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Abstract

In this thesis we find constraints to asymptotically anti de-Sitter space dual to holographic con-

formal field theory states using the holographic duality. A recent conjecture involving the causal

holographic information surface propsed that for smooth asymptotically anti de-Sitter spacetimes

that obey the null energy conditions, the area of the Ryu-Takayanagi surface will always be less

than or equal to the area of the causal holographic information surface. This conjecture is explored

in three dimensional spacetimes that are dual to translation invariant states on the boundary con-

formal field theory in two dimensions. A series expansion of the Ryu-Takayanagi surface and causal

holographic information surface is derived, and is used to translate the constraint between the ar-

eas of the two surfaces into a constraint on the asymptotic structure of such geometries near the

conformal boundary. The translated constraints are compared to the constraints given by the null

energy condition - and it is found that the first two leading order constraints are the same. We

then outline some preliminary results of an ongoing project whose goal is to understand the dual

of relative entropy of holographic states defined on null cone regions on the conformal boundary.

We derive the modular Hamiltonian for vacuum states defined on null cone regions in a conformal

field theory using known results for modular Hamiltonians on null planes. We also derive the Ryu-

Takayanagi surface associated with such null cone regions. Using these results, it is argued that,

for null cones whose base is cut by a constant time cut, will not give new constraints beyond what

is already known for ball shaped regions.
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Lay Summary

A quantum field theory describes particles as excitations of an underlying quantum field. These

theories usually exhibit some kind of symmetries. In particular, a conformal field theory is a special

type of quantum field theory that has a large number of symmetries, which include conformal

and Poincare symmetries. The anti de-Sitter conformal field theory correspondence tells us that

special states of a conformal field theory, called holographic states, are related to a special class

of spacetime geometries called asymptotically anti de-Sitter geometries. In this thesis we use

this relation between holographic states and asymptotically anti de-Sitter spacetimes to translate

constraints on the field theory to constraints on geometry.

iii



Preface

The questions the author explores in this thesis were posed by the author’s supervisor Dr. Mark

Van Raamsdonk. The calculations done in chapter 2 were done independently and guided by

suggestions from the author’s supervisor. The materials in chapter 3 are a result of a collaborative

effort with Dominik Neuenfeld under the guidance of the author’s supervisor. The calculations in

appendix A.4, A.6, and A.7 were originally done by Dominik. The calculations in section 3.3 and

3.4 were done jointly by both Dominik and the author and then checked for consistency.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Historical Overview of the AdS/CFT Correspondence and Holography . . . . . . . . 1

1.2 Basics of Entanglement Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Holographic Entanglement Entropy and the Ryu-Takayanagi Conjecture . . . . . . . 4

1.4 Boundary Stress Energy Tensor from Asymptotic Behaviour in Bulk . . . . . . . . . 7

2 Constraints From Causal Holographic Information Surface . . . . . . . . . . . . 10

2.1 Defining the Causal Holographic Information Surface . . . . . . . . . . . . . . . . . . 10

2.2 Series Expansion for CHI Curve for AAdS3 Spacetimes . . . . . . . . . . . . . . . . . 11

2.3 Series Expansion for the Area of the CHI Curve . . . . . . . . . . . . . . . . . . . . . 16

2.4 Ryu-Takayanagi Curve for AAdS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Series Expansion for Area of the Ryu-Takayanagi Surface . . . . . . . . . . . . . . . 20

2.6 Constraints on AAdS3 Spacetimes from CHI Inequality . . . . . . . . . . . . . . . . 22

3 Constraints from Relative Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Basic Properties of Relative Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Relative Entropy for Ball Shaped Regions in Terms of Bulk Quantities . . . . . . . . 27

3.3 Modular Hamiltonian on the Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Ryu-Takayanagi Surface Anchored to Light Cone on CFTd Boundary . . . . . . . . 33

3.5 Relative Entropy as Quasi-Local Bulk Energy . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Writing Modular Hamiltonian in Covariant Form . . . . . . . . . . . . . . . . . . . . 40

v



3.7 Extending Boundary Vector Field into Bulk . . . . . . . . . . . . . . . . . . . . . . . 41

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.1 Co-Dimension 2 Extremal Surface in d+ 1 Dimensional Spacetime . . . . . . . . . . 48

A.2 Quadratic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.3 Mapping Half Space to a Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.4 Calculating Jacobian for SCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.5 Coordinates on Null Plane to Coordinates on Null Cone . . . . . . . . . . . . . . . . 53

A.6 Conformal Transformation of the Stress Energy Tensor of a CFTd . . . . . . . . . . 54

A.7 Unit Binormal to RT surface Anchored to Cone Regions . . . . . . . . . . . . . . . . 56

vi



Acknowledgments

Firstly, I would like to thank my supervisor, Dr. Mark Van Raamsdonk for giving me be the

opportunity to do research with him and for all his patience and guidance throughout the time I

was supervised by him. Without his guidance this thesis would not have come to fruition. I would

also like to thank Dominik Neuenfeld for his contributions to the materials presented in chapter 3

and the appendices and also for the many helpful conversions during our collaboration. I would

also like to thank Ali Izadi Rad and Bin Guo for helpful discussions. Last but not least, I would

like to thank my parents for their unconditional support throughout my Masters degree program.

vii



Dedication

To my parents, who always encourage and support me.

viii



Chapter 1

Introduction

1.1 Historical Overview of the AdS/CFT Correspondence and
Holography

The Anti-de Sitter/Conformal Field Theory (AdSd+1/CFTd) correspondence was first proposed

by Juan Maldacena in 1997 in the context of string theory [1]. The conjecture states that a

certain class of conformal field theories, which are sometimes called holographic, defined on a d-

dimensional Minkowski background, are equivalent to theories of quantum gravity on a d + 1-

dimensional asymptotically Anti-de Sitter (AAdSd+1) background [2]. Since its initial conception

it has proved to be a powerful tool to do calculations in strongly coupled quantum field theories,

[3], as well as being a promising approach to formulating a consistent theory of quantum gravity

[4]. In particular one important development that has come out of studying the duality is the

Ryu-Takayanagi (RT) conjecture. The conjecture states that the entanglement entropy of some

sub-region of a CFTd is proportional to the area of a co-dimension 2 extremal surface in the

dual AAdSd+1 geometry [5]. Since the area of an extremal surface is a geometric quantity which

depends on the metric, the conjecture provides a direct relation between the quantum information

quantity of entanglement entropy and the geometry of AAdSd+1 spacetimes. Since there are certain

constraints for the quantum information quantities on CFTd’s one can use the RT conjecture to

translate these quantum information constraints to constraints on the dual spacetimes [4, 6, 7]. By

understanding such constraints one can understand what types of geometries and energy conditions

are physically allowed in any consistent theory of quantum gravity.

1.2 Basics of Entanglement Entropy

In the context of holography entanglement entropy usually refers to the entanglement entropy of

some sub-region of spacetime over which the state of a quantum field theory is defined. Before

understanding this notion of entanglement entropy, we start by introducing the density matrix

formalism of quantum mechanics. In this formalism the central object that describes the state of

a quantum system is called the density matrix which is a non-negative hermitian operator with
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1.2. Basics of Entanglement Entropy

unit trace. More explicitly, given a complete set of orthonormal quantum states, {|ψ1〉 , ..., |ψn〉},
for an n-dimensional Hilbert space, along with a set of “classical” probabilities that add to one,

{p1, ..., pn}, the density matrix of the system can be written as:

ρ =
n∑
i=1

pi |ψi〉 〈ψi| (1.2.1)

The operator defined above is a hermitian operator with non-negative eigenvalues {pi}ni=1 and

clearly the trace of the operator is equal to 1 since
∑n

i=1 pi = 1. The expectation values of an

operator O with respect to the density matrix ρ can be defined by using the trace:

〈O〉ρ = Tr(ρO) (1.2.2)

Density matrices in which only one eigenvalue is one and the rest are zero are referred to as

pure states. In particular one can show that a density matrix defines a pure state iff ρ = ρ2 or

alternatively iff Tr(ρ2) = 1. For a pure state defined in terms of a state vector, σ = |ψ〉 〈ψ|, the

definition of the expectation value with respect to σ simplifies to the usual expression using the

state vector |ψ〉. This can be seen by calculating the trace using a complete set of basis states |ψi〉:

〈O〉σ =
n∑
i=1

〈ψi|σO |ψi〉 =
n∑
i=1

〈ψi|ψ〉 〈ψ| O |ψi〉 =
n∑
i=1

〈ψ|ψi〉 〈ψi| O |ψ〉 = 〈ψ| O |ψ〉 (1.2.3)

We can also define density matrices for composite systems. Suppose we have two quantum sys-

tems A and B each with its own complete set of states {|e1〉 , |e2〉 , ..., |en〉} and {|ẽ1〉 , |ẽ2〉 , ..., |ẽm〉}
respectively. The composite system is in a mn-dimensional Hilbert space that is spanned by the

following basis vectors {|ei〉
⊗
|ẽj〉}, where i ∈ {1, ..., n} and j ∈ {1, ...,m}. Using this basis we can

write a general state vector |Ψ〉 in the composite system as:

|Ψ〉 =
n∑
i=1

m∑
j=1

ψij |ei〉
⊗
|ẽj〉 (1.2.4)

As before, given a state vector, we can define a corresponding density matrix for the composite

system:

ρAB = |Ψ〉 〈Ψ| =
n∑

i,l=1

m∑
j,k=1

ψijψ
∗
kl

(
|ei〉

⊗
|ẽj〉
)(
〈ẽk|

⊗
〈el|
)

(1.2.5)

Given a density matrix for a composite system, such as the one defined above, one can define

the reduced density matrix for the subsystem A denoted ρA by taking a partial trace with respect

2



1.2. Basics of Entanglement Entropy

to subsystem B. Explicitly we find:

ρA = TrB(ρAB) =
n∑

i,l=1

m∑
p,j,k=1

ψijψ
∗
kl |ei〉 〈el| δjpδkp =

n∑
i,l=1

m∑
j=1

ψijψ
∗
jl |ei〉 〈el| (1.2.6)

The reduced density matrix can then be used to quantify the amount of entanglement between

the sub-systems A and B. This is done by calculating the Von Neumann entropy of the reduced

density matrix. The Von Neumann entropy for the density matrix ρ which will be denoted as S(ρ)

is given by the following equation:

S(ρ) = −Tr(ρln(ρ)) = −
n∑
i=1

piln(pi) (1.2.7)

Where pi are the eigenvalues of the density matrix ρ. Most of the time we will be interested in

density matrices for composite systems in pure states. One special property of pure states is that

the entanglement entropy of a sub-system is equal to the entanglement entropy of its complement.

This can be seen by using an important theorem in quantum information called the Schmidt

decomposition theorem. It states that if |Ψ〉 is a state vector for a composite system AB then there

exists an orthonormal bases {|Ai〉}ni=1 and {|Bi〉}mi=1 for subsystems A and B respectively such that

the state can be written as:

|Ψ〉 =

min(n,m)∑
i=1

√
pi |Ai〉

⊗
|Bi〉 (1.2.8)

Using this we can construct a density matrix which is given as:

ρAB = |Ψ〉 〈Ψ| =
min(n,m)∑
i,j=1

√
pipj |Ai〉 〈Aj |

⊗
|Bi〉 〈Bj | (1.2.9)

It is important to note that if we are to think of the operator above as a matrix it will be a

nm-dimensional square matrix however the non-zero information will be contained in an min(n,m)

dimensional square sub-block. Now, we can compute the reduced density matrices for the subsys-

tems by taking a partial trace:

ρA = TrB(ρAB) =
m∑
k=1

min(n,m)∑
i,j=1

√
pipj |Ai〉 〈Aj |

⊗
〈Bk|Bi〉 〈Bj |Bk〉 =

min(n,m)∑
i,j,k=1

√
pipjδkiδjk |Ai〉 〈Aj |

=

min(n,m)∑
k=1

pk |Ak〉 〈Ak|

(1.2.10)
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1.3. Holographic Entanglement Entropy and the Ryu-Takayanagi Conjecture

ρB = TrA(ρAB) =
n∑
k=1

min(n,m)∑
i,j=1

√
pipj 〈Ak|Ai〉 〈Aj |Ak〉

⊗
|Bi〉 〈Bj | =

min(n,m)∑
i,j,k=1

√
pipjδkiδjk |Bi〉 〈Bj |

=

min(n,m)∑
k=1

pk |Bk〉 〈Bk|

(1.2.11)

As one can see, the reduced density matrices will have the exact same non-zero eigenvalues

which implies that the entanglement entropy of the sub-system A will be equal to the entanglement

entropy of subsystem B. Also note that we did not make any assumptions on the sizes of the

Hilbert spaces of the two subsystems. This means that for pure states, entanglement entropy does

not scale with the volume of the Hilbert space of the subsystems. The formalism discussed above

can be applied to any quantum system whose state can be summarized in terms a density matrix.

Now we want to define entanglement entropy of a subregion of a CFTd. To start one chooses some

d− 1 dimensional Cauchy slice of the background spacetime. On this slice we define a state using

an Euclidean path integral. This defines a global state over the whole Cauchy slice which is often

called the wave functional denoted, |Ψ[Φ(x)]〉. The wave functional is defined by the fields, Φ(x),

which depend on the coordinates on the slice. Using this wave functional one can define an assoici-

ated density matrix ρ = |Ψ〉 〈Ψ| over the entire slice. After doing this, one can restrict themselves

to some subregion on the slice- call it A, it will have a boundary, ∂A, which is sometimes called the

entangling surface. This splits the slice into two regions A and its complement Ac. Naturally, one

can now define the reduced density matrix, ρA, on A by integrating out the field configurations in

the complement. The Von-Neumann entropy of the reduced density matrix can now be computed

and this is defined to be the entanglement entropy of the subregion A of the CFTd. Unsurprisingly

when one calculates the entanglement entropy it diverges due to the fact that one is dealing with a

continuous system. This is why the entanglement entropy is usually given in terms of some lattice

spacing cutoff which regulates the UV divergence. Typically ground states of CFTd’s obey what is

known as an area law of entanglement, which states that the entanglement entropy has a leading

order UV divergence that scales like the area of the entangling surface ∂A for a fixed lattice spacing.

For a more complete discussion of how to calculate entanglement entropy using the ideas discussed

above one should refer to [8].

1.3 Holographic Entanglement Entropy and the Ryu-Takayanagi
Conjecture

So far our discussions of Entanglement entropy had nothing to do with the AdSd+1/CFTd corre-

spondence. The AdSd+1/CFTd correspondence comes into the picture when we consider a special

sub-class of CFTd states which are called holographic. For such CFTd states it can be shown [5, 8],

4



1.3. Holographic Entanglement Entropy and the Ryu-Takayanagi Conjecture

using the prescription outlined in the previous section, that the result for calculating the entangle-

ment entropy of some subregion A will give the same leading order divergent term as the area of

a co-dimension 2 surface in the bulk that is anchored to the entangling surface on the conformal

boundary of AdSd+1. This observation leads to the more general conjecture first formulated by Ryu

and Takayanagi called the Ryu-Takayanagi conjecture. This is summarized by the Ryu-Takayanagi

formula [5, 8]:

SEE =
Area(γA)

4GN
(1.3.1)

Where γA is a co-dimension 2 extremal surface in the bulk which extremizes the area functional.

This surface obeys the following boundary condition ∂A = ∂γA, which is to say that the extremal

surface in the bulk ends on the conformal boundary on the entangling surface of the sub-region

A. Sometimes there can be more than one extremal surface that satisfies this boundary condition

in such a case one would choose the surface that minimizes the area. This formula will be used

throughout this thesis and is sometimes referred to as the holographic entanglement entropy since

it computes the entanglement entropy of holographic CFTd states.

