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Abstract

There is often a need to recover the “missing” query that produced a particular out-

put from a data stream. As an example, since a data stream is constantly evolving,

the analyst may be curious about using the query from the past to evaluate it on the

current state of the data stream, for further analysis. Previous research has studied

the problem of reverse engineering a query that would produce a given result at a

particular database state.

We study the following problem. Given a streaming database D= 〈D0,D1,D2..〉,
a result Rout , and a set of candidate queries Q, efficiently find all queries Qi ∈Q

such that for some state D ji of the stream, Qi(D ji) = Rout , and report the pair

(Q,witQ) where witQ is the witness of (in)validity. A witness for a valid query

Qval is a state Di s.t. Qval(Di) = Rout . For an invalid query Qinval , a witness is a pair

of consecutive states (Di,Di+1) such that Rout \Qinval(Di) 6= /0 6=Qinval(Di+1)\Rout .

We allow any PTIME computable monotone query to be included in Q. While

techniques developed in previous research can be used to generate the candidate

query set Q, we focus on developing a scalable strategy for quickly determining

the witness. We establish theoretical worst-case performance guarantees for our

proposed approach and show that it is no more than a factor of O(log |DRDS|) of the

optimal “Lucky guess” strategy, where Q(DRDS) = Rout . We empirically evaluate

our technique and compare with natural baselines inspired from previous research.

We show that the baselines either fail to scale or incur an inordinate amount of

overhead by failing to take advantage of natural properties of a data stream. By

contrast, our strategy scales effortlessly for very large data streams. Moreover,

it never performs more than a small constant times the optimal amount of work,

regardless of the state of the data stream that may have led to Rout .
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Lay Summary

Data is constantly evolving and new data records are added every day, for exam-

ple in a weather monitoring system. Data enthusiasts often like to ask the same

question repeatedly over time to find evolving trends. Now, consider the scenario

where a data analyst has queried this data at some time in the past and stored the

answer that she obtained. However, due to negligence, the question that she asked

is no longer available but she has access to the stored answer. In our work, we wish

to help her find the “missing” question that she had asked on the data at a previous

point in time. We do this using the stored answer and a set of possible questions

that she could have guessed.
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Chapter 1

Introduction

There is nothing more difficult to take in hand, more perilous to
conduct, or more uncertain in its success, than to take lead in the

introduction of a new order of things — Niccolo Machiavelli

Database management systems excel in recording dynamic data and in effi-

ciently answering complex ad hoc queries over this data. The need for these core

capabilities has only grown in recent years, with increasing availability of a large

variety of transactional data feeds about different facets of the real world, and the

concomitant desire by data enthusiasts to continually analyze this data to make

data-driven decisions. As an example, the NYC Citi Bike data records the loca-

tion, time and user of every checkout and checkin of a Citi Bike in New York

city, and makes a version of this growing data set available for general use.1 City

planners may want to query this data to find the trips taken by Citi Bikers during

peak commute hours on different weekdays, Citi Bike riders may want to know

which bike stations are popular for checkouts and checkins in the vicinity of Grand

Central station, and so on.

As new data becomes available, data enthusiasts have a tendency to issue the

same queries repeatedly over time to understand the evolving nature of the data.

For example, a city planner querying the NYC Citi Bike data may issue the same

query every few days to understand the impact of construction in the NYC Penn sta-

tion area on the trips taken during peak commute hours on different weekdays. Un-
1https://www.citibikenyc.com/system-data (visited on 24/08/2017).
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less the data enthusiast is highly disciplined and diligently records detailed meta-

data with each query result, a common problem that arises is that it is easy to lose

track of which query result was generated for which version of the data, making it

difficult to do meaningful longitudinal analysis on this data. This is the core prob-

lem of Query Validation that we address in this work: Given a database log L of

records that are incrementally added to the database over time, a monotonic query

Q and a result table Rout , efficiently determine if there exists a database state Dr

containing all and only records in log L up to time r, such that Q(Dr) = Rout .

Our core problem is relevant to many applications, including scientific repro-

ducibility, query reverse engineering and so on. For example, Digital Bibliography

& Library Project (DBLP) dataset is a popular dataset for benchmarking and re-

porting experiments in the social networks and database systems community. It

is always evolving with time in an append-only fashion. Scientific reproducibil-

ity problem can be stated as follows: given the experimental results which were

run on the DBLP data in the past, reproduce the results by identifying the relevant

database snapshot e.g., Baid et al. run a known query on an unknown state of the

DBLP database. In query reverse engineering, given a database log and a result

table, Tran et al. try to identify a concise query and a recent database state that

could have generated the result table.

1.1 Challenges
While our core problem is simply stated, and has a straightforward solution (run

the query Q on every database state D j generated by the log L up until time j for

all j ≥ 0, and check if Q(D j) = Rout), it is easy to see that this solution can be

extremely inefficient for big logs and complex queries. An optimal solution here

would obviously need to make a “lucky guess” of the correct time r in the log L,

load all the log records up until time r in a database to get the correct database state

Dr and validate that Q(Dr) = Rout . Our key result in this work is that it is possible

to devise an algorithm that, without making any lucky guesses, is close-to-optimal

in that its efficiency is within a logarithmic factor of the optimal algorithm.

What would such an algorithm look like? The “logarithmic factor” might lead

the astute reader into thinking that binary search plays a role here, possibly by

2



first loading the entire log L into a database, then doing a binary search on the

possible database states w.r.t. the log to identify the correct one. Note, however,

that any solution that needs to first load the entire log L (with n records) into a

database cannot be close-to-optimal if the correct database state has, say, fewer than

log(n) records; in this case, just loading the entire log takes exponentially longer

than the straightforward solution described above (for queries with polynomial data

complexity).

1.2 Geometric Chunking
Our proposed algorithm, which we call Geometric Chunking , works in two phases.

1. In the first phase, it starts by loading a fixed-sized chunk of the log (in terms

of the number of log records, say 1) into the database, then iteratively load-

ing a geometrically increasing chunk size (say, doubling) of the log into the

database so long as the correct database state can still be encountered sub-

sequently: this can be checked efficiently by comparing Q(Dr) and Rout on

database states Dr at the boundaries of the loaded chunks.

2. If the database state Ds at the boundary of the most recently loaded chunk

can be used to infer that the correct database state may have been crossed,

the second phase is initiated. In the second phase, Geometric Chunking does

a binary search on the database states within the most recently loaded chunk.

We prove that the efficiency of Geometric Chunking (GC) is within a logarith-

mic factor of the optimal algorithm (which would need to make lucky guesses).

Geometric Chunking is not only theoretically elegant, it is also practically ef-

ficient. This is achieved by making effective use of the capabilities of modern

database management systems, including materialized views and view mainte-

nance, dynamic indexes on derived tables, and stored procedures.

1.3 Contributions
In this work, our contributions range from the conceptual to the algorithmic, from

the analytical to the experimental.

3



Our first contribution is conceptual: we formulate the technical problem of

Query Validation on a database log, and argue that it is a core problem that arises

in many applications.

Our second contribution is algorithmic: we devise the Geometric Chunking

algorithm (described above) to elegantly and efficiently solve our problem.

Our third contribution is analytical: we build cost models for a family of can-

didate algorithms to solve the Query Validation problem, and prove that Geometric

Chunking is within a logarithmic factor of the “lucky guess” optimal algorithm.

We also show that using indexing on the log cannot improve by more than a loga-

rithmic factor over Geometric Chunking.

Our fourth and final contribution is experimental: we carry out a large variety

of experiments on benchmark TPC-H data and suitable queries to demonstrate the

considerable advantages of Geometric Chunking over its competitors.
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Chapter 2

Background and Problem
Statement

No problem can withstand the assault of sustained thinking
— Voltaire

We consider a transaction log L corresponding to a streaming warehouse, where

transactions consist only of append operations. One practical scenario of this set-

ting is discussed in update scheduling in streaming data warehouses [11] where

external sources push append-only data streams into the warehouse at a range of

interarrival times. In general, temporal data involving tables with transaction-time

support tend to be append-only as well.

Furthermore, we assume that transactions leave the database state consistent,

w.r.t. applicable integrity constraints. Specifically, if there is a referential integrity

constraint (RIC) from relation R to S on key attributes K, then whenever a trans-

action inserts a tuple t into R, either S already contains a tuple s with s[K] = t[K]

or such a tuple is added as part of the same transaction.1 The transaction log as-

sociates a timestamp with every inserted tuple, reflecting the time at which the

tuple was added to the warehouse. All tuples added in a transaction are assigned

the same timestamp. Positions on a log L can be associated with corresponding

1In this case, K is a foreign key (FK) of R and the primary key (PK) of S.
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database states: we denote the state associated with position r as Dr. We refer to

states associated with consecutive integers as consecutive states.

Given a SQL query Q, a transaction log L, and an output relation Rout , we say

that Q is valid w.r.t. L, provided there exists a position r on L such that Q(Dr) =

Rout . If there is no such position, we say Q is invalid. In practice, we may encounter

a set of candidate queries Q along with a log L and an output relation Rout , and may

want to identify which of the queries in Q are valid (resp., invalid). In this work,

we consider monotone standardized query language (SQL) queries, focusing on

queries involving no aggregation. In database theory, a monotone query is defined

as a query that does not lose any tuples that it previously produced [1]. Formally,

a query Q over a schema D is monotonic iff for every pair of instance I,J of D ,

I ⊆ J =⇒ Q(I)⊆ Q(J).

Furthermore, we make the following assumptions: (i) the first state of the log

is empty; (ii) the queries considered return an empty result when evaluated on an

empty database; (iii) they return a superset of Rout when evaluated on the last state

of the log. The assumptions are natural and not restrictive. In particular, Assump-

tion (iii) can be verified by evaluating the query on the last state of the log: notice

that any query not satisfying this property cannot be valid.2 We further assume,

w.l.o.g., that the queries we consider have an output schema that is compatible

with the given output relation Rout .

