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Abstract

This thesis concerns critical branching random walks. We focus on super-

critical (d ≥ 5) and critical (d = 4) dimensions.

In this thesis, we extend the potential theory for random walk to critical

branching random walk. In supercritical dimensions, we introduce branching

capacity for every finite subset of Zd and construct its connections with

critical branching random walk through the following three perspectives.

1. The visiting probability of a finite set by a critical branching random

walk starting far away;

2. Branching recurrence and branching transience;

3. Local limit of branching random walk in torus conditioned on the total

size.

Moreover, we establish the model which we call ’branching interlacements’

as the local limit of branching random walk in torus conditioned on the total

size.

In the critical dimension, we also construct some parallel results. On the

one hand, we give the asymptotics of visiting a finite set and the conver-

gence of the conditional hitting point. On the other hand, we establish the

asymptotics of the range of a branching random walk conditioned on the

total size.

Also in this thesis, we analyze a small game which we call the Majority-

Markov game and give an optimal strategy.
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Lay Summary

This thesis investigates a probabilistic model called branching random walk,

which is a combination of two classical subjects in probability theory: ran-

dom walk and branching process. A branching random walk is a random

process consisting of a finite number of particles doing independent random

walks, which at every time step, will give birth to a random number of new

particles (particles are added) and then die (particles are removed), the new

particles then begin independent random walks from the location of their

parents. Of particular challenge to the analysis is a critical branching ran-

dom walk, where the expected number of offsprings of each particle is one.

The main contribution of this thesis is to develop new knowledge about crit-

ical branching random walks by building an analogy with classical results

on random walk.
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Chapter 1

Introduction

This thesis studies some properties of critical branching random walks in

dimension four and higher.

In the first part, we extend the theory of discrete capacity for random

walk to critical branching random walk. We introduce branching capacity for

any finite subset of Zd, for d ≥ 5 and establish its connections with critical

branching random walks. In 4-dimension, we give some parallel results.

In the second part, we introduce the model of branching interlacements.

We show that this model turns out to be the local limit of the critical

branching random walk in torus.

1.1 Critical branching random walks

As the name suggests, a branching random walk can be viewed as a system

of particles performing random walks while branching (deterministically or

randomly). We are mainly interested in the case when the branching is also

random. For branching random walks with deterministic branching, one can

refer to the lecture notes [18]. In our situation, there are two levels of random

mechanism. One is for the branching and the other is for the random walk.

To define a branching random walk, we need to fix two distributions µ and

θ for the randomness.

1. µ is a probability measure on N;

2. θ is a probability measure on Zd.

Definition 1.1.1. A branching random walk starting from x ∈ Zd, with

offspring distribution µ and jump distribution θ, can be described as follows.
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1.1. Critical branching random walks

At time 0, a particle is located at x. Suppose that, at each time n, a particle

v is located at S(v). At time n + 1, v dies and gives birth to a random

number, distributed according to µ, of children. Each child then moves to a

new location S(v)+Y , with increment Y distributed according to θ. Different

particles behave independently. Let T be the collection of all particles at all

times. Then (S(v))v∈T forms a branching random walk.

In this thesis, we study critical branching random walk. By ’critical’ we

mean that

Eµ = 1.

We always assume this and rule out the degenerate case, i.e. µ(1) = 1

(unless otherwise specified). For the jump distribution we assume that it is

centered in the following sense:

Eθ = 0.

In addition, for technical reasons, we always assume the following moment

conditions unless otherwise specified:

• µ has finite variance σ2 > 0;

• θ is irreducible (i.e. not supported on a strict subgroup of Zd), and

’weak’ Ld in the following sense: there exists C > 0, such that for any

r ≥ 1,

θ({x ∈ Zd : |x| > r}) < C · r−d. (1.1.1)

Note that (1.1.1) holds if θ has finite d-th moment and if (1.1.1) holds, then

θ has finite b-th moment, for any 0 < b < d. For some results, we need

stronger assumptions, which will be stated explicitly.

Remark 1.1.1. Why the critical case? Branching random walk generalizes

both branching process (no geometry) and random walk (no branching). The

corresponding branching process for our branching random walk is the so-

called Galton-Watson process. It is classical that for nondegenerate (i.e.

2



1.1. Critical branching random walks

µ(1) 6= 1) Galton-Watson processes, the extinction probability is one, if

Eµ ≤ 1, and strictly less than one, if Eµ > 1. Moreover, the probability

of survival to n-th generation decays (as n → ∞) exponentially, if Eµ < 1,

and polynomially, if Eµ = 1. Similarly, it turns out that the probability

of visiting a distant point by a branching random walk starting from the

origin has different asymptotics for three different regions: when Eµ > 1,

the probability is bigger than a positive constant (which is just the probability

for survival of the corresponding Galton-Watson process); when Eµ = 1, it

decays to zero polynomially; when Eµ < 1, it decays to zero exponentially.

Remark 1.1.2. We have not striven for the greatest generality about the

assumptions on µ and θ, and it is plausible that many results also hold under

weaker assumptions, especially for θ.

On the other hand, the dimension d plays an important role in the study

of critical branching random walk: there are three regions:

1. Supercriticality: d ≥ 5;

2. Criticality: d = 4;

3. Subcriticality: d ≤ 3.

One can get an analogous feeling from random walk about the critical

dimension. It is well-known that the critical dimension for random walk is

d = 2. There are many results reflecting this fact. Here are a couple. The

famous Pólya’s Recurrence Theorem states that a simple random walk on

a d-dimension is recurrent for d = 1, 2 and transient for d > 2. On the

other hand, the range of a random walk with n-steps behaves sublinearly

(when n goes to infinity), if d = 1; linearly with logarithm correction, if

d = 2; linearly, if d ≥ 3. One will see that both results (together with many

others) have analogues in the setting of critical branching random walk (see

Corollary 1.3.11, Proposition 2.3.3, and the rest of this chapter).

In this thesis, we mainly focus on supercritical and critical dimensions.

3



1.2. Range of critical branching random walk conditioned on total number of progeny

1.2 Range of critical branching random walk

conditioned on total number of progeny

Le Gall and Lin ([13, 14]) have established the following result about the

number of occupied sites by a critical branching random walk conditioned

on the total number of offsprings being n, denoted by Rn: (under some

regular conditions on µ and θ)

1

n
Rn

P→ c1 as n→∞, when d ≥ 5; (1.2.1)

log n

n
Rn

L2

→ c2 as n→∞, when d = 4;

n−d/4Rn
d→ c3λd(supp(I)) as n→∞, when d ≤ 3;

where ci, i = 1, 2, 3 are some constants and λd(supp(I)) stands for the

Lebesgue measure of the support of the random measure on Rd known as

Integrated Super-Brownian Excursion.

In the critical dimension, they assume that the offspring distribution µ is

the critical geometric distribution (i.e. with parameter 1/2), while in other

dimensions, they could handle very general offspring distributions.

In subcritical dimensions, they also established the asymptotics of the

hitting probability of a distant point by critical branching random walk:

lim
x→∞

‖x‖2 · P (Sx visits 0) =
2(4− d)

dσ2
, (1.2.2)

where Sx is a critical branching random walk starting at x, ‖x‖ =√
x ·Q−1x/

√
d with Q being the covariance matrix of θ, and σ2 is the vari-

ance of µ.

They presented the following questions:

1. The asymptotic of P (Sx visits 0) in other dimensions (d ≥ 4);

2. The range Rn in the critical dimension for general offspring distribu-

tions;

4



1.2. Range of critical branching random walk conditioned on total number of progeny

3. The range of branching random walk with a general initial configura-

tion.

We answer the first two questions in this thesis. We show that:

When d ≥ 5, we have

lim
x→∞

‖x‖d−2 · P (Sx visits 0) = adc1;

When d = 4, we have

lim
x→∞

‖x‖2 log ‖x‖ · P (Sx visits 0) = 1/(2σ2);

and
log n

n
Rn

P→ 16π2
√

detQ

σ2
as n→∞;

where c1 is the same constant in (1.2.1) and ad is some constant depending

on θ.

To summarize, we have:

P (Sx visits 0) ≈


adc1/‖x‖d−2, when d ≥ 5;

1/(2σ2‖x‖2 log ‖x‖), when d = 4;

2(4− d)/(dσ2‖x‖2), when d ≤ 3.

Here are the heuristics for the exponents. We know that a typical random

walk sample path connecting x and 0 is with length of order ‖x‖2. In order

to reach a point with distance ‖x‖ away (with not too small probability),

the corresponding branching process should survive at least for generations

with order ‖x‖2. This event has probability of ‖x‖−2. This incidence is

enough to give order one probability for visiting x, when the dimension is

low enough. On the other hand, it is not difficult to see that the expectation

of the visiting times of 0 is the same as that for random walk, which is of

order ‖x‖2−d (for d ≥ 3). Note that when d = 4 (the critical dimension),

it is just ‖x‖−2! This maybe one of the most natural ways to remember

the critical dimension. When the dimension is high (d ≥ 5 is enough), the

conditional visiting times, conditioned on visiting, is of order one, hence the

5



1.3. Potential theory for random walk and our parallel results

probability of visiting should have the same order as the expectation, which

is just ‖x‖2−d.

1.3 Potential theory for random walk and our

parallel results

There are two essential theories on random walk, one is the discrete potential

theory, the other is about the scaling limit of random walk, i.e. Brownian

motion. It is well known that the scaling limit of critical branching random

walk is the integrated super-Brownian excursion, or Brownian snake. For

more details about this, we refer the reader to [12], [8] and the references

therein.

In this thesis, we focus on the discrete potential theory and extend it

to critical branching random walk. For the discrete potential theory for

random walk, one can see e.g. [10, 11, 20]. Let us first review some results

on regular (discrete) capacity. For any finite subset K of Zd, d ≥ 3, the

escape probability ESK(x) is defined to be the probability that a random

walk starting from x ∈ Zd with symmetric jump distribution, denoted by

Sx = (Sx(n))n∈N, never returns to K. The capacity of K, Cap(K) is given

by:

Cap(K) =
∑
a∈K

ESK(a).

We have

lim
x→∞

‖x‖d−2 · P (Sx visits K) = adCap(K),

where ad = 1
2d(d−2)/2

√
detQ

Γ(d−2
2 )π−d/2. Moreover, let τK = inf{n ≥ 1 :

Sx(n) ∈ K}, then for any a ∈ K, we have

lim
x→∞

P (Sx(τK) = a|Sx visits K) = ESK(a)/Cap(K).

ESK(a) is usually called the equilibrium measure and the normalized mea-

sure ESK(a)/Cap(K) is called the harmonic measure of set K. In fact, not

only the distribution of the first visiting point, but also that of the last

6



1.3. Potential theory for random walk and our parallel results

visiting point, conditioned on visiting K, converge to the same measure:

lim
x→∞

P (Sx(ξK) = a|Sx visits K) = ESK(a)/Cap(K),

where ξK = sup{n ≥ 1 : Sx(n) ∈ K}.
The results above apply to any symmetric irreducible jump distribution

with some finite moment conditions. Unfortunately we do not find any

reference for the nonsymmetric walks. However the following result is well-

known and can be proved similarly to the symmetric case (see the Preface of

[11]). When the jump distribution is irreducible, nonsymmetric, with mean

zero and, for simplicity, finite range, we have:

lim
x→∞

P (Sx(τK) = a|Sx visits K) = ES−K(a)/Cap(K),

lim
x→∞

P (Sx(ξK) = a|Sx visits K) = ESK(a)/Cap(K),

where ES− is the escape probability for the reversed random walk.

In this thesis, we extend the theory of capacity for random walk to crit-

ical branching random walk. As we have mentioned, for critical branching

random walk, the critical dimension is d = 4 instead of d = 2 (for random

walk). This fact is also reflected in many of our results.

1.3.1 Supercritical dimensions (d ≥ 5)

In Zd, d ≥ 5, we introduce branching capacity for any finite subset. In

order to define branching capacity, one needs to introduce analogues of the

escape probability. For a finite set K of Zd, denoted by K ⊂⊂ Zd, one

could consider the probability that the branching random walk starting at

x, denoted by Sx, avoids K. However, this turns out not to be the right

generalization. Two different extensions of the escape probability need to

be defined: one for the first and one for the last visiting point of K. We

denote these by EsK(x) and EscK(x). Both correspond to infinite versions

of branching random walk. We defer the complete definitions to Chapter 2.

7



1.3. Potential theory for random walk and our parallel results

Formally one can define the branching capacity of K by

BCap(K) =
∑
z∈K

EsK(z)

(
also =

∑
z∈K

EscK(z)

)
.

Then, we have:

Theorem 1.3.1. For any nonempty finite subset K of Zd and a ∈ K, we

have

lim
x→∞

‖x‖d−2 · P (Sx visits K) = adBCap(K); (1.3.1)

lim
x→∞

P (Sx(τK) = a|Sx visits K) = EsK(a)/BCap(K),

lim
x→∞

P (Sx(ξK) = a|Sx visits K) = EscK(a)/BCap(K),

where τK and ξK respectively are the first, and the last respectively, visiting

time of K in a Depth-First search and ad = 1
2d(d−2)/2

√
detQ

Γ(d−2
2 )π−d/2 is

the same constant as in the random walk case.

Let us make some comments here. First, if µ is the degenerate measure

(that is µ(1) = 1), then the branching random walk is just the regular

random walk, and EsK (EscK respectively) is just ES−K (ESK respectively).

In this case, Theorem 1.3.1 is the classical result for random walk.

Second, this result tells us that conditioned on visiting a fixed set, the

’first’ (or the last) visiting point converges in distribution. It turns out

that we can say more about this. In fact, we also show that (see Section

2.2.6) conditioned on visiting K, the set of entering points converges in

distribution. Since the distribution of the intersection between K and the

range of Sx can be determined by the entering points, hence we have

Theorem 1.3.2. Conditioned on Sx visiting K, the intersection between K

and the range of Sx converges in distribution, as x→∞.

Third, this result gives the asymptotic behavior of the probability of

visiting a fixed finite set by critical branching random walk starting from

far away (for dimension d ≥ 5), answering the first question in the end of

8



1.3. Potential theory for random walk and our parallel results

Section 1.2.1, for supercritical dimensions. We also establish the asymptotic

behavior of the visiting probability for the case of critical dimension d = 4,

(see Theorem 1.3.12). Note that we give the asymptotics of the probability

of visiting any finite set while the original question is stated for one single

point.

We mentioned in Section 1.2.3, that Le Gall and Lin establish the asymp-

totic of the range of a critical branching random walk conditioned on total

size being n. In supercritical dimensions, the range divided by n converges in

probability to a constant, c1 in (1.2.1), which they interpret as some escape

probability. This constant is just BCap({0}) in our notation.

We also construct the following bounds for the visiting probability by

critical branching random walk when the distance ρ(x,A) between x and A

is not too small, compared with the diameter of A, diam(A).

Theorem 1.3.3. For any finite A ⊆ Zd and x ∈ Zd with ρ(x,A) ≥
0.1diam(A), we have:

P (Sx visits A) � BCap(A)

(ρ(x,A))d−2
, (1.3.2)

where f(x,A) � g(x,A) indicates that there exists positive constants c1, c2

independent of x,A such that c1f(x,A) ≤ g(x,A) ≤ c2f(x,A).

One might compare this with the corresponding result for random walk:

P (Sx visits A) � Cap(A)

(ρ(x,A))d−2
. (1.3.3)

Similarly to random walk, computing escape probabilities can be very

difficult. Hence it might not be practical to estimate the branching capacity

by definition directly. However we can use (1.3.1) in reverse: by estimating

the probability of visiting a set, we can give bounds for the branching ca-

pacity of that set. Through this, we find the order of the magnitude of the

branching capacity of low dimensional balls:

Theorem 1.3.4. Let Bm(r) be the m-dimensional balls with radius r (as

a subset of Zd), i.e. {z = (z1, 0) ∈ Zm × Zd−m = Zd : |z1| ≤ r}. For any

9



1.3. Potential theory for random walk and our parallel results

r > 2, we have:

BCap(Bm(r)) �


rd−4 if m ≥ d− 3;

rd−4/ log r if m = d− 4;

rm if m ≤ d− 5.

(1.3.4)

One might compare this with the corresponding result about regular

capacity:

Cap(Bm(r)) �


rd−2 if m ≥ d− 1;

rd−2/ log r if m = d− 2;

rm if m ≤ d− 3.

(1.3.5)

Our definition of branching capacity depends on the offspring distribu-

tion µ and the jump distribution θ. From the previous result, one can see

that branching capacities of a ball for different µ’s and θ’s are comparable.

We believe this is generally true for any finite subset but can only show one

part of it:

Theorem 1.3.5. Suppose that µ1, µ2 are two nondegenerate critical off-

spring distributions with finite second moment and let BCapµ1,θ and BCapµ2,θ

denote the corresponding branching capacities (with the same jump distribu-

tion θ). Then, there is a C = C(µ1, µ2) > 0 such that for all finite A ⊆ Zd,

C−1 · BCapµ1,θ(A) ≤ BCapµ2,θ(A) ≤ C · BCapµ1,θ(A). (1.3.6)

One might compare this with the corresponding result about regular

capacity:

Suppose that θ1 and θ2 are two irreducible distributions on Zd (for d ≥ 3)

with mean zero and finite range. Then, there is a C = C(θ1, θ2) > 0 such

that,

C−1 · Capθ1(A) ≤ Capθ2(A) ≤ C · Capθ1(A), for all finite A ⊆ Zd.

We believe the following and can not prove at this time:

10



1.3. Potential theory for random walk and our parallel results

Conjecture 1.3.6. Suppose that θ1 and θ2 are two irreducible distributions

on Zd( d ≥ 3) with mean zero and finite range. Then, there is a C =

C(µ, θ1, θ2) > 0 such that,

C−1 ·BCapµ,θ1(A) ≤ BCapµ,θ2(A) ≤ C ·BCapµ,θ1(A), for all finite A ⊆ Zd.

Furthermore, we construct an analogous version of Wiener’s Test. Let us

first review the classical Wiener’s Test. A subset K ⊆ Zd is called recurrent

if

P (S0(n) ∈ K for infinite n ∈ N) = 1;

and transient if

P (S0(n) ∈ K for infinite n ∈ N) = 0.

For the recurrence and transience of a set, Wiener’s Test says that:

Suppose K ⊆ Zd, d ≥ 3 and let Kn = {a ∈ K : 2n ≤ |a| < 2n+1}. Then,

K is recurrent ⇔
∞∑
n=1

Cap(Kn)

2n(d−2)
=∞.

Inspired by this, we give the definition of branching recurrence and

branching transience by using branching random walk conditioned on sur-

vival instead of random walk (see Chapter 2 for exact definitions). We have

the following version of Wiener’s Test:

Theorem 1.3.7. Assume further that µ has finite third moment and θ is

with finite range. Then for any K ⊆ Zd, d ≥ 5, we have

K is branching recurrent ⇔
∞∑
n=1

BCap(Kn)

2n(d−4)
=∞.

Meanwhile, we give the asymptotics and bounds for the visiting probabil-

ity of a finite set by critical branching random walk conditioned on survival

starting from x (denoted by S∞x ):

11



1.3. Potential theory for random walk and our parallel results

Proposition 1.3.8. For every finite A ⊆ Zd, we have:

lim
x→∞

‖x‖d−4 · P (S∞x visits A) = td · a2
dσ

2BCap(K), (1.3.7)

where td = td(θ) = dd/2
√

detQ
∫
t∈Rd |t|

2−d|h′ − t|2−ddt, and h′ ∈ Rd is any

vector with |h′| = 1. Recall σ2 is the variance of µ.

Theorem 1.3.9. For every finite A ⊆ Zd and x ∈ Zd with ρ(x,A) ≥
0.1diam(A), we have (assume further that θ has finite range):

P (S∞x visits A) � BCap(A)

(ρ(x,A))d−4
. (1.3.8)

In particular, if we let M be the (d− i)-dimensional (i = 1, 2, 3, 4) linear

subspace, i.e. {z = (z1, z2) ∈ Zd−i × Zi : z2 = 0}, then by Theorem 1.3.4,

Theorem 1.3.7 and the monotonicity of branching capacity, we can see that

M is branching recurrent. By projecting to Zi, we get that for Zi (i ≤ 4),

the projection version of S∞0 will visit any vertex infinitely often, almost

surely. Hence we can get the following result which appeared in [3]:

Corollary 1.3.10. The critical branching random walk conditioned on sur-

vival in Zd (d ≤ 4) almost surely visits any vertex infinitely often, provided

that the offspring distribution has finite third moment and that the step dis-

tribution is irreducible, centered, with finite range.

In [3], this is proved when µ is the critical geometric distribution and θ

is simple, i.e. uniform on the unit vectors. It is mentioned there that their

method works for general critical offspring distribution with finite second

moment, see Section 3.1 in [3]. It seems that their method requires the

symmetry assumption for θ.

From Theorem 1.3.5 and Theorem 1.3.7, we can see that whether a set is

branching recurrent or branching transient is independent of the choice of the

offspring distribution, as long as that offspring distribution is nondegenerate,

critical and with finite third moment:

Corollary 1.3.11. Let θ be some fixed centered, irreducible distribution on

Zd with finite range. Then for any K ⊆ Zd, if there exists one nondegenerate

12



1.3. Potential theory for random walk and our parallel results

critical offspring distribution µ with finite third moment, such that K is

branching recurrent (corresponding to µ and θ), then for any such offspring

distribution, K is branching recurrent.

1.3.2 The critical dimension (d = 4)

In the critical dimension, we also establish the asymptotics of the visiting

probability with a logarithmic correction:

Theorem 1.3.12. Assume further that θ has finite exponential moments.

Then, for every finite subset K of Z4, we have:

lim
x→∞

(‖x‖2 log ‖x‖) · P (Sx visits K) =
1

2σ2
. (1.3.9)

We also show the convergence for the first visiting point conditioned on

visiting:

Theorem 1.3.13. Assume further that θ has finite range. Then, for any

finite nonempty subset K of Z4 and a ∈ K, we have

lim
x→∞

P (Sx(τK) = a|Sx visits K) =
σ2

4π2
√

detQ
EK(a),

where EK(a) is defined later in (2.4.27).

Remark 1.3.1. Recall that, in supercritical dimensions, we mention further

that the conditional entering measure converges in distribution. However this

is false in the critical dimension (and in subcritical dimensions). It turns

out that, the conditional entering measure will blow up, as the starting point

tends to infinity.

Note that in the random walk case, the random walk in 2-d is recurrent

and hence P (Sx visits K) = 1. However the harmonic measure does exist:

lim
x→∞

P (Sx(τK) = a|Sx visits K) =
1

π2
√

detQ
EK(a),
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1.4. Branching interlacements

where EK(x) = limn→∞ log n · P (τn < τK) exists with τn being the hitting

time of Bc(n) by a random walk starting at x. As we will see, EK(a) has a

similar form.

Furthermore, recall that Rn, the range of the critical branching random

walk conditioned on the total size being n has the following asymptotics:

log n

n
Rn

n→∞−→ 8π2
√

detQ in L2,

provided that µ is the geometric distribution with parameter 1/2 and θ is

symmetric and has exponential moments.

We establish the following:

Theorem 1.3.14.

log n

n
Rn

n→∞−→ 16π2
√

detQ

σ2
in probability,

assuming further that θ is symmetric and has finite exponential moments.

1.4 Branching interlacements

Sznitman introduced the model of random interlacements which consist of

a countable collection of trajectories of doubly infinite random walks on the

lattice Zd, for d ≥ 3 ([21]). Since this seminal work, many aspects of the

model of random interlacements have been studied by numerous authors.

The basic results of the theory of random interlacements can be found in

the lecture notes [5] and [22]. The interlacement Iu at level u ≥ 0 is the

trace left on Zd by a cloud of paths constituting a Poisson point process on

the space of doubly infinite transient trajectories modulo time-shift. Its law

is characterized by:

P (Iu ∩K = ∅) = exp(−u · Cap(K)), for every finite K ⊆ Zd. (1.4.1)

There are two main initial results about random interlacements. On the

one hand, the random interlacement at level u turns out to be the local

14



1.4. Branching interlacements

limit of the set of sites on the discrete torus TdN := (Z/NZ)d visited by

the simple random walk up to buNdc steps ([25]). On the other hand, as

a percolation model, the complement of the interlacement, the so-called

vacant set, exhibits a phase transition ([21] and [19]): there is a critical

value u∗ ∈ (0,∞) such that the vacant set percolates for u < u∗ and does

not percolate for u > u∗.

Inspired by this, we introduce another kind of interlacements consisting

of a countable collection of doubly infinite trajectories that encode infinite

trees embedded in Zd, d ≥ 5. We restrict ourself to a special case µ =

Geo(1/2) and simply assume that θ is the uniform measure on the set of

unit vectors in Zd. Similarly, a non-negative parameter u governs the amount

of trajectories entering the picture. We show that:

Theorem 1.4.1. For any u > 0, we can construct a random subset Iu of

Zd, which is characterized by:

P (Iu ∩K = ∅) = exp(−u · BCap(K)), for every finite K ⊆ Zd. (1.4.2)

Furthermore, we prove: similar to the case of random interlacement,

branching interlacement at level u, turns out to be the local limit of the

law of the trace of branching random walk on torus with side-length N ,

conditioned to have buNdc progeny. More precisely, let RN be the occupied

sites by a critical branching random walk, conditioned on the total size being

buNdc, with uniform starting point in the torus with side-length N . Then

for any fixed finite subsets B ⊆ A ⊆ Zd, we have:

Theorem 1.4.2.

lim
N→∞:N≡1 mod 2

P (RN ∩A = B) = P (Iu ∩A = B).

Note that when N is large enough, we can regard A,B as subsets of the torus

with side-length N .

The reason we need to assume N ≡ 1 mod 2 is due to the periodicity

of simple random walk.
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1.5 An optimal strategy for the Majority-Markov

game

Let’s begin with a little game. Three tokens begin on vertices −2, −1 and

1 of a path connecting vertices −3,−2, ..., 3 (see the figure below). At any

time the player may pay one dollar and choose a token; that token will then

move randomly, with equal probability to its left or right neighboring vertex.

Different tokens move independently without interfering. There are holes at

the endpoints. Hence once the token reaches the endpoint, it falls into that

hole and cannot get out. If the player is curious about which hole finally

contains more tokens, the negative side, or the positive side, which token

should be chosen to move, with the goal of minimizing expected cost?

Figure 1.1: A simple example of Majority-Markov game

Note that though the player wants to know which side wins, he, as a

matter of fact, has no influence on where the tokens go when they move,

hence no influence at all, on the result about which side to win. We can

think that the trajectories are pre-determined and the player do not know

these trajectories. He needs to buy this information. At each step, the

player can only decide, at cost of one dollar, which token’s next position to

be revealed to him, based on the current positions of the tokens. Only when

the player sees two tokens in the same hole, he is sure which side has won.

Then he stops paying and leaves. Therefore, his strategy has an effect on

his wallet, but no on which side to win.
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1.5. An optimal strategy for the Majority-Markov game

It turns out that the optimal strategy is always moving the middle one

(if there are two at the same site, then choose either) and this is the unique

optimal strategy.

In this thesis, we will analyze and solve a type of games which we call

Majority-Markov games, as the following. There are an odd number of finite

Markov chains. Each Markov chains contains two absorbing target states,

one specified as positive kind, the other as negative kind. Since the targets

are absorbing, finally, in each Markov chain, a target state will be reached,

sometimes positive kind, sometimes negative kind. The player can decide

which Markov chain to advance at every step. The goal of the player is to

know which kind of target states reached is in the majority. Then, what is

the best strategy to minimize the expected time?

The solution involves computing functions called grades, which is in-

troduced in [6] for the states of the individual chains. In some sense, the

’middle’ one produces an optimal strategy. See Theorem 4.1.1 and Chapter

4 for more details.

Remark 1.5.1. Though the subjects of Chapter 2 and Chapter 3 are closely

related, Chapter 2, 3 and 4 are written in an independent way. Each chapter

is self-contained. The notations may differ in different chapters.

Remark 1.5.2. Note that for notational ease, we sometimes use the same

notation for a random variable and its law. However, the reader can judge

by the text.
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Chapter 2

Critical branching random

walks

2.1 Preliminaries

We begin with some notations. For a set K ⊆ Zd, we write |K| for its

cardinality. We write K ⊂⊂ Zd to express that K is a finite nonempty

subset of Zd. For x ∈ Zd (or Rd), we denote by |x| the Euclidean norm of

x. We will mainly use the norm ‖ · ‖ corresponding the jump distribution

θ, i.e. ‖x‖ =
√
x ·Q−1x/

√
d, where Q is the covariance matrix of θ. For

convenience, we set |0| = ‖0‖ = 0.5. We denote by diam(K) = sup{‖a− b‖ :

a, b ∈ K}, the diameter of K and by Rad(K) = sup{‖a‖ : a ∈ K}, the

radius of K with respect to 0. We write C(r) for the ball {z ∈ Zd : ‖z‖ ≤ r}
and B(r) for the Euclidean ball {z ∈ Zd : |z| ≤ r}. For any subsets A,B

of Zd, we denote by ρ(A,B) = inf{‖x − y‖ : x ∈ A, y ∈ B} the distance

between A and B. When A = {x} consists of just one point, we just write

ρ(x,B) instead. For any path γ : {0, . . . , k} → Zd, we let |γ| stand for k, the

length, i.e. the number of edges of γ , γ̂ for γ(k), the endpoint of γ and [γ]

for k + 1, the number of vertices of γ. Sometimes we just use a sequence of

vertices to express a path. For example, we may write (γ(0), γ(1), . . . , γ(k))

for the path γ. For any B ⊆ Zd, we write γ ⊆ B to express that all vertices

of γ except the starting point and the endpoint, lie inside B, i.e. γ(i) ∈ B
for any 1 ≤ i ≤ k − 1. If the endpoint of a path γ1 : {0, . . . , |γ1|} → Zd

coincides with the starting point of another path γ2 : {0, . . . , |γ2|} → Zd,
then we can define the composite of γ1 and γ2 by concatenating γ1 and γ2:

γ1 ◦ γ2 : {0, . . . , |γ1|+ |γ2|} → Zd,
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2.1. Preliminaries

γ1 ◦ γ2(i) =

{
γ1(i), for i ≤ |γ1|;
γ2(i− |γ1|), for i ≥ |γ1|.

We now state our convention regarding constants. Throughout the text

(unless otherwise specified), we use C and c to denote positive constants

depending only on dimension d, the critical distribution µ and the jump dis-

tribution θ, which may change from place to place. Dependence of constants

on additional parameters will be made or stated explicit. For example, C(λ)

stands for a positive constant depending on d, µ, θ, λ. For functions f(x) and

g(x), we write f ∼ g if limx→∞(f(x)/g(x)) = 1. We write f � g, respective-

ly f � g, if there exist constants C such that, f ≤ Cg, respectively f ≥ Cg.

We use f � g to express that f � g and f � g. We write f � g for that

limx→∞(f(x)/g(x)) = 0.

2.1.1 Finite and infinite trees

We are interested in rooted ordered trees (plane trees), in particular, Galton-

Watson (GW) trees and its companions. Recall that µ = (µ(i))i∈N is a

critical distribution with finite variance σ2 > 0. We exclude the trivial case

that µ(1) = 1. Throughout this chapter, µ will be fixed. Define anoth-

er probability measure µ̃ on N, call the adjoint measure of µ by setting

µ̃(i) =
∑∞

j=i+1 µ(j). Since µ has mean 1, µ̃ is indeed a probability measure.

The mean of µ̃ is σ2/2. A Galton-Watson process with distribution µ is a

process starting with one initial particle, with each particle having indepen-

dently a random number of children due to µ. The Galton-Watson tree is

just the family tree of the Galton-Watson process, rooted at the initial par-

ticle. We simply write µ-GW tree for the Galton-Watson tree with offspring

distribution µ. If we just change the law of the number of children for the

root, using µ̃ instead of µ (for other particles still use µ), the new tree is

called an adjoint µ-GW tree. The infinite µ-GW tree is constructed

in the following way: start with a semi-infinite line of vertices, called the

spine, and graft to the left of each vertex in the spine an independent adjoint

µ-GW tree, called a bush. The infinite µ-GW tree is rooted at the first ver-

tex of the spine. Here the left means that we assume every vertex in spine
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except the root is the youngest child (the latest in the Depth-First search

order) of its parent. The invariant µ-GW tree is defined as the infinite

µ-GW tree, except that for the root, we graft to the left of it, a µ-GW tree,

in stead of an adjoint µ-GW tree. We also need to introduce the so-called

µ-GW tree conditioned on survival. Start with a semi-infinite path,

called the spine, rooted at the starting point. For each vertex in the spine,

with probability µ(i+ j+ 1) (i, j ∈ N), it has totally i+ j+ 1 children, with

exactly i children elder than the child corresponding to the next vertex in

the spine, and exactly j children younger. For any vertex not in the spine,

it has a random number of children due to µ. The number of children for

different vertices are independent. The random tree generated in this way is

just the µ-GW tree conditioned on survival. Each tree is ordered using the

classical order according to Depth-First search starting from the root. Note

that the subtree generated by the vertices of the spine and all vertices on

the left of the spine of the µ-GW tree conditioned on survival has the same

distribution as the infinite µ-GW tree.

2.1.2 Tree-indexed random walk

Now we introduce the random walk in Zd with jump distribution θ, indexed

by a random plane tree T . First choose some a ∈ Zd as the starting point.

Conditionally on T we assign independently to each edge of T a random

variable in Zd according to θ. Then we can uniquely define a function

ST : T → Zd, such that, for every vertex v ∈ T (we also use T for the set

of all vertices of the tree T ), ST (v) − a is the sum of the variables of all

edges belonging to the unique simple path from the root o to the vertex u

(hence ST (o) = a). A plane tree T together with this random function ST is

called T -indexed random walk starting from a. When T is a µ-GW tree, an

adjoint µ-GW tree, an infinite µ-GW tree, and a µ-GW tree conditioned on

survival respectively, we simply call the tree-indexed random walk a snake,

an adjoint snake, an infinite snake and incipient infinite snake (also

called branching random walk conditioned on survival) respectively. We

write Sx, S ′x, S∞x and S∞x for a snake, an adjoint snake, and an infinite
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snake, respectively, starting from x ∈ Zd. Note that a snake is just the

branching random walk with offspring distribution µ and jump distribution

θ. We also need to introduce the reversed infinite snake starting from x,

S−x , which is constructed in the same way as S∞x except that the variables

assigned to the edges in the spine are now due to not θ but the reverse

distribution θ− of θ (i.e. θ−(x) := θ(−x) for x ∈ Zd) and similarly the

invariant snake starting from x, SIx, which is constructed by using the

invariant µ-GW tree as the random tree T and using θ− for all edges of

the spine of T and θ for all other edges. For an infinite snake (or reversed

infinite snake, invariant snake), the random walk indexed by its spine, called

its backbone, is just a random walk with jump distribution θ (or θ−). Note

that all snakes here certainly depend on µ and θ. Since µ and θ are fixed

throughout this chapter, we omit their dependence in the notation.