To make the definition more concrete and illustrate how such calculations will be done, we will

do the calculation for the RT surface in pure AdSd+1 anchored to the boundary of a ball shaped

region ∂B on a constant time slice t = 0, on the conformal boundary. The first thing that we must

do is write down the line element for pure AdSd+1. A convenient coordinate system to write it in

is called Poincare coordinates given by the line element:

ds2 = gµνdx
µdxν =

1

z2

[
dz2 − dt2 + (dx1)2 + ...+ (dxd−1)2

]
(1.3.2)

In these coordinates z is a space-like coordinate that goes into the bulk and the rest are boundary

coordinates. The conformal boundary exists at z = 0 and the metric on the conformal boundary is

given by z2gµν |z=0. In this case we have the flat Minkowski metric on the conformal boundary. We

will change the space-like boundary coordinates to hyper-spherical coordinates (ρ, φ1, ..., φd−2) due

to the fact we want to consider ball shaped regions on the boundary. The line element becomes:

ds2 =
1

z2

(
dz2 − dt2 + dρ2 + ρ2gΩ

ijdφ
idφj

)
(1.3.3)

Where gΩ
ij is the metric on the unit d − 2 sphere. Now we need to write the area functional for

surfaces that are anchored to the entangling surface of the ball on the conformal boundary on the

constant time slice, t = 0. To do this we apply the formalism discussed in appendix A.1 by setting

two of the coordinates equal to functions of the other d− 1 coordinates. In particular we define:

Xt = t = 0 (1.3.4)

5



1.3. Holographic Entanglement Entropy and the Ryu-Takayanagi Conjecture

Xz = f(ρ) (1.3.5)

Xρ = ρ = σρ (1.3.6)

Xφi = φi = σi (1.3.7)

The first embedding equation is simple; since we are considering a static slice of the boundary

we know the surface will be on the same static slice in the bulk. The second embedding equation

is some function of the radial boundary coordinate; of course, a more general anzatz would be to

include φi. However, since the boundary entangling surface has no φi dependence we can eliminate

such dependence from our anzatz. The coordinates on the surface will be the remaining coordinates

of the background space, σa = (σρ = ρ, σi = φi). Now we can write the induced metric, γab, on the

surface which is given by:

γab = gµν
∂Xµ

∂σa
∂Xν

∂σb
= gzz∂aX

z∂bX
z+gρρδ

ρ
aδ
ρ
b+gijδ

i
aδ
j
b =

1

f2(ρ)

[
δρaδ

ρ
b (1 + ∂ρf(ρ)∂ρf(ρ)) + ρ2gΩ

ijδ
i
aδ
j
b

]
(1.3.8)

Using this we define the area functional:

A =

∫
√
γdd−1σ (1.3.9)

The integral goes over the boundary coordinates within the ball shaped region. To find the

extremal surface we must extremize the Area functional defined above. In appendix A.1 we derived

the equation that needs to be satisfied which is given by:

δA

δXB
=

1

2

√
γγab∂aX

µ∂bX
ν∂Bgµν − ∂a

(√
γγab∂bX

µgµB

)
(1.3.10)

Where B is given by the two coordinates that we used to define the co-dimension 2 surface. In

our case we have B = t, z. We see that t = 0 trivially satisfies the equation, so all we need to do is

solve the equation when B = z. We use the fact that ∂zgµν = −2
zgµν this simplifies the first term.

We can also simplify the second term by noting that Xz only depends on ρ. This implies we have

only one non-zero term in the sum thus, we find that:

d− 1

f(ρ)

√
γ + ∂ρ

(
√
γγρρ∂ρf(ρ)

1

f2(ρ)

)
= 0 (1.3.11)

Since the induced metric is diagonal it, is easy to see
√
γ =

ρd−2
√
gΩ
√

1+(∂ρf)2

fd−1(ρ)
and γρρ = f2(ρ)

1+(∂ρf)2 .

Plugging everything in, one can check that f(ρ) =
√
R2 − ρ2 solves the equation where R is the

radius of the ball on the boundary. This reproduces the well known result that the Ryu-Takayanagi

6



1.4. Boundary Stress Energy Tensor from Asymptotic Behaviour in Bulk

surface for pure AdSd+1 anchored to the entangling surface of a ball on a constant time slice is a

d− 2-dimensional hemisphere in the bulk.

One should keep in mind that the calculation we just did for the Ryu-Takayanagi surface

was relatively simple for a number of reasons. The first is that the background geometry was a

maximally symmetric space called pure AdSd+1. This resulted in the metric having only explicit

dependence on ρ and z. We also utilized the fact that the metric is diagonal. In more general

AAdSd+1 geometries these facts will no longer hold true, which will lead to more complicated

equations. The second reason is that the entangling surface on which the extremal surface is

anchored to has a very simple coordinate description for our choice of coordinates. In fact, this

allowed us to justify the anzatz that f was only a function of ρ and not φi. For more general

entangling surfaces on the boundary, we obviously cannot assume this making the equations more

difficult to solve. If one plugs in the solution for the extremal surface back into the area functional

one will find that the integral will diverge. Therefore one must introduce a cutoff in the bulk near

the boundary this corresponds to the UV lattice cutoff we described in the previous section when

one does the calculation on the CFTd side. For holographic states of a CFTd one will find that

the leading order divergent term in the area for the Ryu-Takayanagi surface will coincide with

the leading order divergent term in the entanglement entropy of the CFTd. In particular for the

extremal surface we calculated here its area divided by 4GN would correspond to the entanglement

entropy of a vacuum state of a dual CFTd.

1.4 Boundary Stress Energy Tensor from Asymptotic Behaviour
in Bulk

In this section we will do a brief review of the Einstein vacuum equations in d + 1 dimensional

spacetimes1 for negative cosmological constant. We will give a formal definition of what it means

for a space to be AAdSd+1 and how exactly the asymptotics of the geometry of such spaces give us

information about the boundary CFTd stress energy tensor [9, 10]. The Einstein vacuum equations

with non-zero cosmological constant, Λ, for d+ 1 dimensional spacetime is given by [11]:

Rµν −
1

2
Rgµν + Λgµν = 0 (1.4.1)

In particular when Λ < 0, there exists a maximally symmetric spacetime that solves the equa-

tions known as pure AdSd+1. This space can be written in Poincare coordinates and the line

element will read:

ds2 = gµνdx
µdxν =

l2

z2

[
dz2 − (dx0)2 + (dx1)2 + ...+ (dxd−1)2

]
=
l2

z2

[
dz2 + ηijdx

idxj
]

(1.4.2)

1Throughout this thesis we adopt the following convention for the spacetime signature (-,+,...,+) where the minus
sign comes for time-like coordinates

7



1.4. Boundary Stress Energy Tensor from Asymptotic Behaviour in Bulk

Where the constant l is related to the cosmological constant through the following relation,

Λ = −d(d−1)
2l2

, which can be obtained by plugging the metric into the vacuum equations. Throughout

this thesis we will simply set l = 1 unless otherwise stated. A general AAdSd+1 space can be written

in the form:

ds2 =
1

z2

[
dz2 + gij(x, z)dx

idxj
]

= Gµν(z, x)dxµdxν (1.4.3)

Where z is called the defining function. The defining function satisfies the following two con-

ditions. The first is that z ≥ 0 and only vanishes on the conformal boundary. The second is that

gµν∂µz∂νz 6= 0 on the boundary where gµν = z2Gµν . It can be shown that there is always a preferred

defining function in a small neighbourhood of the conformal boundary such that gµν∂µz∂νz = 1. By

choosing this preferred defining function, it was shown in that gij(x, z) has the following asymptotic

expansion near the boundary at z = 0 for pure Einstein gravity (i.e no matter fields) [9, 10]:

gij(x, z) = g
(0)
ij (x) + z2g

(2)
ij + ...+ zdg

(d)
ij + ... (1.4.4)

Moreover it was shown that once one fixes g
(0)
ij (x) the only non-zero higher order terms occur

in even powers of z, which are can be determined order by order using the Einstein equations up to

order zd. Terms beyond order zd are undetermined by the Einstein equations near the boundary.

In this thesis we will mainly be interested in the case where the AAdSd+1 space is conformally flat,

g
(0)
ij (x) = ηij . In this case it was shown that the asymptotic expansion of the AAdSd+1 space is

given by [10]:

ds2 =
1

z2

[
z2 + ηijdx

idxj + zdΓ
(d)
ij (x) + zd+1Γ

(d+1)
ij (x) + ...

]
(1.4.5)

From such an expansion it was shown using the AdSd+1/CFTd correspondence that the coeffi-

cient in the asymptotic expansion, Γ
(d)
ij , was fixed by the expectation value of the boundary CFTd

stress energy tensor through the following relation [10]:

〈Tij(x)〉 =
d

16πGN
Γ

(d)
ij (x) (1.4.6)

The reader should keep in mind that the result above is only true if we are dealing with a

conformally flat AAdSd+1 spacetime. In general an extra term will be added that reflects conformal

anomalies which occur due to lower order terms in the expansion [10]. Now we are ready to discuss

the correspondence between states of a CFTd on a Minkowski background and the corresponding

AAdSd+1 dual geometry. Start by noting that pure AdSd+1 occurs when all the terms Γ
(n≥d)
ij (x) = 0.

In particular the pure AdSd+1 geometry corresponds to a dual state on the CFTd whose stress

energy tensor expectation value is zero. This leads us to the correspondence that Pure AdSd+1 is

dual to the vacuum state of a CFTd and vice-versa. More generally when Γ
(n>d)
ij (x) 6= 0 then this

will correspond to some state deformed away from the vacuum. Furthermore it is assumed that

small perturbations away from the vacuum state of the CFTd corresponds to small perturbations
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1.4. Boundary Stress Energy Tensor from Asymptotic Behaviour in Bulk

away from pure AdSd+1 dual geometry. Using this correspondence between the bulk AAdSd+1

geometry and states of a CFTd as a starting point one can begin to understand how constraints

on states of a CFTd translate to constraints in the bulk geometry.

9



Chapter 2

Constraints From Causal Holographic

Information Surface

2.1 Defining the Causal Holographic Information Surface

Before understanding the causal holographic information (CHI) surface we need to understand

how to construct a geometric quantity in the bulk called the causal wedge. The causal wedge

construction in the bulk was motived by a need to understand how bulk geometry of AAdSd+1

spacetimes emerged from the the dual CFTd. In particular, it was argued that if one was given the

density matrix on the CFTd of some closed bounded region on the boundary, B, with boundary

∂B. Then the bulk geometry of the dual AAdSd+1 spacetime could be reconstructed within a

region known as the causal wedge of B [12]. We will give a quick summary of the construction

of the wedge as given in [12]. We start with a Cauchy slice Σ of the spacetime the CFTd resides

on, then define a closed and bounded d − 1 dimensional region on the slice and call it B. This

region has an associated d dimensional future domain of dependence, denoted D+[B] and a past

domain of dependence, denoted D−[B]. More intuitively we can say that a point p− ∈ D−[B] if all

future oriented null geodesics originating from p− intersect with B. Similarly we can say a point

p+ ∈ D+[B] if all past oriented null geodesics originating from p+ intersect with B. Another way of

saying this is that the set of points in D+[B] and D−[B] are determined by doing future and past

time evolution of some prescribed data on the region B. Together the union of the past and future

domain of dependence is known simply as the domain of dependence of the region B and is denoted

as D[B]. Now that we have defined the domain of dependence of our region B we define the causal

wedge of B to be the intersection of the future and past domains of influence of D[B]. This makes

a wedge that extends into the bulk, the wedge at the conformal boundary coincides with D[B].

The boundary of the wedge is made of two null surfaces whose intersection defines a co-dimension

2 (d − 1 -dimensional) space-like surface in the bulk which is called the causal holographic (CHI)

surface which is denoted as ΞB. It is anchored to ∂B on the conformal boundary. Using this

10



2.2. Series Expansion for CHI Curve for AAdS3 Spacetimes

co-dimension 2 surface in the bulk one defines the CHI associated with the boundary region B as:

χB =
Area(ΞB)

4GN
(2.1.1)

In this thesis we will be interested in the following property that Ξ is conjectured to obey for

smooth spacetimes satisfying the null energy condition [13]:

χB − SB =
1

4GN
(Area(ΞB)−Area(RT )) ≥ 0 (2.1.2)

Where Area(RT ) is the area of the Ryu-Takayanagi surface. We want to see what how this

conjecture constraints the asymptotic geometry of highly symmetric and static AAdS3 spacetimes.

2.2 Series Expansion for CHI Curve for AAdS3 Spacetimes

We start with a general AAdS3 metric given in Poincare coordinates (t, x, z) that exhibits transla-

tion invariance in the boundary coordinates x and y. The line element is given as:

ds2 =
l2

z2

(
dz2 − g(z)dt2 + f(z)dx2

)
(2.2.1)

Where g(z) and f(z) have the following asymptotic expansions near the boundary conformal

boundary situated at z = 0:

f(z) = 1 +
z2f2

2!
+
z3f3

3!
+
z4f4

4!
+ ... (2.2.2)

g(z) = 1− z2f2

2!
+
z3g3

3!
+
z4g4

4!
+ ... (2.2.3)

From this point, throughout the rest of chapter 2 when we say AAdS3 spacetime, we mean

a spacetime that has the line element given by (2.2.1). The quadratic order coefficient in both

expansions differ by a sign in order to have a traceless holographic stress energy tensor due to the

fact that the spacetime is dual to a CFT2 state. The goal now is to translate the constraint given

by the inequality (2.1.2) into constraints on the coefficients in the asymptotic expansions given

above. We will consider tilted intervals on the conformal boundary to be our region B from which

we will construct the domain of dependence of the interval D[B]. We will in use D[B] to define the

CHI surface that extends into the bulk. To define the interval we start by looking at the induced

line element on a constant z-slice:

ds2
z=z0 =

l2

z2
0

(
−g(z0)dt2 + f(z0)dx2

)
(2.2.4)

Define an interval on the slice which is a straight line connecting the space-like separated points

P1 = (−δt,−δx, z0) and P2 = (δt, δx, z0) where δx − δt > 0. Now we want to find the domain of

dependence for this interval. To construct the domain of dependence we emit null geodesics from

11



2.2. Series Expansion for CHI Curve for AAdS3 Spacetimes

the end points of the interval. It is not difficult to see that the geodesics will intersect at two points.

One will be a point to the past of the interval and another to the future which we will denote P−

and P+ respectively. We can explicitly calculate these points by computing the null geodesics. We

find that null geodesics emitted from the point P1 are given by the equation:

t1±(x) = ±

√
f(z0)

g(z0)
(x+ δx)− δt (2.2.5)

For null geodesics emitted at P2:

t2±(x) = ±

√
f(z0)

g(z0)
(x− δx) + δt (2.2.6)

We get P+ by setting t1+ = t2− and P− by setting t1− = t2+ we find that P+ =
(√

f(z0)
g(z0) δx,

√
g(z0)
f(z0)δt, z0

)
and P− =

(
−
√

f(z0)
g(z0) δx,−

√
g(z0)
f(z0)δt, z0

)
. The points P1, P+, P2, and P− are the vertices of a dia-

mond shape which is the domain of dependence for the interval, sometimes it is called the causal

diamond. We can get the domain of dependence on the conformal boundary by letting z0 → 0 then√
f(z0)
g(z0) → 1.

