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Abstract 

Evasion of carbon dioxide (CO2) from headwater streams is a dominant process controlling the 

fate of terrestrially-derived carbon (C) in inland waters. However, methodological limitations 

associated with determining the gas transfer velocity of carbon dioxide (kCO2) in headwater 

streams inhibit efforts to accurately quantify CO2 emissions. In this thesis, I present a proof of 

concept for a tracer gas method that mitigates common issues associated with conventional 

methods for determining kCO2. In this method, a datalogger controls in situ stream sensors that 

measure the partial pressure of CO2 (pCO2) and other stream parameters as well as a solenoid 

valve connected to a compressed CO2 cylinder. Automated injections of CO2 were made via 

an aquatic diffuser located on the stream bed. Infrared gas-analyzing (IRGA) CO2-type sensors 

enclosed in waterproof, gas-permeable membranes located downstream from the diffuser 

continuously measured aqueous pCO2 and equilibrate to elevated values during CO2 injections. 

The difference between upstream and downstream pCO2 values during CO2 injection relative 

to pre-injection concentrations permitted calculation of both the CO2 flux from the reach and 

kCO2. This method improves upon conventional methods due to its automation, in situ 

measurement, and use of CO2 as a tracer rather than another gas, thereby reducing analytical 

error and increasing the frequency and timing with which measurements can be made relative 

to conventional methods. I tested this method in a headwater stream in southwestern British 

Columbia. I calculated kCO2 and continuous CO2 emissions from the reach and compared both 

datasets to hydrogeomorphic parameters as well as values in the literature. Values of kCO2 were 

generally above the average values reported in the literature, but they corresponded well to 

values reported for steep, turbulent headwater streams. Values of kCO2 varied in relation to 

discharge, flow velocity, and stream temperature. CO2 emissions from the stream were highest 
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during high flow events. Headwater streams, which have been shown to be "hotspots" for CO2 

emissions, can also be considered as exhibiting "hot moments" of CO2 evasion. 
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Lay summary 

Characterizing the global carbon cycle is important for many aspects of earth science, 

including those associated with climate change. Inland waters, such as streams, rivers, lakes, 

and estuaries, play a role in the carbon cycle by carrying carbon from the land into the ocean. 

Researchers have recently discovered that inland waters, and headwater streams in particular, 

do not just carry carbon but also process it, such that much of the carbon that enters an inland 

water body is either stored in sediments or evades into the atmosphere as carbon dioxide (CO2), 

a potent greenhouse gas. However, limitations of current methods for measuring CO2 evasion 

from streams have resulted in analytical errors and a dearth of data. In this thesis, I outline a 

new method that mitigates many of the errors associated with conventional methods for 

determining CO2 evasion from streams.   
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1 INTRODUCTION 

Thorough characterization of the global carbon (C) cycle relies on accurate 

quantification of carbon fluxes into and out of all ecosystems. Among these fluxes, carbon 

dioxide (CO2) evasion from surface waters has received increasing attention due to the active 

roles that streams, rivers, lakes, and estuaries play in transforming terrestrially-derived carbon 

(Aufdenkampe et al., 2011; Battin et al., 2009). In this way, inland waters significantly reduce 

the amount of terrestrial C that rivers ultimately deliver to the ocean (Cole et al., 2007).  

Terrestrially-derived imports of C to a freshwater ecosystem are subsequently 

partitioned into C lost to the atmosphere through evasion, C stored in sediments, and C 

exported from the ecosystem through drainage (Cole et al., 2007).  The majority of C inputs to 

streams and rivers are highly spatiotemporally variable (Wallin et al., 2011); they originate in 

the terrestrial environment, are transmitted via soils, and enter surface water systems through 

a range of hydrological flowpaths including groundwater-derived baseflow, shallow 

subsurface stormflow, and surficial runoff (Aufdenkampe et al., 2011). Headwater streams are 

particularly active sites of C cycling, not only because of their strong interactions with benthic 

substrates and the atmosphere (Benstead and Leigh, 2012), but also because they receive the 

majority of landscape drainage and are therefore closely coupled to terrestrial biogeochemical 

processes (Gomi et al., 2002).  

A recent global estimate of 2.58 Pg C y-1 (Sawakuchi et al., 2017) suggests that almost 

half of terrestrially-derived C that enters streams and rivers is lost to the atmosphere through 

gaseous evasion, 36-64% of which evades from headwater streams (Marx et al., 2017; 

Raymond et al., 2013; Sawakuchi et al., 2017). Globally, pCO2 values in headwater streams 

and effluxes of CO2 from headwater streams are large but poorly constrained, resulting in 
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significant uncertainties in quantifying global C budgets (Butman and Raymond, 2011; 

Raymond et al., 2013; Marx et al., 2017). 

Due to the considerably higher partial pressures of CO2 (pCO2) in headwater streams 

relative to pCO2 in rivers (Butman and Raymond, 2011) and their proximity to terrestrially-

derived C sources (Jones and Mulholland, 1998), many studies suggest that headwater streams 

are locations of substantial CO2 evasion (Schelker et al., 2016; Wallin et al., 2013). However, 

current methodological limitations compromise our ability to thoroughly evaluate the 

significance of CO2 fluxes between headwater streams and the atmosphere (Marx et al., 2017; 

Raymond et al., 2013). In particular, determination of the gas transfer velocity (k), a parameter 

that describes the rate of gas exchange across an air-water interface, presents a number of 

methodological challenges in headwater stream settings as it is spatiotemporally variable and 

dependent upon complex hydrogeomorphic stream properties (Raymond et al., 2012; Wallin 

et al., 2011).  

In this study, I present an automated and field-deployable method for determining gas 

transfer velocities of CO2 (kCO2) in headwater streams. Accurate CO2 evasion flux estimates 

from streams rely on frequent and accurate determinations of kCO2 that can be scaled with 

hydrogeomorphic and flow parameters for a given reach; difficulties in determining and 

scaling kCO2 therefore result in large uncertainties in calculating evasion fluxes. I also present 

relationships between kCO2 values of a headwater stream reach determined using this method 

and stream parameters measured including discharge, velocity, and temperature, as well as 

estimates of continuous CO2 evasion from the reach. Thus, this method will allow researchers 

to determine kCO2 frequently and accurately in tandem with streamflow parameters, create site-

specific scaling relationships, and calculate continuous CO2 evasion fluxes from a reach. 
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 The flux of CO2 across an air-water interface (FCO2, in g C L-1 d-1) can be described in 

terms of the partial pressure gradient of CO2 between air (pCO2 air, in atm atm-1) and water 

(pCO2 aq, in atm atm-1) and kCO2 (in m d-1), such that: 

FCO2 = kCO2 x (pCO2 aq – pCO2 air) (1) 

Reorganizing equation (1), kCO2 can be calculated from FCO2, pCO2 aq, and pCO2 air, such that: 

kCO2 = (pCO2 aq – pCO2 air) / FCO2 (2) 

Specifically, kCO2 describes the height of a column of water that equilibrates with the 

atmosphere per unit of time (Frankignoulle et al., 1998; Wanninkhof et al., 2009).  

In headwater streams, spatiotemporal variability in kCO2, driven primarily by surface 

water turbulence, is the largest determinant of CO2 effluxes (Hope et al., 2001; Tsivoglou and 

Neal, 1976; Zappa et al., 2007). Complex stream morphologies, including variable gradients 

and widths, streambed roughness, and tortuous flowpaths enhance the generation of surface 

water turbulence (MacIntyre et al., 1995; Wallin et al., 2011), with turbulence generally 

increasing with stream discharge and flow velocities (Billett and Harvey, 2013). Thus, the 

development of relationships between kCO2 and hydrogeomorphic and hydraulic parameters in 

headwater streams, calculated via accurate determinations of FCO2, may allow for more 

accurate prediction of kCO2 and its scaling among different catchments and stream orders 

(Raymond et al., 2012). 

 Multiple methods exist for both experimentally determining and modeling kCO2. 

Floating chambers can contain or be coupled to non-dispersive infrared (NDIR) sensors that 

directly and continuously monitor CO2 in the chamber headspace and provide time-weighted 

mean values based on water-air headspace equilibration, from which the rate of CO2 

accumulation is measured (Alin et al., 2011; Campeau et al., 2014; Vachon et al., 2010). 
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However, researchers criticize this method due to inherent chamber effects on surface water 

turbulence and modified conditions inside the chamber (Gafalk et al., 2013; Crawford et al., 

2014; Raymond and Cole, 2001). Additionally, some studies use the eddy covariance technique 

to determine kCO2 and FCO2 in large rivers (Huotari et al., 2013) and lakes (Jonsson et al., 2008), 

which allows for accurate and direct measurement of CO2 fluxes at the ecosystem scale 

(Huotari et al., 2013). However, this method is not appropriate for small streams, because it 

requires a large fetch area around the measurement location (Wallin et al., 2011). 

 Due to the limitations for floating chamber use, particularly for highly turbulent 

streams, tracer gas injections have become the most widely-used and robust method for 

determining kCO2 in headwater streams (Natchimuthu et al., 2017; Öquist et al., 2009; Tobias 

et al., 2009). This method involves injecting an inert volatile gas tracer (e.g., sulfur 

hexafluoride (SF6), propane (C3H8), or methyl chloride (CH3Cl)) and measuring its loss over a 

specified stream reach (MacIntyre et al., 1995; Wanninkhof et al., 1990). After adequate 

mixing has occurred, sampling of the stream in two locations downstream of the gas injection 

site allows for determination of the tracer concentration via headspace analysis on a gas 

chromatograph. The resulting ktracer is then converted to kCO2 using Schmidt dependences (e.g., 

Clark et al., 1995; Kokic et al., 2015; Looman et al., 2016). The conversion requires 

empirically-derived coefficients for both gases, as expressed in the following equation: 

ktracer / kCO2 = (Sctracer / ScCO2)-n (3) 

where Sc is the Schmidt number, defined as the ratio of the kinematic viscosity of water and 

the diffusion coefficient of the gas (Raymond et al., 2012), and n is the Schmidt number 

exponent, which is assigned a value of 1/2 to 2/3 depending on the surface state of the water 

(Jähne et al., 1987). Frequently, researchers couple tracer gas injection with a non-volatile 
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solute tracer injection (e.g., NaCl) to determine discharge and the travel time of the reach length 

(Genereux and Hemond, 1992; Marzolf et al., 1994; Shaw et al., 2010).  

Tracer gas injections have been the preferred method for experimentally determining 

kCO2 in headwater streams as they do not affect the air-water interface, while providing an 

integrated measure of the exchangeability of CO2 in a stream reach at a specific point in time 

(Marx et al., 2017; Wallin et al., 2011). However, due to the manual nature of gas injection, 

stream sampling, and laboratory analysis, most tracer gas experiments do not readily allow for 

frequent sampling or continuous monitoring (Marx et al., 2017). 

In a metadata analysis of 563 tracer gas experiments, Raymond et al. (2012) determined 

relationships between k and stream hydraulic and slope parameters and reported seven 

regression equations (mean r2 = 0.63). Although these equations perform well over large spatial 

scales, the authors cautioned that direct measurements of k are still necessary in small-scale 

studies. In particular, systems with high slopes and velocities, such as headwater catchments, 

require direct measurements to accurately determine k (Raymond et al., 2012; Wallin et al., 

2011). Additionally, measurements of k made at high spatial and temporal frequencies, 

especially those that capture diurnal, seasonal, hydrologic, and climatic variability, will aid in 

accurately determining flux measurements (Marx et al., 2017). 

To address these issues, I developed an automated method to determine kCO2 using CO2 

as a tracer. I tested this approach under a range of flow conditions for a first-order stream of a 

headwater catchment in southwestern British Columbia, Canada. I used two in situ infrared 

gas analyzing (IRGA) CO2-type sensors enclosed in waterproof, gas-permeable membranes 

(Johnson et al., 2010) to continuously measure pCO2 downstream from a CO2 gas diffuser that 

delivered periodic injections of CO2 to the stream environment. Using CO2 as a tracer presents 
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advantages of being automatable and field-deployable, and it does not require supplemental 

gas chromatography or conversions via Schmidt dependences, as is the case for most tracer 

gas experiments. Thus, it can be used to make measurements at different temporal resolutions, 

including at night, or in response to events of scientific interest, such as storms. The automation 

and programmability of this method will allow researchers not only to augment current datasets 

of kCO2, but also to readily scale kCO2 with hydrogeomorphic parameters.  

In the present study, I deployed this autonomous system to enable frequent and accurate 

determinations of kCO2 across a range of flow conditions. I hypothesized that a high stream 

slope and turbulent sections within the reach would result in high kCO2 values overall, and that 

kCO2 would correspond positively with flow parameters (e.g., discharge and stream velocity). 

Multiple determinations of kCO2 obtained during varying flow conditions allowed me to 

interpolate kCO2 values for the entire study period and calculate continuous CO2 emissions from 

the stream. As headwater systems are known to be “hotspots” for CO2 evasion, the proof of 

concept presented here suggests a route forward for better elucidating the role that CO2 fluxes 

from headwater streams play in the global C cycle. 

 

2 METHODS 

2.1 Site description 

I conducted the research reported on in this thesis at the University of British Columbia 

Malcolm Knapp Research Forest (MKRF) located in Maple Ridge, British Columbia, 

approximately 60 km east of Vancouver (49°16’N 122°34’W) (Figure 1). MKRF is located in 

the Fraser Valley of British Columbia and the Coastal Western Hemlock Biogeoclimatic Zone. 

It typically experiences mild, wet winters and warm, dry summers. At upper East Creek in 
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MKRF, mean annual precipitation is 2353 mm yr-1, mean annual temperature is 9°C, and mean 

monthly temperature ranges from 1.4-16.8°C (Richardson and Moore, 2010).  

 MKRF primarily contains a mixture of Douglas fir, western hemlock, and western red 

cedar, as well as big leaf maple, black cottonwood, and red alder (Turk et al., 1998). The 

understory vegetation primarily consists of vine maple, western sword fern, salal, and trailing 

blackberry (Turk et al., 1998). The soil is a Gleyed Brunisol with dominant textures of sandy 

loam and loamy sand (Tashe 1998). Parent material consists primarily of colluvium and till 

(Klinka 1976). 

 

 
 

Figure 1. Location of the UBC Malcolm Knapp Research Forest within southwestern British 

Columbia, Canada. (Google Earth) 
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 This work was carried out in experimental stream “G-H”, located in the southeastern 

part of MKRF (Figure 2). The 64-m reach of G-H used in the present study flows southwest 

below a debris jam and a weir at the outlet. The mean width of the reach is 4 m and the mean 

slope is 0.236 (13.3°). The reach is heavily shaded by vegetation, with a steep southeastern 

riparian area and a shallower northwestern riparian area intersected by a logging road. Riffle-

run sequences dominate the upper part of the reach, generating turbulence, with variable depth 

pools more common in the lower part of the reach. Many streams in MKRF, G-H included, 

partially or entirely dry up in the summer months. The catchment for G-H is 0.54 km2 and 

ranges in elevation from 235–330 m. 
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Figure 2. (a) Location of study reach in experimental stream G-H (white box) within MKRF 

(designated by roads and streams), and (b) study reach in experimental stream G-H. Photo 

taken on March 18, 2017; perspective is facing downstream. (Google Earth) 

 

2.2 Experimental setup 

A weir hut located on the stream bank at the outlet of the reach provided protection for 

a power supply and data acquisition system. A 12-V battery supplied power to a Campbell 

Scientific CR1000 datalogger and AM16/32B multiplexer, two IRGA CO2-type gas 
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analyzing sensors, six water quality sensors, a sonic anemometer, a wireless modem, and a 

solenoid valve connected to a compressed gas cylinder (Table 1).  

