domain can be achieved. For any time series sig-
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nal with finite-energy, such as y1(t) and y2(t), the auto WVD is defined as

Wy1(t, f ) =
∫

∞

−∞

y1(t + τ/2)y∗1(t− τ/2)e− j2π f τdτ (3.5)

and the cross WVD between the two signals is defined as

Wy1,y2(t, f ) =
∫

∞

−∞

y1(t + τ/2)y∗2(t− τ/2)e− j2π f τdτ. (3.6)

For the linear mixing model shown in (3.1), we can have

W x[k](t, f ) = A[k]W s[k](t, f )(A[k])H , k = 1,2. (3.7)

In order to extract the auto WVDs of the sources from the known mixtures,

it is vital to identify the auto-term TF points where W
s[k]n

shows energy concen-

tration. The high TF concentration property of WVD and the sparsity of the

sources guarantee that the auto-term TF points of the sources are dominant among

all the TF points [116]. Therefore, we can collect enough information and then

recover the sources based on the WVD values of all auto-term TF points. Ac-

cording to the definition of auto-term TF points, the spatial time frequency distri-

bution (STFD) matrix of the sources at any auto-term TF point (ta, fa) is diago-

nal. The WVD value of the sources α at auto-term point (ta, fa) can be written as

[W
s[k]1 ,s[k]1

(ta, fa),Ws[k]2 ,s[k]2
(ta, fa), . . . ,Ws[k]N ,s[k]N

(ta, fa)]
T . Here α satisfies

(A[k]�A[k])α = rvec(W X [k](ta, fa)), (3.8)

where � represents the Khatri-Rao product and rvec means the vectorization of a

matrix. The auto WVD value of the sources at each auto-term TF point, denoted

as α , can be uniquely determined based on (3.8) under the following assumptions:
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any M columns of the mixing matrix A[k] are linearly independent; the number of

sources satisfies the condition N ≤ 2M−1 as in [116], which is more stringent than

(3.4). Here, we adopt an auto-term TF points searching strategy proposed in [116]

and reconstruct the sources in the time domain based on the auto WVD values at

all auto-term TF points.

The major steps of the proposed UJBSS algorithm are summarized in Algo-

rithm 5.

Algorithm 5 The UJBSS algorithm for two datasets

Input: M-dimensional observations X [1] and X [2].
Output: the estimated mixing matrices A[1], A[2] and the recovered N-dimensional
sources s[1], s[2].

1: Construct a three-order tensor C as in (3.2);
2: Calculate the CPD with N components for the tensor C and estimate the mix-

ing matrices A[1] and A[2] as in (3.3);
3: Calculate the WVD values of the observations W X [1](t, f ) and W X [2](t, f ) as in

(3.5) and (3.6);
4: Calculate the auto WVD values of the sources at auto-term TF points

W S[1](t, f ) and W S[2](t, f ) based on the estimated mixing matrices as in (3.8);
5: Recover the sources in the time domain.

3.3 Numerical Study

In this section, we present two simulation studies, where different types of sources

are considered, to demonstrate the separation performance of the proposed UJBSS

method for two datasets. Two performance indices are used to evaluate the perfor-

mance of the proposed method. One is the estimation error, defined as:

Error = 10log10{mean(
||A− Â||
||A||

)} (3.9)
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where Â denotes the optimally ordered estimate of A. The other one measures the

Pearson product-moment correlation coefficient (PPMCC) between the estimated

sources and the original sources, which is defined as

PPMCC =
cov(sn, ŝn)

σsnσŝn

(3.10)

where ŝn means the estimate of the source sn, cov means the covariance between

two variables and σ means the standard deviation. In order to ensure the depen-

dence between the sources of the two datasets, the sources are synthesized as fol-

lows,

S[1] =[s[1]1 ,s[1]2 , . . . ,s[1]N ]T ;

S[2] =[s[2]1 ,s[2]2 , . . . ,s[2]N ]T

=S[1].∗ (uni f rnd(0,1,S[1])

(3.11)

where uni f rnd(0,1,S[1]) generates a vector with the same size of S[1] and each

element of the vector is randomly drawn from the continuous uniform distribution

on the interval (0,1). The average correlation between the source s[1]n in the first

dataset and the corresponding source s[2]n in the second dataset is about 0.85, which

can be regarded as highly correlated.

3.3.1 Simulation 1: Audio Signals

The sources used in this simulation include 8 audio signals, such as a piece of

sound from the cable news network (CNN) and a piece of sound of an anonymous

singer. The mixing matrices are generated randomly with elements following the

uniform distribution U [−1,1]. For simplicity, each column of the mixing matrices

is normalized into a unit vector. In our first setting, 6 sources are mixed into 4

observations in each dataset and the corresponding sources in the two datasets are

correlated. With different signal-to-noise ratios (SNRs), we compare the proposed
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Figure 3.1: Performance of the proposed UJBSS method. (a) Performance
comparisons between the proposed UJBSS method and the single-set
SOBIUM method. Here the number of sources N = 6 and the number
of observations M = 4. (b) Estimation error of A[1] when employing
the proposed UJBSS method. Here the number of sources N = 8 and
the number of observations M varies from 4 to 8. Similar results are
observed for A[2].

UJBSS method with a commonly-used single-set UBSS method, SOBIUM [31],

when it is applied to each dataset separately. We repeat the simulation 500 times

and the performance is shown in Fig.3.1(a). Benefiting from the dependence in-

formation between two different datasets, the proposed UJBSS can provide more

accurate estimation of the two mixing matrices, while SOBIUM neglects the pos-

sible inter-dataset information. We also note that the Error measure from either

the UJBSS or the UBSS decreases with the increase of the SNR.

We also test the performance of the proposed method as the number of the

observations increases from 4 to 8, while the number of sources is set to be 8.

As noted in Fig.3.1(b), the estimation performance is getting better when more

observations are available. Furthermore, we also test the performance when the

condition (3.4) is not satisfied. For instance, with M = 3 and N = 8, as expected,

the proposed method cannot estimate the mixing matrices correctly. We observe

that the Error can be close to 0dB even when the SNR is larger than 40dB.
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Figure 3.2: The original sources and extracted sources from the first dataset.
(a) Simulation 1. (b) Simulation 2. The top subfigures are the original
sources and the bottom ones are the extracted sources. Similar results
are observed for the second dataset.

We recover the latent sources from each dataset based on the estimated mixing

matrices. In an illustrative example, we linearly mix 4 sources into 3 observations

in each dataset. Fig.3.2(a) shows the separation results of the first dataset in the

time domain. The top four subfigures of Fig.3.2(a) represent the original sources

and the bottom four subfigures are the recovered sources from the proposed UJBSS

method. Considering the fact that SOBIUM only can estimate the mixing matri-

ces, we further compare the proposed method with a single-set UBSS method, the

UBSS-FAS [116], and the JBSS method MCCA [72], in term of the PPMCC be-

tween the original sources and the recovered sources. The performance results of

these three methods are reported in Table 3.1. Although adopting the same technol-

ogy in extracting sources, the performance of the proposed method is significantly

better than that of the single-set UBSS-FAS method. This observation supports

the importance of estimating mixing matrices accurately. MCCA, which has been

successfully used in many fields [27], assumes that the number of sources is equal

to the number of observations in each dataset and it could not be used to sepa-
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rate sources in the underdetermined case directly. We add one observation in each

dataset so that MCCA can be applied. Therefore it is not really a fair setting and

comparison to the proposed method. However, we note that the performance of

MCCA is not as good as that of the proposed method, even with an additional ob-

servation signal. The following reasons could contribute to the worse performance

of MCCA: it is mainly due to the fact that the correlation coefficients between

sources in two datasets are quite close [20, 72]; the performance of MCCA may

suffer from the error accumulation of the deflation-based separation methods [69].

Table 3.1: PPMCC performance results in Simulation 1.

Methods s1 s2 s3 s4

Dataset 1
UJBSS 0.935 -0.809 0.840 0.924

UBSS-FAS[116] -0.478 0.892 -0.224 0.943
MCCA∗[72] 0.717 0.622 0.774 0.649

Dataset 2
UJBSS 0.866 -0.913 0.919 0.727

UBSS-FAS[116] -0.384 -0.867 -0.003 -0.629
MCCA∗[72] 0.711 -0.623 0.767 0.650

∗We add one additional observation in each dataset when we evaluate the MCCA.

3.3.2 Simulation 2: Physiological Signals

In this experiment, we employ four physiological signals as sources, including

electrocardiogram (ECG), EEG, electrooculography (EOG) and EMG from a pub-

licly available database [45]. The sources corresponding to the second dataset are

generated following (3.11). We get similar result as in the first simulation. Here,

we just show the performances in term of the estimated sources in the time do-

main and the PPMCC results between the original sources and the estimated ones.

Fig.3.2(b) shows the separation results of the four physiological signals. Although

they still seem noisy, the estimated sources from the proposed UJBSS are highly
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correlated with the original ones. As shown in Table 3.2, the proposed method

yields promising results when it is used to separate the latent and underdetermined

mixtures from two datasets. Compared to the classical JBSS method MCCA, the

proposed UJBSS approach needs fewer number of observations in each dataset,

while it still can provide a competitive performance.

Table 3.2: PPMCC performance results in Simulation 2.

Methods ECG EEG EOG EMG

Dataset 1
UJBSS 0.778 -0.920 0.950 0.807

UBSS-FAS[116] -0.544 -0.908 0.222 0.450
MCCA∗[72] 0.752 0.885 -0.798 -0.723

Dataset 2
UJBSS 0.793 0.874 0.857 0.784

UBSS-FAS[116] -0.494 -0.751 0.393 -0.534
MCCA∗[72] 0.761 -0.885 -0.807 -0.714

∗We add one additional observation in each dataset when we evaluate the MCCA.

3.4 Conclusion

In this work, we exploit the spatial covariance of the observations in two datasets

and present a novel UJBSS method to jointly estimate the mixing matrices from

two datasets when the number of observations is smaller than that of the sources

(i.e., the underdetermined case). The mixing matrices are accurately estimated

through CPD of a specialized tensor in which a set of covariance matrices are

stacked. Further the sources are recovered based on the estimated mixing matri-

ces. Numerical results demonstrate the competitive performances of the proposed

method when compared to the commonly used JBSS method and the single-set

UBSS method.

This Chapter represents the second work in my PhD study. To the best of our

knowledge, there is no any existing JBSS method which can work in the underde-
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termined case. Inspired by CCA, we explore the dependence information between

two datasets and propose a novel strategy named as UJBSS for two datasets. We

utilize the physiological signals, including audio signals and biomedical signals, as

case studies. However, it is a general method for recovering the underlying sources

from two datasets in the underdetermined case.
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Chapter 4

Underdetermined Joint Blind

Source Separation of Multiple

Datasets

In this chapter, we tackle the problem of jointly separating instantaneous linear un-

derdetermined mixtures of latent sources from multiple datasets, where the number

of sources exceeds that of observations in each dataset. Currently available BSS

methods, including JBSS and UBSS, cannot address this underdetermined problem

effectively. We exploit second-order statistics of observations and present a novel

blind source separation method, referred to as UJBSS-M, as a generalization of our

previous work on two datasets [124]. In this work, the cross correlation between

each pair of datasets is modeled by a third-order tensor in which a set of spatial co-

variance matrices corresponding to different time delays are stacked. Considering

the latent common structure of these constructed tensors, the mixing matrices are

jointly estimated via joint canonical polyadic decomposition of these specialized

tensors. Furthermore, we recover the sources from each dataset separately based on
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the estimated mixing matrices. Simulation results demonstrate that the proposed

UJBSS-m method yields superior performances when compared to commonly used

single-set UBSS and JBSS methods.

4.1 Motivation and Objectives

The increasing availability of multiset and multimodal signals has posed new chal-

lenges for conventional blind source separation (BSS) methods which are origi-

nally designed to analyze one data set at a time. There are many applications in-

volving multiple datasets which have dependence relationships between them and

need to be jointly analyzed [4, 44, 122], such as EEG, ECG, and MRI data. Hence,

JBSS algorithms have attracted great interest in the fields of signal processing ow-

ing to their ability to simultaneously recover the underlying and physiologically

meaningful components from multiple datasets. The crucial difference between

BSS and JBSS is reflected by the fact that BSS only examines each dataset sepa-

rately, whereas JBSS generalizes BSS to consider the dependence across multiple

datasets [22]. Compared with conventional single-set BSS methods, JBSS gen-

erally could yield better performances. In addition, JBSS can keep the extracted

components aligned across different datasets, an important feature that is not pro-

vided by single-set BSS methods.