Now we will find a series expansion for the CHI surface associated with the space-like interval

we defined. To do this we will emanate a family of null geodesics from the from the point (t =

δx, x = δt, z = 0) towards the past of the point, and another family of null geodesics from the

point (t = −δx, x = −δt, z = 0) towards the future of the point into the bulk geometry. The set of

points where the geodesics intersect will form a curve and this will be the CHI surface. We will be

interested in finding a series expansion for it. To begin, we will start by simplifying the problem

of a tilted interval to a more simpler case where the interval is on a constant time slice. To do

this we make use of a Lorentz transformation. Since we have a space-like interval on the conformal

boundary that connects two points separated by ∆t = 2δt and ∆x = 2δx. We want to choose a

boost parameter v such that:

δt′ = γ(δt− vδx) = 0 (2.2.7)

γ =
1√

1− v2
(2.2.8)

Here we see that we require that v = δt
δx , in this new frame we have that:

L := δx′ = γ(δx− vδt) =
δx

γ
(2.2.9)

Note that L is the proper length of the interval which is a Lorentz invariant quantity. Since we

transformed the interval we must also transform our original metric as well using the infinitesimal
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2.2. Series Expansion for CHI Curve for AAdS3 Spacetimes

versions of the Lorentz transformations:

dt′ = γ(dt− vdx)⇒ dt = γ(dt′ + vdx′) (2.2.10)

dx′ = γ(dx− vdt)⇒ dx = γ(dx′ + vdt′) (2.2.11)

dz′ = dz (2.2.12)

Substituting into our original metric we obtain the transformed line element which will read:

ds′2 =
l2

z′2
[
dz′2 + γ2[−dt′2(g(z′)− v2f(z′)) + dx′2(f(z′)− v2g(z′)) + 2vdt′dx′(f(z′)− g(z′))]

]
(2.2.13)

Hence we have transformed our problem of finding the CHI curve associated with a tilted interval

on the boundary with the bulk metric defined by equation (2.2.1) to an equivalent problem with a

constant time interval on the boundary and a bulk metric defined by equation (2.2.13). The boost

parameter, v, gives a way to go from one description to the other. Now we must compute null

geodesics using the transformed metric. We will use the Lagrangian approach. Define the following

Lagrangian:

L′ = l

z′

√
ż′2 + γ2[−ṫ′2(g(z′)− v2f(z′)) + ẋ′2(f(z′)− v2g(z′)) + 2vṫ′ẋ′(f(z′)− g(z′))] (2.2.14)

Where we use the dot notation to represent the derivative of each coordinate with respect to

some parameter along the geodesic which we will eventually take to be the coordinate time. We

get geodesics by solving the Euler Lagrange equations. In particular since there is no explicit

dependence on on either t′ or x′ we know that:

γ2l2

z′2L′
[ẋ′(f(z′)− v2g(z′)) + vṫ′(f(z′)− g(z′))] = c′x (2.2.15)

γ2l2

z′2L′
[vẋ′(f(z′)− g(z′))− ṫ′(g(z′)− v2f(z′))] = c′t (2.2.16)

Where c′x and c′t are constants. Dividing one equation by the other and rearranging we obtain

the following:
dx′

dt′
=
vf(z′)(1 + cv)− g(z′)(c+ v)

vg(z′)(c+ v)− f(z′)(1 + cv)
(2.2.17)

Where c = −c′x/c′t is some constant (the negative sign is simply a convention we adopt). More

physically, the parameter c will label the different geodesics, and different values of c will corrspond

to geodesics being emitted along different directions from a given point in spacetime. Now we take
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2.2. Series Expansion for CHI Curve for AAdS3 Spacetimes

the parameter along the geodesics in the Lagrangian as t′ and substitute our above expression for
dx′

dt′ into the Lagrangian (2.2.14). We then set the Lagrangian to zero (null condition) and solve for
dz′

dt′ . We obtain:

dz′

dt′
= γ

√
g(z′)

[
v
dx′

dt′
+ 1

]2

− f(z′)

[
v +

dx′

dt′

]2

(2.2.18)

Using the equations (2.2.17) and (2.2.18) we get the following two integral equations:∫
dt′ =

∫ √
1− v2dz′√

g(z′)
[
v dx

′

dt′ + 1
]2 − f(z′)

[
v + dx′

dt′

]2 (2.2.19)

∫
dx′ =

∫
vf(z′)(1 + cv)− g(z′)(c+ v)

vg(z′)(c+ v)− f(z′)(1 + cv)

√
1− v2dz′√

g(z′)
[
v dx

′

dt′ + 1
]2 − f(z′)

[
v + dx′

dt′

]2 (2.2.20)

Using the two integral equations above, we can describe how geodesics will evolve from a point

of interest on the conformal boundary into the bulk geometry. In particular, for a past directed null

geodesic starting at the future tip of the causal diamond on the boundary, (t′ = L, x′ = 0, z = 0),

we have that:

t+(z, c+) = L−
∫ z

0

√
1− v2dz′√

g(z′)
[
v dx

′

dt′ + 1
]2 − f(z′)

[
v + dx′

dt′

]2 (2.2.21)

For future directed null geodesics starting at the past tip of the causal diamond on the boundary,

(t′ = −L, x′ = 0, z = 0), we get:

t−(z, c−) = −L+

∫ z

0

√
1− v2dz′√

g(z′)
[
v dx

′

dt′ + 1
]2 − f(z′)

[
v + dx′

dt′

]2 (2.2.22)

We do a power series expansion of the right hand side of the equation at z = 0, and find power

series of the form:

t+(z, c+) = L−
∞∑
k=1

Ak(c+)zk (2.2.23)

t−(z, c−) = −L+

∞∑
k=1

Ak(c−)zk (2.2.24)

We can also find similar integral expressions for the x coordinate along the past and future

directed geodesics and expand in a power series in z with coefficients depending on c±:

x+(z, c+) =

∞∑
k=1

Bk(c+)zk (2.2.25)
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2.2. Series Expansion for CHI Curve for AAdS3 Spacetimes

x−(z, c−) =
∞∑
k=1

Bk(c−)zk (2.2.26)

Now fix a particular c+, this will correspond to a particular geodesic starting at the point

(t = L, x = 0, z = 0). This should intersect with some other geodesic characterized by c− starting

at the point (t = −L, x = 0, z = 0). The intersection point between the two geodesics will

correspond to one point on the CHI curve. To find this point we set t+ = t− and x+ = x−. We

obtain:

2L =

∞∑
k=1

[Ak(c+) +Ak(c−)]z′kint (2.2.27)

0 =
∞∑
k=1

[Bk(c+)−Bk(c−)]z′kint ⇒ Bk(c+)−Bk(c−) = 0, ∀k (2.2.28)

Where zint is the z coordinate in the bulk where the geodesics intersect. Equation (2.2.28) will

be satisfied if we set c+ = c− = c. By substituting this relation between c+ and c− into (2.2.27) we

will find:

L =

∞∑
k=1

Ak(c)z
′
int

k (2.2.29)

It states that the intersection point in the bulk of the two geodesics is controlled by the proper

length of the interval on the conformal boundary. This implies that if the proper length of the

interval on the boundary is sufficiently small, then the z-coordinate of the intersection point will

also be small. To make this statement more precise we can invert the series given by equation

(2.2.29) to write z′int, as a power series in L with c and v dependent coefficients:

z′int(c) =
∞∑
k=1

ηk(c)L
k (2.2.30)

From this point we must assume that L << 1 in order for the series to converge. Since we know

what zint is we can use equations (2.2.23)−(2.2.26) to obtain t′int = t±(z′int, c) and x′int = x±(z′int, c):

x′int(c) =

∞∑
k=1

Bk(c)z
′
int(c)

k =

∞∑
k=1

ζk(c)L
k (2.2.31)

t′int(c) = 0 (2.2.32)

The coefficients in the series expansions are well defined when −1 ≤ c ≤ 1. We now have the set

of intersection points of geodesics that generate the null boundary of the causal wedge in the bulk.

This gives us the CHI curve parameterized by c ∈ [−1, 1]. The curve is connected to the endpoints

of the interval of interest z′int(±1) = 0 and x′int(±1) = ±L as expected. We can revert back to the
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2.3. Series Expansion for the Area of the CHI Curve

original coordinates where the interval is tilted by applying the inverse Lorentz transformation to

the CHI curve coordinates. We get:

zint(c) = z′int(c) =
∞∑
k=1

ηk(c)L
k (2.2.33)

xint(c) = γ(x′int + vt′int) =
x′int(c)√
1− v2

=
1√

1− v2

∞∑
k=1

ζk(c)L
k (2.2.34)

tint(c) = γ(t′int + vx′int) =
vx′int(c)√

1− v2
=

v√
1− v2

∞∑
k=1

ζk(c)L
k (2.2.35)

The three equations above give a complete perturbative expansion of the CHI curve associated

with a tilted interval of proper length L on the boundary for AAdS3 spaces whose metric can be

written in the form given by equation (2.2.1). The coefficients in the expansions can be written in

terms of the coefficients Ak and Bk defined in equations (2.2.23)− (2.2.26) through the procedure

outlined above.

2.3 Series Expansion for the Area of the CHI Curve

Now that we have a series expansion for the CHI curve we can find a series expansion for its length.

To do this we will begin by defining a new parameter along the CHI curve, λ =
√

1− c2, where

0 ≤ λ ≤ 1. Then we can relate λ to c by using a piecewise definition, c± = ±
√

1− λ2 where,

−1 ≤ c− ≤ 0 and 0 ≤ c+ ≤ 1. The main reason we choose to define this different parameter is

because we will need to regulate the integrals involving the length of the CHI curve by introducing

a cutoff near the conformal boundary. Doing this will simply amount to setting λ to a small

parameter. This will make it easier to split the expressions into a finite part and a divergent part.

Since we are going to use λ, we need to deal with the two halves of the CHI curve separately, in

particular we define (tL, xL, zL) to be points on the left half of the CHI curve and (tR, xR, zR) to

be the points on the right half of the CHI curve. We can define these points very easily using

equations (2.2.33)− (2.2.35):

(tL, xL, zL) = (tint(c−), xint(c−), zint(c−)) (2.3.1)

(tR, xR, zR) = (tint(c+), xint(c+), zint(c+)) (2.3.2)
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2.3. Series Expansion for the Area of the CHI Curve

Now we can write the integral for the total length of the curve CHI curve as:

ACHI =

∫ 1

0

1

zL(λ)

√(
dzL
dλ

)2

+ f(zL(λ))

(
dxL
dλ

)2

− g(zL(λ))

(
dtL
dλ

)2

dλ

+

∫ 1

0

1

zR(λ)

√(
dzR
dλ

)2

+ f(zR(λ))

(
dxR
dλ

)2

− g(zR(λ))

(
dtR
dλ

)2

dλ

(2.3.3)

Consider the first integral involving the length of the left half of the CHI curve and analyze the

integrand near the boundary, λ = 0, as this is where any divergence in the integral will occur. To

do this we need only to understand the asymptotic expansions of (tL, xL, zL). They will have the

form:

zL = λ+O(λ2) (2.3.4)

xL = −L+O(λ2) (2.3.5)

tL = vxL = −vL+O(λ2) (2.3.6)

Where for equation (2.3.6) we used the fact that tint/xint = v. We can also give the asymptotic

expansions for f and g in terms of λ:

f(zL(λ)) = 1 +O(λ2) (2.3.7)

g(zL(λ)) = 1 +O(λ2) (2.3.8)

This implies that near the boundary the integrand has the following asymptotic expansion:

1

zL(λ)

√(
dzL
dλ

)2

+ f(zL(λ))

(
dxL
dλ

)2

− g(zL(λ))

(
dtL
dλ

)2

=
1

λ
+O(1) (2.3.9)

This means the integral will diverge. The same will also hold true for the integrand involving

the right side of the CHI curve. This is an expected result, what we can do now is rewrite it into

a finite part and divergent part. This amounts to subtracting off the divergence and doing the

integral from 0 to 1 and adding on the same divergence with cutoffs ε̂L and ε̂R going to zero this
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gives the following expression:

ACHI =

∫ 1

0

 dλ

zL(λ)

√(
dzL
dλ

)2

+ f(zL(λ))

(
dxL
dλ

)2

− g(zL(λ))

(
dtL
dλ

)2

− 1

λ

 dλ
+

∫ 1

0

 1

zR(λ)

√(
dzR
dλ

)2

+ f(zR(λ))

(
dxR
dλ

)2

− g(zR(λ))

(
dtR
dλ

)2

− 1

λ

 dλ
− lim
ε̂R→0

ln(ε̂R)− lim
ε̂L→0

ln(ε̂L)

(2.3.10)

Here the first integrals will converge and all the divergence is contained in the last two loga-

rithmic terms as ε̂L and ε̂R go to zero. We can expand the finite part as a power series in L and

explicitly do the integrals order by order. We find that:

ACHI =2ln(2) +
1

32

π(−g3v
2 + f3)

1− v2
L3 +

1

90

3f2
2 v

2 − 2g4v
2 − 3f2

2 + 2f4

1− v2
L4 +O(L5)

− lim
ε̂R→0

ln(ε̂R)− lim
ε̂L→0

ln(ε̂L)
(2.3.11)

This gives us the area of the CHI curve as a power series in the proper length of the interval on

the boundary with coefficients that depend on the asymptotic structure of the geometry and the

tilt of the interval characterized by v.

2.4 Ryu-Takayanagi Curve for AAdS3

Here we reproduce the expressions given in [4] that the Ryu-Takayanagi surface will obey. Start

with the metric expressed in terms of a line element:

ds2 =
1

z2
(dz2 + f(z)dx2 − g(z)dt2) (2.4.1)

The Ryu-Takayanagi surface for this space will be a curve. We will parameterize the curve in

terms the bulk coordinate z. The length functional will be:

L =

∫ z0

0

dz

z

√
1 + f(z)

(
dx

dz

)2

− g(z)

(
dt

dz

)2

(2.4.2)

The functions x(z) and t(z) for the RT-curve will extremize the length functional. We can

define the associated Lagrangian as:

L(x, ẋ, t, ṫ, z) =
1

z

√
1 + f(z)ẋ2 − g(z)ṫ2 (2.4.3)

Where we use Newton’s dot notation for a derivative with respect to z. The associated Euler
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2.4. Ryu-Takayanagi Curve for AAdS3

Lagrange equations for x(z) and t(z) and given by:

d

dz

∂L
∂ẋ

= 0⇒ d

dz

[
1

z

f(z)ẋ√
1 + f(z)ẋ2 − g(z)ṫ2

]
= 0 (2.4.4)

d

dz

∂L
∂ṫ

= 0⇒ d

dz

[
1

z

g(z)ṫ√
1 + f(z)ẋ2 − g(z)ṫ2

]
= 0 (2.4.5)

These tell us that along the curve parameterized by z the quantities in the square brackets

are constants. In particular we can choose to evaluate the expression in the square brackets at

the end point z0 which is the maximal depth that the curve goes into the bulk. This implies that

[ẋ(z0)]−1 = [ṫ(z0)]−1 = 0. Then it follows that the terms in the expressions in the square brackets

evaluated at the point z0 are:[
1

z

f(z)ẋ√
1 + f(z)ẋ2 − g(z)ṫ2

]
z=z0

=
f0

z0

√
1− β2

0

(2.4.6)

Where we defined β0 =
√

g(z)
f(z)

dt
dx

∣∣∣∣
z=z0

, f0 = f(z0), and g0 = g(z0). Using the expression given

in equation (2.4.4) we can write:

1

z

f(z)ẋ√
1 + f(z)ẋ2 − g(z)ṫ2

=
f0

z0

√
1− β2

0

(2.4.7)

Then we can write ṫ in terms of ẋ by noting that:

1
z

g(z)ṫ√
1+f(z)ẋ2−g(z)ṫ2

1
z

f(z)ẋ√
1+f(z)ẋ2−g(z)ṫ2

=
g(z)

f(z)

ṫ

ẋ
=

√
g0

f0
β0 ⇒ ṫ =

f(z)

g(z)

√
g0

f0
β0ẋ (2.4.8)

Plugging this into equation (2.4.7) and rearranging for ẋ2 gives us:

ẋ2 =
z2f0

f2z2
0

1[
1− z2f0

z2
0f

]
− β2

0

[
1− z2g0

z2
0g

] (2.4.9)

Doing a similar calculation also shows that:

ṫ2 = β2
0

z2g0

z2
0g

2

1[
1− z2f0

z2
0f

]
− β2

0

[
1− z2g0

z2
0g

] (2.4.10)

This gives us equations that the Ryu-Takayanagi curve should obey.
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2.5 Series Expansion for Area of the Ryu-Takayanagi Surface

Now we want to get a similar series expansion for the area of the RT curve. From the previous

section we know that the RT curve satisfies the following differential equations:

dx

dz
=
z
√
f0

z0f

1√
1− z2f0

z2
0f
− β2

0

[
1− z2g0

z2
0g

]
dt

dz
= β0

z
√
g0

z0g

1√
1− z2f0

z2
0f
− β2

0

[
1− z2g0

z2
0g

] (2.5.1)

Where z0 is the maximal value of z reached by the RT curve and we defined β0 =
√

g(z)
f(z)

dt
dx

∣∣∣∣
z=z0

,

f0 = f(z0), g0 = g(z0), g = g(z), and f = f(z). This is the only information we need to find a series

expansion of the length of the RT curve using the metric we are given. However, this expansion

will have coefficients that depend on β0 and z0 which are not the parameters we used to express the

CHI curve. This problem can be resolved by expressing the parameters β0 and z0 in terms of the

parameters v and L used in the CHI expansion. To do this we start by integrating the expressions

above to obtain:

∆x =

∫ z0

0

z
√
f0

z0f

dz√
1− z2f0

z2
0f
− β2

0

[
1− z2g0

z2
0g

] (2.5.2)

∆t =

∫ z0

0
β0
z
√
g0

z0g

dz√
1− z2f0

z2
0f
− β2

0

[
1− z2g0

z2
0g

] (2.5.3)

Note that these integrals only give half of the RT curve since we choose to parameterize in terms

of the bulk coordinate z. However, due to the high degree of symmetry of the metric in the boundary

coordinates, the total change in x and t are double the integrals we have above. We can now relate

the proper length of the interval on the boundary to the integrals above L = δx
γ =

√
(∆x)2 − (∆t)2.