 

Table 1. Descriptions, manufacturers, measured parameter(s) (for this experiment), and 

accuracy of sensors used in experiment. 

Sensor Manufacturer 

Parameter(s) 

measured 

Accuracy 

GMP221 Vaisala pCO2 ±1% of range + 2% of reading 

CSIM11-L Campbell Scientific pH ±0.1% over full range 

GS3 Decagon electrical conductivity 

stream temperature 

±10% (EC) 

±1 ºC (stream temperature) 

CTD-10 Decagon depth 0.05% of full scale at 20 ºC 

81000 ultrasonic 

anemometer 

RM Young 
air temperature 

wind speed 

wind direction 

±2 ºC (air temperature) 

±0.05 m s-1 (wind speed) 

±2º (wind direction) 

 

Sensors were distributed between two groups, each of which was fixed on the stream bed: one 

group at the reach halfway point (32 m from diffuser) and one at the end of the reach (63 m 

from diffuser). Each group contained the following sensors: a Vaisala GMM220 transmitter 

module with a GMP221 CO2 probe (Vantaa, Finland), a Campbell Scientific CSIM11-L pH 

probe (Logan, Utah, USA), a Decagon GS3 ruggedized soil moisture, temperature, and 

electrical conductivity probe (Pullman, Washington, USA), and a Decagon CTD-10 electrical 

conductivity, temperature, and depth probe. Figure 3 provides a schematic diagram of field 

setup. The stream parameter values discussed below reflect measurements from the upstream 
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group of sensors, which were located mid-reach and were shaded by forest cover. The 

downstream portion of the reach was less fully shaded due to proximity to the weir and weir 

hut. An RM Young Model 81000 ultrasonic anemometer (Traverse City, Michigan, USA) was 

situated 2 m above the ground on the stream bank between the upstream and downstream 

sensors. 

 

 

Figure 3. Schematic diagram of field setup. In situ stream sensors include IRGA CO2 probes, 

pH probes, CTD, and GS3 (upstream and downstream sensor bundles are identical). The weir 

hut contains the CR1000 datalogger and battery. 

 

 The datalogger program provided commands for the sensors and solenoid valve 

through the datalogger and multiplexer, and it compiled sensor outputs into two data tables 

(see Appendices 1 and 2 for CR1000 programs). The main program collected continuous data 

from most sensors at a 5-second scan interval, averaging data into 30-minute averages. The 

IRGA sensors, with 4W demand each, were programmed to turn on for the last five minutes 

of each half-hour time block. This 30-minute data table collected data continuously and 

generated 48 distinct values for each measured component per day. During gas injection 

Diffuser 

Gas cylinder and 

solenoid valve 

Upstream sensors 
Downstream sensors 

Sonic anemometer 
Weir hut 
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periods, described in detail below, which occurred twice daily for an hour per injection (5-6 

am and 5-6 pm local time), the datalogger collected data from all sensors at 5-second intervals, 

storing this higher frequency data in a separate table. A cellular modem was turned on daily 

between 8-9 am local time, and the datalogger transmitted both data tables to a UBC laboratory 

computer. 

A data gap from December 25, 2016, to January 22, 2017, resulted from a period when 

access roads at the site were impassable due to snow and power to the system was lost due to 

an interruption in battery swaps. Other data gaps reflect tracer addition periods (CO2 injections 

or salt additions used for discharge determination), as well as periods removed due to sensor 

issues.  

 

2.3 CO2 injection and gas transfer velocity calculation 

During gas injection periods, a solenoid valve was used to switch the CO2 injection gas 

flow on for one hour, allowing the compressed gas cylinder to continuously deliver industrial-

grade CO2 at a streamflow-dependent flow rate of 5 L min-1 – 10 L min-1. CO2 flowed from the 

cylinder via U.S. Plastic Corporation Bev-A-Line tubing (Lima, Ohio) to a 1-meter long 

aquatic diffuser situated on the stream bed at the inlet of the reach, just below the debris dam. 

Upstream and downstream IRGAs recorded increasing pCO2 values as the injected CO2 

dissolved and mixed into the reach, eventually equilibrating at elevated concentrations during 

the injection. The relative differences between baseline and elevated values for each sensor 

were used in calculation of kCO2. 

Henry's Law was used to determine the mass equivalence of dissolved CO2 (here 

expressed as in carbon equivalent terms as mg CO2-C L-1) as a function of stream temperature 
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and pCO2 in solution (Plummer and Busenberg, 1982). The difference between upstream and 

downstream mass equivalences of CO2-C allowed me to calculate the evasion flux of CO2 

along the stream reach. This information, in combination with excess CO2 in solution, 

permitted determination of kCO2 using the variables listed in Table 2 via the equations given in 

Table 3. For the purpose of compatibility with existing literature, I report both kCO2 and k 

normalized to a Schmidt number of 600 (k600), which corresponds to a temperature of 20ºC for 

CO2 (Jähne et al., 1987). kCO2 can be converted to k600 using the following equation: 

k600 = kCO2 x (600 / ScCO2)-0.5 (4) 

I calculated kCO2 and k600 from 49 CO2 injections, discarded 6 negative and 5 very large 

outliers, and used the remaining 38 discrete measurements of kCO2 and k600 for assessing 

relationships with other variables. Negative kCO2 and k600 values are not physically meaningful 

in this stream due to continual CO2 supersaturation in streamwater and high turbulence. Issues 

regarding the gas cylinder setup and harsh winter weather presented challenges through 

February 2017, so the kCO2 and k600 values reported here were determined during the last four 

months of the experiment. 
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Table 2. Variables used in calculation of kCO2. 

Symbol Description (units) [constant] 

𝑘𝐻 Henry's Law constant for solubility in water at stream temperature  

𝑇 Temperature (K) 

𝑘𝐻
⊝

 

Henry's Law constant for solubility in water at standard temperature 

and pressure (STP) [0.035] 

𝐷 Temperature dependence constant (K) [2400] 

𝑇⊝ Temperature at STP (K) [298.15] 

𝐶 Mass equivalence of dissolved CO2 (mg CO2-C L-1) 

𝐶𝑂2 pCO2 resulting from injection relative to baseline (atm) 

𝛥𝐶𝑂2 Excess CO2 in solution (atm) 

𝐶𝑂2(𝑎𝑞) Mean pCO2 in stream (atm) 

𝐶𝑂2(𝑎𝑖𝑟) pCO2 in atmosphere (atm) 

𝐹 CO2 evasion flux along reach (g C L-1 d-1) 

d Depth (m) 

t Travel time between salt slug centroids (s) 

𝑘𝐶𝑂2 Gas transfer velocity (m d-1) 
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Table 3. Equations used in calculation of kCO2.  

Equation 

𝑘H(1) = 𝑘H
⊝ ×  exp(𝐷 (

1

𝑇(1)
−

1

𝑇⊝
)) 

𝑘H(2) = 𝑘H
⊝ ×  exp(𝐷 (

1

𝑇(2)
−

1

𝑇⊝
)) 

𝑘H(𝑚𝑒𝑎𝑛) = 𝑘H
⊝ ×  exp (𝐷 (

1

𝑇(𝑚𝑒𝑎𝑛)
−

1

𝑇⊝
)) 

𝐶(1) = 𝑘H(1) ×  CO2(1) ×  12 

𝐶(2) = 𝑘H(2) ×  CO2(2) ×  12 

ΔCO2 = 𝑘H(𝑚𝑒𝑎𝑛) ×  (CO2(𝑎𝑞) - CO2(𝑎𝑖𝑟))

×  12 

𝐹 =  
𝐶(1) −  𝐶(2) 

𝑡
 

𝑘CO2 =
𝛥𝐶𝑂2 ×  𝑑

𝐹 
 

 

2.4 Field measurements, sensor calibration, and sensor maintenance 

Many in situ sensors require both pre-deployment and routine calibration and 

maintenance to ensure proper functioning and data validity. Before sensor installation, I 

wrapped all sensors except the two CTDs in a protective perforated PVC wrap. Sensors were 

individually calibrated according to manufacturer calibration instructions. While the CTD 

sensors provide information on stream water EC, the EC output from the GS3 sensors has 
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higher resolution, enabling the development of stage-discharge relationships described below. 

I performed sensor maintenance on weekly field visits, except when logging roads in MKRF 

were impassable due to snow (much of January and February 2017). During field visits and 

where applicable, I cleaned all sensors with water or soapy water and a cloth, flushing any 

sediment or debris that accumulated in the protective PVC wrap. I used a Hanna Low Range 

pH/Conductivity/TDS PPM Tester HI98129 (Woonsocket, Rhode Island, USA) to obtain 

weekly pH values against which the continuously recorded pH values could be adjusted based 

on standard methods for in situ water quality sensors (Gibs et al., 2007). 

 Prior to installation, I calibrated the IRGA sensors using the Vaisala CARBOCAP 

Carbon Dioxide Calibrator (GMK220) according to the two-point calibration procedure 

described in the manual (Vaisala Oyj, 2006). During field visits, I checked the calibration of 

the IRGA sensors by deploying a third IRGA sensor next to the in situ sensors for a few minutes 

and ensured that the outputs were similar. This check ensured that both deployed sensors 

continued to perform in a similar manner and without drift throughout the study. Deployment 

of a third IRGA also allowed me to survey the stream reach for areas of potential groundwater 

inputs which could locally elevate pCO2, as well as to assess changes in pCO2 along the reach 

during several gas injections.  

The functionality of an IRGA sensor in an aqueous environment requires that the light-

source, detector, and gas bench are enclosed within a waterproof, gas-permeable membrane 

(Johnson et al., 2010). Both IRGA sensors were encased in polytetrafluoroethylene (PTFE) 

sleeves and sealed with liquid electrical tape according to the method described in Johnson et 

al. (2010). Diffusivity measurements of the sleeve indicate that it has a negligible effect on 

CO2 diffusion and sensor response time (Johnson et al., 2010). 
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I measured stream discharge using salt additions as described in Moore (2005) and 

Richardson et al. (2017) to develop a rating curve for the stream, as the V-notch on the weir 

was greater than 90º. Using this method, I added 100 g of salt (NaCl) dissolved in 1 L 

streamwater to the top of the reach and recorded EC with the upstream and downstream GS3 

sensors as the salt addition passed. I calculated discharge by integrating the downstream salt 

pulse, using a calibration constant of 0.486 mg·NaCl·cm·µS-1·L-1 (Richardson et al., 2017), 

taking the mean values based on two repeated salt additions.  The travel time between centroid 

of the salt pulse as it passed each EC sensor was used to determine modal stream velocity (V) 

(Waldon 2004). I subsequently evaluated relationships between stage, discharge, and velocity 

using regression models. These relationships were used to calculate continuous discharge and 

velocity for the entire dataset, as well as to determine the CO2 evasion dynamics and gas travel 

time between IRGA sensors during CO2 injections. 

 

2.5 Gas transfer velocity data analysis and method validation 

Data analysis was conducted in R version 3.3.3 (R Core Team, 2017). I determined 

logarithmic linear regression relationships between kCO2 and k600 and hydraulic stream 

properties, including stream discharge, velocity, and temperature. I compared the k600 values 

determined using this method to outputs from seven models of kCO2 (Table 4) based on 

hydrogeomorphic variables described in Raymond et al. (2012). Continuous long-term data are 

presented as 6-hourly averages to reduce overplotting.  

 



 18 

Table 4. Seven models for predicting k600 (m d-1) based flow velocity (V, in m s-1), slope (S, 

unitless), stream depth (D, in m), discharge (Q, in m3 s-1), and the Froude number (Fr = 

V/(gD)0.5), described in Raymond et al. (2012). 

Model equation 

𝑘600 = (𝑉𝑆)0.89±0.020 × 𝐷0.54±0.030 × 5037± 604 

𝑘600 = 5937 ± 606 × (1 − 2.54

± 0.223 × 𝐹𝑟2) × (𝑉𝑆)0.89±0.017 × 𝐷0.58±0.027 

𝑘600 = 1162 ± 192 × 𝑆0.77±0.028 × 𝑉0.85±0.045 

𝑘600 = (𝑉𝑆)0.76±0.027 × 951.5 ± 144 

𝑘600 = 𝑉𝑆 × 2841± 107 + 2.02 ± 0.209 

𝑘600 = 929± 141 × (𝑉𝑆)0.75±0.027 × 𝑄0.011±0.016 

𝑘600 = 4725 ± 445 × (𝑉𝑆)0.86±0.016 × 𝑄−0.14±0.012 × 𝐷0.66±0.029 

 

2.6 Continuous CO2 emissions estimates 

 I determined continuous kCO2 and k600 for the entire study period using the linear 

regression relationships between log(kCO2), log(k600), and discharge. Back-transforming 

logarithmic regression models requires a bias correction and uncertainty calculation 

(Baskerville, 1972). A regression model of the form: 

log(y) = x = b0 + b1x + e (5) 

can be solved using the original terms and the sample residual variance of the logarithmic 

equation (), in which (Baskerville, 1972): 

y = e(x + /2) (6) 

The estimated variance in y (A) can be calculated via (Baskerville, 1972): 
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A = e(2 + 2x) - e( + 2x) (7) 

I determined continuous CO2 emissions from the stream using Equation (2), with continuous 

kCO2, continuous dissolved pCO2, and the average atmospheric pCO2 above the reach (427 

atm atm-1), with the latter determined via headspace analysis on a gas chromatograph (Kling 

et al., 1991) (See Appendix 3 for description of analysis). I also determined regression 

relationships between continuous CO2 emissions and continuous stream discharge and 

velocity.  

 

3 RESULTS 

3.1 Continuous monitoring of stream and environmental parameters 

3.1.1 Weather 

Precipitation at MKRF totaled 1387 mm over the study period (November 2016 – June 

2017). Mean air temperature during the study period was 4 ºC and ranged from -11 to +21 ºC 

(Figure 4). Mean wind velocity measured within the forest and adjacent to the stream was 0.3 

m s-1 and ranged from 0.004 – 0.94 m s-1, with about half of all observations originating from 

the north and northeast (Figure 5). Table 5 provides monthly rainfall totals and average 

temperatures for the study period as well as 30-year means. 

