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Abstract

The work in this thesis adapts ideas from the field of compressive sensing (CS) that lead to new
insights into acquiring and processing seismic data, where we can fundamentally rethink how we de-
sign seismic acquisition surveys and process acquired data to minimize acquisition- and processing-
related costs. Current efforts towards dense source/receiver sampling and full azimuthal coverage
to produce high-resolution images of the subsurface have led to the deployment of multiple sources
across survey areas. A step ahead from multisource acquisition is simultaneous-source acquisition,
where multiple sources fire shots at near-simultaneous/random times resulting in overlapping shot
records, in comparison to no overlaps during conventional sequential-source acquisition. Adoption
of simultaneous-source techniques has helped to improve survey efficiency and data density. The
engine that drives simultaneous-source technology is simultaneous-source separation — a methodol-
ogy that aims to recover conventional sequential-source data from simultaneous-source data. This
is essential because many seismic processing techniques rely on dense and periodic (or regular)
source/receiver sampling. We address the challenge of source separation through a combination
of tailored simultaneous-source acquisition design and sparsity-promoting recovery via convex op-
timization using `1 objectives. We use CS metrics to investigate the relationship between marine
simultaneous-source acquisition design and data reconstruction fidelity, and consequently assert the
importance of randomness in the acquisition system in combination with an appropriate choice for
a sparsifying transform (i.e., curvelet transform) in the reconstruction algorithm. We also address
the challenge of minimizing the cost of expensive, dense, periodically-sampled and replicated time-
lapse surveying and data processing by adapting ideas from distributed compressive sensing. We
show that compressive randomized time-lapse surveys need not be replicated to attain acceptable
levels of data repeatability, as long as we know the shot positions (post acquisition) to a sufficient
degree of accuracy. We conclude by comparing sparsity-promoting and rank-minimization recovery
techniques for marine simultaneous-source separation, and demonstrate that recoveries are compa-
rable; however, the latter approach readily scales to large-scale seismic data and is computationally
faster.
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Lay Summary

Adapting ideas from the field of compressive sensing, we design economic compressive (or subsam-
pled) randomized simultaneous-source acquisitions and develop processing techniques to address
the challenge of source separation. We recover dense periodic (or regular) conventional sequential-
source data from subsampled randomized simultaneous-source data via structure promotion, i.e.,
curvelet-domain sparsity or low rank. Adapting ideas from distributed compressive sensing, we
show that compressive randomized time-lapse surveys need not be replicated to attain acceptable
levels of data repeatability, and since irregular spatial sampling is inevitable in the real world, it
would be better to focus on knowing what the shot positions were (post acquisition) to a suffi-
cient degree of accuracy, than aiming to replicate them. In a nutshell, compressive randomized
simultaneous-source acquisitions and subsequent processing techniques provide flexibility in acqui-
sition geometries for better survey-area coverage, and speedup acquisition — effectively minimizing
acquisition- and processing-related costs.
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Chapter 1

Introduction

1.1 Seismic exploration

Geophysical surveys determine characteristics of the earth’s subsurface by measuring the physical
differences between rock types or physical discontinuities without seeing them directly by digging,
drilling or tunnelling. Geophysical surveys are classified as seismic and non-seismic surveys that
include magnetic and electromagnetic surveys, gravitational surveys, seismic surveys, etc. Seismic
is perhaps the most commonly used geophysical technique to locate potential oil and natural gas
deposits in the geologic structures within the earth. Seismic exploration techniques involve the
collection of massive data volumes, where regularly sampled wavefields exhibit up to a 5-dimensional
structure (1D for the time dimension × 2D for the receiver positions × 2D for the source positions),
and their exploitation during processing.

1.1.1 Static vs. dynamic geometries

Seismic surveys can be conducted on onshore (land) and offshore (marine). Land and marine
surveys operate on the same basic principles but differ operationally. Both land and marine surveys
include a source and a receiver but may differ in the geometry of the receiver system, the density
of measurements made over a given area, and the type of source and receiver (or sensor) used
(Caldwell and Walker, 2011).

Land

Land seismic data acquisition uses primarily two types of seismic sources — vibroseis vehicles
(vibrators mounted on trucks) or a low-impact explosive charge — that generate acoustic waves,
which propagate deep into the earth. Each time an acoustic wave encounters a change in the rock
formation, part of the wave is reflected back to the surface where an array of sensors records the
returning sound waves. The receivers are typically geophones, which are like small microphones
pushed into the soil to measure the ground motion (Caldwell and Walker, 2011). Since the receivers
are fixed on the earth’s surface, we refer to this acquisition geometry as the “static” geometry.
Figure 1.1 illustrates a land seismic survey.
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Figure 1.1: Schematic of land seismic survey. Image courtesy ION (www.iongeo.com).

Marine

In water, the energy source is typically an array of air guns, i.e., guns with different sized air-
chambers filled with compressed air. The source is towed behind a seismic survey vessel and
releases bursts of high pressure energy (acoustic pulses) into the water. The returning sound
waves are detected and recorded by sensors that are either hydrophones (measure wave pressure)
spaced out along a series of cables, i.e., streamers towed behind a survey vessel, or arrays placed
on the seafloor, i.e., ocean-bottom seismic sensors comprising of hydrophones and/or geophones.
Figure 1.2 illustrates the different receiver geometries used in marine seismic surveying (Caldwell
and Walker, 2011). Similar to land acquisition, we refer to the ocean-bottom surveys as “static”
marine surveys, while the towed-streamer surveys are referred to as “dynamic” marine surveys.
Ocean-bottom surveys can further be classified as ocean-bottom cable (OBC) surveys, wherein
data are recorded using cables laid on the seabed (acquisition geometry 2 in Figure 1.2), or ocean-
bottom node (OBN) surveys, wherein sensor nodes (which may or may not be connected by cables)
are placed on the seafloor (Figure 1.3).

Figure 1.4 provides a list of the different types of marine surveys (Caldwell and Walker, 2011).
2D surveys comprise of a single source vessel towing a single streamer along a single line, called a sail
line, over a survey area. In 3D surveying, groups of sail lines are acquired, i.e., 3D acquisition is the
acquisition of many 2D lines closely spaced over the area. Surveys that are acquired repeatedly over
the same area, particularly on established (or producing) fields to monitor changes in the reservoir
over time due to production, are known as 4D or time-lapse surveys. The duration between surveys
can be on the order of months or years. Figure 1.5 illustrates a 2D and 3D survey geometry.

Seismic data volumes are a collection of seismic traces. A seismic trace represents the response of
the elastic wavefield to velocity and density contrasts across interfaces of layers of rock or sediments
as energy travels from a source through the subsurface to a receiver or receiver array [Schlumberger
Oilfield Glossary]. The convention adopted by the Society of Exploration Geophysicists (SEG) for
display of (zero-phase) seismic data is as follows: If the signal arises from a reflection that indicates
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Figure 1.2: Schematic of different marine seismic surveys. “1” illustrates a towed-streamer
geometry, “2” an ocean-bottom geometry, “3” a buried seafloor array, and “4” a VSP
(vertical seismic profile) geometry, where the receivers are positioned in a well. [Source:
Caldwell and Walker]

Figure 1.3: Schematic of ocean-bottom node survey. Remotely operated vehicles (ROVs) are
used to deploy and recover sensor nodes. [Source: Caldwell and Walker]
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Figure 1.4: Summary of the majority of different types of marine seismic surveys. The letter
“D” represents dimension and the letter “C” represents component (Z, X, Y ). [Source:
Caldwell and Walker]

Figure 1.5: Illustration of difference between 2D and 3D survey geometry for same survey
area. The dashed lines suggest subsurface structure contour lines. [Source: Caldwell
and Walker]
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Figure 1.6: Four most common seismic trace display formats. [Source: SEG Wiki]

an increase in acoustic impedance (product of density and seismic velocity), the polarity is positive
and is displayed as a peak. If the signal arises from a reflection that indicates a decrease in acoustic
impedance, the polarity is negative and is displayed as a trough [Schlumberger Oilfield Glossary].
Figure 1.6 illustrates the four most common trace display formats [SEG wiki].

1.2 Simultaneous-source acquisition

Most of the commonly used processing algorithms, e.g., amplitude-versus-offset (AVO) analysis,
surface-related multiple elimination (SRME) (Verschuur et al., 1992), estimation of primaries by
sparse inversion (EPSI) (van Groenestijn and Verschuur, 2009; Lin and Herrmann, 2013), wave-
equation based inversion techniques such as reverse-time migration (RTM) and full-waveform in-
version (FWI) need dense and periodic (or regular) coverage of the survey area to produce high-
resolution images of the subsurface. The need for dense sampling and full azimuthal coverage
have led to the use of multiple source vessels, and simultaneous-source acquisition techniques. In
seismic-acquisition literature, the term “azimuth” is defined as the angle at the source location
between the sail line and the direction to a given receiver. The “simultaneous-source acquisition”
methodology is also referred to as “blended acquisition” (Beasley et al., 1998; de Kok and Gillespie,
2002; Beasley, 2008; Berkhout, 2008; Moldoveanu, 2010; Abma et al., 2013; Mosher et al., 2014).

Long restricted to land acquisition, simultaneous-source methodology has now been proven
in a marine environment (see references below). In principle, simultaneous-source methodology
involves firing multiple sources at near-simultaneous/random-dithered times, hence, resulting in
overlaps between shot records, as opposed to no overlaps during conventional (periodically-sampled)
acquisition. In land seismic acquisition, simultaneous sources have revolutionized the way surveys
are acquired, providing much greater sampling and consequently better imaging (Bagaini, 2010, and
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the references therein; Krohn and Neelamani, 2008; Neelamani et al., 2008). Marine simultaneous-
source acquisition was invented in the year 1998-99 by the researchers at WesternGeco, however,
its implementation had to overcome some fairly significant hurdles. The invention came just before
the big downturn in the seismic industry that lasted until 2004, resulting in little or no interest
for this new technology. Cost of additional vessels was another big hurdle to surmount. Advent
of wide-azimuth (WAZ) surveys, fortunately, made multivessel operations more common, and as
more companies saw its benefits, the simultaneous source concept began to gain momentum (Duey,
2012).

Since 2010-11, marine simultaneous-source acquisition has been an emerging technology stim-
ulating both geophysical research and commercial efforts. The benefits of this methodology are
substantial since seismic data is acquired in an economic and environmentally more sustainable
way, i.e., data is acquired in less time, as compared to conventional acquisition, by firing multiple
sources at near simultaneous/random times, or more data is acquired within the same time or a
combination of both. Seismic acquisition literature contains a whole slew of works that have ex-
plored the concept of simultaneous- or blended-source activation (Beasley et al., 1998; de Kok and
Gillespie, 2002; Beasley, 2008; Berkhout, 2008; Hampson et al., 2008; Moldoveanu, 2010; Berkhout,
2012; Abma et al., 2013; Mosher et al., 2014). However, there are challenges associated with
simultaneous-source acquisition. Since many subsurface attribute inversion schemes (e.g., AVO
analysis, SRME, EPSI, FWI, RTM, etc.) still rely on single-source prestack data volumes, one
of the main challenges of simultaneous-source acquisition is to recover conventional sequential (or
periodic) data from simultaneous data, i.e., estimate interference-free shot (and receiver) gathers,
and particularly recover subtle late reflections of low amplitudes that can be overlaid by interfer-
ing seismic responses from other shots. This is known as source separation, also referred to as
“deblending”.

Stefani et al. (2007), Moore et al. (2008) and Akerberg et al. (2008) have observed that as
long as the sources are fired at suitably randomly-dithered times, the resulting interferences (in
simultaneous data) will appear noise-like in specific gather domains such as common-offset and
common-receiver, turning the separation into a typical (random) noise removal procedure. Appli-
cation to land acquisition is reported in Bagaini and Ji (2010). Subsequent source-separation (or
deblending) techniques, which aim to remove noise-like source crosstalk, vary from vector-median
filters (Huo et al., 2009) to inversion-type algorithms (Moore, 2010; Abma et al., 2010; Mahdad
et al., 2011; Doulgeris et al., 2012) to a combination of both (Baardman and van Borselen, 2013).
The former are mostly “processing” techniques where the interfering energy (i.e., source crosstalk) is
removed and not mapped back to coherent energy, at least not in a single step alone, while the latter
are designed to take advantage of sparse representations of coherent seismic signals, which is ad-
vantageous because they exploit inherent structure in seismic data. Maraschini et al. (2012), Cheng
and Sacchi (2013) and Kumar et al. (2015b) use matrix rank-reduction scheme for source separa-
tion. Recent success of simultaneous-source field trials, its implementation and source-separation
techniques, have increased the industry’s confidence in this technology (Beasley et al., 2012; Abma
et al., 2012, 2013; Mosher et al., 2014), where it has been observed that simultaneous-source surveys
can be acquired faster and at lower costs.

Theoretical results from Compressive Sensing (CS, Donoho (2006); Candès et al. (2006c)) sug-
gest that there is a direct relationship between the acquisition design and the expected fidelity of the
achieved structure-promoting recovery, however, the aforementioned works did not investigate this
link between the specific properties of the acquisition system and the sparsity-based recovery, espe-
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cially in marine acquisition. Compressive sensing is a novel nonlinear sampling paradigm effective
for signals that have a sparse representation in some transform domain. It is a novel paradigm in
the sense that it provides theory for the link between the acquisition design, sparsity-promoting sig-
nal recovery and signal reconstruction quality. For land-based acquisition, the CS-related schemes
(suitable for forward-modelling in the computer) presented by Neelamani et al. (2008) and Neela-
mani et al. (2010) suggest the use of noise-like signals as sweeps, Lin and Herrmann (2009a) use
randomly phase-encoded vibroseis sweeps, and Herrmann et al. (2009) use impulsive sources that
require modulation of each source by a randomly determined scaling in amplitude.

Analysis of pragmatic marine acquisition schemes in terms of CS arguments remains challenging
because, while the success of CS hinges on an incoherent (or random) sampling technique, adapting
this approach to real-life problems in exploration seismology is subject to physical constraints on the
placement, type, and number of (simultaneous) sources, and number of receivers. Therefore, one of
the objectives of this thesis is to propose a pragmatic sampling technique for marine simultaneous-
source acquisition that adapts ideas from CS and no longer relies on the Nyquist sampling criteria.
This technique, termed time-jittered marine, aims to achieve increased source sampling density and
shorter acquisition times, and thus mitigate acquisition-related costs. Pioneered by Hennenfent and
Herrmann (2008) and Herrmann (2010), this thesis presents a pragmatic CS simultaneous-source
acquisition technique, specifically for marine, and addresses the challenge of source separation by
sparsity-promoting recovery via convex optimization using `1 objectives. Over the course of this
research, Mosher et al. (2014) reported successful field application of randomized CS surveys and
also showed the advantage of recovery via structure promotion in contrast to simply “processing”
the acquired data. This encouraged further research on CS acquisition designs and processing, and
their implication on time-lapse seismic.

1.2.1 Static vs. dynamic simultaneous-source acquisition

Based on the acquisition geometry, i.e., static or dynamic, there are different ways of acquiring
simultaneous data.

Land simultaneous-source acquisition

An instance of land simultaneous-source acquisition is shown in Figure 1.7, wherein multiple vi-
broseis vehicles fire shots simultaneously. Specifically, sequential impulsive sources are replaced by
impulsive simultaneous ‘phase-encoded’ sources. Chapter 2 presents this scenario in more details.
After simultaneous data is acquired, the aim is then to recover individual sequential shot records
as acquired during conventional acquisition.

Marine simultaneous-source acquisition

As mentioned above, and also explained in this thesis, to render possible artifacts induced by
simultaneous-source firing incoherent, the key for simultaneous-source acquisition is the inclusion of
randomization in the acquisition design, e.g., randomizing shot-firing times, randomizing source/re-
ceiver positions, randomizing distance between sail lines, etc. Randomization of shot-firing times
depends on whether data is acquired with dynamic towed streamers or static receivers (OBCs or
OBNs). Figure 1.8 illustrates the variability (or randomness) in shot-firing times for static and dy-
namic marine acquisition geometries. For dynamic towed streamers, randomness in shot-firing time
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(a)

(b)

(c)

Figure 1.7: Schematic of land simultaneous-source acquisition. (a) and (b) Individual shots
acquired in a conventional survey. (c) Simultaneous shot acquired in a simultaneous-
source survey. Images courtesy ION (www.iongeo.com).
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Figure 1.8: Shot-time randomness (or variability) for static and dynamic marine
simultaneous-source acquisitions.

is small, on the order of a few seconds, i.e., sources fire within 1 or 2 second(s) of each other. This is
because receivers are in motion, and therefore the returning sounds waves from the subsurface need
to be captured within the time-frame of one shot record, which is typically 10 seconds. Moreover,
moving arrays can only be compensated for a couple of meters. In contrast, static geometries enjoy
large degrees of randomness, on the order of tens of seconds, in shot-firing times since the receivers
are fixed.

Two instances of dynamic simultaneous-source acquisitions are over/under (or multilevel) source
acquisition (Hill et al., 2006; Moldoveanu et al., 2007; Lansley et al., 2007; Long, 2009; Hegna and
Parkes, 2012; Hoy et al., 2013) and Simultaneous-Long Offset (SLO) acquisition (Long et al., 2013,
and the references therein). Over/under source acquisition extends the recorded bandwidth at the
low and high ends of the spectrum because the depths of the sources produce complementary ghost
functions, avoiding deep notches in the spectrum, while SLO acquisition provides a longer coverage
in offsets without the need to tow very long streamer cables that can be problematic to deal with
in the field (Chapter 7). Both acquisitions generate simultaneous data volumes that need to be
separated in to corresponding individual data volumes for further processing (Figures 1.9 and 1.10).

The proposed CS simultaneous-source acquisition scheme, i.e., time-jittered marine acquisition
is an instance of static simultaneous-source acquisition, wherein a single (and/or multiple) source
vessel(s) sail(s) across an ocean-bottom array firing air guns at randomly jittered-time instances,
which translate to (sub-Nyquist or subsampled) jittered shot positions for a given (fixed) speed of
the source vessel. The basic idea of jittered subsampling is to regularly decimate the interpolation
grid and subsequently perturb the coarse-grid sample points on the fine grid while controlling the
maximum gap size between adjacent sample points (i.e., shot locations). Figure 1.11 illustrates this
acquisition scheme for a single source vessel and two air gun arrays with receivers (OBC) recording
continuously, resulting in a continuous subsampled simultaneous time-jittered data volume. The
proposed acquisition scheme leads to improved spatial sampling of recovered (or separated) data,
and speedup in acquisition compared to conventional periodically-sampled acquisition (Chapters 4-
6). The improvement in spatial sampling is a result of separation and interpolation of simultaneous
data, which is acquired on (relatively) coarsely-sampled spatial grids, to finely-sampled spatial
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Figure 1.9: Schematic of dynamic over/under marine simultaneous-source acquisition. Si-
multaneous data acquired in the field is separated in to individual source components
using source-separation techniques.

grids. Since static geometries provide better control over receiver positioning compared to dynamic
towed streamers, the latter is a relatively more challenging scenario for source separation (Chapters
4-7). Additional challenges include processing of massive (especially 3D) simultaneous data volumes
in computationally efficient ways, i.e., to reduce computational time at each step of the recovery
algorithm, and efficient ways to store recovered data volumes in memory. Chapters 4 and 7 provide
details on how we address these challenges.

1.3 Time-lapse seismic

Time-lapse (or 4D) seismic techniques involve acquisition, processing and interpretation of multiple
2D or 3D seismic surveys over a producing field with the aim of understanding the changes in the
reservoir over time, particularly its behaviour during production (Lumley, 2001; Fanchi, 2001). The
need for high degrees of data repeatability in time-lapse seismic has lead to the need to replicate
dense surveys that are mostly OBC/OBN surveys, since these surveys provide better control over
receiver positioning compared to towed streamers. Densely sampled and replicated surveys are
expensive, and generate dense time-lapse data volumes whose processing is also computationally
expensive. Therefore, the challenge is to minimize the cost of time-lapse surveying and data pro-
cessing without impacting data repeatability. Owing to the positive impact of simultaneous-source
acquisition on the industry, i.e., improved survey efficiency and data density, two key questions
arise: “What are the implications of randomization on the attainable repeatability of time-lapse
seismic?”, and “Should randomized time-lapse surveys be replicated?” These questions are of great
importance because the incorporation of simultaneous-source acquisition in time-lapse seismic can
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Figure 1.10: Schematic of dynamic marine simultaneous-long acquisition. Simultaneous data
acquired in the field is separated in to individual source components using source-
separation techniques. Note that the streamer length is 6 km and the second source
vessel is deployed one spread-length (6 km) ahead of the main seismic vessel.

significantly change the current paradigm of time-lapse seismic that relies on expensive dense pe-
riodic sampling and replication of the baseline and monitor surveys (Lumley and Behrens, 1998).
Therefore, another objective of this thesis is to analyze the effects of simultaneous-source (or ran-
domized) surveys in time-lapse seismic by comparing repeatability of data recovered from fully
replicated randomly-subsampled surveys and nonreplicated randomly-subsampled surveys. To this
end, we present a new approach that explicitly exploits common information shared by the different
time-lapse vintages. Note that we refer to the baseline and monitor data as the time-lapse vintages.
The presented joint-recovery method (JRM), which is derived from distributed compressive sensing
(DCS, Baron et al. (2009)), inverts for the common component and innovations with respect to
this common component.

1.4 Objectives

The main purpose of this thesis is to develop practical compressive randomized marine simultaneous-
source acquisitions and source-separation techniques by adapting ideas from compressive sensing.
The objectives can be summarized as follows:

1. Adapt ideas from CS to design pragmatic marine simultaneous-source acquisition that ac-
quires data economically with a reduced environmental imprint, whereby cost of surveys
depends on certain inherent structure in seismic data rather than on the Nyquist sampling
criteria. Investigate the relationship between the acquisition design and recovery quality.
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(a)

(b)

Figure 1.11: Schematic of static marine simultaneous-source acquisition. This also illustrates
the design of our proposed time-jittered marine acquisition. Source separation aims to
recover densely sampled interference-free data by unravelling overlapping shot records
and interpolation to a fine source grid (Chapters 4–6).

2. Address the challenge of source separation through a combination of tailored simultaneous-
source acquisition design and sparsity-promoting recovery via convex optimization using `1
objectives.

3. Compare sparsity-promoting and rank-minimization recovery techniques for static and dy-
namic marine simultaneous-source acquisitions. Develop a thorough understanding of the
performance and limitations of the two techniques.

4. Adapt ideas from distributed compressive sensing to analyze the implications of simultaneous-
source (or randomized) surveys on the attainable repeatability of time-lapse seismic.
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1.5 Contributions

To the best of our knowledge, this work represents a first step towards a comprehensive study
of designing marine simultaneous-source acquisitions by adapting ideas from compressive sensing.
We use CS metrics, such as mutual coherence and restricted isometry property, to investigate the
relationship between the acquisition design and data reconstruction fidelity. Consequently, we are
able to assert the importance of randomness in the acquisition system in combination with an
appropriate choice for a sparsifying transform in the reconstruction algorithm. This leads to new
insights into acquiring and processing seismic data where we can fundamentally rethink on how we
design acquisition surveys. Compressive (or subsampled) randomized (or jittered) simultaneous-
source acquisitions and subsequent recovery techniques lead to improved wavefield reconstruction
by increasing source-sampling density, and also speedup acquisition.

This work also presents a first instance of adapting ideas from CS and DCS to assess the effects
(or risks) of random or irregular spatial sampling (i.e., samples that do not lie on a regular or
periodic grid) in the field on time-lapse data, and demonstrate that high-quality data recoveries
are the norm and not the exception. The main finding that compressive randomized time-lapse
surveys need not be replicated to attain similar/acceptable levels of repeatability is significant since
it can potentially change the current paradigm of time-lapse seismic that relies on expensive dense
periodic sampling and replication of time-lapse surveys. Using a joint-recovery model (JRM) to
process compressive randomized time-lapse data, we observe that recovery of the vintages improves
when the time-lapse surveys are not replicated, since independent surveys give additional structural
information. Moreover, since irregular spatial sampling is inevitable in the real world, it would be
better to focus on knowing what the shot positions were (post acquisition) to a sufficient degree of
accuracy, than aiming to replicate them. Recent successes of randomized surveys in the field (see,
e.g., Mosher et al. (2014)) show that this can be achieved in practice.

1.6 Outline

The thesis comprises of eight chapters, including this introduction. We begin by presenting a
synopsis of compressive sensing in Chapter 2, where we outline its three key principles: (i) Find
representations that reveal structure of data, e.g, sparse (few nonzero entries) or compressible
(can be well-approximated by a sparse signal). Examples of such representations are sparsifying
transform domains, e.g., Fourier, curvelets, etc. (ii) Design a randomized subsampling scheme,
which turns subsampling related artifacts into incoherent noise that is not sparse or compressible.
(iii) Recover artifact-free fully sampled data by promoting structure, i.e., sparse recovery via one-
norm minimization. Motivated by the challenges of the Nyquist’s sampling criterion and “curse of
dimensionality” (exponential increase in volume when adding extra dimensions to data collection)
in exploration seismology, we discuss how we adapt ideas from CS to land and (static) marine
simultaneous-source seismic acquisitions. We demonstrate the benefits of random subsampling
over periodic subsampling by conducting of 1D synthetic experiments using random realizations of
harmonic signals. We also empirically demonstrate that curvelets lead to compressible (real-world
signals are not strictly sparse) representation of seismic data compared to wavelets, wave atoms,
etc. Hence, we use curvelets for recovery via sparsity promotion.

Since the primary objective of this thesis to develop practical compressive randomized marine
simultaneous-source acquisitions, the focus henceforth is on marine simultaneous-source acquisi-
tions only. In Chapter 3, we identify (static) marine simultaneous-source acquisition as a linear
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subsampling system, which we subsequently analyze using metrics from compressive sensing, such
as mutual coherence and restricted isometry property. Importance of sparsity-based recovery for
simultaneous-source acquisition has been noticed by many authors. However, few have thoroughly
investigated the underlying interaction between acquisition design and reconstruction fidelity, es-
pecially in the marine setting. According to CS, a sparsifying transform that is incoherent with
the CS matrix can significantly impact the reconstruction quality. We demonstrate that the CS
matrix resulting from our proposed sampling scheme is incoherent with the curvelet transform.
We quantitatively verify the importance of randomness in the acquisition system and more com-
pressible transforms by comparing recoveries from synthetic seismic experiments (using data from
a real seismic line) for three different simultaneous acquisition schemes, namely “ideal” simulta-
neous acquisition, random time-dithering and periodic time-dithering acquisition, with different
subsamplings for each.

While the observations made from Chapters 2 and 3 on adapting CS ideas to simultaneous-
source acquisitions are very encouraging, it is important to not forget that compressive marine
simultaneous-source acquisitions are beneficial to the seismic industry only if they are physically
realizable in the field. We learnt this lesson while presenting the work at a conference meeting,
where the nonrealistic nature of our acquisition scheme was revealed to us by communications with
industry experts. This lead to a detailed investigation of the proposed compressive acquisition
scheme to render it practical, and the findings of which are reported in Chapter 4. We develop
a pragmatic compressive marine simultaneous-source acquisition scheme, termed time-jittered ma-
rine, wherein a single (and/or multiple) source vessel(s) sails across an ocean-bottom array firing
air guns at jittered-time instances, which translate to jittered shot positions for a given (fixed)
speed of the source vessel. The simultaneous data are time compressed, and are therefore acquired
economically with a small environmental imprint. We demonstrate that all the observations made
in Chapters 2 and 3 hold true for the pragmatic time-jittered marine acquisition. We conduct
synthetic seismic experiments to recover interference-free densely sampled data from compressive
(or subsampled) simultaneous data via sparsity promotion using 2D and 3D curvelet transforms
(Candès et al., 2006a; Ying et al., 2005).

Chapter 5 delves in to the implications of compressive randomized acquisitions on the attain-
able repeatability of time-lapse seismic. Adapting ideas from CS and DCS, we aim to address the
challenges of the current time-lapse seismic paradigm, such as, reliance on expensive dense periodic
and replicated time-lapse surveys. We demonstrate that under certain assumptions, high-quality
prestack data can be obtained from randomized subsampled measurements that are observed from
nonreplicated surveys. We present a joint-recovery method (JRM) that exploits common informa-
tion among the vintages leading to significant improvements in recovery quality of the time-lapse
vintages when the same on-the-grid shot locations are not revisited. We compare joint recovery
of time-lapse data with independent recovery, where each vintage is recovered independently. The
acquisition is low cost because the measurements are subsampled. We conduct numerous 1D syn-
thetic stylized experiments to test the JRM. We also confirm that high degrees of repeatability are
achievable from the proposed time-jittered marine acquisition scheme. We assume measurements
are taken on-the-grid (i.e., a discrete grid where the measurements lie “exactly” on the grid) and
ignore errors related to taking measurements off the grid, a more realistic scenario that is dealt
with in Chapter 6.

Since irregular or off-the-grid spatial sampling of sources and receivers is inevitable in field
seismic acquisitions, it is important to analyze the implications of randomization on time-lapse
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seismic in this realistic setting. In Chapter 6, we extend our time-jittered marine acquisition to
time-lapse surveys by designing acquisition on irregular spatial grids that render simultaneous,
subsampled, and irregular measurements. We adapt the JRM to incorporate a regularization
operator that maps traces from an irregular spatial grid to a regular periodic grid. The recovery
method is therefore a combined operation of regularization, interpolation (estimating missing fine-
grid traces from subsampled coarse-grid data), and source separation (unraveling overlapping shot
records). We introduce the nonequispaced fast discrete curvelet transform (NFDCT, Hennenfent
et al. (2010)) and its application to recover periodic densely sampled seismic lines from simultaneous
and irregular measurements via sparsity-promoting inversion. We conduct a series of synthetic
seismic experiments with different random realizations of the time-jittered marine acquisition with
irregular sampling.

Chapter 7 addresses the source-separation problem for the more challenging dynamic towed-
streamer acquisitions. We formulate the problem as a CS problem, which we subsequently solve
by promoting two types of structure in seismic data, i.e., sparse and low rank. We simulate
two simultaneous towed-streamer acquisitions, namely over/under and SLO. For recovery via rank
minimization, we adopt the hierarchical semiseparable (HSS) matrix representation method pro-
posed by Chandrasekaran et al. (2006) to exploit low-rank structure at high frequencies. We also
combine the singular-value-decomposition-free matrix factorization approach recently developed by
Lee et al. (2010) with the Pareto curve approach proposed by Berg and Friedlander (2008) that
renders this framework suitable for large-scale seismic data because it avoids expensive singular
value decompositions (SVDs), a necessary step in traditional rank-minimization-based methods.
We compare recovery via sparsity promotion and rank minimization in terms of separation qual-
ity, computational time, and memory usage. We also make comparisons with the NMO-based
median-filtering-type technique proposed by Chen et al. (2014).

In Chapter 8, we summarize the work done in this thesis, discuss certain associated limitations
and propose ideas to address them by means of future research directions.
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Chapter 2

Compressive sensing in seismic
exploration: an outlook on a new
paradigm

2.1 Summary

Many seismic exploration techniques rely on the collection of massive data volumes that are subse-
quently mined for information during processing. While this approach has been extremely successful
in the past, current efforts toward higher resolution images in increasingly complicated regions of
the Earth continue to reveal fundamental shortcomings in our workflows. Chiefly amongst these is
the so-called “curse of dimensionality” exemplified by Nyquist’s sampling criterion, which dispro-
portionately strains current acquisition and processing systems as the size and desired resolution of
our survey areas continues to increase. We offer an alternative sampling method leveraging recent
insights from compressive sensing towards seismic acquisition and processing for data that, from a
traditional point of view, are considered to be undersampled. The main outcome of this approach
is a new technology where acquisition and processing related costs are decoupled the stringent
Nyquist sampling criterion.

At the heart of our approach lies randomized incoherent sampling that breaks subsampling-
related interferences by turning them into harmless noise, which we subsequently remove by pro-
moting sparsity in a transform-domain. Acquisition schemes designed to fit into this regime no
longer grow significantly in cost with increasing resolution and dimensionality of the survey area,
but instead its cost ideally only depends on transform-domain sparsity of the expected data. Our
contribution is twofold. First, we demonstrate by means of carefully designed numerical exper-
iments that ideas from compressive sensing can be adapted to seismic acquisition. Second, we
leverage the property that seismic data volumes are well approximated by a small percentage of
curvelet coefficients. Thus curvelet-domain sparsity allows us to recover conventionally-sampled
seismic data volumes from compressively-sampled data volumes whose size exceeds this percentage
by only a small factor. Because compressive sensing combines transformation and encoding by a
single linear encoding step, this technology is directly applicable to seismic acquisition and therefore

A version of this chapter has been published in CSEG Recorder, 2011, vol. 36, Part 1 [April Edition]: pp. 19–33,
Part 2 [June Edition]: pp. 34–39.
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constitutes a new paradigm where acquisitions costs scale with transform-domain sparsity instead
of with the gridsize. We illustrate this principle by showcasing recovery of a real seismic line from
simulated compressively sampled acquisitions.

2.2 Inspiration

2.2.1 Nyquist sampling and the curse of dimensionality

The livelihood of exploration seismology depends on our ability to collect, process, and image
extremely large seismic data volumes. The recent push towards full-waveform approaches only
exacerbates this reliance, and we, much like researchers in many other fields in science and en-
gineering, are constantly faced with the challenge to come up with new and innovative ways to
mine this overwhelming barrage of data for information. This challenge is especially daunting in
exploration seismology because our data volumes sample wavefields that exhibit structure in up to
five dimensions (two coordinates for the sources, two for the receivers, and one for time). When ac-
quiring and processing this high-dimensional structure, we are not only confronted with Nyquist’s
sampling criterion but we also face the so-called “curse of dimensionality”, which refers to the
exponential increase in volume when adding extra dimensions to our data collection.

These two challenges are amongst the largest impediments to progress in the application of
more sophisticated seismic methods to oil and gas exploration. In this chapter, we introduce a new
methodology adapted from the field of “compressive sensing” or “compressive sampling” (CS in
short throughout the article, Candès et al., 2006c; Donoho, 2006; Mallat, 2009), which is aimed at
removing these impediments via dimensionality reduction techniques based on randomized subsam-
pling. With this dimensionality reduction, we arrive at a sampling framework where the sampling
rates are no longer scaling directly with the gridsize, but by transform-domain compression; more
compressible data requires less sampling.

2.2.2 Dimensionality reduction by compressive sensing

Current nonlinear data-compression techniques are based on high-resolution linear sampling (e.g.,
sampling by a CCD chip in a digital camera) followed by a nonlinear encoding technique that
consists of transforming the samples to some transformed domain, where the signal’s energy is
encoded by a relatively small number of significant transform-domain coefficients (Mallat, 2009).
Compression is accomplished by keeping only the largest transform-domain coefficients. Because
this compression is lossy, there is an error after decompression. A compression ratio expresses the
compressed-signal size as a fraction of the size of the original signal. The better the transform
captures the energy in the sampled data, the larger the attainable compression ratio for a fixed
loss.

Even though this technique underlies the digital revolution of many consumer devices, including
digital cameras, music, movies, etc., it does not seem possible for exploration seismology to scale
in a similar fashion because of two major hurdles. First, high-resolution data has to be collected
during the linear sampling step, which is already prohibitively expensive for exploration seismology.
Second, the encoding phase is nonlinear. This means that if we select a compression ratio that
is too high, the decompressed signal may have an unacceptable error, in the worst case making it
necessary to repeat collection of the high-resolution samples.
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By replacing the combination of high-resolution sampling and nonlinear compression by a single
randomized subsampling technique that combines sampling and encoding in one single linear step,
CS addresses many of the above shortcomings. First of all, randomized subsampling has the distinct
advantage that the encoding is linear and does not require access to high-resolution data during
encoding. This opens possibilities to sample incrementally and to process data in the compressed
domain. Second, encoding through randomized sampling suppresses subsampling related artifacts.
Coherent subsampling related artifacts—whether these are caused by periodic missing traces or by
cross-talk between coherent simultaneous-sources—are turned into relatively harmless incoherent
Gaussian noise by randomized subsampling (see e.g. Herrmann and Hennenfent, 2008; Hennenfent
and Herrmann, 2008; Herrmann et al., 2009, for seismic applications of this idea).

By solving a sparsity-promoting problem (Candès et al., 2006c; Donoho, 2006; Herrmann et al.,
2007; Mallat, 2009), we reconstruct high-resolution data volumes from the randomized samples
at the moderate cost of a minor oversampling factor compared to data volumes obtained after
conventional compression (see e.g. Donoho et al., 1999a, for wavelet-based compression). With
sufficient sampling, this nonlinear recovery outputs a set of largest transform-domain coefficients
that produces a reconstruction with a recovery error comparable with the error incurred during
conventional compression. As in conventional compression this error is controllable, but in case of
CS this recovery error depends on the sampling ratio—i.e., the ratio between the number of samples
taken and the number of samples of the high-resolution data. Because compressively sampled data
volumes are much smaller than high-resolution data volumes, we reduce the dimensionality and
hence the costs of acquisition, storage, and possibly of data-driven processing.