We do a series expansion for the integrands at ∆x and ∆t at z = 0. We integrate the series term

by term from z = 0 to z = z0 and obtain a series expansion for δx and δt in terms of z0. We can

then plug in the series into the equation for δx
γ and get:

L(z0, β0) =
δx

γ
=

∞∑
k=1

bk(β0)zk0 (2.5.4)

Then we can do a series reversion and find z0 as a power series in δx
γ = L:

z0(L, β0) =
∞∑
k=1

ck(β0)Lk (2.5.5)
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2.5. Series Expansion for Area of the Ryu-Takayanagi Surface

Once again we find that the maximum depth the curve goes into the bulk is controlled by the

proper length of the boundary interval. We can also do a series expansion of v = δt
δx = ∆t

∆x at z = 0

and integrate term by term to get v as a power series in z0 with β0 dependent coefficients:

v(z0, β0) = β0 +
∞∑
k=2

vk(β0)zk0 (2.5.6)

Since we know that z0 is related to L by the series expansion given by equation (2.5.5), we can

rewrite v as a power series in L by substituting z0(L, β0) into the right had side of equation (2.5.6).

Then we expand in powers of L, this will give a series expansion for v of the form:

v(L, β0) = β0 +
∞∑
k=2

Vk(β0)Lk (2.5.7)

We can invert the series above and write β0 as a power series in L with v dependent coefficients.

To accomplish this we define the following series in L:

β0(L, v) = v +
∞∑
m=2

Km(v)Lm (2.5.8)

To find the coefficients Km(v), we substitute the series for β0(L, v) into the right hand side of

equation (2.5.7) and expand as a power series in L and calculate up to whatever order in L we want.

This will give us β0(L, v). Now we want to find z0(L, v). Going back to the series expansion given

by equation (2.5.5) we note that the coefficients ck(β0) are dependent on β0. If we plug in our series

expansion β0(L, v) into the coefficients ck(β0(L, v)) and expand, we will get a series expansion of

z0(L, v). This will enable us to express the series expansion of the length of the RT curve in terms

of the parameters L and v. The length of the curve parameterized in terms of z is given by:

ART =

∫ z0

0

2

z

√
1 + f(z)

(
dx

dz

)2

− g(z)

(
dt

dz

)2

dz (2.5.9)

Just like for the CHI curve, we know that the length of the RT curve will diverge. We will split

the area into a finite and divergent part:

ART =

∫ z0

0

2

z

√
1 + f(z)

(
dx

dz

)2

− g(z)

(
dt

dz

)2

− 2

z

 dz + lim
ε→0

2ln
(z0

ε

)

=

∫ 1

0

2

u

√√√√ 1− β2
0

1− u2 f(z0)
f(z0u) − β

2
0

[
1− u2 g(z0)

g(z0u)

] − 2

u

 du+ lim
ε→0

2ln
(z0

ε

) (2.5.10)

The divergence is contained in the logarithmic terms expressed in terms of the cutoff ε. We can

then substitute the series expansions of z0(L, v) and β0(L, v) and expand the finite part of the area
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2.6. Constraints on AAdS3 Spacetimes from CHI Inequality

as a power series in L. We find that:

ART =2ln(2) +
1

3

f2(1 + v2)

1− v2
L2 +

1

32

π(−g3v
2 + f3)

1− v2
L3

− 1

45

2f2
2 v

4 − g4v
4 + f4v

2 + g4v
2 + 2f2

2 − f4

(1− v2)2
L4 +O(L5) + lim

ε→0
2ln

(
L

ε

) (2.5.11)

Which gives us the series expansion for the area of the RT curve in terms of the parameters

defined for the CHI curve.

2.6 Constraints on AAdS3 Spacetimes from CHI Inequality

Now that we have a series expansion for both the CHI and RT curve associated with the interval

on the conformal boundary, we will see what kind of constraint we can get by using the conjecture

that ACHI − ART ≥ 0. Before doing this, we must recall that the cutoff was described differently

for the RT and CHI curve. We must first relate the cutoff ε̂ for the CHI curve to the cutoff ε for

the RT curve. In particular we must satisfy:

ε = zL(λ = ε̂L) = ΩL(L, v)ε̂L +O(ε̂2L) (2.6.1)

ε = zR(λ = ε̂R) = ΩR(L, v)ε̂R +O(ε̂2R) (2.6.2)

We expand the right hand side of the two equations as power series in ε̂L and ε̂R with v and

L dependent coefficients. We will only need to retain terms up to first order since we are taking a

limit to zero in the end. Then:

ε̂L =
ε

ΩL(L, v)
(2.6.3)

ε̂R =
ε

ΩR(L, v)
(2.6.4)

We will then substitute these expressions into our cutoff for the CHI curve and and expand the

cutoff term in a series in L when we do this we obtain the following expansion with a cutoff that

is identical to the RT curve cutoff:

ACHI =2ln(2) +
1

3

f2(1 + v2)

1− v2
L2 +

1

32

π(−g3v
2 + f3)

1− v2
L3

− 1

45

2f2
2 v

4 − g4v
4 + f4v

2 + g4v
2 + 2f2

2 − f4

(1− v2)2
L4 +O(L5) + lim

ε→0
2ln

(
L

ε

) (2.6.5)

Now we can compute the difference in area between the CHI and RT which will be finite. We
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get:

ACHI −ART =
1

192

πf2v
2(g3 − f3)

(1− v2)2
L5

+
1

2764800(1− v2)2
[(1440f2

3 + 8640g3f3 + (6075π2 − 44640)g2
3)v4

+ ((2700π2 − 41280)(f2
3 + g2

3) + (−17550π2 + 151680)g3f3 + 16384f2(g4 − f4))v2

+ (6075π2 − 44640)f2
3 + 8640f3g3 + 1440g2

3]L6 +O(L7)

(2.6.6)

As we can see, the area of RT curve and CHI curve area are identical up to fourth order in L.

In particular when v = 0, the leading order term is of order L6 given by:

1

61440
(135π2 − 992)f2

3 +
1

320
g3f3 +

1

1920
g2

3 (2.6.7)

We claim that the leading order term for v = 0 is always non-negative for any AAdS3 geometry

given. To see this fix g3 to any arbitrary value then the sixith order coefficient is a quadratic in f3.

We want to start by understanding the zeros of the quadratic by solving for f3 in terms of g3 we

find:

f3 =
4g3(−24± i

√
270π2 − 2560)

135π2 − 992
(2.6.8)

From this we see that f3 is complex and can only be real if g3 = 0 which, in turn, implies

that f3 = 0. Which makes the entire 6th order term equal to zero. This means that if g3 6= 0 the

parabola in f3 will not cross the f3 axis. If g3 = 0, then there is a doubly degenerate zero at the

origin and the parabola will not cross the f3 axis. Hence to check positivity it suffices to choose

any value for f3 and g3 and see that it is greater than zero. In particular let g3 = 0, and let f3

be arbitrary. Then the sixth order term is positive because 135π2 − 992 > 0. This proves that

for v = 0 the leading order term is always non-negative. This makes sense because we know that

for a constant time slice the RT curve is a minimal length curve that is anchored to the boundary

interval. Now we consider the case in which v is non-zero. The leading order term is is 5th order

in L. We require that the term be non-negative for v ∈ (0, 1). This gives the constraint:

f2(g3 − f3) ≥ 0 (2.6.9)

We should assume that f2 > 0 because f2 is related to the expectation value of the stress

energy tensor of the CFT2. In particular, f2 is proportional to the energy density which should be

non-negative. Using this fact we have that:

f3 ≤ g3 (2.6.10)
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Now suppose that g3 = f3, then the leading order term will be 6th order in L. Requiring

non-negativity implies that:

Ax2 − 2Bx+A ≥ 0

A =

(
π2 − 256

45

)
f2

3 ≥ 0

B = A+
8192

6075
f2(f4 − g4)

x = v2 ∈ (0, 1)

(2.6.11)

Start with the case when f3 = 0 then we are dealing with a linear equation in x. Clearly in

order for the expression to be non-negative we require that:

B ≤ 0⇒ f2(f4 − g4) ≤ 0⇒ f4 ≤ g4 (2.6.12)

Now, we deal with the case that f3 6= 0 start by rewriting the inequality as follows:

x2 − 2B

A
x+ 1 ≥ 0 (2.6.13)

Using results from appendix A we show that the quadratic satisfies the inequality in the interval

x ∈ (0, 1) when:

f2(f4 − g4) ≤ 0⇒ f4 ≤ g4 (2.6.14)

We can compare these leading order constraints to the constraints derived in [4] which we will

quickly review. It was shown that for AAdS3 spacetimes we are considering the non-vanishing

components of the stress energy tensor are given as:

Tzz = − 1

2z

g′

g
− 1

2z

f ′

f
+

1

4

f ′

f

g′

g
(2.6.15)

Ttt =
g

4z

(
2
f ′

f
+ z

f ′2

f2
− 2z

f ′′

f

)
(2.6.16)

Txx = − f

4z

(
2
g′

g
+ z

g′2

g2
− 2z

g′′

g

)
(2.6.17)

We can do an asymptotic expansion of these expressions to obtain:

Ttt = −1

4
f3z −

1

6
f4z

2 +
1

6
f2f3z

3 +O(z4) (2.6.18)

Txx =
1

4
g3z +

1

6
g4z

2 +
1

6
f2g3z

3 +O(z4) (2.6.19)
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We will apply the null energy condition (NEC) which states Tµνu
µuν ≥ 0. We take u to be

a null vector in the boundary directions, u = ux∂x + ut∂t this gives Ttt
f(z)
g(z) + Txx ≥ 0. We can

calculate in terms of the asymptotic expansion we get:

Ttt
f(z)

g(z)
+ Txx = −1

4
(f3 − g3)z − 1

6
(f4 − g4)z2 +O(z3) ≥ 0 (2.6.20)

The leading order term in z gives us f3 ≤ g3, which is exactly the same constraint we got in

(2.6.10). When we assume f3 = g3 then the leading order term is of order z2 and the NEC gives

f4 ≤ g4, which we got in (2.6.14). In conclusion, we find that the conjecture ACHI − ART ≥ 0 at

leading orders does not give any tighter constraints to the asymptotic structure of AAdS3 space-

times than what we obtain using the NEC in the boundary field theory directions. In fact, we

found that to the first two leading orders the constraints are identical.

A natural question to ask in light of these leading order results is whether this is also true for

higher order terms. That is, do constraints from the series expansion of ACHI −ART ≥ 0 in L give

the same constraints as the NEC for null vectors in the boundary directions at higher than the

first two leading orders? A good way to start answering this question is to simply calculate and

compare a few more terms in the series expansions. If we find that the higher order terms match,

then this might indicate a more deeper relation between the NEC in AAdS3 spacetimes and the

constraint that ACHI−ART ≥ 0. If the higher order constraints between the two conditions do not

match, then one could ask why the leading order terms match and whether the results we obtained

are a result of choosing AAdS3 metrics that are translation invariant in the boundary coordinates.

In either case, there are still some open questions that one could try to answer that would give a

better insight of what causal holographic information can tell us about bulk spacetimes.
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Chapter 3

Constraints from Relative Entropy

3.1 Basic Properties of Relative Entropy

Relative entropy is yet another quantum information quantity that can be defined for states on

some subregion of a CFTd. This means that we can translate constraints on relative entropy to

constraints in bulk geometry. Such constraints have been extensively studied in [6, 7, 14] for ball

shaped regions. We will review some of these results and use them as a basis for understanding the

dual of relative entropy for holographic states defined on null cone sub-regions. Start by defining

relative entropy. Suppose we are given two states of a quantum system in terms of the density

matrices ρ and σ. We can define a quantity called relative entropy in terms of these two states:

S(ρ||σ) = Tr(ρlnρ)− Tr(ρlnσ) (3.1.1)

Here, σ is often called the reference state. Relative entropy is always greater than or equal to

zero and will be equal to zero iff ρ = σ. This property is often referred to as the positivity of

relative entropy. Furthermore, for reduced density matrices ρA and σA obtained by a partial trace

operation from ρ and σ, one can show:

S(ρA||σA) ≤ S(ρ||σ) (3.1.2)

This is called the monotonicity of relative entropy. If we consider the case where the density

matrices ρ and σ describe states in a subregion B of a CFT . We can view ρA and σA as the same

states defined in a subregion A such that A ⊂ B.

Now that we have introduced the notion of relative entropy we will move on and reformulate

it in terms of a quantity called the modular Hamiltonian. The modular Hamiltonian for a state σ

is defined by the formula Hσ = −lnσ. Using this definition we can recast the equation of relative
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entropy as follows:

S(ρ||σ) = Tr(ρlnρ)− Tr(ρlnσ) + Tr(σlnσ)− Tr(σlnσ)

= [Tr(ρHσ)− Tr(σHσ)]− [−Tr(ρlnρ) + Tr(σlnσ)]

=
[
〈Hσ〉ρ − 〈Hσ〉σ

]
− [S(ρ)− S(σ)]

= ∆ 〈Hσ〉 −∆S

(3.1.3)

Where ∆ 〈Hσ〉 is the difference in the expectation value of the modular Hamiltonian Hσ with

respect to the states ρ and σ and ∆S is the difference between the Von Neumann entropies of the

states ρ and σ. Before explaining how this formula will be used in the setting of holography, we

want to prove the so called first law of entanglement entropy for states close to the reference state

σ. Let ρ = σ + εX where 0 < ε << 1 and X is a traceless hermitian matrix. We then substitute

this into the equation for relative entropy given at the beginning of the section and do a series

expansion in ε. We find that:

S(σ + εX||σ) = Tr

[
(σ + εX)

(
lnσ + εXσ−1 − 1

2
ε2X2σ−2 +O(ε3)

)]
− Tr [(σ + εX)lnσ]

= εTr(X) +
1

2
ε2Tr(Xσ−1X) +O(ε3) =

1

2
ε2Tr(Xσ−1X) +O(ε3)

(3.1.4)

Where we used the cyclic property of trace and the fact that X is traceless. The leading order

non-zero term is of order ε2 and is called quantum Fisher information. Furthermore, since the first

order term in ε vanishes, this tells us that the first order variation of relative entropy for states

near the reference state σ vanish. We can use this result to see that the first order variation of the

modular hamiltonian equals to the first order variation in the Von Neumann entropy:

δS = δ 〈Hσ〉 (3.1.5)

The equation above is often called the first law of entanglement entropy. It was shown in [14]

that when one considers the bulk dual of the first law for ball shaped regions on the boundary

CFTd, one finds the linearized Einstein equations in the bulk.

