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Abstract

This thesis presents a novel viewpoint on the implicit opportunities randomized sur-
veys bring to time-lapse seismic - which is a proven surveillance tool for hydrocarbon
reservoir monitoring. Time-lapse (4D) seismic combines acquisition and processing
of at least two seismic datasets (or vintages) in order to extract information related
to changes in a reservoir within a specified time interval. The current paradigm
places stringent requirements on replicating the 4D surveys, which is an expensive
task often requiring uneconomical dense sampling of seismic wavefields. To mitigate
the challenges of dense sampling, several advances in seismic acquisition have been
made in recent years including the use of multiple sources firing at near simulta-
neous random times, and the adaptation of Compressive Sensing (CS) principles
to design practical acquisition engines that improve sampling efficiency for seismic
data acquisition. However, little is known regarding the implications of these de-
velopments for time-lapse studies. By conducting multiple experiments modelling
surveys adhering to the principles of CS for 4D seismic, I propose a model that
demonstrates the feasibility of randomized acquisitions for time-lapse seismic. The
proposed joint recovery model (JRM), which derives from distributed CS, exploits
the common information in time-lapse data during recovery of dense wavefields from
measured subsampled data, providing highly repeatable and high-fidelity vintages. I
show that we obtain better vintages when randomized surveys are not replicated, in
contrast to standard practice, paving the way for an opportunity to relax the rigor-
ous requirement to replicate surveys precisely. We assert that the vintages obtained
using our proposed model are of sufficient quality to serve as inputs to processes
that extract time-lapse attributes from which subsurface changes are deduced. Ad-
ditionally, I show that recovery with the JRM is robust with respect to errors due
to differences between actual and recorded postplot information. Finally, I present
an opportunity to adapt our model to problems related to time-lapse seismic imag-
ing where the main finding is that we can better delineate time-lapse changes by
adapting the joint recovery model to wave-equation based inversion methods.
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Lay Summary

Time-lapse seismic technology, used for hydrocarbon reservoir monitoring, involves
processing at least two seismic surveys acquired over a specified time interval in
order to deduce changes within the reservoir in that time. In order to make reliable
deductions, the current practice requires repeating the seismic surveys as much as
possible - a task that is both expensive and technically challenging for a variety
of reasons. Compressive sensing (CS) is a new sampling paradigm that has been
adapted to reduce cost of seismic surveys; however, its application to time-lapse seis-
mic raises concerns as well as possibilities. By leveraging insights from distributed
CS, I propose the use of a joint recovery model (JRM) to process data acquired based
on ideas from CS. Interestingly, I find that we obtain high-quality time-lapse data
when the surveys are not repeated, providing an opportunity to relax the current
strict requirement to repeat surveys precisely.
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Chapter 1

Introduction

1.1 Principle of time-lapse seismic
In order to optimize production from hydrocarbon reservoirs, practitioners monitor
the reservoir for changes in some physical properties of interest (e.g., fluid saturation,
temperature, pressure). A tool used for this monitoring is time-lapse (4D) seismic
technology whereby seismic data are acquired at specified time intervals over an
area of interest followed by data processing to extract information related to the
changes in the constituent rock and fluid properties of the reservoir within the
survey area. Basically, time-lapse seismic technology involves (1) the acquisition of
at least two seismic datasets — the first survey is called the baseline while subsequent
surveys are called monitors or repeat surveys — over an area where the subsurface
reservoir properties change with time; (2) processing of the datasets (or vintages) to
obtain time-lapse images; (3) comparison of the images in order to quantify dynamic
changes in some physical properties of the reservoir.

Although 4D seismic has been successfully applied for reservoir monitoring
(Koster et al., 2000; Lumley, 2001; Fanchi, 2001) and CO2 sequestration (Lumley,
2010; Chadwick et al., 2010), the technology remains challenging due to its reliance
on dense sampling and requirement for replicated surveys each of which have their
challenges that will be reviewed later. Before I discuss these challenges, I will de-
scribe the basics of seismic acquisition and the link to time-lapse seismic.

1.1.1 Seismic acquisition

Conventional method of acquiring seismic data entails firing seismic sources or shots
at regular time intervals while receivers (sensors) record the pressure wavefield re-
flected from the interfaces in the earth’s subsurface. Seismic surveys can either be
done on land (onshore) or in a marine environment (offshore). Figure 1.1 illustrates
a typical marine survey with receivers (streamers) towed behind a survey vessel with
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a source array (two or more airguns). Ocean bottom seismic surveys have receivers
(nodes or cables) placed at the sea floor.

Figure 1.1 A cartoon illustrating how 2-D seismic surveys are performed. An airgun
source fires at intervals while a receiver array records reflected wavefields coming
from the subsurface. Image courtesy of ZIGZAG (https://www.zigzag.co.za).

Seismic surveys produce data volumes that are a collection of seismic traces
at the locations of the receivers. A seismic trace represents the response of the
elastic wavefield to velocity and density contrasts across interfaces of layers of rock
or sediments as energy travels from a source through the subsurface to a receiver or
receiver array [Schlumberger Oilfield Glossary]. To illustrate seismic data acquisition
in the field, I modeled a simple example of these data. For example, a 2-D survey
generates a common receiver gather (e.g. see Figure 1.2a) as a function of different
shot positions from the receiver, called source-receiver offset. To gain an insight
to the geology of the subsurface, standard processing of the seismic line — normal
move out (NMO) plus summation of events along the offset direction — generates
a stack section as shown in Figure 1.2b. In these grayscale images, the troughs
(white events) represent a decrease in acoustic impedance with negative polarity and
the peaks (dark events) represent an increase in acoustic impedance with positive
polarity. The vertical axis is the two-way travel time, which is the time it takes a
sound wave from a fired shot to travel through the medium below the sea surface,
down to the subsurface and reflected back to the location of the receiver.

Ideally, synthetic finite-difference modeling of time-lapse data with exactly the
same acquisition and modeling parameters generates a baseline data (Figure 1.3a)
and monitor data (Figure 1.3b). In this example, the difference (Figure 1.3c) be-
tween the baseline and monitor is the true time-lapse signal; it shows events directly
related to the subsurface changes in the synthetic model used in the modeling. Note

2



(a)

(b)

Figure 1.2 Seismic data. (a) An example of a common receiver gather as a function
of source positions from the receiver. (b) A stack section as a function of common
midpoint (CMP) — halfway point between source and receiver that is shared by
numerous source-receiver pairs — depicting the geology of the subsurface.
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that the time-lapse signal is plotted at a scale equal to one-tenth of the vintages
because it is weak in magnitude compared to the vintages.

(a) (b) (c)

Figure 1.3 Idealized time-lapse data. (a) baseline, (b) monitor and (c) time-lapse
(difference between (a) and (b)). The time-lapse scale is one-tenth the scale of the
vintages (baseline and monitor).

1.1.2 Time-lapse seismic acquisition

To obtain high resolution images of the Earth subsurface, conventional imaging algo-
rithms such as reverse time migration (RTM) require regularly and densely sampled
shots/receivers from seismic surveys. The cost of acquiring densely sampled surveys
is prohibitively expensive, and when time-lapse is of interest, this cost increases since
time-lapse surveys comprise at least a baseline and monitor survey each of which
is expensive. To resolve the high cost of seismic surveys, researchers (Hennenfent
and Herrmann, 2008; Herrmann, 2010; Mansour et al., 2012; Wason and Herrmann,
2013) adapted ideas from the field of compressive sensing (CS, Donoho, 2006; Can-
des and Tao, 2006) to design surveys that sample seismic data at a cost significantly
lower than conventional approaches. However, little is known about the implica-
tions of this approach for time-lapse seismic data acquisition and processing. This
knowledge gap and the recent success of actual field demonstration (Mosher et al.,
2014) of the feasibility of CS-inspired seismic surveys motivated me to investigate
the challenges and opportunities of extending the approach of compressive sensing
to time-lapse seismic. Before discussing details on the applications of compressive
sensing to (time-lapse) seismic data acquisition, I introduce the concept of survey
replication and repeatability in relation to time-lapse seismic.
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1.1.3 Repeatability and survey replicability

To ensure that the 4D image difference between the baseline and monitor surveys
reflects only true subsurface reservoir changes and not the result of seismic acqui-
sition and processing differences, repeatability of the images and/or vintages is an
important requirement (Lumley et al., 1997; Johnston, 2013). Repeatability quanti-
fies the similarity or likeness of two vintages of seismic data, and a foremost goal of
time-lapse seismic acquisition and processing is to minimize non-repeatability effects
in order to make credible interpretation of changes in reservoir properties extracted
or reaped from the final processed vintages. Maximizing repeatability, however, can
be both technically challenging and expensive because repeatability is affected by
several factors including requirement for dense sampling of sources/receivers, un-
avoidable differences in acquisition (Moldoveanu et al., 1996; Beasley et al., 1997;
Landrø, 1999), processing techniques (Ross and Altan, 1997; Lumley et al., 2003),
and signal-to-noise ratio (Landrø, 2008). To mitigate errors arising from differences
in acquisitions and minimize non-repeatability effects caused by non-replicated sur-
veys, the current paradigm requires strict replication of time-lapse surveys. This
means that practitioners attempt to make the baseline and monitor(s) survey ge-
ometries as similar as possible, an approach that is technically challenging for a
variety of reasons. Landrø (1999) showed how repeatability degrades as a function
of increasing deviations between shot positions, demonstrating the sensitivity of re-
peatability to differences in survey geometries. As a result, various approaches have
been proposed (Eiken et al., 2003; Day et al., 2010; Brown and Paulsen, 2011) that
aim to produce highly replicable surveys, albeit at a relatively expensive acquisition
cost. Therefore, finding innovative ways to replicate time-lapse surveys in order to
maximize repeatability is an active area and continues to be the subject of many
studies (Roach et al., 2014; Eggenberger et al., 2014; White et al., 2015; Shulakova
et al., 2015).

1.2 Compressive sensing in seismic acquisition
Before ideas from compressive sensing were adapted to seismic acquisition, the
requirement for dense sampling necessitated surveys with simultaneous sources
whereby single and/or multiple source vessels fire sources at near-simultaneous ran-
dom times, resulting in overlapping (blended) shot records (Beasley et al., 1998;
de Kok and Gillespie, 2002; Beasley, 2008; Hampson et al., 2008a; Berkhout, 2008;
Moldoveanu et al., 2010; Abma et al., 2013; Mosher et al., 2014). Simultaneous
source acquisitions are economically viable and lower acquisition costs since over-
all acquisition time becomes compressed and it improves acquisition efficiency. In
practice, simultaneous source surveys with dynamic acquisition geometry (towed
streamers) incorporate low variability in the shot firing times since both the sources
and receivers are moving, whereas surveys with static receiver geometries such as
ocean bottom nodes (OBNs) or ocean bottom cables (OBCs) permit low to high
variability in the shot firing times.
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Figure 1.4 illustrates the differences in the random firing times of the shots
in different acquisition settings. Because simultaneous source acquisition results
in blended shot records, an appropriate source separation technique is required to
unravel (deblend) the overlapping shots into sequential shots. The source separation
step is necessary for subsequent data processing and imaging algorithms that require
data volumes with dense sequential shots in order to produce high-resolution images
of the subsurface.

Figure 1.4 Periodic versus randomized (jittered) marine survey showing scenarios
for low and high variability in shot firing times of the simultaneous sources.

A practically feasible way to render marine seismic survey more economically
viable is to fire at random time-jittered compressed-in-time firing times (Mansour
et al., 2012; Wason and Herrmann, 2013), which is an instance of simultaneous-
source acquisition. In this time-jittered marine scheme, which leverages ideas from
compressive sensing (CS, Donoho, 2006; Candes and Tao, 2006), a single source
vessel sails across an ocean-bottom array of receivers (nodes or cables) constantly
firing airgun arrays at “jittered” source locations and time instances with receivers
recording continuously. Figure 1.5 illustrates how the proposed CS-inspired acquisi-
tion scheme compresses the survey time and how we aim to recover dense data onto
a fine periodic grid with increased source sampling. This sampling scheme generates
surveys with overlapping shot records (as in Figure 1.6) and coarse source sampling
that are subsequently unraveled (separated) and interpolated to finely-sampled grid
yielding sequentially sampled shots with improvements in spatial sampling. Re-
cently, Mosher et al. (2014) demonstrated the potential of CS-based acquisition
design in actual field surveys reporting up to ten fold improvements in economics.

In seismic applications, adherence to three key principles of CS are critical,
namely we need to
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Figure 1.5 Schematic of sampling schemes and recovery. Left: conventional sur-
vey with non-overlapping shots. Middle: compressed survey time with overlapping
shots. Right: recovery of non-overlapping dense periodic shots with improved source
sampling. [ Adapted from Wason et al. (2017) ]

Figure 1.6 Simultaneous source acquisition and source separation. (a) Subset of
data extracted from a continuous record of overlapping shots on a fixed receiver
spread (b) Recovered data after source separation showing non-overlapping shots.
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(i) find a compressible representation, e.g. via transform-domain sparsity; (ii) design
a physically realizable randomized subsampling scheme, which turns subsampling
related artifacts into incoherent noise that is not compressible; (iii) restore densely
sampled data by promoting structure—i.e., by mapping incoherent artifacts to co-
herent signal.

Finding an appropriate representation for seismic wavefields requires seeking
transform-domains that concentrate the wavefield’s energy in as few as possible
significant coefficients. To meet this objective, we use the curvelet transform (Can-
des et al., 2006), which is multiscale (splits the Fourier spectrum into dyadic fre-
quency bands) and multidirectional (splits the Fourier spectrum into different an-
gular wedges). In other words, curvelets decompose seismic data into multiscale
and multi-angular localized waveforms, and they have been successfully adapted to
various seismic applications (e.g. Herrmann et al., 2008; Hennenfent et al., 2010a).
Furthermore, Herrmann (2010) demonstrated the improvements in wavefield recon-
struction when curvelets are used for representing seismic data compared to other
transforms such as wave atoms (Demanet and Ying, 2007). Therefore, we find
curvelets adequate in representing seismic data for our application to time-lapse
seismic.

For our implementation of these principles of CS (especially incorporating ran-
domness) to time-lapse seismic acquisition, we consider the more favorable case of
large variability in the shot firing times (ocean bottom seismic surveys), supported
by good recovery results (Mansour et al., 2012; Wason and Herrmann, 2013). This
scheme has the advantage of good replicability in the receiver positions since the
receiver array is static and relatively unchanged between time-lapse surveys; how-
ever, we still have to address the implications of randomness in the source firing
times and positioning of the sources between compressively sampled time-lapse sur-
veys. Therefore, the challenging problem is how this CS-based acquisition design
and subsequent recovery (source separation, regularization and interpolation) af-
fects the quality of time-lapse vintages, time-lapse signal and repeatability of both
the vintages and images obtained after recovery of the prestack vintages.

1.2.1 Compressive time-lapse seismic acquisition

While the potential advantages of randomized subsampling (compressively sampled
surveys) on individual surveys (e.g., Mosher et al., 2014) are relatively well under-
stood, the significance of this approach for time-lapse seismic data acquisition and
its implication for repeatability raises important questions such as :

1. Should we replicate randomized surveys that are based on ideas from compres-
sive sensing ?

2. How does imposing randomness in CS-based time-lapse surveys impact degrees
of seismic repeatability ?
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3. Can we expect high-fidelity time-lapse vintages and high-grade 4D signals from
surveys acquired via randomized subsampling ideas from compressive sensing?

Finding answers to these questions has significant benefits for the economics of
time-lapse seismic because it can potentially mitigate, if not resolve, the challenges
related to expensive dense survey replication. Therefore, one of the objectives of this
thesis is to provide answers to these important questions by exploring the feasibility
of randomized subsampling for time-lapse surveys focusing on how these economic
surveys impact repeatability.

To begin answering these questions, I consider compressive time-lapse acquisition
of a baseline (j = 1) and monitor (j = 2) data as

yj = Ajxj for j = {1, 2}. (1.1)

In this formulation, which can be extended to j > 2 monitor surveys, the vectors y1

and y2 represent the corresponding subsampled measurement vectors. As described
in Hennenfent and Herrmann (2008), Herrmann (2010), and Mansour et al. (2012),
the flat measurement matrices Aj encapsulate specifics on the survey geometry
for each vintage and the sparsifying transform, namely, curvelets. Note that the
matrices are not necessarily equal (A1 ̸= A2). In practice, finely sampled vintages
can in principle be recovered under the right CS conditions by solving Equation 1.1
with the following sparsity-promoting optimization program

x̃ = argmin
x

∥x∥1 :=
N∑
i=1

|xi| subject to y = Ax, (1.2)

yielding vectors x̃j ’s from which estimates for densely sampled vintages d̃j , that
live on one and the same fine periodic grid can be derived. To obtain the prestack
time-lapse signal, I simply subtract the recovered vintages.

1.2.2 Insights from distributed compressive sensing

Baron et al. (2009a) proposed and presented a mathematical analysis of a joint re-
covery model (JRM) for distributed CS whereby jointly sparse signals are recovered
simultaneously in one optimization program. Aside from permitting sparse repre-
sentations individually, jointly sparse signals share information. As we will see later,
time-lapse vintages have an intrinsic property i.e. they share a lot of information es-
pecially when viewed in a transform domain such as curvelets, allowing us to adapt
the ideas from distributed CS to time-lapse seismic. There are several ways to inte-
grate this shared information between the different vintages. We found that we get
the best recovery result if we exploit the common component amongst the baseline
and monitor data explicitly. This means that for two-vintage surveys we end up
with three unknown vectors: one for the common component, denoted by z0, and
two for the innovations zj for j ∈ 1, 2 with respect to this common component that
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is shared amongst the vintages. In this JRM, the vectors representing the vintages
are given by

xj = z0 + zj , j ∈ 1, 2. (1.3)

As we can see, the vintages contain the common component z0 and the time-lapse
difference is contained within the difference between the innovations zj for j ∈ 1, 2.
We can further exploit this complementary structure during time-lapse recovery
from randomized subsampling in order to improve the repeatability by solving

z̃ = argmin
z

∥z∥1 subject to y = Az (1.4)

with [
y1

y2

]
︸ ︷︷ ︸

y

=

[
A1 A1 0
A2 0 A2

]
︸ ︷︷ ︸

A

z0z1
z2


︸ ︷︷ ︸

z

(1.5)

Compared to recovering the vintages separately as in Equation 1.2, the joint re-
covery model inverts for the coefficient vectors of the common component (z̃0) and
innovations (z̃j) that encode the time-lapse. By construction, the common com-
ponent benefits from sensing by both surveys (first column of A in Equation 1.5).
Estimates for the finely sampled vintages are readily derived via Equation 1.4 with
the recovered z̃ while the time-lapse difference is computed via z̃1 − z̃2.

Since the different surveys sense the common component and their respective
innovations, the question is how the proposed joint recovery model performs on
the vintages and the time-lapse differences, and what is the consequence of non-
replicated randomized time-lapse surveys particularly with respect to achievable
degrees of repeatability.

1.3 Objectives
The primary focus of this thesis is to present a practical strategy that allows for the
implementation of low-cost randomized acquisitions in time-lapse seismic without
compromising repeatability by leveraging ideas from distributed compressive sensing.
The main objectives of this work are:

1. to address challenges related to requirements for dense sampling in time-lapse
surveys by evaluating the opportunities inherent in low-cost randomized survey
designs including simultaneous-source acquisitions;

2. to investigate the implications of replicated and non-replicated randomized
surveys — based on ideas from compressive sensing — on attainable degrees
of repeatability in time-lapse seismic;

3. to evaluate the effects of recovering time-lapse surveys in situations where the
acquisition information (e.g. shot positions) are not precise because according
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to CS, accurate recovery of signals relies on having accurate sampling matrices
or operators;

4. to investigate the potential of estimating time-lapse models or images by in-
corporating the joint recovery model in wave-equation based inversion formu-
lations.

1.4 Contributions
To the best of my knowledge, this work represents the first instance to cast time-lapse
survey acquisition and recovery (or processing) as an inverse problem that produces
densely sampled vintages from randomly (compressively) subsampled observations.
I propose the application of a joint recovery model, which derives from distributed
compressive sensing, to recover densely sampled prestack time-lapse vintages from
randomized surveys that adhere to the principles of compressive sensing. More im-
portantly, I propose to not replicate compressive randomized time-lapse surveys and
discovered that we obtain better and improved vintages when the observed randomly
under-sampled data are recovered (processed) with our joint recovery model. Be-
cause independent non-replicated surveys provide extra information that we exploit
during our joint recovery, we obtain vintages with better quality compared to vin-
tages obtained from processing the surveys separately. Furthermore, the recovered
prestack vintages using our proposed model are of high-fidelity, exhibit improved
seismic repeatability, and can serve as inputs to processes that derive poststack
time-lapse attributes from the vintages. The results of this study are of great signif-
icance since it provides options that circumvents current requirements to replicate
conventional expensive and dense time-lapse surveys.

In order to accurately recover signals acquired using CS, the sampling matrix or
operator needs to be accurate. For applications to seismic acquisition, this implies
having precise information about the acquisition geometry because this information
is encapsulated in the CS matrix that is used during sparsity-promoting recovery.
Therefore, using the proposed joint recovery model, I also evaluate the attainable
degrees of repeatability from compressive time-lapse surveys in situations where the
postplot acquisitions are not accurate. I show that moderate deviations between the
true and recorded postplot shot positions — for marine surveys with static receiver
configuration — do not degrade repeatability when the non-replicated baseline and
monitor surveys are recovered with our proposed joint recovery model. This result
is truly remarkable and further boosts our confidence in the practical implementa-
tion of these techniques in realistic field surveys, where errors between actual and
recorded postplot positions are inevitable.

Finally, I investigate the performance of the joint recovery model for time-lapse
imaging where my objective is to compare the quality of time-lapse images obtained
using the proposed JRM to images obtained from performing separate imaging or lin-
earized inversions on the vintages. While separate inversions result in artifacts that
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smear true time-lapse changes in the images, inversion with our joint recovery model
attenuates these artifacts in the time-lapse difference images, delineating true time-
lapse changes. This result is significant because it further demonstrates improved
repeatability with our joint recovery model, suggesting that we can minimize the
risk in interpreting time-lapse changes by performing joint inversions, which adapt
our model. As with our observations in the data-domain implementation described
in the last two paragraphs, the key to our successful results on time-lapse seismic is
the fact that our joint recovery model explicitly exploits the common information
shared amongst time-lapse vintages and images.

1.5 Thesis overview
The main body of this thesis comprises five chapters following the present introduc-
tion.

Chapter 2 presents the origin of our approach towards addressing some of the
current acquisition-related problems faced in time-lapse seismic with respect to dif-
ficulty in survey replication and requirements for dense sampling. To understand
the relevance and benefits of the proposed joint recovery model, I first conduct a
series of stylized experiments for thousands of random realizations of signal vectors
that capture the essential features of randomized seismic acquisition. From these
experiments, I compute recovery probabilities as a function of the number of mea-
surements and increasing degrees of survey replicability, the two main factors that
determine the cost of seismic acquisitions. I confirm that the joint recovery method
model, which exploits common information among jointly sparse vectors (e.g. time-
lapse vintages), leads to significant improvements in recovery quality compared to
an independent recovery approach that does not leverage this shared information.
In the seismic implementation, we show that under controlled survey conditions
and by ignoring errors related to recording data off the grid, we obtain high-quality
and highly repeatable prestack data from randomized (compressively) subsampled
measurements that are observed from non-replicated surveys via the time-jittered
marine scheme. We posit that the recovered vintages can be used to extract post-
stack time-lapse attributes, which gives information on subsurface changes.