3.1.2 CO2 variability and stream chemistry 

Baseline pCO2 values ranged from 1133 – 2110 atm atm-1 over the study period, with 

mean and median values of 1434 and 1404 atm atm-1 (Figure 4). Streamwater pCO2 decreased 

slightly between November and February, and diurnal variation remained relatively stable and 

limited between November and April. Both pCO2 and diurnal variation increased during May 
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and June. See Table 6 for mean and median values and ranges of pCO2 during each month of 

the study period. Streamwater pH ranged from 6.5 – 7.2, with an average value of 6.9. 

Stream temperature ranged from 0.3 – 15.2 ºC during the study period, with a mean 

value of 7 ºC (Figure 4). Electrical conductivity remained relatively low, with mean and 

median values of 12 and 11 s cm-1 and a range of 10 – 19 s cm-1 (Figure 4).  

 

 

 

Figure 4. Time series of 6-hour time-averaged (a) air temperature, (b) pCO2, (c) stream 

temperature, and (d) electrical conductivity observations during the study period. 
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Figure 5. (a) Time series of 6-hour time-averaged wind speed observations during the study 

period and (b) wind rose of frequencies of 30-minute time-averaged wind speed observations 

by direction during the study period. 
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Table 5. Monthly rainfall totals (mm) and average (ºC) temperatures during the study period 

and 30-year means. 

Month Rainfall (mm) Temperature (ºC) 

 Study period 30-year mean Study period 30-year mean 

November 310 334 5.3 5.3 

December 254 289 -2.5 2.4 

January 137 259 0.4 2.2 

February 167 230 -1.6 4 

March 326 209 2.7 6.2 

April 176 161 5.5 9.1 

May 131 136 9.3 12.4 

June 21 107 11.5 15.1 

 

 

Table 6. Mean and median stream pCO2 values during each month of the study period. 

Month mean pCO2 (atm atm-1) median pCO2 (atm atm-1) 

November 1531 1533 

December 1442 1444 

January 1349 1355 

February 1327 1330 

March 1365 1372 

April 1347 1350 

May 1458 1449 

June 1637 1623 

 

 



 23 

3.2 Discharge determinations from salt slug injections 

I calculated discharge, velocity, and travel time between salt pulse centroids based on 

data recorded by two electrical conductivity sensors from 24 salt additions between January 

and May, 2017. Of these calculations, 19 were used to model regression relationships between 

hydrologic variables and stage, while 5 were discarded as statistical outliers due to a poor 

relationship with discharge. Non-linear regression models that predicted stream discharge, 

stream velocity, and travel time using stage as an external regressor performed well, with r2 

values of 0.95 (p < 0.001), 0.90 (p < 0.001), and 0.86 (p < 0.001), respectively (Table 7). 

Calculated stream discharge during salt additions ranged from 56.8 L s-1 – 438 L s-1, and 

calculated velocities during salt additions ranged from 0.11 – 0.46 m s-1. Travel times for the 

31 m between groups of sensors ranged from 70 s at higher flows to 295 s at lower flows.  

 

Table 7. Equations, coefficients of determination, and p-values of regression models that 

predict discharge (Q), flow velocity (V), and slug travel time (T) from stage (D), based on 

calculations from salt slug injections (n = 19). 

Equation r2 p-value 

𝑄 = 0.005 × 𝐷1.856 0.95 < 0.001 

𝑉 = 0.001 × 𝐷 − 0.036 0.90 < 0.001 

𝑇 = 72944 × 𝐷−1.105 0.86 < 0.001 

 

3.2.1 Hydrology 

The hydrograph over the study period (Figure 6) indicated rapid responses to frequent 

storm events, with discharge surpassing 400 L s-1 during six events throughout the study 
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period. Overall, discharge was higher during the rainy months of November and December 

and lower in late January and throughout February, which were uncharacteristically cold and 

snowy compared to the long-term record. Higher discharge resumed with spring rains in 

March. Mean and median discharge during the study period was 117.2 and 92.6 L s-1, 

respectively, and ranged from 9.2 – 601.5 L s-1. Mean flow velocity over the study period 

(Figure 6) ranged from 0.02 – 0.45 m s-1, with mean and median values of 0.15 and 0.14 m s-

1, respectively. 
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Figure 6. Time series of 6-hour time-averaged (a) stream discharge and (b) velocity during the 

study period.  

 

 

3.3 Gas transfer velocity estimates 

Mean and median kCO2 values were 48.9 and 31.4 m d-1, respectively, and ranged from 

18.32 to 186.16 m d-1. Mean and median k600 values were 66.0 and 42.3 m d-1, respectively, 
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and ranged from 20.4 to 261 m d-1. Values for kCO2 and k600 as well as discharge, stream 

velocity, and stream temperature values during each CO2 injection are given in Table 8. 

 

Table 8. Values calculated from 38 CO2 injections: gas transfer velocities (kCO2), gas transfer 

velocities normalized to a Schmidt number of 600 (k600), stream discharge (Q), stream velocity 

(V), and stream temperature (T). 

kCO2 

(m d-1) 

k600 

(m d-1) 

Q 

(L s-1) 

V 

(m s-1) 

T 

(ºC) 

82.46 118.34 264.97 0.28 6.51 

116.60 162.36 230.53 0.25 7.65 

105.26 148.76 194.54 0.23 7.09 

82.44 115.65 199.32 0.23 7.37 

77.33 108.80 182.23 0.22 7.26 

186.16 260.98 266.37 0.28 7.39 

136.99 194.78 247.48 0.27 6.86 

74.22 103.92 220.25 0.25 7.44 

55.85 79.10 201.42 0.23 7.01 

65.07 88.89 100.73 0.15 8.37 

29.26 40.14 66.64 0.11 8.22 

32.33 44.38 80.05 0.13 8.20 

47.07 64.24 70.52 0.12 8.42 

22.17 29.01 50.51 0.09 10.02 

21.23 27.26 44.53 0.08 10.73 

55.61 73.41 122.56 0.17 9.68 
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35.25 45.09 115.31 0.16 10.90 

26.55 34.31 101.32 0.15 10.50 

72.04 93.73 153.64 0.20 10.24 

53.31 71.52 141.49 0.19 9.07 

55.60 73.55 137.98 0.18 9.60 

38.27 52.04 114.32 0.16 8.55 

34.04 44.78 98.16 0.15 9.82 

26.41 35.68 84.74 0.13 8.81 

25.37 33.28 73.12 0.12 9.93 

26.95 36.07 64.95 0.11 9.16 

22.84 29.75 57.19 0.10 10.20 

27.31 33.87 20.47 0.04 12.08 

29.08 35.08 19.36 0.04 13.17 

30.44 37.55 18.67 0.04 12.30 

26.25 30.94 16.86 0.04 14.08 

27.30 32.73 15.69 0.03 13.41 

19.16 21.85 13.80 0.03 15.39 

19.03 21.97 12.96 0.03 14.91 

18.83 20.96 11.16 0.02 16.39 

18.38 20.81 10.65 0.02 15.71 

18.32 20.43 9.94 0.02 16.30 

18.92 22.20 9.59 0.02 14.26 
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3.3.1 Relationships between gas transfer velocities and stream parameters 

Overall, I found that kCO2 and k600 were positively associated with stream discharge, 

with low values at low discharge (Q < 100 L s-1) and high values at high discharge (Q > 100 L 

s-1) (Figure 7). Mean values of kCO2 and k600 at low discharge were 25.8 and 32.5 m d-1, and 

mean values of kCO2 and k600 at high discharge were 77.6 and 107 m d-1. Similarly, kCO2 and 

k600 were positively associated with stream velocity, with low values at low velocity (V < 0.13 

m s-1) and high values at high velocity (V > 0.13 m s-1) (Figure 8). Mean values of kCO2 and 

k600 at low flow velocity were 25.3 and 31.7 m d-1, and mean values of kCO2 and k600 at high 

velocity were 72.6 and 100 m d-1. kCO2 and k600 were inversely related to stream temperature, 

with low values at high temperature (T > 10 ºC) and high values at low temperature (T < 10 

ºC) (Figure 9). Mean values of kCO2 and k600 at low stream temperature were 67.0 and 92.9 m 

d-1, and mean values of kCO2 and k600 at high stream temperature were 26.7 and 32.8 m d-1 

Of the 38 CO2 injections, 21 were conducted during the day, and 17 were conducted at 

night. Mean values of kCO2 and k600 during daytime and nighttime were 51.4 and 69.0 m d-1 and 

45.9 and 62.3 m d-1, respectively. Although daytime values were slightly higher, interquartile 

ranges of daytime and nighttime kCO2 and k600 overlapped significantly (Figure 10). 
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Figure 7. Boxplots of (a) kCO2 and (b) k600 at low discharge (Q < 100 L s-1) and high discharge 

(Q > 100 L s-1).  
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Figure 8. Boxplots of (a) kCO2 and (b) k600 at low flow velocity (V < 0.13 m s-1) and high flow 

velocity (V > 0.13 m s-1). 
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Figure 9. Boxplot of (a) kCO2 and (b) k600 at low stream temperature (T < 10 ºC) and high stream 

temperature (T > 10 ºC). 
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Figure 10. Boxplots of (a) kCO2 and (b) k600 during daytime and nighttime. 

 

 

3.3.2 Linear regression models of gas transfer velocities and stream parameters 

 Linear regression models that predicted log(kCO2) and log(k600) from stream discharge, 

stream velocity, and stream temperature as single regressor terms performed well, with 
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discharge having the highest predictive power (r2 = 0.86 and 0.88; p < 0.001 and 0.001), 

velocity having the second highest (r2 = 0.82 and 0.85; p < 0.001 and 0.001), followed by 

temperature (r2 = 0.58 and 0.65; p < 0.001 and 0.001). Regression relationships corroborated 

overall relationships described above, with log(kCO2) and log(k600) positively associated with 

discharge and velocity and negatively associated with temperature.  Figure 11 provides 

bivariate plots of log(kCO2) and log(k600) and stream discharge, velocity, and temperature, as 

well as linear regression fits and 95% confidence intervals. Table 9 provides linear regression 

coefficients and statistics of the six models. 
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Figure 11. Bivariate plots of (a) log(kCO2) and stream discharge, (b) log(k600) and stream 

discharge, (c) log(kCO2) and stream velocity, (d) log(k600) and stream velocity, (e) log(kCO2) and 

stream temperature, and (f) log(k600) and stream temperature (n = 38). Blue lines are linear 

regression models with equations and coefficients of determination (r2) given in panel (all p-

values < 0.001). Shaded areas are 95% confidence envelopes. Error bars reflect minimum and 
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maximum pCO2 measurements considering ±2% IRGA uncertainty (some within the margins 

of points). Color scale for values and error bars in (a) – (d) indicate stream temperature. 

 

Table 9. Equations, coefficients of determination, residual standard errors (RSE), and p-values 

of linear regression models that predict log(kCO2) and log(k600) from stream discharge (Q), 

stream velocity (V), and stream temperature (T) as single regressor terms. 

Variable Equation r2 adj. r2 RSE p-value 

Q log(𝑘𝐶𝑂2) = 0.01𝑄 + 2.94 0.86 0.85 0.24 < 0.001 

V log(𝑘𝐶𝑂2) = 6.79𝑉 + 2.77 0.82 0.81 0.28 < 0.001 

T log(𝑘𝐶𝑂2) = −0.16𝑇 + 5.38 0.58 0.57 0.41 < 0.001 

Q log(𝑘600) = 0.01𝑄 + 3.12 0.88 0.87 0.25 < 0.001 

V log(𝑘600) = 7.59𝑉 + 2.92 0.85 0.85 0.27 < 0.001 

T log(𝑘600) = −0.19𝑇 + 5.91 0.65 0.64 0.41 < 0.001 

 

Multiple linear regression models that predicted log(kCO2) and log(k600) from either 

stream discharge and temperature or velocity and temperature did not outperform single linear 

regression models that predicted log(kCO2) and log(k600) from either stream discharge or 

velocity, with no enhancement of the predictive power of the models by adding a stream 

temperature term. Stream discharge and temperature had a higher predictive power (r2 = 0.86 

and 0.88; p < 0.001 and 0.001) than stream velocity and temperature (r2 = 0.82 and 0.85; p < 

0.001 and 0.001). Table 10 provides linear regression coefficients and statistics of the four 

models. 
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Table 10. Equations, coefficients of determination, residual standard errors (RSE), and p-

values of multiple linear regression models that predict log(kCO2) and log(k600) from stream 

discharge (Q), stream velocity (V), and stream temperature (T) as regressor terms. 

Variables Equation r2 adj. r2 RSE p-value 

Q + T log(𝑘𝐶𝑂2) = 0.01𝑄 − 0.003𝑇 + 2.98 0.86 0.85 0.25 < 0.001 

V + T log(𝑘𝐶𝑂2) = 7.92𝑉 + 0.04𝑇 + 2.24 0.82 0.81 0.27 < 0.001 

Q + T log(𝑘600) = 0.001𝑄 − 0.03𝑇 + 3.50 0.88 0.87 0.25 < 0.001 

V + T log(𝑘600) = 7.93𝑉 + 0.01𝑇 + 2.76 0.85 0.84 0.27 < 0.001 

 

3.3.3 Model validation of k600 

Using empirically determined data for discharge, flow velocity, and stage during CO2 

injections as well as stream slope, I calculated k600 from the seven models provided in Raymond 

et al. (2012). Calculations of k600 for each CO2 injection period estimated by the seven models 

described by Raymond et al. (2012) yielded mean and median values of 83.8 and 85.0 m d-1, 

respectively, and range from 12.3 – 172 m d-1. The models overestimated k600 compared to 

measured k600 values by 17.8 m d-1 on average. Figure 12 illustrates the relationship between 

measured k600 and modeled k600, as well as the linear regression model fit and a 1:1 line. The 

root mean square error (RMSE) of the model was 29.0 m d-1. Table 11 provides linear 

regression coefficients and statistics of the model. 
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Figure 12. Bivariate plot of measured k600 and mean of the modeled k600 calculated from seven 

models described in Raymond et al. (2012) (n = 38). The blue line is a linear regression model 

with equation:   k600 modeled = 0.761k600 measured + 33.541 (r2 = 0.66, p < 0.001). The shaded area 

is the 95% confidence envelope. The red line is the 1:1 line. Error bars reflect minimum and 

maximum k600 calculations considering ±2% IRGA uncertainty (some within the margins of 

points).  
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Table 11. Equation, coefficients of determination, residual standard error (RSE), and p-value 

of a linear regression model that predicts modeled k600 from measured k600. 

Equation r2 adj. r2 RSE p-value 

𝑘600𝑚𝑜𝑑𝑒𝑙𝑒𝑑 = 0.76𝑘600𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 33.54 0.66 0.65 29.74 < 0.001 

 

 

3.4 Continuous CO2 emissions estimates 

 I computed kCO2 and k600 on a continuous basis for the study period using the regression 

relationships between log(kCO2) and log(k600) and discharge (Table 9) and Equations (6) and 

(7). I also calculated continuous CO2 emissions (FCO2) from the stream using continuous kCO2 

and Equation (1). Continuous kCO2 and k600 reflected variability in continuous discharge, with 

kCO2 and k600 exceeding 500 and 900 m d-1 on two occasions, during high-flow (Q > 440 L s-1) 

events (Figure 13). Mean and median kCO2 and k600 values during the entire study period were 

64.6 and 95.1 m d-1 and 36.9 and 47.7 m d-1, respectively, and ranged from 20.2 and 24.5 m d-

1 to 1440 and 2800 m d-1, respectively.  