The most original JBSS method was likely CCA, which has been popular to

analyze relationships between two sets of variables [56]. It seeks a linear trans-

formation of the observations such that the obtained corresponding source compo-

nents across two datasets are maximally correlated. A generalization of CCA from

two datasets to multiple datasets, MCCA was shown to be flexible and powerful for

discovering associations across multiple datasets [72]. Another recent extension of

CCA is the joint diagonalization of many cross-cumulate matrices [69], which is

especially effective when there is no explicit source distribution known in advance
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[69]. In addition to CCA-type algorithms, numerous models have been introduced

to generalize the idea of single-set BSS to JBSS. For example, ICA has been ex-

tended to handle multiple datasets [5]. The group ICA and the joint ICA attempt to

concatenate multiple datasets into one dataset in the vertical and horizontal dimen-

sion respectively, and then the standard ICA can be performed on the concatenated

single dataset [5]. Based on the modular Bayesian framework, Groves et al. pro-

posed a novel Linked ICA [48], encapsulating the ideas from both the group ICA

and joint ICA. IVA generalizes ICA to multiple datasets by exploring statistical

dependences across datasets [5].

It is worth noting that the above mentioned JBSS algorithms were originally

proposed for the determined case, since they generally assume that the number

of sources is equal to or less than that of the observations. This assumption may

not be true in some practical applications, due to concerns such as the cost or

time issues [60]. However, to our best knowledge, in the current literature there is

only very limited work on JBSS methods specifically designed for the underdeter-

mined case (i.e., the number of sources is greater than that of observations), even

though there have been more single-set underdetermined BSS (UBSS) methods

[31, 59, 62, 91, 115, 116, 119] which can be used to unmix the mixtures from each

dataset separately. These UBSS methods can be divided mainly into two categories

[104]. Most UBSS methods rely upon the sparsity of source signals in a specific

domain, e.g., the time-frequency domain [91, 115, 116]. This category of methods

usually require exhaustive computation, especially when the number of sources is

large. Many algebraic methods were also proposed for unmixing the mixtures in

the underdetermined case, most of which are based on decomposition of different

data structures, e.g., covariance matrices[31].

In our previous paper [124], we proposed an underdetermined joint blind source

separation method for two datasets (UJBSS-2) based on the decomposition of a
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specialized tensor. However, it can only jointly estimate the mixing matrices from

two datasets and cannot be extended directly to unmix the mixtures from multiple

(larger than two) datasets [125]. To fill this gap in the literature, in this chapter,

we plan to extend the idea of JBSS to the underdetermined case and generalize the

idea of underdetermined joint blind source separation (UJBSS) for two datasets to

that for multiple datasets.

More specifically, inspired by the MCCA model and the simultaneous diag-

onalization of covariance matrices [26, 31, 46], we exploit second-order statis-

tics of the observations in each pair of datasets and propose a novel BSS method,

termed as the underdetermined joint blind source separation for multiple datasets

(UJBSS-m). Unlike the traditional (over)determined JBSS methods, the proposed

UJBSS-m consists of two steps: 1) jointly estimate the mixing matrices from mul-

tiple datasets, and 2) recover the underlying sources individually based on each

mixing matrix estimated in step 1). The most challenging task is to estimate the

unknown mixing matrices precisely, which is the main concern of this chapter. In

this work, this problem is tackled via joint canonical polyadic decomposition of

specialized tensors. The dependence information between each pair of datasets is

modeled by a third-order tensor where a set of spatial covariance matrices related

to different time delays are stacked. Considering the possible combinations of two

datasets, the pairs of the corresponding tensors share a common factor and then

the mixing matrices (i.e., factor matrices of those tensors) can be jointly estimated

by optimization-based methods. The estimated mixing matrices are further used to

recover the sources from each dataset. In this work, we explore a novel subspace

representation based method [116] to recover the sources.

Our main contributions are summarized as follows:

1) This chapter extends the idea of (over)determined JBSS to that of the under-

determined case.

66



2) Exploiting the cross correlation between each pair of datasets, we propose

a novel and effective method to jointly estimate the mixing matrices for multiple

datasets. More precise estimates of the mixing matrices can be achieved via the

proposed UJBSS-m method compared to several classical single-set UBSS meth-

ods and JBSS methods.

3) The proposed UJBSS-m method can be used to solve single set UBSS prob-

lems and could achieve better performance in some cases, as demonstrated in the

promising application of noise enhanced signal processing.

4) The proposed UJBSS-m method does not rely upon the sparsity of signals

and therefore it can be applied to a wide class of signals, e.g., audio/speech and

biomedical signals.

4.2 Notations and Preliminaries

In this chapter, we generally use the notation of [2], which was adapted by [57, 61].

A tensor can be interpreted as multi-index numerical array, whereby the order of a

tensor is the dimensionality of the array. Scalars, denoted as lowercase letters, e.g.,

x, are said to be tensors of zero order. Vectors (first-order tensors) are denoted by

boldface lowercase letters, e.g., x. Matrices (second-order tensors) are denoted by

boldface capital letters X . Third-order or higher-order tensors are denoted by bold-

face Euler script letters, e.g., X . The transpose, inverse, Moore-Penrose pseudo

inverse, norm are denoted by (·)T , (·)−1, (·)†, ‖ · ‖.

The operation of matricization reorders the elements of a higher-order tensor

into a matrix. For example, mode-n matricization of a Nth-order tensor X ∈

RI1×I2×···×IN yields a matrix X (n) ∈ RIn×(I1×I2×···×In−1×In+1×···×IN) whose columns

are all mode-n fibers arranged in a specifically predefined order. In this chapter,
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tensor element xi1,i2,...,iN corresponds to matrix elements x(n)(in , j) , where

j = 1+
N

∑
l=1
l 6=n

(il−1)(
l−1

∏
k=1
k 6=n

Ik). (4.1)

The inner product of two same-sized tensors X ,Y ∈ RI1×I2×···×IN is the sum

of the products of their elements, i.e.,

< X ,Y >=
I1

∑
i1=1

I2

∑
i2=1

. . .
IN

∑
iN=1

xi1,i2,...,iN yi1,i2,...,iN . (4.2)

The Frobenius norm of a tensor X is the square root of its inner product with itself,

i.e.,

‖X ‖=
√

< X ,X >. (4.3)

The outer product of vectors {a(n)} ∈ RIn ,n = 1,2, . . . ,N yields a rank-one tensor

X = a(1) ◦ a(2) ◦ . . .a(N) with entries xi1,i2,...,iN = a(1)i1 a(2)i2 . . .a(N)
iN , where the ◦ rep-

resents the outer product operation. The superscript in parentheses represents one

element in a sequence, e.g., a(n) represents the nth vector in a sequence of vectors.

In order to demonstrate multi-way models, the usual matrix product, such as

Kronecker product and Khatri-Rao product, is not sufficient. A frequently used

operation is the mode-n product, denoted by ×n. The mode-n product of a tensor

X ∈ RI1×I2×···×IN with a matrix A ∈ RJn×In amounts to the product of all mode-n

fibers with A and yields a tensor with the size of (I1×I2×·· ·×In−1×Jn×In+1 · · ·×

IN), whose entries are given by

(X ×n A)i1,i2,...,in−1, jn,in+1...,iN

=
In

∑
in=1

xi1,i2,...,in−1,in,in+1...iN a jn,in .
(4.4)
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The mode-n product of a tensor and a vector is a special case of the mode-n

product of a tensor and a matrix with the size of (1× In). Note that the order of the

result is (N−1), one less than the order of the original tensor. It is often useful to

calculate the product of a tensor with a sequence of vectors. Let X denote a tensor

with the size of I1× I2× ·· ·× IN , and let {a(n)} (n = 1,2, . . . ,N), be a sequence

of vectors, each with the length of In. Then the product of X with a sequence of

vectors in all modes yields a scalar, i.e.,

y = X ×1 a(1)×2 a(2)×3 · · ·×N a(N)

=
I1

∑
i1=1

I2

∑
i2=1

. . .
IN

∑
iN

xi1,i2,...,iN a(1)i1 a(2)i2 . . .a(N)
iN .

(4.5)

We refer the readers to [57, 61] for further details and discussions about various

tensor operations.

4.3 Problem Formulation

The problem of interest here is the underdetermined JBSS for multiple datasets,

e.g., K datasets. The M observations of each dataset contain the linear mixtures of

the corresponding N sources. We can model the mixing process as follows,

X (k) = A(k)S(k)+E(k), k = 1,2, . . . ,K. (4.6)

X (k) = [x(k)1 ,x(k)2 , . . . ,x(k)M ]T denotes the M-dimensional observations with real val-

ues and x(k)m is the mth channel of the observations in dataset k. S(k)= [s(k)1 ,s(k)2 , . . . ,s(k)N ]T

means the underlying N-dimensional sources with real values and s(k)n is the nth

source for dataset k. A(k) = [a(k)1 ,a(k)2 , . . . ,a(k)N ] ∈ RM×N with M < N (i.e., the un-

derdetermined case) denotes the unknown mixing matrix, whose nth column a(k)n

corresponds to the source s(k)n for dataset k. E(k) means the possible additive noise
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which is generally assumed to be zero mean, temporally white and uncorrelated

with the source signals.

Similar to several existing JBSS methods, e.g. MCCA [72] and JDAIG-SOS

[69], we have the following assumptions regarding the sources:

(1) The sources are uncorrelated within each dataset:

E{s(k)i (t)(s(k)j (t + τ))T}= 0

∀τ, 1≤ i 6= j ≤ N, k = 1,2, . . . ,K,
(I)

where s(k)i (t) is the i-th source in dataset k and s(k)j (t +τ) represents the j-th source

with the time delay τ in dataset k.

(2) The corresponding sources from two different datasets have non-zero cor-

relations and the sources with different indices across datasets are not correlated:

D(τ) =E{S(k1)(t)(S(k2)(t + τ))T}

=Diag(ρ1(τ),ρ2(τ), . . . ,ρN(τ)),
(II)

where Diag(·) represents the diagonal matrix, the ρn(τ)=E{s(k1)
n (t)(s(k2)

n (t+τ))T}

denotes the covariance between s(k1)
n (t) and s(k2)

n (t + τ). This assumption means

that the corresponding sources in multiple datasets are second-order correlated with

each other. In addition, the sources within [s(1)i ,s(2)i , . . . ,s(K)
i ] are uncorrelated with

the sources within [s(1)j ,s(2)j , . . . ,s(K)
j ] for 1≤ i 6= j ≤ N.

The task of estimating the mixing matrices {A(k)} and retrieving the under-

lying sources are not equivalent in the underdetermined case. Therefore, most

UBSS methods consist of two stages: estimate the mixing matrices first and then

retrieve the underlying sources. The major problem under consideration is to esti-

mate {A(k)} jointly up to permutation and scaling. In this chapter, this problem is

addressed via a specially designed joint tensor decomposition. In addition, retriev-
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ing the underlying sources when the mixing matrices are estimated or known is a

classic inverse problem [62]. In order to further demonstrate the performance of

the proposed mixing matrices estimation method, we also implement an approach

for source recovering based on the estimated A(k).

4.4 Canonical Polyadic Decomposition of Tensor

A polyadic decomposition aims to decompose a higher-order tensor as a linear

combination of rank-one tensors [61, 120]. For the case of a third-order tensor

X ∈ RI×J×K , it can be written in the form

X =
N

∑
n=1

an ◦bn ◦ cn, (4.7)

where N is a positive integer and an ∈ RI , bn ∈ RJ , cn ∈ RK . Equivalently, it can be

written element wisely as

xi, j,k =
N

∑
n=1

ai,nb j,nck,n, (4.8)

where i = 1,2, . . . , I, j = 1,2, . . . ,J and k = 1,2, . . . ,K. The rank of a tensor is

the smallest number of rank-one tensors that yield the tensor in the way as (4.7).