In Chapter 3, we demonstrate the feasibility of the joint recovery model in a
more practical acquisition scenario where we no longer ignore errors related to sam-
pling off the grid i.e., by collecting irregular samples that do not lie on a discrete
regular periodic grid. We conduct several synthetic experiments that recover full
prestack vintages from subsampled measurements (continuous recording) via time-
jittered sources in marine. We include an operator that maps measurements from
an irregular to a regular grid, thereby making the time-lapse data recovery issue a
combined shot separation, regularization and interpolation problem. Furthermore
this study analyzes the implications of repeatability of time-lapse vintages in situa-
tions where the spatial locations of the sources differ from the sampling grid by a
small fraction of the fine sampling grid. Overall, our claims from Chapters 2 and
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3 are : (i) non-replicated randomized surveys and recovery with the joint recovery
model yields better data compared to independently recovering the surveys, and
(ii) instead of aiming for randomized time-lapse seismic surveys with high degrees
of replicability, it will be beneficial to know the postplot acquisition parameters
(e.g. shot firing times and source/receiver positions) to a high degree of accuracy.

Chapter 4 demonstrates the feasibility of our joint recovery model for more
realistic acquisitions with a specific issue, namely, surveys whose actual acquisition
parameters do not exactly match the recorded postplots. Because it is the postplot
information that is used in processing, I analyse the performance of the joint recovery
model for mitigating effects of such errors in the positioning of sources for a fixed
receiver array. Using standard measures of quantifying repeatability, I investigate
two scenarios that allow us to measure attainable levels of repeatability. I confirm
that recovery of the vintages does not decrease rapidly as the size of errors increases.
Measured values of repeatability also suggest that the joint recovery model is robust
to these difficult to control position errors in realistic field surveys.

In Chapter 5, we consider the time-lapse image domain implementation of our
proposed joint recovery model. This means we consider an inversion problem where
the dimension of the output (model/image) is less than that of the input (observed
data). To this end, we seek to investigate two seismic inversion problems : least-
squares migration (see e.g. Herrmann and Li, 2012; Tu and Herrmann, 2015) and
full-waveform inversion (FWI) (see e.g. Virieux and Operto, 2009). In the first
part of this chapter, rather than demonstrate the application of our proposed JRM
to least-squares migration (or linearized imaging), we present recovery of stacked
time-lapse data volumes from randomly under-sampled prestack data. Assuming
stacking is a cheap proxy for migration, we expect our findings to hold when our
joint recovery model is directly applied to actual time-lapse imaging experiments.
The second part of this chapter directly explores nonlinear inversion (or FWI) of
time-lapse data. We show how the joint recovery model can be integrated with a
standard FWI algorithm (Li et al., 2012b), allowing us to obtain better models and
difference compared to performing independent inversions of the vintages.

Finally in Chapter 6, I summarize the findings in this thesis. Because the conclu-
sions drawn from this research are by no means exhaustive with regards to tackling
the challenges related to time-lapse seismic technology, I discuss some limitations
of my work and present an overview of future possible directions.
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Chapter 2

Low-cost time-lapse seismic with
distributed Compressive
Sensing—exploiting common
information amongst the vintages

2.1 Summary
Time-lapse seismic is a powerful technology for monitoring a variety of subsurface
changes due to reservoir fluid flow. However, the practice can be technically chal-
lenging when one seeks to acquire colocated time-lapse surveys with high degrees of
replicability amongst the shot locations. We demonstrate that under “ideal” circum-
stances, where we ignore errors related to taking measurements off the grid, high-
quality prestack data can be obtained from randomized subsampled measurements
that are observed from surveys where we choose not to revisit the same randomly
subsampled on-the-grid shot locations. Our acquisition is low cost since our measure-
ments are subsampled. We find that the recovered finely sampled prestack baseline
and monitor data actually improve significantly when the same on-the-grid shot lo-
cations are not revisited. We achieve this result by using the fact that different time-
lapse data share information and that nonreplicated (on-the-grid) acquisitions can
add information when prestack data are recovered jointly. Whenever the time-lapse
data exhibit joint structure—i.e., are compressible in some transform domain and
share information—sparsity-promoting recovery of the “common component” and
“innovations”, with respect to this common component, outperforms independent
recovery of both the prestack baseline and monitor data. The recovered time-lapse
data are of high enough quality to serve as input to extract poststack attributes
used to compute time-lapse differences. Without joint recovery, artifacts—due to
the randomized subsampling—lead to deterioration of the degree of repeatability
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of the time-lapse data. We support our claims by carrying out experiments that
collect reliable statistics from thousands of repeated experiments. We also confirm
that high degrees of repeatability are achievable for an ocean-bottom cable survey
acquired with time-jittered continuous recording.

2.2 Introduction
Time-lapse (4-D) seismic techniques involve the acquisition, processing and inter-
pretation of multiple 2-D or 3-D seismic surveys, over a particular time period of
production (Lumley, 2001). While this technology has been applied successfully
for reservoir monitoring (Koster et al., 2000; Fanchi, 2001) and CO2 sequestration
(Lumley, 2010), it remains a challenging and expensive technology because it relies
on finely sampled and replicated surveys each of which have their challenges (Lumley
and Behrens, 1998). To improve repeatability of the combination of acquisition and
processing, various approaches have been proposed varying from more repeatable
survey geometries (Beasley et al., 1997; Porter-Hirsche and Hirsche, 1998; Eiken
et al., 2003; Brown and Paulsen, 2011; Eggenberger et al., 2014) to tailored pro-
cessing techniques (Ross and Altan, 1997) such as cross equalization (Rickett and
Lumley, 2001), curvelet-domain processing (Beyreuther et al., 2005) and matching
(Tegtmeier-Last and Hennenfent, 2013).

We present a new approach that addresses these acquisition- and processing-
related issues by explicitly exploiting common information shared by the different
time-lapse vintages. To this end, we consider time-lapse acquisition as an inversion
problem, which produces finely sampled colocated data from randomly subsampled
baseline and monitor measurements. The presented joint recovery method, which
derives from distributed compressive sensing (DCS, Baron et al., 2009a), inverts
for the “common component” and “innovations” with respect to this common com-
ponent. As during conventional compressive sensing (CS, Donoho, 2006; Candes
and Tao, 2006), which has successfully been adapted and applied to various seismic
settings (Hennenfent and Herrmann, 2008; Herrmann, 2010; Mansour et al., 2012;
Wason and Herrmann, 2013) including actual field surveys (see e.g., Mosher et al.,
2014), the proposed method exploits transform-based (curvelet) sparsity in combi-
nation with the fact that randomized acquisitions break this structure and thereby
create favorable recovery conditions.

While the potential advantages of randomized subsampling on individual surveys
are relatively well understood (see e.g., Wason and Herrmann, 2013), the implica-
tions of these randomized subsampling schemes on time-lapse seismic have not yet
been studied, particularly regarding achievable repeatability of the prestack data
after recovery and processing. Since the different surveys contain the common com-
ponent and their respective innovations, the question is how the proposed joint
recovery model performs on the vintages and the time-lapse differences, and what
is the importance of replicating the surveys. Our analyses will be carried out as-
suming our observations lie on a discrete grid so that exact survey replicability
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is in principle achievable. In this situation, we ignore any errors associated with
taking measurements from an irregular grid. Our approach makes our time-lapse
acquisition low-cost since our measurements are always subsampled and we do not
necessarily replicate the surveys. In chapter 3, we demonstrate how we deal with the
effects of non-replicability of the surveys, particularly when we take measurements
from an irregular grid. Since the observations are subsampled and on the grid for
this chapter (off the grid for chapter 3), the aim is to recover vintages on a colocated
fine grid.

We also ignore complicating factors—such as tidal differences and seasonal
changes in water temperature—that may adversely affect repeatability of the time-
lapse surveys. We focus here on recovering high quality prestack vintages rather
than the prestack time-lapse differences, since a foremost goal of 4-D seismic is to
obtain poststack attributes from the vintages using various methods (Lumley, 2001;
Landrø, 2001; Spetzler and Kvam, 2006; Yang et al., 2014, 2015; Asnaashari et al.,
2015; Oghenekohwo et al., 2015; Maharramov et al., 2016; Kamei and Lumley, 2017).

The rest of the chapter is organized as follows. First, we summarize the main
findings of CS, its governing equations, and its main premise that structured signals
can be recovered from randomized measurements sampled at a rate below Nyquist.
Next, we set up the CS framework for time-lapse surveys, and we discuss an in-
dependent recovery strategy, where the baseline and monitor data are recovered
independently. We juxtapose this approach with our joint recovery method, which
produces accurate estimates for the common component—i.e., the component that is
shared amongst all vintages—and innovations with respect to this common compo-
nent. To study the performance of these two recovery strategies, we conduct a series
of stylized experiments for thousands of random realizations that capture the essen-
tial features of randomized seismic acquisition. From these experiments, we compute
recovery probabilities as a function of the number of measurements and survey repli-
cability, the two main factors that determine the cost of seismic acquisitions. Next,
we conduct a series of synthetic experiments that involve time-lapse ocean-bottom
surveys with time-jittered continuous recordings and overlapping shots as recently
proposed by (Wason and Herrmann, 2013). Aside from computing signal-to-noise ra-
tios measured with respect to finely sampled true baseline, monitor, and time-lapse
differences and their stacks, we also use (Kragh and Christie, 2002)’s root-mean-
square (NRMS) metric to quantify the repeatability of the recovered data.

2.3 Methodology

2.3.1 Synopsis of compressive sensing

Compressive sensing (CS) is a sampling paradigm that aims to reconstruct a signal
x ∈ RN (N is the fully sampled ambient dimension) that is sparse (only a few of the
entries are non-zero) or compressible (can be well approximated by a sparse signal)
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in some transform domain, from few measurements y ∈ Rn, with n ≪ N . According
to the theory of CS (Candes and Tao, 2006; Donoho, 2006), recovery of x is attained
from n linear subsampled measurements given by

y = Ax, (2.1)

where A ∈ Rn×N is the sampling matrix.
Finding a solution to the above underdetermined system of equations involves

solving the following sparsity-promoting convex optimization program :

x̃ = argmin
x

∥x∥1 :=
N∑
i=1

|xi| subject to y = Ax. (2.2)

where x̃ is an approximation of x. In the noise-free case, this (ℓ1-minimization)
problem finds amongst all possible vectors x, the vector that has the smallest ℓ1-
norm and that explains the observed subsampled data. To arrive at this solution,
we use the software package SPGℓ1 (Van Den Berg and Friedlander, 2008). The
main contribution of CS is to design sampling matrices that guarantee solutions
to the recovery problem in Equation 2.2, by providing rigorous proofs in specific
settings. Furthermore, a key highlight in CS is that favorable conditions for recovery
is attained via randomized subsampling rather than periodic subsampling. This
is because random subsampling introduces incoherent, and therefore non-sparse,
subsampling related artifacts that are removed during sparsity-promoting signal
recovery. Basically, CS is an extension of the anti-leakage Fourier transform (Xu
et al., 2005a; Schonewille et al., 2009), where random sampling in the physical
domain renders coherent aliases into incoherent noisy crosstalk (leakage) in the
spatial Fourier domain. In this case, the signal is sparse in the Fourier basis.

For details on precise recovery conditions in terms of the number of measure-
ments n, allowable recovery error, and construction of measurement/sampling ma-
trices A, we refer to the literature on compressive sensing (Donoho, 2006; Candes
and Tao, 2006; Candès and Wakin, 2008). For our application to time-lapse seismic,
we follow adaptations of this theory by (Herrmann et al., 2008) and (Herrmann and
Hennenfent, 2008), and use curvelets as the sparsifying transform in the seismic
examples that involve randomized marine acquisition (Mansour et al., 2012; Wason
and Herrmann, 2013; Wason et al., 2015). The latter references involve marine ac-
quisition with ocean-bottom nodes and time-jittered time-compressed firing times
with single or multiple source vessels. As shown by (Wason and Herrmann, 2013),
this type of randomized acquisition and processing leads to better wavefield recon-
structions than the processing of regularly subsampled data. Furthermore, because
of the reduced acquisition time, it is more efficient economically (Mosher et al.,
2014).
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2.3.2 Independent recovery strategy (IRS)

To arrive at a compressive sensing formulation for time-lapse seismic, we describe
noise-free time-lapse data acquired from the baseline (j = 1) and monitor (j = 2)
surveys as

yj = Ajxj for j = {1, 2}. (2.3)

In this CS formulation, which can be extended to J > 2 surveys, the vectors y1 and
y2 represent the corresponding subsampled measurement vectors; A1 andA2 are the
corresponding flat (n ≪ N) measurement matrices, which are not necessarily equal.
As before, finely sampled vintages can in principle be recovered under the right
conditions by solving Equation 2.3 with a sparsity-promoting optimization program
(cf. Equation 2.2) for each vintage separately. We will refer to this approach as the
independent recovery strategy (IRS). In this context, we compute the time-lapse
signal by directly subtracting the recovered vintages.

2.3.3 Shared information amongst the vintages

Aside from invoking randomizations during subsampling, CS exploits structure resid-
ing within seismic data volumes during reconstruction—the better the compression
the better the reconstruction becomes for a given set of measurements. If we con-
sider the surveys separately, curvelets are good candidates to reveal this structure
because they concentrate the signal’s energy into few large-magnitude coefficients
and many small coefficients (see left-hand side plot in Figure 2.1). Curvelets have
this ability because they decompose seismic data into multiscale and multi-angular
localized waveforms. As the cross plot in Figure 2.1 reveals (right-hand side plot),
the curvelet transform’s ability to compress seismic data and time-lapse difference
(left-hand side plot Figure 2.1) is not the only type of structure that we can ex-
ploit. The fact that most of the magnitudes of the curvelet coefficients of two
common-receiver gathers from a 2-D OBS time-lapse survey (see Figure 2.8) nearly
coincide indicate that the data from the two vintages shares lots of information in
the curvelet domain. Therefore, we can further exploit this complementary struc-
ture during time-lapse recovery from randomized subsampling in order to improve
the repeatability.

2.3.4 Joint recovery method (JRM)

(Baron et al., 2009a) introduced and analyzed mathematically a model for dis-
tributed CS where jointly sparse signals are recovered jointly. Aside from permitting
sparse representations individually, jointly sparse signals share information. For in-
stance, sensor arrays aimed at the same object tend to share information (see (Xiong
et al., 2004) and the references therein) and time-lapse seismic surveys are no ex-
ception.
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Figure 2.1 Left: Decay of curvelet coefficients of time-lapse data and difference.
Right: Scatter plot of curvelet coefficients of the baseline and monitor data indicat-
ing that they share significant information.

There are different ways to incorporate this shared information amongst the
different vintages. We found that we get the best recovery result if we exploit the
common component amongst the baseline and monitor data explicitly. This means
that for two-vintage surveys we end up with three unknown vectors. One for the
common component, denoted by z0, and two for the innovations zj for j ∈ 1, 2 with
respect to this common component that is shared by the vintages. In this model,
the vectors for the vintages are given by

xj = z0 + zj , j ∈ 1, 2. (2.4)

As we can see, the vintages contain the common component z0 and the time-lapse
difference is contained within the difference between the innovations zj for j ∈ 1, 2.
Because z0 is part of both surveys, the observed measurements are now given by

[
y1

y2

]
=

[
A1 A1 0
A2 0 A2

]z0z1
z2

 , or

y = Az.

(2.5)

In this expression, we overloaded the symbol A, which from now on refers to the
matrix linking the observations of the time-lapse surveys to the common component
and innovations pertaining to the different vintages. The above joint recovery model
readily extends to J > 2 surveys, yielding a J × (number of vintages+ 1) system.

Contrary to the IRS, which essentially corresponds to setting the common com-
ponent to zero so there is no communication between the different surveys, both
vintages share the common component, z0, in Equation 2.5. As a result correlations
amongst the vintages will be exploited if we solve instead

z̃ = argmin
z

∥z∥1 subject to y = Az. (2.6)
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As a result, we seek solutions for the common component and innovations that
have the smallest ℓ1-norm such that the observations explain both the incomplete
recordings for both vintages. Estimates for the finely sampled vintages are readily
obtained via Equation 2.4 with the recovered z̃ while the time-lapse difference is
computed via z̃1 − z̃2.

Albeit recent progress has been made (Li, 2015), precise recovery conditions for
JRM are not yet very well studied. Moreover, the JRM was also not designed to
compute differences between the innovations. To gain some insight on our formu-
lation, we will first compare the performance of IRS and JRM in cases where the
surveys are exactly replicated (A1 = A2), partially replicated (A1 and A2 share
certain fractions of rows), or where A1 and A2 are statistically completely indepen-
dent. To get reliable statistics on the recovery performance for the different recovery
schemes, we repeat a series of small stylized problems thousands of times. These
small stylized examples serve as proxies for seismic acquisition problems that we
will discuss later.

2.4 Stylized experiments
To collect statistics on the performance of the different recovery strategies, we repeat
several series of small experiments many times. Each random time-lapse realization
is represented by a vector with N = 50 elements that has k = 13 nonzero en-
tries with Gaussian distributed weights that are located at random locations such
that the number of nonzero entries in each innovation is two—i.e., k1 = k2 = 2.
This leaves 11 nonzeros for the common component. For each random experiment,
n = {10, 11, · · · , 40} observations y1 and y2 are collected using Equation 2.3 for
Gaussian matrices A1 and A2 that are redrawn for each repeated experiment. This
means we repeat several series of experiments for a given fixed number of obser-
vations where A1 and A2 are redrawn each time. These Gaussian matrices have
independent identically distributed Gaussian entries and serve as a proxy for ran-
domized acquisitions in the field. An example of the vectors z0, z1, z2,x1,x2, and
x1−x2 involved in these experiments is included in Figure 2.2. As stated previously,
these vectors only mimic representations of actual seismic traces. In that sense, our
goal is to recover estimates for the vintages and time-lapse signals—i.e., we want to
obtain the estimates x̃1 and x̃2, and their difference x̃1 − x̃2 from subsampled mea-
surements y1 and y2. When using the joint recovery model, we compute estimates
for the jointly sparse vectors via x̃1 = z̃0 + z̃1, and x̃2 = z̃0 + z̃2, where z̃ is found
by solving Equation 2.6.

To get reliable statistics on the probability of recovering the vectors represent-
ing time-lapse vintages and differences, we choose to perform M = 2000 repeated
experiments generating M different realizations for y1 and y2 from different realiza-
tions of x1 and x2. Next, we recover x̃1 and x̃2 from these measurements using the
IRS or JRM. From these estimates, we compute empirical probabilities of successful
recovery via
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Figure 2.2 From top to bottom: z0, z1, z2,x1,x2,x1 − x2. We are particularly
interested in recovering estimates for x1,x2 and x1 − x2 from y1 and y2.

P (x) =

Number of times∥x− x̃∥2
∥x∥2

< ρ

M
. (2.7)

We set the relative error threshold to ρ = 0.1. The vector x either represents the
vintages or the difference. In case of the vintages, we multiply the probabilities.

2.4.1 Experiment 1—independent versus joint recovery

To reflect current practices in time-lapse acquisition—where people aim to repli-
cate the surveys—we run the experiments by drawing the same random Gaussian
matrices of size n × N for n = {10, 11, · · · , 40} and N = 50 for A1 and A2—i.e.,
A1 = A2. We conduct the same experiments where the surveys are not replicated
by drawing statistically independent measurement matrices for each repeated exper-
iment, yielding A1 ̸= A2. For each series of experiments, we recover estimates x̃1,
x̃2, and x̃1 − x̃2 from which we compute the corresponding recovery probabilities
using Equation 2.7. The results are plotted in Figure 2.3 for the recovery of the
vintages (Figure 2.3a) and time-lapse difference (Figure 2.3b).

The results of these experiments indicate that regardless of the number of mea-
surements, JRM leads to improved recovery compared to IRS because it exploits in-
formation shared by the two jointly sparse vectors representing the vintages. The re-
covery probabilities for JRM (solid lines in Figure 2.3) show an overall improvement
for both the time-lapse vectors and the time-lapse difference vector—all probability
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curves are to the left compared to those from IRS meaning that recovery is more
likely for fewer measurements. For the time-lapse vectors, this improvement is much
more pronounced for measurement matrices that are statistically independent—i.e.,
not replicated (A1 ̸= A2). This observation is consistent with distributed compres-
sive sensing, which predicts significant improvements when the time-lapse vectors
share a significant common component. In that case, the shared component benefits
most from being observed by both surveys (via the first column of A, cf. Equa-
tion 2.5). The IRS results for the time-lapse vectors are much less affected whether
the survey is replicated or not, which makes sense because the processing is done
in parallel and independently. This suggests that for time-lapse seismic, indepen-
dent surveys give additional information on the sparse structure of the vintages
that is reflected in their improved recovery quality. Another likely interpretation is
that time-lapse data obtained via JRM has better repeatability compared to data
obtained via IRS.

While independent surveys improve recovery with JRM, the recovery probability
of the time-lapse difference vectors improves drastically when the experiments are
replicated exactly. The reason for this is that the JRM simplifies to the recovery
of the time-lapse differences alone in cases where the time-lapse measurements are
exactly replicated. Since these time-lapse differences are sparser than the vintage
vectors themselves, the time-lapse difference vectors are well recovered while the
time-lapse vectors themselves are not. This result is not surprising since the error
in reconstructing the vintages cancels out in the difference. This means that in
CS, if one is interested in the time-lapse difference, exact repetition of the survey
is preferred. However, this approach does not provide any additional structural
information in the vintages. We will revisit this observation in Experiment 2 to
see how the recovery performs when we have varying degrees of repeatability in the
measurements.

(a) (b)

Figure 2.3 Recovery of (a) the jointly sparse signals x1 and x2, (b) x1 − x2; with
and without repetition of the measurement matrices, using the independent recovery
strategy versus the joint recovery method.
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2.4.2 Experiment 2—impact of degree of survey replicability

So far, we explored only two extremes, namely recovery of vintages with absolutely
no replication (A1 ̸= A2 and statistically independent) or exact replication (A1 =
A2). To get a better understanding of how replication factors into the recovery, we
repeat the experiments where we vary the degree of dependence between the surveys
by changing the number of rows the matrices A1 and A2 have in common. When all
rows are in common, the survey is replicated and the percentage of overlap between
the surveys is a measure for the degree of replicability of the surveys. Since JRM
clearly outperformed IRS, we only consider recovery with JRM.

As before we compute recovery probabilities from M = 2000 repeated time-lapse
experiments generating M different realizations for the observations. We summarize
the recovery probability curves for varying degrees of overlap in Figure 2.4. These
curves confirm that the recovery of the time-lapse vectors, x1 and x2, improves when
the surveys are not replicated. As soon as the surveys are no longer replicated, the
recovery probabilities for the time-lapse vectors improve. These improvements be-
come less prominent when large percentages do not overlap and as expected reaches
its maximum when the surveys become independent. Recovery of the time-lapse
differences, x1 − x2, on the other hand suffers drastically when the surveys are no
longer 100% replicated. When less then 80% of the surveys are no longer replicated,
the recovery probabilities no longer benefit from replicating the surveys. Recovery
of the time-lapse vectors, on the other hand, already improves significantly at this
point.

While these experiments are perhaps too idealized and small to serve as a strict
guidance on how to design time-lapse surveys, they lead to the following observations.
Firstly, the recovery probabilities improve when we exploit joint sparsity amongst
the time-lapse vectors via JRM. Secondly, since the common component is observed
by all surveys recovery of the common component and therefore vintages improves if
the surveys are not replicated. Thirdly, the time-lapse differences benefit from high
degrees of replication of the surveys. In that case, the JRM degenerates to recovery
of the time-lapse difference alone and as a consequence the time-lapse vectors are
not well recovered.