3.2 Relative Entropy for Ball Shaped Regions in Terms of Bulk
Quantities

Here we will review relative entropy in the context of AdSd+1/CFTd. We start with the formula

for relative entropy in terms of the modular Hamiltonian.

S(ρB||σB) = ∆ 〈HB〉 −∆S (3.2.1)
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Here we let σ = σB be the vacuum state of a CFTd on a ball shaped region B for a constant

time slice. Let ρ = ρB be some other excited state on B. In this case, the modular Hamiltonian

for the vacuum state σB takes a simple form given by the following integral expression [6, 7, 14]:

HB = 2π

∫
ball

R2 − |~x− ~xc|2

2R
Ttt(tc, ~x)dd−1x (3.2.2)

Where R is the radius of the d− 1 ball centred at the point (tc, ~xc). Ttt(tc, ~x) is the time-time

component of the stress energy tensor on the constant time slice t = tc. This can be generalized to

a more covariant version given by the equation below [6, 7, 14]:

HζB =

∫
B′∈D[B]

ζµBTµν ε̂
ν (3.2.3)

Where the integral is over a d−1 space-like surface B′ that has the same domain of dependence

as the ball of radius R centred at (tc, ~xc). The vector field ζB is a conformal killing vector field

defined as [6, 7, 14]:

ζµB =
π

R

[
R2 − (t− tc)2 − |~x− ~xc|2

]
∂t −

2π

R
(t− tc)

d−1∑
i=1

(x− xc)i∂i (3.2.4)

The vector field defines what is known as the modular flow associated with the domain of

dependence D[B]. The stress energy tensor Tµν is now on B′ and εν is a d− 1 form defined using

the d dimensional background Minkowski metric ηµν :

ε̂ν =

√
η

(d− 1)!
ενa1a2...ad−1

dxa1 ∧ ... ∧ dxad−1 (3.2.5)

It has a property such that by contracting the form with a normal vector nν to the surface B′,

we get the volume form for the d − 1 dimensional surface B′. One can check that this covariant

version reproduces the older result for the ball on the constant time slice t = tc given by equation

(3.2.2). Using the covariant formula along with the fact that 〈Tµν〉 = d
16πGN

Γ
(d)
µν , we can write the

quantity ∆ 〈HζB 〉 as follows 2:

∆ 〈HζB 〉 =

∫
B′
ζµB∆ 〈Tµν〉 ε̂ν =

d

16πGN

∫
B′
ζµBΓ(d)

µν ε̂
ν (3.2.6)

This gives the change in the modular Hamiltonian in terms of metric quantities of the dual

AAdSd+1 spacetimes. We can address the term ∆S using the RT formula which will tell us that

∆S is the difference in the areas of the RT surfaces in the different backgrounds:

∆S =
∆A

4GN
(3.2.7)

2We will assume from this point onwards that σ is the vacuum state, we know that its dual geometry is pure
AdSd+1. We also know that the excited state ρ will be dual to some other AAdSd+1 spacetime which will have the

following asymptotic expansion in Poincare coordinates ds2 = 1
z2

[
dz2 + ηµνdx

µdxν + zdΓ
(d)
µν dx

µdxν + O(zd+1)
]
.
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Combining the two results together gives us relative entropy expressed in terms of the bulk

quantities:

S(ρB||σB) =
d

16πGN

∫
B′
ζµBΓ(d)

µν ε
ν − ∆A

4GN
(3.2.8)

The quantity above is called holographic relative entropy. We defined it for states on d − 1

dimensional sub-regions within the domain of dependence of a ball. We see that to calculate this

quantity we need two things; the first is the modular Hamiltonian of the sub-region on the bound-

ary, and the second is the area of the RT surfaces. For ball shaped regions it has been shown that

holographic relative entropy can be interpreted as a quasi-local bulk energy [6]. At first order the

vanishing of the variation of this quantity leads to the linearized Einstein equations. At second

order, it was shown that quantum Fisher information was dual to a canonical energy defined in the

bulk [6].

One should keep in mind that the results discussed above apply to ball shaped regions. This

is because for more arbitrary shaped sub-regions, the modular Hamiltonian is unknown and is

assumed to take on a non-local form. Furthermore, calculating RT surfaces anchored to arbitrary

entangling surfaces can be a difficult problem as we already discussed in the introduction. However,

recent results by Casini and collaborators showed that if we restrict ourselves to the future horizon

of some cut on a null plane, then one we can write the modular Hamiltonian as a simple integral.

We will review this recent result and apply a conformal transformation to get the corresponding

modular Hamiltonian on a past light-cone whose base can be defined by an arbitrary cut.

3.3 Modular Hamiltonian on the Cone

In this section, we want to consider the modular Hamiltonian of regions on a CFTd bounded by

an entangling surface that lies on a light cone. Our starting point will be a result derived by

Casini, Teste, and Gonzalo [15]. To start we consider the CFTd on a flat Minkowski background

with coordinates xµ = (x0, x1, ..., xd−1). In these coordinates the Minkowski metric is diagonal,

diag(−1, 1, ..., 1). Now we change coordinates to what we will call null plane coordinates defined

as x− = x0 − x1 and x+ = x0 + x1 leaving the other transverse coordinates the same. The line

element becomes:

ds2 = −dx+dx− +

d−1∑
i=2

(dxi)2 (3.3.1)

In particular, if we set x− = 0, then this defines a null plane hyper-surface. Now we consider

some cut along the null plane defined by setting the null coordinate x+ equal to some function,

γ(x⊥), of the transverse coordinates x⊥ = (x2, .., xd−1). Then the modular Hamiltonian on the
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future horizon to the cut, γ, is given by the following integral expression [15]:

Hγ = 2π

∫
dx2...dxd−1

∫ ∞
γ(x⊥)

(x+ − γ(x⊥))T++(x− = 0)dx+ (3.3.2)

We know from the results in appendix A.3 that there exists a special conformal transformation

(SCT) that maps this null sheet to a null cone. This means that by doing a conformal transformation

of the integral expression above, we can obtain the corresponding modular Hamiltonian on the light

cone. To start, we want to see how the integration measure dx+dx2...dxd−1 on the plane transforms

after applying the SCT. The first step will be to do a transformation of the transverse coordinates

(x+, x2, .., xd−1) → (x+, y2, ..., yd−1) where the coordinates on y are obtained after applying the

SCT map given in appendix A.3:

yi =
xi

Ω(x)

Ω(x) =
−(x+ + 2R)(x− − 2R) + (x⊥)2

4R2
⇒ Ω(x− = 0) = 1 +

x+

2R
+

(
x⊥

2R

)2

(x⊥)2 =

d−1∑
i=2

(xi)2

(3.3.3)

Using the map above one can calculate the elements of the Jacobian matrix associated with

changing coordinates. The result is:

∂yi

∂xk
= Ω−1

[
δik −

xixk
2R2Ω

]
(3.3.4)

Where i, k ∈ {2, 3, ..., d − 1}. The determinant of the matrix can be found by finding the

eigenvalues of the matrix which is outlined in appendix A.4, the result is:

J⊥ = det

(
∂yi

∂xk

)
= Ω2−d

(
1− (x⊥)2

2R2Ω

)
(3.3.5)

If we restrict ourselves to the null plane x− = 0 then:

J⊥
∣∣
x−=0

=
2 + x+

R − Ω

Ωd−1

∣∣∣∣
x−=0

(3.3.6)

This allows us to make the following statement:

dx+dy2dy3...dyd−1 = J⊥dx
+dx2dx3...dxd−1 ⇒ dx+dx2...dxd−1

∣∣
x−=0

=
Ωd−1

2 + x+

R − Ω

∣∣∣∣
x−=0

dx+dy2...dyd−1

(3.3.7)
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3.3. Modular Hamiltonian on the Cone

Now we use the fact that on the null plane x− = 0 and this implies x+ = 2x1, thus:

dx+dx2...dxd−1
∣∣
x−=0

=
2Ωd−1

1 + 2x1

R − Ω

∣∣∣∣
x−=0

dx1dy2...dyd−1 =
2Ωd−1

2 + 2x1

R − Ω

∂x1

∂y1

∣∣∣∣
x−=0

dy1dy2...dyd−1

(3.3.8)

Since we know that points on x− = 0 get mapped to points on y0 + |~y| = R we will calculate

the partial derivative under this restriction and find:

∂x1

∂y1

∣∣∣∣
y0+|~y|=R

=
1

ω

R− |~y| − y1

|~y|

∣∣∣∣
y0+|~y|=R

(3.3.9)

Combining everything and using that Ω = 1/ω we find that:

dx+dx2...dxd−1

∣∣∣∣
x−=0

=
2R

|~y|ωd−1
dy1...dyd−1

∣∣∣∣
y0+|~y|=R

(3.3.10)

We can change to hyper-spherical coordinates with ρ as the radial coordinate and φ1, ..., φd−2

the angular coordinates. This gives:

dx+dx2...dxd−1

∣∣∣∣
x−=0

=
2R
√
gΩ

ωd−1
ρd−3dρdφ1...dφd−2

∣∣∣∣
y0+ρ=R

(3.3.11)

Where gΩ is the determinant of the metric on a unit d− 2 sphere. Finally of define radial null

coordinates by letting ρ± = y0 ± ρ it follows that:

dx+dx2...dxd−1

∣∣∣∣
x−=0

= −R
√
gΩ

ωd−1

(
R− ρ−

2

)d−3

dρ−dφ1...dφd−2

∣∣∣∣
ρ+=R

(3.3.12)

This tells us how the area measure on the plane changes when to change coordinates using the

SCT that maps a half plane to a ball.

We want to understand exactly how the cut x+ = γ(x⊥) on the null plane is mapped to the

null cone. We need to understand this due to the fact that the integral involving x+ is not over all

space, but rather only to the future of the cut and also because γ(x⊥) shows up in the integrand.

To do this we use the result from appendix A.5 that, ρ− on the cone is related to x+ on the plane

via:

ρ− =
x+

1 + x+

2R +
(
x⊥

2R

)2 −R (3.3.13)

Now we will write the cut on the plane in the following form:

x+(x⊥) = 2R

(
1

g(x⊥)
− 1

)(
1 +

(
x⊥

2R

)2
)

(3.3.14)
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3.3. Modular Hamiltonian on the Cone

Where g(x⊥) is some arbitrary function whose properties we can understand by substituting

this expression for x+ into the equation (3.3.13). We find that:

ρ− = R(1− 2g(x⊥)) (3.3.15)

This tells us that if g(x⊥) = 0 ⇒ x+ = ∞. This we are sitting on the tip of the cone. If

g(x⊥) = 1 ⇒ x+ = 0, then we are on the boundary of the ball on the zero time slice. This tells

us any cut that we make on the cone that is between the tip and ball on the zero time slice will

be specified by some function that obeys the following inequality 0 ≤ g(x⊥) ≤ 1. For example,

if the function is a constant, then this will correspond to a constant cut of the light cone. One

may actually be concerned because the function we are specifying is not a function of the angular

coordinates. However, one can check that any function of the transverse coordinates on the plane

will give some function of the angular coordinates on the cone. This means that in principle we

could pick some cut on the cone that we want g(φ) and then use the relations in the appendix to

express all the φ dependence in terms of x⊥ and vice-versa. Using the integration limit given by

equation (3.3.14) we can write:

Hγ = 2π

∫ ∫ ∞
2R

(
1

g(x⊥)
−1

)(
1+

(
x⊥
2R

)2
)
[
x+ − 2R

(
1

g(x⊥)
− 1

)(
1 +

(
x⊥

2R

)2
)]

T++dx
+dx2...dxd−1

(3.3.16)

When we change coordinates to the light cone we can write the terms in the large square bracket

as:

x+ − 2R

(
1

g(x⊥)
− 1

)(
1 +

(
x⊥

2R

)2
)

=
ρ− −R+ 2Rg(φ)

ωg(φ)
(3.3.17)

Where we use the fact that:

1 +

(
x⊥

2R

)2

=
1

ω

(
1− R+ ρ−

2R

)
(3.3.18)

Using the result from appendix A.6, for doing a conformal transformation of the stress energy

tensor in a CFTd allows us to write:

T++ =
ωd

R2

(
R− ρ−

2

)2

T̃−− (3.3.19)

The upper integration limit becomes R and the lower integration limit becomes R(1− 2g(φ)).

Combining everything gives us the result for the modular Hamiltonian on a cone:

Hcone = 2π

∫ ∫ R

R(1−2g(φ))

√
gΩ

(
R− ρ−

2

)d−1 [
R(1− 2g(φ))− ρ−

Rg(φ)

]
T̃−−dρ

−dφ1...dφd−2 (3.3.20)
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We define ρ−0 (φ) = R(1− 2g(φ)) and rewrite the result as:

Hcone = 4π

∫ ∫ R

ρ−0 (φ)

√
gΩ

(
R− ρ−

2

)d−1 [
ρ−0 (φ)− ρ−

R− ρ−0 (φ)

]
T̃−−dρ

−dφ1...dφd−2 (3.3.21)

Where −R ≤ ρ−0 (φ) ≤ R. We can do one more change in the integration variable to make

the integral start at zero. Introducing the new integration parameter u = R−ρ−
2 and defining

γ(φ) =
R−ρ−0

2 will give3:

Hcone = 2π

∫ ∫ γ(φ)

0

√
gΩud−1

(
u

γ(φ)
− 1

)
T̄uududφ

1...dφd−2 (3.3.22)

Where 0 < γ(φ) < R.

Now that we have an expression for the modular Hamiltonian on a light cone cone with a cut

base we know we can calculate the modular Hamiltonian term in the relative entropy formula. We

still need a description of the corresponding RT surface anchored to this cone on the boundary.

This will be address this in the following section in the case of a pure AdSd+1 background.

