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Abstract

The nature of dark energy is one of the most intriguing scientific questions of the

twenty-first century. There are many ways to probe dark energy, but one method

involves detecting baryon acoustic oscillations (BAO) throughout the universe’s

history. BAO have a characteristic size scale and therefore act as a “standard ruler,”

an advantageous property for a method of tracking the universe’s expansion history.

While baryon acoustic oscillations can be probed in many ways, one of the

most intriguing and promising methods is through twenty-one centimeter hydrogen

intensity mapping. Several experiments devoted to twenty-one centimeter hydro-

gen mapping will be coming on line in coming years, and these experiments have

stringent calibration requirements due to the need to remove bright foreground

signals. These calibration requirements necessitate new and improved methods

for calibration. One proposed method is redundant baseline calibration, a self-

calibration method which takes advantage of the massively redundant designs of

many hydrogen intensity mapping experiments.

With the Canadian Hydrogen Intensity Mapping Experiment as a test case,

we demonstrate that the redundant baseline method is effective in even its sim-

plest implementation for an idealized version of a real telescope. We then show

that redundant baseline calibration fails in real CHIME Pathfinder data in a way

that is consistent with deviations from redundancy observed in processed CHIME

Pathfinder data. These deviations from redundancy are themselves consistent with

the effects of feed-to-feed beam pattern variations, a possibility not considered in

the conventional redundant baseline calibration algorithm.

We simulate the CHIME Pathfinder including beam width perturbations and

verify that similar failures in the redundant baseline calibration can be generated

ii



with beam perturbations. We then use the principles of redundant baseline calibra-

tion to solve for our simulated beam perturbations. Finally, we compare redundant

baseline calibration results to point source holography results and show that the

two are equivalent probes of relative feed-to-feed beam variation.

We conclude that redundant baseline calibration is a promising path forward in

calibrating hydrogen intensity mapping experiments, both as a conventional cali-

bration method and as a probe of beam structure.
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Lay Summary

One goal for cosmology in the twenty-first century is to understand dark energy and

the accelerating expansion of the universe. One way to learn about dark energy is

by detecting baryon acoustic oscillations (BAO) with 21 cm hydrogen intensity

mapping. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is an

experiment designed for this purpose.

Hydrogen Intensity Mapping is difficult, because the desired signal is much

dimmer than other sources of detected light. This means that experiments must

be calibrated carefully to allow the removal of unwanted sources. One method for

calibration is redundant baseline calibration (RBC), which takes advantage of the

design of telescopes like CHIME to precisely calibrate without detailed knowledge

of the sky or electronics.

RBC is successful in idealized situations, but real telescopes break assumptions

underlying the algorithm making RBC inaccurate. However, these inaccuracies

predict important properties of the telescope, so it is still a useful tool.

iv



Preface

This thesis is based on work conducted as part of the CHIME Collaboration and

the CHIME Pathfinder experiment specifically. None of the text of this thesis is

taken directly from previously published articles. The analysis in this thesis is the

work of D. Good with the supervision of Kris Sigurdson and J. Richard Shaw as

well as incidental input from other members of the CHIME Collaboration.

Several CHIME software modules were used to create the simulated CHIME

Pathfinder data in Chapters 2 and 4. These modules were caput, cora, ch pipeline,

ch util, draco, driftscan, and were developed by members of the CHIME collabo-

ration, largely Kiyoshi Masui and J. Richard Shaw.

The holography data in Chapter 5 was collected by the CHIME collaboration at

large and Philippe Berger specifically. Holographic beam mapping for the CHIME

Pathfinder is discussed in more detail in [6].

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 A Brief Introduction to ΛCDM Cosmology & 21 cm Hydrogen In-
tensity Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 An Introduction to Dark Energy . . . . . . . . . . . . . . . . . . 2

1.1.1 Vacuum Energy & the Cosmological Constant . . . . . . 2

1.1.2 Experimental Probes of Dark Energy . . . . . . . . . . . 4

1.2 21 cm Intensity Mapping . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Understanding 21 cm Neutral Hydrogen . . . . . . . . . . 10

1.2.2 21 cm Intensity Mapping as a Probe of Dark Energy . . . 11

1.2.3 Designing 21 cm Experiments . . . . . . . . . . . . . . . 13

1.2.4 A Brief Census of 21 cm Experiments . . . . . . . . . . . 14

1.3 An Introduction to CHIME . . . . . . . . . . . . . . . . . . . . . 15

2 Implementing Redundant Baseline Calibration . . . . . . . . . . . . 19
2.1 Constructing Visibilities . . . . . . . . . . . . . . . . . . . . . . 20

vi



2.2 Amplitude Calibration . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Complications to the Amplitude Calibration . . . . . . . . 24

2.3 Phase Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Redundant Baseline Calibration on Simulated Data . . . . . . . . 27

2.4.1 Simulating the CHIME Pathfinder . . . . . . . . . . . . . 27

2.4.2 First implementation . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Determining Ideal Noise Covariance . . . . . . . . . . . . 32

2.4.4 Conclusions from initial implementation . . . . . . . . . 37

3 Using Redundant Baseline Calibration in CHIME Pathfinder Data . 38
3.1 Redundant Baseline Calibration on CHIME Pathfinder Data . . . 39

3.1.1 Modifying redundant baseline calibration for use on real data 39

3.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Examining Redundancy in the CHIME Pathfinder . . . . . . . . . 44

4 Redundant Baseline Calibration with Perturbed Beams . . . . . . . 52
4.1 Creating a Simulation with Beam Perturbations . . . . . . . . . . 52

4.1.1 Design of beam perturbation . . . . . . . . . . . . . . . . 52

4.2 Redundant Baseline Calibration Results . . . . . . . . . . . . . . 54

4.3 Solving for Beam Perturbation Values . . . . . . . . . . . . . . . 55

4.3.1 Solving with One Perturbation of Known Structure . . . . 58

4.3.2 Solving for Beam Perturbations with only Amplitude In-

formation . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Relaxing Assumptions about V 0
i j and V 1

i j . . . . . . . . . . 61

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Holography and Redundant Baseline Calibration as Beam Probes . 69
5.1 Holography: A method for probing CHIME beams . . . . . . . . 69

5.2 Comparing redundant baseline beam measurements with hologra-

phy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Comparing by eye . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Ratio analysis . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 76

vii



6 Conclusions and Further Work . . . . . . . . . . . . . . . . . . . . . 79
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A CHIME simulation pipeline . . . . . . . . . . . . . . . . . . . . . . . 89
A.1 Modification to pipeline code . . . . . . . . . . . . . . . . . . . . 89

A.1.1 Use of CylinderPerturbed Telescope Object . . . . . . . . 89

A.1.2 ExpandPerturbedProducts . . . . . . . . . . . . . . . . . 91

A.2 Example results . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B Supplemental Figures . . . . . . . . . . . . . . . . . . . . . . . . . . 95

viii



List of Figures

Figure 1.1 Achievable parameter space for BAO detection with 21 cm in-

tensity mapping. The left exclusion arises from limited ob-

servable volume, the top exclusion from nonlinearity obscur-

ing the BAO wiggles, and the bottom exclusion from bright

foregrounds exceeding the removable threshold. Image from

[9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 1.2 Constraints on the dark energy equation of state and its red-

shift dependence from DETF stage I + Planck (outermost line),

DETF stage I+ III + Planck (intermediate dotted line), DETF

stage I + III + IV + Planck (inner dotted line), intensity map-

ping + Planck (inner solid line for best case, outer solid line

for worst case, and all options combined (dashed lines for best

and worst - almost indistinguishable). Image from [9]. . . . . 13

Figure 1.3 The CHIME Pathfinder at DRAO. It consists of two 20 m by

36 m cylinders and 256 total inputs, and operates between 400-

800 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 1.4 CHIME under construction at DRAO. It consists of four 20 m

by 100 m cylinders and 2028 total inputs. It will operate at the

same frequency range as the CHIME Pathfinder. . . . . . . . 16

ix



Figure 2.1 The simulated sky map used for simulations in Section 2.4. It

contains both point sources and galaxy, but the point sources

appear as isolated pixels and are therefore almost invisible at

this size. The colour bar has been scaled to show the galaxy,

as it is by default saturated by the brightest point sources. The

map is created using a combination of the Haslam 408 MHz

map, known bright point sources in the CHIME frequency

band, and Gaussian realizations of dimmer point sources. . . 28

Figure 2.2 We see here the complete gain results for redundant baseline

calibration implemented on a simulated CHIME Pathfinder data

set, assuming identity noise covariance. Notice the set of lines

at exactly 1.0, showing feeds which are masked out and there-

fore forcibly set to 0 (then exponentiated to become 1). Notice

also the improved precision of results at around 2000 seconds

after the beginning of the file, a result of improved signal-to-

noise ratio during point source transit. The long-term wavy

structure in the gains closely trace the input gain fluctuation. . 31

Figure 2.3 We see here the underlying visibilities derived from the redun-

dant baseline calibration algorithm. We notice that the algo-

rithm has correctly located the point source transits and some

underlying features of the galaxy. The point source transits are

the visible parabolic structures located at the beginning and

end of the file, which corresponds to about 6 hours of time

series data. We notice very little structure at times when the

input simulated visibilities are predominantly noise, which is

encouraging. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

x



Figure 2.4 We show here the redundant baseline-derived gains, using a

noise covariance calculated directly from the data. Compare

to Figure 2.2 and Figure 2.5. We again see the congregation of

turned off or opposite polarization inputs at 1, improved results

at higher signal to noise, and a general correspondence with the

shape of the gain fluctuations. However, we also see decreased

noise in the solution relative to the identity noise covariance

results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 2.5 We show here the redundant baseline-derived gains, using a

noise covariance calculated directly from the radiometer equa-

tion. Compare to Figure 2.2 and Figure 2.4. We again see

the congregation of turned off or opposite polarization inputs

at 1, improved results at higher signal to noise, and a general

correspondence with the shape of the gain fluctuations. How-

ever, we also see decreased noise in the solution relative to the

identity noise covariance results. This decreased noise is very

similar to the covariance from data results in Figure 2.4. . . . 34

Figure 2.6 In this figure, we compare the input gains to the results for re-

dundant baseline amplitude calibration for the identity noise

covariance (cyan), data-derived noise covariance (magenta),

and radiometer noise covariance (blue) for a sampling of in-

puts on the west cylinder. We see that the results trace the

general structure of the gain at all times, that they are gener-

ally improved at times corresponding to point source transits,

and that results for the data and radiometer noise covariances

have less noisy solutions. Similar figures for other portions of

the simulated array are shown in the Appendix. . . . . . . . . 35

xi



Figure 2.7 In this figure, we compare the percent deviation from input

gains for the identity noise covariance (cyan), data-derived noise

covariance (blue), and radiometer noise covariance(magenta)

for a sampling of inputs on the west cylinder. The improved

precision at higher signal to noise regions is less obvious here,

but the smaller scatter in radiometer and data derived noise co-

variances is present clear. . . . . . . . . . . . . . . . . . . . 36

Figure 3.1 Redundant baseline true visibilities for a June 2015 CygA tran-

sit. In this analysis, we use only inter-cylinder baselines and

exclude “dead feeds” using our more complete algorithm.The

two polarizations are solved for separately. The recovered true

visibilities certainly recover the existence of a point source

transit and a reasonable shape estimate for it. We do observe

some spikes through the solution - these may be attributable to

the varying level of redundancy for short vs. long baselines.

The units on the y-axis are correlator units, as redundant base-

line is a purely relative calibrator. We could normalize this plot

to know values for CygA should we prefer a plot in Jansky. . 42

Figure 3.2 Redundant baseline gains calculated for a June 2015 CygA

transit. In this analysis, we use only east-west baselines, and

exclude “dead feeds.” As described previously, we solve for

East and South polarizations separately and recombine the re-

sults after our calculations. Notice the definite slope in the gain

values during the point source transit. This is contrary to our

expectation that gains would not vary much on a short, point

source transit time scale. . . . . . . . . . . . . . . . . . . . . 43

xii



Figure 3.3 In this figure, we calculate a rough measure of the slope of

each gain, obtained by taking the rise over run for an individ-

ual feed’s redundant baseline gain results between samples 60

and 100. The 40 sample range represents approximately one

standard deviation around transit, which is the period of time

in which we are most confident in our results. This figure in-

dicates that the slope effect observed by eye does appear to be

significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.4 We compare redundant baseline gain results for selected feeds

on the west cylinder calculated over two consecutive CygA

transits. We notice that there is very little deviation between

the two days and regard this as evidence that the cause of the

slope in the gain solution is not strongly time dependent and is

likely a property of the array. An identical figure showing the

east cylinder is included in the Appendix. . . . . . . . . . . . 46

Figure 3.5 We compile redundancy comparisons for a short intercylinder

baseline during a CasA transit in pass 1p for four test frequen-

cies. Nominally, these are instances of the same redundant

baseline, and we would therefore expect there to be little to

no variation between curves in a given frequency. Instead we

observe significant deviation. We propose that this deviation

is largely derived from variations in the beam pattern between

feeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 3.6 We compile slices at CasA transit peak for each nominally re-

dundant instance of a short inter-cylinder baseline at each of

four test frequencies. We notice that there is not a defined pat-

tern in visibility value based on feed location, which indicates

that the effect causing the deviation from redundancy does not

vary in a systematic way along the CHIME Pathfnder cylinder. 48

xiii



Figure 3.7 We compile redundancy comparisons for a short intercylinder

baseline during a TauA transit in pass 1p in the same manner

as Figure 3.5. We note that while the exact magnitude of devi-

ations from redundancy may differ, the general structure of the

deviation is similar to that present in the CasA data, indicating

the existence of such deviations is not declination-dependent

although the values may be. . . . . . . . . . . . . . . . . . . 49

Figure 3.8 In this figure, we observe all instances of a nominally redun-

dant, short inter-cylinder baseline at frequency 518 MHz, com-

pared between CSD 693 and CSD694. Notice that both indi-

vidual days are significantly non-redundant, lessening the like-

lihood that the deviations from redundancy present in the side-

real stack for pass1 p are caused by a deviant day included in

the pass. It appears further that deviation from redundancy is

not strongly time-dependent. . . . . . . . . . . . . . . . . . 50

Figure 3.9 The right hand panel shows the ratio between the two pan-

els of Figure 3.9 and the left hand panel shows the difference

between them. Each is a short inter-cylinder baseline at fre-

quency 518 MHz on CSD 693 and CSD694. The deviation

between days is on the order of 100, while the spread within

a day is on the order of 1000, meaning the deviation between

instances is much larger. Though the ratio is relatively large

for areas outside of the central transit, at the transit peak, it is

approximately 1. . . . . . . . . . . . . . . . . . . . . . . . . 51

xiv



Figure 4.1 The left panel displays perturbed beam redundant baseline gain

amplitude results, for selected feeds of a given polarization in

a simulated perturbed beam telescope, compared with the in-

put gains and a redundant baseline analysis conducted on data

without gains added (i.e. an analysis that detects only beam

effects). The right panel compares the beam only analysis to

the full analysis with redundant baseline gains subtracted. This

figures shows only a small sampling of inputs; more are shown

in the Appendix. We notice that the full redundant baseline so-

lutions deviate from the input gain solution near the peak of

the beam only solutions. We infer that this deviation is caused

by the beam perturbations, and the right hand panel confirms

this. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.2 The left panel shows perturbed beam redundant baseline gain

amplitude results, for selected feeds of a given polarization in

a simulated perturbed beam telescope, compared with the in-

put gains and a redundant baseline analysis conducted on data

without gains added (i.e. an analysis that detects only beam

effects. The right panel compares the ratio of the beam and

gain to beam only analysis and the input gain variations. the

full analysis with redundant baseline gains subtracted, show-

ing that the ratio recovers the correct input gain. As in Figure

4.1, results for more inputs are shown in the appendix. . . . . 57

xv



Figure 4.3 This figure shows beam perturbation solution for a 16 feed to-

tal telescope with random perturbations α applied in the beam

width of all feeds has a few noticeable features. The actual in-

put α values used to create the simulation are plotted in blue,

but are almost exactly overplotted by the green values. The

green values represent the result when the output of the sim-

ulation is used as the “recovered visibility,” and we therefore

expect this close correspondence. The red curve represents the

results using the redundant baseline calibration results as the

“recovered visibility” and is noticeably less accurate than the

green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.4 We see here the percent difference between the actual simu-

lated α beam perturbation values and the recovered α values

for both the actual input visibility and the recovered redundant

baseline solution as input visibility. We observe that the input

visibility has quite good agreement with the actual perturba-

tion values, but the recovered redundant baseline solution is

useful only for order of magnitude approximations. . . . . . 62

Figure 4.5 This figure examines the beam perturbation solution for a 16

feed total telescope with all feed perturbed for a sidereal day.