Even though the quality of the time-lapse difference is often considered as a
good means of quality control, we caution the reader to draw the conclusion that we
should aim to replicate the surveys. The reason for this is that time-lapse differences
are generally computed from poststack attributes computed from finely sampled,
and therefore recovered, prestack baseline and monitor data and not from prestack
differences. Therefore, recovery of time-lapse difference alone may not be sufficient
to draw firm conclusions. Our observations were also based on very small idealized
experiments that did not involve stacking and permit exact replication, which may
not be realistic in practice.
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(a) (b)

Figure 2.4 Recovery as a function of overlap between measurement matrices. Prob-
ability of recovering (a) x1 and x2, (b) x1 − x2, with joint recovery method.

2.5 Experimental setup—on-the-grid time-lapse
randomized subsampling

One of the main parts of the experimental setup for the synthetic seismic case study
is how we define the underlying grid on which samples are taken. In context of this
chapter, we assume that the samples are taken on a discrete grid—i.e., samples lie
“exactly” on the grid. It is also important to note that we randomly subsample the
grid only in the source dimension. As mentioned in the compressive sensing section
above, randomized subsampling introduces incoherent subsampling related artifacts
that are removed during sparsity-promoting signal recovery. Figure 2.5 shows a
schematic comparison between different random realizations of a subsampled grid.
As illustrated in the schematic, random samples are taken exactly on the grid. We
define the term “overlap” as the percentage of on-the-grid shot locations exactly
replicated between two (or more) time-lapse surveys. For the synthetic seismic case
study, whenever there is an overlap between the surveys (e.g., 50%, 33%, 25%, etc.)
the on-the-grid shot locations are exactly replicated for the baseline and monitor
surveys. Similarly, for the stylized experiments, when two rows of the Gaussian
matrices are the same it can be interpreted as if we hit the same shot location for both
the baseline and monitor surveys. Therefore, we either assume that the experimental
circumstances are ideal or alternatively we can think of this assumption as ignoring
the effects of being off the grid. Chapter 3 analyses the effects of the more realistic
off-the-grid sampling. In summary, we consider the case where measurements are
exactly replicated whenever we choose to visit the same shot location for the two
surveys. However, because we are subsampled we need not choose to revisit all the
shot locations of the baseline survey.
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Figure 2.5 Schematic comparison between different random realizations of a sub-
sampled grid. The subsampling factor is 3. As illustrated, random samples are
taken exactly on the grid. Moreover, the samples are exactly replicated whenever
there is an overlap between the time-lapse surveys.

2.6 Synthetic seismic case study—time-lapse
marine acquisition via time-jittered sources

To study a more realistic example, we carry out a number of experiments on 2-D seis-
mic lines generated from a synthetic velocity model—the BG COMPASS model (pro-
vided by BG Group). To illustrate the performance of randomized subsamplings—
in particular the time-jittered marine acquisition—in time-lapse seismic, we use a
subset of the BG COMPASS model (Figure 2.6a) for the baseline. We define the
monitor model (Figure 2.6b) from the baseline via a fluid substitution resulting in
a localized time-lapse difference at the reservoir level as shown in Figure 2.6c.

(a) (b) (c)

Figure 2.6 Reservoir zoom of the synthetic time-lapse velocity models showing the
change in velocity as a result of fluid substitution. (a) Baseline model, (b) monitor
model, (c) difference between (a) and (b).
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Using IWAVE (Symes, 2010) time-stepping acoustic simulation software, two
acoustic datasets with a conventional source (and receiver) sampling of 12.5m are
generated, one from the baseline model and the other from the monitor model.
Each dataset has Nt = 512 time samples, Nr = 100 receivers, and Ns = 100 sources.
Subtracting the two datasets yields the time-lapse difference, whose amplitude is
small in comparison to the two datasets (about one-tenth). Since no noise is added to
the data, the time-lapse difference is simply the time-lapse signal. A receiver gather
from the simulated baseline data, the monitor data and the corresponding time-lapse
difference is shown in Figure 2.7. In order to make the time-lapse difference visible,
the color axis for the figures showing the time-lapse difference is one-tenth the scale
of the color axis for the figures showing the baseline and the monitor data. This
colormap applies for the remainder of the chapter. Also, the first source position
in the receiver gathers—labeled as 0m in the figures—corresponds to 725m in the
synthetic velocity model.

(a) (b) (c)

(d) (e)

Figure 2.7 A synthetic receiver gather from the conventional (a) baseline survey,
(b) monitor survey. (c) The corresponding 4-D signal. (d) Color scale of the vintages.
(e) Color scale of the 4-D signal. Note that (e) is one-tenth the scale of (d). These
color scales apply to all the corresponding figures for the vintages and the 4-D signal.

2.6.1 Time-jittered marine acquisition

(Wason and Herrmann, 2013) presented a pragmatic single vessel, albeit easily ex-
tendable to multiple vessels, simultaneous marine acquisition scheme that leverages
CS by invoking randomness in the acquisition via random jittering of the source fir-
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ing times. As a result, source interferences become incoherent in common-receiver
gathers creating a favorable condition for separating the simultaneous data into con-
ventional nonsimultaneous data (also known as “deblending”) via curvelet-domain
sparsity promotion. Like missing-trace interpolation, the randomization via jitter-
ing turns the recovery into a relatively simple “denoising” problem with control over
the maximum gap size between adjacent shot locations (Hennenfent and Herrmann,
2008), which is a practical requirement of wavefield reconstruction with localized
sparsifying transforms such as curvelets (Hennenfent and Herrmann, 2008). The
basic idea of jittered subsampling is to regularly decimate the interpolation grid
and subsequently perturb the coarse-grid sample points on the fine grid. A jittering
parameter, dictated by the type of acquisition and parameters such as the minimum
distance (or minimum recharge time for the airguns) required between adjacent
shots, relates to how close and how far the jittered sampling point can be from the
regular coarse grid, effectively controlling the maximum acquisition gap. Since we
are still on the grid, this is a case of discrete jittering. In this chapter, we limit
ourselves to the discrete case but this technique can relatively easily be taken off
the grid as we discuss in chapter 3.

A seismic line with Ns sources, Nr receivers, and Nt time samples can be re-
shaped into an N dimensional vector f , where N = Ns × Nr × Nt. For simplicity,
we assume that all sources see the same receivers, which makes our method ap-
plicable to marine acquisition with ocean-bottom cables or nodes (OBC or OBN).
As stated previously, seismic data volumes permit a compressible representation
x in the curvelet domain denoted by S. Therefore, f = SHx, where H denotes
the Hermitian transpose (or adjoint), which equals the inverse curvelet transform.
Since curvelets are a redundant frame (an over-complete sparsifying dictionary),
S ∈ CP×N with P > N , and x ∈ CP .

With the inclusion of the sparsifying transform, the matrix A can be factored
into the product of a n×N (with n ≪ N) acquisition matrix M and the synthesis
matrix SH . The design of the acquisition matrix M is critical to the success of the
recovery algorithm. From a practical point of view, it is important to note that
matrix-vector products with these matrices are matrix free—i.e., these matrices
are operators that define the action of the matrix on a vector. Since the marine
acquisition is performed in the source-time domain, the acquisition operator M
is a combined jittered-shot selector and time-shifting operator. Note that in this
framework it is also possible to randomly subsample the receivers.

Given a baseline data vector f1 and a monitor data vector f2, x1 and x2 are the
corresponding sparse representations—i.e., f1 = SHx1, and f2 = SHx2. Given the
measurements y1 = M1f1 and y2 = M2f2, and A1 = M1S

H , A2 = M2S
H , our aim

is to recover sparse approximations f̃1 and f̃2 by solving sparse recovery problems for
the scenarios (IRS and JRM) as described above from which the time-lapse signal
can be computed.
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2.6.2 Acquisition geometry

In time-jittered marine acquisition, source vessels map the survey area firing shots
at jittered time-instances, which translate to jittered shot locations for a given speed
of the source vessel. Conventional acquisition with one source vessel and two airgun
arrays—where each airgun array fires at every alternate periodic location—is called
flip-flop acquisition. If we wish to acquire 10.0 s—long shot records at every 12.5m,
the speed of the source vessel would have to be about 1.25m/s (approximately 2.5
knots). Figure 2.8a illustrates one such conventional acquisition scheme, where each
airgun array fires every 20.0 s (or 25.0m) in a flip-flop manner, traveling at about
1.25m/s, resulting in nonoverlapping shot records of 10.0 s every 12.5m. In time-
jittered acquisition, Figure 2.8b, each airgun array fires at every 20.0 s jittered time-
instances, traveling at about 2.5m/s (approximately 5.0 knots), with the receivers
(OBC) recording continuously, resulting in overlapping (or blended) shot records
(Figure 2.9a). Since the acquisition design involves subsampling, the acquired data
volume has overlapping shot records and missing shots/traces. Consequently, the
jittered flip-flop acquisition might not mimic the conventional flip-flop acquisition
where airgun array 1 and 2 fire one after the other—i.e., in Figures 2.8b and 2.8c, a
circle (denoting array 1) may be followed by another circle instead of a star (denoting
array 2). The minimum interval between the jittered times, however, is maintained
at 10.0 s (typical interval required for airgun recharge) and the maximum interval
is 30.0 s. For the speed of 2.5m/s, this translates to jittering a 50.0m source grid
with a minimum (and maximum) interval of 25.0m (and 75.0m) between jittered
shots. Both arrays fire at the 50.0m jittered grid independent of each other.

Two realizations of the time-jittered marine acquisition are shown in Figures 2.8b
and 2.8c, one each for the baseline and the monitor survey. Acquisition on the 50.0m
jittered grid results in an subsampling factor,

η =
1

number of airgun arrays×
jittered spatial grid interval

conventional spatial grid interval =
1

2
× 50.0 m
12.5 m = 2.

(2.8)
Figures 2.9a and 2.9b show the corresponding randomly subsampled and simulta-
neous measurements for the baseline and monitor surveys, respectively. Note that
only 50.0 s of the continuously recorded data is shown. If we simply apply the
adjoint of the acquisition operator to the simultaneous data—i.e., MHy, the inter-
ferences (or source crosstalk) due to overlaps in the shot records appear as random
noise—i.e., incoherent and nonsparse, as illustrated in Figures 2.9c and 2.9d. Our
aim is to recover conventional, nonoverlapping shot records from simultaneous data
by working with the entire (simultaneous) data volume, and not on a shot-by-shot
basis. For the present scenario, since η = 2, the recovery problem becomes a joint
deblending and interpolation problem. In contrast to conventional acquisition at
a source sampling grid of 12.5m (Figure 2.8a), time-jittered acquisition takes half
the acquisition time (Figures 2.8b and 2.8c), and the simultaneous data is separated
into its individual shot records along with interpolation to the 12.5m sampling grid.
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(a) (b)

(c)

Figure 2.8 Acquisition geometry: (a) conventional marine acquisition with one
source vessel and two airgun arrays; time-jittered marine acquisition (with η = 2)
for (b) baseline, and (c) monitor. Note the acquisition speedup during jittered
acquisition, where the recording time is reduced to one-half the recording time of
the conventional acquisition. (b) and (c) are plotted on the same scale as (a) in
order to make the jittered locations easily visible.
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The recovery problem is solved by applying the independent recovery strategy and
the joint recovery method, as we will describe in the next section.

2.6.3 Experiments and observations

To analyze the implications of the time-jittered marine acquisition in time-lapse
seismic, we follow the same sequence of experiments as conducted for the styl-
ized examples—i.e., we compare the independent (IRS) and joint recovery methods
(JRM) for varying degrees of replicability in the acquisition. Given the 12.5m spatial
sampling of the simulated (conventional) time-lapse data, applying the time-jittered
marine acquisition scheme results in a subsampling factor, η = 2 (Equation 2.8). In
practice, this corresponds to an improved efficiency of the acquisition with the same
factor. Recent work (Mosher et al., 2014) has shown that factors of two or as high
as ten in efficiency improvement are achievable in the field. With this subsampling
factor, the number of measurements for each experiment is fixed—i.e., n = N/2,
each for y1 and y2 albeit other scenarios are possible.

We simulate different realizations of the time-jittered marine acquisition with
100%, 50%, and 25% overlap between the baseline and monitor surveys. Because
we are in a discrete setting, these overlaps translate one-to-one into percentages of
replicated on-the-grid shot locations for the surveys. Since η = 2, and by virtue
of the design of the blended acquisition, it is not possible to have two completely
different (0% overlap) realizations of the time-jittered acquisition. In all cases, we
recover the deblended and interpolated baseline and monitor data from the blended
data y1 and y2, respectively, using the independent recovery strategy (by solving
Equation 2.2) separately and the joint recovery method (by solving Equation 2.6).
As stated previously, the inherent time-lapse difference is computed by subtracting
the recovered baseline and monitor data.

We perform 100 experiments for the baseline measurements, wherein each ex-
periment has a different random realization of the measurement matrix A1. Then,
for each experiment, we fix the baseline measurement and subsequently work with
different random realizations for the monitor survey, each corresponding to the 50%
and the 25% overlap. The purpose of doing this is to examine the impact of degree of
replicability of acquisition in time-lapse seismic. Table 2.1 summarizes the recovery
results for the stacked sections, in terms of the signal-to-noise ratio defined as

SNR(f , f̃) = −20 log10
∥f − f̃∥2
∥f∥2

, (2.9)

for different overlaps between the baseline and monitor surveys—i.e., measurement
matrices A1 and A2. Each SNR value is an average of 100 experiments including
the standard deviation.

Figure 2.10 shows the recovered receiver gathers and difference plots for the
monitor survey (for the different overlaps) using the independent recovery strat-
egy (IRS), and Figure 2.11 shows the corresponding result using the joint recovery
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(a) (b)

(c) (d)

Figure 2.9 Simultaneous data for the (a) baseline and (b) monitor surveys (only
50.0 s of the full data is shown). Interferences (or source crosstalk) in a common-
receiver gather for the (c) baseline and (d) monitor surveys, respectively. Since the
subsampling factor η = 2, (c) and (d) also have missing traces. The simultaneous
data is separated and interpolated to a sampling grid of 12.5m.
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method (JRM). As illustrated in these figures, JRM leads to significantly improved
recovery of the vintage compared to IRS because it exploits the shared information
between the baseline and monitor data. Moreover, the recovery improves with de-
crease in the overlap. The IRS and JRM recovered time-lapse differences for the
different overlaps are shown in Figure 2.12, which shows that recovery via JRM is
still significantly better than IRS, however, the recovery is slightly improved with
increase in the overlap. The edge artifacts in Figures 2.10, 2.11 and 2.12 are related
to missing traces near the edges that curvelets are unable to reconstruct.

The SNRs for the stacked sections indicate a similar trend in the observations
as made from the stylized experiments—i.e., (i) JRM performs better than IRS
because it exploits information shared between the baseline and monitor data. Note
that the SNR value, which is an average of the 100 experiments, for recovery of the
baseline dataset via IRS is repeated for all three cases of overlap because we work
with the same 100 realizations of the jittered acquisition throughout. However,
for each of the 100 experiments, different realizations are drawn for the monitor
survey, which explains the variations in the SNRs for the recovery via IRS. Similar
fluctuations were observed by (Herrmann, 2010). (ii) Replication of surveys hardly
affects recovery of the vintages via IRS (note similar SNRs), since the processing
is done in parallel and independently. (iii) Recovery of the baseline and monitor
data with JRM is better when there is a small degree of overlap between the two
surveys, and it decreases with increasing degrees of overlap. As explained earlier,
this behavior can be attributed to partial independence of the measurement matrices
that contribute additional information via the first column of A in Equation 2.6, i.e.,
for time-lapse seismic, independent surveys give additional structural information
leading to improved recovery quality of the vintages. (iv) The converse is true for
recovery of the time-lapse difference, wherein it is better if the surveys are exactly
replicated. Again, as stated previously, the reason for this is the increased sparsity
of the time-lapse difference itself and apparent cancelations of recovery errors due
to the exactly replicated geometry.

In addition to the above observations, we find that for 100% overlap, good
recovery of the stacks for IRS and JRM is possible with SNRs that are similar for
the time-lapse difference and the vintages themselves. The standard deviations for
the two recovery methods are also similar. One could construe that this is the ideal
situation but unfortunately it is not easily attained in practice. As we move to more
practical acquisition schemes where we decrease the overlap between the surveys, we
see a drastic jump downwards in the SNRs for the time-lapse stack obtained with
IRS. The results from JRM, on the other hand, decrease much more gradually with
standard deviations that vary slightly from those for IRS, however, drops off with
decrease in the overlap. In contrast, we actually see significant improvements for
the SNRs of the stacks of both the baseline and monitor data with slight variations
in the standard deviations.

Remember, that the number of measurements is the same for all experiments and
the observed differences can be fully attributed to the performance of the recovery
method in relation to the overlap between the two surveys encoded in the measure-
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ment matrices. Also, the improvements in SNRs of the vintages are significant as we
lower the overlap, which goes at the expense of a relatively small loss in SNR for the
time-lapse stack. However, given the context of randomized subsampling, it is im-
portant to recover the finely sampled vintages and then the time-lapse difference. In
addition, time-lapse differences are often studied via differences in certain poststack
attributes computed from the vintages, hence, reinforcing the importance of recov-
ering prestack baseline and monitor data as opposed to recovering the time-lapse
difference alone. While some degree of replication seemingly improves the prestack
time-lapse difference, we feel that quality of the vintages themselves should prevail
in the light of the above discussion. In addition, concentrating on the quality of the
vintages gives us the option to compute prestack time-lapse differences in alternative
ways (Wang et al., 2008).

Overlap Baseline Monitor 4-D signal
IRS JRM IRS JRM IRS JRM

100% 23.1 ± 1.2 24.8 ± 1.2 23.1 ± 1.3 24.8 ± 1.2 21.4 ± 1.8 23.4 ± 2.1
50% 23.1 ± 1.2 32.8 ± 1.6 23.4 ± 1.2 32.8 ± 1.6 9.1 ± 1.2 20.2 ± 1.3
25% 23.1 ± 1.2 35.3 ± 1.5 22.0 ± 1.1 35.0 ± 1.5 7.8 ± 1.3 18.0 ± 1.1

Table 2.1 Summary of recoveries in terms of SNR (in dB) for the stacked sections.

All these observations are corroborated by the plots of the recovered (monitor)
receiver gathers and their differences from the original (idealized) gather in Fig-
ures 2.10 and 2.11, and the recovered time-lapse differences in Figure 2.12. Stacked
sections of the IRS and the JRM recovered time-lapse difference are shown in Fig-
ure 2.13.

2.6.4 Repeatability measure

Aside from measuring SNRs, researchers have introduced repeatability measures
expressing the similarity between prestack and poststack time-lapse datasets. One
of the most commonly used metrics, which gives an intuitive understanding of the
data repeatability, is the normalized root-mean-square (NRMS, Kragh and Christie,
2002):

NRMS =
2×,RMS(f̃2 − f̃1)

RMS(f̃1) + RMS(f̃2)
, (2.10)

with RMS(f̃) being the root-mean-square of either vintage. This formula implies that
the lower the NRMS, the higher the repeatability between the recovered datasets.
Usually, lower levels of NRMS are observed for stacked data compared to prestack
data since stacking reduces uncorrelated random noise. A NRMS ratio of 0 is achiev-
able only in a perfectly repeatable world. The lower the NRMS value, the more re-
peatable the data are. In our studies, we consider NRMS ratios between 0.1 and 0.2
as acceptable and ratios less than 0.1 as excellent. To further evaluate the results
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(a) (b) (c)

(d) (e) (f)

Figure 2.10 Receiver gathers (from monitor survey) recovered via IRS from time-
jittered marine acquisition with (a) 100%, (b) 50%, and (c) 25% overlap in the
measurement matrices (A1 and A2). (d), (e), and (f) Corresponding difference
plots from the original receiver gather (2.7b).

of our synthetic seismic experiment, we compute the NRMS ratios from stacked
sections before and after recovery via IRS and JRM.

To compute this quantity, we extract time windows from stacked sections around
two-way travel time between 0.5 s and 1.3 s, where we know there is no time-lapse
signal present. We obtain the stacked sections before and after processing by either
applying the adjoint of the sampling matrix (see discussion under Equation 2.8) to
the observed data or by solving a sparsity-promoting program. The former serves
as a proxy for acquisition scenarios where one relies on the fold to stack out acqui-
sition related artifacts. Results of this exercise for 50% overlap and 25% overlap
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(a) (b) (c)

(d) (e) (f)

Figure 2.11 Receiver gathers (from monitor survey) recovered via JRM from time-
jittered marine acquisition with (a) 100%, (b) 50%, and (c) 25% overlap in the
measurement matrices (A1 and A2). (d), (e), and (f) Corresponding difference
plots from the original receiver gather (2.7b).

are included in Figures 2.14a and 2.14b. These plots clearly show that (i) simply
applying the adjoint, followed by stacking, leads to poor repeatability, and therefore
is unsuitable for time-lapse practices; (ii) sparse recovery improves the NRMS; (iii)
exploiting shared information amongst the vintages leads to near optimal values
for the NRMS despite the subsampling; and finally (iv) high degrees of repeatabil-
ity of recovered data are achievable from data collected with small overlaps in the
acquisition geometry.

35



(a) (b) (c)

(d) (e) (f)

Figure 2.12 Recovered 4-D signal for the (a) 100%, (b) 50%, and (c) 25% overlap.
Top row: IRS, bottom row: JRM. Note that the color axis is one-tenth the scale of
the color axis for the vintages.

2.7 Discussion
Obtaining useful time-lapse seismic is challenging for many reasons, including cost,
the need to calibrate the surveys, and the subsequent processing to extract reliable
time-lapse information. Meeting these challenges in the field has resulted in acqui-
sitions which aim to replicate the geometry of the previous survey(s) as precisely as
possible. Unfortunately, this replication can be both difficult to achieve and expen-
sive. Post acquisition, processing aims to improve the repeatability of the data such
that certain (poststack) attributes can be derived reliably from the baseline and
monitor surveys. Within this context, our aim is to reduce the cost and improve the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.13 Stacked sections. (a) baseline; (b) true 4-D signal; reconstructed 4-D
signals via IRS for 100% (c), 50%(e), and 25% (g) overlap; the reconstructed 4-D
signals via JRM for 100%(d), 50%(f), and 25% (h) overlap. Notice the improvements
for JRM where we see much less deterioration as the overlap between the surveys
decreases. Note that the color axis for the time-lapse difference stacks is one-tenth
the scale of the color axis for the baseline stack.
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(a)

(b)

Figure 2.14 NRMS for each recovered trace of the stacked section for (a) 50% and
the (b) 25% overlap. Vintages obtained with the joint recovery method are more
repeatable compared to those obtained via independent recovery and the “unpro-
cessed” stacks. The latter are unsuitable for time lapse.
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quality of the prestack baseline and monitor data without relying on expensive fine
sampling and high degrees of replicability of the surveys. Our methodology involves
a combination of economical randomized samplings and sparsity-promoting data
recovery. The latter exploits (curvelet-domain) sparsity and correlations amongst
different vintages. To the authors’ knowledge, this approach is among the first
to address time-lapse seismic problems in which the common component amongst
vintages—and innovations with respect to this shared component—is made explicit.

The presented synthetic seismic case study, supported by the findings from the
stylized examples and theoretical results from the distributed compressive sensing
literature (Baron et al., 2009a), represents a proof of concept for how sharing infor-
mation amongst the vintages can lead to high-fidelity vintages and 4-D signals (with
minor trade-offs) in a cost effective manner. This approach creates new possibili-
ties for meeting modern survey objectives, including cost and environmental impact
considerations, and improvements in spatial sampling. In this chapter, even though
our measurements are taken on the grid, allowing us to ignore errors related to sam-
pling off the grid, our proposed time-lapse acquisition is low-cost since we are always
subsampled in the surveys. Our joint recovery model produces finely sampled data
volumes from these subsampled, and not necessarily replicable, randomized surveys.
These data volumes exhibit better repeatability levels (in terms of NRMS ratios)
compared to independent recovery, where correlations amongst the vintages are not
exploited.

