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Abstract 

Viral myocarditis is an inflammatory heart disease caused by viral infection, which is a 

major cause of sudden death in children and young adults. Among the various viruses, 

coxsackievirus B3 (CVB3) is a predominant pathogen of viral myocarditis. As CVB3 

replication is tightly tangled with signaling pathways in host cells, an in-depth study of 

CVB3-host interactions would promote the understanding of the pathogenesis of viral 

myocarditis and provide critical drug targets for the development of therapeutics. CVB3 

infection induces different types of stress in host cells, and in turn, the cells respond to the 

stress via expressing certain stress-responsive proteins (SRPs) to counteract the stress for cell 

survival. During the co-evolution of virus and host, CVB3 has developed sophisticated 

strategies to modulate and utilize SRPs to benefit its own replication. The main objective of 

this dissertation is to investigate the modulation and functional roles of SRPs in CVB3 

infection and CVB3-induced myocardium damage. I hypothesize that 1) CVB3 infection 

differentially regulates the expression and activity of SRPs at transcription, translation or 

post-translation level; 2) the dysregulation of SRPs benefits CVB3 replication and promotes 

CVB3-induced cell damage. This dissertation mainly focuses on two SRPs, the inducible 

heat shock 70 kDa protein (Hsp70) and nuclear factor of activated T-cell 5 (NFAT5), during 

CVB3 infection. Using in vitro (cell culture) and in vivo (mouse) models, I demonstrated an 

increase of Hsp70 but a decrease of NFAT5 during CVB3 infection. Further studies 

elucidated the mechanism underlying such changes as well as the feedback effects on CVB3 

replication. Hsp70 was upregulated via CaMKII-HSF1 signaling cascade activated in CVB3 

infection and in turn promoted CVB3 infectivity via stabilizing viral genome and benefiting 

viral translation. NFAT5 was cleaved by CVB3 proteases 2A and 3C, generating a 70 kDa 
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dominant negative truncate, which inhibited the iNOS-mediated anti-viral activity of NFAT5. 

Together, my findings have uncovered the new roles of SRPs in CVB3 infection and 

potential novel drug targets for CVB3-induced myocarditis. 
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Lay Summary 

    Heart diseases are a major threat to the public health around the world. Viral infection is 

an important cause of lethal heart diseases. Among different viruses, coxsackievirus B3 

(CVB3) is one of the most common pathogens detected in patients with acute or chronic 

heart diseases in North America. Unfortunately, there is no effective drug available for the 

treatment of CVB3-induced heart diseases recently. 

    The classical anti-virus drugs killing viruses directly failed to inhibit CVB3 infection. In 

my study, I demonstrated a novel anti-CVB3 strategy which was aimed at enhancing the 

defense of the host cells against the virus. Briefly, I have found two human proteins critical 

for CVB3 survival in the heart. By modulating these proteins with specific treatment, CVB3 

could not survive in the heart cells anymore and thus the heart damage caused by viral 

infection was blocked. These findings provided new ways for the development of anti-CVB3 

drugs. 
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this manuscript, I contributed to ~30% of the experimental design and data production, and I 

am listed among the three co-first authors. The major results of this manuscript is briefly 

described in the “Limitations and future directions” part of this dissertation. 

In addition to the work described above, I also conducted the literature review about the 
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Chapter 1 Introduction 

1.1 Viral Myocarditis 

1.1.1 Definition and epidemiology 

Myocarditis is an acute or a chronic inflammatory process in the myocardium 9, 10. This 

disease is an ancient term used to refer to almost all heart diseases before early nineteenth 

century 11. The modern concept myocarditis was first introduced by Sobemheim in 1837 12. 

Then, the disease was further defined by Feidler in 1899 13 and classified by Saphir in 1942 14. 

Currently, the widely accepted diagnostic standard for myocarditis is the Dallas criteria 

established in 1986, which defines myocarditis as inflammatory cell infiltration of the 

myocardium with non-ischemic damage to cardiomyocytes 15, 16.  

Viral infection is the most common cause of myocarditis 17, which is specifically referred to as 

viral myocarditis. Epidemiological studies suggest that up to 50% of the general public is 

exposed, typically early in life, to cardiotropic viruses and that approximately half of these 

individuals may have an episode of acute viral heart infection at some points in their lives 18, 19. 

Although majority of these individuals recover spontaneously, certain acute viral myocarditis 

may progress into dilated cardiomyopathy (DCM), a severe heart disease characterized by heart 

enlargement, left ventricle (LV) chamber dilation, and systolic dysfunction 3, 20, 21. In patients 

less than 40 years of age, virus-induced DCM is one of the major natural causes of sudden, 

unexpected death, accounting for approximately 20% of all such cases.9, 19, 22. To date, there is no 

specific therapy or vaccine for these virus-induced heart diseases. For patient with DCM, the 

only treatment thus far is heart transplantation3, 20, 21. 
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1.1.2 Etiology  

Various viruses can cause viral myocarditis and the types of virus detected in myocarditis vary 

with time and geographic locations. In developed countries, until the 1990s, the most frequently 

identified viruses were enteroviruses, particularly coxsackievirus group B serotypes (CVBs), 

accounting for 30% - 50% of all myocarditis cases in North America 23. Thus, early 

understanding of pathogenesis of viral myocarditis came almost entirely from experimental 

models of acute CVB infection. Regardless, studies after year of 2000 have indicated that 

parvovirus B19 (PVB19) and human herpes virus 6 (HHV6) are the viruses most frequently 

found in patients with acute and chronic myocarditis, followed by enterviruses as the third 

predominant pathogen of viral myocarditis (Figure 1.1) 3, 24-27. However, it is still controversial 

to bridge the causality between PVB19 and myocarditis. Firstly, the major infectious targets of 

PVB19 in the heart are endothelial cells but not cardiomyocytes, the loci where pathological 

change of myocarditis occurs 28.  This finding suggests that PVB19 is probably not capable of 

causing damage in myocardium directly and may facilitate the progress of inflammation via 

enhancing immune infiltration. Secondly, PVB19 genome, protein and specific serum IgG were 

detected in the heart tissue of patients without evidence of myocarditis or DCM, which reached 

as high as 85% among 100 samples detected in a study 29, 30. These reports indicate that the 

present of PVB19 in myocarditis is likely to be a coincidence and detection of PVB19 only is not 

diagnostically helpful for determining the etiology of adult myocarditis 31. Similar dilemma also 

occurs on HHV6, since the well documented infectious loci of HHV6 are also endothelial cells 

32, 33 and there is lack of evidence for the expression of HHV6 receptor CD46 on cardiomyocytes 

34, 35. Therefore, enteroviral infection is still an important model used in the study of viral 

myocarditis currently, among which coxsackievirus B3 (CVB3) is the most widely studied 
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serotype in the CVB group. In addition to viruses described above, other viruses reported to be 

detected in myocarditis include adenovirus 36, hepatitis C virus (HCV) 37,  Epstein-Barr virus 

(EBV) 38 and human immunodeficiency virus (HIV) 39. 

 

 

1.1.3 Pathogenesis of viral myocarditis  

   The development of viral myocarditis, such as CVB3-induced myocarditis can be typically 

described as two stages, the pre-cardiac stage and the cardiac stage. The pre-cardiac stage is the 

process of initial viral entry, viral spread in the circulatory system and entry into myocardium. 

The cardiac stage is the period in which the pathological change of myocardium occurs and is 

further divided into three phases: 1) the acute phase characterized by active viral replication in 

Figure 1.1. Prevalence of different virus or viral combinations detected in patients with 

myocarditis. The graph is made based on the report of Kuhl et al. 3. 
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cardiomyocytes, 2) the sub-acute phase characterized by with immune infiltration and 

inflammation and 3) the chronic or remodeling phase 7, 40 (Figure 1.2). 

 

     1.1.3.1 Pre-cardiac stage 

    Since the heart is a well-protected organ shielded by the blood–heart barrier, the virus can 

hardly reach the myocardium directly. The initial infectious loci vary among different viruses. 

For example, enteroviruses enter the host via the oral cavity and/or respiratory tract, then 

reproduce in the upper respiratory tract and small intestine but usually lead to no serious 

symptoms 41. Viruses then invade into the bloodstream by which they disseminate to a variety of 

target organs, such as heart. The spread of viruses in the circulatory system typically result in a 

minor viremia, but high viral load in the blood or exaggerated immune response to the virus may 

lead to sepsis with symptoms like fever, increased heart rate, increased breathing rate, and 

confusion 42, 43. The mechanism underlying the transmission of viruses from the blood to the 

myocardium has not been well elucidated. For CVB3, most studies attribute this step to simple 

diffusion of extracellular viral particles but some believe that macrophages play as a critical 

vehicle in delivering the virus to myocardium 44. After viruses invade into cardiomyocytes, the 

major viremia occurs in the heart and the cardiac stage starts.  

 

    1.1.3.2 Cardiac stage 

    In murine models with CVB3-induced myocarditis, the acute phase of cardiac stage lasts for 3 

to 4 days after the initial viral infection in the myocardium. In this phase, active viral replication 

proceeds in cardiomyocytes and stimulates different responsive signalings. Intense viral 

replication directly inflict protein overload and protelytic damage to the host cells, subsequently 
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inducing apoptosis and/or necrosis of cardiomyocytes 45-47. Meanwhile, the pathogen-associated 

molecular patterns on the viral capsid are recognized by cardiac Toll-like receptors (TLRs) 48 on 

cardiac resident myocytes, fibroblasts, endothelial cells, and dendritic cells. The TLRs activates 

these cells to express proinflammatory cytokines including interleukin-1b (IL-1b), IL-6, IL-18, 

tumor necrosis factor-α (TNF-α), and type I/ type II interferons (IFNs) 49, 50. These cytokines 

exert a range of effects on myocardium. For instance, the high level of cytokines triggers the 

remodeling of the extracellular matrix (ECM) 51; Type I IFN blocks protein synthesis, stimulate 

p53-mediated apoptosis, and upregulate the immunoproteasome and major histocompatibility 

complex (MHC) classes I and II 52;  the cytokines activate local macrophages, endothelial 

adhesion molecules, chemokines and chemokine receptors, contributing to the recruitment of 

innate immune cells 53. 

    The sub-acute phase ranged from day 4 to day 14 post infection (pi) commences with immune 

response and elimination of myocardial viruses 54. The innate immune response is evoked first 

featured by infiltration of innate immune cells, such as natural killer (NK) cells. These innate 

immune cells are capable of recognizing and killing infected cells, which is the key step for viral 

clearance 55. The innate immune response is later followed by accumulation of adaptive immune 

cells in the infected myocardium, including both T and B lymphocytes. CD8+ cytotoxic T cells 

directly bind and eliminate infected cells by recognizing MHC class I antigens on infected 

cardiomyocytes, assisted by the cytokines TNF-α and IFN-γ 52, while CD4+ T helper cells 

facilitates the antigen presenting to cytotoxic T cells and B cells, and the latter produce 

neutralizing antibodies to limit the dissemination of extracellular viral particles 53. The active 

immune response during the sub-acute phase lowers the active viral progeny to undetectable 
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level 54, but it kills infected cardiomyocytes which can barely regenerate, causing irreversible 

cardiac damage. 

The third phase is featured by cardiac repair and remodeling after complete clearance of active 

viral particles. Acute immune response is subsided due to expression of anti-inflammatory 

cytokines such as transforming growth factor-β (TGF-β) and IL-10 secreted by regulatory T cells 

and M2 macrophages are activated to promote the replacement of dead tissue with fibrotic scar 

53. Large-scale myocardial repair may lead to cardiac dilation and compensatory hypertrophy, 

resulting in contractile dysfunction for long term 52. Alternatively, viral RNA and viral proteins 

may still persist in cardiomyocytes though the viral replication is restricted to RNA synthesis 56, 

57. Viral persistence continues inducing pro-inflammatory cytokines, such as IL-18 and TNF-α 58, 

resulting in chronic inflammation which finally progresses to DCM 24, 56.  

 

1.1.4 Treatment of viral myocarditis 

Long-term follow-up studies indicated a rate of 40 – 60% of spontaneous recovery of 

myocardial function of patients with suspected viral myocarditis 59 for whom no treatment was 

needed. However, it is extremely risky to rely on the spontaneous recovery of myocarditis, since 

the development of myocarditis is hard to predict. Therefore, prompt treatment is necessary for 

symptomatic viral myocarditis. The antiviral treatment seems to be plausible in the early stage of 

viral infection. Vaccination for CVB3 has been tried in murine models, including a subunit 

vaccine from a non-virulent strain of CVB3 60 and an inactivated CVB3 61. Both trials were 

promising with dramatically lower mortality of mice with CVB3-induced myocarditis. Anti-

enterovirus compounds such as pleconaril, WIN 54954 and soluble CAR-Fc have also been 

tested in animal models for relieving viral myocarditis. For instance, pleconaril binds to CVB3 
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capsid proteins, prevents CVB3-receptor binding, and thus blocks the infectivity of CVB3 62, 63; 

WIN 54954 inhibits early events of CVB3 replication and reduces cardiomyocyte apoptosis 64-66; 

a soluble IgG1-Fc fusion protein CAR-Fc neutralizes the extracellular viral particles and 

attenuates CVB3-induced myocarditis 67. However, these treatments have not been applied to 

humans due to the high mutation rates of the viruses and the epidemiological shift from 

enteroviruses to PVB19 and HHV6 in the late 1990 (described above). Interferon-β is a broad-

spectrum antiviral agent subduing viral mutation, which has been proved to be effective in acute 

entero- and adenoviral myocarditis 68 but not in chronic PVB19 myocarditis 69. These results 

were probably not due to the virus types but to that antiviral therapy is only effective in cases 

with active viral infection. Intravenous immunoglobulins (IVIG) is another promising therapy for 

myocarditis due to its antiviral effect as well as immunomodulation properties which prevent the 

formation of proinflammatory cytokines 70. Though several trials have shown benefit of IVIG on 

the treatment of viral myocarditis, the effect of IVIG is still controversial since no viral etiology 

was assessed in those trials 71, 72. Immunoadsorption (IA) is a therapeutic technique to eliminate 

cardiotoxic autoantibodies together with cytokines, which is a major cause of myocardium 

damage in viral myocarditis. IA has been tested in patients with DCM which showed a marked 

reduction of ß-receptor autoantibodies and a significant improvement of cardiac function 73-75, 

but it was not confirmed that the DCM was caused by viral myocarditis and IA’s effect on viral 

myocarditis is still obscure. Nevertheless, considering viral myocarditis can be a rapidly 

progressed lethal disease, easily accessible therapy is still in demand for this disease. 
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Figure 1.2. Pathogenesis of CVB3-induced viral myocarditis. In the initial infection or pre-cardiac 

stage, the virus enters the blood via small intestine and disseminates to different organ including the 

heart. In the heart, the virus starts the secondary infection or cardiac stage which can be further divided 

into three phases: 1) the acute phase with active viral replication, 2) the sub-acute phase with immune 

infiltration and 3) the chronic or remodeling phase. The time points of each phase were captured from 

murine models. This graph was developed based on the reviews of Liu et al. 7 and Yajima et al. 8. 
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1.2 Coxsackievirus B3 (CVB3) 

1.2.1 Discovery and classification of coxsackieviruses 

Coxsackieviruses were first reported in sudden death of an adult male in 1944 and 

characterized as a filter-passing agent causing interstitial myocarditis in different animal models 

76. The first isolated strain of coxsackieviruses, coxsackievirus A (CVA), was obtained by 

Dalldorf and Sickles in 1948. In a trial to search for mouse-adaptive poliovirus, they isolated the 

virus from the feces of children with paralysis showing unique features different from poliovirus 

and suggested name the new virus as coxsackievirus after Coxsakie, a small town in New York 

where specimens were obtained 77. In 1949, Melnick et al. isolated the second coxsackiviral 

strain, CVB, from patients with non-paralytic poliomyelitis or aseptic meningitis, and pointed 

out that the virus was widespread in the public during the summer of 1948 78. From then on, 

CVA and CVB has been referred to as two groups of coxsackieviruses since different serotypes 

within them were further identified, including 23 serotypes for CVA and 6 for CVB 79-81. 

Coxsackieviruses are classified to the genus of enterovirus of Picornaviridae family, 

regarding their fecal-oral transmission route 82 and their genetic homology to typical 

enteroviruses such as enterovirus 71 (Figure 1.3) 6. Actually, the nomenclature of CVA and 

CVB is not based on the homology in their genomic sequence but on their pathogenicity. CVA 

was first noted in a flaccid paralysis due to generalized myositis, while CVB was initially related 

to spastic paralysis due to focal muscle injury and degeneration of neuronal tissue 83. Later 

clinical trials have suggested that CVAs tend to infect the skin and mucous membranes, causing 

herpangina, acute hemorrhagic conjunctivitis, and hand-foot-and-mouth disease, while CVBs 

tends to infect the heart, pleura, pancreas, and liver, causing pleurodynia, myocarditis, 

pericarditis, and hepatitis 84. Especially, CVB1, CVB3, and CVB5 are the most commonly 
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identified in myocarditis 52 and CVB3 was detected in 20-40% of all cases in acute onset heart 

failure and DCM 85, 86. 

 

 

 

 

1.2.2 CVB3 genome and proteins 

Similar to other picornaviruses, CVB3 is a small, non-enveloped virus with a single, positive-

strand RNA genome of ~7400 nucleotides (nts). The genomic RNA of CVB3 contains a single 

open reading frame (ORF) flanked by 5’ and 3’ untranslated regions (UTR) (Figure 1.4) 87. 

CVB3 genomic RNA is structurally similar to eukaryotic mRNA and can be translated directly 

using the host translational machinery. However, the 5’ terminus of CVB3 genomic RNA lacks 

Figure 1.3. The genetic homology among common enteroviruses adapted from Donaldsom et al. 6. 

The neighbor-joining tree was derived from an alignment of 196 base pairs of the 5’ UTR from 

enteroviral standards. Notice that different serotypes within coxsackievirus A and B are not necessarily 

to be with higher genetic homology to their siblings than to non-coxsackieviral enteroviruses. 
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the m7G(5’)ppp(5’)N cap structure present in cellular mRNAs, but instead, it is covalently bound 

to a viral protein VPg 88 which is essential for the initiation of viral transcription 89, 90. The 

relative long 5’ UTR (~740 nts) of CVB3 genome is highly structured to form some cis-elements 

critical for viral replication and translation. The cloverleaf structure harbored in the 5’ UTR is 

the binding site of the viral RNA polymerase 3CD and plays important roles in the initiation and 

process of synthesis of negative-strand viral RNA in viral replication 91, 92. Downstream of the 

cloverleaf structure locates an internal ribosome entry site (IRES) which is required for the cap-

independent translation initiation of viral RNA distinct from normal cap-dependent translation 

utilized by most eukaryotic mRNA 88, 93. The special translational mechanism of CVB3 is 

considered to be an evolutionary advantage which allows CVB3 to shut down the canonical cap-

dependent translation of the host to release translational machinery for its own translation. The 

3’UTR of CVB3 genome also harbors a binding site for 3CD. 3CD binding to both 5’ and 3’ 

termini is crucial for the circularization of viral genomic RNA which is key to the replication of 

both positive- and negative-strand viral RNAs 94. In addition, the 3’UTR is ended with an poly(A) 

tail similar to cellular mRNAs which may be responsible for maintaining the stability of viral 

RNA 95-98. 

CVB3 genomic RNA is translated into a single polyprotein. The polyprotein exerts auto-

cleavage activity and is spontaneously cleaved into three precursor peptides, P1, P2 and P3, 

which are further cleaved by viral proteases to generate mature structural and non-structural viral 

proteins 52, 99, 100.  

The P1 peptide is finally processed to full structural proteins VP1 – VP4 which are the 

components of viral capsid for the encapsulation of the viral genome. These four capsid proteins 

also determine the specific interaction between CVB3 and its primary receptor coxsackievirus-
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adenovirus receptor (CAR) which is critical for viral entry, and especially, VP2 is capable of 

binding to the secondary receptor of CVB3, decay-accelerating factor (DAF), which is required 

for viral entry into cardiomyocytes where the CAR receptors are not well exposed 101.  

The P2 peptide is further cleaved into two fragments, 2A and 2BC. 2A is a cysteine proteinase 

essential for viral polyprotein cleavage 94, 95 and 2BC is finally cleaved to 2B and 2C. 2BC and 

2B are responsible for membrane alteration in infected cells, producing virus-induced vesicles 

where viral replication occurs 102. Accumulation of 2BC and 2B changes the permeability of 

plasma membrane leading to cell lysis which is critical for viral progeny release 103. Meanwhile, 

2B/2BC complex also increases the efflux of Ca2+ from endoplasmic reticulum (ER) and Golgi 

complex, blocking protein transportation between ER and Golgi complex, which is speculated to 

inhibit the secretion of anti-viral agents such as interferons 103, 104. 2C is an ATPase that interacts 

directly to the negative strands to facilitate viral RNA synthesis 105.  