3.4 Ryu-Takayanagi Surface Anchored to Light Cone on CFTd
Boundary

In this section we want to derive the Ryu-Takayanagi surface for pure AdSd+1 anchored to some

region on the boundary light cone. To do this start by writing the pure AdSd+1 metric in Poincare

coordinates and rewrite the boundary coordinates in hyper-spherical coordinates, the line element

reads:

ds2 =
1

z2

(
−dt2 + dz2 + dρ2 + ρ2gΩ

ijdφ
idφj

)
(3.4.1)

where ρ is the radial distance on the boundary, i, j ∈ {1, 2, ..., d− 2}, and gΩ
ij are components of

the metric on the unit d−2 sphere with angular coordinates (φ1, ..., φd−2). Then we define another

change of coordinates by defining:

z = rsin(θ)

ρ = rcos(θ)

θ ∈ [0, π/2]

r ∈ (0,∞)

(3.4.2)

3At the time of writing this thesis we determined that the result in the paper [15] for the light cone modular
Hamiltonian is not correct. We verified this with the authors and used a conformal transformation outlined in this
section to get the correct result.
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3.4. Ryu-Takayanagi Surface Anchored to Light Cone on CFTd Boundary

The line element will now read:

ds2 =
1

r2sin2(θ)

(
−dt2 + dr2 + r2dθ2 + r2cos2(θ)gΩ

ijdφ
idφj

)
(3.4.3)

In these coordinates, r defines a radial coordinate for the bulk geometry which will simplify

to radial coordinates to ρ on the boundary situated at θ = 0. We do one final transformation by

defining r± as follows:

r± = t± r (3.4.4)

This gives us the final form of the line element we will need expressed in the coordinates

(r+, r−, θ, φ1, .., φd−2):

ds2 =
1

sin2(θ)

[
−4dr+dr−

(r+ − r−)2
+ dθ2 + cos2(θ)gΩ

ijdφ
idφj

]
(3.4.5)

We will refer to these coordinates as bulk radial null coordinates. In these coordinates we will

define the following co-dimension 2 surface through the following two embedding equations:

r+ = R (3.4.6)

r− = f(θ, φi) (3.4.7)

Where R is a constant and f(θ, φi) is some function that will be fixed by solving some PDEs

which we will write down shortly. More intuitively equation (3.4.6) specifies a past bulk null cone

whose tip is at (t = R, z = 0, xbdry = 0). Equation (3.4.7) will specify a cut at the base of the

bulk cone. The induced metric on this co-dimension 2 hyper-surface is given by the following d− 1

dimensional metric:

Gab =
δθaδ

θ
b + cos2(θ)gΩ

ijδ
i
aδ
j
b

sin2(θ)
(3.4.8)

Where the indices a, b ∈ (θ, φ1, .., φd−2). The hyper-surface will be extremal if it satisfies the

following two PDE equations which we derived in appendix A.1:

∂a

[ √
GGab∂br

∓

(r+ − r−)2sin2(θ)

]
= 0 (3.4.9)

Clearly r+ = R will satisfy the PDE above. This leaves us with the following equation for the

function f(θ, φi):

∂a

[ √
GGab∂bf(θ, φi)

(r+
0 − f(θ, φi))2sin2(θ)

]
= ∂a

[√
GGab

sin2(θ)
∂b

(
1

f̃(θ, φi)

)]
= 0 (3.4.10)
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3.4. Ryu-Takayanagi Surface Anchored to Light Cone on CFTd Boundary

Where we defined f̃(θ, φ) = R− f(θ, φi). It is not difficult to see that:

√
G =

cotd−2(θ)

sin(θ)

√
gΩ (3.4.11)

Gab = sin2(θ)

(
δθaδθb +

gΩ
ijδ

aiδbj

cos2(θ)

)
(3.4.12)

Substituting these expressions into equation (3.4.10) and expanding the sum we find that:

tand−2(θ)sin(θ)cos2(θ)∂θ

[
cotd−2(θ)

sin(θ)
∂θ

(
1

f̃

)]
+

1√
gΩ
∂i

[√
gΩ(gΩ)ij∂j

(
1

f̃

)]
= 0 (3.4.13)

Now we will apply separation of variables between the boundary angular coordinates φi and

the bulk angle θ. Define 1
f̃

= h(θ)Φ(φi). Substituting this into the equation above gives:

tand−2(θ)sin(θ)cos2(θ)
1

h(θ)

d

dθ

[
cotd−2(θ)

sin(θ)

dh

dθ

]
+

1

Φ(φi)

1√
gΩ

∂

∂φi

[√
gΩ(gΩ)ij

∂Φ

∂φj

]
= 0 (3.4.14)

Now define the constant of separation to be α. Then we know:

1√
gΩ
∂i

[√
gΩ(gΩ)ij∂jΦ

]
= −αΦ(φi) (3.4.15)

The PDE given by equation (3.35) is the Laplace-Beltrami operator acting on the function Φ

on the unit d− 2 sphere. The solutions to the PDE are well known and are called hyper-spherical

harmonics, Φn(φi) with eigenvalues −α = n(3− d− n), where n ∈ {0, 1, 2, ...} 4. This means that

the ODE involving θ will be:

−sin(θ)cos2(θ)
d2h

dθ2
+ cos(θ)

(
cos2(θ) + d− 2

) dh
dθ
− n(3− d− n)sin(θ)h(θ) = 0 (3.4.16)

The general solution is given by hypergeometric functions:

hn(θ) = C1cos
n(θ)2F1

(
n

2
,
n− 1

2
;
2n+ d− 1

2
, cos2(θ)

)
+ C2cos

3−d−n(θ)2F1

(
2− d− n

2
,
3− d− n

2
;
5− d

2
− n, cos2(θ)

) (3.4.17)

4Note that we decide to be sloppy in labeling the hyper-spherical harmonic functions. It should be noted that in
high dimensions there is more than one function that can give the same eigenvalues these degenerate functions are
orthogonal and have their own labels but we choose to suppress these labels and only write the label that tells us the
eigenvalues. For a more complete treatment one can look at [16].
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3.4. Ryu-Takayanagi Surface Anchored to Light Cone on CFTd Boundary

We throw out the second term due to the fact it is ill defined for certain values of n and d and

also generally vanishes on the boundary which are not the type of solutions we are looking for.

This means:

hn(θ) = C1cos
n(θ)2F1

(
n

2
,
n− 1

2
;
2n+ d− 1

2
, cos2(θ)

)
(3.4.18)

This solution satisfies the following conditions:

h0(θ) = 1 (3.4.19)

lim
θ→0

hn>0(θ) =
Γ(2n+d−1

2 )Γ(d2)

Γ(n+d−1
2 )Γ(n+d

2 )
6= 0 (3.4.20)

lim
θ→π/2

hn>0 = 0 (3.4.21)

In summary, we find that the Ryu-Takayanagi surface can be written defined by the embedding

equations:

r+ = R (3.4.22)

r− = f(θ, φi) = R− 1

C0 +
∑∞

n=1Cnhn(θ)Φn(φi)
(3.4.23)

Where we define Cn = cn
hn(0) as an arbitrary constant normalized by the value of hn(θ = 0). By

doing this we can see that on the boundary we have that:

r+ = R = ρ+ (3.4.24)

r−(θ = 0, φi) = R− 1

C0 +
∑∞

n=1 cnΦn(φi)
= ρ−(φi) (3.4.25)

Where we used the fact:

ρ±(θ, φi) = R− 1∓ cos(θ)
2(C0 +

∑∞
n=1Cnhn(θ)Φn(φi))

(3.4.26)

We see that, on the extremal surface ends on some boundary light cone whose base is cut by a

function written as a series in hyper-spherical harmonics. To get an intuitive sense of the equations

lets go back to hyper-spherical coordinates in the bulk the equations tell us the extremal surface is

described by the set of points satisfying:

r =
1

2C0 + 2
∑∞

n=1Cnhn(θ)Φn(φi)
(3.4.27)
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3.5. Relative Entropy as Quasi-Local Bulk Energy

t = R− 1

2C0 + 2
∑∞

n=1Cnhn(θ)Φn(φi)
(3.4.28)

If we set the higher order terms to zero then C0 → ∞ places us at the tip of the cone where

r = 0 and t = R. If we set C0 = 1/2R then we have a constant time slice cut at t = 0 of the cone

which is a hyper-sphere in the bulk of radius R. If we restrict or cut to be between the coordinate

time 0 ≤ t < R, then we have to require that 1
2R ≤ C0 +

∑∞
n=1 hn(θ)Φn(φi) < ∞. Hence we see

that the higher order terms can be thought of as perturbing away from the constant time cut to a

more general cut which can be expressed in terms of hyper-spherical harmonics.

3.5 Relative Entropy as Quasi-Local Bulk Energy

Using the formula for holographic relative entropy discussed in the previous section, one could try

to directly calculate the quantities. Generally this will be quite difficult due to the fact that it is

hard to solve the equations describing the RT surface in an arbitrary AAdSd+1 spacetime. To work

around this issue we will review the formalism discussed in [6]. This allows us to write relative

entropy in a form that is more naturally suited to handle arbitrary perturbations in the bulk. To

start we define a d+ 1 form related to the Lagrangian density L of our system:

L(g) = Lε̂ (3.5.1)

Where g is a shorthand for the fields in the Lagrangian. In our case since we are interested in

pure gravity the Lagrangian density for our system will be the usual Einstein-Hilbert density given

by:

L =
1

16πGN
R− Λ (3.5.2)

The d+1 form, ε̂, is defined in terms of the determinant of d+1 dimensional background metric,

gab:

ε̂ =

√
−g

(d+ 1)!
εa1a2...ad+1

dxa1 ∧ dxa2 ∧ ... ∧ dxad+1 (3.5.3)

We define (d+ 1− n)- dimensional forms ε̂c1c2...cn , where n < d+ 1 as follows:

ε̂c1c2...cn =

√
−g

(d+ 1− n)!
εc1...cnan+1...ad+1

dxn+1 ∧ ... ∧ dxd+1 (3.5.4)

Where
√
−g is still the determinant of the d+1 dimensional metric. It is useful for describing

volume forms on co-dimension n surfaces embedded in the d+ 1 dimensional background.

As a quick example to see how these forms operate we will look at the case where gab is the

metric in pure AdSd+1 in Poincare coordinates. In this case the indices we sum over will take
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values, a1, a2, .., ad+1 ∈ {t, z, x1, .., xd−1}. It is easy to see that the form ε will be given as:

ε̂ =
1

zd+1
εtx1..xd−1zdx

t ∧ dx1 ∧ .... ∧ dxd−1 ∧ dxz =
1

zd+1
dtdx1...dxd−1dz (3.5.5)

Which is what we would expect for the pure AdSd+1 metric in Poincare coordinates. Now

suppose that we want to embed a co-dimension 1 surface. For simplicity let it be a constant z slice.

It is clear that the normalized unit normal vector n = 1√
gzz
∂z. If we contract this with the d + 1

form ε̂ with the unit normal we will get:

ε̂ · nz∂z = ε̂zn
z =

1
√
gzzzd+1

εtx1..xd−1dxt ∧ dx1 ∧ .... ∧ dxd−1 =
1

zd
dtdx1...dxd−1 (3.5.6)

Which gives the correct form on the slice. For co-dimension 2 surfaces, we would have to find

a unit binormal to the surface to define the d− 1 volume form.

Having defined the forms we can continue and take a variation of the d + 1 form given by

equation (3.5.1). One will get the following results:

δL(g) = (−Eg)δgε̂+ dΘ(g, δg) (3.5.7)

The first term is the equations of motion associated with the Lagrangian density L. For us

they will be the Einstein vacuum equations with the cosmological constant. The second term is

boundary term which is defined in terms of a d-form, Θ(g, δg) and dΘ is the exterior derivative of

the d-form. This will be used to define another d-form called the symplectic d-form which will be

defined as:

ω(δ1g, δ2g) = δ1Θ(g, δ2g)− δ2Θ(g, δ1g) (3.5.8)

Note that it is defined in terms of metric perturbations δ1g and δ2g. Now we want to use this in

the context of holography. We consider the subregion given by the light-cone regions, Â, for which

the modular Hamiltonian Hcone is known for vacuum states. This subregion, Â, has an associated

co-dimension 2 extremal surface that extends into the bulk Ã which we found in section 3.4 for

pure AdSd+1. One then defines a d dimensional surface in the bulk that is bounded by the extremal

surface, Ã, in the bulk and Â on the boundary which we denote as Σ. In our case, for pure AdSd+1

bulk geometry, we know that this surface, Σ, will be the bulk light cone r+ = R, whose base is

cut by a function described by r− = f(θ, φi). On Σ, we define a vector field ξc whose purpose will

be to generate diffeomorphisms. Finally, we can define δHξc (not to be confused with the modular

Hamiltonian) in terms of the d-form ω and the vector field ξc that exists on Σ:

δHξc =

∫
Σ
ω(δg,Lξcg) =

∫
Σ

[δΘ(g,Lξcg)− LξcΘ(g, δg)] (3.5.9)
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We can expand the Lie derivative of the d-form Θ along the vector field ξc using the identity

LξcΘ = ξc · dΘ + d(ξc ·Θ). Where ξc ·Θ is notation that tells us to contract Θ with the vector field

ξc. Using the identity we get:

δHξc =

∫
Σ

[δΘ− ξc · dΘ− d(ξc ·Θ)] =

∫
Σ

[δΘ− ξc · dΘ]−
∫
∂Σ
ξc ·Θ (3.5.10)

Where ∂Σ = Ã ∪ Â. We define the Noether current d-form associated with the diffeomorphism

generated by ξc to be, Jξc = Θ − ξc · L. Assuming that the equations of motion are satisfied we

know from equation (3.5.7) that dΘ(δg) = δL(g). We can show that the exterior derivative of the

Noether current form vanishes through the following calculations:

dJξc = dΘ(Lξcg)− d(ξc · L(Lξcg)) = δL(Lξcg)− d(ξc · L(Lξcg))

= LξcL(g) + ξc · dL(g)− LξcL(g) = ξc · dL(g) = 0
(3.5.11)

Where for the last equality we used that fact that L is a d+1-form and dL = 0. This means that

when the equation of motion is satisfied then we can find a d− 1 form, Qξc , such that Jξ = dQξc .

Now consider the variation of Noether current form as follows:

δJξc = δΘ− ξc · δL = δΘ− ξc · dΘ (3.5.12)

This allows us to write:

δHξc =

∫
Σ
δJξc −

∫
∂Σ
ξc ·Θ (3.5.13)

Now one needs to find a d-form K on the boundary, ∂Σ, that has the following property:

δ(ξc ·K)|∂Σ = ξc ·Θ|∂Σ (3.5.14)

It turns out that such a K exists if the following condition holds true:∫
∂Σ
ξc · ω(δ1g, δ2g) = 0,∀δ1g, δ2g (3.5.15)

Using this K along with the fact that Jξc = dQξc , we can write:

Hξc =

∫
Σ
Jξc −

∫
∂Σ
ξc ·K =

∫
∂Σ

[Qξc − ξc ·K] (3.5.16)

Here Hξc is referred to as the quasi-local energy associated with the vector field ξc on Σ. The

important fact to note here is that Hξc can be written completely in terms of a oriented integral

over ∂Σ = Ã ∪ Â. Due to this fact it has been shown in case for ball shaped subregions5 that one

can choose a particular ξB such that the integral reproduces the holographic relative entropy given

5The arguments made to this point also apply to ball shaped regions simply replace the cone region on boundary
with ball regions along with the extremal surface anchored to the ball region
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3.6. Writing Modular Hamiltonian in Covariant Form

by equation (3.2.8). This tells us that for ball shaped regions, the relative entropy has a bulk dual

in the form of the quasi-local energy we defined. What we want to do is use similar arguments but

adapt them to regions on light-cones to reproduce the formulas we have for holographic relative

entropy for light-cone subregions and their associated extremal surfaces. What we have outlined

here is a starting point to doing this. In the following sections we will give a sketch as to how some

of the arguments will be used in the case of null cone subregions on the boundary.

3.6 Writing Modular Hamiltonian in Covariant Form

In this section we want to gain insight as to the form of ξc on the conformal boundary. We will

do this by assuming that modular Hamiltonians on cone shaped regions on the boundary take the

following form:

Hcone =

∫
cone

ζµc Tµν ε̂
ν (3.6.1)

Where ζc will be a vector field such that when it is restricted to the surface of the cone we are

integrating over will, it reproduce the modular Hamiltonian given by equation (3.3.21). We define

ε̂ is a d-form and ε̂ν is a d− 1 form such that when it is contracted with a unit normal vector nν it

gives the d− 1 dimensional volume form on the perpendicular subspace:

ε̂ν =

√
−g

(d− 1)!
ενa2a3...addx

a2 ∧ ... ∧ dxad (3.6.2)

We will work in boundary radial null coordinates (ρ+, ρ−, φ1, ..., φd−2) and adopt the convention

ε+−φ1..φd−2 = 1. For the past light cone volume element we are interested in a normal vector to the

surface ρ+ = R. We calculate it as follows:

nµ = gµν∂ν(−ρ+ +R) = −gµ+ ⇒ n = nµ∂µ = −g+−∂− (3.6.3)

We contract this normal vector with the d-form ε̂ to get the d− 1 form on the cone:

ε̂·n =

[
−g+−√−g

d!
εa1...addx

a1 ∧ ... ∧ dxad
]
·∂− = −

[√
gΩ

d!

(
R− ρ−

2

)d−2

εa1...addx
a1 ∧ ... ∧ dxad

]
·∂−

(3.6.4)

We use the fact that dx+ · ∂− = −1 and we find the following d− 1 form:

ε̂+ =

√
gΩ

(d− 1)!