In chapter 3, we demonstrate how we deal with the effects of non-replicability
of the surveys when we take measurements from an irregular grid. We demonstrate
that errors related to being off the grid cannot be ignored. The “bad news” is that
replication is unattainable because small inevitable deviations in the shot locations
amongst the time-lapse surveys negate the benefit of replication for the time-lapse
signal itself. However, the good news is that a slightly deviated measurement al-
ready adds information that improves recovery of the vintages. This implies that an
argument can be made to not replicate the surveys as long as we know sufficiently
accurately where we fired in the field. Please remember that the claims of this pa-
per relate to the unnecessary requirement to visit the same randomly subsampled
on-the-grid shot locations during the two, or more, surveys.

Furthermore, we did not consider surveys that have been acquired in situations
where there are significant variations in the water column velocities amongst the
different surveys. As long as these physical changes can be modeled, we do not
foresee problems. As expected using standard CS, our recovery method should be
stable with respect to noise (Candes et al., 2006), but this needs to be investigated
further. Moreover, recent successes in the application of compressive sensing to ac-
tual land and marine field data acquisition (see e.g. (Mosher et al., 2014)) support
the fact that these technical challenges with noise and calibration can be overcome
in practice. Our future research will also involve working with towed-streamer sur-
veys where other challenges like the sparse and irregular crossline sampling will be
investigated.
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In this study, we concentrated our efforts on producing high-quality baseline and
monitor surveys from economic randomized acquisitions. There are areas of applica-
tion for the joint recovery model that have not yet been explored in detail, such as
imaging and full-waveform inversion problems. Early results on these applications
suggest that our joint recovery model extends to sparsity-promoting imaging (Tu
et al., 2011; Herrmann and Li, 2012) including imaging with surface-related mul-
tiples, and time-lapse full-waveform inversion (Oghenekohwo et al., 2015). In all
applications, the use of shared information amongst vintages improves the inversion
results even for acquisitions with large gaps.

Finally, we note that several authors use the shared information in time-lapse
vintages in inversion formulations that differ from ours. For instance, double dif-
ference waveform inversion (Yang et al., 2014, 2015; Asnaashari et al., 2015), total-
variation norm minimization on time-lapse earth models (Maharramov and Biondi,
2014; Maharramov et al., 2016), and bootstrap inversion (Kamei and Lumley, 2017)
all present alternative ways of extracting 4D changes from time-lapse data.

2.8 Conclusions
We considered the situation of recovering time-lapse data from on-the-grid but ran-
domly subsampled surveys. In this idealized setting, where we ignore the effects
of being off the grid, we found that it is better not to revisit the on-the-grid shot
locations amongst the time-lapse surveys when the vintages themselves are of prime
interest. This result is a direct consequence of introducing a common component,
which contains information shared amongst the vintages, as part of our proposed
joint recovery method. Compared to independent recoveries of the vintages, we ob-
tain time-lapse data exhibiting a higher degree of repeatability in terms of normal-
ized root-mean-square ratios. Under the above stated idealized setting and ignoring
complicating factors such as tidal differences, our proposed method lowers the cost
and environmental imprint of acquisition because fewer shot locations are visited.
It also allows us to extend the survey area or to increase the data’s resolution at
the same costs as conventional surveys. Our improvements concern the vintages
and not the time-lapse difference itself, which would benefit if we choose to use the
same shot locations during the surveys. Because we are generally interested in “post-
stack” attributes derived from the vintages, their recovery took prevalence. So, we
make the argument not to replicate—i.e., revisit on-the-grid shot locations during
randomized surveys in cases where poststack time-lapse attributes are of interest
only.
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Chapter 3

Low-cost time-lapse seismic with
distributed Compressive
Sensing—impact on repeatability

3.1 Summary
Irregular or off-the-grid spatial sampling of sources and receivers is inevitable in field
seismic acquisitions. Consequently, time-lapse surveys become particularly expen-
sive since current practices aim to replicate densely sampled surveys for monitoring
changes occurring in the reservoir due to hydrocarbon production. We demonstrate
that under certain circumstances, high-quality prestack data can be obtained from
cheap randomized subsampled measurements that are observed from nonreplicated
surveys. We extend our time-jittered marine acquisition to time-lapse surveys by de-
signing acquisition on irregular spatial grids that render simultaneous, subsampled
and irregular measurements. Using the fact that different time-lapse data share
information and that nonreplicated surveys add information when prestack data
are recovered jointly, we recover periodic densely sampled and colocated prestack
data by adapting the recovery method to incorporate a regularization operator that
maps traces from an irregular spatial grid to a regular periodic grid. The recovery
method is, therefore, a combined operation of regularization, interpolation (esti-
mating missing fine-grid traces from subsampled coarse-grid data), and source sep-
aration (unraveling overlapping shot records). By relaxing the insistence on repli-
cability between surveys, we find that recovery of the time-lapse difference shows
little variability for realistic field scenarios of slightly nonreplicated surveys that suf-
fer from unavoidable natural deviations in spatial sampling of shots (or receivers)
and pragmatic compressed-sensing based nonreplicated surveys when compared to
the “ideal” scenario of exact replicability between surveys. Moreover, the recovered
densely sampled prestack baseline and monitor data improve significantly when the
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acquisitions are not replicated, and hence can serve as input to extract poststack
attributes used to compute time-lapse differences. Our observations are based on ex-
periments conducted for an ocean-bottom cable survey acquired with time-jittered
continuous recording assuming source equalization (or same source signature) for
the time-lapse surveys and no changes in wave heights, water column velocities or
temperature and salinity profiles, etc.

3.2 Introduction
Simultaneous marine acquisition is being recognized as an economic and environmen-
tally more sustainable way to sample seismic data and speedup acquisition, wherein
single or multiple source vessels fire shots at random, compressed times resulting
in overlapping shot records (de Kok and Gillespie, 2002; Beasley, 2008; Berkhout,
2008; Hampson et al., 2008b; Moldoveanu and Quigley, 2011; Abma et al., 2013),
and hence generating compressed seismic data volumes. The aim then is to sepa-
rate the overlapping shot records into individual shot records, as acquired during
conventional acquisition, but with denser source sampling while preserving ampli-
tudes of the late, often weak, arrivals. This leads to recovering densely sampled
data economically, which is essential for producing high-resolution images of the
subsurface.

(Mansour et al., 2012), (Wason and Herrmann, 2013) and (Mosher et al., 2014)
have showed that compressed sensing (CS, Candès et al., 2006; Donoho, 2006) is
a viable technology to sample seismic data economically with low environmental
imprint—by reducing numbers of shots (or injected energy in the subsurface) or
compressing survey times. (Mansour et al., 2012) and (Wason and Herrmann, 2013)
proposed an alternate sampling strategy for simultaneous acquisition (“time-jittered”
marine), addressing the separation problem through a combination of tailored (si-
multaneous) acquisition design and sparsity-promoting recovery via convex optimiza-
tion using ℓ1 objectives. This separation technique interpolates sub-Nyquist jittered
shot positions to a fine regular grid while unraveling the overlapping shots. The
time-jittered marine acquisition is designed for continuous recording, fixed-receiver
(or “static”) geometries, which is different from the case of towed-streamer (or “dy-
namic”) geometries, wherein multiple sources fire shots within a time interval of
(0, 1) or (0, 2) s generating overlapping shot records that need to be separated into
its constituent sources, i.e., a data volume for each individual source (Kumar et al.,
2015). Our approach for conventional data recovery from simultaneous data from
static geometries can equally apply to other settings including static land and other
static marine geometries.

The implications of randomization in time-lapse (or 4D) seismic, however, are
less well-understood since the current paradigm relies on dense sampling and repli-
cability amongst the baseline and monitor surveys (Lumley and Behrens, 1998).
These requirements impose major challenges because dense sampling is prohibitively
expensive and variations in acquisition geometries (between the surveys) due to
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physical constraints do not allow for exact replication of the surveys. In chapter
2, we presented a new approach (the “joint recovery method”) that addresses these
acquisition- and processing-related issues by explicitly exploiting common informa-
tion shared by the different time-lapse vintages. Our analyses were carried out
assuming that the observations lied on a discrete grid so that exact survey replica-
bility is in principle achievable. We also assume sources to have the same source
signature for the time-lapse surveys. While assuming source equalization in this
chapter, we extend our work on simultaneous time-jittered marine acquisition to
time-lapse surveys for more realistic field acquisitions that lie on irregular spatial
grids, where the notion of exact replicability of the surveys is inexistent. This is
because the “real” world suffers from unavoidable deviations between pre- and post-
acquisition shot (and receiver) positions, rendering regular, periodic spatial grids
irregular, and hence exact replication of the surveys impossible. As mentioned later
in the chapter, accounting for the irregularity of seismic data is key to recovering
densely sampled data. Moreover, while we do not insist that we actually visit pre-
designed (irregular) shot positions, but it is important to know these positions to
sufficient accuracy after acquisition for high-quality data recovery. Recent successes
in the application of compressed sensing to land and marine field data acquisition
(see e.g., Mosher et al., 2014) show that this can be achieved in practice.

Simultaneous time-jittered marine acquisition generates compressed and sub-
sampled data volumes, therefore, extending this to time-lapse surveys generates
compressed and subsampled baseline and monitor data. Consequently, we are inter-
ested in recovering densely sampled vintages and time-lapse difference. Moreover,
time-lapse differences are often studied via differences in certain poststack attributes
computed from the vintages (Landrø, 2001; Spetzler and Kvam, 2006), hence, we
prioritize on recovering the prestack vintages. In this chapter, we push this technol-
ogy to realistic settings of off-the-grid acquisitions and demonstrate that we actually
gain if we relax the insistence to replicate surveys since even the smallest known de-
viations from the grid can lead to significant improvements in the recovery of the
vintages with minimal compromise with the recovery of the time-lapse difference.

3.2.1 Motivation: on-the-grid vs. off-the-grid data recovery

Chapter 2 illustrated that the joint recovery method gives better recoveries of time-
lapse data and time-lapse difference than the independent recovery strategy, since
the former approach exploits the common information shared by the vintages. It
also showed that “exact” replication of the baseline and monitor surveys lead to
good recovery of the time-lapse difference but not of the vintages. These analyses,
however, were carried out assuming that the observations lied on a discrete grid so
that exact survey replicability is achievable. Realistic field acquisitions, on the con-
trary, lie off the grid—i.e., have irregular spatial sampling—where exact replicability
of the surveys is inexistent. Figure 3.1 shows a comparison between conventional
periodic acquisition which generates data with nonoverlapping shot records, and
simultaneous time-jittered acquisition which generates compressed recordings with
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overlapping shots. Note that the sampling grid for conventional acquisition “in the
field” would be slightly irregular, however, this in contrast to the jittered acqui-
sition which by virtue of its design is aperiodic and lies on an irregular sampling
grid. Since the time-jittered acquisition scheme leverages compressed sensing—the
success of which hinges on randomized subsampling—additional and unavoidable
deviations in the field add to the randomization of the designed irregular shot posi-
tions, and helps in sparsity-promoting inversion as long as we know the final shot
positions to sufficient precision.

Figures 3.2a-3.2c show receiver gathers from a conventional (synthetic) time-
lapse data set and the corresponding time-lapse difference. To recover periodic
densely sampled data from simultaneous, compressed and irregular data, we could
implicitly rely on binning, however, failure to account for irregularity of seismic
traces can adversely affect the recovery as shown in Figure 3.3. This is because
binning does not represent accurate positions of irregular traces. Note that this
example corresponds to a time-jittered acquisition scheme for the baseline that is
exactly replicated for the monitor. The results show that binning offsets all the
gains of exact survey replication and also of the joint recovery method. Figure 3.4
illustrates the importance of regularization of irregular traces for high-quality data
recovery. In this chapter, therefore, we extend our work on simultaneous time-
jittered acquisition to time-lapse surveys by acknowledging the irregularity of field
seismic data and incorporating sparsifying transforms that exploit this irregularity
to recover periodic densely sampled time-lapse data.
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Figure 3.1 Schematic of conventional acquisition and simultaneous, compressed (or
time-jittered) acquisition. If the source sampling grid for conventional acquisition is
25.0m (or 50.0m for flip-flop acquisition), then the time-jittered acquisition jitters
(or perturbs) shot positions on a finer grid, which is 1/4 th of the conventional flip-
flop sampling grid, for a single air-gun array. Following the same strategy, adding
another air-gun array makes the acquisition simultaneous, and hence results in a
compressed data volume with overlapping, irregular shots and missing traces. The
sparsity-promoting inversion then aims to recover densely sampled data by sepa-
rating the overlapping shots, regularizing irregular traces and interpolating missing
traces.
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(a) (b) (c)

Figure 3.2 Synthetic receiver gathers from a conventional (a) baseline survey, (b)
monitor survey. (c) Corresponding time-lapse difference.
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(a) (b) (c)

(d) (e) (f)

Figure 3.3 Data recovery via the joint recovery method and binning. (a), (b)
Binned vintages and (c) corresponding time-lapse difference. (d), (e), (f) Corre-
sponding difference plots.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4 Data recovery via the joint recovery method and regularization. (a),
(b) Vintages and (c) time-lapse difference recovered via sparsity promotion including
regularization of irregular traces. (d), (e), (f) Corresponding difference plots. As
illustrated, regularization is imperative for high-quality data recovery.

3.2.2 Contributions

The contributions of this work can be summarized as follows. First, we present
an extension of our simultaneous time-jittered marine acquisition for time-lapse
surveys by working on more realistic field acquisition scenarios by incorporating
irregular spatial grids. Second, we leverage ideas from compressed sensing and
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distributed compressed sensing to develop an algorithm that separates simultaneous
data, regularizes irregular traces and interpolates missing traces—all at once. Third,
through simulated experiments, we show that insistence on replicability of time-
lapse surveys can be relaxed since small known deviations in shot positions from
a regular grid (or deviations in shot positions of the monitor survey from those in
the baseline survey) lead to significant improvements in the recovery of the vintages,
without drastic modifications in the recovery of the time-lapse difference.

3.2.3 Outline

The chapter is organized as follows. We begin with the description of the simultane-
ous time-jittered marine acquisition design, where we explain how subsampled and
irregular measurements are generated. Next, we introduce the nonequispaced fast
discrete curvelet transform (NFDCT) and its application to recover periodic densely
sampled seismic lines from simultaneous and irregular measurements via sparsity-
promoting inversion. We then extend this framework to time-lapse surveys where
we modify the measurement matrices in the joint recovery method to include the
off-the-grid information—i.e., the irregular shot positions and jittered times. Note
that we do not describe the independent recovery strategy since it is clear in chap-
ter 2 that the joint recovery method outperforms the former approach. We conduct
a series of synthetic seismic experiments with different random realizations of the
simultaneous time-jittered marine acquisition to assess the effects (or risks) of irreg-
ular sampling in the field on time-lapse data and demonstrate that high-quality data
recoveries are the norm and not the exception. We show this by generating 2D seis-
mic lines using two different velocity models—one with simple geology and complex
time-lapse difference (BG COMPASS model), and the other with complex geology
and complex time-lapse difference (SEAM Phase 1 model with simulated time-lapse
difference). Aside from computing signal-to-noise ratios measured with respect to
densely sampled true baseline, monitor, and time-lapse differences, we also measure
the economic and environmental performance of the proposed acquisition design
and recovery strategy by computing the improvement in spatial sampling.

3.3 Time-jittered marine acquisition
The objective of CS is to recover densely sampled data from (randomly) subsampled
data by exploiting sparse structure in the data during sparsity-promoting recovery.
(Mansour et al., 2012), (Wason and Herrmann, 2013) presented a pragmatic simul-
taneous marine acquisition scheme, termed as time-jittered marine, that leverages
ideas from compressed sensing by invoking randomness and subsampling—i.e., sam-
ple randomly with fewer samples than required by Nyquist sampling criteria in
the acquisition via random jittering of the source firing times. The success of CS
hinges on randomized subsampling since it renders subsampling related artifacts in-
coherent, and therefore nonsparse, favouring data recovery via structure-promoting
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inversion. Consequently, source interferences (in simultaneous acquisition) become
incoherent in common-receiver gathers creating a favorable condition for separat-
ing simultaneous data into conventional nonsimultaneous data via curvelet-domain
sparsity promotion. The CS paradigm, however, assumes signals to be sampled on
a periodic discrete grid—i.e., signals with sparse representation in finite discrete
dictionaries.

Data volumes collected during seismic acquisition represent discretization of ana-
log finite-energy wavefields in up to five dimensions including time—i.e., we acquire
an analog spatiotemporal wavefield f̄(t, x) ∈ L2((0, T ]× [−X,X]4), two dimensions
for receivers and two dimensions for sources, with time T in order of seconds and
length X in order of kilometers. In an ideal world, signals would perfectly lie on a pe-
riodic, regular grid. Hence, with a linear high-resolution analog-to-digital converter
Φ̄s, the discrete signal is represented as f [q] = f̄ ⋆ Φ̄s(q), for 0 ≤ q < N (Mallat,
2008), where the samples lie on a grid. Typically, these samples are organized into
a vector f = f [q]q=0,...,N−1 ∈ RN . Signals we encounter in the real world, however,
are usually not uniformly regular and do not lie on a regular grid. Therefore, it
is imperative to define an irregular sampling adapted to the local signal regularity
(Mallat, 2008). For irregular sampling, the discretized irregular signal is represented
as f [qn] = f̄ ⋆ Φ̄s(qn), for n = 0, ...,M −1 and M ≤ N , where qn are irregular points
(or nonequispaced nodes) randomly chosen from the set {0, ..., N − 1}. Its vector
representation is f = f [qn]n=0,...,M−1.

For a signal f0 ∈ RN that admits a sparse representation x0 in some transform
domain—i.e., f0 is sparse with respect to a basis or redundant frame S ∈ CP×N ,
with P ≥ N , such that f0 = SHx0 (x0 sparse), where H denotes the Hermitian
transpose—the goal in CS is to reconstruct the signal f0 from few random linear
measurements, y = Af0, where A is an n × N measurement matrix with n ≪ N .
Utilizing prior knowledge that f0 is sparse with respect to a basis or redundant frame
S and assuming the signal to be sampled on a periodic discrete grid, CS aims to
find an estimate x̃ for the underdetermined system of linear equations: y = Af0.
This is done by solving the basis pursuit (BP, Candès et al., 2006; Donoho, 2006)
convex optimization problem:

x̃ = argmin
x

∥x∥1 :=
N∑
i=1

|xi| subject to y = Ax. (3.1)

In the noise-free case, this problem finds amongst all possible vectors x, the vector
that has the smallest ℓ1-norm and that explains the observed subsampled data.

Mathematically, a seismic line with Ns sources, Nr receivers, and Nt time sam-
ples can be reshaped into an N dimensional vector f , where N = Ns × Nr × Nt.
Since real-world signals are not exactly sparse but compressible—i.e., can be well
approximated by a sparse signal—a compressible representation, x, of the seismic
line in the curvelet domain, S, is represented as f = SHx. Since curvelets are a
redundant frame (an over-complete sparsifying dictionary), S ∈ CP×N with P > N ,
and x ∈ CP . With the inclusion of the sparsifying transform, the measurement ma-
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trix A can be factored into the product of a n×N (with n ≪ N) acquisition matrix
M and the synthesis matrix SH—i.e., A = MSH . For the real-world irregular sig-
nals, however, we need to account for the acquired unstructured measurements for
high-resolution data recovery. We do this by introducing an operator in the recovery
algorithm (by modifying the measurement operator A—see details in the next sec-
tions) that acknowledges the irregularity of seismic traces and uses this information
to render regularized and interpolated data.

3.3.1 Acquisition geometry

In time-jittered marine acquisition, source vessels map the survey area firing shots at
jittered time instances, which translate to jittered shot positions for a given (fixed)
speed of the source vessel. The simultaneous data is time compressed, and therefore
acquired economically with low environmental imprint. The recovered separated
data is periodic and dense. For simplicity, we assume that all shot positions see
the same receivers, which makes our method applicable to marine acquisition with
ocean bottom cables or nodes (OBC or OBN). The receivers record continuously
resulting in simultaneous shot records. Randomization via jittered subsampling
offers control over the maximum gap size (on the acquisition grid), which is a prac-
tical requirement of wavefield reconstruction with localized sparsifying transforms
such as curvelets (Hennenfent and Herrmann, 2008). For simultaneous time-jittered
acquisition, parameters such as the minimum distance required between adjacent
shots and minimum recharge time for the air guns help in controlling the maximum
acquisition gap while maintaining the minimum realistic acquisition gap.

Conventional acquisition with one source vessel and two air-gun arrays where
each air-gun array fires at every alternate periodic location is called flip-flop acquisi-
tion. If we wish to acquire 10.0 s-long shot records at every 12.5m, the speed of the
source vessel would have to be about 1.25m/s (≈ 2.5 knots). Figure 3.5a illustrates
one such conventional acquisition scheme, where each air-gun array fires every 20.0 s
(or 25.0m) in a flip-flop manner traveling at about 1.25m/s, resulting in nonover-
lapping shot records of 10.0 s every 12.5m. In time-jittered acquisition, Figures 3.5b
and 3.5c, each air-gun array fires on average at every 20.0 s jittered time-instances
traveling at about 2.5m/s (≈ 5.0 knots) with the receivers (OBC/OBN) recording
continuously, resulting in overlapping shot records (Figures 3.6a and 3.6b). Note
that the acquisition design involves jittered subsampling—i.e., regular decimation of
the (fine) interpolation grid and subsequent perturbation of the coarse-grid points
completely off the fine grid. The idealized discrete jittered subsampling, by con-
trast, perturbs the coarse-grid points on the fine grid, as presented in chapter 2.
The subsampling factor is represented by η. Therefore, the acquired data volume
has overlapping shots and missing shots/traces (Figure 3.6a and 3.6b). For this
reason, the jittered flip-flop acquisition might not mimic the conventional flip-flop
acquisition where air-gun array 1 and 2 fire one after the other—i.e., in the center
and right-hand plots of Figure 3.5d a circle (denoting array 1) may be followed by
another circle instead of a star (denoting array 2), and vice versa. However, the
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minimum interval between the jittered times is maintained at 10.0 s (typical inter-
val required for air-gun recharge), while the maximum interval is 30.0 s. For the
speed of 2.5m/s, this translates to jittering a 50.0m source grid with a minimum
(and maximum) interval of 25.0m (and 75.0m) between jittered shots. Both arrays
fire at the 50.0m jittered grid independent of each other.

(a) (b) (c)

(d)

Figure 3.5 Marine acquisition with one source vessel and two air-gun arrays. (a)
Conventional flip-flop acquisition. Time-jittered acquisition with a subsampling
factor η = 2 for the (b) baseline and (c) monitor. Note the acquisition speedup
during jittered acquisition, where the recording time is reduced to one-half the
recording time of the conventional acquisition. (d) Zoomed sections of (a), (b) and
(c), respectively.

In time-jittered marine acquisition, the acquisition operator M is a combined
jittered-shot selector and time-shifting operator. Since data is acquired on an irreg-
ular grid, it is imperative to incorporate operators in the design of the acquisition
matrix M that account for and hence regularize the irregularity in the data. This
is critical to the success of the recovery algorithm. The off-the-grid acquisition de-
sign is different from that presented by (Li et al., 2012a), wherein an interpolated
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restriction operator accounts for irregular points by incorporating Lagrange interpo-
lation into the restriction operator—i.e., the measurements are approximated using
a kth-order Lagrange interpolation. In time-jittered acquisition, the jittered time
instances are put on a time grid (defined by a time-sampling interval) where each
jittered time instance is placed on the point closest to it on the regular time grid.
The difference between the true jittered time and the regular grid point, ∆t, is
corrected by shifting the traces by e−iω∆t, where ω is the angular frequency. The
irregularity in the shot positions is corrected by including the nonequispaced fast
Fourier transform, NFFT (Potts et al., 2001; Kunis, 2006), in the sparsifying oper-
ator S (Hennenfent and Herrmann, 2006; Hennenfent et al., 2010b), as described
in the next section. The NFFT evaluates a Fourier expansion at nonequispaced
locations defined by the time-jittered acquisition. Note that in this framework it is
also possible to randomly subsample the receivers.