Similarly, continuous CO2 emissions reflected variability in continuous kCO2 and k600 

and discharge, with the highest fluxes occurring during high flow events with the highest kCO2 

and k600 values discussed above (Figure 13). There was not significant diurnal cycling in kCO2 

and k600 or CO2 emissions during the study period. Estimated variance in continuous kCO2 and 

k600 was very high, with mean and median values of 10700 and 43300 m d-1 and 999 and 2270 

m d-1, respectively. 

 A linear regression model that predicted log(FCO2) from continuous stream discharge 

performed well (r2 = 0.98, p < 0.001). Similarly, a weighted loess regression model that 

predicted log(FCO2) from continuous stream velocity performed well (RSE = 0.11). One outlier 
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(FCO2 = 883 g C L-1 d-1) was removed to reduce heteroscedasticity and normalize residuals of 

the loess fit. I found that log(FCO2) was positively associated with flow parameters. Figure 14 

provides bivariate plots of log(FCO2) and discharge and flow velocity, as well as regression fits 

and 95% confidence intervals. Table 12 provides linear regression coefficients and statistics of 

the linear model. Appendix 4 provides predicted FCO2 values of the weighted loess model.  
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Figure 13. Time series of 6-hour time-averaged (a) kCO2, (b) k600, and (c) CO2 emissions (FCO2) 

during the study period. 
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Figure 14. Bivariate plots of (a) continuous discharge (Q) and log(FCO2) and (b) continuous 

flow velocity and log(FCO2) (n = 194). The blue lines are (a) a linear regression model with 

equation: log(FCO2) = 0.01Q + 2.58 (r2 = 0.98; p < 0.001) and (b) a loess regression model 

(RSE = 0.11). The shaded areas are the 95% confidence envelopes. 
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Table 12. Equation, coefficient of determination, residual standard error (RSE), and p-value of 

a linear regression model that predicts log(FCO2) from discharge (Q) as a single regressor term. 

Variables Equation r2 adj. r2 RSE p-value 

Q log(𝐹𝐶𝑂2) = 0.01𝑄 + 9.86  0.97 0.97 0.11 < 0.001 

 

 

4 DISCUSSION 

4.1 Gas transfer velocity estimates 

 Mean and median k600 values were 66.0 and 42.3 m d-1, respectively. These values were 

in the high range of those reported in the literature, but were in line with those reported for 

steep, turbulent headwater streams (e.g., Natchimuthu et al., 2017). The mean k600 value of the 

current study was most similar to the mean k600 value of 67 m d-1 reported in Natchimuthu et 

al. (2017), a study of CO2 emissions from the stream network of a forested, hemiboreal 

catchment in Sweden, in which k600 values were determined via propane injections. Streams 

with very steep reaches and steep waterfalls were included in calculation of this value; 

excluding the steepest reaches, the mean k600 was 6.5 m d-1 (Natchimuthu et al., 2017). Average 

k600 values of the present study were also similar to mean and median values of 41.0 and 16.1 

m d-1 determined via propane injections in 12 peatland headwater streams in the United 

Kingdom (Billett and Harvey, 2013). A study of O2 exchange in the Colorado River, Grand 

Canyon, USA modeled mean k600 values of 1410, 37, and 113 m d-1 for the rapids, runs, and 

entire river, respectively (Hall et al., 2012).  

The kCO2 and k600 values determined in the current study also corresponded well with 

those determined in other streams in the Pacific Northwest (Raymond et al., 2012; Stackpoole 
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et al., 2012; Stackpoole et al., 2017). A metadata analysis (Raymond et al., 2012) based on five 

datasets (Bott, 1996; Bott et al., 2006; Melching and Flores, 1999; Mulholland et al., 2001; 

Tsivoglou and Wallace, 1972) modeled k600 values for the Pacific Northwest region of the 

USA, which ranged from ~25 m d-1 to just under 40 m d-1. However, Raymond et al. (2012) 

cautioned that the models may overestimate k600 and are only applicable at large spatial scales.  

In a study of aquatic carbon fluxes in five ecoregions of the Western USA, estimated 

kCO2 values for streams in the Western Cordillera, determined via hydraulic relationships, 

ranged from 10 to 80 m d-1 (Stackpoole et al., 2012), and included the models used in the 

present study (Melching and Flores, 1999; Raymond et al., 2012). In a recent study of riverine 

and lacustrine gas exchange in multiple regions of Alaska, mean river kCO2 values ranged from 

9.2 m d-1 in the Northwest region to 27.5 m d-1 in the Southeast region, with a mean value for 

all regions of 14.6 m d-1 (Stackpoole et al., 2017). 

 The range of k600 values reported in the present study (20.4 – 261 m d-1) were also 

within the range of, and in some cases much lower than, the upper range of k600 values reported 

in the literature. A study of gas exchange in the Amazon and Mekong river systems reported 

k600 values determined using floating chambers for streams and small rivers (<100 m wide) as 

high as 71 m d-1 (Alin et al., 2011). Hall and Tank (2003) reported an upper range for k600 of 

42 m d-1 determined via SF6 injections in small streams in Grand Teton National Park, 

Wyoming. Upper ranges for k600 in rapids, runs, and the entire river system in the Colorado 

River, Grand Canyon, USA were 7730, 143, and 113 m d-1, respectively (Hall et al., 2012). 

Natchimuthu et al. (2017) determined an upper range of 558.7 m d-1 in the steepest reaches of 

headwater streams in a Swedish hemiboreal catchment. 
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 However, many previous studies have reported average k600 values for headwater 

streams and small rivers lower than the range of those determined in the present study. Butman 

and Raymond (2011) estimated a mean k600 value of 18 m d-1 based on a model using slope 

and flow velocity terms in the steep headwater streams of the American west. Hall and Tank 

(2003) determined a mean k600 value of 18.4 m d-1 in the small streams of Grand Teton National 

Park, Wyoming, USA. Wallin et al. (2011) determined mean and median k600 values of 13 and 

7.4 m d-1, respectively, via propane injections in boreal headwater streams in Sweden. Mean 

and median k600 values for a first-order stream in Walker Branch, Tennessee, USA determined 

via propane injections were 5 and 7 m d-1, respectively (Wanninkhof et al., 1990), and ranged 

from 5.5 – 14.2 m d-1 (Roberts et al., 2007). Streams and small rivers (<100 m wide) in the 

Amazon and Mekong river systems yielded a mean k600 value of 5.6 m d-1 (Alin et al., 2011). 

Campeau et al. (2014) determined k600 values for a lowland boreal river system in Northern 

Quebec using suspended floating chambers and corroborated results with modeled values; the 

mean of all samples (stream orders 1 – 6) was under 1 m d-1, with lower orders having the 

lowest mean k600 values. Crawford et al. (2013) determined a mean value of 6.5 m d-1 for a 

boreal headwater stream network in Alaska using suspended floating chambers. The mean and 

range values of k600 for five small streams in the Northern Highlands Lake District of north 

central Wisconsin and Michigan, USA, determined via suspended floating chambers, were 3.9 

m d-1 and 0.3 – 13.5 m d-1, respectively (Crawford et al., 2014). A mean k600 value for first-

order streams in Sweden determined via equations with slope and depth parameters (O'Connor 

and Dobbins, 1958) was 6.5 m d-1 (Humborg et al., 2010). In a study of CO2 emissions from 

low-gradient (<4%) streams in a southwestern Alaskan watershed, Smits (2016) estimated a 
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mean k600 value of 5.9 m d-1 from an oxygen-based regression model, and 6 m d-1 from the 

models used in the present study. 

 Thus, k600 values determined in the present study were in the high range of, and in some 

cases much higher than, reported k600 values for streams and rivers in general, and headwater 

streams specifically. Billett and Harvey (2013) discussed potential reasons why their k600 

estimates were higher than those previously published for headwater streams, noting that 

multiple measurements were conducted during high discharge events, and that the reaches they 

used were narrower and deeper than those used in other studies, with stream width to depth 

ratios ranging from 2 to 15. In the present study, mean discharge observed during CO2 injection 

periods ranged from 10 to 266 L s-1, with mean and median values of 101 and 82 L s-1, 

respectively. Mean and median discharge values observed during the entire study period were 

117 and 93 L s-1, respectively, and ranged from 9 to 601 L s-1. Average k600 values therefore 

represent and likely slightly underestimate k600 values for the entire study period, with the range 

of k600 values excluding very high flow events. The mean stream width to depth ratio observed 

during CO2 injections was 19, which is higher than those observed in Billett and Harvey 

(2013), but lower than those observed in other studies (e.g., Hall and Tank, 2003).  

 There was good correspondence between modeled k600 values and measured k600 

values, with a linear regression model using measured k600 as an external regressor explaining 

66% of the variance in modeled values. This is slightly higher than the predictive power of the 

models in the original metadata analysis (mean r2 = 0.63) (Raymond et al., 2012). In the present 

study, models overestimated k600 by 17.8 m d-1 on average, which is generally consistent with 

conclusions of the original analysis (Raymond et al., 2012). The original analysis also found 
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that k600 values were generally highest in headwater streams in the Pacific Northwest region, 

compared to all other regions of the USA (Raymond et al., 2012). 

 In a study of gas exchange in a hemiboreal headwater stream network, Natchimuthu et 

al. (2017) found that the models for k600 performed well for values below 100 m d-1 but 

underestimated values above 100 m d-1 by as much as 80%, likely because the models were 

not developed in the context of reaches with steep slopes or high altitudes and correspondingly 

high k600 values (Natchimuthu et al., 2017; Raymond et al., 2012; Stackpoole et al., 2012). In 

the present study, models underestimated k600 for values above 139 m d-1. The slope of this 

reach (13.3º, equivalent to 23.6% slope) was slightly higher than the highest slope category (6 

– 21%) studied in Natchimuthu et al. (2017), which the authors found to generate the highest 

k600 values. A high slope for this reach may therefore explain both generally high k600 values 

and model performance. Other studies have noted that slope is positively associated with k600 

(Moog and Jirka, 1999; Raymond et al., 2012), although some studies have reported no 

correspondence between slope and k600 (e.g., Smits, 2016). 

 

4.2 Relationships between gas transfer velocities and stream parameters 

 I found good correspondence between kCO2 and k600 and stream discharge, velocity, and 

temperature, with single linear regression models using these parameters as external regressors 

explaining 86 and 88%, 82 and 85%, and 58 and 65% of the variance in kCO2 and k600, 

respectively. Values for kCO2 and k600 were positively associated with discharge and flow 

velocity, and negatively associated with stream temperature. Boxplots of kCO2 and k600 at high 

and low values of stream discharge, velocity, and temperature illustrate these relationships 

(Figures 12 – 17). 
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 Previous studies have found good correspondence between k600 and discharge (e.g., 

Natchimuthu et al., 2017), but the relationship is generally spatiotemporally variable (Billett 

and Harvey, 2013; Wallin et al., 2011) and depends on the relationship between discharge and 

turbulence in a given reach (Wallin et al., 2011). Gas exchange studies that have determined 

k600 for multiple reaches in a catchment under multiple flow conditions have found positive, 

negative, and zero correspondence between k600 and discharge in different reaches (Billett and 

Harvey, 2013; Natchimuthu et al., 2017; Wallin et al., 2011). Two studies that determined k600 

for different reaches in the same stream found positive (Roberts et al., 2007) and zero 

(Genereux and Hemond, 1992) correspondence between k600 and discharge. Natchimuthu et al. 

(2017) found that the correspondence between k600 and discharge increased positively with 

increasing slope, suggesting that steeper reaches generate more turbulence with higher flow 

than flatter reaches, thereby increasing gas evasion (Wallin et al., 2011). This reach was 

relatively steep compared to previously studied reaches and generated turbulence in many 

areas under high flow conditions, which may explain the strong relationships between kCO2 and 

k600 and mean discharge. Correspondingly, many studies have found both a strong positive 

relationship (Billett and Harvey, 2013; Natchimuthu et al., 2017; Sand-Jensen and Staehr, 

2012) and no relationship (Natchimuthu et al., 2017) between flow velocity and k600. Variable 

channel morphologies and bed characteristics in a given catchment therefore limit the potential 

for regional scaling of k600 based on discharge or flow velocity terms (Moog and Jirka, 1999; 

Wallin et al., 2011). 

 Additionally, previous work comparing studies from different latitudes has shown that 

k600 varies with stream temperature, although the predictor is not as strong as turbulence 

parameters (Aufdenkampe et al., 2011). Similarly, the present study shows that kCO2 and k600 
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were negatively associated with stream temperature, but the parameter explains less of the 

variance in kCO2 and k600 (58 and 65%) than discharge and velocity as single regressor terms. 

Water temperature may be a strong predictor for k600 in lakes, where convection at the air-

water interface drives turbulence (Holgerson et al., 2017; MacIntyre et al., 2010). In streams, 

streamflow and morphological parameters drive turbulence, rather than convection (Wallin et 

al., 2011). Figure 11 indicates that stream temperature was strongly associated with discharge 

and velocity in the present study, suggesting that the relationship between stream temperature 

and kCO2 and k600 was due to the strong seasonal relationship between stream temperature and 

flow parameters. Further, kCO2 values calculated using mean pCO2, travel time, and stage 

parameters from CO2 injections showed no change with changing temperature, given that all 

other parameters stayed the same and temperature values from both sensors changed 

concurrently. Under these conditions, k600 values decreased with increasing stream temperature 

(e.g., by 4 m d-1 between 6 and 8ºC). 

 

4.3 CO2 evasion estimates 

 CO2 evasion from headwater streams has been reported as the dominant process 

governing aqueous C fluxes in a boreal landscape (Wallin et al., 2013). Studies have reported 

high spatiotemporal variability in both stream pCO2 and CO2 emissions from headwater 

streams (Billett and Harvey, 2013; Sand-Jensen and Staehr, 2012; Wallin et al., 2013), with 

variability in gas transfer velocities controlling CO2 evasion (Wallin et al., 2011) and 

decreasing pCO2 with increasing gas transfer velocities (Dosch, 2014). Additionally, pCO2 

decreases and CO2 evasion increases with increasing slope in headwater streams (Finlay, 2003; 

Natchimuthu et al., 2017; Wallin et al., 2011). Wallin et al. (2011) found that stream slope, 
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width, and depth parameters explained 83% of spatial variability in gas transfer velocities in a 

boreal stream network. In a hemiboreal headwater catchment, Natchimuthu et al. (2017) 

determined that the steepest slope category (6 – 21%) generated CO2 emissions four times 

greater than the mean emissions for all studied reaches, despite comprising 0.9% of the total 

stream surface area. The authors further hypothesized that high flow events in steep headwater 

streams may play a dominant role in annual CO2 emissions from a catchment, even if they 

occur over short periods of time (Natchimuthu et al., 2017).  