If rank(X ) = N, (4.7) is the CPD of X , which is also known as the Canonical

Decomposition (CANDECOMP) or Parallel Factor Analysis (PARAFAC) [2]. The

canonical polyadic approximation means that

X ≈ [[A,B,C]]

≡
N

∑
n=1

an ◦bn ◦ cn,
(4.9)

where N = rank(X ).
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The factor matrices refer to the combination of the vectors corresponding to

each rank-one tensor and can be written as

A = [a1,a2, . . . ,aN ] ∈ RI×N

B = [b1,b2, . . . ,bN ] ∈ RJ×N

C = [c1,c2, . . . ,cN ] ∈ RK×N .

(4.10)

To a large extent, the power of CPD mainly stems from its uniqueness property.

The uniqueness of CPD means that the decomposition is the only possible combi-

nation of rank-one tensors which sum to the objective tensor with the exception of

the indeterminacies of column permutation and scaling. The permutation indeter-

minacy refers to the fact that we can permute the rank-one terms arbitrarily. The

scaling indeterminacy means that we can scale the individual column of the factor

matrices as long as their product remains the same, i.e.,

X =
N

∑
n=1

(α1
n an)◦ (α2

n bn)◦ (α3
n cn) if α

1
n α

2
n α

3
n = 1. (4.11)

The uniqueness condition is based on the rank of tensors. The most famous result

on uniqueness of CPD was reported by J. Kruskal [64]. Kruskal’s theorem states

that the CPD of a third-order tensor X ∈ RI×J×K is deterministically unique if N

(where N = rank(X )) satisfies

N ≤ kA + kB + kC−2
2

, (4.12)

where k· denotes the k-rank of a given matrix (·), meaning that k· is the largest

integer that any k· columns of the matrix (·) are linearly independent. Checking

deterministic conditions can be cumbersome. De Lathauwer et al. have studied

different methods to determine the rank of a tensor and concluded that the de-
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composition of a third-order tensor X ∈ RI×J×K is generically unique (i.e., with

probability one) [30] provided that N satisfies

N ≤ K and N(N−1)≤ IJ(I−1)(J−1)/2. (4.13)

Domanov et al. further complemented the existing bounds for generic uniqueness

of the CPD [36] and concluded that the CPD of a third-order tensor X ∈ RI×J×K

of rank N is generically unique if

2≤ I ≤ J ≤ K ≤ N

N ≤ I + J+2K−2−
√

(I− J)2 +4K
2

,

(4.14)

or
3≤ I ≤ J ≤ N ≤ K

N ≤ (I−1)(J−1).
(4.15)

There are two main approaches to compute the CPD of a tensor, namely the

linear algebra [35] and optimization based methods [2, 99]. Both types of methods

have their own strengths and weaknesses. For a thorough study of the uniqueness

conditions and computation, we refer to [30, 34, 61] and the references therein.

4.5 Algorithm for Estimating the Mixing Matrices in
UJBSS

How to estimate the mixing matrix is still a challenging problem, even for under-

determined case of single dataset. In this chapter, we propose a novel and effective

algorithm to jointly estimate the mixing matrices from multiple dataset, which can

be regarded as an extension of the method based on statistical property of signals,

e.g., simultaneous diagonalization of the second order autocovariance and CPD of
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Figure 4.1: Illustration of how to generate tensors by incorporating the de-
pendence information between each pair of datasets.

a specialized tensor [31, 46, 124]. For ease of presentation, we take the case of 3

datasets as an example, e.g., X (1), X (2) and X (3), and it can be easily generalized

to the case of more than 3 datasets. The problem is reformulated as joint canonical

polyadic decomposition of a sequence of third-order tensors, which share common

factor matrices. It should be mentioned that the proposed method is limited to

real-valued problems and cannot be directly generalized to complex-valued cases.

4.5.1 Tensor Construction

The cross covariance of the observations with time delay τ , such as the observa-

tions in dataset k1, X (k1)(t), and the observations in dataset k2 with time delay τ ,

X (k2)(t + τ), can be formulated as

E{X (k1)(t)X (k2)(t + τ)T}

=(A(k1))E{S(k1)(t)S(k2)(t + τ)T}(A(k2))T ,
(4.16)

where k1 and k2 represent the index of each dataset and range from 1 to 3. Con-

sidering the correlations within and between each pair of datasets, the covariance
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matrices between X (1) and X (2) with time delay τ satisfy

P(1) = E{X (1)(t)X (2)(t + τ1)
T}= (A(1))U (τ1)(A(2))T ,

P(2) = E{X (1)(t)X (2)(t + τ2)
T}= (A(1))U (τ2)(A(2))T ,

...

P(L) = E{X (1)(t)X (2)(t + τL)
T}= (A(1))U (τL)(A(2))T ,

(4.17)

in which τl means the time delay and the matrix U (τl) = E{S(1)(t)S(2)(t + τl)
T} is

diagonal, for l = 1,2, ...,L.

We stack the sequence of covariance matrices P(1),P(2), . . . ,P(L), denoted as

{P(l)}, in a tensor P ∈ RM×M×L as follows: (P)i, j,l = (P(l))i, j, i = 1,2, . . . ,M,

j = 1,2, . . . ,M, l = 1,2, . . . ,L. We define the matrix U of size L×N with the

element U l,n = (U (τl))n,n, for l = 1, 2, ..., L, n = 1, 2, ..., N. Then we can represent

P as (see Fig. 4.1):

P =
N

∑
n=1

a(1)n ◦a(2)n ◦un, (4.18)

in which a(1)n and a(2)n are the nth column of the mixing matrices A(1) and A(2)

respectively, and un is the nth column of the matrix U .

Similarly, the covariance matrix between the other two pairs of observations

with time delay τl , denoted as Q(l) and R(l) satisfy

Q(l) = E{X (1)(t)X (3)(t + τl)
T}= (A(1))V (τl)(A(3))T ,

R(l) = E{X (2)(t)X (3)(t + τl)
T}= (A(2))W (τl)(A(3))T ,

(4.19)

where V (τl) = E{S(1)(t)S(3)(t +τl)
T} and W (τl) = E{S(2)(t)S(3)(t +τl)

T} for l = 1,

2, . . . , L. Stack these two sequence of covariance matrices {Q} and {R} in tensors

Q ∈RM×M×L and R ∈RM×M×L as follows: (Q)i, j,l = (Q(l))i, j, (R)i, j,l = (R(l))i, j,
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i = 1, 2, ..., M, j = 1, 2, ..., M, l = 1, 2, ..., L. To simplify the notation, we further

define the matrix V ∈ RL×N and W ∈ RL×N with the element V l,n = (V (τl))n,n and

W l,n = (W (τl))n,n, for l = 1, 2, ..., L, n = 1, 2, ..., N. Then these two tensors can be

represented as (see Fig. 4.1):

Q =
N

∑
n=1

a(1)n ◦a(3)n ◦ vn,

R =
N

∑
n=1

a(2)n ◦a(3)n ◦wn,

(4.20)

in which a(k)n is the nth column of the mixing matrices A(k) for k = 1, 2, 3, vn and

wn are the nth column of the matrix V and W respectively.

It should be mentioned that the choices of τ1, τ2, . . . , τL may affect the esti-

mation precision of the mixing matrices. If τl is too large, the correlation between

two related sources with the delay will be close to 0 and then the covariance matrix

might be ill conditioned. It is desired to select τ1, τ2, . . . , τL such that U , V and W

are well conditioned. In addition, if the time delay τ is too large, the covariance

matrix of the sources in two datasets (e.g., U (τ)) will be close to a null matrix and

thus the assumption (II) may not hold. Here, we heuristically choose the time delay

as τl ∈ [0,200] data samples.

Fig. 4.1 illustrates how to generate these tensors by incorporating the depen-

dence information between each pair of datasets. It is worth noting that each pair

of tensors share a common factor matrix, e.g., P and Q are coupled in the mode

of A(1).

4.5.2 Joint Tensor Polyadic Decomposition

Considering the common latent structure, now the problem of estimating the mix-

ing matrices A(k) can be reformulated as a problem of joint CPD of a collection of
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tensors, e.g., P , Q and R for the case of three datasets. There are two main ap-

proaches to jointly decompose a sequence of tensors, i.e., linear algebra [101] and

optimization based methods [3, 100, 109]. Sørensen et al. took into account the

coupling between multiple tensors and developed a linear algebra based algorithm

[101]. This method can provide an explicit solution for exact tensor decomposi-

tion. However, in practice data are noisy and consequently the estimation may be

not accurate. In addition, it is notable that the linear algebra based method requires

the full column rank of the common factor matrices whereas the common factors

in our problem are rank deficient [101]. In this chapter, we generalize the idea of

coupled matrix and tensor factorization (CMTF) and jointly decompose a sequence

of tensors via gradient-based optimization method [3, 100, 109].

The uniqueness condition of the joint CPD is important in practice. Simply

said, the solution of the joint CPD will be generic unique if all the individual CPDs

are unique. In this chapter, we can get the unique solution of each mixing matrix

generically, providing the number of sources satisfies the condition (4.14) or (4.15).

It is worth mentioning that this uniqueness condition of the joint CPD might be

further relaxed, but the topic itself deserves a stand-alone theoretical paper and it

is out of scope of the current paper.

The aim is to find the factor matrices {A(k)} ∈ RM×N and the covariance of

sources between different datasets U ,V and W ∈ RL×N which can minimize the

following objective function, a variant of Frobenius norm of the difference between

the given tensors and their canonical polyadic approximation, written as
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f (A(1),A(2),A(3),U ,V ,W )

=
1
2
‖P− [[A(1),A(2),U ]]‖2︸ ︷︷ ︸

f (1)(A(1),A(2),U)

+
1
2
‖Q− [[A(1),A(3),V ]]‖2︸ ︷︷ ︸

f (2)(A(1),A(3),V )

+
1
2
‖R− [[A(2),A(3),W ]]‖2︸ ︷︷ ︸

f (3)(A(2),A(3),W )

.

(4.21)

where [[·]] denotes the canonical polyadic approximation of a given tensor. This

equation simultaneously takes the coupling information between different tensors

into account. We propose to solve this problem via a gradient-based optimization

method. Proposition 1 elaborates the partial derivative of the objective function f

with respect to each column of the desired matrices, i.e. {a(k)n }, un, vn and wn for

n = 1,2, . . . ,N.

The equations in Proposition 1 is proved in the Appendix. Then the gradient of

f can be assembled via stacking the partial derivatives with respect to each column

of the factor matrices, as

∇ f =
[

∂ f
∂a(1)1

; ∂ f
∂a(1)2

; . . . ; ∂ f
∂a(1)N

; . . . ; ∂ f
∂w1

; . . . ; ∂ f
∂wN

]T

. (4.22)

Once we get this gradient, we can calculate the factor matrices, including the mix-

ing matrices and the covariance matrices, based on any first-order optimization

method. In this chapter, we employ the nonlinear conjugate gradient (NCG) algo-

rithm implemented in [38] to solve the unconstrained optimization problem and

estimate the mixing matrices of multiple datasets simultaneously. Compared with

second-order optimization methods, such as Newton-based methods, NCG always

requires less computation and memory[109].
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Proposition 1. The partial derivative of the objective function f with respect to
each column of the desired matrices , i.e., {a(k)n }, un, vr and wn, are given by

∂ f

∂a(1)n

=−P×2 a(2)n ×3 un−Q×2 a(3)n ×3 vn +
N

∑
c=1

[(a(2)n )T a(2)c (un)
T uc +(a(3)n )T a(3)c (vn)

T vc]a
(1)
c

∂ f

∂a(2)n

=−P×1 a(1)n ×3 un−R×2 a(3)n ×3 wn +
N

∑
c=1

[(a(1)n )T a(1)c (un)
T uc +(a(3)n )T a(3)c (wn)

T wc]a
(2)
c

∂ f

∂a(3)n

=−Q×1 a(1)n ×3 vn−R×1 a(2)n ×3 wn +
N

∑
c=1

[(a(1)n )T a(1)c (vn)
T vc +(a(2)n )T a(2)c (wn)

T wc]a
(3)
c

∂ f
∂un

=−P×1 a(1)n ×2 a(2)n +
N

∑
c=1

[(a(1)n )T a(1)c (a(2)n )T a(2)c ]uc

∂ f
∂vn

=−Q×1 a(1)n ×2 a(3)n +
N

∑
c=1

[(a(1)n )T a(1)c (a(3)n )T a(3)c ]vc

∂ f
∂wn

=−R×1 a(2)n ×2 a(3)n +
N

∑
c=1

[(a(2)n )T a(2)c (a(2)n )T a(3)c ]wc.