We mainly consider recovery methods that derive from compressive sampling. Therefore our
method differs from interpolation methods based on pattern recognition (Spitz, 1999), plane-wave
destruction (Fomel et al., 2002) and data mapping (Bleistein et al., 2001), including parabolic,
apex-shifted Radon and DMO-NMO/AMO (Trad, 2003; Trad et al., 2003; Harlan et al., 1984; Hale,
1995; Canning and Gardner, 1996; Bleistein et al., 2001; Fomel, 2003; Malcolm et al., 2005). To
benefit fully from this new sampling paradigm, we will translate and adapt its ideas to exploration
seismology while evaluating their performance. Here lies our main contribution. Before we embark
on this mission we first share some basic insights from compressive sensing in the context of a well-
known problem in geophysics: recovery of time-harmonic signals, which is relevant for missing-trace
interpolation.

Compressive sensing is based on three key elements: randomized sampling, sparsifying trans-
forms, and sparsity-promotion recovery by convex optimization. By themselves, these elements
are not new to geophysics. Spiky deconvolution and high-resolution transforms are all based on
sparsity-promotion (Taylor et al., 1979; Oldenburg et al., 1981; Ulrych and Walker, 1982; Levy et al.,
1988; Sacchi et al., 1994) and analyzed by mathematicians (Santosa and Symes, 1986; Donoho and
Logan, 1992); wavelet transforms are used for seismic data compression (Donoho et al., 1999a);
randomized samples have been shown to benefit Fourier-based recovery from missing traces (Trad
et al., 2003; Xu et al., 2005; Abma and Kabir, 2006; Zwartjes and Sacchi, 2007). The novelty of CS
lies in the combination of these concepts into a comprehensive theoretical framework that provides
design principles and performance guarantees.
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2.2.3 Examples

Periodic versus uniformly-random subsampling

Because Nyquist’s sampling criterion guarantees perfect reconstruction of arbitrary bandwidth-
limited signals, it has been the leading design principle for seismic data acquisition and processing.
This explains why acquisition crews go at length to place sources and receivers as finely and as
regularly as possible. Although this approach spearheaded progress in our field, CS proves that
periodic sampling at Nyquist rates may be far from optimal when the signal of interest exhibits
some sort of structure, such as when the signal permits a transform-domain representation with few
significant and many zero or insignificant coefficients. For this class of signals (which includes nearly
all real-world signals) it suffices to sample randomly with fewer samples than that determined by
Nyquist.

Take any arbitrary time-harmonic signal. According to compressive sensing, we can guarantee
its recovery from a very small number of samples drawn at random times. In the seismic situation,
this corresponds to using seismic arrays with fewer geophones selected uniformly-randomly from an
underlying regular sampling grid with spacings defined by Nyquist (meaning it does not violate the
Nyquist sampling theorem). By taking these samples randomly instead of periodically, the majority
of artifacts directly due to incomplete sampling will behave like Gaussian white noise (Hennenfent
and Herrmann, 2008; Donoho et al., 2009) as illustrated in Figure 2.1. We observe that for the
same number of samples the subsampling artifacts can behave very differently.

In the geophysical community, subsampling-related artifacts are commonly known as “spectral
leakage” (Xu et al., 2005), where energy from each frequency is leaked to other frequencies. Under-
standably, the amount of spectral leakage depends on the degree of subsampling: the higher this
degree the more leakage. However, the characteristics of the artifacts themselves depend on the
irregularity of the sampling. The more uniformly-random our sampling is, the more the leakage
behaves as zero-centered Gaussian noise spread over the entire frequency spectrum.

Compressive sensing schemes aim to design acquisition that specifically create Gaussian-noise
like subsampling artifacts (Donoho et al., 2009). As opposed to coherent subsampling related
artifacts (Figure 2.1(f)), these noise-like artifacts (Figure 2.1(d)) can subsequently be removed by a
sparse recovery procedure, during which the artifacts are separated from the signal and amplitudes
are restored. Of course, the success of this method also hinges on the degree of subsampling, which
determines the noise level, and the sparsity level of the signal.

By carrying out a random ensemble of experiments, where random realizations of harmonic
signals are recovered from randomized samplings with decreasing sampling ratios, we confirm this
behavior empirically. Our findings are summarized in Figure 2.2. The estimated spectra are ob-
tained by solving a sparsifying program with the Spectral Projected Gradient for `1 solver (SPGL1
- Berg and Friedlander, 2008) for signals with k non-zero entries in the Fourier domain. We define
these spectra by randomly selecting k entries from vectors of length 600 and populating these with
values drawn from a Gaussian distribution with unit standard deviation. As we will show below,
the solution of each of these problems corresponds to the inversion of a matrix whose aspect ratio
(the ratio of the number of columns over the number of rows) increases as the number of samples
decreases.

To get reasonable estimates, each experiment is repeated 100 times for the different subsampling
schemes and for varying sampling ratios ranging from 1/2 to 1/6. The reconstruction error is the
number of vector entries at which the estimated spectrum and the true spectrum disagree by
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more than 10−4. This error counts both false positives and false negatives. The averaged results
for the different experiments are summarized in Figures 2.2(a) and 2.2(b), which correspond to
regular and random subsampling, respectively. The horizontal axes in these plots represent the
relative underdeterminedness of the system, i.e., the ratio of the number k of nonzero entries in
the spectrum to the number of acquired data points n. The vertical axes denote the percentage of
erroneous entries. The different curves represents the different subsampling factors. In each plot,
the curves from top to bottom correspond to sampling ratios of 1/2 to 1/6.

Figure 2.2(a) shows that, regardless of the subsampling factor, there is no range of relative
underdeterminedness for which the spectrum, and hence the signal, can accurately be recovered
from regular subsamplings. Sparsity is not enough to discriminate the signal components from the
spectral leakage. The situation is completely different in Figure 2.2(b) for the random sampling.
In this case, one can observe that for a subsampling ratio of 1/2 exact recovery is possible for
0 < k/n . 1/4. The main purpose of these plots is to qualitatively show the transition from
successful to failed recovery. The quantitative interpretation for these diagrams of the transition
is less well understood but also observed in phase diagrams in the literature (Donoho and Tanner,
2009; Donoho et al., 2009). A possible explanation for the observed behavior of the error lies in
the nonlinear behavior of the solvers and on an error not measured in the `2 sense.

2.2.4 Main contributions

We propose and analyze randomized sampling schemes, termed compressive seismic acquisition.
Under specific conditions, these schemes create favourable recovery conditions for seismic wavefield
reconstructions that impose transform-domain sparsity in Fourier or Fourier-related domains (see
e.g. Sacchi et al., 1998; Xu et al., 2005; Zwartjes and Sacchi, 2007; Herrmann et al., 2007; Hennen-
fent and Herrmann, 2008; Tang et al., 2009). Our contribution is twofold. First, we demonstrate
by means of carefully designed numerical experiments on synthetic and real data that compressive
sensing can successfully be adapted to seismic acquisition, leading to a new generation of random-
ized acquisition and processing methodologies where high-resolution wavefields can be sampled and
reconstructed with a controllable error. We introduce a number of performance measures that allow
us to compare wavefield recoveries based on different sampling schemes and sparsifying transforms.
Second, we show that accurate recovery can be accomplished for compressively sampled data vol-
umes sizes that exceed the size of conventional transform-domain compressed data volumes by a
small factor. Because compressive sensing combines transformation and encoding by a single linear
encoding step, this technology is directly applicable to seismic acquisition and to dimensionality
reduction during processing. We verify this claim by a series of experiments on real data. We also
show that the linearity of CS allows us to extend this technology to seismic data processing. In
either case, sampling, storage, and processing costs scale with transform-domain sparsity.

2.2.5 Outline

First, we briefly present the key principles of CS, followed by a discussion on how to adapt these
principles to the seismic situation. For this purpose, we introduce measures that quantify recon-
struction and recovery errors and expresses the overhead that CS imposes. We use these measures
to compare the performance of different transform domains and sampling strategies during re-
construction. We then use this information to evaluate and apply this new sampling technology
towards acquisition and processing of a 2D seismic line.
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2.3 Basics of compressive sensing

In this section, we give a brief overview of CS and concise recovery criteria. CS relies on specific
properties of the compressive-sensing matrix and the sparsity of the to-be-recovered signal.

2.3.1 Recovery by sparsity-promoting inversion

Consider the following linear forward model for sampling

b = Ax0, (2.1)

where b ∈ Rn represents the compressively sampled data consisting of n measurements. Suppose
that a high-resolution data f0 ∈ RN , with N the ambient dimension, has a sparse representation
x0 ∈ RN in some known transform domain. For now, we assume that this representation is the
identity basis—i.e., f0 = x0. We will also assume that the data is noise free. According to this
model, measurements are defined as inner products between rows of A and high-resolution data.

The sparse recovery problem involves the reconstruction of the vector x0 ∈ RN given incomplete
measurements b ∈ Rn with n � N . This involves the inversion of an underdetermined system of
equations defined by the matrix A ∈ Rn×N , which represents the sampling operator that collects
the acquired samples from the model, f0.

The main contribution of CS is to come up with conditions on the compressive-sampling matrix
A and the sparse representation x0 that guarantee recovery by solving a convex sparsity-promoting
optimization problem. This sparsity-promoting program leverages sparsity of x0 and hence over-
comes the singular nature of A when estimating x0 from b. After sparsity-promoting inversion,
the recovered representation for the signal is given by

x̃ = arg min
x

||x||1 subject to b = Ax. (2.2)

In this expression, the symbol ˜ represents estimated quantities and the `1 norm ‖x‖1 is defined

as ‖x‖1
def
=
∑N

i=1 |x[i]|, where x[i] is the ith entry of the vector x.
Minimizing the `1 norm in equation 2.2 promotes sparsity in x and the equality constraint

ensures that the solution honors the acquired data. Among all possible solutions of the (severely)
underdetermined system of linear equations (n� N) in equation 2.1, the optimization problem in
equation 2.2 finds a sparse or, under certain conditions, the sparsest (i.e., smallest `0 norm (Donoho
and Huo, 2001)) possible solution that exactly explains the data.

2.3.2 Recovery conditions

The basic idea behind CS (see e.g. Candès et al., 2006c; Mallat, 2009) is that recovery is possible
and stable as long as any subset S of k columns of the n×N matrix A—with k ≤ N the number of
nonzeros in x—behave approximately as an orthogonal basis. In that case, we can find a constant
δ̂k for which we can bound the energy of the signal from above and below —i.e.,

(1− δ̂k)‖xS‖2`2 ≤ ‖ASxS‖2`2 ≤ (1 + δ̂k)‖xS‖2`2 , (2.3)

where S runs over sets of all possible combinations of columns with the number of columns |S| ≤ k
(with |S| the cardinality of S). The smaller δ̂k, the more energy is captured and the more stable
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the inversion of A becomes for signals x with maximally k nonzero entries.
The key factor that bounds the restricted-isometry constants δ̂k > 0 from above is the mutual

coherence amongst the columns of A—i.e.,

δ̂k ≤ (k − 1)µ (2.4)

with
µ = max

1≤i 6=j≤N
|aHi aj |, (2.5)

where ai is the ith column of A and H denotes the Hermitian transpose.
Matrices for which δ̂k is small contain subsets of k columns that are incoherent. Random

matrices, with Gaussian i.i.d. entries with variance n−1 have this property, whereas deterministic
constructions almost always have structure.

For these random Gaussian matrices (there are other possibilities such as Bernouilli or restricted
Fourier matrices that accomplish approximately the same behavior, see e.g. Candès et al., 2006c;
Mallat, 2009), the mutual coherence is small. For this type of CS matrices, it can be proven that
Equation 2.3 holds and Equation 2.2 recovers x0’s exactly with high probability as long as this
vector is maximally k sparse with

k ≤ C · n

log2(N/n)
, (2.6)

where C is a moderately sized constant. This result proves that for large N , recovery of k nonzeros
only requires an oversampling ratio of n/k ≈ C · log2N , as opposed to taking all N measurements.

The above result is profound because it entails an oversampling with a factor C ·log2N compared
to the number of nonzeros k. Hence, the number of measurements that are required to recover these
nonzeros is much smaller than the ambient dimension (n� N for large N) of high-resolution data.
Similar results hold for compressible instead of strictly sparse signals while measurements can be
noisy (Candès et al., 2006c; Mallat, 2009). In that case, the recovery error depends on the noise level
and on the transform-domain compression rate—i.e., the decay of the magnitude-sorted coefficients.

In summary, according to CS (Candès et al., 2006b; Donoho, 2006), the solution x̃ of equation
2.2 and x0 coincide when two conditions are met, namely 1) x0 is sufficiently sparse, i.e., x0 has
few nonzero entries, and 2) the subsampling artifacts are incoherent, which is a direct consequence
of measurements with a matrix whose action mimics that of a Gaussian matrix.

Unfortunately, most rigorous results from CS, except for work by Rauhut et al. (2008), are
valid for orthonormal measurement and sparsity bases only and the computation of the recovery
conditions for realistically sized seismic problems remains computational prohibitive. To overcome
these important shortcomings, we will in the next section introduce a number of practical and
computable performance measures that allow us to design and compare different compressive-
seismic acquisition strategies.

2.4 Compressive-sensing design

As we have seen, the machinery that supports sparse recovery from incomplete data depends on
specific properties of the compressive-sensing matrix. It is important to note that CS is not meant to
be blindly applied to arbitrary linear inversion problems. To the contrary, the success of a sampling
scheme operating in the CS framework hinges on the design of new acquisition strategies that are
both practically feasible and lead to favourable conditions for sparse recovery. Mathematically
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speaking, the resulting CS sampling matrix needs to both be realizable and behave as a Gaussian
matrix. To this end, the following key components need to be in place:

1. a sparsifying signal representation that exploits the signal’s structure by mapping the
energy into a small number of significant transform-domain coefficients. The smaller the
number of significant coefficients, the better the recovery;

2. sparse recovery by transform-domain one-norm minimization that is able to handle
large system sizes. The fewer the number of matrix-vector evaluations, the faster and more
practically feasible the wavefield reconstruction;

3. randomized seismic acquisition that breaks coherent interferences induced by determin-
istic subsampling schemes. Randomization renders subsampling related artifacts—including
aliases and simultaneous source crosstalk—harmless by turning these artifacts into incoherent
Gaussian noise;

Given the complexity of seismic data in high dimensions and field practicalities of seismic acquisi-
tion, the mathematical formulation of CS outlined in the previous section does not readily apply
to seismic exploration. Therefore, we will focus specifically on the design of source subsampling
schemes that favor recovery and on the selection of the appropriate sparsifying transform. Because
theoretical results are mostly lacking, we will guide ourselves by numerical experiments that are
designed to measure recovery performance.

During seismic data acquisition, data volumes are collected that represent discretizations of
analog finite-energy wavefields in two or more dimensions including time. We recover the discretized
wavefield f by inverting the compressive-sampling matrix

A :=

restriction︷︸︸︷
R M︸︷︷︸

measurement

synthesis︷︸︸︷
SH (2.7)

with the sparsity-promoting program:

f̃ = SH x̃ with x̃ = arg min
x

‖x‖1 :=
P−1∑
p=0

|x[i]| subject to Ax = b. (2.8)

This formulation differs from standard compressive sensing because we allow for a wavefield repre-
sentation that is redundant—i.e., S ∈ CP×N with P ≥ N . Aside from results reported by Rauhut
et al. (2008), which show that recovery with redundant frames is determined by the RIP constant
δ̂ of the restricted sampling and sparsifying matrices that is least favorable, there is no practical
algorithm to compute these constants. Therefore, our hope is that the above sparsity-promoting op-
timization program, which finds amongst all possible transform-domain vectors the vector x̃ ∈ RP
that has the smallest `1-norm, recovers high-resolution data f̃ ∈ RN .

2.4.1 Seismic wavefield representations

One of the key ideas of CS is leveraging structure within signals to reduce sampling. Typically,
structure translates into transform-domains that concentrate the signal’s energy in as few as possible
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significant coefficients. The size of seismic data volumes, along with the complexity of its high-
dimensional and highly directional wavefront-like features, makes it difficult to find a transform
that accomplishes this task.

To meet this challenge, we only consider transforms that are fast (at the most N logN with N
the number of samples), multiscale (splitting the Fourier spectrum into dyadic frequency bands),
and multidirectional (splitting Fourier spectrum into second dyadic angular wedges). For reference,
we also include separable 2D wavelets in our study. We define this wavelet transform as the
Kronecker product (denoted by the symbol ⊗) of two 1D wavelet transforms: W = W1⊗W1 with
W1 the 1D wavelet-transform matrix.

Separable versus non-separable transforms

There exists numerous signal representations that decompose a multi-dimensional signal with re-
spect to directional and localized elements. For the appropriate representation of seismic wavefields,
we limit our search to non-separable curvelets (Candès et al., 2006a) and wave atoms (Demanet and
Ying, 2007). The elements of these transforms behave approximately as high-frequency asymptotic
eigenfunctions of wave equations (see e.g. Smith, 1998; Candès and Demanet, 2005; Candès et al.,
2006a; Herrmann et al., 2008), which makes these two representations particularly well suited for
our task of representing seismic data parsimoniously.

Unlike wavelets, which compose curved wavefronts into a superposition of multiscale “fat dots”
with limited directionality, curvelets and wave atoms compose wavefields as a superposition of
highly anisotropic localized and multiscale waveforms, which obey a so-called parabolic scaling
principle. For curvelets in the physical domain, this principle translates into a support with its
length proportional to the square of the width. At the fine scales, this scaling leads to curvelets that
become increasingly anisotropic, i.e., needle-like. Each dyadic frequency band is split into a number
of overlapping angular wedges that double in every other dyadic scale. This partitioning results in
increased directionality at the fine scales. This construction makes curvelets well adapted to data
with impulsive wavefront-like features. Figure 2.3(a) shows the multiscale and multidirectional 2D
curvelets in the time-space domain and the frequency-wavenumber domain. Curvelets approximate
curved singularities, i.e., wavefronts, in a nonadaptive manner with very few significant curvelet
coefficients (Figure 2.3(b)). Wave atoms, on the other hand, are anisotropic because it is their
wavelength, not the physical length of the individual wave atoms, that depends quadratically on
their width. By construction, wave atoms are more appropriate for data with oscillatory patterns.
Because seismic data sits somewhere between these two extremes, we include both transforms in
our study.

Approximation error

For an appropriately chosen representation magnitude-sorted transform-domain coefficients often
decay rapidly–i.e., the magnitude of the jth largest coefficient is O(j−s) with s ≥ 1/2. For orthonor-
mal bases, this decay rate is directly linked to the decay of the nonlinear approximation error (see
e.g. Mallat, 2009). This error is expressed by

σ(k) = ‖f − fk‖ = O(k1/2−s), (2.9)

with fk the reconstruction from the largest k - coefficients. Notice that this error does not account
for discretization errors (cf. Equation 2.16), which we ignore.
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Unfortunately, this relationship between the decay rates of the magnitude-sorted coefficients
and the decay rate of the nonlinear approximation error does not hold for redundant transforms.
Also, there are many coefficient sequences that explain the data f making them less sparse–i.e.,
expansions with respect to this type of signal representations are not unique. For instance, analysis
by the curvelet transform of a single curvelet does not produce a single non-zero entry in the
curvelet coefficient vector.

To address this issue, we use an alternative definition for the nonlinear approximation error,
which is based on the solution of a sparsity-promoting program. With this definition, the k-term
nonlinear-approximation error is computed by taking the k−largest coefficients from the vector
that solves

min
x
‖x‖1 subject to SHx = f . (2.10)

Because this vector is obtained by inverting the synthesis operator SH with a sparsity-promoting
program, this vector is always sparser than the vector obtained by applying the analysis operator
S directly.

To account for different redundancies in the transforms, we study signal-to-noise ratios (S/Ns)
as a function of the sparsity ratio ρ = k/P (with P = N for orthonormal bases) defined as

S/N(ρ) = −20 log
‖f − fρ‖
‖f‖

. (2.11)

The smaller this ratio, the more coefficients we ignore, the sparser the transform-coefficient vector
becomes, which in turn leads to a smaller S/N. In our study, we include fρ that are derived from
either the analysis coefficients or from the synthesis coefficients. The latter coefficients are solutions
of the above sparsity-promoting program (Equation 2.10).

Empirical approximation errors

The above definition gives us a metric to compare recovery S/Ns of seismic data for wavelets,
curvelets, and wave atoms. We make this comparison on a common-receiver gather (Figure 2.4)
extracted from a Gulf of Suez data set. Because the current implementations of wave atoms
(Demanet and Ying, 2007) only support data that is square, we padded the 178 traces with zeros
to 1024 traces. The temporal and spatial sampling interval of the high-resolution data are 0.004s
and 25m, respectively. Because this zero-padding biases the ρ, we apply a correction.

Our results are summarized in Figure 2.5 and they clearly show that curvelets lead to rapid
improvements in S/N as the sparsity ratio increases. This effect is most pronounced for synthesis
coefficients, benefiting remarkably from sparsity promotion. By comparison, wave atoms benefit
not as much, and wavelet even less. This behavior is consistent with the overcompleteness of these
transforms, the curvelet transform matrix has the largest redundancy (a factor of about eight in
2D) and is therefore the tallest. Wave atoms only have a redundancy of two and wavelets are
orthogonal. Since our method is based on sparse recovery, this experiment suggests that sparse
recovery from subsampling would potentially benefit most from curvelets. However, this is not the
only factor that determines the performance of our compressive-sampling scheme.
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2.4.2 Subsampling of shots

Aside from obtaining good reconstructions from small compression ratios, breaking the periodicity
of coherent sampling is paramount to the success of sparse recovery—whether this involves selection
of subsets of sources or the design of incoherent simultaneous-source experiments. To underline the
importance of maximizing incoherence in seismic acquisition, we conduct two experiments where
common-source gathers are recovered from subsets of sequential and simultaneous-source experi-
ments. To make useful comparisons, we keep for each survey the number of source experiments,
and hence the size of the collected data volumes, the same.

Coherent versus incoherent sampling

Mathematically, sequential and simultaneous acquisition only differ in the definition of the measure-
ment basis. For sequential-source acquisition, this sampling matrix is given by the Kronecker prod-
uct of two identity bases—i.e., I := INs⊗INt , which is a N×N identity matrix with N = Nt×Ns,
the product of the number of time samples Nt and the number of shots Ns. For simultaneous
acquisition, where all sources fire simultaneously, this matrix is given by M := GNs ⊗ INt with
GNs a Ns × Ns Gaussian matrix with i.i.d. entries. In both cases, we use a restriction operator
R := Rns ⊗ INt to model the collection of incomplete data by reducing the number of shots to
ns � Ns. This restriction acts on the source coordinate only.

Roughly speaking, CS predicts superior recovery for compressive-sampling matrices with smaller
coherence. According to Equation 2.5, this coherence depends on the interplay between the restric-
tion, measurement, and synthesis matrices. To make a fair comparison, we keep the restriction
matrix the same and study the effect of having measurement matrices that are either given by the
identity or by a random Gaussian matrix. Physically, the first CS experiment corresponds to sur-
veys with sequential shots missing. The second CS experiment corresponds to simultaneous-source
experiments with simultaneous source experiments missing. Examples of both measurements for
the real common-receiver gather of Figure 2.4 are plotted in Figure 2.6. Both data sets have 50%
of the original size. Remember that the horizontal axes in the simultaneous experiment no longer
has a physical meaning. Notice also that there is no observable coherent crosstalk amongst the
simultaneous sources.

Multiplication of orthonormal sparsifying bases by random measurement matrices turns into
random matrices with a small mutual coherence amongst the columns. This property also holds
(but only approximately) for redundant signal representations with synthesis matrices that are
wide and have columns that are linearly dependent. This suggests improved performance using
random incoherent measurement matrices. To verify this statement empirically, we compare sparse
recoveries with Equation 2.8 from data plotted in Figure 2.6(a).

Despite the fact that simultaneous acquisition with all sources firing simultaneously may not be
easily implementable in practice1, this approach has been applied successfully to reduce simulation
and imaging costs (Herrmann et al., 2009; Herrmann, 2009; Lin and Herrmann, 2009a,b). In the
“eyeball norm”, the recovery from the simultaneous data is as expected clearly superior (cf. Fig-
ures 2.6(b)). The difference plots (cf. Figures 2.6(c)) confirm this observation and show very little
coherent signal loss for the recovery from simultaneous data. This is consistent with CS, which
predicts improved performance for sampling schemes that are more incoherent. Because this quali-

1Although one can easily imagine a procedure in the field where a “supershot” is created by some stacking
procedure.
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tative statement depends on the interplay between the sampling and the sparsifying transform, we
conduct an extensive series of experiments to get a better idea on the performance of these two
different sampling schemes for different sparsifying transforms. We postpone our analysis of the
quantitative behavior of the recovery S/Ns to after that discussion.

Sparse recovery errors

The examples of the previous section clearly illustrate that randomized sampling is important,
and that randomized simultaneous acquisition leads to better recovery compared to randomized
subsampling of sequential sources. To establish this observation more rigorously, we calculate
estimates for the recovery error as a function of the sampling ratio δ = n/N by conducting a series
of 25 controlled recovery experiments. For each δ ∈ [0.2, 0.8], we generate 25 realizations of the
randomized compressive-sampling matrix. Applying these matrices to our common-receiver gather
(Figure 2.4) produces 25 different data sets that are subsequently used as input to sparse recovery
with wavelets, curvelets, and wave atoms. For each realization, we calculate the S/N(δ) with

S/N(δ) = −20 log
‖f − f̃δ‖
‖f‖

, (2.12)

where
f̃δ = SH x̃δ and x̃δ = arg min

x
‖x‖1 subject to Aδx = b.

For each experiment, the recovery of f̃δ is calculated by solving this optimization problem for 25
different realizations of Aδ with Aδ := RδMδS

H , where Rδ := Rns ⊗ INt with δ = ns/Ns. For
each simultaneous experiment, we also generate different realizations of the measurement matrix
M := GNs ⊗ INt .

From these randomly selected experiments, we calculate the average S/Ns for the recovery error,
S/N(δ), including its standard deviation. By selecting δ evenly on the interval δ ∈ [0.2, 0.8], we
obtain reasonable reliable estimates with error bars. Results of this exercise are summarized in
Figure 2.7. From these plots it becomes immediately clear that simultaneous acquisition greatly
improves recovery for all three transforms. Not only are the S/Ns better, but the spread in S/Ns
amongst the different reconstructions is also much less, which is important for quality assurance.
The plots validate CS, which predicts improved recovery for increased sampling ratios. Although
somewhat less pronounced as for the approximation S/Ns in Figure 2.5, our results again show
superior performance for curvelets compared to wave atoms and wavelets. This observation is
consistent with our earlier empirical findings.

Empirical oversampling ratios

The key factor that establishes CS is the sparsity ratio ρ that is required to recover wavefields with
errors that do not exceed a predetermined nonlinear approximation error (cf. Equation 2.11). The
latter sets the fraction of largest coefficients that needs to be recovered to meet a preset minimal
S/N for reconstruction.

Motivated by Mallat (2009), we introduce the oversampling ratio δ/ρ ≥ 1. For a given δ, we
obtain a target S/N from S/N(δ). Then, we find the smallest ρ for which the nonlinear recovery
S/N is greater or equal to S/N(δ). Thus, the oversampling ratio δ/ρ ≥ 1 expresses the sampling
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overhead required by compressive sensing. This measure helps us to determine the performance
of our CS scheme numerically. The smaller this ratio, the smaller the overhead and the more
economically favorable this technology becomes compared to conventional sampling schemes.

We calculate for each δ ∈ [0.2, 0.8]

δ/ρ with ρ = inf{ρ̃ : S/N(δ) ≤ S/N(ρ̃)}. (2.13)

When the sampling ratio approaches one from below (δ → 1), the data becomes more and more
sampled leading to smaller and smaller recovery errors. To match this decreasing error, the sparsity
ratio ρ→ 1 and consequently we can expect this oversampling ratio to go to one, δ/ρ→ 1.

Remember that in the CS paradigm, acquisition costs grow with the permissible recovery S/N
that determines the sparsity ratio. Conversely, the costs of conventional sampling grow with the size
of the sampling grid irrespective of the transform-domain compressibility of the wavefield, which
in higher dimensions proves to be a major difficulty.

The numerical results of our experiments are summarized in Figure 2.8. Our calculations use
empirical S/Ns for both the approximation errors of the synthesis coefficients as a function of ρ
and the recovery errors as a function of δ. The estimated curves lead to the following observations.
First, as the sampling ratio increases the oversampling ratio decreases, which can be understood
because the recovery becomes easier and more accurate. Second, recoveries from simultaneous
data have significantly less overhead and curvelets outperform wave atoms, which in turn perform
significantly better than wavelets. All curves converge to the lower limit (depicted by the dashed
line) as δ → 1. Because of the large errorbars in the recovery S/Ns (cf. Figure 2.7), the results for
the recovery from missing sequential sources are less clear. However, general trends predicted by
CS are also observable for this type of acquisition, but the performance is significantly worse than
for recovery with simultaneous sources. Finally, the observed oversampling ratios are reasonable
for both curvelet and wave atoms.

2.5 An academic case study

Now that we established that high S/N’s are achievable with modest oversampling ratios, we study
the performance of our recovery algorithm on a seismic line from the Gulf of Suez by comparing
two simultaneous-source scenarios with coincident source-receiver positions:

• ‘Land’ acquisition with random amplitude encoding: Here, sequential impulsive sources
are replaced by impulsive simultaneous ‘phase-encoded’ sources. Mathematically, simultane-
ous measurements are obtained by replacing the sampling matrix for the sources—normally
given by identity matrix—by a measurement matrix obtained by phase encoding along the
source coordinate. Following Romberg (2008) and Herrmann et al. (2009), we define the
measurement matrix by the following Kronecker product

M :=

I ⊗
Gaussian matrix︷ ︸︸ ︷

diag (η)F∗s diag
(
eîθ
)
Fs⊗I

 . (2.14)

In this expression, conventional sampling, which corresponds to the action of the identity
matrix I, is replaces by a ’random phase encoding’ consisting of applying a Fourier trans-
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form along the source coordinate (Fs), followed by uniformly drawn random phase rotations
θ ∈ [0, π], an inverse Fourier transform (F∗s ), and a multiplication by a a random sign vec-
tor (i.e., multiplication by diag (η) with (η) ∈ N(0, 1)). As shown by Romberg (2008), the
combined action of these operations corresponds to the action of a Gaussian matrix at re-
duced computational costs (see also Herrmann et al., 2009). Application of this matrix to a
conventionally-sampled seismic line turns sequential impulsive source into a simultaneous ‘su-
pershot’ where all sources fire simultaneously with weights drawn from a single Gaussian dis-
tribution. As before, the restriction operator selects a subset of n′s ‘supershots’ generated by
different randomly-weighted simultaneous sources. After restriction along the source coordi-
nate, the sampling matrix has an aspect(or undersampling) ratio of δ = n′s/ns. An example of
this type of sampling, resulting in a seismic line consisting of n′s � ns supershots, is included in
Figure 2.9. In this Figure, ns single impulsive-source experiments (2.9(a) left-hand-side plot)
become n′s simultaneous-source experiments (juxtapose Figure 2.9(a) left-hand-side plot and
2.9(b) left-hand-side plot). While this sort of sampling is perhaps physically unrealizable—
i.e., we typically do not have large numbers of vibroseis trucks available—it gives us the most
favorable recovery conditions from the compressive-sensing perspective. Therefore, our ‘Land’
acquisition will serve as a benchmark with which we can compare alternative and physically
more realistic acquisition scenarios.

• ‘Marine’ acquisition with random-time dithering: Here, sequential acquisition with a
single air gun is replaced by continuous acquisition with multiple air guns that fire continu-
ously at random times and at random locations. In this scenario, a seismic line is mapped
into a single long ‘supershot’. Mathematically, this type of acquisition is represented by the
following sampling operator

RM := [I ⊗T] . (2.15)

In this expression, the linear operator T turns sequential recordings (Figure 2.9(a) right-hand-
side plot) with synchronized impulsive shots (Figure 2.9(a) left-hand-side plot) into continuous
recordings with n∗s impulsive sources firing at random positions (Figure 2.9(c) left-hand-
side plot), selected uniformly-random from [1 · · ·ns] discrete source indices and from discrete
random time indices, selected uniformly from (0 · · · (n∗s − 1) × nt)] time indices. Note that
T acts both on the shot and the time coordinate. The resulting data is one long supershot’
that contains a superposition of n∗s impulsive shots. For plotting reasons, we reshaped in
Figure 2.9(c) (right-hand-side plot) this long record into multiple shorter records. Notice that
this type of ‘Marine’ acquisition is physically realizable as long as the number of simultaneous
sources involved is limited.

Aside from mathematical factors, such as the mutual coherence (cf. Equation 2.5) that deter-
mines the recovery quality, there are also economical factors to consider. For this purpose, Berkhout
(2008) proposed two performance indicators, which quantify the cost savings associated with simul-
taneous and continuous acquisition. The first measure compares the number of sources involved in
conventional and simultaneous acquisition and is expressed in terms of the source-density ratio

SDR =
number of sources in the simultaneous survey

number of sources in the conventional survey
. (2.16)

For ‘Land data’ acquisition, this quantity equals SDRLand = (ns × n′s)/ns = n′s and for ‘Marine
data’ SDRMarine = n∗s/ns. Remember that the number of sources refers the number of sources firing
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and not the number of source experiments. Clearly, ‘Land’ acquisition has a significant higher SDR.
Aside from the number of sources, the cost of acquisition is also determined by survey-time

ratio

STR =
time of the conventional sequential survey

time of the continuous and simultaneous recording
. (2.17)

Ignoring overhead in sequential shooting, this quantity equals STRLand = ns/n
′
s in the first and

STRMarine = ns × T0/T with T0 the time of a single sequential experiment and T the total survey
time of the continuous recording. The overall economic performance is measured by the product
of these two ratios. For ‘Land’ acquisition this product is proportional to ns and for ‘Marine’
acquisition proportional to n∗s × T0/T .

As we have seen from our discussion on compressive sensing, recovery depends on the mutual
coherence of the sampling matrix. So, the challenge really lies in the design of acquisition scenarios
that obtain the lowest mutual coherence while maximizing the above two economic performance
indicators. To get a better insight in how these factors determine the quality of recovered data,
we conduct a series of experiments by simulating possible alternative acquisition strategies on a
perviously traditionally recorded real seismic line.

First, we simulate ‘Land’ data for δ = 0.5 (64 simultaneous source experiments with all sources
firing) and study the recovery based on 2D and 3D curvelets. The former is based on a 2D discrete
curvelet transform along the source and receiver coordinates, and the discrete wavelet transform
along the remaining time coordinate:

S := C2 ⊗W. (2.18)

We conduct a similar experiment for the ‘Marine case’. In this case, we randomly select 128 shots
from the total survey time T = δ × (ns − 1)× T0, yielding the same aspect ratio for the sampling
matrix.

Figures 2.10 and 2.11 summarize the results for ‘Land’ and ‘Marine’ acquisition using recoveries
based on the 2D and 3D curvelet transform. The following observations can be made. First, it is
clear that accurate recovery is possible by solving an `1 optimization problem using SPG`1 (Berg
and Friedlander, 2008) while limiting the number of iterations for the 2D case to 500 and the 3D
case to 200. Second, the recovery results for 3D recovery of ‘Land’ data show and improvement
1.3 dB by exploiting 3D structure of the wavefronts. Similarly, we find an improvement of 3.9 dB for
the ‘Marine’ case. Both observations can be explained by the fact that the 3D curvelet transforms
attains higher sparsity because it explores continuity of the wavefield along all three coordinate
axes. Second, ‘Land’ acquisition clearly favors recovery by curvelet-domain sparsity promotion
compared to ‘Marine’ acquisition. This is true despite the fact that the subsampling ratio, i.e.,
the aspect ratio of the sampling matrices, are the same. Clearly this difference lies in the mutual
coherence of the sampling matrix. The columns of the sampling matrix for ‘Land’ acquisition are
more incoherent and hence more independent and this favors recovery. These observations are
confirmed by the S/Ns, which for ‘Land’ acquisition equal 10.3 dB and 11.6dB, for the 2D/3D
recovery, respectively, and 7.2 dB and 11.1 dB, for ‘Marine’ acquisition.

Unfortunately, recovery quality is not the only consideration. The economics expressed by the
SDR and STR also play a role. In the above setting, the ‘Land’ acquisition has a SDR = 64 and
STR = 2 while the ‘Marine’ acquisition has SDR = 1 and STR = 2. Clearly, the SDR for land
acquisition may not be realistic.