A key computational question we are interested in is determining the (in)validity

of a query w.r.t. a given output relation and a transaction log. We make use of the

notion of a witness as a certificate of (in)validity of a given query. If a query is

valid, any state at which it exactly returns the given output relation can be regarded

as a witness. If it is invalid, the witness we produce must offer a concise certificate

that there is no state in the log at which the query will exactly produce the output

relation. This is formalized below.

Definition 1 (Witness). Given a transaction log L, an output relation Rout , and

a valid query Q, a witness of validity of Q is a state Dr with the property that

Q(Dr)\Rout and Rout \Q(Dr) are both empty. For an invalid query Q, the witness

2In practice, we may of course face a workload not satisfying this assumption. In Section 5, we
evaluate our algorithms on such workloads.
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SELECT A, B SELECT A, B
Q1: FROM R Q2: FROM R

WHERE C=1 and B>=2 WHERE C=1 and B>=3

R Rout

RID A B C
t1 1 2 1
t2 1 3 1
t3 2 3 2
t4 2 3 1

A B
1 3
2 3

Figure 2.1: Example database state and queries.

of invalidity consists of a pair of consecutive states, say Dr and Dr+1, such that

Rout \Q(Dr) is non-empty and Q(Dr+1)\Rout is non-empty.

Notice that the second condition occurs when we have two adjacent states, r

and r+1, such that Rout is a subset of Q(Dr) and Q(Dr+1) has additional tuples not

in Rout (in particular, Q(Dr+1) is a superset of Rout).

The definition of witness for a valid query is equivalent to the condition Q(Dr)=

Rout . In this case, the state Dr is referred to as a Right Database State (RDS). No-

tice that for a valid query, there may be multiple right database states. From the

monotonicity of Q and the append-only nature of the warehouse, it follows that

whenever Dr and Ds are RDS’s for a query Q, every state in between Dr and Ds

must be an RDS for Q too. In other words, the set of RDS’s for a query form an

interval over timestamps.

For an invalid query, by definition, there is no state at which Q returns exactly

the output relation Rout . Since the warehouse is append-only, and Q is monotone, it

follows that there must be a pair of consecutive states Dr and Dr+1 such that Q(Dr)

misses some tuples in Rout and Q(Dr+1) contains some spurious tuples not present

in Rout . This captures the following “check-mate” intuition: no state to the past

of Dr could lead to the result Rout , since on those states, Q will produce a subset

of Q(Dr); and no state to the future of Dr+1 helps either, since Q will produce a

superset of Q(Dr+1) on those states. In view of our assumption above, the witness

of an invalid query is well defined.

7



The next example illustrates witness states.

Example 1 (Witness States). Consider the database consisting of one relation R

and the queries Q1 and Q2 shown in Figure 2.1. Consider two different transaction

logs. In the first log, L1, tuples are added into R in the order shown, one at a time:

R0 = /0,R1 = {t1}, ...,R4 = {t1, ..., t4}. In the second log, L2, R0 = /0, and tuples t2
and t3 are added in timestamp 1, and tuples t1 and t4 are added in timestamp 2, i.e.,

R1 = {t2, t3}, and R2 = {t1, t4}.3

First, consider the log L1. On this log, Q2(R4) = Rout and R4 is the only state

at which this is true. Clearly, it is a witness to the validity of Q2. Now, consider

Q1. Notice that Q1(R0) = /0 and Q1(R1) = {(1,2)} and thus, Rout \Q1(R0) 6= /0 6=
Q1(R1)\Rout . Therefore, (R0,R1) provides the witness for invalidity of Q1 for this

log.

Next, consider the log L2. On this log, Q2(R2) = Rout and R2 is the only state at

which this is true. Clearly, it is a witness to the validity of Q2. Now, consider Q1.

Notice that Q1(R1) = {(1,3)} and Q1(R2) = {(1,2),(1,3),(2,3)}. Since Rout −
Q1(R1) 6= /0 6= Q1(R2)−Rout , the pair of states (R1,R2) from the log L2 forms the

witness for the invalidity of Q1.

The formal statement of the problem studied is as follows.

Problem 1 (Problem Studied). Given a transaction log L, an output relation, and

a workload consisting of a set of queries Q, find a witness for every query in Q,

i.e., for every valid query Q ∈Q, find a state Dr such that Q(Dr) = Rout and for

every invalid query Q ∈Q, find a pair of states Dr,Dr+1, such that Rout \Q(Dr) 6=
/0 6= Q(Dr+1)\Rout .

3For simplicity of notation, we use Ri to denote the database state at position i in either log L1 or
L2. The intended log should be clear from the context.
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Chapter 3

Solution Strategies

The solution often turns out more beautiful than the problem
— Richard Dawkins

In this section, we present strategies to solve Problem 1. We will first consider

and explain some baseline strategies inspired from previous work and then suggest

improvements in Section 3.2 where we discuss Static Chunking Strategy. Next, we

discuss our proposed approach Geometric Chunking in Section 3.3. In Section 3.4,

we consider the use of a log index for further speeding up geometric chunking.

The intuition behind our approach is the following. If a query Q evaluated on

the database state Dr at timestamp r produces a proper subset of Rout (i.e. Rout \
Q(Dr) 6= /0 and Q(Dr) \Rout = /0), we know that we should move forward in the

log1. Similarly, if Rout is a proper subset of Q(Dr) (i.e. Q(Dr) \ Rout 6= /0 and

Rout \Q(Dr) = /0), we need to evaluate Q on D for timestamps < r. However, if

both conditions are satisfied i.e, Rout \Q(Dr) 6= /0 and Q(Dr+1)\Rout 6= /0, then we

can provide (Dr,Dr+1) as the witness for invalidity. 2 In fact, Q(Dr)\Rout 6= /0 6=
Rout \Q(Dr) is sufficient to provide the witness (Dr,Dr+1). This is because the

monotonicity argument proves that Q will not be able to produce exactly Rout even

for timestamps τ > r since Q(Dτ)\Rout will never become non-empty.

1Since there are some additional tuples in Rout which are missing from Q(Dr). Monotonicity
argument dictates that we move forward in the log.

2This provides a witness of invalidity since for states prior to Dr, we will only get subsets of
Rout and for states Dτ beyond Dr+1, Q(Dτ ) will always contain spurious tuples not present in Rout
(because Q(Dτ )\Rout will never be non-empty).
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From here on, evaluating Rout \Q(Dr) and Q(Dr) \ Rout will be collectively

referred to as a probe on database state Dr.

3.1 Baseline Strategies
To the best of our knowledge, there is only one approach previously discussed in

the literature by Tran et al. that is relevant to our problem. We refer to it as the

Backward Naı̈ve strategy. Originally, this has been implemented to solve a more

general problem where updates involving both additions and deletions to the log

are considered. Hence, this is unable to take advantage of monotonicity and cannot

“skip” ahead. It is forced to progress through each database state sequentially,

probing on each time stamp until the Right Database State (RDS) is found.

3.1.1 Backward Naı̈ve strategy

Given a sequence of database states D1,D2, ...,Dlast−1,Dlast , we start with the most

recent state i.e. Dlast and do a backward linear scan, probing on each database

state until an RDS is found or the query is found to be invalid. We load the entire

data up to the most recent timestamp last and probe on Dlast . If Q(Dlast) ⊂ Rout ,

we see that assumption (iii) in Section 2 is violated, making Q invalid. Suppose

Q(Dlast)⊇ Rout . If we encounter a state Dr such that Q(Dr) = Rout , we return Dr as

a witness of validity. Otherwise, let Dr be the first state (going backward) at which

Rout \Q(Dr) is non-empty. Then we can return (Dr,Dr+1) as a witness, since by

construction, Q(Dr+1)\Rout is non-empty.

Notice we can optimize this by maintaining a view on Q. This reuses the com-

putation done for query evaluation on the previous database state instead of com-

puting the query from scratch each time.

3.1.2 Forward Naı̈ve strategy

Here, we do a forward linear scan one database state at a time, starting from the

beginning of the log, i.e., state D1. Let Dr be the current state. If Rout \Q(Dr) is

non-empty, we keep probing the next state until one of the following happens:

(i) Q(Dr) = Rout — in this case, we return Dr as a witness of validity of Q;
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(ii) Rout \Q(Dr) as well as Q(Dr) \Rout is non-empty — in this case, as ex-

plained before, we return (Dr,Dr+1) as a witness of invalidity of Q;

(iii) Rout \Q(Dr) is non-empty and Q(Dr)\Rout is empty but Q(Dr+1)\Rout is

non-empty — again, we return (Dr,Dr+1) as a witness of invalidity of Q.

Notice, that in forward naı̈ve in general, we do not have to load the entire

database log. Rather, we load one state at a time as we progress forward. Here,

loading a database state means loading the additional tuple corresponding to the

transaction occurring after the previous state was loaded.

3.2 Static Chunking Strategy
Probing on every database state is wasteful and computationally expensive. We

can reduce the number of probes we perform by carefully choosing the next point

to probe in the log. The idea is to pick the next point in the log based on the

previous comparison between Rout and Q(Dr). Suppose at timestamp r, Rout is a

proper superset of Q(Dr), then from our assumption of monotonicity (discussed in

Section 2) we know that the possibility of finding an RDS only occurs at timestamps

> r. Instead of sequentially probing every timestamp > r, we can “skip” ahead in

the log.

For this purpose, we will partition the log L into chunks. We create chunks on

timestamp, such that the new tuples being added to the data warehouse only touch

the new chunks. Let the size of our chunk be B and Dr be the most recently probed

state. Next, we load a chunk of size B and probe at the end of the chunk i.e., at

Dr+B. Now, if Rout is a proper subset of Q(Dr+B), we know that the possibility of

finding the RDS is in between r and r+B, and we can perform Binary Search on this

chunk (as outlined in Procedure BinarySearch). However, if at timestamp, r+B,

Rout is a superset of Q(Dr+B), we know that we should keep progressing forward

in the log, and we choose our next probe at r+2∗B and so on. The advantage here

is that we save on the expensive probes at every timestamp between r and r+B.