2.1.3 Random walk with killing

We will use the tools of random walk with killing. Suppose that when the

random walk is currently at position x ∈ Zd, then it is killed, i.e. jumps to

a ’cemetery’ state $, with probability k(x), where k : Zd → [0, 1] is a given

function. In other words, the random walk with killing rate k(x) (and jump

distribution θ) is a Markov chain {Xn : n ≥ 0} on Zd ∪ {$} with transition

probabilities p(·, ·) given by: for x, y ∈ Zd,

p(x,$) = k(x), p($,$) = 1, p(x, y) = (1− k(x))θ(y − x).

For any path γ : {0, . . . , n} → Zd with length n, its probability weight b(γ)

is defined to be the probability that the path consisting of the first n steps

for the random walk with killing starting from γ(0) is γ. Equivalently,

b(γ) =

|γ|−1∏
i=0

(1−k(γ(i)))θ(γ(i+ 1)− γ(i)) = s(γ)

|γ|−1∏
i=0

(1−k(γ(i))), (2.1.1)

where s(γ) =
∏|γ|−1
i=0 θ(γ(i + 1) − γ(i)) is the probability weight of γ cor-

responding to the random walk with jump distribution θ. Note that b(γ)
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depends on the killing. We delete this dependence on the notation for sim-

plicity.

Now we can define the corresponding Green function for x, y ∈ Zd:

Gk(x, y) =

∞∑
n=0

P (Sk
x (n) = y) =

∑
γ:x→y

b(γ).

where Sk
x = (Sk

x (n))n∈N is the random walk (with jump distribution θ)

starting from x, with killing function k, and the last sum is over all paths

from x to y. For x ∈ Zd, A ⊆ Zd, we write Gk(x,A) for
∑

y∈AGk(x, y).

For any B ⊆ Zd and x, y ∈ Zd, define the harmonic measure (when

exactly one of {x, y} is in B):

HBk (x, y) =
∑

γ:x→y,γ⊆B
b(γ).

Note that when the killing function k ≡ 0, the random walk with this

killing is just random walk without killing and we write HB(x, y) for this

case.

We will repeatedly use the following First-Visit Lemma. The idea is to

decompose a path according to the first or last visit of a set.

Lemma 2.1.1. For any B ⊆ Zd and a ∈ B, b /∈ B, we have:

Gk(a, b) =
∑
z∈Bc

HBk (a, z)Gk(z, b) =
∑
z∈B

Gk(a, z)HBck (z, b);

Gk(b, a) =
∑
z∈B
HBck (b, z)Gk(z, a) =

∑
z∈Bc

Gk(b, z)HBk (z, a).

2.1.4 Some facts about random walk and the Green

function

From now on, we assume d ≥ 4. For x ∈ Zd, we write Sx = (Sx(n))n∈N

for the random walk with jump distribution θ starting from Sx(0) = x.

The norm ‖ · ‖ corresponding to θ for every x ∈ Zd is defined to be ‖x‖ =√
x ·Q−1x/

√
d, where Q is the covariance matrix of θ. Note that ‖x‖ � |x|,
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especially, there exists c > 1, such that C(c−1n) ⊆ B(n) ⊆ C(cn), for any

n ≥ 1. The Green function g(x, y) is defined to be:

g(x, y) =

∞∑
n=0

P (Sx(n) = y) =
∑
γ:x→y

s(γ).

We write g(x) for g(0, x).

Our assumptions about the jump distribution θ guarantee the standard

estimate for the Green function (see e.g. Theorem 2 in [23]):

g(x) ∼ ad‖x‖2−d; (2.1.2)

and (e.g. one can verify this using the error estimate of Local Central Limit

Theorem in [23]) when d ≥ 5,

∞∑
n=0

(n+ 1) · P (S0(n) = x) =
∑
γ:0→x

[γ] · s(γ) � ‖x‖4−d � |x|4−d. (2.1.3)

where ad = Γ((d−2)/2))

2d(d−2)/2πd/2
√

detQ
.

Also by LCLT, one can get the following lemma.

Lemma 2.1.2.

lim
n→∞

supx∈Zd

 ∑
γ:0→x,|γ|≥n|x|2

s(γ)/g(x)

 = 0. (2.1.4)

The following lemma is natural from the perspective of Brownian motion,

the scaling limit of random walk.

Lemma 2.1.3. Let U, V be two connected bounded open subset of Rd such

that U ⊆ V . Then there exists a C = C(U, V ) such that if An = nU ∩
Zd, Bn = nV ∩ Zd then when n is sufficiently large,∑

γ:x→y,γ⊆Bn,|γ|≤2n2

s(γ) ≥ Cg(x, y), for any x, y ∈ An (2.1.5)
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This Lemma may not be standard, hence we give a sketch of proof in

Appendix.

Since our jump distribution θ may be unbounded, we need the following

Overshoot Lemma:

Lemma 2.1.4. For any r, s > 1, let B = C(r). Then for any a ∈ B, we

have:

∑
y∈(C(r+s))c

HBk (a, y) � r2

sd
,

∑
y∈(C(r+s))c

HBk (y, a) � r2

sd
. (2.1.6)

Proof. It suffices to show the case when k ≡ 0. By considering where the

last position is before leaving C(r), one can get:

∑
y∈(C(r+s))c

HB(a, y) ≤
∑
z∈C(r)

g(a, z)P (the jump leaving C(r) ≥ s)

(1.1.1)

≤ (
∑
z∈C(r)

g(a, z)) · C/sd � r2

sd
.

One can show the other inequality similarly.

2.2 Branching capacity and visiting probabilities

In this and the following sections (Section 2.2 and Section 2.3), we focus on

supercritical dimensions and always assume d ≥ 5. For any K ⊂⊂ Zd, we are

interested in the probability of visiting K by the critical branching random

walk with offspring distribution µ and jump distribution θ, or equivalently, a

snake. For any x ∈ Zd, write p(x), r(x), q(x) and q−(x), respectively, for the

probability that a snake, an adjoint snake, an infinite snake and a reversed

infinite snake, respectively, starting from x visits K, i.e. P ((ST (T )∩K) 6= ∅)
where T,ST are the corresponding random tree and random map. We write

p(x) and r(x) respectively for the probability that a snake and an adjoint

snake respectively, starting from x visits K strictly after time zero, i.e.

P ((ST (T \ {o}) ∩ K) 6= ∅). Note that when x /∈ K, p(x) = p(x) and
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2.2. Branching capacity and visiting probabilities

r(x) = r(x). For simplicity, we delete the dependence on K in the notations.

We fix K from now on until Section 2.2.6.

We first give some preliminary upper bounds for the visiting probabilities

by computing the expectation of the number of visits. Here are the com-

putations. When x is relatively far from K, say ρ(x,K) ≥ 2diam(K). For

the snake Sx, the expectation of the number of offspring at n-th generation

is one. Hence, the expectation of the number of visiting any a ∈ K is just

g(x, a) � ‖x − a‖2−d � ‖x‖2−d. For the adjoint snake S ′x, the expectation

of the number of offspring at n-th generation (for n ≥ 1) is Eµ̃ = σ2/2 � 1

(recall that µ is fixed). Hence the expectation of the total number of visiting

a can also be bounded by g(x, a) up to some constant multiplier. For the in-

finite snake S∞x , one can see that the expectation of the number of offspring

at n-th generation is 1 + n · Eµ̃ � n+ 1. Hence when ρ(x,K) ≥ 2diam(K),

the expectation of the total number of visiting a is bounded, up to some

constant, by:

∞∑
n=0

(n+ 1)P (Sx(n) = a)
(2.1.3)
� ‖x− a‖4−d � ‖x‖4−d.

Recall that Sx = (Sx(n))n∈N is the random walk starting from x with jump

distribution θ. Summing up over all a ∈ K, we get

p(x) � |K|/‖x‖d−2;

r(x) � |K|/‖x‖d−2;

q(x) � |K|/‖x‖d−4.

(2.2.1)

For q−(x), by considering the expectation of the number of visiting points,

one can get (or use (2.2.22)):

q−(x) �
∑
y∈Zd

g−(x, y)g(y,K) � |K|
∑
y∈Zd
‖x− y‖2−d‖y‖2−d � |K|/‖x‖d−4,

where g−(x, y) = g(y, x) is the Green function for the reversed random walk.

From this, we see that when x tends to infinity, all four types of visiting

probabilities tend to 0. Now we introduce the escape probabilities.
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2.2. Branching capacity and visiting probabilities

Definition 2.2.1. K is a finite subset of Zd, for any x ∈ Zd, define EsK(x)

to be the probability that a reversed infinite snake starting from x does not

visit K except possibly for the image of the bush grafted to the root and

EscK(x) to be the probability that an invariant snake starting from x does

not visit K except possibly for the image of the spine. Define the Branching

capacity of K by:

BCap(K) =
∑
a∈K

EsK(a) =
∑
a∈K

EscK(a). (2.2.2)

Remark 2.2.1. In next chapter, we construct the model of branching inter-

lacement. As a main step, we give the definition of branching capacity (only)

when µ is the critical geometric distribution. In that case, the branching ca-

pacity here is equivalent to the branching capacity there, up to a constant

factor 2. But here we do not need the so-called contour function which

plays an important role there. Furthermore, we can construct the model of

branching interlacement for general critical offspring distribution.

The last equality can be seen from our main theorem of branching capac-

ity, Theorem 1.3.1. We also introduce the escape probability for the infinite

snake Es+
K(x), which is defined to be the probability that an infinite snake

starting from x does not visit K except possibly for the image of the bush

grafted to the root. Note that Es+
K(x) ≥ 1− q(x)→ 1, as x→∞.

Remark 2.2.2. If we let µ be the degenerate measure, that is, µ(1) = 1,

then: the snake and the infinite snake are just the random walk with jump

distribution θ; the reversed infinite snake and the invariant snake are the

random walk with jump distribution θ−. Therefore EsK is just the escape

probability for the ’reversed’ walk and EscK is the escape probability for the

’original’ walk. In that case, Theorem 1.3.1 is just the classical theorem for

regular capacity. Note that when θ is symmetric, for random walk, EsK(a) =

EscK(a). But this is generally not true for branching random walk even when

θ is symmetric. If K = {a} consists of only one point, then it is true by

Theorem 1.3.1
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2.2.1 Monotonicity and subadditivity

We postpone the proof of Theorem 1.3.1 until Section 2.2.4. We now s-

tate some basic properties about branching capacity. Like regular capacity,

branching capacity is monotone and subadditive:

Proposition 2.2.2. For any K ⊆ K ′ finite subsets of Zd,

BCap(K) ≤ BCap(K ′);

For any K1,K2 finite subsets of Zd,

BCap(K1 ∩K2) + BCap(K1 ∪K2) ≤ BCap(K1) + BCap(K2).

Proof. When K ⊆ K ′, a snake visiting K must visit K ′. So

P (Sx visits K) ≤ P (Sx visits K ′).

By (1.3.1), we get BCap(K) ≤ BCap(K ′).

For the other inequality, we use a similar idea. First, we have:

P (Sx visits K1) = P (Sx visits K1 but not K2) + P (Sx visits both K1&K2);

P (Sx visits K2) = P (Sx visits K2 but not K1) + P (Sx visits both K1&K2);

P (Sx visits K1 ∪K2) = P (Sx visits K1 but not K2)+

P (Sx visits K2 but not K1) + P (Sx visits both K1&K2).

Since P (Sx visits K1 ∩K2) ≤ P (Sx visits both K1&K2), we have:

P (Sx visits K1 ∪K2) + P (Sx visits K1 ∩K2) ≤

P (Sx visits K1) + P (Sx visits K2).

This concludes the proposition by (1.3.1).
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2.2. Branching capacity and visiting probabilities

2.2.2 A key observation

We begin with some straightforward computations. When a snake Sx =

(T,ST ) visits K, since T is an ordered tree, we have the unique first vertex,

denoted by τK , in {v ∈ T : ST (v) ∈ K} due to the default order. We say

ST (τK) is the visiting point or Sx visits K at ST (τK). Assume (v0, v1, . . . , vk)

is the unique simple path in T from the root o to τK . Define Γ(Sx) =

(ST (v0),ST (v1), . . . ,ST (vk)) and say Sx visitsK via Γ(Sx). We now compute

P (Γ(Sx) = γ), for any given γ = (γ(0), . . . , γ(k)) ⊆ Kc starting from x,

ending at K. Let ãi and b̃i respectively, be the number of the older, and

younger respectively, brothers of vi, for i = 1, . . . , k. From the tree structure,

one can see that, for any l1, . . . , lk, m1, . . . ,mk ∈ N,

P (Sx visits K via γ; ãi = li, b̃i = mi, for i = 1, . . . , k)

= s(γ)

k∏
i=1

(
µ(li +mi + 1)(r̃(γ(i− 1)))li

)
, (2.2.3)

where r̃(z) is the probability that a snake starting from z does not visit K

conditioned on the initial particle having only one child. Summing up, we

get:

P (Sx visits K via γ)

=
∑

l1,...,lk;m1,...,mk∈N
P (Sx visits K via γ; ãi = li, b̃i = mi, for i = 1, . . . , k)

=
∑

l1,...,lk;m1,...,mk∈N
s(γ)

k∏
i=1

(
µ(li +mi + 1)(r̃(γ(i− 1)))li

)

=s(γ)
k∏
i=1

∑
li,mi∈N

(
µ(li +mi + 1)(r̃(γ(i− 1)))li

)

=s(γ)

k∏
i=1

∑
li∈N

(
µ̃(li)(r̃(γ(i− 1)))li

)
.
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2.2. Branching capacity and visiting probabilities

Note that for any z /∈ K, ∑
l∈N

µ̃(l)(r̃(z))l

is just 1 − r(z), the probability that an adjoint snake starting form z does

not visit K. If we let the killing function be

k(x) = P (S ′x visits K) = r(x). (2.2.4)

then we have (recall the definition of b(γ) from (2.1.1))

b(γ) =s(γ)

k∏
i=1

(1− k(γ(i− 1))) = s(γ)

k∏
i=1

(1− r(γ(i− 1)))

=s(γ)
k∏
i=1

∑
li∈N

(
µ̃(li)(r̃(γ(i− 1)))li

)
= P (Sx visits K via γ).

This brings us to the key formula of this work:

Proposition 2.2.3.

b(γ) = P (Sx visits K via γ). (2.2.5)

In words, the probability that a snake visits K via γ is just γ’s probability

weight according to the random walk with the killing function given by

(2.2.4). Throughout this chapter, we will mainly use this killing function

and write GK(·, ·) for the corresponding Green function. By summing the

last equality over γ, we get: for any a ∈ K,

P (Sx visits K at a) =
∑
γ:x→a

b(γ) = GK(x, a); (2.2.6)

and

p(x) = P (Sx visits K) =
∑

γ:x→K
b(γ) = GK(x,K). (2.2.7)

Note that since r(x) = 1 for x ∈ K, when γ, except for the ending point,

intersects K, b(γ) = 0.
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On the other hand, from the structure of the infinite snake, one can

easily see that q(x) is just the probability that in this killing random walk,

a particle starting at x will be killed at some finite time.

Now we turn to the last visiting point, which can be addressed similarly.

When a snake Sx = (T,ST ) visits K, denoted by ξK , the last vertex in

{v ∈ T : ST (v) ∈ K} due to the default order. Assume (v0, v1, . . . , vk)

is the unique simple path in T from the root o to ξK . Define Γ(Sx) =

(ST (v0),ST (v1), . . . ,ST (vk)) and say Sx leaves K at ST (vk), via Γ(Sx). We

would like to compute P (Γ(Sx) = γ), for any γ = (γ(0), . . . , γ(k)) starting

from x and ending at A (note that unlike the former case, the interior of

γ now may intersect K). Let ãi (̃bi respectively) be the number of the

older (younger respectively) brothers of vi, for i = 1, . . . , k. Similarly to the

former case, one can see that, for any l1, . . . , lk, m1, . . . ,mk ∈ N,

P (Sx leaves K via γ; ãi = li, b̃i = mi, for i = 1, . . . , k)

= s(γ)(1− p(γ(k)))
k∏
i=1

(µ(li +mi + 1)(r̂(γ(i− 1)))mi) , (2.2.8)

where r̂(z) is the probability that a snake starting from z does not visit

(except possibly for the root) K conditioned on the initial particle having

only one child. Summing up, we get:

P (Sx leaves K via γ) = s(γ)(1− p(γ̂))

k∏
i=1

(1− r(γ(i− 1))). (2.2.9)

If we let the killing function be k′(x) = r(x), then the last term is just

(1− p(γ̂))bk′(γ).

Remark 2.2.3. We will always use the killing function in (2.2.4), except

in the proof of the third assertion in Theorem 1.3.1.

Remark 2.2.4. Now the reason for the introduction of the adjoint snake

and the infinite snakes is clear: in order to understand p(x), the probability

of visiting K, we need to study the random walk with killing where the killing

function is just the probability of the adjoint snake visiting K.
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Remark 2.2.5. The computations here are initiated in [29]. Note that in

this subsection, we do not need the assumption d ≥ 5. All results are valid

for all dimensions.

2.2.3 Convergence of the Green function

The goal of this subsection is to prove:

Lemma 2.2.4.

lim
x,y→∞

GK(x, y)/g(x, y) = 1. (2.2.10)

Proof. The part of ’≤’ is trivial, since GK(x, y) ≤ g(x, y). We need to

consider the other part.

First, consider the case ‖x‖/2 ≤ ‖y‖ ≤ 2‖x‖1.1. Let

Γ1 = {γ : x→ y||γ| ≥ ‖x‖0.1 · ‖x− y‖2};

Γ2 = {γ : x→ y|γ visits C(‖x‖0.9)}.

By Lemma 2.1.2, one can see that
∑

γ∈Γ1
s(γ)/g(x, y) tends to 0. Similar to

the First-Visit Lemma, by considering the first visiting place, we have (let

B = C(‖x‖0.9)):∑
γ∈Γ2

s(γ) =
∑
a∈B
HBc(x, a)g(a, y) �

∑
a∈B
HBc(x, a)‖y‖2−d

=P (Sx visits B) · ‖y‖2−d � (‖x‖0.9/‖x‖)d−2‖y‖2−d

�‖x‖−0.1‖x− y‖2−d � ‖x‖−0.1g(x, y).

Note that the estimate of P (Sx visits C(r)) � (r/‖x‖)d−2 is standard, and

for the second last inequality we use ‖y‖ ≥ (‖x‖+‖y‖)/3 � ‖x−y‖. Hence,

we get
∑

γ∈Γ2
s(γ)/g(x, y)→ 0 and therefore,∑

γ:x→y, γ /∈Γ1∪Γ2

s(γ) ∼ g(x, y). (2.2.11)
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For any γ : x→ y, γ /∈ Γ1 ∪ Γ2, using (2.2.1), one can see:

b(γ)/s(γ) =

|γ|−1∏
i=0

(1− k(γ(i))) ≥ (1− c|K|/(‖x‖0.9)d−2)|γ|

≥1− c|K||γ|/(‖x‖0.9)d−2 ≥ 1− c|K|‖x‖0.1‖x− y‖2/(‖x‖0.9)d−2

≥1− c|K|‖x‖0.1‖x‖2.2/‖x‖0.9·3 ≥ 1− c|K|/‖x‖0.4 → 1.

Hence, we have: ∑
γ:x→y, γ /∈Γ1∪Γ2

b(γ) ∼
∑

γ:x→y, γ /∈Γ1∪Γ2

s(γ).

Combining this and (2.2.11), we get: when ‖x‖/2 ≤ ‖y‖ ≤ 2‖x‖1.1, (2.2.10)

is true.

When ‖y‖ > 2‖x‖1.1, we know g(x, y) ∼ ad‖y‖2−d. Hence, we need to

show: GK(x, y) ∼ ad‖y‖2−d. Let r = 2‖y‖1/1.1 and B = C(r). Then for any

a ∈ C(2r) \ C(r), ‖x‖ < ‖a‖ < ‖y‖ ≤ 2‖a‖1.1 (when ‖y‖ is large). Hence

GK(a, y) ∼ g(a, y) ∼ ad‖y‖2−d. Applying the First-Visit Lemma, we have:

GK(x, y) =
∑
a∈Bc

HBk (x, a)GK(a, y) ≥
∑

a∈C(2r)\B

HBk (x, a)GK(a, y)

∼
∑

a∈C(2r)\B

HBk (x, a)ad‖y‖2−d

=(
∑
a∈Bc

HBk (x, a)−
∑

a∈(C(2r))c
HBk (x, a))ad‖y‖2−d

≥((1− r(x))Es+
K(x)− C r

2

rd
)ad‖y‖2−d

∼ad‖y‖2−d.

In the second last inequality we use the Overshoot Lemma and∑
a∈Bc

HBk (x, a) ≥
∑
a∈Bc

HBk (x, a)(1− r(a))Es+
K(a) = (1− r(x))Es+

K(x)→ 1.

Now, we show (2.2.10) for the case ‖x‖ ≤ ‖y‖. The case of ‖x‖ ≥ ‖y‖ can
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be handled similarly.

Remark 2.2.6. As we have seen in the proof, since the jump distribution

θ maybe unbounded, we need an extra step to control the long jump, via

the Overshoot Lemma. This happens again and again later. It might be

convenient, especially for a first-time reader, to restrict the attention to the

jump distribution with finite range.

2.2.4 Proof of Theorem 1.3.1

Now we are ready to prove Theorem 1.3.1. It is sufficient to show:

Lemma 2.2.5. Under the same assumption of Theorem 1.3.1, we have:

P (Sx visits K at a) ∼ ad‖x‖2−dEsK(a);

P (Sx leaves K at a) ∼ ad‖x‖2−dEscK(a);

whenever the escape probability on the right hand side is nonzero.

Proof. Fix some α ∈ (0, 2/(d + 2)). Let r = ‖x‖α, s = ‖x‖1−α and B =

C(r), B1 = C(s) \ B and B2 = (C(s))c. Note that our choice of α implies

r2/sd � ‖x‖2−d. Then,

P (Sx visits K at a)
(2.2.6)

=
∑
γ:x→a

b(γ) =
∑
b∈Bc

GK(x, b)HBk (b, a)

=
∑
b∈B1

GK(x, b)HBk (b, a) +
∑
b∈B2

GK(x, b)HBk (b, a). (2.2.12)

We argue that the first term has the desired asymptotics and the second is
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negligible:∑
b∈B1

GK(x, b)HBk (b, a)
(2.2.10)∼ ad‖x‖2−d

∑
b∈B1

HBk (b, a)

∼ ad‖x‖2−d(EsK(a)−
∑
b∈B2

HBk (b, a))

(2.1.6)
= ad‖x‖2−d(EsK(a)−O(r2/sd)) ∼ ad‖x‖2−dEsK(a);∑

b∈B2

GK(x, b)HBk (b, a) �
∑
b∈B2

HBk (b, a)
(2.1.6)

� r2/sd � ‖x‖2−d.

Note that the second line is due to EsK(a) =
∑

b∈B1∪B2
HBk (b, a)EsK(b) and

EsK(x) ∼ 1.

Now we complete the proof of the first assertion. Very similar arguments

can be used for the second assertion. Note that due to (2.2.9), we need to

use the killing function k′(x) = r(x) and the analogous version of Lemma

2.2.4 for this killing. We leave the details to the reader.

2.2.5 The asymptotics for q(x), q−(x) and r(x)

Thanks to Theorem 1.3.1, we also can find the exact asymptotics of the

visiting probabilities by an adjoint snake, an infinite snake and a reversed

infinite snake, i.e. r(x), q(x) and q−(x):

Proposition 2.2.6.

r(x) ∼ adσ
2BCap(K)

2‖x‖d−2
, (2.2.13)

q(x) ∼
td · a2

dσ
2BCap(K)

2‖x‖d−4
, (2.2.14)

q−(x) ∼
td · a2

dσ
2BCap(K)

2‖x‖d−4
, (2.2.15)

where σ2 is the variance of µ, td = td(θ) =
∫
t∈Rd ‖t‖

2−d‖h − t‖2−ddt, and

h ∈ Rd is any vector satisfying ‖h‖ = 1.
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Remark 2.2.7. In fact, td = td(θ) has the following form:

td =

∫
t∈Rd
‖t‖2−d‖h− t‖2−ddt = dd/2

√
detQ

∫
t∈Rd
|t|2−d|h′ − t|2−ddt,

where h′ ∈ Rd is any vector with |h′| = 1 in Rd.

Proof. Let s̃(x) be the probability that a snake starting from x visits K

conditioned on the initial particle having exactly one child. Then it is s-

traightforward to see that: when x /∈ K,

1− p(x) =
∑
i∈N

µ(i)(1− s̃(x))i, 1− r(x) =
∑
i∈N

µ̃(i)(1− s̃(x))i. (2.2.16)

Note that∑
i∈N

µ(i)(1− s̃(x))i ≥
∑
i∈N

µ(i)(1− is̃(x)) = 1− (Eµ)s̃(x)

and

∑
i∈N

µ(i)(1− s̃(x))i ≤ µ(0) +
∞∑
i=1

µ(i)(1− s̃(x)) = 1− (1− µ(0))s̃(x)

Hence we have

p(x) � s̃(x), (2.2.17)

and similarly one can get r(x) � s̃(x). Therefore,

r(x) � p(x). (2.2.18)

We will use the following easy lemma and omit its proof.

Lemma 2.2.7. Let (an)n∈N be a nonnegative sequence satisfying:
∑

n∈N an =

1 and
∑

n∈N nan <∞. Let f(t) =
∑

n∈N ant
n. Then we have:

lim
t→1−

(1− f(t))/(1− t) =
∑
n∈N

nan.
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By this lemma and (2.2.16), we have

p(x) ∼
∑
i

iµ(i)s̃(x) = s̃(x),

r(x) ∼
∑
i

iµ̃(i)s̃(x) =
σ2

2
s̃(x).

Hence,

r(x) ∼ σ2

2
p(x) ∼ σ2adBCap(K)

2‖x‖d−2
.

Now we turn to the asymptotic of q(x). We point out two equalities for

q(x):

q(x) =
∑
y∈Zd

GK(x, y)r(y); (2.2.19)

q(x) =
∑
y∈Zd

g(x, y)r(y)Es+
K(y). (2.2.20)

The first can be easily derived by considering where the particle dies in the

model of random walk with killing function r. For the second one, we need

to consider a bit different but equivalent model: a particle starting from x

executes a random walk, but at each step, the particle has the probability

r to get a flag (instead of to die) and its movements are unaffected by

flags. Let τ and ξ be the first and last time getting flags (if there is no

such times then denote τ = ξ = ∞). Note that since q(z) < 1 (when |z|
is large), the total number of flags gained is finite, almost surely. Hence

P (τ < ∞) = P (ξ < ∞) and q(x) is just the probability that ξ < ∞. By

considering where the particle gets its last flag, one can get (2.2.20).

We will use the following easy lemma and omit its proof:

Lemma 2.2.8.

‖x‖d−4
∑
z∈Zd

1

‖z‖d−2‖x− z‖d−2
∼
∫
t∈Rd
‖t‖2−d‖h− t‖2−ddt. (2.2.21)

For the asymptotics of q(x), one can use either (2.2.19) or (2.2.20) and
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the processes are similar to each other. Here we use (2.2.19). Let B =

C(r) and r be very large. Divide the right hand side of (2.2.19) into three

parts:
∑

y∈B,
∑

y∈x+B and
∑

y/∈B∪x+B. We will argue that the first two

parts are negligible compared to ‖x‖4−d and the third term has the desired

asymptotics. For the first part, we have:

‖x‖d−4
∑
y∈B

GK(x, y)r(y) � ‖x‖d−4
∑
y∈B

g(x, y) · 1

� ‖x‖d−4
∑
y∈B

1

(‖x‖ − r)d−2
� ‖x‖d−4rd/(‖x‖−r)d−2 → 0 (when x→∞).

For the second part, we have:

‖x‖d−4
∑

y∈x+B

GK(x, y)r(y) � ‖x‖d−4
∑

y∈x+B

1 · r(y)

(2.2.1)

� ‖x‖d−4
∑

y∈x+B

|K|‖y‖2−d ≤ ‖x‖d−4rd|K|/(‖x‖ − r)d−2 → 0.

When r and ‖x‖ are large and y /∈ B∪(x+B), the ratio betweenGK(x, y)r(y)

and ad‖x − y‖2−dadσ2BCap(K)‖y‖2−d/2 is very close to 1. On the other

hand,

‖x‖d−4
∑

y/∈B∪(x+B)

ad‖x− y‖2−dadσ2BCap(K)‖y‖2−d/2

=a2
dσ

2BCap(K)/2 · ‖x‖d−4
∑

y/∈B∪(x+B)

‖x− y‖2−d‖y‖2−d

=a2
dσ

2BCap(K)/2 · (‖x‖d−4
∑
y∈Zd
‖x− y‖2−d‖y‖2−d−

‖x‖d−4
∑

y∈(B∪x+B)

‖x− y‖2−d‖y‖2−d).

By (2.2.21), the first term in the bracket tends to td. Similar to the estimate

37



2.2. Branching capacity and visiting probabilities

for the first two parts, one can verify that

‖x‖d−4
∑

y∈(B∪x+B)

‖x− y‖2−d‖y‖2−d � ‖x‖d−4rd/(‖x‖ − r)d−2 → 0.

To sum up, we get

‖x‖d−4
∑
y∈Zd

GK(x, y)r(y) ∼ a2
dσ

2BCap(K) · td/2.

This completes the proof of (2.2.14).

(2.2.15) can be obtained in a very similar way and we leave the details

to the reader. Note that one shall be a bit careful about whether to use the

original walk and the reversed walk. For example, instead of (2.2.20), we

have:

q−(x) =
∑
y∈Zd

g(y, x)r(y)EsK(y). (2.2.22)

Remark 2.2.8. The analogous result (Proposition 1.3.8) also holds for the

incipient infinite snake and can be proved similarly:

lim
x→∞

‖x‖d−4 · P (S∞x visits K) = tda
2
dσ

2BCap(K). (2.2.23)

2.2.6 Convergence of the conditional entering measure

Theorem 1.3.1 implies that conditioned on visiting a finite set, the first

visiting point and the last visiting point converge in distribution as the

starting point tends to infinity. In fact, not only the first and last visiting

points, but also the set of ’entering’ points converge in distribution. Let us

make this statement precise.

As before, we fix a K ⊂⊂ Zd. Let Mp(K) stand for the set of all finite

point measures on K. The entering measure of a finite snake Sx = (T,ST )
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is defined by:

Θx =
∑

v∈T :ST (v)∈K,v has no ancestor lying in K

δST (v).

Note that Θx is a random element in Mp(K) and

P (Θx 6= 0) = P (Sx visits K) ≤ cK |x|2−d, E(〈Θx, 1〉) ≤ g(x,K) ≤ cK |x|2−d.

We write Θx for Θx conditioned on Θx 6= 0. Now we can state our result:

Theorem 2.2.9.

Θx
d→mK , as |x| → ∞, (2.2.24)

where mK is defined later in (2.2.30) and
d→ means convergence in distri-

bution.

Construction of the limiting measure.

There are two steps needed, to sample an element from mK . The first step

is to sample the ’left-most’ path (Γ(Sx)) appeared in Section 2.2.2 and then

run independent branching random walks from all vertices on that path.

We begin with the second step. We write Θ̃x for Θx conditioned on the

initial particle having exactly one child. Inspired by (2.2.3), we introduce

the position-dependent distribution µx on N and the random variable Λx on

Mp(K):

µx(m) =
∑
l≥0

µ(l +m+ 1)(r̃(x))l/(1− r(x)), for x /∈ K, (2.2.25)

Λx
d
=

{
ΣY
i=1Xi, when x /∈ K;

δx, when x ∈ K;
(2.2.26)

where Y is an independent random variable with distribution µx and Xi are

i.i.d. with distribution Θ̃x. Write

N(x) = NK(x) = Eµx. (2.2.27)
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Note that

lim
x→∞

N(x) = Eµ̃ =
σ2

2
, lim
x→∞

µx(m) = µ̃(m),

µx(m) ≤ µ̃(m)/(1− r(x)) � µ̃(m),

E〈Λx, 1〉 = (Eµx)E(〈Θx, 1〉) ≤ cK |x|2−d.

For any path γ, define Z(γ) and Z−(γ) by:

Z(γ) = Σ
|γ|
i=0Λ(i);Z−(γ) = Σ

|γ|−1
i=0 Λ(i),

where Λ(i)
d
= Λγ(i) are independent random variables. Note that

E〈Z(γ), 1〉 ≤ cKΣ
|γ|
i=0|γ(i)|2−d.

Hence, for an infinite path γ : N→ Zd, we can also define Z(γ):

Z(γ) =
∞∑
i=0

Λ(γ(i)) ∈Mp(K) a.s.,

as long as
∞∑
i=0

|γ(i)|2−d <∞. (2.2.28)

Now we move to the first step and explain how to sample the left-most

path. For any x ∈ Zd, let h(x) = P (S−x does not visit K). Define P∞ to be

the transition probability of the Markov chain in {z ∈ Zd : EsK(z) > 0} by:

P∞(x, y) =
θ(x− y)h(y)∑
z∈Zd θ(x− z)h(z)

=
θ(x− y)(1− k(y))EsK(y)

EsK(x)
. (2.2.29)

For any x with EsK(x) > 0, define P∞x to be the law of random walk starting

from x with transition probability P∞. Define P∞K to be the law of random

walk (with transition probability P∞) starting at a ∈ K with probability

EsK(a)/BCap(K).
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Now we can give the definition of mK :

mK = the law of Z :

where first sample γ by P∞K and then sample Z by Z(γ). (2.2.30)

Note that under P∞x (for those x with EsK(x) > 0),

E∞x
∞∑
i=0

|γ(i)|2−d = E∞x
∑
z∈Zd

∑
i∈N

1γ(i)=z|z|2−d

=
∑
z∈Zd
|z|2−dE∞x

∑
i∈N

1γ(i)=z =
∑
z∈Zd
|z|2−dGK(z, x)EsK(z)

EsK(x)

� 1

EsK(x)

∑
z∈Zd
|z|2−d|z − x|2−d � |x|

4−d

EsK(x)
<∞.

Therefore, under P∞x (and hence P∞K ), Z(γ) is well-defined a.s..

Convergence of the conditional entering measure

Since our sample space Mp(K) is discrete and countable, it is convenient to

use the total variation distance. Recall that for two probability distributions

ν1, ν2 on a discrete countable space Ω, the total variation distance is defined

to be

dTV (ν1, ν2) =
1

2

∑
ω∈Ω

|ν1(ω)− ν2(ω)| ∈ [0, 1]

and νn
d→ ν iff dTV (νn, ν)→ 0.