30



2.6 Discussion

The presented results illustrate that we are at the cusp of exciting new developments where ac-
quisition workflows are no longer impeded by subsampling related artifacts. Instead, we arrive at
acquisition schemes that control these artifacts. We accomplish by applying the following design
principles: (i) randomize—break coherent aliases by introducing randomness, e.g. by designing
randomly perturbed acquisition grids, or by designing randomized simultaneous sources; and (ii)
sparsify—utilize sparsifying transforms in conjunction with sparsity-promoting programs that sep-
arate signal and subsampling artifacts and that restore amplitudes. The implications of randomized
incoherent sampling go far beyond the examples presented here. For instance, our approach is ap-
plicable to land acquisition for physically realizable sources (Krohn and Neelamani, 2008; Romberg,
2008) and can be used to compute solutions to wavefield simulations (Herrmann et al., 2009) and
to compute full waveform inversion (Herrmann et al., 2009) faster. Because randomized sampling is
linear (Bobin et al., 2008), wavefield reconstructions and processing can be carried out incrementally
as more compressive data becomes available.

Indeed, compressive sensing offers enticing perspectives towards the design of future Land and
Marine acquisition systems. In order for this technology to become successful the following issues
need to be addressed, namely the performance of recovery

• from field data including all its idiosyncrasies. This will require an concerted effort from prac-
titioners in the field and theoreticians. For Marine acquisition, recent work by Moldoveanu
(2010) has shown early indications that randomized jittered sampling leads to improved imag-
ing.

• from discrete data with quantization errors. Addressing this issue calls for integration of
digital-to-analog conversion into compressive and recent progress has been made in this area
(see e.g. Güntürk et al., 2010);

• from Land data that has the imprint of statics. Addressing this issue will be essential because
severe static effects may adversely affect transform-domain sparsity on which recovery from
compressive-sampled data relies.

2.7 Conclusions

Following ideas from compressive sensing, we made the case that seismic wavefields can be recon-
structed with a controllable error from randomized subsamplings. By means of carefully designed
numerical experiments on synthetic and real data, we established that compressive sensing can in-
deed successfully be adapted to seismic data acquisition, leading to a new generation of randomized
acquisition and processing methodologies.

With carefully designed experiments and the introduction of performance measures for nonlinear
approximation and recovery errors, we established that curvelets perform best in recovery, closely
followed by wave atoms, and with wavelets coming in as a distant third, which is consistent with the
directional nature of seismic wavefronts. This finding is remarkable for the following reasons: (i) it
underlines the importance of sparsity promotion, which offsets the “costs” of redundancy and (ii)
it shows that the relative sparsity ratio effectively determines the recovery performance rather than
the absolute number of significant coefficients. Our observation of significantly improved recovery
for simultaneous-source acquisition also confirms predictions of compressive sensing. Finally, our
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analysis showed that accurate recoveries are possible from compressively sampled data volumes
that exceed the size of conventionally compressed data volumes by only a small factor.

The fact that compressive sensing combines sampling and compression in a single linear encoding
step has profound implications for exploration seismology that include: a new randomized sampling
paradigm, where the cost of acquisition are no longer dominated by resolution and size of the
acquisition area, but by the desired reconstruction error and transform domain sparsity of the
wavefield, and a new paradigm for randomized processing and inversion, where dimensionality
reductions will allow us to mine high-dimensional data volumes for information in ways, which
previously, would have been computationally infeasible.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Different (sub)sampling schemes and their imprint in the Fourier domain for a
signal that is the superposition of three cosine functions. Signal (a) regularly sampled
above Nyquist rate, (c) randomly three-fold undersampled according to a discrete uni-
form distribution, and (e) regularly three-fold undersampled. The respective amplitude
spectra are plotted in (b), (d) and (f). Unlike aliases, the subsampling artifacts due to
random subsampling can easily be removed using a standard denoising technique, e.g.,
nonlinear thresholding (dashed line), effectively recovering the original signal (adapted
from (Hennenfent and Herrmann, 2008)).
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(a)

(b)

Figure 2.2: Averaged recovery error percentages for a k-sparse Fourier vector reconstructed
from n time samples taken (a) regularly and (b) uniformly-randomly. In each plot,
the curves from top to bottom correspond to a subsampling factor ranging from two
to six (adapted from Hennenfent and Herrmann (2008)).
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(a)

(b)

Figure 2.3: Curvelets and seismic data. (a) 2D curvelets in the time-space domain and the
frequency-wavenumber domain. (b) Curvelets approximate curved singularities, i.e.,
wavefronts, with very few significant curvelet coefficients.
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Figure 2.4: Real common-receiver gather from Gulf of Suez data set.

Figure 2.5: Signal-to-noise ratios (S/Ns) for the nonlinear approximation errors of the
common-receiver gather plotted in Figure 2.4. The S/Ns are plotted as a function
of the sparsity ratio ρ ∈ (0, 0.02]. The plots include curves for the errors obtained
from the analysis and one-norm minimized synthesis coefficients. Notice the significant
improvement in S/Ns for the synthesis coefficients obtained by solving Equation 2.10.
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(a)

(b)

(c)

Figure 2.6: Recovery from a compressively-sampled common-receiver gather with 50% (δ =
0.5) of the sources missing. (a) Left: Receiver gather with sequential shots selected
uniformly at random. (a) Right: The same but for random simultaneous shots. (b)
Left: Recovery from incomplete data in (a) left-hand-side plot. (b) Right: The same
but now for the data in (a) right-hand-side plot. (c) Left: Difference plot between the
data in Figure 2.4 and the recovery in (b) left-hand-side plot. (c) Right: The same
but now for recovery from simultaneous data in (a) right-hand-side plot. Notice the
remarkable improvement in the recovery from simultaneous data.
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Figure 2.7: S/Ns (cf. Equation 2.12) for nonlinear sparsity-promoting recovery from compres-
sively sampled data with 20%−80% of the sources missing (δ ∈ [0.2, 0.8]). The results
summarize 25 experiments for 25 different values of δ ∈ [0.2, 0.8]. The plots include
estimates for the standard deviations. From these results, it is clear that simultaneous
acquisition (results in the left column) is more conducive to sparsity-promoting recov-
ery. Curvelet-based recovery seems to work best, especially towards high percentages
of data missing.
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Figure 2.8: Oversampling ratio δ/ρ as a function of the sampling ratio δ (cf. Equation 2.13)
for sequential- and simultaneous-source experiments. As expected, the overhead is
smallest for simultaneous acquisition and curvelet-based recovery.
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(a)

(b)

(c)

Figure 2.9: Different acquisition scenarios. (a) Left: Impulsive sources for conventional se-
quential acquisition, yielding 128 shot records for 128 receivers and 512 time sam-
ples. (a) Right: Corresponding fully sampled sequential data. (b) Left: Simultaneous
sources for ‘Land’ acquisition with 64 simultaneous-source experiments. Notice that
all shots fire simultaneously in this case. (b) Right: Corresponding compressively
sampled land data. (c) Left: Simultaneous sources for ‘Marine’ acquisition with 128
sources firing at random times and locations during a continuous total ’survey’ time of
T = 262s. (c) Right: Corresponding ‘Marine’ data plotted as a conventional seismic
line.
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(a) (b)

(c) (d)

Figure 2.10: Sparsity-promoting recovery with δ = 0.5 with the 2D curvelet transforms.
(a) 2D curvelet-based recovery from ‘Land’ data (10.3 dB). (b) The corresponding
difference plot. (c) 2D curvelet-based recovery from ‘Marine’ data (7.2 dB). (d)
Corresponding difference plot. Notice the improvement in recovery from ‘Land’ data.
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(a) (b)

(c) (d)

Figure 2.11: Sparsity-promoting recovery with δ = 0.5 with the 3D curvelet transforms.
(a) 3D curvelet-based recovery from ‘Land’ data (11.6 dB). (b) The corresponding
difference plot. (c) 3D curvelet-based recovery from ‘Marine’ data (11.1 dB). (d)
Corresponding difference plot. Notice the improvement in recovery compared to 2D
curvelet based recovery.
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Chapter 3

Randomized marine acquisition with
compressive sampling matrices

3.1 Summary

Seismic data acquisition in marine environments is a costly process that calls for the adoption of
simultaneous-source or randomized acquisition - an emerging technology that is stimulating both
geophysical research and commercial efforts. Simultaneous marine acquisition calls for the devel-
opment of a new set of design principles and post-processing tools. In this chapter, we discuss
the properties of a specific class of randomized simultaneous acquisition matrices and demonstrate
that sparsity-promoting recovery improves the quality of the reconstructed seismic data volumes.
We propose a practical randomized marine acquisition scheme where the sequential sources fire air
guns at only randomly time-dithered instances. We demonstrate that the recovery using sparse
approximation from random time-dithering with a single source approaches the recovery from
simultaneous-source acquisition with multiple sources. Established findings from the field of com-
pressive sensing indicate that the choice of the sparsifying transform that is incoherent with the
compressive sampling matrix can significantly impact the reconstruction quality. Leveraging these
findings, we then demonstrate that the compressive sampling matrix resulting from our proposed
sampling scheme is incoherent with the curvelet transform. The combined measurement matrix
exhibits better isometry properties than other transform bases such as a non-localized multidimen-
sional Fourier transform. We illustrate our results with simulations of “ideal” simultaneous-source
marine acquisition, which dithers both in time and space, compared with periodic and randomized
time-dithering.

3.2 Introduction

Data acquisition in seismic exploration forms one of the bottlenecks in seismic imaging and in-
version. It involves the collection and processing of massive data volumes, which can be up to
5-dimensional in nature (2D for the source positions × 2D for the receiver positions × 1D for the
time dimension). Constrained by the Nyquist sampling rate, the increasing sizes of these data vol-
umes pose a fundamental shortcoming in the traditional sampling paradigm as the size and desired

A version of this chapter has been published in Geophysical Prospecting, 2012, vol. 60, pp. 648–662.
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resolution of the survey areas continue to grow.
Conventional marine acquisition is carried out as single-source experiments of the subsurface

response. This means that the size of the field recording is a product of the number of source loca-
tions, the number of receiver locations active per source experiment, and the number of discretized
time samples proportional to the length of the reflection series. To reduce the threat of aliasing,
the source and receiver locations are preferably bound to a grid spacing of less than 50 meters,
therefore the number of receivers and sources are in turn direct functions of the size of the survey
area.

Geological considerations, such as the presence of salt bodies in the Gulf of Mexico, create a
need for wide azimuth coverage (i.e., receivers at large offsets), which pushes survey areas to cover
thousands of square kilometres, with transverse lengths of 50 kilometres or more. However, adhering
to a conventional single-source recording scheme requires recording vessels to move at a pace no
more than 10 kilometres per hour to maintain the desired source spacing. This represents a direct
conflict to the productivity of surveys, and makes large area acquisition particularly expensive. On
the other hand, it is entirely possible and even desirable in terms of streamer stability for survey
vessels to move faster (up to operational limits such as streamer drag), but doing so will not usually
allow sufficient time for the single-source seismic responses to completely decay before the vessels
have reached the next source position.

Several works in the seismic imaging literature have explored the concept of simultaneous or
blended source activation to account for this situation Beasley et al. (1998); de Kok and Gillespie
(2002); Beasley (2008); Berkhout (2008); Hampson et al. (2008). When sources are fired simultane-
ously, the main issue is the resulting interference between the responses of the different sources that
makes it difficult to estimate interference-free shot gathers. Therefore, the challenge is to recover
subtle late reflections that can be overlaid by interfering seismic response from other shots. We
will show that this challenge can be effectively addressed through recovery by sparsity promotion.

Recently, “compressed sensing” (Donoho, 2006; Candès and Tao, 2006) has emerged as an
alternate sampling paradigm in which randomized sub-Nyquist sampling is used to capture the
structure of the data with the assumption that it is sparse or compressible in some transform
domain. A signal is said to admit a sparse (or compressible) representation in a transform domain
if only a small number k of the transform coefficients are nonzero (or if the signal can be well
approximated by the k largest-in-magnitude transform coefficients). In seismic exploration, data
consists of wavefronts that exhibit structure in multiple dimensions. With the appropriate data
transformation, we capture this structure by a small number of significant transform coefficients
resulting in a sparse representation of data.

We rely on the compressed sensing literature to analyze a physically realizable simultaneous-
source marine acquisition technology where acquisition related costs are no longer determined by
the Nyquist sampling criteria. We also propose a random time-dithered acquisition scheme whose
performance using a single source approaches that of simultaneous-source acquisition. Under this
paradigm, data are no longer collected as separate shot records with single-source experiments.
Instead, we continuously record over the whole acquisition process, collecting a single long “super-
shot” record that is acquired over a time interval shorter than the cumulative time of conventional
marine acquisition (excluding downtime and overhead such as vessel turning). We then recover
the canonical sequential single-source shot record by solving a sparsity promoting problem. The
contributions of this work can be summarized as follows:

• We develop the relation between simultaneous-source sampling that is physically realizable
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in a marine setting and curvelet-based sparse recovery.

• We propose a random time-dithering marine acquisition scheme which can deliver even in the
case of a single source a sparse recovery performance that approaches that of simultaneous-
source acquisition with multiple sources with random time and space dithering.

• Through Monte-Carlo simulations, we estimate quantitative measures introduced in Com-
pressive Sensing that predict the performance of sparse recovery for a particular acquisition
design.

• Through simulated experiments, we demonstrate the performance of the proposed sampling
matrices in recovering real prestack seismic data.

3.3 Related work

The earliest works on simultaneous acquisition were formulated with land acquisition in mind, where
the prevalent use of vibroseis sweeps have allowed the freedom of employing sophisticated codes
in source signatures as a way to differentiate between the responses due to different simultaneous
sources (Allen et al., 1998; Beasley et al., 1998; Bagaini, 2006; Lin and Herrmann, 2009a). Marine
acquisition, on the other hand, rarely employs the marine vibrators that are the analog of the
vibroseis due to poor signal-to-noise ratio and low-frequency content. Consequently, the marine
case of simultaneous acquisition was less well-explored, as the more commonly used impulsive air-
gun sources are considerably more rigid when it comes to manipulating its signature. Literature
directly discussing the marine case topic did not appear until Beasley et al. (1998), where the source
“encoding” are limited to dithered activation times and locations. Near-simultaneous marine cases
were also discussed in de Kok and Gillespie (2002) and Hampson et al. (2008). The main messages
in these works seem to be that interferences due to simultaneous firing are often ignorable after
stacking and simple filtering, and thus do not seriously impact the imaging step.

However, many subsurface attribute inversion schemes still rely on single-source prestack data.
Recovering these volumes from simultaneous marine recordings did not truly become feasible until
the recognition that, as long as the shot timings are suitably randomly delayed, the resulting
interferences will appear noise-like in specific gather domains such as common-offset and common-
receiver. This property differentiates these events from responses due to single-source experiments
that remain coherent in these gather domains. This observation was reported in Stefani et al.
(2007); Moore et al. (2008) and Akerberg et al. (2008) with application to land acquisition in
Bagaini and Ji (2010). Subsequent processing techniques, which aim to remove noise-like source
crosstalk, vary from simple filters (Huo et al., 2009) to more sophisticated inversion-type algorithms
(Moore, 2010; Abma et al., 2010; Mahdad et al., 2011). The latter are designed to take advantage
of sparse representations for coherent seismic signals.

The aforementioned works did not investigate the link between sparsity-based recovery and the
specific properties of the acquisition system, but theoretical results from compressive sensing do
suggest a direct relationship between acquisition design and the expected fidelity of the achievable
recovery. An analysis for practical acquisition systems exist in terms of incoherency arguments
(Blacquière et al., 2009, which interestingly also considers receiver-side blending), but analysis in
terms of compressive sensing arguments remain challenging, as most existing mathematical results
in compressive sensing deal with rather abstract acquisition systems. Evidently, existing works
relating to seismic acquisition and compressive sensing only seem to suggest schemes suitable for
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forward-modelling in the computer. Neelamani et al. (2008, 2010) suggested an acquisition that
uses noise-like signals as sweeps for land-based acquisition. Herrmann et al. (2009) on the other
hand uses impulsive sources but requires modulation of each source by a randomly-determined
scaling in amplitude. These papers also suggested recovery using sparse inversion of the curvelet
representation of the data. We will keep the sparse inversion technique but consider more practical
acquisition systems suitable for field marine acquisition.

3.4 Compressed sensing overview

Compressive sensing (abbreviated as CS throughout the chapter) is a process of acquiring random
linear measurements of a signal and then reconstructing it by utilizing the prior knowledge that
the signal is sparse or compressible in some transform domain. One of the main advantages of
CS is that it combines sampling and compression in a single linear step, thus reducing the cost of
traditional Nyquist sampling followed by dimensionality reduction through data encoding. A direct
application which can benefit from this feature of CS is seismic acquisition where the acquisition
costs are now quantified by the transform-domain sparsity of seismic data instead of by the grid
size.

3.4.1 The sparse recovery problem

Suppose that x0 is an P dimensional vector with at most k � P nonzero entries. The sparse
recovery problem involves solving an underdetermined system of equations

b = Ax0, (3.1)

where b ∈ Cn, n < P represents the compressively sampled data of n measurements, and A ∈ Cn×P
represents the measurement matrix. When x0 is sparse—i.e., when there are only k < n nonzero
entries in x0— sparsity-promoting recovery can be achieved by solving the `0 minimization problem

x̃ = arg min
x∈CP

‖x‖0 subject to b = Ax, (3.2)

where x̃ represents the sparse approximation of x0, and the `0 norm ‖x‖0 is the number of non-zero
entries in x0. Note that if the `0 minimization problem were solvable in practice and every n × n
submatrix of A is invertible, then x̃ = x0 when k < n/2 (Donoho and Elad, 2003).

However, `0 minimization is a combinatorial problem and quickly becomes intractable as the
dimensions increase. Instead, the basis pursuit (BP) convex optimization problem shown below
can be used to recover an estimate x̃ at the cost of decreasing the level of recoverable sparsity k —
e.g. k . n/ log(N/n) < n/2 when A is a Gaussian matrix with independent identically distributed
(i.i.d.) entries (Candès et al., 2006c; Donoho, 2006). The BP problem is given by

x̃ = arg min
x∈CP

‖x‖1 subject to b = Ax, (3.3)

where x̃ represents the sparse (or compressible) approximation of x0, and the `1 norm ‖x‖1 is the
sum of absolute values of the elements of a vector x. The BP problem typically finds a sparse or
(under some conditions) the sparsest solution that explains the data exactly.

Finally, we note that x0 can be the sparse expansion of a physical domain signal f0 ∈ CN in
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some transform domain characterized by the operator S ∈ CP×N with P ≥ N . In this case, A can
be composed of the product of a sampling operator RM with the sparsifying operator S such that
A = RMSH , where H denotes the Hermitian transpose. Consequently, the acquired measurements
b are given by

b = Ax0 = RMf0.

We will elaborate more on this concept of sparse recovery in the randomized marine acquisition
section.

3.4.2 Recovery conditions

Next, we discuss some conditions that make unique recovery possible despite the fact that the linear
system we are solving is underdetermined, meaning that we have fewer equations than unknowns.
We present two sets of conditions, those that guarantee recovery of any arbitrary signal x0, and
those that are specialized for a particular class of signals x0.

Suppose that the vector x0 is an arbitrary signal that can be well approximated by the vector
xk which contains only the largest k coefficients of x0, i.e., the largest k � P nonzero entries of xk

contain most of the energy of x0. Let a be a number larger than 1. As long as any subset Λ of ak
columns of the n × P matrix A are linearly independent and constitute a submatrix AΛ which is
invertible and has a small condition number (close to 1), there exists some algorithm that recovers
x0 exactly.

To quantify this property of A, Candès and Tao (2005) define the restricted isometry property
(RIP) which states that there exists a constant 0 < δak < 1 for which

(1− δak)‖u‖22 ≤ ‖AΛu‖22 ≤ (1 + δak)‖u‖22, (3.4)

where Λ is any subset of {1 . . . P} of size |Λ| ≤ ak, AΛ is the submatrix of A whose columns are
indexed by Λ, and u is an arbitrary k-dimensional vector. The definition above indicates that if
every submatrix AΛ has an RIP constant that is close to zero, then its condition number approaches
1. More precisely, let σmin and σmax be the smallest and largest singular values of AΛ, respectively,
the RIP constant

δak = sup
Λ∈{1,...P}

max{1− σmin, σmax − 1}. (3.5)

That is, the RIP constant is the smallest upper bound on the maximum of {1−σmin, σmax− 1} for
all subsets Λ ∈ {1, . . . P} of size ak.

The RIP constant is difficult to compute since it requires evaluating δak for every subset of
ak columns of A and there are

(
P
ak

)
of such subsets. However, it is possible to find theoretical

upper bounds on the RIP constant for matrices whose entries are drawn i.i.d from sub-Gaussian
distributions. Otherwise, Monte Carlo simulations are used to approximate the value of δak. It
was shown in (Candès et al., 2006c) that if δ(a+1)k <

a−1
a+1 (e.g. δ3k <

1
3), then the BP problem can

recover an approximation x̃ to x0 with an error bounded by

‖x̃− x0‖2 ≤
C(δak)√

k
‖xk − x0‖1, (3.6)

where C(δak) is a well-behaved constant. This error bound indicates that if the matrix A has
the RIP for a specific sparsity level k, then the recovery error is bounded by the best k-term
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approximation error of the signal. Finally, we note that the condition on the RIP constant was
later improved by Candès (2008) to δ2k <

√
2− 1.

An easier to compute but less informative characterization of A is the mutual coherence µ(A).
The mutual coherence, which measures correlations between the columns of A, provides an upper
bound on δk < (k − 1)µ(A) and is given by

µ(A) = max
1≤i 6=j≤P

|aHi aj |
(‖ai‖2 · ‖aj‖2)

, (3.7)

where ai is the ith column of A. It is evident from equation (3.7) that the mutual coherence is
much easier to compute than the RIP constant. If we normalize the columns of A and form the
Gram matrix G = AHA, the mutual coherence is then simply equal to the maximum off-diagonal
element of G. Therefore, the mutual coherence is the largest absolute normalized inner product
between different columns of A (Bruckstein et al., 2009). Because near orthogonal matrices have
small correlations amongst their columns, matrices with small mutual coherence favor recovery.

3.5 Compressed sensing and randomized marine acquisition

Our focus in this section is on the design of source subsamplingschemes that favor recovery in com-
bination with the selection of the appropriate sparsifying transform. To illustrate the importance
of transform-domain sparsity and mutual coherence, we include sparse recovery by the curvelet
transform and the 3D Fourier transform in our simulations. Note that this Fourier transform is
a simple 3D transform and should not be confused with windowed Fourier transforms that are
typically used in seismic data processing.

3.5.1 Randomized marine acquisition as a CS problem

Consider marine data organized in a seismic line with Ns sources, Nr receivers, and Nt time sam-
ples. For simplicity, we assume that all sources see the same receivers, which makes our method
applicable to marine acquisition with ocean-bottom cables. The seismic line can be reshaped into
an N dimensional vector f , where N = NsNrNt. It is well known that seismic data admit sparse
representations by curvelets that capture “wavefront sets” efficiently (see e.g. Smith, 1998; Candès
and Demanet, 2005; Candès et al., 2006a; Herrmann et al., 2008, and the references therein). There-
fore, we wish to recover a sparse approximation f̃ of the discretized wavefield f from measurements
b = RMf .

Let S be a sparsifying operator that characterizes a transform domain of f , such that S ∈ CP×N
with P ≥ N . When S is an orthonormal basis, i.e. P = N and SSH = SHS = I where I is the
identity matrix, the signal f admits a unique transform domain representation x = Sf . On the
other hand, if S is a tight frame with P ≥ N and SHS = I, as in the case of the redundant
curvelet transform (Candès et al., 2006a), then the expansion of f in S is not unique. The sparse
approximation f̃ is obtained by solving the inverse problem

A := RMSH (3.8)

with the basis pursuit sparsity-promoting program

x̃ = arg min
x
‖x‖1 subject to Ax = b, (3.9)
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yielding f̃ = SH x̃. To solve this one-norm optimization problem, we use the SPG`1 solver (Berg
and Friedlander, 2008).

By solving a sparsity-promoting problem (Candès and Tao, 2006; Donoho, 2006; Herrmann et al.,
2007; Mallat, 2009), it is possible to reconstruct high-resolution data volumes from the randomized
samples at moderate sampling overhead compared to data volumes obtained after conventional
compression (see e.g., Donoho et al. (1999b) for wavelet-based compression, and Herrmann (2010)
for empirical oversampling rates for seismic problems). As in conventional compression, the recovery
error is controllable, but in the case of CS this recovery error depends on the sampling ratio γ = n

N .
This ratio is given by the number of compressive samples and the number of conventionally acquired
samples. From a simultaneous-source marine seismic perspective, this is the ratio between the size of
the continuous and simultaneous recordings and the size of the conventional sequential data. From
the perspective of the proposed single-source randomly time-dithered marine acquisition scheme,
this is the ratio between the size of the randomly overlapping sequential source recordings and the
size of the conventional non-overlapping sequential data. Consequently, in both the simultaneous-
source and the randomized acquisition scenarios, the survey time is reduced for a fixed number
of shots. Conversely, the number of shots recorded can also be increased given the same amount
of recording time as a conventional survey, which is useful for projects afflicted with poor shot
coverage.

3.5.2 Designing the randomized operator

The design of the linear sampling operator RM is critical to the success of the recovery algorithm.
RM may in some cases be separable and composed of an n×N restriction matrix R multiplying
an N×N mixing matrix M. This is not true in the case of simultaneous-source or the single source
random time-dithered marine acquisition where, as we will illustrate, the sampling operator RM
is nonseparable. In the simultaneous marine acquisition scenario, the classic sequential acquisition
with a single air gun is replaced with continuous acquisition with multiple air guns firing at random
times and at random locations that span the entire survey area. This “ideal” simultaneous-source
sampling scheme is illustrated in Figure 3.1(a) where the circles indicate the firing times and
locations of the multiple sources. Such simultaneous acquisition schemes require an air gun to be
located at each source location throughout the survey, which is infeasible. Alternatively, it may
be possible yet costly to send out several vessels with air guns that swarm over an ocean-bottom
array.

We present a new alternative which requires a very small number of vessels (possibly one) that
map the entire survey area while firing sequential shots at randomly time-dithered instances. In the
random time-dithered acquisition scheme a single air gun or multiple air guns are fired sequentially
with random lag intervals between shots. This random time-dithered marine acquisition scheme is
illustrated in Figure 3.1(b) where, similar to the simultaneous source scheme, the firing times are
still random but the source positions are sorted with respect to survey time. Remember that the
ordered acquisition is still random by virtue of the random time shifts as opposed to the case of a
periodic time-dithering scheme where we simply decrease the intershot time delays as depicted in
Figure 3.1(c). In the remainder of this chapter, we use the CS criteria of the previous section to
analyze the efficacy of this random time-dithered scheme combined with the appropriate transform
S and sparse approximation algorithm in recovering the discretized wavefield f from measurements
b = RMf .

First we develop the structure of the sampling operator RM. Suppose as before we have Ns
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Figure 3.1: Examples of (a) random dithering in source location and trigger times, (b) se-
quential locations and random time-triggers, and (c) periodic source firing triggers.

shots, Nr receivers, and every shot decays after Nt time samples. We first map the seismic line into
a series of sequential shots f of total length N = Ns × Nt × Nr and apply the sampling operator
RM to reduce f to a single long “supershot” of length n� N that consists of a superposition of Ns

impulsive shots. Again, to make the analysis more tractable, we ignore varying detector coverage
by assuming a fixed receiver spread.

Since the subsampling/mixing is performed in the source-time domain, the resulting sampling
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operator is defined as follows
RM := [I⊗T], (3.10)

where ⊗ is the Kronecker product, I is an Nr×Nr identity matrix, and T is a combined random shot
selector and time shifting operator. This structure decouples the receiver axis from the source-time
axis in the sampling operator allowing T to operate on the vectorized common receiver gathers.
Taking the Kronecker product of T with I simply repeats the operation of T on every available
receiver. The operator T turns the sequential-source recordings into continuous recordings with Ns

impulsive sources, and firing at time instances selected uniformly at random from {1, . . . (Ns−1)Nt}
discrete times1. Consequently, the operator T subsamples the NsNt samples recorded at each
receiver to m� NsNt samples resulting in a total number n = mNr compressive samples2.

In the marine case with air-gun sources, we can only work with binary (0, 1)-matrices because
we have virtually no control over the source signature and energy output of air-gun arrays. In the
conventional sequential acquisition scheme where no overlap exists between the source responses,
the operator T would be a block diagonal matrix of Ns blocks, each block being an Nt×Nt identity
matrix. Each Nt×Nt identity matrix corresponds to the time taken for a source response to decay.
This results in a large identity matrix of size NsNt × NsNt. The simultaneous-source acquisition
scheme destroys the block diagonal structure by placing the Nt ×Nt identity matrices at random
positions inside the matrix T. An example of the corresponding operator is shown in Figure 3.2(a).
In the case of random time-dithering, the Nt ×Nt identity matrices are situated in an overlapped
block diagonal structure as illustrated in Figure 3.2(b). The effect of random time-dithering on
the structure of the operator T can be seen when we look at the operator in Figure 3.2(c) which
corresponds to the periodic time-dithering scheme where we simply decrease the intershot time
delays.

3.5.3 Assessment of the sampling operators

In this section, we limit the assessment to the 2D case due to the large dimensionality of the
data in the 3D case. Consequently, the sampling operator A that we analyze here is constructed
as A = TSH , where S is a 2D curvelet or Fourier transform. The operator A is then the lowest
dimensional nonseparable component of the 3D Kronecker structure. These results constitute worst
case bounds for the 3D case since the performance of the Kronecker structure is bounded by the
worst case performance of its components (Duarte and Baraniuk, 2011).

Mutual-coherence based assessment

The randomized time-dithering operator results in a measurement matrix A that exhibits a smaller
mutual coherence compared to the periodic time-dithering sampling operator (cf. Figures 3.2(b)
and Figure 3.2(c)). Notice that in both cases we fixed the number of source experiments and the
number of collected samples. Aside from the randomization of the sampling operator, the choice of

1It is possible to subsample the number of sources such that ns < Ns shots are selected uniformly at random from
{1, . . . Ns} source locations. Such a configuration requires a modified operator T in which the number of Nt × Nt

identity submatrices is equal to ns.
2It is also possible to subsample the receiver axis or equivalently to randomize the locations of the available

receivers in order to produce a higher resolution receiver grid. This is achieved by replacing the Nr × Nr identity
matrix in RM by an nr ×Nr restriction matrix that selects the nr < Nr physical receiver coordinates from the high
resolution grid. Consequently, the number of collected CS measurements would be n = mnr.
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sparsifying transform also determines the mutual coherence. To study this combined effect, let us
consider the Gram matrix G = AHA of deterministic versus random sampling matrices A using
either curvelets or Fourier as sparsifying transforms.

Recall that the mutual coherence µ(A) is given by the largest off-diagonal element of G. As
Figures 3.3 and 3.4 indicate, there is big difference between the coherences for the deterministic
versus the randomized acquisitions. In fact, the mutual coherence of the curvelet based operator in
this example is 0.695 for random time-dithering compared with 0.835 for periodic time-dithering.
Similarly, the mutual coherence of the Fourier based operator is 0.738 for random time-dithering
compared with 0.768 for periodic time-dithering. For the Fourier and curvelet-based CS-sampling
there is only a slight difference between the coherences despite significant differences in appearances
of the Gram matrices. Therefore, the mutual coherence is a crude measure, which is confirmed in
our experimental section.

RIP-based assessment

While the calculation of the mutual coherence is straight forward, it can only give us a pessimistic
upper bound on the recoverable sparsity k of a signal (Bruckstein et al., 2009). A better bound
(i.e. a guarantee for larger k) can be achieved by evaluating the restricted isometry property (RIP)
of A. Bounding this RIP constant allows us to guarantee recovery of less sparse (larger k) signals
than what is guaranteed by the mutual coherence. The RIP constant δk of A is evaluated for all
submatrices of A of size n× k. Let Λ be a set of column indices of A of size k. For any matrix AΛ

the following property holds

σ2
min‖u‖22 ≤ ‖AΛu‖22 ≤ σ2

max‖u‖22,

where σmin and σmax are the smallest and largest singular values of the matrix AΛ, respectively.
The RIP constant δk is the smallest upper bound on δ̂Λ := max{1−σmin, σmax−1}, i.e. δk = max

Λ
δ̂Λ.

Consequently, if we can show that for all sets Λ ∈ {1, . . . P}, δ̂Λ < 1 then there exists some solver
which can recover any k-sparse signal. Moreover, if δ̂Λ <

√
2 − 1 or δ̂Λ < a−1

a+1 for some integer
a > 1, then with high probability we can guarantee that the BP program (4.2) can recover any
sparse signal with sparsity less than or equal to k/2 or k/a, respectively.

Unfortunately, there are
(
P
k

)
combinations of the AΛ submatrices in A, which makes evaluating

δ̂Λ computationally infeasible in realistic settings. To overcome this difficulty, and since the trans-
form coefficients of seismic images are often not strictly sparse, we first identify the appropriate k
as the smallest number of transform coefficients that capture say 90% of the signal energy. This
allows us to bound the recovery error in terms of the best k-term approximation of the signal. We
are unaware of theoretical results that lead to a bound on δ̂Λ for our particular choice of A. To
overcome this, we estimate this quantity by Monte-Carlo sampling over different realizations of the
sampling matrix and different realizations of the support. In our simulations, we generate 1000
realizations of the random time-dithering sampling matrix. For each of these matrices, we evaluate
δ̂Λ for 100 random realizations of the set Λ. The RIP constant δk is estimated as the maximum of
the computed values of δ̂Λ.

We plot the results of these simulations in Figure 3.5, which shows the histograms of δ̂Λ for the
curvelet and Fourier transforms. These simulations show that the δ̂Λ for the curvelet transform are
less than one, which means that this matrix has RIP, while the matrix based on Fourier may not
have RIP for certain realizations of Λ. As a consequence, we can expect higher fidelity for curvelet-
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based recovery. Notice that in the simulations for the curvelet case, the estimate for δ̂Λ ≈ 0.76
is larger than the theoretical bound of

√
2 − 1 which guarantees stable recovery using BP with

respect to the best k/2-term approximation x. This is mainly due to the choice of k we used in
our simulations. By choosing a smaller value for k, it would be possible to achieve the

√
2 − 1

mark at the expense of increasing the best k-term approximation error. For example, the condition
δ9s < 7/9 guarantees stable recovery with respect to the best s-term approximation of the signal,
where 8s = k and k = |Λ| is the same as in the simulations above.

On the other hand, the RIP constant of the Fourier-based operator may exceed one. Therefore,
it is not possible to find an s for which the RIP-based recovery conditions hold. We believe that
this observation reflects the poorer recovery results of the Fourier-based operator compared to the
curvelet-based operator as will be shown in the experimental results section.

3.5.4 Economic considerations

Aside from mathematical factors, such as the mutual coherence that determines the recovery qual-
ity, there are also economical factors to consider. For this purpose, Berkhout (2008) proposed two
performance indicators, which quantify the cost savings associated with simultaneous and contin-
uous acquisition. The first measure compares the number of sources involved in conventional and
simultaneous acquisition and is expressed in terms of the source-density ratio

SDR =
number of sources in the simultaneous survey

number of sources in the conventional sequential survey
. (3.11)

In the marine data acquisition setting, the SDR = ns
Ns

. Aside from the number of sources, the cost
of acquisition is also determined by survey-time ratio

STR =
time of the conventional sequential survey

time of the continuous and simultaneous recording
. (3.12)

The survey time ratio is therefore given by STR = NsNt
m which is equal to the aspect ratio of the

operator T. The overall economic performance is measured by the product of these two ratios.

3.6 Experimental results

We illustrate the effectiveness of our simultaneous source acquisition approach by studying the per-
formance of the three sampling schemes; simultaneous-source acquisition, random time-dithering,
and periodic time-dithering, on a seismic line from the Gulf of Suez (Figure 3.6 shows a common-
shot gather). The fully sampled sequential data is composed of Ns = 128 shots, Nr = 128 receivers
and Nt = 512 time samples with 12.5 m source-receiver sampling interval. Prestack data from
sequential sources is recovered using `1 minimization with 3D curvelets as the sparsifying trans-
form. For comparison, we perform sparse recovery with a 3D Fourier transform and with the more
rudimentary median filtering, which can also be used to suppress the crosstalk. Note that this
Fourier transform is a simple 3D transform and not a windowed Fourier transform that is typically
used in seismic data processing. We also perform linear recovery using the adjoint of the sampling
operator followed by 2D median filtering in the offset domain for additional comparison.

We evaluate the recovery performance in terms of the signal-to-noise ratio (S/N) which is
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computed as follows for a signal x and its estimate x̃:

S/N(x, x̃) = −20 log10

‖x− x̃‖2
‖x‖2

. (3.13)

3.6.1 Simultaneous-source acquisition

We simulate simultaneous-source marine acquisition by randomly selecting 128 shots from the total
survey time t = Ns × Nt with a subsampling ratio γ = m

Ns×Nt
= 1

STR = 0.5. The subsampling is
performed only in time so that the length of the “supershot” is half the length of the conventional
survey time of sequential-source data. Figure 3.7(a) represents the “supershot” plotted as conven-
tional survey by applying the sampling operator RM to sequential-source data. Notice that this
type of “marine” acquisition is physically realizable only with a limited number of simultaneous
sources, although truly random positioning of sources may still prove impractical depending on the
manoeuvrability of source vessels.