The P3 precursor is processed into two cleavage products, 3AB and 3CD. 3AB is reported to 

anchor the viral replication complex to the virus-induced vesicles via the hydrophobic interaction 

between the hydrophobic domain in the 3A portion and membrane vesicles 89. 3AB is further 

cleaved and generate 3A and 3B. Similar to 2B, 3A disrupts ER-to-Golgi protein trafficking via 

redistribution of ADP-ribosylation factor (Arf) family, the important factors in protein secretion 

pathway 106. 3B is also known as VPg, and it is covalently linked with the 5' terminus of viral 

genomic RNA and incorporates UMP to generate uridylylated VPg which is utilized as a primer 

for viral RNA synthesis 107. 3CD is the precursor of 3C protease and 3D polymerase. 3CD 

exhibits protease activity which is responsible for processing P1 precursor 108. 3CD does not 

exert polymerase activity but it was reported to contribute to circularization of the viral genome 

via interacting with both 5' and 3' ends in poliovirus 109. 3D, the proteolytic product of 3CD, is an 
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RNA-dependent RNA polymerase which is the only RNA polymerase used by CVB3 to 

synthesize new RNA strands 110.  

 

 

 

 

1.2.3 CVB3 life cycle 

CAR is the primary receptor of CVB3 and binding to CAR is necessary for CVB3 

internalization into cells 111. CAR is a transmembrane protein of the immunoglobulin 

superfamily highly expressed in organs, such as heart and pancreas, sensitive to CVB3 112-114. 

However, in polarized cells like cardiomyocytes, CAR is exclusively located in the tight junction 

which is not accessible to extracellular viral particles 115. To achieve the internalization into 

cardiomyocytes, CVB3 employs the auxiliary receptor DAF, a widely expressed 

Figure 1.4. Schematic of enteroviral genome, the polyprotein processing and major functions of 

viral proteins adapted from Lin et al. 2. The major cis-acting elements on viral genome, three main 

cleavage intermediates and 11 mature viral proteins are shown together with their major functions. 
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glycophosphatidylinositol (GPI)-anchored membrane protein located on the apical surface of 

cells 52, 100, 116. Briefly, CVB3 binds to and clusters DAF to activate Abl, a tyrosine kinase, and 

activated Abl then induces actin polymerization and remodeling to facilitate the movement of 

CVB3-DAF complex to the tight junction where CVB3 binds to CAR and processes the 

internalization 102, 103, 117. CVB3-DAF interaction also activates Fyn kinase which phosphorylates 

caveolin-1 and allows CVB3 to be internalized via caveolar vesicles 117. As in nonpolarized cells 

such as HeLa cancer cells, since CAR is accessible on the cell surface, CVB3 can directly bind 

to CAR and enter the cell via endosomes independent of DAF and caveolin but requiring 

dynamin 118.  

As shown in Figure 1.5, after internalization, CVB3 starts to uncoat its viral genome. The 

detailed mechanism underlying the uncoating step is still controversial but it is widely accepted 

that CVB3 externalizes the viral RNA and VP4 to the cytoplasm but remains the viral capsid in 

the endosome 119. In the cytoplasm, the viral genomic RNA can be directly translated to viral 

proteins via a cap-independent IRES-driven mechanism using cellular translational machinery 120. 

The viral proteins then induces the formation of single- and double-membrane compartments 

serving as a platform for viral replication 121. The origin of such membrane structure is still unclear. 

Some reports claimed that it was derived from cellular organelles such as ER or Golgi complex via 

membranous alteration mediated by 2BC and 2B 122, while others suspected that the structure was 

persisting autophagosomes as a product of impaired autophagy in which the fusion between 

autophagosome and the lysosome is blocked 123. Nevertheless, on the membrane vesicles, the viral 

replication complex is assembled and the replication of viral genomic RNA starts. The 

amplification of viral genomic RNA is well studied in poliovirus, another type of enteroviruses 

which shares much similarity with CVB3. During the genome replication, the parental RNA is 
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firstly transcribed to a complementary negative-strand RNA, and then the negative-strand RNA 

can be used as a template to produce nascent daughter positive-strand RNAs. Unlike translation, 

the amplification of CVB3 genomic RNA requires CVB3’s own RNA-dependent RNA 

polymerase 3D, since 3D exerts the activity to uridylylate VPg to generate VPg-pUpU which can 

be used to initialize the synthesis of negative-strand RNA 124. 3CD mediates the circularization 

of viral genomic RNA which delivers the replication complex to the 3’ terminus where VPg-

pUpU pairs the poly(A) tail as a primer and 3D polymerase elongates the new negative RNA 

strand until it reaches the 5’ terminus of the parental strand 125. After synthesis of negative RNA 

strand is completed, the negative strand is detached from the parental RNA and serve as a 

template for the production of new positive-strand viral genome 126. The synthesis of new 

positive-strand RNA also requires 3D and VPg-pUpU but the efficiency is much higher than the 

synthesis of negative-strand RNA via a mechanism allowing to synthesize multiple positive-

strand RNAs on a single copy of negative-strand template 127, 128. The newly synthesized viral 

proteins and genomes are finally assembled to complete virions to be transmitted to other cells. 

As a cytolytic virus, the transmission of CVB3 is classically considered to depend on viral 

progeny release via induction of cell death and free diffusion in the extracellular fluid to 

surrounding cells 129. However, a recent study indicated that the new CVB3 particles were 

transmitted to the adjacent cells without release via virus-induced cellular protrusions 130. In 

addition, another study showed the presence of CVB3 progenies in extracellular microvesicles 

budding from neural progenitor and stem cells and myoblast cells 131. These reports suggested 

novel routes of virus dissemination in non-cell-lytic patterns.  
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Figure 1.5. Brief flow chart of CVB life cycle. This figure was derived from Zoll et al. 1. 
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1.2.4 CVB3-induced cell stress 

CVB3 infection induces various stresses in host cells, which is a major cause of CVB3 

induced cell damage. The stresses trigger the defensive signals of the host cells and specific 

stress-responsive proteins (SRPs) are induced (Figure 1.6). These SRPs can be either adverse or 

beneficial for viral replication, which are potential drug targets for anti-CVB3 therapeutics. 

ER stress is a cellular stress modulated in the infection of various viruses. ER stress is usually 

triggered by massive unfolded proteins accumulated in the ER, which activates unfolded protein 

response (UPR) 132. In response to ER-stress, glucose-regulated protein 78 (GRP78), a master 

SRP of UPR in the ER, dissociates from the ER-stress sensors and thus is activated to facilitate 

protein folding 133-135. Dissociation of GRP78 activates three ER-stress sensors, including ATF6a 

(activating transcription factor 6a), IRE1-XBP1 (inositol-requiring enzyme 1 and X box binding 

protein 1) and PERK (PKR-like ER protein kinase), resulting in attenuating new protein 

translation and removing misfolded proteins via ER-associated protein degradation (ERAD) 

pathway 136, 137. A number of viruses have been shown to trigger ER stress upon infection. 

However, the pattern of molecular interactions that occurs within the UPR program differs 

depending on virus identity and type of host cell. Many viruses apparently activate only one or a 

subset of UPR pathways, and interestingly, some viral infections activate one pathway yet 

suppress others. For example, the expression of hepatitis C virus (HCV) proteins activates the 

PERK- and ATF6a-initiated pathways 138-140, yet suppresses the IRE1-XBP1 pathway 141. 

Similarly, human cytomegalovirus (CMV) activates PERK and IRE1-XBP1 but suppresses the 

ATF6a pathway 142, 143. Our laboratory has demonstrated that CVB3 infection triggers ER stress 

and differentially regulates the three arms of the unfolded protein 144. Upon CVB3 infection, 

GRP78 expression was upregulated, and in turn ATF6a and XBP1 were activated via protein 
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cleavage and mRNA splicing, respectively, enhancing the expression of UPR target genes ERdj4 

and EDEM1. Another UPR associated gene, p58IPK, which often is upregulated during infections 

with other types of viruses, was downregulated at both mRNA and protein levels after CVB3 

infection.  In exploring potential connections between the three UPR pathways, we found that the 

ATF6a-induced downregulation of p58IPK is associated with the activation of PERK/protein 

kinase R (PKR) and the phosphorylation of eIF2a, suggesting that p58IPK, a negative regulator of 

PERK and PKR, mediates cross-talk between the ATF6a/IRE1-XBP1 and PERK arms. 

Nevertheless, the ER stress induced in prolonged CVB3 infection eventually produced the 

induction of the proapoptoic transcription factor CHOP (CCAAT-enhancer-binding protein 

homologous protein), leading to cell apoptosis which benefits viral release. 

Viral infection interplays a group of SRPs called stress-activated protein kinases (SAPKs), 

which are members of the mitogen-activated protein kinase (MAPK) family 145-149. Typical 

SAPKs induced by CVB3 are c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein 

kinase (p38 MAPK) 150. JNK1/2 and p38 MAPK are activated via phosphorylation during CVB3 

infection and further activates their downstream signals ATF2 and heat shock protein 27 (Hsp27), 

respectively. In turn, p38 MAPK activation promotes CVB3-induced caspase-3 activation, 

enhancing cell apoptosis and viral progeny release. 

It is well-documented that enteroviruses including CVB3 infection shuts down host protein 

translation by viral protease-mediated cleavage of cellular translation machinery, including 

eukaryotic initiation factor 4G (eIF4G), poly(A)-binding protein (PABP), and inhibits the 

cellular cap-dependent translation, which releases the translational machinery for viral cap-

independent translation 151-153. In addition, according to the studies on other enteroviruses, 3C 

protease is capable of entering nuclei through its precursor 3CD containing a nuclear localization 
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sequence 154, 155, where it cleaves numerous factors and regulators that are associated with 

cellular DNA transcription, such as TATA-box binding protein (TBP) 156, octamer-binding 

protein (OCT-1) 157, transcription activator p53 158, cyclic AMP responsive element binding 

protein (CREB) 159, histone H3 160 and DNA polymerase III 161.  The cleavage of these important 

factors responsible for gene expression will cause severe cellular stress. 

Another major stress pathway induced by CVB3 infection is the PI3K (phophatidyl-3-

kinase)/Akt pathway. Activation of PI3K/Akt cascade is induced at the later stage of infection 162, 

which further activates its downstream kinase glycogen synthase kinase 3β (GSK3β) via tyrosine 

phosphorylation, resulting in the degradation of β-catenin and subsequent cytopathic effect (CPE) 

in host cells 163. 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

 

 

 

 

 

 

Figure 1.6. Brief summary of cell stress and SRPs induced by CVB3 infection. The dashed arrows 

indicate indirect regulation. The “lightning blot” indicates the cleavage of the protein. 
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1.3 Heat Shock Protein of 70 kDa (Hsp70) 

1.3.1 Hsp70 family 

    Heat shock proteins (HSPs) are a family of SRPs important for protecting cells from stressful 

conditions. HSPs were originally recognized as proteins induced by high-temperature shock 164, 

but later more reports has claimed that HSPs were also upregulated during stresses caused by 

other stimulators such as cold 165, ultraviolet (UV) light 166 and wound 167. Now most HSPs are 

considered as molecular chaperones induced by accumulation of unfolded and/or misfolded 

proteins which occurs in different stress conditions. The major function of HSPs is to facilitate 

the folding of newly synthesized proteins or refolding of misfolded proteins 168.  

HSP family is a large protein family consisting of various proteins expressed by tens of different 

genes located on almost all chromosomes. To clarify and simplify the nomenclature, HSPs are 

usually classified into five groups according to their molecular weight: Hsp40s, Hsp70s, Hsp90s, 

small heat shock proteins and chaperonins169, 170. Hsp70s are one of the best characterized sub-

families of HSPs. Seventeen genes, most of which are belonging to HSPA gene family, have 

been reported to express proteins of Hsp70 family so far (Table 1.1). Hsp70s are an important 

component of the cellular chaperone network, and help to protect cells from stress171, 172. Like 

other HSPs, Hsp70s mainly act as molecular chaperones facilitating protein folding, but several 

members have been reported to exert unique functions. For instance, Hsc70 encoded by HSPA8 

is a constitutively expressed and multifunctional HSP which is involved in many non-stress 

cellular processes such as disassembly of clathrin-coated vesicles 173, protein degradation 174 and 

signal transduction 175; GRP78 is a typical indicator of ER stress which facilitates folding and 

translocation of proteins and initiates unfolded protein response in the ER 133. Especially, Hsp70-

1 and Hsp70-2, encoded by HSPA1A and HSPA1B, respectively, are almost identical in their 
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amino acid sequences. These two proteins are inducibly expressed in response to different 

stresses and are both referred to as inducible heat shock protein. However, due to the differences 

in their gene promoters, only Hsp70-2 is induced in response to hypertonic stress 176. 
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Table 1.1. Genes and Proteins of Hsp70 Family 169 

Gene Symbol Protein Name Features Reference 

HSPA1A HspA1, Hsp70-1   

HSPA1B Hsp70-2 Response to hypertonic stress 177 

HSPA1L Hsp70-HOM, hum70t   

HSPA2 Hsp70A2   

HSPA4 HS24/P52, HSPH2   

HSPA4L APG-1, Osp94, HSPH3 Response to hypertonic stress 176 

HSPA5 GRP78, BiP Facilitate diverse functions in the 

ER, an indicator of ER stress 

175, 178, 179 

HSPA6 Hsp70B’   

HSPA7 Hsp70B   

HSPA8 HspA10, Hsc71, Hsc70, 

Hsp73 

Constitutively expressed 

chaperone protein, contributing to 

apoptosis, cell growth and 

differentiation 

175, 180 

HSPA9 HspA9B, Grp75, PBP74, 

mot-2, mtHsp75 

Mitochondrial chaperone protein, 

controlling cell proliferation 

181-183 

HSPA12A FLJ13874, KIAA0417   

HSPA12B HspA12B, C20orf60   

HSPA13 STCH   

HSPA14 Hsp70-4, Hsp70L1   

HSPH1 Hsp105B, KIAA0201, 

Hsp105A, NY-CO-25 

  

HYOU1 Orp150, Hsp12A, Grp170 ER chaperone protein in response 

to hypoxia, inhibiting apoptosis 

184 
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1.3.2 Function of Hsp70 

    Most Hsp70 proteins contains three major functional domains: 1) N-terminal ATPase domain 

which binds ATP (adenosine triphosphate) and hydrolyzes it to ADP (adenosine diphosphate), 

leading to conformational changes in the other two domains, 2) substrate binding domain (SBD) 

containing a groove with an affinity to peptides with neutral or hydrophobic amino acid residues 

and up to seven residues in length, and 3) C-terminal domain acting as a 'lid' for the substrate 

binding domain, which is open when an Hsp70 protein is ATP bound, allowing rapid peptide 

binding and release, and is closed when Hsp70 protein is ADP bound, restricting peptides to 

tightly bound to the SBD 185. 

    As protein chaperones, Hsp70 proteins interact with extended peptide segments of proteins as 

well as partially folded proteins to prevent aggregation, remodel folding pathways, and 

regulatory activity 186. The activity of Hsp70 is modulated via the switch between ATP and ADP 

bound states which is affected by protein abundance in the cells. When the level of newly 

synthesized or misfolded proteins is low, Hsp70 is in an ATP bound state. As newly synthesized 

proteins emerge from the ribosomes, the SBD of Hsp70 recognizes sequences of hydrophobic 

amino acid residues and interacts with them in a weak and reversible pattern at the beginning 

since Hsp70 is still ATP bound. However, the presence of a peptide in SBD stimulates the 

ATPase activity of Hsp70, switching Hsp70 from ATP bound state to ADP bound state via ATP 

hydrolysis and resulting in tight binding to the peptide chain 186. When high abundance of 

interacting peptides are present, the ATPase activity of Hsp70 will be enhanced by interacting 

with certain proteins called cochaperones, such as Hsp40, which further promotes peptide 

binding to SBD of Hsp70 187, 188. By binding tightly to partially synthesized or misfolded 
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peptides, Hsp70 prevents them from aggregating and being dysfunctional. Once the protein 

translation is completed or the misfolded protein is unfolded, the ADP will be released from 

Hsp70 by nucleotide exchange factors such as BAG-1 and HspBP1, and Hsp70 will switch back 

to ATP bound state to release the protein which will then fold on its own, or to be transferred to 

other chaperones for further processing 189.  

In addition to chaperone activity, Hsp70 also modulates the turnover of mRNA via inhibiting 

mRNA degradation 5 (Figure 1.7).  Many rapidly degraded mRNAs, especially those coding 

SRPs, nuclear transcription factors, and cytokines, harbor adenylate-uridylate-rich elements 

(AREs) in their 3’UTR. AREs are important determinants and regulatory elements of mRNA 

stability 190. An ARE provides a binding site for ARE-binding proteins (AUBPs) which promote 

mRNA degradation 191. The turnover of mRNAs can be thus modulated via regulating of AUBPs. 

ARE/poly(U)-binding/degradation factor 1 (AUF1) is one of the best-characterized AUBPs 

which further recruits other proteins related to mRNA stability, including eukaryotic translation 

initiation factor 4 G (eIF4G), poly(A)-binding protein (PABP), Hsp70 and many unknown 

proteins 192.  PABP is a protective protein shielding the poly-A tail of mRNA from deadenylases. 

On untranslated ARE-containing mRNAs, AUF1 interacts simultaneously with eIF4G and ARE, 

while PABP binds both eIF4G and poly(A) tail. After the translation starts, AUF1 and PABP are 

dissociated from eIF4G and AUF1 drags PABP away from poly(A) tail, resulting in exposure of 

the poly(A) tail to deadenylases which execute mRNA decay. This mechanism prevents excess 

gene expression at translational level. During stress, mRNA translation is deferred or blocked to 

avoid generation of misfolded proteins. However, in order not to synthesize the mRNAs again 

for future translation, Hsp70 stabilizes the untranslated mRNAs via AUF1. In this case, high 

level of Hsp70s bind to AUF1 and disrupt the AUF-PABP interaction, retaining PABP on the 
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poly(A) tail, thus masking it from ribonuclease 193. Interestingly, the mRNA of inducible Hsp70s 

also contains ARE sites which elevate the stability of Hsp70 mRNAs in stress conditions 194-196.  

Hsp70 also participates in disposal of damaged or defective proteins when the ADP bound 

state prolongs. Via interacting with CHIP, an E3 ubiquitin ligase, Hsp70 initializes the 

ubiquitination and proteolysis of the bound protein 197. Moreover, Hsp70 proteins are widely 

considered as pro-survival proteins which inhibit apoptosis in multiple ways. Hsp70 directly 

suppresses the induction of reactive oxygen species (ROS) 198, the recruitment of procaspase-9 to 

the apoptosome 199, 200 and the cleavage of pro-caspase-8 201, which are all triggers of apoptosis. 

In addition, Hsp70 is capable of relieving ER stress via interaction with ER stress sensor protein 

IRE1α and thereby protecting the cells from apoptosis caused by prolonged ER stress 202. 
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1.3.3 Regulation of Hsp70 

Similar to CVB3 genomic RNA, Hsp70 mRNA also contains an IRES element, which makes 

it possible for Hsp70 to be translated during CVB3 infection when the cap-dependent translation 

is compromised. The expression of Hsp70s is regulated by specific transcriptional factors. The 

major transcription factors for Hsp70s are the heat-shock factors (HSFs), which bind to the heat 

shock element (HSE), a cis-regulatory element within the HSP gene promoter 203. Humans 

express nine HSFs, among which HSF1 is the most critical transcription factor for inducible 

Hsp70s, such as Hsp70-1 and Hsp70-2. The activity of HSF1 is mainly regulated via the serine 

(Ser) and threonine (Thr) phosphorylation by different protein kinases on different amino acid 

Figure 1.7. Schematic mechanism for stabilization of mRNAs via Hsp70-AUF1 

interaction in stress. In non-stress condition, AUF1 hijacks PABP and exposes poly(A) tail 

to deadenylases for RNA degradation. In stress condition, Hsp70 removes the AUF1 from 

ARE and retains PABP on the poly(A) tail to prevent it. This figure was developed based on 

Grataco et al. 
5
. 
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sites. For instance, phosphorylation by kinases such as GSK-3β (at Ser303) 204, ERK1/2 

(extracellular signal regulated kinase 1/2, at Ser307) 205, and JNK1/PKC (at Ser363) 206, 207 

suppresses the HSF1 activity under normal conditions; whereas phosphorylation by JNK2 (at 

Ser444) 208, CaMKII (Ca2+/calmodulin-dependent protein kinase II, at Ser230) 209 and CKII 

(casein kinase II, Thr142) 210 activates HSF1. These protein kinases are further subjected to 

sophisticated regulation by upstream signals. For example, GSK-3β is activated via PI3K/Akt 

cascade as mentioned above 162; ERK1/2 is activated via the sequential phosphorylation of RAF 

kinase and MEK1/2 (mitogen-activated protein kinase kinase 1/2) 211; JNK1/2 is activated by 

phosphorylation mediated by MEK4/7, PKC and ERK 212-214; activation of CaMKII is initialized 

by elevated intracellular calcium/calmodulin (Ca2+/CaM) and then sustained by threonine (Thr) 

phosphorylation and/or methionine (Met) oxidation 215-217. Under non-stress conditions, HSF1 

exists as an inactive form bound to Hsp40/Hsp70 and Hsp90 218; upon stress, HSF1 is released 

from the chaperone complex and tranlocated into the nucleus where it binds to HSEs.  