Randomly subsampled and simultaneous measurements for the baseline and mon-
itor surveys are shown in Figures 3.6a and 3.6b, respectively. Note that only 40.0 s
of the continuously recorded data is shown. If we simply apply the adjoint of the
acquisition operator to the corresponding simultaneous data—i.e., MHy—the in-
terferences (or source crosstalk) due to overlapping shots appear as incoherent and
nonsparse in the receiver gathers (Figures 3.7a and 3.7b). Moreover, since regulariza-
tion (and interpolation) is performed by the NFFT inside a nonequispaced curvelet
framework (see next section), Figures 3.7a and 3.7b have Ns

η irregular traces, where
η > 1 is the subsampling factor. Since the baseline and monitor surveys have dif-
ferent irregular shot positions, the corresponding time-lapse difference cannot be
computed unless both time-lapse data are realigned to a common spatal grid. For
this purpose, if we apply the adjoint of a 1D NFFT operator N—i.e., NHMHy—the
time-lapse data are realigned to a common fine spatial grid (Figures 3.7c and 3.7d).
The corresponding time-lapse difference is shown in Figure 3.7e. As illustrated by
these figures, in order to eventually remove the interferences and interpolate miss-
ing traces it is important to consider the recovery problem as an inversion problem.
Since the time-jittered acquisition generates simultaneous, irregular data with miss-
ing traces, the recovery problem becomes a joint source separation, regularization
and interpolation problem.
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(a) (b)

Figure 3.6 Simultaneous data for the (a) baseline and (b) monitor surveys. Only
40.0 s of the full data is shown. Time-jittered acquisition generates a simultaneous
data volume with overlapping shots and missing shots.
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(a) (b)

(c) (d) (e)

Figure 3.7 Interferences (or source crosstalk) in a common-receiver gather for the
(a) baseline and (b) monitor surveys, respectively. Receiver gathers are obtained
via MHy for the time-lapse surveys. For a subsampling factor η, (a) and (b) have
Ns
η irregular traces. (c), (d) Common-receiver gathers for the baseline and monitor
surveys, respectively, after applying the adjoint of a 1D NFFT operator to (a) and
(b). (e) Corresponding time-lapse difference. As illustrated, the recovery problem
needs to be considered as a (sparse) structure-promoting inversion problem, wherein
the simultaneous data volume is separated, regularized and interpolated to a finer
sampling grid rendering interference-free data.
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3.3.2 From discrete to continuous spatial subsampling

Subsampling schemes that are based on an underlying fine interpolation grid incor-
porate the discrete (spatial) subsampling schemes, since the subsampling is done on
the grid. This situation typically occurs when binning continuous randomly-sampled
seismic data into small bins that define the fine grid used for interpolation (Hennen-
fent and Herrmann, 2008). For such cases, the wrapping-based fast discrete curvelet
transform, FDCT via wrapping (Candès et al., 2006) can be used to recover the
fully sampled data since the inherent fast Fourier transform (FFT) assumes regular
sampling along all coordinates. For the interested reader, the curvelet transform is
a multiscale, multidirectional, and localized transform that corresponds to a specific
tiling of the f-k domain into dyadic annuli based on concentric squares centered
around the zero-frequency zero-wavenumber point. Each annulus is subdivided into
parabolic angular wedges—i.e., length of wedge ∝ width2 of wedge. The architec-
ture of the analysis operator (or forward operation) of the FDCT via wrapping is as
follows: (1) apply the analysis 2D FFT; (2) form the angular wedges; (3) wrap each
wedge around the origin; and (4) apply the synthesis 2D FFT to each wedge. The
synthesis/adjoint operator—also the inverse owing to the tight-frame property—is
computed by reversing these operations (Candès et al., 2006).

Seismic data, however, is usually acquired irregularly, typically nonuniformly
sampled along the spatial coordinates. Simultaneous time-jittered marine acquisi-
tion, mentioned above, is an instance of acquiring seismic data on irregular spatial
grids. Hence, binning can lead to a poorly-jittered subsampling scheme, which will
not favor wavefield reconstruction by sparsity-promoting inversion. Moreover, fail-
ure to account for the nonuniformly sampled data can adversely affect seismic pro-
cessing, imaging, etc. Therefore, we should work with an extension to the curvelet
transform for irregular grids (Hennenfent et al., 2010b). Using this extension for the
simultaneous time-jittered marine acquisition will produce colocated fine-scale time-
lapse data. Continuous random sampling typically leads to improved interpolation
results because it does not create coherent subsampling artifacts (Xu et al., 2005b).

3.3.3 Nonequispaced fast discrete curvelet transform (NFDCT)

For irregularly acquired seismic data, the (FFT inside) FDCT (Candès et al., 2006)
assumes regular sampling along all (spatial) coordinates. Ignoring the nonuniformity
of the spatial sampling no longer helps in detecting the wavefronts because of a lack
of continuity. (Hennenfent and Herrmann, 2006) addressed this issue by extending
the FDCT to nonuniform (or irregular) grids via the nonequispaced fast Fourier
transform, NFFT (Potts et al., 2001; Kunis, 2006). The outcome was the ‘first
generation NFDCT’ (nonequispaced fast discrete curvelet transform), which relied
on accurate Fourier coefficients obtained by an ℓ2-regularized inversion of the NFFT.

The NFDCT handles irregular sampling, thus, exploring continuity along the
wavefronts by viewing seismic data in a geometrically correct way—typically nonuni-
formly sampled along the spatial coordinates (source and/or receiver). In (Hennen-

56



fent et al., 2010b), the authors introduced a ‘second generation NFDCT’, which is
based on a direct, ℓ1-regularized inversion of the operator that links curvelet coeffi-
cients to irregular data. Unlike the first generation NFDCT, the second generation
NFDCT is lossless by construction—i.e., the curvelet coefficients explain the data
at irregular locations exactly. This property is important for processing irregularly
sampled seismic data in the curvelet domain and bringing them back to their irregu-
lar recording locations with high fidelity. Note that the second generation NFDCT
is lossless for regularization not interpolation. The NFDCT framework as setup in
(Hennenfent et al., 2010b) basically involves a Kronecker product (⊗) of a 1D FFT
operator Ft, used along the temporal coordinate, and a 1D NFFT operator Nx, used
along the spatial coordinate, followed by the application of the curvelet tilling opera-
tor T that maps curvelet coefficients to the Fourier domain—i.e., B def

= T(Nx ⊗Ft).
Therefore, B is the NFDCT operator that links the curvelet coefficients to noneq-
uispaced traces. The 1D NFFT operator (Nx) replaces the 1D FFT operator (Fx)
that acts along the spatial coordinate in FDCT. Note that the NFDCT operator
described above is written differently than in (Hennenfent et al., 2010b) because
the latter defines the synthesis FFT operator as F, whereas F is the analysis FFT
operator in this chapter. This also ensures consistency of notation and terminology
with chapter 2.

For the proposed simultaneous acquisition, the joint problem of source separa-
tion, regularization and interpolation is addressed by using a sparsifying operator
(S) that handles the multidimensionality of this problem. Therefore, S def

= C ⊗W,
where C is a 2D NFDCT operator and W is a 1D wavelet operator. The NFDCT
operator is modified as

C
def
= T(Nxs ⊗ Fxr), (3.2)

where the 1D NFFT operator Nxs acts along the jittered shot coordinate and the 1D
FFT operator Fxr acts along the regular receiver coordinate. The 1D wavelet oper-
ator is applied on the time coordinate. As mentioned previously, the measurement
matrix A = MSH . From a practical point of view, it is important to note that
matrix-vector products with all the matrices are matrix free—i.e., these matrices
are operators that define the action of the matrix on a vector, but are never formed
explicitly.

In summary, recovery of nonoverlapping, periodic and densely sampled data
from simultaneous, irregular and compressed data is achieved by incorporating an
NFFT operator inside the curvelet framework that acts along the irregular spatial
coordinate(s) and applying time shifts to the traces wherever necessary. Note that
the NFFT operator is incorporated in the 2D NFDCT operator C, which is incor-
porated in the sparsifying operator S, and the time shift ∆t is incorporated in the
acquisition operator M. The NFFT computes (fine grid) 2D Fourier coefficients by
mapping the coarse nonuniform spatial grid to a fine uniform grid. The curvelet
coefficients are computed directly from the 2D Fourier coefficients.
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3.4 Time-lapse acquisition via jittered sources
In chapter 2, we extended the time-jittered marine acquisition to time-lapse surveys
where the shot positions were jittered on a discrete periodic grid. In this chapter, we
extend the framework to more realistic field acquisition scenarios by incorporating
irregular grids. Figure 3.5a illustrates a conventional marine acquisition scheme
and two realizations of the off-the-grid time-jittered marine acquisition are shown in
Figures 3.5b and 3.5c, one each for the baseline and the monitor survey. Remember
that these surveys generate simultaneous, irregular and subsampled measurements.
We assume no significant variations in the water column velocities, wave heights or
temperature and salinity profiles, etc., amongst the different surveys. The source
signature is also assumed to be the same.

We describe noise-free time-lapse data acquired from a baseline and a monitor
survey as yj = Ajxj for j = {1, 2}, where y1 and y2 represent the subsampled,
simultaneous measurements for the baseline and monitor surveys, respectively; A1

and A2 are the corresponding flat (n ≪ N < P ) measurement matrices. Note that
both the measurement matrices incorporate the NFDCT operator, as described
above, to account and correct for the irregularity in the observed measurements of
the baseline (y1) and monitor surveys (y2). Recovering densely sampled vintages
for each vintage independently (via Equation 3.1) is referred to as the independent
recovery strategy (IRS). Since in chapter 2 we demonstrated that recovery via IRS
is inferior to recovery via the joint recovery method, we work only with the latter
in this chapter.

3.4.1 Joint recovery method

The joint recovery method (JRM) performs a joint inversion by exploiting shared
information between the vintages. The joint recovery model is formulated as

[
y1

y2

]
=

[
A1 A1 0
A2 0 A2

]z0z1
z2

 , or

y = Az.

(3.3)

In this model, the vectors y1 and y2 represent observed measurements from the
baseline and monitor surveys, respectively. The vectors for the vintages are given
by

xj = z0 + zj , j ∈ 1, 2, (3.4)

where the common component is denoted by z0, and the innovations are denoted
by zj for j ∈ 1, 2 with respect to this common component that is shared by the
vintages. The symbol A is overloaded to refer to the matrix linking the observations
of the time-lapse surveys to the common component and innovations pertaining to
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the different vintages. The above joint recovery model can be extended to J > 2
surveys, yielding a J × (number of vintages+ 1) system.

Since the vintages share the common component in Equation 3.3, solving

z̃ = argmin
z

∥z∥1 subject to y = Az, (3.5)

will exploit the correlations amongst the vintages. Equation 3.5 seeks solutions for
the common component and innovations that have the smallest ℓ1-norm such that
the observations explain the incomplete recordings for both vintages. The densely
sampled vintages are estimated via Equation 5.6 with the recovered z̃ and the time-
lapse difference is computed via z̃1 − z̃2.

Given a baseline data vector f1 and a monitor data vector f2, x1 and x2 are
the corresponding sparse representations. Given the measurements y1 = M1f1 and
y2 = M2f2, and A1 = M1S

H
1 , A2 = M2S

H
2 , our aim is to recover the wavefields (or

sparse approximations) f̃1 and f̃2 by solving the sparse recovery problem as described
above from which the time-lapse signal can be computed. Note that S def

= C ⊗W,
where C is the NFDCT operator (see Equation 3.2) and W is a 1D wavelet operator.
The reconstructed wavefields f̃1 and f̃2 are obtained as: f̃1 = SH x̃1 and f̃2 = SH x̃2,
where x̃1 and x̃2 are the recovered sparse representations and the operator S is re-
defined to represent the Kronecker product between the standard FDCT operator
and the 1D wavelet operator. The standard FDCT operator is used because the
recovered sparse representations x̃1 and x̃2 correspond to the coefficients of the
regularized wavefields. Since we are always subsampled in both the baseline and
monitor surveys, have irregular traces and cannot exactly repeat, which is inherent
of the acquisition design and due to natural environmental constraints, we would like
to recover the periodic densely sampled prestack vintages and time-lapse difference.
For the given recovery problem, the vintages and time-lapse difference are mapped
to one colocated fine regular periodic grid.

3.5 Economic performance indicators
To quantify the cost savings associated with simultaneous acquisition, we measure
the performance of the proposed acquisition design and recovery scheme in terms of
an improved spatial-sampling ratio (ISSR), defined as

ISSR =
number of shots recovered via sparsity-promoting inversion

number of shots in simultaneous acquisition . (3.6)

For time-jittered marine acquisition, a subsampling factor η = 2, 4, ..., etc., implies a
gain in the spatial sampling by factor of 2, 4, ..., etc. In practice, this corresponds to
an improved efficiency of the acquisition by the same factor. Recently, (Mosher et al.,
2014) have shown that factors of two or as high as ten in efficiency improvement are
achievable in the field.
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The survey-time ratio (STR)—a performance indicator proposed by (Berkhout,
2008)—compares the time taken for conventional and simultaneous acquisition:

STR =
time of conventional acquisition
time of simultaneous acquisition . (3.7)

As mentioned previously, if we wish to acquire 10.0 s-long shot records at every
12.5m, the speed of the source vessel would have to be about 1.25m/s (≈ 2.5
knots). In simultaneous acquisition, the speed of the source vessel is approximately
maintained at (the standard) 2.5m/s (≈ 5.0 knots). Therefore, for a subsampling
factor of η = 2, 4, ..., etc., there is an implicit reduction in the survey time by 1

η .

3.6 Synthetic seismic case study
To illustrate the performance of our proposed joint recovery method for off-the-grid
surveys, we carry out a number of experiments on 2D seismic lines generated from
two different velocity models—first, the BG COMPASS model (provided by BG
Group) that has simple geology with complex time-lapse difference; and second, the
SEAM Phase 1 model (provided by HESS) that has complex geology with complex
time-lapse difference due to the complexity of the overburden. Note that for the
SEAM model, we generate the time-lapse difference via fluid substitution as shown
below. Also, the geology of the BG COMPASS model is relatively simpler than the
SEAM model, although it does have vertical and lateral complexity.

3.6.1 BG COMPASS model—simple geology, complex time-lapse
difference

The synthetic BG COMPASS model has a (relatively) simple geology but a complex
time-lapse difference. Figures 3.8a and 3.8b display the baseline and monitor models.
Note that this is a subset of the BG COMPASS model, wherein the monitor model
includes a gas cloud. The time-lapse difference in Figure 3.8c shows the gas cloud.

(a) (b) (c)

Figure 3.8 Subset of the BG COMPASS model. (a) Baseline model; (b) monitor
model; (c) difference between (a) and (b) showing the gas cloud.
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Using IWAVE (Symes, 2010), a time-stepping simulation software, two acoustic
data sets with a conventional source (and receiver) sampling of 12.5m are generated,
one from the baseline model and the other from the monitor model. Each data
set has Nt = 512 time samples, Nr = 260 receivers and Ns = 260 sources. The
time sampling interval is 0.004 s. Subtracting the two data sets yields the time-
lapse difference. Since no noise is added to the data, the time-lapse difference is
simply the time-lapse signal. A receiver gather from the simulated baseline data,
the monitor data and the corresponding time-lapse difference is shown in Figure 3.2a,
3.2b and 3.2c, respectively. The first shot position in the receiver gathers—labeled as
0m in the figures—corresponds to 1.5 km in the synthetic velocity model. Given the
spatial sampling of 12.5m, the subsampling factor η for the time-jittered acquisition
is 2. Hence, the number of measurements for each experiment is fixed—i.e., n =
N/η = N/2, each for y1 and y2. We also conduct experiments for η = 4.

To reflect current practices in time-lapse acquisition—where people aim to repli-
cate the surveys—we simulate 10 different realizations of the time-jittered marine
acquisition with 100% overlap between the baseline and monitor surveys. The term
“overlap” refers to the percentage of shot positions from the baseline survey revisited
(or replicated exactly) for the monitor survey, and therefore rows in the measure-
ment matrices A1 and A2 are exactly the same. Note that these shot positions are
irregular, and hence off the grid. However, since exact replication of the surveys in
the field is not possible, we conduct experiments to study the impact of deviations
in the shot positions that would occur naturally in the field. We introduce small
deviations of average ±(1, 2, 3)m in the shot positions of the baseline surveys to gen-
erate the shot positions for the monitor surveys. For instance, given a realization of
the time-jittered baseline survey, deviating each shot position by ≈ ±1m generates
shot positions for the corresponding monitor survey. Note that these deviations
are average deviations in the sense that for a given realization of the time-jittered
baseline survey, the shot positions are deviated by random real numbers resulting
in average deviations of ±1m, ±2m or ±3m. One of our aims is to analyze the
effects of nonreplication of the time-lapse surveys on time-lapse data—i.e., when
A1 ̸= A2. By virtue of the design of the simultaneous acquisition and based upon
the subsampling factor (η), it is not possible to have two completely different (0%
overlap) realizations of the time-jittered acquisition. Therefore, we compare recov-
eries from the above cases with the acquisition scenarios that have least possible (or
unavoidable) overlap between the time-lapse surveys. In all cases, we recover peri-
odic densely sampled baseline and monitor data from the simultaneous data y1 and
y2, respectively, using the joint recovery method (by solving Equation 3.5). The
inherent time-lapse difference is computed by subtracting the recovered baseline and
monitor data.

We conduct 10 experiments for the baseline measurements, wherein each exper-
iment has a different random realization of the measurement matrix A1. Then, for
each experiment, we fix the baseline measurement and subsequently work with dif-
ferent realizations of the monitor survey generated by introducing small deviations
in the shot positions and jittered firing times from the baseline survey, resulting in
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slightly different overlaps between the surveys. To get better insight on the effects of
nonreplication of the time-lapse surveys, we also conduct experiments for the case
of least possible overlap between the surveys. Tables 3.1 and 3.2 summarize the
recovery results for the time-lapse data for η = 2 and 4, respectively, in terms of
the signal-to-noise ratio defined as

SNR(f , f̃) = −20 log10
∥f − f̃∥2
∥f∥2

. (3.8)

Each table compares recoveries for different overlaps between the baseline and mon-
itor surveys, with and without position deviations. Each SNR value is an average
of 10 experiments including the standard deviation. Note that for time-jittered ac-
quisition with η = 2, the least possible overlap between the surveys is observed to
be greater than 0% and less than 15%. Hence, Table 3.1 shows the SNRs for the
overlap of < 15%. Similarly, for time-jittered acquisition with η = 4, Table 3.2
shows the SNRs for the overlap of < 5%.

We recover periodic densely sampled data from simultaneous, subsampled and
irregular data by solving Equation 3.5. The recovered time-lapse data is colocated,
regularized and interpolated to a fine uniform grid since both the measurement ma-
trices A1 and A2 incorporate a 2D nonequispaced fast discrete curvelet transform
that handles irregularity of traces by viewing the observed data in a geometrically
correct way. The SNRs of the recovered time-lapse data lead to some interesting ob-
servations. First, there is little variability in the recovery of the time-lapse difference
from (the ideal) 100% overlap between the surveys to the more realistic scenarios
of in-the-field acquisitions that have natural deviations or irregularities in the shot
positions. Second, time-lapse difference recovery from the least possible overlap
(between the surveys) is similar to the recovery of 100% overlap with and without
deviations. This is significant because it indicates a possibility to relax the insistence
on replication of the time-lapse surveys, which makes this technology challenging
and expensive. The small standard deviations for each case suggest little variability
in the recovery for different random realizations. Moreover, the standard deviations
are greater for cases other than the minimum overlap. The above observations hold
for both subsampling factors, η = 2 and 4, as illustrated in Figures 3.10 and 3.12.

Third, increasing deviations or irregularities in shot positions improve recovery of
the vintages (Figures 3.9c, 3.9e, 3.9g), with the minimum overlap between surveys
giving the best recovery (Figure 3.9i). This is due to the (partial) independence
of the measurement matrices that contribute additional information via the first
column of A in Equation 3.3 connecting the common component to observations
of both vintages—i.e., for time-lapse seismic, independent surveys give additional
structural information leading to improved recovery quality of the vintages. The
improvement in the recoveries is better visible through the corresponding difference
plots in Figures 3.9d, 3.9f, 3.9h, 3.9j. This observation is important because, as men-
tioned previously, time-lapse differences are often studied via differences in certain
poststack attributes computed from the (recovered) prestack vintages. Hence, as
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the quality of the recovered prestack vintages improves with decrease in the overlap,
they serve as better input to extract the poststack attributes. Moreover, the small
standard deviations for each overlap indicate little variability in the recovery from
one random realization to another. This is desirable since it offers a possibility to
relax the insistence on replication of the time-lapse surveys along with embracing
the naturally occurring random deviations in the field. The standard deviations for
different overlaps also do not fluctuate as much as compared to those of the time-
lapse difference. Recovery of the vintages and the corresponding difference plots for
a subsampling of η = 4 are shown in Figure 3.11.

An increase in the subsampling factor leads to decrease in the SNRs of the
recovered time-lapse data, however, the recoveries are reasonable as shown in Fig-
ures 3.11 and 3.12. This observation is in accordance with the CS theory wherein the
recovery quality decreases for increased subsampling. Note that recovery of weak
late-arriving events can be further improved by rerunning the recovery algorithm
using the residual as input, using weighted one-norm minimization that exploits cor-
relations between locations of significant transform-domain coefficients of different
partitions—e.g., shot records, common-offset gathers, or frequency slices—of the
acquired data (Mansour et al., 2013), etc. This needs to be carefully investigated.
Remember that for a given subsampling factor the number of measurements is the
same for all experiments and the observed differences can be fully attributed to the
performance of the joint recovery method in relation to the overlap between the two
surveys encoded in the measurement matrices. Also, given the context of random-
ized subsampling and irregularity of the observed data, it is important to recover
the densely sampled vintages and then the time-lapse difference. Moreover, as men-
tioned previously, while we do not insist that we actually visit predesigned irregular
(or off-the-grid) shot positions for the time-lapse surveys, however, it is important
to know these positions to sufficient accuracy after acquisition for high-quality data
recovery. This can be achieved in practice as shown by (Mosher et al., 2014).