To exploit continuity of the wavefield along all three coordinate axes, we use the 3D curvelet
transform Ying et al. (2005). Figures 3.7(b) and 3.7(c) show the recovery and residual results,
respectively. The recovered data volume has an S/N of 10.5 dB and was obtained with 200 iterations
of solving the BP problem using SPG`1.

3.6.2 Random time-dithering

To overcome the limitation in the number of simultaneous sources required by the “ideal” simultaneous-
source approach, we propose the random time-dithering scheme. Under this scheme, we allow all
128 shots to be fired sequentially with adjacent shots firing before the previous shot fully decays.
We impose a random overlap between the shot records created by a random time lag between the
firing of each shot. Therefore, the start time of each shot is chosen uniformly at random between
the starting time of the previous shot and the time by which the previous shot record decays.

In our simulations, we apply a sampling operator with subsampling ratio γ = 0.5. A section of
the “supershot” obtained by random time-dithering is shown in Figure 3.8(a). Using the 3D curvelet
transform, a recovery of 8.06 dB is achieved (Figure 3.8(b)). Figure 3.8(c) shows the corresponding
residual plot. Figure 3.9 summarizes the results for recovery based on the 3D Fourier transform.
The recovered data volume has an S/N = 6.83 dB, which agrees with our predictions for RIP
constants estimated in the previous section.

We also demonstrate the effectiveness of sparse recovery compared with linear recovery using
the adjoint of the sampling operator RM followed by 2D median filtering in the midpoint-offset
domain. The recovery results are shown in Figure 3.10. The resulting S/N, 3.92 dB, is considerably
lower than the S/Ns achieved by sparse recovery.

3.6.3 Periodic time-dithering

The importance of the “randomness” in time-dithering becomes evident when we compare the
recovery of this sampling operator with that of a periodic time-dithering operator. Under the
same subsampling conditions and sparsifying transform, the periodic time dither operator can only
achieve an S/N = 4.80 dB. Figure 3.11 shows the periodic time-dithered “supershot”, the recovered
data volume and the corresponding residual. This poor performance is consistent with predictions
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of CS that require randomness in the design of sampling matrices. Furthermore, comparing sparse
recovery with linear recovery of 1.26 dB (Figure 3.12), demonstrates the effectiveness of the former.

Finally, we illustrate the recovery for five subsampling ratios (γ = 0.75, 0.50, 0.33, 0.25, 0.10)
for each of the schemes described above. Table 3.1 summarizes the S/Ns for the three sampling
schemes based on the 3D curvelet and 3D Fourier transforms.

Subsample
ratio

Simultaneous
acquisition

Random time-
dithering

Periodic time-
dithering

1/STR Curvelet Fourier Curvelet Fourier Curvelet Fourier

0.75 13.0 10.2 11.2 9.44 6.93 4.93
0.50 10.5 7.06 8.06 6.83 4.80 2.42
0.33 8.31 4.50 5.33 4.10 7.32 1.37
0.25 6.55 2.93 4.35 2.88 2.85 0.89
0.10 2.82 0.27 1.14 0.20 1.60 0.19

Table 3.1: Summary of recovery results (S/N in dB) based on the 3D curvelet and the 3D
Fourier transforms for the three sampling schemes.

3.7 Conclusions

Recovering single-source prestack data volumes from simultaneously acquired marine data essen-
tially involves removing noise-like crosstalk from coherent seismic responses. Many authors have
noticed the important role of sparsity-based recovery for this problem, but few have thoroughly
investigated the underlying interaction between acquisition design and reconstruction fidelity, es-
pecially in the marine setting. In contrast, we identify simultaneous marine acquisition as a linear
subsampling system, which we subsequently analyze by using metrics from Compressive Sensing.
We also propose a randomized time-dithering scheme which can match with a single source the
performance of simultaneous-source acquisition. With the introduction of methods to calculate
the mutual coherence and restricted isometry constants we are able to assert the importance of
randomness in the acquisition system in combination with the appropriate choice for the sparsify-
ing transform in the reconstruction. By comparing reconstructions on a real seismic marine line
with different sparsifying transforms and sampled with different synthetic acquisitions, we quanti-
tatively verified that more randomness in the acquisition system and more compressible transforms
improve the mutual coherence and restricted isometry constants, which predict a higher reconstruc-
tion quality. As such this work represents a first step towards a comprehensive theory that predicts
the reconstruction quality as a function of the type of acquisition.
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Figure 3.2: Example of (a) “ideal” simultaneous-source operator defined by a Bernouilli ma-
trix, (b) operator that corresponds to the more realizable Marine acquisition by the
random time-dithering, and (c) sampling operator with periodic time-dithering.
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Figure 3.3: Gram matrices of example random time-dithering and constant time-dithering
operators, top row, with Ns = 10 and Nt = 40 coupled with a curvelet transform. The
resulting mutual coherence is 0.695 for random time-dithering compared with 0.835 for
periodic time-dithering. The center plots show column the center column of the Gram
matrices. The bottom row shows column 252 (one third) of the Gram matrices.
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Figure 3.4: Gram matrices of example random time-dithering and constant time-dithering
operators, top row, with Ns = 10 and Nt = 40 coupled with a Fourier transform. The
resulting mutual coherence is 0.738 for random time-dithering compared with 0.768 for
periodic time-dithering. The center plots show column the center column of the Gram
matrices. The bottom row shows column 133 (one third) of the Gram matrices.
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Figure 3.5: Comparison between the histograms of δ̂Λ from 1000 realizations of AΛ, the
random time-dithering sampling matrices A = RMSH restricted to a set Λ of size k,
the size support of the largest transform coefficients of a real (Gulf of Suez) seismic
image. The transform S is (a) the curvelet transform and (b) the nonlocalized 2D
Fourier transform. The histograms show that randomized time-shifting coupled with
the curvelet transform has better behaved RIP constant (δ̂Λ = max{1 − σmin, σmax −
1} < 1) and therefore promotes better recovery.
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Figure 3.6: A common-shot gather from Gulf of Suez data set.
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(a) (b)

(c)

Figure 3.7: (a) Simultaneous-source marine data (γ = 0.5) shown as a section between 45 to
50 seconds of the ”supershot”. (b) Recovery from simultaneous ‘marine’ data (S/N =
10.5 dB). (c) The corresponding residual plot.
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(a) (b)

(c)

Figure 3.8: (a) Random time-dithered “marine” data (γ = 0.5) shown as a section between
45 and 50 seconds of the “supershot”. (b) Sparse recovery with curvelet transform and
S/N = 8.06dB. (c) The corresponding residual plot.
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(a) (b)

Figure 3.9: (a) Sparse recovery with 3D Fourier transform from the same data shown in
Figure 3.8(a), S/N = 6.83dB. (b) The corresponding residual plot.
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(a) (b)

Figure 3.10: (a) Data recovered by applying adjoint of the sampling operator RM and 2D
median filtering, from the same data shown in Figure 3.8(a), with S/N = 3.92dB. (b)
The corresponding residual plot.
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(a) (b)

(c)

Figure 3.11: (a) Periodic time-dithered “marine” data (γ = 0.5) shown as a section between
45 and 50 seconds of the “supershot”. (b) Sparse recovery with curvelet transform
and S/N = 4.80dB. (c) The corresponding residual plot.
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(a) (b)

Figure 3.12: (a) Data recovered by applying adjoint of the sampling operator RM and 2D
median filtering, from the same data shown in Figure 3.11(a), with S/N = 1.26dB.
(b) The corresponding residual plot.
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Chapter 4

Simultaneous-source time-jittered
marine acquisition

4.1 Summary

Adapting ideas from the field of compressive sensing, we show how simultaneous- or blended-
source acquisition can be setup as a compressive sensing problem. This helps us to design a prag-
matic simultaneous-source time-jittered marine acquisition scheme where multiple source vessels
sail across an ocean-bottom array firing air guns at jittered source locations and instances in time,
resulting in better spatial sampling, and speedup acquisition. Furthermore, we can significantly
impact the reconstruction quality of conventional seismic data from simultaneous jittered data and
demonstrate successful recovery by sparsity promotion. In contrast to random (sub)sampling, ac-
quisition via jittered (sub)sampling helps in controlling the maximum gap size, which is a practical
requirement of wavefield reconstruction with localized sparsifying transforms. Results are illus-
trated with simulations of time-jittered marine acquisition on a seismic line, which translates to
jittered source locations for a given speed of the source vessel.

4.2 Introduction

Constrained by the Nyquist sampling rate, the increasing sizes of the conventionally acquired marine
seismic data volumes pose a fundamental shortcoming in the traditional sampling paradigm and
make large area acquisition particularly expensive. Physical constraints on the speed of a source
vessel during acquisition, on the minimal time interval between adjacent shots (to avoid overlaps),
and on the minimal spatial shot sampling further aggravate the acquisition related costs. Several
works in the seismic acquisition literature have explored the concept of simultaneous- or blended-
source activation to account for these situations (Beasley et al., 1998; de Kok and Gillespie, 2002;
Beasley, 2008; Berkhout, 2008; Hampson et al., 2008; Moldoveanu and Fealy, 2010).

For simultaneous-source acquisition, the challenge is to estimate interference-free shot gathers
(source separation or deblending) and recover small subtle late reflections that can be overlaid
by interfering seismic responses from other shots. Stefani et al. (2007), Moore et al. (2008) and

A version of this chapter has been published in SEG Technical Program Expanded Abstracts, 2013, vol. 32, pp.
1–6.
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Akerberg et al. (2008) have observed that the interferences in simultaneous (or blended) data will
appear noise-like in specific gather domains such as common offset and common receiver, turning
the separation into a typical (random) noise removal procedure. Application to land acquisition
is reported in Bagaini and Ji (2010). Subsequent processing techniques vary from vector-median
filters (Huo et al., 2009) to inversion-type algorithms (Moore, 2010; Abma et al., 2010; Mahdad
et al., 2011). The former are mostly ”processing” techniques where the interfering energy (i.e.,
source crosstalk) is removed and not mapped back to coherent energy, at least not in a single
step alone, while the latter (inversion-type algorithms) are designed to take advantage of sparse
representations of coherent seismic signals, which is advantageous because they exploit inherent
structure in seismic data. In this chapter, we show that the challenge of source separation can be
effectively addressed through a combination of tailored simultaneous-source acquisition design and
curvelet-based sparsity-promoting recovery, where we map noise-like or incoherent source crosstalk
to coherent seismic responses.

Recently, compressive sensing (CS, Donoho, 2006; Candès and Tao, 2006) has emerged as an
alternate sampling paradigm in which randomized sub-Nyquist sampling is used to capture the
structure of the data with the assumption that it is sparse or compressible in some transform do-
main. Seismic data consists of wavefronts that exhibit structure across different scales and amongst
different directions. With the appropriate data transformation, we can capture this structure by a
small number of significant transform coefficients resulting in a sparse representation of data. In our
work, we rely on the CS literature to analyze a physically realizable time-jittered marine acquisi-
tion scheme, and recover the canonical sequential single-source (interference-free/nonsimultaneous)
data by solving a sparsity-promoting problem (Mansour et al., 2012a; Wason and Herrmann, 2012).
Hence, we develop a relation between simultaneous-source acquisition design and (curvelet-based)
sparse recovery, within the CS framework.

4.3 Compressive sensing

Compressive sensing is a signal processing technique that allows a signal to be sampled at sub-
Nyquist rate and reconstructs it (from relatively few measurements) by utilizing the prior knowledge
that the signal is sparse or compressible in some transform domain, i.e., if only a small number k
of the transform coefficients are nonzero or if the signal can be well approximated by the k largest-
in-magnitude transform coefficients. For high resolution data represented by the N -dimensional
vector f0 ∈ RN , which admits a sparse representation x0 ∈ CP in some transform domain charac-
terized by the operator S ∈ CP×N with P ≥ N , the sparse recovery problem involves solving an
underdetermined system of equations

b = Ax0, (4.1)

where b ∈ Cn, n � N ≤ P , represents the compressively sampled data of n measurements, and
A ∈ Cn×P represents the measurement matrix. We denote by x0 a sparse synthesis coefficient
vector of f0. When x0 is strictly sparse (i.e., only k < n nonzero entries in x0), sparsity-promoting
recovery can be achieved by solving the `0 minimization problem, which is a combinatorial problem
and quickly becomes intractable as the dimension increases. Instead, the basis pursuit (BP) convex
optimization problem

x̃ = arg min
x∈CP

‖x‖1 subject to b = Ax, (4.2)
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can be used to recover x̃, where x̃ represents the estimate of x0, and the `1 norm ‖x‖1 is the
sum of absolute values of the elements of a vector x. The BP problem typically finds a sparse or
(under some conditions) the sparsest solution that explains the measurements exactly. The matrix
A can be composed of the product of a restriction operator (subsampling matrix) R ∈ Rn×N , an
N ×N mixing matrix M, and the sparsifying operator S such that A := RMSH , here H denotes
the Hermitian transpose. Consequently, the measurements b are given by b = Ax0 = RMf0.
A seismic line with Ns sources, Nr receivers, and Nt time samples can be reshaped into an N
dimensional vector f , where N = Ns ×Nr ×Nt. For simplicity, we assume that all sources see the
same receivers, which makes our method applicable to marine acquisition with ocean-bottom cables
or nodes (OBC or OBN). We wish to recover a sparse approximation f̃ of the discretized wavefield
f from measurements b = RMf (jittered data). This is done by solving the BP sparsity-promoting
program (Equation 4.2), using the SPG`1 solver (Berg and Friedlander, 2008), yielding f̃ = SH x̃.

4.4 Time-jittered marine acquisition

The success of CS hinges on randomization of the acquisition, since random subsampling renders
coherent aliases (e.g., interferences due to overlapping shot records in simultaneous-source acquisi-
tion) into harmless incoherent random noise, effectively turning the interpolation problem, which
is also a source separation problem in our case, into a simple denoising problem (Hennenfent and
Herrmann, 2008). Given limited control over the source signature of the air guns and their recharge
time between shots (typically, a minimal time interval of 10.0 s is required), the only way to invoke
randomness is to work with sources that fire at random times that map to random shot locations
for a given speed of the source vessel. Unfortunately, random (sub)sampling does not provide con-
trol on the maximum gap size between adjacent measurements (Figure 4.1), which is a practical
requirement of wavefield reconstruction with localized sparsifying transforms such as curvelets. Jit-
tered (sub)sampling, on the other hand, shares the benefits of random sampling and offers control
on the maximum gap size (Figure 4.1) (Hennenfent and Herrmann, 2008). Since we are still on the
grid, this is a case of discrete jittering. A jittering parameter, dictated by the type of acquisition
and parameters such as the minimum distance (and/or minimum recharge time for the air guns)
required between adjacent shots, relates to how close and how far the jittered sampling point can
be from the regular coarse grid, effectively controlling the maximum acquisition gap.

The design of the sampling operator M is critical to the success of the recovery algorithm. Note
that we overwrite our notation of the sampling operator from Chapter 3 and define the operator
M as the n×N acquisition operator. We present a pragmatic marine acquisition scheme wherein
a single (and/or multiple) source vessel(s) maps the survey area while firing shots at jittered time
instances, which translate to jittered shot locations for a fixed (conventional) speed of the source
vessel. Conventional acquisition with one source vessel and two air gun arrays where each air-gun
array fires at every alternate periodic location is called flip-flop acquisition. If we wish to acquire
10.0 s-long shot records at every 12.5 m, the speed of the source vessel would have to be reduced
to about 1.25 m/s (≈ 2.5 knots). The conventional speed of seismic source vessels is about 2.0–2.5
m/s (≈ 4–5 knots). Figure 4.2(a) illustrates a conventional acquisition scheme with one source
vessel travelling at about 1.25 m/s carrying two air-gun arrays, where each air-gun array fires every
20.0 s (or 25.0 m) in a flip-flop manner, resulting in nonoverlapping shot records. In time-jittered
acquisition, the source vessel travels at a conventional speed of about 2.5 m/s with air-gun arrays
firing every 20.0 s (or 50.0 m) jittered time instances (or shot locations), i.e., the minimum interval
between the jittered times (or shots) is maintained at 10.0 s (or 25.0 m, a practical requirement)
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Figure 4.1: Schematic comparison between different subsampling schemes. η is the subsam-
pling factor. The vertical dashed lines define the regularly subsampled spatial grid.

and the maximum interval is 30.0 s (or 75.0 m). Figure 4.2(b) depicts this scenario resulting in
overlapping shot records. This corresponds to (η =) 2× subsampled jittered acquisition grid for a
conventional acquisition with nonoverlapping shot records at every 12.5 m. η is the subsampling
factor, which is calculated as

η =
1

number of air-gun arrays
× jittered spatial grid interval

conventional spatial grid interval
=

1

2
× 50.0 m

12.5 m
= 2. (4.3)

Note that the source vessel travels at a fixed conventional speed during the time-jittered acquisition,
i.e., it does not accelerate or decelerate while firing at jittered instances in time (cf. Chapter 3),
which would render this scenario impractical.

With a fixed (conventional) speed of the source vessel, if conventional acquisition could be
carried out at a shot interval of 6.25 m then (following Equation 4.3) acquisition on the 50.0 m
jittered grid would be a result of a subsampling factor of 4 (Figures 4.2(c) and 4.2(d)). Hence,
in order to recover data at finer source (and/or receiver) sampling intervals of 12.5 m, 6.25 m,
etc., from simultaneous jittered data, the recovery problem becomes a joint source separation and
interpolation problem. Since subsampling is performed in the source-time domain, the acquisition
operator is defined as

M := [I⊗T], (4.4)

where ⊗ is the Kronecker product, I is an Nr×Nr identity matrix, and T is a combined jittered-shot
selector and time-shifting operator. Taking the Kronecker product of T with I simply repeats the
operation of T on every available receiver. Note that it is also possible to subsample the receiver
axis or equivalently randomize/jitter positions of the ocean-bottom transducers (as in the case of
OBN acquisition).

Following the same methods of estimating the RIP (restricted isometry property) constant, δak,
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as used in Chapter 3, we analyze the performance of the proposed physically-realizable (or realistic)
time-jittered acquisition scheme by estimating δak. In summary, if σmin and σmax are the smallest
and largest singular values of AΛ, respectively, then the RIP constant

δak = sup
Λ∈{1,...P}

max{1− σmin, σmax − 1}. (4.5)

That is, the RIP constant is the smallest upper bound on the maximum of {1 − σmin, σmax − 1}
for all subsets Λ ∈ {1, . . . P} of size ak. The RIP constant is difficult to compute since it requires
evaluating δak for every subset of ak columns of A and there are

(
P
ak

)
of such subsets. Therefore,

we use Monte Carlo simulations to approximate the value of δak. Figure 4.3 shows the histogram of
the estimated RIP constant, δ̂Λ from 100 realizations of AΛ, for the realistic time-jittering matrix
A = MSH restricted to a set Λ of size k, the size support of the largest transform-domain (i.e.,
curvelet-domain) coefficients of a seismic image. For each of these 100 realizations, we evaluate δ̂Λ

for 100 random realizations of the set Λ. For the proposed time-jittering matrix, the estimated RIP
constant, δ̂Λ = max{1−σmin, σmax−1} < 1, illustrating that the design of this realistic time-jittered
marine acquisition will favor recovery by curvelet-domain sparsity promotion.

4.5 Experimental results

We illustrate the performance of our time-jittered marine acquisition scheme on simultaneous
(time-jittered) data generated from a real seismic line from the Gulf of Suez. We use two sets
of conventional data, one sampled at a source (and receiver) sampling of 12.5 m and the other
sampled at a source (and receiver) sampling of 6.25 m, with Ns = 128 shots, Nr = 128 receivers
and Nt = 1024 time samples each. Figures 4.4(a) and 4.4(b) show a common-receiver and a
common-shot gather, respectively, from conventional data sampled at 12.5 m. We recover (conven-
tional) dense periodically-sampled seismic lines from simultaneous data via `1 minimization using
2D curvelets (Fast discrete curvelet transform (FDCT), Candès et al. (2006a)) Kroneckered with
1D wavelets as the sparsifying transform. We also compare recoveries with 3D curvelets (Ying
et al., 2005). It is well known that seismic data admit sparse representations by curvelets that
capture “wavefront sets” efficiently (Smith, 1998; Candès and Demanet, 2005; Candès et al., 2006a;
Herrmann et al., 2008).

Figures 4.5(a) and 4.5(b) display 100.0 s of the simultaneous jittered data volumes for the
12.5 m and 6.25 m spatial sampling, respectively, where the periodic coarse 50.0 m grid is jittered
using our jitter subsampling scheme (Figure 4.1) resulting in overlapping shot records. If we
simply apply the adjoint of the acquisition operator to the simultaneous data, i.e., MHy, the
interferences (or source crosstalk) due to overlaps in the shot records appear as random noise, i.e.,
incoherent and nonsparse, in common-receiver gathers (Figures 4.6(a) and 4.6(c)) and coherent
overlaps in common-shot gathers (Figures 4.6(b) and 4.6(d)). Our aim is to recover conventional,
nonoverlapping shot records from simultaneous data by working with the entire simultaneous data
volume, and not on a shot-by-shot basis. We compare recoveries by computing a signal-to-noise
ratio:

S/N(f , f̃) = −20 log10

‖f − f̃‖2
‖f‖2

, (4.6)

Sparsity-promoting recovery results in a S/N of 11.5 dB for 2D curvelets and 12.4 dB for 3D
curvelets, effectively separating the jittered data and interpolating it to a fine 12.5 m grid. The
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slight improvement in S/N with 3D curvelets is attributed to exploiting sparse structure of seismic
data with curvelets, which represent curve-like singularities optimally (Candès and Demanet, 2005),
in all three dimensions, and therefore lead to sparser representations. The improvement in recovery
is small potentially due to small size of the data volumes. Moreover, this improvement comes
at the expense of increased computational costs because the 3D FDCT is about 24× redundant,
in contrast to the 8× redundant 2D FDCT, rendering large-scale processing extremely memory
intensive, and hence impractical. Figures 4.7(a) – 4.7(d) show a recovered common-receiver and
common-shot gather and the corresponding residual, respectively, for recovery with 2D FDCT.
The corresponding recoveries for 3D FDCT are shown in Figures 4.7(e) – 4.7(h). Figures 4.8(a)
– 4.8(h) show the corresponding zoom sections where most of the weak late-arriving events are
well recovered. Similarly, for data with the spatial sampling of 6.25 m, recovery with 2D FDCT
results in a S/N of 4.9 dB while the S/N with 3D FDCT is 5.7 dB. Figures 4.9(a) – 4.9(h) show the
corresponding recoveries with the zoom sections shown in Figures 4.10(a) – 4.10(h). The artifacts
near the bottom of the zoom sections in Figures 4.10(e) – 4.10(h) can possibly be reduced by
running more iterations of the recovery algorithm. Note that the S/N’s decrease for increased
subsampling factor η = 4 (for 6.25 m spatial sampling grid). This observation is in accordance with
CS theory, where the recovery quality decreases for increased subsampling.

To quantify the cost savings associated with simultaneous-source acquisition, we measure the
performance of the proposed acquisition design and subsequent recovery strategy in terms of an
improved spatial-sampling ratio (ISSR), defined as

ISSR =
number of shots recovered via sparsity-promoting inversion

number of shots in simultaneous-source acquisition
. (4.7)

For time-jittered marine acquisition, a subsampling factor η = 2, 4, etc., implies a gain in the
spatial sampling by a factor of 2, 4, etc. In practice, this corresponds to an improved efficiency of
the acquisition by the same factor. Recently, Mosher et al. (2014) have shown that factors of two
or as high as ten in efficiency improvement are achievable in the field.

One of the performance indicators proposed by Berkhout (2008) is the survey-time ratio (STR):

STR =
time of conventional acquisition

time of simultaneous-source acquisition
, (4.8)

If we wish to acquire 10.0 s-long shot records at every 12.5 m, the speed of the source vessel would
have to be reduced to about 1.25 m (≈ 2.5 knots). As mentioned previously, in simultaneous-source
acquisition, speed of the source vessel is approximately maintained at (the standard) 2.5 m/s (≈
5.0 knots). Therefore, for a subsampling factor of η = 2, 4, etc., there is an implicit reduction in
the survey time by 1

η .

4.6 Conclusions

Simultaneous-source time-jittered marine acquisition is an instance of compressive sensing, which
shares the benefits of random sampling while offering control on the maximum acquisition gap size.
The results vindicate the importance of randomness in the acquisition scheme, wherein the more
randomness we have in terms of the air-gun firing times/shot locations (as shown here) and/or
receiver locations, the more readily we can adapt ideas from CS to sample data economically (i.e.,
acquire subsampled data) and recover dense periodically-sampled data via structure promotion.
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Using 3D FDCT for sparsity-promoting recovery results in slightly improved recoveries compared
to 2D FDCT, since it exploits curvelet-domain sparsity in all three dimensions, but at the expense
of increased computational costs. The redundancy of 3D FDCT (about 24 ×) renders large-scale
processing extremely memory intensive, and hence impractical. The combination of randomized
sampling and sparsity-promoting recovery technique aids in improved source separation coupled
with interpolation to finer and finer sampling grids, mitigating acquisition-related costs in the
increasingly complicated regions of the earth to produce images of desired resolution. Future work
includes working with nonuniform sampling grids.
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(a) (b)

(c) (d)

Figure 4.2: Acquisition geometry. (a,c) Conventional marine acquisition with one source ves-
sel and two air-gun arrays for a spatial sampling of 12.5 m and 6.25 m, respectively.
(b,d) The corresponding time-jittered marine acquisition with η = 2 and η = 4, respec-
tively. Note the acquisition speedup during jittered acquisition, where the recording
time is reduced to one-half and one-fourth the recording time of the conventional ac-
quisition, respectively.
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(a)

Figure 4.3: Histogram of δ̂Λ from 100 realizations of AΛ, restricted to a set Λ of size k, the
size support of the largest curvelet-domain coefficients of a real (Gulf of Suez) seismic
image.

(a) (b)

Figure 4.4: Conventional data for a seismic line from the Gulf of Suez. (a) Common-receiver
gather spatially sampled at 12.5 m. (b) Common-shot gather spatially sampled at 12.5
m.
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(a) (b)

Figure 4.5: Simultaneous data for conventional data spatially sampled at (a) 12.5 m and (b)
6.25 m. Note that only 100.0 s of the full simultaneous data volume is shown.

(a) (b) (c) (d)

Figure 4.6: Interferences (or source crosstalk) in a (a) common-receiver gather and (b)
common-shot gather for data spatially sampled at 12.5 m; and in a (c) common-receiver
gather and (d) common-shot gather for data spatially sampled at 6.25 m. Since the
subsampling factor η = 2 and η = 4 for a spatial sampling of 12.5 m and 6.25 m,
respectively, (a) and (c) also have missing traces. The simultaneous data are separated
and interpolated to their respective fine sampling grids.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Recovered data for a subsampling factor η = 2. (a,e) Common-receiver gathers
recovered with 2D FDCT and 3D FDCT, respectively. (b,f) The corresponding differ-
ence from conventional data. (c,g) Common-shot gathers recovered with 2D FDCT and
3D FDCT, respectively. (d,h) The corresponding difference from conventional data.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.8: Zoom sections of recovered data for a subsampling factor η = 2. Note that the
color axis has been clipped at one-tenth the color axis of Figure 4.7. (a,e) Common-
receiver gathers recovered with 2D FDCT and 3D FDCT, respectively. (b,f) The
corresponding difference from conventional data. (c,g) Common-shot gathers recovered
with 2D FDCT and 3D FDCT, respectively. (d,h) The corresponding difference from
conventional data.

78



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.9: Recovered data for a subsampling factor η = 4. (a,e) Common-receiver gathers
recovered with 2D FDCT and 3D FDCT, respectively. (b,f) The corresponding differ-
ence from conventional data. (c,g) Common-shot gathers recovered with 2D FDCT and
3D FDCT, respectively. (d,h) The corresponding difference from conventional data.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.10: Zoom sections of recovered data for a subsampling factor η = 4. Note that the
color axis has been clipped at one-tenth the color axis of Figure 4.9. (a,e) Common-
receiver gathers recovered with 2D FDCT and 3D FDCT, respectively. (b,f) The
corresponding difference from conventional data. (c,g) Common-shot gathers recov-
ered with 2D FDCT and 3D FDCT, respectively. (d,h) The corresponding difference
from conventional data.
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Chapter 5

Low-cost time-lapse seismic with
distributed Compressive Sensing —
exploiting common information
amongst the vintages

5.1 Summary

Time-lapse seismic is a powerful technology for monitoring a variety of subsurface changes due
to reservoir fluid flow. However, the practice can be technically challenging when one seeks to
acquire colocated time-lapse surveys with high degrees of replicability amongst the shot locations.
We demonstrate that under “ideal” circumstances, where we ignore errors related to taking mea-
surements off the grid, high-quality prestack data can be obtained from randomized subsampled
measurements that are observed from surveys where we choose not to revisit the same randomly
subsampled on-the-grid shot locations. Our acquisition is low cost since our measurements are sub-
sampled. We find that the recovered finely sampled prestack baseline and monitor data actually
improve significantly when the same on-the-grid shot locations are not revisited. We achieve this
result by using the fact that different time-lapse data share information and that nonreplicated
(on-the-grid) acquisitions can add information when prestack data are recovered jointly. Whenever
the time-lapse data exhibit joint structure—i.e., are compressible in some transform domain and
share information—sparsity-promoting recovery of the “common component” and “innovations”,
with respect to this common component, outperforms independent recovery of both the prestack
baseline and monitor data. The recovered time-lapse data are of high enough quality to serve
as input to extract poststack attributes used to compute time-lapse differences. Without joint
recovery, artifacts—due to the randomized subsampling—lead to deterioration of the degree of re-
peatability of the time-lapse data. We support our claims by carrying out experiments that collect
reliable statistics from thousands of repeated experiments. We also confirm that high degrees of re-
peatability are achievable for an ocean-bottom cable survey acquired with time-jittered continuous
recording.

A version of this chapter has been published in Geophysics, 2017, vol. 82, pp. P1–P13.
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5.2 Introduction

Time-lapse (4D) seismic techniques involve the acquisition, processing and interpretation of multiple
2D or 3D seismic surveys, over a particular time period of production (Lumley, 2001). While this
technology has been applied successfully for reservoir monitoring (Koster et al., 2000; Fanchi, 2001)
and CO2 sequestration (Lumley, 2010), it remains a challenging and expensive technology because
it relies on finely sampled and replicated surveys each of which have their challenges (Lumley and
Behrens, 1998). To improve repeatability of the combination of acquisition and processing, various
approaches have been proposed varying from more repeatable survey geometries (Beasley et al.,
1997; Porter-Hirsche and Hirsche, 1998; Eiken et al., 2003; Brown and Paulsen, 2011; Eggenberger
et al., 2014) to tailored processing techniques (Ross and Altan, 1997) such as cross equalization
(Rickett and Lumley, 2001), curvelet-domain processing (Beyreuther et al., 2005) and matching
(Tegtmeier-Last and Hennenfent, 2013).

We present a new approach that addresses these acquisition- and processing-related issues by
explicitly exploiting common information shared by the different time-lapse vintages. To this end,
we consider time-lapse acquisition as an inversion problem, which produces finely sampled colocated
data from randomly subsampled baseline and monitor measurements. The presented joint recovery
method, which derives from distributed compressive sensing (DCS, Baron et al., 2009), inverts for
the “common component” and “innovations” with respect to this common component. As during
conventional compressive sensing (CS, Donoho, 2006; Candès and Tao, 2006), which has successfully
been adapted and applied to various seismic settings (Hennenfent and Herrmann, 2008; Herrmann,
2010; Mansour et al., 2012b; Wason and Herrmann, 2013b) including actual field surveys (see
e.g., Mosher et al., 2014), the proposed method exploits transform-based (curvelet) sparsity in
combination with the fact that randomized acquisitions break this structure and thereby create
favorable recovery conditions.

While the potential advantages of randomized subsampling on individual surveys are relatively
well understood (see e.g., Wason and Herrmann, 2013b), the implications of these randomized sub-
sampling schemes on time-lapse seismic have not yet been studied, particularly regarding achievable
repeatability of the prestack data after recovery and processing. Since the different surveys contain
the common component and their respective innovations, the question is how the proposed joint
recovery model performs on the vintages and the time-lapse differences, and what is the impor-
tance of replicating the surveys. Our analyses will be carried out assuming our observations lie on
a discrete grid so that exact survey replicability is in principle achievable. In this situation, we
ignore any errors associated with taking measurements from an irregular grid. Our approach makes
our time-lapse acquisition low-cost since our measurements are always subsampled and we do not
necessarily replicate the surveys. In the next chapter, we demonstrate how we deal with the effects
of non-replicability of the surveys, particularly when we take measurements from an irregular grid.
Since the observations are subsampled and on the grid for this chapter (off the grid for the next
chapter), the aim is to recover vintages on a colocated fine grid.

We also ignore complicating factors—such as tidal differences and seasonal changes in water
temperature—that may adversely affect repeatability of the time-lapse surveys. Since one of the
goals of 4D seismic data processing is to obtain excellent 3D seismic images for each data set
(Lumley, 2001), and since time-lapse changes are mostly derived from poststack attributes (Landrø,
2001; Spetzler and Kvam, 2006), we will be mainly concerned with the quality of the prestack
vintages themselves rather than the prestack time-lapse differences.

The chapter is organized as follows. First, we summarize the main findings of CS, its governing
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equations, and its main premise that structured signals can be recovered from randomized mea-
surements sampled at a rate below Nyquist. Next, we set up the CS framework for time-lapse
surveys, and we discuss an independent recovery strategy, where the baseline and monitor data are
recovered independently. We juxtapose this approach with our joint recovery method, which pro-
duces accurate estimates for the common component—i.e., the component that is shared amongst
all vintages—and innovations with respect to this common component. To study the performance
of these two recovery strategies, we conduct a series of stylized experiments for thousands of ran-
dom realizations that capture the essential features of randomized seismic acquisition. From these
experiments, we compute recovery probabilities as a function of the number of measurements and
survey replicability, the two main factors that determine the cost of seismic acquisitions. Next, we
conduct a series of synthetic experiments that involve time-lapse ocean-bottom surveys with time-
jittered continuous recordings and overlapping shots as recently proposed by Wason and Herrmann
(2013b). Aside from computing signal-to-noise ratios measured with respect to finely sampled
true baseline, monitor, and time-lapse differences and their stacks, we also use Kragh and Christie
(2002)’s root-mean-square (NRMS) metric to quantify the repeatability of the recovered data.

5.3 Methodology

5.3.1 Synopsis of compressive sensing

Compressive sensing (CS) is a sampling paradigm that aims to reconstruct a signal x ∈ RN (N
is the fully sampled ambient dimension) that is sparse (only a few of the entries are non-zero) or
compressible (can be well approximated by a sparse signal) in some transform domain, from few
measurements y ∈ Rn, with n� N . According to the theory of CS (Candès et al., 2006c; Donoho,
2006), recovery of x is attained from n linear subsampled measurements given by

y = Ax, (5.1)

where A ∈ Rn×N is the sampling matrix.
Finding a solution to the above underdetermined system of equations involves solving the fol-

lowing sparsity-promoting convex optimization program :

x̃ = arg min
x

‖x‖1 :=
N∑
i=1

|xi| subject to y = Ax. (5.2)

where x̃ is an approximation of x. In the noise-free case, this (`1-minimization ) problem finds
amongst all possible vectors x, the vector that has the smallest `1-norm and that explains the
observed subsampled data. To arrive at this solution, we use the software package SPG`1 (Berg
and Friedlander, 2008). The main contribution of CS is to design sampling matrices that guar-
antee solutions to the recovery problem in Equation 6.1, by providing rigorous proofs in specific
settings. Furthermore, a key highlight in CS is that favorable conditions for recovery is attained via
randomized subsampling rather than periodic subsampling. This is because random subsampling
introduces incoherent, and therefore non-sparse, subsampling related artifacts that are removed
during sparsity-promoting signal recovery. Basically, CS is an extension of the anti-leakage Fourier
transform (Xu et al., 2005; Schonewille et al., 2009), where random sampling in the physical domain
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renders coherent aliases into incoherent noisy crosstalk (leakage) in the spatial Fourier domain. In
this case, the signal is sparse in the Fourier basis.

For details on precise recovery conditions in terms of the number of measurements n, allowable
recovery error, and construction of measurement/sampling matrices A, we refer to the literature
on compressive sensing (Donoho, 2006; Candès and Tao, 2006; Candès and Wakin, 2008). For our
application to time-lapse seismic, we follow adaptations of this theory by Herrmann et al. (2008)
and Herrmann and Hennenfent (2008), and use curvelets as the sparsifying transform in the seismic
examples that involve randomized marine acquisition (Mansour et al., 2012b; Wason and Herrmann,
2013b; Wason et al., 2015). The latter references involve marine acquisition with ocean-bottom
nodes and time-jittered time-compressed firing times with single or multiple source vessels. As
shown by Wason and Herrmann (2013b), this type of randomized acquisition and processing leads
to better wavefield reconstructions than the processing of regularly subsampled data. Furthermore,
because of the reduced acquisition time, it is more efficient economically (Mosher et al., 2014).

