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Abstract

Robot-assisted surgery allows surgeons to have improved control and visualization

in minimally invasive procedures. Eye gaze tracking is a valuable tool for study-

ing and improving the surgeon experience during robot-assisted surgery. Eye gaze

information gives insight on how surgeons are interacting with surgical systems as

well as their intentions during surgical tasks. This thesis describes the development

of an eye gaze tracker for the da Vinci Surgical System. The eye gaze tracker is de-

signed to track both the 2D and 3D eye gaze of a surgeon. It interfaces with the da

Vinci Surgical System through the da Vinci Research Kit (dVRK) and Robot Oper-

ating System (ROS) frameworks. The use of the eye gaze tracker is demonstrated

in two applications. Firstly, a motor control framework is designed to aid surgeons

in moving surgical tools towards their point of gaze. A haptic force is applied to

the da Vinci master manipulators to pull the surgeon’s hands towards where they

are looking. This framework is demonstrated on a full da Vinci Surgical System

on dry lab tasks. Secondly, eye gaze information is collected from 7 surgeons per-

forming realistic clinical tasks with the da Vinci Surgical System. A prediction

model using a random forest classifier is built based on the eye gaze information

and tool kinematic information in order to predict how and when surgeons move

their camera. This behavioural model has applications in both surgeon training and

endoscope automation.
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Lay Summary

With robot-assisted surgery, surgeons are able to operate on patients using mini-

mally invasive tools. The robotic platform gives surgeons better control and visu-

alization of the surgical scene. In this thesis, we aim to make improvements on

surgical robot systems by developing an eye gaze tracker to determine where sur-

geons are looking. This eye gaze tracker monitors the surgeons eye gaze position

in both 2D and 3D. We use this eye gaze tracker for two applications. The first

application uses the eye gaze information to help the surgeon move surgical instru-

ments towards where they are looking. A force is applied to the surgeon’s hands to

guide their motions towards where they are looking within the surgical scene. The

second application uses eye gaze information and surgical tool information within

a machine learning framework to predict how and when surgeons will move their

endoscope cameras.
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Chapter 1

Introduction

1.1 Eye Gaze Tracking
Humans are visual beings and use sight to perceive and interact with the surround-

ing environment. Eye movements can depict a person’s cognitive processes and

reflect their physical and emotional state. The measure of eye movements, oculog-

raphy, provides a rich source of information that is applicable to a wide range of

fields including psychology, human-computers interaction, and robotics.

Oculography, more commonly referred to by the more colloquial term “eye

gaze tracking”, is made possible through the use of eye gaze tracking technol-

ogy. Most modern eye gaze tracking technologies perform video-oculography, and

capture images of the eyes in order to determine gaze. Eye gaze trackers can be

designed to calculate the point of gaze on a display screen or the Three Dimen-

sional (3D) gaze position in a physical space. There are different configurations

for gaze trackers depending on the environment in which the tracker will be used.

Desktop eye gaze trackers monitor gaze on a computer monitor screen. Head-

mounted eye gaze trackers allow users to move freely in a space, and track where

they look in their surrounding environment. Gaze trackers can further be integrated

into specific applications, such as a stereoscopic displays in virtual reality devices.
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1.2 Robotic Surgery
Minimally invasive surgeries are carried out using small ports cut in the abdomen

through which thin tools and cameras are inserted. These types of procedures do

not require the large incisions made during traditional open surgeries, resulting in

faster recovery times, reduced trauma, and reduced scarring. During manual la-

paroscopy, the surgeon uses hand-held surgical tools to perform surgery. A major

limitation is the hand-eye mapping between the tool tip and the endoscope feed.

As the surgical tools pivot at the port openings, orientation of the tools is not intu-

itive. Additionally, most laparoscopic surgeries are carried out with a Two Dimen-

sional (2D) display, and so the surgeon’s sense of depth within the surgical scene

is limited.

Robotic technology is used in surgical procedures to allow surgeons to have

more precision and better control of surgical tools and improved visualization of

the surgical scene during minimally invasive surgery. An example of a commer-

cial surgical robot system is the da Vinci R©Surgical System by Intuitive Surgical

Inc. (Sunnyvale, CA). The da Vinci is a tele-operated robotic system in which the

surgeon operates the robot using hand-held robotic manipulators and foot controls

to remotely control patient-side manipulators that operate instruments inside the

patient. There are two master manipulators, one for each hand of the surgeon.

The movement of the surgical tools in each robotic slave arm of the da Vinci is

mapped to the movements made by the surgeon using the master manipulators. A

robotic platform has the benefit of allowing for a more intuitive hand-eye map-

ping, increased wrist dexterity and 3D imaging. This allows surgeons to perform

more complex minimally invasive surgeries than what is achievable with manual

laparoscopy.

There is an opportunity for eye gaze tracking to further improve the human-

robot interface. Eye gaze information carries the intent and focus of a surgeon,

and directly portrays how the surgeon is visualizing the surgical field. Eye gaze

information can be used to adjust the visual field by adjusting the camera based

on where a surgeon is looking [7], [34], or assist in tool movement based on the

surgeons intent [45], [46]. Eye gaze tracking technology also allows researchers

to better understand how surgeons interact with the surgical robot platform and for
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measuring surgeon behaviour [3]. While eye gaze has been previously studied

with laparoscopic surgery, the use of eye gaze tracking technology in the study of

surgeon behaviour with robotic surgical platforms is relatively new and unexplored.

1.3 Objectives of Thesis
The research carried out during this masters research thesis is threefold. The first

objective of this thesis is to develop and evaluate a stereo eye gaze tracker designed

for use with the da Vinci surgical robot. The design described in this thesis is retro-

fit to the da Vinci surgical robot. The eye gaze tracker is able to determine a user’s

eye gaze position in 2D or 3D space within the da Vinci surgeon console display.

For 2D eye gaze tracking a standard polynomial regression is carried out, and for

3D eye gaze tracking a novel hybrid geometric and regression-based approach is

used. The eye gaze tracker is evaluated for accuracy in both 2D and 3D tracking

schemes.

The gaze tracker is then applied to a human-robot interface, and a control

framework is established where the 3D eye gaze position is used to direct the move-

ment of surgical tools. The objective of this work is to demonstrate the feasibility

of a gaze-based control framework for a surgical robot system. This is the first

time gaze-contingent motor control has been demonstrated in a full surgical robot

system. This system is evaluated with a dry lab task (peg placement). The result of

this work has been published in the conference proceedings of the 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2015).

Thirdly, surgeon eye gaze behaviour is observed in a realistic, clinical-like set-

ting. The objective of this work is to use eye gaze information to predict camera

movement. We evaluate the use of gaze data towards identifying whether a surgeon

performing robot-assisted surgery has adjusted their endoscope and predicting in

which direction they move their cameras. This is a novel approach to automated

endoscope control based on eye gaze information, as the endoscope movement is

predicted using a data-driven model instead of heuristic rules. This behavioural

model can be used to enable automatic camera control during robotic surgery.
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1.4 Organization of Thesis
This thesis is organized into the following sections:

• Chapter 1 Introduction: Discusses the motivations and objectives of this

thesis.

• Chapter 2 Background: Discusses background information and a review of

state-of-the-art technologies.

• Chapter 3 Eye Gaze Tracker Design: Describes the design of the eye gaze

tracker hardware and software algorithm.

• Chapter 4 Eye Gaze Tracker Accuracy: Presents the results of an accuracy

evaluation for 2D and 3D eye gaze tracking.

• Chapter 5 Gaze Motor Control: Discusses the use of the eye gaze tracker

for controlling robot movement.

• Chapter 6 Camera Movement Prediction: Discusses the use of eye gaze data

for predicting endoscope movement during robot-assisted surgery.

• Chapter 7 Conclusion and a list of contributions of this thesis.
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Chapter 2

Background Information

This chapter presents background information for an eye gaze tracking system in

robot-assisted surgery. It provides an introduction the eye’s anatomy and physiol-

ogy. An overview of existing eye gaze tracking technologies and methodologies is

discussed. Finally, state-of-the-art eye gaze tracking applications in robot-assisted

surgery is discussed.

2.1 Eye Anatomy and Physiology

2.1.1 Eye Anatomy

Knowledge of the anatomy of the eye is important for the design of an eye gaze

tracking system, and for the interpretation of eye gaze tracking data. The eye is a

sensory organ through with humans can visualize the world. The eye is complex

and has many anatomical components which convey and process light in order to

achieve vision. A diagram of the eye is shown in Figure 2.1.

The anterior outer fibrous layer of the eye is the cornea. This is a transpar-

ent dome through which light enters the eye. The cornea protects the eye from

harmful particles and also aids in refracting and focussing light. It has five main

layers- the epithelium, Bowmans layer, the stroma, Decements membrane, and the

endothelium. Roughly 65-75% of light focussing in the eye is done in the cornea

1Image obtained from https://nei.nih.gov/photo/anatomy-of-eye.
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Figure 2.1: Diagram of the eye1.

[24]. Due to the transparent nature of the cornea, the light from the Infrared (IR)

Light Emitting Diode (LED) is both reflected and transmitted through the cornea

and subsequent structures in the eye. At the boundary between each transparent

layer, the partially reflected light produces a different reflected image. These im-

ages are referred to as Purkinje images. The first Purkinje image is the reflection

of light off the outer cornea surface, and is the image considered by most gaze

tracking algorithms since it is the brightest. The fourth Purkinje image can also be

used to estimate the pupil position in a 3D model of the eye [1]. Gaze estimation

involves the calculation of the exact location of the pupil in space. However, since

the cornea is dome shaped and refractive, the image of the pupil shows a refracted

image and not the actual location of the pupil. The index of refraction and radius

of curvature of the cornea can be taken into account to achieve a more accurate

estimation of the pupil location. The average value of the index of refraction is

1.376 and the average value of the radius of curvature is 0.7 cm [13]. To simplify

equations, the cornea is approximated as a perfect spherical structure, when in re-

ality it has a higher radius of curvature towards the centre, and flattens out around

the edges.

The posterior outer fibrous layer of the eye is composed of the opaque sclera
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and lamina cribrosa. The sclera has a rougher texture than the cornea, and reflected

IR light glints appear distorted and blurry. This can cause a problem when trying

to find a single glint point on the eye.

The middle layer of the eye is also referred to as the uvea. It is vascular and

consists of the IRis, ciliary body and choroids. The IRis is a disc-shaped structure

containing a sphincter muscle which dilates and constricts to regulate the amount

of light entering the eye. Through the center of the IRis is the pupil, which is

the hole through which light passes through. On the circumference of the IRis is

the ciliary body. Suspended by the ciliary body is a transparent lens. The lens is a

pliable structure which transmits and focuses light according to its thickness. Light

then travels through the vitreous humour, which is a transparent fluid that fills the

body of the eye.

Perception occurs at the retina, which is a layer on the inner surface of the

eye that detects light and allows us to see images. The fovea is a small area in

the center of the retina with the most visual acuity. Light travelling through the

vitreous humour reaches the retina where it is sensed by photoreceptors. There

are two photoreceptors called rods and cones for detecting light. Rods allow for

scotopic vision, and allow for vision in dim lighting [40]. Conversely, cones allow

for photopic vision and allow for colour vision. Light is focussed by the lens onto

the fovea, which is a region on the retina that is dense with cone photoreceptors.

Sight perception decreases outside of the fovea. One notable feature of the fovea is

that it only comprises 1◦ of visual angle. This sets the limit for the accuracy of gaze

trackers, as it is only possible to detect where a person is looking to the precision

of the fovea.

Gaze tracking technologies also consider the optical axis and the visual axis of

the eye. The optical axis is defined as the line passing perpendicular to the surfaces

of the eye and through the center of each circular structure (cornea, IRis, and lens).

The visual axis is the line passing from the center of the fovea. The fovea is offset

from the center of the retina, so there is a slight degree offset between the optical

axis and visual axis (between 4-5◦ horizontally and roughly 1.5◦ vertically [17]).

The optical axis may be thought of as a theoretical axis as there is no true optical

center for the slightly aspherical components of a real human eye.
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2.1.2 Types of Eye Movements

The first aspect of analysing eye gaze data is extracting meaningful metrics from

the raw gaze position reported by a gaze tracking device. The physiology behind

eye movements is important for interpreting gaze. Many eye gaze metrics used for

understanding cognitive behaviour are based on different types of eye movements.

There are several different types of eye movements, but of most importance to eye

gaze behaviour studies and applications are fixations, saccades, smooth pursuit,

and vergence.

A fixation eye movement occurs when the point of gaze remains within a small

area for an extended period of time. The duration of a fixation is typically between

200-400 ms with a minimum of 100 ms [53]. Fixations are of interest to researchers

because they indicate visual perception and areas of interest.

Saccades are rapid ballistic movements of the eye. They can reach velocities

of up to 500◦ per second for durations in the order of tens of milliseconds [57].

These movements are both voluntary and involuntary and occur for a variety of

reasons. Saccades can be goal oriented to direct the eyes at a certain point of

interest or occur as reflexes to quickly look at objects. Saccades also stabilize gaze

by resetting the eye to a center position in the orbit. The beginning of a saccade

has a latency of roughly 100-300 ms from the occurrence of a stimulus. The eye

is never completely still, and micro-saccades are constantly occurring in order to

correct the eye position.

Smooth pursuit eye movements are a relatively slow motion of the eye. These

movements are voluntary and are done when tracking moving objects. During a

smooth pursuit, the eyes are directed to maintain vision of a moving target. The

maximum velocity of a smooth pursuit is around 300◦ per second, with a latency

of 100-150 ms [5]. Smooth pursuits are initialized with visual signals, but during

a pursuit the motion of the eye is based off the visual signal in memory.

Vergence eye movements are the coordinated movement of both eyes in oppo-

site directions in order to view an object at a certain distance away. There may

be convergence when the eyes rotate towards each other to view closer objects, or

divergence when the eyes move away for farther object. Gaze tracking algorithms

can use this property of eyes to calculate a single gaze point on a two dimensional
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screen with the constraint that the two eyes must be looking at the same point. Al-

ternatively, gaze tracking can be extended into three-dimensions by calculating the

intersection of the line of sight for both eyes.

2.2 Overview of Eye Gaze Tracking Techniques
There are many variations on eye gaze tracking techniques. This reflects the breadth

of applications for gaze tracking. For a camera-based system, the image of the eye

is first processed to find specific features, such as pupil position, which can be re-

lated to gaze position. Once eye features have been found, eye gaze estimation is

then carried out through a calibration procedure to map eye feature locations to the

point of gaze. This section details current implementations in literature for both

feature detection and gaze estimation.

2.2.1 Eye Feature Detection

A common technique used in eye gaze tracking is to image the eye under IR lighting

using IR bandpass camera filters. The pupil of the eye is noticeably dark in IR

lighting as the IR light is absorbed within the pupil while the IRis reflects the light.

This is illustrated in Figure 2.2. Additionally, by placing IR light sources near the

visual axis of the camera lens, the IR light reflects off of the retina in the back of the

eye and is imaged by the cameras, resulting in a bright pupil effect. The difference

between the dark pupil and bright pupil images can be calculated to isolate the

pupil.

There are appearance-based and feature-based methods for gaze estimation.

Appearance-based methods use the entire image of the eye as inputs to machine

learning algorithms which correlate the appearance of the eye with the point of

gaze. Examples of this technique are found in [37, 60, 64]. Feature-based eye

gaze estimation use specific features of the eye image in order to calculate the gaze

position. The image of the eye is processed to identify features such as the pupil,

cornea, light reflections or eyelids. The pupil is an important feature as it can

be directly related to the direction of gaze. Typically, the pupil is detected under

IR lighting, while the cornea is detected in visible light. To detect the center of
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Figure 2.2: Image of the eye under infrared lighting.

the pupil, a common strategy is to fit an ellipse to the pupil contour, and take the

ellipse center to be the pupil center. In [33], edge detection is carried out along

rays extending from an initial starting point. They find additional potential pupil

edges by further searching along rays from each detected edge. The RANdom

SAmple Consensus (RANSAC) algorithm is used to fit an ellipse to the detected

points. The center of the fitted ellipse is taken as the starting point for the next

iteration of the Starburst algorithm until convergence. This method is simple and

intuitive, however it is negatively affected by occlusions and reflections near the

pupil contour. Pre-processing of the image is required to remove any non-pupil

features. In [2], the pupil contour is detected by detecting edges in the image, and

processing the edge image in order to extract pupil edges. This involves filtering

out non-pupil edges with morphological patterns, and acceptance criteria such as

line curvature and length.

Another approach to pupil detection is to perform binary thresholding on the

eye image to segment dark areas in the image. In [20], an adaptive threshold is

applied to threshold the image. Contour detection is then carried out, and the pupil
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contour is determined as the most circular contour, based on the isoperimetric quo-

tient criterion. This method is discussed in more detail in Chapter 3. In contrast

to finding the pupil contour, an alternative is to directly estimate the center of the

pupil. In [66], the gradient of the image is calculated, and an objective function is

defined at every pixel location which uses the dot product between the image gradi-

ent and the vector from the potential pupil center position. This objective function

gives a higher value to the center of circular objects. By applying a weighting based

on image intensity (higher weight for lower intensity), the objective function can be

used to find the center of the dark and circular pupil. This algorithm is applicable to

desktop-based eye gaze trackers where the pupil contour is approximately circular.