We further optimize this strategy by materializing a view for Q as discussed in [7].

Instead of computing Q(Dr+B) from scratch, we incrementally maintain it from the

previous computation Q(Dr).

11



Procedure Probe defines performing a probe on the state Dr. We evaluate two

conditions in the probe:

1. Q(Dr)\Rout

2. Rout \Q(Dr)

This leads to the following four possibilities-

• Both 1 and 2 are empty: it is a valid query since Q(Dr) = Rout .

• Both 1 and 2 are non-empty: it is an invalid query as explained previously.

• 1 is empty and 2 is non-empty: proceed forward in the log since Rout has

extra tuples not present in Q(Dr).

• 1 is non-empty and 2 is empty: perform a binary search in the current parti-

tion since Rout is a subset of Q(Dr).

We provide the pseudo-code for our approach in Algorithm 1. Given a work-

load of queries Q, we maintain a view for each query Q ∈Q. We load a chunk

once, probe at the end of the chunk (Dend) for all the candidate queries in Q.

If the Probe function returns “VALID”, we return the query Q and witness witQ
which is a single state, say Dr. If the Probe function returns “INVALID”, we re-

turn (Q,〈Dr,Dr+1〉) where Q is the invalid query and the witness witQ is a pair of

states. If the probe returns “FORWARD”, we know that possible RDS lies in the

future, and we load another chunk. Similarly, if probe return “BACKWARD”, we

know that the possible RDS lies somewhere in the current chunk and we perform

a binary search on the current chunk defined by (start,end). The views for queries

that receive a witness of (in)validity are dropped and they are removed from Q.

The remaining queries proceed to the next chunk.

Please note that the pseudo-code is common to both Static Chunking and Geo-

metric Chunking strategy. The difference lies in the way the chunking is performed

which is captured by the set of intervals CHUNKS defined in Equation 3.1 for

Static Chunking and Equation 3.2 for GC.
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For static chunking strategy, each chunk is of the same size. Let B be the size

of the chunk, then CHUNKS will be the set of intervals:

CHUNKS[ ][2] ={ [1,B] , [B+1,2∗B] , [2∗B+1,3∗B] , [3∗B+1,4∗B] , ...

... [(k−1)∗B+1,k ∗B] }
(3.1)

where k ∗B is greater than or equal to the last time stamp of the log. Clearly,

static chunking requires dRDS/Be number of chunk loads to search for the RDS and

log2(B) number of binary probes in the worst case.

Loading a chunk is captured in the Procedure LoadNextChunk. Each chunk is

a row in the matrix CHUNKS[ ][2] (defined in Equation 3.1). The first timestamp of

the chunk is the first element of the row. Similarly, end of the chunk is the second

element of the row. These are called start and end respectively in the pseudo-code.

Procedure BinarySearch explains the binary search that takes place within a

chunk. low is the beginning of the chunk and high is the last time stamp of the

chunk. Recall that we already probed at high as part of the end of the chunk probe.

We now probe on mid of the chunk. If Q(Dmid) is a proper subset of Rout , then

we perform the next binary search in the right half, i.e. between mid + 1 and

high. Else if Q(Dmid) is a proper superset of Rout , then we perform the next binary

search in the left half, i.e. between low and mid− 1. If both Q(Dmid) \Rout and

Rout \Q(Dmid) become non-empty, we can provide a witness of invalidity for query

Q i.e., witQ = (〈Dmid ,Dmid+1〉). Note, if we reach two adjacent states Dlow,Dhigh

(where low+1 = high) such that Q(Dlow) is a proper subset of Rout and Q(Dhigh)

contains a tuple not in Rout ; then the witness of invalidity is the pair of states

(Dlow,Dhigh).
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Algorithm 1: Chunking Strategy
Input: Log L, result table Rout , workload Q

Output: (Q, witQ)

Initialization: Init()

1 if LoadChunk = true then
2 LoadNextChunk(ch)

3 LoadChunk← f alse

4 else
5 foreach Q ∈Q do
6 if Probe(Q,Rout ,Dend) = “VALID” then
7 drop view for Q and remove Q from Q

8 return (Q,〈Dend ,Dend+1〉)
9 else if Probe(Q,Rout ,Dend) = “INVALID” then

10 drop view for Q and remove Q from Q

11 return (Q, 〈Dend ,Dend+1〉)
12 else if Probe(Q,Rout ,Dend) = “FORWARD” then
13 LoadChunk← true

14 ch← ch+1 . Loads next chunk

15 else
16 BinarySearch(start,end) . Perform Binary Search

. within the current partition

Procedure Init()
1 Create empty tables
2 Initialize CHUNKS . as per Equation 3.1 or 3.2
3 LoadChunk← false
4 ch← 0
5 LoadNextChunk(ch)
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Procedure LoadNextChunk(ch)
1 start← CHUNKS[ch][0] . start is first timestamp

. of the chunk
2 end← CHUNKS[ch][1] . end is the last timestamp

. of the chunk
3 Load tuples between start and end for all relations

Procedure Probe(Q,Rout , p)

1 if Q(p)\Rout = /0 AND Rout \Q(p) = /0 then
2 return “VALID”
3 else if Q(p)\Rout 6= /0 AND Rout \Q(p) 6= /0 then
4 return “INVALID”
5 else if Q(p)\Rout = /0 AND Rout \Q(p) 6= /0 then
6 return “FORWARD”
7 else
8 return “BACKWARD”

Procedure BinarySearch(low,high)

1 while low ≤ high do
2 if high = low+1 then
3 drop view for Q and remove Q from Q
4 return (Q,〈Dlow,Dhigh〉)
5 break
6 else
7 mid← (low+high)/2
8 if Probe(Q,Rout ,Dmid) = “VALID” then
9 drop view for Q and remove Q from Q

10 return (Q,〈Dmid ,Dmid+1〉)
11 break
12 if Probe(Q,Rout ,Dmid) = “INVALID” then
13 drop view for Q and remove Q from Q
14 return (Q,〈Dmid ,Dmid+1〉)
15 break
16 else if Probe(Q,Rout ,Dmid) = “FORWARD” then
17 low← mid+1
18 else
19 high← mid-1
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3.3 Geometric Chunking Strategy
In Geometric Chunking strategy, we geometrically increase each chunk size by a

constant factor c.

Let B be the size for the first chunk (referred to as the base chunk size). We

assume the default value of c = 2. 3 Then CHUNKS is the set of intervals:

CHUNKS [ ][2] ={ [1,B] , [B+1,B+2∗B] , [B+2∗B+1,B+2∗B+4∗B] , ..

... [(2k−1−1)∗B+1,(2k−1)∗B] }
(3.2)

where (2k−1)∗B is greater than or equal to the last time stamp of the log.

Please note that the procedure to provide witness of (in)validity is the same as

before. The only difference is that the in GC, the chunk size grows geometrically

allowing us to quickly reach within the proximity of the RDS. Let dRDS/Be be

m and [2k−1 ∗B−B+ 1,2k ∗B−B] be the chunk we perform binary search over.

Then GC requires log2(m) number of chunk loads to search for the RDS. Once we

load the chunk containing the possible RDS, a binary search (described in Procedure

BinarySearch) is performed as before. Here, the chunk size over which we perform

Binary search is 2k−1 ∗B and therefore, GC will perform (k−1)+ log2(B) number

of binary probes4 in the worst case.

3.4 Log Index
To speed up geometric chunking further, we could construct a log index. The idea

is that for value v of each attribute A of each relation R in the database, we store the

earliest timestamp τA
v at which any tuple with A = v was inserted into R according

to the log. Suppose query Q involves relation R and R.A is one of the projected

3We have experiments exploring other values of c as well.
4 log2(2k−1 ∗B) = (k−1)+ log2(B)
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attributes of Q. If Rout contains a tuple t with t.A = v, then obviously Q(Dr) 6= Rout

for all r < τA
v . We can generalize this intuition for a conjunction of attributes: e.g.,

for a set of attributes X ⊆ schema(R), it is easy to see that

Q(Dr) 6= Rout ,∀r < maxA∈X τ
A
v .

Finally, we can also show that

Q(Dr) 6= Rout ,∀r < maxt∈Rout maxA∈X τ
A
t[A],

where τA
t[A] denotes the earliest timestamp at which any tuple with A = t[A] was

added into relation R according to the transaction log. Notice that another max can

be applied over all relations in Q. More precisely, for each tuple in Rout we can find

the latest timestamp when a contributing tuple in any relation R participating in Q

was added to the database. We can then take max of this quantity over all tuples in

Rout .

Q(Dr) 6= Rout ,∀r < maxt∈Rout maxR∈QmaxA∈X τ
A
t[A],

where τA
t[A] denotes the earliest timestamp at which any tuple with A = t[A] was

added into relation R according to the transaction log.

Of course, one could build multidimensional indices on sets of attributes and

exploit them to prune probes on early states of the transaction log.
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Chapter 4

Technical Results

I’ve always believed that if you put in the work, the results will come
— Michael Jordan

In this section, we establish our main technical results. Let L be a transaction

log. Recall that for a valid query Q, an RDS corresponds to a log position r such

that Q(Dr) = Rout . As seen in Section 2, a valid query may have multiple Right

Database States. Without ambiguity, we denote any RDS as DRDS.

4.1 Assumptions and Cost Model
In this section, we assume that the available memory is adequate for probing any

one database state. This means not only that the database state D being probed and

Rout fit in available memory, but also any intermediate results of evaluating Q(D)

fit in memory. Thus, the cost model we employ is in terms of the main memory

model. In our experiments (Section 5), we relax this assumption and compare the

different strategies under limited memory. In this section, we consider polynomial

time computable selection-projection-join-union (SPJU) queries.