5.3.2 Independent recovery strategy (IRS)

To arrive at a compressive sensing formulation for time-lapse seismic, we describe noise-free time-
lapse data acquired from the baseline (j = 1) and monitor (j = 2) surveys as

yj = Ajxj for j = {1, 2}. (5.3)

In this CS formulation, which can be extended to J > 2 surveys, the vectors y1 and y2 represent the
corresponding subsampled measurement vectors; A1 and A2 are the corresponding flat (n � N)
measurement matrices, which are not necessarily equal. As before, finely sampled vintages can in
principle be recovered under the right conditions by solving Equation 5.3 with a sparsity-promoting
optimization program (cf. Equation 6.1) for each vintage separately. We will refer to this approach
as the independent recovery strategy (IRS). In this context, we compute the time-lapse signal by
directly subtracting the recovered vintages.

5.3.3 Shared information amongst the vintages

Aside from invoking randomizations during subsampling, CS exploits structure residing within seis-
mic data volumes during reconstruction—the better the compression the better the reconstruction
becomes for a given set of measurements. If we consider the surveys separately, curvelets are good
candidates to reveal this structure because they concentrate the signal’s energy into few large-
magnitude coefficients and many small coefficients (see left-hand side plot in Figure 5.1). Curvelets
have this ability because they decompose seismic data into multiscale and multi-angular localized
waveforms. As the cross plot in Figure 5.1 reveals (right-hand side plot), the curvelet transform’s
ability to compress seismic data and time-lapse difference (left-hand side plot Figure 5.1) is not the
only type of structure that we can exploit. The fact that most of the magnitudes of the curvelet co-
efficients of two common-receiver gathers from a 2D OBS time-lapse survey (see Figure 5.8) nearly
coincide indicate that the data from the two vintages shares lots of information in the curvelet do-
main. Therefore, we can further exploit this complementary structure during time-lapse recovery
from randomized subsampling in order to improve the repeatability.
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Figure 5.1: Left: Decay of curvelet coefficients of time-lapse data and difference. Right:
Scatter plot of curvelet coefficients of the baseline and monitor data indicating that
they share significant information.

5.3.4 Joint recovery method (JRM)

Baron et al. (2009) introduced and analyzed mathematically a model for distributed CS where
jointly sparse signals are recovered jointly. Aside from permitting sparse representations individu-
ally, jointly sparse signals share information. For instance, sensor arrays aimed at the same object
tend to share information (see Xiong et al. (2004) and the references therein) and time-lapse seismic
surveys are no exception.

There are different ways to incorporate this shared information amongst the different vintages.
We found that we get the best recovery result if we exploit the common component amongst the
baseline and monitor data explicitly. This means that for two-vintage surveys we end up with three
unknown vectors. One for the common component, denoted by z0, and two for the innovations zj
for j ∈ 1, 2 with respect to this common component that is shared by the vintages. In this model,
the vectors for the vintages are given by

xj = z0 + zj , j ∈ 1, 2. (5.4)

As we can see, the vintages contain the common component z0 and the time-lapse difference is
contained within the difference between the innovations zj for j ∈ 1, 2. Because z0 is part of both
surveys, the observed measurements are now given by

[
y1

y2

]
=

[
A1 A1 0
A2 0 A2

]z0

z1

z2

 , or

y = Az.

(5.5)

In this expression, we overloaded the symbol A, which from now on refers to the matrix linking
the observations of the time-lapse surveys to the common component and innovations pertaining
to the different vintages. The above joint recovery model readily extends to J > 2 surveys, yielding
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a J × (number of vintages + 1) system.
Contrary to the IRS, which essentially corresponds to setting the common component to zero

so there is no communication between the different surveys, both vintages share the common
component in Equation 5.5. As a result correlations amongst the vintages will be exploited if we
solve instead

z̃ = arg min
z
‖z‖1 subject to y = Az. (5.6)

As a result, we seek solutions for the common component and innovations that have the smallest
`1-norm such that the observations explain both the incomplete recordings for both vintages. Es-
timates for the finely sampled vintages are readily obtained via Equation 6.4 with the recovered z̃
while the time-lapse difference is computed via z̃1 − z̃2.

Albeit recent progress has been made (Li, 2015), precise recovery conditions for JRM are not
yet very well studied. Moreover, the JRM was also not designed to compute differences between the
innovations. To gain some insight on our formulation, we will first compare the performance of IRS
and JRM in cases where the surveys are exactly replicated (A1 = A2), partially replicated (A1 and
A2 share certain fractions of rows), or where A1 and A2 are statistically completely independent.
To get reliable statistics on the recovery performance for the different recovery schemes, we repeat a
series of small stylized problems thousands of times. These small stylized examples serve as proxies
for seismic acquisition problems that we will discuss later.

5.4 Stylized experiments

To collect statistics on the performance of the different recovery strategies, we repeat several series
of small experiments many times. Each random time-lapse realization is represented by a vector
with N = 50 elements that has k = 13 nonzero entries with Gaussian distributed weights that are
located at random locations such that the number of nonzero entries in each innovation is two—i.e.,
k1 = k2 = 2. This leaves 11 nonzeros for the common component. For each random experiment, n =
{10, 11, · · · , 40} observations y1 and y2 are collected using Equation 5.3 for Gaussian matrices A1

and A2 that are redrawn for each repeated experiment. These Gaussian matrices have independent
identically distributed Gaussian entries and serve as a proxy for randomized acquisitions in the field.
An example of the time lapse vectors z0, z1, z2,x1,x2, and x1−x2 involved in these experiments is
included in Figure 5.2. Our goal is to recover estimates for the vintages and time-lapse signals—
i.e., we want to obtain the estimates x̃1 and x̃2, and their difference x̃1 − x̃2 from subsampled
measurements y1 and y2. When using the joint recovery model, we compute estimates for the
jointly sparse vectors via x̃1 = z̃0 + z̃1, and x̃2 = z̃0 + z̃2, where z̃ is found by solving Equation 6.5.

To get reliable statistics on the probability of recovering the vectors representing the vintages
and the time-lapse differences, we choose to perform M = 2000 repeated time-lapse experiments
generating M different realizations for y1 and y2 from different realizations of x1 and x2. Next,
we recover x̃1 and x̃2 from these measurements using the IRS or JRM. From these estimates, we
compute empirical probabilities of successful recovery via

P (x) =

Number of times
‖x− x̃‖2
‖x‖2

< ρ

M
. (5.7)

We set the relative error threshold to ρ = 0.1. The vector x either represents the vintages or the
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Figure 5.2: From top to bottom: z0, z1, z2,x1,x2,x1 − x2. We are particularly interested in
recovering estimates for x1,x2 and x1 − x2 from y1 and y2.

difference. In case of the vintages, we multiply the probabilities.

5.4.1 Experiment 1—independent versus joint recovery

To reflect current practices in time-lapse acquisition—where people aim to replicate the surveys—
we run the experiments by drawing the same random Gaussian matrices of size n × N for n =
{10, 11, · · · , 40} and N = 50 for A1 and A2—i.e., A1 = A2. We conduct the same experiments
where the surveys are not replicated by drawing statistically independent measurement matrices
for each repeated experiment, yielding A1 6= A2. For each series of experiments, we recover
estimates x̃1, x̃2, and x̃1−x̃2 from which we compute the corresponding recovery probabilities using
Equation 5.7. The results are plotted in Figure 5.3 for the recovery of the vintages (Figure 5.3(a))
and time-lapse difference (Figure 5.3(b)).

The results of these experiments indicate that regardless of the number of measurements, JRM
leads to improved recovery compared to IRS because it exploits information shared by the two
jointly sparse vectors representing the vintages. The recovery probabilities for JRM (solid lines
in Figure 5.3) show an overall improvement for both the time-lapse vectors and the time-lapse
difference vector—all probability curves are to the left compared to those from IRS meaning that
recovery is more likely for fewer measurements. For the time-lapse vectors, this improvement
is much more pronounced for measurement matrices that are statistically independent—i.e., not
replicated (A1 6= A2). This observation is consistent with distributed compressive sensing, which
predicts significant improvements when the time-lapse vectors share a significant common compo-
nent. In that case, the shared component benefits most from being observed by both surveys (via
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(a) (b)

Figure 5.3: Recovery of (a) the jointly sparse signals x1 and x2, (b) x1−x2; with and without
repetition of the measurement matrices, using the independent recovery strategy versus
the joint recovery method.

the first column of A, cf. Equation 5.5). The IRS results for the time-lapse vectors are much less
affected whether the survey is replicated or not, which makes sense because the processing is done
in parallel and independently. This suggests that for time-lapse seismic, independent surveys give
additional information on the sparse structure of the vintages that is reflected in their improved
recovery quality. Another likely interpretation is that time-lapse data obtained via JRM has better
repeatability compared to data obtained via IRS.

While independent surveys improve recovery with JRM, the recovery probability of the time-
lapse difference vectors improves drastically when the experiments are replicated exactly. The
reason for this is that the JRM simplifies to the recovery of the time-lapse differences alone in cases
where the time-lapse measurements are exactly replicated. Since these time-lapse differences are
sparser than the vintage vectors themselves, the time-lapse difference vectors are well recovered
while the time-lapse vectors themselves are not. This result is not surprising since the error in
reconstructing the vintages cancels out in the difference. This means that in CS, if one is interested
in the time-lapse difference, exact repetition of the survey is preferred. However, this approach does
not provide any additional structural information in the vintages. We will revisit this observation
in Experiment 2 to see how the recovery performs when we have varying degrees of repeatability
in the measurements.

5.4.2 Experiment 2—impact of degree of survey replicability

So far, we explored only two extremes, namely recovery of vintages with absolutely no replication
(A1 6= A2 and statistically independent) or exact replication (A1 = A2). To get a better under-
standing of how replication factors into the recovery, we repeat the experiments where we vary the
degree of dependence between the surveys by changing the number of rows the matrices A1 and
A2 have in common. When all rows are in common, the survey is replicated and the percentage of
overlap between the surveys is a measure for the degree of replicability of the surveys. Since JRM
clearly outperformed IRS, we only consider recovery with JRM.

As before we compute recovery probabilities from M = 2000 repeated time-lapse experiments
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(a) (b)

Figure 5.4: Recovery as a function of overlap between measurement matrices. Probability of
recovering (a) x1 and x2, (b) x1 − x2, with joint recovery method.

generating M different realizations for the observations. We summarize the recovery probability
curves for varying degrees of overlap in Figure 5.4. These curves confirm that the recovery of the
time-lapse vectors improves when the surveys are not replicated. As soon as the surveys are no
longer replicated, the recovery probabilities for the time-lapse vectors improve. These improvements
become less prominent when large percentages do not overlap and as expected reaches its maximum
when the surveys become independent. Recovery of the time-lapse differences on the other hand
suffers drastically when the surveys are no longer 100% replicated. When less then 80% of the
surveys are no longer replicated, the recovery probabilities no longer benefit from replicating the
surveys. Recovery of the time-lapse vectors, on the other hand, already improves significantly at
this point.

While these experiments are perhaps too idealized and small to serve as a strict guidance on
how to design time-lapse surveys, they lead to the following observations. Firstly, the recovery
probabilities improve when we exploit joint sparsity amongst the time-lapse vectors via JRM.
Secondly, since the joint component is observed by all surveys recovery of the common component
and therefore vintages improves if the surveys are not replicated. Thirdly, the time-lapse differences
benefit from high degrees of replication of the surveys. In that case, the JRM degenerates to recovery
of the time-lapse difference alone and as a consequence the time-lapse vectors are not well recovered.

Even though the quality of the time-lapse difference is often considered as a good means of
quality control, we caution the reader to draw the conclusion that we should aim to replicate the
surveys. The reason for this is that time-lapse differences are generally computed from poststack
attributes computed from finely sampled, and therefore recovered, prestack baseline and monitor
data and not from prestack differences. Therefore, recovery of time-lapse difference alone may not
be sufficient to draw firm conclusions. Our observations were also based on very small idealized
experiments that did not involve stacking and permit exact replication, which may not be realistic
in practice.
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Figure 5.5: Schematic comparison between different random realizations of a subsampled
grid. The subsampling factor is 3. As illustrated, random samples are taken exactly
on the grid. Moreover, the samples are exactly replicated whenever there is an overlap
between the time-lapse surveys.

5.5 Experimental setup—on-the-grid time-lapse randomized
subsampling

One of the main parts of the experimental setup for the synthetic seismic case study is how we
define the underlying grid on which samples are taken. In context of this chapter, we assume
that the samples are taken on a discrete grid—i.e., samples lie “exactly” on the grid. It is also
important to note that we randomly subsample the grid. As mentioned in the compressive sensing
section above, randomized subsampling introduces incoherent subsampling related artifacts that
are removed during sparsity-promoting signal recovery. Figure 5.5 shows a schematic comparison
between different random realizations of a subsampled grid. As illustrated in the schematic, random
samples are taken exactly on the grid. We define the term “overlap” as the percentage of on-the-
grid shot locations exactly replicated between two (or more) time-lapse surveys. For the synthetic
seismic case study, whenever there is an overlap between the surveys (e.g., 50%, 33%, 25%, etc.) the
on-the-grid shot locations are exactly replicated for the baseline and monitor surveys. Similarly, for
the stylized experiments, when two rows of the Gaussian matrices are the same it can be interpreted
as if we hit the same shot location for both the baseline and monitor surveys. Therefore, we
either assume that the experimental circumstances are ideal or alternatively we can think of this
assumption as ignoring the effects of being off the grid. The next chapter analyses the effects of
the more realistic off-the-grid sampling. In summary, we consider the case where measurements
are exactly replicated whenever we choose to visit the same shot location for the two surveys.
However, because we are subsampled we need not choose to revisit all the shot locations of the
baseline survey.
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(a) (b) (c)

Figure 5.6: Reservoir zoom of the synthetic time-lapse velocity models showing the change
in velocity as a result of fluid substitution. (a) Baseline model, (b) monitor model, (c)
difference between (a) and (b).

5.6 Synthetic seismic case study—time-lapse marine acquisition
via time-jittered sources

To study a more realistic example, we carry out a number of experiments on 2D seismic lines
generated from a synthetic velocity model—the BG COMPASS model (provided by BG Group).
To illustrate the performance of randomized subsamplings—in particular the time-jittered marine
acquisition—in time-lapse seismic, we use a subset of the BG COMPASS model (Figure 6.8(a)) for
the baseline. We define the monitor model (Figure 6.8(b)) from the baseline via a fluid substitution
resulting in a localized time-lapse difference at the reservoir level as shown in Figure 6.8(c).

Using IWAVE (Symes, 2010) time-stepping acoustic simulation software, two acoustic datasets
with a conventional source (and receiver) sampling of 12.5 m are generated, one from the baseline
model and the other from the monitor model. Each dataset has Nt = 512 time samples, Nr = 100
receivers, and Ns = 100 sources. Subtracting the two datasets yields the time-lapse difference,
whose amplitude is small in comparison to the two datasets (about one-tenth). Since no noise
is added to the data, the time-lapse difference is simply the time-lapse signal. A receiver gather
from the simulated baseline data, the monitor data and the corresponding time-lapse difference is
shown in Figure 5.7. In order to make the time-lapse difference visible, the color axis for the figures
showing the time-lapse difference is one-tenth the scale of the color axis for the figures showing the
baseline and the monitor data. This colormap applies for the remainder of the chapter. Also, the
first source position in the receiver gathers—labeled as 0 m in the figures—corresponds to 725 m in
the synthetic velocity model.

5.6.1 Time-jittered marine acquisition

Wason and Herrmann (2013b) presented a pragmatic single vessel, albeit easily extendable to mul-
tiple vessels, simultaneous marine acquisition scheme that leverages CS by invoking randomness
in the acquisition via random jittering of the source firing times. As a result, source interfer-
ences become incoherent in common-receiver gathers creating a favorable condition for separating
the simultaneous data into conventional nonsimultaneous data (also known as “deblending”) via
curvelet-domain sparsity promotion. Like missing-trace interpolation, the randomization via jitter-
ing turns the recovery into a relatively simple “denoising” problem with control over the maximum
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(a) (b) (c)

(d) (e)

Figure 5.7: A synthetic receiver gather from the conventional (a) baseline survey, (b) monitor
survey. (c) The corresponding 4D signal. (d) Color scale of the vintages. (e) Color
scale of the 4D signal. Note that (e) is one-tenth the scale of (d). These color scales
apply to all the corresponding figures for the vintages and the 4D signal.

gap size between adjacent shot locations (Hennenfent and Herrmann, 2008), which is a practi-
cal requirement of wavefield reconstruction with localized sparsifying transforms such as curvelets
(Hennenfent and Herrmann, 2008). The basic idea of jittered subsampling is to regularly decimate
the interpolation grid and subsequently perturb the coarse-grid sample points on the fine grid.
A jittering parameter, dictated by the type of acquisition and parameters such as the minimum
distance (or minimum recharge time for the airguns) required between adjacent shots, relates to
how close and how far the jittered sampling point can be from the regular coarse grid, effectively
controlling the maximum acquisition gap. Since we are still on the grid, this is a case of discrete
jittering. In this chapter, we limit ourselves to the discrete case but this technique can relatively
easily be taken off the grid as we discuss in the next chapter.

A seismic line with Ns sources, Nr receivers, and Nt time samples can be reshaped into an N
dimensional vector f , where N = Ns × Nr × Nt. For simplicity, we assume that all sources see
the same receivers, which makes our method applicable to marine acquisition with ocean-bottom
cables or nodes (OBC or OBN). As stated previously, seismic data volumes permit a compressible
representation x in the curvelet domain denoted by S. Therefore, f = SHx, where H denotes the
Hermitian transpose (or adjoint), which equals the inverse curvelet transform. Since curvelets are
a redundant frame (an over-complete sparsifying dictionary), S ∈ CP×N with P > N , and x ∈ CP .

With the inclusion of the sparsifying transform, the matrix A can be factored into the product
of a n × N (with n � N) acquisition matrix M and the synthesis matrix SH . The design of the
acquisition matrix M is critical to the success of the recovery algorithm. From a practical point of
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view, it is important to note that matrix-vector products with these matrices are matrix free—i.e.,
these matrices are operators that define the action of the matrix on a vector. Since the marine
acquisition is performed in the source-time domain, the acquisition operator M is a combined
jittered-shot selector and time-shifting operator. Note that in this framework it is also possible to
randomly subsample the receivers.

Given a baseline data vector f1 and a monitor data vector f2, x1 and x2 are the corresponding
sparse representations—i.e., f1 = SHx1, and f2 = SHx2. Given the measurements y1 = M1f1 and
y2 = M2f2, and A1 = M1S

H , A2 = M2S
H , our aim is to recover sparse approximations f̃1 and

f̃2 by solving sparse recovery problems for the scenarios (IRS and JRM) as described above from
which the time-lapse signal can be computed.

5.6.2 Acquisition geometry

In time-jittered marine acquisition, source vessels map the survey area firing shots at jittered
time-instances, which translate to jittered shot locations for a given speed of the source vessel.
Conventional acquisition with one source vessel and two airgun arrays—where each airgun array
fires at every alternate periodic location—is called flip-flop acquisition. If we wish to acquire
10.0 s—long shot records at every 12.5 m, the speed of the source vessel would have to be about
1.25 m/s (approximately 2.5 knots). Figure 5.8(a) illustrates one such conventional acquisition
scheme, where each airgun array fires every 20.0 s (or 25.0 m) in a flip-flop manner, traveling at
about 1.25 m/s, resulting in nonoverlapping shot records of 10.0 s every 12.5 m. In time-jittered
acquisition, Figure 5.8(b), each airgun array fires at every 20.0 s jittered time-instances, traveling at
about 2.5 m/s (approximately 5.0 knots), with the receivers (OBC) recording continuously, resulting
in overlapping (or blended) shot records (Figure 5.9(a)). Since the acquisition design involves
subsampling, the acquired data volume has overlapping shot records and missing shots/traces.
Consequently, the jittered flip-flop acquisition might not mimic the conventional flip-flop acquisition
where airgun array 1 and 2 fire one after the other—i.e., in Figures 5.8(b) and 5.8(c), a circle
(denoting array 1) may be followed by another circle instead of a star (denoting array 2). The
minimum interval between the jittered times, however, is maintained at 10.0 s (typical interval
required for airgun recharge) and the maximum interval is 30.0 s. For the speed of 2.5 m/s, this
translates to jittering a 50.0 m source grid with a minimum (and maximum) interval of 25.0 m (and
75.0 m) between jittered shots. Both arrays fire at the 50.0 m jittered grid independent of each
other.

Two realizations of the time-jittered marine acquisition are shown in Figures 5.8(b) and 5.8(c),
one each for the baseline and the monitor survey. Acquisition on the 50.0 m jittered grid results in
an subsampling factor,

η =
1

number of airgun arrays
× jittered spatial grid interval

conventional spatial grid interval
=

1

2
× 50.0 m

12.5 m
= 2. (5.8)

Figures 5.9(a) and 5.9(b) show the corresponding randomly subsampled and simultaneous measure-
ments for the baseline and monitor surveys, respectively. Note that only 50.0 s of the continuously
recorded data is shown. If we simply apply the adjoint of the acquisition operator to the simulta-
neous data—i.e., MHy, the interferences (or source crosstalk) due to overlaps in the shot records
appear as random noise—i.e., incoherent and nonsparse, as illustrated in Figures 5.9(c) and 5.9(d).
Our aim is to recover conventional, nonoverlapping shot records from simultaneous data by work-
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(a) (b) (c)

Figure 5.8: Acquisition geometry: (a) conventional marine acquisition with one source vessel
and two airgun arrays; time-jittered marine acquisition (with η = 2) for (b) baseline,
and (c) monitor. Note the acquisition speedup during jittered acquisition, where the
recording time is reduced to one-half the recording time of the conventional acquisition.
(b) and (c) are plotted on the same scale as (a) in order to make the jittered locations
easily visible.

ing with the entire (simultaneous) data volume, and not on a shot-by-shot basis. For the present
scenario, since η = 2, the recovery problem becomes a joint deblending and interpolation problem.
In contrast to conventional acquisition at a source sampling grid of 12.5 m (Figure 5.8(a)), time-
jittered acquisition takes half the acquisition time (Figures 5.8(b) and 5.8(c)), and the simultaneous
data is separated into its individual shot records along with interpolation to the 12.5 m sampling
grid. The recovery problem is solved by applying the independent recovery strategy and the joint
recovery method, as we will describe in the next section.

5.6.3 Experiments and observations

To analyze the implications of the time-jittered marine acquisition in time-lapse seismic, we follow
the same sequence of experiments as conducted for the stylized examples—i.e., we compare the
independent (IRS) and joint recovery methods (JRM) for varying degrees of replicability in the
acquisition. Given the 12.5 m spatial sampling of the simulated (conventional) time-lapse data,
applying the time-jittered marine acquisition scheme results in a subsampling factor, η = 2 (Equa-
tion 5.8). In practice, this corresponds to an improved efficiency of the acquisition with the same
factor. Recent work (Mosher et al., 2014) has shown that factors of two or as high as ten in
efficiency improvement are achievable in the field. With this subsampling factor, the number of
measurements for each experiment is fixed—i.e., n = N/2, each for y1 and y2 albeit other scenarios
are possible.

We simulate different realizations of the time-jittered marine acquisition with 100%, 50%, and
25% overlap between the baseline and monitor surveys. Because we are in a discrete setting,
these overlaps translate one-to-one into percentages of replicated on-the-grid shot locations for the
surveys. Since η = 2, and by virtue of the design of the blended acquisition, it is not possible to
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(a) (b)

(c) (d)

Figure 5.9: Simultaneous data for the (a) baseline and (b) monitor surveys (only 50.0 s of
the full data is shown). Interferences (or source crosstalk) in a common-receiver gather
for the (c) baseline and (d) monitor surveys, respectively. Since the subsampling factor
η = 2, (c) and (d) also have missing traces. The simultaneous data is separated and
interpolated to a sampling grid of 12.5 m.
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have two completely different (0% overlap) realizations of the time-jittered acquisition. In all cases,
we recover the deblended and interpolated baseline and monitor data from the blended data y1 and
y2, respectively, using the independent recovery strategy (by solving Equation 6.1) and the joint
recovery method (by solving Equation 6.5). As stated previously, the inherent time-lapse difference
is computed by subtracting the recovered baseline and monitor data.

We perform 100 experiments for the baseline measurements, wherein each experiment has a
different random realization of the measurement matrix A1. Then, for each experiment, we fix the
baseline measurement and subsequently work with different random realizations for the monitor
survey, each corresponding to the 50% and the 25% overlap. The purpose of doing this is to examine
the impact of degree of replicability of acquisition in time-lapse seismic. Table 5.1 summarizes the
recovery results for the stacked sections, in terms of the signal-to-noise ratio defined as

S/N(f , f̃) = −20 log10

‖f − f̃‖2
‖f‖2

, (5.9)

for different overlaps between the baseline and monitor surveys—i.e., measurement matrices A1

and A2. Each S/N value is an average of 100 experiments including the standard deviation.
Figure 5.10 shows the recovered receiver gathers and difference plots for the monitor survey

(for the different overlaps) using the independent recovery strategy (IRS), and Figure 5.11 shows
the corresponding result using the joint recovery method (JRM). As illustrated in these figures,
JRM leads to significantly improved recovery of the vintage compared to IRS because it exploits
the shared information between the baseline and monitor data. Moreover, the recovery improves
with decrease in the overlap. The IRS and JRM recovered time-lapse differences for the different
overlaps are shown in Figure 5.12, which shows that recovery via JRM is still significantly better
than IRS, however, the recovery is slightly improved with increase in the overlap. The edge artifacts
in Figures 5.10, 5.11 and 5.12 are related to missing traces near the edges that curvelets are unable
to reconstruct.

The S/Ns for the stacked sections indicate a similar trend in the observations as made from the
stylized experiments—i.e., (i) JRM performs better than IRS because it exploits information shared
between the baseline and monitor data. Note that the S/N value, which is an average of the 100
experiments, for recovery of the baseline dataset via IRS is repeated for all three cases of overlap
because we work with the same 100 realizations of the jittered acquisition throughout. However,
for each of the 100 experiments, different realizations are drawn for the monitor survey, which
explains the variations in the S/Ns for the recovery via IRS. Similar fluctuations were observed by
Herrmann (2010). (ii) Replication of surveys hardly affects recovery of the vintages via IRS (note
similar S/Ns), since the processing is done in parallel and independently. (iii) Recovery of the
baseline and monitor data with JRM is better when there is a small degree of overlap between the
two surveys, and it decreases with increasing degrees of overlap. As explained earlier, this behavior
can be attributed to partial independence of the measurement matrices that contribute additional
information via the first column of A in Equation 6.5, i.e., for time-lapse seismic, independent
surveys give additional structural information leading to improved recovery quality of the vintages.
(iv) The converse is true for recovery of the time-lapse difference, wherein it is better if the surveys
are exactly replicated. Again, as stated previously, the reason for this is the increased sparsity
of the time-lapse difference itself and apparent cancelations of recovery errors due to the exactly
replicated geometry.

In addition to the above observations, we find that for 100% overlap, good recovery of the
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Overlap Baseline Monitor 4D signal

IRS JRM IRS JRM IRS JRM
100% 23.1 ± 1.2 24.8 ± 1.2 23.1 ± 1.3 24.8 ± 1.2 21.4 ± 1.8 23.4 ± 2.1
50% 23.1 ± 1.2 32.8 ± 1.6 23.4 ± 1.2 32.8 ± 1.6 9.1 ± 1.2 20.2 ± 1.3
25% 23.1 ± 1.2 35.3 ± 1.5 22.0 ± 1.1 35.0 ± 1.5 7.8 ± 1.3 18.0 ± 1.1

Table 5.1: Summary of recoveries in terms of S/N (in dB) for the stacked sections.

stacks for IRS and JRM is possible with S/Ns that are similar for the time-lapse difference and the
vintages themselves. The standard deviations for the two recovery methods are also similar. One
could construe that this is the ideal situation but unfortunately it is not easily attained in practice.
As we move to more practical acquisition schemes where we decrease the overlap between the
surveys, we see a drastic jump downwards in the S/Ns for the time-lapse stack obtained with IRS.
The results from JRM, on the other hand, decrease much more gradually with standard deviations
that vary slightly from those for IRS, however, drops off with decrease in the overlap. In contrast,
we actually see significant improvements for the S/Ns of the stacks of both the baseline and monitor
data with slight variations in the standard deviations.

Remember, that the number of measurements is the same for all experiments and the observed
differences can be fully attributed to the performance of the recovery method in relation to the
overlap between the two surveys encoded in the measurement matrices. Also, the improvements in
S/Ns of the vintages are significant as we lower the overlap, which goes at the expense of a relatively
small loss in S/N for the time-lapse stack. However, given the context of randomized subsampling, it
is important to recover the finely sampled vintages and then the time-lapse difference. In addition,
time-lapse differences are often studied via differences in certain poststack attributes computed from
the vintages, hence, reinforcing the importance of recovering prestack baseline and monitor data as
opposed to recovering the time-lapse difference alone. While some degree of replication seemingly
improves the prestack time-lapse difference, we feel that quality of the vintages themselves should
prevail in the light of the above discussion. In addition, concentrating on the quality of the vintages
gives us the option to compute prestack time-lapse differences in alternative ways (Wang et al.,
2008).

All these observations are corroborated by the plots of the recovered (monitor) receiver gathers
and their differences from the original (idealized) gather in Figures 5.10 and 5.11, and the recovered
time-lapse differences in Figure 5.12. Stacked sections of the IRS and the JRM recovered time-lapse
difference are shown in Figure 5.13.

5.6.4 Repeatability measure

Aside from measuring S/Ns, researchers have introduced repeatability measures expressing the
similarity between prestack and poststack time-lapse datasets. One of the most commonly used
metrics, which gives an intuitive understanding of the data repeatability, is the normalized root-
mean-square (NRMS, Kragh and Christie, 2002):

NRMS =
2 RMS(f̃2 − f̃1)

RMS(f̃1) + RMS(f̃2)
, (5.10)

97



(a) (b) (c)

(d) (e) (f)

Figure 5.10: Receiver gathers (from monitor survey) recovered via IRS from time-jittered
marine acquisition with (a) 100%, (b) 50%, and (c) 25% overlap in the measurement
matrices (A1 and A2). (d), (e), and (f) Corresponding difference plots from the
original receiver gather (5.7(b)).
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: Receiver gathers (from monitor survey) recovered via JRM from time-jittered
marine acquisition with (a) 100%, (b) 50%, and (c) 25% overlap in the measurement
matrices (A1 and A2). (d), (e), and (f) Corresponding difference plots from the
original receiver gather (5.7(b)).
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(a) (b) (c)

(d) (e) (f)

Figure 5.12: Recovered 4D signal for the (a) 100%, (b) 50%, and (c) 25% overlap. Top row:
IRS, bottom row: JRM. Note that the color axis is one-tenth the scale of the color
axis for the vintages.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.13: Stacked sections. (a) baseline; (b) true 4D signal; reconstructed 4D signals via
IRS for 100% (c), 50%(e), and 25% (g) overlap; the reconstructed 4D signals via JRM
for 100%(d), 50%(f), and 25% (h) overlap. Notice the improvements for JRM where
we see much less deterioration as the overlap between the surveys decreases. Note
that the color axis for the time-lapse difference stacks is one-tenth the scale of the
color axis for the baseline stack.
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with RMS(f̃) being the root-mean-square of either vintage. This formula implies that the lower
the NRMS, the higher the repeatability between the recovered datasets. Usually, lower levels of
NRMS are observed for stacked data compared to prestack data since stacking reduces uncorrelated
random noise. A NRMS ratio of 0 is achievable only in a perfectly repeatable world. In practice,
NRMS ratios between 0.2 and 0.3 are considered as acceptable; ratios less than 0.2 are considered
excellent. To further evaluate the results of our synthetic seismic experiment, we compute the
NRMS ratios from stacked sections before and after recovery via IRS and JRM.

To compute this quantity, we extract time windows from stacked sections around two-way
travel time between 0.5 s and 1.3 s, where we know there is no time-lapse signal present. We obtain
the stacked sections before and after processing by either applying the adjoint of the sampling
matrix (see discussion under Equation 5.8) to the observed data or by solving a sparsity-promoting
program. The former serves as a proxy for acquisition scenarios where one relies on the fold to
stack out acquisition related artifacts. Results of this exercise for 50% overlap and 25% overlap
are included in Figures 5.14(a) and 5.14(b). These plots clearly show that (i) simply applying the
adjoint, followed by stacking, leads to poor repeatability, and therefore is unsuitable for time-lapse
practices; (ii) sparse recovery improves the NRMS; (iii) exploiting shared information amongst the
vintages leads to near optimal values for the NMRS despite the subsampling; and finally (iv) high
degrees of repeatability of recovered data are achievable from data collected with small overlaps in
the acquisition geometry.

5.7 Discussion

Obtaining useful time-lapse seismic is challenging for many reasons, including cost, the need to
calibrate the surveys, and the subsequent processing to extract reliable time-lapse information.
Meeting these challenges in the field has resulted in acquisitions which aim to replicate the geometry
of the previous survey(s) as precisely as possible. Unfortunately, this replication can be both
difficult to achieve and expensive. Post acquisition, processing aims to improve the repeatability
of the data such that certain (poststack) attributes can be derived reliably from the baseline and
monitor surveys. Within this context, our aim is to reduce the cost and improve the quality of the
prestack baseline and monitor data without relying on expensive fine sampling and high degrees
of replicability of the surveys. Our methodology involves a combination of economical randomized
samplings and sparsity-promoting data recovery. The latter exploits (curvelet-domain) sparsity and
correlations amongst different vintages. To the authors’ knowledge, this approach is among the first
to address time-lapse seismic problems in which the common component amongst vintages—and
innovations with respect to this shared component—is made explicit.

The presented synthetic seismic case study, supported by the findings from the stylized examples
and theoretical results from the distributed compressive sensing literature (Baron et al., 2009),
represents a proof of concept for how sharing information amongst the vintages can lead to high-
fidelity vintages and 4D signals (with minor trade-offs) in a cost effective manner. This approach
creates new possibilities for meeting modern survey objectives, including cost and environmental
impact considerations, and improvements in spatial sampling. In this chapter, even though our
measurements are taken on the grid, allowing us to ignore errors related to sampling off the grid,
our proposed time-lapse acquisition is low-cost since we are always subsampled in the surveys.
Our joint recovery model produces finely sampled data volumes from these subsampled, and not
necessarily replicable, randomized surveys. These data volumes exhibit better repeatability levels
(in terms of NRMS ratios) compared to independent recovery, where correlations amongst the
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(a)

(b)

Figure 5.14: Normalized root-mean-squares NMRS for each recovered trace of the stacked
section for (a) 50% and the (b) 25% overlap. Vintages obtained with the joint recovery
method are far superior to results obtained with the independent recovery strategy
and the “unprocessed” stacked data. The latter are unsuitable for time lapse.
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vintages are not exploited.
In the next chapter, we demonstrate how we deal with the effects of non-replicability of the

surveys when we take measurements from an irregular grid. We demonstrate that errors related to
being off the grid cannot be ignored. The “bad news” is that replication is unattainable because
small inevitable deviations in the shot locations amongst the time-lapse surveys negate the benefit
of replication for the time-lapse signal itself. However, the good news is that a slightly deviated
measurement already adds information that improves recovery of the vintages. This implies that an
argument can be made to not replicate the surveys as long as we know sufficiently accurately where
we fired in the field. Please remember that the claims of this chapter relate to the unnecessary
requirement to visit the same randomly subsampled on-the-grid shot locations during the two, or
more, surveys.

Furthermore, we did not consider surveys that have been acquired in situations where there are
significant variations in the water column velocities amongst the different surveys. As long as these
physical changes can be modelled, we do not foresee problems. As expected using standard CS, our
recovery method should be stable with respect to noise (Candès et al., 2006c), but this needs to be
investigated further. Moreover, recent successes in the application of compressive sensing to actual
land and marine field data acquisition (see e.g. Mosher et al. (2014)) support the fact that these
technical challenges with noise and calibration can be overcome in practice. Our future research
will also involve working with towed-streamer surveys where other challenges like the sparse and
irregular crossline sampling will be investigated.

In this study, we concentrated our efforts on producing high-quality baseline and monitor sur-
veys from economic randomized acquisitions. There are areas of application for the joint recovery
model that have not yet been explored in detail, such as imaging and full-waveform inversion prob-
lems. Early results on these applications suggest that our joint recovery model extends to sparsity-
promoting imaging (Tu et al., 2011; Herrmann and Li, 2012) including imaging with surface-related
multiples, and time-lapse full-waveform inversion (Oghenekohwo et al., 2015). In all applications,
the use of shared information amongst vintages improves the inversion results even for acquisitions
with large gaps. Finally, none of the other recently proposed approaches in this research area—
e.g., double differences (Yang et al., 2014) and total-variation norm minimization on time-lapse
earth models (Maharramov and Biondi, 2014)—use the shared information amongst the vintages
explicitly.