In the present study, CO2 emissions were variable overall and highest during high flow 

events, with discharge explaining 97% of the variability in emissions and flow velocity 

explaining 89% of the variability in emissions during the study period. High flow events were 

likely "hot moments" of CO2 evasion (McClain et al., 2003); almost 80% of CO2 emissions 

occurred when discharge was greater than the median overall discharge of 92 L s -1. The high 

slope, high gas transfer velocities, and high degree of turbulence in this stream suggest that it 

may play an important role in CO2 emissions from the catchment, with future climate-driven 

hydrological regime changes potentially increasing current emissions estimates (Natchimuthu 

et al., 2017). Additionally, estimates of CO2 evasion calculated using k600 determined via the 

seven models used in the present study underestimated CO2 evasion by a mean of 1191 g C L-

1 d-1, corroborating evidence that high flow events are significant determinants of CO2 evasion 

from headwater streams and are likely underrepresented by infrequent measurements and 

modeled calculations. Figure 15 provides a comparison of modeled CO2 evasion over the study 

period from the two methods; evasion calculated using k600 determined via the seven models 

used in the present study again underrepresented the highest modeled flux events. An important 

note is that CO2 evasion estimates were determined from back-transformed logarithmic 
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estimates of continuous kCO2, which had very high calculated uncertainties, in some cases 

higher than kCO2 estimates by multiple orders of magnitude. Thus, modeling kCO2 and k600 or 

FCO2 in this way may not be reliable, depending on the desired accuracy of the estimates. 

 

4.4 Advantages and drawbacks of automated CO2 injections as a tracer for kCO2 and FCO2 

 Despite the widespread use of tracer gas injections for determining gas transfer 

velocities, shortcomings of current techniques result in analytical variability (Sand-Jensen and 

Staehr, 2012) and data scarcity (Marx et al., 2017). Sand-Jensen and Staehr (2012) provide a 

comprehensive discussion regarding limitations of using tracer gases (e.g. oxygen, propane, 

ethane, SF6) in aqueous CO2 emissions studies, including errors associated with Schmidt 

conversions (Cole and Caraco, 1998; Simonsen, 1974; Thyssen and Kelly, 1985), pH-

dependent conversions of CO2 in aqueous environments (Ho et al., 1997), and differences in 

how different gases pass through an organic-rich air-water interface (Frew, 1997). 

 Conventional tracer gas studies also rely on manual sampling, which limits the 

frequency and timing with which samples can be collected. For example, there is a paucity of 

nighttime gas exchange data collected via tracer gas analysis (Marx et al., 2017), despite the 

likelihood that diurnal processes, such as in-stream metabolism (Crawford et al., 2013), affect 

gas transfer velocities and CO2 emissions (Schelker et al., 2017). In a study of CO2 evasion 

from a steep, high gradient stream network in the European Alps, evasion was highest at 

nighttime and lowest at daytime (Schelker et al., 2017). However, in a study of CO2 evasion 

from a large boreal river in Finland, Huotari et al. (2013) reported no significant diurnal cycling 

in CO2 fluxes. Similarly, in the present study, there were no significant diurnal trends in gas 

transfer velocities or CO2 fluxes. This finding is likely supported by the hypothesis that most 
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streamwater CO2 is terrestrially-derived (Dinsmore and Billett, 2008; Hope et al., 2004), and 

thus stream pCO2 was largely not governed by in-stream processes during the present study. 

However, year-round data collection as streamflow permits will allow for a better 

interpretation of the importance of in-stream processes for CO2 evasion dynamics. Continued 

research on diurnal trends in CO2 transfer velocities and emissions will elucidate processes and 

fill in data gaps. Additionally, it is worth noting that innovations in tracer gas techniques have 

incorporated diurnal sampling; for example, Tobias et al. (2009) measured gas transfer 

continuously for 32 hours by pumping dilute SF6-saturated water into a stream.  

 While methods that include direct measurements of CO2 fluxes, such as floating 

chamber techniques, can be deployed for extended periods of time and preclude analytical 

errors associated with conventional tracer gas studies, they have been criticized for 

underestimating fluxes by disrupting turbulence and creating artificial pressure and 

temperature conditions (Gafalk et al., 2013; Crawford et al., 2014; Raymond and Cole, 2001). 

Suspended chamber techniques have mitigated some of these effects and validated data with 

other methods (Crawford et al., 2013; Crawford et al., 2014). 

 Direct injection of CO2 for use as a tracer precludes analytical variability concerning 

Schmidt conversions, pH dependencies, and gas-dependent interactions at the air-water 

interface. In situ measurement of pCO2 also has advantages over ex situ measurement (e.g. 

systems that circulate air to a sensor outside of the stream), including enhanced precision and 

response time (Johnson et al., 2010). Further, automated injections allow for continuous 

monitoring at any desired time scale. Although trigger parameters for automated injections 

other than time of day were not tested in the present study, it is certainly possible to program 

a datalogger to collect tracer data in response to events of scientific interest, given that other 
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sensors connected to the datalogger are measuring ancillary variables. For example, a future 

direction of the present study may be to trigger CO2 injections during high-flow events by 

setting a threshold for stream depth.  

 Previous studies have tested the IRGA sensors used in the present study for output 

stability and long-term drift during continuous deployment in both streamwater (Johnson et 

al., 2010) and soil (Jassal et al., 2004) environments. Additionally, the sensors have exhibited 

output stability in a wide range of aqueous environments and have not required data cleaning 

(Johnson et al., 2010). 

 However, the experimental setup, including automated CO2 injections, has some 

disadvantages and may not be suitable for every field campaign. Researchers working in sites 

with public access should consider the possibility of equipment being tampered with, which 

can result in expensive losses, for example in the case of sensors being broken or stolen. 

Further, compressed gas cylinders may need to be replaced frequently and can also pose a 

safety hazard for inexperienced users and curious wildlife, such as bears. Gas cylinders should 

be covered properly, ideally in a locked container. Additionally, negative and positive outliers 

in the present study may have been due to inadequate gas mixing in the reach or sensor 

malfunction. 

 

4.5 Considerations 

In general, I overestimated gas injection times that were needed for sensor 

equilibration, especially during winter months when stream discharge and flow velocity were 

high. In response, I manually adjusted gas flow rates as necessary during field visits in response 

to changing streamflow and stream temperature. Future experimental deployments using this 

method will benefit from adjusting gas flow and injection time based on the dynamics of 
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specific stream reaches. To further automate this method, researchers may wish to include 

streamflow and temperature thresholds in their datalogger programs that govern injection times 

and gas flow rates based on determined stream dynamics. 

 Another consideration is the potential influence of hyporheic exchange on evasion 

estimates in headwater stream systems. While hyporheic exchange likely does not significantly 

affect estimates during high flow conditions (Leach and Moore, 2014), it may play a larger 

role during lower flow conditions by impacting pCO2 and promoting evasion. CO2 generation 

in the hyporheic zone and efflux rates may be significant in streams (Schindler and 

Krabbenhoft, 1998); in the Pacific Northwest, hyporheic zone pCO2 has been shown to be 

highest during the summer and lowest during the winter, with winter storms quickly decreasing 

and subsequently increasing hyporheic zone pCO2 (Brandes, 2017). 

The presence of hyporheic exchange pathways can be determined by frequently 

monitoring pCO2 at many points in the study reach during various flow conditions, and 

particularly in response to high flow events. Nevertheless, its influence on evasion estimates 

should be mitigated through a long gas injection period during which sufficient time is 

provided for sensor equilibration.  

Additionally, comparison of discharge estimates from upstream and downstream 

sensor locations during salt slug injections indicated that study reach was generally a gaining 

reach. Thus, larger-scale hydraulic forcing conditions may affect evasion estimates, perhaps 

more than hyporheic exchange, particularly as the losing or gaining flux increases (Fox et al., 

2014). 

 It is also worth noting that significantly elevating pCO2 in an aqueous environment for 

long periods of time may have impacts on ecosystems by decreasing pH, resulting in litter and 
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algal quality decreases and food web effects (Ferreira and Chauvet, 2011; Hargrave et al., 

2009). However, elevated pCO2 may also increase the density, biomass, and average individual 

size of benthic invertebrates (Hargrave et al., 2009). Further, although studies have focused on 

simulating potential climate change scenarios in streams by elevating pCO2 for long periods 

of time (e.g., 90 days), no study to my knowledge has looked at long-term effects of elevating 

aqueous pCO2 for short bursts (e.g., 1 hour twice per day). Additionally, in turbulent headwater 

streams particularly, all injected CO2 will likely evade within a confined reach, although there 

is a possibility that some is taken up by an ecosystem. More research may be needed to ensure 

that this method does not harm stream ecosystems, and site-specific evasion dynamics should 

be taken into consideration. One complementary path for this research may be isotopic analysis 

of CO2 during baseline conditions and CO2 injections, which could help discriminate among 

various CO2 pathways. 

 

5 CONCLUSIONS 

 The limitations of current methods for determining gas transfer velocities of CO2 in 

headwater streams result in analytical variability and data scarcity. The method presented here 

mitigates common issues associated with gas transfer velocity estimations. The use of CO2 as 

a tracer precludes analytical variability associated with the use of alternative gases while 

maintaining natural conditions at the air-water interface, and automated injections allow 

researchers to determine gas transfer velocities at the desired temporal scale. In the present 

study, kCO2 and k600 showed good correspondence with stream discharge, velocity, and 

temperature, with correspondence decreasing in that order. Values of kCO2 and k600 associated 

positively with both discharge and flow velocity and negatively with stream temperature; 
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continuous kCO2 and k600 extrapolation indicated that the highest kCO2 and k600 values occurred 

during very high flow events, when turbulence was highest. Values of k600 were generally high 

but within the range of those reported in previous studies; high k600 values also corresponded 

well with stream morphological and turbulence parameters. Similar to other studies in steep 

headwater streams, k600 values determined via seven widely-used models performed well for 

values under 139 m d-1 but underestimated k600 above this threshold, suggesting that the models 

were not developed for steep headwater streams under high flow conditions. CO2 emissions 

estimates suggested that high flow conditions drove evasion during the study period and may 

become more important if climate-driven hydrological regime changes result in more frequent 

high flow events. Constraining estimates of CO2 evasion from headwater streams is a critical 

step in characterizing the global carbon cycle. The method presented in this thesis will allow 

researchers to increase the frequency and accuracy with which they can determine gas transfer 

velocities of CO2 in headwater streams, ultimately resulting in data-driven quantifications of 

CO2 emissions and fluxes in the global C cycle. 

  



 56 

REFERENCES 

Alin, S. R., M. D. D. F. F. L. Rasera, C. I. Salimon, J. E. Richey, G. W. Holtgrieve, A. V. 

Krusche, and A. Snidvongs (2011), Physical controls on carbon dioxide transfer velocity 

and flux in low-gradient river systems and implications for regional carbon budgets, J. 

Geophys. Res., 116(G1), doi:10.1029/2010JG001398.  

Aufdenkampe, A. K., E. Mayorga, P. A. Raymond, J. M. Melack, S. C. Doney, S. R. Alin, R. 

E. Aalto, and K. Yoo (2011), Riverine coupling of biogeochemical cycles between land, 

oceans, and atmosphere, Front. Ecol. Environ., 9(1), 53–60, doi:10.1890/100014. 

Baskerville, G. L. (1972), Use of Logarithmic Regression in the Estimation of Plant Biomass, 

Canadian Journal of Forestry 2(49), 49–53, doi:10.1139/x72-009. 

Battin, T. J., S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter, and L. J. Tranvik 

(2009), The boundless carbon cycle, Nat. Geosci., 2, 598–600, doi:10.1038/ngeo618 

Benstead, J. P., and D. S. Leigh (2012), An expanded role for river networks, Nat. Geosci., 5, 

678–679, doi:10.1038/ngeo1593. 

 

Billett, M. F., and F. H. Harvey (2013), Measurements of CO2 and CH4 evasion from UK 

peatland headwater streams, Biogeochemistry, 114, 165–181 doi:10.1007/s10533-012-

9798-9. 

Bott, T. L, (1996), Primary productivity and community respiration, Methods in Stream 

Ecology. Academic Press, San Diego, California, 533–556.  

Bott, T. L., D. S. Montgomery, J. D. Newbold, D. B. Arscott, C. L. Dow, A. K. Aufdenkampe, 

J. K. Jackson, and L. A. Kaplan (2006), Ecosystem metabolism in streams of the Catskill 

Mountains (Delaware and Hudson River watersheds) and lower Hudson Valley, J. N. Am. 

Benthol. Soc., 25(4), 1018–1044, doi:10.1899 /0887-

3593(2006)025[1018:EMISOT]2.0.CO;2.  

Brandes, J. B. (2017), The vadose zone as a hyporheic carbon source: a look at temporal trends 

in hyporheic zone pCO2, M.Sc. thesis, Oregon State University, Corvallis. 

Butman, D., and P. A. Raymond (2011), Significant efflux of carbon dioxide from streams and 

rivers in the United States, Nat. Geosci., 4, 839–842, doi:10.1038/ngeo1294. 

Campeau, A., J.-F. Lapierre, D. Vachon, and P. A. del Giorgio (2014), Regional contribution 

of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Québec, 

Global Biogeochem. Cycles, 28(1), 57–69, doi:10.1002/2013GB004685. 

Clark, J. F., P. Schlosser, H. J. Simpson, M. Stute, R. Wanninkhof, and D. T. Ho (1995), 

Relationship between gas transfer velocities and wind speeds in the tidal Hudson River 

determined by the dual tracer technique, Air-water gas transfer, 785-800. 



 57 

Cole, J. J., et al. (2007), Plumbing the global carbon cycle: Integrating inland waters into the 

terrestrial carbon budget, Ecosystems, 10(1), 171–184, doi:10.1007/s10021-006-9013-8.  

Cole, J. J., and N. F. Caraco (1998), Atmospheric exchange of carbon dioxide in a low‐wind 

oligotrophic lake measured by the addition of SF6, Limnol. Oceanogr., 43(4), 647–656.  

Crawford, J. T., N. R. Lottig, E. H. Stanley, J. F. Walker, P. C. Hanson, J. C. Finlay, and R. G. 

Striegl (2014), CO2 and CH4 emissions from streams in a lake-rich landscape: Patterns, 

controls, and regional significance, Global Biogeochem. Cycles, 28(3), 197–210, 

doi:10.1002/2013GB004661.   

Crawford, J. T., R. G. Striegl, K. P. Wickland, M. M. Dornblaser, and E. H. Stanley (2013), 

Emissions of carbon dioxide and methane from a headwater stream network of interior 

Alaska, J. Geophys. Res., 118(2), 482–494, doi:10.1002/jgrg.20034. 