Each time point is solved independently, but time dependent

features are consistent with the redundant baseline solution

more generally, e.g. that solution improves with improved sig-

nal to noise ratio. The top panel shows the result for the solu-

tion using the simulation output as the “recovered visibility,”

the middle panel shows the result for a solution using the re-

dundant baseline calibration results as the “recovered visibil-

ity,” and the final panel shows a single visibility’s time series

during this sidereal day. . . . . . . . . . . . . . . . . . . . . 63

xvi



Figure 4.6 We examine the ratio (α j +α0)/(α2 +α0) for both the recov-

ered (α j +α0) values and the actual (α j +α0) values for a 32

feed one cylinder telescope. The solution values are close to

the expected values, except at noticeable outlier feed 16. The

imperfect correspondence to the correct answers, in spite of

the absence of noise, is due to the underdetermined nature of

the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 4.7 We examine the ratio (α j−α0)/(α2−α0) for both the recov-

ered (α j−α0) values and the actual (α j−α0) values for a 32

feed one cylinder telescope. Unlike the (α j +α0)/(α2 +α0)

solution, the (α j−α0)/(α2−α0) solution exists only for ap-

proximately every other input. As these results derive from

the same underdetermined problem, they too deviate from the

expected values in ways that can be examined more carefully

using the null space. . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.1 Comparison between holography transit and calculated redun-

dant baseline gain for selected feeds on the west cylinder, look-

ing only at results from the east west polarization. The two

gain traces represent solutions for CygA transits on consecu-

tive days. The average transit peak time is marked by the blue

vertical line, and the shift to before or after the average peak

time appears to correlate with the slope of the redundant base-

line gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 5.2 Comparison between holography transit and calculated redun-

dant baseline gain for the selected feeds on the east cylinder,

EW polarization. The average transit peak time is marked by

the blue vertical line, and the shift to before or after the average

peak time appears to correlate with the slope of the redundant

baseline gain. . . . . . . . . . . . . . . . . . . . . . . . . . 73

xvii
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Chapter 1

A Brief Introduction to ΛCDM
Cosmology & 21 cm Hydrogen
Intensity Mapping

Before delving into specific discussions of redundant baseline calibration in the

Canadian Hydrogen Intensity Mapping Experiment, it is worth discussing more

broadly the scientific motivation for and design of CHIME.

We will begin by discussing the theoretical underpinnings of and experimental

evidence for dark energy. With this general background and motivation, we will

shift our focus to twenty-one centimeter intensity mapping, the technique CHIME

will use, and discuss the theory, potential applications, and a few current and up-

coming experiments using twenty-one cm intensity mapping. Finally, we will dis-

cuss the specific design of CHIME and its unique calibration requirements.

This will provide a structure for the more specific discussion of redundant base-

line calibration in Chapter 2 - 5.
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1.1 An Introduction to Dark Energy

1.1.1 Vacuum Energy & the Cosmological Constant

The “cosmological constant problem” looms over the past century’s attempts to

explain the large-scale universe. Shortly after Albert Einstein formulated general

relativity in 1915-1916, he attempted to apply his theory to the universe at large,

assuming as was commonly thought at the time, that the universe was static. He

wrote, “The most important fact that we draw from experience is that the relative

velocities of the stars are very small as compared with the velocity of light” [38].

However, Einstein failed to discover a static solution to his equations and there-

fore resorted to the introduction of a cosmological constant, altering the Einstein

equation to be

Rµν −
1
2

gµνR−λgµν =−8πGTµν . (1.1)

In the early 1920s, Alexander A. Friedmann introduced a metric which re-

moved the need for the cosmological constant, the metric which would become

known as the FRW metric and which would become the fundamental metric for

cosmology in the twentieth century [38]. George Gamow later wrote that Einstein

considered that “the introduction of the cosmological term was the biggest blunder

he ever made in his life” [1].

However, though the cosmological advances of the 1920s indicated that the

cosmological constant was not necessary for the reasons Einstein originally pro-

posed, the idea never entirely left physics. Indeed, by the late 1980s, it was again a

topic of serious discussion. Studying the standard model of particle physics led to

increased concern about vacuum energy, the state of least energy density in stan-

dard model particle physics [1]. Such a vacuum energy is composed of a bare cos-

mological constant, the value the cosmological constant would take without any

matter in the universe, and the energy density arising from quantum fluctuations

[1].

Particle physicists define vacuum as a ground state, and therefore conclude

the vacuum must be Lorentz invariant. This in turn means the stress-energy-

momentum tensor must be proportional to a Minkowski metric. Knowing that

the stress-energy-momentum tensor of a perfect fluid has the diagonal (ρ,P,P,P),
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we can conclude that the vacuum is a perfect fluid with the equation of state

Pvac = −ρvac. Assuming adiabatic compression and expansion, ρvac remains con-

stant and is related to a cosmological constant Λ by Λ = 8πGρvac [8].

This vacuum energy is irrelevant in classical, non-gravitational physics. How-

ever, it becomes relevant in quantum theory. We can generalize our description of

the vacuum energy to a quantum field theory formulation by modeling a relativis-

tic field as a collection of harmonic oscillators. This allows us to write the vacuum

energy as

E0 = ∑
j

1
2

h̄ω j, (1.2)

summing over possible modes of the field. Suppose the system is in a box with

side L and that L goes to infinity. We can impose periodic boundary conditions and

reformulate Equation 1.2 as

E0 =
1
2

h̄ L3
∫ d3k

(2π)3 ωk. (1.3)

To obtain ρvac, we allow L→ ∞ and divide by L3. We set ω2
k = k2 +m/h̄2 and set

kmax� m/h̄. Then we can write an expression for ρvac

ρvac ≡ lim
L→∞

E0

L3 = h̄
k4

max

16π2 (1.4)

As k approaches ∞, ρvac diverges. This is not uncommon for low-energy theo-

ries at high k, so we treat kmax to be the energy scale at which we remain confident

in our theory. This is commonly chosen based on the Planck energy E∗≈ 1019GeV ,

so kmax = E∗/h̄. This indicates that

ρvac ≈ 1074 GeV 4 , h̄−3. (1.5)

However, this value is approximately 120 orders of magnitude higher than the value

expected from observation [8].

For cosmologists of the late twentieth century, this represented a problem as

both theory and evidence from the cosmic microwave background indicated that the

total energy density of the universe was close to critical. Thus, theorists concluded
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that the missing energy density, about 2/3 of critical, must be some kind of smooth

unknown energy called “dark energy” [12].

One way to describe the amount energy density in the universe allocated to dark

energy is by a cosmological constant ΩΛ, which should be related to the matter

density of the universe by ΩΛ + Ωm = 1, where Ωm is the mass density of the

universe.

One issue with thsi ΩΛ description is that it fails to account for explanations of

dark energy apart from a cosmological constant. Therefore, we can also describe

dark energy starting from energy conservation in an expanding universe,

∂ρ

∂ t
+

ȧ
a
[3ρ +3P] = 0, (1.6)

and defining the quantity

w =
P
ρ
. (1.7)

The value of w allows us to describe a variety of universes, not just one dominated

by a cosmological constant. For w = −1, we have a cosmological constant. For

w = 0, we have a flat, matter-dominated universe and for w = 1/3, we have a

radiation dominated universe [12]. We can then write an equation for the evolution

of dark energy [12]

ρde ∝ exp

(
−3

a∫ da′

a′
[1+w(a′)]

)
. (1.8)

1.1.2 Experimental Probes of Dark Energy

Type Ia Supernova

In the last years of the twentieth century, new observational evidence began a new

era in the cosmological constant discussion. Observations of Type Ia Supernovae

in the late 1990s and early 2000s indicated that the universe was expanding at

an accelerating rate, providing evidence that the vacuum energy density ΩΛ was

indeed greater than zero.

Type Ia Supernova are considered standard candles, because their luminosity

4



is well-known. In cosmology, standard candles are highly useful, as they allows

cosmologists to calculated the distance to the standard candle object. This pro-

cess requires a quantity known as the luminosity distance. An object with a given

luminosity L a distance d from the observer has a flux

F =
L

f πd2 . (1.9)

In comoving coordinates, the flux is

F =
L(χ)

4πχ2(a)
, (1.10)

where L(χ) is the luminosity in a comoving spherical shell of radius χ(a) and a is

the scale factor [12]. If all emitted photons have the same energy, L(χ) is the times

the number of photons passing through the comoving spherical shell in a unit of

time. Due to the expansion of the universe, the energy of the photons will be less

today than when they were emitted and the energy per unit time in our comoving

shell will be a2 smaller than the source luminosity. This means we can write

F =
La2

4πχ2(a)
, (1.11)

which makes apparent a way to return to the simple form of equation 1.9: define

dL =
χ

a
(1.12)

the luminosity distance [12]. If we know a luminosity distance and an absolute

magnitude of a source, we can find its apparent magnitude using the expression

m−M = 5log
(

dL

10pc

)
+K, (1.13)

where K is is correction for wavelength shift due to expansion, m is apparent mag-

nitude, and M is absolute magnitude [12].

Type Ia supernovae have almost identical absolute magnitudes, so any set of

Type Ia supernova magnitudes can be easily compared. Scott Dodelson’s Modern
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Cosmology textbook offers a brief illustrative example. Given two supernovae, one

at z = 0.83 with m = 24.32 and one at z = 0.026 with m = 16.08 and the fact that

the absolute magnitudes are the same (so the difference in apparent magnitude is

due only to luminosity distance), we can write

24.32−16.08 = 5log(dL(z = 0.83))−5log(dL(z = 0.026)). (1.14)

The smaller luminosity distance is sufficiently low redshift to be written as dL(z =

0.026) = z/H0 = 0.026/H0, making the larger distance our only unknown. Our

observation indicates that H0 dL(z = 0.83) = 1.16, but for a matter dominated uni-

verse (Ωm = 1, ΩΛ = 0), H0 dL(z = 0.83) = 0.95. Even our toy problem indicates

that we must add a cosmological constant of some sort [12].

This same conclusion was reached, much more rigorously by several supernova

surveys, beginning with Riess et. al. and Perlmutter et. al. in 1998 and 1999 [26,

29]. These surveys sampled small numbers of high redshift supernovae (around

10 each) and fit for cosmological parameters ΩM and ΩΛ, probing whether the

universe was matter or radiation dominated. Each group found that there was a

significant ΩΛ component, although the Riess et. al. value was significantly higher.

Since the late 1990s, many more supernova surveys have been conducted,

which have corroborated these initial findings and added more supernovae to the

total sample. Some notable results include those of the Supernova Cosmology

Project, the Sloan Digital Sky Survey, and the Hubble Space Telescope Cluster

Supernova Survey, and the Supernova Legacy Survey [13, 15, 34, 39].

Relatively recent supernova surveys have used improved datasets to find im-

proved values for w and ΩΛ. In 2011, Conley et. al. found w=−0.91+.16
−.20(stat)+.07

−.14(sys)

using only supernova data, assuming a flat universe with constant w, marginalizing

over Ωm [11].

Supernova surveys are a foundational method of measuring ΩΛ, but there is

significant evidence that they are limited by systematic uncertainties. These arise

from a variety of quarters including dust extinction, supernova colours, and photo-

metric calibration [37].
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Cosmic Microwave Background

While not very useful as a direct probe of dark energy, the cosmic microwave

background (CMB) is important in that it constrains other cosmological param-

eters precisely. In particular, the CMB closely constrains the values of Ωmh2 and

Ωbh2, which are other major components of the energy content in the universe, par-

ticularly if the universe is assumed to be flat (i.e. Ωk = 0). Additionally, the CMB

can be used to probe cosmic acceleration models more directly via the Integrated

Sachs-Wolfe effect [37].

The CMB’s use as a provider of careful measurements is also important in the

context of the baryon acoustic oscillations, which are another experimental probe

discussed below. CMB anisotropy data allows careful measurement of the physical

scale of oscillations deriving from baryon density, which allows the oscillations to

be used as a standard ruler. Without the careful constraints from the CMB such

analysis might be impossible [31].

Baryon Acoustic Oscillations

Immediately after inflation, the baryons and photons in the universe were locked

together, and reactions between the photon pressure and matter density fluctuations

produced sound waves. At recombination, the baryons and photons decoupled.

However, the previously generated sound waves remained frozen in the structure of

the baryonic matter. These fluctuations are known as baryon acoustic oscillations

or BAO. The size of the BAO was established by the size of the sound horizon at

recombination, the distance that sound could travel by the time of last scattering.

This created a characteristic, fixed scale which can be used as a “standard ruler” on

the universe [3, 24, 37].

Use of BAO as a standard ruler is significant to the study of dark energy, as

tracing baryon acoustic oscillations provides a definite size scale, allowing deter-

mination of the angular diameter distance and the Hubble parameter at a variety of

redshifts [3]. The comoving distance to an object in the line-of-sight and transverse

directions can be written as

r‖ =
c∆z

H(z)
(1.15)
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and

r⊥ = (1+ z) DA(z) ∆θ , (1.16)

where ∆θ and ∆z are the observed dimensions of the object [31]. If we know r⊥
and r‖ as is the case when measuring the BAO scale, we are able to determine

DA(z) and H(z).

This method may be preferable to other methods such as supernovae and clus-

tering because it is minimally affected by non-linear gravitational clustering, galaxy

biasing, and redshift distortions [31]. Therefore, it could be a vey clean probe of

dark energy.

The baryon acoustic oscillation can be detected in multiple ways. All meth-

ods depend on a clean determination of the BAO scale by CMB experiments such

as Planck, currently estimated to be 147.50± 0.24 [2]. To date, there have been

several surveys to detect baryon acoustic oscillations from galaxies, many with an

eye towards dark energy constraints. These include WiggleZ, BOSS, SDSS main

galaxy survey, and the 6dF survey [4, 7, 17, 30].

Weak Lensing

Gravitational lensing is a phenomenon in which mass between an astronomical ob-

ject and its observer distorts the image of the background source, deflecting it from

its proper position by some angle. This angle is generally too small to observe

directly, but weak lensing analysis can observe the gradient of the angle, which

makes circular galaxies appear elliptical [3]. Weak lensing is a small distortion

(about 1%) in the size and shape of images of distant galaxies, generated by dis-

tortion from light bending past galaxies or clusters of galaxies in the foreground of

the lensed galaxy, It can be used to measure either the galaxy’s shearing (distortion

in shape) or magnification (distortion in size), though shearing measurements are

far more common [37].

Individual galaxies are not circular, so we cannot determine the deformation

and thus the lensing signal from any individual galaxy. Instead, we compile large

samples of galaxies and detect a lensing signal as a pattern of aligned shapes in

a region of galaxies. This means that weak lensing measurements require a very

large galaxy survey [3].
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Weak lensing can be used as a probe of dark energy because the deflection

angle from the expected position of the lensed object depends on the mass of the

foreground lensing object and the distances between the observer, the lens, and the

lensed source. With careful analysis, then, weak lensing can be used to constrain

both the angular-diameter distance as a function of redshift and the growth rate of

structure [3].

However, weak lensing measurements are challenging. They require a large

sample of lensed objects. They also have very complicated error analyses, requir-

ing the consideration of statistical errors arising from cosmological model, con-

cerns about observational bias, and systematic errors arising from astrophysical

processes in the sources and intervening space [37].

Galaxy Clusters

Measuring galaxy clusters is one of the oldest techniques for investigating dark

energy, as measurements from galaxy clusters indicated that Ωm < 1 as early as

the 1980s. Today, galaxy clusters continue to be important ways of understanding

dark energy. They are the largest gravitationally collapsed objects in the universe,

marking locations with large density fluctuations in the early universe. We can

analytically predict their mass function, the number of galaxy clusters per unit

comoving volume per cluster mass. We can then measure their actual abundance

in a region of the sky and compare the two [3].

Cluster results scale sensitively with both the comoving volume and the mat-

ter density of the universe, meaning that cluster results are sensitive to changes in

either the matter density or the size of the universe, both of which are of relevant

observables for dark energy [3]. In particular, the halo mass function which serves

as a predictor for cluster abundances is sensitive to the combination of cosmologi-

cal parameters σ8Ωm, and is therefore very sensitive to the initial value of w. Small

changes in w can alter the evolution of the universe at late times, in turn altering

the development of clusters [37].