4.2 Basic Operations
We establish some terminology to help compare different strategies for query val-

idation. A strategy needs to load some database state, either in whole, or a times-

tamp at a time, or a chunk at a time, and needs to evaluate the query being val-
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idated, on the loaded state. Once the query is evaluated, the result needs to be

compared with Rout . Here, we refer to query evaluation together with this compar-

ison as a probe. Both static and geometric chunking strategies consist of a Linear

Search (LS) phase and a Binary Search (BS) phase, each potentially consisting of

several probes. During LS, whenever a probe is found to result in a proper subset

of Rout , the next chunk is loaded and probed. If a probe on a state Dr results in a

proper superset of Rout , the strategy proceeds to the BS phase, to search if there is a

previous state Ds, s < r, at which Q(Ds) = Rout . Clearly, the binary search involves

a logarithmic number of probes in the size of Dr. Notice that the cost of each probe

during BS is upper bounded by that of Dr. Finally, an orthogonal point is that any

of the strategies may employ materialized views to speed up the probes.

4.3 The Oracle
We propose a reference oracle strategy for the sake of comparison and calibration

of various algorithms. Given a valid query Q, the oracle knows the position RDS

of a right database state in the log, loads the data for DRDS corresponding to this

RDS, probes it with the query Q, compares the result with Rout , and produces the

certificate that Q(DRDS)−Rout and Rout −Q(DRDS) are empty, thus validating Q at

DRDS. Notice that the oracle simply loads one chunk of data and then evaluates

the query. It does not involve any binary search. It thus acts as a bar for the most

efficient possible strategy among those considered.

4.4 Overview of Results
We consider two different settings for query validation: (i) when no materialized

views are used and (ii) when materialized views are used and are maintained (incre-

mentally) by the underlying DBMS. For both settings, under certain assumptions

about the cost model which we will make precise shortly, we establish our results

on the cost of the static and geometric chunking strategies. Specifically, we show

that the geometric chunking strategy proposed incurs a cost that is no more than a

factor O(log |DRDS|) times that of the oracle. By contrast, we show that the static

chunking strategy can incur linearly more cost than the oracle.
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Finally, we consider a possible additional optimization for query validation

on top of geometric chunking. We can create a log index which keeps track of

the earliest timestamp when a tuple with certain attribute-value is added into each

relation. Such an index can be used to avoid wasteful probes. We dicsuss the

utility of such a log index and show that the cost saving achieved by a log index

over a geometric chunking strategy without such an index is bounded by a similar

logarithmic factor.

Unless otherwise mentioned, all logarithms are base 2. While GC permits

expanding chunk size using any factor c≥ 1, w.l.o.g., we assume the default value

of c = 2. Other values of c are explored in our experiments. Notice GC with c = 1

is equivalent to static chunking strategy.

4.5 No Views
In this section, we consider a query evaluation model that does not make use of

materialized views. This means that whenever a query needs to be evaluated on a

different database state in the log, the query will be evaluated on that state from

scratch. We start with a simple observation.

Observation 1. Let Q be a monotone SQL query and let Dr,Ds be any two database

states from the log such that r ≤ s. Then under any plan p chosen by the query op-

timizer, the cost of evaluating Q on Dr under p is no more than that of evaluating

Q on Ds under p.

Proof. Since we consider a streaming warehouse setting, our logs are append-only

and thus Dr ⊆ Ds. Since Q is monotone, we have Q(Dr) ⊆ Q(Ds). It follows that

under any given plan for Q, obtaining the result Q(Ds) would involve at least as

much work as obtaining the result Q(Dr).

4.5.1 Geometric Chunking

One of the assumptions we make in this section is that the query optimizer uses a

consistent plan for evaluating queries regardless of the size of the database state.

For a database state D, we let |D| denote its size in number of tuples.
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Theorem 1. Let Q be any valid monotone SQL query that is computable in PTIME

and let DRDS be the database state corresponding to a RDS w.r.t. query Q. Then

the cost of the geometric chunking strategy for validating Q using the log is at most

O(log |DRDS|) times the cost of the oracle validating Q at the database state DRDS.

Proof. Suppose on any state Dr, Q(Dr) can be evaluated in time O(|Dr|k), where

k is some constant. This is the cost incurred by the oracle for validating Q w.r.t.

Dr. It is obvious that the geometric chunking strategy performs a logarithmic num-

ber of probes, i.e., dlog |Dr|e probes during the LS phase. In the worst case, the

(dlog |Dr|e− 1)th probe could have just “missed” the correct position of the RDS

DRDS, with the result that the dlog |Dr|eth probe could correspond to a database

state Ds such that |Ds| ≤ 2|DRDS|. Clearly, the cost of the last probe dominates the

cost of all preceding probes, by virtue of Observation 1. Next, BS may involve

a number of additional probes equal to log |Ds| = O(log |Dr|). The cost of every

probe is upper bounded by O(|Ds|k) =O(2k|Dr|k) =O(|Dr|k), since k is a constant.

Putting these together, it follows that the cost of the geometric chunking strategy

validating Q using the transaction log is at most O(dlog |Dr|e|DRDS|k). The theorem

follows.

4.5.2 Log Index

We next establish an upper bound on the savings that can be achieved using any

log index, no matter how complex or sophisticated.

Let Q be a valid query. Recall our previous discussion on Log Index in Section

3.4. For any tuple in Rout , we take the maximum timestamp when a contributing

tuple from a relation R participating in Q was added to the log. We can then take

a maximum over all the tuples in Rout . This quantity is denoted as LI(Rout ,Q).

This is also equivalent to the position in the transaction log for which we can prune

probes on all states prior to LI(Rout ,Q). We now have the following:

Theorem 2. The cost of geometic chunking strategy without log index is at most

O(log |DLI(Rout ,Q)|) times that of geometric chunking with log index.

Proof. The argument is analogous to that of Theorem 1. The key idea is to realize

that GC with log index will start at the state DLI(Rout ,Q) while GC without log index
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will start from the initial state. Thus, the saving of the former compared to the latter

comes from avoiding the logdDLI(Rout ,Q)e probes during the LS phase of GC without

log index. After this, both GC without log index and GC with log index behave

similarly. It is clear that GC without log index has a cost that is O(log |DLI(Rout ,Q)|)
times that of GC with log index.

Notice that in practice, depending on the selectivity of the log index, LI(Rout ,Q)

may be much smaller than RDS. Its construction and maintenance involve addi-

tional overhead.

4.5.3 Static Chunking

Next, we consider the cost of the static chunking strategy over the oracle. Let Q be

any valid monotone SQL query, let DRDS be the database state corresponding to a

RDS w.r.t. query Q. Then the cost of the static chunking strategy for validating Q

using the transaction log can be O(|DRDS|) times the cost of the oracle validating Q

at the database state DRDS, as we show below.

Suppose DRDS contains n tuples and that evaluating Q(DRDS) takes O(nk) time.

Let B be the size of a (static) chunk. Suppose B is a constant and let m = dn/Be.
Let Ds be the last (and largest) database state probed during the LS phase. Since

B is a constant, |Ds| = O(|DRDS|). During the BS phase, an additional number

of O(log |DRDS|) probes are performed. The total cost incurred during the LS

phase of static chunking is O(|B|k +(2|B|)k + · · ·+(m|B|)k) = O(|B|k ∑
m
i=1 ik) =

O(|B|kmk+1) = O(nk+1), since B is a constant. The second equality follows from

Faulhaber’s formula [16]. Ignoring the additional cost of BS, the overall cost of

static chunking is O(n) times that of oracle. Consider an instance of the problem

such that evaluating Q on DRDS takes nk time. The analysis above is tight in the

sense that on this instance, the cost of static chunking can take up to O(nk+1/B)

times that of the oracle.

4.6 With Views
In this subsection, we consider the setting where query evaluation at different

database states leverages incremental view maintenance strategies [7]. More pre-
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cisely, suppose a query Q is evaluated at a state Dr and the result Q(Dr) is cached.

Suppose it is now required to be evaluated at state Ds, where r ≤ s. Then Q(Ds)

can be obtained from Q(Dr) by incrementally evaluating Q(Ds), given Q(Dr) and

the “delta” or change between Ds and Dr [17]. Notice that since the log is append-

only, the incremental query evaluation only consists of additions and no deletions.

Recall that the log associates a timestamp with every tuple, viz., the time at which

the tuple was inserted into the warehouse. The algorithms we develop in this work

take advantage of certain stylized views, which keep track of the timestamp of ev-

ery tuple that was used in deriving an output tuple of the view. We illustrate this

with an example.

Example 2 (Time aware views). Consider the following query.

SELECT C NAME, C CUSTKEY, O ORDERKEY, O ORDERDATE,

O TOTALPRICE

FROM CUSTOMER, ORDERS, LINEITEM

WHERE O ORDERKEY = L ORDERKEY AND

C CUSTKEY = O CUSTKEY AND C NATIONKEY = 3

Suppose that for each relation R, R.TS denotes the timestamp attribute, that

indicates the time at which a particular tuple was added to relation R in the ware-

house. Then the following modified query can be used to keep track of the times

of the participating tuples used in deriving each answer tuple in the query (view).

SELECT C NAME, C CUSTKEY, O ORDERKEY, O ORDERDATE,

O TOTALPRICE, C.TS, O.TS, L.TS

FROM CUSTOMER C, ORDERS O, LINEITEM L

WHERE O ORDERKEY = L ORDERKEY AND

C CUSTKEY = O CUSTKEY AND C NATIONKEY = 3

For a query Q, we denote by QT S the rewritten version of Q that keeps track

of the times of participating tuples, as illustrated above. We refer to QT S as the

time-aware version of Q. In this work, by views, we mean the time-aware views

illustrated above, unless otherwise specified. We make the following assumptions.