Let us introduce some notations. Let Γ be a countable set of finite

paths. For each γ ∈ Γ, assign to it, the weight a(γ) ≥ 0 (assume that

the total mass
∑

γ∈Γ a(γ) ≤ 1) and a probability law Z(γ) in Mp(K). We

denote by
⊔
γ∈Γ a(γ) · Z(γ) for the random element in Mp(K) as follows:

pick a random path γ′ among Γ with probability P (γ′ = γ) = a(γ) (with

probability 1−
∑

γ∈Γ a(γ) we do not get any path and in this case simply set⊔
γ∈Γ a(γ) ·Z(γ) = 0) and then use the law Z(γ′) to sample

⊔
γ∈Γ a(γ) ·Z(γ).

One can easily verify the following proposition:
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Proposition 2.2.10. If ν =
⊔
γ∈Γ a(γ) · Z(γ), ν1 =

⊔
γ∈Γ a1(γ) · Z(γ) and

ν2 =
⊔
γ∈Γ a(γ) · Z1(γ), then

dTV (ν, ν1) ≤
∑
γ∈Γ

|a(γ)− a1(γ)|, dTV (ν, ν2) ≤
∑
γ∈Γ

a(γ)dTV (Z(γ), Z1(γ)).

(2.2.31)

For any n > Rad(K), write:

mn
K =

⊔
γ:(C(n))c→K,γ⊆(C(n)\K)

b(γ)EsK(γ(0))

BCap(K)
· Z(γ).

Note that mn
K can be obtained equivalently as follows: first sample an infi-

nite path γ′ by P∞K and cut γ′ into two pieces at the hitting time of (C(n))c;

let γ be the first part and then sample mn
K by Z(γ). Hence, we have:

mn
K

d→mK as n→∞.

Now we turn to Θx. Similar to the computations after (2.2.3), one can

get, for γ = (γ(0), . . . , γ(k)) ⊆ Kc with γ(0) = x, γ̂ = γ(k) ∈ K and

1 ≤ j1 < j2 ≤ k, (see the corresponding notations there)

P (̃bj1 = m|Γ(Sx) = γ) =

∑
l∈N µ(l +m+ 1)(r̃(γ(j1 − 1)))l

1− r(γ(j1 − 1))
;

P (̃bji = mi, for i = 1, 2|Γ(Sx) = γ) =∑
l∈N µ(l +m1 + 1)(r̃(γ(j1 − 1)))l

1− r(γ(j1 − 1))

∑
l∈N µ(l +m2 + 1)(r̃(γ(j2 − 1)))l

1− r(γ(j2 − 1))
.

From these (and the similar equations for more than two bj ’s), one can

see that conditioned on the event Γ(Sx) = γ, (̃bj)j=1,...,k are independent

and have the distribution of the form in (2.2.25). Hence, conditioned on

Γ(Sx) = γ, Θx has the law of Z(γ). Therefore, we have

Proposition 2.2.11.

Θx =
⊔

γ:x→K

b(γ)

p(x)
· Z(γ). (2.2.32)

Remark 2.2.9. Note that for this proposition, we do not need the assump-
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tion that d ≥ 5.

Set n = n(x) = ‖x‖
d−1
d . We need to show:

lim
x→∞

dTV (Θx,m
n
K) = 0. (2.2.33)

Let B = C(n) and B1 = C(2n). For any γ : x → K, we decompose γ

into two pieces γ = γ1 ◦ γ2 according to the last visiting time of Bc. We can

rewrite Θx as follows:

Θx =
⊔

γ:x→K

b(γ)

p(x)
· Z(γ) =

⊔
γ:x→K

b(γ1)b(γ2)

p(x)
· (Z−(γ1) + Z(γ2)) =

⊔
γ2:Bc→K,γ2⊆B

b(γ2)gK(x, γ2(0))

p(x)
· (Z(γ2) +

⊔
γ1:x→γ2(0)

b(γ1)

gK(x, γ2(0))
· Z−(γ1))

We point out that

∑
γ2:Bc1→K,γ2⊆B

b(γ2)gK(x, γ2(0))

p(x)
� 1. (2.2.34)

This can be seen from: (by the Overshoot Lemma and (2.1.2))∑
γ2:C(‖x‖/2)c→K,γ2⊆B

b(γ2)gK(x, γ2(0)) � n2/‖x‖d � p(x);

∑
γ2:C(‖x‖/2)\B1→K,γ2⊆B

b(γ2)gK(x, γ2(0)) � n2/nd · ‖x‖2−d � p(x).

Furthermore, when y ∈ B1, by (2.2.10), (2.1.2) and (1.3.1), we have:

gK(x, y)

p(x)
∼ 1

BCap(K)
∼ EsK(y)

BCap(K)
. (2.2.35)
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Hence (by Proposition 2.2.10, (2.2.34) and (2.2.35)), we have:

dTV (Θx,
⊔

γ:B1\B→K,γ⊆B

b(γ)EsK(γ(0))

BCap(K)
·

Z(γ) +
⊔

γ1:x→γ(0)

b(γ1)

gK(x, γ(0))
· Z−(γ1)

)→ 0.

Similarly, we have:

dTV

mn
K ,

⊔
γ:B1\B→K,γ⊆B

b(γ)EsK(γ(0))

BCap(K)
· Z(γ)

→ 0.

On the other hand, for any γ : B1 \B → K, γ ⊆ B, we have (let y = γ(0)):

dTV

Z(γ) +
⊔

γ1:x→γ(0)

b(γ1)

gK(x, γ(0))
· Z−(γ1),Z(γ)


≤ P (

⊔
γ1:x→y

b(γ1)

gK(x, y)
· Z−(γ1) 6= 0) ≤ E〈

⊔
γ1:x→y

b(γ1)

gK(x, y)
· Z−(γ1), 1〉

�
∑

γ1:x→y

b(γ1)

gK(x, y)

|γ1|∑
i=0

|γ1(i)|2−d =
∑

γ1:x→y

b(γ1)

gK(x, y)

∑
z∈Zd
|z|2−d

|γ1|∑
i=0

1γ1(i)=z.

We need to show the above term tends to 0. Note that gK(x, y) � |x|2−d and

b(γ) ≤ s(γ), it suffices to show:(when x→∞, uniformly for any y ∈ B1 \B)

|x|d−2
∑
z∈Zd
|z|2−d

∑
γ1:x→y

s(γ1)

|γ1|∑
i=0

1γ1(i)=z → 0. (2.2.36)

Note that

∑
γ1:x→y

s(γ1)

|γ1|∑
i=0

1γ1(i)=z =
∑

γ3:x→z
s(γ3)

∑
γ4:z→y

s(γ4) = g(x, z)g(z, y).
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Hence, the left hand side of (2.2.36) can be bounded by:

|x|d−2
∑
z∈Zd
|z|2−dg(x, z)g(z, y) � |x|2−d

∑
z∈Zd
|z|2−d|x− z|2−d|y − z|2−d

= |x|d−2(
∑

z:|z−x|≤|x|/2

+
∑

z:|z−x|>|x|/2

)|z|2−d|x− z|2−d|y − z|2−d

� |x|d−2(
∑

z:|z−x|≤|x|/2

|x|2−d|z − x|2−d|x|2−d+

∑
z:|z−x|>|x|/2

|z|2−d|x|2−d|y − z|2−d)

� |x|d−2(|x|6−2d + |y|4−d|x|2−d) � |y|4−d � n4−d → 0.

Now the proof is complete.

2.2.7 Branching capacity of balls.

In this subsection, we compute the branching capacity of balls. As men-

tioned before, we carry out this by estimating the visiting probability of

balls and then use (1.3.1) in reverse. Let us set up the notations. For

x ∈ Zd and A ⊂⊂ Zd, we write pA(x), rA(x), qA(x) and q−A(x) respectively,

for the probability that a snake, an adjoint snake, an infinite snake and a

reversed snake respectively, starting from x visits A.

Theorem 2.2.12. Let A = {z = (z1, 0) ∈ Zm × Zd−m = Zd : ‖z‖ ≤ r}
be the m-dimensional ball (1 ≤ m ≤ d) with radius r ≥ 1 and x ∈ Zd \ A.

When s = ρ(x,A) ≥ 2, we have

pA(x) �



rd−4/sd−2, if m ≥ d− 3 and s ≥ r;
1/s2, if m ≥ d− 3 and s ≤ r;
rd−4/(sd−2 log r), if m = d− 4 and s ≥ r;
1/(s2 log s), if m = d− 4 and s ≤ r;
rm/sd−2, if m ≤ d− 5 and s ≥ r;
1/sd−m−2, if m ≤ d− 5 and s ≤ r.

Proof. Let us first mention the organization of the proof. All lower bounds
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will be proved by the second moment method. So we first estimate the first

and the second moments. For upper bounds, due to Markov property (from

Proposition 2.2.3), the case for ’big s’ (i.e. s ≥ r) can be reduced to the case

for ’small s’ (i.e. s ≤ r). For small s, visiting a large m-dimensional ball in

Zd behaves like visiting a point in Zd−m. Hence we can use the results on

the latter case.

Upper bounds for m ≤ d− 5 and lower bounds for all cases.

Let N be the number of times the branching random walk visits A. Then

EN =
∑

z∈A g(x, z) = g(x,A). For the first moment, we point out:

g(x,A) �

{
rm/sd−2, for s ≥ r;
1/sd−m−2, for s ≤ r,m ≤ d− 3.

(2.2.37)

The computations are straightforward. When s ≥ r, for any a ∈ A, ρ(x, a) �
s. Hence g(x,A) � |A| ·1/sd−2 � rm/sd−2. When s ≤ r,m ≤ d−3, the part

of � is easy. Let b ∈ A satisfying ρ(x, b) = ρ(x,A) and let B = b + C(s).
Then for any a ∈ B ∩ A, ρ(x, a) � s and |B ∩ A| � sm. Hence g(x,A) �
s2−d ·sm = 1/sd−m−2. For the other part, it needs a bit more work. Assume

x = (x̄1, x̄2) ∈ Zm × Zd−m and let x1 = (x̄1, 0), x2 = (0, x̄2) ∈ Zd. Since

ρ(x,A) = s, either ρ(x, x1) ≥ s/2 or ρ(x1, A) ≥ s/2. When s/2 ≤ ρ(x, x1) =

‖x2‖, note that |x2| � ‖x2‖ � s. We have:

g(x,A) ≤
∑

z∈Zm×0⊆Zd
g(x, z) �

∑
z1∈Zm

(
√
|z1|2 + |x2|2)2−d

=
∑

z1∈Zm,|z1|≤s

(
√
|z1|2 + |x2|2)2−d +

∑
z1∈Zm,|z1|≥s

(
√
|z1|2 + |x2|2)2−d

≤
∑

z1∈Zm,|z1|≤s

|x2|2−d +
∑

z1∈Zm,|z1|≥s

(|z1|)2−d

�sm · s2−d +
∑
n≥s

nm−1

nd−2
= sm+2−d +

∑
n≥s

1

nd−m−1

�1/sd−m−2.
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When ρ(x1, A) ≥ s/2, note that |x1| � ‖x1‖ � s. We have:

g(x,A) �
∑

z∈Zm×0⊆Zd,‖z‖≤r

ρ(x, z)2−d ≤
∑

z∈Zm×0⊆Zd,‖z−x1‖≥s/2

ρ(x, z)2−d

=
∑

z∈Zm×0⊆Zd,‖z‖≥s/2

‖z‖2−d �
∑

z∈Zm×0⊆Zd,‖z‖≥s/2

|z|2−d

≤
∑
n≥Cs

nm−1

nd−2
=
∑
n≥Cs

1

nd−m−1
� 1/sd−m−2.

Now we finish the proof of (2.2.37). Note that (2.2.37) is also true even for

x ∈ A i.e. g(x,A) � 1(recall that since we set ‖0‖ = 1/2, when x ∈ A,

ρ(x,A) = 1/2 by our convention).

Using P (N > 0) ≤ EN , one can get the desired upper bounds for m ≤
d− 5.

For the lower bounds, we need to estimate the second moment and the

following is a standard result for branching random walk (for example, see

Remark 2 in Page 13 of [14]).

Lemma 2.2.13. There exists a constant C, such that:

EN2 ≤ C
∑
z∈Zd

g(x, z)g2(z,A).

We need to estimate the above sum. First consider the case when A is a

m-dimensional ball and m ≤ d−3, s ≥ r. Let B0 = {z ∈ Zd : ρ(z,A) ≤ r/6}
and Bn = C(2ns/3), for n ∈ N+. Note that there exists some c > 0, such that

B(c−1r) ⊆ B0 ⊆ B(cr) and B(c−12n−1s) ⊆ Bn ⊆ B(c2n−1s), for any n ≥ 1.

We will divide the sum into three parts and estimate separately:
∑

z∈B0
,∑

z∈B1\B0
, and

∑
n≥2

∑
z∈Bn\Bn−1

. When z = (z1, z2) ∈ B0, where z1 ∈ Zm
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and z2 ∈ Zd−m, ‖x− z‖ � s and ρ(z,A) � |z2|. Hence

∑
z∈B0

g(x, z)g2(z,A) �
∑
z∈B0

1

‖x− z‖d−2

1

ρ(z,A)2d−2m−4

� 1

sd−2

∑
z∈B(cr)

1

|z2|2d−2m−4
� 1

sd−2

∑
|z1|≤cr,|z2|≤cr

1

|z2|2d−2m−4

� rm

sd−2

∑
|z2|≤cr

1

|z2|2d−2m−4
� rm

sd−2

∑
n≤cr

nd−m−1

n2d−2m−4

=
rm

sd−2

∑
n≤cr

1

nd−m−3

�


rm+1/sd−2, if m = d− 3;

rm log r/sd−2, if m = d− 4;

rm/sd−2, if m ≤ d− 5.

When z ∈ B1 \ B0, ‖x − z‖ � s, ρ(z,A) � |z| and g(z,A) � rm/|z|d−2.

Hence:

∑
z∈B1\B0

g(x, z)g2(z,A) �
∑

z∈B1\B0

1

‖x− z‖d−2

(
rm

|z|d−2

)2

�
∑

z∈B(cs)\B(c−1r)

r2m

sd−2|z|2d−4
� r2m

sd−2

∑
c−1r≤n≤cs

nd−1

n2d−4
� r2m

sd−2

1

rd−4
.

Note that this term is not bigger than the first term and hence negligible.

The remaining part can be estimated similarly and is also negligible:

∑
n≥2

∑
z∈Bn\Bn−1

g(x, z)g2(z,A) �
∑
n≥2

∑
z∈Bn\Bn−1

1

|x− z|d−2

(
rm

|z|d−2

)2

�
∑
n≥2

∑
z∈B(c2n−1s)\B(c−12n−1s)

1

|x− z|d−2

r2m

(2ns)2d−4

(∗)
�
∑
n≥2

(2ns)2r2m

(2ns)2d−4

=
∑
n≥2

r2m

s2d−6

1

(2n)2d−6
� r2m

s2d−6
≤ r2m

sd−2

1

rd−4
.

(∗) is due to the fact that
∑

z∈B(n) |x− z|2−d ≤
∑

z∈B(n) |z|2−d � n2.
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To summarize, we get:

∑
z∈Zd

g(x, z)g2(z,A) �


rm+1/sd−2, if m = d− 3;

rm log r/sd−2, if m = d− 4;

rm/sd−2, if m ≤ d− 5.

For r ≥ s, since we are considering lower bound on pA(x), by mono-

tonicity, we can assume m ≤ d− 3, r ∈ [s/2, s]. Then, we can just let r � s
in the last formula and get:

∑
z∈Zd

g(x, z)g2(z,A) �


sm+1/sd−2 = 1, if m = d− 3;

sm log s/sd−2 = log s/s2, if m = d− 4;

sm/sd−2 = 1/sd−m−2, if m ≤ d− 5.

Using pA(x) = P (N > 0) ≥ (EN)2/EN2, one can get the required lower

bounds for all cases.

From small s to big s.We have proved the upper bound for m ≤ d−5

and now consider the case m ≥ d − 4. Assume that we have the desired

upper bounds for small s. We want the upper bound for big s. Let B =

{z ∈ Zd : ρ(z,A) ≤ r/2} and C = {z ∈ Zd : ρ(z,A) ≤ r/4}. Then by the

assumption, we know that for any z ∈ B\C, p(z) � α(r), where α(r) = 1/r2

or 1/(r2 log r) depending on m. Let

Γ1 = {γ : x→ A|γ ⊆ Ac, γ visits B \ C},

Γ2 = {γ : x→ A|γ ⊆ Ac, γ avoids B \ C}.

We decompose pA(x) into two pieces:

pA(x) =
∑
γ:x→A

b(γ) =
∑
γ∈Γ1

b(γ) +
∑
γ∈Γ2

b(γ).

For the first term, by considering the first visiting point of B \ C, one can
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2.2. Branching capacity and visiting probabilities

see:∑
γ∈Γ1

b(γ) ≤
∑

z∈B\C

∑
γ:x→z,γ⊆(B\C)c

b(γ)pA(z) ≤
∑

z∈B\C

∑
γ:x→z,γ⊆(B\C)c

s(γ)α(r)

≤ α(r)P (Sx visits (B \ C)) ≤ α(r)P (Sx visits B)

� α(r)(r/s)d−2 =

{
rd−4/sd−2 if m ≥ d− 3;

rd−4/(sd−2 log r) if m = d− 4.

Recall that Sx is the random walk starting from x and we use the standard

estimate of P (Sx visits B) � (r/s)d−2. For the other term, by considering

the first jump from Bc to C, one can see:∑
γ∈Γ2

b(γ) ≤
∑
z∈Bc

GA(x, z)
∑
y∈C

θ(y − z)pA(y)

=
∑
z∈Bc1

GA(x, z)
∑
y∈C

θ(y − z)pA(y) +
∑

z∈B1\B

GA(x, z)
∑
y∈C

θ(y − z)pA(y),

where B1 = {z : ρ(z,A) ≤ r/2 + s/4}. Both terms are not more than the

desired order:∑
z∈Bc1

GA(x, z)
∑
y∈C

θ(y − z)pA(y) �
∑
z∈Bc1

1 ·
∑
y∈C

θ(y − z)α(r)

≤
∑
y∈C

α(r)
∑
z∈Bc1

θ(y − z) �
∑
y∈C

α(r)s−d � α(r)rd/sd ≤ α(r)(r/s)d−2;

∑
z∈B1\B

GA(x, z)
∑
y∈C

θ(y − z)pA(y) �
∑

z∈B1\B

s2−d
∑
y∈C

θ(y − z)α(r)

≤ s2−d
∑
y∈C

α(r)
∑
z∈Bc

θ(y − z) � s2−d
∑
y∈C

α(r)r−d � s2−dα(r) ≤ α(r)(r/s)d−2.

For small s and m ≥ d− 3. The upper bound in this case relies

on the corresponding bound for one dimensional branching random walk.

Let H be a half space, say H = {z = (z1, . . . , zd) ∈ Zd : z1 ≥ n}. The

probability of visiting H is equivalent to the probability of 1-dimensional

branching random walk visiting a half line. The asymptotic behavior of
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visiting a single point in 1-d is known. Recall (1.2.2),

lim
a→∞

‖x‖2P ( Branching random walk from 0 visits x) = 2(4− d)/dσ2.

However, our situation is a bit different. For our purpose, we give a weaker

result here under weaker assumptions:

Proposition 2.2.14. Let Sx be 1-dimensional branching random walk s-

tarting from x ∈ Z, given that the offspring distribution µ is critical and

nondegenerate, and the jump distribution θ has zero mean and finite second

moment, and satisfies
∑

i:i≤−k θ(i) ≤ Ck−4 for any k ∈ N+ and some C (in-

dependent of k). Then for some large constant c = c(θ, µ) > 0 (independent

of x), we have: for any x ∈ N+,

P (Sx visits Z−) ≤ c/|x|2, (2.2.38)

where Z− = {0,−1,−2, . . . }.

We postpone the proof of this proposition. Return to d dimension. Since

we can find at most d half spaces H1, H2, . . . ,Hd satisfying: ρ(x,Hi) � s for

any i = 1, . . . , d; and that any path from x to A must hit at least one of Hi.

Then we have:

pA(x) ≤
d∑
i=1

P (Sx visits Hi) � d · |s|−2 � |s|−2.

For small s and m = d− 4. Intuitively when the radius r is large,

visiting a m = d − 4 dimensional ball in Zd, is similar to visiting a point

in Z4. This is indeed the case. In Section 2.4.1 we give the desired upper

bound for the latter case and the method there also works here with slight

modifications. We point out the major differences and leave the details

to the reader. On the one hand, one should use g̃(γ) :=
∑|γ|−1

i=0 g(γ(i), A)

instead of g(γ) there. On the other hand, in proving an analogy of Lemma

10.1.2(a) in [11], one might use the stopping times:

ξ̃i = min{k : ρ(Sk, A) ≥ 2i} ∧ (ξ̃i−1 + (2i)2).
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2.2. Branching capacity and visiting probabilities

instead of ξi there.

Proof of Proposition 2.2.14. Write p(x) for the left hand side in (2.2.38). In

order to obtain upper bounds of p(x), we use some of the ideas of [9] (Section

7.1), the techniques from nonlinear difference equations. We will exploit the

fact that p(x) satisfies a parabolic nonlinear difference equation and use the

comparison principle.

Let pn(x) = P (Sx visits Z− within the first n generations). Then pn(x)

is increasing for n and converges to p(x) when n→∞. On the other hand,

one can easily verify that pn(x) satisfies the recursive equations:

p0(x) =1Z−(x); pn(x) = 1 for x ∈ Z−; (2.2.39)

pn+1(x) = f(Apn(x)), for x ∈ N+; (2.2.40)

where f(t) = 1 −
∑

k≥0 µ(k)(1 − t)k and A is the Markov operator for the

random walk, that is, for any bounded function w : Z → R, Aw(x) =∑
y∈Z θ(y)w(x+ y). One can see that f : [0, 1]→ [0, 1−µ(0)] is in C1[0, 1]∩

C∞(0, 1] with the first 2 derivatives as follows:

f ′(t) =
∑
k≥1

kµ(k)(1− t)k−1 > 0 for t ∈ [0, 1); f ′(0) = 1, f ′(1) = µ(1) ≥ 0;

f ′′(t) = −
∑
k≥2

k(k − 1)µ(k)(1− t)k−2 < 0 for t ∈ (0, 1).

From these, it is easy to obtain:

inf
t∈(0,1]

t− f(t)

t2
> 0.

Hence we can find some a ∈ (0, 1/2), such that

f(t) ≤ t− at2, for any t ∈ [0, 1] and t(1 + at) ≤ 1 for any t ∈ [0, 1− µ(0)].

(2.2.41)

To extract information from (2.2.40), we will use the following standard

comparison principle.
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Lemma 2.2.15. Let un(x) and vn(x) be Z→ [0, 1], satisfying

un(x) = vn(x) = 1, for any x ∈ Z− and n ∈ N;

un+1(x) = f(Aun(x)), vn+1(x) ≥ f(Avn(x)) for any x ∈ N+.

If v0(x) ≥ u0(x) for all x, then

vn(x) ≥ un(x) for all n ∈ N+ and x ∈ Z.

Proof. Note that for n > 0 and x ∈ N+:

vn(x)− un(x) ≥ f(Avn−1(x))− f(Aun−1(x))

≥ min
t∈[0,1]

{f ′(t)}(Avn−1(x)− Aun−1(x))

= min
t∈[0,1]

{f ′(t)}A(vn−1 − un−1)(x).

Since f ′(t) ≥ 0, one can use induction to finish the proof.

Now let un(x) = pn(x) and vn(x) = v(x) = 1 ∧ (c/x2) when x ∈ N+ for

some large c (to be determined later). If we can show

v(x) ≥ f(Av(x)) for any x ∈ N+, (2.2.42)

then by the lemma above we conclude the proof of Proposition 2.2.14.

Let us write down our strategy for choosing c. First we fix some ε ∈
(0, 1/2), such that (1− µ(0))/(1− ε)2 < 1. Choose c satisfying:

ac2 ≥ C/ε4 + 3(E|θ|2)c/(1− ε)4. (2.2.43)

We argue that (2.2.42) holds for our choice of c. When c/x2 ≥ 1 − µ(0),

(2.2.42) is obvious since f(t) ≤ 1− µ(0).

Now assume c/x2 < 1 − µ(0). Since f(t) is increasing, we need to find

an upper bound of Av(x). We achieve this by decomposing Av(x) into two

53



2.2. Branching capacity and visiting probabilities

pieces and estimating each one separately:

Av(x) =
∑
y∈Z

θ(y)v(x+ y) =
∑
y≤−εx

θ(y)v(x+ y) +
∑
y>−εx

θ(y)v(x+ y).

We can use our assumption of θ to bound the first term:∑
y≤−εx

θ(y)v(x+ y) ≤
∑
y≤−εx

θ(y) ≤ C/(εx)4;

Using Taylor expansion, the second term can be bounded by:

∑
y>−εx

θ(y)v(x+ y) ≤
∑
y>−εx

θ(y)(v(x) + yv′(x) +
y2

2
v′′((1− ε)x))

= v(x)
∑
y>−εx

θ(y) + v′(x)
∑
y>−εx

θ(y)y + v′′((1− ε)x)
∑
y>−εx

θ(y)
y2

2

≤ v(x) · 1 + v′(x)(−
∑
y≤−εx

θ(y)y) + v′′((1− ε)x)E|θ|2/2

≤ v(x) + 0 +
E|θ|2

2
· 6c

(1− ε)4x4
.

To summarize, we get (let K = (C/ε4 + 3E|θ|2c/(1− ε)4)):

Av(x) ≤ v(x) + (C/ε4 + 3E|θ|2c/(1− ε)4)x−4 = v(x) +Kx−4.

Note that by (2.2.41) and (2.2.43), we have v(x)+Kx−4 ≤ v(x)+a(v(x))2 ≤
1. Hence:

f(Av(x)) ≤ Av(x)(1− aAv(x)) ≤ (v(x) +Kx−4)(1− av(x))

≤ v(x) +Kx−4 − a(v(x))2 = v(x) +Kx−4 − ac2x−4 ≤ v(x).

This completes the proof of (2.2.42) and hence the proof of Proposition

2.2.14.

For the future use, we give the following upper bound for the visiting

probability of a ball by an infinite snake.
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Lemma 2.2.16. Let A = C(r) (r ≥ 1) and x ∈ Zd such that s = ρ(x,A) ≥ r.
Then we have:

qA(x) ∨ q−A(x) � (r/s)d−4. (2.2.44)

Proof. Consider a bigger ball B = C(1.5r). Then

qA(x) ≤ P ( backbone visits B) + P ( backbone avoids B, S∞x visits A).

Since the backbone is just a random walk, the first term is comparable to

(r/s)d−2, which is less that (r/s)d−4. On the other hand, when the backbone

does not visit B, by considering where the particle is killed, we have:

P (backbone avoids B,S∞x visits A) ≤
∑
z∈Bc

GA(x, z)rA(z) �
∑
z∈Bc

g(x, z)pA(z)

�
∑
z∈Bc

1

|x− z|d−2

rd−4

|ρ(z,A)|d−2
�
∑
z∈Bc

1

|x− z|d−2

rd−4

|z|d−2
� rd−4

|x|d−4
� (

r

s
)d−4.

This completes the proof of qA(x) � (r/s)d−4 and similarly one can show

q−A(x) � (r/s)d−4.

2.2.8 Proof of Theorem 1.3.5

We use an equation approach similar to the proof of Proposition 2.2.14.

Write fi(t) = 1 −
∑

k≥0 µi(k)(1 − t)k, i = 1, 2. We need the following little

lemma and postpone its proof.

Lemma 2.2.17. There is a C = C(µ1, µ2) > 1 such that, for all t ∈ [0, 1],

f1((Ct) ∧ 1) ≤ (Cf2(t)) ∧ 1. (2.2.45)

For any A ⊂⊂ Zd fixed, as in the proof of Proposition 2.2.14, denote

ui,n(x) (i = 1, 2) recursively by:

ui,0(x) = 1A(x), u0,n(a) = 1 ∀a ∈ A; ui,n+1(x) = fi(Aui,n(x)) ∀a /∈ A.

With the help of last lemma, one can see that u1,n(x) ≤ Cu2,n(x), for any

55



2.2. Branching capacity and visiting probabilities

n, x. On the other hand, we know that ui,n(x) → pi,A(x). Hence we have

p1,A(x) ≤ Cp2,A(x). Then by Theorem 1.3.1, one can get Theorem 1.3.5.

Proof of Lemma 2.2.17. Since limt→0 f2(t)/t = 1, when C is large enough,

we have Cf2(C−1) ≥ 1− µ1(0) = f1(1). It suffices to show for t ∈ [0, C−1],

g(t)
.
= Cf2(t)− f1(Ct) ≥ 0. (2.2.46)

Note that fi(0) = 0, f ′i(0) = 1, f ′′i (0) = −Var(µi), f
′′
i (t) ≤ 0 and |f ′′i (t)|

is non-increasing. Hence we can find some C = C(µ1, µ2) > 1 such that,

C|f ′′1 (1/2)| ≥ 2|f ′′2 (0)| (and Cf2(C−1) ≥ 1− µ1(0)). Then we have

g′′(t) = C(f ′′2 (t)− Cf ′′1 (Ct)) ≥

{
C|f ′′2 (0)|, t ∈ [0, 1/(2C)];

−C|f ′′2 (0)|, t ∈ [1/(2C), 1/C].

Together with g(0) = g′(0) = 0, one can get (2.2.46).

2.2.9 Bounds for the Green function

The speed of convergence in (2.2.10) depends on K, which maybe not con-

venient in some cases. For example, by that lemma, we know GK(x, y) ≥
CKg(x, y) (when |x|, |y| are large), but the constant depends on K. The

purpose of this section is to build up this type of bounds with constants

independent of K.

Thanks to lemma 2.1.3, we have:

Lemma 2.2.18. Let U, V be two connected bounded open subset of Rd such

that U ⊆ V . Then there exists a C = C(U, V ) such that if An = nU ∩
Zd, Bn = nV ∩ Zd then when n is sufficiently large and K ⊆ Bc

n, we have

GK(x, y) ≥ Cg(x, y) for any x, y ∈ An. (2.2.47)

Proof. Without loss of generality, we can assume ρ(K,Bn) � n (by shrinking

V a bit). Hence for any z ∈ Bn, ρ(z,K) � n. By Proposition 2.2.14, one can

see that pK(x) � ρ(x,K)−2. Hence k(z) = rK(z) � pK(z) � n−2. Then we
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have, for any γ : x → y, γ ⊆ Bn, |γ| ≤ 2n2, b(γ)/s(γ) ≥ (1 − c/n2)2n2 � 1

(provided that n is sufficiently large). Then we have:

GK(x, y) ≥
∑

γ:x→y,γ⊆Bn,|γ|≤2n2

b(γ) �
∑

γ:x→y,γ⊆Bn,|γ|≤2n2

s(γ)
(2.1.5)

� g(x, y).

Before giving a better form, we turn to the escape probability and prove:

Lemma 2.2.19. For any λ > 0, there exists a positive C = C(λ), such that,

for any A ⊂⊂ Zd and x ∈ Zd satisfying ‖x‖ ≥ (1 + λ)Rad(A), we have:

EsA(x) > C. (2.2.48)

Proof. By lemma 2.2.16, we can find a positive constant c1 > 1, such that,

for any z ∈ Zd with ‖z‖ ≥ c1Rad(A), we have EsA(z) ≥ 1/2. Write r =

Rad(A), B = C(2c1r) and D = C(4c1r)\C(3c1r). Without loss of generality,

assume 1 + λ < c1/2 and ‖x‖ < c1r. For any y ∈ D, by Lemma 2.2.18 (let

U = {x ∈ Rd : ‖x‖ ∈ (1 + λ, 4c1)}), we have (when r is large): GA(y, x) �
g(y, x) � r2−d. Applying the First-Visit Lemma, we get:

GA(y, x) =
∑
z∈Bc

GA(y, z)HBk (z, x).

Hence, ∑
y∈D

GA(y, x) =
∑
y∈D

∑
z∈Bc

GA(y, z)HBk (z, x).

Note that the left hand side is � rd · r2−d = r2 and the right hand side is

not larger than:∑
y∈D

∑
z∈Bc

g(y, z)HBk (z, x) =
∑
z∈Bc

HBk (z, x)
∑
y∈D

g(y, z) �
∑
z∈Bc

HBk (z, x) · r2.
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This implies
∑

z∈Bc HBk (z, x) � 1. Therefore we have:

EsA(x) =
∑
z∈Bc

HBk (z, x)EsA(z) ≥ 1/2 ·
∑
z∈Bc

HBA(x, z) � 1,

which completes the proof.

Remark 2.2.10. In fact we prove (2.2.48) only when Rad(A) is large. We

ignore the case when Rad(A) is not large since this can be done by a s-

tandard argument as follows. If Rad(A) is not sufficiently large, there are

only finite possibilities of A. For each of those A, we have already known

the asymptotics of EsA(x) (limx→∞ EsA(x) = 1). On the other hand, it is

obvious that for any ‖x‖ > Rad(A), EsA(x) > 0. Hence we can find some

C(A) > 0 satisfying (2.2.48). Since there are finite many C(A)’s, we can

simply choose C to be the smallest one of those C(A) (together with the one

for sufficiently large A). We will also omit this type of standard arguments

later. In fact, we have done this in the proof of Theorem 2.2.12.

Now we are ready to prove the following bound of Green function:

Lemma 2.2.20. For any λ > 0, there exists C = C(λ) > 0, such that: for

any A ⊂⊂ Zd and x, y ∈ Zd with ‖x‖, ‖y‖ > (1 + λ)Rad(A), we have:

GA(x, y) ≥ Cg(x, y). (2.2.49)

Proof. Without loss of generality, assume ‖x‖ ≤ ‖y‖. By Lemma 2.2.18 one

can assume ‖y‖ > 10‖x‖ and note that under this assumption g(x, y) �
‖y‖2−d. Let B = C(‖y‖/2) and C = C(3‖y‖/4). For any z ∈ C \ B, also

by Lemma 2.2.18, we have GA(y, z) � ‖y‖2−d. Applying the First-Visit

Lemma, we have:

GA(x, y) =
∑
z∈Bc

HBk (x, z)GA(z, y) �
∑

z∈C\B

HBk (x, z)‖y‖2−d

= ‖y‖2−d(
∑
z∈Bc

HBk (x, z)−
∑
z∈Cc

HBA(x, z))

≥ ‖y‖2−d(EsA(x)− c‖y‖2/‖y‖d),
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where for the last step we use the Overshoot Lemma. Therefore, when

Rad(A) is large enough, by Lemma 2.2.19, GA(x, y) � ‖y‖2−d � g(x, y).

2.2.10 Proof of Theorem 1.3.3.

Proof. By cutting A into small pieces, it is enough to show (1.3.2) under the

assumption of ‖x‖ ≥ 3Rad(A). Also, as before, we can assume r = Rad(A)

is sufficiently large. Let B = C(2r).
Upper bound. By (2.2.7) and the First-Visit Lemma, we have

pA(x) =
∑
y∈A

GA(x, y) =
∑
y∈A

∑
z∈Bc

GA(x, z)HBk (z, y).

We will decompose it into two parts and estimate them separately.