Dinsmore, K. J., and M. F. Billett (2008), Continuous measurement and modelling of CO2 

losses from a peatland stream during stormflow events, Water Resour. Res., 44(12), 

W12417, doi:10.1029/2007WR007284.  

Dosch, N. T. (2014), Spatiotemporal Dynamics and Drivers of Stream pCO2 in a Headwater 

Catchment in the Western Cascade Mountains, Oregon, M.Sc. thesis, Oregon State 

University, Corvallis. 

Ferreira, V., and E. Chauvet (2011), Future increase in temperature more than decrease in litter 

quality can affect microbial litter decomposition in streams, Oecologia, 167, 279–291, 

doi:10.1007/S00442-01 1-1976-2  

Finlay, J. C. (2003), Controls of streamwater dissolved inorganic carbon dynamics in a forested 

watershed, Biogeochemistry, 62(3), 231-252.  

Fox, A., F. Boano, and S. Arnon (2014), Impact of losing and gaining streamflow conditions 

on hyporheic exchange fluxes induced by dune-shaped bed forms, Water Resour. Res., 

50(3), 1895–1907, doi:10.1002/2013WR014668 

Frankignoulle, M., G. Abril, A. Borges, I. Bourge, C. Canon, B. DeLille, E. Libert, and J. M. 

Theate (1998), Carbon dioxide emission from European estuaries, Science, 282(5388), 

434–436, doi:10.1126/science.282.5388.434  

Frew, N.M. (1997), The role of organic films in air-sea gas exchange. The sea surface and 

global change, edited by P. S. Liss, and R. A. Duce, 121–163.  

Gafalk, M., D. Bastviken, S. T. Fredriksson, and L. Arneborg (2013), Determination of the 

piston velocity for water-air interfaces using flux chambers, acoustic Doppler velocimetry, 

and IR imaging of the water surface, J. Geophys. Res.: Biogeosciences, 118(2), 770-782.  

Genereux, D. P., and H. F. Hemond (1992), Determination of Gas-Exchange Rate Constants 

for a Small Stream on Walker Branch Watershed, Tennessee, Water Resour. Res., 28(9), 

2365-2374.  



 58 

Gibs, J., F. D. Wilde, and H. A. Heckathorn (2007), Use of Multiparameter Instruments for 

Routine Field Measurements, U.S. Geological Survey Techniques of Water-Resources 

Investigations (Book 9, Chapter A6, Section 6.8). 

Gomi, T., R. C. Sidle, and J. S. Richardson (2002), Understanding processes and downstream 

linkages of headwater systems, BioScience, 52(10), 905–916.  

Hall, R. O., T. A. Kennedy, and E. J. Rosi-Marshall, Air–water oxygen exchange in a large 

whitewater river (2012), Limnol. Oceanogr.: Fluids Environ. 2(1), 1–11, doi: 

10.1215/21573689-1572535. 

Hall, R. O., and J. L. Tank (2003), Ecosystem metabolism controls nitrogen uptake in streams 

in Grand Teton National Park, Wyoming, Limnol. Oceanogr., 48(3), 1120–1128, doi: 

10.4319/lo.2003.48.3.1120 

Hargrave, C. W., K. P. Gary, and S. K. Rosado (2009), Potential effects of elevated 

atmospheric carbon dioxide on benthic autotrophs and consumers in stream ecosystems: a 

test using experimental stream mesocosms, Global Change Biology, 15(11), 2779–2790, 

doi:10.1111/j.1365-2486.2009.01897.x. 

Ho, D.T., L. F. Bliven, R. Wanninkhof, and P. Schlosser (1997), The effect of rain on air-water 

gas exchange, Tellus, 49(2), 149–158, doi: 10.1034/j.1600-0889.49.issue2.3.x  

Holgerson, M. A., E. R. Farr, and P. A. Raymond (2017), Gas transfer velocities in small 

forested ponds, J. Geophys. Res. Biogeosci., 122, 1011–1021, 

doi:10.1002/2016JG003734.   

Hope, D., S. M. Palmer, M. F. Billett, and J. J. C. Dawson (2001), Carbon dioxide and methane 

evasion from a temperate peatland stream, Limnol. Oceanogr., 46(4), 847–857, doi: 

10.4319/lo.2001.46.4.0847 

Hope, D., S. M. Palmer, M. F. Billett, and J. J. C. Dawson (2004), Variations in dissolved CO2 

and CH4 in a first-order stream and catchment: An investigation of soil-stream linkages, 

Hydrol. Process., 18(17), 3255–3275, doi:10.1002/hyp.5657. 

Humborg, C., C. M. Mörth, M. Sundbom, H. Borg, T. Blenckner, R. Giesler, and V. Ittekkot 

(2010), CO2 supersaturation along the aquatic conduit in Swedish watersheds as 

constrained by terrestrial respiration, aquatic respiration and weathering, Global Change 

Biol., 16(7), 1966–1978, doi:10.1111/j.1365-2486.2009.02092.x. 

Huotari, J., S. Haapanala, J. Pumpanen, T. Vesala, and A. Ojala (2013), Efficient gas exchange 

between a boreal river and the atmosphere, Geophys. Res. Lett.,40(21), 5683–5686, 

doi:10.1002/2013GL057705. 

Jähne, B., G. Heinz, and W. Dietrich (1987), Measurement of the diffusion coefficients of 

sparingly soluble gases in water, J. Geophys. Res., 92(C10), 10767–10776, 

doi:10.1029/JC092iC10p10767. 



 59 

Jassal, R. S., T. A. Black, G. B. Drewitt, M. D. Novak, D. Gaumont-Guay, and Z. Nesic (2004), 

A model of the production and transport of CO2 in soil: predicting soil CO2 concentrations 

and CO2 efflux from a forest floor, Agricultural and Forest Meteorology, 124(3-4), 219–

236, doi:10.1016/j.agrformet.2004.01.013. 

Johnson, M. S., M. F. Billett, K. J. Dinsmore, M. Wallin, K. E. Dyson, and R. S. Jassal (2010), 

Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic 

systems—Methods and applications, Ecohydrology, 3(1), 68–78, doi:10.1002/eco.95.  

Jones, J. B., and P. J. Mulholland (1998), Influence of drainage basin topography and elevation 

on carbon dioxide and methane supersaturation of stream water, Biogeochemistry, 40(1), 

57–72, doi:10.1023/A:1005914121280.  

Jonsson, A., J. Aberg, A. Lindroth, and M. Jansson (2008), Gas transfer rate and CO2 flux 

between an unproductive lake and the atmosphere in northern Sweden, J. Geophys. Res. 

Biogeosci., 113, G4, doi:10.1029/2008JG000688 

Kling, G. W., G. W. Kipphut, and M. C. Miller (1991), Arctic lakes and streams and gas 

conduits to the atmosphere: Implications for tundra carbon budgets, Science, 251(4991), 

298–301, doi:10.1126/science.251.4991.298.  

Kokic, J., M. B. Wallin, H. E. Chmiel, B. A. Denfeld, and S. Sobek (2015), Carbon dioxide 

evasion from headwater systems strongly contributes to the total export of carbon from a 

small boreal lake catchment, J. Geophys. Res. Biogeosci., 120, 13–28, 

doi:10.1002/2014JG002706.  

Leach, J. A., and Moore, R. D. (2014). Winter stream temperature in the rain-on-snow zone of 

the Pacific Northwest: influences of hillslope runoff and transient snow cover. Hydrology 

and Earth System Sciences, 18(2), 819–838, doi:10.5194/hess-18-819-2014 

Looman, A., I. R. Santos, D. R. Tait, J. R. Webb, C. A. Sullivan, and D. T. Maher (2016), 

Carbon cycling and exports over diel and flood-recovery timescales in a subtropical 

rainforest headwater stream, Sci. Total Environ., 550, 645–657.  

MacIntyre, S., A. Jonsson, M. Jansson, J. Aberg, D. E. Turney, and S. D. Miller (2010), 

Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake, Geophys. 

Res. Lett., 37(24), L24604, doi:10.1029/2010GL044164.  

MacIntyre, S., R. Wanninkhof, and J. P. Chanton (1995), Trace gas exchange across the air‐
water interface in freshwater and coastal marine environments, in Biogenic Trace Gases: 

Measuring Emissions From Soil and Water, edited by P. A. Matson and R. C. Harriss, 52–

97. 

Marx, A., et al, (2017), A review of CO2 and associated carbon dynamics in headwater streams: 

a global perspective, Reviews of Geophysics, doi:10.1002/2016RG000547 



 60 

Marzolf, E. R., P. J. Mulholland, and A. D. Steinman, (1994), Improvements to the diurnal 

upstream-downstream dissolved oxygen change technique for determining whole-stream 

metabolism in small streams. Can. J. Fish. Aquat. Sci. 51(7), 1591–1599, doi:10.1139/f94-

158.  

McClain, M. E., et al. (2003), Biogeochemical hot spots and hot moments at the interface of 

terrestrial and aquatic ecosystems, Ecosystems, 6(4), 301–312, doi: 10.1007/s10021-003-

0161-9  

Melching, C. S., and H. E. Flores (1999), Reaeration equations derived from US Geological 

Survey database, J. Environ. Eng., 125, 407–414, doi:10.1061/(ASCE)0733-

9372(1999)125:5(407).  

Moog, D. B., and G. H. Jirka (1999), Stream reaeration in nonuniform flow: Macroroughness 

enhancement. J. Hydraul. Eng., 125(1), 11–16, doi:10.1061/(ASCE)0733-

9429(1999)125:1(11). 

Moore, R. D. (2005), Slug injection using salt in solution, Streamline Watershed Management 

Bulletin, 8(2), 1-6. 

Mulholland, P. J., et al., (2001), Inter-biome comparison of factors controlling stream 

metabolism. Freshw. Biol. 46(11), 1503–1517, doi:10.1046/j.1365-2427.2001.00773.x.   

Natchimuthu, S., M. B. Wallin, L. Klemedtsson, and D. Bastviken (2017), Spatio-temporal 

patterns of stream methane and carbon dioxide emissions in a hemiboreal catchment in 

Southwest Sweden, Sci. Rep., 7, 39729, doi:10.1038/srep39729. 

O’Connor, D., and W. Dobbins (1958), Mechanism of reaeration in natural streams, Trans. 

Am. Soc. Civ. Eng. 123(1), 641–666.  

Öquist, M. G., M. Wallin, J. Seibert, K. Bishop, and H. Laudon (2009), Dissolved inorganic 

carbon export across the soil/stream interface and its fate in a boreal headwater stream, 

Environ. Sci. Technol., 43(19), 7364–7369, doi:10.1021/es900416h.  

Plummer, L. N., and E. Busenberg (1982), The Solubilities of Calcite, Aragonite and Vaterite 

in CO2-H2O Solutions between 0 and 90°C, and an Evaluation of the Aqueous Model for 

the System CaCO3-CO2-H2O, Geochim. Cosmochim. Ac., 46(6), 1011-1040, 

doi:10.1016/0016-7037(82)90056-4 

R Core Team (2017). R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

Raymond, P. A., and J. J. Cole (2001), Gas exchange in rivers and estuaries: Choosing a gas 

transfer velocity, Estuaries, 24(2), 312–317, doi:10.2307/1352954. 



 61 

Raymond, P. A., C. J. Zappa, D. Butman, T. L. Bott, J. Potter, P. Mulholland, A. E. Laursen, 

W. H. McDowell, and D. Newbold (2012), Scaling the gas transfer velocity and hydraulic 

geometry in streams and small rivers, Limnol. Oceanogr. Fluids Environ., 2(1), 41–53, 

doi:10.1215/21573689‐1597669.  

Raymond, P. A., et al. (2013), Global carbon dioxide emissions from inland waters, Nature, 

503(7476), 355–359, doi:10.1038/nature12760.  

Richardson, J. S., and R. D. Moore (2010), Malcolm Knapp Research Forest, Streamline 

Watershed Management Bulletin 14(1), 14–15. 

Richardson, M. E., G. Sentlinge, D. Moore, and A. Zimmermann (2017), Quantifying the 

Relation between Electrical Conductivity and Salt Concentration for Dilution Gauging Via 

Dry Salt Injection, Confluence: Journal of Watershed Science and Management, 1(2), 1–

13, doi:10.22230/jwsm.2017v1n1a1. 

Roberts, B. J., P. J. Mulholland, and W. R. Hill (2007), Multiple scales of temporal variability 

in ecosystem metabolism rates: Results from 2 years of continuous monitoring in a forested 

headwater stream, Ecosystems 10(4), 588–606, doi:10.1007/s10021-007-9059-2. 

Sand-Jensen, K., and P. A. Staehr (2012), CO2 dynamics along Danish lowland streams: water-

air gradients, piston velocities, and evasion rates, Biogeochemistry, 111(1-3), 615–628, 

doi: 10.1007/s10533-011-9696-6. 

Sawakuchi, H. O., et al. (2017), Carbon Dioxide Emissions along the Lower Amazon River, 

Front. Mar. Sci., 4, 76, doi:10.3389/fmars.2017.00076. 

Schelker, J., G. A. Singer, A. J. Ulseth, S. Hengsberger, T. J. Battin (2016), CO2 evasion from 

a steep, high gradient stream network: importance of seasonal and diurnal variation in 

aquatic pCO2 and gas transfer, Limnol. Oceanogr., 61(5), 1826–1838, doi: 

10.1002/lno.10339. 

Schindler, J. E., and D. P. Krabbenhoft (1998), The hyporheic zone as a source of dissolved 

organic carbon and carbon gases to a temperate forested stream, Biogeochemistry 43(2), 

157–174. 

Shaw, E. M., K. J. Beven, N. A. Chappell, and R. Lamb (2010), Hydrology in practice, 4th 

edn. CRC Press, Boca Raton. 

Simonsen, J.F. (1974), Oxygen fluctuations in streams, Ph.D. thesis, Danish Technical 

University, Copenhagen. 

Smits, A. P. (2016), Physical controls on land-water linkages: Carbon cycling and food webs 

in boreal watersheds, Ph.D. thesis, University of Washington, Seattle. 



 62 

Stackpoole S, et al., (2012), Baseline carbon sequestration, transport, and emission from inland 

aquatic ecosystems in the western United States. Baseline and Projected Future Carbon 

Storage and Greenhouse-Gas Fluxes in Ecosystems of the Western United States, US 

Geological Survey Professional Paper, 1797, eds Z. Zhu, and B. C. Reed. 

Stackpoole, S. M., D. E. Butman, D. W. Clow, K. L. Verdin, B. V. Gaglioti, H. Genet, and R. 

G. Striegl (2017), Inland waters and their role in the carbon cycle of Alaska. Ecological 

Applications, 27(5), 1403–1420, doi: 10.1002/eap.1552. 

Tashe, N.C., (1998), The impact of vine maple on the biogeochemical nutrient cycle of conifer-

dominated coastal forests in southwestern British Columbia, M.Sc. thesis, Simon Fraser 

University, Burnaby, British Columbia. 

Thyssen, N., and M. G. Kelly (1985), Water-air exchange of carbon dioxide and oxygen in a 

river: measurement and comparison of rates, Arch. Hydrobiol. 105(2), 219–228. 