Overlap ± avg. deviation Baseline Monitor 4D signal
100% 19.8 ± 1.0 19.7 ± 1.0 11.3 ± 2.2
100% ± 1.0 m 19.7 ± 1.0 19.6 ± 1.0 10.3 ± 1.5
100% ± 2.0 m 20.3 ± 1.1 20.2 ± 1.0 10.7 ± 1.1
100% ± 3.0 m 20.8 ± 1.2 20.7 ± 1.1 11.0 ± 1.4
< 15% 23.8 ± 1.4 23.6 ± 1.4 10.2 ± 1.2

Table 3.1 Summary of recoveries in terms of SNR (dB) for data recovered via JRM
for a subsampling factor η = 2. The SNRs show little variability in the time-lapse
difference recovery for different overlaps between the surveys offering a possibility
to relax insistence on replicability of time-lapse surveys. This is supported by the
improved recovery of the vintages as the overlap decreases. Note that the deviations
are average deviations over many experiments.
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Overlap ± avg. deviation Baseline Monitor 4D signal
100% 14.3 ± 0.6 14.2 ± 0.6 6.4 ± 0.7
100% ± 1.0 m 14.9 ± 0.8 14.8 ± 0.8 6.5 ± 1.0
100% ± 2.0 m 15.6 ± 1.0 15.5 ± 1.0 6.4 ± 1.3
100% ± 3.0 m 16.4 ± 0.9 16.3 ± 0.9 6.4 ± 0.7
< 5% 18.4 ± 0.7 18.2 ± 0.7 5.8 ± 0.4

Table 3.2 Summary of recoveries in terms of SNR (dB) for data recovered via JRM
for a subsampling factor η = 4. The SNRs show little variability in the time-lapse
difference recovery for different overlaps between the surveys offering a possibility
to relax insistence on replicability of time-lapse surveys. This is supported by the
improved recovery of the vintages as the overlap decreases. Note that the deviations
are average deviations over many experiments.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.9 JRM recovered monitor receiver gathers from the BG COMPASS model
for a subsampling factor η = 2. Recovered monitor data and residual with (a,b)
100% overlap in the measurement matrices (A1 and A2); (c,d) 100% overlap and
average shot-position deviation of 1m; (e,f) 100% overlap and average shot-position
deviation of 2m; (g,h) 100% overlap and average shot-position deviation of 3m; (i,j)
< 15% overlap, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.10 JRM recovered time-lapse difference receiver gathers from the BG
COMPASS model for a subsampling factor η = 2. Recovered time-lapse difference
and residual with (a,b) 100% overlap in the measurement matrices (A1 and A2);
(c,d) 100% overlap and average shot-position deviation of 1m; (e,f) 100% overlap and
average shot-position deviation of 2m; (g,h) 100% overlap and average shot-position
deviation of 3m; (i,j) < 15% overlap, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.11 JRM recovered monitor receiver gathers from the BG COMPASS
model for a subsampling factor η = 4. Recovered monitor data and residual with
(a,b) 100% overlap in the measurement matrices (A1 and A2); (c,d) 100% overlap
and average shot-position deviation of 1m; (e,f) 100% overlap and average shot-
position deviation of 2m; (g,h) 100% overlap and average shot-position deviation of
3m; (i,j) < 5% overlap, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.12 JRM recovered time-lapse difference receiver gathers from the BG
COMPASS model for a subsampling factor η = 4. Recovered time-lapse difference
and residual with (a,b) 100% overlap in the measurement matrices (A1 and A2);
(c,d) 100% overlap and average shot-position deviation of 1m; (e,f) 100% overlap and
average shot-position deviation of 2m; (g,h) 100% overlap and average shot-position
deviation of 3m; (i,j) < 5% overlap, respectively.
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3.6.2 SEAM Phase 1 model—complex geology, complex time-lapse
difference

The SEAM model is a 3D deepwater subsalt earth model that includes a complex
salt intrusive in a folded Tertiary basin. We select a 2D slice from the 3D model
to generate a seismic line. Figure 3.13a shows a subset of the 2D slice used as the
baseline model. We define the monitor model, Figure 3.13b, from the baseline model
via fluid substitution resulting in a time-lapse difference under the overburden as
shown in Figure 3.13c.

(a) (b) (c)

Figure 3.13 Subset of the SEAM model. (a) Baseline model; (b) monitor model;
(c) difference between (a) and (b) showing the time-lapse difference.

Using IWAVE (Symes, 2010), two acoustic data sets with a conventional source
(and receiver) sampling of 12.5m are generated, one from the baseline model and the
other from the monitor model. Each data set has Nt = 2048 time samples, Nr = 320
receivers and Ns = 320 sources. The time sampling interval is 0.004 s. Subtracting
the two data sets yields the time-lapse difference. Since no noise is added to the
data, the time-lapse difference is simply the time-lapse signal. A receiver gather
from the simulated baseline data, the monitor data and the corresponding time-
lapse difference is shown in Figures 3.14a, 3.14b and 3.14c, respectively. Note that
the amplitude of the time-lapse difference is one-tenth the amplitude of the baseline
and monitor data. Therefore, in order to make the time-lapse difference visible, the
color axis for the figures showing the time-lapse difference is one-tenth the color axis
for the figures showing the baseline and monitor data. This colormap applies for the
remainder of the chapter. Given the spatial sampling of 12.5m, the subsampling
factor η for the time-jittered acquisition is 2. The number of measurements for each
experiment is fixed—i.e., n = N/η = N/2, each for y1 and y2.
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(a) (b) (c)

Figure 3.14 Synthetic receiver gathers from the conventional SEAM (a) baseline
survey, (b) monitor survey. (c) Corresponding time-lapse difference. The amplitude
of the time-lapse difference is one-tenth the amplitude of the baseline and monitor
data.

We simulate a realization of the time-jittered marine acquisition with 100% over-
lap between the baseline and monitor surveys. Since our main aim is to analyze the
effects of nonreplication of the time-lapse surveys on time-lapse data—i.e., when
A1 ̸= A2—we compare recovery from the above case with the acquisition scenario
that has least possible (or unavoidable) overlap between the time-lapse surveys only.
Given the bigger size of the data set and limited computational resources, we re-
strict ourselves to one experiment for each case and a subsampling of η = 2. Periodic
densely sampled baseline and monitor data is recovered from the simultaneous data
y1 and y2, respectively, by solving Equation 3.5. The inherent time-lapse difference
is computed by subtracting the recovered baseline and monitor data.

The recovered time-lapse data is colocated, regularized and interpolated to a
fine uniform grid. We note that all the observations made for the BG COMPASS
model, which is a relatively simpler model, hold true for the more complex SEAM
model. Minimum overlap (or nonreplication) between time-lapse surveys improves
recovery of the vintages since independent surveys give additional structural infor-
mation. Hence, they serve as better input to extract certain poststack attributes
used to study time-lapse differences. Figures 3.15a, 3.15b, 3.15c and 3.15d show
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the corresponding monitor data recovery. The SNR for the vintage recovery for
minimum overlap between the surveys is 30.2 dB—a significant improvement from
the 19.5 dB recovery for 100% overlap between the surveys. Moreover, as seen in
Figures 3.15e, 3.15f, 3.15g and 3.15h, there is little variability in the recovery of the
time-lapse difference from (the ideal) 100% overlap between the surveys to the more
realistic almost nonreplicated surveys. The corresponding SNRs for the recovered
time-lapse difference are 9.6 dB for 100% overlap and 4.1 dB for minimum overlap
between the surveys. We note that the SNR for the minimum overlap between the
surveys is biased due the presence of incoherent noise—between 3.5 s to 5.0 s—above
the main time-lapse difference. If we compute the SNRs for the lower-half of the
data that contains the time-lapse difference—i.e., after 4.5 s—the SNR for minimum
overlap between the surveys increases to 6.8 dB. More importantly, if we look at
the plots themselves, we see that there is not much difference in the two recoveries.
We are able to recover the primary arrivals and some reverberations below. Recall
that the amplitude of the time-lapse difference is one-tenth the amplitude of the
vintages. It is quite remarkable that we get good results given the complexity of the
model and the low amplitude of the time-lapse difference. Recovery of the vintages
and the time-lapse difference for a subsampling of η = 4 follows the same trend as
above.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.15 JRM recovered monitor and time-lapse difference receiver gathers
from the SEAM model for a subsampling factor η = 2. Recovered monitor data
and residual with (a,b) 100% overlap in the measurement matrices (A1 and A2);
(c,d) < 15% overlap, respectively. Recovered time-lapse difference and residual with
(e,f) 100% overlap in the measurement matrices; (g,h) < 15% overlap, respectively.
Note that the amplitude of the time-lapse difference is one-tenth the amplitude of
the monitor data.
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3.7 Discussion
Realistic field seismic acquisitions suffer, amongst other possibly detrimental exter-
nal factors, from irregular spatial sampling of sources and receivers. This poses tech-
nical challenges for the time-lapse seismic technology that currently aims to replicate
densely sampled surveys for monitoring changes due to production. The experiments
and synthetic results shown in the previous sections demonstrate favourable effects
of irregular sampling and nonreplication of surveys on time-lapse data—i.e., decrease
in replicability of the surveys leads to improved recovery of the vintages with little
variability in the recovery of the time-lapse difference itself—while unraveling over-
lapping shot records. Note that we do not insist on replicating the irregular spatial
positions in the field, however, the above observations hold as long as we know the ir-
regular sampling positions after acquisition to a sufficient degree of accuracy, which
is attainable in practice (see e.g., Mosher et al., 2014). Furthermore, we assume
that there are no significant variations in the water column velocities, wave heights
or temperature and salinity profiles amongst the different surveys while the source
signature is also assumed to be the same. As long as these physical changes can be
modeled, we do not foresee major problems. For instance, we expect that our ap-
proach can relatively easily be combined with source equalization (see e.g., Rickett
and Lumley, 2001) and curvelet-domain matched filtering techniques (Beyreuther
et al., 2005; Tegtmeier-Last and Hennenfent, 2013).

The proposed methodology involves a combination of economical randomized
samplings with low environmental imprint and sparsity-promoting data recovery
that aims to reduce cost of surveys and improve quality of the prestack time-lapse
data without relying on expensive dense sampling and high degrees of replicability
of the surveys. The combined operation of source separation, regularization and in-
terpolation renders periodic densely sampled time-lapse data from time-compressed,
and therefore economical, simultaneous, subsampled and irregular data. While the
simultaneous data are separated reasonably well, recovery of the weak late-arriving
events can be further improved by rerunning the recovery algorithm using the resid-
ual as input, using weighted one-norm minimization that exploits correlations be-
tween locations of significant transform-domain coefficients of different partitions—
e.g., shot records, common-offset gathers, or frequency slices—of the acquired data
(Mansour et al., 2013), etc. This needs to be examined in detail. Effects of noise
and other physical changes in the environment also need to be carefully investi-
gated. Nevertheless, as expected using standard CS, our recovery method should
be stable with respect to noise (Candès et al., 2006). Moreover, recent successes in
the application of compressed sensing to land and marine field data acquisition (see
e.g., Mosher et al., 2014) support the fact that technical challenges with noise and
calibration can be overcome in practice.
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3.8 Conclusions
We present an extension of our simultaneous time-jittered marine acquisition to
time-lapse surveys for realistic, off-the-grid acquisitions where the sample points are
known but do not coincide with a regular periodic grid. We conduct a series of
synthetic seismic experiments with different random realizations of the simultane-
ous time-jittered marine acquisition to assess the effects of irregular sampling in the
field on time-lapse data and demonstrate that dense, high-quality data recoveries
are the norm and not the exception. We achieve this by adapting our proposed
joint recovery method—a new and economic approach to randomized simultaneous
time-lapse data acquisition that exploits transform-domain sparsity and shared in-
formation among different time-lapse recordings—to incorporate a regularization
operator that maps traces from an irregular grid to a regular periodic grid. The
recovery method is a combined operation of source separation, regularization and
interpolation, wherein periodic densely sampled and colocated prestack data is re-
covered from time-compressed, and therefore economical, simultaneous, subsampled
and irregular data.

We observe that with decrease in replication between the surveys—i.e., shot
points are not replicated amongst the vintages—recovery of time-lapse data improve
significantly (about 4dB gain) with little (about 0.5dB) variability in recovery of the
time-lapse difference itself. We make this observation assuming source equalization
and no significant changes in wave heights, water column velocities or temperature
and salinity profiles, etc., amongst the different surveys. We also demonstrate the
delicate reliance on exact replicability (between surveys) by showing that known de-
viations as small as average ±(1, 2, 3)m in shot positions of the monitor surveys from
the baseline surveys vary recovery quality of the time-lapse difference—expressed as
slight decrease or increase in the signal-to-noise ratios—and hence negate the efforts
to replicate. Therefore, it would be better to focus on knowing what the shot po-
sitions were (post acquisition) than aiming to replicate. Moreover, since irregular
spatial sampling is inevitable in the real world, the requirement for replicability
in time-lapse surveys can perhaps be relaxed by embracing or better purposefully
randomizing the acquisitions to maximize collection of information by effectively
doubling the number of measurements for the common component, leading to sur-
veys acquired at low cost and environmental imprint.
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Chapter 4

Highly repeatable time-lapse
seismic with distributed
Compressive Sensing—mitigating
effects of calibration errors

4.1 Summary
In chapters 2 and 3, we demonstrated that combining joint recovery with low-cost
non-replicated randomized sampling tailored to time-lapse seismic can give us ac-
cess to high fidelity, highly repeatable, dense prestack vintages, and high-grade time-
lapse. To arrive at this result, we assumed well-calibrated surveys—i.e., we presumed
accurate post-plot source/receiver positions. Unfortunately, in practice seismic sur-
veys are prone to calibration errors, which are unknown deviations between actual
and post-plot acquisition geometry. By means of synthetic experiments, we analyze
the possible impact of these errors on vintages and on time-lapse data obtained with
our joint recovery model from compressively sampled surveys. Supported by these
experiments, we demonstrate that highly repeatable time-lapse vintages are attain-
able despite the presence of unknown calibration errors in the positions of the shots.
We assess the repeatability quantitatively for two scenarios by studying the impact
of calibration errors on conventional dense but irregularly sampled surveys and on
low-cost compressed surveys. To separate time-lapse effects from calibration issues,
we consider the idealized case where the subsurface remains unchanged and the prac-
tical situation where time-lapse changes are restricted to a subset of the data. In
both cases, the quality of the recovered vintages and time-lapse decreases gracefully
for low-cost compressed surveys with increasing calibration errors. Conversely, the
quality of vintages from expensive densely periodically sampled surveys decreases
more rapidly as unknown and difficult to control calibration errors increase.

74



4.2 Introduction
The current paradigm in time-lapse (4D) seismic necessitates expensive replication of
the baseline during the monitor survey to attain high degrees of repeatability (Eiken
et al., 2003; Brown and Paulsen, 2011). In contrast, motivated by the successful field
application of randomized Compressive Sensing surveys (Mosher et al., 2014) and
academic contributions (see e.g. Herrmann, 2010, and references therein), our recent
findings (Oghenekohwo et al., 2017; Wason et al., 2017) — described in chapters 2
and 3 — suggest that one does not need to replicate subsampled randomized time-
lapse surveys to get equivalent and acceptable levels of repeatability. While these
results are encouraging, our findings relied on two critical assumptions, namely we
ignored noise and assumed calibrated surveys. Although our randomized time-lapse
acquisition does not insist on exact replication in the field — allowing for deviations
between planned (pre-plot) and actual survey geometries — reconstruction of the
vintages towards a common fine periodic grid from the randomized samplings relies
on accurate knowledge of the actual acquisition parameters. Thus, we ignore possible
unknown calibration errors defined as differences between the actual (true) and
observed (recorded) post-plot geometries.

Since these calibration errors are unavoidable in practice, we study the perfor-
mance of our approach, namely, compressed time-lapse acquisition with calibration
errors and subsequent recovery with our joint recovery model (JRM), via a series
of experiments designed to measure attainable degrees of repeatability. As before,
key to our success is the sparse recovery of the component common to the vin-
tages, and “innovations” with respect to this component that sparsely encode the
differences between the vintages. Because the common component is sensed by all
time-lapse surveys, recovery with the JRM leads to improved quality of the vintages
when the surveys are not replicated as we confirmed with a specific compressive
sensing-inspired acquisition design (time-jittered sources in marine by (Wason and
Herrmann, 2013)).

There have been earlier attempts (Eggenberger et al., 2014), with sparsity pro-
motion to recover more repeatable time-lapse surveys but these also relied on having
well-calibrated surveys. Albeit these approaches do not exploit the possible advan-
tages distributed compressive sensing (DCS, Baron et al., 2009b) has to offer but
instead rely on having access to multiple periodically but coarsely sampled wavefield
components for their reconstruction. By combining random subsampling and joint
recovery, we are able to obtain high-quality repeatable vintages from significantly
fewer calibrated measurements (Oghenekohwo et al., 2017; Wason et al., 2017).

Practitioners of time-lapse seismic studies often use the normalized root mean
square (NRMS, Kragh and Christie, 2002) to quantify the degree of repeatability
in 4D seismic. Repeatability, which measures similarity between vintages, depends
on several factors including unknown positioning errors for each survey (Schisselé
et al., 2009), differences in noise, and processing workflows (Rickett and Lumley,
2001; Hicks et al., 2014) that aim to preserve the 4D signal. The smaller the NRMS
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value, the less likely it is that the 4D signal is due to differences amongst the surveys
or environment (currents, wave heights, etc.) the surveys were acquired in.

Our main contribution is to demonstrate that high quality and highly repeatable
surveys are attainable with our JRM despite the presence of unknown calibration
errors. We substantiate this claim by measuring the recovery quality and repeata-
bility in terms of signal-to-noise ratios (S/N) and NRMS values for a series of care-
fully designed idealized — ignoring noise and environmental changes — randomized
time-lapse surveys for which (i) there are no time-lapse changes present so worsen-
ing recovery quality and repeatability can solely be attributed to calibration errors
and (ii) time-lapse changes are confined to subsets of the data.

We first describe a primer on how compressive sensing can be setup in marine
acquisition before presenting the main aspects of the chapter. The rest of this
chapter is organized as follows. First, we present the theoretical framework for
low-cost randomized time-lapse subsampled data acquisition and recovery with the
JRM. Next, we introduce the NRMS in the two settings where either the earth
model remains unchanged or where there is a time-lapse signal present in a subset
of the data. We conclude by a series of numerical experiments that reflect these two
scenarios and that allow us to analyze the possible impact of unknown calibration
errors.

4.3 Primer on Compressive Sensing in marine
acquisition

To obtain high resolution images of the Earth subsurface, marine seismic surveys
require dense sampling that can become prohibitively expensive especially when
time-lapse is of interest. To address this issue in seismic data acquisition, (Hennen-
fent and Herrmann, 2008), (Herrmann, 2010), (Mansour et al., 2012), and (Mosher
et al., 2014) adapted ideas from Compressive Sensing (CS, Donoho, 2006; Candès
et al., 2006), whereby cost of surveys depends on our ability to leverage certain
inherent structure in seismic data rather than on the sample rate and size of the
survey area. In seismic applications, adherence to three + one key principles of
(distributed) CS are critical, namely we need to
(i) find a compressible representation, e.g. via transform-domain sparsity; (ii) design
a physically realizable randomized subsampling scheme, which turns subsampling
related artifacts into incoherent noise that is not compressible; (iii) restore densely
sampled data by promoting structure—i.e., by mapping incoherent artifacts to coher-
ent signal; (iv) exploit information shared amongst time-lapse vintages during the
recovery, which allows us to maximally benefit from randomized sampling without
insisting on replicating the surveys.

A physically realizable way to render marine acquisition more economically vi-
able is to fire airgun sources at random time-jittered compressed-in-time firing times
(Wason and Herrmann, 2013). Depending on whether we work with dynamic towed
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arrays or static receivers (OBNs or OBCs), the variability in jittered shot firing times
can either be small or large. For towed arrays, because the sources and receivers are
in motion, we can only permit a small variability so that the array records informa-
tion from the pair of airgun sources. In the case of static receivers, we can permit
low to high variability. We include Figure 4.1 to illustrate the difference between
periodic sampling (resulting in non-overlapping records) and randomized sampling
(resulting in overlapping shots) in two acquisition settings.

Figure 4.1 Periodic versus randomized (jittered) marine survey showing scenarios
for low and high variability in shot firing times.

Conventional acquisition involves firing shots at regular time intervals resulting
in non-overlapping regularly sampled shots (first column of Figure 4.2). In process-
ing, we typically interpolate the regularly sampled shots onto a finer grid (third
column of Figure 4.2) to increase the source sampling. For our compressive sensing
based marine acquisition, we consider the more favorable case of large variability in
shot firing times, for which good recovery results have been reported in the literature
(Mansour et al., 2012; Wason and Herrmann, 2013) from surveys with overlapping
shot records and coarse source sampling. The second column of Figure 4.2 illus-
trates how our scheme compresses the survey time compared to the conventional
approach, and how we aim to reconstruct the wavefield onto a fine periodic grid with
increased source sampling. Both the conventional and jittered scheme sample data
on different spatial grids covering the same length of the seismic line but with reduc-
tion in survey time via the jittered scheme. Because our jittered sampling scheme
compresses the acquisition time and recovers densely sampled data, our acquisition
is more economic.
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Figure 4.2 Schematic of sampling schemes and recovery. Left: conventional sur-
vey with non-overlapping shots. Middle: compressed survey time with overlapping
shots. Right: recovery of non-overlapping dense periodic shots with improved source
sampling. [ Adapted from (Wason et al., 2017) ]

When provided with time-jittered surveys that are sufficiently calibrated, we can
expect good recovery results (Oghenekohwo et al., 2017; Wason et al., 2017). How-
ever, as we mentioned in the Introduction of this chapter, 3D and 4D seismic surveys
are both susceptible to calibration errors, which are by definition unknown devia-
tions between actual (true) and observed (post-plot) coordinates of sources/receivers.
Figure 4.3 illustrates an example of our randomized and compressed time-lapse sur-
veys where observed shot positions differ from the truth. The purpose of this work
is to investigate the possible impact of these calibration errors on the recovered
vintages and the time-lapse difference after reconstructing the surveys onto one and
same fine periodic dense grid using our joint recovery model.
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Figure 4.3 Illustration of compressive time-lapse jittered surveys with calibration
errors as deviations between true and observed post-plot shot positions. The calibra-
tion errors are not the same for the baseline and monitor. Notice the compression in
acquisition time for the time-jittered surveys, the difference in acquisition geometry,
and the mapping of the vintages to one and the same fine-grained source grid.

4.4 Methodology
Before we conduct experiments to quantify the degree of repeatability of randomized
time-lapse surveys with calibration errors, let us first briefly review the joint recovery
model and the NRMS. Without loss of generality, we consider the case of two time-
lapse surveys only.

4.4.1 Compressive time-lapse acquisition

Let us denote baseline surveys with the index j = 1 and monitor surveys with the
index j = 2. Following ideas from compressive sensing, we model data acquired with
these two surveys by: yj = Ajxj for j = {1, 2}, where yj are the usually observed
randomly under-sampled data for each survey. As described in (Hennenfent and
Herrmann, 2008), (Herrmann, 2010), and (Mansour et al., 2012), the matrices Aj

encapsulate specifics on the survey geometry for each vintage and the sparsifying
transform used during the recovery. The task of the time-lapse seismic practitioner
now is to recover the coefficient vectors x̃j ’s from sparse randomly under-sampled
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yj ’s from which estimates for densely sampled vintages d̃j , that live on one and
the same fine periodic grid can be derived. However, rather than recovering each
vintage separately, by solving

x̃j = argmin
xj

∥xj∥1 subject to yj = Ajxj , j = 1, 2, (4.1)

we solve
z̃ = argmin

z
∥z∥1 subject to y = Az (4.2)

with

[
y1

y2

]
︸ ︷︷ ︸

y

=

[
A1 A1 0
A2 0 A2

]
︸ ︷︷ ︸

A

z0z1
z2


︸ ︷︷ ︸

z

(4.3)

instead. Compared to recovering the vintages separately as in Equation 4.2, the
joint recovery model inverts for the coefficient vectors of the common component
(z̃0) and innovations (z̃j) that encode the time-lapse. By construction, the common
component of JRM benefits from sensing by both surveys (first column of A). This
can lead to markedly improved recoveries of densely periodically sampled vintages
d̃j derived from z̃0 and z̃j , without insisting on replicating the surveys as recently
reported by (Oghenekohwo et al., 2017) and (Wason et al., 2017).

While the combination of randomized subsampling and the JRM offers unprece-
dented flexibility in cost-effective time-lapse acquisition, the recovery of densely
sampled time-lapse data is built on the premise that reliable information on the
actual acquisition geometry is available. This is to ensure that the modelling matri-
ces (Aj ’s) accurately mimic the time-lapse measurements in the field. This reliance
on accurate knowledge on the acquisition geometry raises some concern because
in practice there will always be unknown calibration errors between observed and
actual acquisition parameters.