However, there would be more inaccuracies with a head-mounted eye gaze tracker

where the pupil is at a more extreme angle and is elliptical. With IR lighting, the

location of the pupil can also be easily determined by finding the difference of the

dark and bright pupil images, such as the system described by Morimoto et al. in

[41]. The drawback for using such a system is the need for more complex hardware

for synchronizing light sources and camera frame capture.

Using IR light sources results in bright light reflections off of the surface of

the cornea which can be detected by gaze tracking cameras while not distracting

the user. In eye gaze tracking literature, the IR light reflections on the cornea sur-

face are referred to as “glints”. A useful feature for eye gaze estimation is the

vector between the center of the pupil and the center of a glint in the gaze camera

image. This is referred to as the “pupil-glint vector”. The pupil-glint vector can

be mapped to 2D screen coordinates because the glints act as stationary reference

points since the IR light sources do not change position and the cornea surface is

approximately spherical. Glint detection is commonly accomplished by threshold-

ing for bright pixels. The presence of several glints from different IR light sources

poses a challenge as some glints may not appear due to eyelids or eyeglasses. In

[22], Hennessey et al. use point pattern matching to identify glints. They generate

a template glint pattern by manually selecting glint locations from a pre-recording

image frame. Then, all possible glint positions are matched by distance to the tem-

plate. This method is translation invariant and can handle cases where individual

glints are not present, however it is not scale or rotation invariant.
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2.2.2 Eye Gaze 2D Estimation

There are two types of techniques for relating eye features to gaze position- regres-

sion and model-based methods. Regression methods implement a mapping directly

between eye features and gaze estimation. The simplest gaze estimation regression

model is a polynomial between the pupil-glint vector and positions on the observed

screen. Calibration of the regression model can be carried out by displaying cal-

ibration targets to the user and recording the positions of the eye features corre-

sponding with each calibration target. A second-order polynomial is commonly

used as it requires a simple calibration and has good accuracy [42]. Figure 2.3

illustrates the relationship between the pupil-glint vector and screen coordinates.

Model-based methods use the detected eye features to calculate a 3D model

of the eye. The optical axis is then intersected with the plane on which the eye is

gazing at in order to determine the gaze position. In [70], Villanueva and Cabeza

propose that the minimum hardware required for accurate model-based eye gaze

tracking is one camera and two light sources. The main drawback of model-based

methods is that the physical measurements of the system (cameras, light sources,

display screen) need to be precisely known and the accuracy of the estimated gaze

is very sensitive to inaccuracies of the system measurements [22].

2.2.3 Eye Gaze 3D Estimation

For stereoscopic displays, a common approach to 3D gaze tracking is to calibrate

for the 2D plane of the display screen, and then triangulate the two gaze positions to

find the depth. The two eyes will rotate inwards to focus on close objects, and rotate

outwards to focus on farther objects in a movement called vergence. Daugherty

et al. conducted an experiment to measure gaze disparity within a stereoscopic

image [8]. They concluded that there is a significant difference in gaze disparity

when viewing objects in a frontal image plane compared to mid and back planes.

Their work shows that gaze disparity is measurable with a binocular gaze tracker

and is indicative of gaze depth, but only while viewing images which appear in

front of the 2D plane of the display screen. This was in agreement with work by

Duchowski et al. who measured vergence error in virtual 3D environment, and

observed greater vergence errors for stereo images behind the display screen plane
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(a) Eye position while looking left. (b) Gaze position while looking left.

(c) Eye position while looking right. (d) Gaze position while looking right.

(e) Eye position while looking up. (f) Gaze position while looking up

(g) Eye position while looking down. (h) Gaze position while looking down.

Figure 2.3: Relationship between pupil-glint vector (shown as red arrows) to
eye gaze position (shown as red dots).
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[9].

Lanata et al. evaluate the performance of different feature mapping functions

to find the 3D gaze position [30]. They evaluated a linear mapping and a quadratic

mapping between the 2D pupil position and gaze depth, and a geometric mapping

which calculates gaze depth based on the vergence of the left and right eyes us-

ing stereo triangulation. They showed that a geometric mapping has a lower depth

error than other mapping functions. Takemura et al. propose a head-mounted

eye gaze tracking system which uses Visual Simultaneous Localization And Map-

ping (SLAM), which generates 3D coordinates of the environment as well as es-

timates head pose [63]. Visual SLAM tracks feature points found in the video

image frames (such as edges or corners) and calculates the 3D position of the fea-

ture points based on the change in position of the features over several frames.

A Delaunay triangulation is then applied to the world feature points, and the 3D

gaze position can be calculated by determining which triangle the 2D gaze position

coincides with. This eye gaze tracking technique requires only a 2D calibration,

however they did not measure the accuracy of their system.

Pfeiffer et al. used a machine learning approach to determining the 3D point

of gaze [51]. They implemented a Parameterized Self-Organizing Map (PSOM)

to map 2D gaze positions on a screen to 3D positions within a virtual environ-

ment. They argue that a purely geometric approach has disadvantages because the

physical dimensions of the system need to be known, and users may demonstrate

varying behavioural patterns of vergence movements. They compared their ap-

proach with a geometric approach which finds the minimal distance between the

two visual axes. They found that PSOM was significantly more precise and accu-

rate. Wang et al. countered these findings and implemented a modified geometric

approach and compared it with the PSOM algorithm [73]. In their system, they use

triangulation to map the 2D gaze position of the left and right eyes to a 3D point

in a stereoscopic display. A difference in their geometric approach to [51] is that

the vertical position is taken to be the average of the left and right eyes instead of

directly using the visual axes of both eyes. They additionally filter the 2D screen

coordinate data points with a Butterworth filter. The calibration sequence for their

system requires a user to watch a calibration point move in a 3D trajectory and they

note that an advantage of their system is the large number of samples captured dur-
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ing calibration. The accuracy for their geometric approach was significantly higher

than their PSOM implementation in depth estimation, but was comparable for hori-

zontal and vertical gaze estimation. They note that the calibration procedure in the

geometric approach is more than twice faster than with PSOM. The discrepancy

between [51] and [73] is that the PSOM and geometric approaches compared do

not have the exact same implementation. However, it may be concluded that there

could be different situations that warrant the use of either method. For systems

with an apparatus or environment that is difficult to measure precisely, using the

PSOM method would be advantageous. For systems where speed of calibration is

important or a more accurate depth estimation is needed then the geometric method

can be applied.

There are also instances of 3D gaze tracking techniques for physical environ-

ments, which skip the intermediate step of calibrating to a 2D plane. Hennessey

and Lawrence take a purely geometrical approach and determine the 3D Point of

Gaze (POG) by calculating the 3D visual axis of both eyes and finding the midpoint

of the shortest line between the two visual axes [21]. They obtain an accuracy of

3.93 ± 2.83 cm over a depth range of 30 cm. Tostado et al. use Gaussian Process

Regression (non-parametric Bayesian supervised learning algorithm) to map the

2D pupil position to the gaze position in 3D [69]. Their gaze tracking system was

designed for the control of a robotic arm using 3D gaze positions. To calibrate,

the user watches the end of a robotic gripper as it moves over a 3D trajectory.

Through their calibration process, they obtain 500-1500 calibration data points.

Additionally, by using Gaussian Process regression, they are able to determine the

uncertainty of estimated gaze positions, which is useful for safety considerations

when controlling a robotic arm. Their method shows that 2D gaze features can be

used to estimate a 3D position of a robotic system with an accuracy (1.6 ± 1.7

cm) over a depth range of 20 cm. This accuracy is reported based on an analysis

in which 70% of recorded data was used for calibration, and 30% was used for

calculating error. The accuracy of their system for separate calibration and testing

data sets is not reported. In this approach, the head motion of the user needs to be

constrained by a head rest as only the pupil position is used.

While most 3D gaze tracking methods require the use of at least one camera

for each eye to observe vergence, some groups have performed 3D gaze tracking
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through measuring a single eye. In addition to vergence, eye lens accommodation

can be measured as an indicator of depth because the eye lens becomes thinner

to focus on farther objects and thicker to focus on nearer objects. In [1], Lee

et al. measures the change in lens curvature with the change in position of the

1st and 4th Purkinje images in relation to the pupil center position, as well as

change in pupil diameter. The depth position is then determined with a multi-

layered perceptron. Users calibrated their gaze by looking at nine reference points

at five depth positions between 10-50 cm. They achieved an accuracy of 0.48 cm

in the horizontal direction, 0.77 cm in the vertical direction, and 4.59 cm in depth.

However, their method is user-dependent, and the authors note that for users with

poor eyesight, lens accommodation will not be as evident, and the pupil size does

not adjust with depth.

There are a variety of approaches for accomplishing 3D eye gaze tracking, and

no single approach will be optimal for all situations. The selection of an approach

for 3D eye gaze tracking is dependent on the environment in which gaze tracking

is being carried out. Factors include the 3D stimulus object (real or virtual), user

head motion, speed and time limitations, and the user’s eyesight.

2.3 State-of-the-Art Eye Gaze Tracking Applications in
Robotic Surgery

Pioneering work in the field of gaze contingent robot control has been carried out

by researchers at Imperial College. They have integrated a commercial Tobii x50

eye gaze tracker within the da Vinci stereo console by using dichroic beam splitters

placed within the stereo console to direct the IR light to the eye gaze tracker [45,

48, 59, 72]. They have implemented their eye gaze tracking system in a variety

of applications in robotic surgery including tool motion control, endoscope auto-

focus, and motion stabilization. More recent work by the same group is carried out

with remote eye gaze trackers attached to a stereo screen and a teleoperated robotic

system [14, 15].

In an application directly related to visualization during surgery, Mylonas et

al. use eye gaze for motion stabilization and depth recovery [43]. They track

the depth of eye gaze and control the endoscope using a Proportional-Integral-
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Derivative (PID) controller to maintain a fixed depth between the gaze position

and the endoscope. To calculate 3D fixation positions, the pupil-glint vectors are

mapped to 3D gaze positions with a radial basis function. To calibrate, subjects

gaze at nine targets presented at three different depths. They evaluated motion

stabilization in a virtual experiment, where a sphere oscillating along the z-axis

is shown to the subjects. By focusing on the sphere, the subjects were able to

stabilize the motion of the simulated camera. Their work shows the feasibility of

tracking 3D eye gaze and outlines a control framework for gaze-contingent motion

stabilization, however, their experiment is relatively simple compared to a surgical

scene (single sphere target). They also used eye gaze to determine the depth of

soft tissue in live and simulated scenes. Subjects followed predefined paths across

images, and the reconstructed depths closely followed the actual surfaces with a

regression ratio error of 0.103 ± 0.0912 (size of error in terms of distance units

was not specified).

In [45], Mylonas et al. describe the use of eye gaze tracking for channeling

motor movements. They use a haptic device for interacting with a virtual surgical

tool shown within the da Vinci surgeon console. In their system, gaze contingent

motor channeling is accomplished by applying a haptic force to the robotic ma-

nipulator according to the distance from the surgical tool tip to the users point of

fixation. Both 2D and 3D experiments were conducted. In the 2D experiment, sub-

jects were asked to use the tip of the surgical tool to track a moving target. They

identified the optimal haptic force profile to be a spring force as it had the small-

est tracking error. In the 3D experiment, subjects ablated fiducials on a deforming

synthetic cardiac tissue. In addition to motor channeling, a safety boundary was

set which is updated based on the subjects fixation point. The boundary was set to

be parallel to the endoscope cameras x-y plane, and located at the depth of the fix-

ation point. A conical channel was set at each fiducial based on which fiducial was

closest to the subject’s fixation points. They observe a 30% accuracy improvement

with gaze-contingent motor channeling in the 2D case. For the 3D experiment, they

observe an accuracy improvement of 37.72%. They expand on this work in [46],

in which the cognitive demand of gaze-contingent motor channeling is assessed

with Functional Near-Infrared Spectroscopy (FNIRS). They found that performing

tasks using eye gaze was more cognitively demanding. They propose that subjects
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were able to focus on task planning and quality, which requires more use of the

prefrontal cortex, thus resulting in the increase in cognitive demand.

2.3.1 da Vinci Research Kit Framework

The da Vinci Research Kit (DVRK) is an open-source system that allows researchers

to access and control components of the first-generation da Vinci surgical robot.

The DVRK is comprised of electronic, firmware, and software components.

For each robotic “arm” (slave arm, master manipulator, endoscope manipu-

lator, there is one controller box used to interface with the arm (see Figure 2.5.

With three slave arms, two master manipulators, and one endoscope manipulator

our system has 6 controller boxes. Within each controller box are two sets of elec-

tronic boards. Each set has a Quad Linear Amplifier (QLA) board and a IEEE-1394

Field-Programmable Gate Array (FPGA) Controller board. The QLA board drives

four DC motors, and has Analog-to-Digital (ADC) converters as well as Digital-

to-Analog (DAC) converters for setting and monitoring the motor current. The

FPGA Controller board controls the motors, and communicates with the an exter-

nal Linux computer with the FireWire protocol. Closed loop control of the robotic

arm is achieved with sensor feedback connected to the FPGA board.

The software for the DVRK is built upon the Center for Computer-Integrated

Surgical Systems and Technology (“cisst”) package and Surgical Assistant Work-

station (SAW) open-source libraries developed at the Johns Hopkins University

(JHU). The cisst package (named after the Center for Computer-Integrated Surgi-

cal Systems and Technology at JHU) contains low level functionality for computer-

assisted interventions. The SAW libraries contain robotic and imaging function-

ality for computer-assisted surgical applications. A console GUI application is

provided which contains an interface for sensor monitoring, PID control, and tele-

operation status. An example of the GUI is shown in Figure 2.4.

The Robot Operating System (ROS) framework is also implemented with the

da Vinci Research Kit. The main components of ROS are the communication in-

frastructure, robot-related functions, and development tools. The communication

infrastructure sends messages between different “nodes”, which may be different

ROS-enabled applications. Communication between nodes is established for dif-
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Figure 2.4: The da Vinci Research Kit console user interface (showing robot
position).

ferent “topics”, which are names of data streams such as robot position. Each node

may publish topics and subscribe to topics. Additionally, “services” may be set up

between nodes when a structure is needed for request-based two-way communica-

tion (one node requests information and the other node replies). A ROS “Master”

application coordinates all of the communication in between nodes. Each node

will register topics with the ROS Master, which then initializes the communication

between publishing and subscribing nodes. The ROS master additionally contains

a Parameter Server, which stores data in a central location. Data stored in the

Parameter Server is sorted by key.

The robot-related functions in ROS includes pose estimation and a geometry

library for calculating coordinate transforms. The “tf2” ROS package is used for

pose estimation at any point in time. It monitors the coordinate frames within the

robotic system. ROS also includes imaging processing packages for reading and

capturing images and performing camera calibration. ROS contains a package for

interfacing ROS images with OpenCV functions.
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Figure 2.5: A da Vinci Research Kit controller box.

The development tools in ROS includes simulators and GUI development tools.

The simulation tool is especially useful for prototyping applications prior to ex-

ecuting them on the full robot system. The simulator platform is Gazebo, which

is a separate toolkit for 3D rendering of robot simulations. Gazebo communicates

with ROS nodes through Transmission Control Protocol/Internet Protocol (TCP/IP)

communication. Graphic rendering is carried out with the Ogre 3D rendering en-

gine. The simulator tool is implemented in the DVRK library, which contains the

mesh models for Patient-side Manipulator (PSM) and Master Manipulator (MTM)

robot arms as well as various tools. The Graphical User Interface (GUI) develop-

ment tools in ROS are built with Qt. The GUI is modular, and consists of various

plugins which are shown as dockable windows within a main application. Existing

GUI plugins can be implemented for any project, or a custom GUI plugin can be

written.

ROS can be used with programs written in C++, Python, and Matlab. There

may be a variety of applications running in a ROS system,for example one node

can be a Qt C++ application communicating with the robot, while another node is

a Python script computing a path trajectory for the robot to follow.
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Chapter 3

Gaze Tracker Design

3.1 System Overview
In this section, the design of an eye gaze tracker for the da Vinci Surgical System is

described. The purpose of the eye gaze tracker is to determine where the surgeon

is looking within the da Vinci surgeon console. The hardware of the eye gaze

tracker contains a set of cameras and IR Light Emitting Diodes (LEDS) directed

at the surgeon’s eyes. The IR LEDS cause light reflections on the surface of the

cornea which are referred to as “glints” in this thesis. We assume that the surgeon

does not move their head when operating with the da Vinci because a headrest in

the surgeon console stabilizes the surgeon’s head position. Also, the surface of

the cornea is assumed to be approximately spherical. Therefore, as the surgeon

looks around the surgical scene, their pupil moves but the IR light reflections on

the cornea surface remain at stable positions. The eye gaze tracker can calculate

the point of gaze using the vector between the pupil position and the position of IR

light reflections. This “pupil-glint” vector is mapped to 2D or 3D eye gaze positions

through a calibration procedure. Therefore, the software algorithm of this eye gaze

tracker has two main parts- image processing for finding the pupil and glint eye

features, and a calibration process for mapping the pupil-glint vector to the 2D or

3D eye gaze position.

The full eye gaze tracking system consists of an eye gaze tracker and additional

peripheral devices for communication with the da Vinci Research Kit. The eye gaze
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tracker is connected to a computer running the eye gaze tracking software. This

computer also outputs a display on the da Vinci surgeon console. A secondary

computer runs the DVRK software, and communicates with the eye gaze tracking

computer using sockets via the TCP/IP protocol and ROS. The DVRK computer

communicates via the Firewire protocol to the DVRK controllers, which output

power to the individual da Vinci robotic arms. This system is shown in Figure 3.1.