Let D = {z ∈ Zd : ρ(z, x) ≤ 0.1ρ(x,A)}. Note that when z ∈ Bc \ D,

ρ(x, z) � ρ(x,A) and EsA(z) � 1 by Lemma 2.2.19. Hence,∑
y∈A

∑
z∈Bc\D

GA(x, z)HBk (z, y) �
∑
y∈A

∑
z∈Bc\D

ρ(x,A)2−dHBk (z, y)

� ρ(x,A)2−d
∑
y∈A

∑
z∈Bc\D

HBk (z, y)EsA(z)

≤ ρ(x,A)2−d
∑
y∈A

EsA(y) = ρ(x,A)2−dBCap(A).

When z ∈ D, ρ(z,B) � ρ(x,A). By considering the position where the first

jump falls into, we have:

HBk (z, y) ≤
∑
w∈B

θ(w − z)GA(w, y).
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Hence,∑
y∈A

∑
z∈D

GA(x, z)HBk (z, y) �
∑
z∈D

g(x, z)
∑
w∈B

θ(w − z)
∑
y∈A

GA(w, y)

=
∑
z∈D

g(x, z)
∑
w∈B

θ(w − z)pA(w) ≤
∑
z∈D

g(x, z)
∑
w∈B

θ(w − z)

(1.1.1)

�
∑
z∈D

g(x, z)ρ(z,B)−d �
∑
z∈D

g(x, z)ρ(x,A)−d � ρ(x,A)2−d.

This completes the proof of the upper bound.

Lower bound. First choose some a > 1, such that for any s ≥ 1,

|C(s)| · θ{(C((a− 1)s))c} ≤ BCap({0})
2

, (2.2.50)

Note that our assumption of θ guarantees that θ{(C((a− 1)s))c} � ((a −
1)s)−d.

Write ρ = ρ(x,A) and let C = C(aρ). Note that ρ ≥ 2r and ρ(x,B) ≥ r.
Hence r ≤ ρ/2, B ⊆ C(ρ) and for any w ∈ B, z ∈ Cc,

ρ(w, z) ≥ (a− 1)ρ. (2.2.51)

Then

pA(x) =
∑
y∈A

GA(x, y) =
∑
y∈A

∑
z∈Bc

GA(x, z)HBk (z, y)

≥
∑
y∈A

∑
z∈C\B

GA(x, z)HBk (z, y) �
∑
y∈A

∑
z∈C\B

(2aρ)2−dHBk (z, y),

We use the last Lemma in the last step. It is sufficient to show:∑
y∈A

∑
z∈C\B

HBk (z, y) � BCap(A). (2.2.52)
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2.3. Branching capacity and branching recurrence

Note that:∑
y∈A

∑
z∈C\B

HBk (z, y) ≥
∑
y∈A

∑
z∈C\B

HBk (z, y)EsA(z)

=
∑
y∈A

(EsA(y)−
∑
z∈Cc

HBk (z, y)EsA(z)) ≥ BCap(A)−
∑
y∈A

∑
z∈Cc

HBk (z, y).

As in the proof for the upper bound, we have:∑
y∈A

∑
z∈Cc

HBk (z, y) ≤
∑
y∈A

∑
z∈Cc

∑
w∈B

θ(w − z)GA(w, y)

=
∑
y∈A

∑
w∈B

GA(w, y)
∑
z∈Cc

θ(w − z)
(2.2.51)

≤
∑
w∈B

∑
y∈A

GA(w, y)θ{(C((a− 1)ρ))c}

=θ{(C((a− 1)ρ))c}
∑
w∈B

pA(w) ≤ θ{(C((a− 1)ρ))c}|B|
(2.2.50)

≤ BCap(A)

2
.

Now (2.2.52) follows and this completes the proof of the lower bound.

2.3 Branching capacity and branching recurrence

We now give the definitions of branching recurrence and branching tran-

sience. Recall that we always assume d ≥ 5 in this section. In addition, we

assume further that θ has finite range throughout this section.

Definition 2.3.1. Let A be a subset of Zd. We call A a branching recur-

rent (B-recurrent) set if

P (S∞0 visits A infinitely often) = 1, (2.3.1)

and a branching transient (B-transient) set if

P (S∞0 visits A infinitely often) = 0. (2.3.2)

In fact, it is equivalent to use the incipient infinite snake in the definition

of branching recurrence and branching transience.
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2.3. Branching capacity and branching recurrence

Proposition 2.3.2.

P (S∞0 visits A infinitely often) = 1⇔ P (S∞0 visits A infinitely often) = 1.

Proof. The necessity is trivial. For the sufficiency, we use the following

coupling between S∞0 and S∞0 . First sample S∞0 . Then we can construct

S∞0 as follows: for the backbone of S∞0 , just use the backbone of S∞0 ; for

each vertex in the backbone, we graft to it an adjoint snake, independently,

using either the left adjoint snake or the right one, corresponding to the

same vertex in S∞0 , with equal probability. When S∞0 visits A infinitely

often, there are infinite adjoint snakes on S∞0 visiting A. For each vertex

on the backbone, either the left adjoint snake or the right one is chosen,

independently with equal probability. Therefore, by the strong law of large

numbers, an infinite number of adjoint snakes that visits A will be chosen,

on the process of producing S∞0 , almost surely. It means that S∞0 visits A

infinitely often almost surely.

Proposition 2.3.3. Every set A ⊆ Zd is either B-recurrent or B-transient.

Proof. Let f(x) = P (S∞x visits A infinitely often). It is easy to see that

f is a bounded harmonic function. But every bounded harmonic function

in Zd is constant. Hence f ≡ t for some t ∈ [0, 1]. Let V be the event

S∞0 visits A infinitely often. Since f ≡ t, we have P (V |Fn) = t for any n,

where Fn is the σ-field generated by all ’information’ (the tree structure and

the random variables corresponding to the edges) after n-th vertex of the

spine. Then V is a tail event. By the Kolmogorov 0-1 Law, t is either 0 or

1.

If A is finite, since qA(x) < 1 for large x, f(x) < 1 and must be 0. Hence

we have:

Proposition 2.3.4. Every finite subset of Zd is B-transient.

For some technical reasons, we assume further that θ has finite range in

this section.
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2.3. Branching capacity and branching recurrence

2.3.1 Inequalities for convolved sums

We need the following two inequalities in the proof of our version of Wiener’s

Test.

Lemma 2.3.5. For any n ∈ N+, let B = C(n). When A ⊆ B and x ∈ Zd,
we have: ∑

z∈B
GA(x, z)qA(z) � (diam(B))2qA(x); (2.3.3)∑

z∈B
GA(x, z)pA(z) � (diam(B))2pA(x). (2.3.4)

We prove (2.3.3) here and postpone the proof of (2.3.4) until Section

2.3.3.

Proof of (2.3.3). For (2.3.3), we do not need to assume that B is a ball and

A ⊆ B. In fact, we will prove (2.3.3) for any finite subsets A,B of Zd and

x ∈ Zd.
We are working at the random walk with killing function rA. Consider

the following equivalent model: a particle starting from x executes a random

walk S = (S(k))k∈N, but at each step, the particle has the probability rA

to get a flag (instead of to die) and its movements are unaffected by flags.

Let τ and ξ be the first and last time getting flags (if there is no such

time, define both to be infinity). Note that since qA(z) < 1 (when |z|
is large), the total number of flags gained is finite, almost surely. Hence

P (τ <∞) = P (ξ <∞). Under this model, one can see that

GA(x, z)qA(z) = P (τ <∞, S(k) = z for some k ≤ τ).

Hence it is not more than E(
∑τ

i=0 1{S(i)=z}; τ <∞) and the L.H.S. of (2.3.3)

is not more than

E(

τ∑
i=0

1{Sx(i)∈B}; τ <∞) ≤ E(

ξ∑
i=0

1{Sx(i)∈B}; ξ <∞).
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2.3. Branching capacity and branching recurrence

By considering the place where the particle gets its last flag, one can see:

E(

ξ∑
i=0

1{Sx(i)∈B}; ξ <∞) =
∑
w∈Zd

 ∑
γ:x→w

s(γ)(

|γ|∑
i=0

1γ(i)∈B)

 · rA(w)Es+
A(w).

We point out a result about random walk and prove it later:

∑
γ:x→w

s(γ)(

|γ|∑
i=0

1γ(i)∈B) � (diam(B))2
∑
γ:x→w

s(γ). (2.3.5)

Hence we get:∑
z∈B

GA(x, z)qA(z) �(diam(B))2
∑
w∈Zd

∑
γ:x→w

s(γ)rA(w)Es+
A(w)

=(diam(B))2
∑
w∈Zd

g(x,w)rA(w)Es+
A(w)

(2.2.20)
= (diam(B))2qA(x).

Now we just need to prove (2.3.5). First we assume x,w ∈ B, then

∑
γ:x→w

s(γ)(

|γ|∑
i=0

1γ(i)∈B) ≤
∑
γ:x→w

s(γ)[γ]
(2.1.3)
� |x− w|4−d

≤ (diam(B))2|x− w|2−d � (diam(B))2g(x,w) = (diam(B))2
∑
γ:x→w

s(γ).

For general x,w, one just need to decompose γ into pieces according to the
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2.3. Branching capacity and branching recurrence

first and last visiting time of B. For example, when x,w /∈ B, we have:

∑
γ:x→w

s(γ)(

|γ|∑
i=0

1γ(i)∈B) =
∑
y,z∈B

HBc(x, y)

 ∑
γ′:y→z

s(γ′)

|γ′|∑
i=0

1γ′(i)∈B

HBc(z, w)

�
∑
y,z∈B

HBc(x, y)

(diam(B))2
∑

γ′:y→z
s(γ′)

HBc(z, w)

=(diam(B))2
∑
y,z∈B

HBc(x, y)
∑

γ′:y→z
s(γ′)HBc(z, w)

=(diam(B))2
∑

γ:x→w,γ visits B

s(γ) ≤ (diam(B))2
∑
γ:x→w

s(γ).

When just one of x and w is in B, the proof is similar but easier.

2.3.2 Restriction lemmas

Recall that we have: (see (2.2.7))

pA(x) =
∑
γ:x→A

b(γ).

Our goals of this section are to show:

Proposition 2.3.6. For any n ∈ N+ sufficiently large and A ⊆ C(n), x ∈
C(n), we have:

pA(x) �
∑

γ:x→A,γ⊆C(1.1n)

b(γ). (2.3.6)

Proposition 2.3.7. For any n ∈ N+ sufficiently large and A ⊆ C(n), x ∈
C(n), we have:

qA(x) �
∑

γ:x→A,γ⊆C(4n)

[γ] · b(γ). (2.3.7)

We first introduce some notations. Since θ has finite range, we can define

the outer boundary ∂oB for any B ⊆ Zd by

∂oB = {z ∈ Zd \B : ∃y ∈ B, θ(z − y) ∨ θ(y − z) > 0}.
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2.3. Branching capacity and branching recurrence

Note that for any y ∈ ∂oB, ρ(y,B) is bounded above by a constant depending

on θ. For A ⊆ B ⊆ Zd and x, y ∈ B ∪ ∂oB, write

GBA(x, y) =
∑

γ:x→y,γ⊆B
b(γ).

Lemma 2.3.8. For any λ1, λ2, λ3 > 0, there exists C = C(λ1, λ2, λ3) > 0

satisfying the following. When n is sufficiently large, let B0 = C(n),B1 =

C((1 +λ1)n), B2 = C((1 +λ1 +λ2)n) and B = C((1 +λ1 +λ2 +λ3)n). Then

for any x, y ∈ B2 \B1 and A ⊆ B0, we have:

GBA(x, y) ≥ CGA(x, y). (2.3.8)

Proof. Let B′ = C((1+λ1/2)n). Note that for any y ∈ B\B′, by (1.3.2) and

(2.2.18), we have rA(y) � pA(y) � n−2. Hence, we have: for any γ ⊆ B \B′

with |γ| ≤ 2n2, b(γ)/s(γ) ≥ (1− c/n2)2n2 � 1.

Therefore, by Lemma 2.1.3, one can see that:

GBA(x, y) =
∑

γ:x→y,γ⊆B
b(γ) ≥

∑
γ:x→y,γ⊆B\B′,|γ|≤2n2

b(γ)

�
∑

γ:x→y,γ⊆B\B′,|γ|≤2n2

s(γ) � g(x, y) ≥ GA(x, y).

Lemma 2.3.9. For any λ > 0, ι > 0, there exists C = C(λ, ι) > 0 satisfying

the following. When n is sufficiently large, let B0 = C(n), B1 = C((1+λ)n),

B = C((1 + λ+ ι)n). Then for any x, y ∈ B1 and A ⊆ B0, we have:

GBA(x, y) ≥ CGA(x, y). (2.3.9)

Proof. By last lemma, one can get, for any z, w ∈ ∂oB1,

GBA(z, w) � GA(z, w).
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2.3. Branching capacity and branching recurrence

For any x, y ∈ B1, we have:

GBA(x, y) = GB1
A (x, y) +

∑
γ:x→y,γ visits Bc1,γ⊆B

b(γ).

By considering the first and last visits in Bc
1, we have:∑

γ:x→y,γ visits Bc1,γ⊆B
b(γ) =

∑
z,w∈∂oB1

HB1
A (x, z)GBA(z, w)HB1

A (w, y)

(2.3.8)

�
∑

z,w∈∂oB1

HB1
A (x, z)GA(z, w)HB1

A (w, y) =
∑

γ:x→y,γ visits Bc1

b(γ).

Hence, we have:

GBA(x, y) =GB1
A (x, y) +

∑
γ:x→y,γ visits Bc1,γ⊆B

b(γ)

�GB1
A (x, y) +

∑
γ:x→y,γ visits Bc1

b(γ) = GA(x, y).

Now we can show Proposition 2.3.6:

Proof of Proposition 2.3.6. Let B = C(1.1n). We have:

pA(x) =
∑
γ:x→A

b(γ) =
∑
z∈A

GA(x, z)
(2.3.9)
�

∑
z∈A

GBA(x, z) =
∑

γ:x→A,γ⊆B
b(γ).

Now we turn to qA(x). The starting point is:

Lemma 2.3.10. For any a ∈ Zd, A ⊂⊂ Zd, B ⊆ Zd, we have:

∑
z∈B

GA(x, z)pA(z) =
∑
γ:x→A

b(γ)

|γ|∑
i=0

1γ(i)∈B. (2.3.10)

67



2.3. Branching capacity and branching recurrence

Proof. ∑
z∈B

GA(x, z)pA(z) =
∑
z∈B

∑
γ1:x→z

b(γ1)
∑

γ2:z→A
b(γ2)

=
∑
z∈B

∑
γ1:x→z

∑
γ2:z→A

b(γ1)b(γ2)

=
∑
z∈B

∑
γ1:x→z

∑
γ2:z→A

b(γ1 ◦ γ2)

=
∑
γ:x→A

b(γ) ·
|γ|∑
i=0

1γ(i)∈B.

The last equality is due to the fact that for any γ : x→ A, there are exactly∑|γ|
i=0 1γ(i)∈B ways to rewrite γ as the composite of two paths γ1 and γ2 such

that the common point of γ1 and γ2 is in B.

Corollary 2.3.11.

qA(x) �
∑
γ:x→A

[γ] · b(γ). (2.3.11)

Proof. By (2.2.19) and (2.2.18), we have:

qA(x) �
∑
z∈Zd

GA(x, z)pA(z). (2.3.12)

By last lemma, we have
∑

z∈Zd GA(x, z)pA(z) =
∑

γ:x→A[γ] · b(γ).

Lemma 2.3.12. For any n sufficiently large, A ⊆ C(n), x ∈ Zd with ‖x‖ ≥
1.1n, we have:

qA(x) �
∑

γ:x→A,γ⊆C(3‖x‖)

[γ] · b(γ). (2.3.13)

Proof. The part of ’�’ is trivial by the last corollary. It suffices to show the

other part. As in the last corollary, we have:

qA(x) �
∑
z∈Zd

GA(x, z)pA(z).
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2.3. Branching capacity and branching recurrence

First by (2.1.2),(1.3.2) and (2.2.49), one can see that:

∑
z∈C(2‖x‖)\C(1.5‖x‖)

GA(x, z)pA(z) �
∑

z∈C(2‖x‖)\C(1.5‖x‖)

g(x, z)
BCap(A)

(ρ(z,A))d−2

�
∑

z∈C(2‖x‖)\C(1.5‖x‖)

1

|x|d−2

BCap(A)

|x|d−2

� |x|d 1

|x|d−2

BCap(A)

|x|d−2
=

BCap(A)

|x|d−4
.

Similarly, we can get:

∑
z∈C(2‖x‖)c

GA(x, z)pA(z) �
∑

z∈C(2‖x‖)c
g(x, z)

BCap(A)

(ρ(z,A))d−2

�
∑

z∈C(2‖x‖)c

1

|z|d−2

BCap(A)

|z|d−2

� BCap(A)
∑

z∈C(2‖x‖)c

1

|z|2d−4
� BCap(A)

|x|d−4
.

Hence we have:

qA(x) �
∑
z∈Zd

GA(x, z)pA(z) �
∑

z∈C(2‖x‖)

GA(x, z)pA(z).

By Lemma 2.3.9, we have (let B = C(3‖x‖)):∑
z∈C(2‖x‖)

GA(x, z)pA(z) =
∑

z∈C(2‖x‖)

GA(x, z)
∑
y∈A

GA(z, y)

�
∑

z∈C(2‖x‖)

GBA(x, z)
∑
y∈A

GBA(z, y)

=
∑

z∈C(2‖x‖)

∑
γ1:x→z,γ1⊆B

b(γ1)
∑

γ2:z→A,γ2⊆B
b(γ2)

=
∑

z∈C(2‖x‖)

∑
γ1:x→z,γ1⊆B

∑
γ2:z→A,γ2⊆B

b(γ1 ◦ γ2)

≤
∑

γ:x→A,γ⊆B
[γ]b(γ).
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This completes the proof.

Proof of Proposition 2.3.7. Let B = C(1.1n) and B′ = C(4n). We have:

qA(x) �
∑
γ:x→A

[γ]b(γ) =
∑

γ:x→A,γ⊆B
[γ]b(γ) +

∑
γ:x→A,γ visits Bc

[γ]b(γ).

By considering the first visit of Bc, the second term is equal to:∑
y∈∂oB

∑
γ1:x→y,γ1⊆B

∑
γ2:y→A

(|γ1|+ [γ2])(b(γ1)b(γ2))

=
∑
y∈∂oB

∑
γ1:x→y,γ1⊆B

|γ1|b(γ1)
∑

γ2:y→A
b(γ2)+

∑
y∈∂oB

∑
γ1:x→y,γ1⊆B

b(γ1)
∑

γ2:y→A
[γ2]b(γ2)

(2.2.7)(2.3.11)
�

∑
y∈∂oB

∑
γ1:x→y,γ1⊆B

|γ1|b(γ1)pA(y) +
∑
y∈∂oB

∑
γ1:x→y,γ1⊆B

b(γ1)qA(y)

(2.3.13),(2.3.6)
�

∑
y∈∂oB

∑
γ1:x→y,γ1⊆B

|γ1|b(γ1)
∑

γ2:y→A,γ2⊆B′
b(γ2)+

∑
y∈∂oB

∑
γ1:x→y,γ1⊆B

b(γ1)
∑

γ2:y→A,γ2⊆B′
[γ2]b(γ2)

=
∑
y∈∂oB

∑
γ1:x→y,γ1⊆B

∑
γ2:y→A,γ2⊆B′

(|γ1|+ [γ2])(b(γ1)b(γ2))

=
∑

γ:x→A,γ visits Bc,γ⊆B′
[γ]b(γ).

Hence, we get

qA(x) �
∑

γ:x→A,γ⊆B
[γ]b(γ)+

∑
γ:x→A,γ visits Bc,γ⊆B′

[γ]b(γ) =
∑

γ:x→A,γ⊆B′
[γ]b(γ).

This completes the proof.

2.3.3 Visiting probability by an infinite snake

In this subsection we establish the following bounds analogous to (1.3.2):
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Theorem 2.3.13. For any A ⊂⊂ Zd and x ∈ Zd with ‖x‖ ≥ 2Rad(A), we

have:

qA(x) � BCap(A)

(ρ(x,A))d−4
. (2.3.14)

Remark 2.3.1. By cutting A into small pieces, one can replace ‖x‖ ≥
2Rad(A) by ρ(x,A) ≥ εdiam(A), for any ε > 0.

Remark 2.3.2. The analogous result for S∞x (Theorem 1.3.9) can be proved

in a similar way.

Proof. It suffices to show the case when Rad(A) is sufficiently large since we

know the asymptotical behavior when x is far away (see (2.2.14)). The part

for � is straightforward and similar to the first part of the proof of Lemma

2.3.12:

qA(x)
(2.3.12)
�

∑
z∈Zd

GA(x, z)pA(z) ≥
∑

2‖x‖≤‖z‖≤4‖x‖

GA(x, z)pA(z)

(1.3.2)(2.2.49)
�

∑
2‖x‖≤‖z‖≤4‖x‖

1

|x− z|d−2

BCap(A)

(ρ(z,A))d−2
�

∑
2‖x‖≤‖z‖≤4‖x‖

1

|z|d−2

BCap(A)

|z|d−2

�|x|d 1

|x|d−2

BCap(A)

|x|d−2
=

BCap(A)

|x|d−4
� BCap(A)

(ρ(x,A))d−4
.

The other part can be implied by (1.3.2) and the following lemma (let n =

‖x‖).

Lemma 2.3.14. For any n ∈ N+ sufficiently large, A ⊂ C(n), y ∈ C(n), we

have:

qA(y) � n2pA(y). (2.3.15)

Proof. Let B = C(4n). By (2.3.7) and (2.2.7), it suffices to prove:∑
γ:y→A,γ⊆B

[γ]b(γ) � n2
∑

γ:y→A,γ⊆B
b(γ). (2.3.16)

By (2.3.3) and (2.3.7), one can get:∑
z∈B

GA(y, z)qA(z) � n2
∑

γ:y→A,γ⊆B
[γ]b(γ). (2.3.17)
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For the left hand side, we have:

∑
z∈B

GA(y, z)qA(z)
(2.3.11)
�

∑
z∈B

∑
γ1:y→z

b(γ1)
∑

γ2:z→A
[γ2]b(γ2)

≥
∑
z∈B

∑
γ1:y→z,γ1⊆B

∑
γ2:z→A,γ2⊆B

[γ2]b(γ1 ◦ γ2)

=
∑

γ:y→A,γ⊆B
(1 + 2 + ...+ [γ])b(γ) �

∑
γ:y→A,γ⊆B

[γ]2b(γ).

Hence, we have: ∑
γ:y→A,γ⊆B

[γ]2b(γ) � n2
∑

γ:y→A,γ⊆B
[γ]b(γ). (2.3.18)

By Cauchy-Schwarz inequality: ∑
γ:y→A,γ⊆B

[γ]b(γ)

2

≤

 ∑
γ:y→A,γ⊆B

[γ]2b(γ)

 ·
 ∑
γ:y→A,γ⊆B

b(γ)


� n2

∑
γ:y→A,γ⊆B

[γ]b(γ) ·

 ∑
γ:y→A,γ⊆B

b(γ)

 .

Then (2.3.16) follows and we complete the proof.

Proof of (2.3.4). When x ∈ B, by the last lemma (recall that qA(x) �∑
z∈Zd GA(x, z)pA(x)), we have the desired bound. Now we assume x /∈ B.
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By considering the first visit of B, we have

∑
z∈B

GA(x, z)pA(z)
(2.3.10)

=
∑
γ:x→A

(

|γ|∑
i=0

1γ(i)∈B)b(γ)

=
∑
y∈B

∑
γ1:x→y,γ1⊆Bc

∑
γ2:y→A

b(γ1 ◦ γ2)(

|γ2|∑
i=0

1γ2(i)∈B)

=
∑
y∈B

∑
γ1:x→y,γ1⊆Bc

b(γ1)
∑

γ2:y→A
(

|γ2|∑
i=0

1γ2(i)∈B)b(γ2)

(2.3.10)
=

∑
y∈B

∑
γ1:x→y,γ1⊆Bc

b(γ1)
∑
z∈B

GA(y, z)pA(z)

(∗)
�
∑
y∈B

∑
γ1:x→y,γ1⊆Bc

b(γ1)(diam(B))2pA(y)

=(diam(B))2
∑
y∈B

∑
γ1:x→y,γ1⊆Bc

b(γ1)pA(y)

=(diam(B))2pA(x).

(∗) is because we have proved that (2.3.4) is true for x ∈ B and for the last

line, we use the First-Visit Lemma and (2.2.7).

2.3.4 Upper bounds for the probabilities of visiting two sets

In this subsection we aim to prove the following inequalities which we will

use in the proof of Wiener’s Test.

Lemma 2.3.15. For any disjoint nonempty subsets A,B ⊂⊂ Zd and x ∈
Zd, we have:

P (Sx visits both A&B) �
∑
z∈Zd

GA∪B(x, z)pA(z)pB(z); (2.3.19)
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2.3. Branching capacity and branching recurrence

P (S∞x visits both A&B) �∑
z∈Zd

GA∪B(x, z)
(
pA(z)qB(z) + qA(z)pB(z) + P (S ′z visits both A&B)

)
.

(2.3.20)

Proof. (2.3.20) is a bit easier and we prove it first. When an infinite snake

S∞x = (T,ST ) visits both A and B, let u be the first vertex in the spine

such that the image of the bush graft to u under ST intersects A ∪ B. As-

sume (v0, . . . , vk) is the unique simple path in the spine from o to u. Define

Γ(A,B)(S∞x ) = (ST (v0), . . . ,ST (vk)). For any path γ = (γ(0), . . . , γ(k)) start-

ing from x with length |γ| = k, we would like to estimate P (Γ(A,B)(S∞x ) = γ).

If we can show that:

P (Γ(A,B)(S∞x ) = γ) �

b(γ)
(
pA(γ̂)qB(γ̂) + qA(γ̂)pB(γ̂) + P (S ′γ̂ visits both A&B)

)
, (2.3.21)

then by summation, one can get (2.3.20).

Now we argue that (2.3.21) is correct. Let t be the bush grafted to u.

There are three possibilities: ST (t) visits A but not B, visits B but not A

or visits both A and B. For the first one, to guarantee Γ(A,B)(S∞x ) = γ, we

need three conditions to be true. The first is that ST maps (v0, . . . , vk) to

γ and that the image of each bush grafted to vi does not intersect A ∪ B,

for i = 0, . . . , k − 1. The probability of this condition being true is b(γ).

The second condition is that ST (t) intersects A but not B. The probability

of this condition being true is at most rA(γ̂) � pA(γ̂). The last condition

is that the image of the bushes after u intersects B. The probability of

this condition being true is at most qB(γ̂). Note that for fixed γ, the three

conditions are independent. Hence we have:

P (Γ(A,B)(S∞x ) = γ,ST (t) visits A not B) ≤ b(γ)pA(γ̂)qB(γ̂).

Similarly, one can get the other two inequalities. This completes the proof

of (2.3.20).
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2.3. Branching capacity and branching recurrence

For (2.3.19), we use a similar idea. When a snake Sx = (T,ST ) visits both

A and B, then VA := {v ∈ T : ST (v) ∈ A} and VB := {v ∈ T : ST (v) ∈ B}
are nonempty. We call a vertex v ∈ T good, if v is the last common ancestor

for some u1 ∈ VA and u2 ∈ VB (any vertex is regarded as an ancestor

of itself). Since for any u1 ∈ VA and u2 ∈ VB, they have the unique last

common ancestor. Hence there exists at least one good vertex and we choose

the first good one (due to the default order, Depth-First order), say u.

Assume γ = (v0, . . . , vk) is the unique simple path in T from the root o to

u. Define Γ(A,B)(Sx) = (Sx(v0), . . . ,Sx(vk)). As before, we would like to

estimate P (Γ(A,B)(Sx) = γ), for a fixed path γ = (γ(0), . . . , γ(k)) starting

from x, with length |γ| = k. We argue that:

P (Γ(A,B)(Sx) = γ) � b(γ)pA(γ̂)pB(γ̂). (2.3.22)

Since u is the first good vertex, one can see that all vertices in VA ∪ VB
are descendants of u or u itself. In particular,

any vertex before u is not in VA ∪ VB. (2.3.23)

Here, ’before’ is due to the Depth-First search order. This is the first nec-

essary condition for the event Γ(A,B)(Sx) = γ being true. Similar to the

computations in Section 2.2.2, the probability for (2.3.23) being true is b(γ).

Note that this condition just depends on (T \ Tu,ST |T\Tu), where Tu is the

subtrees generated by u and its descendants, and T \Tu is the tree generated

by u and those vertices outside Tu.

On the other hand, since u is the last common ancestor for some u1 ∈ VA
and u2 ∈ VB, when u /∈ VA ∪ VB, u must have two different children u1 and

u2, such that ST (Tu1) ∩ A 6= ∅ and ST (Tu2) ∩ B 6= ∅. This is the second

necessary condition for the event Γ(A,B)(Sx) = γ being true. Note that for

fixed γ, this condition is independent of (2.3.23), and its probability is at

most

∞∑
n=2

µ(n)n(n− 1)pA(γ̂)pB(γ̂) = σ2pA(γ̂)pB(γ̂).
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2.3. Branching capacity and branching recurrence

When u ∈ VA ∪ VB, say ∈ A (it implies γ̂ ∈ A), then similarly, u must

have a descendant mapped into B. The probability for this condition is:

pB(γ̂) = pA(γ̂)pB(γ̂). Combining the two conditions one can get (2.3.22).

By summation, one can get (2.3.19). This completes the proof of (2.3.19).

We require the assumption of the finite third moment of µ only for the

following lemma.

Lemma 2.3.16. When µ has finite third moment, we have:

P (Sx visits both A&B) � P (S ′x visits both A&B). (2.3.24)

Proof. In fact, we will show:

P (Sx visits both A&B) � pA(x)pB(x) + P (Sx visits both A&B);

(2.3.25)

P (S ′x visits both A&B) � pA(x)pB(x) + P (Sx visits both A&B);

(2.3.26)

where Sx is the finite snake from x conditioned on the initial particle having

only one child.

For the upper bound of the first assertion, consider whether Sx visits A

via the same child of the initial particle as it visits B via. If it does, this

probability is at most

∞∑
i=1

µ(i) · iP (Sx visits both A&B) = E(µ)P (Sx visits both A&B).

If it does not, this probability is at most

∞∑
i=2

µ(i) · i(i− 1)P (Sx visits A)P (Sx visits B) � pA(x)pB(x).

Note that we use the fact that
∑∞

i=2 µ(i) · i(i− 1) is bounded by the second

moment of µ and P (Sx visits A) � pA(x), which can be proved similar to
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2.3. Branching capacity and branching recurrence

(2.2.18). Combining the last two inequalities, we get the upper bound of

(2.3.25).

For the lower bound, it is easy to see that

P (Sx visits both A&B) ≥

∑
i≥2

µ(i)

P (Sx visits A)P (Sx visits B)

� pA(x)pB(x);

P (Sx visits both A&B) ≥

∑
i≥1

µ(i)

P (Sx visits both A&B).

Combining these two, we can the lower bound of (2.3.25).

Similarly one can get (2.3.26). Note that for the upper bound, we require

that µ̃ has finite second moment which is equivalent to the assumption that

µ has finite third moment.

2.3.5 Proof of Wiener’s Test

We first divide {x ∈ Rd : 1 ≤ |x| < 2} into a finite number of small pieces

with diameter less than 1/32: B1, . . . , BN . Let Kk
n = Kn ∩ (2nBk) for any

n ∈ N+, 1 ≤ k ≤ N . For any nonempty set Kk
n, we have diam(Kk

n) ≤ 2n/32

and ρ(0,Kk
n) ∈ [2n, 2n+1). Let V k

n be the event that S∞0 visits Kk
n. Applying

Theorem 2.3.13, we can get:

P (V k
n ) � BCap(Kk

n)

2n(d−4)
. (2.3.27)

Since each Kk
n is finite (any finite set is B-transient), we have

P (S∞0 visits K i.o.) = P (V k
n i.o.).

When
∑∞

n=0 BCap(Kn)/2n(d−4) <∞, by monotonicity, for any 1 ≤ k ≤
N ,

∞∑
n=1

BCap(Kk
n)

2n(d−4)
<
∞∑
n=0

BCap(Kn)

2n(d−4)
<∞.
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2.3. Branching capacity and branching recurrence

Hence,

∞∑
n=1

N∑
k=1

P (V k
n ) �

∞∑
n=1

N∑
k=1

BCap(Kk
n)

2n(d−4)
=

N∑
k=1

( ∞∑
n=1

BCap(Kk
n)

2n(d−4)

)
<∞.

Then by Borel-Cantelli Lemma, almost surely, only finite V k
n occurs and

hence K is B-transient.

When
∑∞

n=0 BCap(Kn)/2n(d−4) =∞, by subadditivity of branching ca-

pacity (see Section 2.2.1), we have:

∞∑
n=1

N∑
k=1

BCap(Kk
n)

2n(d−4)
≥
∞∑
n=1

BCap(Kn)

2n(d−4)
=∞.

Hence for some 1 ≤ k ≤ N ,
∑∞

n=1 BCap(Kk
n)/2n(d−4) =∞. Suppose

∞∑
n=1

BCap(K1
n)/2n(d−4) =∞.

We need the following Lemma whose proof we postpone.

Lemma 2.3.17. There exists some C > 0, such that, for any n < m, we

have:

P (V 1
n ∩ V 1

m) ≤ CP (V 1
n )P (V 1

m).

Let In =
∑n

i=1 1V 1
i

and F = 1{In≥E(In)/2}. By the lemma above, we

have:

E(I2
n) ≤ C(E(In))2.

Note that

E(FIn) = EIn − E(In1{In<E(In)/2}) ≥ E(In)/2.

Hence,

P (In ≥ E(In)/2) = E(F ) = E(F 2)

≥ (E(FIn))2/E(I2
n) ≥ (E(In)/2)2/C(E(In))2 = 1/(4C).
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2.3. Branching capacity and branching recurrence

Since EIn →∞, let n→∞, we get

P (In =∞) ≥ 1/(4C).

By Proposition 2.3.3, we get that K is B-recurrent.

2.3.6 Proof of Lemma 2.3.17

Write A = K1
n, B = K1

m and M = 2m. Without loss of generality, assume

A,B 6= ∅. We know

diam(A) ≤ 2n/32, diam(B) ≤ 2m/32.

Fix any a ∈ A and b ∈ B. Let Â = a+ C(2n/8) and B̂ = b+ C(2m/8). Then

we have

ρ(A, Âc) � ρ(0, Â) � 2n; ρ(B, B̂c) � ρ(0, B̂) � 2m; ρ(a, b) � ρ(Â, B̂) � 2m.