To quantify the impact of these calibration errors, we will first consider the
special case where x1 = x2— i.e., there is no time-lapse, but the randomized ac-
quisitions differ (A1 ̸= A2) and where there are differences between actual and
observed post-plot acquisition parameters. In this situation and in the practical
situation where time-lapse changes are localized, we still hope to attain high quality
recovery and repeatability despite the presence of calibration errors.

4.4.2 NRMS — a measure for 4D repeatability

Common practice in time-lapse seismic processing is to measure the degree of re-
peatability of observed and processed data at each consecutive processing step (Ross
et al., 1997; Harris and Veritas, 2005; Houck, 2007). This degree of repeatability
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measures the similarity between two time-lapse data sets, for example the recovered
baseline (d̃1) and monitor (d̃2) surveys. As described by (Kragh and Christie, 2002),
we quantify the degree of repeatability of the two vintages defined as the RMS of
the difference between the two vintages divided by the average RMS of these two
vintages—i.e., we have

NRMS(d̃1, d̃2) =
200× RMS(d̃1 − d̃2)

RMS(d̃1) + RMS(d̃2)
,

with

RMS(d) =

√∑t2
t=t1

(d[t])2

N
,

where N is the number of samples in the interval t1 to t2 and d[t] refers to a sample
recorded at “time” t. By virtue of this definition, NRMS values range between 0 and
200 as percentages. The smaller the percentage, the more repeatable the vintages
are. In practice, NRMS values are computed using seismic traces extracted from the
data in a common time window and frequency band where there are no time-lapse
changes. According to today’s best 4D practices, NRMS values less than 10% are
considered acceptable and in some cases, excellent.

4.5 Numerical experiments
To demonstrate the impact of calibration errors, we conduct a series of synthetic
experiments involving non-replicated 2-D marine (ocean bottom cable) time-lapse
surveys with unknown calibration errors only in the source positions. Recall that
these errors are unknown deviations between the actual (true) and observed post-
plot positions. For reference, we simulate idealized densely and regularly (periodic)
sampled shots at 12.5m interval on a realistic synthetic earth model (see Figure 4.4a)
with laterally varying densities and velocities, provided to us by the BG group.

(a) (b)

Figure 4.4 The BG model. (a) Subset of the baseline velocity model (b) The
difference between the baseline and monitor model (not shown here) revealing a gas
cloud.
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Our experiments compare a conventional dense survey, sampled irregularly with
on average the same 12.5m shot interval, and simultaneous source (randomly time-
jittered) surveys acquired with our low-cost subsampling scheme (Wason and Her-
rmann, 2013). The latter entails a 4× speed-up in acquisition time resulting in
overlapping shot records at irregular positions, sampled at an average coarse shot
interval of 50m. To mimic observed data with unknown calibration errors, we add
random perturbations from a uniform distribution to the actual shot locations. As
Table 4.1 shows, while we only need to regularize the conventional data since it is
densely sampled, we process the low-cost data via shot separation, interpolation,
and regularization. These experiments allow us to assess the repeatability quantita-
tively for the idealized case where the subsurface does not change and the practical
situation where time-lapse changes are confined to a subset of the data.

Conventional dense survey Low-cost (4× compressed) survey
Shot geometry Flip-flop irregular 2 Sim. source

shot sampling (time-jittered sources)
Receiver geometry OBC OBC
Number of shots 450 100
Shot interval 12.5m 50m
Number of receivers 450 450
Receiver interval 12.5m 12.5m
Recovery (Processing) Regularization Shot separation, Interpolation, Regularization

Table 4.1 Experiment details including acquisition information and processing steps
both for conventional (dense) and low-cost (compressed) random time-jittered sur-
veys.

4.5.1 Idealized case — no time-lapse

To separate the possible impact of calibration errors from the time-lapse signal itself,
we first consider the case where the earth model does not change between time-lapse
surveys but where both the known survey parameters and unknown calibration er-
rors differ. In this case, differences in the vintages can be attributed to differences
in the surveys. For the densely but irregularly sampled data, we recover regularly
sampled vintages via regularization of the observed data yj by directly computing
the pseudo inverse A†

jyj , where the modelling matrices (Aj ’s) encapsulate the irreg-
ular shot geometry up to calibration errors that increase from 0 to 50% of the 12.5m
shot interval. We collect low-cost data by firing more often with jittering yielding
fewer but irregular source locations that also contain calibration errors between 0 to
50% of the original 12.5m shot interval. The nominal shot sampling interval in our
low-cost survey is about 50m. We introduce calibration errors in our measurements
by adding random perturbations from a uniform distribution to the actual shot lo-
cations. In principle, we could also add such perturbations to the receiver locations.
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We recover these randomly subsampled datasets via independent and joint recovery
(cf. Equation 4.1 and 4.2). We examine the quality of the recovered vintages in
terms of S/N, and compute repeatability in terms of NRMS, for the conventional
and low-cost acquisition as a function of the relative calibration errors. As we can
see from Figure 4.5, recovery with JRM (third column) attains a relatively high
S/N and greatly improved NRMS compared to the results from conventional acqui-
sition (first column) and independent recovery (middle column), despite unknown
calibration errors up to 20% of the interpolated shot interval.

Conventional dense survey Independent recovery of
low-cost survey

Joint recovery of low-cost
survey

Figure 4.5 Idealized case (no time-lapse) - A receiver gather extracted from recov-
ered vintage (top) and difference (bottom) between vintages obtained from surveys,
each with calibration errors up to 2.5m, i.e. 20% of the interpolated shot interval
(12.5m). Notice the improved repeatability using our joint recovery model.

Furthermore, to get more reliable estimates (mean and standard deviation) of
the S/N and NRMS for increasing calibration errors, we repeat the experiments for
10 independent random realizations of the pairs of modelling matrices. Figures 4.6a
and 4.6b show the results of this exercise, which allow us to make the following ob-
servations: (i) expectedly, calibrated surveys yield highest-quality vintages in terms
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of S/N compared to surveys that are not calibrated — this is because the modelling
matrix for calibrated surveys correctly maps the observed data to the actual shot
points whereas uncalibrated surveys violate this mapping; (ii) the quality of the
vintages decreases gradually for the low-cost compressed surveys with increasing
calibration errors. Conversely, the quality of conventional irregular dense surveys
decreases rapidly for increasing calibration errors — this is because errors arising
from uncalibrated dense surveys behave like noise whose magnitude grows with the
number of shots; (iii) for surveys with large (> 40%) calibration errors, our low-cost
sampling scheme with JRM is on par with the dense surveys regarding the recovery
quality but relatively better in repeatability — the NRMS values for the low-cost
acquisitions remain acceptable. These observations are consistent with our earlier
findings on calibrated low-cost acquisitions (Oghenekohwo et al., 2017; Wason et al.,
2017), again owing to making the common component shared by the the vintages
explicit in the recovery.

(a) (b)

(c) (d)

Figure 4.6 Top: Idealized case (no time-lapse). (a) Recovery quality and (b)
repeatability of vintages, from conventional dense and low-cost surveys with cali-
bration errors. Bottom: Practical case (localized 4D). (c) Recovery quality of 4D
signal and (d) repeatability of vintages. Note the NRMS in (d) is computed outside
the 4D signal window.
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4.5.2 Practical case — localized time-lapse

While the previous experiments demonstrate the impact of calibration errors on
the vintages and the difference, we cannot guarantee that the effect of these errors
will not propagate to the time-lapse signal in situations where the earth actually
changes. Therefore, we conduct experiments on a synthetic time-lapse earth model
(Figure 4.4) with localized changes in both density and velocity. We compute the
prestack localized 4D signal via subtraction of the two vintages after recovery to-
wards a common grid. We now measure the recovery quality of the 4D signal and
the repeatability of the vintages in presence of calibration errors, both for the con-
ventional and low-cost acquisitions.

After data simulation and recovery as done previously, we perform repeatability
analysis—compute the NRMS—outside the 4D signal window, and compute the
S/N of the recovered prestack 4D signal only in the window where the 4D signal
resides. We present the result of this experiment in Figures 4.6c and 4.6d. Despite
the fact that the earth changes, the NRMS values behave more or less the same as in
Figure 4.6b. This means that high degrees of repeatability are achievable with S/Ns
that decrease gracefully compared to the conventional sampling and independent
recovery. This experiment clearly shows that the uplift of costly dense sampling
may be negated by the presence of relatively small (10% ≈ 1.25 m) calibration
errors.

4.6 Discussion
We also investigated the impact of timing errors on acquisition and on time-lapse
repeatability and we found that repeatability is more sensitive to small errors in
firing times (as small as 1ms). This underscores the need for GPS recordings of
shot firing times to be highly accurate for our shot separation algorithm to work
in practice. As we have seen with experiments on calibration errors in the source
positions, relatively small calibration errors (up to about 25% of the interpolated
shot interval) in the actual visited shot positions can still yield highly repeatable
data (i.e., NRMS ≤ 10%) for densely sampled surveys but this comes at a high cost.
However, as soon as the errors are 25% or more, the repeatability deteriorates and is
even worse than the NRMS value for the data recovered from compressively sampled
surveys with the JRM. This trend continues for even larger errors—i.e., we still have
a NRMS value close 10% for calibration errors of up to 40%. This indicates that
our algorithm is relatively robust to calibration errors.

4.7 Conclusions
Errors in acquisition parameters unbeknown to subsequent seismic data processing,
including regularization and shot separation, can have detrimental effects on the
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quality and repeatability in particular when mapping time-lapse seismic surveys to
a common densely sampled periodic grid. For the case of post-plot calibration errors
in the source locations, we were able to demonstrate that high quality and highly
repeatable vintages and time-lapse data are attainable in the presence of source
position errors that are of order of 20−25% of the interpolated shot sample interval.
As expected, high-cost densely sampled acquisitions may indeed lead to the best
quality and repeatability in the absence of calibration errors. However, the quality
and repeatability of these expensive densely sampled surveys decays very rapidly in
the presence of even relatively small (10% of the shot sample interval) calibration
errors. Understandably, the quality and repeatability of four times cost-reduced
compressive acquisitions is also affected by calibration errors but this deterioration is
much more modest for vintages and time lapse data obtained with our joint recovery
model. This result holds for both the idealized situation where the subsurface does
not change and where differences in the vintages and time-lapse data are due to both
differences in the surveys and (uncontrollable) calibration errors, or for the realistic
situation where time-lapse changes in the subsurface are confined to subsets of the
data. Either way, the performance of the joint recovery model for acquisitions with
unknown calibration errors is remarkable and can be explained by the fact that
our approach leverages information that is common amongst the vintages explicitly.
With these observations, we are confident that economic time-lapse surveys with
Compressive Sensing are indeed feasible and ready to be conducted in the field.
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Chapter 5

Time-lapse seismic imaging with
distributed compressive sensing

This chapter comprises two broad sections. The first titled “Randomized sampling
without repetition in time-lapse seismic surveys” is an inversion framework using the
joint recovery model that produces images as stacked sections from randomly under-
sampled prestack data volumes. The second titled “Using common information
in compressive time-lapse full-waveform inversion” describes an implementation of
full-waveform inversion of time-lapse data using the joint recovery model.

5.1 Randomized sampling without repetition in
time-lapse seismic surveys

5.1.1 Summary

Vouching for higher levels of repeatability in acquisition and processing of time-lapse
(4D) seismic data has become the standard with oil and gas contractor companies,
with significant investment in the design of acquisition systems and processing al-
gorithms that attempt to address some of the current 4D challenges, in particular,
imaging weak 4D signals. Recent developments from the field of compressive sens-
ing have shown the benefits of variants of randomized sampling in marine seismic
acquisition and its impact for the future of seismic exploration. Following these
developments, we show that the requirement for accurate survey repetition in time-
lapse seismic data acquisition can be waived provided we solve a sparsity-promoting
convex optimization program that makes use of the shared component between
the baseline and monitor data. By setting up a framework for inversion of the
stacked sections of a time-lapse data, given the pre-stack data volumes, we are able
to extract 4D signals with relatively high-fidelity from significant sub-samplings.
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Our formulation is applied to time-lapse data that has been acquired with different
source/receiver geometries, paving the way for an efficient approach to dealing with
time-lapse data acquired with initially poor repeatability levels, provided the survey
geometry details are known afterwards.

5.1.2 Introduction

Repeatability in acquisition and processing ranks highest among the technical chal-
lenges faced with time-lapse seismic studies (Lumley and Behrens, 1998) and re-
searchers continue to develop methods that will address these challenges. Comput-
ing weak 4-D signals pose another significant challenge the industry currently faces
as the signal is below the non-repeatable noise introduced during acquisition or
processing. Therefore, many studies have been focused on improving repeatability
levels of acquired and processed time-lapse data (Porter-Hirsche and Hirsche, 1998;
Landrø, 1999; Eiken et al., 2003). Recently, permanent monitoring systems have
been used to acquire multiple time-lapse data and automated systems are being
designed to improve the accuracy and repeatability of time-lapse surveys (Brown
and Paulsen, 2011; Eggenberger et al., 2014). Although these systems improve the
repeatability levels of the time-lapse data, they are very expensive to maintain and
enormous effort is required for their operation. In our recent study (Oghenekohwo
et al., 2014b), we show how the concern for repeatability can be relaxed provided we
randomly sample the shots during the time-lapse surveys. Consequently, we solve
an inverse problem, exploiting the shared information in the baseline and monitor
data, to recover a densely sampled time-lapse data from the measured randomized
data. The net result was a high-fidelity 4D signal in the data domain.

Few studies involving a joint processing or inversion scheme for imaging time-
lapse data have been conducted. (Rickett and Lumley, 2001) proposed a cross-
equalization data processing flow where data repeatability is matched at each pro-
cessing step, while (Ayeni et al., 2009) imaged time-lapse data acquired from simul-
taneous source (or blended acquisition) which is a variant of randomized marine
acquisition. However, while the cross-equalization approach does not address data
which has been randomly sampled without repetition, and the inversion scheme does
not account for the shared information in the data sets, we exploit both requirements
in our formulation to improve the 4D signal recovery quality.

In this paper, we extend our independent and joint recovery methods to the
computation of time-lapse images using our randomized sampling scheme without
repetition, having observed its’ efficacy to recover reliable 4D signals in the data
domain. For simplicity, we show the computation of time-lapse stacked sections
including 4D difference stacked sections, from randomized, subsampled baseline and
monitor data.
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5.1.3 Methodology

Given an earth model m, the conventional approach to modeling seismic data y
from a modeling operator F is:

Fm = y. (5.1)

Ideally, F is either an elastic or acoustic wave-equation operator, however, for sim-
plicity (but without generality), we redefine F = MHNHSH as a linear operator
mapping a stacked time section to a pre-stack seismic data volume. Here, M is the
midpoint-offset to source-receiver operator, and S is the stacking operator. This
linear mapping relies on the prior knowledge of the stacking velocities. This is
required for constructing the normal move-out (NMO) operator N. This velocity
requirement is true with any imaging or stacking algorithm. Incorrect background
velocity model or stacking velocities can lead to significant misalignments of reflec-
tors in a migrated image or stacked section respectively, therefore it is important to
have an accurate estimate of the velocity. The earth model can also be represented
as m = CHx, where x is the sparse representation of m, and CH is the synthesis
curvelet operator linking the model to the curvelet coefficients. Taking m to be the
stacked time section, and combining the curvelet representation of the model with
the redefined modeling operator F, equation (5.1) can be recast as :

Ax = FCHx = y. (5.2)

Clearly, this formulation gives rise to an over-determined system of equations, where
the observed data y has a higher dimension compared to the model m. An inversion
approach is typically required to find an estimate m̃ of the true model m, given the
observed data. Inversion for the stacked section of a seismic data is a viable ap-
proach as it affords us to sample as little as possible since the number of unknowns
in our linear system of equations is small. Furthermore, we note that the estimation
of the stacked sections from the observed data is significantly less computationally
expensive than recovering the complete wavefield. The inversion can be done in
several ways and in consistency with our previous work, we will adopt the ℓ1 inver-
sion procedure where we promote sparsity in x by solving the convex optimization
problem:

x̃ = argmin
x

∥x∥1 subject to y = Ax.

For time-lapse studies, where we have at least a baseline pre-stack data y1 and a
monitor pre-stack data y2, we can do several things including (1) inversion of the
data sets to obtain an estimate of the stacked section for the baseline m̃1 = CHx̃1 ,
the monitor m̃2 = CHx̃2 , and finally differencing the two stacked sections; (2) in-
version of the difference between the pre-stack baseline and monitor data (provided
the data are matched to a common computational grid), to obtain the time-lapse
stacked section; (3) joint inversion for both the “static” and “changing” parts of the
stack sections. The problem formulation allows us to employ our independent recov-
ery strategy (IRS) and joint recovery method (JRM), discussed in (Oghenekohwo
et al., 2014b), to estimate the individual stacked sections and the corresponding
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4D stacked sections. The IRS simply inverts for the baseline and monitor stacked
sections independently, by solving the following problems

x̃1 = argmin
x2

∥x1∥1 subject to y1 = A1x1

x̃2 = argmin
x2

∥x2∥1 subject to y2 = A2x2

On the other hand, the JRM performs a joint inversion by taking into account
the shared information (Baron et al., 2005) between the time-lapse data. We let
x1 = z0+z1 and x2 = z0+z2 where z0 srepresents the common part of the baseline
and monitor models, whereas z1 and z2 are the parts contributing to the differences
in the models. Therefore, we solve the following problem:

z̃ = argmin
z

∥z∥1 subject to y = Az.

where A =

[
A1 A1 0
A2 0 A2

]
, z =

z0
z1
z2

, and y =

[
y1

y2

]
.

From z̃, we can compute an estimate of the individual stacked sections and the
differences between the stacks.

5.1.4 Numerical Experiments

We model a fixed-spread acquisition configuration by simulating densely sampled
synthetic time-lapse data comprising a baseline data set and a monitor data set y2

using F while keeping the acquisition geometries same . An example of the synthetic
seismic data is shown in Figure 5.1.

In an effort to justify the need to relax time-lapse seismic data acquisition re-
peatability, we randomly subsample the idealized pre-stack synthetic baseline data
by reducing the shot interval, simulating a baseline acquisition with several shots
missing at random locations. Similarly, a different randomized subsampling of the
monitor data was performed to represent randomized monitor survey with a different
set of shot locations missing, independent of the baseline survey.

Figure 5.2 shows an example of the observed common midpoint (CMP) gather
indicating missing shots in the data. Although we have only simulated data with
missing shots between the vintages, this can equally be extended to missing re-
ceivers or missing shots and receivers. This experiment produces time-lapse data
from different acquisition geometries, resulting in different sets of shot data and
missing traces. In addition, we can also extend this experiment to simultaneous
marine acquisition where seismic sources fire at randomly dithered times (Wason
and Herrmann, 2013).
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(a) (b)

Figure 5.1 Densely sampled time-lapse data with repetition. (a) baseline data, (b)
monitor data. The ellipse indicates the time-lapse change zone.

(a) (b)

Figure 5.2 Observed randomly sampled time-lapse data without repetition. (a)
baseline data, (b) monitor data. Note the missing shots in the data due to the
randomized sampling without repetition.

Conventional processing involving NMO and stacking was applied to the densely
sampled idealized data sets and this produced a baseline stacked section and monitor
stacked section respectively. Figure 5.3 shows the true (idealized) stacked sections.
These served as a benchmark for the rest of our experiment. The stacked section
shows the complexity of the model with an indication of strong impedance contrast
at different time depths. The time-lapse signal is at a time-depth of between 1.2s
and 1.4s and varies laterally over a range of approximately 1km.

To establish the effects of randomized time-lapse survey without repetition and
with different subsampling ratios, as it relates to inversion for the stacked sections,
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we performed experiments for different subsampling ratios. We investigated the
inversion results using IRS and JRM, when we have severely subsampled data (1%
data) and when the data is less subsampled (5% data). The signal-to-noise ratio
(SNR) of our results were also computed, since we know the true time-lapse signal.
The percentage subsampling we have considered is permissible since we are in an
idealized setting, and they do illustrate the potential uplift of what happens when
the wave propagation effects are completely accounted for or when the physics is
right.

The top row of Figure 5.4 shows the estimated difference time-lapse stacked
sections when the acquired data is just 1% of the idealized densely sampled pre-stack
data. In comparison with the ideal stacked sections, we notice a poor match using
the IRS (SNR = 0.27dB) and good recovery using the JRM (SNR = 6.28dB). The
artifacts observed in the difference stacked sections using the IRS poses a significant
problem for interpreters especially when the time-lapse signal is very weak. Such a
weak signal will be lost in field data having considerable amount of non-repeatable
noise. We have modeled a strong time-lapse signal, so we can still delineate signals
from artifacts. We also note that the joint recovery approach benefits more in
recovering the 4D difference than the independent recovery strategy.

The next experiment is an inversion for the time-lapse stacked sections using
randomly selected 5% of the shots from the densely sampled data, again without
repetition. In line with our observation from using 1% of the data, we noticed
a significant increase (5.03dB for IRS and 8.36dB for JRM) in the SNR levels of
the estimated stacked sections. Consequently, the artifacts level in the difference
section is reduced and the resolution of the recovered time-lapse signal is increased as
shown in the bottom row of Figure 5.4. In both subsampling cases, the joint recovery
method performs significantly better than the independent recovery method because
it exploits the shared information between the observed time-lapse data.
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(a) (b)

(c)

Figure 5.3 Stacked sections of the densely sampled time-lapse data with repetition.
(a) baseline, (b) monitor, (c) 4D difference between baseline and monitor.
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(a) (b)

(c) (d)

Figure 5.4 4D difference stacked sections from randomly sampled time-lapse data
without repetition (top row) using 1% of fully sampled data , (bottom row) 5%
of fully sampled data. (a,c) using independent recovery approach, (b,d) using joint
recovery method. Note the poor recovery quality using the independent recovery ap-
proach which does not account for the shared information between the two datasets.

5.1.5 Discussion and Conclusions

The synthetic study is idealistic in that it uses the same forward modeling operator in
the inversion scheme. This is necessary for the inversion to be stable, as we require
our data to be in the range of the modeling operator. In other words, it is very
crucial to account for the physics of the wave propagation in the forward modeling
operator. We have also worked with noiseless synthetic data, although we do not
expect a poor performace of our methods in such case. Despite our study being
idealistic, it is proof of concept of a potential formulation for analysis of 4D signals
in the image domain where we have randomized and subsampled measurements
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from a baseline survey and monitor survey. We have investigated the performance
of the recovery algorithms as a function of subsampling ratio and have studied the
results for few subsampling ratios . We applied the independent recovery approach
and the joint recovery method, and recovered the stacked sections as well as the
4D stacked sections. We observed that extension of our algorithm to recovery of
time-lapse stacked section is not as computationally expensive as its application to
the recovery of the densely sampled wavefields. In addition, this formulation is not
limited to analysis of just two vintages of time-lapse data. It can be applied to
multiple time-lapse data which have been acquired with different source/receivers
missing.

In conclusion, we have presented an extension of our randomized sampling strat-
egy for time-lapse data acquisition, to estimation of stacked sections. We show that
imaging of time-lapse data and stacking are two related phenomena and both fol-
low the same inversion procedure. We present 2D inversion results for a synthetic
model illustrating the feasibility of randomized sampling for time-lapse studies, and
the results demonstrate the usefulness of the joint recovery method for extracting
4D signals from significantly subsampled time-lapse data. We claim that time-lapse
data acquired without repetition, can be processed to obtain stacked sections which
reveal high-fidelity 4D difference provided we carry out a sparsity-promoting inver-
sion program. In addition, we distinguish between two recovery algorithms that can
both handle the measured data while delineating between the efficiency of the meth-
ods when the data are severely and less subsampled. The next step in our study
is to extend this methodology to realistic wave equation based inversion of seismic
data from time-lapse surveys without repetition, and produce migrated images in
depth.
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5.2 Using common information in compressive
time-lapse full-waveform inversion

5.2.1 Summary

The use of time-lapse seismic data to monitor changes in the subsurface has become
standard practice in industry. In addition, full-waveform inversion has also been
extended to time-lapse seismic to obtain useful time-lapse information. The compu-
tational cost of this method are becoming more pronounced as the volume of data
increases. Therefore, it is necessary to develop fast inversion algorithms that can
also give improved time-lapse results. Rather than following existing joint inversion
algorithms, we are motivated by a joint recovery model which exploits the common
information among the baseline and monitor data. We propose a joint inversion
framework, leveraging ideas from distributed compressive sensing and the modified
Gauss-Newton method for full-waveform inversion, by using the shared informa-
tion in the time-lapse data. Our results on a realistic synthetic example highlight
the benefits of our joint inversion approach over a parallel inversion method that
does not exploit the shared information. Preliminary results also indicate that our
formulation can address time-lapse data with inconsistent acquisition geometries.