Figure 3.1: System overview diagram showing components and communica-
tion channels.
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3.2 Hardware
The eye gaze tracker is designed to fit onto the da Vinci first generation surgeon

console. Within the context of a tele-operated surgical robot with a stereo viewer,

one eye gaze tracking solution is to integrate an eye gaze tracker within the stereo

viewer console [43]. While this is a viable solution when designing a stereo viewer

with eye gaze tracking functionality, embedding an eye gaze tracking system within

an existing stereo viewer such as the da Vinci surgeon console requires invasive

modification of the surgical system. A retro-fit design was selected over placing

the gaze tracker inside the surgeon console to avoid invasive modifications of the

da Vinci. This additionally makes it possible for other groups to easily use this

design, and enables applications in which the gaze tracker is mounted on glasses-

like frames around the eyes. The frame consists of a compartment for cameras and

holes for placing LEDS. The eye piece was modelled in Solidworks, and prototypes

of the eye tracker frame were 3D printed. The cameras are placed so that they are

just below the surgeons eyes.

The requirements for the eye gaze tracker are as follows:

• Captures a perpendicular view of the surgeon’s eyes

• Does not disrupt the surgeon’s field of view

• Safe for surgeon to use for extended periods of time

Firstly, it is important for the eye gaze tracker to capture a perpendicular view

of the user’s eyes so that the eyelid does not obstruct the pupil. Also, if the eye

gaze tracker is placed at a sharp angle then the calibration may be less accurate

since pupil’s range of motion in the vertical direction is smaller. Secondly, the eye

gaze tracker should not reduce the surgeon’s field of view within the stereo console.

Lastly, the eye gaze tracker is designed to use IR light LEDS which are directed at

the eyes. The light emission of the LEDS should be at a safe level to protect the

surgeon’s eyes.

In the following sections, the main design iterations of the eye gaze tracker

are described in detail. Each hardware design iteration had associated software

iterations that are described in 3.4.
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3.2.1 Hardware Version #1

The camera used in the first design iteration is the Leopard Imaging LI-OV5640-

USB-72. This camera runs at a frame rate of 30 Frames Per Second (FPS) and a

resolution of 640x480 pixels. Two cameras were placed on the eye gaze tracking

frame (one for each eye), which is shown in Figure 3.2. To illuminate the eye, two

Hamamatsu L1915 IR LEDS were placed in the center of the frame. Because the

LEDS were placed in the center of the frame and had a wide angle of emission,

both LEDS were visible as glint reflections on the cornea. A Kodak Wratten 87C

IR bandpass filter is placed on top of the camera lenses. An example of the image

output from the eye gaze tracker is shown in Figure 3.3.

Figure 3.2: First eye gaze tracking iteration.

Figure 3.3: Image captured by first hardware setup.

The shortcomings of this design are largely due to the camera. The camera has
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a large form factor; the base of the camera is 4 cm wide and 3 cm long, and the

height of the camera is 2.28 cm. Placed underneath the surgeons eye, a user has

to place their head farther from the eye piece to avoid making contact with the eye

gaze tracker. Additionally, the frame rate of the camera is limited to 30 FPS.

3.2.2 Hardware Version #2

For the second design iteration, the Leopard Imaging LI-OV580-STEREO camera

was used. This camera improves on the previous system because it has a frame

rate of 100 FPS for a resolution of 640 x 480. Furthermore, the camera is a stereo

camera with two camera sensors connected to a central camera board. The two

cameras are synchronized on the camera device and only one Universal Serial Bus

(USB) 3.0 cable is used to connect with the computer. The eye gaze tracker is

shown in Figure 3.4, and an example image captured by the cameras is shown in

Figure 3.5. A benefit of this configuration is that the central camera board can be

placed out of view underneath the surgeon console. The cameras are also smaller

than the previous design, the base of the camera board is 2.6 x 1.8 cm and the height

of the camera is 2.3 cm. This allows the cameras to be placed at the level of the rim

of the surgeon console eyepiece. Four Vishay Semiconductor TSHF5210 IR LEDS

were placed on the eye frame, two for each eye. These LEDS had a smaller viewing

angle than the previous design, and so only two glints were visible per eye. Again,

Kodak Wratten 87C IR bandpass filters are placed on top of the camera lenses.

Figure 3.4: Second eye gaze tracking iteration.

The shortcomings of this design are that there is a poor angle of the eye, and the
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Figure 3.5: Image captured by second hardware setup.

camera has poor light sensitivity when running at speeds faster than 30 FPS. Due

to the smaller camera size, users are able to place their heads much closer to the

eye gaze tracker. However, this results in a sharp angle of the eye, and the eyelid

is almost always covering part of the pupil. The camera does not have good light

sensitivity when running at fast frame rates (60 FPS or higher). Adding additional

LEDS did not solve this issue. As a result the pupil is not as easy to segment from

the image, resulting in poor feature detection.

3.2.3 Hardware Version #3

The most recent hardware iteration of the eye gaze tracker uses the Leopard Imag-

ing LI-OV580-OV7251ST stereo camera, with two Leopard Imaging LI-OV7251M-

FF-105H camera sensors. This camera is much smaller than the previous designs,

and the camera sensor boards have a base size of 0.6 x 0.6 cm, and a height of

0.58 cm. A significant difference in the frame design for this eye tracker is that the

cameras are placed within the stereo console eyepiece. The cameras were placed

such that they do not block the surgeon’s point of view and the display screens

within the surgeon console are still fully visible. To illuminate the eyes and obtain

glint reflections, six IR LEDS with a peak wavelength of 890 nm were placed on the

eyepiece directed at the eyes. Three LEDS were used for each eye, and were evenly

space across the bottom of the eyepiece. The middle LED is placed near the top

of the camera. Three LEDS were used in order to provide even illumination of the

eye. Each LED was placed in series with a 270 Ω resistor. This hardware version
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has no bandpass filter as the user’s head is close to the camera and blocks most of

the visible light.

Figure 3.6: Third eye gaze tracking iteration.

Figure 3.7: Image captured by third hardware setup.

Table 3.1 shows a summary of the cameras and camera settings used in the

three iterations of the eye gaze tracker.

3.3 Software System Architecture

3.3.1 Eye Gaze Tracker Software

Software was developed and and implemented on a computer running Ubuntu

14.04, with an Intel Core i7-6700K processor (8 cores). The DVRK software is
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Table 3.1: Eye Tracker Camera Models

Camera Device #1 #2 #3
Leopard Imaging Leopard Imaging Leopard Imaging
LI-OV5640- LI-OV580- LI-OV580-
USB-72 STEREO OV7251ST

Frame Rate 30 FPS 100 FPS 100 FPS

Resolution 640x480 pixels 640x480(x2) pixels 640x480(x2) pixels
Format MJPEG YUV RAW
Imaging Sensor OV5640 OV4689 OV7251
Focal length 2.8 mm 2.8 mm 1.3 mm
F number 2.6 2.0 2.8
Stereo No Yes Yes

compatible with Ubuntu 12.04, 14.04, or 16.04. Ubuntu 14.04 was used because it

was the latest version when the newest version of the eye gaze tracker software was

being developed, and it has long-term support from Canonical Ltd. The Graphics

Processing Unit (GPU) used was an NVidia GTX-660x. Software was maintained

under version control using Subversion (SVN). The Unfuddle project management

tool was used to store the repository as well as keep track of tasks and issues for

the project. The eye gaze tracking software application, GazeTrackGUI, was devel-

oped in the C++ language using Qt for graphical user interface elements, OpenCV

for image processing, and Boost for numerical calculations. The graphical user

interface for the software is shown in Figure 3.8.

The GazeTrackGUI software, has the following functionalities:

• Image or video source selection for left and right eyes

• 2D calibration control and configuration

• 3D calibration control and configuration

• Accuracy evaluation mode

• Data log control and configuration

• ROS communication

• Display of gaze feature detection algorithm steps
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Figure 3.8: GazeTrackGUI software user interface.

A typical use case of the software is shown in Figure 3.9.

The software system uses the Boost Threading library to run several processes

simultaneously and achieve real-time eye gaze tracking. A single thread interfaces

with the Leopard imaging camera and continuously grabs frames at 100 FPS. The

output of the camera is a 16-bit monochrome image, and is converted to a 12-bit im-

age using Leopard Imaging’s Software Development Kit (SDK). The gaze tracker

algorithm runs on another thread, and pulls the most recent camera frame from the

camera thread synchronized with a mutex. The mutex locks certain resources when

a thread is using it so that only one thread can access the locked resources at a time.

A threading diagram is shown in Figure 3.10.

In total, the gaze tracking algorithm takes 10-20 ms to finish processing a single

frame, depending on whether the pupil location is known in previous frames, or if

the algorithm has to search the entire image for the pupil. Details for the eye gaze

tracking algorithm are described in Section 3.4.

Visual computing methods used for eye gaze tracking were prototyped first in

Matlab or Python, and then ported to C++ for the final software. Prototyping in

this manner was carried out in order to quickly test algorithms while maintaining

fast and efficient code.
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Figure 3.9: GazeTrackGUI software user interface.

3.4 Eye Feature Detection
The algorithm for pupil detection was developed in two main iterations. First, a

thresholding algorithm was pursued, adapted from [20]. This algorithm will be

described in order to emphasize the motivation for the final eye feature detection

algorithm.

3.4.1 Initial Eye Feature Detection Algorithm

In this algorithm, an adaptive threshold is used to roughly segment the pupil and

then the pupil contour is improved. Each frame is first converted to greyscale. A

histogram of the image intensity is generated, and a threshold is set such that a
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Figure 3.10: Diagram of camera and eye gaze tracking thread processes in
eye gaze tracking software.

pre-determined percentage of pixels are set to black. This creates a binary image

in which the pupil is a black elliptical contour.

The next step is to find all the contours in the binary image, and from these

contours the pupil contour can be found. The contour detection implemented is

the border following algorithm proposed by Suzuki and Abe in [61]. This contour

detection algorithm is implemented in OpenCV. The output of the border following

algorithm is a list of all closed contours in the binary image.

The most circular contour is determined by calculating the isoperimetric quo-

tient IQ:

IQ = 4A/P2 (3.1)

Where A is the area and P is the perimeter. The contour with the isoperimetric

quotient that is closest to 1 is assumed to be the pupil.

An ellipse is then fit to this contour using an ellipse fitting algorithm described

by Fitzgibbon et al. in [11]. The “algebraic distance” algorithm is implemented,

which applies a least mean square objective function to fit an ellipse to the points
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on the pupil contour.

The centre of the fitted ellipse is taken to be the rough center of the pupil. This

rough pupil location needs to be further refined for a more accurate estimation of

the pupil center. From the original greyscale image, the mean intensity of the pixels

within the rough pupil contour is calculated. This mean intensity is then applied as

a threshold limit to create another binary image with the pupil as a black region.

Again, all of the contours in the binary image are found. The contour which is

closest to the rough pupil location is used as the refined pupil contour. An ellipse

is then fit to this contour, and the pupil center is the center of the fitted ellipse.

Using the fine pupil contour, the image is then reduced to a Region of Interest

(ROI) surrounding the extracted pupil in order to find glints. The glints are detected

by applying a threshold at a value tuned experimentally across multiple users and

LED intensities. A threshold of 200 was selected (the highest image intensity is

255) to create a binary image in which the glints are white. The contours within

the binary image are detected, and the list of potential glint contours was matched

to a pre-determined glint pattern to find the glints.

With this threshold-based pupil detection method, the pupil can be detected

but the threshold is sensitive to variations in lighting conditions. Dark shadows

cast near the pupil also distort the detected rough pupil. The main issue with this

method was that the adaptive threshold method implemented still requires a pre-set

value for the percentage of pixels to set to black. As the users eyes are close to

the cameras, variations of facial features such as eyelash thickness or strong shad-

ows require adjustment of the pre-set percentage value. There was not a universal

value for the percentage of pixels to set to black which would work for all users.

Additionally, after changing the camera used for the eye gaze tracker, the pre-set

percentage value needed to be re-adjusted because the camera had a different light

sensitivity. This established the need for an eye gaze tracking algorithm that would

be robust to lighting and intensity changes.

3.4.2 Final Eye Feature Detection Algorithm

For the current pupil detection algorithm, we selected techniques that rely on image

gradients rather than image intensity values, which allows this method to function
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under various lighting conditions and with different users. All parameters used in

the eye gaze tracking algorithm are listed in Appendix A. The major steps in the

pupil detection algorithm are shown in Figure 3.11:

Figure 3.11: Main steps of the pupil detection algorithm.

First, we detect the position of the eye in order to reduce the search space for

the pupil. Then, the rough center of the pupil is located. Using this center, we find

the pupil contour, and fit an ellipse to the contour to achieve a more accurate pupil

center. The detailed implementation of these steps are described in the following

section.

Step 1: Eye position detection
The raw image frame obtained from the gaze tracker cameras has a resolution

of 640x480 pixels, and is monochromatic. The black pixels have a value of 0, and

white pixels have a value of 255. A sample frame is shown in Figure 3.12.

A Haar cascade detector is first used to detect the presence of an eye. We

use the Haar detector to find the approximate location of the eye, and then use

computer vision approaches to find the eye features. The Haar cascade detector

can reliably find the eye, however it is slow in processing the images and does not
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Figure 3.12: Raw image frame from gaze tracker camera (left eye).

(a) (b) (c)

Figure 3.13: Haar-like features used by OpenCV: (a) edge features, (b) line
features, (c) corner features1.

accurately locate the center of the pupil. Thus, in subsequent frames, the region of

the eye is centred on the last known position of the pupil. The Haar detector only

implemented again if the pupil is lost for a certain number of frames.

The OpenCV implementation of the Haar classifier is used, which is based

upon [36, 71]. The Haar classifier is a machine learning approach to object detec-

tion in computer vision. A Haar feature is calculated using the feature templates

shown in Fig 3.13. The sum of the black region is subtracted from the sum of the

white region. For each image, these features are calculated for many positions and

scales. In the training step, a set of positive images (images of eyes), and a set of

negative images (not eyes) are processed to find Haar features. For detection, a

cascade of features is applied in several stages. At each stage if the detection fails

then the process is aborted.
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Figure 3.14: Rough pupil region of interest.

The Haar cascade classifier is trained with images matching the object which

needs to be recognized. A pre-trained eye detector from the OpenCV library was

used. The

Once the pupil is found, the region surrounding the pupil is extracted, as shown

in Figure 3.14.

Step 2: Rough pupil center localization
The rough center of the pupil is found by searching within the region of interest.

The outcome of this step should always be a point at the center of the pupil, but not

necessarily the accurate position of the pupil center. A refinement step is carried

out once the rough pupil location is known.

The rough pupil center detection is achieved through a gradient-based method

proposed by Timm and Barth in [67, 68]. This algorithm was selected as it takes

into account the curvature and darkness of the pupil while not requiring the use of

an intensity-based threshold. The implementation in our eye gaze tracker closely

follows the method proposed in [68], with adjustments of specific parameters to

work with our system.

The premise of the gradient eye localization method is that the displacement

vector from the centre of a circular object to a point on its perimeter should be in

the same orientation as the gradient vector at the perimeter point. That is, for a

potential circle centre position c, the unit vector di from c towards any point xi and

the gradient vector gi at point xi will be directed in the same orientation if xi is at

the boundary of the circle. This is illustrated in Figure 3.15.

For an image with N pixels, an objective function f (c) can be defined as:

1Image adapted from docs.opencv.org/trunk/d7/d8b/tutorial py face detection.html.
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Figure 3.15: Diagram illustrating the premise of the gradient eye localization
method. Point c is the center of the circle, point xi is a point on the
boundary of the circle. The vector di points from c to xi and gi is the
image gradient at point xi.

f (c) =
1
N

N

∑
i=1

wc(dT
i gi)

2, (3.2)

where di =
xi− c
‖xi− c‖2

,∀i : ‖gi‖2 = 1. (3.3)

The objective function sums the values of the dot product between di and gi for

every pixel xi in the image. The low intensity of the pupil is taken into account by

multiplying by the normalized inverse of image intensity wc.

The optimal centre cr is calculated by finding the position c which results in

the highest value of f (c):

cr = argmax
c

1
N

N

∑
i=1

wC(dT
i gi)

2 (3.4)

The map of f (c) calculate across the entire image is shown in Figure 3.16. The

center of the pupil is can be seen as the brightest area in the map.

To calculate the optimal centre using Equation 3.4 is computationally expen-

sive because Equation 3.2 needs to be calculated for every potential center position

c. To reduce the processing time for finding the pupil centre, a gradient ascent

approach is used which iteratively converges on the maximum value of c. This

method is described by Timm and Barth in [68]. Taking the derivative of Equa-

tion 3.2 with respect to candidate pupil center positions c results in the following

equation:
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Figure 3.16: Output of gradient eye localization method where the brightest
pixel is the optimal pupil center.

∂ f (c)
∂c

=
2
N

N

∑
i=1

(xi− c)e2
i −giein2

i

n4
i

, (3.5)

where ei = (xi− c)T gi,ni = ||xi− c||2. (3.6)

An initial position for pupil center c0 is set as the output of the Haar algorithm,

or the position of the pupil center in a previous frame if it is known. For a position

c = (c1,c2), the gradient direction ∇ f is found as:

∇ f =

[
∂ f (c)
∂c1

∂ f (c)
∂c2

]
. (3.7)

A range of step sizes along the direction of ∇ f are tested, as proposed in [68].