4.6 Source Extraction Based on the Estimated Mixing
Matrices

Unlike the (over)determined case, the estimation of the mixing matrix is not equiv-

alent to recovering the underlying sources in UBSS. A complete UBSS approach

always consists of both mixing matrix estimation and source extraction, even though

our main focus in this chapter is the estimation of mixing matrices. Extracting the

sources when the mixing matrix is estimated is a classic inverse problem. Many

techniques have already been proposed in the literature, including array process-

ing techniques [107] and methods exploiting the sparsity of sources in a domain,

e.g., the TF domain [116]. In order to demonstrate the performance of the proposed

mixing matrices estimation method, we adopt a recently-developed subspace repre-

sentation method [59] to recover the latent sources based on the estimated mixing

matrices. For simplicity, the proposed method for extracting sources is derived
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without considering the background noise. However, it was shown to be robust to

the background noise [59].

For any underdetermined non-homogeneous linear equation, the complete so-

lution can be represented as the sum of its particular solution and a general solu-

tion of the corresponding homogeneous equation. As to the case in this chapter,

A(k)S(k) = X (k), the general solution of source S(k) can be written as

S(k) = S(k)p +S(k)h
, (4.23)

where the S(k)p denotes its particular solution and S(k)h denotes a general solution of

the corresponding homogeneous equation A(k)S(k) = 0. One particular solution of

the above mentioned non-homogeneous equation is

S(k)p = (A(k))†X (k), (4.24)

where (A(k))† denotes the pseudo-inverse of the mixing matrix A(k). In addition,

the general solution of the homogeneous equation A(k)S(k) = 0 can be expressed as

S(k)h =V Z(k), (4.25)

where V is an N ∗ (N−M) matrix whose columns are bases of the nullspace of

A(k) and Z(k) is an arbitrary matrix with the size of (N −M) ∗ T (T represents

the total number of samples in each channel) [102]. The basis matrix V can be

obtained from the mixing matrix A(k) and then the problem which aims to estimate

the N dimensional observations boils down to the problem of estimating N −M

dimensional latent variable Z(k).

In order to be applicable to a wide class of signals, such as audio and biological

signals EEG, EMG, the Generalized Gaussian Distribution (GGD) [58] is utilized
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to model the source distributions. Mathematically, it is expressed in the following

equation

py(y;σ ,β ) =
v(β )

σ
exp{−c(β )|y−µ

σ
|2/(1+β )}, (4.26)

where

c(β ) = (
Γ(3/2(1+β ))

Γ(1/2(1+β ))
)1/(1+β )

v(β ) =
Γ(3/2(1+β ))1/2

(1+β )Γ(1/2(1+β ))3/2 ,

(4.27)

in which Γ(·) is the Gamma function. σ is the standard derivation and µ is the mean

of a continuous random variable y. In this chapter, the mean of source is assumed to

be 0. We define the parameter set θ = {β ,σ} for simplicity, where each component

of β = [β1, . . . ,βN ] and σ = [σ1, . . . ,σN ] correspond to each channel of the sources.

The parameters of the GGD θ can be estimated to maximize the likelihood of the

observed mixtures X (k) based on Expectation-maximization (EM) algorithm. Then

Z can be obtained by sampling from p(Z(k)|X (k),θ) as

Ẑ(k)
=

1
G

G

∑
g=1

Z(k)
g , (4.28)

where {Z(k)
1 , . . . ,Z(k)

G } are the G samples drawn from p(Z(k)|X (k),θ) using the

Markov Chain Monte Carlo (MCMC) method. Then we recover the underlying

sources based on

Ŝ
(k)

= (A(k))†X (k)+V Z(k). (4.29)

The major steps of the proposed UJBSS-m algorithm are summarized in Algo-

rithm 6. The number of time delays is 20 in default. The step size of time delays,

i.e. τl+1−τl , is suggested to be 2 samples (corresponding to 0.25ms) and 5 samples

(corresponding to 5ms) for audio signals and physiological signals respectively.
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Algorithm 6 The UJBSS-m algorithm based on joint tensor decomposition

Input: M-dimensional observations {X (k)} and the number of sources N in each
datasets, for k= 1, 2,. . . ,K.
Output: the estimated mixing matrices {A(k)} and the recovered N-dimensional
sources {S(k)}, for k= 1, 2,. . . ,K.

STEP 1: For each pair of datasets, e.g., X (k1) and X (k2)(k1 6= k2), we calculate
the cross covariance matrices as (5.3) and stack them to construct a third-order
tensor as in Section 4.5.1. Considering the combination of datasets, we get

(K
2

)
tensors where each pair of tensors share a common factor matrix, as shown in
Fig. 4.1;
STEP 2: Calculate the joint polyadic decomposition of the tensors constructed
in step 1 via optimization based method and estimate the mixing matrices {A(k)}
as in Section 4.5.2;
STEP 3: Estimate the parameters of the Generalized Gaussian distribution based
on the EM algorithm.

Initialize: initialize the parameter θ to some random values.
E-step: calculate the expected value of the log likelihood function with re-

spect to the conditional distribution of Z(k) given the observation X (k) under the
current estimate of θ . It can be expressed as Ep(Z(k)|X (k),θ ∗)(log(p(Z(k)|X (k),θ))),
where θ

∗ means the parameter value got in the initialization or the previous M-
step.

M-step: update the parameter set θ to maximize the above expected value.
The updated value is

θ = argmax
θ

Ep(Z(k)|X (k),θ ∗)(log(p(Z(k)|X (k),θ)))

≈ argmax
θ

1
G

G

∑
g=1

log(p(Z(k)
g |X (k),θ)),

where {Z(k)
1 , . . . ,Z(k)

G } are G samples drawn from p(Z(k)|X (k),θ) based on the
MCMC method.

Iterate: iterate the E-step and M-step until convergence.
STEP 4: Recover the sources S(k) based on the minimum mean-square error
criterion as in Equation (4.29).
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4.7 Numerical Study for the Multiple Dataset Case

To demonstrate the joint separation performance for multiple datasets, simulations

are performed on both audio and biological signals when applying the proposed

UJBSS-m and several commonly used BSS methods. Two performance indices

are used to evaluate the separation performances. One is the estimation error of the

mixing matrices, defined as:

Error = 10log10{mean(
||A− Â||
||A||

)}, (4.30)

where Â denotes the optimally ordered estimate of A. The other measures the Pear-

son correlation coefficient (PCC) between the estimated sources and the original

ones, which is defined as

PCC(s(k)n , ŝ(k)n ) =
cov(s(k)n , ŝ(k)n )

σ
s(k)n

σ
ŝ(k)n

, (4.31)

where ŝ(k)n means the estimate of the source s(k)n in the kth dataset, cov(·, ·) means

the covariance between two variables and σ means the standard deviation. In order

to ensure the dependence between the sources of each pair of datasets, the sources

are synthesized as follows,

S(1) =[s(1)1 ,s(1)2 , . . . ,s(1)N ]T ;

S(2) =S(1).∗ (uni f rnd(0,1,S(1))

S(3) =S(1).∗ (uni f rnd(0,1,S(1)),

(4.32)

where uni f rnd(0,1,S(1)) generates a matrix with the same size of S(1) and each

element of the matrix is randomly drawn from the continuous uniform distribution

on the interval (0,1). The average correlation between the source s(1)n and the cor-
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responding source s(k)n (k = 2,3) is about 0.85; the average correlation between the

source s(2)n and the corresponding source s(3)n is about 0.7, both of which can be

regarded as highly correlated.

4.7.1 Simulation 1: Audio Signals

The sources used in this simulation include 8 audio signals, such as two pieces of

sound from the cable news network (CNN) news and a piece of sound of an anony-

mous singer, all of which are publicly available1. The sampling rate is 8000Hz.

The mixing matrices are generated randomly with elements following the uniform

distribution U [−1,1]. For simplicity, each column of the mixing matrices is nor-

malized into a unit vector. Three datasets are generated following (4.32). In our

first setting, 5 sources are mixed into 4 observations in each dataset and the cor-

responding sources in the different datasets are highly correlated. With different

signal-to-noise ratios (SNRS)), we compare the proposed UJBSS-m method with

a commonly-used single-set UBSS method, SOBIUM [31], when it is applied to

each dataset separately. We also test the performance of our recent work on UJBSS

for two datasets, UJBSS-2 [124], when two datasets are available, e.g., X (1) and

X (2). We repeat the simulation 1000 times and the performance is shown in Fig.

4.2. Results are given according to the SNR level in the range of -5dB - 40dB.

Benefiting from dependence information between different datasets, the proposed

UJBSS can provide more accurate estimation of the mixing matrices, while SO-

BIUM neglects the possible inter-dataset information. Compared with UJBSS-2,

the proposed UJBSS-m takes into account more dependence information, among

three datasets rather than between two datasets, and yields better performance.

We also note that the Error measure from the single set UBSS and UJBSS meth-

ods decreases with the increase of the SNR. The proposed UJBSS-m consistently

1http://research.ics.aalto.fi/ica/cocktail/sounds.html
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provides the best results over the whole SNR range, suggesting the performance

stability of the proposed algorithm.

We also examine the performance of the proposed method with the decrement

of the under-determinacy level, i.e., the number of the observations increases from

4 to 7 while the number of sources is set to be 8. As noted in Fig. 4.3, the estima-

tion performance is getting better when more observations are available. Besides

the degraded estimation precision, a higher under-determinacy level also requires

higher computational complexity. The performance is getting better when the SNR

is increased from -5dB to 20dB. The change of estimation error is not obvious

when the SNR is greater than 20dB even there are some fluctuations. It is shown

that the estimation performance relies upon several factors such as the noise level

SNR, under-determinacy level (i.e., the number of sources for a given number of

sensors) and the correlation between each pair of datasets.

We recover the latent sources from each dataset based on the estimated mixing

matrices. In an illustrative example, we linearly mix 4 audio sources into 3 obser-

vations in each dataset. Fig. 4.4 shows the separation results of the first dataset in

the time domain. The top four subfigures of Fig. 4.4 represent the original sources,

the middle three subfigures are the mixed observations and the bottom four sub-

figures are the recovered sources via the proposed UJBSS-m method. In addition,

we compare the proposed method with other three single-set UBSS methods, in-

cluding SOBIUM, UBSS based on subspace representation (UBSS-SR for short)

[59] and UBSS based on sparse coding (UBSS-SC for short) [119], as well as the

JBSS method MCCA [72] and UJBSS for two datasets UJBSS-2 [124], in term

of the PCC between the original sources and the recovered ones. Both UBSS-

SR and UBSS-SC are based on single source detection, which assumes that the TF

points are occupied by a single source or the corresponding single source possesses

dominant energy. However, the performance of estimating the mixing matrix de-
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Figure 4.2: Simulation 1: performance comparisons on audio signals when
using the proposed UJBSS-m method and other UBSS methods, includ-
ing the single-set UBSS method SOBIUM [31] and the UJBSS method
for two dataset, i.e., UJBSS-2 [124]. Here the number of sources N =
5 and the number of observations M = 4. The number of time delays L
= 20 and the step size of time delays (i.e., τl − τl−1) is 2 data samples,
corresponding to 0.25ms. Similar results are observed for A(2) and A(3).

teriorates when this assumption is not satisfied. Furthermore, given that the time-

frequency analysis method [116, 124] is memory-intensive and time-consuming,

we estimate the mixing matrices via UJBSS-2 and SOBIUM respectively, and then

extract the sources using the same method as in UBSS-SR [59]. The performance

results of these six methods are reported in Table 4.1.

Despite adopting the same technology in extracting sources, the performance

of the proposed method is significantly better than that of the single-set SOBIUM
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Figure 4.3: Simulation 1: estimation error of A(1) when employing the pro-
posed UJBSS method. Here the number of sources N = 8 and the num-
ber of observations M varies from 4 to 7. The number of time delays L
= 20 and the step size of time delays (i.e., τl − τl−1) is 2 data samples,
corresponding to 0.25ms.

and UBSS-SR method. This observation confirms the importance of estimating

mixing matrices accurately. In addition, the proposed method also outperforms a

recently proposed UBSS method UBSS-SC. The main reason is that such UBSS

methods always require the sparsity of the sources to some extent, while the as-

sumption may not be satisfied in reality. MCCA, which has been successfully used

in many fields [27], assumes that the number of sources is equal to the number

of observations in each dataset and it could not be used to separate sources in the

underdetermined case directly. We add one observation in each dataset so that
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Figure 4.4: Simulation 1: an illustrative example from the proposed UJBSS-
m method. First row: The original 4 sources; Second row: 3 channels
of the mixed observations; Third row: the recovered 4 sources from the
first dataset.