5.2.2 Introduction

Full-waveform inversion (FWI) is a nonlinear problem that finds the model param-
eters that characterize the earth from measured seismic data (Virieux and Operto,
2009). Time-lapse seismic data can be used to provide information about changes in
the subsurface over a period of time (Lumley, 2001). As an example, full-waveform
inversion of time-lapse seismic data has been applied to storage and monitoring of
CO2 (Queißer and Singh, 2013). While there have been a few attempts to apply
FWI to time-lapse seismic data (Raknes et al., 2013; Asnaashari et al., 2014; Ma-
harramov and Biondi, 2014; Yang et al., 2014), some of the challenges of processing
time-lapse data still persist. Issues such as differences in geometry, weak 4-D signals
below the level of inversion or migration artifacts pose a challenge to the inversion
algorithms (Lumley et al., 1997).

To address some of the challenges of processing time-lapse data, a few inversion
methods (Denli and Huang, 2009; Shragge and Lumley, 2013; Yang et al., 2014;
Maharramov and Biondi, 2014; Yang et al., 2015; Maharramov et al., 2016) have
been proposed. One common idea in these methods is to use a prior information in
the baseline inversion for the monitor inversion (see e.g. (Asnaashari et al., 2014)).
Another approach is a joint or simultaneous inversion of the baseline and monitor
data (see e.g. (Yang et al., 2015); (Maharramov et al., 2016); (Kamei and Lumley,
2017)). Both strategies are used in order to extract better time-lapse difference mod-
els that are obtained by subtracting the baseline and monitor inversion results. A
common approach in these methods is to use the common information between the
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time-lapse vintages in different ways. In this work, we propose a novel joint inversion
algorithm where we exploit the shared information between the baseline and moni-
tor data explicitly in an alternative way from previous approaches. Leveraging ideas
from distributed compressed sensing (Baron et al., 2009b), and stochastic optimiza-
tion, we present an inversion framework that is fast, and gives a better time-lapse
difference model compared to a similar independent or parallel inversion approach
that doesn’t exploit the shared information in the data. Our algorithm combines
our earlier work on joint recovery from subsampled time-lapse data (Oghenekohwo
et al., 2014a; Wason et al., 2014) and the modified Gauss-Newton inversion strategy
proposed by (Li et al., 2012b). The efficacy of our proposed method is demonstrated
on a realistic synthetic velocity model, which shows the imprint of a gas cloud in
the time-lapse difference model.

5.2.3 Methodology

To arrive at an inversion formulation for time-lapse seismic data, we describe FWI on
baseline (j = 1) and monitor (j = 2) data as the solution to the following problem:

m̃j = argmin
mj

∥dj −F(mj)∥22 for j = {1, 2}, (5.3)

where F represents the operator generating synthetic data from time-lapse model
parameters m, and d is the measured field data. In this formulation, m̃1 and
m̃2 represent the final inversion results of the baseline and monitor, respectively.
Constrained Gauss-Newton (GN) subproblems involve the pseudo-inverse of the
reduced Hessian, computed from the Jacobian operator ∇F(mk). The subproblems
can be used to set up a GN update (δmk) for FWI at the k−th iteration. For
time-lapse inversion, this translates to updates of the models via the following step:

mk+1
j = mk

j + δmk
j . (5.4)

(Li et al., 2012b)] showed that the GN updates are sparse,-i.e. δmj = SHxj ; where
SH is the conjugate transpose of a sparsifying transform S and xj is a vector of
transform coefficients. By linearizing the objective function of Equation 5.3 and
promoting sparsity of the GN updates, the time-lapse FWI problem in Equation 5.3
becomes:

x̃k
j = argmin

xj

1

2
∥dk

j−F(mk
j )−∇F(mk

j )S
Hxj∥22 subject to ∥xj∥1 < τkj for j = {1, 2}.

(5.5)
To choose τkj , we follow the modified Gauss-Newton(mGN) strategy by (Li et al.,
2012b). In fact, Equation 5.5 gives parallel inversion results for the baseline and
monitor data. Naively inverting for the baseline model and monitor model inde-
pendently does not account for the shared information in the data. In our recent
work (Oghenekohwo et al., 2014a) on time-lapse seismic data recovery from subsam-
pled data, we presented a joint recovery method (JRM) that exploits the shared
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information in the time-lapse vintages. Our method recovered time-lapse vintages
and differences that are better than the estimates from parallel or independent pro-
cessing. Incidentally, the mGN updates in Equation 5.5 look very much like the
problems we solve using the JRM. Therefore, this motivates the extension of the
JRM to inversion of time-lapse seismic data.

5.2.4 Inversion with JRM

We consider two signals x1 and x2 representing the mGN updates for baseline and
monitor inversion, respectively. These signals share a common component z0 while
each individual signal has an innovation component zj . Therefore, each signal can
be written as

xj = z0 + zj , j ∈ 1, 2. (5.6)

Using this model, we define for the k−th iteration of mGN for time-lapse FWI

bk =

[
dk
1 −F(mk

1)
dk
2 −F(mk

2)

]
, Ak =

[
∇F(mk

1)S
H ∇F(mk

1)S
H 0

∇F(mk
2)S

H 0 ∇F(mk
2)S

H

]
, zk =zk0zk1

zk2

 .

Contrary to the independent approach, which solves separate inversion prob-
lems for the vintages, without exploiting their correlations, the JRM exploits these
correlations by solving one GN problem at the k−th iteration:

z̃k = argmin
zk

1

2
∥bk −Akzk∥2F subject to ∥zk∥1 < τk. (5.7)

Equation 5.7 summarizes our proposed joint inversion scheme using the MGN algo-
rithm. As stated previously, we refer to (Li et al., 2012b) regarding the selection of
τk. The model updates from the above optimization problem for the baseline and
monitor models are

mk+1
j = mk

j + SH(z̃k0 + z̃kj ). (5.8)

In the next section, we illustrate the performance of this method by means of a
synthetic example that characterize realistic time-lapse scenarios.

5.2.5 BG Compass time-lapse model

We study our formulation by means of synthetic experiments on the BG Compass
time-lapse velocity model (Figure 5.5), showing the baseline, and the time-lapse dif-
ference anomaly obtained by subtracting the baseline and monitor (not shown). All
the inversion results were obtained using a good initial model and the same start-
ing model was used for the baseline and monitor inversion. All synthetic data are
generated using a finite-difference acoustic modeling engine based on the constant
density acoustic wave equation in the frequency domain. The range of velocities in
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the baseline and monitor models is between 1480m/s and 4500m/s (Figure 5.5a),
while the time-lapse difference is plotted on a color scale of -100m/s to 150m/s. The
inversion results are also displayed using the same color scale.

(a) (b)

Figure 5.5 Time-lapse models (a) baseline (b) time-lapse difference.

Using a Ricker wavelet with central frequency of 12Hz, 226 receivers sampled
at 25m interval, and 112 shots sampled at 50m interval, a dense baseline data was
generated. Two sets of dense monitor data were generated with similar receiver
geometry. However, in the first set, the source acquisition geometry was exactly the
same for the baseline but in the second set, same number of sequential shots were
acquired by shifting the original source locations by 12.5m. This second monitor
acquisition serves as a proxy for time-lapse data acquisition with non-repeated or
inconsistent acquisition geometry.

The inversion procedure is based on a rerandomization procedure which entails
the use of simultaneous shots as part of each mGN subproblem. The rerandomiza-
tion corresponds to giving the sequentially sampled shots a different set of random
weights at every step of the inversion. Details of this technique have been published
by (Li et al., 2012b) and it’s beyond the scope of this work. The main idea is to use
only a subset of the total data during every step of the inversion. This approach
has been shown to reduce the computational cost required for the inversion and this
efficiency motivates the adaptation of the method to our experiments on time-lapse
FWI. Using simultaneous shots from the baseline and monitor data, we perform the
independent or parallel inversion (Equation 5.5) and compare the results with the
inversion with JRM (Equation 5.7).

5.2.6 Experiments

We conduct four experiments spanning the range of possible acquisition and process-
ing scenario, namely, (i) Repeat acquisition and processing, (ii) Repeat acquisition
with different processing, (iii) Different acquisition but same processing, (iv) Differ-
ent acquisition with different processing. In these experiments, repeated processing
means we are using the same random weights to generate the simultaneous shots.
In all cases, we compare parallel inversion with joint inversion using JRM. We find,
judging from the signal-to-noise ratio (SNR), that the third scenario gave the best
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time-lapse inversion results for the parallel (SNR = 4.4dB) and joint (SNR = 6.0dB)
methods. Figure 5.6 shows the inversion results for the monitor and time-lapse sig-
nal in this scenario–i.e. different acquisition and same processing. In addition, we
observe the results of inversion with JRM to be better than the parallel inversion
in all the scenarios.

(a) (b)

(c) (d)

Figure 5.6 Monitor inversion results using (a) Parallel method (b) Joint method.
Time-lapse inversion results using (c) Parallel method (d) Joint method. Notice
the attenuation of the artifacts with the joint inversion compared to the parallel
inversion.

5.2.7 Discussion

The results we have shown indicate the benefits of our joint inversion algorithm over
the independent or parallel inversion method. In both methods, we used a starting
model close to the true baseline model in order to mitigate some common FWI
problems such as local minima. We also used a common source signature for both
inversions to reduce any repeatability effects in the data arising from different source
functions. Although we expect our method to be able to address such effects in the
data, that will be a subject of future research. Both the independent and joint FWI
approaches were able to detect the time-lapse anomaly. However, we see less artifacts
in the latter method (Figure 5.6d) compared to the former (Figure 5.6c). This
improvement is due to the shared information between the baseline and monitor data,
which the joint inversion method exploits but the independent inversion doesn’t.
We also expect our observations to remain consistent in cases where the observed
data is noisy since our method is able to handle non-sparse changes. Preliminary
findings from our experiments further indicate that our joint inversion method is
robust when time-lapse data is acquired with similar or different geometries. This
further distinguishes our method from other inversion approaches that are based on
a data difference idea, where the sources and receivers location must be exactly the
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same between the time-lapse surveys. More detailed comparison to other existing
time-lapse inversion approaches will be the subject of future research.

5.2.8 Conclusions

We have presented a joint full-waveform inversion technique which is based on using
the shared information between the baseline and monitor data. By using compres-
sively sampled shots to speed up the inversion procedure, we find that our technique
can significantly reduce time-lapse artifacts that mask true time-lapse signals. In
addition, we have shown that our method is better than an independent inversion
approach since it detects the true time-lapse anomaly while removing any unwanted
artifacts.
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Chapter 6

Conclusions

Time-lapse seismic has been used for more than a decade to monitor subsurface
reservoir changes. However, its reliance on repeated surveys and dedicated process-
ing algorithms makes it a technically challenging practice. In addition, requirements
for dense sampling of time-lapse wavefields makes it prohibitively expensive to ex-
ecute. Randomized surveys based on compressive sensing ideas demonstrate an
order of acquisition cost reduction and thereby creates an avenue to address some
current challenges faced with time-lapse seismic acquisition. By performing experi-
ments that investigates the feasibility of conducting randomized time-lapse surveys
in the field, we confirm that the challenging strict requirement to replicate time-lapse
surveys can be relaxed. Our findings stem from leveraging ideas from the field of dis-
tributed compressive sensing (DCS) and a joint recovery model (JRM) that allows
us access to high-fidelity time-lapse data volumes recovered from surveys acquired
with randomized sampling techniques, which are based on ideas from compressive
sensing. The main conclusions of this thesis are summarized below in three broad
categories.

6.1 Relax randomized time-lapse survey
replication

Time-lapse survey replication entails making the baseline and monitor(s) survey
geometries as similar as possible. The current practice requires dense sampling of
sources/receivers and strict survey replication to maximize repeatability, which is
a term that describes the similarity of time-lapse vintages. Since surveys based
on randomized subsampling have been shown to be economical, we investigate the
implications of such surveys — and the consequences of not replicating the surveys
— for time-lapse studies particularly with regards to attainable degrees of repeata-
bility measured in terms of normalized root mean square (NRMS). To this end,
we considered the situation of recovering time-lapse data from randomly subsam-
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pled surveys wherein the shot locations differ amongst the baseline and monitor
surveys but with control on actual source/receiver positions post plot (to some ac-
curacy). By ignoring factors such as tidal differences, we found that it is better not
to replicate the shot locations amongst the surveys when recovery of the vintages
is paramount. This observation is a direct consequence of introducing a common
component, which contains information shared amongst the vintages, as part of our
proposed joint recovery model.

To our knowledge, we are the first to address time-lapse seismic problems in
which the common component amongst vintages—and “innovations” with respect
to this shared component—is made explicit. In other words, we are the first to
categorize time-lapse differences as “innovations” and to use the JRM to exploit
this, thereby distinguishing our formulation from other approaches that equally use
the common information in time-lapse vintages. Because we do not replicate the
randomly subsampled time-lapse surveys, yet obtain high-quality vintages with our
JRM, our findings suggests that the current practice necessitating strict replication
of dense time-lapse surveys may be relaxed when conducting randomized time-lapse
acquisitions.

We compare recovery results obtained with the JRM to results obtained from
independently processing the vintages, and demonstrate that the former approach
significantly outperforms the latter in terms of recovery quality of vintages and data
repeatability. Our findings remain consistent both for experiments where our ob-
served data are recorded on a discrete grid (Chapter 2), and in the more practical
scenario where our data do not lie on the grid (Chapter 3) but where the post plot
shot positions are known. In both cases, we assert that the high-fidelity of the re-
covered vintages makes them credible candidates for algorithms or processes that
extract poststack time-lapse attributes, from which subsurface reservoir changes can
be deduced. These findings coupled with recent field implementation of actual com-
pressive sensing type surveys (Mosher et al., 2014) in both land and marine, suggest
that we can translate empirical simulation studies regarding sampling efficiency to
real field efficiency.

6.2 Repeatability in presence of calibration errors
Conventional processing of seismic data relies on having access to accurate informa-
tion about the acquisition parameters including shot firing times and spatial posi-
tions of both sources and receivers. Unfortunately, recorded postplots may differ
from actual field measurements, which can cause problems when ignored in seismic
processing. This reliance on accurate information is also critical to successful recov-
ery of signals acquired with compressive sensing—i.e., CS relies on accurate opera-
tors. For time-lapse seismic, these deviations between actual and postplot positions,
hereafter referred to as calibration errors, can have detrimental effects on the quality
and repeatability of vintages, if unaccounted for during processing. Therefore we
investigate the sensitivity of these errors during regularization of conventional dense
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surveys. We also examine the impact of these calibration errors on low cost surveys
acquired with compressive sensing and recovered by independently processing the
observed subsampled data. We juxtapose the results with vintages recovered with
our JRM and evaluate how the JRM behaves as a function of increasing calibration
errors.

In Chapter 4, we demonstrate that high quality and highly repeatable vintages
and time-lapse data are possible for an ocean bottom survey in the presence of
source position errors that are of order of 20 − 25% of the interpolated shot sam-
ple interval. This result holds both for randomly subsampled (or compressively
sampled) surveys recovered with our proposed JRM and for conventional densely
sampled surveys albeit at a high cost. However, as soon as the errors are 25% or
more, the repeatability deteriorates and is even worse than the NRMS value for the
data recovered from compressively sampled surveys with the JRM. We processed
the densely sampled surveys conventionally, by taking the pseudo inverse of the
regularization operator, and show that repeatability degrades quite rapidly in the
presence of even relatively small (10% of the shot sample interval) calibration er-
rors. In contrast, we observe a modest decay in repeatability as calibration errors
increase, for vintages acquired with our low-cost randomized surveys and processed
with our joint recovery model. The performance of the joint recovery model for
acquisitions with unknown calibration errors is remarkable and can be explained
by the fact that our approach leverages information that is common amongst the
vintages explicitly. We established these results in the case where the subsurface
remains unchanged but the randomized surveys and calibration errors differ, and in
the realistic scenario where time-lapse changes are confined to subsets of the data.
Our findings support our previous claims that economic time-lapse surveys based
on randomized sampling and compressive sensing are ready to be implemented in
the field.

6.3 Relevance for randomized time-lapse seismic
imaging

To understand the benefits of randomized sampling coupled with the joint recovery
model in time-lapse seismic imaging, we investigate a direct extension of the JRM
to two problems related to 4D seismic imaging of prestack wavefields. First, we con-
sider an idealized experiment involving stacking of randomly subsampled prestack
time-lapse data, by incorporating a normal move out (NMO) and summation oper-
ator in the forward model. We cast recovery of the time-lapse stacked sections as a
linear inverse problem. Using the joint recovery model in the inversion, we obtain
high-quality stacked sections and differences from significantly few non-replicated
randomly subsampled baseline and monitor measurements. The stacked sections
obtained via independent inversions, however, are not as good as the former (es-
pecially for higher subsampling ratios). The findings from this study is proof of
concept of an immediate extension of our methodology to wave-equation based lin-
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earized inversions such as sparsity-promoting imaging (Herrmann and Li, 2012; Tu
and Herrmann, 2015).

In the second part, we consider the problem of time-lapse full-waveform inver-
sion (FWI). Because this study only explores the inherent benefits of extending
our joint recovery model to time-lapse FWI, we consider situations and examples
that ignore some challenges to FWI. For instance, we use a good initial model in
order to mitigate problems such as cycle skipping, and we assume knowledge of
the common source wavelets for the time-lapse surveys. We demonstrate that in-
dependent inversions of time-lapse vintages obtained from non-replicated surveys
are not as good as inversions performed using our joint recovery model. We ob-
serve improved repeatability in the inverted models using our joint recovery model
and clear delineation of the true time-lapse changes after subtracting the baseline
and monitor inverted models. Independent inversions create artifacts in the time-
lapse model difference between the baseline and monitor while inversion with JRM
attenuates these artifacts. This suggests that we can minimize the risk of constru-
ing false time-lapse changes as actual subsurface changes by performing inversions
that adapt the joint recovery model. Furthermore, we show that the quality of our
inversion results obtained with the JRM do not degrade for data acquired with dif-
ferent survey geometries. This finding sets our method apart from other inversion
approaches (e.g. double difference) that relies on exact replication of the time-lapse
survey geometries.

As with our conclusions on recovery of prestack time-lapse vintages in the previ-
ous sections, the key to our results on time-lapse seismic is in exploiting the common
information shared amongst time-lapse vintages and images. Finally, we note that
our methodology is not limited to analysis of just two vintages of time-lapse data.
According to the theory of DCS, we expect the quality of the vintages and images
to improve further as multiple time-lapse measurements are collected.

6.4 Limitations
Some limitations of the work presented in this thesis are as follows :

1. We show the feasibility of our methodology on 2-D time-lapse seismic with
fixed receiver configurations, where replication on the receiver side is fairly
accurate; however, we do not expect major drawbacks when our methodology
is applied to 2-D or 3-D surveys with towed arrays. Initial findings recently
reported in an article titled “Highly repeatable 3D compressive full-azimuth
towed-streamer time-lapse acquisition — a numerical feasibility study at scale,”
by Rajiv Kumar, Haneet Wason, Shashin Sharan, and Felix J. Herrmann, con-
firm our expectation of a large scale 3D implementation of our methodology.
In addition, findings by Mosher et al. (2014)’s makes us confident in a straight-
forward extension of our approach to real field 3-D surveys, perhaps with a
bit of tuning.
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2. Theoretical validations for solving problems with the joint recovery model
requires a numerical search for the most preferred weights (γ0, γ1, γ2) for each
of the components — common (z0) and innovations (z1, z2)— followed by a
γ-weighted ℓ1-norm minimization (DCS, Baron et al. (2009a)):

z̃ = argmin
z

γ0||z0∥1 + γ1||z1∥1 + γ2||z2∥1 subject to y = Az.

In our work that is void of any analysis of the weights, without loss of generality,
we choose γ0 = γ1 = γ2 = 1, which may be not be the most preferred weights for
seismic applications. Theoretical analysis of a weighted ℓ1-norm minimization by
Li (2015) provide conditions for stable and robust recovery of signals in the DCS
framework using the joint recovery model.

3. An essential aspect of seismic acquisition is the impact of various types of noise
on seismic data. Differences in the noise generated from baseline and monitor
surveys can have detrimental effects on repeatability. So far, we have ignored
ambient noise, swell noise etc. that can impact repeatability. However, we
are optimistic about the stability of our recovery since theoretical analysis on
CS provides stable recovery with respect to noise (Candes et al., 2006). In
addition, because we showed robust recovery in presence of unknown calibra-
tion errors that behave like noise, we are confident that our method will be
suitable for noisy data.

4. From a computational perspective, because of the ambient dimension of the
vector (z) recovered using the joint recovery model, we would typically require
more iterations during the sparse recovery step compared to an independent
recovery approach. However, in this work, we have kept the iterations fixed
when comparing both recovery strategies. This is also linked to the second
point regarding weights of the common part and innovations; the magnitude
of the common part is up to ten times (or more) greater than the innovations.

6.5 Future work
Some considerations for future work are as follows:

1. Examine the results of asymmetric randomized sampling whereby we acquire
more for the baseline and less for the monitor and vice-versa. According to
Baron et al. (2009a), there is a direct relation between the requisite number of
measurements (measurement rates) for each survey and recovery probability
with the joint recovery model. Therefore, studying asymmetric sampling is
important especially when planning a time-lapse acquisition project that re-
quires at least two monitor surveys. So, it may be necessary to allocate an
“optimal” acquisition budget to a specific survey.
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2. Verify any opportunities or benefits of implementing the actual γ-weighted
ℓ1-norm minimization strategy described in the previous section, for seismic
problems. As suggested by Li (2015), the weighted ℓ1-norm minimization
approach can potentially lead to higher-quality time-lapse signals and vintages
with improved repeatability.

3. Another important factor that affects repeatability is overburden complexity
(Misaghi et al., 2007), especially when analyses is carried out on the time-lapse
images. In this work, we have restricted our studies to a geological setting with
relatively simple overburden. It will be worthwhile to investigate how our
results could be impacted when these surveys are conducted in an area with
complex overburden such as a salt dome. The sensitivity of our joint recovery
model to unknown calibration errors in this setting is also worth looking into.

4. Prestack time-lapse wavefield recovery is incomplete without accounting for
time-shifts between the vintages. These time-shifts may arise as a result of
differences in the source wavelet between surveys or variations in the processing
algorithms applied to the data. In this work, we have ignored such differences.
Therefore, it would be worthwhile to examine how this problem can be modeled
mathematically and integrated in the existing framework.

5. The imaging work presented in Chapter 5 of this thesis is by no means exten-
sive, and can be considered as “testing the waters” for the potential application
of the joint recovery model to wave-equation based inversion of time-lapse seis-
mic data. An array of extensions abound in this direction including directly
imaging compressively sampled data to delineate subtle time-lapse changes
below complex overburdens. Other related ideas (Ayeni and Biondi, 2010; Qu
and Verschuur, 2016) demonstrate the benefits of joint inversion for imaging
time-lapse data but none of these methods makes the common part explicit in
their approach as we do.
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