They used a range of 10 step sizes from 10−2 to 105. We tested a range of 10 ex-

ponentially increasing step sizes from 100.001 to 100.5. Our image scale is different

from the implementation in [68], so they are not directly comparable. For each

step size s, a new pupil center location c is calculated as:

c = s∇ f + c0 (3.8)

The location of c yielding the greatest value of f (c) is then set as c0, and this

process is repeated until convergence on the final rough pupil center position. This

is achieved when the difference in c position between iterations is less than 1 pixel.

Another way in which processing time is decreased is any image gradient mag-

nitude g = (g1,g2) lower than a threshold thresg is not considered in calculations
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when computing f (c). The mean µg and standard deviation σg of all gradient val-

ues within the frame is computed. Then, the threshold is set as:

thresg = µg−0.3σg. (3.9)

Furthermore, the image is sub-sampled to 25% of the original image size to reduce

the number of pixels in the image. This introduces a reduction in precision, as one

pixel in the sub-sampled image represents four pixels in the original image. When

mapping the final pupil center c to the original image frame, the final pupil center

cr is calculated as:

cr =
1
a

c+
1
2a

, (3.10)

where a is the scaling factor (a = 0.25 for our method).

Step 3: Pupil contour detection
Once the rough pupil center has been determined, a more accurate approxima-

tion of the pupil center is found by fitting an ellipse to the pupil contour. We base

our method on the Starburst method [33] to detect the contour of the pupil.

The premise of the Starburst algorithm is to find potential pupil edge points by

radially tracing lines extending from an approximate pupil center, and noting edge

points when a large intensity difference between pixels in each ray is detected. The

original Starburst algorithm conducts additional ray searches from each detected

edge point back towards the pupil center in order to converge on a pupil center.

However, this is sensitive to gradients from other eye features (eyelashes, shadows

from eyelid, iris) and as our algorithm already has an estimate for the center of the

pupil the search is only performed stemming from the rough pupil center.

The image of the eye is first processed in order to reduce the effect of noise.

A morphological open operation is applied followed by a Gaussian filter (Fig-

ure 3.17). We then use the Canny edge detector to detect edges in the image.

Edges due to glint reflections are masked. This is accomplished by generating a

binary image where all values above a glint threshold gthres are white. The mean

µim and standard deviation σim of the image intensity values are calculated. The

glint threshold value thresglint is then calculated as:
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Figure 3.17: Filtered region of interest.

(a)

(b)

Figure 3.18: Edge image (a) after the Canny edge detector, and (b) after re-
moval of glints and small lines.

thresglint = µim +1.5σim where thresglint ∈ (200,250). (3.11)

Starting from the rough pupil center, cr, each point xr,θ is evaluated along rays

of length r ∈ (0,maxRay) pixels and for each angle θ ∈ (0,360)degrees.

Each ray is searched radially until a maximum radius is reached. The maximum

radius maxRay is set to 100 pixels by default, but if a pupil has been found in a

previous frame, then the maximum radius length is set to 1.5 times the length of

the major axis for the previously detected pupil. A size of 100 pixels is much larger
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Figure 3.19: Starburst algorithm, with detected features shown in red, and
ray traces shown in green.

than the typical pupil size (determined experimentally). While tracing along each

ray, a point xr,θ is only evaluated if there exists a edge in the edge image with a

positive intensity difference (xr+1,θ − xr−1,θ > 0). If so, then the position xr,θ is

added to a list of potential points. Once two potential points have been found,

the search is stopped for the current angle, and the point with the higher intensity

difference is recorded as a potential feature point. The search stops at two potential

points because the amount of edges within the cornea is sparse, and detecting more

than two edges along a ray may contain edges on the eyelid. The feature points in

10% of the top and 10% of the bottom are removed to avoid detecting points on the

eyelids (see Figure 3.19).

Step 4: Pupil final center calculation
After performing a starburst search, there is a set of potential pupil edge points.

The RANSAC method [10] is used in order to fit an ellipse to the edge points.

RANSAC is used as it is able to effectively fit a model to data in the presence of

many outliers. We implemented a version of the RANSAC algorithm modified for

pupil detection proposed by Swirski et al. in [62]. The RANSAC algorithm iter-

atively fits the ellipse model to a subset of randomly selected data points. Five

points are used as this is the minimum needed in order to define an ellipse. The

conic equation describes the ellipse Q(x,y) with coefficients A,B,C,D,E,F ,

Q(x,y) = Ax2 +Bxy+Cy2 +Dx+Ey+F. (3.12)

First of all, early rejection criteria are defined which forces the algorithm to

stop the current iteration and select a new subset of five data points. There are
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three conditions that must be met; the ellipse center must be within range of the

previously known pupil center, the size of the ellipse must be a reasonable size for

a pupil, and the image gradients must be in agreement with the ellipse gradient for

the five data points. We define the maximum range from a previously known pupil

to be 30 pixels, and a reasonable pupil size to be greater than 10 pixels and smaller

than half of the ROI size (4800 pixels). These requirements are quite loose because

the RANSAC algorithm will find the optimal ellipse with a support function, and the

early rejection requirements are only used to prevent computation of the support

function for clearly incorrect ellipses. The agreement of the ellipse and image

gradients is determined by calculating the dot product between the ellipse ∇Q(x,y)

and image gradients ∇I(x,y) for each point (x,y):

∇Q(x,y) ·∇I(x,y)≤ 0 (3.13)

The ellipse fit is improved by calculating inlier data points which are near the

perimeter of the ellipse, and iteratively fitting a new ellipse to the inlier points.

The distance between data points and the ellipse perimeter is estimated using the

gradient weighted algebraic distance, EOF2, defined by Rosin in [52]:

EOF2 =
Q(x,y)
|∇Q(x,y)|

(3.14)

The value of EOF2 is only an approximation of the distance from a point (x,y)

to the ellipse perimeter. Thus, a scaling factor α is used to normalize the error

of being one pixel from the ellipse perimeter to 1. Thus, the error from each data

point (x, y) to the ellipse perimeter is calculated as:

error = α
Q(x,y)
|∇Q(x,y)|

(3.15)

The “inlier points” are defined as any feature points for which error <maxerror.

For our system, the value of maxerror is set to 3 pixels. The error value for each

feature point is calculated, and all inlier points are identified. A new ellipse is then

fit to the inlier points. This process refines the ellipse to be in agreement with more

data points.

For a camera setup with poor light sensitivity such as our second hardware
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(a) (b) (c)

Figure 3.20: Intensity-based inlier refinement steps; (a) original feature
points shown in red, (b) binarized image with pupil contour shown
in red, and (c) final inlier points shown in green.

iteration, there may be cases where the eye lid or iris contains data points that meet

the criteria for a pupil. Thus, a intensity-based inlier refinement step may be added

to improve pupil detection. This step is added before the calculation of inliers.

Furthermore, this step was implemented for our past eye gaze tracker versions, but

was not implemented in the final eye gaze tracking algorithm because a camera

with good light sensitivity was added for hardware version #3.

Figure 3.20 illustrates the process of intensity-based inlier refinement. First,

the mean pixel intensity value within the candidate pupil ellipse is calculated, µQ.

A binary threshold is applied to set all image intensity values less than µQ to 0. This

results in a binary image in which the pupil is black, and surrounding anatomy is

white. The contour of the pupil in the binary image is found. Another ellipse

Qcontour is then fit to the contour. The feature points which are inliers for Qcontour

are calculated with Equation 3.15. A new ellipse, Qre f ined is finally fit to the inlier

points.

A support function is calculated for the ellipse to give a score for goodness of

fit to the pupil. The RANSAC algorithm will use this score to determine the best

fitting ellipse out of all the iterations. The support function takes into account the

image gradient ∇I(x,y) and ellipse gradient ∇Q(x,y) for all of the inliers:

support(Q, I, inliers) = ∑
(x,y)∈inliers

∇Q(x,y)
|∇Q(x,y)|

·∇I(x,y) (3.16)

The support function is designed such that an ellipse has a higher value if there

are many inliers, the image gradient at the ellipse perimeter agrees with the ellipse
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Figure 3.21: Outcome of RANSAC algorithm, with pupil center shown as
green point and detected contour shown as green circle.

gradient, and if the image gradient is large, which corresponds to a strong boundary.

Lastly early termination is defined as with standard RANSAC implementa-

tions, so that if a good fit is made prior to the last iteration, the algorithm will

terminate. The criteria for early termination is the number of inliers is equal to

90% of the total number of feature points. If no early termination is made, the final

pupil contour is the ellipse with the highest support function. The center of the

pupil is finally estimated as the center of the pupil contour.

3.4.3 Glint Detection

Locating glints is necessary as they are used for estimation of the point of gaze.

For each eye, there are three glints, g0, g1, and g2, see Figure 3.22. The vector

from g0 to g1 is labelled G1, and the vector from g0 to g2 is labelled G2.

In an initial setup, a template of glint positions is created by manually locat-

ing the positions of all glints in a single frame. This template is set once in the

software, and only needs to be changed if the position of the LEDS changes. The

glint positions in the template are gT 0, gT 1, and gT 2, with GT 1 = gT 1− gT 0 and

GT 2 = gT 2−gT 0.

The basic outline of the glint detection algorithm has two main steps. Firstly, all

potential glint candidate positions are found in the frame. Then, a sorting process

is used to match the candidate glints to the glint template. If the glint positions in

a previous frame are known, then instead of matching to a template the glints are

matched to the previous frame. This is illustrated in Figure 3.23.

Step 1: Find candidate glint contours
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Figure 3.22: Glints highlighted in green. Glint g0 is the central glint. The
glint g1 is closer to the nose, and g2 is away from the nose.

Figure 3.23: Flowchart showing the basic steps for glint detection.
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Figure 3.24: ROI set for glint detection.

Figure 3.25: Thresholded binary image of ROI.

First a ROI is set, centered on the detected pupil. The ROI size used is 100x80

pixels. This ROI image is filtered using a Gaussian filter. An example of the ROI is

shown in Figure 3.24.

A threshold is then calculated in order to convert the frame into a binary image

consisting only of potential glint regions. The thresholded binary image is shown

in Figure 3.25. The mean intensity level µglint and standard deviation σglint of the

intensity is calculated, and a threshold thresglint is found as:

thresglint = µglint +1.5∗σglint where thresglint ∈ (150,250) (3.17)

The threshold limit of thresglint ∈ (150,250) is set because any value lower than

150 would allow eye features such as eyelid or sclera to be visible in the binary

image (this is set experimentally). If the threshold is set very high (250-255), then

the glint regions may be cut out from the binary image.

All closed contours in the image are then found using the border following al-
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Figure 3.26: Detected contours of candidate glint regions shown in green.

gorithm described in [61]. For each detected contour, a size requirement is applied

to make sure the contour area is greater than 5 pixels and less than 100 pixels.

Finally, a list of N candidate glint positions gc = [gc0,gc1, ...,gcN−1] is obtained.

Detected glint contours are shown in Figure 3.26.

Step 2a: Sort glints with template
The next step is to sort through all glint candidates gc = [gc0,gc1, ...,gcN−1]

to locate the true glints and to identify which glint is g0, g1, and g2. Since there

are three glints, this is carried out using a cascaded method where the algorithm

exhaustively searches all possible combinations in gc for G1, and searches for G2

only if a potential G1 is found.

Firstly, the glint pair G1 with g0 and g1 is detected. A test vector G∗1 is drawn

between each test candidate glint g∗0 and g∗1:

G∗1 = g∗1−g∗0 (3.18)

where g∗0 = gci and g∗1 = gc j 6=i for i, j ∈ [0,N−1].

Two metrics are used to determine whether the test vector G∗1 matches GT 1: the

difference in length, dR1, and the difference in angle, dθ1:

dR1 = ||G∗1||− ||GT 1|| (3.19)

dθ1 = arccos
( G∗1 ·GT 1

||G∗1|| ||GT 1||

)
(3.20)

The requirements for a good fit are dR1 < 0.70||GT 1|| and dθ1 < 45◦. If these

test requirements are met, then the algorithm proceeds to find G2.
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Then in the same manner, a test vector G∗2 is calculated from candidate glints

g∗0 and g∗2:

G∗2 = g∗2−g∗0 (3.21)

where g∗0 is known from the previous step and g∗2 = gck 6=i, j for i, j,k ∈ [0,N−1].

To determine whether a test vector G∗2 matches the template GT 2, the same

length requirement dR2 and angle requirement dθ2 are used:

dR2 = ||G∗2−GT 2|| (3.22)

dθ2 = arccos
( G∗2 ·GT 2

||G∗2|| ||GT 2||

)
(3.23)

Again, if dR2 < 0.70||GT 2|| and dθ2 < 45◦ then a match has been found.

The final combination of g0, g1, and g2 is determined as the combination with

the smallest values of dR1 and dθ1 where dR2 < 0.70||GT 2|| and dθ2 < 45◦. The

final glint detection is shown in Figure 3.27.

Step 2b: Match glints to previous frame
To avoid repeating the search for glints in every frame, once the glints have

been found, candidate glints in subsequent frames are matched to previous frames

if they fall within a small distance threshold. The search for glint pairs described

in Step 2a is only carried out at the beginning of eye gaze tracking and if the glints

are lost (in a blink, or due to head movement).

3.5 2D Point of Gaze Estimation
Firstly, a 2D gaze estimation is carried out to map the pupil-glint vector to each

of the monitor screens in the console. The premise of the pupil-glint vector is that

when the surgeon looks around the surgical scene, the pupil will move while the

glints remain relatively stationary. Thus, the vector between the pupil and glints is

representative of where the surgeon is looking. In our system, as the eye is very

close to the camera the assumption that the cornea is a sphere rotating about it’s

center is not true, and so the glints are not exactly stationary. However, the pupil-

glint vector can still be mapped to a gaze position with reasonable accuracy that is
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Figure 3.27: Final glint detection, with the main glint pair, g0 and g1 high-
lighted by algorithm and all glints annotated.

measured and reported in Chapter 4.

For 2D calibration, five, nine, or sixteen points are displayed on the screen and

the user gazes at each point for 2.5 seconds. At each calibration target position, the

target shrinks to a small point. This is important to provide a visual stimulus for a

user to focus on during calibration.

The vector pixel displacement between the pupil and the glint (x,y) is approxi-

mated to on-screen pixel coordinates (px, py) with a second order polynomial func-

tion:

px = a0x2 +a1xy+a2y2 +a3x+a4y+a5 (3.24)

py = b0x2 +a1xy+b2y2 +b3x+b4y+b5 (3.25)

For a total of n points, this can be written in matrix form with the polynomial

coefficients as variables:
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
px0 py0

px1 py1
...

...

pxn−1 pyn−1

=


x2

0 x0y0 y2
0 x0 y0 1

x2
0 x0y0 y2

0 x0 y0 1
...

...
...

...
...

...

x2
0 x0y0 y2

0 x0 y0 1





a0 b0

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5


(3.26)

The coefficients of (3.24) and (3.25) are found through least squares estimation.

Head movement compensation for the Z (moving towards or away from the

camera) was accomplished according to a method described in [22]. This method

is simple and effective for reducing the effect of head movement in the Z direction.

The average distance dcalib between the two glints during the calibration sequence

is recorded and used to normalize all future pupil-gaze vectors by a factor s defined

as:

s = dcalib/d (3.27)

where d is the distance between the two glints at the current video frame. As the

user moves their head farther away from the eye gaze tracker, the distance between

the corneal glints decreases, and as they move closer to the eye gaze tracker the

distance between the corneal glints increases. By applying a scaling factor s, the

pupil-glint vector can be scaled back to the original head placement. Head move-

ment in the horizontal and vertical direction was not compensated, however the da

Vinci surgeon console has a headrest which helps maintain head position.

3.5.1 2D POG Filtering

A simple moving average filter is applied to the 2D POG. An extra clause is added

to the filter because saccadic eye movement means that eye gaze data is not always

smooth. If a large change in position greater than a distance thresPOG is detected,

then the filter is reset and starts to compute the average gaze position starting from

the most recent data point. For a window size of n, at each new data point i the

filtered gaze position POGi is defined as:
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POGi =


POGi+POGi−1+...+POGi−(n−1)

n , if POGi−POGi−1 < thresPOG

POGi, otherwise (window is reset).
(3.28)

3.6 3D Point of Gaze Estimation
To determine the mapping between eye features and the 3D point of gaze, a cal-

ibration procedure is performed in which the surgeon is asked to control the da

Vinci surgical instruments while gazing at the tip of the tools. The motivation for

using this calibration method is that the surgeon’s eyes will be calibrated to the

da Vinci tool coordinate frame. We propose two calibration protocols, a two-step

calibration and a one-step calibration. For a two-step calibration the surgeon is

first asked to perform a 2D eye gaze calibration. Afterwards they perform a 3D eye

gaze calibration by looking at the surgical tools. A one-step calibration requires

the surgeon to only perform the 3D calibration looking at the surgical tools.

An alternative calibration procedure could be to render 3D calibration targets

within the surgeon console display. However, by calibrating in the surgical view we

are able to directly compute the surgeon’s gaze position within the surgical scene

as opposed to a virtual scene. Additionally, our calibration scheme can be extended

in future work to allow surgeons to naturally carry out a surgical task while their

eye gaze is being calibrated using tool position. While the surgeon may not always

be gazing directly at their tools, they will be moving their tools in close proximity

to where they are looking. Therefore, with a large set of data points collected by

observing the continuous tool movement and eye features, it may be possible to

carry out an online calibration. This is beneficial as it removes the need for the

surgeon to explicitly calibrate their eye gaze and allows them to focus on surgical

procedures instead.