In addition to HSFs, some Hsp70s in response to hypertonicity, such as Hsp70-2 and osmotic 

stress protein of 94 kDa (Osp94), employ the master hypertonicity-responsive protein NFAT5 as 

their transcriptional factor 176, 177, which will be discussed later. 

 

1.3.4 Hsp70 and virus 

Viral infections frequently induce HSPs due to the sudden increase of protein synthesis. 

During the co-evolution with the host, some viruses have developed different strategies to utilize 

HSPs to benefit their own survival. For example, Hsp70 and Hsp90 were reported to be 

transported to cell surface and may act as viral receptors/co-receptors responsible for viral 

attachment and entry 219-222. After penetrating into the target cells, some DNA viruses such 
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adenovirus, polyomavirus and papillomavirus, require the assistance of Hsp70 to import their 

DNAs into nucleus, where replication takes place.223, 224. HSPs can not only bind to host gene 

expression machineries to enhance the viral gene expression 225-227 but also interact with viral 

polymerase to stimulate viral RNA synthesis 228, 229. It has been reported that HCV replication 

was enhanced by inducible Hsp70 interactions with the HCV replicase complex containing 

nonstructural protein (NS)5A (polymerase), NS5B and NS3. The mechanism is likely via 

increasing the amount of replicase complex, leading either to the increased stability of viral 

replicase or to the enhanced efficiency of the IRES-mediated translation of HCV230. The roles of 

Hsp70s in other viruses are summarized in Table 1.2. 

 

Table 1.2. Roles of Hsp70 in viral infection 

Viral family Virus, viral proteins Functional interaction References 

Flaviviridae HCV, E1, E2 Envelope protein maturation 231 

 West Nile virus, Cp Direct binding to inhibit infection 232 

Picornaviridae CVA9 Viral entry 222 

 Poliovirus, CVB1, P1 Virion assembly 233 

Paramyxoviridae Canine distemper virus Capsid protein maturation 234 

Orthomyxoviridae Influenza A Present in virion particle; General 

regulation of translation 

235 

Retroviridae HIV Nuclear import of pre-integration 

complex 

236 
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1.3.5 Hsp70 and heart diseases 

    Hsp70 can be induced in both vascular and cardiac compartments. The absolute cardiac level 

of Hsp70 correlates to the recovery of heart functions after a global ischemic insult 237-239. Hsp70 

can also reduce the infarct size in myocardial infarction 240, 241. The protective roles of Hsp70 

have also been observed in other cardiovascular stress conditions like cardioplegia 242 and 

endotoxin treatment 243. Hsp70 is involved in regulating energy metabolism, calcium 

homeostasis, electronic stability, lipid metabolism and cell apoptosis in the heart 244. The gradual 

decline of Hsp70s in heart is also associated with cardiac aging progress 245. The presence of a 

high level of Hsp70 co-localized with infiltrating macrophages was observed in the center of 

atherosclerotic plaques in human blood vessels 246. In addition, heat pretreatment has been 

indicated to benefit long-lasting hypothermic storage of cardiac tissue, which might be useful for 

heart transplantation 247.   

    Hsp70 is also associated with myocarditis, cardiac hypertrophy and cardiomyopathy. 

Induction of Hsp70 has been observed in myocarditis associated with foot-and-mouth disease 

virus (FMDV) infection 248. Hsp70s have been found to be transiently upregulated in 

hypertrophic heart 249. Whole body heat shock treatment can also induce higher levels of Hsp70s 

in cardiac hypertrophy models compared to normal, control animals 250, 251. The major regulatory 

genes controlling the hypertrophy process are histone deacetylases (HDACs) 252, 253, particularly 

the HDAC2, which is a positive regulator of hypertrophy, accomplished by interacting with an 

atypical homeodomain protein, Hop 254, 255. It was reported that multiple hypertrophic stimuli 

induce HDAC2 activation and up-regulation of hypertrophic makers correlated with Hsp70 256. 

Furthermore, Hsp70 was often detected in sera of patients with DCM as compared to healthy 
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controls 257. The increase of both cardiac and serum Hsp70 was also demonstrated in patients 

with arrhythmogenic right ventricular cardiomyopathy 258.  

 

1.4 Nuclear Factor of Activated T-cells 5 (NFAT5) 

1.4.1 NFAT Family and Structure of NFAT5 

The protein family of NFAT was named after its initial discovery as an inducible nuclear 

factor binding to the interleukin-2 promoter in activated T-cells 259. Regardless of the name, as 

more proteins of NFAT family were indentified, it has been believed that the expression and 

function of NFAT protein are not limited to T cells and immune response 260-262.  Now NFAT 

proteins are characterized as a group of transcriptional factors containing a highly conserved 

DNA-binding domain homologous with the DNA-binding domain of REL-family transcriptional 

factors which is referred to as REL-homology domain (RHD) 263, 264. Five members of NFAT5 

family have been reported, among which four proteins, NFAT1-4, are regulated by calcium 

signaling 265, 266. Unlike other members in NFAT family, NFAT5 activity is regulated in a 

calcineurin-independent manner due to lacking of the calcineurin-binding domain 4, and NFAT5 

is the only NFAT protein activated in response to hypertonic stress 267.  

Structurally, NFAT5 is a bipartite protein, with functional domains in the N terminus and 

regulatory domain toward the C terminus (Figure 1.8). As a member of NFAT family, NFAT5 

employs an RHD as its DNA-binding domain. In the region upstream of RHD, NFAT5 harbors 

all the functional domains related to nucleus-cytoplasm translocation, including a canonical 

nuclear export signal (NES, amino acids 1–19), a consensus bipartite nuclear localization signal 

(NLS, amino acids 199–216) and an auxiliary export domain (AED, amino acids 132–156) 268, 

269, making the N-terminal half (amino acids 1–543) of NFAT5 capable of nuclear localization 
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and DNA binding. As for the C-terminal half, there exists two long stretches (amino acids 1039–

1249 and amino acids 1363–1476) of glutamine residues, acting as two transactivation domain 

(TADs) stimulated by hypertonicity and involved in activation of transcription 4, 270. Due to such 

structure, the N-terminal fragment (amino acids 1–472) of NFAT5 can function as a dominant 

negative mutant 270.  

 

 

   

 

 

 

 

 

Figure 1.8. Schematic structure of NFAT5 protein adapted from Cheung et al. 4 REL-

homology domain (RHD) is the DNA-binding domain of NFAT5. The region upstream of 

RHD contains a canonical nuclear export signal (NES, amino acids 1–19), a consensus 

bipartite nuclear localization signal (NLS, amino acids 199–216) and an auxiliary export 

domain (AED, amino acids 132–156). The region downstream of RHD harbors two 

transactivation domain (AD2 and AD3).  
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1.4.2 Hypertonic Stress and NFAT5-mediated Hypertonic Response 

Osmotic pressure is the pressure required for a certain solution to prevent the inward flow of 

water across a semipermeable membrane 271. The measure of osmotic pressure is often referred 

to as osmolality. Osmolality can serve as an indicator of solute concentration in a certain 

solution. Since cells in the body are exposed to soluble substance within extracellular fluid, 

stable osmolality of body fluid is critical for cell metabolism and homeostasis of the body. 

Hypertonicity refers to a physiological or pathological condition with an increase of osmolality 

in body fluid. Sudden increase in osmolality, such as exposure to high concentration of NaCl or 

urea, will induce hypertonic stress in cells featured by cell shrinkage, impaired function of 

intracellular proteins and disruption of the structural integrity of cell organelles272. Hypertonic 

stress further leads to increased reactive oxygen species formation, cytoskeletal rearrangements, 

increased mitochondrial depolarization, decreased DNA replication and DNA repair 273, 274. 

Without proper protective response, hypertonic stress will eventually result in mitochondrial or 

death-receptor-mediated apoptosis of cells 275. 

As mentioned above, NFAT5 is the master transcription factor regulating the expression of 

genes in response to hypertonic stress. All currently known signaling pathways in hypertonic 

response converge to NFAT5 to activate the expression of downstream genes (Figure 1.9). The 

detailed mechanism of NFAT5 activation in hypertonic stress is still controversial. The widely 

accepted sensor of hypertonicity is Brx, which is a guanine nucleotide exchange factor (GEF) 

localized on the plasma membrane and is stimulated by sensing hypertonicity-caused changes of 

cytoskeleton structure or interacting with certain osmosensor molecules near the plasma 

membrane 276. Upon stimulation, as a GEF, Brx switches Rho-like GTPase from their inactive 

GDP state to active GTP state. Meanwhile, activated Brx recruits and interacts with JIP4, a p38-
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MAPK-specific scaffold protein, which further binds to MKK3 and MKK6 kinases 277. This 

complex then phosphorylates and activates p38 MAPK, subsequently inducing NFAT5 

expression 276. NFAT5 transcriptionally regulates the expression of various target genes 

involved in relieving hypertonic stress by directly binding to tonicity-responsive enhancer 

element (TonE) in the promoter, and thus, NFAT5 is also called tonicity enhancer binding 

protein (TonEBP) 278. NFAT5 targets directly contributing to balancing cellular osmotic pressure 

are the genes responsible for the biosynthesis of organic osmolytes, including aldose reductase 

(AR)279, taurine transporter (TauT)280, betaine/GABA transporter (BGT-1)270, and sodium/myo-

inositol transporter (SMIT)281, 282. In addition to the organic-osmolyte-related genes, NFAT5 

induces the expression of molecular chaperones, such as Hsp70-2177 and Osp94176, in order to 

prevent the accumulation of misfolding proteins in the stress condition. NFAT5 also modulates 

some immune responses in hypertonic stress. For instance, NFAT5 controls the osmotic stress-

induced expression of several cytokines in lymphocytes, including tumor-necrosis factor (TNF) 

and lymphotoxin-β (TL-β)283, which is evidenced by the fact that NFAT5-deficient mice have 

impaired T-cell function under hypertonic conditions and decreased cellularity of the thymus 

and spleen284. 
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Figure 1.9. Activation of NFAT5 and its downstream genes in response to osmotic stress. 

This figure is modified based on the figure on Wikipedia 

(https://en.wikipedia.org/wiki/NFAT5). 
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1.4.3 NFAT5 and Viral Infection 

The research on the anti-viral effect of hypertonicity can be dated back to the year 1975. In the 

study of Dr. Nuss and several later reports from other groups demonstrated that hypertonic 

medium is capable of inhibiting viral protein synthesis of different virus, including vesicular 

stomatitis virus (VSV)285, 286, poliovirus287, 288 and adenovirus289. However, those early studies 

barely elucidated the mechanism underlying the anti-viral effect of hypertonicity and none of 

them mentioned the role of NFAT5, the critical transcriptional factor involved in hypertonic 

response. After a more than 20-year gap, a couple of recent studies have started to link NFAT5 

to viral infection. For instance, Goldfeld et al. reported that NFAT5 is highly expressed in 

terminally differentiated macrophages, the major target cells of human immunodeficiency virus 1 

(HIV-1), and that NFAT5 is capable of binding to a conserved site harbored in the long terminal 

repeat (LTR) of HIV-1 genome specifically and functionally; lack of NFAT5 in the cells inhibits 

production of HIV-1 in human monocyte-derived macrophages290. In a more recent publication, 

the same research group further demonstrated a mutual regulation of NFAT5 and Mycobacterium 

tuberculosis (MTb)-stimulated HIV-1 replication in co-infected macrophages291. Briefly, NFAT5 

expression is strongly induced by MTb infection via Toll-like-receptor-related innate immune 

response, and NFAT5 enhances the replication of HIV-1 via the direct interaction with the viral 

promoter. This model well explains the reason why HIV-1 replication is enhanced upon MTb 

infection. In addition to NFAT5 itself, the downstream signals of NFAT5 also play important 

roles in the infection of certain virus. For instance, NFAT5 expression is increased by NS5A, a 

nonstructural protein of hepatitis C virus (HCV), and it subsequently upregulates the expression 

of Hsp70. The binding between Hsp70 and NS5A is critical for viral RNA replication and virus 

production in HCV-infected cells 292. 



37 

 

1.4.4 NFAT5 and Heart Diseases 

Heart is an organ barely exposed to hypertonic environment and thus, hypertonic response 

seems to barely occur in the heart. However, hypertonic saline solution (HSS, >5% NaCl 

solution), a common inducing agent of hypertonicity, has been used as a supplement for the 

routine drug furosemide to patients with refractory congestive heart failure. In this clinical trial, 

patients were treated with either high-dose furosemide plus small-volume HSS or high-dose 

furosemide only. The HSS-treated group showed a significant increase in daily diuresis and 

natriuresis, faster reduction of brain natriuretic peptide, and a better hydration state compared to 

non-HSS-treated group 293. In addition, the readmission rate for heart failure and the mortality of 

HSS-treated patients are both half of that of patients treated with furosemide only294. Similar 

results favoring the therapeutic effects of HSS have also been reported in several other clinical 

trials 295, 296. In another acute treatment case, a 90-year-old man with uncompensated heart failure 

was infused with 100 mL of 10% NaCl solution over a period of 10 minutes in the intensive care 

unit as a final, non-invasive approach to improve myocardial contractility. Less than three 

minutes after the infusion, the patient’s breathing pattern, blood pressure, heart rate and capillary 

refill time were all improved 297. Nevertheless, the mechanism underlying the effects of HSS 

treatment on heart has not been scientifically studied yet. 

Induction of NFAT5 may be considered as an explanation, or at least partially, of the effects of 

HSS treatment on heart diseases. Though NAFT5 is usually recognized as a hypertonicity-

responsive protein, it is ubiquitously expressed in almost all tissues including those not exposed 

to hypertonic environment, such as brain, heart, and skeletal muscle 298, 299. In fact, some 

evidence supports that NFAT5 plays an important role in normal heart function and 

cardiotoxicity. Ito et al. reported that degradation of NFAT5 is induced in cardiomyocytes 
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treated with doxorubicin, a commonly used anti-tumor agent, and the decrease of NFAT5 

exacerbates myocyte death upon doxorubicin treatment 300. Another study using a NFAT5 

knocked-out mouse model demonstrates that lacking of NFAT5 results in reduction of heart 

beating rate and abnormal Ca2+ signaling profile, which contributes to abnormal heart function 

301. A potential protein bridging NFAT5 and heart diseases is NFκB. NFAT5 enhances NFκB 

activity via forming NFκB-NFAT5 complexes which promotes NFκB’s binding to κB elements 

of NFκB–responsive genes 302. NFκB is generally considered as a transcriptional factor closely 

related to inflammation 303, and interestingly, NFκB has been reported to promote cardiomyocyte 

viability in CVB3 infection 304. In addition to NFκB, NFAT5 is also critical for the expression of 

inducible nitric oxide synthase (iNOS) 305. Activation of iNOS enhances the production of nitric 

oxide (NO), a major molecule controlling cardiomyocyte contractility and heart rate, limiting 

cardiac remodeling after an infarction and contributing to the protective effect of ischemic pre- 

and postconditioning 306. Especially, in a murine myocarditis model, NO exerts an inhibitory 

effect on CVB3 replication and mouse mortality after viral infection 307.  

 

1.5 Rationale, Hypothesis and Objectives 

1.5.1 Project Background and Rationales 

The high frequency and lethality of viral myocarditis is currently a major threat to public 

health, especially in children and young adults. Effective and accessible therapies are in urgent 

demand for the treatment of viral myocarditis. CVB3 is one of the predominant pathogens of 

viral myocarditis and is a widely used model for the research of this disease. As an RNA virus, 

the high mutation rate of CVB3 impedes the development of drugs by  targeting the viral genome 

or viral protein directly. Certain host cellular components are critical for CVB3 infection, which 
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are relatively conserved for different CVB3 strains and may even be shared by other 

picornaviruses. Thus, the host-oriented strategy is probably a more efficient approach in the 

therapeutic development against CVB3 infection and viral myocarditis. 

CVB3 infection frequently induces various stresses in cells. To avoid the adverse effects of 

these stresses, the host cells activate different responsive signaling pathways employing specific 

SRPs. However, during the long history of coevolution of the virus and the host, CVB3 is 

capable of utilizing or even depends on certain SRPs and the corresponding signaling pathways 

for its own replication. Comprehensive studies of the SRP-CVB3 relationship contributes to the 

understanding of CVB3 infection in host cells, which will provide potential drug targets for 

CVB3-induced myocarditis. 

Our preliminary results showed significant changes of two SRPs, Hsp70 and NFAT5, during 

CVB3 infection in vitro and in vivo. These two proteins have been reported to play important 

roles in infection of other viruses as well as in heart disease. Therefore, I focused my study on 

Hsp70 and NFAT5 to uncover the modulation and roles of them in CVB3 infection. 

 

1.5.2 Overall Hypothesis 

CVB3 infection differentially regulates the levels of Hsp70 and NFAT5 in cells, which 

benefits viral replication and contributes to the pathogenesis of viral myocarditis. 

 

1.5.3 Specific Aims and Experimental Design  

Aim 1: To determine the changes of Hsp70 and NFAT5 expression during CVB3 

infection and the underlying mechanisms 
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Live CVB3 viral particles were used to infect cell culture and A/J mice. Cellular proteins and 

mRNAs were extracted from cell culture or mouse heart. The expression of Hsp70 and NFAT5 

was detected by quantitative real-time PCR (qPCR) for mRNA levels and western blot analysis 

for protein levels, in order to determine which step of expression was affected by CVB3. Then 

the upstream regulatory signals or downstream protein modulation of these two SRPs in CVB3 

infection was analyzed to determine the mechanisms underlying the expression change. 

 

Aim 2: To investigate the roles of Hsp70 and NFAT5 in CVB3 infection and the 

underlying mechanisms 

The expression of Hsp70 and NFAT5 was artificially altered by plasmid-mediated 

overexpression or siRNA-mediated interference in CVB3-infected cells. The replication of 

CVB3 was evaluated at three levels: 1) western blot detection of viral protein, 2) qPCR 

quantification of viral RNA and 3) viral plaque assay of viral progeny release. The intermediate 

signals bridging the SRPs and CVB3 were then identified by detecting the roles of related 

cellular proteins. 

 

Aim 3: To test the therapeutic potential of hyperosmotic agents in the treatment of CVB3 

infection in vitro and in mice. 

NFAT5 expression can be induced by hypertonic conditions. Thus, hypertonic reagents were 

used to treat CVB3-infected cell culture or A/J mice, and then the treatment effects on viral 

replication were evaluated by detecting viral protein, cell death and pathological changes of the 

heart tissue. 
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Chapter 2 CVB3 and Inducible Heat Shock 70 kDa Protein 

2.1 Background and Rationale 

2.1.1 CVB3 and Hsp70 

Hsp70 is a key member of cellular chaperone system involved in response to various cellular 

stresses 244. The Hsp70 protein family contains two major members, Hsp70-1 and Hsp70-2, 

which are encoded by gene HSPA1A and HSPA1B respectively. The proteins of Hsp70-1 and 

Hsp70-2 differ on two amino acids and both of them are induced in heat shock, but only Hsp70-2 

is stimulated in response to hypertonicity since only HSPA1B contains a tonicity-responsive 

enhancer (TonE) in its promoter region177.  

Hsp70 has been reported to be induced in viral infection 308 and acts as a regulatory factor, 

either negative or positive, in viral life cycle 231, 232, 236, 309. Similar to CVB3 genomic RNA, 

Hsp70 mRNA also contains an IRES element, which makes it possible for Hsp70 to be translated 

during CVB3 infection when the cap-dependent translation is compromised. Heat shock factor 1 

(HSF1) is the major transcriptional factor of Hsp70-1 reported in various stress conditions 310, 311. 