5.8 Conclusions

We considered the situation of recovering time-lapse data from on-the-grid but randomly subsam-
pled surveys. In this idealized setting, where we ignore the effects of being off the grid, we found
that it is better not to revisit the on-the-grid shot locations amongst the time-lapse surveys when
the vintages themselves are of prime interest. This result is a direct consequence of introducing
a common component, which contains information shared amongst the vintages, as part of our
proposed joint recovery method. Compared to independent recoveries of the vintages, we obtain
time-lapse data exhibiting a higher degree of repeatability in terms of normalized root-mean-square
ratios. Under the above stated idealized setting and ignoring complicating factors such as tidal dif-
ferences, our proposed method lowers the cost and environmental imprint of acquisition because
fewer shot locations are visited. It also allows us to extend the survey area or to increase the data’s
resolution at the same costs as conventional surveys. Our improvements concern the vintages and
not the time-lapse difference itself, which would benefit if we choose to use the same shot locations
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during the surveys. Because we are generally interested in “poststack” attributes derived from the
vintages, their recovery took prevalence. So, we make the argument not to replicate—i.e., revisit
on-the-grid shot locations during randomized surveys in cases where poststack time-lapse attributes
are of interest only.
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Chapter 6

Low-cost time-lapse seismic with
distributed Compressive Sensing —
impact on repeatability

6.1 Summary

Irregular or off-the-grid spatial sampling of sources and receivers is inevitable in field seismic ac-
quisitions. Consequently, time-lapse surveys become particularly expensive since current practices
aim to replicate densely sampled surveys for monitoring changes occurring in the reservoir due to
hydrocarbon production. We demonstrate that under certain circumstances, high-quality prestack
data can be obtained from cheap randomized subsampled measurements that are observed from
nonreplicated surveys. We extend our time-jittered marine acquisition to time-lapse surveys by
designing acquisition on irregular spatial grids that render simultaneous, subsampled and irregular
measurements. Using the fact that different time-lapse data share information and that nonrepli-
cated surveys add information when prestack data are recovered jointly, we recover periodic densely
sampled and colocated prestack data by adapting the recovery method to incorporate a regular-
ization operator that maps traces from an irregular spatial grid to a regular periodic grid. The
recovery method is, therefore, a combined operation of regularization, interpolation (estimating
missing fine-grid traces from subsampled coarse-grid data), and source separation (unraveling over-
lapping shot records). By relaxing the insistence on replicability between surveys, we find that
recovery of the time-lapse difference shows little variability for realistic field scenarios of slightly
nonreplicated surveys that suffer from unavoidable natural deviations in spatial sampling of shots
(or receivers) and pragmatic compressed-sensing based nonreplicated surveys when compared to the
“ideal” scenario of exact replicability between surveys. Moreover, the recovered densely sampled
prestack baseline and monitor data improve significantly when the acquisitions are not replicated,
and hence can serve as input to extract poststack attributes used to compute time-lapse differences.
Our observations are based on experiments conducted for an ocean-bottom cable survey acquired
with time-jittered continuous recording assuming source equalization (or same source signature)
for the time-lapse surveys and no changes in wave heights, water column velocities or temperature
and salinity profiles, etc.

A version of this chapter has been published in Geophysics, 2017, vol. 82, pp. P15–P30.
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6.2 Introduction

Simultaneous marine acquisition is being recognized as an economic and environmentally more
sustainable way to sample seismic data and speedup acquisition, wherein single or multiple source
vessels fire shots at random, compressed times resulting in overlapping shot records (de Kok and
Gillespie, 2002; Beasley, 2008; Berkhout, 2008; Hampson et al., 2008; Moldoveanu and Quigley,
2011; Abma et al., 2013), and hence generating compressed seismic data volumes. The aim then
is to separate the overlapping shot records into individual shot records, as acquired during conven-
tional acquisition, but with denser source sampling while preserving amplitudes of the late, often
weak, arrivals. This leads to recovering densely sampled data economically, which is essential for
producing high-resolution images of the subsurface.

Mansour et al. (2012b), Wason and Herrmann (2013b) and Mosher et al. (2014) have showed
that compressed sensing (CS, Candès et al., 2006c; Donoho, 2006) is a viable technology to sam-
ple seismic data economically with low environmental imprint—by reducing numbers of shots (or
injected energy in the subsurface) or compressing survey times. Mansour et al. (2012b) and Wa-
son and Herrmann (2013b) proposed an alternate sampling strategy for simultaneous acquisition
(“time-jittered” marine), addressing the separation problem through a combination of tailored (si-
multaneous) acquisition design and sparsity-promoting recovery via convex optimization using `1
objectives. This separation technique interpolates sub-Nyquist jittered shot positions to a fine reg-
ular grid while unraveling the overlapping shots. The time-jittered marine acquisition is designed
for continuous recording, fixed-receiver (or “static”) geometries, which is different from the case
of towed-streamer (or “dynamic”) geometries, wherein multiple sources fire shots within a time
interval of (0, 1) or (0, 2) s generating overlapping shot records that need to be separated into its
constituent sources, i.e., a data volume for each individual source (Kumar et al., 2015b). Our
approach for conventional data recovery from simultaneous data from static geometries can equally
apply to other settings including static land and other static marine geometries.

The implications of randomization in time-lapse (or 4D) seismic, however, are less well-understood
since the current paradigm relies on dense sampling and replicability amongst the baseline and mon-
itor surveys (Lumley and Behrens, 1998). These requirements impose major challenges because the
insistence on dense sampling may be prohibitively expensive and variations in acquisition geome-
tries (between the surveys) due to physical constraints do not allow for exact replication of the
surveys. In Chapter 5, we presented a new approach (the “joint recovery method”) that addresses
these acquisition- and processing-related issues by explicitly exploiting common information shared
by the different time-lapse vintages. Our analyses were carried out assuming that the observations
lied on a discrete grid so that exact survey replicability is in principle achievable. We also as-
sume sources to have the same source signature for the time-lapse surveys. While assuming source
equalization in this chapter, we extend our work on simultaneous time-jittered marine acquisition
to time-lapse surveys for more realistic field acquisitions that lie on irregular spatial grids, where
the notion of exact replicability of the surveys is inexistent. This is because the “real” world suf-
fers from unavoidable deviations between pre- and post-acquisition shot (and receiver) positions,
rendering regular, periodic spatial grids irregular, and hence exact replication of the surveys im-
possible. As mentioned later in the chapter, accounting for the irregularity of seismic data is key
to recovering densely sampled data. Moreover, while we do not insist that we actually visit pre-
designed (irregular) shot positions, but it is important to know these positions to sufficient accuracy
after acquisition for high-quality data recovery. Recent successes in the application of compressed
sensing to land and marine field data acquisition (see e.g., Mosher et al., 2014) show that this can
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be achieved in practice.
Simultaneous time-jittered marine acquisition generates compressed and subsampled data vol-

umes, therefore, extending this to time-lapse surveys generates compressed and subsampled base-
line and monitor data. Consequently, we are interested in recovering densely sampled vintages and
time-lapse difference. Moreover, time-lapse differences are often studied via differences in certain
poststack attributes computed from the vintages (Landrø, 2001; Spetzler and Kvam, 2006), hence,
we prioritize on recovering the prestack vintages. In this chapter, we push this technology to re-
alistic settings of off-the-grid acquisitions and demonstrate that we actually gain if we relax the
insistence to replicate surveys since even the smallest known deviations from the grid can lead to
significant improvements in the recovery of the vintages with minimal compromise with the recovery
of the time-lapse difference.

6.2.1 Motivation: on-the-grid vs. off-the-grid data recovery

Chapter 5 illustrated that the joint recovery method gives better recoveries of time-lapse data and
time-lapse difference than the independent recovery strategy, since the former approach exploits
the common information shared by the vintages. It also showed that “exact” replication of the
baseline and monitor surveys lead to good recovery of the time-lapse difference but not of the
vintages. These analyses, however, were carried out assuming that the observations lied on a
discrete grid so that exact survey replicability is achievable. Realistic field acquisitions, on the
contrary, lie off the grid—i.e., have irregular spatial sampling—where exact replicability of the
surveys is inexistent. Figure 6.1 shows a comparison between conventional periodic acquisition
which generates data with nonoverlapping shot records, and simultaneous time-jittered acquisition
which generates compressed recordings with overlapping shots. Note that the sampling grid for
conventional acquisition “in the field” would be slightly irregular, however, this in contrast to
the jittered acquisition which by virtue of its design is aperiodic and lies on an irregular sampling
grid. Since the time-jittered acquisition scheme leverages compressed sensing—the success of which
hinges on randomized subsampling—additional and unavoidable deviations in the field add to the
randomization of the designed irregular shot positions, and helps in sparsity-promoting inversion
as long as we know the final shot positions to sufficient precision.

Figures 6.2(a)-6.2(c) show receiver gathers from a conventional (synthetic) time-lapse data
set and the corresponding time-lapse difference. To recover periodic densely sampled data from
simultaneous, compressed and irregular data, we could implicitly rely on binning, however, failure
to account for irregularity of seismic traces can adversely affect the recovery as shown in Figure 6.3.
This is because binning does not represent accurate positions of irregular traces. Note that this
example corresponds to a time-jittered acquisition scheme for the baseline that is exactly replicated
for the monitor. The results show that binning offsets all the gains of exact survey replication and
also of the joint recovery method. Figure 6.4 illustrates the importance of regularization of irregular
traces for high-quality data recovery. In this chapter, therefore, we extend our work on simultaneous
time-jittered acquisition to time-lapse surveys by acknowledging the irregularity of field seismic data
and incorporating sparsifying transforms that exploit this irregularity to recover periodic densely
sampled time-lapse data.
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Figure 6.1: Schematic of conventional acquisition and simultaneous, compressed (or time-
jittered) acquisition. If the source sampling grid for conventional acquisition is 25.0 m
(or 50.0 m for flip-flop acquisition), then the time-jittered acquisition jitters (or per-
turbs) shot positions on a finer grid, which is 1/4 th of the conventional flip-flop sam-
pling grid, for a single air-gun array. Following the same strategy, adding another air-
gun array makes the acquisition simultaneous, and hence results in a compressed data
volume with overlapping, irregular shots and missing traces. The sparsity-promoting
inversion then aims to recover densely sampled data by separating the overlapping
shots, regularizing irregular traces and interpolating missing traces.

6.2.2 Contributions

The contributions of this work can be summarized as follows. First, we present an extension of our
simultaneous time-jittered marine acquisition for time-lapse surveys by working on more realistic
field acquisition scenarios by incorporating irregular spatial grids. Second, we leverage ideas from
compressed sensing and distributed compressed sensing to develop an algorithm that separates
simultaneous data, regularizes irregular traces and interpolates missing traces—all at once. Third,
through simulated experiments, we show that insistence on replicability of time-lapse surveys can
be relaxed since small known deviations in shot positions from a regular grid (or deviations in shot
positions of the monitor survey from those in the baseline survey) lead to significant improvements
in the recovery of the vintages, without drastic modifications in the recovery of the time-lapse
difference.

6.2.3 Outline

The chapter is organized as follows. We begin with the description of the simultaneous time-
jittered marine acquisition design, where we explain how subsampled and irregular measurements
are generated. Next, we introduce the nonequispaced fast discrete curvelet transform (NFDCT) and
its application to recover periodic densely sampled seismic lines from simultaneous and irregular
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(a) (b) (c)

Figure 6.2: Synthetic receiver gathers from a conventional (a) baseline survey, (b) monitor
survey. (c) Corresponding time-lapse difference.

measurements via sparsity-promoting inversion. We then extend this framework to time-lapse
surveys where we modify the measurement matrices in the joint recovery method to include the
off-the-grid information—i.e., the irregular shot positions and jittered times. Note that we do not
describe the independent recovery strategy since it is clear in Chapter 5 that the joint recovery
method outperforms the former approach. We conduct a series of synthetic seismic experiments
with different random realizations of the simultaneous time-jittered marine acquisition to assess
the effects (or risks) of irregular sampling in the field on time-lapse data and demonstrate that
high-quality data recoveries are the norm and not the exception. We show this by generating 2D
seismic lines using two different velocity models—one with simple geology and complex time-lapse
difference (BG COMPASS model), and the other with complex geology and complex time-lapse
difference (SEAM Phase 1 model with simulated time-lapse difference). Aside from computing
signal-to-noise ratios measured with respect to densely sampled true baseline, monitor, and time-
lapse differences, we also measure the economic and environmental performance of the proposed
acquisition design and recovery strategy by computing the improvement in spatial sampling.

6.3 Time-jittered marine acquisition

The objective of CS is to recover densely sampled data from (randomly) subsampled data by exploit-
ing sparse structure in the data during sparsity-promoting recovery. Mansour et al. (2012b), Wason
and Herrmann (2013b) presented a pragmatic simultaneous marine acquisition scheme, termed as
time-jittered marine, that leverages ideas from compressed sensing by invoking randomness and
subsampling—i.e., sample randomly with fewer samples than required by Nyquist sampling criteria
in the acquisition via random jittering of the source firing times. The success of CS hinges on
randomized subsampling since it renders subsampling related artifacts incoherent, and therefore
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(d) (e) (f)

Figure 6.3: Data recovery via the joint recovery method and binning. (a), (b) Binned vin-
tages and (c) corresponding time-lapse difference. (d), (e), (f) Corresponding difference
plots.
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Data recovery via the joint recovery method and regularization. (a), (b) Vintages
and (c) time-lapse difference recovered via sparsity promotion including regularization
of irregular traces. (d), (e), (f) Corresponding difference plots. As illustrated, regular-
ization is imperative for high-quality data recovery.
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nonsparse, favouring data recovery via structure-promoting inversion. Consequently, source inter-
ferences (in simultaneous acquisition) become incoherent in common-receiver gathers creating a
favorable condition for separating simultaneous data into conventional nonsimultaneous data via
curvelet-domain sparsity promotion. The CS paradigm, however, assumes signals to be sampled
on a periodic discrete grid—i.e., signals with sparse representation in finite discrete dictionaries.

Data volumes collected during seismic acquisition represent discretization of analog finite-energy
wavefields in up to five dimensions including time—i.e., we acquire an analog spatiotemporal wave-
field f̄(t, x) ∈ L2((0, T ]× [−X,X]4), two dimensions for receivers and two dimensions for sources,
with time T in order of seconds and length X in order of kilometers. In an ideal world, signals
would perfectly lie on a periodic, regular grid. Hence, with a linear high-resolution analog-to-
digital converter Φ̄s, the discrete signal is represented as f [q] = f̄ ? Φ̄s(q), for 0 ≤ q < N (Mal-
lat, 2008), where the samples lie on a grid. Typically, these samples are organized into a vector
f = f [q]q=0,...,N−1 ∈ RN . Signals we encounter in the real world, however, are usually not uniformly
regular and do not lie on a regular grid. Therefore, it is imperative to define an irregular sampling
adapted to the local signal regularity (Mallat, 2008). For irregular sampling, the discretized irreg-
ular signal is represented as f [qn] = f̄ ? Φ̄s(qn), for n = 0, ...,M − 1 and M ≤ N , where qn are
irregular points (or nonequispaced nodes) randomly chosen from the set {0, ..., N − 1}. Its vector
representation is f = f [qn]n=0,...,M−1.

For a signal f0 ∈ RN that admits a sparse representation x0 in some transform domain—i.e., f0
is sparse with respect to a basis or redundant frame S ∈ CP×N , with P ≥ N , such that f0 = SHx0

(x0 sparse), where H denotes the Hermitian transpose—the goal in CS is to reconstruct the signal
f0 from few random linear measurements, y = Af0, where A is an n×N measurement matrix with
n � N . Utilizing prior knowledge that f0 is sparse with respect to a basis or redundant frame S
and assuming the signal to be sampled on a periodic discrete grid, CS aims to find an estimate x̃
for the underdetermined system of linear equations: y = Af0. This is done by solving the basis
pursuit (BP, Candès et al., 2006c; Donoho, 2006) convex optimization problem:

x̃ = arg min
x

‖x‖1 :=
N∑
i=1

|xi| subject to y = Ax. (6.1)

In the noise-free case, this problem finds amongst all possible vectors x, the vector that has the
smallest `1-norm and that explains the observed subsampled data.

Mathematically, a seismic line with Ns sources, Nr receivers, and Nt time samples can be
reshaped into an N dimensional vector f , where N = Ns×Nr×Nt. Since real-world signals are not
exactly sparse but compressible—i.e., can be well approximated by a sparse signal—a compressible
representation, x, of the seismic line in the curvelet domain, S, is represented as f = SHx. Since
curvelets are a redundant frame (an over-complete sparsifying dictionary), S ∈ CP×N with P > N ,
and x ∈ CP . With the inclusion of the sparsifying transform, the measurement matrix A can be
factored into the product of a n×N (with n� N) acquisition matrix M and the synthesis matrix
SH—i.e., A = MSH . For the real-world irregular signals, however, we need to account for the
acquired unstructured measurements for high-resolution data recovery. We do this by introducing
an operator in the recovery algorithm (by modifying the measurement operator A—see details in
the next sections) that acknowledges the irregularity of seismic traces and uses this information to
render regularized and interpolated data.
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6.3.1 Acquisition geometry

In time-jittered marine acquisition, source vessels map the survey area firing shots at jittered time
instances, which translate to jittered shot positions for a given (fixed) speed of the source vessel.
The simultaneous data is time compressed, and therefore acquired economically with low environ-
mental imprint. The recovered separated data is periodic and dense. For simplicity, we assume
that all shot positions see the same receivers, which makes our method applicable to marine ac-
quisition with ocean bottom cables or nodes (OBC or OBN). The receivers record continuously
resulting in simultaneous shot records. Randomization via jittered subsampling offers control over
the maximum gap size (on the acquisition grid), which is a practical requirement of wavefield re-
construction with localized sparsifying transforms such as curvelets (Hennenfent and Herrmann,
2008). For simultaneous time-jittered acquisition, parameters such as the minimum distance re-
quired between adjacent shots and minimum recharge time for the air guns help in controlling the
maximum acquisition gap while maintaining the minimum realistic acquisition gap.

Conventional acquisition with one source vessel and two air-gun arrays where each air-gun ar-
ray fires at every alternate periodic location is called flip-flop acquisition. If we wish to acquire
10.0 s-long shot records at every 12.5 m, the speed of the source vessel would have to be about
1.25 m/s (≈ 2.5 knots). Figure 6.5(a) illustrates one such conventional acquisition scheme, where
each air-gun array fires every 20.0 s (or 25.0 m) in a flip-flop manner traveling at about 1.25 m/s,
resulting in nonoverlapping shot records of 10.0 s every 12.5 m. In time-jittered acquisition, Fig-
ures 6.5(b) and 6.5(c), each air-gun array fires on average at every 20.0 s jittered time-instances
traveling at about 2.5 m/s (≈ 5.0 knots) with the receivers (OBC/OBN) recording continuously,
resulting in overlapping shot records (Figures 6.6(a) and 6.6(b)). Note that the acquisition design
involves jittered subsampling—i.e., regular decimation of the (fine) interpolation grid and subse-
quent perturbation of the coarse-grid points completely off the fine grid. The idealized discrete
jittered subsampling, by contrast, perturbs the coarse-grid points on the fine grid, as presented in
Chapter 5. The subsampling factor is represented by η. Therefore, the acquired data volume has
overlapping shots and missing shots/traces (Figure 6.6(a) and 6.6(b)). For this reason, the jittered
flip-flop acquisition might not mimic the conventional flip-flop acquisition where air-gun array 1 and
2 fire one after the other—i.e., in the center and right-hand plots of Figure 6.5(d) a circle (denoting
array 1) may be followed by another circle instead of a star (denoting array 2), and vice versa.
However, the minimum interval between the jittered times is maintained at 10.0 s (typical interval
required for air-gun recharge), while the maximum interval is 30.0 s. For the speed of 2.5 m/s, this
translates to jittering a 50.0 m source grid with a minimum (and maximum) interval of 25.0 m (and
75.0 m) between jittered shots. Both arrays fire at the 50.0 m jittered grid independent of each
other.

In time-jittered marine acquisition, the acquisition operator M is a combined jittered-shot se-
lector and time-shifting operator. Since data is acquired on an irregular grid, it is imperative to
incorporate operators in the design of the acquisition matrix M that account for and hence reg-
ularize the irregularity in the data. This is critical to the success of the recovery algorithm. The
off-the-grid acquisition design is different from that presented by Li et al. (2012), wherein an inter-
polated restriction operator accounts for irregular points by incorporating Lagrange interpolation
into the restriction operator—i.e., the measurements are approximated using a kth-order Lagrange
interpolation. In time-jittered acquisition, the jittered time instances are put on a time grid (defined
by a time-sampling interval) where each jittered time instance is placed on the point closest to it
on the regular time grid. The difference between the true jittered time and the regular grid point,
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(a) (b) (c)

(d)

Figure 6.5: Marine acquisition with one source vessel and two air-gun arrays. (a) Conven-
tional flip-flop acquisition. Time-jittered acquisition with a subsampling factor η = 2
for the (b) baseline and (c) monitor. Note the acquisition speedup during jittered
acquisition, where the recording time is reduced to one-half the recording time of the
conventional acquisition. (d) Zoomed sections of (a), (b) and (c), respectively.

∆t, is corrected by shifting the traces by e−iω∆t, where ω is the angular frequency. The irregularity
in the shot positions is corrected by including the nonequispaced fast Fourier transform, NFFT
(Potts et al., 2001; Kunis, 2006), in the sparsifying operator S (Hennenfent and Herrmann, 2006;
Hennenfent et al., 2010), as described in the next section. The NFFT evaluates a Fourier expansion
at nonequispaced locations defined by the time-jittered acquisition. Note that in this framework it
is also possible to randomly subsample the receivers.

Randomly subsampled and simultaneous measurements for the baseline and monitor surveys are
shown in Figures 6.6(a) and 6.6(b), respectively. Note that only 40.0 s of the continuously recorded
data is shown. If we simply apply the adjoint of the acquisition operator to the corresponding
simultaneous data—i.e., MHy—the interferences (or source crosstalk) due to overlapping shots
appear as incoherent and nonsparse in the receiver gathers (Figures 6.7(a) and 6.7(b)). Moreover,
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(a) (b)

Figure 6.6: Simultaneous data for the (a) baseline and (b) monitor surveys. Only 40.0 s of
the full data is shown. Time-jittered acquisition generates a simultaneous data volume
with overlapping shots and missing shots.

since regularization (and interpolation) is performed by the NFFT inside a nonequispaced curvelet
framework (see next section), Figures 6.7(a) and 6.7(b) have Ns

η irregular traces, where η > 1 is the
subsampling factor. Since the baseline and monitor surveys have different irregular shot positions,
the corresponding time-lapse difference cannot be computed unless both time-lapse data are re-
aligned to a common spatal grid. For this purpose, if we apply the adjoint of a 1D NFFT operator
N—i.e., NHMHy—the time-lapse data are realigned to a common fine spatial grid (Figures 6.7(c)
and 6.7(d)). The corresponding time-lapse difference is shown in Figure 6.7(e). As illustrated by
these figures, in order to eventually remove the interferences and interpolate missing traces it is
important to consider the recovery problem as an inversion problem. Since the time-jittered acqui-
sition generates simultaneous, irregular data with missing traces, the recovery problem becomes a
joint source separation, regularization and interpolation problem.
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(a) (b)

(c) (d) (e)

Figure 6.7: Interferences (or source crosstalk) in a common-receiver gather for the (a) base-
line and (b) monitor surveys, respectively. Receiver gathers are obtained via MHy
for the time-lapse surveys. For a subsampling factor η, (a) and (b) have Ns

η irreg-
ular traces. (c), (d) Common-receiver gathers for the baseline and monitor surveys,
respectively, after applying the adjoint of a 1D NFFT operator to (a) and (b). (e)
Corresponding time-lapse difference. As illustrated, the recovery problem needs to be
considered as a (sparse) structure-promoting inversion problem, wherein the simulta-
neous data volume is separated, regularized and interpolated to a finer sampling grid
rendering interference-free data.
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6.3.2 From discrete to continuous spatial subsampling

Subsampling schemes that are based on an underlying fine interpolation grid incorporate the dis-
crete (spatial) subsampling schemes, since the subsampling is done on the grid. This situation
typically occurs when binning continuous randomly-sampled seismic data into small bins that de-
fine the fine grid used for interpolation (Hennenfent and Herrmann, 2008). For such cases, the
wrapping-based fast discrete curvelet transform, FDCT via wrapping (Candès et al., 2006a) can
be used to recover the fully sampled data since the inherent fast Fourier transform (FFT) as-
sumes regular sampling along all coordinates. For the interested reader, the curvelet transform
is a multiscale, multidirectional, and localized transform that corresponds to a specific tiling of
the f-k domain into dyadic annuli based on concentric squares centered around the zero-frequency
zero-wavenumber point. Each annulus is subdivided into parabolic angular wedges—i.e., length of
wedge ∝ width2 of wedge. The architecture of the analysis operator (or forward operation) of the
FDCT via wrapping is as follows: (1) apply the analysis 2D FFT; (2) form the angular wedges;
(3) wrap each wedge around the origin; and (4) apply the synthesis 2D FFT to each wedge. The
synthesis/adjoint operator—also the inverse owing to the tight-frame property—is computed by
reversing these operations (Candès et al., 2006a).

Seismic data, however, is usually acquired irregularly, typically nonuniformly sampled along the
spatial coordinates. Simultaneous time-jittered marine acquisition, mentioned above, is an instance
of acquiring seismic data on irregular spatial grids. Hence, binning can lead to a poorly-jittered
subsampling scheme, which will not favor wavefield reconstruction by sparsity-promoting inversion.
Moreover, failure to account for the nonuniformly sampled data can adversely affect seismic pro-
cessing, imaging, etc. Therefore, we should work with an extension to the curvelet transform for
irregular grids (Hennenfent et al., 2010). Using this extension for the simultaneous time-jittered
marine acquisition will produce colocated fine-scale time-lapse data. Continuous random sampling
typically leads to improved interpolation results because it does not create coherent subsampling
artifacts (Xu et al., 2005).

6.3.3 Nonequispaced fast discrete curvelet transform (NFDCT)

For irregularly acquired seismic data, the (FFT inside) FDCT (Candès et al., 2006a) assumes regular
sampling along all (spatial) coordinates. Ignoring the nonuniformity of the spatial sampling no
longer helps in detecting the wavefronts because of a lack of continuity. Hennenfent and Herrmann
(2006) addressed this issue by extending the FDCT to nonuniform (or irregular) grids via the
nonequispaced fast Fourier transform, NFFT (Potts et al., 2001; Kunis, 2006). The outcome was
the ‘first generation NFDCT’ (nonequispaced fast discrete curvelet transform), which relied on
accurate Fourier coefficients obtained by an `2-regularized inversion of the NFFT.

The NFDCT handles irregular sampling, thus, exploring continuity along the wavefronts by
viewing seismic data in a geometrically correct way—typically nonuniformly sampled along the
spatial coordinates (source and/or receiver). In Hennenfent et al. (2010), the authors introduced
a ‘second generation NFDCT’, which is based on a direct, `1-regularized inversion of the operator
that links curvelet coefficients to irregular data. Unlike the first generation NFDCT, the second
generation NFDCT is lossless by construction—i.e., the curvelet coefficients explain the data at
irregular locations exactly. This property is important for processing irregularly sampled seismic
data in the curvelet domain and bringing them back to their irregular recording locations with high
fidelity. Note that the second generation NFDCT is lossless for regularization not interpolation.
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The NFDCT framework as setup in Hennenfent et al. (2010) basically involves a Kronecker product
(⊗) of a 1D FFT operator Ft, used along the temporal coordinate, and a 1D NFFT operator Nx,
used along the spatial coordinate, followed by the application of the curvelet tilling operator T

that maps curvelet coefficients to the Fourier domain—i.e., B
def
= T(Nx ⊗ Ft). Therefore, B is

the NFDCT operator that links the curvelet coefficients to nonequispaced traces. The 1D NFFT
operator (Nx) replaces the 1D FFT operator (Fx) that acts along the spatial coordinate in FDCT.
Note that the NFDCT operator described above is written differently than in Hennenfent et al.
(2010) because the latter defines the synthesis FFT operator as F, whereas F is the analysis FFT
operator in this chapter. This also ensures consistency of notation and terminology with Chapter
5.

For the proposed simultaneous acquisition, the joint problem of source separation, regularization
and interpolation is addressed by using a sparsifying operator (S) that handles the multidimen-

sionality of this problem. Therefore, S
def
= C⊗W, where C is a 2D NFDCT operator and W is a

1D wavelet operator. The NFDCT operator is modified as

C
def
= T(Nxs ⊗ Fxr), (6.2)

where the 1D NFFT operator Nxs acts along the jittered shot coordinate and the 1D FFT operator
Fxr acts along the regular receiver coordinate. The 1D wavelet operator is applied on the time
coordinate. As mentioned previously, the measurement matrix A = MSH . From a practical point
of view, it is important to note that matrix-vector products with all the matrices are matrix free—
i.e., these matrices are operators that define the action of the matrix on a vector, but are never
formed explicitly.

In summary, recovery of nonoverlapping, periodic and densely sampled data from simultaneous,
irregular and compressed data is achieved by incorporating an NFFT operator inside the curvelet
framework that acts along the irregular spatial coordinate(s) and applying time shifts to the traces
wherever necessary. Note that the NFFT operator is incorporated in the 2D NFDCT operator
C, which is incorporated in the sparsifying operator S, and the time shift ∆t is incorporated in
the acquisition operator M. The NFFT computes (fine grid) 2D Fourier coefficients by mapping
the coarse nonuniform spatial grid to a fine uniform grid. The curvelet coefficients are computed
directly from the 2D Fourier coefficients.

6.4 Time-lapse acquisition via jittered sources

In Chapter 5, we extended the time-jittered marine acquisition to time-lapse surveys where the
shot positions were jittered on a discrete periodic grid. In this chapter, we extend the framework to
more realistic field acquisition scenarios by incorporating irregular grids. Figure 6.5(a) illustrates a
conventional marine acquisition scheme and two realizations of the off-the-grid time-jittered marine
acquisition are shown in Figures 6.5(b) and 6.5(c), one each for the baseline and the monitor survey.
Remember that these surveys generate simultaneous, irregular and subsampled measurements. We
assume no significant variations in the water column velocities, wave heights or temperature and
salinity profiles, etc., amongst the different surveys. The source signature is also assumed to be the
same.

We describe noise-free time-lapse data acquired from a baseline and a monitor survey as
yj = Ajxj for j = {1, 2}, where y1 and y2 represent the subsampled, simultaneous measure-
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ments for the baseline and monitor surveys, respectively; A1 and A2 are the corresponding flat
(n � N < P ) measurement matrices. Note that both the measurement matrices incorporate the
NFDCT operator, as described above, to account and correct for the irregularity in the observed
measurements of the baseline (y1) and monitor surveys (y2). Recovering densely sampled vintages
for each vintage independently (via Equation 6.1) is referred to as the independent recovery strat-
egy (IRS). Since in Chapter 5 we demonstrated that recovery via IRS is inferior to recovery via the
joint recovery method, we work only with the latter in this chapter.

6.4.1 Joint recovery method

The joint recovery method (JRM) performs a joint inversion by exploiting shared information
between the vintages. The joint recovery model (DCS, Baron et al., 2009) is formulated as

[
y1

y2

]
=

[
A1 A1 0
A2 0 A2

]z0

z1

z2

 , or

y = Az.

(6.3)

In this model, the vectors y1 and y2 represent observed measurements from the baseline and monitor
surveys, respectively. The vectors for the vintages are given by

xj = z0 + zj , j ∈ 1, 2, (6.4)

where the common component is denoted by z0, and the innovations are denoted by zj for j ∈
1, 2 with respect to this common component that is shared by the vintages. The symbol A is
overloaded to refer to the matrix linking the observations of the time-lapse surveys to the common
component and innovations pertaining to the different vintages. The above joint recovery model
can be extended to J > 2 surveys, yielding a J × (number of vintages + 1) system.

Since the vintages share the common component in Equation 6.3, solving

z̃ = arg min
z
‖z‖1 subject to y = Az, (6.5)

will exploit the correlations amongst the vintages. Equation 6.5 seeks solutions for the common
component and innovations that have the smallest `1-norm such that the observations explain
the incomplete recordings for both vintages. The densely sampled vintages are estimated via
Equation 6.4 with the recovered z̃ and the time-lapse difference is computed via z̃1 − z̃2.

Given a baseline data vector f1 and a monitor data vector f2, x1 and x2 are the corresponding
sparse representations. Given the measurements y1 = M1f1 and y2 = M2f2, and A1 = M1S

H
1 ,

A2 = M2S
H
2 , our aim is to recover the wavefields (or sparse approximations) f̃1 and f̃2 by solving

the sparse recovery problem as described above from which the time-lapse signal can be computed.

Note that S
def
= C⊗W, where C is the NFDCT operator (see Equation 6.2) and W is a 1D wavelet

operator. The reconstructed wavefields f̃1 and f̃2 are obtained as: f̃1 = SH x̃1 and f̃2 = SH x̃2, where
x̃1 and x̃2 are the recovered sparse representations and the operator S is overwritten to represent
the Kronecker product between the standard FDCT operator and the 1D wavelet operator. The
standard FDCT operator is used because the recovered sparse representations x̃1 and x̃2 correspond
to the coefficients of the regularized wavefields. Since we are always subsampled in both the
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baseline and monitor surveys, have irregular traces and cannot exactly repeat, which is inherent
of the acquisition design and due to natural environmental constraints, we would like to recover
the periodic densely sampled prestack vintages and time-lapse difference. For the given recovery
problem, the vintages and time-lapse difference are mapped to one colocated fine regular periodic
grid.

6.5 Economic performance indicators

To quantify the cost savings associated with simultaneous acquisition, we measure the performance
of the proposed acquisition design and recovery scheme in terms of an improved spatial-sampling
ratio (ISSR), defined as

ISSR =
number of shots recovered via sparsity-promoting inversion

number of shots in simultaneous acquisition
. (6.6)

For time-jittered marine acquisition, a subsampling factor η = 2, 4, ..., etc., implies a gain in the
spatial sampling by factor of 2, 4, ..., etc. In practice, this corresponds to an improved efficiency of
the acquisition by the same factor. Recently, Mosher et al. (2014) have shown that factors of two
or as high as ten in efficiency improvement are achievable in the field.

The survey-time ratio (STR)—a performance indicator proposed by Berkhout (2008)—compares
the time taken for conventional and simultaneous acquisition:

STR =
time of conventional acquisition

time of simultaneous acquisition
. (6.7)

As mentioned previously, if we wish to acquire 10.0 s-long shot records at every 12.5 m, the speed
of the source vessel would have to be about 1.25 m/s (≈ 2.5 knots). In simultaneous acquisition,
the speed of the source vessel is approximately maintained at (the standard) 2.5 m/s (≈ 5.0 knots).
Therefore, for a subsampling factor of η = 2, 4, ..., etc., there is an implicit reduction in the survey
time by 1

η .

6.6 Synthetic seismic case study

To illustrate the performance of our proposed joint recovery method for off-the-grid surveys, we
carry out a number of experiments on 2D seismic lines generated from two different velocity
models—first, the BG COMPASS model (provided by BG Group) that has simple geology with
complex time-lapse difference; and second, the SEAM Phase 1 model (provided by HESS) that has
complex geology with complex time-lapse difference due to the complexity of the overburden. Note
that for the SEAM model, we generate the time-lapse difference via fluid substitution as shown
below. Also, the geology of the BG COMPASS model is relatively simpler than the SEAM model,
although it does have vertical and lateral complexity.

6.6.1 BG COMPASS model—simple geology, complex time-lapse difference

The synthetic BG COMPASS model has a (relatively) simple geology but a complex time-lapse
difference. Figures 6.8(a) and 6.8(b) display the baseline and monitor models. Note that this
is a subset of the BG COMPASS model, wherein the monitor model includes a gas cloud. The
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(a) (b) (c)

Figure 6.8: Subset of the BG COMPASS model. (a) Baseline model; (b) monitor model; (c)
difference between (a) and (b) showing the gas cloud.

time-lapse difference in Figure 6.8(c) shows the gas cloud.
Using IWAVE (Symes, 2010), a time-stepping simulation software, two acoustic data sets with

a conventional source (and receiver) sampling of 12.5 m are generated, one from the baseline model
and the other from the monitor model. Each data set has Nt = 512 time samples, Nr = 260 receivers
and Ns = 260 sources. The time sampling interval is 0.004 s. Subtracting the two data sets yields
the time-lapse difference. Since no noise is added to the data, the time-lapse difference is simply
the time-lapse signal. A receiver gather from the simulated baseline data, the monitor data and
the corresponding time-lapse difference is shown in Figure 6.2(a), 6.2(b) and 6.2(c), respectively.
The first shot position in the receiver gathers—labeled as 0 m in the figures—corresponds to 1.5 km
in the synthetic velocity model. Given the spatial sampling of 12.5 m, the subsampling factor η
for the time-jittered acquisition is 2. Hence, the number of measurements for each experiment is
fixed—i.e., n = N/η = N/2, each for y1 and y2. We also conduct experiments for η = 4.