3.6.1 Geometric System Overview

We chose a geometric approach to 3D eye gaze estimation because the gaze tracker

is used in a static environment in which the position of the user’s head, gaze tracker,
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and screen display are known. The 3D gaze position can be determined by consid-

ering the vergence of the left and right eyes when focusing on objects at different

depths. The two eyes converge when looking at closer objects, and diverge when

looking at farther objects. This estimation method is dependent on head position,

and the surgeon needs to re-calibrate in case of head movement.

Prior to eye gaze calculation, there are several components of this system that

need to be calibrated. The endoscope camera intrinsic and extrinsic matrices and

the transformation between tool coordinate system and camera coordinate system

need to be determined. These calibration procedures as well as the eye gaze cali-

bration scheme will be discussed in the following sections.

3.6.2 Endoscope Intrinsic and Extrinsic Matrix Calibration

Firstly, the intrinsic matrices, distortion components, and extrinsic matrices of the

endoscope cameras need to be found. A simple pinhole camera model is used and

the conventions for camera intrinsic matrix and distortion coefficents are based

on [18]. These parameters describe how a real-world point P is related to it’s

corresponding image pixel position ppix.

A point P = (Xc,Yc,Zc) can first be projected onto image plane coordinates

p = (x,y). The coordinates p represent the projection of the real-world point P on

the camera sensor.

p =

[
Xc/Zc

Yc/Zc

]
=

[
x

y

]
(3.29)

Real lenses in camera systems additionally have distortion components, and

the distorted image plane coordinates are noted as pd = (xd ,yd). The two main

sources of distortion are radial and tangential. The distortion components kc =

(k1,k2,k3,k4,k5) are applied to obtain a corrected (distorted) image plane coordi-

nates pd :

pd = (1+ k1r2 + k2r4 + k5r6)p+dx (3.30)

where r2 = x2 + y2 the tangential distortion vector dx is:
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Figure 3.28: Checkerboard pattern used for stereo endoscope calibration.

dx =

[
2k3xy+ k4(r2 +2x2)

k3(r2 +2y2)+2k4xy

]
(3.31)

From the image sensor, the image is digitized to image pixel coordinates ppix =

(u,v). The intrinsic matrix A is used to transform world units to pixel units as

ppix = Apd . The intrinsic matrix is defined as:

A =

 fx 0 cx

0 fy cy

0 0 1

 (3.32)

Where fx, fy are the focal lengths and cx, cy are the principle points for the

horizontal and vertical axes respectively. The focal lengths describe the scaling

from real-world units to pixel units. The principle points shift the origin of the

camera frame to the image frame, which is typically the top left corner of an image.

Camera calibration for the intrinsic matrix A and distortion coefficients is ac-

complished using the OpenCV camera calibration toolbox. A checker board pat-

tern was used to carry out calibration. The pattern was moved to 30 different

positions within the endoscope camera view. Figure 3.28 shows an example of the

calibration checkboard within the endoscope view.

The extrinsic parameters of a stereo endoscope describes the rigid motion trans-
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Figure 3.29: Hand-eye calibration system diagram.

formation consisting of a rotation R and translation T between the left and right

cameras. Conventionally, the transformation is defined such that a position in the

left camera is transformed to the right camera frame with Xright = R ·Xle f t +T .

3.6.3 Tool to Camera Coordinate Frame Calibration

The transformation T cam
dvrk between the DVRK tool frame and endoscope camera

frame needs to be obtained with a second calibration process. A diagram of the

hand-eye calibration components is shown in Figure 3.29. The tool frame is de-

fined by the DVRK , with the center of rotation as the coordinate system origin

OdV RK . The camera coordinate system origin is defined as Ocam.

A surgical tool is moved to several different locations within the endoscope

view. At each location, the tool position in the DVRK frame Pdvrk =(xtool,ytool,ztool)

and images of the endoscope scene are recorded. Using the recorded images, the
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pixel location of the tool tips for the left and right imaging channels, PimL = (uL,vL)

and PimR = (uR,vR), are manually determined. Then, the tool position in the camera

frame can be resolved by triangulating the pixel locations of the tool tip to obtain

3D coordinates Pcam = (xcam,ycam,zcam). The specific point on the tool which is

used is the last joint on the distal end. The tool position in the camera frame can

then be calibrated to the DVRK frame using a least squares fitting to obtain T cam
dvrk .

Pcam = T cam
dvrk ·Pdvrk (3.33)

3.6.4 Two-Step 3D Point of Gaze Calibration

To achieve a 3D point of gaze calibration, one method is to first calibrate the sur-

geon’s eye gaze in 2D. If the 2D points of gaze on the left and right screens of

the stereoscopic display are known, these gaze positions can be triangulated to cal-

culate the 3D gaze position. However, with any error in either the left and right

2D points of gaze, the reconstructed 3D position will be incorrect. Thus, a sec-

ond step is added to more accurately calibrate the depth of gaze to the 3D surgical

scene. For this second step, instead of directly triangulating the left and right 2D

gaze positions, we calculate the horizontal gaze disparity and then calculate the 3D

gaze position by finding a mathematical function which relates gaze disparity to

3D depth.

First, the surgeon is asked to complete the 2D calibration described in the pre-

vious section. After a 2D calibration, the surgeon’s eye gaze positions for the left

and right eye are pR = (pxR, pyR) and pL = (pxL, pyL) respectively. We can calculate

disparity as:

Disparity = dx = pxR− pxR (3.34)

Then, to relate their 2D gaze position to 3D positions, the surgeon completes

a 3D calibration by moving the da Vinci tool to several different locations Ptool =

(Xtool,Ytool,Ztool) across the view and at varying depths. The surgeon is asked to

look at the tool when they have positioned it and it is stationary. During this time,

the surgeon’s pupil-glint vector data and tool tip position data are recorded. After

three seconds, the gaze tracker stops recording gaze positions and the surgeon is
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asked to move to the next target.

The gaze disparity dx is then fit to the position of the tool in the camera frame

Z direction. This is illustrated in Figure 3.30. In the fitting polynomial function we

additionally include the mean horizontal and vertical positions of the POG, pxmean

and pymean:

pxmean =
pxR + pxL

2
, (3.35)

pymean =
pyR + pyL

2
. (3.36)

With coefficients c0...c6, the polynomial is defined as:

Ztool = c0dx2 + c1dx+ c2 p2
ymean + c3 pymean + c4 (3.37)

This is expressed using matrix notation as:

Ztool =
[

c0 c1 c2 c3 c4

]


dx2

dx

p2
ymean

pymean

1

 (3.38)

The coefficients c0...c6 are found through a least-squares estimation.

3.6.5 One-Step 3D Point of Gaze Calibration

For single-step 3D eye gaze calibration, the surgeon is not required to first perform

a 2D calibration to determine their point of gaze on the display screen. Instead,

during the 3D calibration step, the positions of the tool tip are back-projected onto

the image plane pixels.

During calibration, the surgeon only needs to move the da Vinci tool to several

different locations across the view and at varying depths. The surgeon then looks

at the position of the tool tip when it is stationary. During this time, the surgeon’s

pupil-glint vector data and tool tip position data are recorded. After three seconds,

the gaze tracker stops recording gaze positions and the surgeon is asked to move to
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Figure 3.30: Two-step calibration diagram.

the next target.

To calculate the 2D gaze point, the recorded tool tip positions are transformed

from the DVRK reference frame to the camera reference frame. The tool tip position

in the camera frame Ptool can then be projected onto the image planes of the left

and right cameras, and transformed to pixel coordinates ptool pixL and ptool pixR using

the method described in Section 3.6.2 (see Figure 3.31). These pixel positions can

then be related to PG vectors for the left and right eyes using the same second

order polynomial fit described in Section 3.5. Least squares estimation is carried

out to find the coefficient matrix B for the left and right eyes. After the 2D gaze is

calibrated, Equation 3.38 is applied to calibrate for depth.
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Figure 3.31: Tool projection onto stereo display screens.

3.6.6 3D POG Estimation

After calibration, the 3D POG P = (X ,Y,Z) can be determined with the pupil-glint

vector of the left and right eyes. The pupil-glint vectors are first scaled to head

depth position using Equation 3.27. The right 2D POG prpix = (pxr, pyr) and left

2D POG plpix = (pxl, pyl) is computed using Equation 3.24 and Equation 3.25.

The disparity dx is calculated using Equation 3.34 and a moving average fil-

ter is applied to the disparity values. The mean POG position from both eyes

(pxmean, pymean) is calculated using Equation 3.35 and Equation 3.36. Using the

previously computed coefficients c0...c6, the depth Z is calculated using::

Z = c0dx2 + c1dx+ c2 p2
xmean + c3 p2

ymean + c4 pxmean + c5 pymean + c6 (3.39)
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Figure 3.32: Diagram of 3D POG estimation.

A limit is set for Z to reduce error in further calculations. If the Z position is above

0mm (in front of camera) then it is set to a depth of -10mm, and if the Z position

is farther than -150mm it is set to a depth of -150 mm.

Using the fitted gaze Z position, the eye gaze P position can be approximated.

We calculate this approximation by intersecting two lines ll and lr stemming from

the 2D POG of the left and right eyes, to a plane parallel to the camera’s XY -plane

and set at a depth of Z (labelled “Z Plane” in Figure 3.32). Each line can be

described using vector notation as:

x = p1 + t(p2− p1), (3.40)

where p1 = (x1,y1,z1) and p2 = (x2,y2,z2) are points on the line.

The vector notation for a plane is:

(x− p0) ·n = 0, (3.41)

where p0 = (x0,y0,z0) is a point on the plane, and n = (nx,ny,nz) is a normal

vector to the plane.
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The point of intersection, can be calculated by solving Equation 3.40 and Equa-

tion 3.41 for t:

t =
(p0− p1) ·n
(p2− p1) ·n

. (3.42)

Thus, setting p0 = (0,0,Z), p1 = plim and prim, and p2 = Pstereo, Pl and Pr can

be calculated as:

Pl = plim +
( (p0− plim) ·n
(Pstereo− plim) ·n

)
(Pstereo− plim) (3.43)

Pr = prim +
( (p0− prim) ·n
(Pstereo− prim) ·n

)
(Pstereo− prim) (3.44)

Finally, the 3D gaze position is approximated as P = (Pl +Pr)/2. This is an

approximation of the 3D POG position.

In this method, the effects of 2D calibration errors on the 3D POG are reduced

by mapping the eye gaze disparity to depth position instead of directly performing

stereo triangulation. We use this corrected depth position to calculate an approxi-

mate X and Y location of the POG.
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Chapter 4

Gaze Tracker Accuracy

We evaluated the accuracy of the eye gaze tracker for both 2D and 3D eye gaze

tracking. A study was performed with 11 subjects at the Robotics and Control Lab

in the University of British Columbia. Participants were contacted through an in-

vitation email to the robotics@ece.ubc.ca mailing list. As we are mainly interested

in measuring the accuracy of the eye gaze tracker, participants were qualified to

participate regardless of whether they had experience with the da Vinci surgical

robot or with eye gaze tracking devices. Out of the 11 participants, 10 took part in

the 3D accuracy evaluation, while all 11 participants took part in the 2D accuracy

evaluation.

During the study we recorded the following data from each participant:

• Timestamp

• Eye gaze 3D position (X,Y,Z)

• Eye gaze 2D position (X,Y for both eyes)

• da Vinci 3D tool position (X,Y,Z for both tools)

• Eye pupil information (diameter, position for both eyes)

• Infrared light reflection on cornea (position for both eyes)

• Displacement vector between pupil and light reflections for both eyes
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4.1 Study Environment Setup
The study was held in the Robotics and Control Laboratory in room 3090 of the

University of British Columbia Fred Kaiser building. Within the laboratory there

is a full da Vinci surgical robot in addition to the da Vinci Research kit. The da

Vinci research kit was used to retrieve the position of surgical tools and to move

the robot or set haptic forces.

The eye gaze tracking device was placed directly onto the da Vinci surgeon

console. Two computers are involved with the study setup, one computer (PC 1)

for handling eye gaze calculations and data logging, and another computer (PC 2)

for handling communication with the da Vinci Research Kit (see Figure 3.1).

Participants were seated at the da Vinci surgeon console, shown in Figure 4.1.

The surgeon console has a stereoscopic display consisting of two separate Barco

MCD214 CRT monitors. The height of the surgeon console was adjusted to the

height of each participant for a comfortable fit. During each study, the participants

placed their foreheads on a foam headrest and look into the surgeon console at the

display screens.

The da Vinci patient-side slave was set up with two robotic tools, one on ei-

ther side on the endoscope camera. The individual tools are shown in Figure 4.2.

The arm on the right was equipped with a large needle driver instrument which

participants controlled using the right-hand master manipulator. This instrument

will be henceforth referred to as PSM 1. The arm on the left of the endoscope was

equipped with a pro-grasp instrument, this instrument will be referred to as PSM 2.

4.2 2D Gaze Tracking Accuracy Test Protocol
Participants were first shown a sample video of the calibration sequence, and were

instructed that during calibration they would be required to gaze at the calibration

target. Then, participants performed eye gaze calibration using 5-point, 9-point,

and 16-point calibration (shown in Figure 4.3, Figure 4.4, and Figure 4.5). Follow-

ing each calibration, the participants were instructed to look at nine test positions

on the screen (Figure 4.6), and to gaze at each position for 3 seconds, during which

time the researcher logged their eye gaze position.
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Figure 4.1: Surgeon console with retro-fit eye gaze tracker

(a) (b)

Figure 4.2: Intuitive Surgical da Vinci instruments (a) large needle driver and
(b) pro-grasp forceps.
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Figure 4.3: 5 point calibration target locations.

Figure 4.4: 9 point calibration target locations.
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Figure 4.5: 16 point calibration target locations.

Figure 4.6: 9 point accuracy test target locations.

64



4.3 3D Gaze Tracking Accuracy Test Protocol
We performed three tests to evaluate the 3D gaze tracking accuracy- a depth per-

ception test, a manual 3D calibration test, and an automated 3D calibration test.

Firstly, a depth perception test was carried out in order to gauge each participants

sense of depth within the da Vinci stereo viewer. We based this test on the Howard-

Dolman test [23], which is used to evaluate depth resolution in real space. For the

Howard-Dolman test, two vertical poles are shown, and one is adjusted until it is

just nearer than the other stationary pole. Alternatively, in our setup we used the da

Vinci surgical tools to measure depth acuity. The left hand tool, PSM 2, equipped

with a pro-grasp forcep instrument held a small 3D printed board that has a repeat-

able grasp design. Each participant was instructed to move the right tool, PSM 1,

until it was at the same depth as the center of the end of the board. This is shown

in Figure 4.7.

For the manual 3D calibration test, a test board containing 9 labelled positions

was placed in view of the endoscope, as shown in Figure 4.8. The labels were

placed in three rows and three columns, at varying heights. Each participant was

required to control PSM 1, and move the tool end effector to the labelled positions

shown. Each participant was first shown a video of this procedure to explain the

process, and then was given time to practice controlling the robot. To start the

calibration, a 2D calibration measurement was taken using 9 calibration points.

Then, the participants were instructed to start moving the tool to the labelled points.

At each position, the participants were asked to hold the tool steady, and to gaze at

the jaw joint. After two seconds, the researcher conducting the study would prompt

the participant to move to the next labelled position. Once the 9 points had been

finished, a separate test board containing another 9 labelled positions was shown

to the participants, and they were required to repeat the process of moving the tool

tip to each position and gazing at the end-effector. The first test board was used for

calibration, and the second test board was using for testing the calibration.

The automated 3D calibration test was carried out in the same manner as the

manual test, except the participants did not have to control the tool themselves, and

instead PSM 1 was controlled to follow a pre-set trajectory using the ROS interface.

This was carried out because while controlling the robot, participants may exhibit
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Figure 4.7: Depth test view within da Vinci surgeon console.

head movement. We wanted to see whether this head movement significantly af-

fects calibration results.

4.4 2D Gaze Tracking Accuracy Results
The accuracy of the 2D eye gaze tracker for 11 users was calculated for the three

calibration modes- 5 point, 9 point, and 16 point calibration. The eyes of one user

was not tracked consistently, and thus their dataset has been removed from the

final calculations. The 2D eye gaze tracking accuracy was calculated across the

remaining ten users. Gaze positions which were calculated to be outside of the

viewing screen are considered invalid points, and were removed from the data set.

In eye gaze tracking literature, the accuracy of an eye gaze tracker is reported

as degrees of visual angle. The error is the angle between the line from the user’s

eye to the estimated point of gaze, and the line to the true point of gaze. This is

calculated by considering the physical dimensions of the eye gaze tracking setup.

The da Vinci stereo viewer consists of two 14 inch Barco M2 cathode ray tube

monitors with display dimensions of 11.2 inches wide and 8.4 inches high. The

surgeon’s eyes are approximately 18 inches from the display [16]. Thus, for a

66



Figure 4.8: 3D accuracy evaluation view within da Vinci surgeon console.

Table 4.1: 2D Eye Gaze Pixel Accuracy

Eye Side 5 Point Calibration 9 Point Calibration 16 Point Calibration
Right 49.32 ± 16.37 pixels 32.73 ± 11.90 pixels 31.19 ± 12.31 pixels
Left 47.93 ± 15.91 pixels 26.61 ± 9.98 pixels 30.37 ± 11.45 pixels

vertical error of ∆X inches and a horizontal error of ∆Y inches the degree of visual

angle can be calculated as:

θ = 2tan−1
( √∆X2+∆Y 2

2
18 inches

)
(4.1)

The 2D accuracy results are summarized in Table 4.1 as pixels and Table 4.2 as

degrees of visual angle.