Tobias, C. R., J. K. Böhlke, J. W. Harvey, and E. Busenberg (2009), A simple technique for 

continuous measurement of time-variable gas transfer in surface waters, Limnol. 

Oceanogr.: Methods, 7(2), 185–195, doi:10.4319/lom.2009.7.185. 

Tsivoglou, E. C., and R. J. Wallace (1972), Characterization of Stream Reaeration Capacity, 

Research Reporting Series, U.S. Environmental Protection Agency, 317.  

Tsivoglou, E. C., and A. L. Neal (1976), Tracer measurement of reaeration, III: Predicting 

reaeration capacity of inland streams, J. Water Pollut. Control Fed., 48(12), 2669–2689.  

Turk, T. D., M. G. Schmidt, and N. J. Roberts, (2008), The influence of bigleaf maple on forest 

floor and mineral soil properties in a coniferous forest in coastal British Columbia, Forest 

Ecology and Management, 255(5), 1874-1882. 

Vachon, D., Y. T. Prairie, and J. J. Cole (2010), The relationship between near‐surface 

turbulence and gas transfer velocity in freshwater systems and its implications for floating 

chamber measurements of gas exchange, Limnol. Oceanogr., 55(4), 1723–1732, 

doi:10.4319/lo.2010.55.4.1723.  

Waldon, M. G. (2004), Estimation of average stream velocity, J. Hydraul. Eng., 130(11), 

1119–1122, doi:10.1061/(ASCE)0733-9429(2004)130.11(1119). 

Wallin, M. B., T. Grabs, I. Buffam, H. Laudon, A. Agren, M. G. Öquist, K. Bishop (2013), 

Evasion of CO2 from streams – The dominant component of the carbon export through the 

aquatic conduit in a boreal landscape, Global Change Biology, 19(3), 785–797, 

doi:10.1111/gcb.12083. 

Wallin, M. B., M. G. Öquist, I. Buffam, M. F. Billett, J. Nisell, and K. H. Bishop (2011), 

Spatiotemporal variability of the gas transfer coefficient K(CO2) in boreal streams: 

Implications for large scale estimates of CO2 evasion, Global Biogeochem. Cycles, 25(14), 

Gb3025, doi:10.1029/ 2010gb003975.  



 63 

Wanninkhof, R., Mulholland, P. J., and Elwood, J. W. (1990), Gas exchange rates for a first‐
order stream determined with deliberate and natural tracers, Water Resources Research, 

26(7), 1621–1630, http://doi.org/10.1029/WR026i007p01621. 

Wanninkhof, R., W. E. Asher, D. T. Ho, C. Sweeney, and W. R. McGillis (2009), Advances 

in Quantifying Air-Sea Gas Exchange and Environmental Forcing, Annu. Rev. Mar. Sci., 

1, 213-244, doi:10.1146/annurev.marine.010908.163742. 

Zappa, C. J., W. R. McGillis, P. A. Raymond, J. B. Edson, E. J. Hintsa, H. J. Zemmelink, J. 

W. H. Dacey, and D. T. Ho (2007), Environmental turbulent mixing controls on air‐water 

gas exchange in marine and aquatic systems, Geophys. Res. Lett., 34(10), L10601, 

doi:10.1029/2006GL028790.  

  



 64 

Appendix 1 
 

CR1000 program used for autonomous and unaccompanied measurement 

'Program for WQ and Vaisala sensors 

'date edited: October 14, 2016 

'author: mollie 

 

'====== VARIABLES ================================= 

 

'general  

Public PTemp, batt_volt 

Units PTemp = Deg C 

Units batt_volt = Volts 

 

Public lowPowerMode 

Public MinBattVolt 

Public powerPhone 

Public phoneManualON 

Public firstDataWindow, secondDataWindow 

 

'time  

Public real_time(9) 

Alias real_time(1) = year 

Alias real_time(2) = month 

Alias real_time(3) = DayX 

Alias real_time(4) = hours 

Alias real_time(5) = minutes 

Alias real_time(6) = seconds 

Alias real_time(7) = microseconds 

Alias real_time(8) = weekday 

Alias real_time(9) = jday 

'Public mins_current_day 

 

'constants 

Const port_phone_power = 6 

Const port_AM32B_CLK = 1 

Const port_AM32B_RES = 2 

Const port_SV_power = 7 

Const port_CO2_power = 8 

 

'Solenoid valve  

Public powerSV 

 

'Vaisala CO2 variables 
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Public CO2_1_mV, CO2_1_ppm, CO2_2_mV, CO2_2_ppm, measureCO2, powerCO2, 

measureCO2_30, powerCO2_30 

 

'CTD variables 

Public CTD_1(3), CTD_2(3) 

Alias CTD_1(1) = Depth_CTD_1 

Alias CTD_1(2) = Temp_CTD_1 

Alias CTD_1(3) = EC_CTD_1 

Alias CTD_2(1) = Depth_CTD_2 

Alias CTD_2(2) = Temp_CTD_2 

Alias CTD_2(3) = EC_CTD_2 

 

Units Depth_CTD_1 = mm 

Units Temp_CTD_1 = Deg C 

Units EC_CTD_1 = uS/m 

Units Depth_CTD_2 = mm 

Units Temp_CTD_2 = Deg C 

Units EC_CTD_2 = uS/m 

 

'pH/ORP variables 

Public pH_1, pH_2, ORP_1 

Dim pHMult_1, pHMult_2 

 

Units pH_1 = pH 

Units pH_2 = pH 

Units ORP_1 = mV 

 

'DO variables 

Public Tw_LDO, LDO 

 

'GS3 variables 

Public GS3_1(3), GS3_2(3) 

Alias GS3_1(1) = Moisture_GS3_1 

Alias GS3_1(2) = Temp_GS3_1 

Alias GS3_1(3) = EC_GS3_1 

Alias GS3_2(1) = Moisture_GS3_2 

Alias GS3_2(2) = Temp_GS3_2 

Alias GS3_2(3) = EC_GS3_2 

 

'anemometer variables 

Public u, v, w, SonicT 

Units u = ms-1 

Units v = ms-1 

Units w = ms-1 

Units SonicT = DegC 
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'======== Data tables ============================  

'30 minute table 

DataTable(dt,true,-1) 

  DataInterval(0,30,Min,10) 

  Average(1,batt_volt,FP2,0) 

  Average(1,PTemp,FP2,0) 

  Average(1,CO2_1_ppm,IEEE4,measureCO2_30-1) 'this makes it track the data only if 

"measureCO2_30" = true 

  Average(1,CO2_2_ppm,IEEE4,measureCO2_30-1) 

  Average(3,CTD_1(),IEEE4,0) 

  Average(3,CTD_2(),IEEE4,0) 

  Average(1,ORP_1,IEEE4,0) 

  Average(1,pH_1,IEEE4,0) 

  Average(1,pH_2,IEEE4,0) 

  Average(1,LDO, IEEE4,0) 

  Average(1,Tw_LDO,IEEE4,0) 

  Average(3,GS3_1(),IEEE4,0) 

  Average(3,GS3_2(),IEEE4,0) 

  Average(1,u,IEEE4,0) 

  Average(1,v,IEEE4,0) 

  Average(1,w,IEEE4,0) 

  Average(1,SonicT,IEEE4,0) 

EndTable 

 

'5 second table - only activated when measureCO2 = true 

DataTable(dt_co2,true,-1) 

  DataInterval(0,5,Sec,10)   

  Average(1,CO2_1_ppm,IEEE4,measureCO2-1) 'this makes it track the data only if 

"measureCO2" = true 

  Average(1,CO2_2_ppm,IEEE4,measureCO2-1) 

  Average(3,CTD_1(),IEEE4,0) 

  Average(3,CTD_2(),IEEE4,0) 

  Average(1,ORP_1,IEEE4,0) 

  Average(1,pH_1,IEEE4,0)  

  Average(1,pH_2,IEEE4,0)  

  Average(1,LDO, IEEE4,0) 

  Average(1,Tw_LDO,IEEE4,0) 

  Average(3,GS3_1(),IEEE4,0) 

  Average(3,GS3_2(),IEEE4,0) 

  Average(1,u,IEEE4,0) 

  Average(1,v,IEEE4,0) 

  Average(1,w,IEEE4,0) 

  Average(1,SonicT,IEEE4,0) 

EndTable 

 

'Main Program 
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BeginProg 

  firstDataWindow  =  15 

  secondDataWindow =  16 

  phoneManualON = 0 

  MinBattVolt = 11.4 

   

Scan (5,Sec,0,0) 

    

'======== Panel Temp/Battery ============================  

   PanelTemp (PTemp,250) 

  Battery (batt_volt)   

    RealTime real_time 

     

'====== Low power mode ===================== 

    If batt_volt < MinBattVolt Then 

      lowPowerMode = 1 

    Else 

      lowPowerMode = 0 

    EndIf 

 

'======== SDI: CTD/GS3 ============================  

  'CTD measurements 

    Delay (1,200,mSec) 

    SDI12Recorder (CTD_1(),3,1,"M!",1.0,0) 

    Delay (1,200,mSec) 

    SDI12Recorder (CTD_2(),3,6,"M!",1.0,0) 

     

  'GS3 measurements 

    Delay (1,200,mSec) 

    SDI12Recorder (GS3_1(),3,3,"M!",1.0,0) 

    Delay (1,200,mSec) 

    SDI12Recorder (GS3_2(),5,4,"M!",1.0,0) 

 

'======== Solenoid and CO2 ============================  

  'SV switch - change to reflect how long to inject CO2 

    If (hours = 10 OR hours = 22) AND NOT lowPowerMode Then 'AND (minutes >= 0 AND 

minutes <= 59)  

      powerSV = 1 

    Else 

      powerSV = 0 

    EndIf 

    PortSet(port_SV_power,powerSV) 

     

 'CO2 ppm measurements - on or off  

     If (hours = 10 OR hours = 22) AND NOT lowPowerMode Then ' AND (minutes <= 

59))  
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      powerCO2 = 1 

    Else 

      powerCO2 = 0 

    EndIf 

 

' Put CO2 on 30 min output table 

 'CO2 ppm measurements - on or off  

   If ((minutes >= 25) AND (minutes <= 30)) OR ((minutes >= 55) AND (minutes <= 

60)) AND NOT lowPowerMode Then 

      powerCO2_30 = 1 

    Else 

      powerCO2_30 = powerCO2 

    EndIf 

  

   If powerCO2_30 = 1 Then 

      powerCO2 = 1 

   EndIf 

    

    PortSet(port_CO2_power,powerCO2) 

 

     

    If powerCO2 AND (hours = 10 OR hours = 22) Then 'AND (minutes <= 59))  

      measureCO2 = 1 

    Else 

      measureCO2 = 0 

    EndIf 

      

    If powerCO2_30 AND (((minutes >= 28) AND (minutes <= 30)) OR ((minutes >= 58) AND 

(minutes <= 60))) Then 

      measureCO2_30 = 1 

    Else 

      measureCO2_30 = 0 

    EndIf 

     

'======== PHONE =========================== 

  ' Turn the phone on for one hour during the first time window 

  ' (uncomment 'OR' and remove the 1st 'Then' to turn on for 30 mins during each of two time 

windows 

  If (hours = firstDataWindow)  AND NOT lowPowerMode Then 'OR hours = 

secondDataWindow) AND minutes < 30 Then 

    powerPhone = 1 

  Else 

    powerPhone = 0 

  EndIf 

  ' Use the phoneManualON flag to keep the phone on forever 

  ' the default value for phoneManualON will be 0 (OFF) 
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  If phoneManualON = 1  AND NOT lowPowerMode Then 

    powerPhone = 1 

  EndIf 

  PortSet(port_phone_power,powerPhone) 

  '------------------------------------------- 

 

'======== Multiplexer: pH, ORP, DO, CO2 ============================  

  'multiplexer ON 

    PortSet(port_AM32B_RES,1) 

   

  'pH measurements - see WQ program for cal slope lines 

  'change temp variable to GS3 if that's better 

    PulsePort (port_AM32B_CLK,10000) ' move to the next channel of AM32B 

    pHMult_1=-1/(((Temp_CTD_1+273)/298)*59) 

    VoltDiff(pH_1,1,mV2500,1,True,0,_60Hz,pHMult_1,7) 

     

    PulsePort (port_AM32B_CLK,10000) 

    pHMult_2=-1/(((Temp_CTD_2+273)/298)*59) 

    VoltDiff(pH_2,1,mV2500,2,True,0,_60Hz,pHMult_2,7) 

     

  'ORP measurements 

    PulsePort (port_AM32B_CLK,10000) ' move to the next channel of AM32B   

    VoltDiff(ORP_1,1,mV2500,1,True,0,_60Hz,1,0)  

 

  'DO measurements 

    PulsePort (port_AM32B_CLK,10000) ' move to the next channel of AM32B 

    VoltDiff (LDO,1,mV2500,1,True,0,_60Hz,0.02,0) 

    VoltDiff (Tw_LDO,1,mV2500,2,True,0,_60Hz,0.05,0) 

  

  'vaisala CO2 measurements 

    PulsePort (port_AM32B_CLK,10000) ' move to the next channel of AM32B 

  VoltDiff (CO2_1_mV,1,mV2500,1,True,0,250,1.0,0) 

  CO2_1_ppm = CO2_1_mV * 4 

  VoltDiff (CO2_2_mV,1,mV2500,2,True,0,250,1.0,0) 

  CO2_2_ppm = CO2_2_mV * 4 

 

  'end multiplexer 

    PortSet(port_AM32B_RES,0) 

 

'======== Diff Channels on CR1000: Sonic ============================  

 

  'sonic measurements 

    VoltDiff (u,1,mV5000,5,True ,0,250,1.0,0) 

    u = ((25*2/5000)*u)-25 

    VoltDiff (v,1,mV5000,6,True ,0,250,1.0,0) 

    v = ((25*2/5000)*v)-25 
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    VoltDiff (w,1,mV5000,7,True ,0,250,1.0,0) 

    w = ((25*2/5000)*w)-25 

    VoltDiff (SonicT,1,mV5000,8,True ,0,250,1.0,0) 

    SonicT = ((100/5000)*SonicT)+220-273.15 

 

'======== Call data tables ============================  

  CallTable(dt) 

  If measureCO2 = 1 Then 

    CallTable(dt_co2)  

  EndIf 

   

 NextScan 

EndProg 
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Appendix 2  
 

CR1000 program used for autonomous and accompanied measurement 

'Program for WQ and Vaisala sensors 

'date edited: October 14, 2016 

'author: mollie 

 

'====== VARIABLES ================================= 

 

'general  

Public PTemp, batt_volt 

Units PTemp = Deg C 

Units batt_volt = Volts 

 

Public lowPowerMode 

Public MinBattVolt 

Public powerPhone 

Public phoneManualON 

Public firstDataWindow, secondDataWindow 

 

'time  

Public real_time(9) 