To reflect current practices in time-lapse acquisition—where people aim to replicate the surveys—
we simulate 10 different realizations of the time-jittered marine acquisition with 100% overlap
between the baseline and monitor surveys. The term “overlap” refers to the percentage of shot
positions from the baseline survey revisited (or replicated exactly) for the monitor survey, and
therefore rows in the measurement matrices A1 and A2 are exactly the same. Note that these shot
positions are irregular, and hence off the grid. However, since exact replication of the surveys in the
field is not possible, we conduct experiments to study the impact of deviations in the shot positions
that would occur naturally in the field. We introduce small deviations of average ±(1, 2, 3) m in the
shot positions of the baseline surveys to generate the shot positions for the monitor surveys. For
instance, given a realization of the time-jittered baseline survey, deviating each shot position by
≈ ±1 m generates shot positions for the corresponding monitor survey. Note that these deviations
are average deviations in the sense that for a given realization of the time-jittered baseline survey,
the shot positions are deviated by random real numbers resulting in average deviations of ±1 m,
±2 m or ±3 m. One of our aims is to analyze the effects of nonreplication of the time-lapse surveys
on time-lapse data—i.e., when A1 6= A2. By virtue of the design of the simultaneous acquisition
and based upon the subsampling factor (η), it is not possible to have two completely different (0%
overlap) realizations of the time-jittered acquisition. Therefore, we compare recoveries from the
above cases with the acquisition scenarios that have least possible (or unavoidable) overlap between
the time-lapse surveys. In all cases, we recover periodic densely sampled baseline and monitor data
from the simultaneous data y1 and y2, respectively, using the joint recovery method (by solving
Equation 6.5). The inherent time-lapse difference is computed by subtracting the recovered baseline
and monitor data.
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We conduct 10 experiments for the baseline measurements, wherein each experiment has a
different random realization of the measurement matrix A1. Then, for each experiment, we fix
the baseline measurement and subsequently work with different realizations of the monitor survey
generated by introducing small deviations in the shot positions and jittered firing times from the
baseline survey, resulting in slightly different overlaps between the surveys. To get better insight
on the effects of nonreplication of the time-lapse surveys, we also conduct experiments for the case
of least possible overlap between the surveys. Tables 6.1 and 6.2 summarize the recovery results
for the time-lapse data for η = 2 and 4, respectively, in terms of the signal-to-noise ratio defined
as

S/N(f , f̃) = −20 log10

‖f − f̃‖2
‖f‖2

. (6.8)

Each table compares recoveries for different overlaps between the baseline and monitor surveys,
with and without position deviations. Each S/N value is an average of 10 experiments including
the standard deviation. Note that for time-jittered acquisition with η = 2, the least possible overlap
between the surveys is observed to be greater than 0% and less than 15%. Hence, Table 6.1 shows
the S/Ns for the overlap of < 15%. Similarly, for time-jittered acquisition with η = 4, Table 6.2
shows the S/Ns for the overlap of < 5%.

We recover periodic densely sampled data from simultaneous, subsampled and irregular data by
solving Equation 6.5. The recovered time-lapse data is colocated, regularized and interpolated to a
fine uniform grid since both the measurement matrices A1 and A2 incorporate a 2D nonequispaced
fast discrete curvelet transform that handles irregularity of traces by viewing the observed data in
a geometrically correct way. The S/Ns of the recovered time-lapse data lead to some interesting
observations. First, there is little variability in the recovery of the time-lapse difference from (the
ideal) 100% overlap between the surveys to the more realistic scenarios of in-the-field acquisitions
that have natural deviations or irregularities in the shot positions. Second, time-lapse difference
recovery from the least possible overlap (between the surveys) is similar to the recovery of 100%
overlap with and without deviations. This is significant because it indicates a possibility to relax
the insistence on replication of the time-lapse surveys, which makes this technology challenging and
expensive. The small standard deviations for each case suggest little variability in the recovery for
different random realizations. Moreover, the standard deviations are greater for cases other than
the minimum overlap. The above observations hold for both subsampling factors, η = 2 and 4, as
illustrated in Figures 6.10 and 6.12.

Third, increasing deviations or irregularities in shot positions improve recovery of the vintages
(Figures 6.9(c), 6.9(e), 6.9(g)), with the minimum overlap between surveys giving the best recov-
ery (Figure 6.9(i)). This is due to the (partial) independence of the measurement matrices that
contribute additional information via the first column of A in Equation 6.3 connecting the com-
mon component to observations of both vintages—i.e., for time-lapse seismic, independent surveys
give additional structural information leading to improved recovery quality of the vintages. The
improvement in the recoveries is better visible through the corresponding difference plots in Fig-
ures 6.9(d), 6.9(f), 6.9(h), 6.9(j). This observation is important because, as mentioned previously,
time-lapse differences are often studied via differences in certain poststack attributes computed
from the (recovered) prestack vintages. Hence, as the quality of the recovered prestack vintages
improves with decrease in the overlap, they serve as better input to extract the poststack attributes.
Moreover, the small standard deviations for each overlap indicate little variability in the recovery
from one random realization to another. This is desirable since it offers a possibility to relax the
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Overlap ± avg. deviation Baseline Monitor 4D signal

100% 19.8 ± 1.0 19.7 ± 1.0 11.3 ± 2.2
100% ± 1.0 m 19.7 ± 1.0 19.6 ± 1.0 10.3 ± 1.5
100% ± 2.0 m 20.3 ± 1.1 20.2 ± 1.0 10.7 ± 1.1
100% ± 3.0 m 20.8 ± 1.2 20.7 ± 1.1 11.0 ± 1.4
< 15% 23.8 ± 1.4 23.6 ± 1.4 10.2 ± 1.2

Table 6.1: Summary of recoveries in terms of S/N (dB) for data recovered via JRM for a
subsampling factor η = 2. The S/Ns show little variability in the time-lapse difference
recovery for different overlaps between the surveys offering a possibility to relax insis-
tence on replicability of time-lapse surveys. This is supported by the improved recovery
of the vintages as the overlap decreases. Note that the deviations are average deviations.

insistence on replication of the time-lapse surveys along with embracing the naturally occurring
random deviations in the field. The standard deviations for different overlaps also do not fluctu-
ate as much as compared to those of the time-lapse difference. Recovery of the vintages and the
corresponding difference plots for a subsampling of η = 4 are shown in Figure 6.11.

An increase in the subsampling factor leads to decrease in the S/Ns of the recovered time-lapse
data, however, the recoveries are reasonable as shown in Figures 6.11 and 6.12. This observation is
in accordance with the CS theory wherein the recovery quality decreases for increased subsampling.
Note that recovery of weak late-arriving events can be further improved by rerunning the recovery
algorithm using the residual as input, using weighted one-norm minimization that exploits corre-
lations between locations of significant transform-domain coefficients of different partitions—e.g.,
shot records, common-offset gathers, or frequency slices—of the acquired data (Mansour et al.,
2013), etc. This needs to be carefully investigated. Remember that for a given subsampling factor
the number of measurements is the same for all experiments and the observed differences can be
fully attributed to the performance of the joint recovery method in relation to the overlap between
the two surveys encoded in the measurement matrices. Also, given the context of randomized
subsampling and irregularity of the observed data, it is important to recover the densely sampled
vintages and then the time-lapse difference. Moreover, as mentioned previously, while we do not
insist that we actually visit predesigned irregular (or off-the-grid) shot positions for the time-lapse
surveys, however, it is important to know these positions to sufficient accuracy after acquisition for
high-quality data recovery. This can be achieved in practice as shown by Mosher et al. (2014).

6.6.2 SEAM Phase 1 model—complex geology, complex time-lapse difference

The SEAM model is a 3D deepwater subsalt earth model that includes a complex salt intrusive
in a folded Tertiary basin. We select a 2D slice from the 3D model to generate a seismic line.
Figure 6.13(a) shows a subset of the 2D slice used as the baseline model. We define the monitor
model, Figure 6.13(b), from the baseline model via fluid substitution resulting in a time-lapse
difference under the overburden as shown in Figure 6.13(c).

Using IWAVE (Symes, 2010), two acoustic data sets with a conventional source (and receiver)
sampling of 12.5 m are generated, one from the baseline model and the other from the monitor
model. Each data set has Nt = 2048 time samples, Nr = 320 receivers and Ns = 320 sources. The
time sampling interval is 0.004 s. Subtracting the two data sets yields the time-lapse difference.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6.9: JRM recovered monitor receiver gathers from the BG COMPASS model for a
subsampling factor η = 2. Recovered monitor data and residual with (a,b) 100%
overlap in the measurement matrices (A1 and A2); (c,d) 100% overlap and average
shot-position deviation of 1 m; (e,f) 100% overlap and average shot-position deviation
of 2 m; (g,h) 100% overlap and average shot-position deviation of 3 m; (i,j) < 15%
overlap, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6.10: JRM recovered time-lapse difference receiver gathers from the BG COMPASS
model for a subsampling factor η = 2. Recovered time-lapse difference and residual
with (a,b) 100% overlap in the measurement matrices (A1 and A2); (c,d) 100%
overlap and average shot-position deviation of 1 m; (e,f) 100% overlap and average
shot-position deviation of 2 m; (g,h) 100% overlap and average shot-position deviation
of 3 m; (i,j) < 15% overlap, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6.11: JRM recovered monitor receiver gathers from the BG COMPASS model for a
subsampling factor η = 4. Recovered monitor data and residual with (a,b) 100%
overlap in the measurement matrices (A1 and A2); (c,d) 100% overlap and average
shot-position deviation of 1 m; (e,f) 100% overlap and average shot-position deviation
of 2 m; (g,h) 100% overlap and average shot-position deviation of 3 m; (i,j) < 5%
overlap, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6.12: JRM recovered time-lapse difference receiver gathers from the BG COMPASS
model for a subsampling factor η = 4. Recovered time-lapse difference and residual
with (a,b) 100% overlap in the measurement matrices (A1 and A2); (c,d) 100%
overlap and average shot-position deviation of 1 m; (e,f) 100% overlap and average
shot-position deviation of 2 m; (g,h) 100% overlap and average shot-position deviation
of 3 m; (i,j) < 5% overlap, respectively.
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Overlap ± avg. deviation Baseline Monitor 4D signal

100% 14.3 ± 0.6 14.2 ± 0.6 6.4 ± 0.7
100% ± 1.0 m 14.9 ± 0.8 14.8 ± 0.8 6.5 ± 1.0
100% ± 2.0 m 15.6 ± 1.0 15.5 ± 1.0 6.4 ± 1.3
100% ± 3.0 m 16.4 ± 0.9 16.3 ± 0.9 6.4 ± 0.7
< 5% 18.4 ± 0.7 18.2 ± 0.7 5.8 ± 0.4

Table 6.2: Summary of recoveries in terms of S/N (dB) for data recovered via JRM for a
subsampling factor η = 4. The S/Ns show little variability in the time-lapse difference
recovery for different overlaps between the surveys offering a possibility to relax insis-
tence on replicability of time-lapse surveys. This is supported by the improved recovery
of the vintages as the overlap decreases. Note that the deviations are average deviations.

(a) (b) (c)

Figure 6.13: Subset of the SEAM model. (a) Baseline model; (b) monitor model; (c) differ-
ence between (a) and (b) showing the time-lapse difference.

Since no noise is added to the data, the time-lapse difference is simply the time-lapse signal. A
receiver gather from the simulated baseline data, the monitor data and the corresponding time-lapse
difference is shown in Figures 6.14(a), 6.14(b) and 6.14(c), respectively. Note that the amplitude of
the time-lapse difference is one-tenth the amplitude of the baseline and monitor data. Therefore,
in order to make the time-lapse difference visible, the color axis for the figures showing the time-
lapse difference is one-tenth the color axis for the figures showing the baseline and monitor data.
This colormap applies for the remainder of the chapter. Given the spatial sampling of 12.5 m, the
subsampling factor η for the time-jittered acquisition is 2. The number of measurements for each
experiment is fixed—i.e., n = N/η = N/2, each for y1 and y2.

We simulate a realization of the time-jittered marine acquisition with 100% overlap between
the baseline and monitor surveys. Since our main aim is to analyze the effects of nonreplication
of the time-lapse surveys on time-lapse data—i.e., when A1 6= A2—we compare recovery from the
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(a) (b) (c)

Figure 6.14: Synthetic receiver gathers from the conventional SEAM (a) baseline survey,
(b) monitor survey. (c) Corresponding time-lapse difference. The amplitude of the
time-lapse difference is one-tenth the amplitude of the baseline and monitor data.

above case with the acquisition scenario that has least possible (or unavoidable) overlap between
the time-lapse surveys only. Given the bigger size of the data set and limited computational
resources, we restrict ourselves to one experiment for each case and a subsampling of η = 2.
Periodic densely sampled baseline and monitor data is recovered from the simultaneous data y1

and y2, respectively, by solving Equation 6.5. The inherent time-lapse difference is computed by
subtracting the recovered baseline and monitor data.

The recovered time-lapse data is colocated, regularized and interpolated to a fine uniform grid.
We note that all the observations made for the BG COMPASS model, which is a relatively sim-
pler model, hold true for the more complex SEAM model. Minimum overlap (or nonreplication)
between time-lapse surveys improves recovery of the vintages since independent surveys give ad-
ditional structural information. Hence, they serve as better input to extract certain poststack
attributes used to study time-lapse differences. Figures 6.15(a), 6.15(b), 6.15(c) and 6.15(d) show
the corresponding monitor data recovery. The S/N for the vintage recovery for minimum overlap
between the surveys is 30.2 dB—a significant improvement from the 19.5 dB recovery for 100%
overlap between the surveys. Moreover, as seen in Figures 6.15(e), 6.15(f), 6.15(g) and 6.15(h),
there is little variability in the recovery of the time-lapse difference from (the ideal) 100% overlap
between the surveys to the more realistic almost nonreplicated surveys. The corresponding S/Ns
for the recovered time-lapse difference are 9.6 dB for 100% overlap and 4.1 dB for minimum overlap
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between the surveys. We note that the S/N for the minimum overlap between the surveys is biased
due the presence of incoherent noise—between 3.5 s to 5.0 s—above the main time-lapse difference.
If we compute the S/Ns for the lower-half of the data that contains the time-lapse difference—i.e.,
after 4.5 s—the S/N for minimum overlap between the surveys increases to 6.8 dB. More impor-
tantly, if we look at the plots themselves, we see that there is not much difference in the two
recoveries. We are able to recover the primary arrivals and some reverberations below. Recall that
the amplitude of the time-lapse difference is one-tenth the amplitude of the vintages. It is quite
remarkable that we get good results given the complexity of the model and the low amplitude of
the time-lapse difference. Recovery of the vintages and the time-lapse difference for a subsampling
of η = 4 follows the same trend as above.

6.7 Discussion

Realistic field seismic acquisitions suffer, amongst other possibly detrimental external factors, from
irregular spatial sampling of sources and receivers. This poses technical challenges for the time-
lapse seismic technology that currently aims to replicate densely sampled surveys for monitoring
changes due to production. The experiments and synthetic results shown in the previous sections
demonstrate favourable effects of irregular sampling and nonreplication of surveys on time-lapse
data—i.e., decrease in replicability of the surveys leads to improved recovery of the vintages with
little variability in the recovery of the time-lapse difference itself—while unraveling overlapping
shot records. Note that we do not insist on replicating the irregular spatial positions in the field,
however, the above observations hold as long as we know the irregular sampling positions after
acquisition to a sufficient degree of accuracy, which is attainable in practice (see e.g., Mosher
et al., 2014). Furthermore, we assume that there are no significant variations in the water column
velocities, wave heights or temperature and salinity profiles amongst the different surveys while the
source signature is also assumed to be the same. As long as these physical changes can be modeled,
we do not foresee major problems. For instance, we expect that our approach can relatively easily
be combined with source equalization (see e.g., Rickett and Lumley, 2001) and curvelet-domain
matched filtering techniques (Beyreuther et al., 2005; Tegtmeier-Last and Hennenfent, 2013).

The proposed methodology involves a combination of economical randomized samplings with low
environmental imprint and sparsity-promoting data recovery that aims to reduce cost of surveys and
improve quality of the prestack time-lapse data without relying on expensive dense sampling and
high degrees of replicability of the surveys. The combined operation of source separation, regular-
ization and interpolation renders periodic densely sampled time-lapse data from time-compressed,
and therefore economical, simultaneous, subsampled and irregular data. While the simultaneous
data are separated reasonably well, recovery of the weak late-arriving events can be further im-
proved by rerunning the recovery algorithm using the residual as input, using weighted one-norm
minimization that exploits correlations between locations of significant transform-domain coeffi-
cients of different partitions—e.g., shot records, common-offset gathers, or frequency slices—of the
acquired data (Mansour et al., 2013), etc. This needs to be examined in detail. Effects of noise and
other physical changes in the environment also need to be carefully investigated. Nevertheless, as
expected using standard CS, our recovery method should be stable with respect to noise (Candès
et al., 2006c). Moreover, recent successes in the application of compressed sensing to land and ma-
rine field data acquisition (see e.g., Mosher et al., 2014) support the fact that technical challenges
with noise and calibration can be overcome in practice.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.15: JRM recovered monitor and time-lapse difference receiver gathers from the
SEAM model for a subsampling factor η = 2. Recovered monitor data and resid-
ual with (a,b) 100% overlap in the measurement matrices (A1 and A2); (c,d) < 15%
overlap, respectively. Recovered time-lapse difference and residual with (e,f) 100%
overlap in the measurement matrices; (g,h) < 15% overlap, respectively. Note that
the amplitude of the time-lapse difference is one-tenth the amplitude of the monitor
data.
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6.8 Conclusions

We present an extension of our simultaneous time-jittered marine acquisition to time-lapse sur-
veys for realistic, off-the-grid acquisitions where the sample points are known but do not coincide
with a regular periodic grid. We conduct a series of synthetic seismic experiments with differ-
ent random realizations of the simultaneous time-jittered marine acquisition to assess the effects
of irregular sampling in the field on time-lapse data and demonstrate that dense, high-quality
data recoveries are the norm and not the exception. We achieve this by adapting our proposed
joint recovery method—a new and economic approach to randomized simultaneous time-lapse data
acquisition that exploits transform-domain sparsity and shared information among different time-
lapse recordings—to incorporate a regularization operator that maps traces from an irregular grid
to a regular periodic grid. The recovery method is a combined operation of source separation,
regularization and interpolation, wherein periodic densely sampled and colocated prestack data is
recovered from time-compressed, and therefore economical, simultaneous, subsampled and irregular
data.

We observe that with decrease in replication between the surveys—i.e., shot points are not repli-
cated amongst the vintages—recovery of time-lapse data improve significantly with little variability
in recovery of the time-lapse difference itself. We make this observation assuming source equaliza-
tion and no significant changes in wave heights, water column velocities or temperature and salinity
profiles, etc., amongst the different surveys. We also demonstrate the delicate reliance on exact
replicability (between surveys) by showing that known deviations as small as average ±(1, 2, 3) m
in shot positions of the monitor surveys from the baseline surveys vary recovery quality of the time-
lapse difference—expressed as slight decrease or increase in the signal-to-noise ratios—and hence
negate the efforts to replicate. Therefore, it would be better to focus on knowing what the shot po-
sitions were (post acquisition) than aiming to replicate. Moreover, since irregular spatial sampling
is inevitable in the real world, the requirement for replicability in time-lapse surveys can perhaps
be relaxed by embracing or better purposefully randomizing the acquisitions to maximize collection
of information by effectively doubling the number of measurements for the common component,
leading to surveys acquired at low cost and environmental imprint.
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Chapter 7

Source separation for simultaneous
towed-streamer marine acquisition —
a compressed sensing approach

7.1 Summary

Simultaneous marine acquisition is an economic way to sample seismic data and speedup acquisition,
wherein single and/or multiple source vessels fire sources at near-simultaneous or slightly random
times, resulting in overlapping shot records. The current paradigm for simultaneous towed-streamer
marine acquisition incorporates “low-variability” in source firing times—i.e., 0 ≤ 1 or 2 seconds,
since both the sources and receivers are moving. This results in low degree of randomness in simulta-
neous data, which is challenging to separate (into its constituent sources) using compressed sensing
based separation techniques since randomization is the key to successful recovery via compressed
sensing. We address the challenge of source separation for simultaneous towed-streamer acquisitions
via two compressed sensing based approaches—i.e., sparsity-promotion and rank-minimization. We
illustrate the performance of both the sparsity-promotion and rank-minimization based techniques
by simulating two simultaneous towed-streamer acquisition scenarios—i.e., over/under and simul-
taneous long offset. A field data example from the Gulf of Suez for the over/under acquisition
scenario is also included. We observe that the proposed approaches give good and comparable
recovery qualities of the separated sources, but the rank-minimization technique outperforms the
sparsity-promoting technique in terms of the computational time and memory. We also compare
these two techniques with the NMO-based median filtering type approach.

7.2 Introduction

The benefits of simultaneous source marine acquisition are manifold—it allows the acquisition of
improved-quality seismic data at standard (conventional) acquisition turnaround, or a reduced
turnaround time while maintaining similar quality, or a combination of both advantages. In simul-
taneous marine acquisition, a single or multiple source vessels fire sources at near-simultaneous or
slightly random times resulting in overlapping shot records (de Kok and Gillespie, 2002; Beasley,

A version of this chapter has been published in Geophysics, 2015, vol. 80, pp. WD73–WD88.
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2008; Berkhout, 2008; Hampson et al., 2008; Moldoveanu and Quigley, 2011; Abma et al., 2013), as
opposed to nonoverlapping shot records in conventional marine acquisition. A variety of simultane-
ous source survey designs have been proposed for towed-streamer and ocean bottom acquisitions,
where small-to-large random time delays between multiple sources have been used (Beasley, 2008;
Moldoveanu and Fealy, 2010; Mansour et al., 2012b; Abma et al., 2013; Wason and Herrmann,
2013b; Mosher et al., 2014).

An instance of low-variability in source firing times—e.g., 0 ≤ 1 (or 2) second, is the over/under
(or multi-level) source acquisition (Hill et al., 2006; Moldoveanu et al., 2007; Lansley et al., 2007;
Long, 2009; Hegna and Parkes, 2012; Hoy et al., 2013). The benefits of acquiring and processing
over/under data are clear, the recorded bandwidth is extended at both low and high ends of the
spectrum since the depths of the sources produce complementary ghost functions, avoiding deep
notches in the spectrum. The over/under acquisition allows separation of the up- and down-going
wavefields at the source (or receiver) using a vertical pair of sources (or receivers) to determine
wave direction. Simultaneous long offset acquisition (SLO) is another variation of simultaneous
towed-streamer acquisition, where an extra source vessel is deployed, sailing one spread-length
ahead of the main seismic vessel (Long et al., 2013). The SLO technique is better in comparison
to conventional acquisition since it provides longer coverage in offsets, less equipment downtime
(doubling the vessel count inherently reduces the streamer length by half), easier maneuvering, and
shorter line turns.

Simultaneous acquisition (e.g., over/under and SLO) results in seismic interferences or source
crosstalk that degrades quality of the migrated images. Therefore, an effective (simultaneous)
source separation technique is required, which aims to recover unblended interference-free data—as
acquired during conventional acquisition—from simultaneous data. The challenge of source sepa-
ration (or deblending) has been addressed by many researchers (Stefani et al., 2007; Moore et al.,
2008; Akerberg et al., 2008; Huo et al., 2009), wherein the key observation has been that as long
as the sources are fired at suitably randomly dithered times, the resulting interferences (or source
crosstalk) will appear noise-like in specific gather domains such as common-offset and common-
receiver, turning the separation problem into a (random) noise removal procedure. Inversion-type
algorithms (Moore, 2010; Abma et al., 2010; Mahdad et al., 2011; Doulgeris et al., 2012; Baardman
and van Borselen, 2013) take advantage of sparse representations of coherent seismic signals. Wa-
son and Herrmann (2013a); Wason and Herrmann (2013b) proposed an alternate sampling strategy
for simultaneous acquisition (time-jittered marine) that leverages ideas from compressed sensing
(CS), addressing the source-separation problem through a combination of tailored (blended) acqui-
sition design and sparsity-promoting recovery via convex optimization using one-norm constraints.
This represents a scenario of high-variability in source firing times—e.g., > 1 second, resulting in
irregular shot locations.

One of the source separation techniques is the normal moveout based median filtering, where the
key idea is as follows: i) transform the blended data into the midpoint-offset domain, ii) perform
semblance analysis on common-midpoint gathers to pick the normal moveout (NMO) velocities
followed by NMO corrections, iii) perform median filtering along the offset directions and then
apply inverse NMO corrections. One of the major assumptions in the described workflow is that
the seismic events become flat after NMO corrections, however, this can be challenging when the
geology is complex and/or with the presence of noise in the data. Therefore, the above process
along with the velocity analysis is repeated a couple of times to get a good velocity model to
eventually separate simultaneous data.
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Recently, rank-minimization based techniques have been used for source separation by Maras-
chini et al. (2012) and Cheng and Sacchi (2013). The general idea is to exploit the low-rank structure
of seismic data when it is organized in a matrix. Low-rank structure refers to the small number
of nonzero singular values, or quickly decaying singular values. Maraschini et al. (2012) followed
the rank-minimization based approach proposed by Oropeza and Sacchi (2011), who identified that
seismic temporal frequency slices organized into a block Hankel matrix, in ideal conditions, is a
matrix of rank k, where k is the number of different plane waves in the window of analysis. Oropeza
and Sacchi (2011) showed that additive random noise increase the rank of the block Hankel matrix
and presented an iterative algorithm that resembles seismic data reconstruction with the method
of projection onto convex sets, where they use a low-rank approximation of the Hankel matrix
via the randomized singular value decomposition (Liberty et al., 2007; Halko et al., 2011) to in-
terpolate seismic temporal frequency slices. While this technique may be effective the approach
requires embedding the data into an even larger space where each dimension of size n is mapped to
a matrix of size n× n. Consequently, these approaches are applied on small data windows, where
one has to choose the size of these windows. Although mathematically desirable due to the seismic
signal being stationary in sufficiently small windows, Kumar et al. (2015a) showed that the act
of windowing from a matrix-rank point of view degrades the quality of reconstruction in the case
of missing-trace interpolation. Choosing window sizes a priori is also a difficult task, as it is not
altogether obvious how to ensure that the resulting subvolume is approximately a plane wave.

7.2.1 Motivation

The success of CS hinges on randomization of the acquisition, as presented in our previous work
on simultaneous source acquisition (Mansour et al., 2012b; Wason and Herrmann, 2013b), which
represents a case of high-variability in source firing times—e.g., within a range of 1-20 seconds, re-
sulting in overlapping shot records that lie on irregular spatial grids. Consequently, this made our
method applicable to marine acquisition with ocean bottom cables/nodes. Successful separation of
simultaneous data by sparse inversion via one-norm minimization, in this high-variability scenario,
motivated us to analyze the performance of our separation algorithm for the low-variability, simul-
taneous towed-streamer acquisitions. We address the challenge of source separation for two types
of simultaneous towed-streamer marine acquisition—over/under and simultaneous long offset. We
also compare the sparsity-promoting separation technique with separation via rank-minimization
based technique, since the latter is relatively computationally faster and memory efficient, as shown
by Kumar et al. (2015a) for missing-trace interpolation.

7.2.2 Contributions

Our contributions in this work are the following: first, we propose a practical framework for source
separation based upon the compressed sensing (CS) theory, where we outline the necessary con-
ditions for separating the simultaneous towed-streamer data using sparsity-promoting and rank-
minimization techniques. Second, we show that source separation using the rank-minimization
based framework includes a “transform domain” where we exploit the low-rank structure of seismic
data. We further establish that in simultaneous towed-streamer acquisition each monochromatic
frequency slice of the fully sampled blended data matrix with periodic firing times has low-rank
structure in the proposed transform domain. However, uniformly random firing-time delays increase
the rank of the resulting frequency slice in this transform domain, which is a necessary condition
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for successful recovery via rank-minimization based techniques.
Third, we show that seismic frequency slices in the proposed transform domain exhibit low-rank

structure at low frequencies, but not at high frequencies. Therefore, in order to exploit the low-
rank structure at higher frequencies we adopt the Hierarchical Semi-Separable matrix representation
(HSS) method proposed by Chandrasekaran et al. (2006) to represent frequency slices. Finally, we
combine the (singular-value-decomposition-free) matrix factorization approach recently developed
by Lee et al. (2010) with the Pareto curve approach proposed by Berg and Friedlander (2008).
This renders the framework suitable for large-scale seismic data since it avoids the computation of
the singular value decomposition (SVD), a necessary step in traditional rank-minimization based
methods, which is prohibitively expensive for large matrices.

We simulate two simultaneous towed-streamer acquisitions—over/under and simultaneous long
offset, and also use a field data example for over/under acquisition. We compare the recovery in
terms of the separation quality, computational time and memory usage. In addition, we also make
comparisons with the NMO-based median filtering type technique proposed by Chen et al. (2014).

7.3 Theory

Compressed sensing is a signal processing technique that allows a signal to be sampled at sub-
Nyquist rate and offers three fundamental principles for successful reconstruction of the original
signal from relatively few measurements. The first principle utilizes the prior knowledge that the
underlying signal of interest is sparse or compressible in some transform domain—i.e., if only a
small number k of the transform coefficients are nonzero or if the signal can be well approximated
by the k largest-in-magnitude transform coefficients. The second principle is based upon a sampling
scheme that breaks the underlying structure—i.e., decreases the sparsity of the original signal in the
transform domain. Once the above two principles hold, a sparsity-promoting optimization problem
can be solved in order to recover the fully sampled signal. It is well known that seismic data admit
sparse representations by curvelets that capture “wavefront sets” efficiently (see e.g., Smith (1998),
Candès and Demanet (2005), Hennenfent and Herrmann (2006) and the references therein).

For high resolution data represented by the N -dimensional vector f0 ∈ RN , which admits a
sparse representation x0 ∈ CP in some transform domain characterized by the operator S ∈ CP×N
with P ≥ N , the sparse recovery problem involves solving an underdetermined system of equations:

b = Ax0, (7.1)

where b ∈ Cn, n � N ≤ P , represents the compressively sampled data of n measurements, and
A ∈ Cn×P represents the measurement matrix. We denote by x0 a sparse synthesis coefficient
vector of f0. When x0 is strictly sparse—i.e., only k < n nonzero entries in x0, sparsity-promoting
recovery can be achieved by solving the `0 minimization problem, which is a combinatorial problem
and quickly becomes intractable as the dimension increases. Instead, the basis pursuit denoise
(BPDNε) convex optimization problem:

minimize
x∈CP

‖x‖1 subject to ‖b−Ax‖2 ≤ ε, (BPDNε)

can be used to recover x̃, which is an estimate of x0. Here, ε represents the error-bound in
the least-squares misfit and the `1 norm ‖x‖1 is the sum of absolute values of the elements of a
vector x. The matrix A can be composed of the product of an n × N sampling (or acquisition)
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matrix M and the sparsifying operator S such that A := MSH , here H denotes the Hermitian
transpose. Consequently, the measurements are given by b = Ax0 = Mf0. A seismic line with Ns

sources, Nr receivers, and Nt time samples can be reshaped into an N dimensional vector f , where
N = Ns×Nr×Nt. For simultaneous towed-streamer acquisition, given two unblended data vectors
x1 and x2 and (blended) measurements b, we can redefine Equation 7.1 as

A︷ ︸︸ ︷[
MT1S

H MT2S
H
] x︷ ︸︸ ︷[

x1

x2

]
= b,

(7.2)

where T1 and T2 are defined as the firing-time delay operators which apply uniformly random
time delays to the first and second source, respectively. Note that accurate knowledge of the firing
times is essential for successful recovery by the proposed source separation techniques. We wish
to recover a sparse approximation f̃ of the discretized wavefield f (corresponding to each source)
from the measurements b. This is done by solving the BPDNε sparsity-promoting program, using
the SPG`1 solver (see Berg and Friedlander, 2008; Hennenfent et al., 2008, for details), yielding
f̃ = SH x̃ for each source.

Sparsity is not the only structure seismic data exhibits where three- or five-dimensional seismic
data is organized as a vector. High-dimensional seismic data volumes can also be represented
as matrices or tensors, where the low-rank structure of seismic data can be exploited (Trickett
and Burroughs, 2009; Oropeza and Sacchi, 2011; Kreimer and Sacchi, 2012; Silva and Herrmann,
2013; Aravkin et al., 2014). This low-rank property of seismic data leads to the notion of matrix
completion theory which offers a reconstruction strategy for an unknown matrix X from its known
subsets of entries (Candès and Recht, 2009; Recht et al., 2010). The success of matrix completion
framework hinges on the fact that regularly sampled target dataset should exhibit a low-rank
structure in the rank-revealing “transform domain” while subsampling should destroy the low-rank
structure of seismic data in the transform domain.

7.3.1 Rank-revealing “transform domain”

Following the same analogy of CS, the main challenge in applying matrix completion techniques to
the source separation problem is to find a “transform domain” wherein: i) fully sampled conven-
tional (or unblended) seismic data have low-rank structure—i.e., quickly decaying singular values;
ii) blended seismic data have high-rank structure—i.e., slowly decaying singular values. When
these properties hold, rank-minimization techniques (used in matrix completion) can be used to
recover the source-separated signal. Kumar et al. (2013) showed that the frequency slices of un-
blended seismic data do not exhibit low-rank structure in the source-receiver (s-r) domain since
strong wavefronts extend diagonally across the s-r plane. However, transforming the data into the
midpoint-offset (m-h) domain results in a vertical alignment of the wavefronts, thereby reducing
the rank of the frequency slice matrix. The midpoint-offset domain is a coordinate transformation
defined as:

xmidpoint =
1

2
(xsource + xreceiver),

xoffset =
1

2
(xsource − xreceiver).
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These observations motivate us to exploit the low-rank structure of seismic data in the midpoint-
offset domain for simultaneous towed-streamer acquisition. Although the given problem does not
contain any missing traces and is a source-separation problem alone, incorporating this scenario in
the current framework is straightforward (Kumar et al., 2017). Seismic data processing literature
contains numerous works done on missing-trace interpolation in midpoint-offset coordinates (see
Trad, 2009; Kreimer, 2013, and references therein).

Figures 7.1(a) and 7.1(c) show a monochromatic frequency slice (at 5 Hz) for simultaneous
acquisition with periodic firing times in the source-receiver (s-r) and midpoint-offset (m-h) domains,
while Figures 7.1(b) and 7.1(d) show the same for simultaneous acquisition with random firing-time
delays. Note that we use the source-receiver reciprocity to convert each monochromatic frequency
slice of the towed-streamer acquisition to split-spread type acquisition, which is required by our
current implementation of rank-minimization based techniques for 2D seismic acquisition. For
3D seismic data acquisition, where seismic data exhibit 5D structure, we can follow the strategy
proposed by Kumar et al. (2015a), where a simple permutation of matricized seismic data is used
as a transformation domain to exploit the low-rank structure of seismic data. Here, matricization
refers to a process that reshapes a tensor into a matrix along specific dimensions. As shown in
Kumar et al. (2015a), 3D seismic data exhibits low-rank structure in the noncanonical matrix
representation, where the source and receiver coordinates in the x− and y− direction are lumped
together as opposed to the canonical matrix representation, where both the source coordinates (in
the x− and y− direction) are lumped together, and similarly for the receiver coordinates. Therefore,
in 3D seismic data acquisition we do not have to work in the midpoint-offset domain which removes
the requirement of source-receiver reciprocity.

As illustrated in Figure 7.1, simultaneously acquired data with periodic firing times preserves
continuity of the waveforms in the s-r and m-h domains, which inherently do not change the
rank of blended data compared to unblended data. Introducing random time delays destroys
continuity of the waveforms in the s-r and m-h domains, thus increasing the rank of the blended
data matrix drastically, which is a necessary condition for rank-minimization based algorithms
to work effectively. To illustrate this behaviour, we plot the decay of the singular values of a 5
Hz monochromatic frequency slice extracted from the periodically and randomized simultaneous
acquisition in the s-r and m-h domains, respectively in Figure 7.2(a). Note that uniformly random
firing-time delays do not noticeably change the decay of the singular values in the source-receiver
(s-r) domain, as expected, but significantly slow down the decay rate in the m-h domain.

Similar trends are observed for a monochromatic frequency slice at 40 Hz in Figure 7.2(b).
Following the same analogy, Figures 7.2(c) and 7.2(d) show how randomization in acquisition
destroys the sparse structure of seismic data in the source-channel (or source-offset) domain—i.e.,
slow decay of the curvelet coefficients, hence, favouring recovery via sparsity-promotion in this
domain. Similarly, for simultaneous long offset acquisition, we exploit the low-rank structure of
seismic data in the m-h domain, and the sparse structure in the source-channel domain.