As described in Chapter 1, the transcriptional activity of HSF1 is modulated at multiple 

phosphorylation sites. Two serine (Ser) sites, Ser230 and Ser307, are phosphorylated and 

involved in the modulation of the activity of HSF1 primarily209. The phosphorylation at Ser230 

is catalyzed by active calcium/calmodulin-dependent protein kinase II (CaMKII) 209, while 

activation of CaMKII is initialized by elevated intracellular calcium/calmodulin (Ca2+/CaM) and 

then sustained by threonine (Thr) phosphorylation 215-217. During CVB3 infection, increase of the 

efflux of Ca2+ from ER and Golgi complex 312 and generation of massive reactive oxygen species 

(ROS) 313 are likely to result in persistent CaMKII activation and induction of Hsp70. Unlike 

Ser230, phosphorylation at Ser307 represses transcriptional activity of HSF1 314. Ser307 
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phosphorylation is catalyzed by extracellular signal-regulated kinase (ERK) 315 and ERK has 

been reported to be activated in a biphasic pattern at early and late stages in CVB3 infection 162, 

316. As for Hsp70-2, its transcription is stimulated by NFAT5 via the interaction between NFAT5 

and TonE 177, and the upstream signal of NFAT5 activation is p38 MAPK which is activated in 

CVB3 infection 150, 276, 

 

2.1.2 CVB3 and Hsp70-AUF1-mediated RNA decay 

Hsp70 has been reported to stabilize messenger RNAs (mRNAs) containing adenosine-

uridine-rich elements (AREs) by preventing mRNA degradation.  One explanation for Hsp70-

mediated stabilization of ARE-containing mRNAs focuses on the interactions between Hsp70 

and ARE/poly(U)-binding/degradation factor 1 (AUF1). It was reported that degradation of 

ARE-containing mRNAs is induced by the binding of AUF1 on the ARE site 317. AUF1 has four 

isoforms (p37, p40, p42 and p45) due to alternative splicing, among which p37AUF1 and p40AUF1 

are most strongly associated with ARE-mRNA decay 318. Hsp70 can sequester AUF1 in nucleus 

to avoid the AUF1 and mRNA interaction in the cytoplasm 319. Another explanation of Hsp70-

mediated stabilization of mRNA is that Hsp70-1, but not Hsp70-2, binds to ARE directly and 

stabilizes the mRNA, which is supported by the highly selective binding of Hsp70-1 and ARE 320. 

The genomic RNA of CVB3 contains an ARE site within the 3’UTR and it has been reported 

that AUF1 can bind to CVB3 genomic RNA 321. Therefore, it is possible that the stability of 

CVB3 genomic RNA is also regulated by Hsp70. 
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2.2 Hypothesis and Specific Aims 

The objective of this chapter is to investigate the interplay between Hsp70 and CVB3 during 

the viral infection. Based on the knowledge to date, I HYPOTHESIZE that CVB3 infection 

induces Hsp70 and Hsp70, in turn, promotes CVB3 replication via stabilizing the viral genome.  

The SPECIFIC AIMS for this chapter are as follows: 

Aim 1: To detect the upregulation of Hsp70 in CVB3 infection 

Aim 2: To investigate the phosphorylation and activation of HSF-1 in CVB3 infection 

Aim 3: To clarify the feedback effect of Hsp70 on the stability of CVB3 genomic RNA 

 

2.3 Methods and Materials 

2.3.1 Animals, cell culture and viral infection 

This study was carried out in strict accordance with the recommendations in the Guide to the 

Care and Use of Experimental Animals – Canadian Council on Animal Care. All protocols were 

approved by the Animal Care Committee, University of British Columbia (protocol number: 

A11-0052). HeLa cells (ATCC) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) (Sigma). The HL-1 cell line, a mouse cardiac 

muscle cell line established from a cardiomyocyte tumor lineage, was a gift from Dr. William C. 

Claycomb (Louisiana State University Health Science Center). HL-1 cells were maintained in 

Claycomb medium (Sigma) supplemented with 10% fetal bovine serum (FBS) (JRH 

Biosciences), 0.1 mM norepinephrine (Sigma) and 2 mM L-glutamine (Invitrogen). SV40 

immortalized human cardiomyocytes were purchased from Applied Biological Materials 

(Richmond, BC, Canada) and cultured in Prigrow I medium with 10% FBS. Primary rat neonatal 

cardiomyocytes were isolated from rat pups using commercial Neonatal Cardiomyocyte Isolation 
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Kit (Cellutron) according to the protocol provided.  Briefly, hearts were dissected from 1-day-

old Sprague–Dawley rats and transferred into a sterile beaker. Each heart was digested and 

stirred in the beaker at 37 °C for 12 min. The supernatant was then transferred to a new sterile 

tube and spun at 1200 × g for 1 min. The cell pellets were then resuspended in D3 buffer and the 

cells were seeded onto an uncoated plate, which was incubated at 37 °C for 1 h in a CO2 

incubator to allow the attaching of cardiac fibroblasts. The unattached cardiomyocytes were 

transferred onto precoated plates with NS medium supplemented with 10% FBS. After overnight 

culturing, the NS medium was replaced with a serum-free NW (without serum) medium. The 

cardiomyocyte cultures were ready for experiments 48 h after the initial plating. All these cells 

were sustained in a humidified incubator supplemented with 5% CO2  at 37 °C.  For heat shock, 

HeLa cells were incubated at 42 °C for different durations. 

    CVB3 (CG) strain was obtained from Dr. Charles Gauntt (University of Texas Health Science 

Center) and propagated in HeLa cells.  Viral stock was prepared from the cells by three freeze-

thaw cycles followed by centrifugation to remove cell debris and stored at -80 oC.  The titer of 

virus stock was determined by plaque assay as described below. Cell cultures were infected with 

CVB3 for 1 h (HeLa) or 1.5 h (HL-1, SV40 and primary rat neonatal cardiomyocytes) in serum-

free medium, washed with phosphate-buffered saline (PBS), and then replenished with fresh 

medium containing FBS. The total proteins of CVB3-infected cells were extracted by lysing the 

cells with RIPA buffer (Santa Cruz) at different time points post infection (pi). Male A/J mice 

(4-week old) were purchased from Jackson Laboratory. Mice were infected by intraperitoneal (IP) 

inoculation with 5 × 103 plaque-forming unit (pfu) of CVB3  or sham-infected with PBS. Heart 

tissues were collected at day 7 pi for immunostaining. 
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2.3.2 Viral plaque assay 

Samples were freeze-thawed and then centrifuged (4,000 × g) to isolate viruses. HeLa cells 

were seeded onto 6-well plates (8 × 105 cells/well) and incubated at 37 °C for 20 h to a 

confluence of approximately 90% and then washed with PBS and overlaid with 800 µl of virus-

containing samples serially diluted in cell culture medium. After a viral adsorption period of 60 

min at 37 °C, the supernatant was removed and the cells overlaid with 2 ml of sterilized soft 

Bacto-agar-minimal essential medium, cultured at 37 °C for 72 h, fixed with Carnoy’s fixative 

for 30 min, and stained with 1% crystal violet. The plaques were counted and viral pfu per ml 

calculated.  

 

2.3.3 UV irradiation of CVB3 

    One mL of CVB3 stock in a 2-mL tube was kept on ice. UV irradiation was conducted in a 

UV Stratalinker 1800 (Stratagene) for 30 min with the virus tube kept 5-cm from the UV bulb. 

The viruses were tested for successful irradiation by infection of HeLa cells and then western 

blot detection of the absence of CVB3 VP1 protein. 

 

2.3.4 RNA extraction and quantitative real-time PCR 

Total cellular RNAs were extracted using RNeasy mini kit (Qiagen) according to the 

manufacturer’s instructions. cDNAs were then synthesized by reverse transcription using 

SuperScript III First-Strand Synthesis System (Invitrogen) and detected by qPCR using 

QuantiTect SYBR Green PCR kit (Qiagen). The mRNA level of glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) was detected as the endogenous control. All qPCR experiments were 



46 

 

performed in triplicates with the no-template as a negative control. The primers for the q-RT-

PCR are showed in Table 2.1. 

 

2.3.5 Western blot analysis 

Cells were washed with cold PBS before the addition of an appropriate volume of RIPA lysis 

buffer (Santa Cruz). After incubation for 20 min on ice, the cell lysates were centrifuged at 

13,000 × g for 15 min at 4°C, and protein-containing supernatant was collected. The isolated 

proteins were separated by 10% SDS-PAGE and transferred onto nitrocellulose membranes. 

Membranes were blocked with 5% skim milk in TBST and incubated with one of the following 

primary antibodies overnight: monoclonal mouse anti-VP1 (Novocastra); monoclonal mouse 

anti-Hsp70 (Enzo Life Sciences); monoclonal mouse anti-β-Actin, monoclonal mouse anti-

Hsp70/Hsc70, monoclonal mouse anti-HSF1, polyclonal rabbit anti-Histone H1, polyclonal 

rabbit anti-phosphorylated-HSF1 (Ser230), polyclonal rabbit anti-phosphorylated-HSF1 (Ser307), 

polyclonal rabbit anti-ERK1/2 and polyclonal rabbit anti-NFAT5 (Santa Cruz); monoclonal 

rabbit anti-phosphorylated-ERK1/2 (Thr202/Tyr204), monoclonal rabbit anti-CaMKII (pan) and  

polyclonal rabbit anti-pCaMKII-Thr286 (Cell Signaling). After several washes with TBST, each 

blot was further incubated with an appropriate secondary antibody (goat anti-mouse or donkey 

anti-rabbit) conjugated to horseradish peroxidase (Amersham). Detection was carried out by 

enhanced chemiluminescence (Amersham) as per the manufacturer’s instructions. β-actin was 

detected as a loading control. Signal intensities were quantified by using the ImageJ (NIH) 

program and normalized to the control samples (set as 1.00). All the Western blots were 

conducted in three biological repeats and subjected to statistical analysis. 
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2.3.6 Immunohistochemistry (IHC) 

The collected mouse hearts were fixed in 10% buffered formalin and embedded in paraffin. 

The IHC analysis was performed using the MACH 4™ Universal AP Polymer Kit (Biocare 

Medical) as per the manufacturer’s instructions. Brief, a set of 4-μm thick serial sections of the 

ventricular wall from each sample were dewaxed in two changes of CitriSolution (Biocare 

Medical) and hydrated by sequential incubation with 100%, 90%, 70% isopropanol and distilled 

water. The sections were then immersed in Tris-EDTA (pH 6.0) and autoclaved at 120 °C for 20 

min to retrieve the antigen. Non-specific antibody binding was blocked with 1% bovine serum 

albumin (BSA) (Sigma) in Tris-buffered saline (TBS, pH 7.6) for 15 min at room temperature. 

After blocking, the sections were incubated overnight at 4 °C with the Hsp70 antibody (Cell 

Signaling, 1:500 dilution) mentioned above. After the first incubation, the sections were washed 

with TBS, incubated with MACH 4™ Probe for 10 min and then with MACH 4™ MR AP-

Polymer for another 10 min at room temperature. Finally, the sections were again rinsed in TBS. 

The slides were developed with Vulcan Fast Red Chromogen 2 (Biocare Medical). After 

development, the slides were rinsed, counterstained with Mayer Haematoxylin for 5 s and dipped 

in saturated lithium carbonate for 5 s. The images were captured using a Nikon Eclipse E600 

microscope.  

 

2.3.7 Transfection of plasmids and siRNAs 

All the siRNAs were purchased from Santa Cruz Biotechnology and transfected into cells 

using OligofectamineTM (Life Technologies) according to the manufacturer’s instructions. 

Briefly, 2 × 105 HeLa cells were grown at 37 °C overnight to 30-40% confluence in 6-well 

plates, washed with PBS and overlaid for 6 h with transfection complex containing siRNAs and 
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Oligofectamine. The transfection medium was then replaced with DMEM containing 10% FBS 

and the incubation was continued for 48 h.  The plasmids pEGFP-Hsp70-1 and pEGFP-Hsp70-1 

(K71E) were a gift from Dr. Lois Greene (Addgene plasmid # 15216) 322. The plasimds pFLAG-

AUF1s was a gift from Dr. Robert J. Schneider 323. These plasmids were transfected using the 

same procedures as those described for siRNAs except LipofectamineTM 2000 (Life 

Technologies) was used as transfection reagent and the initial cell confluence was 80-90%. The 

following analyses were performed at 24 h or 36 h post transfection (pt). 

 

2.3.8 Immunofluorescence and confocal microscopy 

Cells cultured on glass cover slips (Thermo Fisher) were washed with PBS and fixed and 

permeabilized with methanol/acetone (1:1) for 20 min at −20°C. Cells were then washed with 

TBS twice and blocked with 2.5% BSA in TBS for 1 h at room temperature followed by 

incubation with monoclonal mouse anti-HSF1 antibody (Santa Cruz) diluted in blocking buffer 

overnight at 4°C. Cells were then washed with TBS five times at room temperature. Slides were 

stained with goat anti-rabbit IgG (H + L) labeled with ALEXA Fluor 488 and then incubated for 

1 h at room temperature. After final wash with TBS, the slides were stained with DAPI (DAKO) 

and mounted onto microscope glass slides (Thermo Fisher) with nail oil. Images were captured 

using a Leica AOBS SP2 confocal microscope (Leica, Allendale, NJ) and analyzed by using the 

Volocity software as described previously 324.  

 

2.3.9 Reporter construction, dual luciferase assay and mRNA turnover assay 

The corresponding DNA fragments of wild-type (WT) or mutant CVB3 3’UTR were 

amplified by PCR using specific primers (Table 2.1) targeting the cDNA template of the CVB3-
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genome.  The synthesized DNA fragments were inserted into the EcoRI restriction site of the 

Dual-Luciferase Expression Vector C49, a kind gift from Dr. Joanna Floros’s laboratory. C49 

plasmid contains two tandem open reading frames encoding firefly luciferase and Renilla 

luciferase, respectively, with an EcoR I restriction site in between. We constructed our reporter 

plasmids by inserting the WT or mutant CVB3 3’UTR to the downstream region of Renilla 

luciferase coding sequence and the SV40 promoter to the upstream region of Renilla luciferase 

coding sequence, generating C49-WT-CVB3-3’UTR and C49-WT-CVB3-3’UTR, respectively. 

The reporter plasmids were co-transfected with Hsp70-1 siRNAss into HeLa cells. At 48 h pt, 

the cell lysates were used for luciferase assay to determine the relative luciferase activity 

(Renilla/Firefly) by using the Dual-Luciferase® Reporter Assay System (Promega) as per the 

manufacturer’s instructions. Meanwhile, another batch of cells were subjected to the same 

transfection and then treated by actinomycin D at a dose of 2.5 ug/mL (Santa Cruz) for different 

durations or by 0.1% DMSO as a control, in order to do mRNA turnover assay. Then the total 

cellular RNAs were extracted, reversely transcribed and subjected to qPCR to detect the mRNA 

levels of Renilla luciferase as described above. Each treatment was verified by three biological 

repeats.  

 

2.3.10 Statistical analysis 

The graphic figures were drawn as means ± standard deviations (error bars) of three 

independent experiments. The unpaired two-tail student’s t test was employed to analyze the 

data. A p value less than 0.05 was considered statistically significant. 
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Table 2.1. Primers used in Chapter 2 

Experiment Primer Sequence 

Q-RT-PCR Human Hsp70 forward ACTGCCCTGATCAAGCGC 

Human Hsp70 reverse CGGGTTTGTCGGAGTAG 

Human Hsp70-1 forward TGCATTTCCTAGTATTTCTGTTTG 

Human Hsp70-1 reverse AGAAATAGTCGTAAGATGGCAG 

Human Hsp70-2 forward TGTTTGTCTTTGAGGTGGAC 

Human Hsp70-2 reverse AAGAATTCTAATGAACATATCGG

TTG 

Mouse Hsp70 forward GCCTGATCGGCCGCAAGTT 

Mouse Hsp70 reverse GGAAGGGCCAGTGCTTCAT 

Renilla luciferase forward GCAGAAGTTGGTCGTGAGG 

Renilla luciferase reverse TCATCCGTTTCCTTTGTTCTG 

Human GAPDH forward AATCCCATCACCATCTTCCA 

Human GAPDH reverse TGGACTCCACGACGTACTCA 

Mouse GAPDH forward GGCAAATTCAACGGCACAGT 

Mouse GAPDH reverse AGATGGTGATGGGCTTCCC 

CVB3 2A forward GCTTTGCAGACATCCGTGATC 

CVB3 2A reverse CAAGCTGTGTTCCACATAGTCCTTCA 

Molecular cloning CVB3 3’UTR forward/EcoRI GCCTTAAGAAGTGGTTGGACTCC

TTTTAG 

CVB3 3’UTR reverse/EcoRI GCCTTAAGTTTTTTTTTTCCGCAC

CGAATGCGGAG 

Mutant CVB3 3’UTR 

forward/EcoRI 

GCCTTAAGAAGTGGTTGGACTCC

TTTTAGATTAGAGACAATTTGAA

ATACGGGAGATTGGCTTAACCCT

AC 

 

 

 

2.4 Results 

2.4.1 Protein level of Hsp70 is increased during CVB3 infection in vitro and in vivo 

To examine the association between viral infection phases and Hsp70 expression, we detected 

mRNA and protein levels of Hsp70 in HeLa cells at different time points pi of CVB3 at a 

multiplicity of infection (MOI) of 10. Hsp70 protein was evaluated by western blot analysis 



51 

 

using an Hsp70/Hsc70-specific antibody (Figure 2.1A, the upper panel). The quantification of 

Hsp70 was conducted by densitometric analysis and normalized to β-actin. We observed a 100% 

increase of Hsp70 protein at 6 h pi. However, Hsc70, a constitutively expressed cognate of 

Hsp70, showed less than 50% changes during CVB3 infection (Figure 2.1A, the lower panel). 

To further verify the change of Hsp70 expression in cardiomyocytes, we detected the Hsp70 

protein levels in HL-1 mouse cardiomyocytes, SV40 immortalized human cardiomyocytes and 

primary neonatal rat cardiomyocytes after infection with CVB3 at 20, 50 and 50 MOI, 

respectively.  Similarly, we found an approximately 100% increase of Hsp70 in HL-1 cells at 8 h 

pi and neonatal rat cardiomyocytes at 48 h pi (Figure 2.1B and 2.1C), and a more than 3-time 

increase in human cardiomyocytes (Figure 2.1D). The time points of significant up-regulation of 

Hsp70 varied due to different sensitivities of cell types to viral infection, which can be indicated 

by the expression levels of viral capsid protein VP1 (Figure 2.1A, B, C and D). To test whether 

CVB3 infection can induce up-regulation of Hsp70 in vivo, we performed CVB3 infection in A/J 

mice (a well-established viral myocarditis model) and IHC analysis using the ventricular wall 

tissue to detect Hsp70 protein expression (Figure 2.1E). In the IHC images, the blue dots 

indicate cellular nuclei and the red signal represents Hsp70 protein. At 7 d pi, there appeared 

immune infiltration featured by accumulation of immunocyte nuclei in the heart issue (Figure 

2.1E, blue arrow), indicating that the heart was infected successfully. At the same point, we 

observed more red signals in cardiomyocytes compared with sham-infected tissue (Figure 2.1E, 

red arrow), indicating a higher expression level of Hsp70 in CVB3-infected heart. 

 

 

 



52 

 

 

Figure 2.1. CVB3 infection induces upregulation of Hsp70 both in vitro and in vivo. HeLa cells 

(A), HL-1 cardiomyocytes (B), neonatal rat cardiomyocytes (C) and SV40 human cardiomyocytes (D) 

were infected by CVB3 at 10 MOI, 20 MOI, 50 MOI and 50MOI, respectively. Cell lysates were 

collected for western blot to detect the protein levels of Hsp70. Hsc70, a constitutively expressed 

cognate of Hsp70, was detected by a monoclonal mouse anti-Hsp70/Hsc70 antibody simultaneously 

(A). β-actin was detected as a loading control and cells treated with PBS (Sham) were used as a 

negative control. Band intensities were quantified using the ImageJ program, normalized against β-

actin and shown as means ± SD (n=3) (see lower panels of A, B, C and D; **, p<0.01). (E) 4-week old 

A/J mice were infected with 105 pfu of CVB3 or sham infected with saline. At 4 days pi, mice were 

sacrificed and the ventricular wall tissue was fixed and subjected to immunohistochemical staining 

using an anti-Hsp70 antibody. The blue arrow indicates immune cell nuclei in the myocardium. The red 

arrow indicates a typical cardiomyocyte with Hsp70 protein upregulation (red).   
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2.4.2 CVB3 upregulates the expression of Hsp70-1 but not Hsp70-2 

Our results showed that the protein level of Hsp70 was increased during CVB3 infection. 

However, Hsp70 family contains two major members, Hsp70-1 and Hsp70-2. We attempted to 

further confirm which isoform contributes to the increase. Hsp70-1 and Hsp70-2 differ from each 

other only on two amino acids; hence it is hard to distinguish them with antibodies. To detect 

these two isoforms specifically, we designed two sets of qPCR primers targeting them 

respectively based on the sequence difference in their 3’UTRs. Then we detected the mRNA 

levels of Hsp70-1 and Hsp70-2 in HeLa cells infected by CVB3. The qPCR results showed an 

approximately 100% increase of Hsp70-1 mRNA while there is no significant change of Hsp70-

2 mRNA (Figure 2.2A), indicating a transcriptional enhancement of Hsp70-1 but not Hsp70-2 

during CVB3 infection. To confirm that the primers we used were specific for the Hsp70 

mRNAs, we extracted the RNAs from cells heat-shocked at 42 °C for 0.5 h and 1 h and then 

used the same primers to detect the mRNA of Hsp70-1 and Hsp70-2. The qPCR results showed 

that Hsp70-1 had a 8-fold induction after 1 h of heat shock while Hsp70-2 was upregulated 3 

fold (Figure 2.2B), indicating that the primers we used are specific for heat-shock-induced 

proteins.  