Table 4.2: 2D Eye Gaze Degree Accuracy

Eye Side 5 Point Calibration 9 Point Calibration 16 Point Calibration
Right 2.96 ± 0.90 ◦ 2.03 ± 0.59 ◦ 2.31 ± 1.43 ◦

Left 2.91 ± 0.80 ◦ 1.73 ± 0.68 ◦ 2.14 ± 1.08 ◦
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Figure 4.9: Hand-eye calibration results for PSM 1, tool position shown in
red and estimated tool position shown in blue.

4.5 Hand-Eye Calibration Results
A hand-eye calibration was carried out as defined in 3.6.3 for both PSM 1 and

PSM 2. In total, 30 positions of each tool was recorded. The BlackMagic Design

Decklink Quad 2 capture card was used for capturing frames from the da Vinci

endoscope. The accuracy of the calibration was 1.85 mm for PSM 1 and 2.05 mm

for PSM 2. Plots showing the tool position and estimated tool position from pixel

coordinates are shown in Figures 4.9 and 4.10.

4.6 Depth Perception Test Results
The positions of PSM1 and PSM2 at three depths were recorded. The depths tested

were 90 mm, 75 mm, and 60 mm. A Python script was written to set the position

and orientation of PSM 2 to the pre-set positions.

With the position P1 and orientation R1 of the end-most joint on PSM 1, the tool

tip P1,Tip is calculated as:
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Figure 4.10: Hand-eye calibration results for PSM 2, tool position shown in
red and estimated tool position shown in blue

P1,Tip = P1 +R1

 0

0

10

mm. (4.2)

We calculate the end of the depth test plate similarly. With the position P2 and

orientation R2 of the end-most joint on PSM 2, and the dimensions of the depth test

plate measured through Solidworks, the end of the plate Pplate is found as:

Pplate = P2 +R2

−50

0

22

mm. (4.3)

The error can then be calculated as error = ||P1,Tip−Pplate||. For all ten partic-

ipants, the resulting depth error during this test was 6.20 ± 3.60 mm mm.
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4.7 3D Gaze Tracking Accuracy Results
Of the ten participants for the 3D gaze tracking evaluation, one of the participants

was not considered in calculations because of data logging errors that were fixed

for subsequent participants. The 3D accuracy of the eye gaze tracker was 17.18 +/-

8.13 mm for a one step calibration, and 13.33 +/- 3.23 mm for a two step calibration

considering both manual and automatic robot control tests. The results are shown

in Table 4.3.

Table 4.3: 3D Eye Gaze Accuracy

One-Step Two-Step Combined
Manual 18.44 ± 8.15 mm 13.67 ± 3.77 mm 16.06 ± 6.63 mm
Auto 15.93 ± 8.40 mm 12.98 ± 2.78 mm 14.45 ± 6.26 mm
Combined 17.18 ± 8.13 mm 13.33 ± 3.23 mm 15.26 ± 6.41 mm

The effect of manual or automated robot control on eye gaze tracking was also

evaluated during both one-step and two-step calibration. A paired t-test was carried

out to test the null hypothesis that the error from controlling the robot automati-

cally is equal to the error from controlling the robot manually, with the alternate

hypothesis being that manually controlling the robot has a significantly larger error

than using an automated control. A significance level (α)of 0.05 was used.

For one-step calibration, there was no significant difference between manual

control (18.44± 8.15 mm) and automated control (15.93± 8.40 mm); t(8)=0.6004,

p=0.2824. Similarly, for two-step calibration, there was also no significant differ-

ence between manual control (13.67 ± 3.77 mm) and automated control(12.98 ±
2.78 mm); t(8)=0.7616, p=0.2341. We can conclude that allowing participants to

manually control the robot does not significantly affect the calibration results. In

future iterations of the eye gaze tracker, we will not use an automated position con-

trol, but will continue to allow surgeons to freely and naturally control the robot.

A calibration scheme can be designed such that the surgeon will be able to contin-

uously move the robot while gazing at the tool tip. This would be less tedious than

stopping the tool tip at several positions to calibrate.

Lastly, we compared whether there is any significant difference between the

two calibration methods. Including both manual and automated test methods, a
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paired t-test was carried out to test the null hypothesis that the there is no significant

difference between one-step and two-step calibration methods, with the alternative

hypothesis that the one-step calibration has a significantly higher error. Again,

a significance level of 0.05 was used. The result of the test is that a one-step

calibration (17.18 ± 8.13 mm) is significantly higher than the two-step calibration

(13.33 ± 3.23 mm); t(17)=2.2116, p=0.0205.

The difference between one-step calibration and two-step calibration is that the

2D calibration is carried out by projecting the tool position to corresponding pixel

positions in the display screens. This process includes the calibration errors from

hand-eye calibration and endoscope calibration, thus 2D calibration is less accurate

than directly displaying 2D targets. However, a one-step calibration method holds

value in that it is more convenient than a two-step calibration, so future work will

be carried out to improve system calibration and improve the results for a one-step

calibration method.

4.8 Discussion
The known measured factors contributing to the 3D tracking error are the error from

the initial hand-eye calibration (1.85 mm) and the depth perception limitations for

each user (5.77± 3.74 mm). Taking these two factors into account, we believe that

the accuracy of our gaze tracker is reasonable. Other sources of error which are

included in the final results are lost or incorrectly detected pupil and glint features,

head movement by the participants, and instances when the participants were not

looking directly at the specified target during data collection. Furthermore, with

a small displacement of 5 mm between the left and right imaging channels of the

stereo endoscope, depth perception even with perfect POG estimation can be ex-

pected to have some error.

4.9 Conclusion
We have developed a retro-fit eye gaze tracker for the da Vinci surgeon console.

The eye gaze tracker consists of two cameras and six IR LEDS which capture im-

agery of the surgeon’s eyes while operating the da Vinci surgical robot. Software

was developed which consists of a user interface for researchers to conduct eye
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gaze tracking studies and collect eye gaze data, as well as eye gaze tracking algo-

rithms for monitoring the surgeon’s eye gaze in both 2D and 3D.

The eye gaze tracker uses the pupil-glint method to track eye gaze, where the

glint is used as a stationary reference point while the pupil changes positions. 2D

eye gaze tracking is carried out by mapping the pupil-glint vector to on-screen

coordinates through a calibration procedure. 3D eye gaze tracking is carried out by

instructing the user to move a surgical tool to several positions, and to look at the

tool during each position.

Future work for the eye gaze tracker is an improved glint and pupil feature

detection for more users (two data sets in the accuracy evaluation were not used

because of feature detection failure). Improved feature detection will result in bet-

ter calibrations in both the 2D and 3D calibration methods. Furthermore, the end

goal for 3D eye gaze tracking is a calibration method in which the surgeon will

move their surgical tool in a continuous motion while gazing at the tool tip. Our

current 3D eye gaze tracking framework calibrates the surgeon’s eye in 3D when

they look at the surgical tool end-effector at different positions, which may be time

consuming and tedious. This can be extended to a continuous motion by matching

the pupil-glint vector motion with tool motion.

Lastly, this eye gaze tracker will be provided to the da Vinci Research Kit

community as a tool for researchers to develop eye gaze tracking applications and

observe surgeon eye gaze behaviour. An eyepiece frame for other models of the da

Vinci surgical systems will be designed. This eye gaze tracker will help researchers

design more user-centric surgical interfaces and improve the surgeon experience

during robotic surgery.

72



(a)

Figure 4.11: Box plots showing comparison of test modes for (a) one-step
calibration and (b) two-step calibration.
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Figure 4.12: Box plot showing comparison of calibration methods.
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Chapter 5

Gaze Motor Control

5.1 Introduction
Eye gaze is not only a passive way of perceiving the world, but it is also closely

linked to action processes with a bidirectional relationship [65]. It is known that

the locations of gaze fixations are tied to interaction goals with objects of interest.

Eye gaze is directed towards regions which are relevant to decision making or for

planning motor behaviour [6, 19]. This implies that during surgery, a surgeon’s

intentions can be derived from analysis of their gaze patterns.

A study by Atkins et al. on the use of eye gaze tracking technology during la-

paroscopic minimally invasive surgical procedures found that a surgeons eye gaze

precedes motor movement with a consistent delay [4]. It was also noted that gaze

fixations occurred earlier with tasks requiring higher precision. Using this obser-

vation regarding the strong link between gaze and action, gaze can be employed as

an active control input to a surgical robot. Gaze information allows us to determine

where a surgeon is planning on placing surgical tools, and robotic assistance can

then be given to help the surgeon in manipulating the tools.

In this work, we demonstrate gaze-contingent motor control for the first time

in a complete physical master-slave system, with a standard skill assessment task.

Previous related work has demonstrated gaze-contingent motor control on simu-

lated slave robots and simulated tasks. In our implementation, we use a full da

Vinci standard surgical robot along with the DVRK controllers. The DVRK is a re-
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search platform with first-generation da Vinci components provided by Intuitive

Surgical. Open source software developed by John Hopkins University is used to

control and interface with the DVRK [28].

To achieve this novel demonstration of both gaze control, and the capabili-

ties of the DVRK, we integrated a new eye gaze tracker design that can be easily

retrofitted to the da Vinci surgeon console. In Section III, we describe the design of

the tracker, the signal processing it employs, and the calibration required in order

for it to track eye-gaze in the 3D coordinate space of the da Vinci. The approach in-

cludes a novel calibration sequence that uses the da Vinci tool coordinates recorded

at multiple points in the work-space to find the relationship between gaze dispar-

ity and depth. In Section IV we describe the control architecture used to achieve

shared gaze-master control of the slave robot. We provide the robot operator with

a haptic force from the master manipulators which pulls them to move the slave

robot tool towards their gaze point. A similar force feedback teleoperation control

framework implemented with the DVRK is described in [39].

5.2 Control Architecture
The gaze control framework is shared control between the human operators hands

and gaze. For our system, the slave robot is directly teleoperated by the master

manipulators and a spring-damper coupling is placed in between the operators gaze

and the master manipulators. In [46], it was observed that a spring force is the

optimal force profile for gaze-contingent motor channelling. We also incorporated

a damping component as using only a spring force resulted in oscillations. The

force F applied to the master manipulators is defined as:

F = K(Xgaze−Xtool)+B(Ẋtool) (5.1)

where K is the spring constant, B is the damping coefficient, Xgaze is gaze

position, Xtool is tool position, and Ẋtool is tool velocity. Xgaze, Xtool , and Ẋtool

are relative to the master manipulator coordinate frame.

The K and B values were adjusted to provide a good response across all users.

The final values selected were K = 55N/m and B = 50Ns/m. The da Vinci system

foot pedals are incorporated into the system as control inputs for the operator to

76



switch between following teleoperation and gaze control modes. The foot pedals

are utilized as they are easily accessed by the operator and have support through the

DVRK framework. Since the camera is fixed to maintain the tool to camera frame

transformation, the camera focus foot pedal is used instead to enable or disable

gaze control. This functionality is required as there may be cases in which it is

not desirable for the operator to be pulled towards where they are looking. For

example, a constantly applied gaze force will not allow the operator to glance at

areas on the display that do not pertain to the motor task at hand.

The bimanual teleoperation control structure is shown in Figure 5.1. The mas-

ter and slave dynamics are represented as lumped Linear Time Invariant (LTI)

impedances ZhL, ZhR, ZMT ML, ZMT MR, ZPSM1, ZPSM2 each representing the seven

degrees of freedom of the manipulators. Torques , τhR, τMT ML, τMT MR, τPSM1,

τPSM2 are the torques at the left hand, right hand, left master manipulator, right

master manipulator, patient side manipulator 1, and patient side manipulator 2 re-

spectively. Torques τg, τ∗h , τGC are the gaze input torque, hand input torque, and

gravity compensation torque respectively. The PID controllers CPSM1 and CPSM2

manage joint level position control of each PSM and the controller. Gravity com-

pensation is handled for both master manipulators by the gravity compensation

controller CGC. The controller CG uses the gaze point PG, position and velocity of

the slave robots and calculates the spring-damper force to be applied to each of the

master manipulators. A motion scale of 1:5 was applied between master and slave

movements.

The gaze tracking software for this study uses a sampling frequency of 30Hz

which is limited by the capture rate of the cameras. The teleoperation and joint-

level control loops run much faster. Control loop frequencies were set at 1 kHz for

the input/output communication level, 333 Hz for the kinematics and robot logic

control, and 200 Hz for the teleoperation loop.

5.3 Experimental Setup
The gaze tracking and DVRK control software were run on two separate computers,

both running the Ubuntu operating system. Two different computers were used in

order to avoid decreasing the real-time performance of the robot control software
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Figure 5.1: Control diagram for teleoperation with gaze control.
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Figure 5.2: Experimental peg placement task.

due to CPU processor limitations. Communication between the two computers was

made through TCP/IP sockets. As the frequency of the DVRK control loop is much

higher than the gaze tracking frequency, messages received by the gaze client side

are flushed at the end of each software loop to prevent the accumulation of old

messages.

5.3.1 User Study

Five subjects were selected for the study, two have had over a year of experience

with the da Vinci robot, two have had less than a year of experience, and one was

completely new to the system. Four of the users wore glasses, and one user wore

contact lenses. All five users are from an engineering background. The task for

each subject was to place rings on pegs, which is a common laparoscopic training

procedure. The peg board was custom made and 3D printed. Only one slave arm

was used due to the simplicity of the pick and place task, however the control

framework can be extended to bimanual tasks. The subjects repeated this task ten

times with gaze and ten times without gaze. An image of the experimental setup is

shown in Figure 5.2.

79



5.4 Results

5.4.1 Gaze Tracking Accuracy

The accuracy of gaze tracking in 3D was assessed for each subject. The subjects

were instructed to gaze at all of the 12 pegs on the peg board for three seconds.

A set of gaze points in 3D was recorded for each peg. The average gaze position

at each peg was then calculated, and the error was defined as the difference be-

tween the distances between gaze positions and the true distances between pegs.

Each subject repeated this test twice, and the average error from both tests was

calculated.

The result of this accuracy test is shown in Table 5.1. The total average error is

10.18 mm with a standard deviation of 1.89 mm. This error incorporates the error

from the camera to tool transformation previously described in Section V for the

left tool in addition to the gaze estimation error.

5.4.2 Peg Placement Task

An extracted plot of the 3D tool trajectory and gaze positions is shown in Fig-

ure 5.3. The tool is shown moving towards the points of gaze where the user is

fixating. The tool trajectory from a single user in the x, y, and z directions is shown

in Figure 10. The movement of the tool clearly correlates with the points of gaze

shown. The gaze points are intermittent as subjects were allowed to turn on and

off gaze control depending on whether they were using fine or broad movements

and we have removed the data points in which gaze was not enabled. Once gaze is

enabled, the tool quickly moves towards the gaze position.

The percentage of time each user spent in gaze mode as well as the time spent

completing the peg task with and without gaze is shown in Table 1. Gaze was

enabled for less than 20% of the time for all users as picking up and dropping pegs

took more time than moving from one end of the peg board to another.

User feedback on the system from subjects was positive as gaze reduced the

effort needed to move from one side of the peg board to another. Subjects turned

off gaze only for picking up and dropping pegs. While all subjects noted that they

felt tasks were faster and easier with gaze control, no significant reduction in task
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Figure 5.3: Tool trajectory (green) and gaze position (blue) in 3D space ex-
tracted from a peg placement task. The tool is shown moving towards
the gaze position.

Table 5.1: Summary of motor control user study.

Subject Gaze Tracking Percentage of Average Time Average Time
Error Time Spent With Gaze Without Gaze

Using Gaze
1 11.93 mm 12.13% 1:10 min 0:55 min
2 11.62 mm 15.28% 1:08 min 0:55 min
3 7.31 mm 11.88% 1:26 min 2:13 min
4 9.32 mm 5.61% 1:24 min 1:13 min
5 10.72 mm 14.31% 2:17 min 2:34 min

completion time was noted. An increase in top speed occurred for two of the three

novice users, but a decrease in speed occurred for the other three users.

The peg placement task is especially simple and did not present quantitatively

conclusive results. In the future a more difficult task will be tested, such as suturing

or target following, which will allow for analysis of user precision. Additionally,

all users noted that the use of the camera foot pedal for gaze control in addition

to the clutch foot pedal made the task more difficult as they needed to coordinate

their foot movements. Lastly, another limitation of this system observed during

user studies is that in order to move the tool across the peg board, the master

manipulators would have to be moved to the edge of the workspace within the

surgeon console. The motion scaling between the master manipulators and slave

robot should be increased in future studies to account for this effect.
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Figure 5.4: Tool trajectory (light blue) for X, Y, Z directions with gaze points
(dark blue).

5.5 Conclusion
In the future we plan to improve the accuracy and calibration process for our eye

gaze tracker. Currently, calibration takes approximately five minutes to complete,

which may be inconvenient in a realistic surgery scenario. A possible improve-

ment consists of expanding the 2D point calibration approach for the eye tracker to

include depth, through projection of the 3D tool position onto 2D pixel positions.