MCCA can be applied. Therefore it is not really a fair setting and comparison to

the proposed method. However, we note that the performance of MCCA is not

as good as that of the proposed method, even with an additional observation sig-

nal. The following reasons could contribute to the worse performance of MCCA:

it is mainly due to the fact that the correlation coefficients between sources in two

datasets are quite close [20, 72]; the performance of MCCA may suffer from error

accumulation of the deflation-based separation methods [69].

4.7.2 Simulation 2: Physiological Signals

In this experiment, we employ four physiological signals as sources, including

ECG, EEG, EOG and EMG from a publicly available database [45]. The sampling

rate is 1000 Hz. The sources corresponding to the other two datasets are generated

following (4.32). We get similar results as that in the simulation 1. As can be seen

from Fig. 4.5, the estimation performance is getting better with the increase of the
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Table 4.1: PCC performance results in Simulation 1.

Methods s1 s2 s3 s4

Dataset 1

UJBSS-m 0.993 1.000 0.881 0.992
UJBSS-2[124] 0.989 1.000 0.859 0.990
SOBIUM[31] 0.980 1.000 0.512 0.967

UBSS-SC[119] 0.951 0.965 -0.066 0.934
UBSS-SR[59] 0.901 0.999 0.226 0.967
MCCA∗[72] 0.571 0.909 0.675 0.732

Dataset 2

UJBSS-m 0.910 0.998 0.740 0.944
UJBSS-2[124] 0.897 0.998 0.714 0.892
SOBIUM[31] 0.877 0.998 0.686 0.962

UBSS-SC[119] 0.795 0.940 -0.401 0.607
UBSS-SR[59] 0.885 0.981 0.730 0.954
MCCA∗[72] -0.574 0.911 -0.678 -0.733

Dataset 3

UJBSS-m 0.899 1.000 0.783 0.870
UJBSS-2[124] 0.720 1.000 0.515 0.869
SOBIUM[31] 0.756 -0.951 0.078 0.880

UBSS-SC[119] 0.381 -0.434 -0.614 -0.630
UBSS-SR[59] -0.557 0.987 0.620 -0.561
MCCA∗[72] 0.577 -0.911 -0.679 0.732

(1) ∗We add one additional observation in each dataset when we evaluate the
MCCA.

SNR of observations. In the whole SNR range, the proposed UJBSS-m method es-

timates the mixing matrices with higher accuracy than the single-set UBSS method

SOBIUM and UJBSS method for two datasets UJBSS-2.

We also investigate the effect of the time delays, as shown in Fig. 4.6. At

high SNR level, e.g. SNR = 20dB, the average Error of the proposed UJBSS-m

is -11.57dB when the step size of the time delays is 5 data samples,corresponding

to 5ms. However, the average Error corresponding to 3 data samples is -6.67dB,

significantly larger than that of 5 data samples. The main reason is that the change

of the covariance matrices is not obvious for the small step size and the covariance
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matrices related to these delays could not provide enough information to estimate

the common factors, i.e. the mixing matrices. If the time delay is too large, such

as more than 500 data samples (corresponding to 500ms), the covariance between

two datasets will be close to 0. Here, we select 5 data samples as the step size of

the time delays. In practice, we should select the time delays empirically based on

the characters of the sources, e.g., we suggest the time delays smaller than 100ms

for physiological signals. In addition, we evaluate the role of the number of time

delays and find that it has less impact on the performance. In this chapter, we set

the number of time delays to 20.

We further show the performances in term of the PCC results between the orig-

inal sources and the estimated ones. As shown in Table 4.2, the proposed method

yields promising results when it is used to separate the latent and underdetermined

mixtures. Compared to the classical JBSS method MCCA, the proposed UJBSS

approach needs fewer number of observations in each dataset, while it yields a

better performance.

4.8 A Case Study: Solve A Single Set UBSS Problem
Based on UJBSS-m

In this section, we show that the proposed UJBSS-m method can be employed to

solve a single set UBSS problem, the noise enhanced signal processing problem,

with a superior performance. As in Simulation 1, we employ 5 real audio signals

as the sources. These 5 audio signals are mixed into 4 observations with a mixing

matrix A(1) whose elements follow the uniform distribution U [−1,1]. We generate

three datasets as
X (1) = A(1)S(1)

X (2) = awgn(X (1),20 dB)

X (3) = awgn(X (1),20 dB),

(4.33)
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Figure 4.5: Simulation 2: performance comparisons on physiological signals
between the proposed UJBSS-m method and two other methods (i.e.,
the single-set UBSS method SOBIUM [31] and UJBSS method for two
dataset, UJBSS-2 [124]). Here the number of sources N = 4 and the
number of observations M = 3. The number of time delays L = 20 and
the step size of time delays (i.e., τl − τl−1) is 2 data samples. Similar
results are observed for A(2) and A(3).

where awgn(X (1),20 dB) represents adding white Gaussian noise to the signals

X (1) (i.e., the real observations) with SNR of 20dB. Noise, traditionally regarded

as the unwanted signal, can play a very important constructive role in estimation

problems, which is known as noise enhanced signal processing. X (2) and X (3) are

random noise added signals based on X (1).

The problem of interest here is to estimate the mixing matrix A(1). Tradition-

ally, we can estimate A(1) from the dataset X (1) based on the single set UBSS
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Figure 4.6: Simulation 2: performance of the proposed UJBSS-m method
when the step size of time delays (i.e., τl − τl−1) varies from 1 to 9.
Here the number of sources N = 4 and the number of observations M =
3. The number of time delays L = 20. Similar results are observed for
A(2) and A(3).

method SOBIUM. Here we also can apply the proposed algorithm as mentioned

in Section 4.5. Then we recover the sources via the method mentioned in Section

4.6 based on the estimated mixing matrix A(1). We repeat the experiment for 1000

times and calculate the sum of the absolute PCC (SAPCC) between the recovered

sources and the original ones, which is calculated as

SAPCC =
5

∑
n=1

abs(PCC(s(1)n , ŝ(1)n )), (4.34)

where abs(·) represents the absolute value function. Fig. 4.7 shows the distribution

of the performance for 1000 repeats of the experiments. The average SAPCC for
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Table 4.2: PCC performance results in Simulation 2.

Methods ECG EOG EEG EMG

Dataset 1

UJBSS-m 0.985 0.994 0.910 0.831
UJBSS-2[124] 0.975 0.986 0.872 0.781
SOBIUM [31] -0.815 -0.985 0.800 -0.382
UBSS-SC[119] 0.090 0.949 -0.707 -0.679
UBSS-SR[59] 0.504 -0.906 0.115 0.503
MCCA∗[72] 0.613 -0.754 0.695 0.674

Dataset 2

UJBSS-m 0.956 0.821 1.000 0.832
UJBSS-2[124] 0.883 0.705 0.942 0.308
SOBIUM [31] 0.851 -0.467 0.999 0.726
UBSS-SC[119] -0.420 0.544 0.776 0.726
UBSS-SR[59] -0.894 0.288 -0.967 -0.203
MCCA∗[72] 0.634 -0.754 0.678 -0.676

Dataset 3

UJBSS-m 0.779 0.738 0.998 0.997
UJBSS-2[124] 0.777 0.738 0.998 0.997
SOBIUM [31] 0.443 0.697 -0.993 -0.983
UBSS-SC[119] 0.394 0.638 0.722 0.848
UBSS-SR[59] 0.582 0.609 0.426 0.871
MCCA∗[72] -0.624 -0.756 0.689 0.676

(1) ∗We add one additional observation in each dataset when we evaluate the
MCCA.

UBSS is 4.53 while that for the proposed UJBSS-m is 4.76, even with the same

source extraction technology. The one-way Analysis of Variance (ANOVA) is per-

formed on the results provided by these 1000 repeats. The obtained p value is

1.5677e-11, which means that the results of the proposed UJBSS-m method and

single set UBSS method are significantly different. The proposed UJBSS-m algo-

rithm demonstrates more robust and better performance. This example illustrates

that the estimation accuracy could be improved by adding suitable noises to the

input signals.
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covered sources and the original ones. The blue asterisks represent the
averages and the red lines stand for the medians. The edges of the box
are the lower and upper quartiles.

4.9 Conclusions and Discussion

This chapter is the third work in my PhD study. Benefiting from the dependence

information between two datasets, the UJBSS method proposed in chapter 3 gained

promising performance. It is nature to generalize the idea for two datasets into

multiple datasets. However, the UJBSS-2 for two datasets cannot be directly uti-

lized to solve the problem in multiple datasets. In this chapter, we generalize the

UJBSS for two datasets (i.e., UJBSS-2) to the case of multiple datasets. The basic

idea is similar to that in UJBSS-2, which estimate the mixing matrices jointly first

and then restore the source signals. In this chapter, we exploit the cross correlation

of the observations between each pair of datasets and present a novel underdeter-
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mined joint blind source separation method, namely UJBSS-m, to jointly estimate

the mixing matrices from multiple datasets when the number of observations is

smaller than that of the sources. The mixing matrices are accurately estimated

through joint canonical polyadic decomposition of a sequence of specialized ten-

sors in which a set of covariance matrices are stacked. Further the sources are

recovered based on the estimated mixing matrices. Numerical results on multi-

ple datasets demonstrate the superior performances of the proposed method when

compared to the commonly used JBSS and single-set UBSS methods.

As an example application for noise enhanced signal processing, we also show

that the proposed UJBSS-m method can be utilized to solve the single-set UBSS

problem when suitable noise is added to the observations. In addition, the proposed

UJBSS-m method does not rely upon sparsity of signals and therefore it can be

applied to a wide class of signals when: 1) the sources within each dataset are

uncorrelated and 2) the sources across different datasets are correlated only on

corresponding indices.
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Chapter 5

Removing Muscle Artifacts from

EEG Data via Underdetermined

Blind Source Separation

EEG recordings are often contaminated by artifacts from EMG. These artifacts re-

duce the quality of the EEG signals and disturb further analysis of EEG, such as

in brain connectivity modeling. If enough number of EEG recordings are avail-

able, then there exists a considerable range of BSS methods which can suppress

or remove the distorting effect of such artifacts. However, for many practical ap-

plications, such as the ambulatory health-care monitoring, the number of sensors

used to collect EEG is limited. As a result, the conventional BSS methods, such

as CCA and ICA, do not work in such cases. Considering the increasing need

for biomedical signal processing in ambulatory environment, this chapter proposes

a novel underdetermined BSS method exploring the cross correlation and auto-

correlation of underlying sources. We evaluate the performance of our proposed

method through numerical simulations in which EEG recordings are contaminated
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with muscle artifacts. The results demonstrate that the proposed method can ef-

fectively and efficiently remove muscle artifacts meanwhile preserving the EEG

activity successfully. This is a promising tool for real-world biomedical signal

processing applications.

5.1 Motivation and Objectives

EEG is extensively used in brain science research, such as neuroscience and cogni-

tive science [106]. However, it is susceptible to various physiological factors other

than neural activities. ECG from cardiac activities, EOG from ocular movements,

and EMG from muscular activities are the most common artifacts. These unde-

sired artifacts interferer with the signal of interest and disturb subsequent analysis

of EEG signals. Compared to other types of artifacts, it is generally more chal-

lenging to remove artifacts from the contracting head muscles (i.e. EMG signals)

[79]. The main reasons for this difficulty are four folds: 1) EMG signals always

have higher amplitude than the smaller EEG signals; 2) EMG signals have a wide

spectral distribution, and especially overlaps with the beta activity in 15-30 Hz

of EEG signals; 3) EMG signals have a broad anatomical distribution and can be

detected across the entire scalp; 4) EMG signals also exhibit less repetition and

consequently are harder to stereotype [18, 21, 106].