(2.3.28)

We need to show:

P (S∞0 visits both A&B) � qA(0)qB(0). (2.3.29)

In the proof, we will repeatedly use (1.3.2), Theorem 2.3.13, (2.3.12) and

Lemma 2.3.5 without mention. Since (see (2.3.20) and (2.3.24))

P (S∞0 visits both A&B) �∑
z∈Zd

GA∪B(0, z) · (pA(z)qB(z) + pB(z)qA(z) + P (Sz visits both A&B)) ,
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2.3. Branching capacity and branching recurrence

it suffices to show: ∑
z∈Zd

GA∪B(0, z)pA(z)qB(z) � qA(0)qB(0); (2.3.30)

∑
z∈Zd

GA∪B(0, z)pB(z)qA(z) � qA(0)qB(0); (2.3.31)

∑
z∈Zd

GA∪B(0, z)P (Sz visits both A&B) � qA(0)qB(0). (2.3.32)

Note that by monotonicity, GA∪B(x, y) ≤ min{GA(x, y), GB(x, y)}. For

(2.3.30), we have:∑
z∈Zd

GA∪B(0, z)pA(z)qB(z)

=
∑
z∈B̂

GA∪B(0, z)pA(z)qB(z) +
∑
z∈B̂c

GA∪B(0, z)pA(z)qB(z)

�
∑
z∈B̂

GB(0, z)pA(b)qB(z) +
∑
z∈B̂c

GA(0, z)pA(z)qB(0)

�(diam(B̂))2qB(0)pA(b) + qA(0)qB(0) � qA(0)qB(0).

Similarly one can show (2.3.31).

We just need to show (2.3.32). We first argue that:

P (Sz visits both A&B) �

{
pA(b)qB(z) + pB(0)qA(z); when z ∈ C(4M);

pA(z)qB(a); when z /∈ C(4M).

(2.3.33)

By (2.3.19), we need to estimate:∑
w∈Zd

GA∪B(z, w)pA(w)pB(w).
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2.3. Branching capacity and branching recurrence

When z ∈ C(4M), we have∑
w∈Zd

GA∪B(z, w)pA(w)pB(w)

=
∑
w∈B̂

GA∪B(z, w)pA(w)pB(w) +
∑
w∈B̂c

GA∪B(z, w)pA(w)pB(w)

�
∑
w∈B̂

GA(z, w)pA(b)pB(w) +
∑
w∈B̂c

GB(z, w)pA(w)pB(0)

� pA(b)qB(z) + pB(0)qA(z).

When z /∈ C(4M), let Ĉ = C(3M). We divide the sum into three parts:∑
w∈B̂

,
∑

w∈Ĉ\B̂

,
∑
w∈Ĉc

.

∑
w∈B̂

GA∪B(z, w)pA(w)pB(w) �
∑
w∈B̂

GB(z, w)pA(b)pB(w)

� (diamB̂)2pB(z)pA(b) � (ρ(a, b))2 BCap(A)BCap(B)

(ρ(z,B))d−2(ρ(a, b)d−2)

� pA(z)qB(a);∑
w∈Ĉ\B̂

GA∪B(z, w)pA(w)pB(w) �
∑

w∈Ĉ\B̂

GA(z, w)pA(w)pB(a)

� (diamĈ)2pA(z)pB(a) � pA(z)qB(a);∑
w∈Ĉc

GA∪B(z, w)pA(w)pB(w) �
∑
w∈Ĉc

g(z, w)
BCap(A)BCap(B)

|w − a|d−2|w − b|d−2

�BCap(A)BCap(B)
∑
w∈Ĉc

1

|w − z|d−2|w − a|2d−4

(∗)
� BCap(A)BCap(B)

|z − a|d−2|b− a|d−4
� pA(z)qB(a).
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Combining all three above, we get (2.3.33). Note that for (∗), we use:

∑
w∈Ĉc

1

|w − z|d−2|w − a|2d−4

≤
∑

‖w−z‖≤‖z‖/8

1

|w − z|d−2|w − a|2d−4
+

∑
‖w−z‖≥‖z‖/8,w∈Ĉc

1

|w − z|d−2|w − a|2d−4

�
∑

‖w−z‖≤‖z‖/8

1

|w − z|d−2|z − a|2d−4
+

∑
‖w−z‖≥‖z‖/8,w∈Ĉc

1

|z|d−2|w − a|2d−4

� |z|2

|z − a|2d−4
+

1

|z|d−2

∑
w∈Ĉc

1

|w − a|2d−4
� 1

|z|2d−6
+

1

|z|d−2

∑
n≥3M

nd−1

n2d−4

� 1

|z|2d−6
+

1

|z|d−2

1

Md−4
� 1

|z|d−2

1

Md−4
� 1

|z − a|d−2|b− a|d−4
.

Hence,∑
z∈Zd

GA∪B(0, z)P (Sz visits both A&B)

�
∑

z∈C(4M)

GA∪B(0, z)(pA(b)qB(z) + pB(0)qA(z))+

∑
z∈C(4M)c

GA(0, z)pA(z)qB(a)

�M2pA(b)qB(0) +M2pB(0)qA(0) + qA(0)qB(a) � qB(0)qA(0).

This is just (2.3.32) and we finish the proof.

2.4 The critical dimension: d=4

In this section, we focus on the critical dimension d = 4. Note that now

(2.1.2) is just:

g(x) ∼ a4‖x‖−2; (2.4.1)

where a4 = 1/(8π2
√

detQ) with Q being the covariant matrix of θ.
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For some technical reasons, we assume further that, in this section, θ

has finite exponential moments, i.e. for some λ > 0,∑
z∈Z4

θ(z) · exp(λ|z|) <∞.

2.4.1 An upper bound

In this subsection, we construct a weaker result which will be used in the

proof of Theorem 1.3.12:

Theorem 2.4.1.

p{0}(x) � (|x|2 log |x|)−1. (2.4.2)

Remark 2.4.1. On the other hand, the reversed inequality can be obtained

by the second moment method. This process is similar to and easier than

the proof for the lower bound in Theorem 2.2.12.

The idea of proof is as follows. From simple calculation one can see that

the expectation of the times of visiting x is g(x) � |x|−2. If conditioned on

visiting, the expectation of the visiting times is of order log |x|, then we can

get (2.4.2). In fact, we will show that this is true with high probability.

Let N0 be the number of times of visiting 0. We need to estimate

E(N0|Sx visits K via γ). For any finite path γ, define

N0(γ) =

|γ|∑
i=0

N(γ(i))g(γ(i), 0), (2.4.3)

where N(x) = NK(x) = Eµx (see (2.2.25), (2.2.27) and set K = {0}).
By Proposition 2.2.11, we have:

E(N0|Sx visits 0 via γ) = N0(γ).
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For N(x), we have:

N(x) =Eµx =

∑
l≥0,m≥0mµ(l +m+ 1)(r̃(x))l∑
l≥0,m≥0 µ(l +m+ 1)(r̃(x))l

≥
∑

l=0,m≥0mµ(m+ 1)∑
l≥0,m≥0 µ(l +m+ 1)

=

∑
m≥0mµ(m+ 1)∑

l≥0,m≥0 µ(l +m+ 1)
= µ(0).

Write g(γ) =
∑|γ|

i=0 g(γ(i)). Then we have:

N0(γ) ≥ µ(0)g(γ) � g(γ). (2.4.4)

We need the following lemma and postpone its proof:

Lemma 2.4.2. There exists a c > 0, such that for any x, we have:∑
γ:x→0,g(γ)≤c log |x|

b(γ) � |x|−2.1. (2.4.5)

Now we start the proof of Theorem 2.4.1. First we have

EN0 = g(x, 0) � |x|−2.

Hence,

|x|−2 � EN0 =
∑
γ:x→0

b(γ)N0(γ)
(2.4.4)

�
∑
γ:x→0

b(γ)g(γ)

≥
∑

γ:x→0,g(γ)≥c log |x|

b(γ)g(γ) �
∑

γ:x→0,g(γ)≥c log |x|

b(γ) log |x|.

Therefore we have: ∑
γ:x→0,g(γ)≥c log |x|

b(γ) � 1/(|x|2 log |x|).
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Then we have:

p{0}(x) =
∑
γ:x→0

b(γ) =
∑

γ:x→0,g(γ)≥c log |x|

b(γ) +
∑

γ:x→0,g(γ)<c log |x|

b(γ)

� 1/|x|2.1 + 1/(|x|2 log |x|) � 1/(|x|2 log |x|).

We still need to show (2.4.5). Note that b(γ) ≤ s(γ). Hence (2.4.5) can be

obtained by

Proposition 2.4.3. There exist c1, c2 such that for x ∈ Z4 with |x| suffi-

ciently large,

P (τx <∞,
τx∑
i=0

g(Si) ≤ c1 log |x|) ≤ c2|x|−2.1,

where (Si)i∈N is a random walk starting from 0 with distribution θ− and τx

is the hitting time for x.

This proposition is an adjusted version of Lemma 10.1.2 (a) in [11].

It is assumed there that θ has finite support which is stronger than our

assumptions, though its conclusion is also stronger than ours. The argument

is similar to the one there with small adjustments. We mention the main

difference here and leave the details to the reader. It suffices to prove:

P (

τn∑
i=0

g(Si) ≤ c1 log n) ≤ c2n
−2.1, (2.4.6)

where τn = min{k ≥ 0 : |Sk| ≥ n}.
Let N = bn0.9c. Let A be the event that |Xi| ≤ N , for i = 1, 2, . . . , 2n2∧

τn (where Xi = Si − Si−1). Note that P (Ac) � n−2.1. When A happens,

the range of the random walk is bounded by N for the first 2n2 steps. Since

only first 2n2 steps are bounded, we need to change the stopping times

there a bit. Let ξ0 = 0, ξi = min{k : |Sk| ≥ 2iN} ∧ (ξi−1 + (2iN)2), for

i = 1, 2, . . . , L, where L = max{k : 2kN ≤ n} � log n. Now (2.4.6) can be

obtained by following the argument of the proof of Lemma 10.1.2 (a) in [11]

.
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2.4.2 The visiting probability

The main goal of this subsection is to prove Theorem 1.3.12. In this subsec-

tion and the next, we fix a finite nonempty subset K ⊂⊂ Z4 and therefore

the corresponding constants may also depend on K.

The first step is to construct the following estimate of the Green function:

Lemma 2.4.4. For any α ∈ (0, 1/2), we have:

lim
x,y→∞:‖x‖/(log ‖x‖)α≤‖y‖≤‖x‖·(log ‖x‖)α

GK(x, y)

g(x, y)
= 1. (2.4.7)

Remark 2.4.2. In supercritical dimensions, we have GK(x, y) ∼ g(x, y)

(see Lemma 2.2.4). In the critical dimension, this holds only when x, y are

not too far away from each other, compared with their norms. We will give

a more precise asymptotic behavior of GK in next subsection.

Proof of Lemma 2.4.4. We use the same idea in the proof for a similar form

in supercritical dimension (see Section 2.2.3). Since α < 1/2, we can pick

up some β, ε > 0, such that ε+ 2α+ 2β < 1. Without loss of generality, we

assume ‖y‖ ≥ ‖x‖. Let r = ‖x‖/ logβ ‖x‖ and

Γ1 = {γ : x→ y| |γ| ≥ (log ‖x‖)ε‖x− y‖2};

Γ2 = {γ : x→ y|γ visits C(r)}.

We just need to check: (when ‖x‖ → ∞)∑
γ∈Γ1

s(γ)/g(x, y)→ 0;
∑
γ∈Γ2

s(γ)/g(x, y)→ 0;

b(γ)/s(γ)→ 1, for any γ : x→ y, /∈ Γ1 ∪ Γ2.

The first one follows from Lemma 2.1.2. The second one can be obtained
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2.4. The critical dimension: d=4

by: (let B = C(r)):∑
γ∈Γ2

s(γ) =
∑
a∈B
HBc(x, a)g(a, y) �

∑
a∈B
HBc(x, a)‖y‖−2

=P (Sx visits B) · ‖y‖−2 � (r/‖x‖)2‖y‖−2

�(log ‖x‖)−2β‖x− y‖−2 � g(x, y).

Note that the estimate of P (Sx visits C(r)) � (r/‖x‖)2 is standard, and for

the second last inequality we use ‖y‖ ≥ (‖x‖+ ‖y‖)/2 � ‖x− y‖.
For the third one, note that in the critical dimension d = 4, by (2.4.2)

and (2.2.18), the killing function k(z) = rK(z) � pK(z) � 1/(‖z‖2 log ‖z‖).
Hence, we have:

for any γ : x→ y, /∈ Γ1 ∪ Γ2,

b(γ)/s(γ) =

|γ|−1∏
i=0

(1− k(γ(i))) ≥ (1− c/(r2 log r))|γ| ≥ 1− c|γ|/(r2 log r)

≥1− c(log ‖x‖)ε‖y‖2/((‖x‖/ logβ ‖x‖)2(log ‖x‖))

≥1− c(log ‖x‖)ε(‖x‖ logα ‖x‖)2/((‖x‖/ logβ ‖x‖)2(log ‖x‖))

≥1− c(log ‖x‖)ε+2α+2β/ log ‖x‖ → 1.

Let N be the number of times of visiting K. We need to estimate

E(N |Sx visits K via γ). For any finite path γ, define

N (γ) =

|γ|∑
i=0

N(γ(i))g(γ(i),K); N−(γ) =

|γ|−1∑
i=0

N(γ(i))g(γ(i),K). (2.4.8)

By Proposition 2.2.11, we have:

E(N |Sx visits K via γ)) = N (γ).
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2.4. The critical dimension: d=4

Hence, we have: ∑
γ:x→K

b(γ)N (γ) = g(x,K) ∼ a4|K|‖x‖−2. (2.4.9)

The main step is to control the sum of the escape probabilities:

Proposition 2.4.5.

∑
γ:C(2n)\C(n)→K,γ⊆C(n)

b(γ) ∼ 4π2
√

detQ

σ2

1

log n
. (2.4.10)

In order to prove this proposition, we need two lemmas about random

walks. They are adjusted versions of Lemma 17 and Lemma 18 in [14]. As

before, write (Sj)j∈N for the random walk (starting from 0). Let τn be the

first visiting time of C(n)c by the random walk and h(x) : Z4 → R+ is a

fixed positive function satisfying h(x) ∼ a4‖x‖−2.

Lemma 2.4.6. For p = 1, 2, there exists a constant C(p) (also depending

on h) such that, for every n ≥ 2,

E(

τn∑
j=0

h(Sj))
p ≤ C(p)(log n)p. (2.4.11)

.

Lemma 2.4.7. For every α, p > 0, there exists a constant Cα(p) (also

depending on h) such that, for every n ≥ 2, we have

P (|
τn∑
k=0

h(Sj)− 4a4 log n| ≥ α log n) ≤ Cα(p)(log n)−p. (2.4.12)

In fact, we apply both lemmas for the reversed random walk (that

is, with jump distribution θ−) other than the original random walk. Let

h(x) = 2N(x)g(x,K)/(σ2|K|). Recall that N(x) = Eµx ∼ σ2/2 and
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2.4. The critical dimension: d=4

N (γ) =
∑
σ2|K|h(γ(i))/2). Hence, for any a ∈ K we have:∑

γ:C(n)c→a,γ⊆C(n)

s(γ)(N (γ))2 � (log n)2,

∑
γ:C(n)c→a,γ⊆C(n),|N (γ)−2a4|K|σ2 logn|≥α logn

s(γ) ≤ Cα(p)(log n)−p.

By monotonicity and summation, we get:∑
γ:C(n)c→K,γ⊆C(n)\K

s(γ)(N (γ))2 � (log n)2, (2.4.13)

∑
γ:C(n)c→K,γ⊆C(n)\K,|N (γ)−2a4|K|σ2 logn|≥α logn

s(γ) � Cα(p)(log n)−p.

(2.4.14)

Let us make some comments about the proofs. Lemma 18 in [14] states

that

P (|
n∑
k=0

g(Sj)− 2a4 log n| ≥ α log n) ≤ Cα(log n)−3/2.

where g is the Green function. Their argument is to derive an analogous

result for Brownian motion and then to transfer this result to the random

walk via the strong invariance principle. This argument also works here with

small adjustments. Note that it is assumed there that the jump distribution

θ is symmetric (besides having exponential tail). However if one checks the

proof there, one can see that the assumption of symmetry is not needed and

g(x) can be replaced by any h(x) satisfying h(x) ∼ a4‖x‖−2 . Moreover,

the exponent 3/2 can be replaced by any positive constant p with minor

modifications. Combing this with the fact that for any fixed ε > 0, P (τn /∈
[n2−ε, n2+ε]) = o((log n)−p), one can get Lemma 2.4.7.

For Lemma 2.4.6, we give a direct proof here:
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2.4. The critical dimension: d=4

Proof of Lemma 2.4.6. For p=1,

E(

τn∑
j=0

h(Sj)) �
∑
z∈C(n)

h(z)E(

τn∑
j=0

1Sj=z) �
∑
z∈C(n)

|z|−2E(
∞∑
j=0

1Sj=z)

=
∑
z∈C(n)

|z|−2g(0, z) �
∑
z∈C(n)

|z|−4 � log n.

For p=2,

E(

τn∑
j=0

h(Sj))
2 � E(

∑
z∈C(n)

h(z)

τn∑
j=0

1Sj=z)
2 � E(

∑
z∈C(n)

|z|−2
∞∑
j=0

1Sj=z)
2

=
∑

z,w∈C(n)

|z|−2|w|−2E(

∞∑
j=0

1Sj=z

∞∑
i=0

1Si=w).

Write Ax =
∑∞

j=0 1Sj=x and A = Az +Aw. We point out that

E(AzAw) � (|z|−2 + |w|−2)|z − w|−2. (2.4.15)

If so, note that∑
z,w∈C(n)

|z|−2|w|−2(|z|−2 + |w|−2)|z − w|−2

�
∑

z,w∈C(n):|z|≤|w|

|z|−4|w|−2|z − w|−2

≤
∑

w∈C(n)

(
∑

z:|z|≤|w|,|z−w|≥|w|/2

+
∑

z:|z|≤|w|,|z−w|≤|w|/2

)|z|−4|w|−2|z − w|−2

�
∑

w∈C(n)

(
∑

z:|z|≤|w|,|z−w|≥|w|/2

|z|−4|w|−4 +
∑

z:|z|≤|w|,|z−w|≤|w|/2

|w|−6|z − w|−2)

�
∑

w∈C(n)

((log |w|)|w|−4 + |w|−4) � (log n)2,

and then one can get E(
∑τn

j=0 h(Sj))
2 � (log n)2. We now only need to show

(2.4.15). Without loss of generality, assume z 6= w (the case z = w can be
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addressed similarly with small adjustments). Note that

E(AzAw) ≤ E(A2;Az > 0, Aw > 0) �
∑
k≥2

kP (A ≥ k,Az > 0, Aw > 0).

By Markov property, one can see that:

P (A ≥ k,Az > 0, Aw > 0) ≤

P (Az > 0)((k−1)Pz(Aw > 0)ck−2) +P (Aw > 0)((k−1)Pw(Az > 0)ck−2),

where we write Px for the law of random walk starting from x and

c = sup
x 6=y∈Z4

Px(Ax +Ay > 1) < 1.

Hence, we have:∑
k≥2

kP (A ≥ k,Az > 0, Aw > 0)

≤(
∑
k≥2

k(k − 1)ck−2)(P (Az > 0)Pz(Aw > 0) + P (Aw > 0)Pw(Az > 0))

�P (Az > 0)Pz(Aw > 0) + P (Aw > 0)Pw(Az > 0)

�(|z|−2 + |w|−2)|z − w|−2.

Proof of Proposition 2.4.5. We first show the following weaker result:

Lemma 2.4.8. ∑
γ:C(2n)\C(n)→K,γ⊆C(n)

b(γ) � (log n)−1, as n→∞. (2.4.16)

Proof. By (2.4.2) and (2.2.7), we have:∑
γ:x→K

b(γ) � (‖x‖2 log ‖x‖)−1. (2.4.17)
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Pick some x ∈ Zd such that n = b‖x‖(log ‖x‖)−1/4c. Let B = C(n) and

B1 = C(2n). By the First-Visit Lemma, we have:∑
γ:x→K

b(γ) =
∑
a∈K

∑
z∈Bc

GK(x, z)HBk (z, a) ≥
∑
a∈K

∑
z∈B1\B

GK(x, z)HBk (z, a)

(2.4.7)

�
∑
a∈K

∑
z∈B1\B

g(x, z)HBk (z, a) � ‖x‖−2
∑

γ:C(2n)\C(n)→K,γ⊆C(n)

b(γ).

Combining this with (2.4.17) gives (2.4.16).

We need to transfer (2.4.9) to the following form:

Lemma 2.4.9.

lim
n→∞

∑
γ:C(2n)\C(n)→K,γ⊆C(n)

N (γ)b(γ) = |K|. (2.4.18)

Proof of (2.4.18). Pick some x ∈ Zd such that n = b‖x‖(log ‖x‖)−1/4c. Let

B = C(n) and B1 = C(2n). By decomposing γ at the last step in B, one can

get:∑
γ:x→K

b(γ)N (γ) =
∑
z∈Bc

∑
γ1:x→z

∑
γ2:z→K,γ2⊆B

b(γ1)b(γ2)(N−(γ1) +N (γ2))

=
∑
z∈Bc

∑
γ1:x→z

∑
γ2:z→K,γ2⊆B

b(γ1)b(γ2)N−(γ1)+

∑
z∈Bc

∑
γ1:x→z

∑
γ2:z→K,γ2⊆B

b(γ1)b(γ2)N (γ2)

=
∑
z∈Bc

∑
γ2:z→K,γ2⊆B

b(γ2)
∑

γ1:x→z
b(γ1)N−(γ1)+

∑
z∈Bc

∑
γ2:z→K,γ2⊆B

b(γ2)N (γ2)
∑

γ1:x→z
b(γ1).

We argue that the first term is negligible:∑
z∈Bc

∑
γ2:z→K,γ2⊆B

b(γ2)
∑

γ1:x→z
b(γ1)N−(γ1)� ‖x‖−2. (2.4.19)
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Note that

∑
γ:x→z

b(γ)N−(γ) ≤
∑
w∈Zd

N(w)g(w,K)
∑
γ:x→z

b(γ)

|γ|∑
i=0

1γ(i)=w

�
∑
w∈Zd

|w|−2
∑
γ:x→w

b(γ)
∑
γ:w→z

b(γ) ≤
∑
w∈Zd

|w|−2g(x,w)g(w, z).

In order to estimate the term above, we need the following easy lemma

whose proof we postpone

Lemma 2.4.10. For any a, b, c ∈ Z4, we have:

∑
z∈Z4

|z − a|−2|z − b|−2|z − c|−2 � 1 ∨ log(M/m)

M2
, (2.4.20)

where M = max{|a− b|, |b− c|, |c− a|} and m = min{|a− b|, |b− c|, |c− a|}.

By this lemma, when z ∈ B1 \ B,
∑

γ:x→z b(γ)N−(γ) � log(‖x‖/n)
‖x‖2 . To-

gether with (2.4.16), we have∑
z∈B1\B

∑
γ2:z→K,γ2⊆B

b(γ2)
∑

γ1:x→z
b(γ1)N−(γ1)� ‖x‖−2.

Also by Lemma 2.4.10 when z ∈ Bc
1,
∑

γ:x→z b(γ)N−(γ) � log(‖x‖)
‖x‖2 . On the

other hand, by the Overshoot Lemma, we have
∑

z∈Bc1

∑
γ2:z→K,γ2⊆B b(γ2) �

n−4. Hence,∑
z∈Bc1

∑
γ2:z→K,γ2⊆B

b(γ2)
∑

γ1:x→z
b(γ1)N−(γ1)� ‖x‖−2.

This completes the proof of (2.4.19). Combining (2.4.19) with (2.4.9) gives:∑
z∈Bc

∑
γ2:z→K,γ2⊆B

b(γ2)N (γ2)
∑

γ1:x→z
b(γ1) ∼ a4|K|‖x‖−2.
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Now we aim to show∑
z∈Bc1

∑
γ2:z→K,γ2⊆B

b(γ2)N (γ2)
∑

γ1:x→z
b(γ1)� a4|K|‖x‖−2. (2.4.21)

If so, then we have:∑
z∈B1\B

∑
γ2:z→K,γ2⊆B

b(γ2)N (γ2)
∑

γ1:x→z
b(γ1) ∼ a4|K|‖x‖−2, (2.4.22)

and combining this with Lemma 2.4.4 gives (2.4.18). Since
∑

γ1:x→z b(γ1) =

GK(x, z) � 1 and b(γ) ≤ s(γ). It suffices to show:∑
γ:Bc1→K,γ⊆B

s(γ)N (γ)� ‖x‖−2. (2.4.23)

By Cauchy-Schwarz inequality, one can get:∑
γ:Bc1→K,γ⊆B

s(γ)N (γ) ≤ (
∑

γ:Bc1→K,γ⊆B
s(γ))1/2(

∑
γ:Bc1→K,γ⊆B

s(γ)(N (γ))2)1/2.

By the Overshoot Lemma, the first term in the right hand side decays faster

than any polynomial of n. On the other hand, due to (2.4.13), the sec-

ond term in the right hand side is less than log n by a constant multiplier.

Combining both gives (2.4.23) and finishes the proof of (2.4.18).

Now we are ready to prove Proposition 2.4.5. Fix any small ε > 0. Let

n = ‖x‖/(log ‖x‖)1/4,

Γ = {γ : C(2n) \ C(n)→ K, γ ⊆ C(n) \K},

Γ1 = {γ ∈ Γ : |N (γ)− 2a4σ
2|K| log n| > ε log n} and Γ2 = Γ \ Γ1.

By (2.4.14), we have: (when ‖x‖ and hence n are large)∑
γ∈Γ1

s(γ) � (log n)−4. (2.4.24)
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Hence, we have (when n is large):

∑
γ∈Γ1

b(γ)N (γ) ≤
∑
γ∈Γ1

s(γ)N (γ) ≤ (
∑
γ∈Γ1

s(γ) ·
∑
γ∈Γ1

s(γ)(N (γ))2)1/2

(2.4.24),(2.4.13)

� ((log n)−4(log n)2)1/2 = (log n)−1 � |K|.

Combing this with (2.4.18) gives:∑
γ∈Γ2

b(γ)N (γ) ∼ |K|.

Hence, we have (when n is large):

(1− ε)|K|
(2a4σ2|K|+ ε) log n

≤
∑
γ∈Γ2

b(γ) ≤ (1 + ε)|K|
(2a4σ2|K| − ε) log n

.

On the other hand,
∑

γ∈Γ1
b(γ) � (log n)−1. Let ε → 0+, one can get

Proposition 2.4.5.

Proof of Lemma 2.4.10. Without loss of generality, assume m = |a−b|. Let

Ba = {z : |z−a| ≤ 3m/4}, Bb = {z : |z−b| ≤ 3m/4} and Bc = {z : |z−c| ≤
M/4}. Write t = (a + b)/2 and B = {z : |z − t| ≤ 2M}. Then we can

estimate separately:

∑
z∈Ba

|z − a|−2|z − b|−2|z − c|−2 �
∑
z∈Ba

1

|z − a|2m2M2

� 1

m2M2

∑
z∈Ba

1

|z − a|2
� m2

m2M2
≤ 1

M2
;

∑
z∈Bb

|z − a|−2|z − b|−2|z − c|−2 � 1

M2
(similarly);
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∑
z∈Bc

|z − a|−2|z − b|−2|z − c|−2 �
∑
z∈Ba

1

|z − c|2M2M2

� 1

M4

∑
z∈Bc

1

|z − c|2
� M2

M4
≤ 1

M2
;

∑
z∈B\(Ba∪Bb∪Bc)

|z − a|−2|z − b|−2|z − c|−2 �
∑

z∈B\(Ba∪Bb∪Bc)

1

|z − t|2|z − t|2M2

� 1

M2

∑
z:m/4≤|z−t|≤2M

1

|z − t|4
� 1

M2

∑
:m/4≤n≤2M

n3

n4
� 1 ∨ log(M/m)

M2
;

∑
z∈Bc

|z−a|−2|z − b|−2|z − c|−2 �
∑
z∈Bc

1

|z − t|6
�
∑
n≥2M

n3

n6
� 1

M2
.

This completes the proof.

Now we are ready to prove Theorem 1.3.12.

Proof of Theorem 1.3.12. Let n = ‖x‖/(log ‖x‖)1/4, B = C(n), B1 = C(2n)\
B and B2 = C(2n)c. As before, by (2.2.7) and the First-Visit Lemma, we

have:

P (Sx visits K) =
∑

γ:x→K
b(γ) =

∑
b∈Bc

GK(x, b)
∑
a∈K
HBk (b, a)

=
∑
b∈B1

GK(x, b)
∑
a∈K
HBk (b, a) +

∑
b∈B2

GK(x, b)
∑
a∈K
HBk (b, a).

We argue that the first term has the desired asymptotics and the second is

negligible:∑
b∈B1

GK(x, b)
∑
a∈K
HBk (b, a)

(2.4.7)∼ a4‖x‖−2
∑
b∈B1

∑
a∈K
HBk (b, a)

(2.4.10)∼ a4‖x‖−2 4π2
√

detQ

σ2 log n
∼ 1

2σ2‖x‖2 log ‖x‖
;
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∑
b∈B2

GK(x, b)
∑
a∈K
HBk (b, a) �

∑
a∈K

∑
b∈B2

HBk (b, a)

(2.1.6)

� |K|n2/n5 � 1/‖x‖2 log ‖x‖.

2.4.3 Convergence of the first visiting point

We aim to show Theorem 1.3.13. For simplicity, we assume in this subsection

that θ has finite range. Then, for any subset B ⊂⊂ Z4, we can denote its

outer boundary and inner boundary by:

∂oB
.
= {y /∈ B : ∃x ∈ B, such that θ(x− y) ∨ θ(y − x) > 0};

∂iB
.
= {y ∈ B : ∃x /∈ B, such that θ(x− y) ∨ θ(y − x) > 0}.

The first step is to construct the following asymptotical behavior of the

Green function:

Lemma 2.4.11.

lim
x,y→∞:‖x‖≥‖y‖

GK(x, y)

(log ‖y‖/ log ‖x‖)g(x, y)
= 1; (2.4.25)

Remark 2.4.3. It is a bit unsatisfactory that we need to require ‖x‖ ≥ ‖y‖
in the limit. When θ is symmetric, this requirement can be removed since

GK(x, y)/(1− k(x)) = GK(y, x)/(1− k(y)).

Proof. By Lemma 2.4.4, we can assume ‖x‖ ≥ ‖y‖(log ‖y‖)1/4. Let n =

‖y‖(log ‖y‖)1/8 and B = C(n). As before, we have:

pK(x) = GK(x,K) =
∑
z∈∂iB

HBck (x, z)GK(z,K) =
∑
z∈∂iB

HBck (x, z)pK(z).

By Theorem 1.3.12, we get:

∑
z∈∂iB

HBck (x, z) ∼ n2 log n

‖x‖2 log ‖x‖
. (2.4.26)
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By Lemma 2.4.4, we have GK(z, y) ∼ g(z, y) ∼ a4n
−2 for any z ∈ ∂iB.

Therefore,

GK(x, y) =
∑
z∈∂iB

HBck (x, z)GK(z, y) ∼
∑
z∈∂iB

HBck (x, z)a4n
−2

∼ a4 log n/(‖x‖2 log ‖x‖) ∼ a4 log ‖y‖/(‖x‖2 log ‖x‖).

This finishes the proof.

Now we give the following asymptotics of the escape probability by a

reversed snake.

Lemma 2.4.12. For any x ∈ Z4, we have:

EK(x)
.
= lim

n→∞
log n ·

∑
z∈∂oC(n)

HC(n)
k (z, x) exists. (2.4.27)

Remark 2.4.4. Note that HC(n)
k (z, x) = HC(n)\K

k (z, x) and∑
z∈∂oC(n)H

C(n)
k (z, x) is the probability that a reversed snake starting from

x does not return to K, except for the bush grafted to the root, until the

backbone reaches outside of C(n). For the random walk in critical dimension

(d = 2), we also have (e.g. see Section 2.3 in [10]):

EK(x)
.
= lim

n→∞
log n·

∑
z∈∂oC(n)

HC(n)\K(z, x) exists, for any x ∈ Z2,K ⊂⊂ Z2;

and

lim
x→∞

P (Sx(τK) = a|Sx visits K) =
1

π2
√

detQ
EK(a).

Proof. We first need to show:

lim
n→∞,y→∞: ‖y‖≤n

log n

log ‖y‖
∑

z∈∂oC(n)

HC(n)
k (z, y) = 1. (2.4.28)

Choose some x ∈ Z4 such that ‖x‖ ≥ n log n. By the First-Visit Lemma, we
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have:

GK(x, y) =
∑

z∈∂oC(n)

GK(x, z)HC(n)
k (z, y). (2.4.29)

Due to last lemma, GK(x, y) ∼ a4‖x‖−2 · log ‖y‖/ log ‖x‖, GK(x, z) ∼
a4‖x‖−2 · log n/ log ‖x‖. Together with (2.4.29), one can get (2.4.28).

Now we are ready to show (2.4.27). Without loss of generality, assume

‖x‖ > Rad(K). Write

a(n) = logn ·
∑

z∈∂oC(n)

HC(n)
k (z, x).

Note that, for any (large) m > n,∑
w∈∂oC(m)

HC(m)
k (w, x) =

∑
z∈∂oC(n)

HC(n)
k (z, x)

∑
w∈∂oC(m)

HC(m)
k (w, z).

By (2.4.28), we have
∑

w∈∂oC(m)H
C(m)
k (w, z) ∼ log n/ logm. This implies

a(n)/a(m) ∼ 1 and hence the convergence of a(n).

Proof of Theorem 1.3.13. Let n = ‖x‖/ log ‖x‖ and B = C(n). Then,

P (Sx(τK) = a|Sx visits K) =

∑
γ:x→a b(γ)

pK(x)
∼
∑

z∈∂oB GK(x, z)HBk (z, a)

1/2σ2‖x‖2 log ‖x‖

∼
a4‖x‖−2

∑
z∈∂oBH

B
k (z, a)

1/2σ2‖x‖2 log ‖x‖
∼ a4‖x‖−2EK(a) log−1 n

1/2σ2‖x‖2 log ‖x‖

∼ 2σ2a4EK(a) =
σ2EK(a)

4π2
√

detQ
.

2.4.4 The range of branching random walk conditioned on

the total size

The main goal of this subsection is to construct the asymptotics of the range

of the branching random walk conditioned on the total size, i.e. Theorem

1.3.14. Our proof of this theorem is based on some ideas from [14]. Espe-
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2.4. The critical dimension: d=4

cially, we need to use the invariant shift on the invariant snake, SI .
For the invariant snake SI , recall that its backbone is just a random

walk with jump distribution θ−. We write τn for the hitting time (vertex)

of (C(n))c by the backbone. Thanks to Proposition 2.4.5, we can obtain the

following:

Proposition 2.4.13.