(
R− ρ−

2

)d−2

ε+a2...addx
a2 ∧ ...∧dxad =

√
gΩ

(
R− ρ−

2

)d−2

dρ−dφ1...dφd−2 (3.6.5)

Which gives us the correct volume form for the past light-cone. Finally, we use the fact that
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3.7. Extending Boundary Vector Field into Bulk

ε̂− = gν−ε̂ν = g+−ε̂+, this gives:

ε̂− = −2
√
gΩ

(
R− ρ−

2

)d−2

dρ−dφ1...dφd−2 (3.6.6)

We also require that on the cone ρ+ = R, the vector field obeys ζc|ρ+=R = ζ−c ∂−. Which gives:

Hcone =

∫
cone

ζ−c T−−ε̂
− = −

∫
cone

2ζ−c T−−

(
R− ρ−

2

)d−2√
gΩdρ−dφ1...dφd−2 (3.6.7)

Comparing this expression to equation (3.3.21), we find that we require the vector field:

ζ−c = −4π(R− ρ−)

[
R− ρ−

R− ρ−0
− 1

]
= 4π

(R− ρ−)(−ρ−0 + ρ−)

R− ρ−0
(3.6.8)

By choosing this vector field, we will reproduce the modular Hamiltonian given by equation

(3.3.21). Hence we have found the following boundary condition that the bulk vector field ξc must

satisfy on the conformal boundary:

ξc|Â =
4π(R− ρ−)(ρ− − ρ−0 )

R− ρ−0
∂− (3.6.9)

3.7 Extending Boundary Vector Field into Bulk

Now we want to extend this vector field on the boundary cone to a bulk vector field on the surface

Σ. An obvious and simple way of doing this in pure AdSd+1 is to simply replace the boundary

radial null coordinates ρ− and ρ+ with bulk radial null coordinates r+ and r−. In these coordinates

Σ is the bulk cone r+ = R with a base that is cut by some function of θ and φi. Explicitly we have

that:

ξc|Σ =
4π(R− r−)(r− − f(θ, φi))

R− f(θ, φi)
∂− (3.7.1)

Where f(θ = 0, φi) = ρ−0 (φi). One can check that this trivial extension of the boundary vector

field will satisfy the following conditions on the RT surface, Ã, given by r+ = R and r− = f(θ, φi):

ξc|Ã =
4π(R− r−)(r− − f(θ, φi))

R− f(θ, φi)
∂−

∣∣∣∣
Ã

= 0 (3.7.2)

∇aξbc −∇bξac |Ã = 4πnab (3.7.3)

Where we define nab as the unit binormal tensor to the RT surface in pure AdSd+1, which we

derive in appendix A.7. Note that the boundary conditions we have defined by equations (3.6.9),

(3.6.11), and (3.6.12) are analogous to the boundary conditions given in [6] for the bulk vector field

ξB, corresponding to ball shaped regions. Due to this, we expect that many of the same arguments
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3.7. Extending Boundary Vector Field into Bulk

used in [6] for ball shaped regions will also apply to our light-cone regions. For example, we can

consider how the quasi-local energy integral gives us the area term in the holographic relative

entropy formula. We use the result from [6], which states Qξc = −1
16πGN

∇aξbc ˆεab where ˆεab is a d− 1

form defined in our discussion of forms in section 3.5. We can use the boundary conditions to get:

∫
Ã

[Qξc − ξc ·K] =

∫
Ã
Qξc = − 1

16πGN

∫
Ã

1

2
ˆεab

[
∇aξbc −∇bξac

]
= − 1

8GN

∫
Ã

ˆεabn
ab

= − 1

4GN

∫
Ã
ε+− = −Area(Ã)

4GN

(3.7.4)

Which gives the area term in the holographic relative entropy formula in the pure AdSd+1
6.

So far, we have argued that in the light-cone case relative entropy is dual to a bulk quasi-local

energy on Σ, and many of the same arguments used to show this in the ball case also apply to cut

light-cone regions. These statements were made by only knowing how the vector field ξc behaves

on ∂Σ. Now we want to consider extending this vector field away from Σ. As a first step we can

consider this bulk vector field, ξc, defined on Σ in pure AdSd+1 and compare it to the bulk ξB given

in [14]. The vector field, ξB, plays the role of ξc for ball shaped regions on the boundary and is

given as:

ξB =
π

R

[
R2 − z2 − t2 − |~x|2

]
∂t −

2π

R
t

(
d−1∑
i=1

xi∂i + z∂z

)
(3.7.5)

Where the ball shaped region on the boundary is centred at tc = 0, ~xc = 0, and simplifies to the

conformal Killing vector field given by equation (3.2.4) on the boundary z = 0. We can rewrite this

in the coordinate basis given by the coordinates (t, r, θ, φi) by noting that r∂r = z∂z +
∑d−1

i=1 x
i∂i.

This allows us to write:

ξB =
π

R

[
R2 − t2 − r2

]
∂t −

2π

R
tr∂r (3.7.6)

Using this we can easily write down the non-zero components of the vector fields in bulk radial

null coordinates (r+, r−, θ, φi):

ξ+
B =

∂r+

∂t
ξtB +

∂r+

∂r
ξrB =

π

R

[
R2 − (r+)2

]
(3.7.7)

ξ−B =
∂r−

∂t
ξtB +

∂r−

∂r
ξrB =

π

R

[
R2 − (r−)2

]
(3.7.8)

Now we want to compare this vector field for the ball shaped region to the vector field we defined

6This argument is exactly the same as for ball shaped sub-regions on the boundary we also expect that our
derivation of the term that will reproduces the modular Hamiltonian term from the quasi-local energy will be identical
to the derivation given in [6] for ball shaped regions.

42



3.7. Extending Boundary Vector Field into Bulk

in equation (3.7.1). This time we we take the cut of the cone defined by the function f(θ, φi) = −R.

We do this because a cut r− = f(θ, φi) = −R corresponds to a constant time slice cut of the cone

at t = 0. By doing this, the null boundary of the causal wedge for the ball and Σ will coincide in

Pure AdSd+1 between the coordinate times t ∈ [0, R]. We find that:

ξB|Σ =
π

R

[
R2 − (r−)2

]
∂− (3.7.9)

ξc|Σ =
2π

R

[
R2 − (r−)2

]
∂− (3.7.10)

The vector fields are identical up to a factor of two. We could then extend the vector field ξc

away from the surface Σ by simply defining its extension away from the surface to be the same

as in ξB by a factor of two. By doing this we know that, up to a constant, ξc will have all the

same properties as ξB and the arguments used for ball shaped regions in [6] should also apply to

constant cut cones. This suggests that for constant time slices of the cone we do not expect to get

any new constraints from relative entropy inequalities. For more arbitrary cut cones, we know the

vector field ξc will not coincide with the vector field ξB on Σ. In this case it is not as obvious how

to extend the vector field away from Σ. We hope that new constraints will arise by understanding

ξc away from Σ for arbitrary cuts and using it in the formalism described in section 3.5.
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Chapter 4

Conclusion

In this thesis we have tried to obtain constraints on AAdS spacetimes using information theoretic

quantities for holographic CFT states that are dual to such geometries. In chapter 2, we trans-

lated the constraint that ACHI −ART ≥ 0 to statements about the asymptotic structure of AAdS3

spacetimes that have translation invariance in the boundary coordinates. This was done by finding

series expansions in the proper length of the boundary intervals for both the area of the CHI and

RT curves. These series expansions were used to construct the series expansion for the quantity

ACHI − ART . The constraints on the asymptotic geometry from this conjecture was obtained by

requiring that the leading order term be positive. We found that the first two leading order con-

straints provided no new information about the possible asymptotic structure of AAdS3 spacetimes.

However, when the results were compared to the constraints obtained from the series expansion

in small z of the null energy condition Tµνu
µuν ≥ 0 for null vectors parallel to the boundary; we

found that the first two leading order terms gave the exact same constraints as what we got by

simply considering ACHI − ART ≥ 0. We proposed that this observation may be a result of some

interesting connection between the constraint ACHI − ART ≥ 0 and the null energy condition in

the bulk. In chapter 3 we reviewed the progress of a ongoing research project whose goal is to

understand the bulk dual of relative entropy constraints for holographic states defined on cut null

cone regions on the boundary CFTd. We derived the modular Hamiltonian cone regions whose

base is cut. Our strategy was to start with the result for the null plane given in [15], and using

a conformal transformation to get the result on the cone. We then derived the RT surface in the

bulk for pure AdSd+1 spacetime anchored to the cut cone region on the boundary. Using these

results we argued that for sub-regions on the boundary that are on null cones, one could still use

the machinery developed in [6] for ball shaped regions. We gave a rough sketch as to how one

can begin to prove that relative entropy between states on cone subregions is dual to quasi-local

energy in the bulk. We argued that for cone regions with constant time cuts, the constraints would

be identical to the constraints from ordinary ball shaped regions. For future work we stated that

we need to understand the quasi-local energy for more generally cut cone sub-regions, and what

it has to say about the constraints that relative entropy imposes. The work in chapter 3 can be

thought of as a starting point for understanding relative entropy duals for regions on the boundary
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that are deformed away from the ball. By carefully studying these quantities we hope to sharpen

our understanding of the role that relative entropy plays in the reconstruction and dynamics of

AAdSd+1 spacetimes.
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Appendix A

Supplementary Material

A.1 Co-Dimension 2 Extremal Surface in d+ 1 Dimensional
Spacetime

In this section, we will go over how one can define a Co-dimension 2 surface in a d+ 1 dimensional

spacetime as well as the equations the surface must obey to be extremal. Start with a metric for the

d+ 1 dimensional spacetime gµν(X). The metric is a function of the coordinates of the spacetime

Xµ. To define a co-dimension two surface in the spacetime we write two of the coordinates which

label with capital letter indices XB1 and XB2 . The remaining coordinates of the d− 1 coordinates

which we label by lower case latin letters Xa will serve as the coordinates on the co-dimension 2

surface we collectively label these coordinates as σa = Xa. Now one can define the d−1 dimensional

induced metric, γab,on the surface as follows:

γab(σ) = gµν(X(σ))
∂Xµ

∂σa
∂Xν

∂σb
(A.1.1)

Using the induced metric one can define an area functional for the surface in terms of the

determinant of the induced metric γ:

A =

∫
√
γdd−1σ (A.1.2)

Now we can consider fixing the background metric gµν and doing a variation to the surface.

We want to know when the variation of the area functional vanishes. This amounts to having

XB1 → XB1 + δXB1 and XB2 → XB2 + δXB2 and calculating the difference to first order in δX:

δA =

∫ √
det

[
gµν(X + δX)

∂(Xµ + δXµ)

∂σa
∂(Xν + δXν)

∂σb

]
−

√
det

[
gµν(X)

∂Xµ

∂σa
∂Xν

∂σb

]
=

∫ √
det [γab + gµν (∂aδXµ∂bXν + ∂aXµ∂bδXν) + ∂aXµ∂bXν∂ρgµνδXρ + ...]−√γ

(A.1.3)
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A.2. Quadratic Analysis

Note that we have the functional in the form δA =
∫ (√

det(γab + δγab + ...)−√γ
)
dd−1σ,

this is easily expanded to first order using the formula δA =
∫

1
2

√
γγabδγabd

d−1σ where δγab =

gµν (∂aδX
µ∂bX

ν + ∂aX
µ∂bδX

ν) + ∂aX
µ∂bX

ν∂ρgµνδX
ρ. Plugging into our formula we find:

δA =

∫
1

2

√
γγab (2∂aδX

ρ∂bX
µgµρ + ∂aX

µ∂bX
ν∂ρgµνδX

ρ) dd−1σ (A.1.4)

After integrating the first term by parts and using the fact the variation should vanish at the

boundary we are left with the result:

δA =

∫ [
1

2

√
γγab∂aX

µ∂bX
ν∂ρgµν − ∂a

(√
γγab∂bX

µgµρ

)]
δXρ (A.1.5)

This gives us the condition for the co-dimension 2 surface to be extremal:

δA

δXB
=

1

2

√
γγab∂aX

µ∂bX
ν∂Bgµν − ∂a

(√
γγab∂bX

µgµB

)
= 0 (A.1.6)

Where B = B1, B2.

A.2 Quadratic Analysis

We want to understand for what values of C the following quadratic will be greater than zero on

the interval x ∈ (0, 1):

x2 + Cx+ 1 ≥ 0 (A.2.1)

Start by noting that if C ≥ 0 then the inequality holds trivially on our interval. The only

possible way it could be less than zero is for some set of values C ≤ 0. Start by calculating the

roots which will be given by:

x =
−C ±

√
C2 − 4

2
=
−C ±

√
(C + 2)(C − 2)

2
(A.2.2)

We assume that C ≤ 0 then C−2 ≤ 0 in order for the root to be real we require that C+2 ≤ 0.

If C = −2, then x = 1. Now consider C = −2− ε, ε > 0. It follows that the real roots are:

x± = 1 +
ε

2
±
√
ε(ε+ 4)

2
(A.2.3)

Considering the minus root we have that:

x− = 1 +
ε

2
−
√
ε2 + 4ε

2
≤ 1 +

ε

2
−
√
ε2

2
= 1⇒ x ≤ 1 (A.2.4)

Hence if C < −2 there will always be a root in the interval x ∈ (0, 1). Now consider the case

when −2 ≤ C ≤ 0. These two conditions imply that C2 − 4 ≤ 0. These automatically tell us that

there are no real roots and since the quadratic has a y-intercept of 1, then the quadratic is positive.

Hence we find that the inequality (A.1) is satisfied in the interval (0, 1) if C ≥ −2.
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A.3. Mapping Half Space to a Ball

A.3 Mapping Half Space to a Ball

In this section we will go over the special conformal transformation (SCT) that will map the half

space on a constant time slice to a ball shaped region on a Minkowski background with signature

(−1, 1, ..., 1). We start by introducing coordinates to the half space given as xµ = (x0, x1, ..., xd−1)

then define the following change of coordinates:

yµ(x) =
xµ − (x · x)cµ

1− 2(c · x) + (c · c)(x · x)
+ 2R2cµ (A.3.1)

Where cµ = (0,−1/(2R), 0, ..., 0) and x ·x = ηµνx
µxν . It is straight forward to check that these

change of coordinates will change the flat Minkowski metric by a local scale factor, which implies

that this is a conformal change of coordinates. In particular one can show:

ηµν
∂yµ

∂xα
∂yν

∂xβ
=

1

Ω2(x)
ηαβ

Ω(x) = 1− 2(c · x) + (c · c)(x · x)

(A.3.2)

This implies that:

ds2 = ηµνdy
µdyν =

1

Ω2(x)
ηαβdx

αdxβ (A.3.3)

Now we will show that the half space described by the points {xµ : x1 > 0, x0 = 0} are mapped

to a ball. To do this we start by calculating y · y = ηµνy
µyν in terms of the coordinates x. We find

that:

y · y =
Ω(x)R2 − 2x1R

Ω(x)
⇒ x1 =

Ω(x)

2R

(
R2 − y · y

)
=

Ω(x)

2R

(
R2 + (y0)2 − |~y|2

)
(A.3.4)

By using the SCT one can verify that the set of points on the constant time slice x0 = 0

are mapped to points on the constant time slice y0 = 0. On this time slice one can verify that

Ω(x0 = 0) ≥ 0. Using this information one can see that points in the region {xµ : x1 > 0, x0 = 0}
are mapped to points in the region {yµ : |~y| ≤ R, y0 = 0}. This proves the statement that the half

space is mapped to a ball shaped region on a constant time slice. We can also calculate the inverse

of the SCT transformation given by equation (B.1). This will amount to finding xµ(y) with the

property that xµ(yµ(x̄)) = x̄µ. To do this we split the SCT given by (B.1) into two parts given by:

yµ(x) = y′µ(x) + 2R2cµ = y′µ(x) +
cµ

2c2
(A.3.5)

Where we defined:

y′µ(x) =
xµ − (x · x)cµ

1− 2(c · x) + c2(x · x)
(A.3.6)
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A.3. Mapping Half Space to a Ball

We make the claim that the inverse of y′µ(x) is given by the following:

xµ(y′µ) =
y′µ + (y′ · y′)cµ

1 + 2(c · y′) + c2(y′ · y′)
(A.3.7)

To verify this claim start by noting that:

y′(x̄) · y′(x̄) =
x̄ · x̄
Ω(x̄)

(A.3.8)

Using equation (B.6) we find that:

y′µ(x̄) + y′(x̄) · y′(x̄)cµ =
x̄µ

Ω(x̄)
(A.3.9)

Using this, calculate xµ(y′µ(x̄)) and find:

xµ(y′µ(x̄)) =
x̄

ω(y′µ(x̄))Ω(x̄)
(A.3.10)

Where we defined ω(y)as :

ω(y) = 1 + 2(c · y) + c2(y · y) =
1

4
− y1

2R
+
y · y
4R2

(A.3.11)

One can check that ω(y′µ(x̄))Ω(x̄) = 1 this proves our claim. Now we can use the result (B.7)

and substitute for the argument y′µ = yµ − cµ

2c2
this will give us the inverse of the SCT given by

(B.1) we find that:

xµ(y) =
yµ − cµ

2c2
+ (yν − cν

2c2
)(yν − cν

2c2
)cµ

1 + 2cν(yν − cν

2c2
) + c2(yν − cν

2c2
)(yν − cν

2c2
)

=
yµ + 2(y · y)cµ

1
4 + c · y + c2(y · y)

− cµ

c2
(A.3.12)

We can also give an interpretation of ω(y) by the following argument. Using (B.12) we can see

that:

x1(y) =
R2 − y · y
2Rω(y)

(A.3.13)

Comparing this with (B.4) tells us that:

Ω =
1

ω(y)
(A.3.14)

Hence ω will be the scale local scale factor in particular we can see by rearranging (B.2) that:

ηαβ
∂xα

∂yµ
∂xβ

∂yν
=

1

ω2(y)
ηµν (A.3.15)

Now we want to show that the co-dimension 1 null surface given by setting x− := x0 − x1 = 0

gets mapped to the past null cone of the point (y0 = R, 0, ..., 0). To see this we begin by calculating
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A.4. Calculating Jacobian for SCT

|~y|2 in terms of y we find that:

|~y|2 =
(x0 −RΩ)2 + 2RΩx−

Ω2
(A.3.16)

Now we set x− = 0 and use the fact y0 = x0/Ω this gives us:

|~y|2 = (y0 −R)2 ⇒ |~y| = R− y0 (A.3.17)

Which defines the surface of a past null cone with its tip at (y0 = R, 0, ..., 0).