This would enable us to calibrate the system by having the operator gaze at the

tool at several positions, without the need of an additional display sequence. This

would be a more natural hand-eye calibration procedure. An additional improve-

ment to the system would be to include a more convenient mechanism for enabling

and disabling gaze control. Our current use of a foot pedal adds an additional layer

of control for the user that could be replaced with simpler approaches based on

specific gaze sequences or voice control.
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To conclude, this chapter presents the integration of gaze as an active input for

surgical robot control. While gaze has been integrated before with the da Vinci

console, we are not aware of other studies in which the actual da Vinci slave robots

were also controlled by gaze. Our proposed control architecture includes both gaze

and master input, and should be usable in experiments with the da Vinci Research

Kit interface for novel user interfaces. Future work will be carried out to quantify

the benefits of this system with more complete and conclusive tasks.
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Chapter 6

Camera Movement Prediction

In this chapter, eye gaze information is used for building a predictive model for

camera control during robot-assisted surgery. Eye gaze and robot kinematic data

was collected from surgeons in porcine and cadaver training laboratories. A ran-

dom forest classifier is applied to predict camera movement.

6.1 Introduction
During Robot-Assisted Surgery (RAS), the surgeon has direct control over endo-

scope positioning without the need for a separate camera operator. For example,

on the da Vinci Si R© Surgical System, surgeons press and hold a foot pedal to

move the camera with their hand controllers. The surgeon has to constantly switch

between tool control and camera control modes, which disrupts the surgical work-

flow and increases mental workload. Camera control is also an important skill that

surgeons need to learn, as proficient endoscope control results in effective visu-

alization, which is needed to plan surgical approaches and interact efficiently and

safely with tissue. Endoscope-related performance metrics are indicative of sur-

geon experience and linked to technical performance [27]. Experienced surgeons

will adjust their viewpoints more frequently, spend less time moving the endo-

scope, and spend less time in-between endoscope movements. An improvement

on current surgical robot systems would be to introduce autonomous camera con-

trol which allows surgeons to focus on completing surgical tasks while providing
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an optimal viewpoint of the surgery. This would further eliminate the learning

curve associated with camera control, and improve surgeon performance by allow-

ing novice surgeons to focus on learning surgical task execution.

One limitation in current approaches for viewpoint control during robotic surgery

is the clutch interface for enabling camera control. In manual endoscope control

with the da Vinci surgical robot, the surgeon uses a foot pedal to trigger cam-

era control. Existing work in viewpoint control either adjusts the camera position

based on tool positions [32, 50, 74, 75] or uses manual selection mechanisms such

as a foot pedal, eye gestures or eye gaze dwell time [12, 31, 35, 47]. Using tool

position to dictate camera movement may not be optimal when the surgeon needs

to operate outside the centre of the field of view. Furthermore, by implementing

a manual interface the surgeon still needs to attend to viewpoint control, reducing

the effectiveness of an automated camera control system.

Another limitation in current viewpoint control systems is the decision regard-

ing where to move the camera. In [29], current approaches to autonomic camera

navigation are described as reactive systems, proactive systems, or a hybrid model.

Reactive systems use sensor information and move the camera in response to the

surgeon, while proactive systems predict surgeon movement and intent and adjust

the camera accordingly. Many systems maintain the surgical tools in the center of

view. In [74], the authors propose an endoscope guidance system which predicts

the movement of surgical tool end-effectors, and autonomously positions the en-

doscope to maintain the left and right tools centered in view. They show that by

pro-actively moving the camera based on a prediction of tool positions, they can

reduce the amount of camera movements by 29%. The disadvantage of using tool

position to direct the camera is that it disregards the context of the surgical scene

in which the surgeon is operating.

Continuous camera movement is sub-optimal as a continuously changing view

may be distracting to the user and makes it difficult to observe the surgical scene.

Furthermore, an advantage of the robotic surgery system is the hand-eye mapping

between the endoscope view and master tool manipulators. By constantly adjusting

the viewpoint, this mapping may either degrade or the master tool manipulators

positions need to be continuously adjusted.

One particular measure that is directly related to visualization and can be used
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for automatic camera control is the eye gaze of the surgeon. Eye gaze has been

used to study surgeon endoscope control policies, and is readily tracked as the sur-

geon looks at a stereoscopic display. The use of eye gaze for automatic viewpoint

control has been studied both within robotic surgery and in other applications. In

[44], Mylonas et al. use the depth of eye gaze to stabilize a camera view of a beat-

ing heart phantom. In [76], Zhu et al. control a camera to re-centre the viewpoint

to the users point of gaze, with the application of tele-operated Receiver Operating

Characteristic (ROC)k breaking robots. Eye gaze information has additionally been

used to study and classify surgeon behaviour in minimally invasive surgery. Work

by Sodergren et al. in manual endoscopy use a hidden Markov model for identi-

fying eye gaze behavioural1 patterns related to effective endoscope re-orientation,

evaluated within dry lab exercises [56]. Several groups use eye gaze data to auto-

matically identify surgical tasks and segment the surgical work-flow [3, 26]. The

direct relation between eye gaze and visualization as well as the ease at which eye

gaze data can be obtained in a surgical robot system makes eye gaze information

a good candidate for modelling surgeon behaviour with regards to endoscope con-

trol.

6.2 Materials and Methods
An EyeTech VT2 mini eye gaze tracker was placed within the da Vinci Si R© Sur-

gical System. This eye gaze tracker has a capture rate of 80 Hz, and a reported

accuracy of 0.5 degrees. The EyeTech Quick Link SDK was used for communi-

cating with the eye gaze tracker. All data processing and classifier training was

carried out with Matlab 2016.

6.2.1 Dataset

Data was collected from seven RAS surgeons operating the da Vinci Si R© Surgi-

cal System. Informed consent was obtained from all individual surgeons included

in the study (Western IRB, Inc. Puyallup, WA). Three inexperienced surgeons (no

RAS procedures but prior laparoscopic and open procedures) performed porcine ex-

ercises, and four intermediate surgeons (>50 RAS procedures) performed cadaver

exercises. Two of the three surgeons who performed porcine exercises specialized
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(a)

(b)

Figure 6.1: Frame of the endoscope video for the (a) porcine laboratory and
(b) cadaver laboratory with gaze position overlaid (blue circle).

in colorectal surgeries. The remaining surgeon specialized in general surgery. The

surgeons who performed cadaver exercises all specialized in gynecology.

Each of the surgeons performed multiple training tasks that focused on dissec-

tion, retraction, and suturing skills. During each exercise, eye gaze, instrument

kinematics, system events, and endoscope video were recorded. An example of the

endoscope video is shown in Figure 6.1.

All of the data collected except for eye gaze was obtained directly from the da
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Vinci Si R© Surgical System. An EyeTech VT2 mini eye tracker (EyeTech Digital

Systems, Mesa, AZ) was used to measure eye gaze. Eye gaze data was synchro-

nized with the da Vinci Si R© data stream. The gaze tracker was calibrated to each

subject twice once at the beginning of the lab and a second time approximately 2-3

hours later halfway through the training activities. During calibration, each subject

looked at a target which moved to 9 different positions within the surgical scene.

If the second calibration was more accurate than the first, it was used to record eye

gaze data.

6.2.2 Eye Gaze Pre-Processing

The raw eye gaze data was processed in order to extract instances of fixations and

saccades, which are more meaningful than raw eye gaze position data. Saccades

are fast movements of the eye, while fixations occur when the gaze is held steady

over an area [54]. Visual perception occurs during fixations, and areas of interest

can be derived from fixation data. First, a velocity-based algorithm was imple-

mented for saccade detection [54]. The velocity-based algorithm involves setting

a velocity threshold which defines whether a saccade or fixation has occurred. The

calculation of eye gaze velocity from raw gaze position data is prone to noise, so

a Savitzky-Golay filter [55] was applied, based on the saccade detection algorithm

described in [49]. This filter works by fitting a polynomial to a specific number

of data samples, and is effective in smoothing data while preserving peaks in the

signal. Any detected saccades greater than 1 second were excluded. Next, fixations

were identified as the time periods between saccades within the range of 100 mil-

liseconds to 3 seconds. A lower fixation duration threshold of 100 milliseconds is a

commonly selected threshold in eye tracking research [38, 54]. The upper duration

threshold for saccades and fixations were selected in order to remove erroneous

detections. An example of our eye gaze data processing is shown in Figure 6.2.

6.2.3 Camera Movement Classification

Camera movement prediction was treated as a binary classification problem (i.e.,

camera movement or no-camera movement). Eye gaze and kinematics data streams

were segmented into 5 second windows with each window being assigned either to
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Figure 6.2: Result of saccade detection algorithm. Saccade duration high-
lighted in gray in (a,b), and saccade peak velocity marked in (c) as red
circles.

the camera movement class or the no-camera movement class. A 5 second window

size was selected as larger window sizes resulted in unbalanced event data with

many more camera movement events than no-camera movement events. This was a

result of many fast, consecutive camera movements which would greatly reduce the

number of no-camera movement events if a larger window duration was selected.

The camera movement class was defined as the time window immediately preced-

ing a camera event derived from system events data, and the no-camera movement

class was defined as all other time windows, excluding camera movements . The

data was sub-sampled to achieve a balanced dataset and avoid bias in classification.
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Figure 6.3: Diagram demonstrating how camera events were segmented. The
top axis shows the occurrence of a camera movement. The camera event
is extracted as the event window prior to the onset of a camera move-
ment and no-camera events are all other event windows.

A random forest algorithm was implemented to perform classification on the

segmented data. The random forest classifier was chosen as it is able to handle

many features and additionally gives an evaluation of the most important features

for classification. The random forest classifier has previously been used in related

surgical work-flow research to detect surgical tasks [58]. A branch size of 400 was

used as deeper branches did not improve classification results.

Sixty features were calculated; forty gaze features and twenty tool features as

shown in Table 6.1. The dwell times for each instrument refer to the total dura-

tion of fixations on the instrument tool tips. A circular region of 300 pixels was

drawn around each tool tip, and if the fixation fell within this region it was counted

towards the dwell time on the instrument. This circular area was defined in order

to account for error in the gaze position. If the fixation was located in the region

of multiple instruments it was counted towards all of the instruments. We also in-

cluded general eye gaze fixation and saccade features, as well as tool kinematic

features such as position and velocity. The instrument-related features included

instrument velocity, distance, and position. All of the instrument features were cal-

culated with respect to the instrument tool tip in the camera reference frame. Three
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Table 6.1: Eye gaze and tool features

Eye Gaze Features Tool Features

Dwell time on tool (#1,#2,#3,all) Tool (#1,#2,#3,all) mean velocity
Dwell time in the environment Tool (#1,#2,#3,all) peak velocity
Dwell time ratio on tool (#1,#2,#3,all) Tool (#1,#2,#3,all) total distance
Dwell time ratio on the environment Tool (#1,#2,#3,all) mean horizontal position
Mean fixation distance from center pixel Tool (#1,#2,#3,all) mean vertical position
Latest fixation distance from center pixel
Fixation frequency
Fixation duration (mean,total)
Saccade duration (mean, total)
Saccade length (mean, total)
Saccade velocity (mean, peak)
Mean fixation position (x,y,angle)
Last fixation position (x,y,angle)
First-last fixation displacement (x,y,angle)
Overall gaze displacement (x,y,angle)
Mean saccade direction (x,y,angle)
Peak saccade direction (x,y,angle)
Last saccade direction (x,y,angle)

instruments contributed to the features since all three separate slave manipulators

on the patient-side robot were used through the training activities. Different surgi-

cal tasks would require different types of surgical instruments, however the instru-

ments would not be switched between manipulators during a task. The position of

each tool tip was calculated with respect to the endoscope camera reference frame,

and the mean horizontal and vertical positions were used as features. The motiva-

tion behind selecting the horizontal and vertical positions in the image reference

frame is that endoscope adjustment may occur because the surgeon is operating on

the edge of the field of view.

The performance of the classifier was determined with a ten-fold validation

scheme, with 10% of the data set aside for testing during each iteration. The re-

ported results are an average of all iterations. Despite having a small number of

surgeons, data was collected from each surgeon over several hours in a day, re-

sulting in a large number of camera events. The total data size was 402 events for
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porcine tasks and 2496 events for cadaver tasks. The total time of surgical activity

across all subjects was approximately 25 hours.

6.2.4 Camera Direction Classification

Camera direction classification was carried out using two separate categorical classifiers-

a horizontal direction model and a vertical direction model. In this manner, the

classifiers predict whether camera movement is up/down or left/right. This ap-

proach is a simple first step towards a fully automated endoscope system. We first

aim to find the features which are indicative of camera movement direction, and in

the future will build a more complete model for predicting where a camera should

move.

For each window in the camera movement class described previously in Sec-

tion 6.2.3, the direction of camera movement is calculated. For all camera move-

ments −−→cam = (x,y), if the camera moves in the upward direction (positive y), then

it is classified as moving up, otherwise it is moving down. If the camera moves in

the positive x direction, it is classified as moving right, otherwise it is moving left.

Since the horizontal and vertical classifiers are separate, a single data point will be

“left” or “right” as well as “up” or “down”.

The same eye gaze and tool features were used as in camera movement classi-

fication (see Table 6.1. Data was again sub-sampled before classification in order

to have a balanced data set. Both cadaver and porcine data sets were combined for

this analysis, as only using camera events results in a smaller dataset. In total, there

were 1262 events used, 785 cadaver events and 86 porcine events.

6.3 Results

6.3.1 Camera Movement Prediction Results

The random forest classifier for camera movement prediction showed a 72.6% clas-

sification rate for porcine tasks, 71.3% for cadaver tasks, and 77.7% for the com-

bined data set. The ROC curves for all three cases are shown in Figure 4. The ROC

curves can be used to gauge classifier performance. The vertical axis represents

the sensitivity of the classifier, and the horizontal axis represents the 1-specificity
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Figure 6.4: ROC curves for the classifier on (a) porcine, (b) cadaver, and (c)
both porcine and cadaver tasks. Mean curve (black), individual folds
(grey), and chance (dashed grey).

of the classifier. The area under an ROC curve is a common metric used to numeri-

cally compare ROC curves, and indicates the accuracy of a classifier, with 1 being

a perfect classifier. The Area Under the Curve (AUC) was 0.81 for porcine tasks,

0.77 for cadaver tasks, and 0.87 for the combined data set.

The accuracy achieved by the random forest classifier is comparable to results

from related classification problems in literature. In [26], James et al. use eye

gaze and instrument information in a Parallel Layer Perceptor model to segment

the surgical steps of a laparoscopic cholecystectomy. They collected data from

three surgeons performing a total of fifteen procedures on porcine models. They
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obtained a segmentation accuracy of 75% with eye-gaze and instrument informa-

tion. Additionally, in [3] Ahmidi et al. use eye gaze and instrument information

to classify surgical steps in a functional endoscopic sinus surgery using hidden

Markov Models. They evaluated their model with 11 subjects in a cadaver model.

They achieved a task identification accuracy of 74.98% for experts and 80.36% for

novices. Classification performance was better for the porcine data set than the ca-

daver data set. This is perhaps because the cadaver data set was more unstructured,

resulting in less predictable behaviour.

One benefit of implementing the random forest classifier is that we are able to

compute the importance of each feature for classification. We examined the most

important features used by the classifiers over the ten iterations in the ten-fold vali-

dation scheme. These features had the most influence on the classification decision

between camera and non-camera events. The mean saccade velocity for the com-

bined dataset was the most important feature for seven iterations, and the second

most important feature for three iterations. The distribution of mean saccade ve-

locity is shown in Figure 6.5. The mean saccade velocity tends to be higher prior to

a camera movement, possibly as the surgeon is less focused on any area on interest

and is instead gazing on different anatomy within the operative scene. Conversely,

a specific eye gaze feature that was found to be not important was the dwell time on

instrument #2. In fact, all of the instrument dwell time features were ranked in the

lower half of importance. This shows that the surgeon is observing and interact-

ing with their instruments in the same manner regardless of whether the endoscope

needs to be re-oriented.

6.3.2 Camera Direction Prediction Results

For both cadaver and porcine datasets, the random forest classifier for camera di-

rection prediction had a 54.71% classification rate for predicting horizontal camera

movement, and a 55.77% classification rate for predicting vertical camera move-

ment. For only the cadaver dataset, the classifier had a 54.52% classification rate

for horizontal camera movement and a 55.20% classification rate for vertical cam-

era movement. Lastly, for the porcine dataset, the classifier had a 60.59% classi-

fication rate for horizontal camera movement and a 59.72% classification rate for
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Figure 6.5: Normalized histograms of mean saccade velocity for camera
movement and no-camera movement events.

vertical camera movement.

The ROC curves for both cases are shown in Figure 6.6. For both cadaver and

porcine datasets, the mean AUC was 0.55 for horizontal camera movement, and

0.44 for vertical camera movement. For the cadaver dataset, the mean AUC was

0.45 for horizontal camera movement and 0.45 for vertical camera movement. For

the porcine dataset, the mean AUC was 0.39 for horizontal camera movement and

0.59 for vertical camera movement.

The accuracy results are low for both horizontal direction prediction and verti-

cal direction prediction in all datasets. Prediction is higher for the porcine dataset,

but as the data set size was much smaller. The number of camera events from

novice surgeons is very low the results are less stable.

6.4 Discussion
There are certain limitations for our analysis, first of all the eye gaze data was

classified into two categories (fixations and saccades), while there are other types
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Figure 6.6: ROC curves for the classifier for prediction of (a) porcine hor-
izontal direction, (b) porcine vertical direction, (c) cadaver horizontal
direction, (d) cadaver vertical direction, (e) both porcine and cadaver
horizontal direction, and (f) both porcine and cadaver vertical direction..
Mean curve (black), individual folds (grey), and chance (dashed grey).
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of eye movements not explored such as smooth pursuit, which is when gaze follows

the trajectory of a moving object. Additionally, we segmented the eye gaze and

tool data collected into 5 second time windows in order to summarize the raw data

and calculate metrics such as mean and peak feature values. It will be valuable to

further analyze the effects of the window size, and to explore the use of moving

windows.