Galaxy clusters can and have been detected in a variety of ways, including x-ray

emissions the Sunyaev-Zeldovich effect, and even gravitational lensing. However,

the primary challenge in using galaxy clusters to study dark energy is not detect-
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ing the clusters but understanding the relationship between the observables of the

galaxy cluster and a cosmological model. Galaxy cluster measurements are not di-

rectly measuring the mass of the cluster, but rather proxies like x-ray flux or galaxy

counts [3]. Calibrating the observable-mass relationship is the largest challenge

facing cluster analysis. It can be accomplished by simulations of galaxy clusters,

by extrapolating the few direct mass measurements to larger samples, or by relying

on statistical methods involving either additional observables or weak lensing [37].

1.2 21 cm Intensity Mapping
One of the most exciting new categories of cosmology experiments is 21 cm hydro-

gen intensity mapping experiments. While challenging, 21 cm experiments options

for examining a variety of cosmological questions, including both dark energy via

the universe’s accelerating expansion and the epoch of reionization.

1.2.1 Understanding 21 cm Neutral Hydrogen

The 21 cm line of hydrogen arises from the hyperfine transition of hydrogen, during

which the electron spin flips. It was a triumph of theoretical astrophysics when

discovered in the 1940s, one of very few spectral lines discovered following a

precise theoretical prediction. At redshift 0, the line is at ν = 1420.4057 MHz.

It is potentially useful to cosmology for a few reasons. First, it is a spectral

line, so by mapping it at different frequencies (different redshifts), it is possible

to trace its full three dimensional evolution. For example, at the era when dark

energy becomes dominant (around z = 1−3), the 21 cm line is found at ν ≈ 400−
800 MHz and at the Epoch of Reionization, it is found around ν ≈ 30−200 MHz

[14]. Second, at higher redshift, it probes the IGM, which is the dominant location

of baryonic matter [14]. At lower redshifts, it probes the clustering of collapsed

halos and therefore the underlying matter density distribution [28]. At either epoch,

it serves as a tracer of baryonic matter in the universe.

Mapping 21 cm hydrogen emission is a potentially useful cosmological probe

for several epochs. It may provide a way to examine the dark ages, between re-

combination and reionization, which are difficult to observe, as they precede the

formation of astrophysical objects. It may also be a useful way of examining the
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epoch of reionization, with the advantage that appropriate frequency coverage al-

lows maps at a progression of redshifts. Finally, at more recent times, it can be

used to detect the BAO and therefore constrain dark energy, but without requiring

surveys to resolve individual galaxies [14, 28].

1.2.2 21 cm Intensity Mapping as a Probe of Dark Energy

One method for constraining dark energy with BAO is by using 21 cm intensity

mapping. This method removes one of the significant challenges in measuring the

BAO at appropriate redshifts: it does not require detection of individual galaxies,

just large scale variations in HI mass [9]. Therefore, it requires less resolution than

galaxy surveys with the same goal. The smallest spatial scale such an experiment

would need to consider is the third BAO peak, past which nonlinear evolution

attenuates BAO structure. Its wavelength is 35h−1Mpc, meaning that a Nyquist

sampled map need only have 18h−1 MPc sized pixels. For relevant redshifts such

as z = 1.5, this means an angular wavelength of 20 arcminutes, corresponding to a

200 wavelengths or 100 m, is necessary to resolve BAO structure [9].

The mean brightness temperature of the 21 cm line at redshift z = 1−3 can be

estimated as

Tb = 0.3
(

ΩHI

10−3

)(
Ωm +a3ΩΛ

0.29

)−1/2(1+ z
2.5

)1/2

mK, (1.17)

where Ωm and ΩΛ are cosmological parameters and ΩHI≈ 1×10−3 at z= 1 [9, 28].

Calculating the mean brightness temperature for 21 cm hydrogen at 18h−1 Mpc

scales indicates that signal should be expected to be about 150µK, dim relative

to foregrounds. This means that detecting BAO will require careful removal of

foregrounds and Fourier analysis of large sections of sky. This foreground problem

is common to all 21 cm experiments and has been thought about carefully by many

in the field, e.g. [18].

Bright foregrounds, nonlinearity, and limits on observable volume all constrain

the redshift space in which 21 cm intensity mapping to detect BAO is useful.

Though finite, this area is large enough to be cosmologically interesting. Inten-

sity mapping is a viable approach between redshifts of about z = 0.5−2.5 and for
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scales on the order of k = 0.01− 0.1. At low redshift, the boundary is drawn by

limited observable volume, at high k the limit arises from nonlinearity obscuring

BAO wiggles, and the lower k limit arises from bright foregrounds making fore-

ground removal infeasible [9].

Figure 1.1: Achievable parameter space for BAO detection with 21 cm inten-
sity mapping. The left exclusion arises from limited observable volume,
the top exclusion from nonlinearity obscuring the BAO wiggles, and
the bottom exclusion from bright foregrounds exceeding the removable
threshold. Image from [9].

After detecting the BAO in neutral hydrogen, the analysis proceeds as in other

dark energy experiments using BAO analysis. Calculations from Chang et.al. fore-

cast that BAO from intensity mapping combined with Planck could constrain key

dark energy parameters to the same level as other “Stage 2” methods, as outlined

in the Dark Energy Task Force Report [9]. See Figure 1.2 for a graphical represen-

tation of the confidence intervals for potential IM + Planck results.

CHIME, the Canadian Hydrogen Intensity Mapping Experiment, is one exam-

12



Figure 1.2: Constraints on the dark energy equation of state and its redshift
dependence from DETF stage I + Planck (outermost line), DETF stage
I+ III + Planck (intermediate dotted line), DETF stage I + III + IV +
Planck (inner dotted line), intensity mapping + Planck (inner solid line
for best case, outer solid line for worst case, and all options combined
(dashed lines for best and worst - almost indistinguishable). Image from
[9].

ple of an experiment using intensity mapping to detect the BAO and constrain dark

energy. It will be discussed further in Section 1.3.

1.2.3 Designing 21 cm Experiments

While 21 cm intensity mapping can be used for more than one cosmological pur-

pose, depending on a given experiment’s frequency range, there are common prin-

ciples present in many 21 cm experiments. All 21 cm experiments are mapping

experiments. All are advantaged by having significant frequency coverage, cor-

13



responding to significant redshift coverage. All are concerned about removal of

foregrounds.

In principle, 21 cm signal can be observed with a single dipole. Indeed, struc-

ture in the 21 cm signal has been detected using only single dish telescopes such

as Parkes Observatory and Green Bank Telescope [10, 25]. However, such surveys

are not ideal for creating multi-frequency full sky maps of the 21 cm emission.

As the objective is ultimately a full sky map, steerability is unimportant, so transit

telescopes, in which antenna are in fixed positions and the sky rotates past them,

are common. Additionally, heavily redundant array configurations are preferred,

generally with close-packed feeds. Most 21 cm experiments do incorporate reflec-

tors, either cylinders or dishes, but in principle a sufficiently large block of antenna

could be used as a 21 cm experiment. Many attempt to make use of modern compu-

tation efficiency to either rapidly process cross-correlations or to limit the amount

of correlations necessary to proceed, as discussed in [35, 36].

Though 21 cm intensity mapping is being used for a variety of cosmological

applications, the similarity in experimental design and challenges such as fore-

ground removal allow experiments even with different science goals to share best

practices in design, calibration, and data analysis.

1.2.4 A Brief Census of 21 cm Experiments

While 21 cm cosmology is still a new field, a few experiments have already been

conducted. These were predominantly smaller, less ambitious experiments de-

signed to inform larger, upcoming experiments, but they were still worth noting

as introductions to the field.

In the higher frequency, late-time expansion focused range, there have been

both dedicated experiments and surveys involving conventional radio telescopes.

The first of these was the Pittsburgh Cylinder Telescope, a very early cylinder

telescope prototype, was composed of two 10 m by 25 m cylinders 25 m apart,

with a fixed, transit telescope design and sixteen dipoles per cylinder [27]. Early

efforts at intensity mapping in this band also included survey at the Green Bank

Telescope and the Parkes Telescope, with both surveys detecting the 21 cm signal

[10, 25]. At present, the CHIME Pathfinder is an active telescope in this frequency
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range [5].

There have also been several first generation or pathfinder experiments in the

lower frequency, higher redshift range. Perhaps the most prominent is the Preci-

sion Array for Probing the Epoch of Reionization, located in South Africa. PAPER

pioneered many practical elements of EoR 21 cm analysis and also created a com-

petitive map at their frequency range [23]. Other firsts generation telescopes in this

frequency range include MITEoR, 21 CentiMeter Array, LOw Frequency ARray,

the Giant Metrewave Radio Telescope EoR Experiment and the Murchison Wide-

field Array [20, 22, 40–42]

Additionally, upcoming years will see more 21 cm experiments coming on-

line, investigating both the higher redshift EoR era and the lower redshift late-time

expansion era. At higher frequencies, CHIME in the northern hemisphere and

HIRAX in the southern hemisphere will focus on detecting BAO with 21 cm mea-

surements. At lower frequency, HERA and SKA Low will be able to learn more

about the Epoch of Reionization.

1.3 An Introduction to CHIME
The Canadian Hydrogen Intensity Mapping Experiment is a 21 cm intensity map-

ping experiment designed to detect baryon acoustic oscillations and thereby con-

strain dark energy as discussed in previous sections. CHIME is a collaboration

between University of British Columbia, University of Toronto, McGill Univer-

sity, and the Dominion Radio Astrophysical Observatory (DRAO). It is located at

DRAO in Kaleden, BC.

CHIME is a transit telescope, composed of cylindrical reflectors with dual po-

larization feeds located along a focal line suspended above the cylinder surface.

The CHIME Pathfinder, pictured in Figure 1.3, consists of two 20 m by 36 m

cylinders with 128 dual-polarization feeds. It has been operational since 2014, so

data from the Pathfinder can be used to test analysis and calibration methods. Full

CHIME, pictured in Figure 1.4, is currently under construction but expected to be-

gin taking data later in 2017. It consists of four 20 m by 100 m cylinders with

1024 dual-polarization feeds. On both telescopes, these dual-polarization feeds are

spaced about 30 cm apart on the focal line, in a manner that is intentionally highly
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redundant.

Figure 1.3: The CHIME Pathfinder at DRAO. It consists of two 20 m by 36
m cylinders and 256 total inputs, and operates between 400-800 MHz.

Figure 1.4: CHIME under construction at DRAO. It consists of four 20 m
by 100 m cylinders and 2028 total inputs. It will operate at the same
frequency range as the CHIME Pathfinder.

The Pathfinder and CHIME both observe at a frequency range from 400-800

MHz. This range is covered in 1024 390 kHz channels distributed evenly across

the band. As observing neutral hydrogen at varied frequencies is equivalent to ob-

serving it at different redshifts, CHIME observes from z = 0.8−2.5, a range which

is of significant importance in observing baryon acoustic oscillations to constrain

dark energy.
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Both telescopes see a narrow “hotdog shaped” primary beam, approximately

100 degrees north-to-south and approximately two degrees east-to-west. As CHIME

is a transit telescope, it does not point at specific objects. Instead, the CHIME beam

passes over the entire northern sky in these two degree strips as the earth rotates.

CHIME’s frequency dependent resolution is approximately 0.25-0.5 [21].

Like other 21 cm experiments, foreground removal is a major concern for

CHIME. To successfully measure BAO, CHIME must be not allow the system-

atic errors from foreground filtering or calibration to dominate statistical errors.

The foreground signals in particular are quite bright, up to 700 K and generally

between 10-20 K. In contrast, 21 cm signal from BAO is expected to be about 100

µK [21]. The stringent foreground filtering necessary to detect the BAO requires

excellent calibration techniques.

CHIME will require precise calibration in several different instrumental com-

ponents. First, CHIME must know the beam response precisely. Frequency de-

pendent structure in the antenna beam will transform angular structure in the fore-

grounds into spectral structure to CHIME visibilities. Polarized foregrounds will

also undergo Faraday rotation and introduce spectral structure to the visibilities.

Simulations indicate that CHIME must understand the beam width to approxi-

mately 0.1% to avoid biasing the derived power spectrum by an amount greater

than statistical uncertainty [21, 32].

CHIME must also calibrate the relative complex gain as a function of time to

achieve acceptable brightness accuracy. End-to-end simulations again shine light

on the maximum random variations allowed in the complex gains. These simu-

lations indicate that random gain variations must be less than 1% on 60 second

timescales [21, 32]. CHIME is, however, saved from conducting an absolute cali-

bration as our BAO measurements do not require an absolute sky brightness value.

Cross-talk, coupling between channels is expected to occur at various points

on the CHIME system, including between feeds, cables, and digitzer and correla-

tor boards. Cross-talk in cross-correlation measurements will add signal and noise

with stable coefficients. This cross-talk will not appear as a constant additive offset

but as a signal at random phases. CHIME will have to measure cross-talk coeffi-

cients and then extract the effects from the data [21].

Finally, CHIME will need to understand the instrument passband to a part
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within 105. CHIME will accomplish this by assuming that bright foreground re-

gions of our maps have smooth frequency spectrums, but passband effects are in-

trinsically tied to beam calibration and therefore cannot be fully estimated without

a solid estimate of beam calibration [21].
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Chapter 2

Implementing Redundant
Baseline Calibration

As discussed in Chapter 1 as well as [21], [32], and [18], 21 cm intensity map-

ping experiments such as CHIME have stringent calibration requirements, to allow

them to carefully remove foregrounds and ultimately extract cosmological infor-

mation. There are a myriad of potential calibration methods, but they can roughly

be combined into three categories.

The first is point source or other sky based calibrations. Point source cali-

bration involves using the telescope to view a source which is very well-known

and comparing the data to the known solution to extrapolate instrumental fac-

tors. Point source calibration, however, is constrained by external knowledge of

the point source in question.

The second method is noise source calibration. In this method, an external

source of noise is broadcast into the interferometer and switched off and on at short

intervals. Data from the intervals where the noise source is off is then compared

to data where the noise source is on, eliminating sky data and leaving only in-

strumental information. This can be the most analytically straightforward method

(although is not always, depending on the noise source configuration) but requires

external hardware and can therefore be more complicated than it initially appears.

The third category of calibration method is self-calibration, wherein the intrin-

sic properties of the telescope and the data ordinarily collected are used to calibrate
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the telescope. Methods in this category, including redundant baseline calibration,

are desirable because they require neither detailed knowledge of the sky nor exter-

nal noise sources, but instead use the properties of the instrument itself to calibrate.

This means it can be effective even in the absence of sufficiently well-known point

sources or external noise sources. However, self-calibration methods are generally

relative and unable to determine the absolute calibration of an instrument, so they

are often used in conjunction with other methods.

Redundant baseline calibration, specifically, exploits the property that there are

many baselines in CHIME which generate redundant information. To understand

what we mean by redundant baselines and why they are potentially useful for cal-

ibration, we must also understand the structure of data in CHIME, discussed in

Section 2.1. In Sections 2.2 and 2.3 we discuss the structure of the redundant base-

line algorithm and in Section 2.4 we discuss an implementation of the amplitude

calibration on data from a simulation of the CHIME Pathfinder.

2.1 Constructing Visibilities
At its most fundamental level, a transit telescope like CHIME can be viewed as a

collection of feeds measuring electric field from the sky. To keep track of polariza-

tion information, we would like to know what the contribution to the electric field

from every direction is and therefore define ε , which is an electric field density in

a frequency interval and solid angle. We can then write the electric field as

dE = (µ0c)1/2
ε (n̂,ν)d2n̂′dν (2.1)

and subsequently write the Poynting Vector as

Sp =
1

µ0c
E×H =

∫
d2n̂ d2n̂′ dν dν

′ n̂ 〈ε(n̂) · ε(n̂′)〉 (2.2)

.

The astronomical radio signals we are interested in are generally incoherent,
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enabling us to define ε in terms of the Stokes parameters

〈εa (n̂,ν)ε
∗
b
(
n̂′,ν

)
〉= 2kB

λ 2 δ
(
n̂− n̂′

)
δ
(
ν−ν

′)× [PI
abI(n̂)+

PabQQ(n̂)+PabUU(n̂)+PabVV (n̂)],
(2.3)

where indices ab represent basis vectors transverse to the line of sight. The polar-

ization tensors PX
ab are known variations on the Pauli matrices.