Seismic frequency slices exhibit low-rank structure in the m-h domain at low frequencies, but
the same is not true for data at high frequencies. This is because in the low-frequency slices, the
vertical alignment of the wavefronts can be accurately approximated by a low-rank representation.
On the other hand, high-frequency slices include a variety of wave oscillations that increase the rank,
even though the energy remains focused around the diagonal (Kumar et al., 2013). To illustrate
this phenomenon, we plot a monochromatic frequency slice at 40 Hz in the s-r domain and the
m-h domain for over/under acquisition in Figure 7.3. When analyzing the decay of the singular
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(a) (b)

(c) (d)

Figure 7.1: Monochromatic frequency slice at 5 Hz in the source-receiver (s-r) and midpoint-
offset (m-h) domain for blended data (a,c) with periodic firing times and (b,d) with
uniformly random firing times for both sources.
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(a) (b)

(c) (d)

Figure 7.2: Decay of singular values for a frequency slice at (a) 5 Hz and (b) 40 Hz of
blended data. Source-receiver domain: blue—periodic, red—random delays. Midpoint-
offset domain: green—periodic, cyan—random delays. Corresponding decay of the
normalized curvelet coefficients for a frequency slice at (c) 5 Hz and (d) 40 Hz of
blended data, in the source-channel domain.

values for high-frequency slices in the s-r domain and the m-h domain (Figure 7.2(b)), we observe
that the singular value decay is slower for the high-frequency slice than for the low-frequency
slice. Therefore, rank-minimization in the high-frequency range requires extended formulations
that incorporate the low-rank structure.

To exploit the low-rank structure of high-frequency data, we rely on the Hierarchical Semi-
Separable matrix representation (HSS) method proposed by Chandrasekaran et al. (2006) to rep-
resent frequency slices. The key idea in the HSS representation is that certain full-rank matrices,
e.g., matrices that are diagonally dominant with energy decaying along the off-diagonals, can be
represented by a collection of low-rank sub-matrices. Kumar et al. (2013) showed the possibility
of finding accurate low-rank approximations of sub-matrices of the high-frequency slices by par-
titioning the data into the HSS structure for missing-trace interpolation. Jumah and Herrmann
(2014) showed that HSS representations can be used to reduce the storage and computational cost
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Figure 7.3: Monochromatic frequency slice at 40 Hz in the s-r and m-h domain for blended
data (a,c) with periodic firing times and (b,d) with uniformly random firing times for
both sources.

for the estimation of primaries by sparse inversions. They combined the HSS representation with
the randomized SVD proposed by Halko et al. (2011) to accelerate matrix-vector multiplications
that are required for sparse inversion.

7.3.2 Hierarchical Semi-Separable matrix representation (HSS)

The HSS structure first partitions a matrix into diagonal and off-diagonal sub-matrices. The same
partitioning structure is then applied recursively to the diagonal sub-matrices only. To illustrate the
HSS partitioning, we consider a 2D monochromatic high-frequency data matrix at 40 Hz in the s-r
domain. We show the first-level of partitioning in Figure 7.4(a) and the second-level partitioning in
Figure 7.4(b) in their corresponding source-receiver domains. Figures 7.5(a) and 7.5(b) display the
first-level off-diagonal sub-blocks, Figure 7.5(c) is the diagonal sub-block, and the corresponding
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(a) (b)

Figure 7.4: HSS partitioning of a high-frequency slice at 40 Hz in the s-r domain: (a) first-
level, (b) second-level, for randomized blended acquisition.

decay of the singular values is displayed in Figure 7.6. We can clearly see that the off-diagonal
sub-matrices have low-rank structure, while the diagonal sub-matrices have higher rank. Further
partitioning of the diagonal sub-blocks (Figure 7.4(b)) allows us to find better low-rank approx-
imations. The same argument holds for the simultaneous long offset acquisition. Therefore, for
low-variability acquisition scenarios, each frequency slice is first partitioned using HSS and then
separated in its respective m-h domain, as shown for missing-trace interpolation by Kumar et al.
(2013).

One of the limitations of matrix completion type approaches for large-scale seismic data is
the nuclear-norm projection, which inherently involves the computation of SVDs. Aravkin et al.
(2014) showed that the computation of SVD is prohibitively expensive for large-scale data such
as seismic, therefore, we propose a matrix-factorization based approach to avoid the need for
expensive computation of SVDs (see Aravkin et al., 2014, for details). In the next section, we
introduce the matrix completion framework and explore its necessary extension to separate large-
scale simultaneous seismic data.

7.3.3 Large-scale seismic data: SPG-LR framework

Let X0 be a low-rank matrix in Cn×m and A be a linear measurement operator that maps from
Cn×m → Cp with p� n×m. Under the assumption that the blending process increases the rank
of the matrix X0, the source separation problem is to find the matrix of lowest possible rank that
agrees with the above observations. The rank-minimization problem involves solving the following
problem for A, up to a given tolerance ε:

minimize
X

rank(X) subject to ‖A(X)− b‖2 ≤ ε,
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(a) (b)

(c)

Figure 7.5: (a,b,c) First-level sub-block matrices (from Figure 7.4(a)).

Figure 7.6: Decay of singular values of the HSS sub-blocks in s-r domain: red—Figure 7.5(a),
black—Figure 7.5(b), blue—Figure 7.5(c).
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where rank is defined as the maximum number of linearly independent rows or column of a ma-
trix, b is a set of blended measurements. For simultaneous towed-streamer acquisition, we follow
equation 7.2 and redefine our system of equations as

A︷ ︸︸ ︷[
MT1SH MT2SH

] X︷ ︸︸ ︷[
X1

X2

]
= b,

where S is the transformation operator from the s-r domain to the m-h domain. Recht et al.
(2010) showed that under certain general conditions on the operator A, the solution to the rank-
minimization problem can be found by solving the following nuclear-norm minimization problem:

minimize
X

‖X‖∗ subject to ‖A(X)− b‖2 ≤ ε, (BPDNε)

where ‖X‖∗ = ‖σ‖1, and σ is a vector of singular values. Unfortunately, for large-scale data, solving
the BPDNε problem is difficult since it requires repeated projections onto the set ‖X‖∗ ≤ τ , which
means repeated SVD or partial SVD computations. Therefore, we avoid computing SVDs of the
matrices and use an extension of the SPG`1 solver (Berg and Friedlander, 2008) developed for
the BPDNε problem in Aravkin et al. (2013). We refer to this extension as SPG-LR in the rest
of the chapter. The SPG-LR algorithm finds the solution to the BPDNε problem by solving a
sequence of LASSO (least absolute shrinkage and selection operator) subproblems:

minimize
X

‖A(X)− b‖2 subject to ||X||∗ ≤ τ, (LASSOτ )

where τ is updated by traversing the Pareto curve. The Pareto curve defines the optimal trade-off
between the two-norm of the residual and the one-norm of the solution (Berg and Friedlander,
2008). Solving each LASSO subproblem requires a projection onto the nuclear-norm ball ‖X‖∗ ≤ τ
in every iteration by performing a singular value decomposition and then thresholding the singular
values. For large-scale seismic problems, it becomes prohibitively expensive to carry out such a
large number of SVDs. Instead, we adopt a recent factorization-based approach to nuclear-norm
minimization (Rennie and Srebro, 2005; Lee et al., 2010; Recht and Re, 2013). The factorization
approach parametrizes the matrix (X1, X2) ∈ Cn×m as the product of two low-rank factors (L1,
L2) ∈ Cn×k and (R1, R2) ∈ Cm×k such that,

X =

[
L1R

H
1

L2R
H
2

]
. (7.3)

Here, k represents the rank of the L and R factors. The optimization scheme can then be carried
out using the factors (L1,L2) and (R1,R2) instead of (X1,X2), thereby significantly reducing the
size of the decision variable from 2nm to 2k(n + m) when k � m,n. Rennie and Srebro (2005)
showed that the nuclear-norm obeys the relationship:

‖X‖∗ ≤ 1

2

∥∥∥∥[L1

R1

]∥∥∥∥2

F

+
1

2

∥∥∥∥[L2

R2

]∥∥∥∥2

F

=: Φ(L1,R1,L2,R2), (7.4)
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where ‖ · ‖2F is the Frobenius norm of the matrix—i.e., sum of the squared entires. Consequently,
the LASSO subproblem can be replaced by

minimize
L1,R1,L2,R2

‖A(X)− b‖2 subject to Φ(L1,R1,L2,R2) ≤ τ , (7.5)

where the projection onto Φ(L1,R1,L2,R2) ≤ τ is easily achieved by multiplying each factor
(L1,L2) and (R1,R2) by the scalar

√
2τ/Φ(L1,R1,L2,R2). Equation 7.4, for each HSS sub-matrix

in the m-h domain, guarantees that ‖X‖∗ ≤ τ for any solution of 7.5. Once the optimization problem
is solved, each sub-matrix in the m-h domain is transformed back into the s-r domain, where we
concatenate all the sub-matrices to get the separated monochromatic frequency data matrices. One
of the advantages of the HSS representation is that it works with recursive partitioning of a matrix
and sub-matrices can be solved in parallel, speeding up the optimization formulation.

7.4 Experiments

We perform source separation for two simultaneous towed-streamer acquisition scenarios—over/under
and simultaneous long offset, by generating synthetic datasets on complex geological models using
the IWAVE (Symes et al., 2011) time-stepping acoustic simulation software, and also use a field
dataset from the Gulf of Suez. Source separation for over/under acquisition is tested on two differ-
ent datasets. The first dataset is simulated on the Marmousi model (Bourgeois et al., 1991), which
represents a complex-layer model with steeply dipping reflectors that make the data challenging.
With a source (and channel/receiver) sampling of 20.0 m, one dataset is generated with a source-
depth of 8.0 m (Figures 7.7(a) and 7.7(d)), while the other dataset has the source at 12.0 m depth
(Figures 7.7(b) and 7.7(e)), resulting in 231 sources and 231 channels. The temporal length of each
dataset is 4.0 s with a sampling interval of 0.004 s. The second dataset is a field data example from
the Gulf of Suez. In this case, the first source is placed at 5.0 m depth (Figures 7.8(a) and 7.8(d))
and the second source is placed at 10.0 m depth (Figures 7.8(b) and 7.8(e)). The source (and chan-
nel) sampling is 12.5 m, resulting in 178 sources and 178 channels with a time sampling interval of
0.004 s.

The simultaneous long offset acquisition is simulated on the BP salt model (Billette and
Brandsberg-Dahl, 2004), where the presence of salt-bodies make the data challenging. The two
source vessels are 6.0 km apart and the streamer length is 6.0 km. Both the datasets (for source
1 and source 2) contain 361 sources and 361 channels with a spatial interval of 12.5 m, where the
source and streamer depth is 6.25 m. The temporal length of each dataset is 6.0 s with a sampling
interval of 0.006 s. A single shot gather from each dataset is shown in Figures 7.9(a) and 7.9(b)
and the corresponding channel gathers are shown in Figures 7.9(d) and 7.9(e). The datasets for
each source in both the acquisition scenarios are (simply) summed for simultaneous acquisition
with periodic firing times, while uniformly random time delays between 0-1 second are applied to
each source for the randomized simultaneous acquisition. Figures 7.7(c), 7.8(c) and 7.9(c) show
the randomized blended shot gathers for the Marmousi, the Gulf of Suez and the BP datasets,
respectively. As illustrated in the figures, both the sources fire at random times (independent of
each other) within the interval of 0-1 second, hence, the difference between the firing times of the
sources is always less than 1 second. The corresponding randomized blended channel gathers are
shown in Figures 7.7(f), 7.8(f) and 7.9(f). Note that the speed of the vessels in both the acquisition
scenarios is no different than the current practical speed of the vessels in the field.

146



Channel (km)
0 2 4

T
im

e
 (

s
)

0

0.5

1

1.5

2

2.5

3

3.5

(a)

Channel (km)
0 2 4

T
im

e
 (

s
)

0

0.5

1

1.5

2

2.5

3

3.5

(b)

Channel (km)
0 2 4

T
im

e
 (

s
)

0

0.5

1

1.5

2

2.5

3

3.5

(c)

Source (km)
0 2 4

T
im

e
 (

s
)

0

0.5

1

1.5

2

2.5

3

3.5

(d)

Source (km)
0 2 4

T
im

e
 (

s
)

0

0.5

1

1.5

2

2.5

3

3.5

(e)

Source (km)
0 2 4

T
im

e
 (

s
)

0

0.5

1

1.5

2

2.5

3

3.5

(f)

Figure 7.7: Original shot gather of (a) source 1, (b) source 2, and (c) the corresponding
blended shot gather for simultaneous over/under acquisition simulated on the Mar-
mousi model. (d, e) Corresponding common-channel gathers for each source and (f)
the blended common-channel gather.
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Figure 7.8: Original shot gather of (a) source 1, (b) source 2, and (c) the corresponding
blended shot gather for simultaneous over/under acquisition from the Gulf of Suez
dataset. (d,e) Corresponding common-channel gathers for each source and (f) the
blended common-channel gather.
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Figure 7.9: Original shot gather of (a) source 1, (b) source 2, and (c) the corresponding
blended shot gather for simultaneous long offset acquisition simulated on the BP salt
model. (d, e) Corresponding common-channel gathers for each source and (f) the
blended common-channel gather.
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For source separation via rank-minimization, second-level of HSS partitioning, on each frequency
slice in the s-r domain, was sufficient for successful recovery in both the acquisition scenarios. After
transforming each sub-block into the m-h domain, source separation is then performed by solving
the nuclear-norm minimization formulation (BPDNε) on each sub-block, using 350 iterations of
SPG-LR. In order to choose an appropriate rank value, we first perform source separation for
frequency slices at 0.2 Hz and 125 Hz. For the over/under acquisition simulated on the Marmousi
model, the best rank value is 30 and 80 for each frequency slice, respectively. The best rank values
for the Gulf of Suez dataset are 20 and 100, respectively. For simultaneous long offset acquisition,
the best rank value is 10 and 90 for frequency slices at 0.15 Hz and 80 Hz, respectively. Hence, we
adjust the rank linearly within these ranges when moving from low to high frequencies, for each
acquisition scenario. For source separation via sparsity-promotion, we use the BPDNε formulation
to minimize the `1 norm (instead of the nuclear-norm) where the transformation operator S is the
2D curvelet operator. Here, we run 350 iterations of SPG`1.

For the over/under acquisition scenario simulated on the Marmousi model, Figures 7.10(a)
and 7.10(c) show the separated shot gathers via rank-minimization and Figures 7.10(e) and 7.10(g)
show the separated shot gathers via sparsity-promotion, respectively. The separated common-
channel gathers via rank-minimization and sparsity-promotion are shown in Figures 7.11(a), 7.11(c)
and Figures 7.11(e), 7.11(g), respectively. For the Gulf of Suez field dataset, Figures 7.12 and 7.13
show the separated gathers and difference plots in the common-shot and common-channel domain,
respectively. The corresponding separated gathers and difference plots in the common-shot and
common-channel domain for the simultaneous long offset acquisition scenario are shown in Fig-
ures 7.14 and 7.15.

As illustrated by the results and their corresponding difference plots, both the CS-based ap-
proaches of rank-minimization and sparsity-promotion are able to separate the data for the low-
variability acquisition scenarios fairly well. In all the three different datasets, the average S/Ns
for separation via sparsity-promotion is slightly better than rank-minimization, but the difference
plots show that the recovery via rank-minimization is equivalent to the sparsity-promoting based
recovery where it is able to recover most of the coherent energy. Also, rank-minimization outper-
forms the sparsity-promoting technique in terms of the computational time and memory usage as
represented in Tables 7.1, 7.2 and 7.3. Both the CS-based recoveries are better for the simultane-
ous long offset acquisition than the recoveries from the over/under acquisition scenario. A possible
explanation for this improvement is the long offset distance that increases randomization in the
simultaneous acquisition, which is a more favourable scenario for recovery by CS-based approaches.
Figure 7.16 demonstrates the advantage of the HSS partitioning, where the S/Ns of the separated
data are significantly improved.

7.4.1 Comparison with NMO-based median filtering

We also compare the performance of our CS-based source-separation techniques with deblending
using the NMO-based median filtering technique proposed by Chen et al. (2014), where we work on a
common-midpoint gather from each acquisition scenario. For the over/under acquisition simulated
on the Marmousi model, Figures 7.17(a) and 7.17(e) show the blended common-midpoint gathers
and source separation using the median filtering technique is shown in Figures 7.17(b) and 7.17(f).
The corresponding separated common-midpoint gathers from the two CS-based techniques are
shown in Figures 7.17(c,d,g,h). Figure 7.18 shows the blended and separated common-midpoint
gathers for the field data from the Gulf of Suez. We observe that recoveries via the proposed CS-
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Marmousi model

Time Memory S/N
Sparsity 167 7.0 16.7, 16.7
Rank 12 2.8 15.0, 14.8

Table 7.1: Comparison of computational time (in hours), memory usage (in GB) and average
S/N (in dB) using sparsity-promoting and rank-minimization based techniques for the
Marmousi model.

Gulf of Suez

Time Memory S/N
Sparsity 118 6.6 14.6
Rank 8 2.6 12.8

Table 7.2: Comparison of computational time (in hours), memory usage (in GB) and average
S/N (in dB) using sparsity-promoting and rank-minimization based techniques for the
Gulf of Suez dataset.

based approaches are comparable to the recovery from the median filtering technique. Similarly,
Figure 7.19 shows the results for the simultaneous long offset acquisition simulated on the BP salt
model. Here, the CS-based techniques result in slightly improved recoveries.

7.4.2 Remark

It is important to note here that we perform the CS-based source separation algorithms only once,
however, we can always perform a few more runs of the algorithms where we can first subtract the
separated source 1 and source 2 from the acquired blended data and then rerun the algorithms
to separate the energy in the residual data. Hence, the recovery can be further improved until
necessary. Since separation via rank-minimization is computationally faster than the sparsity based
technique, multiple passes through the data is a computationally viable option for the former source-
separation technique.

BP model

time memory S/N
Sparsity 325 7.0 32.0, 29.4
Rank 20 2.8 29.4, 29.0

Table 7.3: Comparison of computational time (in hours), memory usage (in GB) and average
S/N (in dB) using sparsity-promoting and rank-minimization based techniques for the
BP model.
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Figure 7.10: Separated shot gathers and difference plots (from the Marmousi model) of
source 1 and source 2: (a,c) source separation using HSS based rank-minimization and
(b,d) the corresponding difference plots; (e,g) source separation using curvelet-based
sparsity-promotion and (f,h) the corresponding difference plots.

7.5 Discussion

The above experiments demonstrate the successful implementation of the proposed CS-based ap-
proaches of rank-minimization and sparsity-promotion for source separation in the low-variability,
simultaneous towed-streamer acquisitions. The recovery is comparable for both approaches, how-
ever, separation via rank-minimization is significantly faster and memory efficient. This is further
enhanced by incorporating the HSS partitioning since it allows the exploitation of the low-rank
structure in the high-frequency regime, and renders its extension to large-scale data feasible. Note
that in the current implementation, we work with each temporal frequency slice and perform the
source separation individually. The separation results can further be enhanced by incorporating
the information from the previously recovered frequency slice to the next frequency slice, as shown
by Mansour et al. (2013) for seismic data interpolation.
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Figure 7.11: Separated common-channel gathers and difference plots (from the Marmousi
model) of source 1 and source 2: (a,c) source separation using HSS based rank-
minimization and (b,d) the corresponding difference plots; (e,g) source separation
using curvelet-based sparsity-promotion and (f,h) the corresponding difference plots.

The success of CS hinges on randomization of the acquisition. Although, the low degree of
randomization (e.g., 0 ≤ 1 second) in simultaneous towed-streamer acquisitions seems favourable
for source separation via CS-based techniques, however, high-variability in the firing times enhances
the recovery quality of separated seismic data volumes, as shown in Wason and Herrmann (2013a);
Wason and Herrmann (2013b) for ocean-bottom cable/node acquisition with continuous recording.
One of the advantages of the proposed CS-based techniques is that it does not require velocity
estimation, which can be a challenge for data with complex geologies. However, the proposed
techniques require accurate knowledge of the random firing times.

So far, we have not considered the case of missing traces (sources and/or receivers), however,
incorporating this scenario in the current framework is straightforward. This makes the problem a
joint source separation and interpolation problem. We can also extend our methods to separate 3D
blended seismic data volumes as shown in Kumar et al. (2017), wherein we address the problem of
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Figure 7.12: Separated shot gathers and difference plots (from the Gulf of Suez dataset) of
source 1 and source 2: (a,c) source separation using HSS based rank-minimization and
(b,d) the corresponding difference plots; (e,g) source separation using curvelet-based
sparsity-promotion and (f,h) the corresponding difference plots.

joint source separation and interpolation for time-lapse seismic. In reality, seismic data are typically
irregularly sampled along spatial axes, and therefore future work includes working with nonuniform
sampling grids.

7.6 Conclusions

We have presented two compressed sensing based methods for source separation for simultaneous
towed-streamer type acquisitions, such as the over/under and the simultaneous long offset acquisi-
tion. Both the compressed sensing based approaches of rank-minimization and sparsity-promotion
give comparable source-separation results, however, the former approach is readily scalable to large-
scale blended seismic data volumes and is computationally faster. This can be further enhanced
by incorporating the HSS structure with factorization-based rank-regularized optimization formu-
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Figure 7.13: Separated common-channel gathers and difference plots (from the Gulf of Suez
dataset) of source 1 and source 2: (a,c) source separated using HSS based rank-
minimization and (b,d) the corresponding difference plots; (e,g) source separation
using curvelet-based sparsity-promotion and (f,h) the corresponding difference plots.

lations, along with improved recovery quality of the separated seismic data. We have combined
the Pareto curve approach for optimizing BPDNε formulations with the SVD-free matrix factor-
ization methods to solve the nuclear-norm optimization formulation, which avoids the expensive
computation of SVDs, a necessary step in traditional rank-minimization based methods. We find
that our proposed techniques are comparable to the commonly used NMO-based median filtering
techniques.
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Figure 7.14: Separated shot gathers and difference plots (from the BP salt model) of source
1 and source 2: (a,c) source separation using HSS based rank-minimization and
(b,d) the corresponding difference plots; (e,g) source separation using curvelet-based
sparsity-promotion and (f,h) the corresponding difference plots.
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Figure 7.15: Separated common-channel gathers and difference plots (from the BP salt
model) of source 1 and source 2: (a,c) source separation using HSS based rank-
minimization and (b,d) the corresponding difference plots; (e,g) source separation
using curvelet-based sparsity-promotion and (f,h) the corresponding difference plots.
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Figure 7.16: Signal-to-noise ratio (dB) over the frequency spectrum for the separated data
from the Marmousi model. Red, blue curves—source separation without HSS; cyan,
black curves—source separation using second-level HSS partitioning. Solid lines—
separated source 1, + marker—separated source 2.
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Figure 7.17: Blended common-midpoint gathers of (a) source 1 and (e) source 2 for the
Marmousi model. Source separation using (b,f) NMO-based median filtering, (c,g)
rank-minimization and (d,h) sparsity-promotion.
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Figure 7.18: Blended common-midpoint gathers of (a) source 1, (e) source 2 for the Gulf
of Suez dataset. Source separation using (b,f) NMO-based median filtering, (c,g)
rank-minimization and (d,h) sparsity-promotion.
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Figure 7.19: Blended common-midpoint gathers of (a) source 1, (e) source 2 for the BP
salt model. Source separation using (b,f) NMO-based median filtering, (c,g) rank-
minimization and (d,h) sparsity-promotion.
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Chapter 8

Conclusion

Adapting ideas from the field of compressive sensing leads to new insights into acquiring and pro-
cessing seismic data where we can fundamentally rethink on how we design acquisition surveys.
Compressive randomized simultaneous-source acquisitions provide flexibility in acquisition geome-
tries for better area coverage (i.e., improves data density) in surveys and speedup acquisition. The
main contributions of this thesis are summarized below.

8.1 Compressive sensing in seismic exploration

We propose an alternative sampling method adapting insights from CS towards seismic acquisi-
tion and processing for data that are subsampled. The main outcome of this approach is a new
technology where acquisition and processing related costs are decoupled from the stringent Nyquist
sampling criterion. Instead, these costs scale with the desired reconstruction error and transform-
domain sparsity of the data. By means of carefully designed numerical experiments on synthetic
and real data, we establish that CS can indeed successfully be adapted to seismic data acquisi-
tion, wherein seismic wavefields can be reconstructed with a controllable error from randomized
subsamplings. Specifically, three key components need to be in place: (i) a sparsifying signal (i.e.,
structure revealing) representation that exploits the signal’s structure by mapping the energy into
a small number of significant transform-domain coefficients; (ii) a randomized subsampling scheme
that turns subsampling related artifacts into incoherent noise that is not sparse or compressible;
and (iii) recovery of artifact-free fully sampled data by promoting structure, i.e., sparse recovery
via one-norm minimization. We also introduce performance measures for nonlinear approximation
and recovery errors and empirically demonstrate that curvelets lead to compressible (real-world sig-
nals are not strictly sparse) representation of seismic data compared to wave atoms, wavelets, etc.
Hence, we use curvelets for recovery of densely sampled conventional data via sparsity promotion.
In a nutshell, compressive sensing offers new perspectives towards the design of land and marine
acquisition schemes.

8.2 Compressive simultaneous-source marine acquisition

We identify simultaneous-source marine acquisition as a linear subsampling system and analyze it
using CS metrics such as mutual coherence and restricted isometry property. We quantitatively
investigate the underlying interaction between acquisition design and reconstruction fidelity, and
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show that more randomness in the acquisition system and more compressible transforms improve the
mutual coherence and restricted isometry constants, which predict a higher reconstruction quality.
This is also true for our proposed pragmatic compressive marine simultaneous-source acquisition
scheme, termed time-jittered marine, wherein a single (and/or multiple) source vessel(s) sails across
an ocean-bottom array firing air guns at jittered-time instances, which translate to jittered shot
positions for a given (fixed) speed of the source vessel. The simultaneous data are time compressed
with overlapping shot records, and are therefore acquired economically with a small environmental
imprint. The proposed acquisition scheme shares the benefits of random sampling while offering
control on the maximum acquisition gap size since randomization via jittering turns the recovery
into a relatively simple “denoising” problem with control over the maximum gap size between
adjacent shot locations (Hennenfent and Herrmann, 2008), which is a practical requirement of
wavefield reconstruction with localized sparsifying transforms such as curvelets.

According to CS, a sparsifying transform that is incoherent with the CS matrix can significantly
impact the reconstruction quality. In other words, the mutual coherence between the sparsifying
transform and the sensing (or measurement) matrix should be small for good signal reconstruc-
tion. We show that the CS matrix resulting from our proposed sampling scheme is incoherent
with the curvelet transform. Recovering conventional nonsimultaneous prestack data volumes from
simultaneous marine data essentially involves mapping noise-like or incoherent source crosstalk to
coherent seismic responses. Randomized simultaneous-source acquisitions render source crosstalk
(or interferences) incoherent in common-receiver gathers creating favorable conditions for recovering
conventional nonsimultaneous data via curvelet-domain sparsity promotion. We recover conven-
tional interference-free data using 2D and 3D FDCT (Fast Discrete Curvelet Transform, (Candès
et al., 2006a; Ying et al., 2005)). We observe that the 3D FDCT leads to slightly improved re-
coveries compared to the 2D FDCT but at the expense of increased computational costs. This
is because the 3D FDCT is about 24× redundant, in contrast to the 8× redundant 2D FDCT,
rendering large-scale processing extremely memory intensive, and hence impractical. The combina-
tion of randomized subsampling and sparsity-promoting recovery technique results in high-quality
nonsimultaneous data volumes recovered on fine periodic sampling grids. The results vindicate the
importance of randomness in the acquisition scheme. Recovery from the more realistic irregular or
off-the-grid subsamplings are reported in Chapter 6.

8.3 Compressive simultaneous-source time-lapse marine
acquisition

We present a first instance of adapting ideas from CS and DCS to assess the effects of random
or irregular subsampling (in the field) on time-lapse data, and demonstrate that high-quality data
recoveries are the norm and not the exception. The main finding is that compressive randomized
time-lapse surveys need not be replicated to attain similar/acceptable levels of data repeatability
compared to data acquired from (expensive) dense, periodically sampled and replicated time-lapse
surveys. This observation holds true when the vintages themselves are of prime interest, and in
an idealized setting where we assume subsampled time-lapse measurements are taken on a discrete
regular periodic grid, i.e., samples lie “exactly” on the grid (Chapter 5). This leads to “exact” repli-
cation of sampling points between time-lapse surveys when the sampling points overlap (for differ-
ent percentages of overlap). We achieve this result by using a joint-recovery model (JRM), derived
from DCS, that exploits common information shared between time-lapse vintages, and additional
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structural information provided by nonreplicated (or independent) surveys. Therefore, whenever
time-lapse data exhibit joint structure — i.e., they are compressible in some transform domain and
share information — sparsity-promoting recovery of the “common component” and “innovations,”
with respect to this common component, outperforms independent recovery of colocated (prestack)
baseline and monitor data. Moreover, jointly recovered colocated (prestack) vintages exhibit a
higher degree of repeatability in terms of NRMS ratios compared to independent recovery. Our
proposed method lowers acquisition cost and environmental imprint because we have subsampled
measurements, i.e., fewer shot locations are visited. This offers a possibility to extend the survey
area or to increase the data’s resolution at the same costs as conventional surveys.

Our findings in Chapter 6 corroborate the observations made above when we consider a more
realistic (field) scenario of taking measurements off the grid, i.e., irregular samples that do not lie
on a discrete regular periodic grid. Extending our simultaneous time-jittered marine acquisition
to time-lapse surveys for realistic off-the-grid acquisitions, wherein off-the-grid sample points are
known, generates simultaneous subsampled and irregular measurements. Consequently, we adapt
our proposed JRM to incorporate a regularization operator that maps traces from an irregular grid
to a regular periodic grid. The recovery method is a combined operation of source separation, reg-
ularization, and interpolation, in which periodic densely sampled and colocated prestack data are
recovered from time-compressed, and therefore economical, simultaneous subsampled and irregular
data. Similar to the observations made in Chapter 5, joint recovery of the vintages improves signif-
icantly when the time-lapse surveys are not replicated, since independent surveys give additional
structural information. We also show that realistic and inevitable off-the-grid sampling leads to
little variability in recovery of the time-lapse difference for decreasing overlap between the surveys,
and hence negates the efforts to replicate.

Using two different geological velocity models, SEAM Phase 1 model that has a relatively
complex geology and complex time-lapse difference compared to the BG COMPASS model (simple
geology and complex time-lapse difference), we show that the observations are quite universal.
These observations are significant because they can potentially change the current paradigm of
time-lapse seismic that relies on expensive dense periodic sampling and replication of time-lapse
surveys. Although these observations are made assuming source equalization and no significant
changes in wave heights, water column velocities or temperature, and salinity profiles among the
different surveys, recent successes of randomized surveys in the field (see, e.g., Mosher et al. (2014))
build our confidence in the success of pragmatic (field) compressive randomized simultaneous time-
lapse surveys. Moreover, since irregular spatial sampling is inevitable in the real world, it would
be better to focus on knowing what the shot positions were (post acquisition) to a sufficient degree
of accuracy, than aiming to replicate them. Embracing randomness in surveys, whether natural
randomness such as (streamer) cable feathering or randomness by design, maximizes collection of
different/independent information leading to surveys acquired at low cost and a small environmental
imprint.

8.4 Compressive simultaneous-source towed-streamer acquisition

We present two CS-based techniques — sparsity promotion and rank minimization — for source sep-
aration for dynamic simultaneous towed-streamer acquisitions, such as over/under and simultaneous-
long offset acquisition. Recoveries from both techniques are comparable; however, the latter ap-
proach readily scales to large-scale seismic data volumes and is computationally faster. Moreover,
the SVD-free matrix factorization method used to solve the nuclear-norm optimization formula-
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tion avoids expensive SVDs, a necessary step in traditional rank-minimization-based methods. We
address the challenge of processing high-frequency monochromatic slices, which do not exhibit low-
rank structure in the midpoint-offset domain due to increase in wave oscillations away from the
diagonal compared to low-frequency slices, by incorporating the hierarchical semiseparable struc-
ture in the factorization-based rank-minimization framework leading to improved recovery quality
of the separated data volumes. We also find that both these techniques are comparable with the
commonly used NMO-based median-filtering techniques.

8.5 Follow-up work

Motivated by the successful implementation of CS to static and dynamic marine simultaneous-
source acquisitions, and DCS to (static) simultaneous-source time-lapse surveys, we extend our
work to derive a viable low-cost and low-environmental impact multi-azimuth towed-streamer time-
lapse acquisition scheme. Initial findings of a simulation-based feasibility study for 3D randomized
towed-streamer time-lapse surveys in a realistic field-scale setting have been reported in Kumar
et al. (2017). In this acquisition scheme, we acquire economic, randomly subsampled (about 70%)
and simultaneous towed-streamer time-lapse data without the need of replicating the surveys. We
recover densely sampled full-azimuth time-lapse data on one and the same periodic grid by using the
joint-recovery model (Chapters 5 and 6) coupled with the computationally cheap and scalable rank-
minimization technique (Chapter 7). Our findings are consistent with those reported in this thesis
that indicate that acquisition efficiency can be improved significantly by adapting the principles
of CS. Furthermore, this new paradigm can also provide an appropriate framework for low-cost
time-lapse wide-azimuth acquisition with towed arrays and multiple source vessels.

Initial findings on the possible impact of unknown calibration errors, such as unknown deviations
between actual and post-plot acquisition geometry, on time-lapse data repeatability have been
reported by Oghenekohwo and Herrmann (2017). In this contribution, the authors show that for
data acquired via compressive, irregular and nonreplicated surveys, attainable recovery quality and
repeatability of time-lapse vintages and difference deteriorates gracefully as a function of increasing
calibration errors.

8.6 Current limitations

Some limitations of the work presented in this thesis are as follows:

1. Current implementation/code of the curvelet transform — the FDCT based on the wrapping
of specially selected Fourier samples (Candès et al., 2006a) — is around 8× redundant in
2D and around 24× redundant in 3D (Ying et al., 2005). This precludes tractable higher-
dimensional FDCTs. Moreover, it renders large-scale computations infeasible especially when
dealing with massive 3D seismic data volumes.

2. For recovery of periodic densely sampled time-lapse data (Chapters 5 and 6), we assume that
magnitude of the common component and innovations in the joint-recovery model is more or
less similar. However, this is not the case in reality, and therefore certain scaling measures
are required that will lead to improved (sparse) recoveries (see point 4 in the next section).

3. One of the limitations of the proposed SVD-free matrix-factorization approach (Chapter 7)
is to find the rank parameter k associated with each low-rank factor. The cross-validation
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techniques used for the proposed formulation are rendered impractical when dealing with
large-scale (subsampled) seismic data volumes since it involves finding an appropriate small
volume of data to run the cross-validation techniques — a computationally expensive process.
The implementation of the HSS representation for 3D seismic data volumes also remains to
be investigated.

8.7 Future research directions

Some ideas for future work are as follows:

1. Develop a computationally faster and memory efficient implementation of the 2D and (more
importantly) 3D curvelet transforms, since the curvelet transform is designed to represent
curve-like singularities optimally (Candès and Demanet, 2005). Curvelets have different fre-
quency content and dips to match wavefronts locally, leading to a sparse — arguably the
sparsest — representation of seismic data.

2. Conduct investigations for recovery of weak late-arriving events with high degrees of accuracy
during source separation. One approach to improve recovery of weak late-arriving events is
to use weighted one-norm minimization (Mansour et al., 2013) that exploits correlations
between locations of significant transform-domain coefficients of different partitions —– e.g.,
shot records, common-offset gathers or frequency slices —– of the acquired data.

3. Develop robust algorithms to use simultaneous-source data directly in imaging and inversion
without the need for separating simultaneous data. Some researchers have obtained good
synthetic results for direct imaging of simultaneous-source data (Berkhout et al., 2012; Choi
and Alkhalifah, 2012; Guitton and Daz, 2012; Gan et al., 2016; Xue et al., 2016) but successful
field applications remain challenging.

4. Investigate the effects of imposing a weight γ on the common component and innovations
that turns the joint recovery via `1-norm minimization formulation (Chapters 5 and 6) in to
a γ-weighted `1-norm formulation (DCS, Baron et al. (2009)):

z̃ = arg min
z

γ0||z0‖1 + γ1||z1‖1 + γ2||z2‖1 subject to y = Az. (8.1)

So far we have assumed γ0 = γ1 = γ2 = 1. However, in reality, magnitude of the common
component and innovations of seismic data vary, and thus call for some enhancements in the
reconstruction scheme by means of introducing appropriate weights on each element of z. Similar
to improvement in sparse recoveries from weighted `1-norm minimization formulations (Mansour
et al., 2013), the above weighted-norm formulation for DCS will potentially lead to improved sparse
time-lapse data recoveries with a possible reduction in the requisite number of measurements (Li,
2015).
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