Since the transcription of Hsp70-1 and Hsp70-2 are stimulated by HSF1 and NFAT5, 

respectively 177, 325, we attempted to evaluate the transcriptional alteration of Hsp70-1 and 

Hsp70-2 by detecting the protein levels of HSF1 and NFAT5 in sham- and CVB3-infected HeLa 

cells. Unexpectedly, HSF1 showed modest increase at 4 h pi and slightly decreased thereafter. 

As for NFAT5, it underwent a robust decrease at those time points compared to sham-infected 

cells (Figure 2.2C), corresponding to no induction of Hsp70-2 transcription. Besides, the HSF1 

bands showed a slow mobility on the gel, probably due to the post translational modification of 
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the protein, which may still affect the activity of HSF1 regardless of no change in total protein 

level. To confirm it, we detected the roles of HSF1 and NFAT5 in Hsp70 transcription by 

siRNA-mediated knocking-down of the genes. We observed a decrease of Hsp70 expression 

during CVB3 infection when HSF1 was knocked-down (Figure 2.2D). Conversely, in the case 

of NFAT5 knocking-down, the expression level of Hsp70 seemed not changed (or slightly 

increased) compared to cells transfected with scrambled siRNAs, further confirming that the 

Hsp70-2 is not inducible in CVB3 infection. The slight increase of Hsp70 protein is probably 

attributed to the enhancement of viral replication, which is evidenced by the increased VP1 

production at 5 h pi (Figure 2.2E). These results indicate that CVB3 infection enhances the 

transcription of Hsp70-1 but not Hsp70-2. 
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Figure 2.2. CVB3 infection stimulates the transcription of Hsp70-1 but not Hsp70-2. (A) HeLa 

cells were infected by CVB3 at 10 MOI for different time points and cellular total RNA was extracted. 

mRNA levels of Hsp70-1 and Hsp70-2 were detected by q-RT-PCR using primers targeting Hsp70-1 

and Hsp70-2 specifically, and were normalized against those of GAPDH and shown as means ± SD 

(n=6). (B) HeLa cells were heat-shocked at 42 °C for 0.5 h and 1 h and cellular total RNA was 

extracted. mRNA levels of Hsp70-1 and Hsp70-2 were detected by qPCR. (C) HeLa cells were infected 

with CVB3 as described above.  Cell lysates were extracted for western blot analysis using indicated 

antibodies and the results were quantified as described (lower panel). (D, E) HeLa cells were 

transfected with specific siRNAs to knock down HSF1 (D) or NFAT5 (E) and subjected to CVB3 

infection at 10 MOI. Then the cell lysates were extracted for western blot analysis of indicated proteins. 

The quantification of Hsp70 is shown in the right panel (C) or the lower panels (D, E).   
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2.4.3 Phosphorylation of HSF1 at Ser230 is responsible for Hsp70-1 upregulation 

Noting that the expression level of HSF1 was barely changed and there was a little shift of 

HSF1 band at 5 and 6 h pi (Figure 2.3A), we speculated that HSF1 was phosphorylated and led 

to the enhancement of the transcriptional activity of HSF1. Ser230 is a potential phosphorylation 

site in this case since such phosphorylation enhances the transcriptional activity of HSF1 209. To 

verify this hypothesis, we determined Ser230 phosphorylation during CVB3 infection by western 

blot using an antibody against phosphorylated HSF1 at Ser230 (p-HSF1 Ser230). Coinciding 

with Hsp70 up-regulation, HSF1 showed a significant increase of phosphorylation at 4 and 5 h pi 

(Figure 2.3A).  

To further substantiate the role of such phosphorylation, we treated HeLa cells with 10 µM of 

KN62 (1-[N,O-bis-(5-Isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine, Santa 

Cruz), a chemical that inhibits the phosphorylation of HSF1 at Ser230 326, and then detect the 

phosphorylation of HSF1 at Ser230 as well as the mRNA level of Hsp70-1. Upon KN62 

treatment, we observed that both phosphorylation of HSF1 at Ser230 and increase of Hsp70-1 

mRNA were diminished during CVB3 infection (Figure 2.3B and C). In order to exclude the 

possibility that phosphorylated HSF-1 enhance transcription of Hsp70-1 via other mediators, we 

treated HeLa cells with 2 µM of KRIBB11 (N(2)-(1H-indazole-5-yl)-N(6)-methyl-3-

nitropyridine-2,6-diamine), a specific inhibitor for the transcriptional activity of HSF1 but not 

the phosphorylation of HSF1 at Ser230  327. According to the results, though the treatment of 

HeLa cells with KRIBB11 didn’t inhibit the phosphorylation of HSF1 at Ser230 (Figure 2.3B), 

it diminished the increase of Hsp70-1 mRNA induced by CVB3 (Figure 2.3C). Together, our 

results demonstrate that HSF1 is phosphorylated at Ser230 and such phosphorylation is 

responsible for transcriptional enhancement of Hsp70-1 during CVB3 infection. 
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Figure 2.3. Phosphorylation of HSF1 at Ser230 up-regulates Hsp70-1 during CVB3 infection. (A) 

HeLa cells were infected with CVB3 and expression levels of phosphorylated HSF1 at Ser230 and 

Hsp70 were detected at different time points pi by western blot analysis. β-actin was used as a loading 

control.  Quantification of band intensities was conducted as described in Fig. 1.  (B, C) HeLa cells 

were treated with KN62, a CaMKII inhibitor and KRIBB11, an HSF1 inhibitor, 1 h before infection. 

Then the cells were infected with CVB3. At different time points pi, the cellular proteins and total RNA 

were extracted for western blot analysis of HSF1 phosphorylation at Ser 230 (B) and q-RT-PCR 

detection of Hsp70-1 mRNA (C), respectively. 
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2.4.4 CVB3-induced phosphorylation of HSF1 at Ser230 is via phosphorylation of 

CaMKIIγ 

Previous studies showed that phosphorylation of HSF1 at Ser230 is catalyzed by CaMKII 209. 

The family of CaMKIIs contains four isoforms 328, among which isoforms γ and δ are the 

predominant isoforms in the heart 329, thus we focused our studies on these two isoforms.  

CaMKIIδB is a sub-isoform of CaMKIIδ accumulated in the nucleus in response to stresses and 

contributing to phoshorylation of HSF1 330. However, to our surprise, western blot analysis 

showed a decrease of CaMKIIδB in HeLa cells during CVB3 infection (Figure 2.4A). Then we 

changed our focus onto CaMKIIγ. Activation of CaMKIIγ is initialized by binding to Ca2+/CaM 

and retained by autophosphorylation at Thr286 due to persistent high level of Ca2+/CaM 215. 

Therefore, we hypothesized that CVB3 infection activated CaMKIIγ via Thr286 phosphorylation.  

we detected the phosphorylated CaMKII by western blot using a specific antibody and found that 

CaMKII was indeed phosphorylated at 3 h pi, a time point ahead of phosphorylation of HSF1 at 

Ser230 (Figure 2.4B). Furthermore, we knocked-down CaMKIIγ in CVB3-infected HeLa cells 

using specific siRNAs and found that phosphorylation of HSF1 at Ser230 was diminished 

(Figure 2.4C). These results indicate that CaMKIIγ activation is required for HSF1 

phosphorylation at Ser230 during CVB3 infection. 

    Upon determining the role of CaMKIIγ, we next studied the upstream signal molecules. Since 

cytosolic calcium is a prerequisite for CaMKII phosphorylation, we cultured HeLa cells in 

calcium-free medium and detected the change of downstream signals during CVB3 infection. As 

expected, less phosphorylation of CaMKII at Thr286 and HSF1 at Ser230 was observed 

compared with cells cultured in normal calcium-containing medium (Figure 2.4D). Here we 

used phosphorylation of eukaryotic elongation factor 2 (p-eEF2) as a control for Ca2+-free 
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condition since eEF2 phosphorylation requires the presence of calcium. It has been reported that 

active CVB3 replication induces increase of cytosolic calcium 103, thus we speculated that viral 

replication is required for activation of CaMKII and its downstream signals. Hence, we used UV-

irradiated CVB3, which is capable of receptor binding and internalization but not able to 

replicate, to infect HeLa cells. Indeed, modest phosphorylation of CaMKII at Thr286 and HSF1 

at Ser230 was observed upon infection of UV-irradiated CVB3 (Figure 2.4E). In all, these 

results reveal a signaling cascade in which CVB3 replication raises cytosolic calcium, activates 

CaMKII, and phosphorylates HSF1 at Ser230 and finally upregulates Hsp70-1.  
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Figure 2.4. CaMKII is activated by phosphorylation and oxidation during CVB3 infection to 

phosphorylate HSF1 at Ser230. (A) HeLa cells were infected with CVB3 and expression levels of 

CaMKIIδB were detected by western blot using nuclear extracts. Histone H1 was detected as the 

loading control. (B) HeLa cells were infected with CVB3 and phosphorylation of CaMKII at Thr286 

was detected at different time points pi. (C) HeLa cells were transfected with siRNAs targeting 

CaMKIIγ and then infected with CVB3 at 10 MOI. Cell lysates were used for western blot analysis of 

HSF1 phosphorylation at Ser230 and other indicated proteins. (D) HeLa cells were cultured in medium 

with or without calcium, a key factor of CaMKII phosphorylation (activation). Then the cells were 

infected with CVB3 or sham-infected with PBS for 5 h. Phosphorylation of CaMKII and HSF1 was 

detected by western blot analysis using the cell lysates. Phosphorylation of eEF2 was detected as a 

control indicating calcium-free environment. (E) HeLa cells were infected with alive or UV-irradiated 

CVB3 at 10 MOI and phosphorylation of CaMKII and HSF1 was detected in the cell lysate. 
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2.4.5 Phosphorylation of HSF1 at Ser307 is blocked during CVB3 infection 

Unlike Ser230, phosphorylation of HSF1 at Ser307 inhibits the transcriptional activity of 

HSF1 314. Phosphorylation of HSF1 at Ser307 is catalyzed by active ERK1/2. However, ERK1/2 

is substantially activated by phosphorylation at 5 h post CVB3 infection 316, the exact same time 

point when Hsp70-1 is upregulated, thus we cannot neglect the potential adverse effect of Ser307 

phosphorylation of HSF1 on Hsp70-1 induction during CVB3 infection. To determine the 

possible contributions of Ser307 phosphorylation to the HSF-1 activity during CVB3 infection, 

we detected it as well as its upstream signal, phosphorylated ERK1/2, by western blot using 

specific antibodies. Surprisingly, though dramatic phosphorylation of ERK1/2 was observed at 5 

h pi, coinciding with the previous study, phosphorylated HSF1 at Ser307 could be barely 

detected (Figure 2.5A), indicating that ERK1/2-mediated phosphorylation of HSF1 at Ser307 

was blocked. However, when we detected the phosphorylation of HSF1 at Ser307 at very early 

time points of CVB3 infection (0.5-2 h pi, the time for CVB3 binding and internalization) during 

which ERK1/2 was also transiently phosphorylated, we observed phosphorylation of HSF1 at 

Ser307 (Figure 2.5A). We suspected that blocking of Ser307 phosphorylation at 4 h pi was 

resulted from translocation of HSF1 into the nucleus and isolation from ERK1/2 after 

phosphorylation at Ser230 330. This speculation was verified by western blot analysis using 

protein extracts isolated from nucleus and cytoplasm separately. We found that HSF1 increased 

dramatically at 4 h pi in the nucleus, coinciding with the time of HSF1 phosphorylation at 

Ser230, whereas ERK1/2 was mainly located in the cytoplasm (Figure 2.5B). This finding was 

solidified by immunofluorescence staining and confocal imaging, showing the accumulation of 

HSF1 in the nucleus at 4 h pi (Figure 2.5C), the time point when Ser230 was phosphorylated. 
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These data indicate that phosphorylation of Ser230 isolates HSF1 from ERK1/2 and avoids the 

negative regulation of Hsp70. 

 

Figure 2.5. Phosphorylation of HSF1 at Ser307 was blocked by nuclear translocation of HSF1. 

(A) HeLa cells were infected with CVB3 at 10 MOI. Phosphorylation of both HSF1 at Ser307 and its 

upstream signal ERK1/2 was detected by western blot using indicated antibodies. (B) HeLa cells were 

infected with CVB3 or sham-infected with PBS.  Nuclear and cytosolic proteins were isolated for 

detection of HSF1 and ERK1/2 respectively. Histone H1 protein was used as a purity control for 

nuclear fraction. β-actin was the loading control. (C) HeLa cells were infected with CVB3 at 10 MOI. 

At different time points pi, the cells were fixed for the immunostaining of HSF1. Nuclei were counter-

stained with DAPI. The cellular localization of HSF1 was visualized by confocal microscopy. 
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2.4.6 Hsp70 favors CVB3 replication 

To investigate the effect of Hsp70-1 on CVB3 infection, we first silenced Hsp70-1 expression 

by transfection of HeLa cells for 48 h with siRNAs targeting Hsp70-1 or scrambled control 

siRNAs and then infected with CVB3 for 2-6 h. Total cellular RNAs were extracted at different 

time points pi and then the levels of CVB3 genome were detected by q-RT-PCR using the 

primers targeting the coding region of one of 2A, one of the viral genes. We observed a dramatic 

decrease of 2A RNA in Hsp70-1 siRNAs-transfected cells compared to the control (Figure 

2.6A).  This negative effect of Hsp70-1 silencing on CVB3 replication was further solidified by 

western blot analysis of CVB3 VP1 protein using cell.  As shown in Figure 2.6B, transfection of 

siRNA targeting Hsp70-1 resulted in a decrease in VP1 production.  

    To further confirm the positive effects of Hsp70-1 on CVB3 replication, we next 

overexpressed Hsp70-1 in HeLa cells using the plasmid pEGFP-Hsp70-1. Meanwhile, we 

transfected the cells with the empty vector pEGFP and pEGFP-Hsp70-1(K71E), a loss-of-

function mutant of Hsp70-1, as negative controls.  After transfection for 20 h and then infected 

with CVB3, viral RNA and VP1 levels were detected as described above. As shown in Figure 

2.6C and 6D particularly at 4h pi, compared with controls, overexpression of WT Hsp70-1 

enhanced viral replication at levels of transcription and translation, while overexpression of 

pEGFP-Hsp70-1(K71E) barely changed the levels of viral RNA and protein (Figure 2.6C and 

E). 
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Figure 2.6. Hsp70-1 upregulation benefits CVB3 replication. HeLa cells were transfected with 

specific siRNAs to knock down endogenous Hsp70-1 and then infected with CVB3 at 10 MOI. Viral 

replication was evaluated by q-RT-PCR detection of 2A RNA (A) and western blot analysis of VP1 

(B). Cells transfected with scrambled siRNAs served as the negative control. Meanwhile, HeLa cells 

were transfected with plasmid pEGFP-Hsp70-1 to overexpress Hsp70-1 and then infected with CVB3 

at 10 MOI. Viral replication was measured by q-RT-PCR detection of 2A RNA (C) and western blot 

analysis of VP1 (D). Cells transfected with the empty vector pEGFP and pEGFP-Hsp70-1 (K71E) 

mutant plasmid served as negative controls (E). In both q-RT-PCR results, the RNA levels of CVB3 2A 

were normalized against the mRNA levels of GAPDH and shown as means ± SD (n=6, p <0.01). 
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2.4.7 Hsp70-1 stabilizes CVB3 genomic RNA via the ARE site of CVB3 3’UTR 

Hsp70-1 is known to play a role in stabilizing mRNAs containing an ARE site in its 3’UTR 

319. As shown in Figure 2.7A, CVB3 genomic RNA also contains an ARE sequence within its 

3’UTR.  Thus, I focused my attention to investigate whether Hsp70-1 enhances CVB3 

replication via stabilizing viral genome. To this end, I constructed the dual-luciferase reporter 

plasmids, C49-WT-CVB3-3’UTR and C49-Mut-CVB3-3’UTR, by inserting WT and mutant 

3’UTR of CVB3 RNA at the downstream of Renilla luciferase coding region, so that these two 

reporters contain a WT and a mutant ARE site, respectively (Figure 2.7B). I co-transfected the 

reporter plasmids and Hsp70-1 siRNAs or scrambled siRNA into HeLa cells. The knockdown 

efficiency of Hsp70-1 was confirmed by qPCR detecting Hsp70-1 mRNA, which showed that 

the mRNA levels of Hsp70-1 decreased more than 50% in Hsp70-siRNA-transfected cells 

compared to scrambled-siRNA-transfected controls (Figure 2.7C). Then I measured the activity 

of Renilla luciferase by luciferase assay, and the data were normalized to the activity of firefly 

luciferase. The results showed that knocking-down of Hsp70-1 decreased the expression of the 

luciferase with the wild-type ARE site, whereas the luciferase gene with the mutant ARE site 

was not sensitive to Hsp70-1 knocking-down (Figure 2.7D). To further confirm that Hsp70-1 is 

critical for the stability of mRNAs modulated by CVB3 3‘UTR, I treated the reporter cells with 

2.5 μg/mL of actinomycin D for 2 and 4 h to inhibit new transcription, and detected the mRNA 

levels of Renilla luciferase by qPCR using specific primers (Table 2.1). All the qPCR results 

were normalized by setting the mRNA level of groups treated with scrambled siRNAs but no 

actinomycin D as 100%.  As shown in Figure 2.7E, the mRNA of Renilla luciferase modulated 

by WT CVB3 3’UTR has a decrease of 60% at 2 h and 85% at 4 h after actinomycin D treatment, 
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compared with 40% decrease at 2 h and 60% decrease at 4 h of the reporter modulated by mutant 

CVB3 3’UTR, indicating a more rapid decay of the mRNA with the WT ARE site when the new 

transcription is blocked. Moreover, when Hsp70-1 was knocked-down, a lower level of Renilla 

luciferase mRNA was detected in cells transfected with C49-WT-CVB3-3’UTR, but no 

significant changes were observed in cells transfected with C49-Mut-CVB3-3’UTR, supporting 

the previous finding that the mRNA with the WT ARE site is more sensitive to Hsp70-1 change 

and decay faster when Hsp70-1 level is low. These results indicate that Hsp70-1 stabilizes CVB3 

genomic RNA and this function requires an ARE sequence. 

    It has been reported that Hsp70-1 stabilizes ARE-mRNA via sequestering AUF1 in the 

nucleus319, and AUF1 isoforms p37AUF1 and p40AUF1 are involved in this process 331 . Thus, I 

further tested whether these two AUF1 isoforms play a role in stabilizing CVB3 genomic RNA 

during infection. To this end, I expressed either p37AUF1 or p40AUF1 by plasmid transfection in 

CVB3-infected HeLa cells and then measured viral genomic RNA during infection. The q-RT-

PCR results showed that CVB3 genomic RNA was significantly decreased upon expression of 

these AUF1 isoforms although p40AUF1 caused less decrease than p37AUF1 (Figure 2.7F). 

However, when Hsp70-1 was co-transfected with AUF1, the decrease of viral genome was 

diminished (Figure 2.7F). These results demonstrate that p37AUF1 or p40AUF1 reduces the 

abundance of CVB3 genomic RNA while Hsp70-1 reverses such effect, indicating that Hsp70-1 

stabilizes CVB3 genomic RNA via p37AUF1 and p40AUF1. 
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Figure 2.7. Hsp70-1 stabilizes CVB3 genomic RNA via the ARE site in the 3’UTR of CVB3 

genome. (A) An AU-rich element is located in the 3’UTR of CVB3 genome. (B) Schematic structures 

of C49 luciferase reporter plasmid. WT and mutated CVB3 3’UTRs were amplified by PCR using 

specific primers and inserted into the downstream of Renilla luciferase coding region on the reporter 

plasmid, generating C49-WT-CVB3-3’UTR and C49-Mut-CVB3-3’UTR. (C) HeLa cells were co-

transfected with different combinations of plasmids and siRNA:  C49-WT-CVB3-3’UTR and 

scrambled siRNAs (WT Scr), C49-WT-CVB3-3’UTR and Hsp70-1 siRNAss (WT siHsp70), C49-Mut-

CVB3-3’UTR and scrambled siRNAs (Mut Scr) or C49-Mut-CVB3-3’UTR and Hsp70-1 siRNAss 

(Mut siHsp70). The knockdown efficiency of Hsp70-1 by siRNA was determined by qPCR detection of 

Hsp70-1 mRNA.  The results were normalized by GAPDH mRNA and the relative mRNA levels of 

Hsp70-1 in Scr siRNA-treated cells were set as 1.0.  (D) Luciferase assay. HeLa cells were co-

transfected with the C49 plasmids containing WT or mutated CVB3 3’UTR and Hsp70-1 siRNAs 

(siHsp70) or scrambled siRNA (Scr). At 48 h pt, cell lysates were collected and subjected to luciferase 

assay. Relative luciferase activities (Renilla/firefly) are shown as means ± SD (n=9). (E) HeLa cells 

were transfected with the same plasmids and siRNAs as those in (C) and (D). The transfected cells 

were treated with 2.5 μg/mL of actinomycin D for 2h (Act. 2h) or 4h (Act. 4h). The same cells treated 

with 0.1% DMSO (Act. 0h) served as a control. The rate of mRNA decay was determined by qPCR 

detection of the Hsp70-1 mRNA. The results were normalized by GAPDH mRNA and the relative 

mRNA levels of Hsp70-1 in Scr siRNA-treated cells without actinomycin D treatment were set as 

100%. (F) HeLa cells were co-transfected with different plasmid combinations: Vectors (pFLAG + 

pEGFP), p37 (pFLAG-p37AUF1 + pEGFP), p40 (pFLAG-p40AUF1 + pEGFP), p37 + Hsp70 

(pFLAG-p37AUF1 + pEGFP-Hsp70-1), and p40 + Hsp70 (pFLAG-p40AUF1 + pEGFP-Hsp70-1). At 

36 h pt, the cells were infected with CVB3 at 10 MOI for 6 h and then viral genomic RNA was 

measured by q-RT-PCR detection of CVB3 2A RNA. The RNA levels of 2A were normalized against 

the mRNA levels of GAPDH and shown as means ± SD (n=6, p < 0.01). 
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2.5 Discussion 

    Hsp70 is one of the best characterized chaperon proteins in the Hsp70 family. Its expression is 

regulated by various cellular stress conditions including viral infection. Accumulating evidence 

indicates that the mutual regulation of viruses and Hsp70 is critical for viral replication and the 

pathogenesis of virus-induced diseases. On one hand, viral infections, such as foot-and-mouth 

disease virus (FMDV) 332 and rotavirus 333, induce up-regulation of Hsp70. On the other hand, 

Hsp70 expression plays different roles in viral replication, for example, the positive regulation in 

rabies virus 333, Japanese encephalitis virus 334 and porcine circovirus 335 and the negative 

regulation in vesicular stomatitis virus 336, human immunodeficiency virus-1 337 and rotavirus 333. 