A.4 Calculating Jacobian for SCT

Here we derive the equation for the elements of the Jacobian matrix as well as its determinant. For

the transverse coordinates we know that:

yi =
xi

Ω(x)

Ω(x) =
−(x+ + 2R)(x− − 2R) + (x⊥)2

4R2

(x⊥)2 =

d−1∑
i,j=2

δijx
ixj

(A.4.1)

Now we compute the elements of the Jacobian associated with the mapping above:

∂yi

∂xk
=

∂xi

∂xk
Ω− xi ∂Ω

∂xk

Ω2
(A.4.2)

We can calculate ∂Ω
∂xk

as follows:

∂Ω

∂xk
=

∂

∂xk

[∑d−1
i,j=2 δijx

ixj

4R2

]
=

xk
2R2

(A.4.3)

Combining everything gives the result:

[J⊥]ik =
∂yi

∂xk
= Ω−1

[
δik −

xkx
i

2R2Ω

]
(A.4.4)

We compute the determinant of the matrix by finding its eigenvalues. To find the eigenvalues

we need eigenvectors. We can write the eigenvectors in a basis where the first eigenvector is given

as v2 =
∑d−1

k=2 x
k∂k. If we apply this vector to the Jacobian we will find:

d−1∑
k=2

[J⊥]ikv
k
2 = Ω−1

[
1− (x⊥)2

2R2Ω

]
xi = Ω−1

[
1− (x⊥)2

2R2Ω

]
vi2 (A.4.5)

It has an eigenvalue of Ω−1
[
1− (x⊥)2

2R2Ω

]
. We can choose the other d − 3 eigenvectors to be
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orthogonal to v2, this implies that
∑d−1

k=2 xkv
k
b = 0, b ∈ {3, 4, ..., d− 1}. Hence we see that:

d−1∑
k=2

[J⊥]ikv
k
b = Ω−1vkb (A.4.6)

Which states that we have d − 3 eigenvalues of Ω−1. The determinant of the matrix is the

product of eigenvalues this gives the result:

det([J⊥]ik) = J⊥ = Ω2−d
[
1− (x⊥)2

2R2Ω

]
(A.4.7)

A.5 Coordinates on Null Plane to Coordinates on Null Cone

In appendix A.3 we defined a change of coordinates which was a SCT that maps a null sheet to a

null cone. The mapping was done between cartesian coordinates on the plane (x0, x1, x2, ..., xd−1)

and cartesian coordinates on the cone (y0, y1, y2, ..., yd−1). We had a complete understanding of

the maps that go from one coordinate to the other. Here we want to write the coordinates on the

plane in terms of cartesian null coordinates (x+, x−, x2, ..., xd−1) and use the SCT to go to radial

null coordinates on the cone (ρ+, ρ−, φ1, ..., φd−2). Recall that from equation (A.3.12):

xµ(y) =
yµ + 2(y · y)cµ

1
4 + c · y + c2(y · y)

− cµ

c2
=
yµ + 2(y · y)cµ

ω
− cµ

c2
(A.5.1)

Now we compute x± = x0 ± x1 which is given by:

x+ =
y0

ω
+
R2 − y · y

2Rω
=

(R+ y0)2 − |~y|2

2Rω
=

(R+ ρ−)(R+ ρ+)

2Rω
(A.5.2)

x− =
y0

ω
− R2 − y · y

2Rω
= −(R− y0)2 − |~y|2

2Rω
= −(R− ρ+)(R− ρ−)

2Rω
(A.5.3)

xi =
yi

ω
(A.5.4)

where ρ± = y0 ± |~y| and ω = 1
4 −

y1

2R + y·y
4R2 . Notice from these coordinates that it is clear that

if ρ+ = R then x− = 0, applying these restrictions, one can easily relate the null coordinate on the

plane which is x+ and the null coordinate on the cone which is ρ−:

x+ =
R+ ρ−

ω|ρ+=R
(A.5.5)
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We can explicitly calculate ω|ρ+=R as follows:

ω =
1

4
− y1

2R
+
y · y
4R2

=
R2 − 2Ry1 − (y0)2 + |~y|2

4R2
= −ρ

+ρ− +R(2y1 −R)

4R2

⇒ ω|ρ+=R = −ρ
− + 2y1 −R

4R

(A.5.6)

We can also write ρ− in terms of x+ by rearranging C.5 and using Ω = 1/ω:

ρ− =
x+

Ω|x−=0
−R (A.5.7)

Where we explicitly can compute Ω|x−=0 as follows:

Ω = 1 +
x1

R
+
x · x
4R2

=
−(x0)2 + (x1 + 2R)2 + (x⊥)2

4R2
=
−(x− − 2R)(x+ + 2R) + (x⊥)2

4R2

⇒ Ω|x−=0 = 1 +
x+

2R
+

(
x⊥

2R

) (A.5.8)

This gives us the equation used in equation (3.12) :

ρ− =
x+

1 + x+

2R +
(
x⊥

2R

)2 −R (A.5.9)

A.6 Conformal Transformation of the Stress Energy Tensor of a
CFTd

Here we go over the calculations for applying a conformal transformation to the stress energy tensor

component when we apply the SCT defined in appendix A.3. The conformal transformation of the

stress energy tensor associated with the SCT can be implemented through a standard change of

coordinates to the tensor along with Weyl rescaling to make the background metric flat again. We

start by calculating the general elements of the Jacobian matrix associated with the SCT:

∂yµ

∂xν
=

∂

∂xν

[
xµ − (x · x)cµ

Ω

]
=
δµν − 2xνc

µ

Ω
−

∂Ω
∂xν (xµ − (x · x)cµ)

Ω2

=
1

Ω

[
δµν − 2xνc

µ − ∂Ω

∂xν

(
yµ − cµ

2c2

)]
=

1

Ω

[
δµν − 2xνc

µ −
(
−2cν + 2c2xν

)(
yµ − cµ

2c2

)]
=

1

Ω

[
δµν − xνcµ + 2cνy

µ − 2c2xνy
µ − cνc

µ

c2

]
=

1

Ω

[
δµν − δ

µ
1 δ

1
ν −

yµ

R
δ1
ν +

xν
2R

(
δµ1 −

yµ

R

)]
(A.6.1)
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By similar calculations one can show:

∂xµ

∂yν
= Ω

[
δµν − xµcν + 2cµyν − 2c2xµyν −

cνc
µ

c2

]
(A.6.2)

We want to use these to calculate how the stress energy tensor will change from the change in

coordinates:

T++ =
∂yµ

∂x+

∂yν

∂x+
Tµν (A.6.3)

We can use the formula (A.6.1) to calculate the partial derivative:

∂yµ

∂x+
=

1

2

(
∂yµ

∂x0
+
∂yµ

∂x1

)
=

1

2Ω

[
δµ0 −

yµ

R
+
x+

2R

(
δµ1 −

yµ

R

)]
(A.6.4)

From this point forward throughout this section we will be restricted to the null plane. We

know that x+ = −x− = 0. This means that:

T++

∣∣
x−=0

=
1

4Ω2

(
δµ0 −

yµ

R

)(
δν0 −

yν

R

)
Tµν
∣∣
ρ+=y0+|~y|=R (A.6.5)

Now we make the following claim:

δµ0 −
yµ

R
=

2|~y|
R

∂yµ

∂ρ−
(A.6.6)

To see this is true, we start by calculating the following quantity:

|~y|
R

∂ρ−

∂yµ
+ 2δ0

µ

(
1− |~y|

R

)
=
|~y|
R
δ0
µ −

yµ
R

(1− δ0
µ) + 2δ0

µ

(
y0

R

)
= δ0

µ

(
y0 + |~y|
R

)
− yµ
R

= δ0
µ −

yµ
R

(A.6.7)

Where we used the fact that y0 + |~y| = R. Now we can compute the following quantity:

(
δ0
ν −

yν
R

)(
δν0 −

yν

R

)
=
R2 + y · y

R2
=

2|~y|
R

(A.6.8)

At the same time we also can compute:

[
|~y|
R

∂ρ−

∂yµ
+ 2δ0

µ

(
1− |~y|

R

)][
2|~y|
R

∂yµ

∂ρ−

]
=

2|~y|2

R2
+

4|~y|
R

(
1− |~y|

R

)
∂y0

∂ρ−

=
2|~y|
R

(A.6.9)

Where we used the fact that y0 = 1
2(ρ+ + ρ−). This means that we know the left hand sides of

(A.6.8) and (A.6.9) are equal. Furthermore, using equation (A.6.7), we can deduce that that the
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claim given in equation (A.6.6) is true. Using the result gives:

T++

∣∣
x−=0

=
1

R2Ω2

(
R− ρ−

2

)2

T̃−−
∣∣
ρ+=R

(A.6.10)

This takes care of the coordinate transformation. In order to complete the conformal trans-

formation, we need to do a Weyl rescaling of the stress energy tensor to figure out what power

of the conformal factor we need we apply the following argument. Suppose we have a confor-

mal change of coordinates such as in the SCT. Then we know that when we go from coordinates

(x0, x1, ..., xd−1) → (y0, y1, ..., yd−1) the new metric will be rescaled ηµν → Ω2ηµν . Now consider

the term in the action where the stress energy tensor couples to the metric:∫
ddy
√
det(Ω2ηµν)

ηµν
Ω2

T̃µν =

∫
ddxΩd−2ηµν T̃µν =

∫
ddxηµνTµν (A.6.11)

In order to cancel the conformal factor we need to rescale the stress energy tensor by Ω2−d.

Using this the conformally transformed stress energy tensor is now:

T++

∣∣
x−=0

=
1

R2Ωd

(
R− ρ−

2

)2

T̃−−
∣∣
ρ+=R

=
ωd

R2

(
R− ρ−

2

)2

T̃−−
∣∣
ρ+=R

(A.6.12)

Which gives the result in equation used in chapter 3 equation (3.3.19).

A.7 Unit Binormal to RT surface Anchored to Cone Regions

In this section we want to derive the unit binormal on the extremal surface we derived in the previous

section. To calculate the unit binormal to our extremal surface start by calculating the d−1 tangent

vectors to the surface which will be labeled with the index a as Ta = T µa ∂µ, a ∈ {1, 2, ..., d − 1}.
We can also write in component form Ta = (T +

a , T −a , T θa , T ia ) in the coordinate basis. These vectors

will have components that satisfy the following equations:

T µa ∂µ(r+ −R) = T +
a = 0 (A.7.1)

T µa ∂µ(r− − Λ(θ, φi)) = T −a − T θa ∂θΛ− T ia∂iΛ = 0 (A.7.2)

The first equation tells us that the tangent vectors will have no components in the direction ∂+.

Now we will introduce a slightly abusive labeling of the tangent vectors. We let labelling indices to

be coordinate indices a ∈ {θ, φj}, then we can define the following vectors:

Ta = (∂aΛ)∂− + δθa∂θ + δia∂i (A.7.3)
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We can clearly see that these satisfy the second equation. We can check for orthogonality:

gµνT µa T νb = gθθT θa T θb +
d−2∑
i=1

giiT iaT ib = gθθδ
θ
aδ
θ
b +

d−2∑
i=1

giiδ
i
aδ
i
b = gaaδab (A.7.4)

Where we used the fact that the metric on the unit d − 2 sphere is diagonal and g−− = 0,

normalization can be trivially done by dividing by the metric components. These vectors form

an orthogonal basis d − 1 basis on the Ryu-Takayanagi surface. Now we need to find two more

vectors n1 and n2 that are orthogonal to each other and the tangent vectors we defined. Start with

the most general form for the normal vectors with no constraints on the components n1 = nµ1∂µ

and n2 = nµ2∂µ. Now we write the condition that the vectors should be orthogonal to the tangent

vectors starting with n1:

gµνn
µ
1T

ν
a = g+−n

+
1 ∂aΛ + gθθn

θ
1δ
θ
a +

d−2∑
i=1

giin
i
1δ
i
a = 0 (A.7.5)

This equation constrains the components d− 1 components na1 = −g+−n
+
1 ∂aΛ

gaa
. The exact same

argument holds true for n2 hence we have that the following two vectors with be normal to all

tangent vectors:

n1 = n+
1 ∂+ + n−1 ∂− + na1∂a (A.7.6)

n2 = n+
2 ∂+ + n−2 ∂− + na2∂a (A.7.7)

To simplify calculations we let n+
1 = n+

2 = g+−. This implies that na1 = na2 and the orthogonality

condition between the two vectors will be:

gµνn
µ
1n

ν
2 = (n−1 + n−2 ) +

∑
a=θ,i

(∂aΛ)2

gaa
= 0 (A.7.8)

We also want gµνn
µ
1n

ν
1 = 1 this means that:

n−1 =
1−

∑
a=θ,i

(∂aΛ)2

gaa

2
(A.7.9)

Finally, we can use the orthogonality condition to get the component n−2 :

n−2 = −
1 +

∑
a=θ,i

(∂aΛ)2

gaa

2
(A.7.10)

We can verify that gµνn
µ
2n

ν
2 = −1. In summary we found the normalized normal vectors to the
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Ryu-Takayanagi surface to be:

n1 = g+−∂+ +
1− Z

2
∂− −

∑
a=θ,i

∂aΛ

gaa
∂a (A.7.11)

n2 = g+−∂+ −
1 + Z

2
∂− −

∑
a=θ,i

∂aΛ

gaa
∂a (A.7.12)

Z =
∑
a=θ,i

(∂aΛ)2

gaa
(A.7.13)

Now we can define the unit binormal components using the normal vector components:

nab = na2n
b
1 − nb2na1 (A.7.14)

One can check that the only non-zero components of the binormal are given by:

n+− =
1

g+−

nθ− = −∂θΛ
gθθ

ni− = −∂iΛ
gii

(A.7.15)
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