A artifacts removal is clearly an important issue and is a prerequisite step for

our subsequent analysis. In order to remove the EMG artifacts, a number of ap-

proaches have been proposed, such as filtering, regression and EMD. An alterna-

tive strategy is based on BSS, which is more commonly used and demonstrated

to be effective for removing artifacts from EEG. As one of the most popular BSS

methods, ICA has been extensively explored for this purpose [21, 28], aiming to

separate multichannel EEG into statistical independent components (ICs, i.e. un-

derlying sources). Then the ICs determined to be artifacts can be discarded and the
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remaining ICs can be used to reconstruct the artifact-free EEG. However, due to the

issue of crosstalk between brain and muscle activity, ICs containing EEG signals

are still contaminated by EMG [65, 83]. Therefore, ICA itself may not perform

effectively in removing EMG from EEG.

Second order blind identification makes use of the temporal correlation and is

shown as an effective alternative to ICA in removing EMG artifacts. However,

this method is designed for stationary signal and it may suffer when the under-

lying source is nonstationary, such as in the case of transient muscular activities

[23]. More recently, CCA has been explored as a more reliable method to re-

move EMG from scalp EEG. It aims to find mutually uncorrelated sources which

are maximally autocorrelated. Compared with EEG, EMG has relatively low au-

tocorrelation. Taking advantage of this distinguishable feature, sources with high

autocorrelation should correspond to EEG while the source with relatively low

autocorrelation is regarded as the EMG artifact. Then the underlying EMG com-

ponents are discarded to reconstruct the EEG signals. As recently suggested in

[21, 29, 43], CCA can achieve superior performance over ICA.

It is worth noting that the above mentioned BSS algorithms generally assume

that the number of sources is equal to or less than that of the observations. How-

ever, for many practical applications, such as ambulatory health-care monitoring,

it is desirable to collect the mixed signals using fewer sensors. In these cases, the

above assumption does not hold and UBSS is required. Again, considering the

increasing need for biomedical signal processing in ambulatory environment, this

chapter proposes a novel UBSS method that investigates second-order statistics of

the observations. Same as the existing UBSS methods, this proposed method con-

sists of two steps: the mixing matrix is estimated first, followed by the separation

of underlying sources based on the estimated result of the mixing matrix.

More specifically, inspired by stochastic resonance [78], we add tiny random
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noise to the EEG recordings and construct multiple datasets across which the un-

derlying sources are highly correlated. We further explore the cross correlation

and autocorrelation of underlying sources, rather than solely the partial cross-

correlation as in our previous paper [111, 124]. The mixing matrix is estimated

accurately via joint polyadic tensor decompositions of a set of tensors where spa-

tial covariance matrices corresponding to different time delays are stacked. Fur-

thermore, the underlying sources, including EEG and EMG, are inferred based on

the estimated mixing matrix from the EEG observations. Sources related to mus-

cle activity are identified and removed during EEG reconstruction. We evaluate

the performance of the proposed method through numerical simulations in which

EEG recordings are contaminated with muscle artifacts. The results demonstrate

that the proposed method can effectively and efficiently remove muscle artifacts

while preserving the EEG successfully.

5.2 Problem Formulation

The problem of interest here is to recover the underlying N sources with a limited

number of observations. In this study, EEG observation signals are denoted by

a matrix X(t) = [x1(t);x2(t); . . . ;xM(t)] ∈ RM×T , where M represents the number

of EEG observations and T is the number of data samples. It is assumed that the

underlying N sources S, including the signal of interest (i.e. EEG) and undesired

artifacts (i.e. EMG), are linearly mixed into the M observations X . The mixing

process is modeled as follows,

X = AS+E. (5.1)

A ∈RM×N with M < N (i.e., the underdetermined case) denotes the unknown mix-

ing matrix. E is the possible additive noise which is generally assumed to be the
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zero mean, temporally white and uncorrelated with the source signals.

5.3 Proposed Method

It is suggested in [111] that the UJBSS method can be used to solve the single-

set UBSS problem. However, this only utilizes part of the cross-correlation [111]

and neglects the autocorrelation and the other parts of cross-correlation. In this

chapter, we fully exploit the cross-correlation and autocorrelation of the sources

and propose a novel UBSS algorithm. We add tiny noise to the observations, X

(which is also expressed as X (1)), and construct the other two datasets as,

X (1) =X = [x(1)1 ,x(1)2 , . . . ,x(1)N ]T

X (2) =awgn(X (1),20dB)

X (3) =awgn(X (1),20dB),

(5.2)

in which awgn(X (1),20dB) adds white Gaussian noise to the measured EEG obser-

vation signals X (1), with the signal-to-noise ratio equaling to 20dB. (5.2) ensures

dependence between each pair of datasets. Similar to CCA, it is reasonable to as-

sume that:

(1) The sources in each dataset are uncorrelated.

E{s(k)i (t)(s(k)j (t + τ))T}= 0

∀τ, 1≤ i 6= j ≤ N, k = 1,2,3,
(I)

where s(k)i (t) is the i-th source in dataset k and s(k)j (t +τ) represents the j-th source

with the time delay τ in dataset k.

(2) The corresponding sources from two different datasets have non-zero cor-
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relations and sources with different indices across datasets are not correlated.

D(τ) =E{S(k1)(t)(S(k2)(t + τ))T}

=Diag(ρ1(τ),ρ2(τ), . . . ,ρN(τ)),
(II)

where Diag(·) represents the diagonal matrix, and the ρn(τ) = E{s(k1)
n (t)(s(k2)

n (t +

τ))T} denotes the covariance between s(k1)
n (t) and s(k2)

n (t + τ). This assumption

suggests that the corresponding sources in multiple datasets are second-order cor-

related with each other.

In this chapter, we fully exploit the second order auto covariance and cross co-

variance of EEG signals and propose a novel and effective algorithm to estimate

the mixing matrix. The problem is reformulated as a joint canonical polyadic de-

composition of a sequence of third-order tensors, which share the common factor

matrix A(1). The auto covariance of the EEG signals can be formulated as

E{X (1)(t)X (1)(t + τ)T}

=(A(1))E{S(1)(t)S(1)(t + τ)T}(A(1))T ,
(5.3)

where τ represents the time delay. The covariance matrices corresponding to dif-

ferent time delays, τ1 to τL, satisfy,

B(1) = E{X (1)(t)X (1)(t + τ1)
T}=(A(1))C(τ1)(A(1))T

...

B(L) = E{X (1)(t)X (1)(t + τL)
T}=(A(1))C(τL)(A(1))T ,

(5.4)

in which C(τ1) = E{S(1)(t)S(1)(t + τl)
T} is diagonal, l = 1 . . .L. We stack the auto
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covariance matrices {B(l)} in a tensor B ∈ RM×M×L as follows:

(B)i, j,l = (B(l))i, j, (5.5)

in which i = 1,2, . . . ,M, j = 1,2, . . . ,M, l = 1,2, . . . ,L. We define the matrix C of

size L×N with the element Cl,n = (C(τl))n,n, for l = 1, 2, ..., L, n = 1, 2, ..., N. Then

we have:

B =
N

∑
n=1

a(1)n ◦a(1)n ◦ cn, (5.6)

in which the ◦ denotes the outer product operation, a(1)n is the nth column of the

mixing matrix A(1), and cn is the nth column of the matrix C.

The cross covariance between the EEG signals X (1) and the noise-added signals

(i.e. X (2) and X (3)) with time delay τ , can be formulated as:

E{X (1)(t)X (k)(t + τ)T}

=(A(1))E{S(1)(t)S(k)(t + τ)T}(A(k))T

E{X (1)(t + τ)X (k)(t)T}

=(A(1))E{S(1)(t + τ)S(k)(t)T}(A(k))T

(5.7)

in which k = 2 or 3. Considering the correlations within and between each pair of

datasets, the cross covariance matrices corresponding to time delay τl satisfy:

F(l) = E{X (1)(t)X (2)(t + τl)
T}= (A(1))G(τl)(A(2))T

H(l) = E{X (1)(t + τl)X (2)(t)T}= (A(1))I(τl)(A(2))T

J(l) = E{X (1)(t)X (3)(t + τl)
T}= (A(1))K(τl)(A(3))T

P(l) = E{X (1)(t + τl)X (3)(t)T}= (A(1))Q(τl)(A(3))T ,

(5.8)

in which the cross variance between the sources across each pair of datasets, G(τl), I(τl),K(τl),Q(τl),
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are diagonal. Similar to (5.5), these sets of cross variance matrices are stacked into

tensors F ,H ,J ,P , which can be represented as,

F =
N

∑
n=1

a(1)n ◦a(2)n ◦gn

H =
N

∑
n=1

a(1)n ◦a(2)n ◦ in

J =
N

∑
n=1

a(1)n ◦a(3)n ◦ kn

P =
N

∑
n=1

a(1)n ◦a(3)n ◦qn.

(5.9)

Considering the common latent structure where each pair of tensors share the

factor matrix A(1), the mixing matrix can be estimated via joint CPD of a collection

of tensors B,F ,H ,J ,P . In this chapter, we generalize the idea of coupled

matrix and tensor factorization (CMTF) and jointly decompose these tensors via

the gradient-based optimization method [3, 100, 109]. The objective function can

be expressed as:

f (A(1),A(2),A(3),C,G, I,K,Q)

=
1
2
‖B− [[A(1),A(1),C]]‖2 +

1
2
‖F − [[A(1),A(2),G]]‖2

+
1
2
‖H − [[A(1),A(2), I]]‖2 +

1
2
‖J − [[A(1),A(3),K]]‖2

+
1
2
‖P− [[A(1),A(3),Q]]‖2

(5.10)

where [[·]] denotes the canonical polyadic approximation of a given tensor. This

equation simultaneously takes the coupling information between different tensors

into account. We propose to solve this problem via a gradient-based optimization

method. The partial derivative of the objective function f with respect to each
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column of A(1) is:

∂ f

∂a(1)n

=−2
N

∑
n=1

(B×3 cn)a
(1)
n +2

N

∑
d=1

(cT
n cd)((a

(1)
n )T a(1)d )a(1)d

−F ×2 a(2)n ×3 gn−H ×2 a(2)n ×3 in−J ×2 a(3)n ×3 kn−P×2 a(3)n ×3 qn

+
N

∑
d=1

[(a(2)n )T a(2)d (gn)
T gd +(a(2)n )T a(2)d (in)T id +(a(3)n )T a(3)d (kn)

T kd

+(a(3)n )T a(3)d (qn)
T qd ]a

(1)
d .

(5.11)

Similarly, we can calculate the partial derivative of f with respect to other fac-

tor matrices and obtain the gradient. Then the mixing matrix A(1) can be calcu-

lated based on any first-order optimization method. In this chapter, considering the

competitive advantage of ‘efficiency’ and ‘requiring less memory’, we employ the

nonlinear conjugate gradient algorithm (NCG) implemented in [38] to solve the

unconstrained optimization problem and further estimate the mixing matrix A(1).

Once the mixing matrix is estimated, extracting the sources is a classic inverse

problem. Here, we adopt a recently-developed subspace representation method

[59] to recover the latent sources based on the estimated mixing matrix. The de-

tails of this method can be found in Chapter 4. Next, the recovered sources are

sorted in terms of their autocorrelations. Due to the relatively low autocorrelation

of EMG signals, muscle artifacts are isolated and set to 0 during reconstruction.

Subsequently, the cleaned signals Xeeg can be obtained. The major steps of the

proposed method are summarized in Algorithm 7.

5.4 Data Generation and Performance Indices

In order to evaluate the performance of the proposed method, obtaining the ground

truth, i.e. the pure EEG and EMG signals, is quite necessary. In previous studies

[29], to obtain the ground truth EEG signals, experienced neurophysiologist in-
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Algorithm 7 The proposed method for removing muscle artifact from EEG signals
Input: M-dimensional observations X
Output: The artifact-free EEG data Xeeg.

1: Create the other two data via adding Gaussian white noise to the EEG obser-
vations X ;

2: Calculate the auto covariance and the cross covariance as in (5.4) and (5.8)
with different time delays, and construct a sequence of third-order tensors;

3: Calculate the joint CPD of the tensors constructed in step 2 and estimate the
mixing matrix A (is also expressed as A(1));

4: Recover the underlying sources S(1), including EEG and EMG artifacts;
5: Sort the recovered sources S(1) in term of their autocorrelations and recognize

the EMG artifacts from them;
6: Set the rows of S(1) corresponding to muscle artifacts to be zero and get S(1)new;
7: Reconstruct the artifact-free EEG signals Xeeg via Xeeg = A(1)S(1)new.

spected many EEG recordings and select the clean EEG signals from them. How-

ever, frequent difficulties have surfaced in acquiring artifact-free EEG signals in re-

ality, and it is even more difficult to ensure that the selected signals are completely

free of muscle activities. In this section, we generate synthetic EEG and EMG sig-

nals, and examine the performance of the proposed method when the ground truth

is available.