P (SI0 (v) 6= 0, ∀v ≤ τn not on the spine) ∼ 4π2
√

detQ

σ2

1

log n
;

P (SI0 (vi) 6= 0, i = 1, 2, . . . , n) ∼ 16π2
√

detQ

σ2

1

log n
;

where v1 < v2 < v3 < . . . are all vertices of SI0 that are not on the spine.

Proof. By Proposition 2.4.5 (set K = {0}) and the Overshoot Lemma, we

have: ∑
γ:(C(n))c→0,γ⊆C(n)

b(γ) ∼ 4π2
√

detQ

σ2

1

log n
.

Hence, the first assertion can be obtained if we can show

P (SI0 (v) 6= 0, ∀v ≤ τn not on the spine) ∼
∑

γ:(C(n))c→0,γ⊆C(n)

b(γ).

Let p0 = P (S0 does not visit 0 except at the root) and the new killing

function k′(x) be the probability that S ′x visits to 0 (except possibly for the

starting point). Note that k′(x) = kK(x) when x 6= 0. We write bk′(γ) for

the probability weight of γ with this killing function. Then, we have

P (SI0 (v) 6= 0, ∀v ≤ τn not on the spine) ∼ p0

∑
γ:(C(n))c→0, γ⊆C(n)

bk′(γ)

= p0(
∑

γ:(C(n))c→0, γ⊆C(n)\{0}

bk′(γ))(
∑

γ:0→0, γ⊆C(n)

bk′(γ)).
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Note that limn→∞
∑

γ:0→0, γ⊆C(n) bk′(γ) =
∑

γ:0→0 bk′(γ) and

∑
γ:(C(n))c→0, γ⊆C(n)

b(γ) =
∑

γ:(C(n))c→0, γ⊆C(n)\{0}

bk′(γ).

Hence, for the first assertion, it is sufficient to show:

p0

∑
γ:0→0

bk′(γ) = 1. (2.4.30)

Note that this is just (2.2.9) (note that we set x = 0,K = {0}). We finish

the proof of the first assertion. The second assertion is an easy consequence

of the first one, noting that, for any ε ∈ (0, 1/4) fixed, P (vn ≤ τbn1/4−εc) and

,P (vn ≥ τbn1/4+εc) are o((log n)−1).

Now we can construct the following result about the range of SI :

Theorem 2.4.14. Set RIn := #{SI0 (o),SI0 (v1), . . . ,SI0 (vn)} for every integer

n ≥ 0. We have:

log n

n
RIn

L2

−→ 16π2
√

detQ

σ2
as n→∞,

where v1, v2, . . . are the same as in Proposition 2.4.13. Hence, we have:

log n

n
RIn

P−→ 16π2
√

detQ

σ2
as n→∞.

Remark 2.4.5. Since the typical number of vertices in the spine that come

before vn is of order
√
n, which is much less than n/ log n, one can get,

log n

n
#{SI0 (v̄0),SI0 (v̄1), . . . ,SI0 (v̄n)} P−→ 16π2

√
detQ

σ2
as n→∞,

where v̄0, v̄1, . . . are all vertices due to the default order in the corresponding

plane tree T in SI0 .

Proof of Theorem 2.4.14. As mentioned before, we need to use the invariant

shift ς on spacial trees, which appeared in [14]. For any spacial tree (T,ST ),

set ς(T,ST ) = (T ′,S ′T ′). Roughly speaking, one can get T ′ by ’rerooting’ T
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at the first vertex that is not in the spine and then removing the vertices

that are strictly before the parent of the new root. For S ′T ′ , just set:

S ′T ′(v) = ST (v)− ST (o′), for any v ∈ ς(T ),

where o′ is the new root. The key result is that ς is invariant under the

law of the invariant snake from the origin. For more details about this shift

transformation, see Section 2 in [14].

Now we start our proof. For simplicity, write v̂0 = 0(∈ Z4) and v̂i =

SI0 (vi). First observe that:

E(RIn) = E(
n∑
i=0

1{v̂j 6=v̂i,∀j∈[i+1,n]}) =
n∑
i=0

P (v̂j 6= v̂i, ∀j ∈ [i+ 1, n]).

From the invariant shift mentioned in the beginning, we have

P (v̂j 6= v̂i,∀j ∈ [i+ 1, n]) = P (v̂j 6= v̂0,∀j ∈ [1, n− i]).

Therefore by Proposition 2.4.13, we get

E(RIn) =
n∑
i=0

P (v̂j 6= v̂0,∀j ∈ [1, n− i]) ∼ 16π2
√

detQ

σ2

n

log n
. (2.4.31)

Now we turn to the second moment. Similarly, we have

E((RIn)2) = E(
n∑
i=0

n∑
j=0

1{v̂k 6=v̂i,∀k∈[i+1,n];v̂l 6=v̂j ,∀l∈[j+1,n]})

= 2
∑

0≤i<j≤n
P (v̂k 6= v̂i,∀k ∈ [i+ 1, n]; v̂l 6= v̂j ,∀l ∈ [j + 1, n]) + E(Rn)

= 2
∑

0≤i<j≤n
P (v̂k 6= 0, ∀k ∈ [1, n− i]; v̂l 6= v̂j−i,∀l ∈ [j − i+ 1, n− i])

+ E(Rn),

where the last equality again follows from the invariant shift. For any fixed
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α ∈ (0, 1/4) define

σn := sup{k ≥ 0 : vk ≤ ubn 1
2−αc
},

where u0 ≤ u1 ≤ . . . are the all vertices on the spine. By standard argu-

ments, one can show

P (σn /∈ [n1−3α, n1−α]) = o(log−2 n).

Therefore we have

lim sup
n→∞

(
log n

n
)2E((RIn)2) = lim sup

n→∞
2(

log n

n
)2

∑
0≤i<j≤n

P (v̂k 6= 0,

∀k ∈ [1, n− i]; v̂l 6= v̂j−i, ∀l ∈ [j − i+ 1, n− i];σn ∈ [n1−3α, n1−α]).

Obviously, in order to study the limsup in the right-hand side, we can restrict

the sum to indices i and j such that j − i > n1−α. However, when i and j

are fixed and satisfied with j − i > n1−α,

P (v̂k 6= 0, ∀k ∈ [1, n− i]; v̂l 6= v̂j−i, ∀l ∈ [j − i+ 1, n− i];σn ∈ [n1−3α, n1−α])

≤ P (v̂k 6= 0,∀k ∈ [1, σn]; v̂l 6= v̂j−i,∀l ∈ [j − i+ 1, n− i];σn ∈ [n1−3α, n1−α])

= P (v̂k 6= 0,∀k ∈ [1, σn];σn ∈ [n1−3α, n1−α])P (v̂l 6= v̂j−i,∀l ∈ [j − i+ 1, n− i])

= P (v̂k 6= 0,∀k ∈ [1, σn];σn ∈ [n1−3α, n1−α])P (v̂l 6= 0,∀l ∈ [1, n− j]).

Note that for the second last line, we use the fact that after conditioning on

σn = m(< n1−α), the event on the second probability is independent to the

event on the first one, and for the last line, we use the invariant shift. Now,

P (v̂k 6= 0,∀k ∈ [1, σn];σn ∈ [n1−3α, n1−α]) ≤ P (v̂k 6= 0,∀k ∈ [1, n1−3α]),
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and then we have

lim sup
n→∞

(
log n

n
)2E((RIn)2) ≤ lim sup

n→∞
2(

log n

n
)2·∑

0≤i<j≤n,j−i>n1−α

P (v̂k 6= 0,∀k ∈ [1, n1−3α])P (v̂l 6= 0, ∀l ∈ [1, n− j])

=
1

1− 3α
(
16π2

√
detQ

σ2
)2.

Let α→ 0+, we get

lim sup
n→∞

(
log n

n
)2E((RIn)2) ≤ (

16π2
√

detQ

σ2
)2.

Combining this with (2.4.31), we finish the proof of Theorem 2.4.14.

Noting that S−0 is different to SI0 only at the subtree grafted to the root,

one can also obtain the range of the infinite snake S−:

Corollary 2.4.15. Set R−n := #{S−0 (v0),S−0 (v1), . . . ,S−0 (vn)}. Then,

log n

n
R−n

P−→ 16π2
√

detQ

σ2
as n→∞,

where v0, v1, . . . are all vertices of the corresponding plane tree due to the

default order in the reversed snake.

Now we are ready to prove our main result about the range of branching

random walk conditioned on the total size. This result will follow from

Corollary 2.4.15 by an absolute continuity argument, which is similar to the

one in the proof of Theorem 7 in [14]. The idea is as follows. We write Ξ

for the law of the µ-GW tree. For every a ∈ (0, 1), the law under Ξn :=

Ξ(·|#T = n) of the subtree obtained by keeping only the first banc vertices of

T is absolutely continuous with respect to the law under Ξ∞(·) := Ξ(·|#T =

∞) of the same subtree, with a density that is bounded independently of n.

Then a similar property holds for spatial trees, and hence we can use the

convergence in Corollary 2.4.15, for a tree distributed according to Ξ∞, to

get a similar convergence for a tree distributed according to Ξn.
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Proof of Theorem 1.3.14. Let G be the smallest subgroup of Z that contains

the support of µ. In fact, the cardinality of the vertex set of a µ-GW tree

belongs to 1 + G. For simplicity, we assume in the proof that G = Z. Minor

modifications are needed for the general case. On the other hand, for any

sufficiently large integer n ∈ 1+G, we can define the conditional probability

Sn to be S0 conditioned on the total number of vertices being n (this event

is with strictly positive probability).

For a finite plane tree T , write v0(T ), v1(T ), . . . , v#T−1(T ) for the vertices

of T by the default order. The Lukasiewisz path of T is then the finite

sequence (Xl(T ), 0 ≤ l ≤ #T ), which can be defined inductively by

X0(T ) = 0, Xl+1 −Xl = kvl(T )(T )− 1, for every 0 ≤ l < #T,

where ku(T )(for u ∈ T ) is the number of children of u. The tree T is

determined by its Lukasiewisz path. A key result says that under Ξ, the

Lukasiewisz path is distributed as a random walk on Z with jump distribu-

tion ν determined by ν(j) = µ(j + 1) for any j ≥ −1, which starts from

0 and is stopped at the hitting time of −1 (in particular, the law or #T

coincides with the law of that hitting time). For notational convenience, we

let (Yk)k≥0 be a random walk on Z with jump distribution ν, which starts

form i under P(i), and set

τ := inf{k ≥ 0 : Yk ≤ −1}.

We can also do this for infinite trees. When T ia an infinite tree with

only one infinite ray, now the Depth-First search sequence o = v0 < v1 <

v2 < · · · < vn < . . . only examines part of the vertex set of T . We could also

define the Lukasiewisz path of T to be the infinite sequence (Xi(T ), i ∈ N):

X0(T ) = 0, Xl+1 −Xl = kvl(T )(T )− 1, for every l ∈ N.

Now, only the ’left half’ of T (precisely, the subtree generated by v0, v1, ...),

not the whole tree T , is determined by its Lukasiewisz path. It is not

difficult to verify that when T is a µ-GW tree conditioned on survival, its
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Lukasiewisz path is distributed as the random walk on the last paragraph

conditioned on τ =∞, i.e, a Markov chain on N with transition probability

p(i, j) = j+1
i+1 ν(j− i). Recall that the infinite µ-GW tree is just the ’left half’

of the µ-GW tree conditioned on survival.

Next, take n large enough such that Ξ(#T = n) > 0. Fix a ∈ (0, 1), and

consider a tree (finite or infinite) T with #T ≥ n. Then, the collection of

vertices v0(T ), . . . , vbanc(T ) forms a subtree of T (because in the Depth-First

search order the parent of a vertex comes before this vertex), and we denote

this tree by ρbanc(T ). It is elementary to see that ρbanc(T ) is determined by

the sequence (Xl(T ), 0 ≤ l ≤ banc). Let f be a bounded function on Zbanc.
One can verify that

Ξn(f((Xk)0≤k≤banc)) =
1

P(0)(τ = n+ 1)
Ξ∞(f((Xk)0≤k≤banc)

ψn(Xbanc)

Xbanc + 1
),

(2.4.32)

where for every j ∈ N , ψn(j) = P(j)(τ = n+ 1− banc).
We now let n → ∞. Using Kemperman’s formula and a standard local

limit theorem, one can get,

lim
n→∞

(
sup
j∈An

| ψn(j)

P(0)(τ = n+ 1)(j + 1)
− Γa(

j

σ
√
n

)|

)
= 0, (2.4.33)

where Γa(x) = exp(− x2

2(1−a))/(1 − a)
3
2 and An := {i ∈ N : P(i)(τ = n +

1 − banc) > 0}. By combining (2.4.32) and (2.4.33), we get that, for any

uniformly bounded sequence of functions (fn)n≥1 on Zbanc+1, we have

lim
n→∞

|Ξn(fn((Xk)0≤k≤banc))− Ξ∞(fn((Xk)0≤k≤banc)Γa(
Xbanc

σ
√
n

))| = 0.

Clearly, the above still holds after we add the spatial random mechanism.

Therefore, when ε > 0 is fixed, we have

lim
n→∞

|Ξnθ (1{|Rbanc−tan/ logn|>εn/ logn})−

Ξ∞θ (1{|Rbanc−tan/ logn|>εn/ logn}Γa(
Xbanc

σ
√
n

))| = 0,
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where t = 16π2
√

detQ
σ2 , Ξnθ , Ξ∞θ are the laws of the corresponding tree-indexed

random walks, and Rbanc is the range of the subtree ρbanc(T ). Note that the

function Γa is bounded and under Ξ∞θ , Rbanc is just the range of S∞0 for the

first banc vertices. Hence, by Corollary 2.4.15 (note that S−0 = S∞0 since we

assume that θ is symmetry), we obtain that

lim
n→∞

Ξnθ (1{|Rbanc−tan/ logn|>εn/ logn}) = 0.

Note that Rn ≥ Rbanc (under Ξnθ ) and a can be chosen arbitrarily close to

1, this finishes the proof of the lower bound.

We also need to show the upper bound. Note that ρbanc(T ) is the subtree

lying on the ’left’ side, generated by the first banc vertices of T . Similarly,

one can consider the subtree lying on the ’right’ side. Strictly speaking, to

get the subtree lying on the right side, denoted by ρ−banc(T ), we first reverse

the order of children for each vertex in T , and then ρbanc of the same tree T

with the new order is just ρ−banc(T ). Write R−banc for the range of ρ−banc(T )

corresponding to Sn. By symmetry, we also have

lim
n→∞

Ξnθ (1{|R−banc−tan/ logn|>εn/ logn}) = 0.

Now fix some a ∈ (0, 1). Note that ρbanc(T ) and ρ−b(1−a)nc(T ) cover the

whole tree T except for a number of vertices. This number is not more

than |ρbanc(T ) ∩ ρ−b(1−a)nc(T )| + 2. Note that on each generation, there

is at most one vertex that is in both ρbanc(T ) and ρ−b(1−a)nc(T ). Hence

|ρbanc(T )∩ ρ−b(1−a)nc(T )| is not more than the number of generations, which

is typically of order
√
n (under Ξn). Hence, Rn−(Rbanc(Sn)+R−b(1−a)nc(S

n))

is less than n0.6 with high probability (tending to 1). This finishes the proof

of the upper bound.
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Chapter 3

Branching interlacements

3.1 Preliminaries

3.1.1 Plane trees, contour function and branching random

walk

We are interested in (finite or infinite) rooted ordered trees, called plane

trees. A rooted tree t is a tree with a distinguished vertex o called the root.

t can be regarded as a family tree with ancestor o. A plane tree is a rooted

tree in which an ordering for the children of each vertex is specified. The

size |t| is the number of edges of t. We denote by A the set of all finite

plane trees and by An the set of all plane trees with n ∈ N edges.

Let t be a plane tree and k ∈ N, we write [t]k for the subtree obtained by

keeping only the first k generations of t. Let T be a GW (Galton-Watson)

tree with geometric offspring distribution of parameter 1/2 (throughout this

chapter our GW tree will always be with this offspring distribution). It

is classical that the distribution of T conditioned on having n edges is the

uniform probability measure on An. The following result is also standard

(e.g. see [1]):

Proposition 3.1.1. Let Tn be uniform on An. Then there exists a random

infinite plane tree T∞ such that for every k ∈ N we have

[Tn]k
d−→ [T∞]k, as n→∞. (3.1.1)

Moreover, this random infinite plane tree T∞, called the critical Galton-

Watson tree conditioned to survive, can be constructed in the following way:

begin with a semi-infinite line of vertices called the spine and graft to the
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left and to the right of each vertex in the spine an independent GW tree. It

is rooted at the first vertex in the spine.

A nice way to code plane trees is the so-called contour function. Assume

t is a plane tree with k edges. Let v0 be the root of t. Define vi to be the

first unexplored child of vi−1 if vi−1 has such children, or the parent of vi if

not, for i = 1, . . . , 2k. Let C(i) be the tree distance between the root and

vi. Then (C(i))i∈{0,...,2k} is the contour function of t.

For k ∈ N, a Dyck path of length 2k is a sequence (s0, s1, ..., s2k) of inte-

gers such that s0 = s2k = 0, si ≥ 0 and |si−si−1| = 1, for every i = 1, ..., 2k.

If t is a plane tree of size k, then its contour function (C(0), C(1), . . . , C(2k))

is a Dyck path of length 2k. Moreover, we have (e.g. see the lecture notes

[15])

Proposition 3.1.2. The mapping t→ (C(0), C(1), . . . , C(2k)) is a bijection

from Ak onto the set of all Dyck paths of length 2k. Therefore, the contour

function of a GW tree conditioned on having k edges is uniform on all Dyck

paths of length 2k.

There is a similar result for the unconditioned GW tree. Assume S =

(Sn)n∈N is simple random walk on Z (starting from 0). Let τ = inf{n ∈
N : Sn = −1} < ∞ a.s. Then, the distribution of the contour function of a

unconditioned GW tree is the same as (Si)0≤i≤τ−1.

Now we introduce the simple random walk in Zd indexed by a random

plane tree T . Conditionally on T we assign independently to each edge of

T a variable uniform on all unit vectors in Zd. Then for every vertex v

in T , we assign to v the sum of the variables of all edges belonging to the

unique simple path from the root o to the vertex v. This gives a random

function ST : T → Zd from the vertices of T to the vertices of Zd (note that

ST (o) = 0). A plane tree T together with this random function ST is called

a spatial tree. When T is an unconditioned GW tree, a GW tree conditioned

on having n edges or a GW tree conditioned to survive, the spatial tree is

called finite branching random walk, branching random walk conditioned to

have n progeny or branching random walk conditioned to survive. When

T = T∞, we can talk about recurrence and transience. If |S−1
T∞

(0)| <∞ a.s.,
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we say that the branching random walk conditioned to survive is transient.

If |S−1
T∞

(0)| = ∞ a.s., we say that it is recurrent. About recurrence and

transience, we have (see [3] or see Corollary 1.3.10 and Proposition 2.3.4) :

Proposition 3.1.3. Branching random walk on Zd conditioned to survive

is transient if and only if d > 4.

3.1.2 Some results on simple random walk

Let us now collect some facts about random walks for later use. We use C,

c to denote positive constants, depending only on dimension d, which may

change from line to line. If a constant depends on some other variable, this

will be made explicit. We use a ∨ b and a ∧ b for max{a, b} and min{a, b}
respectively. We will write f � g (f � g resp.), if there exists a positive

constant C (depending on dimension only), such that f ≤ Cg (f ≥ Cg

resp.) and write f � g if f � g and f � g. For x ∈ Zd, we write Px (just in

this subsection) for the law of simple random walk (Zn)n≥0 on Zd starting

at Z0 = x. Define:

pn(x) = P0[Zn = x]; p̄n(x) := 2(d/2πn)d/2 exp(−d|x|22/2n), (3.1.2)

where we write | · |2 for the Euclidean norm (and reserve | · | for the∞-norm).

Then we have the so-called Local Central Limit Theorem (LCLT) (e.g. see

Chapter 1.2 in [10]):

Proposition 3.1.4. For x ∈ Zd, we have

pn(x) � n−d/2. (3.1.3)

If δ < 2/3 and |z| ≤ nδ such that z and n have the same parity, then we

have

pn(z) = p̄n(z)(1 +O(n3δ−2)). (3.1.4)

The next proposition follows from an application of the Azuma-Hoeffding

inequality (e.g. Proposition 2.1.2 [11]).
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Proposition 3.1.5. There exist positive C and c, such that for all n and

s > 0,

P0[ max
0≤j≤n

|Zj | ≥ s
√
n] ≤ C exp(−cs2). (3.1.5)

The Green function of simple random walk on Zd is defined by

G(x, y) =

∞∑
n=0

Px[Zn = y] =

∞∑
n=0

pn(y − x), x, y ∈ Zd. (3.1.6)

Using LCLT, one can get the standard estimate for the Green function

(for d ≥ 3)

G(x, y) =

∞∑
n=0

pn(y − x) � (|x− y| ∨ 1)2−d. (3.1.7)

Using the same method, one can also get (for d ≥ 5):

∞∑
n=0

n · pn(y − x) � (|x− y| ∨ 1)4−d. (3.1.8)

We are particularly interested in one-dimensional simple random walk.

The following is a special case of Kemperman’s formula (Lemma 2.12 in

[15]).

Proposition 3.1.6. Let τ be the hitting time of −1. We have, for any

k ∈ N and n ∈ N+,

Pk[τ = n] =
k + 1

n
Pk[Sn = −1], (3.1.9)

where Pk is the probability measure under which the simple random walk S

starts from k.

We will also use the so-called heat kernel bound (Lemma 2.1 [7]):

Proposition 3.1.7. There exists positive C and c, such that for all n ∈ N+

and k ∈ N, (P0 has the same meaning as in last proposition)

P0[Sn = k] ≤ Cn−1/2 exp(−ck2/n). (3.1.10)
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3.2 Basic model and some first properties

In this section we give the definition of branching interlacements at level u as

the range of a countable collection of doubly-infinite trajectories in Zd. As

we mentioned before, the model of branching interlacements is an analogous

model to random interlacements. Many definitions here are similar or even

the same as in [21]. The collection of doubly-infinite trajectories will arise

from a certain Poisson point process, called the branching interlacements

point process. The main task is to construct the intensity measure of this

Poisson point process.

3.2.1 Notations

We denote with | · |2 and | · | the Euclidean and ∞-norm on Zd. We write

Bx(r) and Sx(r) for the closed | · |-ball and | · |-sphere with center x in Zd

and radius r ≥ 0. We say that x, y in Zd are neighbors (denoted by x ∼ y),

respectively *-neighbors, if |x−y|2 = 1, respectively |x−y| = 1. The notion

of nearest neighbor or *-nearest neighbor paths in Zd is defined accordingly.

For a subset K of Zd, we define

∂oK := {x ∈ Zd\K : ∃y ∈ K such that x ∼ y} (3.2.1)

its external boundary and

∂iK := {x ∈ K : ∃y ∈ Zd\K such that x ∼ y} (3.2.2)

its internal boundary. We consider W and W+ the space of 2-sided and

1-sided nearest neighbor transient trajectories on Zd:

W = {w : Z→ Zd; lim
|n|→∞

|w(n)| =∞ and w(n+ 1) ∼ w(n),∀n ∈ Z},

(3.2.3)

W+ = {w : N→ Zd; lim
n→∞

|w(n)| =∞ and w(n+ 1) ∼ w(n),∀n ∈ N}.

(3.2.4)
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If w = (w(n))n∈Z ∈ W , we define w+ ∈ W+ to be the part of w which is

indexed by nonnegative coordinates, i.e., w+ = (w(n))n∈N. We denote by

W, the product σ-algebra on W generated by coordinates, and by W+ the

product σ-algebra on W+. For w ∈ W or W+ and x ∈ Zd, we denote the

space translation by w + x, i.e. (w + x)(n) = w(n) + x. We define the shift

operators θk : W →W , k ∈ Z and θk : W+ →W+, k ∈ N by

(θk(w))(n) = w(n+ k). (3.2.5)

Next we will define the space (W ∗,W∗), which will play an important role in

our construction of branching interlacement. Define the set of paths modulo

time-shift by W ∗ = W/ ', where ' is the equivalence relation

w1 ' w2, if θk(w1) = w2 for some k ∈ Z. (3.2.6)

Denote the canonical projection by π : W → W ∗ which sends each element

in W to its equivalence class in W ∗. We endow W ∗ with the shift invariant

σ-field:

W∗ = {A ⊆W ∗ : π−1(A) ∈ W}. (3.2.7)

For any finite subset K of Zd (we will write K ⊂⊂ Zd for this), define:

WK ={w ∈W : w(n) ∈ K, for some n ∈ Z} and W ∗K = π(WK),

(3.2.8)

WK+ = {w ∈W+ : w(n) ∈ K, for some n ∈ N}. (3.2.9)

It follows from (3.2.3) that, for any trajectory w ∈ WK or WK+, the set

{n : w(n) ∈ K} is finite. Hence, we can define the ‘entrance time’:

HK(w) = inf{n : w(n) ∈ K}. (3.2.10)

Thus HK(w) < ∞ if w ∈ WK or WK+. We can partition WK according to
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the time of the first entrance:

WK =
⋃
n∈Z

Wn
K , where Wn

K = {w ∈WK : HK(w) = n}. (3.2.11)

We define tK : WK → W 0
K , respectively t∗K : W ∗K → W 0

K with tK(w) = w0,

respectively t∗K(w∗) = w0, where w0 is the unique element w0 in W 0
K with

w0 ' w, respectively π(w0) = w∗. Also we can define t∗K+ : W ∗K →W+ with

t∗K+(w) = (t∗K(w))+.

3.2.2 Simple random walk as a contour function and snakes

Our goal is to construct a σ-finite measure on (W ∗,W∗). Before doing

this, we need to introduce the finite measure QK for every K ⊂⊂ Zd on

(W,W). The first step is to build a random matching on E(Z) = {ei =

(i − 1, i); i ∈ Z}, the set of all edges of the lattice Z. Let S = (Si)i∈Z

be 1-dimensional two-sided simple random walk. Then S almost surely

determines a matching of E(Z), or more precisely, a bijection fS between

the set of upsteps M(S) = {ei : Si − Si−1 = +1} and the set of downsteps

N(S) = {ei : Si − Si−1 = −1}:

fS(ek) = el if and only if

k < l, Sk − Sk−1 = 1, Sl − Sl−1 = −1, & Sk = Sl−1 = mink≤n≤l−1 Sn.

(3.2.12)

Remark 3.2.1. If we glue edges through the matching, the resulting quotient

of the graph Z (rooted at 0) becomes an infinite plane tree. Precisely, for any

x, y ∈ Z, let d(x, y) = Sx + Sy − 2 min{St : t ∈ [x, y]}. If we identify x and

y when d(x, y) = 0, then under this equivalence, the quotient space with the

metric d is an infinite plane tree. One can check that using the description

after Proposition 3.1.1 , this tree is just T∞ and S is just its contour function

if we let the spine go downwards and the finite trees attached to the spine

grow upwards as usual. Note that for a finite tree, since we place the root at

the bottom, its contour function is always non-negative. But here we let the

spine go downwards hence the contour function can be negative.
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Figure 3.1: Construction of 2-sided infinite snake

Now we combine the contour function and the simple random walk in-

dexed by a random tree. At the moment we have a mapping from Z to

T∞ along the contour. A transient mapping from T∞ to Zd can be written

as a trajectory X ∈ W with the property that if n, n′ ∈ Z correspond to

the same vertex of T∞ then Xn = Xn′ . We shall denote the increments

of such a mapping by Yn = Xn − Xn−1. Since in the contour exploration

of the tree, each edge is crossed once in each direction, the corresponding

increment variables should be opposite to each other, and otherwise they

are independent.

Definition 3.2.1. Let S = (Sn)n∈Z be two-sided simple random walk and fS

be the corresponding matching. For each upstep en of S, where Sn = Sn−1+1

let Yn be a uniform unit vector in Zd, all independent. For any downstep

em = (m−1,m) let Ym = −Yn, where n is such that fS(en) = em (see figure.)

The starting point X0 = 0 and relation Yn = Xn −Xn−1 determine Xn for

all n. The trajectory (X)n∈Z is called the 2-sided infinite snake. The

half process (X)n∈N is called the (1-sided) infinite snake. In this section,

we write P0 for the law of X. If the starting point is x (i.e. X0 = x), we

use Px.

Claim 3.2.2. Since S is invariant under time-reversal and Y is symmetric,

we can see that X is also invariant under time-reversal, i.e. (Xn)n∈Z and

(X−n)n∈Z have the same distribution. Similarly, one can see that the law of

the increment sequence Y is also invariant under time shift.

Remark 3.2.2. X is not a branching random walk, but the contour function

of the branching random walk conditioned to survive. We primarily focus
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on the range of X, which has the same distribution as the range of the

corresponding branching random walk. The reason for the introduction of

snakes is that the contour function provides us a nice way to code branching

random walk. As we mentioned in last section, this branching random walk

is transient if and only if d ≥ 5. Hence for d ≥ 5, Px is indeed a probability

measure supported on W . This is why we assume d ≥ 5 throughout this

chapter.

The finite snake is defined similarly, as follows. For the simple random

walk S, set τ = inf{n ≥ 0 : Sn = −1} < ∞ a.s. . The finite path

{S0, S1, . . . , Sτ−1} is called an excursion of the simple random walk. We can

also define the matching on the finite edge set {ei = (i − 1, i) : 1 ≤ i ≤
τ −1}, in the same way as before. Then we may also define (Yi)1≤i≤τ−1 and

(Xi)0≤i≤τ−1 as before. This finite process X is called the finite snake and is

the contour function of the unconditioned branching random walk.

Note: the process X is just the restriction of the infinite snake X to the

random time interval [0, τ − 1]. It is possible that τ = 1, in which case the

branching random walk dies immediately and its image is the single point

X0.

If we condition on τ = 2L+ 1, then (Xi)0≤i≤2L is called the snake con-

ditioned to have length 2L and is the contour function of the branching

random walk conditioned to have L progeny.

3.2.3 Construction of the branching interlacement intensity

measure

Once we have the definition of Px (see Definition 3.2.1), we can define a

measure QK on (W,W) for any K ⊂⊂ Zd. In fact, QK will be supported

on W 0
K (see (3.2.11)). For any K ⊂⊂ Zd and A ∈ W, define:

QK(A) =
∑
x∈K

Px[A ∩W 0
K ]. (3.2.13)

Note that since Px is a probability measure, QK(A) ≤ |K|, so QK is a

finite measure.
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For different K ⊆ K ′ ⊂⊂ Zd, QK and QK′ are consistent in the following

sense:

Proposition 3.2.3. For any A ∈ W∗, and K ⊆ K ′ ⊂⊂ Zd, we have:

QK(π−1(A) ∩WK) = QK′(π
−1(A) ∩WK). (3.2.14)

With the help of this proposition, we can define a measure on (W ∗,W∗):

Theorem 3.2.4. There exists a unique σ-finite measure ν on (W ∗,W∗)
which satisfies: for all K ⊂⊂ Zd

1{W ∗K} · ν = π ◦QK . (3.2.15)

Proof of Proposition 3.2.3. Write B = tK(π−1(A) ∩WK). Since QK (QK′

resp.) is supported on W 0
K (W 0

K′ resp.), we have:

QK(π−1(A) ∩WK) = QK(B) and QK′(π
−1(A) ∩WK) = QK′(tK′(B))

(3.2.16)

So, we need to prove:

QK(B) = QK′(tK′(B)). (3.2.17)

We partition W 0
K according to the hitting time and hitting point of K

and K ′. For any x ∈ K, y ∈ K ′ and n ∈ Z− = {0,−1,−2, ...}, define:

Ax,n,y = {w ∈W : w(0) = x,HK(w) = 0, w(n) = y,HK′(w) = n}. (3.2.18)

On Ax,n,y, tK′ is injective, tK′(w)(•) = w(•+ n) and:

tK′(Ax,n,y) = {w ∈W : w(0) = y,HK(w) = −n,w(−n) = x,HK′(w) = 0}.

Let Bx,n,y = B ∩Ax,n,y. Then B has a countable partition:

B =
⋃

x∈K,y∈K′,n∈Z−
Bx,n,y. (3.2.19)
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In order to show (3.2.17), it is enough to prove:

QK(Bx,n,y) = QK′(tK′(Bx,n,y)). (3.2.20)

By definition of QK (see (3.2.13)), the left hand side is:

QK(Bx,n,y) = Px(Bx,n,y) = Px[Xn = y,HK(X) = 0, HK′(X) = n,X0 = x]

(∗)
= Py[X−n = x,HK(X) = −n,HK′(X) = 0, X0 = y] = QK′(tK′(Bx,n,y))

Since {Xn = y,HK(X) = 0, HK′(X) = n,X0 = x} is the translation of

{X−n = x,HK(X) = −n,HK′(X) = 0, X0 = y} by n, (∗) is due to the

translation invariance of Y (see Claim 3.2.2).

Proof of Theorem 3.2.4. Uniqueness is obvious by (3.2.15).

For the existence of ν, fix a sequence K1 ⊆ K2 ⊆ . . . converging to Zd,
define: ν(A) = limn→∞QKn((π)−1(A ∩W ∗Kn)) (This sequence is increasing

and hence the limit exists). We just need to check that ν does not depend

on the choice of the sequence. The following is enough: if K ⊆ K ′ ⊂⊂ Zd

and A ∈ W∗, A ⊆W ∗K ⊆W ∗K′ , then

QK′(π
−1(A)) = QK(π−1(A)). (3.2.21)

Note that A ⊆W ∗K , so π−1(A)∩WK = π−1(A). The equality above is what

Proposition 3.2.3 tells us.

One can easily check, by definition, the following proposition, which we

state here for future use:

Proposition 3.2.5. 1. ν is invariant under the time inversion: w∗ →
w̌∗, where w̌∗ = π(w̌), with π(w) = w∗ and w̌(n) = w(−n), for n ∈ Z;

2. ν is invariant under spatial translations: w∗ → w∗ + x, x ∈ Zd, where

w∗ + x = π(w + x), with π(w) = w∗.

Given K ⊂⊂ Zd, we define the escape probability, similarly to the anal-
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ogous notion for simple random walks.

eK(x) :=Px[HK(X) = 0] = 1{x∈K} · Px[∪n<0{Xn} ∩K = ∅] (3.2.22)

=1{x∈K} · Px[∪n>0{Xn} ∩K = ∅]. (3.2.23)

The last equality is due to the fact that the law of X is invariant under

time-reversal by Claim 3.2.2. Note that eK is supported on ∂iK. We write

P(x,K) for the restriction to (W+,W+) of Px(·|HK(X) = 0), and write PeK
for the normalized measure:

PeK =
1∑

x∈Supp(eK) eK(x)

∑
x∈Supp(eK)

eK(x)P(x,K). (3.2.24)

It is straightforward to check that (see the end of Section 3.2.1 for the

definition of t∗K+): ∑
x∈Supp(eK)

eK(x)P(x,K) = t∗K+ ◦ (1{W ∗K}ν). (3.2.25)

Remark 3.2.3. In fact, P(x,K) is the law of the positive part of a infinite

2-sided snake starting from x, conditioned on its negative part avoiding K.