However, such study has not been conducted in coxsackievirus infection and particularly has 

never distinguished the roles of Hsp70-1 and Hsp70-2 in viral replication. 

    In this study, we aim to understand the mutual regulation between Hsp70 and CVB3. Our 

results showed that Hsp70-1, not Hsp70-2, is upregulated during CVB3 infection in cells of 

different origins, though the induction level is much lower than that in heat shock, which is 

probably due to the expression inhibition of some transcriptional and translational factors during 

CVB3 infection. In searching for the underlying mechanism, we focused our attention on HSF1, 

the transcriptional factor of Hsp70-1. By siRNA-mediated knocking-down of HSF1, we found 

that HSF1 is responsible for CVB3-induced up-regulation of Hsp70-1.  However, no significant 

upregulation except a molecular-weight shift of HSF1 band was observed in the virus-infected 

samples, indicating that the transcriptional activity of HSF1 may be enhanced by certain post-

translational modifications. Thus, we tried to determine HSF1 phosphorylation and found that 

HSF1 was indeed phosphorylated at Ser230.  This result is consistent with previous report that 

phosphorylation of Ser230 activates transcriptional activity of HSF1 209. CaMKII is the upstream 
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kinase of HSF1 209, which is activated via phosphorylation at Thr286 in an elevated Ca2+/CaM 

condition and responsible for phosphorylation of HSF1. Thus we drew our attention on CaMKII. 

We found that CaMKII was phosphorylated at Thr286 during CVB3 infection. Correspondingly, 

our results showed that KN62, a specific inhibitor of CaMKII-calcium/calmodulin binding 326, 

inhibited phosphorylation of HSF1 at Ser230 and thus Hsp70-1 production during CVB3 

infection. The family of CaMKIIs contains four isoforms, α, β, γ and δ 328.  Since α and β 

isoforms are almost exclusively expressed in the brain and the γ and δ are the predominant 

isoforms in the heart 329, we focused our identification on γ and δ isoforms.  By siRNA-targeted 

gene silencing, we finally identified CaMKIIγ as the responsible isoform for HSF1 

phosphorylation at Ser230 during CVB3 infection. These data suggest that CVB3-induced 

Hsp70-1 upregulation is via selective phosphorylation of HSF1 at Ser230, which is catalyzed by 

CaMKIIγ.  

    There are several other phosphorylation sites on HSF-1, among which we focused on the 

ERK1/2-regulated phosphorylation of HSF1 at Ser307 as this phosphorylation can inhibit the 

transcriptional activity of HSF1 314.  However, this event was blocked during later time points of 

CVB3 infection, contributing to the enhancement of HSF1 activity and Hsp70-1 upregulation. 

Our previous study showed that ERK1/2 is activated at two separate phases although the later 

phase is dominant during CVB3 infection 316. Here, we showed that ERK1/2 activation at the 

first phase was capable of inducing phosphorylation of HSF1 at Ser307 though the second phase 

of ERK1/2 activation was not. This is likely due to nuclear translocation of HSF1, which isolates 

HSF1 from ERK1/2, at late time points of CVB3 infection. 

    Having determined the up-regulation of Hsp70-1 during CVB3 infection, we next invested the 

effects of Hsp70-1 upregulation on CVB3 infection. By both the siRNA-mediated gene silencing 
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and plasmid-mediated overexpression of Hsp70-1, we confirmed that Hsp70-1 expression 

benefits CVB3 replication at the levels of transcription and translation.  These data suggest that 

Hsp70-1 upregulation generates a positive feedback loop on CVB3 replication.  This signaling 

pathway is summarized in Figure 2.8. Then the question was how Hsp70-1 favors CVB3 

replication. One of our hypotheses was that Hsp70-1 protects viral genomic RNA from 

exonuclease-driven degradation, considering Hsp70-1 is closely related to mRNA turnover 5. 

Many cellular mRNAs contain an ARE sequence in their 3’UTR. Association of ARE-binding 

protein (AUPBs) with these mRNAs promotes rapid mRNA degradation. AUF1, one of the best-

characterized AUBPs, binds to many ARE-mRNAs and assembles other factors necessary to 

recruit the mRNA degradation machineries. These factors include eIF4G, PABP, Hsp70-1 and 

many unknown proteins 192. During normal physiological conditions, AUF1 interacts 

simultaneously with eIF4G and ARE, while PABP binds both eIF4G and poly(A) tail. However 

during the active normal translation of ARE-containing mRNAs, the ribosome might relocate 

AUF1, which could bind PABP, thus causing exposure of the poly-A tail to deadenylases to 

initiate decay. During cellular stress or infection, the association of Hsp70-1 with AUF1 may 

disrupt or block the AUF-PABP interaction, leaving PABP free to remain bound to poly-A tail, 

thus masking it from ribonuclease 193. This mechanism for stabilizing the viral mRNA has been 

reported in DNA virus infection 338. By sequence screening, we found that the genomic RNA of 

CVB3 harbors an ARE site within its 3’UTR. To verify whether this ARE site plays a role in 

Hsp70-1-mediated stabilization of CVB3 genomic RNA, we performed luciferase assay and 

mRNA turnover assay using reporter plasmids containing CVB3 3’UTR with a WT or mutant 

ARE site. In the luciferase activity assay, we found that only the reporter regulated by the WT 

CVB3 ARE site is sensitive to Hsp70-1 level, supported by the result that the reporter signal was 
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significantly reduced when Hsp70-1 was knocked-down but no significant change was observed 

in the mutant control. In the mRNA turnover assay, the decay of the luciferase mRNA was 

detected directly and the results showed that the mRNA containing CVB3 3’UTR with WT ARE 

had a more rapid decay rate and its level was positively correlated with Hsp70-1 level, 

supporting that Hsp70-1 stabilizes the RNA with CVB3 3’UTR via the ARE site. We further 

determined whether AUF1 is involved in the process via ectopic expression of different AUF1 

isoforms.  We found that expression of p37AUF1 and p40AUF1 decreased the abundance of CVB3 

genomic RNA; however such decrease was suppressed by expression of Hsp70-1, indicating that 

the stability of CVB3 genomic RNA is negatively regulated, at least in part, by AUF1-mediated 

RNA decay, whereas Hsp70-1 plays a role in counteracting this process.  

    CVB3 infection is the primary cause of viral myocarditis, an inflammatory heart disease. 

Lesions of the heart caused by CVB3 infection are not only due to viral replication in 

cardiomyocytes, but also resulted from virus-induced exaggerated immune responses. Hsp70-1 

has been reported to be secreted upon induction and act as an immune stimulator leading to 

immune infiltration 336, 339, 340. Thereby, we believe that CVB3-induced upregulation of Hsp70-1 

not only favors viral replication, but also enhances immune infiltration during the development 

of myocarditis, both of which lead to exacerbation of the disease. Thus, Hsp70-1 chaperone is a 

rational pharmaceutical target for viral myocarditis. 
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Figure 2.8. A putative model of the mutually beneficial regulation of CVB3 and Hsp70-1. CVB3 

infection elevates the level of cytosolic calcium and activates CaMKII via inducing auto-

phosphorylation of CaMKII at Thr286. The active CaMKII further phosphorylates HSF1 at Ser230 to 

enhance the transcription of Hsp70-1. On the other hand, HSF1 activation causes the nuclear 

translocation of HSF1 and thus blocks the ERK1/2-catalyzed phosphorylation of HSF1 at Ser307, a 

negative regulatory process of Hsp70-1 transcription, thus further contributing to Hsp70-1 upregulation. 

Finally, the upregulated Hsp70 in turn positively feedbacks on CVB3 replication. 
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Chapter 3 CVB3 and Nuclear Factor of Activated T-cells 5 

3.1 Background and Rationale 

3.1.1 NFAT5-related signals in heart diseases 

NFAT5 is a master transcriptional factor (~170 kDa) activated in hypertonic stress, which 

promotes cell survival against the stress by inducing the expression of different tonicity-

responsive genes via binding to the TonE 341. As mentioned earlier, in mammals, hypertonic 

environment is almost exclusively found in the kidney on which most NFAT5 studies were 

conducted, while the function of NFAT5 in other organs has been barely studied regardless of 

the ubiquitous expression in almost all organs 298, 299. Recently, a few reports have suggested the 

possible protective role of NFAT5 in some conditions of heart injury. For instance, degradation 

of NFAT5 is induced in cardiomyocytes treated with doxorubicin, a commonly used anti-tumor 

agent, and such decrease of NFAT5 exacerbates myocyte death upon doxorubicin treatment 300. 

In certain clinical trials, HSS, a common inducing agent of hypertonic stress, was used as an 

auxiliary supplement to improve cardiac function in heart diseases 293, 294. 

 

3.1.2 NFAT5 and CVB3 

CVB3 infection activates p38 MAPK, which is the upstream signals upregulating NFAT5 

expression 257, 298. However, in Chapter 2, the detection of NFAT5 proteins during CVB3 

infection showed a sudden disappearance of NFAT5 at 5 h pi in HeLa cells (Figure 2.2C) and 

knockdown of NFAT5 increased CVB3 proteins synthesis (Figure 2.2E). These results indicated 

a post-transcriptional inhibition of NFAT5, which may benefits CVB3 infection. 

 Among the signals downstream of NFAT5, NFκB has been reported to promote host cell 

viability in CVB3 infection 304. In addition, iNOS, which is induced by NFAT5 305, exerts 
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inhibitory effect on CVB3 replication and decreases mouse mortality rate after viral infection 307. 

These findings inspired me to link NFAT5 and CVB3-induced cell death and cardiac injury, a 

virgin field for the studies of both NFAT5 and CVB3-induced viral myocarditis. 

 

3.2 Hypothesis and Specific Aims 

The objective of this chapter is to investigate the mechanism underlying NFAT5 

disappearance in CVB3 infection and its feedback role on viral replication. According to the 

pattern of NFAT5 decrease and the current knowledge, I HYPOTHESIZE that NFAT5 is 

cleaved and inactivated by CVB3 proteases 2A and 3C, which promotes CVB3 replication and 

viral-induced cell death. 

The SPECIFIC AIMS for this chapter are as follows: 

Aim 1: To determine CVB3-mediated cleavage of NFAT5 

Aim 2: To determine the protease(s) responsible for NFAT5 cleavage and the cleavage site(s) 

Aim 3: To investigate the effects of NFAT5 and its cleavage product(s) on CVB3 replication 

Aim 4: To test the therapeutic effect of hypertonic reagents on CVB3 infection in vitro and in 

mice 

 

3.3 Method and Materials 

3.3.1 General techniques 

All tissue culture, western blots, viral plaque assay, plasmid and siRNA transfection, and 

immunofluorescence staining were conducted in the same ways as described in Chapter 2. The 

qPCR was also conducted using the same reagents as those in Chapter 2 but with different 

primers (Table 3.1). 
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3.3.2 Antibodies 

For western blot analysis in this chapter, the following primary antibodies were used: 

monoclonal rabbit anti-VP1, monoclonal rabbit anti-FLAG and monoclonal rabbit anti-myc 

(Thermo Fisher); monoclonal mouse anti-β-actin and polyclonal rabbit anti-NFAT5 (Santa 

Cruz). 

In immunofluorescence staining of this chapter, monoclonal rabbit anti-myc (Thermo Fisher) 

was used as the primary antibody. 

 

3.3.3 Constructs, molecular cloning and site-directed mutagenesis 

pEGFP-myc-NFAT5 and pEGFP-myc-NFAT5-DBD were kind gifts from Dr. Anjana Rao 

(Addgene plasmid #13627 and #14112) 342. The FLAG-p70-NFAT5 fragment was amplified by 

PCR using universe hot start high-fidelity DNA polymerase (Bimake) and pEGFP-myc-NFAT5 

plasmid as the template. . The primers (NFAT5 F/Xho I and NFAT5 G503 R/Bam HI) used in 

this PCR are listed in Table 3.1. The PCR product was digested with Xho I and Bam HI and then 

inserted into pcDNA3.1(-) to generate the expression plasmid of p70-NFAT5 and pcDNA3.1(-)-

p70-NFAT5.  

The plasmid pEGFP-myc-NFAT5 was mutated at G503 and G650 by PCR-mediated site-

directed mutagenesis using corresponding primers (Table 3.1) to generate pEGFP-myc-

NFAT5G503A and pEGFP-myc-NFAT5G650A, respectively. Briefly, PCR reaction using 

mutagenesis primers and pEGFP-myc-NFAT5 template was conducted using the same DNA 

polymerase kit as described above, and then the PCR product was transformed to DH5α 

competent E. coli cells. The transformed cells were plated onto Luria broth (LB) plates 

containing 50 μg/mL kanamycin and incubated overnight at 37 °C. On the next day, individual 
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bacterium colonies were picked and the plasmid was extracted using High-Speed Plasmid Mini 

Kit (Froggabio). The mutation sites were verified by DNA sequencing using primers NFAT5 

G503 Seq and NFAT5 G650 Seq (Table 3.1). 

 

Table 3.1. Primers used in Chapter 3 

 

Experiment Primer Sequence 

Q-RT-PCR Human Hsp70-2 forward TGTTTGTCTTTGAGGTGGAC 

Human Hsp70-2 reverse AAGAATTCTAATGAACATATCGG

TTG 

Human NFAT5 forward GAAGTGGACATTGAAGGCACT 

Human NFAT5 reverse CTGGCTTCGACATCAGCATT 

Human TauT forward AGATCATCATAGGCCAGTACAC 

Human TauT reverse TAGACATTCAGGAGGGACACA 

Human iκB forward GATCCGCCAGGTGAAGGG 

Human iκB reverse GCAATTTCTGGCTGGTTGG 

Human iNOS forward GCAGAATGTGACCATCATGG 

Human iNOS reverse ACAACCTTGGTGTTGAAGGC 

Human GAPDH forward AATCCCATCACCATCTTCCA 

Human GAPDH reverse TGGACTCCACGACGTACTCA 

Mouse GAPDH forward GGCAAATTCAACGGCACAGT 

Mouse GAPDH reverse AGATGGTGATGGGCTTCCC 

CVB3 2A forward ATCAAGTTGCGTGCTGTG 

CVB3 2A reverse TGCGAAATGAAAGGAGTGT 

Molecular cloning NFAT5 F/XhoI AGCTCTCGAGATGGGCGGTGCTT

GCAGCTCC 

NFAT5 G503 R/BamHI AGCTGGATCCTTACTTATCGTCGT

CATCCTTGTAATCAGTAGTTTTCA

TTGCTTTC 

NFAT5 G503A F GGCCATGAAAGCAATGAAAACTA

CTGCATGTAATTTAGATAAGGTA

AATATTATCCC 

NFAT5 G503A R GGGATAATATTTACCTTATCTAAA

TTACATGCAGTAGTTTTCATTGCT

TTCATGGCC 

NFAT5 G650A F GATATTACAGTCAGATGCTACAG

TGGTTAATTTGTCAC 

NFAT5 G650A R GTGACAAATTAACCACTGTAGCA

TCTGACTGTAATATC 

NFAT5 G503 Seq ACTTACACTCCAGACCC 

NFAT5 G650 Seq TGACAACTATTCAAACCC 
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3.3.4 Reporter construction and dual luciferase assay 

The NFAT5 reporter plasmid pGL-TonE-luciferase and the control Renilla reporter plasmid 

pRL were kind gifts from Dr. Anjana Rao (Addgene plasmid # 14110) 342 and Dr. Norbert 

Perrimon (Addgene plasmid # 37380) 343, respectively. In this plasmid, sequence containing 

TonE from promoter region of human aldose reductase (AR) gene, a typical downstream gene of 

NFAT5 279, is inserted at the upstream of firefly luciferase coding region, and thus the expression 

of firefly luciferase is regulated by NFAT5 activity 342. We cotransfected pGL-TonE-luciferase, 

pRL and plasmids expressing full-length (FL) NFAT5 or p70-NFAT5 into HeLa cells. At 48 h 

pt, the cell lysates were used for luciferase assay on a Tecan GENios fluorescence reader to 

determine the relative luciferase activity (Firefly/Renilla) by using the Dual-Luciferase® 

Reporter Assay System (Promega) as per the manufacturer’s instructions. Each treatment was 

verified by three biological repeats. 

 

3.3.5 Chemical inhibitor treatment 

Cells were serum starved overnight and treated with caspase-3 inhibitor Z-VAD in DMSO 

(Cedarlane Labs) (25 μM), proteasome inhibitor MG132 in DMSO (Sigma) (10 μM) or equal 

volume of DMSO (0.1% in culture medium) (Sigma) starting from 30 min prior to infection. For 

iNOS inhibitor 1400W, the cell culture medium was replaced with serum-free medium 

containing 1 mM of 1400W or equal volume of ultrapure water (0.1% in culture medium) 

(Thermo Fisher) 24 h prior to infection. Cells were then infected with CVB3 at 10 MOI for 1 h. 

After infection, cells were washed with PBS and replenished with serum-free medium with Z-

VAD, MG132 or 1400W. 
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For hypertonic reagent treatment on HeLa cells, sodium chloride (100 mM) and mannitol (100 

– 200 mM) were dissolved directly in DMEM medium without FBS to generate hypertonic 

mediums. The cell culture medium was replaced with the hypertonic mediums 2 h prior to 

infection. Then the cells were infected with CVB3 diluted in the hypertonic mediums. 

 

3.3.6 HSS treatment on mice 

Male A/J mice (4-week old) were purchased from Jackson Laboratory. Animal experiment 

protocol was approved by the Animal Care Committee of Faculty of Medicine, University of 

British Columbia. Mice were infected by IP injection with 105 pfu of CVB3 or sham-infected 

with PBS. During the infection period, the mice were treated by IP injection with 0.9%, 5% or 

7.5% NaCl solution in a dose of 10 mL/kg daily. Heart tissues were collected at day 6 pi after 

euthanasia in CO2, fixed in 10% buffered formalin, embedded in paraffin and subjected to H&E 

staining as described in Chapter 2. 

 

3.3.7 MTS cell viability assay 

Cell morphology was observed and photographed at room temperature under a phase contrast 

microscope (TMS-F, Nikon) connected with a camera (Coolpix 8400, Nikon). Cell viability was 

further quantified by using a 3-(4-5-dimethylthiazol-2-yl)-5-(-3-carboxymethoxyphenyl)-2H-

tetrazolium salt (MTS) assay kit following the manufacturer’s instructions (Promega). Briefly, 

cells were incubated with MTS solution for 2 h. Absorbency of formazan was measured at 492 

nm using enzyme-linked immunosorbent assay (ELISA) plate reader. The results were 

normalized to sham-infected control which was set as a viability of 100%. 
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3.4 Results 

3.4.1 CVB3 infection decreases NFAT5 in protein level but not mRNA level 

We first detected the change of NFAT5 in SV40 human cardiomyocytes. SV40 

cardiomyocytes were infected with CVB3 at a MOI of 20 or sham-infected with PBS and then 

the cells were subjected to protein and RNA extraction at 8 or 10 h pi. western blot analyses 

using antibodies against VP1 (CVB3 capsid protein) and NFAT5 were conducted to detect 

CVB3 infection and CVB3-induced NFAT5 protein reduction, respectively. Figure 3.1A shows 

that NFAT5 protein was highly expressed in sham-infected cardiomyocytes but disappeared at 8 

h pi; however, the mRNA levels detected by qPCR using NFAT5-specific primers remained 

unchanged (Figure 3.1B). Similar results were observed in HeLa cells infected with CVB3 at 10 

MOI, which showed a dramatic decrease of NFAT5 protein beginning at 4 h and disappeared at 

5 h pi (Figure 3.1C), but qPCR showed no significant change of NFAT5 mRNA (Figure 3.1D). 