Any feed i on the telescope is collecting a weighted combination of the electric

fields it receives, designated Fi and given by

Fi(φ) =
∫

d2n̂Aa
i (n̂,φ)εa(n̂)e2πin̂·ui(φ), (2.4)

where φ is a rotation angle, and ui is a physical location. This beam has a solid

angle Ωi =
∫

d2n̂|A(n̂)|2

Real interferometric data , however, is not presented as individual feed re-

sponses, but as visibilities, cross correlations between multiple feeds: Vi j = 〈FiF∗j 〉.
These visibilities can be written as

Vi j(φ) =
∫

∑BS
i j(n̂,φ)S(n̂), (2.5)

where S represents each Stokes Parameter (I, Q, U, V) and BS
i j is a beam transfer

function. These beam transfer functions compile all the necessary instrumental

information into one quantity, which is given by

BS
i j(n̂,φ) =

2
Ωi j

Ai(n̂,φ)A∗j(n̂,φ)P
S
abe2πin̂·uij(φ) (2.6)

where Ai is the antenna response, Ωi j =
√

ΩiΩ j, PS
ab is the previously men-

tioned polarization tensor, and uij is a vector of the length of the baseline between

feeds i and j [32].

While a number of factors influence the actual value of the visibility, relatively

few change within a given telescope. We assume, quite reasonably, that the sky

varies little relative to the spatial scale of our telescope in a given time step, so for

a given rotation angle φ , the visibilities should vary based on beam transfer matri-
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ces rather than sky variation. Within the beam transfer function, if we assume that

all feeds have the same beam pattern A, we are left with a function that varies only

based on baseline distance uij. Therefore, any two sets of feeds with the same base-

line distance uij should produce the same visibility, i.e. we expect the information

from these baselines to be redundant. One consequence of redundancy is that any

information that is not identical amongst redundant visibilties must originate from

instrumental factors, most prominently the instrumental gains.

The visibility calculated above is not precisely the visibility measured by the

telescope. The measured visibility combines the actual visibility calculated above

with both instrumental gains and noise. In other words,

V meas
i j = gig∗j Vi j +ni j, (2.7)

where gi, and g j are the complex gains of feeds i and j, Vi j is the actual visibility,

and ni j is a noise term. We assume this noise term to be uncorrelated, and on the

order of Tsys/
√

τ∆ν , where Tsys is the system temperature, τ is integration time,

and ∆ν is bandwidth [19].

We linearize this equation by taking the logarithm and separating the real and

imaginary parts so that we have two equations for each measured baseline:

ln |V meas
i j |= ln |gi|+ ln |g j|+ ln |Vi j|+Re(ni j) (2.8)

arg
(
V meas

i j
)
= arg(gi)+ arg

(
g∗j
)
+ arg(Vi j)+ Im(ni j). (2.9)

This enables us to separately solve for the real and imaginary parts of the gain and

the actual visibility [19].
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2.2 Amplitude Calibration
Once the set of measured visibilities has been linearized as in Equation 2.8, we can

write a matrix equation:


ln |V meas

01 |
ln |V meas

12 |
ln |V meas

02 |
...

=


1 1 0 0 · · · 1 0 0 · · ·
0 1 1 0 · · · 0 1 0 · · ·
1 0 1 0 · · · 0 0 1 · · ·
...

...
...





ln |g0|
ln |g1|
ln |g2|

...

ln |V0|
ln |V1|


+


Re(η01)

Re(η12)

Re(η02)
...


(2.10)

More succinctly,

d = Mx+η , (2.11)

where d is a vector containing the measured visibilities, M is a matrix containing

the various combinations of gain and true visibility, and x is a vector consisting of

the instrumental gains for all feeds and the actual visibilities as defined in equation

2.5

We can solve this matrix equation using least squares methods, so that

x =
(
MT N−1M

)−1 MT N−1d (2.12)

where N = 〈ηηT 〉 is the noise covariance matrix.

This noise covariance matrix N can be set in a number of ways. In the simplest

approximation, we use the identity matrix as the noise covariance matrix. We are

therefore assuming that noise is uncorrelated (by selecting a diagonal matrix as

N). This can be a valid way to think about the noise covariance, but is also an

over-simplification of the scenario and therefore can be a detriment.

As noted above, this procedure yields a matrix, x composed of the gain ampli-

tudes for each feed and the amplitude of the actual visibility for each feed. How-

ever, the amplitude calibration is affected by at minimum one degeneracy. This is

apparent from calculating the null space of the M matrix, which is non-zero and

arises because redundant baseline calibration is in itself a relative not absolute cal-
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ibration technique. We therefore apply a gauge fixing condition of some form. The

simplest is to impose a value for one gain in the set and set all gains relative to that

value. The primary disadvantage to this method is simple. We do not necessarily

know a priori the value of any single gain. The concern is less that we might choose

a wrong numerical value for this gain (as we will only consider other gains rela-

tive to it in our analysis) but that we may accidentally choose an ill-behaved gain,

one with very unusual structure. In the case that the reference gain experiences

dramatic fluctuations, this will induce dramatic fluctuations in our other gains as

well.

We attempt to mitigate this risk by setting the gain relative to an expected

average point for the gains, rather than an individual gain. Specifically, our usual

condition is

∑
i

ln |gi|= 0. (2.13)

This condition states that the sum of the natural logarithms of the gains must be

equal to zero. This condition then places the gain amplitude values around one,

which is a reasonable choice for instrumental gains on the CHIME Pathfinder.

2.2.1 Complications to the Amplitude Calibration

Several complications exist in the amplitude calibration, both from the perspec-

tive of non-idealities in a real telescope like the CHIME Pathfinder and from the

calibration method itself.

Probably the most significant is the addition of non-identical primary beams be-

tween feeds. In summary, if the beam amplitudes Ai for each feed are not identical,

one of underlying assumptions of redundancy collapses and the redundant base-

line calibration method performs in unexpected, though sometimes useful, ways.

This issue will be discussed in greater detail in Chapter 4, where we will present a

detailed simulation of such a telescope.

At the simplest level, we can improve our noise covariance matrix by using a

diagonal matrix with more carefully considered An individually generated approx-

imation of the noise covariance is generally more exact, if available. One simple

option is to use the radiometer noise test to generate a value for σ2. Another option

is to derive the noise covariance matrix directly from the variance of the data itself.
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One major assumption made in simple implementations of redundant baseline

calibration is that noise is uncorrelated. However, this is quite often not the case,

meaning that our diagonal matrix estimate for N is inaccurate. A common reason

for correlated noise in systems like CHIME is cross-talk. Cross-talk arises when

two feeds interact with one another and therefore skew the results from their mu-

tual baseline. This is primarily a concern when dealing with short, intra-cylinder

baselines. Therefore, the simplest way to mitigate cross-talk is to ignore either all

intra-cylinder baselines or intra-cylinder baselines shorter than a pre-determined

minimum baseline distance.

This decision is however not without consequences. Working solely across

cylinders in particular introduces an additional degeneracy into the problem. This

is evidenced by an additional dimension in the null space of the coefficient matrix,

M, indicating that the problem is no longer uniquely solved. In the absence of

information within a cylinder, the two cylinder’s absolute levels can change inde-

pendently. The initial degeneracy fixing condition present in the algorithm pertains

to the overall level of the system’s gain. Without knowledge within a single cylin-

der, the algorithm is free to distribute gain between the two cylinders in any way it

pleases, e.g. assigning very high gain to one and a very low gain to the other, so

long as the overall level remains consistent with the degeneracy fixing condition.

This can be simply and effectively remedied by splitting the degeneracy fixing

condition into two complementary conditions, one which sets a level for the first

cylinder and one that sets a level for the second cylinder.

2.3 Phase Calibration
Our earlier linearization of the visibility equation split the amplitude and phase of

the visibility, allowing them to be solved for separately. Though this thesis’ focus is

on amplitude calibration using redundant baselines, redundant baseline calibration

can also be used as a relative phase calibrator, via a method outlined in Michael

Sitwell’s PhD thesis [33]. At first glance, it would appear that we could apply

the same process to solve for phase, but degeneracies in the problem make this

straightforward approach intractable.

To implement redundant baseline phase calibration, we first construct a matrix
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G = |g〉〈g|, using an initial estimate Ĝi j = V meas
i j /V true

i j for each component. This

estimate for V true
i j can be arbitrary, so one simple option is to use the V true

i j calculated

from the amplitude calibration. With an estimate for G, we attempt to solve for the

gain vector that minimizes chi-squared, which we can write as [33]

χ
2 = ∑

i jkl

(
Ĝi j−Gi j

)
C−1

i j,kl

(
Ĝkl−Gkl

)
. (2.14)

If the covariance matrix C−1
i j,kl is uncorrelated between baselines and gives each

baseline the same variance σ2, we can reduce Equation 2.14 to

χ
2 =

1
σ2 ∑

i j
|Ĝi j−Gi j|2. (2.15)

As a consequence of our definition of G, |g〉 is an eigenvector of G with the

eigenvalue 〈g|g〉. We can therefore use the eigenvalue decomposition to find values

of the gains. As Ĝ is Hermitian and positive semi-definite, its eigenvalue decompo-

sition is the same as its singular value decomposition. This is convenient because

it allows us to find which eigenvector we should use as our gain estimate. Specifi-

cally, this SVD equivalent means that reducing Ĝ to a rank-1 matrix with the SVD

is the equivalent to minimizing χ2. We are able to conclude that the eigenvector

corresponding to the largest eigenvalue is our desired gain vector [33].

With an estimate of the gains, we can re-estimate the true visibility for a given

baseline b = i− j, writing

Vb =
∑i gig∗i+bV meas

i,i+b

∑i |gi|2|gi+b|2
. (2.16)

We then iterate this process until our results converge [33].

There are a few caveats to this method. First, the assumption that covariance

matrix Ci j,kl is proportional to the identity used to reach Equation 2.15 requires us

to assume autocorrelations should receive the same weight as all other correlations,

which is distinctly inaccurate. However, if we only need to solve for gain phases,

we can replace Ĝi j → Ĝi j/|Ĝi j| which makes Ĝ a matrix with complex elements

with unit norms and thus the diagonal elements are all scaled to one. Second,
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there are a number of degeneracies in the phase solution. It is insensitive to both

a rotation of the sky (or equivalently a tilting of the array) as well as the absolute

phase level of the system. These degeneracies can be fixed either by calculating the

deviation from expected phase at a point source or by simply fixing the first two

gains in the gain vector to known values.

Though this method has been previously shown to be successful in small cases

(see [33]), in the remainder of this thesis we will focus solely on amplitude cali-

bration.

2.4 Redundant Baseline Calibration on Simulated Data
Although we have at our disposal actual CHIME pathfinder data, we choose to

first present redundant baseline calibration results from our carefully constructed

simulations, as this allows us to make decisions about most effective way to im-

plement redundant baseline calibration without having our results clouded by the

irregularities and complexities of real experimental data.

2.4.1 Simulating the CHIME Pathfinder

As we are interested only in testing a calibration method and not in testing 21

cm hydrogen intensity detection, we use the software package COsmology in the

RAdio Band (CORA) to generate a foreground map including the galaxy and point

sources. Our map includes the actual values of point sources brighter than 4 Jy as

well as a synthetic population of dimmer point sources (brighter than 0.1 Jy at 151

MHz) and a Gaussian realization representing even dimmer unresolved sources.

The galactic component of the map is extrapolated from the Haslam map at 408

MHz with additional random fluctuations [16]. The map, with the colour bar scaled

to make the galaxy visible, is shown in Figure 2.1.

After simulating a test sky, we generate test beam transfer matrices. While

we use alternative beam models later, for this analysis we confine ourselves to the

fiducial quasi-Gaussian beam introduced in [32]. This beam model varies slightly

for the two polarizations present in CHIME, here designated x polarization (the

feed dipole pointing east-west) and y polarization (the dipole pointing north-south).

The fiducial model is not a direct attempt to solve for the beam pattern but rather
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Sky Map: Galaxy

0 100

Figure 2.1: The simulated sky map used for simulations in Section 2.4. It
contains both point sources and galaxy, but the point sources appear as
isolated pixels and are therefore almost invisible at this size. The colour
bar has been scaled to show the galaxy, as it is by default saturated by
the brightest point sources. The map is created using a combination of
the Haslam 408 MHz map, known bright point sources in the CHIME
frequency band, and Gaussian realizations of dimmer point sources.

an approximation composed of the product of a function describing response in the

EW direction and a function describing response in the N-S direction. We write

the beam amplitude for an unfocused dipole, our model for the feed, as

AD (θ ;θW ) = exp
(
− ln2

2
tanθ 2

tanθW
2

)
, (2.17)

with θW the beam’s full width at half-power. Given the height of our feed relative

to its conducting ground plane (i.e. the cylinder surface), we can calculate θ as

2π/3 in the H-plane and 0.675θh in the E-plane. We treat our problem then as a

Fraunhofer diffraction problem with our given amplitude. Therefore, our cylinder

has the amplitude

AF (θ ,θW ,W )∝

∫ W/2

−W/2
AD

(
2arctan

2π

W
;θW

)
e−ikxsinθ dx ∝

∫ 1

−1
e
− ln2

tanθW
2

u2

1−u2 i πW
λ

usinθ

du

(2.18)
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incorporating the fact that for a cylinder with f-ratio 1/4, a ray hitting a distance of x

away from the cylinder’s centre reflects at an angle θ = 2arctan(2x/W )= 2arctanu

[32].

We can create our overall beam for each polarization using these two A func-

tions and an addition function pa, which is a unit vector in the polarization direction

for a dipole in a given direction. Therefore, the x feed has a beam amplitude

AX
a (n̂) = AF(arcsin(n̂ · x̂);θE ,W )×AD (arcsin(n̂ · ŷ);θH) pa(n̂; x̂) (2.19)

and the y feed has a beam amplitude

AY
a (n̂) = AF(arcsin(n̂ · x̂);θH ,W )×AD (arcsin(n̂ · ŷ);θE) pa(n̂; ŷ), (2.20)

with x̂ and ŷ unit vectors pointing in the East (transverse) and North (parallel)

directions respectively [32].

It is critical to note that the fiducial beam model is a significant simplification

of the CHIME beam. It does not account for cylinder surface considerations or

for any complicated beam structure or non-identicalities between individual feeds.

This model is also not informed by knowledge of the instrument’s specific charac-

teristics.

The simulation pipeline creates a model telescope using the layout of the CHIME

pathfinder at a provided time and the fiducial beam described above. It generates

beam-transfer matrices then applies the input sky map to these beam transfer ma-

trices to create a pseudo realistic realization of what the telescope might see.

The simulation pipeline then separately adds noise and complex gain to the

simulated data. First, we add a constant amount of noise, corresponding to the

receiver temperature, modeled as 50 K. Then, we generate complex gains for

each input of the the simulated CHIME pathfinder. These gains have an average

value of one, but include long-timescale random fluctuations. We do not expect

CHIME’s complex gains to change particularly rapidly (e.g. on few minute to hour

timescales) but we do expect variations over several hours or a day. The gain fluc-

tuations in our initial implementation are likely also larger amplitude than realistic

gain fluctuations. Thus, we could describe this as a pessimistic gain scenario. The
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pipeline also calculates the appropriate combinations of feeds and applies these

gains. Finally, we add a small amount of Gaussian random noise to the samples.

At this stage, our simulated data should look and behave exactly like real

CHIME Pathfinder data, assuming that our initial model of the CHIME Pathfinder

is correct. (We must particularly look out for inconsistencies between our assumed

quasi-Gaussian beam model and the real telescope’s more complicated beam model.)

2.4.2 First implementation

We first and most simply implement redundant baseline calibration assuming an

identity noise covariance matrix. We do ensure that we remove feeds which are

masked out in the simulation, as when they are left in the data set, the algorithm

struggles to find a solution for those inputs which matches our imposed degeneracy

fixing condition and therefore degrades the entire solution set. We also include only

one polarization at a time and therefore run our redundant baseline analysis twice to

extract all relevant underlying visibilities and gains. We do not attempt to recover

the cross-polarization correlations, as they are not meaningful in this context.

Figure 2.2 shows the complete set of gains derived from redundant baseline

calibration on our simulated CHIME pathfinder data over one six hour time stream

file. While the plot is in many ways an overwhelming amount of information, there

are a few results we can deduce from looking at this compilation.

First, notice the set of lines at exactly 1.0. These lines are the result of forcing

the gain for masked out feeds and feeds from the second polarization to be 0.

Redundant baseline calibration actually calculates the natural log of the gains, and

we therefore exponentiate the entire data set before presenting it here. Therefore,

our zeroed out gains become exactly 1.0. We can thus ignore those lines entirely.