The simulated EEG sources are generated according to the phase-resetting the-

ory proposed by Markinen et al. [75]. As in [117] and [21], we generate each EEG

source by adding 4 sinusoids with frequencies randomly chosen from the range

of 4 Hz to 30 Hz. To illustrate the performance of the proposed method, N EEG

sources, SEEG, are produced independently. Here, we set N to be 4. Analogous to

the work of Delorme et al. [33], an EMG source, SEMG, is simulated using random

noise band-pass filtered between 20 and 60 Hz. The sampling rate here is 250 Hz

and each channel is 40 seconds long. In addition, the 4-channel EEG observations

are modeled as,
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X = AS

= A[SEEG;SEMG],
(5.12)

where S includes 4 EEG sources and 1 EMG source, and A is the mixing matrix

generated randomly with elements following the uniform distribution U [−1,1]. For

simplicity, each column of the mixing matrix is normalized into a unit vector.

To fairly compare the proposed method with existing EMG artifacts removal

methods, 1000 independent simulations are implemented and three performance

indices are employed. The first performance measurement is the mean relative

estimation error of the mixing matrix A, which is defined as:

Error = 10log10{mean(
||A− Â||
||A||

)}, (5.13)

where Â denotes the optimally ordered estimate of A. The second measure is the

Mean of Absolute Correlation (MAC) between the estimated sources and the origi-

nal ones, which is defined as

MAC = mean(
1
N

n=N

∑
n=1
|cov(sn, ŝn)

σsnσŝn

|), (5.14)

where ŝn represents the estimate of the source sn, cov(·, ·) represents the covariance

between two variables and σ denotes the standard deviation. The Relative Root

Mean Squared Error (RRMSE) is the third measure used to evaluate the effect of

muscle artifact removal, which is defined as:

RRMSE =
RMS(XEEG− X̂EEG)

RMS(XEEG)
, (5.15)

where RMS(·) denotes the root mean squared (RMS) value of a matrix/vector. For
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instance, the RMS value of the EEG observations X is expressed as,

RMS(X) =

√
1

M ·T

M

∑
m=1

T

∑
t=1

Xm,t , (5.16)

where M is the number of EEG observations (which is 4 in this chapter), and T

represents the number of data samples.

5.5 Numerical Study for the Synthetic EEG Data

The original sources in our study include 4 EEG sources (represented by SEEG) and

1 EMG source (SEMG), which are linearly mixed into 4 observations X following

(5.1). The other two datasets, X (2) and X (3), are generated following (5.2). In our

previous paper [111], we discussed the effect of the step size and the number of

time delays. Considering the difference in the sampling rate, here we select 1 data

sample corresponding to 4ms as the step size of time delays. Compared to the step

size, the number of time delays has less impact on the performance. To further

enhance the time efficiency, we set the number of time delays to 10.

Fig.5.1 shows the estimation error as a function of SNRS. We compare the pro-

posed method with a commonly-used single-set UBSS method (SOBIUM) and the

previously developed underdetermined joint BSS method (UJBSS-m) [31, 111].

SOBIUM exploits the autocorrelation of the sources and reformulate the problem

of estimating the mixing matrix as decomposing a higher-order tensor. UJBSS-m

models the cross correlation between each pair of two datasets and it is considered

as a great alternative to SOBIUM in solving the single-set underdetermined BSS

problem [111]. Compared with the SOBIUM and UJBSS-m, which only utilized

autocorrelation or part of cross correlation, the proposed method fully exploits

the second-order statistics of the observations. Benefiting from this, the proposed

method consistently yields the best results over the entire SNRS range, which also
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suggests the stability of the proposed method.

We estimate the mixing matrix A via the single-set UBSS method SOBIUM,

the underdetermined joint BSS method UJBSS-m and our proposed method, and

further recover the latent sources using the subspace representation method [59].

The source with the lowest autocorrelation is then recognized as the EMG source.

Next the EMG source is set to 0 and the EEG sources are used to reconstruct the

artifact-free EEG signals XEEG. As an illustrative example, Fig.5.2 demonstrates

the original XEEG and the corresponding reconstruction results. It is shown that

our proposed method is able to remove the EMG artifact perfectly and the recon-

structed EEG signals are highly correlated with the original artifact-free EEG sig-

nals. In addition, we also compared the proposed method with a recently developed

EMG artifact removal method, EEMD-CCA [21]. EEMD-CCA is a single-channel

technique for muscle activity removal and is therefore suitable for removing arti-

facts with a limited number of observations. It was shown that this EEMD-CCA

technique outperforms the multichannel technique based on CCA for removing

muscle artifacts from EEG signals [18, 21]. In this chapter, we apply this EEMD-

CCA method to each channel of the EEG observations X and decompose each

channel into multiple IMFS, which are the input of the CCA method. Given the rel-

ative lower autocorrelation, the last canonical variate (CV, i.e. output of the CCA) is

set to 0 during EEG reconstruction. We also test the effect of the number of canon-

ical variates which are selected as the EMG artifacts and discarded during EEG

reconstruction. The best performance is gained when the number of CV resmbling

EMG is set to 1.

In this chapter, we repeat the experiments 1000 times and the resulting average

performance is shown in Table 5.1. We further compare the proposed method with

three other artifact removal methods, including SOBIUM, UJBSS-m and EEMD-

CCA, in terms of MAC, RRMSE and time efficiency. All three of the compared
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BSS methods utilize the same technology to recover the sources when the mix-

ing matrix is estimated separately. Despite this, the performance of the proposed

method is significantly better than that of SOBIUM and UJBSS-m. This also sug-

gests the importance of estimating mixing matrices accurately. In addition, we test

the computational cost of all four of these respective artifact removal methods. To

remove the muscle artifact from 10000-datapoint 4-channel EEG observations, the

average computational time for the proposed method is 52.810s while that of SO-

BIUM, UJBSS-m and EEMD-CCA are 11.195s, 26.907s and 52.910s respectively.

The implementation is completed in MATLAB on a computer with Intel Core i7-

4770 3.40 GHz CPU and 8.00G RAM. All the MATLAB codes used in this chapter

are available upon request from the authors via email liangzou@ece.ubc.ca.

Table 5.1: Performance comparison between the proposed method and the
other three methods (SOBIUM, UJBSS-m, EEMD-CCA)

MAC RRMSE Average time cost (second)

SOBIUM [31] 0.863 0.147 11.195
UJBSS-m [111] 0.930 0.099 26.907

EEMD-CCA [21] NA 0.168 52.910
The proposed method 0.940 0.085 52.810

5.6 Conclusions and Discussion

In this chapter, we propose an effective and novel method to remove muscle ar-

tifacts from EEG signals. Compared with SOBIUM and UJBSS-m, which only

utilize autocorrelation or a portion of cross-correlation, our proposed method fully

exploits the second-order statistics of observations. The mixing matrices are ac-

curately estimated through joint CPD of a set of specialized tensors in which

covariance matrices corresponding to different time delays are stacked. Subse-
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Figure 5.1: Estimation error of A with the change of signal-to-noise ratios.
Here, the number of time delays L equals to 10, and the step size of
time delays (i.e. τl− τl−1) is 1 data sample corresponding to 4 ms.

quently, sources are recovered based on these estimated mixing matrices. Com-

pared with EEMD-CCA whose performance relies on the artifact level of the con-

taminated EEG signals (ratio between the power of pure EEG and EMG), the pro-

posed method is based on the statistical properties of the underlying sources, and

therefore is more robust. We evaluate the performance of the proposed method

through numerical simulations in which EEG recordings are contaminated with

muscle artifact. Our results demonstrate that the proposed method can effectively

and efficiently remove muscle artifacts while preserving the EEG activity success-

fully. Therefore, it is a promising tool for real-world biomedical signal processing

applications.
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Figure 5.2: An illustrative example of the reconstructed EEG signals based
on the proposed EMG removal method.

This is the last piece of my PhD work. It is a new and interesting application of

UJBSS. To the best of our knowledge, we are the first to apply the underdetermined

BSS method to remove EMG artifacts from a limited number of EEG observations.

Further, we note that it is also applicable to remove other kinds of artifacts, such as

ECG and EOG.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we have developed a set of novel underdetermined blind source

separation approaches for recovering underlying sources when the number of sources

is greater than that of the observations. The proposed algorithms aim to address

several challenges in real applications, including limited number of observations,

self/cross dependence information and source inference. The proposed methods

were evaluated on synthetic data and/or real physiological signals. It should be

noted that since the underlying ground truth is unavailable in real physiological

studies, the performance evaluation in such cases basically depends on visual in-

spection by experts in the field. The main contributions and findings of this disser-

tation are summarized as follows.

In Chapter 2, a novel UBSS framework, termed NAMEMD-MCCA, is pro-

posed to extract the heart beat signal from multi-channel NF-based sensor signals.

Considering various potential artifacts residing in the measured signals, recover-

ing the underlying heart beat signal is an underdetermined problem. We inves-
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tigate state-of-the-art EMD-BSS based methods for exacting RHBR information

accurately based on the nano-sensor data and further propose the NAMEMD-

MCCA for improved RHBR monitoring. Considering inter-channel information,

NAMEMD processes the input NF-based signals in high dimensional space and

can effectively overcome the problems of uniqueness and mode mixing [77]. As

an extension of CCA, MCCA is able to jointly extract sources through maximizing

the correlations of the extracted sources across datasets. The combination of these

two methods (NAMEMD-MCCA) benefits from the use of cross-channel informa-

tion and increased robustness to artifacts. We first apply the proposed methods to

synthetic data to illustrate their performance where the underlying truth is known.

We then apply the proposed method to real nano-sensor data collected when the

subject performs 11 tasks and it is shown that the proposed NAMEMD-MCCA

method can achieve superior performance.

Another challenging question that we have posed in the underdetermined BSS

field is the underdetermined joint BSS problem, which aims to jointly estimate the

mixing matrices and/or extract the underlying source from multiple datasets when

the number of sources is greater than that of observations in each dataset. Tra-

ditional joint BSS methods are designed for the determined case, which assume

that the number of sources is equal to or less than that of the observations. As

mentioned, this assumption may not be true in certain practical applications due to

concerns including cost or time [60]. However, to the best of our knowledge, in the

current literature only very limited work has been done on JBSS methods specifi-

cally designed for the underdetermined case. In order to address this concern, in

Chapter 3, we propose an underdetermined JBSS for 2 datasets, termed as UJBSS-2.

Considering the dependence information between two datasets, we exploit second-

order statistics of the observations. The problem of jointly estimating mixing ma-

trices is tackled via CPD of a specialized tensor in which a set of spatial covariance
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matrices are stacked. Numerical results demonstrate the competitive performance

of UJBSS-2 when compared to a commonly used JBSS method, MCCA, and the

single-set UBSS method, UBSS-FAS.

In Chapter 4, we generalize the idea of UJBSS-2 for two datasets into mul-

tiple datasets [124]. In this work, we propose a novel and effective method to

jointly estimate the mixing matrices for multiple datasets. Moving from our work

in Chapter 3, here the dependence information is modeled in a set of three-order

tensors, rather than one single tensor. Considering the latent common structure of

these constructed tensors, we jointly estimate the mixing matrices via joint canon-

ical polyadic decomposition of these specialized tensors. In order to accurately

infer the source signals, we recover them by further utilizing a novel subspace rep-

resentation based method. This proposed UJBSS-m method does not rely upon

the sparsity of signals and therefore it can be applied to a wide class of signals.

In addition, we also show that UJBSS-m can be utilized to solve the single-set

UBSS problem when suitable noise is added to the observations. Numerical results

on both audio and physiological signals demonstrate the superior performances of

this proposed method.