To test whether such change of NFAT5 occurred in vivo, we infected 4-week-old A/J mice with 

105 pfu of CVB3 for six days and found that NFAT5 protein was decreased in the heart, a major 

susceptible organ to CVB3 (Figure 3.1E). All these results indicate that CVB3 infection mainly 

affects NFAT5 at protein level.  
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Figure 3.1. CVB3 infection reduces NFAT5 protein but not mRNA. SV40 human cardiomyocytes and HeLa 

cells were infected with CVB3 at 10 MOI or 20 MOI, respectively or sham-infected with PBS and harvested at 

indicated time points pi. Cellular proteins and RNAs were extracted for western blot analysis of NFAT5 protein 

(A, C) and qPCR measurement of NFAT5 mRNA (B, D), respectively. (E) 4-week-old A/J mice were infected 

with CVB3 at 10
5 
pfu (plaque forming unit) or sham-infected with PBS. At 6 days pi, the mice were sacrificed and 

the heart tissue was homogenized for western blot analysis of NFAT5 protein.  β-actin was used as a loading 

control. Quantitation of NFAT5 protein was conducted by densitometry analysis using the NIH ImageJ program 

(right panel). 
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3.4.2 NFAT5 is cleaved by CVB3 proteases 2A and 3C 

CVB3 infection promotes ubiquitin/proteasome-mediated protein degradation and induces 

caspase-3 activation 344, 345. Since no change of NFAT5 mRNA was observed in CVB3 infection, 

we speculated that the decrease of NFAT5 protein might be due to proteasome-mediated 

degradation or caspase-3-mediated cleavage. To verify this hypothesis, we used 10 µM MG-132, 

a proteasome inhibitor, and 50 µM z-VAD-fmk, a pan-caspase inhibitor, to treat CVB3-infected 

HeLa cells. To our surprise, neither MG-132 nor z-VAD-fmk was capable of blocking the 

decrease of NFAT5 protein (Figure 3.2A and B). These results indicate that NFAT5 decrease is 

not resulted from proteasome-mediated degradation or caspase-3-mediated cleavage. 

Then we hypothesized that NFAT5 was probably cleaved by CVB3 proteases 2A and/or 3C. 

To verify this hypothesis, we first detected the cleavage products of NFAT5 by western blot 

analysis using an N-terminal antibody of NFAT5 and observed a ~70 kDa band appearing at 4 h 

pi, coinciding with the reduction of 170 kDa FL NFAT5 (Figure 3.2C). However, a non-specific 

band at ~70 kDa also appeared in sham-infected control (Figure 3.2C, lane 1). To confirm this 

cleavage, we constructed and transfected pEGFP-myc-NFAT5, a plasmid expressing NFAT5 

tagged with a 6*myc peptide at its N-terminus, into HeLa cells infected with CVB3. By 

immunoblotting using an anti-myc antibody, we observed a ~76 kDa band at 4 h pi (Figure 

3.2D), suggesting that the 70 kDa band is truly the N-terminal cleavage product of NFAT5 (p70-

NFAT5) since the total MW of six myc tags is ~6 kDa. Then we continued to determine which 

viral protease cleaved NFAT5 during CVB3 infection. For this aim, we transfected HeLa cells 

expressing myc-NFAT5 with plasmid pIRES-2A or pIRES-3C, which expresses 2A or 3C, 

respectively. At 36 h pt, by immunoblotting using a myc antibody, we observed that FL myc-

NFAT5 decreased in both 2A- and 3C-transfected cells, but myc-p70-NFAT5 appeared only in 
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2A-transfected cells, which is similar to that in CVB3-infected cells; while 3C-transfected cells 

showed two weak bands of ~120 kDa and ~150 kDa (Figure 3.2E). These results demonstrate 

that both 2A and 3C cleave NFAT5 but only 2A cleavage produces the p70-NFAT5 fragment. 
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Figure 3.2. NFAT5 is cleaved by viral proteases 2A and 3C. HeLa cells were treated with 10 μmol/L MG132 

(A) or 25 μmol/L z-VAD-fmk (B) and then infected with CVB3 at 10 MOI. At indicated time points pi, the 

cellular proteins were subjected to western blot analysis of NFAT5 and other proteins using the indicated 

antibodies. β-actin was used as a loading control.  (C) HeLa cells were infected by CVB3 at 10 MOI for 4 and 6 h 

and then subjected to western blot analysis using an antibody against the N-terminal epitope of NFAT5. (D) HeLa 

cells transfected with a plasmid expressing the 6*myc-NFAT5 fusion protein (upper panel) were infected with 

CVB3 or sham-infected as described above and subjected to western blot analysis using an antibody against myc 

tag (lower panel). (E) HeLa cells expressing myc-NFAT5 were transfected with pIRES-2A (2A), pIRES-3C (3C) 

or vector only (V). At 48 h post transfection (pt), the cells were subjected to western blot analysis using an 

antibody against myc tag. The cells infected with CVB3 or sham-infected with PBS were used as controls. 

Arrows indicate the 3C cleavage bands. 
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3.4.3 CVB3 protease 2A cleaves NFAT5 at G503 

     According to the structure domains of NFAT5 protein, p70-NFAT5 covers one third of all 

amino acids (aa) of the whole protein, which contains five of the seven functional domains of 

NFAT5 (Figure 1.7). Interestingly, the aa 175 – 471 within the N-terminal fragment of NFAT5 

has been proven to function as a dominant negative mutant of NFAT5 267, 346, implying the 

potential influence of p70-NFAT5 on NFAT5 activity. Therefore, we focused our study on p70-

NFAT5, the 2A cleavage product of NFAT5. To locate the exact cleavage site of 2A on NFAT5, 

we utilized the program NetPicoRNA 1.0 347 to analyze the whole aa sequence of NFAT5 and 

predicted the peptide bond just before G503 as the top candidate locus of 2A cleavage (Figure 

3.3A). The aa sequence around G503 is similar to the reported recognition motifs of CVB3 2A 

protease 348, which are conserved among different species (Figure 3.3B), indicating a high 

possibility of G503 as the 2A cleavage site. To verify the prediction, we mutated G503 of myc-

NFAT5 to alanine (A) and constructed the expressing plasmid pEGFP-myc-NFAT5G503A. 

Meanwhile, we made another mutant plasmid pEGFP-myc-NFAT5G650A as a control. We 

transfected the two mutants as well as wild-type (WT) NFAT5 into HeLa cells separately, and 

then infected with CVB3. Immunoblotting using an anti-myc antibody showed no band of myc-

p70-NFAT5 in NFAT5G503A-transfected cells, and instead, it showed a similar 3C cleavage 

pattern on WT NFAT5 (Figure 3.3C, arrows) as seen in Figure 3.2E, indicating that upon 

G503 mutation, 2A can no longer cleave NFAT5. As for NFAT5G650A control, we observed the 

same myc-p70-NFAT5 band as seen in WT NFAT5 cells (Figure 3.3C), suggesting that the 

mutagenesis procedure did not bring any influence on NFAT5 cleavage. This result was further 

confirmed by 2A plasmid transfection, which showed no cleavage of FL-myc- NFAT5G503A upon 
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2A expression (Figure 3.3D). These data suggest that G503 is the only cleavage site of CVB3 

protease 2A on NFAT5. 

 

Figure 3.3. NFAT5 is cleaved by viral protease 2A at G503. (A) The potential 2A cleavage sites predicted 

by using the NetPicoRNA 1.0 program showing the cleavage position (Pos), cleavage score (Clv) and surface 

score (Surf). The arrow indicates the exact cleavage loci. (B) Alignment of the sequences around G503 of 

NFAT5 from different species. (C) HeLa cells were transfected with a plasmid expressing myc-NFAT5, myc-

NFAT5
G503A

 or myc-NFAT5
G650A

 and then infected with CVB3 at 10 MOI for 6 h. Then the cell lysates were 

subjected to western blot analysis using an anti-myc antibody. Arrows indicate the 3C cleavage bands. (D) 

HeLa cells were co-transfected with pIRES-2A and a plasmid expressing WT or mutant NFAT5 as described 

above in (B). At 48 h pt, the cell lysates were subjected to western blot analysis using an anti-myc antibody. 
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3.4.4 NFAT5 inhibits CVB3 replication 

Having confirmed the cleavage of NFAT5 by CVB3 protease, our next focus was to study the 

effect of NFAT5 and NFAT5 cleavage on CVB3 replication. Firstly, we knocked down NFAT5 

expression using specific siRNAs in HeLa cells and then infected the cells with CVB3. At 4 and 

6 h pi, we detected VP1 to evaluate the viral replication in the cells. The immunoblotting results 

showed a 15-fold increase of VP1 in NFAT5-knockdown cells compared to control cells treated 

with scrambled siRNAs at 4 h pi. At 6 h pi, there was a 20% but still statistically significant 

increase of VP1 level when NFAT5 was knocked down (Figure 3.4A). These results imply a 

potential anti-CVB3 activity of NFAT5. To further verify this speculation, we detected the VP1 

in CVB3-infected cells overexpressing WT NFAT5, and observed a >50% decrease of VP1 in 

NFAT5-overexpressed cells compared to vector-transfected control cells (Figure 3.4B, lane-2 & 

-3 vs. lane-5 & -6). More interestingly, in the cells overexpressing the non-cleavable 

NFAT5G503A, the VP1 was decreased even more by ~80% compared to vector-transfected control 

cells (Figure 3.4B, lane-2 & -3 vs. lane-8 & -9). This result can be explained by the speculation 

that FL NFAT5 plays a role in suppression of CVB3 replication and cleavage product p70-

NFAT5 may play a dominant negative effect on NFAT5’s activity. To verify this conjecture, we 

constructed a FLAG-tagged p70-NFAT5 plasmid and overexpressed p70-NFAT5 in HeLa cells 

infected with CVB3. As expected, a ~4-fold increase of VP1 was observed in p70-NFAT5-

overexpressed cells compared to vector only control (Figure 3.4C). In addition to VP1 level, we 

also detected the changes of CVB3 RNA and viral progeny release when FL NFAT5 or p70-

NFAT5 was overexpressed. The qPCR results using primers flanking the coding region of CVB3 

2A showed that NFAT5 decreased viral RNA level while p70-NFAT5 increased it (Figure 

3.4D), which correlated well with the levels of VP1 showing in Figure 3.4C. For viral particle 
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formation, plaque assay showed that FL NFAT5 significantly decreased the viral particle release 

in the extracellular medium, but p70-NFAT5 reversed this decrease almost to the vector control 

level (Figure 3.4E). All together, these results suggest that FL NFAT5 inhibits viral replication 

and the N-terminal cleavage product p70-NFAT5 is capable of reversing such inhibition.  
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3.4.5 The 2A cleavage product p70-NFAT5 shows dominant negative effect on NFAT5 

It has been reported that the N-terminal DNA-binding domain (aa 175 – 471) of NFAT5 

(NFAT5 DBD) has a dominant negative effect on NFAT5 activity 26. In this study, we first 

showed that the N-terminal cleavage product p70-NFAT5 emerges a positive effect on CVB3 

replication to counteract the FL NFAT5 activity. Therefore, we speculated that p70-NFAT5 

could be a dominant negative mutant of NFAT5. To verify this, we first determined the effect of 

p70-NFAT5 on the nuclear translocation of endogenous NFAT5, a key step of NFAT5 activation 

349. As shown in Figure 3.5A, in cells transfected with pEGFP-myc-NFAT5, we observed a 

translocation of myc-NFAT5 from the cytoplasm to the nucleus, however when p70-NFAT5 was 

overexpressed via pcDNA3.1(-)-p70-NFAT5 transfection, such redistribution of myc-NFAT5 

was significantly decreased. To further confirm the change of NFAT5 activity upon p70-NFAT5 

overexpression, we cotransfected pGL-TonE-luciferase or pRL and plasmids expressing FL 

NFAT5, p70-NFAT5 or NFAT5 DBD into HeLa cells and then performed luciferase assay. We 

found that FL NFAT5 enhanced luciferase expression more than 100% while p70-NFAT5 

reduced it by ~25% and such dominant negative effect of p70-NFAT5 was quite similar to that of 

Figure 3.4. NFAT5 inhibits CVB3 replication while the N-terminal cleavage product p70-NFAT5 

promotes CVB3 replication. (A) HeLa cells were transfected with NFAT5 siRNAs or scrambled control 

siRNAs and then infected with CVB3. At 4 and 6 h pi, the cell lysates were subjected to western blot 

analysis of VP1. Quantitation of VP1 was conducted by densitometry scan using the NIH ImageJ program 

and normalized against β-actin control (right panel). (B) HeLa cells were transfected with plasmids 

expressing WT myc-NFAT5 or myc-NFAT5
G503A

, infected with CVB3 and then harvested for VP1 

detection and quantification as described above (right panel). (C) HeLa cells were transfected with 

plasmids expressing p70-NFAT5 tagged with FLAG and then infected with CVB3 for VP1 detection and 

quantification (right panel) as described above. (D, E) HeLa cells were transfected with plasmids 

expressing FL-NFAT5 or p70-NFAT5 and then infected with CVB3. At 6 h pi, the cellular RNAs were 

extracted for qPCR measurement of CVB3 genomic RNA level (D) and the medium was collected for 

plaque assay to measure viral progeny release (E). 
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NFAT5 DBD (Figure 3.5B). To further confirm the NFAT5 activity on its downstream genes 

upon p70-NFAT5 overexpression with or without CVB3 infection, we detected the mRNA levels 

of taurine transporter (TauT) 280 and sodium/myo-inositol transporter (SMIT), two genes directly 

regulated by NFAT5 281, 282. In sham-infected cells, we observed ~60% increase of TauT mRNA 

when FL NFAT5 overexpressed and a ~40% decrease when p70-NFAT5 overexpressed (Figure 

3.5C). As for SMIT mRNA, we observed a ~40% increase and a ~20% decrease when FL 

NFAT5 and p70-NFAT5 were overexpressed, respectively (Figure 3.5D). In CVB3-infected 

cells, we also observed the same trend of the altered mRNA expression but the rate of the 

differential expression is much smaller than those in sham-infected cells (Figure 3.5C, D), 

probably due to the generation of p70-NFAT5 by 2A cleavage during infection.  These results 

suggest the dominant negative effect of p70-NFAT5 on NFAT5 in both sham-infected and 

CVB3-infected cells. 
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Figure 3.5. p70-NFAT5 acts as a dominant negative fragment of NFAT5. (A) HeLa cells were co-transfected 

with pEGFP-myc-NFAT5 and pcDNA3.1(-)-p70-NFAT5 or pcDNA3.1(-) empty vector. Then the cells were 

infected with CVB3. At 4 and 6 h pi, the cells were fixed and immunostained using a specific antibody against 

NFAT5 and observed by confocal microscopy. (B) HeLa cells were co-transfected the luciferase reporter 

constructs pGL-TonE-luciferase or pRL with the plasmids expressing FL NFAT5, p70-NFAT5, NFAT5 DBD or 

pEGFP empty vector.  At 48 h pt, the cell lysates were subjected to dual luciferase assay. The relative activity 

(FLu/RLu) was determined after normalized against the vector control.  (C, D) HeLa cells were transfected with 

plasmids expressing FL NFAT5 or p70-NFAT5 and then infected with CVB3. At 6 h pi, the cellular RNAs were 

extracted for qPCR measurement of mRNA level of TauT (C) and SMIT (D). Vector-transfected cells were used 

as a control. 
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3.4.6 NFAT5 inhibits CVB3 replication via inducing expression of iNOS 

Having uncovered the anti-CVB3 activity of NFAT5, we next aimed to reveal the underlying 

mechanism. Considering that NFAT5 is a transcriptional factor, we speculated that the anti-

CVB3 activity might be attributed to the downstream genes regulated by NFAT5. Among these 

downstream genes of NFAT5, molecular chaperones, such as Hsp70, and NFκB are reported to 

be related to CVB3 infection 350, 351, but our results showed no significant changes (p>0.05) in 

Hsp70-2 expression and NFκB activity (indicated by iκB expression) upon expression of FL 

NFAT5 or p70-NFAT5 in either sham-infected or CVB3-infected cells (Figure 3.6A, B). 

Nevertheless, the qPCR detection of mRNA level of iNOS showed a ~40% increase upon FL 

NFAT5 overexpression and a ~50% decrease when p70-NFAT5 overexpressed in both sham- 

and CVB3-infected cells (Figure 3.6C). It has been reported that nitric oxide generated by iNOS 

exerts anti-CVB3 activity probably due to inhibition of viral proteases 307, 352. Therefore, we 

speculated that NFAT5 inhibits CVB3 replication via inducing the expression of iNOS. To verify 

this speculation, we treated the NFAT5-overexpressing cells with 4 mM 1400W, a specific 

inhibitor of iNOS 353, and found that 1400W could counteract the effect of NFAT5 

overexpression and restore the VP1 to a level even more than the control (Figure 3.6D, lane-9 

vs. -7). These data indicate that iNOS induction is essential for the anti-CVB3 effect of NFAT5. 

 

 

 

 

 

 



93 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. iNOS is essential for the anti-CVB3 effect of NFAT5. HeLa cells were transfected 

with plasmids expressing FL NFAT5 or p70-NFAT5 and then infected with CVB3. At 6 h pi, the 

cellular RNAs were extracted for qPCR measurement of mRNA level of Hsp70-2 (A), iκB (B) and 

iNOS (C).  (D) HeLa cells transfected with pEGFP empty vector (V) or pEGFP-myc-NFAT5 were 

treated with 4 mmol/L 1400W or DMSO control and then infected with CVB3 for VP1 detection 

and quantification (lower panel) as described in Fig. 4A. 
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3.4.7 Hypertonic treatment inhibits viral replication and promotes cell survival in 

CVB3 infection 

The above experiments showed that high level of NFAT5 is capable of inhibiting CVB3 

replication. As a hypertonic responsive protein, NFAT5 can be induced by hypertonic 

stimulation, such as high concentration of NaCl, which may exert anti-CVB3 effect. We firstly 

tested the effect of hypertonic NaCl solution on CVB3 replication. At 24 h before infection, we 

replaced the cell medium with DMEM containing 100 mM excess NaCl, a concentration 

reported to be high enough to induce NFAT5 expression but not cytotoxic 177, and then infected 

the HeLa cells with CVB3. Such treatment resulted in an increase of NFAT5 expression (Figure 

3.7A, lane-1 vs. -4). At 4 and 6 h pi, a dramatic decrease of VP1 was observed in cells treated by 

HSS compared to the mock-treated control (Figure 3.7A, lanes 2-3 vs. lane 5-6), suggesting that 

CVB3 replication was impaired by HSS treatment. To clarify whether such inhibition required 

NFAT5 or not, we added 25 μM rottlerin, an NFAT5 inhibitor267, to the hypertonic medium, and 

observed that rottlerin decreased NFAT5 expression level and increased the VP1 level in HSS 

treatment (Figure 3.7A, lanes 5-6 vs. lanes 8-9), indicating an essential role of NFAT5 in HSS-

mediated inhibition of CVB3. The anti-CVB3 effect of HSS was further verified by cell viability 

assay. By using either cell morphological images (Figure 3.7B) or MTS cell viability assay 

(Figure 3.7C), we observed a significant increase in cell viability by ~30% at 6 h pi compared to 

the mock-treatment control. Considering Na+ and Cl- ions can pass the cell membrane via 

facilitated diffusion 354 which may exert some unexpected effects on some signaling pathways 

other than NFAT5, we employed mannitol, a non-permeable hyperosmotic agent355, to repeat the 

experiments. By using different concentrations (0, 100 and 200 mM) of mannitol, we found that 

NFAT5 was increased and VP1 was decreased in a mannitol concentration-dependent manner 
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and that the alterations of NFAT5 and VP1 expression were more significant than that in HSS 

treatment (Figure 3.8A). Furthermore, similar to HSS, hypertonic treatment with mannitol 

solutions of 100 or 200 mM also elevated the cell viability in CVB3 infection (Figure 3.8B and 

C). Altogether, our results suggest that hypertonic conditions inhibit CVB3 replication via 

NFAT5 induction. 
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Figure 3.7. Hypertonic NaCl solution inhibits CVB3 replication and promote cell survival during 

CVB3 infection. HeLa cells were pre-treated with excess 100 mM NaCl or excess 100 mM NaCl + 25 

μmol/L rottlerin for 4 h and then infected with CVB3. At 4 and 6 h pi, the cells were subjected to VP1 

detection (A), Phase contrast morphological imaging (B) and MTS cell viability assay (C). Cell viability 

was determined by converting to the percentage of cell survival of the sham-treatment control, which was 

set as 100%.  
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Figure 3.8. Hypertonic mannitol solutions inhibit CVB3 replication and promote cell survival during 

CVB3 infection. HeLa cells were treated with 100 mM or 200 mM mannitol solution after CVB3 infection 

or sham-infection.  At 4 and 6 h pi, cells were subjected to VP1 detection by western blot analysis using the 

indicated antibodies (A), phase contrast microscopy imaging (B) and MTS cell viability assay (C).  The cell 

viability was determined by converting to the percentage of cell survival of the sham-infection control, 

which was set as 100%.   
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3.4.8 Hypertonic saline lowers cardiac viral load and relieves tissue damage in mice 

To test whether the anti-CVB3 effect of HSS treatment occurs in vivo, 30 A/J mice were 

divided into three groups and IP injected with 0.9% (normal saline solution, NSS), 5% and 7.5% 

HSS (10 mL/kg daily) for 6 consecutive days, respectively, and then the mice were challenged 

with CVB3 at 105 pfu/each. At 6 d pi, 3 of the 10 NSS-treated mice died and all HSS-treated 

mice survived. The live mice with different treatments were euthanized and the heart tissue was 

collected for viral detection and histological analysis. By immunoblotting and viral plaque assay, 

we found that HSS-treated mice showed higher NFAT5 level but lower levels of both VP1 

expression and viral progeny release compared to the NSS-treated control (Figure 3.9A, B), 

indicating that the viral load was reduced by HSS treatment. The H&E staining of the 

myocardium tissue showed less tissue damage upon 5% HSS treatment compared to that in NSS 

treatment (Figure 3.9C). Note that since the 5% and 7.5% HSS showed similar effect on 

alleviating tissue injury, here we only show the H&E staining for the 5% HSS treatment. These 

data indicate that 5% HSS is capable of relieving tissue damage during CVB3 infection by 

induction of NFAT5. 
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Figure 3.9. Hypertonic saline solution inhibits CVB3 replication and relieves mice heart tissue damage 

caused by viral infection. Four-week-old A/J mice were infected with CVB3 of 10
5
 pfu. NaCl solution at 0.9%, 

5% and 7.5% concentration was IP injected into the mice daily during the infection. At 6 d pi, the mice were 

euthanized and the heart tissues were harvested. Part of the heart tissue was homogenized for western blot analysis 

of VP1 (A) and plaque assay to determine viral particle formation (B). (C) The remaining heart tissues from these 

mice were fixed, sectioned and H&E stained to evaluate the tissue damage. Sham-infected /mock-treated mice 

were the additional control.  