Second, notice the improved precision at about 2000 seconds into the time

stream, which is a simulated TauA transit. Redundant baseline calibration is in

principle sky independent. However, in practice, bright sources dramatically im-

prove the signal-to-noise ratio in CHIME Pathfinder data. When this happens, the

redundant baseline algorithm is able to provide a noticeably more precise solution,

as it is much less strongly influenced by sources of noise in the data. For example,

when looking at an effectively blank sky, the 50 K receiver temperature is signif-
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Figure 2.2: We see here the complete gain results for redundant baseline cal-
ibration implemented on a simulated CHIME Pathfinder data set, as-
suming identity noise covariance. Notice the set of lines at exactly 1.0,
showing feeds which are masked out and therefore forcibly set to 0 (then
exponentiated to become 1). Notice also the improved precision of re-
sults at around 2000 seconds after the beginning of the file, a result of
improved signal-to-noise ratio during point source transit. The long-
term wavy structure in the gains closely trace the input gain fluctuation.

icant. However, it is intuitively obvious that it is not nearly as significant when

looking at a bright point source with a brightness temperature much greater than

50 K.

This is an interesting result, as it indicates that the assumption that redundant

baseline is sky independent is true only in a limited sense. While redundant base-

line calibration is not sensitive to the exact sky model, it is sensitive to signal

to noise ratio variations. This is potentially valuable, as it may allow improved

algorithms in the future which incorporate some sky info and therefore improve

performance.

Third, notice the long-term wavy structure in the gains. Initially, this may seem

concerning, as it seems that the solutions are floating around. However, when

creating the simulation, we incorporated long-term gain fluctuations. Figure 2.2

is not the ideal figure to demonstrate that these variations are as expected, but the

structure of the fluctuations in Figure 2.2 should be considered an encouraging

sign. We will investigate deviation from the input fluctuations more exactly later
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in our analysis.
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Figure 2.3: We see here the underlying visibilities derived from the redun-
dant baseline calibration algorithm. We notice that the algorithm has
correctly located the point source transits and some underlying features
of the galaxy. The point source transits are the visible parabolic struc-
tures located at the beginning and end of the file, which corresponds to
about 6 hours of time series data. We notice very little structure at times
when the input simulated visibilities are predominantly noise, which is
encouraging.

We can also generate a plot of the redundant baseline calibrated underlying

visibilities. These visibilities should be those generated by Equation 2.5 whereas

the visibilities input to the algorithm were of the form of Equation 2.7. Calibrated

visibilities are, of course, desirable as our motivation for knowing the complex

gains is ultimately to recover calibrated visibilities of the form of Equation 2.5.

We notice that our recovered visibilities correctly locate our expected point source

transits and a few underlying features of the galaxy. As those are the only two

inputs to our map (see Figure 2.1), we consider that success. (Or at least conclude

that any failures in the redundant baseline calibration will be visible only in the

gain solutions.)

2.4.3 Determining Ideal Noise Covariance

While at a base level, we are pleased with the performance of the identity noise

covariance version of the algorithm, we suspect that the performance could be im-

proved by specifying the noise covariance more carefully. Therefore, we also tested
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variations of the noise covariance matrix. First, we calculate the noise covariance

directly from the input data. Second, we use the radiometer noise test to determine

the noise covariance. Note that while both of these methods attempt to represent

the noise more accurately than the identity, both are constructed into diagonal ma-

trices (just like the identity), representing a continued assumption that there is no

correlated noise. This should be an accurate portrayal of our simulated data, where

there genuinely is no correlated noise, but the assumptions may break down for

real CHIME Pathfinder data. Summary results from these methods, equivalent to

those presented in Figure 2.2 are presented in Figures 2.4 and 2.5.
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Figure 2.4: We show here the redundant baseline-derived gains, using a noise
covariance calculated directly from the data. Compare to Figure 2.2 and
Figure 2.5. We again see the congregation of turned off or opposite po-
larization inputs at 1, improved results at higher signal to noise, and a
general correspondence with the shape of the gain fluctuations. How-
ever, we also see decreased noise in the solution relative to the identity
noise covariance results.

All three variations generate reasonable results and thus we are not able to tell

which is superior purely by looking at these summary plots. We therefore move

forward with specific comparison plots. We take advantage of the fact that we are

using simulated data to directly compare our redundant baseline outputs to our sim-

ulated inputs. We compare both in absolute difference and in percent difference.

We find that on average the identity noise covariance gain results are within 15% of

the input gains, while the radiometer and data derived noise covariances are within

approximately 5% of the input gains. Figure 2.6 shows a sampling of percent dif-
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Figure 2.5: We show here the redundant baseline-derived gains, using a noise
covariance calculated directly from the radiometer equation. Compare
to Figure 2.2 and Figure 2.4. We again see the congregation of turned
off or opposite polarization inputs at 1, improved results at higher signal
to noise, and a general correspondence with the shape of the gain fluc-
tuations. However, we also see decreased noise in the solution relative
to the identity noise covariance results. This decreased noise is very
similar to the covariance from data results in Figure 2.4.

ference results. We also look at absolute deviations, particularly for the radiometer

and data-derived variations, see Figure 2.7 for a sampling. Finally, we find the

average values and standard deviation of the gain differences for radiometer and

data-derived results.

One important thing we notice is that the differences are consistently negative.

We calculate our deviations as input minus recovered, and therefore deduce that our

redundant baseline gain solution is consistently higher than our input gain set(for

both data-derived and radiometer noise covariances). We suggest this is likely an

effect of bias in redundant baseline calibration or an indication that our degeneracy

fixing condition is failing, but also suggest that this deserves further examination in

implementing redundant baseline calibration. One way to correct for this might be

to relax the assumption that the noise is independent and thus to modify our noise

covariance matrix to not be diagonal.
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Figure 2.6: In this figure, we compare the input gains to the results for re-
dundant baseline amplitude calibration for the identity noise covariance
(cyan), data-derived noise covariance (magenta), and radiometer noise
covariance (blue) for a sampling of inputs on the west cylinder. We see
that the results trace the general structure of the gain at all times, that
they are generally improved at times corresponding to point source tran-
sits, and that results for the data and radiometer noise covariances have
less noisy solutions. Similar figures for other portions of the simulated
array are shown in the Appendix.
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Figure 2.7: In this figure, we compare the percent deviation from input gains
for the identity noise covariance (cyan), data-derived noise covariance
(blue), and radiometer noise covariance(magenta) for a sampling of in-
puts on the west cylinder. The improved precision at higher signal to
noise regions is less obvious here, but the smaller scatter in radiometer
and data derived noise covariances is present clear.
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2.4.4 Conclusions from initial implementation

We find that our initial implementation is largely successful, as we are able to

recreate to within 5% the input gain amplitudes. However, we recognize there are

some concerns, such as the apparent bias of our results. Our first implementa-

tion shows some encouraging results, but also leaves room for improvement. One

obvious spot for improvement is to incorporate a careful implementation of the re-

dundant baseline phase calibration, which is currently only implemented for small

test cases.

While we are encouraged by our success in recovering a simulated model, we

also realize that this chapter’s results are limited to cases that truly qualify as re-

dundant baselines, which may not be realistic cases. Looking forward, in Chapters

3 and 4, we will apply redundant baseline calibration to a perturbed simulation and

to real CHIME Pathfinder data.
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Chapter 3

Using Redundant Baseline
Calibration in CHIME
Pathfinder Data

Our analysis in Chapter 2 suggests redundant baseline calibration is a model worth

pursuing for a telescope such as CHIME. As our eventual goal is to have calibrated

CHIME data for use in intensity mapping, it is important to demonstrate that cali-

bration methods can be used with real data as well as with simulations. Therefore,

we apply redundant baseline calibration to real CHIME pathfinder data.

However, our redundant baseline analysis in Section 3.1 indicates significant

deviation from the expected gain results. This could in principle be due to unex-

pected but genuine structure in the telescope’s complex gains, but other calibra-

tion methods applied to the CHIME Pathfinder do not support such a conclusion.

Therefore, we argue that the deviation from expected gain results is attributable to

deviations from redundancy in the CHIME Pathfinder. We then examine the extent

to which nominally redundant baselines are actually redundant in a point-source

calibrated CHIME Pathfinder data set, and find that deviation from redundancy is

significant.
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3.1 Redundant Baseline Calibration on CHIME
Pathfinder Data

3.1.1 Modifying redundant baseline calibration for use on real data

Cross-Talk

Before beginning our analysis, we make a few modifications to our redundant base-

line approach to account for known sources of error in the CHIME Pathfinder data.

Most importantly, we know that the individual antenna in the CHIME Pathfinder

suffer from cross-talk. This renders intra-cylinder baselines suspect up to some

minimum separation. This effect likely on applies for very short intra-cylinder

baselines (e.g. shortest or second shortest baselines), but we do not have a defi-

nite metric to establish what the minimum length necessary to avoid cross-talk is

in the CHIME Pathfinder. Therefore, for this analysis we exclude intra-cylinder

baselines.

This straightforward method for eliminating cross-talk, however, has implica-

tions for the rest of the analysis. In particular, removing intra-cylinder informa-

tion introduces an additional degeneracy into the solution. Our usual degeneracy

fixing condition sets ∑ ln |gi| = 0, but in the absence of intra-cylinder baseline in-

formation, this condition fails to ensure that the algorithm does not actually set

∑ ln |gi,cylinder 1|=−1 and ∑ ln |gi,cylinder 2|= 1.

Therefore, we simply turn our overall degeneracy fixing conditions into two

identical conditions:

∑
i, cylinder

ln |gi, cylinder|= 0, (3.1)

one for each cylinder.

Using Transits

In the simulated data, we calculated redundant baseline solutions over an entire

six hour period of data, including both point transits and quiet portions of the sky.

However, when using real CHIME Pathfinder data, we choose to confine ourselves

to point source transits. We saw in Chapter 2 that at higher signal to noise peri-
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ods in the simulation, our redundant baseline solution was significantly less noisy

and clearer than during quiet sections of the sky. CHIME Pathfinder data will nec-

essarily be more complicated than simulated data, with less well-known system

temperature and more complicated noise structure, so we choose to focus only on

the clearest sections of the more complicated system.

We are also more confident as to the expected structure of the complex gains

during the short period of time encompassed by a point source transit than we are

over a longer period of time. While we expect time dependent gain fluctuations in

CHIME Pathfinder data, we expect fluctuations during the tens of minutes encom-

passed in a point source transit to be relatively small.

Removing “Dead” Feeds

In real data, we are also confronted with the possibility of input channels which are

absent or being used for non-CHIME antenna electronics. Including such anoma-

lous channels will wreak havoc on the redundant baseline analysis, as all correla-

tions including that non-CHIME Pathfinder channel will no longer be redundant

with other correlations of the same baseline distance. For example, the RFI an-

tenna will clearly not correlate with CHIME antennas at all like a CHIME antenna

would.

Additionally, due to changes in experiment configuration or electronics mal-

function, the CHIME Pathfinder experiences intermittent drop-outs: feeds which

in principle should be CHIME antennas but are in fact either turned off or malfunc-

tioning. Correlations involving such channels are also non-redundant.

If the number of inactive feeds is relatively small, the redundant baseline algo-

rithm generally recognizes that these feeds are different and attempts to set their

gains to 0 - effectively removing them from the final set. However, for best accu-

racy, we should remove these feeds ourselves before running the redundant base-

line calibration algorithm.

In a small set of feeds, this can be done by manually checking each feed’s

autocorrelation and simply excluding them from the data set requested from the

broader CHIME Pathfinder data repository. For a larger set of feeds (e.g. the

CHIME Pathfinder), this method becomes laborious to follow. Therefore, we must
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develop a method to ensure we know which feeds should be excluded from our

analysis and to exclude all correlations including such feeds.

The first step is fairly straightforward - we establish by loading and plotting a

handful of working inputs’ autocorrelations a threshold value (in correlator units)

for a valid feed’s autocorrelation then confirm that each autocorrelation in our data

set remains above that threshold. (While we exclude autocorrelations from our

redundant baseline analysis due to their noise properties, we can use them here as

we are simply ascertaining whether the feed is functioning properly as a CHIME

antenna.) We create a list of feeds which are not above this threshold and designate

them “dead feeds.” “Dead feeds” is a mild misnomer - they may be mechanically

impaired, absent, or simply never present (i.e. the channel is designated for an

alternative input such as a noise source, RFI antenna, or the John A. Galt 26 m

telescope).

The second is slightly more complicated. At the most basic level, we can re-

place the columns in our degeneracy fixing corresponding to these feeds with zeros

(instead of ones). This excludes those feeds from the degeneracy fixing condition,

but may not fully solve our problem as the “dead feeds” are still in the data set.

Thus, we also create a slightly more complicated, but more accurate version. We

create a full coefficient matrix, with a degeneracy fixing condition that excludes

dead feeds. We then create a vector of the length of the number of correlations

which is one for all correlations we want to include and zero for all correlations

involving “dead feeds.” We multiply our coefficient matrix by this vector, zero-

ing out all rows corresponding to correlations involving “dead feeds.” Thus, we

force the algorithm to exclude those correlations from its calculation and our final

solution excludes “dead feeds.”

With these caveats in mind, namely our exclusion of intra-cylinder baselines

with modified degeneracy fixing condition; our use of transits; and our exclusion

of “dead feeds,” we are ready to apply redundant baseline calibration to CHIME

Pathfinder data.
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3.1.2 Results

Besides the modifications above, the redundant baseline algorithm remains un-

changed. Below we see the results for a Cygnus A transit, first the recovered un-

derlying visibilities and second the recovered redundant baseline gains.
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Figure 3.1: Redundant baseline true visibilities for a June 2015 CygA transit.
In this analysis, we use only inter-cylinder baselines and exclude “dead
feeds” using our more complete algorithm.The two polarizations are
solved for separately. The recovered true visibilities certainly recover
the existence of a point source transit and a reasonable shape estimate
for it. We do observe some spikes through the solution - these may
be attributable to the varying level of redundancy for short vs. long
baselines. The units on the y-axis are correlator units, as redundant
baseline is a purely relative calibrator. We could normalize this plot to
know values for CygA should we prefer a plot in Jansky.

The true visibility plot resembles our expected result closely enough that we are

reassured that our algorithm is likely functioning. However, the extent of structure

in the plot of redundant baseline gains is cause for concern. It indicates something

unexpected is occurring in our solution, something that justifies further analysis.

It is immediately apparent that the gains have significant slope. We attempt to

quantify this amount of slope in Figure 3.3. We anticipate that during the relatively
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Figure 3.2: Redundant baseline gains calculated for a June 2015 CygA tran-
sit. In this analysis, we use only east-west baselines, and exclude “dead
feeds.” As described previously, we solve for East and South polariza-
tions separately and recombine the results after our calculations. Notice
the definite slope in the gain values during the point source transit. This
is contrary to our expectation that gains would not vary much on a short,
point source transit time scale.

brief timescale of the point source transit, the complex gains will change relatively

little. Instead, we see dramatic changes, from e.g. 1.5 to 0.5. This could be do

to purely mistakes in our algorithm, but this is unlikely because the true visibility

graph was reasonable and the algorithm is almost totally identical to that used in the

successful simulation analysis. It seems most likely that this represents a deviation

from our assumptions of redundancy. Recall from Chapter 2 which showed that

the visibility was determined by the beam functions Ai and A j, the sky, and a phase

factor dependent on baseline distance. The redundant baseline algorithm assumes

this description is precisely correct and that Ai = A j. If this is untrue, then we

would see failures in the calibration.

Independent analysis within the CHIME collaboration suggests that deviations

in the feed locations are relatively small. This diminishes the probability that the
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baseline distance is causing deviations in our calibration. Additionally, we have not

assumed a sky value but know that it would be consistent for all feeds and therefore

discount the sky as a possible source of deviation.

This indicates the beam function is likely the source of the problem. If the

two beam functions Ai and A j in any given visibility Vi j are not identical, then the

redundant baseline algorithm would not operate as intended and could generate

slopes in the gains such as those observed in Figure 3.2. This could also account

for the spikes and deviations in Figure 3.1. If this is the case, we would expect

relatively small deviations from day to day for a given point source.

While beam values might be very different at different points on the sky, they

should not be significantly time dependent. Therefore, we plot a sampling of re-

dundant baseline gain amplitudes over two consecutive CygA transits in Figure

3.4. Notice that for a given feed, the two curves have similar structure, though for

different feeds, the curves show a variety of behaviours. This result is also con-

sistent with our hypothesis regarding beams, which would not significantly vary

from day to day. The absolute values vary, but this is not a cause for concern as the

redundant baseline solution is only relative, so the absolute levels on two separate

sets of data may vary freely.