The positive part and negative part are only related at the spine. Hence,

compared to Px (restricted to (W+,W+)), P(x,K) just changes the law of

the spatial spine, not the law of the spatial trees grafted through the spine.

Moreover, under P(x,K), the spatial spine is a biased Random walk on Zd.
The transition probability of this biased random walk can be expressed as

follows: for x ∼ y, the transition probability p(x, y) = Py[(X)n≤0 ∩ K =

∅]/
∑

z∼x Pz[(X)n≤0 ∩K = ∅].

We now define the branching capacity by:

BCap(K) := ν(W ∗K). (3.2.26)

Analogously to the standard capacity, branching capacity is the total
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mass of escape probability:

BCap(K) = ν(W ∗K) = QK(WK) = QK(W 0
K)

=
∑
x∈K

Px[HK(X) = 0]
(3.2.22)

=
∑
x∈K

eK(x).

Remark 3.2.4. The definition of branching capacity in this chapter is a

bit different to the one in previous chapters. In fact, one can verify that

eK(x) = EsK(x)/2. Therefore, K’s branching capacity here equals half of

the branching capacity before.

Also, branching capacity is monotone and subaddictive:

Proposition 3.2.6. For any K ⊂⊂ K ′ ⊂⊂ Zd,

BCap(K) ≤ BCap(K ′); (3.2.27)

For any K1,K2 ⊂⊂ Zd,

BCap(K1 ∪K2) ≤ BCap(K1) + BCap(K2). (3.2.28)

Proof. For monotonicity, assume K ⊂⊂ K ′ ⊂⊂ Zd. Any trajectory hitting

K must hit K ′. Hence W ∗K ⊆ W ∗K′ . Therefore BCap(K) = ν(W ∗K) ≤
ν(W ∗K′) = BCap(K ′).

Similarly, any trajectory hitting K1 ∪ K2 must hit either K1 or K2.

Hence W ∗K1∪K2
⊆ W ∗K1

∪W ∗K2
. Therefore BCap(K1 ∪K2) = ν(W ∗K1∪K2

) =

ν(W ∗K1
∪W ∗K2

) ≤ ν(W ∗K1
) + ν(W ∗K2

) = BCap(K1) + BCap(K2).

3.2.4 Branching interlacement point process

We further need to introduce the space of locally finite point measures on

W ∗:

Ω :=
{
ω =

∑
n≥0

δw∗n , where w∗n ∈W ∗, n ≥ 0

and ω(W ∗K) <∞ for any K ⊂⊂ Zd
}

(3.2.29)
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We endow W ∗ with the σ-algebra A generated by the evaluation maps

of form

ω 7→ ω(D) =
∑
n≥0

1[w∗n ∈ D], if ω =
∑
n≥0

δw∗n , D ∈ W∗. (3.2.30)

For any u ∈ R+, the probability space of the branching interlacement Pois-

son point process (PPP) at level u is (Ω,A,Pu), where

ω =
∑
n≥0

δw∗n is a PPP with intesity measure u · ν on W ∗ under Pu,

(3.2.31)

where ν is defined in Theorem 3.2.4.

Up to now, we have constructed the branching interlacement point pro-

cess. In addition, we would like to introduce some relative PPP on W+.

Consider the space of countable point measures on W+:

M :=
{
µ =

∑
i∈I

δwi , where wi ∈W+, I is a finite or infinite subset of N
}

(3.2.32)

endowed with the canonical σ-fields M, i.e. generated by the evaluation

maps.

For K ⊂⊂ Zd define µK and ΘK in the following way: if ω =
∑

n≥0 δw∗n ∈
Ω, then µK(ω) =

∑
n≥0 δt∗K+(w∗n)1{w∗n ∈W ∗K}; if µ =

∑
i∈I δwi , then Θ(µ) =∑

i∈I 1{HK(wi) <∞}δθHK (w). In words: in µK(ω) (or Θ(µ)) we only collect

the trajectories from ω (or µ) which hit the set K, and keep the part of each

trajectory which comes after hitting K, and reparameterize the time of the

trajectories in a way such that the hitting time of K is 0. We record here

the straightforward identities valid for K ⊆ K ′ ⊂⊂ Zd:

ΘK ◦ µK′ = µK ; (3.2.33)

ΘK ◦ΘK′ = ΘK . (3.2.34)

We have built the Poisson point measure Pu on (Ω,A) with intensity u ·ν
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(see (3.2.31)). Since PeK is a measure on (W+,W+), we can also realize on

(M,M) a Poisson point measure with intensity u · PeK . We denote the law

of this Poisson point measure by PuK . Given ω =
∑

i≥0 δw∗i , we write:

ω̌ =
∑
i≥0

δw̌∗i ∈ Ω; ϑx(ω) =
∑
i≥0

δw∗i−x ∈ Ω. (3.2.35)

The following follows from (3.2.25), (3.2.33) and Proposition 3.2.5:

Proposition 3.2.7. For any K ⊆ K ′ ⊂⊂ Zd, u ∈ [0,∞) and x ∈ Zd, we

have:

1. PuK is the law of µK under Pu;

2. ΘK ◦ PuK′ = PuK ;

3. Pu is invariant under ω → ω̌;

4. Pu is invariant under ϑx.

We can now define the branching interlacement at level u:

Definition 3.2.8. Branching interlacement at level u is defined to be the

random subset of Zd given by

I = I(ω) :=
⋃
n≥0

Range(w∗n), where ω =
∑
n≥0

δw∗n has law Pu, (3.2.36)

where for w∗ ∈ W ∗, Range(w∗) = w(Z), for any w ∈ W with π(w) = w∗.

The vacant set of branching interlacement at level u is defined by

V = V(ω) := Zd \ I(ω). (3.2.37)

Sometimes we use Iu and Vu instead of I and V to emphasize the de-

pendence of u. Note that in view of (3.2.33), we have:

I(ω) ∩K =
⋃

w∈SuppµK′ (ω)

w(N) ∩K, (3.2.38)

for any K ⊂⊂ K ′ ⊂⊂ Zd.
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Proposition 3.2.9. For any u ≥ 0 and K ⊂⊂ Zd, we have:

I(ω) ∩K 6= ∅ ⇔ µK(ω) 6= 0; (3.2.39)

Pu[K ⊆ V(ω)] = exp(−uBCap(K)). (3.2.40)

Proof. (3.2.39) follows immediately from (3.2.38).

Pu[K ⊆ V(ω)] = Pu[K ∩ I(ω) = ∅] = Pu[µK(ω) = 0]

= exp(−u · ν(W ∗K)) = exp(−uBCap(K)).

Remark 3.2.5. Analogously to the case of random interlacements in [21,

(2.17)]), using the inclusion-exclusion principle, one can see that (3.2.40)

uniquely determines the law of V and I.

In view of Proposition 3.2.7, there is an equivalent way to construct a

set with the same law as I ∩K.

Proposition 3.2.10. For any K ⊂⊂ Zd, let NK be a Poisson random

variable with parameter u·BCap(K), and (Xj)j≥1 i.i.d. with the law PeK and

independent from NK . Then K ∩
(
∪NKj=1X

j(N)
)

has the same distribution

as Iu ∩K.

3.3 Branching random walk on the torus and

branching interlacements

In this section we consider branching random walk on the discrete torus

TN := (Z/NZ)d of side-length N (for any d ≥ 5 fixed). For some technical

reason due to the periodicity of simple random walk on the torus, we assume

N is an odd number, see Remark 3.3.4. We prove that for any fixed u > 0,

the local limit (as N →∞) of the set of vertices in TN visited by the branch-

ing random walk with a uniformly distributed starting point, conditioned to

have buNdc progeny is given by branching interlacement at level 2u.
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3.3. Branching random walk on the torus and branching interlacements

We write ϕ : Zd → TN for the canonical projection map induced by mod

N . Recall that (Definition 3.2.1) Px is the law of infinite snake. We write

PL,Nx (respectively PLx ) for the law of snake conditioned to have length 2L

on the torus TN (respectively on Zd) with starting point x. If the starting

point is uniform on TN , we will use PL,N . PL will be reserved for the law

of 1-dimensional simple random walk excursion conditioned to have length

2L (i.e. τ = 2L+ 1).

Theorem 3.3.1. For any K ⊂⊆ Zd and u > 0, if N is odd and (Xn) is a

snake on TN , conditioned to have length 2L with uniform starting distribu-

tion, where L = buNdc, then

lim
N→∞

PL,N [{X0, X1, ..., X2L} ∩ ϕ(K) = ∅] = e−2u·BCap(K). (3.3.1)

Remark 3.3.1. By (3.2.40), the right hand side is P2u[I ∩K = ∅].

Remark 3.3.2. Note that the statement here is a bit different to the state-

ment (Theorem 1.4.1 and Theorem 1.4.2) in Section 1.4 . The reason is that

the branching capacity in this chapter differs from the one in the previous

chapters by a multiplicative constant, 1/2. See Remark 3.2.4.

Through the inclusion-exclusion principle, this theorem implies the local

convergence of the configuration:

Corollary 3.3.2. Under the same assumptions on Theorem 3.3.1, for any

A ⊆ K, we have:

lim
N→∞

PL,N [{X0, X1, ..., X2L} ∩ ϕ(K) = A] = P2u[I ∩K = A]. (3.3.2)

The idea of the proof of Theorem 3.3.1 is to use the ’law of rare events’,

i.e., to decompose the event into the intersection of weakly dependent rare

events. Hence the proof consists of two main ingredients. One is to estimate

the hitting probability of ϕ(K) by a small snake, see Section 3.3.1; the other

is to cut a large tree into small subtrees, see Section 3.3.2 .
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3.3. Branching random walk on the torus and branching interlacements

3.3.1 Hitting probability of a set by a small snake

Theorem 3.3.1 gives an asymptotic formula for the probability that the snake

visits a subset on TN with length proportional to the volume of the torus,

Nd. The main result of this section gives an asymptotic formula for the

probability of the event that a set is hit by a much shorter snake.

Proposition 3.3.3. For α1 < α2 ∈ (0, d) fixed, L = L(N) is any integer-

valued function of N satisfying L(N) ∈ [Nα1 , Nα2 ], then

lim
N→∞

Nd

2L
PL,N ({X0, X1, ..., X2L} ∩ ϕ(K) 6= ∅) = BCap(K). (3.3.3)

In order to prove this proposition, we need the following lemma.

Lemma 3.3.4. If S = (Si) is one-dimensional simple random walk excur-

sion conditioned to have length 2L, then for any L ∈ N+, i ∈ [[0, L]] and

x ∈ [[0, i]], we have:

PL[Si = x] � (x+ 1)2(i+ 1)−
3
2 ; (3.3.4)

PL[Si ≤ x] � (x+ 1)3(i+ 1)−
3
2 ; (3.3.5)

PL[Si = x] � (i+ 1)−
1
2 ; (3.3.6)

For any ε ∈ (0, 1/2) and n ∈ N, there exists C(ε, n) > 0, such that, for any

L ∈ N+ and i ∈ [[0, L]], we have:

PL[Si ≥ i
1
2

+ε] ≤ C(ε, n)i−n. (3.3.7)

In words, the L.H.S. decays much faster than any polynomial of i.
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3.3. Branching random walk on the torus and branching interlacements

Proof. In view of (3.1.9), we have (when i and x have the same parity):

PL[Si = x]
(∗)
=

(Px[τ = i+ 1] · 2i+1)(Px[τ = 2L− i+ 1] · 22L−i+1)

P0[τ = 2L+ 1] · 22L+1

=
2x+1
i+1 Px[Si+1 = −1] x+1

2L−i+1Px[S2L−i+1 = −1]
P0[S2L+1=−1]

2L+1

� (x+ 1)2

i+ 1

P0[Si+1 = −1− x]P0[S2L−i+1 = −1− x]

P0[S2L+1 = −1]

(3.1.4),(3.1.10)

� (x+ 1)2

i+ 1

P0[Si+1 = −1− x] 1√
2L−i+1

1√
2L+1

� (x+ 1)2

i+ 1
P0[Si+1 = −1− x]

(3.1.10)

� (x+ 1)2

i+ 1
(i+ 1)−1/2 exp(−c(x+ 1)2

i+ 1
)

=
(x+ 1)2

(i+ 1)3/2
exp(−c(x+ 1)2

i+ 1
),

where in (∗) we used the time-reversibility of the random walk. Since

exp(−c(x + 1)2/(i + 1)) ≤ 1, we have (3.3.4). By summing (3.3.4), we get

(3.3.5). Because
(
(x+ 1)2/(i+ 1)

)
exp

(
−c · (x+ 1)2/(i+ 1)

)
= t exp(−ct)

is less than a constant (which only depends on c) we have (3.3.6). For (3.3.7),

we have:

PL[Si ≥ i
1
2

+ε] ≤
∑

x≥i
1
2+ε

1√
i+ 1

(
x+ 1√
i+ 1

)2

exp(−c
(
x+ 1√
i+ 1

)2

)

�
∫ ∞
i
1
2+ε
√
i+1

t2 exp(−ct2)dt ≤
∫ ∞
iε/2

t2 exp(−ct2)dt

=

∫ ∞
i2ε/4

u

2
exp(−cu)du =

1

2c
(
i2ε

4
+

1

c
) exp(−ci

2ε

4
).

The last term decays faster than any polynomial of i.

Proof of Proposition 3.3.3. We start with recalling some combinatorial prop-

erties of Dyck paths (see the discussion before Proposition 3.1.2 for the

definition of Dyck paths). Fix k ≥ 1 and j ∈ {0, 1, ..., 2k}, for any i ∈
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3.3. Branching random walk on the torus and branching interlacements

{0, 1, ...2k − 1} and Dyck path (s0, s1, ...s2k) with length 2k, , define

s
(i)
j = si + si⊕j − 2 min

i∧(i⊕j)≤n≤i∨(i⊕j)
sn (3.3.8)

where i⊕ j = i+ j, if i+ j ≤ 2k and i⊕ j = i+ j − 2k, if i+ j ≥ 2k. It is

elementary to see that (s
(i)
0 , s

(i)
1 , ...s

(i)
2k ) is still a Dyck path with length 2k and

that the mapping Φi : (s0, s1, ...s2k) → (s
(i)
0 , s

(i)
1 , ...s

(i)
2k ) is a bijection from

the set of all Dyck paths with length 2k onto itself (e.g. see page 14 of [15]).

Recall that, under PL (or PL,N ), (S0, S1, ...S2k) is uniformly distributed

on the set of all Dyck paths with length 2L. Hence (S
(i)
0 , S

(i)
1 , ...S

(i)
2k ) is

distributed identically as (S0, S1, ...S2k). From this and the fact that the

starting measure is uniform on the torus, one can see that, under PL,N ,

(X0, X1, ..., X2L) and (Xi, Xi+1, ..., X2L, X1, ..., Xi−1, Xi) have the same law.

On the other hand, the ’time reversal’ map s = (s0, s1, ...s2k) → š =

(s2k, s2k−1, ..., s0) is also a bijection on the set of all Dyck paths with length

2k. Hence, under PL,N , (X0, X1, ..., X2L) and (X2L, X2L−1, ..., X0) have the

same law (here we also use the fact that the increment variables Yi have

symmetric distribution).

Write K ′ = ϕ(K), we have (when N > diam(K) := max{|a− b| : a, b ∈
K}):

PL,N ({X0, X1, ..., X2L} ∩K ′ 6= ∅)×
Nd

2L

=
∑

x∈∂iK′

2L−1∑
k=1

PL,N [X0, ...Xk−1 /∈ K ′;Xk = x] · N
d

2L
+
∑
x∈K′

PL,N (X0 = x) · N
d

2L

(∗)
=

∑
x∈∂iK′

2L−1∑
k=1

PL,N [X0 = x;X1, ...Xk /∈ K ′] ·
Nd

2L
+
∑
x∈K′

1

2L

=
∑

x∈∂iK′

1

2L

2L−1∑
k=1

PL,Nx [X1, ...Xk /∈ K ′] +
|K|
2L

,
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3.3. Branching random walk on the torus and branching interlacements

(∗) is due to:

PL,N [X0, ...Xk−1 /∈ K ′;Xk = x] = PL,N [X2L−k, ...X2L−1 /∈ K ′;X2L = x]

= PL,N [Xk, ...X1 /∈ K ′;X0 = x].

Hence in order to prove Proposition 3.3.3 it suffices to show that for

x ∈ ∂iK

lim
N→∞

1

2L

2L−1∑
k=1

PL,Nϕ(x)[X1, ...Xk /∈ K ′] = eK(x), (3.3.9)

where eK(x) is the escape probability (see (3.2.22)).

For the above, it is enough to prove:

lim
N→∞

max
L′<k<2L−L′

|PL,Nϕ(x)[X1, ...Xk /∈ K ′]− Px[Xn /∈ K for anyn > 0]| = 0.

(3.3.10)

for some L′ = L′(N), a function of N satisfying L′(N) → ∞ andL
′(N)
L(N) → 0

as N →∞ (e.g. we can fix L′ = bL0.2c which satisfies also the condition in

Lemma 3.3.7).

The proof of Proposition 3.3.3 is now reduced to the following lemmas:

Lemma 3.3.5. For any x ∈ ∂iK,

lim
N→∞

max
L′<k<2L−L′

|PL,Nϕ(x)[X1, ...Xk /∈ K ′]− PLx [X1, ...Xk /∈ K]| = 0. (3.3.11)

Lemma 3.3.6. For any x ∈ ∂iK,

lim
N→∞

max
L′<k<2L−L′

|PLx [X1, ...Xk /∈ K]− PLx [X1, ...XL′ /∈ K]| = 0. (3.3.12)

Lemma 3.3.7. For any x ∈ ∂iK, if L′ = o(
√
L), then:

lim
N→∞

|PLx [X1, ...XL′ /∈ K]− Px[X1, ...XL′ /∈ K]| = 0. (3.3.13)

Note that Px[X1, ...XL′ /∈ K] converges to the escape probability eK(x) =

Px(∪n>0{Xn} /∈ K), so (3.3.10) indeed follows from Lemmas 3.3.5, 3.3.6,

3.3.7.
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3.3. Branching random walk on the torus and branching interlacements

Without loss of generality, we assume x = 0 ∈ ∂iK and N > 2diam(K).

Proof of Lemma 3.3.5. Let ϕ−1(K ′) =
⋃∞
i=0Ki, such that, x ∈ K0 = K

and Ki is a translated copy of K0. Recall from the statement of Proposition

3.3.3 that α2 < d and choose λ ∈ (1
4 ,

d
4α2

) and let b = bLλN c+ 1.

PL0 [X1, ...Xk /∈ K]− PL,Nϕ(0) [X1, ...Xk /∈ K ′]

=PL0 [X1, ...Xk /∈ K]− PL0 [X1, ...Xk /∈ ϕ−1(K)]

=PL0 [X1, ...Xk /∈ K]− PL0 [X1, ...Xk /∈ K,X1, ...Xk /∈ Ki for i ≥ 1]

=PL0 [X1, ...Xk /∈ K, {X1, ...Xk} ∩ (∪i≥1Ki) 6= ∅]

≤PL0 [{X1, ...Xk} ∩ (∪i≥1Ki) 6= ∅]

≤PL0 [ sup
0≤i≤2L

|Xi| > bN ] + PL0 [ sup
0≤i≤2L

|Xi| ≤ bN, {X1, ...Xk} ∩ (∪i≥1Ki) 6= ∅]

(3.3.14)

The first term above goes to 0, due to the following (since bN ≥ Lλ, λ >
1/4):

Proposition 3.3.8. For any c > 1
4 ,

lim
L→∞

PL0 [ sup
0≤i≤2L

|Xi| > Lc]→ 0. (3.3.15)

This Proposition is an easy corollary in the theory of convergence of dis-

crete snakes (see e.g.[15], or more generally [8]). In fact, sup0≤i≤2L |Xi|/(2L)1/4

converges in distribution as L→∞ to an a.s. finite random variable.

For the estimate of the second term in (3.3.14), we will use the following

(a special case of Theorem 1.13 in [7]):

Proposition 3.3.9. There exists a constant C, such that for all n ∈ N, if

Tn is GW tree conditioned to have n progeny and wk(Tn) is the number of

vertices in the k-th generation of Tn, then we have

E(wk(Tn)) ≤ C · k. (3.3.16)
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3.3. Branching random walk on the torus and branching interlacements

With the help of this, for any y ∈ Zd, let M = |{i ∈ [0, 2L] : Xi = y}|.
We have:

PL0 [Xi = y for some 0 ≤ i ≤ 2L] = PL0 [M > 0] ≤ E(M)

(3.3.16)

�
∞∑
k=0

k · pk(0, y)
(3.1.8)
� |y|4−d. (3.3.17)

Now we estimate the second term in (3.3.14) for any 1 ≤ k ≤ 2L:

PL0 [ sup
0≤i≤2L

|Xi| ≤ bN, {X1, ...Xk} ∩ (∪i≥1Ki) 6= ∅]

≤
∑

i:K0 6=Ki⊆B0((b+1)N)

PL0 [{X1, ...Xk} ∩Ki 6= ∅]

=

b+1∑
i=1

∑
j:Kj∩S0(iN)6=∅

PL0 [{X1, ...Xk} ∩Kj 6= ∅]

(3.3.17)

�
b+1∑
i=1

∑
j:Kj∩S0(iN)6=∅

|K|
(iN)d−4

�
b+1∑
i=1

id−1 · |K|
(iN)d−4

�|K| b4

Nd−4
� |K|L

4λ/N4 + 1

Nd−4
→ 0,

where the last convergence follows from λ < d
4α2

, α2 < d and L ≤ Nα2 .

Proof of Lemma 3.3.6. Recall that we have assumed x = 0 ∈ ∂iK. Let

L′ < k < 2L− L′.

PL0 [X1, ...XL′ /∈ K]− PL0 [X1, ...Xk /∈ K]

≤PL0 [∃i ∈ (L′, k], Xi ∈ K]

≤PL0 [∃i ∈ (L′, 2L− L′), Xi ∈ K]

≤PL0 [∃i ∈ (L′, L], Xi ∈ K] + PL0 [∃i ∈ [L, 2L− L′), Xi ∈ K]

=2PL0 [∃i ∈ (L′, L], Xi ∈ K],

where in the last line we used the reversal property described in the begin-

ning of the proof of Proposition 3.3.3.
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3.3. Branching random walk on the torus and branching interlacements

Let us estimate PL0 [Xi = y] for any y ∈ Zd:

PL0 [Xi = y] =
∞∑
l=0

PL[Si = l] · PL0 [Xi = y|Si = l] (3.3.18)

Recall from Section 3.2.2 that under PL, Si = Si(U) is the contour function

of the random tree conditioned to have size L. PL0 [Xi = y|Si = l] is the

probability of Zl = y, where Z = (Zn)n∈N is the simple random walk from

0 in Zd. Recall that we have ((3.1.3) and Lemma 3.3.4) :

PL[Si = l] � (l + 1)2 · i−
3
2 , PL[Si = l] � i−

1
2 , P (Zl = y) � l−

d
2 .

Therefore:

PL0 [Xi = y]
(3.3.18)

≤ PL0 [Si = 0] +
∑

0<l≤
√
i

PL[Si = l] · PL0 [Xi = y|Si = l]+

∑
l>
√
i

PL[Si = l] · PL0 [Xi = y|Si = l]

� i−
3
2 +

∑
0<l≤

√
i

(l + 1)2i−
3
2 · l−

d
2 +

∑
l>
√
i

i−
1
2 · l−

d
2

� i−
3
2 + i−

3
2

∑
0<l≤

√
i

(l + 1)2− d
2 + i−

1
2

∑
l>
√
i

l−
d
2 .

Note that every term is decreasing in d. Hence we can assume d = 5:

PL0 [Xi = y] �i−
3
2 + i−

3
2

∑
0<l≤

√
i

(l + 1)2− 5
2 + i−

1
2

∑
l>
√
i

l−
5
2

�i−
3
2 + i−

3
2 (
√
i)

1
2 + i−

1
2 (
√
i)−

3
2 � i−

5
4 .

So PL0 [Xi = y] is summable in i and:

PL0 [∃i ∈ (L′, L], Xi ∈ K] ≤ 2|K|
∑

L′<i≤L
PL0 [Xi = y]

� 2|K|
∑
i>L′

i−
5
4
L′→∞−→ 0.
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3.3. Branching random walk on the torus and branching interlacements

Let us do some preparations before proving Lemma 3.3.7. When consid-

ering a 1-sided snake conditioned on survival, it is convenient to introduce

the discrete Bessel Processes. We use the setting of 1-sided snake condi-

tioned on survival:

U ′i , i ∈ N+, i.i.d. with P (U ′i = 1) = P (U ′i = −1) =
1

2
;

S′n(U ′) = U ′1 + ...+ U ′n.

S′n(U ′) is the 1-sided simple random walk. Let

Mn = Mn(U ′) = max
k≤n

S′k, Rn = Rn(U ′) = 2Mn − S′n,

then the process (Rn)n∈N is called the discrete Bessel Process (DBP). We

also can define a partial matching on the set E(N) = {ei = (i−1, i); i ∈ N+}
of all edges of the lattice N. Any edge is either in the set of upsteps M(U ′) =

{ei : Ri−Ri−1 = 1} or the set of downsteps N(U ′) = {ei : Ri−Ri−1 = −1}.
For any edge el ∈ N(U ′), we can find a unique edge f ′U (el) = ek ∈ M(U ′),

such that:

k < l, Rk−1 = Rl, Rk = Rl−1 = min
k≤i≤l−1

Ri = Rl + 1. (3.3.19)

Note that there are some upsteps with no downstep matched to them. Sim-

ilarly to the construction given in Section 3.2.2, under gluing through this

matching, we get a (random) tree such that (Rn)n∈N is the contour function.

It is elementary to see that the tree has the same distribution as the tree

corresponding to the one-sided infinite snake.

Another equivalent definition of the law of DBP is as follows (e.g. see

[17]). (Rn)n∈N is the N-valued Markov process starting at zero and having

the transition function specified by the relation:

P [Rn+1 −Rn = ∆|Rn] =
Rn + 1 + ∆

2(Rn + 1)
, ∆ = ±1. (3.3.20)
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Denote by

Γn = {(s1, s2, ...sn) : si ∈ N, s1 = 1, |si+1 − si| = 1}

the set of all sample paths of (Ri)1≤i≤n. In view of (3.3.20), for any s =

(s1, ...sn) ∈ Γn, one obtains

a(s) := P [(R1, ...Rn) = s] =
sn + 1

2n
; (3.3.21)

On the other hand, similarly to the computation in the proof of Lemma

3.3.4, we obtain that for any 1 ≤ n ≤ 2L we have

aL(s) := PL[(S1, ...Sn) = s] =

sn+1
2L+1−n

(
2L− n+ 1

L− n+sn
2

)
1

2L+1

(
2L+ 1

L

) . (3.3.22)

Let us estimate aL(s)/a(s):

aL(s)

a(s)
=

(sn + 1) · (L+ 1)...(L− n−sn
2 + 2) · L...(L− n+sn

2 + 1)

(2L)...(2L− n+ 1)
/

(sn + 1)

2n

=
(L+ 1)L...(L− n−sn

2 + 2) · L(L− 1)...(L− n+sn
2 + 1)

L(L− 1
2)(L− 2

2)...(L− n−1
2 )

∈
(

(
L− n
L

)n,
L+ 1

L
· ( L

L− n
)n
)
.

Hence, if n = o(
√
L), then aL(s)/a(s)→ 1 uniformly for all s ∈ Γn.

Proof of Lemma 3.3.7. Using our new description of the law Px of the one-

sided snake in terms of the DBP, the definitions (3.3.21) and (3.3.22) as well

as the fact

Px[X1, ...XL′ /∈ K|(R1, ...RL′) = s] = PLx [X1, ...XL′ /∈ K|(S1, ...SL′) = s],
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we obtain

PLx [X1, ...XL′ /∈ K] =
∑
s∈ΓL′

aL(s) · PLx [X1, ...XL′ /∈ K|(S1, ...SL′) = s];

Px[X1, ...XL′ /∈ K] =
∑
s∈ΓL′

a(s) · PLx [X1, ...XL′ /∈ K|(S1, ...SL′) = s].

Since Px[X1, ...XL′ /∈ K] ∈ (0, 1) if x ∈ ∂iK, we obtain

PLx [X1, ...XL′ /∈ K]/Px[X1, ...XL′ /∈ K]→ 1

as a consequence of L′/
√
L→ 0. The proof of Lemma 3.3.7 is complete.

3.3.2 Cutting trees

Our goal for this subsection is to construct the following ’cutting tree’ lem-

ma:

Lemma 3.3.10. Assume d ≥ 5, u > 0 fixed. Let T be a uniform tree in AL

where L = buNdc. Then, there are some ε, η > 0, a1, a2 ∈ (4, d) (depending

on u, d only) such that for any sufficiently large N ∈ N, with probability

at least 1 − N−ε we can find a number of rooted subtrees T1, . . . Tn′ (Ti is

rooted at vi, the unique vertex in Ti closest to o, the root of T ) satisfying

the following:

1. For every i ∈ {1, ..., n′}, Na1 ≤ |Ti| ≤ Na2 and the distance between

vi and o is bigger than N2+η;

2. Let T̂ be the graph generated by the all edges not in any Ti. Then T̂

is a tree and |T̂ | ≤ Nd−ε;

3. Let ιi (i = 1, . . . , n′) be the unique path starting from vi towards the

root of T , with length bN2+ηc+ 1. Then for any i ∈ {1, . . . , n′}, all Tj

except Ti, are in the same component of T \ ιi;
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3.3. Branching random walk on the torus and branching interlacements

4. Conditioned on {n′; |T1|, . . . , |Tn′ |; T̂} (and even the places of vi in T̂ ),

the trees Ti are independent and uniform on all plane trees with their

sizes.

As before, we will use contour function to represent a tree. For simple

random walk (Sn)n∈N, conditioned on τ (= inf{n : Sn = −1}) = 2L + 1,

(Sn)n∈[[0,2L]] is the contour function of a random tree T which is uniformly

distributed over AL. If for some subinterval I = [[a, b]] ⊆ [[0, 2L]] (a, b ∈ N)

we have:

Sa = Sb = min
a≤n≤b

Sn, (3.3.23)

then (Sn)n∈I is the contour function of a subtree of T (rooted at the vertex

corresponding to a and b). We denote by ξ the size of the unconditioned

GW tree. It is standard that

P [ξ = j] = P [inf{n : Sn = −1} = 2j + 1]

(3.1.9)
=

1

2j + 1
· 1

22j+1

(
2j + 1

j

)
(3.1.4)
� (j + 1)−

3
2 . (3.3.24)

First we introduce some lemmas which will be used in the proof of Lemma

3.3.10.

Lemma 3.3.11. For any β, ε ∈ (0, 1/2), ε < β/2, there exist positive con-

stants C1 and C2 (depending on β, ε) satisfying the following. For ξ1, ..., ξm,

i.i.d. with the distribution of ξ, let

ξ̃i = ξ · 1{ξ≤m2−β}, σm = ξ1 + ...+ ξm, σ̃m = ξ̃1 + ...+ ξ̃m.

Then, for any integer M ∈ [ 1
10m

2−ε, 10m2.5], we have:

P [σ̃m > C1m
2−β/2|σm = M ] ≤ exp(−C2m

β/2). (3.3.25)

We need the so-called Bernstein Inequality (see, e.g. the part of ’Existing

Inequalities’ in [4]) to prove the lemma above:

Proposition 3.3.12. Let X1, X2, ...Xn be independent zero-mean random

variables. Suppose that |Xi| ≤ M̄ almost surely, for all i. Then, for all
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positive t:

P [
n∑
i=1

Xi > t] ≤ exp(−
1
2 t

2∑
E(X2

j ) + 1
3M̄t

) (3.3.26)

Proof of Lemma 3.3.11. Since Eξ̃ � m1−β/2 and Eξ̃2 � m3−3β/2, using

Bernstein inequality (let t = m2−β/2), we get: for some positive constants

C1, C2,

P [σ̃m > C1m
2−β/2] ≤ exp(−C2m

β/2). (3.3.27)

On the other hand, when M ∈ [ 1
10m

2−ε, 10m2.5], we have:

P [σm =M ] = Pm−1[τ = 2M +m]
(3.1.9)

=
m

2M +m
Pm−1[S2M+m = −1]

=
m

2M +m
P0[S2M+m = m]

(3.1.4)
� m

(2M +m)
3
2

exp(− m2

2(2M +m)
)

≥ exp(−Cmε).

Combining (3.3.27) and the inequality above, we get: when ε < β/2,

P [σ̃m > C1m
2−β/2|σm = M ] ≤ exp(−C3m

β/2). (3.3.28)

Another lemma we need is:

Lemma 3.3.13. For any positive η, δ, there exists a positive constant C(η, δ),

such that, for any L ≥ 2N4+2η+δ, we have:

PL
[
Si < N2+η, for some i ∈ [N4+2η+δ, 2L−N4+2η+δ]

]
≤ C(η, δ)/N

3
8
δ.

(3.3.29)

Recall that PL is the law of SRW conditioned on τ = 2L+ 1.

If we let

b1 = max{n ∈ [[0, L]], Sn = bN2+ηc}+ 1,

b2 = min{n ∈ [[L, 2L]], Sn = bN2+ηc} − 1,
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then by Lemma 3.3.13, with probability at least 1−C(η, δ)N−3δ/8, the length

of [[b1, b2]] is bigger than 2(L−N4+2η+δ). Since S on [[b1, b2]] satisfies tree

condition ((3.3.23)), it means that S on [[b1, b2]] is a subtree. Note that the

distance between this subtree and the root is bN2+ηc + 1. Hence we can

interpret Lemma 3.3.13 in the language of random tree.

Corollary 3.3.14. For any η, δ > 0, there exists a positive constant C(η, δ),

satisfying the following: if T is uniform on AL with L ≥ 2N4+2η+δ, then

with high probability, at least 1− C(η, δ)/N
3
8
δ, we can find a rooted subtree

T ′ which is rooted at the vertex closet to the original root, such that, the

distance between this subtree and the original root is equal to bN2+ηc + 1

and the number of edges we discard (|T \ T̃ |) is at most N4+2η+δ. Moreover,

conditioned on the size of T ′, it is uniform on all plane trees of that size.

The last conclusion is simply from the fact that conditioned on the

length, each Dyck path of that length has the same probability weight.

Note that if L � N4+2η+δ, then the ratio of edges discarded is less than

N4+2η+δ/L, which would be very small.