Consider a database state Dr and a state Ds obtained by appending a set of

tuples to Dr, i.e., Ds = Dr ∪ ∆D. The naive approach to query evaluation is to
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evaluate each of the queries Q(Dr) and Q(Ds) independently from scratch, without

any cached results. The incremental evaluation approach proceeds by first evalu-

ating QT S(Dr) and caching the result. Then it uses incremental view maintenance

techniques [7] to directly evaluate QT S(Ds) from the cached result QT S(Dr) and

the “delta” tuples ∆D. Suppose that w denotes the number of relation instances

appearing in Q. We assume that the cost of incremental evaluation of QT S on Dr

and Ds is no more than w times that of naive evaluation of Q on Dr and Ds. This is

a reasonable, if conservative, assumption.
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Chapter 5

Experiments

Good judgement come from experience, and experience comes from
bad judgement — Rita Mae Brown

This section presents the experimental study to evaluate the performance of our

proposed approach, Geometric Chunking Strategy against the TPC-H benchmark

[18]. Below, we outline the key goals of the experiments.

• Demonstrate the performance gains of our proposed approach, Geometric

chunking strategy, over baselines (Section 5.1.3) and over static chunking

(Section 5.3).

• Compare the performance of Geometric chunking against the Oracle strategy

(Section 5.4).

• Test the scalability of our approach under limited main memory, which may

prevent the database and/or intermediate results from fitting in memory (Sec-

tion 5.6).

• Vary the various parameters outlined in Table 5.5 and analyze their impact

on our approach (Section 5.5,5.7).
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5.1 Environment and Setting
All the experiments were conducted on a machine running 64-bit Windows 7 OS

with Intel Core i7-6600U CPU @ 2.60GHz with 20GB RAM. Our code base on

the client side is developed in Java JDK 1.5, and on the server side we use Mi-

crosoft SQL Server 2014 - Enterprise Edition. In this thesis, we present results for

experiments on TPC-H 10 GB database. Additionally, we also ran experiments on

TPC-H 1GB and 0.1GB and inferred same trends. We use 23 selection-projection-

join queries (with their corresponding workloads), 22 of which are TPC-H queries

and 1 query is created by us which demonstrates the cycle schema graph involving

all the relations as shown in Figure 5.3c. To meet the requirements of our approach,

we use the modified TPC-H queries taken from Zhang et al.’s paper which were

created by dropping the group by aggregates and arithmetic expressions. Addi-

tionally, we append some projection conditions derived from the original TPC-H

queries. For running our experiments, we first create a database log and a query

workload, elaborated in Section 5.1.1 and 5.1.2 respectively. All running times re-

ported in this thesis are taken as a median over 5 runs. We perform an additional

first run which is used to warm up the cache and timing for this run is discarded.

5.1.1 Database Log Generation

Figure 5.1: TPC-H Schema

The TPC-H database has 8 relations: Lineitem, Orders, Customer, PartSupp,

Part, Supplier, Nation and Region with the schema shown in Figure 5.1. To create

a database log, we start with an empty log and keep adding tuples one at a time as

per the following approach:
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1. Randomly select a table R (out of the 8 relations) from which a tuple needs

to be added to the database log, say at timestamp τ .

2. Randomly select a tuple t ∈ R which has not been added to the log yet.

3. In order to satisfy the integrity constraints, check for any tuples that are

referenced by the tuple R(t) to be added, via FK – PK references. Add all

such referenced tuples, at the timestamp τ and then add the tuple R(t) at the

same timestamp τ .

Thus, more than one tuple may be added at the same timestamp in order to satisfy

the integrity constraints. Notice that there are no foreign key – primary key refer-

ences from tuples in Part and Region. Thus, if R is one of these relations, only one

tuple will be added to the log at a given timestamp.

We start from τ = 1 and go on till all the tuples have been added to the log.

At the end of this process, each tuple in the database log receives a timestamp

corresponding to the time it was inserted into the log.

The following example illustrates the database log generation process.

Example 3 (Database Log Generation). Let us assume that we want to insert a

tuple from the Lineitem table at Timestamp=t as shown in 5.2a. From Figure 5.1,

we know that the Lineitem table has dependencies in Orders and PartSupp tables.

Therefore the corresponding tuple from the Orders table, 5.2e and PartSupp table,

5.2b are inserted in the log with the same timestamp t. The Orders table further

has PK-FK reference in the Customer table on CUSTKEY. Additionally, Customer

relation which has dependencies in the Nation and Nation in the Region. Similarly,

PartSupp table has dependencies in the Part and Supplier relations. Supplier has

dependencies in the Nation table, which further has dependencies in the Region

table. Therefore, the corresponding tuples from these relations are inserted into the

log with the same timestamp as shown in Figure 5.2.

Notice that two tuples from the Nation table are inserted with the same times-

tamp. This is because the tuple with N NATIONKEY=10 is inserted due to the

S NATIONKEY dependency (from the Supplier relation) and N NATIONKEY=17

comes from the C NATIONKEY=17 dependency (from the Customer relation).
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L ORDERKEY L PARTKEY L SUPPKEY TS
158246 173493 6011 t

(a) LINEITEM

PS PARTKEY PS SUPPKEY TS
173493 6011 t

(b) PARTSUPP

P PARTKEY TS
173493 t

(c) PART

S SUPPKEY S NATIONKEY TS
6011 10 t

(d) SUPPLIER

O ORDERKEY O CUSTKEY TS
158246 85445 t

(e) ORDERS

C CUSTKEY C NATIONKEY TS
85445 17 t

(f) CUSTOMER

N NATIONKEY N REGIONKEY TS
10 4 t
17 1 t

(g) NATION

R REGIONKEY TS
4 t
1 t

(h) REGION

Figure 5.2: Example showing partial tables to illustrate database log genera-
tion

To create the database log for TPC-H SF=0.1, we first generate the database

with SF=1 using the dbgen program (include citation) which gives us a database of
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size 1 GB. We randomly select 10% tuples from the largest relation i.e. Lineitem

and then generate the log satisfying integrity constraints as outlined above. For 1

GB and 10 GB scale experiments we use the entire tables created by running the

dbgen tool 1 with SF=1 and SF=10 respectively.

5.1.2 Workload Generation

As an input to our problem, we take a set of candidate SQL queries Q which

we generate manually for the purpose of these experiments. For each query, we

generate seemingly similar queries with differing constraints in the where clause,

joining constraints or the relations participating in the joins. In our workload, we

consider one superset query, one subset query and the right query.

Superset query

A superset query is a query which produces a superset of the result set at DRDS.

Superset queries are typically constructed by either eliminating some conditions in

the where clause; or by relaxing some constraint, for example consider the follow-

ing valid query:

SELECT C NAME, C CUSTKEY, O ORDERKEY, O ORDERDATE,

O TOTALPRICE

FROM CUSTOMER, ORDERS, LINEITEM

WHERE O ORDERKEY = L ORDERKEY AND

C CUSTKEY = O CUSTKEY AND C NATIONKEY = 3

One obvious method to obtain a superset query for the above query is to lose
the C NATIONKEY=3 constraint in the where clause. Another method of creating
a superset query is to widen the selection condition as follows:

SELECT C NAME, C CUSTKEY, O ORDERKEY, O ORDERDATE,

O TOTALPRICE

FROM CUSTOMER, ORDERS, LINEITEM, NATION, REGION

WHERE O ORDERKEY = L ORDERKEY AND

C CUSTKEY = O CUSTKEY AND

1Available for download at http://www.tpc.org/tpch/default.asp [18] (visited on 24-08-2017).
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C NATIONKEY = N NATIONKEY AND

N REGIONKEY=R REGIONKEY AND R NAME = ‘AMERICA’

In the above query, we are selecting customer names with their order details for

the region America. The original valid query was selecting customer names with

their order details for the nation Canada (corresponding to C NATIONKEY=3)

which is a subset of the wider region America. Therefore, even though we seem to

be adding an extra joining relation and a joining condition, we are actually widen-

ing our selection criteria.

Typically, superset queries fail fast on early database states as they have spuri-

ous tuples which are not present in the result set Rout .

Subset query

A subset query is a query which produces a subset of the result set at Drds. The

attentive reader would observe that such a query negates our third assumption in

Chapter 2, i.e. the candidate query returns a superset of Rout when evaluated on

the last state of the log. However, in practice we relax this assumption and we will

see that our approach is able to weed out these queries as well.
To generate subset queries, we add additional constraints in the where clause,

for example:

SELECT C NAME, C CUSTKEY, O ORDERKEY, O ORDERDATE,

O TOTALPRICE

FROM CUSTOMER, ORDERS, LINEITEM, NATION

WHERE O ORDERKEY = L ORDERKEY AND

C CUSTKEY = O CUSTKEY AND

C NATIONKEY = N NATIONKEY AND N NATIONKEY = 3

AND L RECEIPTDATE < L COMMITDATE

The subset queries take longer to fail since the stopping condition of Rout \
Q(Dr) and Q(Dr)\Rout both being non-empty are achieved for values of i > RDS.

For i <= RDS, Rout \Q(Dr) is not null but Q(Dr) \Rout is null, so we keep load-

ing tuples until Q(Dr) \Rout becomes non empty as well. This typically involves

loading an extra chunk beyond the chunk containing the RDS.
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(a) Schema graph for Q15 (b) Schema graph for Q22

(c) Schema graph for Q23

Figure 5.3: Schema graphs for default queries.

5.1.3 Default Parameter Configuration

The various parameters that we study and their values are represented in Table 5.5.

Default values (shown in bold) are used, unless stated otherwise. In Sections 5.5

and 5.7, we vary the parameters and analyze their impact.

Figure 5.4 shows the running time for all the queries at RDS-10 million. We

plot time complexity (Total running time) on the Y-axis against a measure of ex-

pression complexity (the number of relations present in the query) on the X-axis.