In Chapter 5, we propose a novel underdetermined blind source separation

method for removing muscle artifacts from EEG signals. EEG recordings are often

contaminated by various artifacts, among which the artifact from EMG is particu-

larly difficult to eliminate. Such EMG artifacts reduce the quality of EEG signals

and disturb further analysis of EEG, as in brain connectivity modeling. If a high

enough number of EEG recordings are available, we can remove or to some ex-

tent suppress the distortion effect of such artifacts via a considerable range of BSS

methods, such as ICA and CCA. However, for many practical applications, such as

ambulatory health-care monitoring, a small number of sensors used to collect EEG

is preferred and conventional BSS methods like CCA and ICA, will fail. Consider-
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ing the recent increasing need for biomedical signal processing in the ambulatory

environment, we explore cross correlation and autocorrelation of the underlying

sources and propose a novel underdetermined BSS method. We conduct a perfor-

mance comparison through numerical simulations in which 4 EEG recordings are

contaminated with 1 muscle artifact. It is demonstrated that the proposed method

can effectively and efficiently remove the muscle artifact meanwhile successfully

preserving the EEG activity.

6.2 Future Work

6.2.1 Multiple Datasets Generation

In Chapter 4 and Chapter 5, we demonstrate that underdetermined joint BSS meth-

ods can be utilized to solve single set underdetermined BSS problems. In order to

ensure the relative high correlation between sources, we construct multiple datasets

through adding a certain amount of weak Gaussian white noise (e.g., with SNR =

20dB) to the observations. Then we apply the proposed underdetermined joint BSS

method to these noise assisted datasets. To make a fair comparison, we repeat the

simulation 1000 times in both studies. It is demonstrated that the proposed meth-

ods gain better performance on average when we use these noise assisted datasets.

For instance, the performance of the proposed method in Chapter 4 is better than

that of SOBIUM with high confidence (80 percent probability). However, there is

not currently a strict theoretical analysis on how to add noise to ensure obtaining

better performance with a higher probability. Thus, one possible research direction

is to investigate a more rigorous method to add assisting noise adaptively to the

given observations.
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6.2.2 Estimate the Number of Source Signals in Determined and
Underdetermined BSS

The classical BSS problem includes two aspects of research: an estimation of the

number of sources and source separation. The ‘blind’ aspect of BSS refers to the

fact that there is generally no prior information available on the number of sources

or on the mixing model. However, for conceptual and computational simplicity,

most BSS algorithms usually require that the number of sources is specified in ad-

vance. ICA makes the assumption that the number of sources is not greater than

that of observations. MCCA assumes that the number of sources equals to that

of observations [56]. Further, the matrix diagonalization-based technique for the

underdetermined BSS has an upper limit for the number of sources. We see that

we can obtain a unique solution only when the number of sources satisfies certain

conditions [31]. However, these assumptions may not be the case in reality. One

classic example of the source separation problem is the cocktail party problem,

which has been previously explained, where a number of people are talking simul-

taneously. Without prior knowledge of the number of sources, we do not know

which BSS method is most suitable for solving this problem given the recording

signals. In addition, results can vary if the number of sources is set differently. In

different scenarios, we may need to choose different types of BSS methods.

An accurate estimation of the number of sources is shown to be of high impor-

tance, and it is generally estimated before further source separation. As a result,

several approaches have been proposed for estimating the number of sources. Wax

and Kailath introduced the eigenvalue-based estimation method and investigated

the observation that the number of dominant eigenvalues of the correlation ma-

trix is equal to the number of sources in determined cases [41]. This method was

improved by introducing Akaike Information Criterion (AIC) and Minimum De-

scription Length (MDL) and some other measures in the estimation [40, 73, 94].
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However, it is challenging to estimate the true number of sources when the ob-

servations are noisy. To address this concern, sources number estimation methods

which are robust to noisy observations are highly desired.

In addition, to the best of our knowledge, there are only a few researchers

discussing different ways to estimate the number of sources in UBSS, and they

generally make use of the sparsity of source signals. For instance, SSPS on the

time domain or frequency domains are detected and similarity-based clustering

methods are used to estimate the number of sources. However, signals may not be

as sparse as assumed in the existing methods. Therefore, it is necessary to relax the

sparsity constraint. Furthermore, the existing methods for estimating the number

of sources for UBSS cases are limited to instantaneous mixing models. We plan to

develop advanced methods to estimate the number of sources when the sources are

mixed in a convolutional model. Lastly, the number of sources may be related to

certain physiological processes, such as depth of sleep. It would thus be of interest

in some applications to monitor the dynamic change of the number of sources and

the corresponding mixing structure.

6.2.3 Online Underdetermined BSS

For many practical applications, such as ambulatory health-care monitoring, it is

desirable to collect mixed signals using fewer sensors. In order to recover sources

or remove unwanted noise, underdetermined BSS is preferred in these situations.

Generally underdetermined BSS is more difficult to implement due to the lower

number of available observations. Underdetermined BSS methods generally con-

sist of two separate steps: mixing matrix estimation and underlying source infer-

ence, which are very time consuming. To better serve such practical applications,

real-time underdetermined BSS methods with light computational complexity are

preferred.
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In addition, most existing BSS algorithms assume that the sources are physi-

cally stationary, i.e., mixing filters are fixed. However, this assumption does not

always hold in real applications. For instance, in the cocktail party problem, it is

highly possible that both sources and sensors are not stationary in the room and

therefore the mixing model may be time varying. In these situations, it is nec-

essary to model the mixing matrix as time-varying and develop UBSS methods

accordingly.
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Appendix A

Derivations

The Appendix is the proof of Proposition 1 in Chapter 4, as

The partial derivative of the objective function f with respect to each column of
the desired matrices , i.e., {a(k)n }, un, vr and wn, are given by

∂ f

∂a(1)n

=−P×2 a(2)n ×3 un−Q×2 a(3)n ×3 vn +
N

∑
c=1

[(a(2)n )T a(2)c (un)
T uc +(a(3)n )T a(3)c (vn)

T vc]a
(1)
c

∂ f

∂a(2)n

=−P×1 a(1)n ×3 un−R×2 a(3)n ×3 wn +
N

∑
c=1

[(a(1)n )T a(1)c (un)
T uc +(a(3)n )T a(3)c (wn)

T wc]a
(2)
c

∂ f

∂a(3)n

=−Q×1 a(1)n ×3 vn−R×1 a(2)n ×3 wn +
N

∑
c=1

[(a(1)n )T a(1)c (vn)
T vc +(a(2)n )T a(2)c (wn)

T wc]a
(3)
c

∂ f
∂un

=−P×1 a(1)n ×2 a(2)n +
N

∑
c=1

[(a(1)n )T a(1)c (a(2)n )T a(2)c ]uc

∂ f
∂vn

=−Q×1 a(1)n ×2 a(3)n +
N

∑
c=1

[(a(1)n )T a(1)c (a(3)n )T a(3)c ]vc

∂ f
∂wn

=−R×1 a(2)n ×2 a(3)n +
N

∑
c=1

[(a(2)n )T a(2)c (a(2)n )T a(3)c ]wc.
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A.1 Proof for Proposition 1
Proo f . The three components of the objective function in (4.21), i.e., f (1)(A(1),A(2),U),

f (2)(A(1),A(3),V ) and f (3)(A(2),A(3),W ), share similar structure, which is the dif-

ference between one tensor and the corresponding estimated results. Therefore,

we take f (1)(A(1),A(2),U) and its partial derivative with respect to a(1)n for further

analysis. It can be rewritten as

f (1)(A(1),A(2),U)

=‖P− [[A(1),A(2),U ]]‖2

=‖P‖2︸ ︷︷ ︸
f (1)1

−2< P, [[A(1),A(2),U ]]>︸ ︷︷ ︸
f (1)2

+‖[[A(1),A(2),U ]]‖2︸ ︷︷ ︸
f (1)3

.
(A.1)

The first summand f (1)1 does not involve any variable and therefore

∂ f (1)1

∂a(1)n

= 0, (A.2)

where 0 is the zero vector with the same length as a(1)n . The second summand f (1)2

is the inner product of the tensor P with its its polyadic decomposition, and it can

be computed as
f (1)2 =< P, [[A(1),A(2),U ]]>

=< P,
N

∑
n=1

a(1)n ◦a(2)n ◦un >

=
N

∑
n=1

M

∑
i1=1

M

∑
i2=1

L

∑
i3=1

pi1,i2,i3a(1)i1,na(2)i2,nui3,n

=
N

∑
n=1

(P×1 a(1)n ×2 a(2)n ×3 un)

=
N

∑
n=1

(P×2 a(2)n ×3 un)
T a(1)n .

(A.3)
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The partial derivative of f (1)2 with respect to each column of A(1) is

∂ f (1)2

∂a(1)n

= P×2 a(2)n ×3 un. (A.4)

The third summand is the square of the Frobenius norm of P’s polyadic decom-

position, and it can be computed as

f (1)3 =‖[[A(1),A(2),U ]]‖2

=<
N

∑
n=1

a(1)n ◦a(2)n ◦un,
N

∑
n=1

a(1)n ◦a(2)n ◦un >

=
N

∑
b=1

N

∑
c=1

((a(1)b )T (a(1)c )(a(2)b )T (a(2)c )(ub)
T (uc))︸ ︷︷ ︸

F(b,c)

=F(n,n)+
N

∑
b=1
b6=n

N

∑
c=1
c 6=n

F(b,c)+2
N

∑
c=1
c 6=n

F(n,c),

(A.5)

where b and c denote the indices of the factor matrices. The first summand of f (1)3

is

F(n,n) = (a(1)n )T (a(1)n )(a(2)n )T (a(2)n )(un)
T (un), (A.6)

and its partial derivative with respect to the nth column of the factor matrix A(1) is

∂F(n,n)

∂a(1)n

= 2((a(2)n )T a(2)n uT
n un)a

(1)
n . (A.7)

The second summand of f (1)3 does not involve the variable a(1)n and therefore the

corresponding partial derivative with respect to a(1)n is the zero vector with the same

length as a(1)n . The third summand of f (1)3 is

2
N

∑
c=1
c 6=n

F(n,c) = 2
N

∑
c=1
c 6=n

(a(1)n )T (a(1)c )(a(2)n )T (a(2)c )(un)
T (uc), (A.8)
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and its partial derivative with respect to the a(1)n can be computed as 2∑
N
c=1
c 6=n

[(a(2)n )T a(2)c (un)
T uc]a

(1)
c .

Therefore,
∂ f (1)3

∂a(1)n

=2((a(2)n )T a(2)n uT
n un)a

(1)
n

+2
N

∑
c=1
c 6=n

[(a(2)n )T a(2)c (un)
T uc]a

(1)
c

=2
N

∑
c=1

[(a(2)n )T a(2)c (un)
T uc]a

(1)
c .

(A.9)

Combining all the above results, i.e., equation (A.2), (A.4) and (A.9), the partial

derivative of f (1)(A(1),A(2),U) with respect to the a(1)n can be computed as

∂ f (1)(A(1),A(2),U)

∂a(1)n

=
∂ f (1)1

∂a(1)n

−2
∂ f (1)2

∂a(1)n

+
∂ f (1)3

∂a(1)n

=−2P×2 a(2)n ×3 un +2
N

∑
c=1

[(a(2)n )T a(2)c (un)
T uc]a

(1)
c .

(A.10)

Similarly, we can calculate the partial derivative of f (2)(A(1),A(3),V ) with respect

to the a(1)n as

∂ f (2)(A(1),A(3),V )

∂a(1)n

=−2Q×2 a(3)n ×3 vn +2
N

∑
c=1

[(a(3)n )T a(3)c (vn)
T vc]a

(1)
c .

(A.11)

f (3)(A(2),A(3),W ) does not involve the variable a(1)n and therefore

∂ f (3)(A(2),A(3),W )

∂a(1)n

= 0. (A.12)
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Consequently, the partial derivative of the objective function with respect to a(1)n is

∂ f (A(1),A(2),A(3),U ,V ,W )

∂a(1)n

=
1
2

∂ f (1)

∂a(1)n

+
1
2

∂ f (2)

∂a(1)n

+
1
2

∂ f (3)

∂a(1)n

=−P×2 a(2)n ×3 un−Q×2 a(2)n ×3 vn

+
N

∑
c=1

[(a(2)n )T a(2)c (un)
T uc +(a(3)n )T a(3)c (vn)

T vc]a
(1)
c .

(A.13)

This completes the proof of the first equation in Proposition 1. The proof of other

equations is similar to that of (A.13) and thus omitted here.
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