100 

 

3.5 Discussion 

Viral protease-mediated cleavage of host proteins plays critical roles in viral replication and 

virus-induced tissue damage in picornavirus infections159, 356-359. Therefore, identifying these host 

proteins as potential drug targets is a rational strategy for the development of anti-picornavirus 

therapy. NFAT5 is a transcriptional factor activated in hypertonic stress conditions. Thus it can 

be modulated by changing the osmotic pressure of the extracellular fluid. However the 

hypertonic stress barely occurs in organs other than the kidney, thus few studies have linked 

NFAT5 to non-kidney diseases regardless of its ubiquitous expression in the body 298, 299, Despite 

the lack of direct evidence, several previous reports provided some clues on NFAT5’s role 

associated with heart function. For instance, degradation of NFAT5 protein is a major cause of 

doxorubicin-induced cytotoxicity in cardiac myocytes300; NFAT5 is highly expressed in 

developing heart tissues299 and is critical for heart development in children and young adults360. 

However, the role of NFAT5 in infectious and inflammatory heart diseases has never been 

delineated. Thus, in this study, we used CVB3 infection of cardiomyocyte cell line and A/J mice, 

a viral myocarditis model, to elucidate the role of NFAT5 in CVB3 replication and CVB3-

induced myocarditis. 

Firstly, we detected whether CVB3 infection would change NFAT5 level. It has been reported 

that NFAT5 expression is stimulated by p38 MAPK activation in hypertonic response 361. 

Considering that CVB3 infection activates p38 MAPK via phosphorylation150, we were 

expecting to see NFAT5 upregulation during CVB3 infection. Indeed, we observed significant 

increase of NFAT5 protein at early time points (~2 h pi) in HeLa cells infected with CVB3, but 

to our surprise, it decreased and disappeared rapidly after 4 h infection (Fig. 3.10). However, no 

NFAT5 mRNA decrease was observed during CVB3 infection, indicating that the reduction of 
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NFAT5 protein was not due to transcriptional arrest or mRNA degradation. Therefore, we 

switched our focus on the degradation and cleavage of NFAT5 protein during CVB3 infection. 

By MG132 and z-VAD-fmk test, we excluded the possibility of proteasome-mediated 

degradation and caspase-mediated cleavage of NFAT5, which are common causes of protein 

decrease during CVB3 infection344, 362. Then the most possible reason for NFAT5 reduction is 

the cleavage mediated by viral protease 2A and/or 3C. Using an antibody against the N-terminal 

of NFAT5, we observed a ~70 kDa cleavage band (p70-NFAT5) after CVB3 infection, which 

was further confirmed by cleavage of exogenous NFAT5 tagged with a 6*myc peptide at its N-

terminus. By exogenous expression of 2A or 3C individually, we confirmed that both 2A and 3C 

were capable of cleaving NFAT5, but only 2A cleavage generated the 70 kDa N-terminal 

fragment p70-NFAT5, while 3C protease further chopped the C-terminal fragment downstream 

of 2A cleavage site.  By bioinformatic prediction and mutagenic verification, we identified G503 

as the only cleavage site of 2A on NFAT5 and such cleavage generated the p70-NFAT5. Based 

on this data, we further focused our studies only on p70-NFAT5 since most of the functional 

domains of NFAT5, including nucleus-cytoplasm localization sequence and DNA binding 

domain 4, are clustered in the N-terminal region, and especially, the N-terminal fragment of 

NFAT5 can act as a dominant negative mutant of NFAT5 26.  

We next detected the effect of NFAT5 and its cleavage product p70-NFAT5 on CVB3 

replication. Our results showed that FL NFAT5 inhibited the synthesis of viral RNA and protein 

while p70-NFAT5 counteracted such role of NFAT5.  These opposite effects of FL NFAT5 and 

p70-NFAT5 imply the dominant negative activity of p70-NFAT5 on FL NFAT5. This property 

was substantiated by i) TonE-reporter assay showing the FL NFAT5-enhanced luciferase 

expression and ii) qPCR detection showing the increased mRNA levels of SMIT and TAUT, two 
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effector genes of NFAT5. These data suggest that p70-NFAT5 has a dominant negative effect on 

FL NFAT5 in suppression of CVB3 replication. 

The next issue we addressed was the mechansim underlying the anti-CVB3 effect of NFAT5. 

The direct downstream genes regulated by NFAT5 include organic osmolyte-related genes 270, 

279-282, molecular chaperones 177, and iNOS 305. The expression of transcription factor NFκB is 

not regulated by NFAT5, but NFAT5 modulates its transcriptional activity via binding to it 302, 

thus NFκB can also be considered as a downstream effector of NFAT5. Among these 

downstream proteins, the organic osmolyte-related genes, such as TAUT and SMIT, are mainly 

involved in osmotic regulation, and no antiviral effects or cardiac functions of these genes have 

been reported. Our previous study has shown that the chaperone protein Hsp70 promotes CVB3 

replication via stabilizing the CVB3 genomic RNA 350, but in this current study, we did not 

observe significant change of Hsp70-2 expression, an Hsp70 family gene regulated by 

NFAT5177, upon NFAT5 overexpression. Similar to Hsp70-2 expression, no significant change 

of NFκB activity was observed when NFAT5 was overexpressed although NFκB was reported to 

be activated during CVB3 infection 304. However, iNOS expression was upregulated by the 

overexpression of FL NFAT5 and downregulated by the overexpression of p70-NFAT5 in either 

sham- or CVB3-infected cells. These data suggested iNOS as a potential candidate for our 

mechanism study. The expression of iNOS is induced by TLR activation, which requires NFAT5 

activity 305. CVB3 infection activates TLR expression 363, but high level of iNOS catalyzes 

production of nitric oxide, which impairs CVB3 replication via inhibition of viral proteases 307, 

352. Thus we hypothesized that CVB3 might cleave and inactivate NFAT5 to block the induction 

of iNOS. This hypothesis was supported by our experiment showing that treatment of cells with 
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iNOS inhibitor 1400W restored CVB3 replication blocked by overexpression of NFAT5 (Fig. 

3.6D). 

The anti-CVB3 effect of NFAT5 enables it as a potential drug target against CVB3 infection. 

As a hypertonicity-responsive protein, NFAT5 can be quickly induced by hypertonic solutions. 

HSS composed of high concentration of NaCl is the most commonly used inducer of NFAT5 due 

to its easy accessibility and safeness. In our experiments, HSS treatment significantly reduced 

viral replication and enhanced cell viability in CVB3-infected cells. In our in vivo test, A/J mice 

treated with HSS showed a lower viral load in heart tissue compared to the NSS-treated controls. 

Furthermore, the histological evaluation showed a lower level of heart tissue damage and 

immune infiltration in the HSS-treated mice, indicating that HSS treatment relieved the severity 

of CVB3-induced myocarditis. Though HSS is widely used to induce NFAT5, NaCl is an ionic 

osmolyte capable of entering cells and increasing intracellular ion concentration 354. Excess 

intracellular ions lead to increased reactive oxygen species formation, cytoskeletal 

rearrangements, increased mitochondrial depolarization, decreased DNA replication and DNA 

repair 273, 274, which may affect CVB3 infection independent of NFAT5 pathway. To exclude the 

potential side effect of HSS, we also tested mannitol, a non-permeable hyperosmotic agent, in 

cell culture to induce NFAT5 and determined its effect on CVB3 replication. Interestingly, 

mannitol showed a similar anti-CVB3 effect as HSS, which decreased viral replication and 

enhanced cell survival during CVB3 infection. 

In summary, our study uncovers a novel function of transcription factor NFAT5 in cardiac 

protection against CVB3 infection. CVB3 replication depends on different viral proteins 

generated by polyprotein cleavage mediated by viral protease 2A and 3C 364, 365. However, the 

activity of viral proteases is probably inhibited by NFAT5 via promoting expression of its 
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downstream target protein iNOS, which enhances NO generation 307, 352, 366. Since NFAT5 is 

cleaved by viral protease during infection, upregulation of NFAT5 expression is a rationale 

strategy to counteract CVB3 infection. Although HSS has already been used in treatment of non-

infectious heart failure 367, 368, our successful testing of two solutions, HSS and mannitol, in anti-

CVB3 infection is the first exploration in using the safe, low cost and easy accessible compounds 

to treat infectious heart disease, which has laid a solid foundation for further development.    
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Figure 3.10.  NFAT5 is upregulated at early stage of CVB3 infection. HeLa cells were infected 

with CVB3 at 10 MOI or sham-infected with PBS. At the indicated time points pi, cell lysates were 

used for Western blot analysis of NFAT5 protein using an antibody against the N-terminal epitope of 

NFAT5. β-actin was used as a loading control. 
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Chapter 4 Concluding Remarks 

4.1 Summary and Conclusion 

In this dissertation, I focused my studies on the mutual regulation of CVB3 and two typical 

SRPs, the heat-responsive protein Hsp70 and hypertonicity-responsive protein NFAT5. I have 

uncovered the alterations of these two SRPs in cellular level and activity during CVB3 infection 

and their feedback roles on CVB3 replication as well as the underlying mechanisms at the 

molecular level. 

In Hsp70 project, I demonstrated that Hsp70-1, but not Hsp70-2, was upregulated during 

CVB3 infection. I further revealed a novel mechanism by which CVB3 infection activates 

CaMKIIγ and selectively phosphorylates HSF1 at Ser230, leading to enhanced Hsp70-1 

transcription. Meanwhile, phosphorylation of Ser230 induces translocation of HSF1 from the 

cytosol to nucleus, thus blocking the ERK1/2-mediated phosphorylation of HSF1 at Ser307, a 

negative regulatory process on Hsp70-1 transcription, further contributing to upregulation of 

Hsp70-1. Finally, I determined that Hsp70-1 upregulation, in turn, facilitates CVB3 replication 

by stabilizing viral genomic RNA via cellular factor AUF1 and the ARE of CVB3 genome.  

These data indicate that Hsp70-related cellular chaperone system may be hijacked by CVB3 to 

favor its replication. 

In NFAT5 project, I found that the reduction of NFAT5 expression during CVB3 infection is 

primarily due to post-translational cleavage at glycine (G) 503 of the protein by CVB3 protease. 

Such cleavage impaired NFAT5 activity due to the dominant negative effect of the ~70 kDa N-

terminal cleavage product (p70-NFAT5). Ectopic expression of the FL NFAT5, especially a non-

cleavable mutant NFAT5, resulted in strong inhibition of CVB3 replication, suggesting the 

antiviral effect of NFAT5. These data were further substantiated by siRNA-mediated gene 
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silencing of NFAT5, showing an increase of CVB3 replication. Mechanistic analyses revealed 

that iNOS, a protein downstream of NFAT5, was activated by FL NFAT5 but inhibited by p70-

NFAT5 and that inhibition of iNOS by a specific inhibitor 1400W blocked the antiviral effect of 

NFAT5. In treatment studies using cell cultures, I found that HSS or mannitol, two potential 

inducers of NFAT5, significantly inhibited CVB3 replication. Finally, using a CVB3 myocarditis 

mouse model, I demonstrated that treating the infected mice with HSS significantly decreased 

viral load and alleviated heart tissue damage. In all, these data uncovered a novel cardiac 

protective role of NFAT5 against CVB3 infection, revealed the underlying mechanism by which 

NFAT5 protects the heart from CVB3 damage by activating iNOS and further verified the 

therapeutic potential of HSS and mannitol in the treatment of viral myocarditis. 

In conclusion, CVB3 selectively utilizes host SRP system to benefit its own replication via 

either enhancing the expression of Hsp70-1 or cleaving and inhibiting NFAT5 activity, and thus 

these two SRPs can serve as potential targets for drug development against CVB3 infection and 

CVB3-induced myocarditis. 

 

4.2 Significance 

This study on Hsp70 has uncovered, for the first time, the differential regulation of Hsp70-1 

and Hsp70-2, as well as the phosphorylation patterns of HSF-1 in CVB3 infection. Meanwhile, 

this study also determined the beneficial effect of Hsp70 on CVB3 replication via demonstrating 

a novel model in maintaining viral RNA stability through counteracting the Hsp70-AUF1-

mediated RNA decay pathway. These results significantly contribute to the understanding of 

host-virus interactions during CVB3 infection and may probably inspire research on other 

picornaviruses. In addition, the finding of the interplay between CVB3 and Hsp70 may also 
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benefit therapeutic development. Since Hsp70 has a positive feedback effect on viral replication, 

this clearly indicates that Hsp70 is an ideal target for anti-CVB3 drug development. More 

importantly, RNA viruses, like CVB3, evolve rapidly and thus many drugs can be useless by 

newly emerging resistant variants. However, targeting the host protein (e.g., Hsp70) to inhibit 

CVB3 multiplication could be an alternative novel approach against RNA viruses.  In addition, 

due to the pro-survival property of HSPs, many cancer cells have a high level of HSP expression. 

Thus the HSP chaperone inhibitors may not only be used for antiviral therapy but also for 

anticancer treatment.  From this point of view, study of the mechanisms of Hsp70-mediated 

promotion of CVB3 replication will provide novel strategies for drug design. 

NAFT5 is a cellular protective transcription factor responsible for chaperone gene 

transcription in response to hypertonic stress. Its role in kidney pathophysiology has been 

extensively studied. However, due to the surrounding non-hypertonic environment of the heart, 

research on NFAT5’s role in myocardium has long been missing. Our study will fill a gap in this 

area of research. In addition, acute viral myocarditis is a big threat to public health due to rapid 

progress, leading to high morbidity and mortality, especially in children and young adults. A 

major barrier for the treatment of viral myocarditis is the lack of urgent measurements to control 

the disease development, particularly in rural area or developing countries. Our studies may 

provide a solution for this dilemma. The hypertonic saline solution is a low cost, non-toxic and 

easy use drug, which can be available in every clinic. Then patients will receive treatment 

immediately after diagnosis. 

In all, the findings in this dissertation deepen the understanding of the modulation and roles of 

SRPs system in virus-host interactions, and also provide novel rationale for drug design to treat 

CVB3 infection and CVB3-induced myocarditis. 
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4.3 Limitations and Future Directions 

Hsp70-1 and Hsp70-2 share more than 99% identity in their aa sequences and 84% homology 

in their gene sequences. The differences in nucleic acid sequences are mainly located in non-

coding regions369. Thus, these two Hsp70s are usually considered as redundancy and named as 

Hsp70 indiscriminately. However, now increasing studies have demonstrated that Hsp70-1 and 

Hsp70-2 proteins play distinct roles in different situations, such as meiosis 370, carcinogenesis 371, 

372,  and obesity 373, indicating that the two proteins have more differences in their protein 

functions other than their induction patterns. However, the study of this dissertation only 

demonstrated the distinction of these two Hsp70s in regulation, but did not distinguish the 

functions and the two proteins. Actually, these two proteins are differently involved in apoptosis 

374 and cell cycles 375, two cellular activities closely related to CVB3 replication, and more 

interestingly, I have shown in  this dissertation that NFAT5, the transcriptional factor for Hsp70-

2 but not Hsp70-1,  exerted an anti-CVB3 activity opposite to the pro-virus effect of Hsp70-1. 

Considering these facts, it is probably worthy to study the individual function of each Hsp70 

separately and uncover the underlying mechanisms of the functional difference of these two 

Hsp70s in CVB3 infection, if any. It may be surprising for two proteins with only two-aa 

difference to exert distinct functions, but any findings regarding this issue may significantly 

contribute to the understanding of the relationship between aa sequence and protein function. 

In this dissertation, I attribute the positive feedback effect of Hsp70 on CVB3 to Hsp70-

mediated stabilization of CVB3 genomic RNA only. However, as a multifunctional chaperone 

protein, Hsp70  probably influences CVB3 infection via other pathways. In a recent publication, 

to which I also contributed as a co-first author, we demonstrated that Hsp70 promotes CVB3 

multiplication via enhancing viral RNA translation 376. Briefly, Hsp70 benefits CVB3 translation 
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via two arms: 1) upregulation of IRES trans-acting factor lupus autoantigen protein and 

activation of eIF4E binding protein 1, a cap-dependent translation suppressor, to release 

translational machinery for viral IRES-driven translation; 2) enhancement of translation 

elongation via activation of eukaryotic elongation factor 2 (eEF2). This activation is regulated by 

Hsp70-mediated mTORC1-p70S6K-eEF2K cascade which requires cell division cycle protein 2 

homolog (Cdc2, also called cyclin-dependent kinase 1). This study places Hsp70 in the center of 

the cellular network of molecular chaperones enhancing viral replication, demonstrating a great 

significance of Hsp70 in CVB3 replication. Since CVB3 replication and Hsp70 function are 

affected by numerous factors, it is reasonable to speculate that these factors share some overlaps, 

which may bridge Hsp70 and CVB3 replication. For example,  Hsp70 may interact with viral 

polymerase 3D or other cellular RNA chaperone proteins (PCBP, PABP and hnRNP C) 

participating in viral RNA replication 377; Hsp70 may also favor viral protein folding during 

rapid viral multiplication. Therefore, more pathways need to be characterized to better 

understand the roles of Hsp70 in CVB3 replication and established the interacting network of 

virus and molecular chaperones. 

In the NFAT5 study of this dissertation, I mainly focused the anti-CVB3 effects of NFAT5 on 

CVB3 replication and CVB3-induced cell death, and further attributed the relief of myocarditis 

upon hypertonic treatment in mice to the induction of NFAT5 expression. However, in viral 

myocarditis, in addition to the direct cardiomyocyte damage caused by viral replication in the 

heart, the exaggerated immune response is also a critical cause of myocardium inflammation 52, 

378-380. As mentioned in 1.4.2, NFAT5 is an important immune modulator mainly reported in 

hypertonicity-related immune responses. NFAT5 is activated in T lymphocytes and bone- 

marrow-derived macrophages upon hypertonicity 381. Deficiency of NFAT5 results in lymphoid 
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hypocellularity and impaired antigen-specific antibody responses, as well as reduction of 

lymphocyte proliferation under hypertonic conditions 284, 382. In addition to immune cells, 

NFAT5 also regulates the expression of several proinflammatory cytokines, including TNFα and 

TL-β, in lymphocytes and macrophages exposed to hyperosmotic stress 283. Considering that 

activation of macrophages and T lymphocytes as well as secretion of proinflammatory cytokines 

are key steps for immune infiltration in viral myocarditis 52, 53, 55, NFAT5 may play an important 

role in viral myovarditis via activation of immune responses. Thus, investigation focusing on 

NFAT5-induced immune response in CVB3 pathogenesis is worth conducting in-depth.  
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