We select three queries: the longest running query, the shortest running query

and the most complex query in terms of the structure and number of relations

(Q15,Q22,Q23 resp.). We use these three queries to present the results in this

thesis. The schema graph for them is provided in Figures 5.3a, 5.3b and 5.3c.
Q23 (created by us is shown below) selects supplier attributes and the region

for suppliers that supply orders to customers within the same nation.

SELECT S NAME, S ADDRESS, S NATIONKEY, S ACCTBAL,

R REGIONKEY

FROM PART, SUPPLIER, PARTSUPP, CUSTOMER, ORDERS,

LINEITEM, NATION N1, NATION N2, REGION

WHERE P PARTKEY=PS PARTKEY AND S SUPPKEY=PS SUPPKEY

AND S NATIONKEY=N1.N NATIONKEY AND

N1.N REGIONKEY=R REGIONKEY AND PS PARTKEY=L PARTKEY

AND PS SUPPKEY=L SUPPKEY AND L ORDERKEY=O ORDERKEY

AND O CUSTKEY=C CUSTKEY AND C NATIONKEY=N2.N NATIONKEY

AND N1.N NATIONKEY=N2.N NATIONKEY
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Figure 5.4: Expression complexity (on X-axis) and Time complexity (on Y-
axis) for all queries for Geometric approach at RDS-10 million

Parameter Values

Database TPC-H SF:0.1GB, SF:1GB, SF:10GB
Queries Q1-Q15, Q16-Q22, Q23

Strategies Forward Naı̈ve, Backward Naı̈ve, Static Chunking,

Geometric Chunking
RDS 10k, 100k, 1 million, 10 million, 30 million,

50 million, 70 million

Base chunk size 1k , 10k, 100k, 1 million

c 1.5, 2, 3, 4

Materialized Views With or w/o materialized views

Memory provided to

SQL Server 5GB, 10GB, 15GB 20 GB
Query workload Right Query, Full Query Workload

Log Index Without or with Log Index

Figure 5.5: Parameter configuration (default in bold); SF = scale factor.
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Query RDS Forward Naı̈ve Backward Naı̈ve Geometric Chunking
#LS #BS Cut-off

Time (in
s)

RDS
found?

#LS #BS Cut-off
Time (in
s)

RDS
found?

#LS #BS Total
Time (in
s)

RDS
found?

q15 1 mil 66 n/a 173.8 No 2 n/a 173.8 No 7 6 34.7 Yes
10 mil 202 n/a 1,277.8 No 10 n/a 1,277.8 No 10 9 255.6 Yes

q22 1 mil 94 n/a 49.1 No 2 n/a 49.1 No 7 6 9.8 Yes
10 mil 339 n/a 228.3 No 7 n/a 228.3 No 10 9 45.6 Yes

q23 1 mil 35 n/a 208.7 No 2 n/a 208.7 No 7 6 41.7 Yes
10 mil 49 n/a 1,032.6 No 9 n/a 1,032.6 No 10 9 206.5 Yes

Table 5.1: Comparison of Geometric with Naı̈ve approaches at RDS 1, 10 million. Last TS: 11,000,000.
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5.2 Comparison with baselines
Table 5.1 shows the comparison between Forward Naı̈ve, Backward Naı̈ve and

Geometric Chunking approach. To keep the running time tractable, we run this

experiment on a log with timestamps upto 11 million instead of the entire database

log (≈ 82 million). We also cut-off the running time for naı̈ve approaches at 5 *

time taken by Geometric Chunking for similar configuration. The experiment is

conducted on the Q15, Q22, Q23 for two RDS values, one at the beginning on the

log (1 million) and the other towards the end of log (10 million). We observe that

forward naı̈ve performs more number of linear scans (#LS) compared to backward

naı̈ve. This is because backward naı̈ve loads the entire data upto the last timestamp

of the log whereas forward naı̈ve loads as it goes. Clearly, for RDS at 1 million,

loading the entire data upto 11 million is wasteful.

Forward naı̈ve has the best shot to find the RDS for RDS= 1 million, similarly

backward naı̈ve for RDS= 10 million. Therefore, we compare these two scenarios.

The forward naı̈ve for RDS at 1 million, in the best case is able to traverse 94

database states and reach r = 94. The backward naı̈ve for RDS at 10 million, in the

best case is able to traverse 10 database states and reach r = 999,991. It is obvious

that both forward and backward naı̈ve approaches are never able to find the RDS

and fail to scale.

5.3 Comparison with Static Chunking
In this experiment, we evaluate the performance of static chunking for three chunk

sizes - 10k, 1.28 million and 81.92 million against the geometric chunking ap-

proach with base chunk size=10k and c=2. The static chunk sizes represent a good

mix of a small chunk (10k), medium sized chunk (1.28 million) and very large

chunk (≈82 million). We show the comparison across a range of RDS values taken

at {10,000; 100,000; 1,000,000; 10,000,000; 30,000,000; 50,000,000; 70,000,000}
for the default queries. The static chunking approach is allowed twice the maxi-

mum running time taken by GC across all RDS values. We refer to this as capping

time.

Figures 5.9,5.10 and 5.11 depict the ratio of the running time of the approach

to the minimum time taken by any approach for that RDS. Broken lines indicate
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that the approach was unable to finish within the capping time. We observe that

GC approach lies within 3 times of any static chunk size.

Figures 5.6,5.7 and 5.8 depict the absolute running times (in ms) which is a

combination of loading time, linear time and binary time for Q15, 22 and 23 re-

spectively. Loading time is the time it takes to load a chunk into the SQL Servers

memory. Linear time involves the time taken for evaluating Rout \Q and Q\Rout at

the end of each chunk. Binary time refers to the time taken for performing binary

search within a chunk to find the RDS.

To understand the trends in these plots, we look at the chunk boundaries for

each of these strategies below.

Geometric chunking

[0, 10000, 30000, 70000, 150000, 310000, 630000, 1270000, 2550000,

5110000, 10230000, 20470000, 40950000, 81910000, 163830000]

Static Chunking (10k)

[0, 10000, 20000, 30000, 40000, 50000, 60000 ... 70000000]

Static Chunk (1.28 million)

[1280000, 2560000, 3840000, 5120000, 6400000 ... 83200000]

Static Chunk (81.92 million)

[0, 81920000, 163840000]

From Figures 5.6 and 5.9, we observe that for RDS value of 10k, both static

chunking strategy with chunk size 10k and GC perform well. This is because

both require one chunk load (to load data upto 10k), 2 evaluations at the end of

the chunk and no binary search. For static chunk sizes of 1.28 million and 81.92

million, we do extra work in loading the data upto 1.28 million and 81.92 million

respectively and then performing binary search. The largest chunk sized static

strategy of 81.92 million performs up to 400 times worse than GC for smallest RDS

values of 10k. This is synonymous to loading everything in one chunk and then

performing a binary search over the entire data. For smaller RDS values this has
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two disadvantages: firstly, the time taken to load tuples upto 81.92 million is more;

secondly, performing binary search on a large chunk takes more time.

For the next RDS value of 100k, GC requires 4 chunk loads upto 150,000 linear

evaluations at the end of each chunk and 3 binary searches. Static chunking with

chunk size 10k requires to load 10 horizontal chunks but 0 binary searches and

therefore the ratio is still comparable. Static chunking 1.28 million requires one

linear load (upto 1.28 million) and 6 binary searches. For the largest chunk size of

81.92 million, we do an enormous amount of extra work in loading the data upto

81.92 million and then performing 12 binary searches to get to 100k. This is visible

in the very high ratio.

For RDS value of 1 million, GC requires 7 chunk loads and 6 binary searches

whereas static chunking 1.28 million requires 1 chunk load and 5 binary searches.

As expected, static chunking of 1.28 million performs well at RDS of 1 million.

Static chunking with 10k and 81.92 million compare worse because of the high

loading and linear time (for 10k) and high loading and binary search time (for

81.92 million). Beyond 1 million, static chunking 10k is unable to complete within

the capping time and therefore, we see a flat line at 8,500,000 ms (which is the

capping time).

For the larger RDS values of 50 and 70 million, we observe that static chunk-

ing 81.92 million performs well since only one chunk load is required and therefore

only 2 linear comparisons are performed; whereas for GC we require extra linear

comparisons as we need to load 13 chunks upto 81,910,000. Additionally, we

require 12 binary searches for GC compared to 10 binary searches for static chunk-

ing 81.92 million. The other two static methods perform worse because of the high

number of chunk loads and linear comparisons. To give some perspective, at an

RDS of 50 million, a static chunk size of 10k would load 5000 chunks and would

also perform 5000*2 (Rout \Q) and (Q\Rout) comparisons. GC strategy would load

tuples upto 81,910,000 in 13 loads, require 13*2 linear comparisons and perform

12 binary searches on a larger chunk of [40,950,001-81,910,000]. However, the ex-

tra binary searches performed by the GC approach on a larger chunk significantly

outweigh the loading and linear time for static approach.
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In general, we observe that GC strategy is able to catch up to any static chunk-

ing strategy, irrespective of the location of the RDS because of the geometric multi-

plication.

In Figure 5.7, we observe a drop in running time for GC strategy at RDS value

of 50 million. Here we load 12 chunks up to 40,950,000, perform 2*12 linear

comparisons and 0 binary searches. This is because for Q22, no new tuple gets

added to Rout beyond time stamp 32,386,674. 2. Hence the Rout at 40,950,000 is

the same as Routs at 50 million and 70 million. In fact, Routs beyond 32,386,674 are

all same. The algorithm returns witness of validity at time stamp 40,950,000 for

both RDS values of 50,70 million and therefore, requires 0 binary searches. This is

observed by the drop at 50 million and then a flat curve from 50 to 70 million for

GC. We observe a similar phenomenon for Q23 in Figure 5.8, where there is a drop

at 70 million for GC strategy. No new tuple gets added to Rout beyond 60,950,000.