3.2 Examining Redundancy in the CHIME Pathfinder
Evidence from the section 3.1.2 suggests variation from redundancy in the CHIME

Pathfinder, likely due to feed-to-feed beam variations. If that conclusion is ac-

curate, deviations from redundancy should be visible in other analyses. Directly

comparing measured visibilities to check for redundancy is not a useful technique,

as those measured visibilities contain complex gain information and are therefore

obviously non-redundant. We therefore require a set of calibrated data, with com-

plex gains removed.

Thanks to the efforts of the CHIME Pipeline Processing Team, such a set of

data exists. Members of the CHIME collaboration created a set of fully processed,

point source calibrated results for CHIME Pathfinder data from the fall of 2015 and

the spring of 2016 and selected consistently good quality frequencies to be used as

test frequencies. The analysis that follows uses a subset of that data, specifically
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Figure 3.3: In this figure, we calculate a rough measure of the slope of each
gain, obtained by taking the rise over run for an individual feed’s redun-
dant baseline gain results between samples 60 and 100. The 40 sample
range represents approximately one standard deviation around transit,
which is the period of time in which we are most confident in our re-
sults. This figure indicates that the slope effect observed by eye does
appear to be significant.

pass 1p, which occurred from October 9-22, 2015. This data set was calibrated to

CygA.

We began our analysis with the simplest possible process: selecting pairs of

baselines which should be redundant and plotting them during a point source tran-

sit. Results from this process for four of the eight test frequencies and for all

instances of a short inter-cylinder baseline during a Cassiopeia A transit are shown

in Figure 3.5. Each of these plots shows all instances of the same baseline, which

should be redundant. Therefore, we would naively expect the graph to show one

single trace, repeatedly overplotted. Perhaps accounting for small deviations or

shifts in gain from CygA to CasA, there would be some small range around an

average value. However, that is not what is recorded in Figure 3.5. We see instead
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Figure 3.4: We compare redundant baseline gain results for selected feeds on
the west cylinder calculated over two consecutive CygA transits. We
notice that there is very little deviation between the two days and re-
gard this as evidence that the cause of the slope in the gain solution is
not strongly time dependent and is likely a property of the array. An
identical figure showing the east cylinder is included in the Appendix.

significant scatter in the values. Discounting very high or very low curves which

appear to be outliers, there seems to be about a factor of two variation between

instances of the same nominally redundant baselines.

We continued our analysis by viewing a slice of the visibilities at the peak of

a CasA transit, as seen in Figure 3.6. This allows us to compare the relative am-

plitude of the transits in each nominally redundant instance and quickly examine

whether there is obvious north-south structure in the value of the nominally redun-

dant baselines. We suggest that there is not a significant pattern along the cylinder,
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Figure 3.5: We compile redundancy comparisons for a short intercylinder
baseline during a CasA transit in pass 1p for four test frequencies. Nom-
inally, these are instances of the same redundant baseline, and we would
therefore expect there to be little to no variation between curves in a
given frequency. Instead we observe significant deviation. We propose
that this deviation is largely derived from variations in the beam pattern
between feeds.

though there are regions that are systematically higher or lower.

We also examined the effect of changing to a different point source, to under-

stand the declination dependence of the deviation from redundancy. By examining

a Taurus A transit in Figure 3.7, identical to the transit plot from CasA in Figure

3.5, we found that the variation from redundancy is not significantly declination

dependent. The exact ordering and amplitude of deviations from redundancy vary

somewhat between CasA and TauA, leading us to believe there may be a slight

declination dependence in deviation from redundancy. However, the existence of

the phenomenon is consistent across different declinations, leading us to believe
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Figure 3.6: We compile slices at CasA transit peak for each nominally re-
dundant instance of a short inter-cylinder baseline at each of four test
frequencies. We notice that there is not a defined pattern in visibility
value based on feed location, which indicates that the effect causing the
deviation from redundancy does not vary in a systematic way along the
CHIME Pathfnder cylinder.

.
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that is not the primary factor.
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Figure 3.7: We compile redundancy comparisons for a short intercylinder
baseline during a TauA transit in pass 1p in the same manner as Figure
3.5. We note that while the exact magnitude of deviations from redun-
dancy may differ, the general structure of the deviation is similar to that
present in the CasA data, indicating the existence of such deviations is
not declination-dependent although the values may be.

Until this point, the redundancy analysis has focused on sidereal stacks and

therefore taken into account each day of data in the stack. One potential cause for

the deviation from redundancy could be deviations across days. Perhaps one very

deviant day influenced the rest of the stack and created the appearance of deviations

from redundancy.

Therefore, we plotted comparisons between two consecutive sidereal days,

CHIME Sidereal Day (CSD) 693 and CSD 694. However, each individual day

shows a similar pattern to the overall sidereal stack. Comparing the difference

between the two days, it is clear that the deviation between the two days is signif-

49



icantly smaller than the deviation within a given baseline on a given day. (It is in

fact about 10% of the spread in each individual day).
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Figure 3.8: In this figure, we observe all instances of a nominally redundant,
short inter-cylinder baseline at frequency 518 MHz, compared between
CSD 693 and CSD694. Notice that both individual days are signifi-
cantly non-redundant, lessening the likelihood that the deviations from
redundancy present in the sidereal stack for pass1 p are caused by a de-
viant day included in the pass. It appears further that deviation from
redundancy is not strongly time-dependent.

Based on several different pathways of analysis, we conclude that there are sig-

nificant deviations from redundancy in point source calibrated CHIME Pathfinder

visibilities. Based on the consistent existence of these deviations across different

declinations and times, we assert that these deviations are probably due to feed-

to-feed beam variations. This conclusion is strengthened when combined with

evidence from our redundant baseline test, which suggested similar non-time de-

pendent deviations from redundancy.

We hypothesize that this lack of redundancy is arising from feed-to-feed beam

variations, as that would explain both the presence of the deviations across time

and declination as well as the deviations in redundant baseline results. Armed

with that knowledge, we postulate that the redundant baseline algorithm may be

able to probe these feed-to-feed beam variations for periods where the complex

gain is relatively constant (e.g. a point source transit). We will investigate these

possibilities further in Chapters 4 and 5.
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Figure 3.9: The right hand panel shows the ratio between the two panels of
Figure 3.9 and the left hand panel shows the difference between them.
Each is a short inter-cylinder baseline at frequency 518 MHz on CSD
693 and CSD694. The deviation between days is on the order of 100,
while the spread within a day is on the order of 1000, meaning the de-
viation between instances is much larger. Though the ratio is relatively
large for areas outside of the central transit, at the transit peak, it is
approximately 1.
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Chapter 4

Redundant Baseline Calibration
with Perturbed Beams

4.1 Creating a Simulation with Beam Perturbations
As we saw in Chapter 3, the actual CHIME Pathfinder instrument shows significant

perturbations in beams, and it is therefore valuable to have a method of simulating

such beam perturbations to test analysis and calibration techniques in a controlled,

realistic setting. We have therefore constructed an extension to the existing CHIME

simulation pipeline which can flexibly incorporate beam perturbations. The design

of the beam perturbation simulation is described in greater detail in the Appendix.

4.1.1 Design of beam perturbation

We treat the beam perturbation or perturbations as additional parameters in the

expression for beam amplitude, A. We then Taylor expand to first order and move

forward with a first order representation of the beam.

In other words, we transform the beam function from A(n̂;φ) to A(n̂;φ ;α),

where α is some perturbation to a parameter of the beam, such as full width at

half maximum or pointing. We could also use this same structure to introduce an

arbitrary number of perturbations, designating each by a Greek letter: α , β , δ , etc.
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Our expression for the visibility is then

Vi j =
∫

d2n Ai (n̂;φ ;αi)A∗j (n̂;φ ;α j)exp
(
2πn̂ ·uij

)
S, (4.1)

where αi and α j are perturbations unique to each feed i and j, and S represents the

sky.

One way to generate such visibilities would be to uniquely determine beam

amplitudes A(n̂;φ ;α). However, directly incorporating unique beam functions

would be computationally expensive, as we would have to generate beam transfer

matrices for each individual input (256 for a CHIME Pathfinder sized simulation)

and then would have no redundancy present in our modified pipeline, requiring

almost an entirely separate pipeline.

We do not require an exact representation of the individual beam functions,

but only a reasonable approximation. Provided the beams are different from one

another in a way we can recreate, we have achieved our goal. Therefore, we Taylor

expand the beam functions as a function of α and keep only terms to first order.

Thus, we expand each A as

Ai (n̂;φ ;α)≈ A(0) (n̂;φ ;0)+A(1) (n̂;φ ;0)α +O
(
α

2) (4.2)

and rewrite the visibility expression as

Vi j =
∫

d2n
(

Ai(0)(n̂;φ)+A(1)
i (n̂;φ)αi

)
×
(

A∗(0)j (n̂;φ)+A∗(1)j (n̂;φ)α j

)
×exp

(
−2π i′ n̂ ·uij

)
S.

(4.3)

Keeping only terms to first order, we have

Vi j =
∫

d2n
[
A(0)

i (n̂;φ)A∗(0)j (n̂;φ)+A(0)
i (n̂;φ)A∗(1)j (n̂;φ)α j +A(1)

i (n̂;φ)A∗(0)j (n̂;φ)αi

]
×exp

(
−2π i n̂ ·uij

)
S.

(4.4)

We can think of this visibility then as being composed of three separate compo-
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nents: an unperturbed visibility with beam A(0)
i A∗(0)j and two combinations of an

unperturbed and perturbed beam, i.e. with beams A(1)
i A∗(0)j αi and A(0)

i A∗(1)j α j.

Should we desire more than one perturbation per polarization, we would simply

repeat the Taylor expansion and recombination process for each additional param-

eter β , γ , δ , etc.

A way to avoid creating a full N set of beam transfer matrices then becomes

apparent. Ordinarily, we would generate a set of beam transfer matrices for all

A. Now, we generate a set for all A(0) and A(1) for each feed. We then use these

beam transfer matrices to create a sidereal stream as in the usual simulation code.

However, the usual code creates three times the correct number of products, as it

creates separate products for each combination of beam amplitudes and derivatives.

Until this point, we have not had to alter the simulation pipeline code, merely

the input. Following this point, we want to combine perturbed and unperturbed

components, so we must alter the pipeline code to accommodate the new product

structure.

4.2 Redundant Baseline Calibration Results
We previously supposed that a deviation expected results in redundant baseline am-

plitude calibration could arise from feed-to-feed beam variations. In the redundant

baseline algorithm, one of our key suppositions is that the beam function for each

feed is identical. When that assumption fails and there is feed-dependent beam in-

formation in the input visibilities, the redundant baseline algorithm will attempt to

incorporate that information into the only solely feed-dependent output it has: the

gain values. Therefore, we expect that a perturbed beam’s beam structure will be

visible in redundant baseline gain amplitude results. (This conclusion is supported

by a comparison with holography data in Chapter 5.)

It can be slightly complicated to establish a direct probe of the simulated

beam’s structure as we do not have the ability to do e.g. simulated holography

measurements. Plotting slices of the beam map is also complicated by the fact

that the perturbation values α are added not in the initial telescope definition but

in the “ExpandPerturbedProducts” step. For the moment, then, we use a slightly

indirect probe. We run the redundant baseline algorithm on both the final simulated
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data set with gains, receiver temperature, and noise and an intermediate timestream

product, prior to the addition of gains. This intermediate product has no feed-to-

feed variation from complex gains, so the gain amplitude values that the redundant

baseline algorithm generates are solely driven by feed-to-feed beam variations.

Our first analysis step is the simplest: we simply plot the beam-only redundant

baseline results, the full redundant baseline results results, and the input gains.

We notice that the full analysis mostly tracks the input gains, but has noticeable

deviation from them, particularly near point source transit. We hypothesize that

the full result minus input gains quantity should be equivalent to the beam only

result (up to some constant offset). We plot these results and find this to be the

case.

Correspondingly, we find that if we take the ratio of the redundant baseline so-

lution with gains and beam variations to the redundant baseline solution with only

beam variations, we recover the input gain variations as well as in the unperturbed

case. This is also highly encouraging, as it indicates that the addition of beam

variations does not irreparably corrupt the gain solutions, provided the information

from beam and gain variations can be separated.

4.3 Solving for Beam Perturbation Values
Given our conclusion that the redundant baseline gain solutions in the presence of

beam perturbations trace the per-feed beam perturbation structure, we would like

use those solutions to solve for quantitative information about the beam pertur-

bations from the redundant baseline gain information. Here, we attempt to find a

method to quantify the information redundant baseline calibration preserves and/or

to develop a scheme to solve for beam perturbations (especially width perturba-

tions) using the nominal redundancy of an instrument like the CHIME Pathfinder.

This analysis assumes two very important things. First, we assume that the

beam pattern can be modeled as a fiducial beam and an arbitrary number of per-

turbations to the fiducial model. Second, we assume that the telescope in question

has an alternative calibration method for complex gains such as a noise source or a

carefully constructed thermal model.
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Figure 4.1: The left panel displays perturbed beam redundant baseline gain
amplitude results, for selected feeds of a given polarization in a sim-
ulated perturbed beam telescope, compared with the input gains and a
redundant baseline analysis conducted on data without gains added (i.e.
an analysis that detects only beam effects). The right panel compares
the beam only analysis to the full analysis with redundant baseline gains
subtracted. This figures shows only a small sampling of inputs; more are
shown in the Appendix. We notice that the full redundant baseline so-
lutions deviate from the input gain solution near the peak of the beam
only solutions. We infer that this deviation is caused by the beam per-
turbations, and the right hand panel confirms this.
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Figure 4.2: The left panel shows perturbed beam redundant baseline gain am-
plitude results, for selected feeds of a given polarization in a simulated
perturbed beam telescope, compared with the input gains and a redun-
dant baseline analysis conducted on data without gains added (i.e. an
analysis that detects only beam effects. The right panel compares the
ratio of the beam and gain to beam only analysis and the input gain
variations. the full analysis with redundant baseline gains subtracted,
showing that the ratio recovers the correct input gain. As in Figure 4.1,
results for more inputs are shown in the appendix.
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4.3.1 Solving with One Perturbation of Known Structure

Before we begin, we apply redundant baseline calibration to data simulated with

these beam structures and subtract the known gains from the redundant baseline re-

sults. Alternatively (and in practice, preferably) we can just run redundant baseline

calibration on a simulation with no gains added. Thus all the gain deviation from 1

must be due to beam effects. We now have recovered visibilities, which are created

by recombining the recovered redundant baseline gains and true visibilities. This,

mathematically, is

Vrec
ij = exp(Mx̂), (4.5)

where M is the coefficient matrix in the redundant baseline problem as in Chapter

2 and x̂ is the vector of recovered “gains” and true visibilities.

We can expand Vij
rec in equation 4.5 as

Vrec
ij = Vij

0 +∑
(i j)

αi

∫
A1

i A∗0j e−(2πin̂·uij)T (n̂)d2n̂

+∑
(i j)

α j

∫
A∗1j A0

i e(−2πin̂·uij)T (n̂)d2n̂
(4.6)

We rewrite this into an entirely matrix equation setup

Vrec
ij = Vij

0 +Wijα. (4.7)

Here, Vrec
ij is a vector of the recovered visibilities, Vij

0 is a vector of the 0th

order (unperturbed) visibilities, α is a vector of beam perturbation values, and Wij

is a matrix containing the appropriate V 1
i j terms. The W matrices must be designed

to encapsulate the structure of the beam perturbations and be able to be combined

with the only desired perturbation value. While W is similar to M in that it gener-

ates combinations of different feeds, it is different in that its entries are either 0 or

a perturbation structure not 0 or 1. W is N(N +1)/2 rows by N columns, where N

is the number of feeds in a given telescope. Each row corresponds to a correlation

ij. In a given row Wi j, the ith element is of the form V 1
i j,i =

∫
A1

i A∗0j T e−2πin̂·uij d2n̂
and the jth element is of the form V 1

i j, j =
∫

A0
i A∗1j T e−2πin̂·uij d2n̂. Then, α is free

to be a vector of length N where each element is the perturbation corresponding to
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a given feed. For example, in a four feed one cylinder telescope, W would be

W =



V 1
i j,i V 1

i j, j 0 0

V 1
i j,i 0 V 1

i j, j 0

V 1
i j,i 0 0 V 1

i j, j

0 V 1
i j,i V 1

i j, j 0

0 V 1
i j,i 0 V 1

i j, j

0 0 V 1
i j,i V 1

i j, j


(4.8)

Then, if we presume we understand the structure of the beam (but not the per-

turbation value), we know V0 and W. We can then solve our matrix equation for

α

W+
(

Vrec
ij −V0

ij

)
= α. (4.9)

This method works well if we are able to provide full information (phase and

amplitude) about the recovered visibilities. However, we would like to attempt this

solution with just information about the recovered redundant baseline amplitudes.