Before proving Lemma 3.3.13 we introduce some notation. For any n ∈
N+ and i ∈ [[0, n]], write A(n, i) =

(
n
i

)
−
(
n
i+1

)
. Using the reflection principle,

one can see: for any x, n ∈ N with the same parity, t ∈ N, x+ 2t ≤ n,

|{s : [[0, n]]→ Z : s(0) = 0, s(n) = x, min
0≤i≤n

Si = −t; ∀i, |s(i)− s(i− 1)| = 1}|

=|{s : [[0, n]]→ Z : s(0) = 0, s(n) = x, min
0≤i≤n

Si ≤ −t; ∀i, |s(i)− s(i− 1)| = 1}|

−|{s : [[0, n]]→ Z :

s(0) = 0, s(n) = x, min
0≤i≤n

Si ≤ −t− 1;∀i, |s(i)− s(i− 1)| = 1}|

=

(
n

n+x
2 + t

)
−
(

n
n+x

2 + t+ 1

)
= A(n,

n+ x

2
+ t).

Lemma 3.3.15 (Comparison between Combinations). For any ε ∈ (0, 1
2), A >

0, there exists C = C(ε, A) > 1, satisfying the following:

For any n, k, k′ ∈ N+, n/2 ≤ k < k′ < n, let i = k − n−1
2 , i′ = k′ − n−1

2 . If
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i′ < εn, i′(i′ − i) < An, then:

A(n, k)/i

A(n, k′)/i′
∈ (1, C(ε, A)). (3.3.30)

Remark 3.3.3. In fact, the case ε = 1
4 , A = 1 is enough for our purpose

and we only use this case.

Proof. It is straightforward to get:

A(n, k) =

(
n

k

)
−
(

n

k + 1

)
=

n!(2k − n+ 1)

(k + 1)!(n− k)!
; (3.3.31)

A(n, k)/i

A(n, k + 1)/(i+ 1)
=
k + 2

n− k
= 1 +

2i+ 1

(n+ 1)/2− i
< 1 +

4i

(1/2− ε)n
;

(3.3.32)

Hence,

ln

(
A(n, k)/i

A(n, k′)/i′

)
<
∑
i≤ī<i′

ln(1 +
4̄i

(1/2− ε)n
)

≤
∑
i≤ī<i′

4̄i

(1/2− ε)n
≤ 4(i′ − i)i′

(1/2− ε)n
≤ 4A

1/2− ε
.

The upper bound follows. The lower bound is immediate from (3.3.32).

Proof of Lemma 3.3.13. By symmetry, it suffices to show:

PL
[
Si < N2+η, for some i ∈ [N4+2η+δ, L]

]
≤ C(η, δ)/N

3
8
δ. (3.3.33)

Let j = bN4+2η+δc. By lemma 3.3.4,

PL[Sj ≤ N2+η+ 3
8
δ] � N−

3
8
δ; (3.3.34)

PL[SL ≤ N2+η+ 3
8
δ] � N−

3
8
δ; (3.3.35)

PL[Sj ≥
√
L ·N

δ
10 ] ≤ C(η, δ)N−

3
8
δ; (3.3.36)

PL[SL ≥
√
L ·N

δ
10 ] ≤ C(η, δ)N−

3
8
δ. (3.3.37)
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Hence, we have:

PL[Sj , SL ∈ [N2+η+ 3
8
δ,
√
L ·N

δ
10 ] ≥ 1− C(η, δ)/N

3
8
δ. (3.3.38)

For a1, a2 ∈ [[N2+η+ 3
8
δ,
√
L · N

δ
10 ]], such that 2|(a2 − a1) − (L − j) and

m ∈ [[0, 1
2N

2+η+ 3
8
δ]], write

S(a1, a2,m) :=

|{s : [[j, L]]→ N : s(j) = a1, s(L) = a2, min
j≤i≤L

Si = m;∀i, |s(i)− s(i− 1)| = 1}|

We know S(a1, a2,m) = A(L − j, L−j+a2−a12 + a1 −m) (see the discussion

before Lemma 3.3.15). We would like to use Lemma 3.3.15 to compare

S(a1, a2,m1) and S(a1, a2,m2). For any m1,m2 ∈ [[0, 1
2N

2+η+ 3
8
δ]], one can

check that, if we let

i = (L− j)−
(L−j+a2−a12 + a1 −m1)− 1

2
,

i′ = (L− j)−
(L−j+a2−a12 + a1 −m2)− 1

2
,

then,

i′ ≤ a2 ≤
√
LN

δ
10 <

L

4
, i′ − i ≤ 1

2
N2+η+ 3

8
δ;

i′(i′ − i) ≤
√
LN

δ
10

1

2
N2+η+ 3

8
δ ≤ L.

Also we have i � i′ (since i ≥ a1− 1
2N

2+η+ 3
8
δ ≥ 1

2N
2+η+ 3

8
δ ≥ i′− i). Hence,

by Lemma (3.3.15), for any m1 ∈ [[N2+η, 1
2N

2+η+ 3
8
δ]] and m2 ∈ [[0, N2+η]],

S(a1, a2,m1) ≥ C(
1

4
, 1)S(a1, a2,m2). (3.3.39)

Note that the left hand side may be zero (when L−j+a2−a1
2 +a1−m1 >

L−j
2 ),
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but in that case the right hand side is also zero (since m1 > m2). Hence,

PL(m ≤ N2+η|Sj = a1, SL = a2)

PL(m ≤ N2+η+ 3
8
δ/2|Sj = a1, SL = a2)

≤ C N2+η

N2+η+ 3
8
δ/2
≤ 2C

N
3
8
δ
. (3.3.40)

Combining this and (3.3.38) completes the proof.

Proof of Lemma 3.3.10. Let us first explain the rough idea of the proof. We

first divide the domain [0, 2L] into subintervals. In each subinterval, since S

does not necessarily satisfy the tree condition (3.3.23) generally, S restricted

to that interval does not correspond a tree. But S restricted to that interval

can still be regarded as a series of trees which are attached to the vertices of a

segment, called the ’spine’, which consists of those edges without matching.

Then, we pick up those subtrees with large size. Assume those subtrees kept

are T̃1, . . . , T̃K . For each T̃i, we can apply Corollary 3.3.14 to get its subtree

Ti. This simple method can satisfy all requirements we need.

Let k = bu ·Nαc and l = 2bNλc, where λ = d− α and α is a parameter

we will choose later. We will write down the constraints for α and other

parameters later. Let Ii = [[(i − 1)l, il]], for any i ∈ [[1, k]]. Write mi =

minn∈Ii Sn and ∆i = S(i−1)l + Sil − 2mi. In fact, ∆i is the tree distance

between the endpoint vertices corresponding to (i − 1)l and il. Note that

∆1 = Sl, thus by Lemma 3.3.4, we have:

PL[∆1 < Nλ/2−γ ] ≤ CN−3γ ;

PL[∆1 > Nλ/2+ε] ≤ CN−3γ .

Note that the constants here (and through out this proof) may depend on

parameters α, γ, ε (and of course u, d), but definitely not on N . In fact we

will choose α, β, γ, δ (β, γ, δ will appear later) in the end and they will be

chosen to be small. After that ε and η will be chosen to be even smaller

numbers depending on α, β, γ, δ.

Using the root-changing method, (see the beginning of the proof of

Proposition 3.3.3) we have the same inequalities for not only ∆1, but ev-

ery ∆i, since ∆i means the tree distance between the endpoints which is
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invariant under root-changing. The number of intervals is k � Nα. Hence,

if

α < 3γ, (3.3.41)

then (by Lemma 3.3.4) we obtain that with a high probability, at least

1− C/N3γ−α, all ∆i are in [[Nλ/2−γ , Nλ/2+ε]].

As mentioned earlier, the part of S in Ii can be regarded as a segment

called ’spine’, consisting of those edges which the contour walk crosses once

inside Ii and once outside I, together with a set of subtrees of S (we call

them bushes) attached to the vertices in the spine. The number of vertices,

also the number of bushes (some maybe one-point trees) in the spine is

m = ∆i + 1, and the total edges of these bushes is M = l−∆i
2 . Moreover,

it is elementary to see that the joint law of the sizes of these bushes is

(ξ1, . . . , ξm) conditioned on
∑
ξj = M . We know that with high probability

∆i ∈ [[Nλ/2−γ , Nλ/2+ε]]. Since ε will be chosen very small (Nλ/2+ε � Nλ),

M ≈ l
2 = bNλc. When

γ/λ < 0.1 (3.3.42)

and ε is very small, one can check that M and m are in the required relation

for Lemma 3.3.11 to hold. Hence we have:

P [σ̃m > C1m
2−β/2|σm = M ] ≤ exp(−C2m

β/2). (3.3.43)

It means that if we discard those bushes with edges less then m2−β, with

high probability, the total number of edges we lose is less than C1m
2−β/2.

We do so and pick up those bushes with size bigger than m2−β. The ratio

of edges lost compared to total edges is less than:

m2−β/2

2l
� N (λ/2+ε)(2−β/2)

Nλ
= N−(λβ

4
−(2−β

2
)ε). (3.3.44)

When ε is very small the exponent is negative, which is what we want (for

Condition 2). The size of each bush we pick is less than l/2 ≤ Nλ and bigger

than:

m2−β ≥ N (λ
2
−γ)(2−β). (3.3.45)
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Note that the exponent λ is obviously less than d. The total number of

bushes picked is less than:

k · (l/(N (λ
2
−γ)(2−β))) � Nα+2γ+βλ

2
−βγ . (3.3.46)

Assume now that all bushes (for all k intervals) picked are T̃1, . . . , T̃n′ and

the vertices where they are grafted in the spine are v̄1, . . . , v̄n′ . Note that for

each subinterval we have a spine and all spines together form the contour

walk of a connected subtrees of T , which we will call the skeleton. All

bushes (whether we picked or not) are grafted to the skeleton. Hence, the

set T \ (∪T̃i) consists of the skeleton and the bushes we do not pick up

and is connected. Since the root o is in the spine of the first interval, o is

in the skeleton and in T \ (∪T̃i). Moreover, conditioned on their sizes and

T \ (∪T̃i), the trees T̃i are independent and uniform. This can be induced

simply by the fact that conditioned on the length, each bush is independent

of the spine and any other bush, and the fact that each Dyck path with that

length has the same probability weight.

In view of Lemma 3.3.14, for each T̃i, with high probability, we can find

its subtree Ti which is far from the root of v̄i. More precisely, for each T̃i,

assume |T̃i| = Li and (Sn)n∈[[0,2|Li|]] is the contour function. We know that

with high probability, the event in (3.3.29) is true. Set

b1 = max{n ∈ [[0, Li]], Sn = bN2+ηc}+ 1,

b2 = min{n ∈ [[Li, 2L]], Sn = bN2+ηc} − 1,

and let Ti is the subtree corresponding to [[b1, b2]]. Then the distance from

T̃i and the root of T̃i is bN2+ηc+1. We use Ti to replace T̃i. If we can replace

all T̃i successfully, then Conditions 2 and 3 can be satisfied and T1, . . . , Tn′

satisfy all conditions. When

(
λ

2
− γ)(2− β) > 4 + 2η + δ, (3.3.47)

the probability of failure for one subtree has order N−3δ/8. Since there are
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at most Nα+2γ+βλ
2
−βγ subtrees, if

α+ 2γ +
βλ

2
− βγ < 3

8
δ, (3.3.48)

then the probability that we can replace all T ′i successfully is bigger than

something like 1−N−ε′ .
The constraints (3.3.41),(3.3.42),(3.3.47) and (3.3.48) are not tight, e.g.

α = 0.001d, γ = 0.002d, δ = 0.05d and β = 0.02 (let ε and η be very small)

satisfy all constraints. Then we conclude the lemma.

3.3.3 Proof of the main theorem

Let S : T → Tn be the random function corresponding to Xn. Then T is

uniform on AL and {X0, . . . , X2L} = S(T ). Due to Lemma 3.3.10, with high

probability (1− C/N ε), we can find subtrees T1, . . . , Tn′ as in the lemma.

We denote with A this event. We write P [·|(n′;L1, . . . , Ln′ ; t)] (respec-

tively p(n′;L1, . . . , Ln′ ; t)) for the conditional probability conditioned (re-

spectively the probability) that A is true, the number of subtrees of Ti is n′,

the size of Ti is Li (i = 1, . . . , n′) and the subtree T̂ with n′ vertices indicat-

ing the places of vi is t (we also assume that T̂ is a rooted tree together with

n′ ordered vertices in it). Note that under P [·|(n′;L1, . . . , Ln′ ; t)], the trees

T1, . . . , Tn′ are independent and uniform on all plane trees with the given

size.

PL,N [{X0, X1, ..., X2L} ∩ ϕ(K) = ∅]

=PL,N [S(T ) ∩ ϕ(K) = ∅]

≤PL,N [Ac] +
∑

p(n′;L1, . . . , Ln′ ; t)P [S(T ) ∩ ϕ(K) = ∅|(n′;L1, . . . , Ln′ ; t)],

where the sum runs over all possible values of Υ = (n′;L1, . . . , Ln′ ; t) such

that p(Υ) > 0 (depending on N).

Since PL,N [Ac]→ 0, it suffices to prove

lim
N→∞

max
Υ
|P [S(T ) ∩ ϕ(K) = ∅|Υ]− exp (−2uBCap(K)) | = 0. (3.3.49)
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The above one can be reduced to (3.3.50)-(3.3.52):

lim
N→∞

max
Υ
|P [S(T ) ∩ ϕ(K) = ∅|Υ]−

P
[(
∪n′i=1S(Ti)

)
∩ ϕ(K) = ∅|Υ

]
| = 0; (3.3.50)

lim
N→∞

max
Υ
|P
[(
∪n′i=1S(Ti)

)
∩ ϕ(K) = ∅|Υ

]
−

n′∏
i=1

P [(S(Ti)) ∩ ϕ(K) = ∅|Υ] | = 0; (3.3.51)

lim
N→∞

max
Υ

∣∣∣∣∣
n′∏
i=1

P [(S(Ti)) ∩ ϕ(K) = ∅|Υ]− exp (−2uBCap(K))

∣∣∣∣∣ = 0.

(3.3.52)

The proof of (3.3.50) is easy.

|P [S(T ) ∩ ϕ(K) = ∅|Υ]− P
[(
∪n′i=1S(Ti)

)
∩ ϕ(K) = ∅|Υ

]
|

≤|P
[
S(T \

(
∪n′i=1S(Ti)

)
) ∩ ϕ(K) 6= ∅|Υ

]
| ≤ Nd−ε 1

Nd
→ 0.

The last inequality is due to Condition 2 in Lemma 3.3.10, the union bound

and the fact that S(v) is uniformly distributed on TN for all v ∈ T .

For (3.3.52), by Condition 1 and 4 in Lemma 3.3.10, we know that |Ti| ∈
[Na1 , Na2 ] and that conditioned on the size, Ti is uniform on A|Ti|. Hence

we can apply Proposition 3.3.3. Then together with Condition 2, one can

get (3.3.52).

Now we turn to (3.3.51). We need the following lemma.

Lemma 3.3.16. There exist positive c and C (depending on those vari-

ables in Lemma 3.3.10 but not N), such that, for any N ∈ N+ and Υ =
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(n′;L1, . . . , Ln′ ; t) with p(Υ) > 0,k ∈ [[1, n′ − 1]], then

|P
[(
∪n′i=kS(Ti)

)
∩ ϕ(K) = ∅|Υ

]
− P [(S(Tk)) ∩ ϕ(K) = ∅|Υ]×

P
[(
∪n′i=k+1S(Ti)

)
∩ ϕ(K) = ∅|Υ

]
| ≤ C exp(−cNη), (3.3.53)

where η is from Lemma 3.3.10.

With this Lemma one can use induction to show

|P
[(
∪n′i=1S(Ti)

)
∩ ϕ(K) = ∅|Υ

]
−

n′∏
i=1

P [S(Ti) ∩ ϕ(K) = ∅|Υ]|

≤ (n′ − 1)C exp(−cNη). (3.3.54)

Since n′ is bounded by a polynomial of N , the right hand side tends to 0,

which implies (3.3.51).

Proof of Lemma 3.3.16. Let o1 and o2 be the ends of ιk (say o1 ∈ Tk ). For

any x, y ∈ TN , define

f(x) = P [(S(Tk)) ∩ ϕ(K) = ∅|S(o1) = x,Υ] , (3.3.55)

h(y) = P
[(
∪n′i=k+1S(Ti)

)
∩ ϕ(K) = ∅|S(o2) = y,Υ

]
. (3.3.56)

By Condition 3, this path separates Tk and ∪n′i=k+1Ti, so we have

P
[(
∪n′i=kS(Ti)

)
∩ ϕ(K) = ∅|S(o1) = x,S(o2) = y,Υ

]
= f(x)× h(y).

(3.3.57)

Therefore,

P
[(
∪n′i=kS(Ti)

)
∩ ϕ(K) = ∅|Υ

]
=
∑

x,y∈TN

f(x)h(y)P [S(o1) = x,S(o2) = y|Υ]

=N−d ·
∑

x,y∈TN

f(x)h(y)PSRWx [ZbN2+ηc+1 = y],
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where PSRWx means the law of Z = (Zn)n∈N which is a simple random walk

starting from x. Note that

P [(S(Tk)) ∩ ϕ(K) = ∅|Υ] = N−d
∑
x∈TN

f(x); (3.3.58)

P
[(
∪n′i=k+1S(Ti)

)
∩ ϕ(K) = ∅|Υ

]
= N−d

∑
y∈TN

h(y). (3.3.59)

Hence the left hand side of (3.3.53) is:

|N−d
∑

x,y∈TN

f(x)h(y)(PSRWx [ZbN2+ηc+1 = y]−N−d)|

≤ max
x∈TN

∑
y∈TN

|PSRWx [ZbN2+ηc+1 = y]−N−d|.

Now (3.3.53) can be implied by the following result in the theory of mixing

time (e.g. see Chapter 5 in [16]).

Proposition 3.3.17. Let κ > 2. There exist positive numbers c and C such

that for any odd N ∈ N+, we have:

max
x,y∈TN

|PSRWx [ZbNκc+1 = y]−N−d| ≤ C exp(−cNκ−2). (3.3.60)

Remark 3.3.4. The requirement of oddness is due to the periodicity of

Simple Random Walk. If the random walk is lazy, then Proposition 3.3.10

is correct without assuming oddness. Hence if the branching random walk is

lazy, we still have Theorem 3.3.1 without assuming oddness.
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Chapter 4

An optimal strategy for the

Majority-Markov game

4.1 Definitions, settings and main result

Our theorem (Theorem 4.1.1) will be stated in terms of Markov game. We

adopt some terminologies from [6]. Furthermore, our theorem is based on

the key object ’grade’, and its properties from [6].

4.1.1 Markov systems

A Markov system with one target (respectively with two targets) S =<

V,P,C, t > (resp. S =< V,P,C, t+, t− >) consists of a Markov chain (V, P ),

a cost function C : V → R+, and a target t ∈ V (resp. two targets t+ and

t−). We assume that the targets are absorbing. We further assume that the

state space V is finite and that every target is accessible from any non-target

state. The cost of a ’trip’ v(0), v(1), ...v(k) on S is the sum
∑k−1

i=0 Cv(i) of

the costs of the visited states except the last. If C ≡ 1, then C could be

regarded as the time or the number of steps.

4.1.2 Games

Let S(1), S(2), ...S(n) be Markov systems with either one or two targets.

For each S(i), we fix a starting state, u(i), and place a token i at that state.

A ’game’ consists of Markov systems with tokens on their starting states

and a stopping rule Λ ⊆ V (1)× V (2)× ...× V (n): the set of configurations

when the game ends.
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A single player plays against a ’bank’: chooses one (say token i at the

state v ∈ V (i)) of the n tokens to move (according to its transition proba-

bility P (i)) and pays the cost (Cv(i)), then chooses and pays again... When

all tokens form a configuration in the stopping rule Λ, the game ends and

the player leaves. We assume that if all tokens are at targets, the game ends

(this means that Λ contains those configurations in which all coordinates are

targets). As targets are absorbing, we could assume that tokens at targets

are not allowed to choose.

By setting different stopping rules, we have different games. A trivial

stopping rule is that all tokens are at the targets. For a non-trivial example,

[6] considers the simple multitoken game Sim(S(1), S(2), ..., S(n); 1), whose

stopping rule is (at least) one of the tokens at the targets. Similarly, we

define Sim(S(1), S(2), ..., S(n); k) to be the game whose stopping rule is at

least k of the tokens at the targets. In this chapter, we address the ’Majority-

Markov’ game Maj(S(1), ..., S(2k + 1)) with n = 2k + 1 Markov systems

with two targets, whose stopping rule is ’k + 1 tokens at positive targets or

k + 1 tokens at negative targets’.

4.1.3 Strategies and costs

A strategy tells us how to choose the token to move. Mathematically, by

a strategy σ, we mean a function σ : V (1) × ... × V (n)\Λ → {1, 2, ...n}
satisfying σ(u1, u2, ...un) 6= i if ui is a target. When tokens are at the state

u = (u1, u2, ...un) , under strategy σ, σ(u1, u2, ...un) is chosen. Note that

the inequality means that we cannot choose tokens at target.

The cost E[G, σ] (or simply E[σ]) is the expected cost (for the player)

of playing G under strategy σ. The cost E[G] of a game G is the minimum

expected cost of playing G, under all possible strategies. The optimal s-

trategies are those strategies that reach E[G]. If we want to emphasize the

starting state u = (u1, ...un), we use Eu[G, σ], Eu[σ], or even E(u) (when

the game G and the strategy σ are explicit).
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4.1. Definitions, settings and main result

4.1.4 Grades and positive-(negative-)grades

For a Markov system with one target S =< V,P,C, t >, a state u 6= t

(where the token is), and a positive real number g, consider a modified

game where the player can leave at target t without money as usual, or

leave at any other state by paying g dollars. This can be defined using our

terminology by adding a Markov system Tg. Define the terminator Tg as the

Markov system < {s, t}, P, g, t > with starting state s, where ps,t = 1. The

terminator always hits its target in exactly one step, at cost g. The modified

game is now the simple Markov game Sim(S, Tg; 1). We can imagine that

when g is small enough, the optimal strategy is to leave by paying g and

when g is large enough, the optimal is to choose the token at the system

S until it hits the target. The grade γu(S) of the system S for state u is

defined to be the unique value of g at which an optimal player is indifferent

between the two possible first moves in the game Sim(S, Tg; 1). Naturally,

we set γt(S) = 0. It is possible to compute γ in a polynomial time (see [6]

for this and more properties about grades).

For a Markov system with two targets S =< V,P,C, t+, t− >, we de-

fine the positive-grade γ+
u (S) for state u ∈ V \{t−} to be the grade for

u in S+ =< V,P,C, t+ > and the negative-grade γ−u (S) for u ∈ V \{t+}
to be the grade for u in S− =< V,P,C, t− >. For convenience, we set

γ−
t+

(S) = γ+
t−(S) = ∞. Note that either positive-grade or negative-grade is

a nonnegative number.

4.1.5 Main result

Theorem 4.1.1. A strategy for the Majority-Markov game Maj(S(1), ...,

S(2k + 1)) is optimal if and only if it always plays in a system in which

neither the positive-grade (of the position of the token) is larger than the

median of all 2k + 1 positive-grades, nor the negative-grade is larger than

the median of all 2k + 1 negative-grades.
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4.2 Some known results about Markov games

It turns out that every Markov game (at least in our sense, i.e. when the

stopping rule contains all configurations in which all coordinates are targets)

has an optimal strategy. We refer the reader to [24] for more details.

From a given state u = (u1, ...un) of a Markov game (with n Markov

systems), an action α ∈ {1, ..., n} (means choosing token α) gives an im-

mediate cost Cu(α) (more precisely, Cuα(α)) and a probability distribution

{pu,•} for the next state. Therefore a strategy σ with action α at the state

u satisfies:

Eu[σ] = Cu(α) +
∑
v

pu,v(α)Ev[σ].

If among all possible actions at state u, α is the minimizer of the right-

hand side of this expression, then σ is said to be consistent at u.

Proposition 4.2.1. A strategy is optimal if and only if it is consistent at

every state (/∈ Λ).

For the expected cost function, we have:

Proposition 4.2.2. For the game G consisting of Markov systems S(1), ...,

S(n) with stopping rule Λ, if a function E : V (1)× ...×V (n)→ R+ satisfies:

E|Λ ≡ 0 and

Eu = min
α
{Cu(α) +

∑
v

pu,v(α)Eu} ∀u ∈ V (1)× ...× V (n) \ Λ, (4.2.1)

where min is under all possible actions α at state u, then, E is the (unique)

cost function for G and a strategy is optimal if and only if, it, at every state

u ∈ V (1)× ...× V (n) \ Λ, takes the action which reaches the min.

The game Sim(S(1), ..., S(n); 1) is analyzed in [6] where the optimal

strategy is established. Their argument also works for Sim(S(1), ..., S(n); k)

with minor modifications.
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Proposition 4.2.3. A strategy for the game Sim(S(1), S(2), ..., S(n); k) is

optimal if and only if it always plays in a system whose current grade is not

larger than the k-th smallest grade.

4.3 Proof of the main theorem

We have n = 2k+ 1 Markov systems: S(i) =< V (i), P (i), C(i), t+, t− >,i =

1, ..., n. For notational ease, we identify all positive (negative) states. Now

recall and define some games by giving their stopping rules.

Games Stopping rules

GM k + 1 tokens at positive targets or k + 1 at negative

G0 all n tokens are at targets

G+ k + 1 tokens at positive targets or all n tokens at targets

G− k + 1 tokens at negative targets or all n tokens at targets

GS+ k+1 tokens at positive targets (redefine pt−,t+ = 1, Ct− = C0

for all Markov systems)

GS− k + 1 tokens at negative targets (redefine pt+,t− = 1, Ct+ =

C0 for all Markov systems.)

Here, C0 is a large real number (such that it is larger than all positive-grades

and negative-grades for non-target states).

Let EM , E0, E±, ES± be the expected cost functions for the correspond-

ing games. The following lemma is natural in light of Proposition 4.2.3.

Lemma 4.3.1. A strategy for G+ is optimal if and only if it always plays

in a system whose current positive-grade is not larger than the median of all

positive-grades. For the game G−, we have the similar conclusion.

Proof. For simplicity, consider the case of k = 1. The general case is similar.

First consider GS+ here. Note that GS+ is a simple multitoken game.

With Proposition 4.2.3 in mind, we need to consider the grade corresponding

to the target t+. We point out that since C0 is larger than any other positive-

grade, changing transition probability from t− does not change the positive-

grades of other states. Hence for other states, the new grade is the same as
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4.3. Proof of the main theorem

the old positive-grade (in G+).

Under the adjustment pt−,t+ = 1, t+ is accessible from t−, so we can

apply Proposition 4.2.3 for GS+. The optimal strategies are those moving

the token whose grade is not larger than the median. As C0 is the positive-

grade of t−, which is larger than all other positive-grades. Hence for any

optimal strategy, we can avoid playing tokens at t−, unless all tokens are at

t±. So, if we forbid choosing tokens at t− unless all tokens are at targets,

the cost of GS+ remains the same. Under this assumption, at state u /∈ B =

{u = (u1, u2, u3) : ui = t±, i = 1, 2, 3}, G+ and GS+ has the same possible

actions.

Consider the expected cost functions E+ and ES+ for games G+ and

GS+. One can easily find out their values on the boundary set (denoted by

∂Λ):

∂Λ E+ ES+

(t+, t+, u3) 0 0

(t+, u2, t
+) 0 0

(u1, t
+, t+) 0 0

(t−, t−, t+) 0 C0

(t−, t+, t−) 0 C0

(t+, t−, t−) 0 C0

(t−, t−, t−) 0 2C0

In order to remove the difference between E+ and ES+, we introduce

EL+ : V (1)× V (2)× V (3)→ [0,+∞) by:

EL+(u1, u2, u3) = (2p−u1p
−
u2p
−
u3 + (p+

u1p
−
u2p
−
u3 + p−u1p

+
u2p
−
u3 + p−u1p

−
u2p

+
u3))×C0,

(4.3.1)

where p+
ui denote the probability of the event that a token starting from ui

visits t+ (before visiting t−), similarly for p−ui .

Since p+
t+

= p−
t− = 1, p+

t− = p−
t+

= 0, we can check that EL+(u) =

ES+(u), for any u ∈ ∂Λ. On the other hand using the equalities for hitting

probability: p±ui = Σvipui,vi(i)p
±
vi , we can see that EL+ satisfies the linear
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part of (4.2.1):

EL+(u) = Σvpu,v(i)EL
+(v) for i : ui 6= t±. (4.3.2)

Because ES+ satisfies (4.2.1) and EL+ satisfies the linear part of (4.2.1),

ES+−EL+ also satisfies (4.2.1). On the other hand, ES+−EL+ and E+ are

equal to 0 on ∂Λ. By the uniqueness of Proposition 4.2.2, ES+−EL+ = E+.

In particular, the actions which reaches the min in (4.2.1) for E+ and ES+

are the same. Hence, for G+ and GS+, we has the same optimal strategies.

This completes the proof of the first assertion. By symmetry, one can get

the other assertion.

Remark 4.3.1. For general k, one should use:

EL+(u) = C0 · Eu(max{0, the number of tokens hitting t− − k})

= C0 ·
∑

τ1∈{+,−},...τn∈{+,−}

max{0, (
∑
i

1τi=−)− k}pτ1u1 ...p
τn
un .

Now we can build a connection between GM , G0 and G±.

Claim 4.3.2.

EM = E+ + E− − E0. (4.3.3)

For any strategy σ for game GM , we could use it to play any of G+, G−

and G0: use strategy σ to play until the stopping rule for GM happens. If

at that time the game does not end, the stopping rule switches to the trivial

stopping rule, i.e., all tokens are at targets. Hence the subsequent cost after

GM ends is independent of the strategy. Note first that G+, G− and G0 will

not end before GM ends, since Λ+,Λ−,Λ0 ⊆ ΛM . And if GM ends before

all tokens reach targets, exactly one of G+ and G− ends at this time, and

the other will end at the same time as G0 ends, i.e when all tokens reach

targets; if GM ends when all tokens are at the targets, then all four games

end at this time. Consider game pairs (GM , G0) and (G+, G−). We get that

(under any strategy) when one of the games in the left pair ends, one in

the right pair also ends and when the other game in the left pair ends, the
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4.3. Proof of the main theorem

other in the right also ends and vice versa. Note that at each step we pay

the same amount of money for each pair. Hence, one can get:

EM [σ] + E0[σ] = E+[σ] + E−[σ] ≤ E+ + E−.

Therefore,

EM [σ] ≤ E+ + E− − E0[σ] = E+ + E− − E0.

The last equality is due to the fact that the cost of the trivial game E0 is

independent of strategies.

Furthermore, the equality holds if and only if E+[σ] = E+ and E−[σ] =

E−. This means that σ is optimal for both G+ and G−. Hence, σ is an

optimal strategy for GM if and only if it is an optimal strategy for both G+

and G−. Therefore, by Lemma 4.3.1 we finish the proof of the main result.
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Appendix A

Sketch of Proof of Lemma

2.1.3

Proof. Without loss of generality, one can assume θ is aperiodic. The first

step is to show:

• There is a δ ∈ (0, 0.1), such that, for any ε > 0 small enough, and

m ∈ N+ large enough (depending on ε), we can find c1 = c1(ε), such

that, for any n ∈ [εm2, 2εm2], z, w ∈ C(3δm), we have:

pmn (z, w)
.
=

∑
γ:z→w,γ⊆C(m),|γ|=n

s(γ) ≥ c1 ·m−d. (A.0.1)

Indeed, the Markov property implies that:

pmn (z, w) ≥ P (Sz(n) = w)−max{P (Sy(k) = w) : k ≤ n, y ∈ (C(m))c},

and the LCLT establishes (A.0.1). Using this estimate, one can see that:

• For any ε > 0 small enough, and m ∈ N+ large enough, we can find

c2 = c2(ε), such that, for any z, w ∈ C(3δm), we have (we write Cx(r)

for the ball centered at x with radius r):∑
γ:z→w,|γ|≤2εm2,γ⊆C(m)

s(γ) ≥ c2m
2−d; (A.0.2)

∑
γ:z→Cw(δm/10),|γ|≤2εm2,γ⊆C(m)

s(γ) ≥ c2m
2.
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Note that in the first assertion, the left hand side is increasing for m when

z, w are fixed. Due to this fact, one can get that

• For any ε > 0 small enough, and m ∈ N+ large enough, we can find

c2 = c2(ε), such that, for any z, w ∈ C(3δm), we have:∑
γ:z→w,|γ|≤2εm2,γ⊆C(m)

s(γ) ≥ c3‖z − w‖2−d; (A.0.3)

By considering the first visit of Cw(δm/10), one can get:∑
γ:z→Cw(δm/10),|γ|≤2εm2,γ⊆C(m)\Cw(δm/10)

s(γ)

≥
∑

γ:z→Cw(δm/10),|γ|≤2εm2,γ⊆C(m)

s(γ)/max{g(x, C(δm/10)) : x ∈ C(δm/10)}

�m2/m2 � 1.

Hence we have:

• For any ε > 0 small enough, and m ∈ N+ large enough, we can find

c4 = c4(ε), such that, for any z, w ∈ C(3δm), we have:∑
γ:z→Cw(δm/10),|γ|≤2εm2,γ⊆C(m)\Cw(δm/10)

s(γ) ≥ c4. (A.0.4)

Now we are ready to show the lemma. Without loss of generality, assume

ρ(U, V c) = 1. First, choose a finite number of balls with radius δ and centers

at U : B1, B2, . . . , Bk covering U . Choose ε small enough for (A.0.2),(A.0.3),

(A.0.4) and ε < 1/k. Now we argue that when n is sufficiently large, (2.1.5)

holds.

Write B′i = nBi ∩ Zd and B
′
i = nBi ∩ Zd for i = 1, . . . , k, where Bi is

the ball with radius 1 and the same center of Bi. When ‖x− y‖ ≤ 2δn, by

(A.0.3) we have (2.1.5). Otherwise, x, y are not on the same B′i. However,

we can find at most k + 1 points x0 = x, x1, . . . , xl = y,(l ≤ k) such that xj

and xj+1 are in the same B′i, say B′j . Note that when z, w are on the same
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B′i, by (A.0.4), for any z′ ∈ Cz(δn/10),∑
γ:z′→Cw(δn/10),|γ|≤2εn2,γ⊆B′i\Cw(δn/10)

s(γ) ≥ c4.

Hence, by connecting paths, one can get:∑
γ:x→y,γ⊆Bn,|γ|≤2n2

s(γ) ≥
∑

γ0:x0→Cx1 (δn/10),|γ0|≤2εn2,γ0⊆B
′
0\Cx1 (δn/10)

s(γ0)

·
∑

1

s(γ1) ·
∑

2

s(γ2) · · · ·
∑
l−2

s(γl−2) ·
∑

γl−1:γ̂l−2→y,|γl−1|≤2εn2,γl−1⊆B
′
l−1

s(γl−1)

≥ (c4)l−1 · c2(n2−d) ≥ (c4)kc2n
2−d � g(x, y),

where
∑

j =
∑

γj :γ̂j−1→Cxj+1 (δn/10),|γj |≤2εn2,γj⊆B
′
j\Cxj+1 (δn/10)

for j = 1, . . . , l−
2.
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