Hence, there is no binary search required and a witness of validity is achieved

through the linear comparisons at the end of the 13th chunk, i.e at 81,910,000.

In general, static chunking performs well for RDS values closer to their chunk

sizes. However, no single static chunk size performs better than GC across the

range RDS values. Since we have no way of knowing beforehand where the RDS

lies and secondly, we cannot chose a single static chunk size that would perform

well.
2Q22 is a join between Customer and Orders relation. The way the query is structured, all the

tuples get added early on by timestamp=32,386,674.
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Figure 5.6: Static versus Geometric Chunking (RDS on x-axis is shown in
log scale) for Q15

Figure 5.7: Static versus Geometric Chunking (RDS on x-axis is shown in
log scale) for Q22

Figure 5.8: Static versus Geometric Chunking (RDS on x-axis is shown in
log scale) for Q23
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Figure 5.9: Static versus Geometric Chunking for Q15. Ratio=time of ap-
proach/MIN(.) Both axis are shown on log-scale.

Figure 5.10: Static versus Geometric Chunking for Q22. Ratio=time of ap-
proach/MIN(.) Both axis are shown on log-scale.

Figure 5.11: Static versus Geometric Chunking for Q23. Ratio=time of ap-
proach/MIN(.) Both axis are shown on log-scale.
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5.4 Comparison with the oracle
We define Oracle approach as the scenario where an Oracle provides us with the

exact location of the RDS, almost like a lucky guess. The chunk size in this case

is exactly the RDS value, such that the data up to the RDS is loaded in one single

chunk, all at once. We run this experiment at RDS = 1 million, 5 million, 10 million,

30 million, 70 million for the three default queries = Q15, Q22, Q23. The geomet-

ric chunking strategy is run with the default parameters, i.e. c=2 and base chunk

size=10k. Figure 5.12 shows the distribution of the ratio, where ratio is defined as

the time taken by geometric chunking approach to the time taken by the “Oracle”

approach. The histogram shows the percentage of cases where the ratio falls within

each bin. We observe than for more than 50% of the times, GC performs within

3 times of the “Oracle”. Each bin in the histogram is further divided according

to the contribution from each RDS value (represented by a colored pattern). The

cases where the ratio is greater than 3 is largely for smaller RDS values where the

absolute loss is not too much anyway.

Figure 5.12: Histogram of Oracle v/s Geometric. Ratio=Total Time taken by
Geometric/Total Time taken by Oracle.
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5.5 Impact of Log Index
In this experiment, we try to understand the performance improvements of GC

strategy in the presence of a Log Index (LI) on the database log. A log index

brings us very close to the RDS, how close depends on how good the index is. We

simulate this by jumping to the time stamp provided by the Log Index, i.e. load-

ing the data upto the jump in one single chunk, performing 2 linear comparisons

(Rout \Q(D jump) and Q(D jump)\Rout) at the end of the jump and then proceeding

with the usual GC beyond this point. We run this experiment for LI jumps at 100k,

1 mil, 10 mil and 50 mil. Figures 5.13, 5.14 and 5.15 depict the ratio - running

time of GC with Log Index to running time of GC without Log Index for Q15, 22

and 23 respectively. To understand the trends in these plots, we need to look at the

horizontal chunks for each strategy.

Geometric chunking

[0, 10000, 30000, 70000, 150000, 310000, 630000, 1270000, 2550000, 5110000,

10230000, 20470000, 40950000, 81910000, 163830000]

GC with LI (100k)

[0, 100000, 110000, 130000, 170000, 250000, 410000, 730000, 1370000,

2650000, 5210000, 10330000, 20570000, 41050000, 82010000, 163930000]

GC with LI (1 mil)

[0, 1000000, 1010000, 1030000, 1070000, 1150000, 1310000, 1630000,

2270000, 3550000, 6110000, 11230000, 21470000, 41950000, 82910000]

GC with LI (10 mil)

[0, 10000000, 10010000, 10030000, 10070000, 10150000, 10310000, 10630000,

11270000, 12550000, 15110000, 20230000, 30470000, 50950000, 91910000]

GC with LI (50 mil)

[0, 50000000, 50010000, 50030000, 50070000, 50150000, 50310000, 50630000,

51270000, 52550000, 55110000, 60230000, 70470000, 90950000]
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Figure 5.13: Log Index with different initial jumps versus Geometric for
Q15. X-axis shown in log scale. Y-axis shows Ratio=Time taken by
approach/Geometric

Figure 5.14: Log Index with different initial jumps versus Geometric for
Q22. X-axis shown in log scale. Y-axis shows Ratio=Time taken by
approach/Geometric

In Figure 5.13 for the 100k jump at RDS 100k, the ratio is very small as ex-

pected because the GC with LI-100k loads all the data upto 100k in one chunk

and performs 2 comparisons (Rout \Q(D100k) and Q(D100k \Rout) whereas GC with

default parameters performs 4 chunk loads and 3 binary searches to find the RDS.
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Figure 5.15: Log Index with different initial jumps versus Geometric for
Q23. X-axis shown in log scale. Y-axis shows Ratio=Time taken by
approach/Geometric

However, we observe that GC with default parameters catches up quickly for the

later RDS values.

For GC with LI-1 million, a similar explanation holds for the small ratio at RDS

1 million. For the later RDS values, GC with the log index performs one additional

chunk load to load data. This results in the ratios greater than 1. Please note the

difference between the absolute running times is not very much.

GC with LI-10 million has ratios below 1 for RDS values 10, 30 and 50 million.

At RDS 10 million, everything is loaded in one chunk as opposed to 10 chunk loads

and 9 binary searches performed by GC. At RDS-30 million, GC with LI loads

data upto 30470000 whereas the default GC loads a larger chunk upto 40950000.

GC with LI performs one less binary search on a smaller chunk size. A similar

explanation holds at RDS 50 million. GC with LI loads data upto 50950000 whereas

the default GC needs to load a larger chunk upto 81910000. At RDS 70 million, GC

with LI now needs to load one extra chunk upto 91910000. The linear comparisons

here are more expensive as well since we do it on more data. This leads to the

higher ratio at 70 million.

Note in Figure 5.14, the ratios for last two RDS values 50 million and 70 million

are very similar for every strategy. Recall from our previous discussion in Section

5.3, Rout does not change beyond timestamp=32,386,674. So in essence, the al-
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gorithm provides witness of validity at the same states for both 50 million and 70

million.

To conclude, the GC catches up very quickly to the GC with Log Index. More-

over, maintaining a Log Index is also expensive. If we were to include the cost of

maintaining a Log Index, GC with Log Index would not perform much better than

the default GC.

5.6 Scalability in terms of available memory
We study the effects of our approach for limited memory scenarios. We limit the

memory provided to SQL Server by modifying the maximum available memory

to SQL Server. This experiment tries to simulate the practical scenario when the

entire database does not fit in memory. We decrease the memory from 20GB to

2GB. Figure 5.16 shows an increase in running time for queries 15 and 23 as we

decrease the memory (as expected because of the increase in I/O swaps). However,

Q22 takes almost the same time to run up to 7GB after which decreasing mem-

ory increases the running time. This is because Q22 is a join between Customer

and Orders relations. Since these tables are relatively small they fit in memory

even when available memory is 7GB, after which there is an increase in I/O swaps

reflected by the increase in running time.

To conclude, we show that our approach is robust in dealing with large databases

that do not fit in memory. This is particularly useful in a streaming database setting

where the entire database may not be available in memory.

5.7 Varying Configuration

5.7.1 Impact of Base Chunk Size

We run our experiments with default value of base chunk size as 10,000. In this

experiment, we study the effects of varying the base chunk size at RDS of 10 mil-

lion. We vary the base chunk size from 1k to 1 million. A very small base chunk

size such as 1k does not scale up very well, the horizontal chunks being as follows:

[0, 1000, 3000, 7000, 15000, 31000, 63000, 127000, 255000, 511000, 1023000,

2047000, 4095000, 8191000, 16383000, 32767000, 65535000, 131071000] takes
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Figure 5.16: Varying the available memory provided to SQL Server.

14 chunk loads to load data up to 10 million compared to 10 taken by GC with de-

fault parameters. Moreover, GC with base chunk size 1k creates very large chunks

towards the end which result in an increased number of binary searches. How-

ever, any reasonable base chunk size gives us very similar results as shown in 5.17

and our approach does not dramatically change with changes in base chunk size.

Hence, our approach is robust to changes in base chunk size.

5.7.2 Tuning the geometric multiplier ‘c’

Empirically, we have observed that geometric multiplier c=2 performs best in terms

of striking a good balance between the number of linear loads and binary searches.

However, changing the geometric multiplier does not drastically change results as

seen from Figure 5.18. This shows that our approach is also robust to changes in c.

5.7.3 View Maintenance

We take advantage of the view maintenance functionality provided by the modern

database systems and incrementally maintain the view for Q(Dr). For systems

which do not have a provision for view maintenance, we need to compute Q(Dr)

from scratch every time Rout \Q and Q \Rout needs to be computed. We show in
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Figure 5.17: Varying base chunk size. X-axis is in log-scale.

—Query— —Total Time (in ms)— —Percentage Improvement—
Without
View Main-
tenance

With View
Maintenance

q15 344,818 259,267 24.81047973
q22 65,825 55,278 16.02278769
q23 316,567 224,480 29.08926073

Table 5.2: Performance improvement using View Maintenance

Table 5.2 that there is a significant performance gain achieved by using incremental

view maintenance over computing the query from scratch. The numbers shown

here are compared at RDS of 10 million. Percentage improvement is calculated as:

(Time taken without view maintenance - Time taken with view maintenance)/Time

taken with view maintenance * 100.
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Figure 5.18: Varying c. X-axis showing RDS is in log-scale.