4.3.2 Solving for Beam Perturbations with only Amplitude
Information

In our current redundant baseline solution, we do not have full phase and ampli-

tude information about recovered visibilities or “gains,” but only have amplitude.

Therefore, instead of evaluating Equation 4.5, we need to evaluate

ln |Vij
rec|= ln |V0

ij +Wijα|. (4.10)

We can evaluate the absolute value function by multiplying Vij
0 +Wijα by its

complex conjugate, giving us

ln |Vij
rec|= 1

2
ln
((

V0
ij +Wijα

) (
V0

ij +Wijα
)∗)

(4.11)

We multiply out and Taylor expand to first order and are left with

ln |Vrec
ij |= ln |V0

ij|+
1
2

α

(
V1∗

ij

V0∗
ij

+
V1

ij

V0
ij

)
(4.12)
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We then redefine the non-zero elements of |Wi j| to be

|Wij| ≡
1
2

(
V1∗

ij

V0∗
ij

+
V1

ij

V0
ij

)
(4.13)

and revert to the simpler expression

ln |Vrec
ij |= ln |V0

ij|+α|Wij|. (4.14)

Finally, we solve for α:

α = |Wij|+
(

ln |Vrec
ij |− ln |V0

ij|
)
. (4.15)

If we assume that we know V 0 and V 1, this procedure produces a consistent

solution. See Figure 4.3 for an example with a small two cylinder, sixteen input

telescope. We test this solution both using “input visibilities” - the actual perturbed

visibilities generated by the simulation - and the “recovered visibilities” - the vis-

ibilities recovered using the redundant baseline solution. For the “input” case we

find near perfect agreement. The absolute deviations from the correct solution re-

main approximately the same size for all perturbation values. Due to the range

of actual values for α , from about 0.01 to about 0.001, percent differences corre-

sponding to feeds with smaller perturbation values due have muh larger percent

differences. For the “recovered” case, we find the agreement is relatively poor, but

is correct to the first significant digit or better for all feeds. This is not surprising,

as any variation in the redundant baseline solution propagates to the beam pertur-

bation solution. The process of applying redundant baseline calibration does result

in a loss of information, which cannot be regained for the perturbation solution.

This method solves for alpha uniquely at each time point. This means we can

learn additional information by solving for a time series of α values. Based on

the design of our simulation, α should be constant over all time, so we would be

able to improve our estimate by considering possible variation in the recovered

α values. We notice that α solution are not actually constant, but they seem to

improve in constancy in regions of higher signal to noise. As in the individual time

point solution, we find that the beam perturbation values from the “recovered” data
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Figure 4.3: This figure shows beam perturbation solution for a 16 feed total
telescope with random perturbations α applied in the beam width of all
feeds has a few noticeable features. The actual input α values used to
create the simulation are plotted in blue, but are almost exactly over-
plotted by the green values. The green values represent the result when
the output of the simulation is used as the “recovered visibility,” and we
therefore expect this close correspondence. The red curve represents the
results using the redundant baseline calibration results as the “recovered
visibility” and is noticeably less accurate than the green.

set deviate slightly from the exact input α values used in the simulation, but this

remains consistent with loss of information in the redundant baseline calibration

algorithm. One apparently odd characteristic is that the ordering of α values from

largest to smallest is not necessarily constant at all times. This arises from the

independent solutions at each time point. This allows imprecise solutions for α

values which are close in magnitude to cross one another at different time points.

4.3.3 Relaxing Assumptions about V 0
i j and V 1

i j

In our analysis thus far, we have assumed that we know the unperturbed first order

perturbed components of the visibility, V 0
i j and V 1

i j. However, this assumes that we
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Figure 4.4: We see here the percent difference between the actual simulated
α beam perturbation values and the recovered α values for both the ac-
tual input visibility and the recovered redundant baseline solution as in-
put visibility. We observe that the input visibility has quite good agree-
ment with the actual perturbation values, but the recovered redundant
baseline solution is useful only for order of magnitude approximations.

know the convolution of the zeroth and first order components of the beam with

the sky at all times. This is necessarily not the case for real data, so we would like

a method to replace these parameters.

One way forward is to take advantage of the near-redundancy of the baselines.

Each instance of a baseline is composed of a zeroth order part, which is redundant

with other baselines of the same length, and a first order part which is not. There-

fore, presuming the perturbation values are scattered about zero, we can take an

average of all instances of a given nominally redundant baseline and substitute this

average for V 0
i j. In other words,

Vi− j ≈V 0
i− j =

1
m

(i j)m

∑
k=(i j)0

V meas
k , (4.16)

where m is the number of instances of a given nominally redundant baseline and I

am using the convention that Vi j is an individual correlation between feeds i and j

and Vi− j is the redundant correlation for all i’s and j’s with the baseline spacing i-j.
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Figure 4.5: This figure examines the beam perturbation solution for a 16 feed
total telescope with all feed perturbed for a sidereal day. Each time
point is solved independently, but time dependent features are consis-
tent with the redundant baseline solution more generally, e.g. that solu-
tion improves with improved signal to noise ratio. The top panel shows
the result for the solution using the simulation output as the “recovered
visibility,” the middle panel shows the result for a solution using the
redundant baseline calibration results as the “recovered visibility,” and
the final panel shows a single visibility’s time series during this sidereal
day.
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Then, we can subtract the average Vi− j from each actual measured Vi j and

are left with an approximation of the perturbed components, which we will call

∆Vi j, for each instance of the baseline.We know in principle that if Vi− j is a good

approximation for V 0
i j, ∆Vi j should be the perturbed portion of Vi j or rather. In

summary,

∆Vi j ≡V meas
i j −Vi− j ≈ αiV 01

i j +α jV 10
i j . (4.17)

However, we do not have enough information to separate ∆Vi j into i and j perturbed

portions, so we consider the entire perturbed portion as being

∆Vi j =Wi− jα, (4.18)

where Wi− j is a matrix which in some way encodes the structure of the perturbed

beam and α is the perturbation values as before. It is important to note that this

Wi− j is not identical to W referenced previously. That W has independent entries

for each component of the perturbation structure, whereas this Wi− j is a single

value per unique baseline.

At first glance, we cannot uniquely solve for all values of Wi− j and α , but if

we can solve for each α value in terms of one of the α values. In this case, we

solve for (α j +α0) for each α j. We can also solve for a combination of (α j +α0)

and (α j−α0), and use the additional information from the (α j−α0) solutions to

determine the sign of each α j value. However, we focus on here on the (α j +α0)

solutions because instances of (α j−α0) do not exist for all α j.

We begin by writing ∆V0i for all i. These equations take the form

∆V01 =W0−1(α0 +α1)

∆V02 =W0−2(α0 +α2)

...

∆V0n =W0−n(α0 +αn).

(4.19)

We will then chain together instances of these known 0− i baselines to create

a system of equations which can be linearized and solved in much the same way as

the redundant baseline problem. This chaining process is simplest for the shortest

64



baseline, 0−1. For example, for V12, we write

∆V12−∆V01 =W0−1(α2 +α1)−W0−1(α1 +α0) =W0−1 (α2−α0) , (4.20)

and for V13 we write

∆V13−∆V12 +∆V01 =W0−1(α3 +α2)−W0−1(α2 +α1)+W0−1(α1 +α0)

=W0−1 (α3 +α0) .
(4.21)

In chaining instances of the shortest baseline, we create a combination of

(α j +α0) terms and (α j−α0) terms. We solve for both terms simultaneously,

but focus on the (α j +α0) terms.

For this shortest north-south baseline, we create this type of combination for

each subsequent instance by using the formula

W0−1 (αm±α0) =
m

∑
i=1

∆Vi,i−1(−1)(i+m), (4.22)

where m is the feed we are isolating. Equations with −1m = −1 are (α j−α0)

equations, while equations with −1m = 1 are (α j +α0) equations.

We can write a general relationship analogous to Equation 4.22, but we must be

slightly more creative. For baselines longer than the shortest north-south baseline,

we will not be able to chain every instance, but will only be able to use a limited

set. Our more general relationship is

Wδ αm·δ =
m

∑
i=0

∆Viδ ,(i+1)δ (−1)i+m, (4.23)

where δ is the difference in feed indices, m is the instance number, and ∆V is as

before. As before, odd m values lead to (α j−α0) equations and even m values

lead to (α j +α0) equations.

For each baseline we will have a different number of instances, varying in-

versely with the length of the baseline. For example, in our 32 feed one cylinder

telescope, we will have 31 (m = 0 to m = 31) instances of the shortest baseline,

but only 15 instances (m = 0 to m = 15) of the second shortest baseline and 10
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instances (m = 0 to m = 10) for the third shortest baseline. This does imposes a

relatively large minimum size on the telescope. For a one cylinder telescope, we

require 32 inputs per polarization to solve for both (α j +α0) and (α j−α0) values.

We have now developed a system of equations of the form ∆Vi j =Wi− jα j. We

linearize these equations in the same manner as in the redundant baseline problem

outlined in Chapter 2, by taking the logarithm. Then, our equations are of the form

log |Vi j|= log |Wi− j|+ log |α j|. (4.24)

Continuing as in the standard redundant baseline problem, we construct a matrix

MαW reminiscent of the M matrix of Chapter 2 and re-write our problem as a

vector equation

∆V = MαW x̂, (4.25)

and solving for x̂, a vector of α and Wi− j values.

This solution is underdetermined for our small test problems, meaning that the

result represents a minimum norm solution and not a unique determination of the

values for (α j +α0), (α j−α0), and Wi− j. Therefore, we do not necessarily expect

to see perfect recovery of the actual values for (α j +α0), (α j−α0), and Wi− j. By

examining the null space of the MαW , we can make more precise determinations

of which values may deviate from expected. In future analysis, applying additional

independent constraints may enable us to determine values more accurately, but

this underdetermined solution offers a starting point. A larger telescope model

would create an over-determined problem instead of an underdetermined one, but

is left for future work.

By determining the ratio of (α j +α0) to a particular (α j +α0) value (and the

same for (α j−α0)) for both the original simulated α values and the recovered

(α j +α0) and (α j−α0) results, we can begin to assess the effectiveness of this

approach. Figures 4.6 and 4.7 show a first result, which correlates strongly with

the known values determined from the actual simulations.
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Figure 4.6: We examine the ratio (α j +α0)/(α2 +α0) for both the recov-
ered (α j +α0) values and the actual (α j +α0) values for a 32 feed one
cylinder telescope. The solution values are close to the expected val-
ues, except at noticeable outlier feed 16. The imperfect correspondence
to the correct answers, in spite of the absence of noise, is due to the
underdetermined nature of the problem.

4.4 Conclusions
We simulated a CHIME Pathfinder like telescope with a beam perturbation in full

width half maximum, then applied the redundant baseline calibration method to it.

By applying the redundant baseline calibration algorithm as outlined in Chapter

2, we have confirmed our hypothesis that in non-ideal cases, redundant baseline

calibration is sensitive to the effects of non-identical beams.

We also examined possible methods for extracting information about beam

perturbations from either gain-calibrated data or from gain-calibrated, redundant

baseline calibrated data. However, our approach is limited in one case by the as-

sumption of a known beam and sky model at all times. In both cases, our approach

is limited by the assumption of noiseless data and perfect calibration.

However, we conclude that there is strong evidence for the utility of redundant

baseline calibration and related methods in characterizing feed-to-feed beam per-

turbations. In Chapter 5, we will demonstrate the usefulness of redundant baseline
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Figure 4.7: We examine the ratio (α j−α0)/(α2−α0) for both the recov-
ered (α j−α0) values and the actual (α j−α0) values for a 32 feed
one cylinder telescope. Unlike the (α j +α0)/(α2 +α0) solution, the
(α j−α0)/(α2−α0) solution exists only for approximately every other
input. As these results derive from the same underdetermined problem,
they too deviate from the expected values in ways that can be examined
more carefully using the null space.

calibration in predicting beam perturbations in actual data by comparing to point

source holography, a well established beam mapping approach.
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Chapter 5

Holography and Redundant
Baseline Calibration as Beam
Probes

Though results from simulations are powerful evidence for the efficacy of redun-

dant baseline calibration in finding feed-to-feed beam variations in the CHIME

Pathfinder, this result is essentially worthless if it cannot be applied to real CHIME

Pathfinder data. However, conducting such an analysis on real CHIME Pathfinder

data is challenging as we do not know the exact beam pattern of the telescope or

the actual complex gain. We must find an additional test to check the validity of our

redundant baseline analysis. We choose to compare our redundant baseline anal-

ysis to holographic beam measurements conducted using the CHIME Pathfinder

and the John A. Galt 26 m telescope at DRAO (hereafter the 26 m telescope). As

both methods should measure beam amplitudes, if our redundant baseline analysis

is working as we believe it is, the two methods will agree.

5.1 Holography: A method for probing CHIME beams
The importance of precise beam measurements for an instrument like CHIME has

long been known, and therefore the CHIME collaboration has been engaged in

mapping the full two-dimensional primary beam of each feed with point-source
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holography during the operation of the CHIME Pathfinder [6].

Holographic beam mapping is a recognized technique to make beam measure-

ments in radio telescopes. The maps are made by tracking a bright point source

with one reference telescope while correlating that telescope with the CHIME

Pathfinder. During the transit, we measure the source’s track through the stationary

CHIME Pathfinder beam and are thus measuring the east-west track of the CHIME

Pathfinder beam. Specifically, we introduce the 26 m telescope as an additional

input, correlating it as if it were a CHIME pathfinder channel. Thus, we create a

set of visibilities

V26 i ∝ A26 A∗i (n̂ps;φ)T (n̂ps)exp
[
−2πin̂ps ·uij

]
(5.1)

As the 26 m telescope can only point at one point source at a time, we require

multiple measurements at different declinations to properly measure the north-

south shape of the beam. Holography efforts for the CHIME Pathfinder to date

use Cygnus A, Taurus A, Virgo A, Hercules A, Hydra A, Perseus B, and 3C 295

[6].

5.2 Comparing redundant baseline beam measurements
with holography data

To evaluate our redundant baseline beam probe’s efficacy on real data, we used data

from the July 2015 Cygnus A holography run combined with a redundant baseline

solution for the same transit, applying our best practices, inter-cylinder only re-

dundant baseline algorithm (as described in Chapters 2 and 3) to the uncalibrated

CHIME pathfinder data from the same transit.

The holography analysis generates absolute measurements of the beam pattern,

whereas our redundant baseline results are both only relative and only applicable

to feed-to-feed variations (e.g. not a complete trace of the beam). Therefore, we

must be a bit creative in comparing the two data sets. Specifically, both should

record relative, feed-to-feed variations. Therefore, we primarily analyze the data by

looking at ratios between each CHIME Pathfinder feed and an arbitrarily selected

reference CHIME feed. In order to orient ourselves in analyzing the holography
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data, we do a brief comparison by eye.

5.2.1 Comparing by eye

In the simplest method for comparing redundant baseline transits with hologra-

phy transits, we simply plot both the redundant baseline gains and the holography

transits on the same axes and looks for correlation between the slope of the gain

(positive or negative) and the shift in the peak of the transit (right or left) from the

expected point. To do this comparison, we must scale up the holographic beam

measurements, as their value in correlator units is of the order of 10−9 while the

gains are of the order 1 by design.

Figures 5.1 and 5.2 show a summary of these plots, showing every eighth feed

on the CHIME Pathfinder, with the goal of acquiring a sampling of the cylinder.

There does appear to be a correlation between the slope of the gains and the shift

in the peak from the average peak sample, but it is not easily quantified in this “by

eye” analysis.

5.2.2 Ratio analysis

We anticipate that the redundant baseline gains include information both about the

complex gain and beam of each receiver. We further approximate that during a

bright point source transit, each feed sees approximately the same very bright sky,

dominated by a source at one declination. Therefore, we can roughly approximate

the visibility as

Vi j = gi g∗j Ai A∗j T, (5.2)

where T is a constant sky value. We further approximate that CHIME Pathfinder

gains are constant on the timescale of a single point source transit. Thus, relative

shape variations between two redundant baseline gain solutions necessarily arise

from beam variations (since the sky and the gain are taken to be constant).