Alias real_time(1) = year 

Alias real_time(2) = month 

Alias real_time(3) = DayX 

Alias real_time(4) = hours 

Alias real_time(5) = minutes 

Alias real_time(6) = seconds 

Alias real_time(7) = microseconds 

Alias real_time(8) = weekday 

Alias real_time(9) = jday 

'Public mins_current_day 

 

'constants 

Const port_phone_power = 6 

Const port_AM32B_CLK = 1 

Const port_AM32B_RES = 2 

Const port_SV_power = 7 

Const port_CO2_power = 8 

 

'Solenoid valve  

'Public powerSV 

 

'Vaisala CO2 variables 

Public CO2_1_mV, CO2_1_ppm, CO2_2_mV, CO2_2_ppm, measureCO2, powerCO2 
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'CTD variables 

Public CTD_1(3), CTD_2(3) 

Alias CTD_1(1) = Depth_CTD_1 

Alias CTD_1(2) = Temp_CTD_1 

Alias CTD_1(3) = EC_CTD_1 

Alias CTD_2(1) = Depth_CTD_2 

Alias CTD_2(2) = Temp_CTD_2 

Alias CTD_2(3) = EC_CTD_2 

 

Units Depth_CTD_1 = mm 

Units Temp_CTD_1 = Deg C 

Units EC_CTD_1 = uS/m 

Units Depth_CTD_2 = mm 

Units Temp_CTD_2 = Deg C 

Units EC_CTD_2 = uS/m 

 

'pH/ORP variables 

Public pH_1, pH_2, ORP_1 

Dim pHMult_1, pHMult_2 

 

Units pH_1 = pH 

Units pH_2 = pH 

Units ORP_1 = mV 

 

'DO variables 

Public Tw_LDO, LDO 

 

'GS3 variables 

Public GS3_1(3), GS3_2(3) 

Alias GS3_1(1) = Moisture_GS3_1 

Alias GS3_1(2) = Temp_GS3_1 

Alias GS3_1(3) = EC_GS3_1 

Alias GS3_2(1) = Moisture_GS3_2 

Alias GS3_2(2) = Temp_GS3_2 

Alias GS3_2(3) = EC_GS3_2 

 

'anemometer variables 

Public u, v, w, SonicT 

Units u = ms-1 

Units v = ms-1 

Units w = ms-1 

Units SonicT = DegC 

 

'======== Data tables ============================  

'30 minute table 
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DataTable(dt_co2on,true,-1) 

  DataInterval(0,30,Min,10) 

  Average(1,batt_volt,FP2,0) 

  Average(1,PTemp,FP2,0) 

  Average(1,CO2_1_ppm,IEEE4,measureCO2-1) 'this makes it track the data only if 

"measureCO2" = true 

  Average(1,CO2_2_ppm,IEEE4,measureCO2-1) 

  Average(3,CTD_1(),IEEE4,0) 

  Average(3,CTD_2(),IEEE4,0) 

  Average(1,ORP_1,IEEE4,0) 

  Average(1,pH_1,IEEE4,0) 

  Average(1,pH_2,IEEE4,0) 

  Average(1,LDO, IEEE4,0) 

  Average(1,Tw_LDO,IEEE4,0) 

  Average(3,GS3_1(),IEEE4,0) 

  Average(3,GS3_2(),IEEE4,0) 

  Average(1,u,IEEE4,0) 

  Average(1,v,IEEE4,0) 

  Average(1,w,IEEE4,0) 

  Average(1,SonicT,IEEE4,0) 

EndTable 

 

'5 second table - only activated when measureCO2 = true 

DataTable(dt_co2_co2on,true,-1) 

  DataInterval(0,5,Sec,10)   

  Average(1,CO2_1_ppm,IEEE4,measureCO2-1) 'this makes it track the data only if 

"measureCO2" = true 

  Average(1,CO2_2_ppm,IEEE4,measureCO2-1) 

  Average(3,CTD_1(),IEEE4,0) 

  Average(3,CTD_2(),IEEE4,0) 

  Average(1,ORP_1,IEEE4,0) 

  Average(1,pH_1,IEEE4,0)  

  Average(1,pH_2,IEEE4,0)  

  Average(1,LDO, IEEE4,0) 

  Average(1,Tw_LDO,IEEE4,0) 

  Average(3,GS3_1(),IEEE4,0) 

  Average(3,GS3_2(),IEEE4,0) 

  Average(1,u,IEEE4,0) 

  Average(1,v,IEEE4,0) 

  Average(1,w,IEEE4,0) 

  Average(1,SonicT,IEEE4,0) 

EndTable 

 

'Main Program 

BeginProg 

    PortsConfig (&B11111111,&B11111111) 
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  firstDataWindow  =  15 

  secondDataWindow =  16 

  phoneManualON = 0 

  MinBattVolt = 11.4 

   

Scan (5,Sec,0,0) 

    

'======== Panel Temp/Battery ============================  

   PanelTemp (PTemp,250) 

  Battery (batt_volt)   

   

    RealTime real_time 

     

 

'====== Low power mode ===================== 

    If batt_volt < MinBattVolt Then 

      lowPowerMode = 1 

    Else 

      lowPowerMode = 0 

    EndIf 

 

 

'======== SDI: CTD/GS3 ============================  

  'CTD measurements 

    Delay (1,200,mSec) 

    SDI12Recorder (CTD_1(),3,1,"M!",1.0,0) 

    Delay (1,200,mSec) 

    SDI12Recorder (CTD_2(),3,6,"M!",1.0,0) 

     

  'GS3 measurements 

    Delay (1,200,mSec) 

    SDI12Recorder (GS3_1(),3,3,"M!",1.0,0) 

    Delay (1,200,mSec) 

    SDI12Recorder (GS3_2(),5,4,"M!",1.0,0) 

 

'======== Solenoid and CO2 ============================  

  'SV switch - change to reflect how long to inject CO2 

   ' If ((minutes >= 25 AND minutes < 30) OR (minutes >= 55)) AND NOT lowPowerMode 

Then 

    'powerSV = 1 

    'Else 

     ' powerSV = 0 

    'EndIf 

    'PortSet(port_SV_power,powerSV) 

     

 'CO2 ppm measurements - on or off  
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   '  If ((minutes >= 23 AND minutes < 30) OR (minutes >= 53)) AND NOT 

lowPowerMode Then 

      powerCO2 = 1 

  '  Else 

    '  powerCO2 = 0 

   ' EndIf 

     

    PortSet(port_CO2_power,powerCO2) 

     

  '  If powerCO2 AND ((minutes >= 25 AND minutes < 30) OR (minutes >= 55)) Then 

      measureCO2 = 1 

  '  Else 

   '   measureCO2 = 0 

  '  EndIf 

     

'======== PHONE =========================== 

  ' Turn the phone on for one hour during the first time window 

  ' (uncomment 'OR' and remove the 1st 'Then' to turn on for 30 mins during each of two time 

windows 

  If (hours = firstDataWindow)  AND NOT lowPowerMode Then 'OR hours = 

secondDataWindow) AND minutes < 30 Then 

    powerPhone = 1 

  Else 

    powerPhone = 0 

  EndIf 

  ' Use the phoneManualON flag to keep the phone on forever 

  ' the default value for phoneManualON will be 0 (OFF) 

  'If phoneManualON = 1  AND NOT lowPowerMode Then 

    'powerPhone = 1 

  'EndIf 

  PortSet(port_phone_power,powerPhone) 

  '------------------------------------------- 

 

'======== Multiplexer: pH, ORP, DO, CO2 ============================  

  'multiplexer ON 

    PortSet(port_AM32B_RES,1) 

   

  'pH measurements - see WQ program for cal slope lines 

  'change temp variable to GS3 if that's better 

    PulsePort (port_AM32B_CLK,10000) ' move to the next channel of AM32B 

    pHMult_1=-1/(((Temp_CTD_1+273)/298)*59) 

    VoltDiff(pH_1,1,mV2500,1,True,0,_60Hz,pHMult_1,7) 

     

    PulsePort (port_AM32B_CLK,10000) 

    pHMult_2=-1/(((Temp_CTD_2+273)/298)*59) 

    VoltDiff(pH_2,1,mV2500,2,True,0,_60Hz,pHMult_2,7) 
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  'ORP measurements 

    PulsePort (port_AM32B_CLK,10000) ' move to the next channel of AM32B   

    VoltDiff(ORP_1,1,mV2500,1,True,0,_60Hz,1,0)  

 

  'DO measurements 

    PulsePort (port_AM32B_CLK,10000) ' move to the next channel of AM32B 

    VoltDiff (LDO,1,mV2500,1,True,0,_60Hz,0.02,0) 

    VoltDiff (Tw_LDO,1,mV2500,2,True,0,_60Hz,0.05,0) 

  

  'vaisala CO2 measurements 

    PulsePort (port_AM32B_CLK,10000) ' move to the next channel of AM32B 

  VoltDiff (CO2_1_mV,1,mV2500,1,True,0,250,1.0,0) 

  CO2_1_ppm = CO2_1_mV * 4 

  VoltDiff (CO2_2_mV,1,mV2500,2,True,0,250,1.0,0) 

  CO2_2_ppm = CO2_2_mV * 4 

 

  'end multiplexer 

    PortSet(port_AM32B_RES,0) 

 

'======== Diff Channels on CR1000: Sonic ============================  

 

  'sonic measurements 

    VoltDiff (u,1,mV5000,5,True ,0,250,1.0,0) 

    u = ((25*2/5000)*u)-25 

    VoltDiff (v,1,mV5000,6,True ,0,250,1.0,0) 

    v = ((25*2/5000)*v)-25 

    VoltDiff (w,1,mV5000,7,True ,0,250,1.0,0) 

    w = ((25*2/5000)*w)-25 

    VoltDiff (SonicT,1,mV5000,8,True ,0,250,1.0,0) 

    SonicT = ((100/5000)*SonicT)+220-273.15 

 

'======== Call data tables ============================  

  CallTable(dt_co2on) 

  CallTable(dt_co2_co2on)  

 

 NextScan 

EndProg 
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Appendix 3 
 

Description of headspace analysis via gas chromatography 

I collected air samples from above the stream reach in duplicate for analysis on a gas 

chromatograph (Agilent 7890A GC system) and calculation of atmospheric CO2. In this 

method, I collected 30 mL of air in a syringe, attach a filter with a needle to the syringe, and 

inject the air into a sealed vial for analysis. I repeated this on multiple occasions during the 

study period to determine the average atmospheric CO2 concentration at the study site. This 

parameter is used in calculations of kCO2, k600, and CO2 emissions. 
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Appendix 4 
 

Input stream velocity (V) (m s-1) and the logarithm of predicted CO2 emissions estimates 

(log(FCO2)) (g C L-1 d-1) of the loess fit 

V log(FCO2) 

0.22 4.11 

0.27 4.74 

0.36 6.01 

0.25 4.53 

0.21 4.08 

0.16 3.59 

0.25 4.49 

0.23 4.22 

0.23 4.28 

0.30 5.06 

0.26 4.60 

0.21 3.99 

0.18 3.73 

0.16 3.60 

0.15 3.50 

0.22 4.14 

0.30 5.13 

0.34 5.66 

0.25 4.52 

0.23 4.20 
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0.24 4.32 

0.23 4.24 

0.33 5.54 

0.29 4.99 

0.24 4.31 

0.20 3.93 

0.17 3.68 

0.15 3.53 

0.14 3.43 

0.14 3.44 

0.21 4.08 

0.26 4.55 

0.21 4.04 

0.18 3.76 

0.16 3.60 

0.14 3.47 

0.13 3.38 

0.12 3.32 

0.13 3.38 

0.15 3.52 

0.15 3.54 

0.15 3.51 

0.17 3.71 

0.18 3.74 

0.11 3.25 
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0.11 3.22 

0.09 3.12 

0.07 3.06 

0.06 3.02 

0.05 3.01 

0.05 3.01 

0.08 3.07 

0.07 3.04 

0.05 3.01 

0.05 2.99 

0.04 2.98 

0.08 3.09 

0.07 3.07 

0.06 3.02 

0.05 3.00 

0.04 2.98 

0.13 3.38 

0.27 4.77 

0.20 3.93 

0.14 3.47 

0.12 3.29 

0.10 3.20 

0.21 4.03 

0.32 5.39 

0.11 3.26 
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0.10 3.21 

0.09 3.14 

0.08 3.11 

0.07 3.07 

0.07 3.06 

0.07 3.04 

0.06 3.02 

0.06 3.03 

0.08 3.10 

0.22 4.19 

0.31 5.25 

0.20 3.95 

0.16 3.61 

0.14 3.45 

0.15 3.48 

0.19 3.85 

0.29 5.03 

0.30 5.14 

0.35 5.76 

0.32 5.34 

0.26 4.60 

0.31 5.26 

0.23 4.30 

0.19 3.84 

0.23 4.22 
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0.22 4.17 

0.17 3.66 

0.14 3.42 

0.12 3.31 

0.11 3.23 

0.12 3.28 

0.13 3.39 

0.12 3.31 

0.14 3.47 

0.23 4.30 

0.31 5.17 

0.20 3.94 

0.17 3.69 

0.17 3.68 

0.14 3.44 

0.12 3.29 

0.12 3.33 

0.15 3.52 

0.15 3.52 

0.16 3.56 

0.22 4.11 

0.20 3.94 

0.27 4.73 

0.23 4.28 

0.23 4.27 
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0.25 4.52 

0.23 4.31 

0.22 4.11 

0.19 3.83 

0.18 3.74 

0.14 3.43 

0.12 3.32 

0.10 3.22 

0.20 3.95 

0.30 5.12 

0.23 4.21 

0.18 3.74 

0.16 3.56 

0.14 3.46 

0.12 3.29 

0.12 3.34 

0.11 3.27 

0.12 3.28 

0.13 3.36 

0.18 3.77 

0.16 3.61 

0.19 3.87 

0.16 3.61 

0.13 3.39 

0.11 3.25 
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0.09 3.15 

0.10 3.18 

0.18 3.73 

0.21 4.00 

0.17 3.67 

0.15 3.49 

0.23 4.22 

0.22 4.12 

0.17 3.65 

0.14 3.42 

0.12 3.28 

0.10 3.17 

0.08 3.10 

0.08 3.08 

0.06 3.02 

0.06 3.01 

0.05 3.00 

0.04 2.98 

0.03 2.97 

0.03 2.96 

0.03 2.96 

0.04 2.97 

0.06 3.01 

0.06 3.03 

0.05 3.00 
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0.04 2.98 

0.03 2.97 

0.03 2.96 

0.07 3.05 

0.06 3.02 

0.09 3.14 

0.06 3.02 

0.05 2.99 

0.04 2.98 

0.04 2.98 

0.04 2.97 

0.04 2.97 

0.12 3.30 

0.09 3.12 

0.07 3.07 

0.07 3.06 

0.06 3.03 

0.05 3.00 

0.05 2.99 

0.04 2.98 

0.03 2.97 

0.03 2.96 

0.02 2.96 

0.02 2.96 
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