5.7.4 Full query workload versus right query workload

In our experiments, each full query workload consists of the right query, one “in-

correct” subset query, one “incorrect” superset query.

Superset queries As discussed earlier, superset queries are faster to invalidate.

Consider the following two scenarios:

• RDS lies in the first chunk: For a superset query, Rout \Qsup(Dend) is empty

and Qsup(Dend)\Rout is non-empty at τ = end, where end is the last times-

tamp of the first chunk. According to our algorithm, we perform a bi-

nary search between τ = 1 and τ = end. Say at τ = mid, both the condi-

tions become non-empty and we give the witness of invalidity i.e., witQ =

〈(Dmid ,Dmid+1)〉. In the worst case, this will take 2 ∗ log2(base chunk size)

number of comparisons. 3.

• RDS lies beyond the first chunk: For a superset query, Rout \Qsup(Dend) and

Qsup(Dend) \Rout both are non-empty at τ = end, where end is end of the

first chunk. Therefore we can give the witness of invalidity at τ = end itself,

without having to perform any binary search comparisons. The expense for

3since base chunk size=size of first chunk
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query invalidation here is minimal- one chunk load and 2 comparisons at the

end of the chunk.

Generally, we encounter the second scenario where we can quickly invalidate the

superset queries at the end of first chunk.

Subset queries Subset queries take≥ number of chunk loads as the right query.

In the worst case, subset query can take 2 ∗ (log2(last)− log2(end)) number of

comparisons to give a witness of invalidity where last refers the last TS of the log

and end refers to the last TS of the chunk containing RDS. In general, we have

observed that it takes one extra chunk load than the right query to give a certificate

of invalidity. This is because Rout−Qsub(Dr) is non empty (because Qsub is a subset

query) and Qsub(Dr)−Rout is also non-empty (because r lies beyond RDS, hence

incorporating extra tuples from time stamps between RDS and r). Therefore, subset

queries take longer to receive a certification of invalidity.

Since there is no way of knowing beforehand which category the query belongs

to, we assume a mix of all three in our workload. We maintain three views for each

query in the workload. Each chunk is loaded only once and all the queries (whose

validity is yet to be determined) are evaluated at the end of the chunk. As soon as

any query receives a witness, we drop the view for that query and go forward with

the remaining queries.

Figures 5.19, 5.20 and 5.21 show the absolute running times for the right query

and the full query workload. Observe that the full query workload does not involve

a tremendous amount of overhead for the extra two queries. Figure 5.22 depicts the

percentage increase in the running time for the full query workload over just the

right query. Barring the first RDS at 10k, all the others lie within 33% of increased

running time. For the first RDS, the startup cost of loading the chunk and end of

chunk comparisons outweigh the advantage received by maintaining the different

views. However, the absolute times here are very small.
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Figure 5.19: Right Query versus Full Query Workload: q15. X-axis showing
RDS is in log-scale.

Figure 5.20: Right Query versus Full Query Workload: q22. X-axis showing
RDS is in log-scale.
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Figure 5.21: Right Query versus Full Query Workload: q23. X-axis showing
RDS is in log-scale.

Figure 5.22: %age increase=(Full Query Workload-Right Query Work-
load)/Right Query Workload * 100. X-axis showing RDS is in log-
scale.
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Chapter 6

Related Work

If I have seen farther it is by standing on the shoulders of Giants.
— Sir Isaac Newton (1855)

The related work can be broadly classified into 2 areas - Query Reverse Engi-

neering and Reverse Query Processing.

6.1 Query Reverse Engineering (QRE)
This body of work focuses on obtaining a SQL query that generates a specified

result set when evaluated on a given database state. There are three recent direc-

tions that fall under the umbrella of Query Reverse Engineering but their goals and

techniques have significant differences.

6.1.1 Deriving Instance Equivalent Queries (IEQs)

Two queries Q1 and Q2 are considered IEQs w.r.t. a database state Dr if their results

are equal, i.e. Q1(Dr) = Q2(Dr). Authors initial work — Query By Output(QBO),

is a data driven approach that focuses on generating IEQs from a known input

query and its result set on a given database state [19].

They extend QBO to derive IEQS where the input query is unknown and pro-

vide support for multiple database states on a continuous log. Specifically, given

a result set Rout and a sequence of database states < D1,D2, ..,Dr >, determine

51



the most recent database state r and a query Q such that Q(Dr) = Rout . This

work [20] is most relevant to our work and we will discuss their work in greater

detail. Their work aims to solve a more general problem, where they aim at

query discovery rather than query validation. Their work considers SPJ queries

as well as aggregates and unions. They model the different database states using

a backward delta storage organization [17]. Given a sequence of database states

< D1,D2, ..,Dr >, the database stores the most recent state Dr together with back-

ward deltas δr(r−1), ..,δ21. A backward delta models a set of insert and delete op-

erations such that Dr−1 is derived from Dr and δr(r−1). Since their work considers

update operations involving additions and deletions, they are unable to take advan-

tage of the natural monotonicity in a data streaming environment. Our baseline—

Backward naı̈ve strategy is inspired by their approach. From the family of queries

that they cover, we focus on SPJ queries and show in Section 5.1.3 that their ap-

proach is unable to scale up beyond a few database states. However, their discovery

of IEQs can serve as an input to our candidate query set Q.

A subproblem of QBO is considered in View Definitions Problem (VDP) [9].

This is a selection condition discovery problem for the view V for a single relation

in R, where both R and V share the schema. Their discovery of Q equates to dis-

covering selection predicates on R to generate V without any joins and projections.

Our work is able to validate queries involving selection conditions and hence, VDP

can serve to generate candidate queries for our work.

Another work that belongs to QRE and is seemingly relevant to our work is

Reverse Engineering Top-k Database Queries [15]. This work addresses the prob-

lem of reverse engineering top-k queries, given a result set Rout and a relation R.

This work also deals with a single relation and tries to find selection conditions to

produce Rout . The authors present a probabilistic model that assesses the chance

of a candidate query Q to evaluate exactly as or close to Rout . We are particularly

interested in their approach for query validation. They order the candidate queries

by their expected suitability to evaluate to Rout . They claim that this approach

promises to find a valid query early. They also discuss smart query validation

where, instead of evaluating each query sequentially in the order provided by the

ranking, they take advantage of the information learnt from executing the previous

query. Consider query Q1 was executed (based on the ranking) and it produced
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results very similar to Rout but not an exact match. In such a scenario they con-

sider validating queries that are similar to Q1 and skip those in the ranked list. The

drawback of their approach is that they incorporate many false positive predicates

in their candidate queries. For evolving databases (because of updates, inserts or

deletes in a data warehouse scenario), their approach further introduces false nega-

tives. They claim to combat this using the previously mentioned ‘smart validation.’

However, even in the smart validation strategy, they resort to evaluating the candi-

date queries on the entire database state, which is an expensive operation. Instead,

our GC approach could work on top of their smart validation strategy and help

discard the invalid queries early on in the log by failing fast.

6.1.2 Query from Examples (QFE)

This body of work was introduced in [12] and helps non-expert database users con-

struct SQL queries through user feedback. The user initially provides a database

state-result set pair (Dr,Rout) as input. QFE iteratively presents the user with

database state-result set pairs which are close to the input pair. The user is re-

quired to determine if the new database state-result set pair is consistent with her

desired query Q. A similar approach has been discussed in AIDE [10] where the

desired query Q is developed based on the users feedback on samples of database

tuples. Based on user feedback, the system generates a new set of database tuples.

The query is presented to the user when she wishes to terminate this process after

a few iterations. These approaches are similar to our work in that the query is un-

known. However these are all query generation approaches and our work can be

appended to validate the candidate queries generated by the discussed approaches.

Abouzied et al. discuss learning and verifying a special class of Boolean queries

called qhorn queries. We are particularly interested in the verification part of their

work. This is also a query from example approach, where the learning algorithms

pose membership questions to the user and she classifies each data object as an

answer or a non-answer. The input to the verification model is a candidate query

Qc and the user’s intended query Qi. The algorithm generates a set of membership

questions for each query. If Qi is semantically different from Qc, then their answers

would differ on at least one question and we can safely invalidate the query.
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6.1.3 Targeted Query Generation

Bruno et al. and Mishra et al. study the problem of generating test queries to satisfy

certain cardinality constraints on their subexpressions.

6.2 Reverse Query Processing
A slightly tangential body of work discusses Reverse Query Processing. The prob-

lem addressed here is generating databases to satisfy a set of constraints given a set

of queries Q and a corresponding result set Rout . Binnig et al. introduced the prob-

lem: given a query Q ∈Q and the corresponding result set Rout ∈Rout , generate a

database D such that Q(D) = Rout .

QAGen and its various variants discuss the problem: given an input query Q

and a set of cardinality constraints on the subexpressions for Q’s evaluation plan P,

generate a test database D such that P’s execution on D satisfies those constraints

[6][13][3]. Unlike the above works on database generation, our work focuses on

finding a database state-query pair in a continuous log.
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Chapter 7

Conclusion

In this work, we have proposed a framework to validate monotone SPJU queries on

a continuous log. This problem can be used as a standalone application to assist in

data mining and data analysis tasks or it can be used in conjunction with the various

Query Reverse Engineering (QRE) problems. From the previous work on QRE, we

have observed that most focus on query discovery tasks, where query validation

becomes a bottleneck. Our proposed approach Geometric Chunking aims to solve

that by failing fast on the invalid queries and quickly finding the RDS for valid

queries. We have performed experiments on a 10 GB data set and shown that our

approach is scalable and robust to changes in parameters. Our approach deals well

with limited memory conditions and can perform for scenarios where the memory

available is one-fifth the size of the database. We also compare with baselines and

static chunking and show that they do not scale well. As future work, a challenging

issue that requires further study is to validate queries involving non-monotonicity,

aggregation operators and arithmetic expressions.
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