We can simply represent the variations between each feed’s beam pattern by

taking the ratio between each calculated redundant baseline gain and an arbitrarily

chose reference gain (in this case, that of feed 65). In other words the ratio RRBwe
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Figure 5.1: Comparison between holography transit and calculated redundant
baseline gain for selected feeds on the west cylinder, looking only at
results from the east west polarization. The two gain traces represent
solutions for CygA transits on consecutive days. The average transit
peak time is marked by the blue vertical line, and the shift to before or
after the average peak time appears to correlate with the slope of the
redundant baseline gain.
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Figure 5.2: Comparison between holography transit and calculated redundant
baseline gain for the selected feeds on the east cylinder, EW polariza-
tion. The average transit peak time is marked by the blue vertical line,
and the shift to before or after the average peak time appears to correlate
with the slope of the redundant baseline gain.
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are interested in is

RRB =
gRB,i

gRB,65
(5.3)

for each feed i. The absolute level of each ratio is irrelevant (and approximately

one), but the shape of the ratio traces the ratio of the feed’s beam pattern to the

reference feed’s beam pattern. In other words, we examine both

We also replicate this ratio using the holography data. We take the ratio be-

tween each channel’s holography cross-correlation and a reference channel’s holog-

raphy cross-correlation. In other words the ratio Rholo we are interested in is

Rholo =
Vholo,i

Vholo, 65
, (5.4)

for each feed i. In this ratio, we cancel out the common portions of the beam pattern

and are also left with a ratio describing feed-to-feed beam variations. Therefore,

we can now make quantitative, head-to-head comparison between gain ratios and

holography ratios to see whether the two show consistent beam variations.

If the two methods of analyzing the beams are consistent, we would expect the

difference between them to be 0 during transit. It is however important to note that

we would not necessarily expect consistency between the two methods before or

after the point source transit. Our approximation in Equation 5.2 would no longer

apply, and the comparison would no longer be meaningful.

For context, we first plot the redundant baseline measure of feed-to-feed beam

variation independently of the holography data. This is calculated by dividing each

redundant baseline gain by the value of a reference gain, from feed 65, at each time

point. If our reference feed has anomalous structure in its gain, this is a dangerous

method as it will propagate that structure into each ratio. Therefore, before calcu-

lating these ratios, we established that feed 65 had no significant anomalies relative

to other feeds. The only traces at or near zero are those of “dead feeds,” which are

input channels that are either not functioning or not connected to CHIME channels.

We then compared the two ratios by taking the difference between them. This

gives us a sense of the deviation between feed-to-feed beam variation found by
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Figure 5.3: Redundant baseline gain amplitude results relative to a reference
redundant baseline gain solution (from feed 65). The variations in this
plot are expected to trace feed-to-feed beam amplitude variations. These
feed-to-feed beam amplitude variations will then be compared to holog-
raphy results to verify the correspondence.

holograph and by the redundant baseline gains. In other words, we examine

∆RB-holo =
Vholo,i

Vholo,65
− gRB,i

gRB,65
. (5.5)

We quantified these results by we taking averages of the differences, both for

each feed during transit and for each time over all feeds. Figure 5.4 shows the

average difference between redundant baseline and holography beam estimates at

each time point. Recall that the transit peaks at approximately sample 80 and that it

reaches half its maximum value approximately 20 samples before and after transit,

so the prime transit region is samples 60-100, with the region worth considering

stretching between samples 40 and 120. Notice that, while areas outside of the
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transit in Figure 5.4 are quite erratic, areas in the sample 40-120 range are quite

stable and close to 0, as expected.

We also found the average difference between ratios for each feed during the

reasonable region (samples 40-120); these are plotted in Figure 5.5. Feeds toward

the centre of the cylinder do seem to have slightly lower deviation from 0, but there

is not a definitive pattern. Notice that during transit, all the feeds average differ-

ences of less than 0.1, and most average differences less than ±0.05. We note that

the average deviations in the difference between the ratios, is approximately 10%

of the actual range of the ratios. In other words, the difference between redundant

baseline beam analysis and holography beam analysis is significantly smaller than

the variation in either method. We consider this to be strong evidence that the two

methods are equivalent.

5.2.3 Conclusions

Based on our comparisons, we find that redundant baseline gains and holographic

beam mapping report feed-to-feed beam variations during a point source transit

which are in agreement. Though there are definite deviations between the two

results, we see by comparing Figure 5.3 to Figure 5.4 that these deviations from

each other are small relative to the size of the feed-to-feed beam variations.

We regard this analysis as observational evidence of the effect we observed in

simulations in Chapter 4. It does seem that deviation from redundancy in CHIME

Pathfinder data is generated by beam variations and these beam variations can be

determined with redundant baseline calibration.
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Figure 5.4: In this figure, the points represent the average ratio difference
across feeds at a given time point, while the shaded band represents one
standard deviation in the ratio difference. Notice that the deviation val-
ues (and especially the standard deviation) are small nearest the transit
(which peaks at about sample 100) and larger near the edges. Addi-
tionally, notice that the average deviation at points nearest the transit
(the center of the plot) are significantly smaller than the range in values
within the set.
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Figure 5.5: In this figure, we plot the average deviation between holography
and redundant baseline gains for each feed in our sample, averaged over
the 80 time samples closest to the transit peak (about 25 minutes of
data). Notice that for all feeds, the deviation from zero is less than
±0.1, much smaller than the values of the redundant baseline gain ratios
themselves.
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Chapter 6

Conclusions and Further Work

6.1 Conclusions
In this thesis, we have examined the potential for redundant baseline calibration

in CHIME, based on both simulations of and data from the CHIME Pathfinder.

We find that, for an ideal version of a CHIME-like telescope, redundant baseline

amplitude calibration is very effective.

However, we observe that data from the CHIME Pathfinder is not well cali-

brated by redundant baseline amplitude calibration, in a manner that is consistent

between days. This analysis also led us to discover significant non-redundancy

in point source calibrated CHIME Pathfinder results. As this non-redundancy is

also stable over time, we conclude both problems likely arise from beam variations

between feeds.

We therefore develop and implement a perturbed beam simulation, and show

that it displays similarly deviant redundant baseline results. However, we also show

that redundant baseline amplitude calibration on such a system recovers informa-

tion about feed-to-feed beam variations, both as a general trend and quantitatively

for limited, noise-less cases.

Finally, we compare redundant baseline amplitude results from real CHIME

Pathfinder data to holographic beam measurements, showing that both reproduce

the same feed-to-feed beam variations. Given the importance of beam calibration

for successful CHIME analysis, this is encouraging.
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6.2 Future Work
In many ways, though, this work raises more questions than it answers. Of particu-

lar concern is the significant deviation from redundancy in point source calibrated

visibilities. Full N2 data for the final CHIME instrument cannot be stored, mean-

ing the data must be compressed. At first glance, the logical way to do this is by

collapsing data across redundant baselines. If these baselines are not actually re-

dundant, this may lead to significant signal loss in compressed data and decreased

ability to attain CHIME’s science goals.

Besides new questions regarding redundancy, there is still work to be done in

implementing the redundant baseline algorithm, in particular implementing phase

calibration on a CHIME Pathfinder sized telescope. Several paths forward present

themselves based on the work discussed here. These can be classed into three main

categories. The first is extensions of the existing redundant baseline algorithm, the

second is improvements of redundant baseline calibration based on our findings,

and the third is further examination of redundant baselines as a probe of beam

structure.

The first category is the most obvious, although not necessarily the simplest in

practice. The current work does not include implementations of the phase compo-

nent of the redundant baseline calibration algorithm in the CHIME Pathfinder. This

is an important step if we would like to seriously use redundant baseline calibra-

tion to calibrate CHIME Pathfinder data. Additionally, we have not implemented

any component of redundant baseline calibration for a full CHIME scale telescope.

Because CHIME is a significant increase in scale beyond the CHIME Pathfinder,

we will have to make this transition mindfully to avoid devouring computational

resources. Finally, we have done very little examination of redundant baseline cal-

ibration across multiple frequencies. Preliminary examinations have not shown

anything surprising, but a careful analysis should be done for the sake of complete-

ness.

The second category, improvements to the redundant baseline calibration algo-

rithm, is likely the richest and certainly the most open-ended. We have definitively

shown that redundant baseline calibration is affected by feed-to-feed beam varia-

tions and that such beam variations are present in the CHIME Pathfinder. Prelim-

80



inary examinations of CHIME feeds and structure indicate that they will remain a

factor in CHIME. Therefore, if we would like to use redundant baseline calibra-

tion as a CHIME calibration method, we must find ways to use the algorithm in

the absence of identical beams. While it is too early to assert a particular method

as the definite path forward, approaches might either incorporate information from

sky maps via iterative Gibbs sampling or might solve for additional parameters as

basis functions of the non-identical beams.

The final category, further use of redundant baselines as a beam probe, diverges

in two directions, from the work in solving for beam perturbations in simulations

and from the work comparing to holography. The beam perturbation solutions

presented here are somewhat limited in that they are done on simulated data with

no gain error or noise incorporated. It is obviously important to ascertain whether

the methods put forward here are possible in more realistic scenarios, by testing

them with simulations with gain errors and noise. If it seems that the methods in

Chapter 4 are feasible for realistic scenarios, we should also try to apply them to

real CHIME Pathfinder data. Additionally, the results from Chapter 5’s comparison

with holography were quite encouraging. Further work can include comparing

with more holographic measurements and perhaps examining feed-to-feed beam

variations via redundant baseline calibration at times when the 26 m telescope is

not available and holographic measurements cannot be conducted.

Redundant baseline calibration and its offshoots will be fruitful areas of study

not just for the moment, but into the future of CHIME and 21 centimeter hydrogen

intensity mapping experiments at large.
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Appendices

Appendix A

CHIME simulation pipeline

The CHIME simulation pipeline is composed of several git repositories (cora, ca-

put, draco, driftscan, and ch-util), many of which are publicly available on github.

The progression through the pipeline outlined in Chapter 2 is demonstrated in

Figure A.1.

A.1 Modification to pipeline code

A.1.1 Use of CylinderPerturbed Telescope Object

To create a telescope with perturbed beams, we must modify our starting point.

The standard CHIME Pathfinder model as used in the previous chapter assumes

a quasi-Gaussian beam which is identical for all inputs. (In other words, it lacks

the additional term α used in the beam model presented in 4.1.1.) To incorporate

beam perturbations, we use and later modify an existing class, PerturbedCylinder,

written by Richard Shaw for the simulations discussed in [32].

The class begins with the same quasi-Gaussian beam used in the standard

CHIME Pathfinder simulation, but adds the structure for a perturbation in the width

of the beam, using the structure outlined in 4.1.1. PerturbedCylinder uses a finite

difference method to generate the first derivatives necessary for the perturbed beam
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Figure A.1: In this figure, we see the progression of simulated data through
the simulation pipeline. First, a sidereal stream is generated for each
unique baseline. Then, the sidereal stream is expanded so that there
is a representation of each individual baseline. At this stage of the
pipeline process, these products do not incorporate complex gains or
noise and are therefore perfectly redundant. Third, we expand from
sidereal streams to individual time streams, with “20 second” samples,
mimicking the actual CHIME data. Fourth, we add a constant receiver
temperature to our timestream. Fifth, we add complex gains to the
timestream, and finally ,we add sample noise.
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structure. This class can also easily be modified to account for other perturbations.

A.1.2 ExpandPerturbedProducts

After creating a sidereal stream, the simulation pipeline generally executes the task

”ExpandProducts,” which expands the sidereal stream from having one instance

of each unique product to having all redundant instances of that unique product.

To incorporate our perturbed beam, we insert one entirely new task and also mod-

ify this task to both create all instances of a unique baseline and to combine the

unperturbed component of the visibility with the two perturbed components.

We first generate the actual perturbation values αi, which we disregarded in

creating the initial, pre-expansion sidereal stream, using a new task GeneratePer-

turbations. This task, accompanied by the new container BeamPerturbations, uses

the numpy standard normal random number generator to generate small, random

multipliers which are scaled down to ensure this is in fact a small perturbation. The

scaling factor can be input as a parameter when setting up the simulation or is set

to a default value of 0.01. (This is a somewhat arbitrary, but seems to satisfy our

goal of having a small perturbation.)

After generating perturbations, we turn our attention to modifying“ExpandProducts”

to accommodate our perturbed simulation. We accomplish this by modifying the

existing perturbation expansion code. The unperturbed ”ExpandProducts” matches

a product index pi with the individual pairs of inputs fi and f j, then loops over each

[pi,( fi, f j)] set. This is equivalent to forming the A(0)
i A∗(0)j term in our perturbed

simulation. For each product pi, we follow a similar process to create the A(0)
i A(∗1)

j

and A(1)
i A∗(0)j terms. At this time, we also re-incorporate the previously calculated

values, α , multiplying each product of beam functions by the appropriate α value.

Finally, we add the three terms together (the zeroth order term as well as the first

order terms in fi and f j.) Should we prefer to assume the perturbations are not very

small, we can also add the double perturbed term here αiα j A(1)
i A∗(1)j ; this term is

normally neglected but the information for it is all present at this point.

The initial sidereal stream (pre-expansion) created with the perturbed beam ap-

pears to have a different number of inputs than the telescope actually has, Ninput(1+

Npert) rather Ninput. Therefore, in the expansion step, we must not only write out a
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new set of visibilities but must also write out a modified input map, which reflects

the physical number of inputs in the telescope. (Failure to do this will confound

later steps in the pipeline, such as adding random gains.)

Once we have output our new expanded stream, we are able to follow the sim-

ulation pipeline as in the unperturbed case, creating time streams and adding a

receiver temperature, complex gains, and noise.

A.2 Example results
Results from a small scale example, with 16 total inputs, are shown in the figures

below. This telescope size is of course less interesting for further applications of

simulations with perturbed beam models, but it represents a good test set and is

easier to compare between perturbed and unperturbed results.
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Figure A.2: Sample sidereal stream prior to expansion of redundant baselines
and re-combination of perturbed components.
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Figure A.3: The left hand panel shows sample sidereal stream after to expan-
sion of redundant baselines, for an identical, unperturbed simulation.
The right hand panel shows a sample perturbed sidereal stream after
the expansion of redundant baselines and re-combination of perturbed
components. There are now as many different baselines as real CHIME
Pathfinder data and redundancy has been broken by the addition of per-
feed beam perturbations. However, at this stage, the simulated data
does not include instrumental gains or any noise estimate and is there-
fore not generally suitable for analysis tasks. In this particular figure,
the perturbation is turned up to approximately 0.1 (from approximately
0.01) to make its existence more obvious. Without the perturbation, the
two panels would be identical, as the underlying telescope configura-
tion is the same as is the input sky map.
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Figure A.4: After the product expansion stage, the simulation pipeline should
proceed as in a standard unperturbed version. First, we add the receiver
temperature, then time dependent complex gains, then we add sample
noise. After adding the complex gains and sample noise, would-be
redundant baselines are no longer redundant in either the perturbed or
unperturbed case, but do resemble raw CHIME Pathfinder data
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Figure B.1: From Chapter 2. In this figure, we compare the percent deviation
from input gains for the identity noise covariance, data-derived noise
covariance, and radiometer noise covariance for a sampling of inputs
on the east cylinder.
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Figure B.2: From Chapter 2. In this figure, we compare the absolute devi-
ation from input gains for the identity noise covariance, data-derived
noise covariance, and radiometer noise covariance for a sampling of
inputs on the east cylidner.
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Figure B.3: From Chapter 2. Here, we view the average deviation between
the input and recovered gain. The pink band represents one standard
deviation above and one standard deviation below the average.
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Figure B.4: From Chapter 3. We compare redundant baseline gain results
for selected feeds on the east cylinder calculated over two consecutive
CygA transits. We notice that there is very little deviation between the
two days and regard this as evidence that the cause of the slope in the
gain solution is not strongly time dependent and is likely a property of
the array.
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Figure B.5: From Chapter 4. A continuation of Figure 4.1
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Figure B.6: From Chapter 4. A continuation of Figure 4.1
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Figure B.7: From Chapter 4. A continuation of Figure 4.1
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Figure B.8: From Chapter 4. A continuation of Figure 4.2
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Figure B.9: From Chapter 4. A continuation of Figure 4.2
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Figure B.10: From Chapter 4. A continuation of Figure 4.2
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Figure B.11: From Chapter 5. Differences between redundant baseline gain
ratios and ChIME-26 m cross correlation ratios; indicative of differ-
ence between beam estimates for a given feed on the west cylinder.
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Figure B.12: From Chapter 5. Differences between redundant baseline gain
ratios and CHIME-26 m cross correlation ratios; indicative of differ-
ence between beam estimates for a given feed on the east cylinder.
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