Our results show that eye gaze metrics combined with instrument metrics can

be utilized with reasonable accuracy for the prediction of camera movement events.

We have shown that certain eye gaze features such as saccade velocity can be sig-

nificant factors in the classification of camera movement events.

Regarding the prediction of camera movements, we achieved a poor classifica-

tion accuracy (no greater than chance prediction). We believe that further explo-

ration needs to be done to determine useful features for predicting where camera

movements should be directed. Additionally, a continuous data stream as opposed

to binning data into time window segments may improve results, by adding more

contextual information regarding where surgeons are looking before and during a

camera movement.

6.5 Conclusion
In this work, we examined the use of eye gaze metrics to predict whether or not

surgeons intend to adjust their viewpoint. Our results suggest that eye gaze mea-

sures in combination with tool kinematics can be used to effectively predict camera

movement events. This is an important step for camera automation during robotic

surgery as our model can be used to initiate camera movement in a natural man-

ner. We have begun preliminary work towards predicting the direction of camera

movement. However, further analysis of the eye gaze and tool metrics needs to be

carried out in order to improve results. The endoscope acts as an extension of the

surgeons eyes, and thus it is intuitive to use eye gaze for controlling camera posi-

tion. A predictive model for camera direction control would be an improvement on

current autonomous endoscope systems which use tool position to determine the

optimal camera position.

A well-known problem with eye gaze-based control is the “Midas Touch” prob-
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lem, described in [25]. Gaze-based interfaces need to be able to distinguish be-

tween when a user intends to make an action and when they are passively observ-

ing the interface. The behavioural model we have developed addresses this issue,

and allows for a data-driven approach to recognize the intent of a surgeon to move

their camera.

In the end, we believe gaze plays a critical role in accurately modelling surgeon

behaviour since humans utilize gaze to extract information from their environment

to plan and to execute movements and interactions. In future studies we plan to col-

lect larger datasets to investigate classification performance across multiple levels

of surgeon expertise and across more similar surgical exercises. We will implement

our predictive model in a gaze-based automated camera system.
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Chapter 7

Conclusions

The main objective of this thesis was to develop and evaluate a stereo eye gaze

tracker use with the da Vinci surgical robot. A second objective was to demonstrate

the feasibility of a gaze-based control framework for a surgical robot system. A

third objective was to use eye gaze information to predict camera movement. We

were able to meet our objectives with the following contributions:

• The design of eye gaze tracking hardware for the da Vinci surgeon console.

• A software algorithm for detecting eye features (pupil and corneal light re-

flections) using image gradients instead of image intensity.

• A calibration method for determining the point of gaze in 3D using the da

Vinci Research Kit.

• The design of a study protocol for evaluating the accuracy of the eye gaze

tracker in 2D and 3D.

• A hand-eye calibration procedure for finding the transformation between the

da Vinci patient-side manipulator coordinate frame and the endoscope cam-

era coordinate frame.

• A data-driven behavioural model for predicting when and where surgeons

move the endoscope. This model is built using a random forest classifier
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trained with eye gaze and instrument kinematic data from clinically realistic

tasks.

In this thesis, an eye gaze tracker was designed for use with the da Vinci
R©Surgical System. The eye gaze tracker is placed onto the top of the da Vinci

surgeon console, and uses IR imaging for illuminating the eyes. Image processing

techniques are used to find the pupil and corneal light reflections (glints) from the

eye gaze tracking cameras. The eye gaze tracking camera runs at 100 FPS, and

overall the frame rate of the eye gaze tracker is 90 FPS due to processing time. To

estimate eye gaze, the vector between the pupil and glints is mapped to known co-

ordinates. A 2D calibration method where users are shown target calibration points

within the da Vinci surgeon console. The pupil-glint vector can then be mapped to

the target positions using a second order polynomial. A method for carrying out

3D eye gaze tracking was designed which maps the disparity between the left and

right eyes to tool depth. To calibrate for 3D eye gaze, the surgeon gazes at the tool

at several positions. A two-step 3D calibration was designed where the surgeon

first completes a 2D calibration, and then a 3D calibration. A one-step 3D calibra-

tion was also designed where the surgeon only completes the 3D calibration. A

study was carried out with 11 participants to measure the accuracy of the eye gaze

tracker. The 2D accuracy was between 26.61 pixels to 49.32 pixels depending on

the number of calibration targets. The 3D accuracy was 17.18 ± 8.13 mm for a

one-step calibration and 13.33 ± 3.23 mm for a two-step calibration.

The eye gaze tracker was then employed in a control framework in which eye

gaze position is used for aiding instrument position. The objective for this work

was to demonstrate gaze-based motor control in a full da Vinci surgical system. A

spring-damper haptic force is applied to the surgeon’s hands through the da Vinci

master manipulators, and guides their hands to move the instrument towards the

point of gaze. This control framework was evaluated in a preliminary study with

5 subjects performing a peg placement task. There was no significant reduction in

task completion time with or without gaze control.

Thirdly, a behavioural model was designed in order to predict when and how

surgeons move their endoscopes. Data was collected from 7 surgeons performing

clinically realistic tasks on porcine and cadaver models. The types of data collected
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were eye gaze position, instrument kinematics, system event data, and a video

stream. The eye gaze data was processed to segment fixation and saccade metrics.

Using the eye gaze and instrument data, a random forest classifier was trained

to classify the occurrence of camera movement events. The accuracy achieved

for classifying the occurrence of camera movement events was 72.6% for porcine

tasks, 71.3% for cadaver tasks, and 77.7% for a combined data set.
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Dodgson, K. Krejtz, and I. Krejtz. Comparing estimated gaze depth in
virtual and physical environments. In Proceedings of the Symposium on Eye
Tracking Research and Applications, pages 103–110. ACM, 2014. → pages
14

[10] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Commun. ACM, 24(6):381–395, June 1981. → pages 40

[11] A. W. Fitzgibbon, R. B. Fisher, et al. A buyer’s guide to conic fitting. DAI
Research paper, 1996. → pages 31

[12] K. Fujii, A. Salerno, K. Sriskandarajah, K. W. Kwok, K. Shetty, and G. Z.
Yang. Gaze contingent cartesian control of a robotic arm for laparoscopic
surgery. In IEEE International Conference on Intelligent Robots and
Systems, pages 3582–3589, 2013. → pages 85

[13] D. A. Goss and R. W. West. Introduction to the Optics of the Eye.
Butterworth-Heinemann Medical, 2001. → pages 6

[14] G. Gras and G. Z. Yang. Intention recognition for gaze controlled robotic
minimally invasive laser ablation. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2431–2437,
Oct 2016. → pages 16

[15] G. Gras, K. Leibrandt, P. Wisanuvej, P. Giataganas, C. A. Seneci, M. Ye,
J. Shang, and G. Z. Yang. Implicit gaze-assisted adaptive motion scaling for
highly articulated instrument manipulation. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 4233–4239, May
2017. → pages 16

[16] J. Hallett. 3-d imaging guides surgical operations, 2001. URL
http://www.vision-systems.com/articles/print/volume-6/issue-5/features/
medical-imaging/3-d-imaging-guides-surgical-operations.html. [Online;
accessed June 1, 2017]. → pages 66

[17] D. W. Hansen and Q. Ji. In the eye of the beholder: A survey of models for
eyes and gaze. IEEE transactions on pattern analysis and machine
intelligence, 32(3):478–500, 2010. → pages 7

103

http://www.vision-systems.com/articles/print/volume-6/issue-5/features/medical-imaging/3-d-imaging-guides-surgical-operations.html
http://www.vision-systems.com/articles/print/volume-6/issue-5/features/medical-imaging/3-d-imaging-guides-surgical-operations.html


[18] J. Heikkila. Accurate camera calibration and feature based 3D
reconstruction from monocular image sequences. PhD thesis, 1997. →
pages 51

[19] J. M. Henderson, J. R. Brockmole, M. S. Castelhano, and M. Mack. Visual
saliency does not account for eye movements during visual search in
real-world scenes. Eye movements: A window on mind and brain, pages
537–562, 2007. → pages 75

[20] C. Hennessey. Eye-gaze tracking with free head motion. PhD thesis, 2005.
→ pages 10, 30

[21] C. Hennessey and P. Lawrence. Noncontact binocular eye-gaze tracking for
point-of-gaze estimation in three dimensions. IEEE transactions on
biomedical engineering, 56(3):790–799, 2009. → pages 15

[22] C. A. Hennessey and P. D. Lawrence. Improving the accuracy and reliability
of remote system-calibration-free eye-gaze tracking. IEEE Transactions on
Biomedical Engineering, 56(7):1891–1900, 2009. → pages 11, 12, 49

[23] C. H. J. Howard. A test for the judgment of distance. American Journal of
ophthalmology, 2(9):656–675, 1919. → pages 65

[24] N. E. Institute. Facts about the cornea and corneal disease, 2016. URL
https://www.nei.nih.gov/health/cornealdisease. [Online; accessed June 1,
2017]. → pages 6

[25] R. J. Jacob. Eye tracking in advanced interface design. Virtual environments
and advanced interface design, pages 258–288, 1995. → pages 98

[26] A. James, D. Vieira, B. Lo, A. Darzi, and G. Z. Yang. Eye-gaze driven
surgical workflow segmentation. Medical image computing and
computer-assisted intervention : MICCAI ... International Conference on
Medical Image Computing and Computer-Assisted Intervention, 10:
110–117, 2007. → pages 86, 93

[27] A. M. Jarc and M. J. Curet. Viewpoint matters: objective performance
metrics for surgeon endoscope control during robot-assisted surgery.
Surgical Endoscopy, pages 1–11, 2016. → pages 84

[28] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and S. P.
DiMaio. An open-source research kit for the da vinci R© surgical system. In
Robotics and Automation (ICRA), 2014 IEEE International Conference on,
pages 6434–6439. IEEE, 2014. → pages 76

104

https://www.nei.nih.gov/health/cornealdisease


[29] B. W. King, L. A. Reisner, A. K. Pandya, A. M. Composto, R. D. Ellis, and
M. D. Klein. Towards an autonomous robot for camera control during
laparoscopic surgery. Journal of Laparoendoscopic & Advanced Surgical
Techniques, 23(12):1027–1030, 2013. → pages 85

[30] A. Lanata, A. Greco, G. Valenza, and E. P. Scilingo. On the tridimensional
estimation of the gaze point by a stereoscopic wearable eye tracker. In
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual
International Conference of the IEEE, pages 2283–2286. IEEE, 2015. →
pages 14

[31] H. O. Latif, S. Member, N. Sherkat, A. Lotfi, and S. Member. Teleoperation
through Eye Gaze ( TeleGaze ): A Multimodal Approach. In Robotics and
Biomimetrics (ROBIO), pages 711–716, 2009. ISBN 9781424447756. →
pages 85

[32] C. Lee and Y.-f. Wang. Image Analysis for Automated Tracking in
Robot-Assisted Endoscopic Surgery. pages 88–92, 1994. → pages 85

[33] D. Li, D. Winfield, and D. Parkhurst. Starburst: A hybrid algorithm for
video-based eye tracking combining feature-based and model-based
approaches. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR) - Workshops, 3:79–79, 2005. → pages 10, 38

[34] S. Li, X. Zhang, F. J. Kim, R. Donalisio da Silva, D. Gustafson, and W. R.
Molina. Attention-aware robotic laparoscope based on fuzzy interpretation
of eye-gaze patterns. Journal of Medical Devices, 9(4):041007–10, 2015. →
pages 2

[35] S. Li, X. Zhang, F. J. Kim, R. Donalisio da Silva, D. Gustafson, and W. R.
Molina. Attention-Aware Robotic Laparoscope Based on Fuzzy
Interpretation of Eye-Gaze Patterns. Journal of Medical Devices, 9(4):
041007–041007–10, 2015. → pages 85

[36] R. Lienhart and J. Maydt. An extended set of haar-like features for rapid
object detection. In Proceedings. International Conference on Image
Processing, volume 1, pages I–900–I–903 vol.1, 2002. → pages 34

[37] F. Lu, Y. Sugano, T. Okabe, and Y. Sato. Adaptive linear regression for
appearance-based gaze estimation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 36(10):2033–2046, 2014. → pages 9

105



[38] B. R. Manor and E. Gordon. Defining the temporal threshold for ocular
fixation in free-viewing visuocognitive tasks. Journal of neuroscience
methods, 128(1):85–93, 2003. → pages 88

[39] O. Mohareri, C. Schneider, and S. Salcudean. Bimanual telerobotic surgery
with asymmetric force feedback: A davinci R© surgical system
implementation. In Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on, pages 4272–4277. IEEE, 2014. →
pages 76

[40] E. D. Montag. Rods and cones, 2014. URL http:
//www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap 9/ch9p1.html.
[Online; accessed June 1, 2017]. → pages 7

[41] C. Morimoto, D. Koons, A. Amir, and M. Flickner. Pupil detection and
tracking using multiple light sources. Image and Vision Computing, 18:
331–335, 2000. → pages 11

[42] C. H. Morimoto and M. R. M. Mimica. Eye gaze tracking techniques for
interactive applications. Computer Vision and Image Understanding, 98(1):
4–24, 2005. → pages 12

[43] G. Mylonas, A. Darzi, and G. Yang. Gaze contingent depth recovery and
motion stabilisation for minimally invasive robotic surgery. Medical
Imaging and Augmented Reality, (October):311–319, 2004. → pages 16, 23

[44] G. P. Mylonas, A. Darzi, and G. Z. Yang. Gaze-contingent control for
minimally invasive robotic surgery. Computer Aided Surgery, 11(5):
256–266, 2006. → pages 86

[45] G. P. Mylonas, K. W. Kwok, A. Darzi, and G. Z. Yang. Gaze-contingent
motor channelling and haptic constraints for minimally invasive robotic
surgery. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5242
LNCS(PART 2):676–683, 2008. → pages 2, 16, 17

[46] G. P. Mylonas, K. W. Kwok, D. R. C. James, D. Leff, F. Orihuela-Espina,
A. Darzi, and G. Z. Yang. Gaze-Contingent Motor Channelling, haptic
constraints and associated cognitive demand for robotic MIS. Medical
Image Analysis, 16(3):612–631, 2012. → pages 2, 17, 76

[47] D. P. Noonan, G. P. Mylonas, J. Shang, C. J. Payne, A. Darzi, and G. Z.
Yang. Gaze contingent control for an articulated mechatronic laparoscope.

106

http://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html
http://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html


In 2010 3rd IEEE RAS and EMBS International Conference on Biomedical
Robotics and Biomechatronics, BioRob 2010, pages 26–29, 2010. → pages
85

[48] D. P. D. Noonan, G. P. G. Mylonas, A. Darzi, and G.-z. Yang. Gaze
contingent articulated robot control for robot assisted minimally invasive
surgery. 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1186–1191, 2008. → pages 16

[49] M. Nyström and K. Holmqvist. An adaptive algorithm for fixation, saccade,
and glissade detection in eyetracking data. Behavior research methods, 42
(1):188–204, 2010. → pages 88

[50] K. Omote, H. Feussner, A. Ungeheuer, K. Arbter, G.-q. Wei, and J. Ru.
Self-guided robotic camera control for laparoscopic surgery compared with
human camera control. American Journal of Surgery, 177(4):321–324,
1999. → pages 85

[51] T. Pfeiffer, M. E. Latoschik, and I. Wachsmuth. Evaluation of binocular eye
trackers and algorithms for 3d gaze interaction in virtual reality
environments. JVRB-Journal of Virtual Reality and Broadcasting, 5(16),
2008. → pages 14, 15

[52] P. L. Rosin. Analysing error of fit functions for ellipses. Pattern Recognition
Letters, 17(14):1461–1470, 1996. → pages 41

[53] D. D. Salvucci and J. H. Goldberg. Identifying Fixations and Saccades in
Eye-Tracking Protocols. Proceedings of the Eye Tracking Research and
Applications Symposium, pages 71–78, 2000. → pages 8

[54] D. D. Salvucci and J. H. Goldberg. Identifying fixations and saccades in
eye-tracking protocols. In Proceedings of the 2000 symposium on Eye
tracking research & applications, pages 71–78. ACM, 2000. → pages 88

[55] A. Savitzky and M. J. Golay. Smoothing and differentiation of data by
simplified least squares procedures. Analytical chemistry, 36(8):1627–1639,
1964. → pages 88

[56] M. H. Sodergren, F. Orihuela-Espina, J. Clark, A. Darzi, and G.-Z. Yang. A
hidden Markov model-based analysis framework using eye-tracking data to
characterise re-orientation strategies in minimally invasive surgery.
Cognitive Processing, 11(3):275–283, 2010. → pages 86

107



[57] D. L. Sparks and E. J. Barton. Neural control of saccadic eye movements.
Current Opinion in Neurobiology, 3(6):966 – 972, 1993. → pages 8

[58] R. Stauder, A. Okur, L. Peter, A. Schneider, M. Kranzfelder, H. Feussner,
and N. Navab. Random forests for phase detection in surgical workflow
analysis. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8498
LNCS:148–157, 2014. → pages 90

[59] D. Stoyanov, G. P. Mylonas, and G. Z. Yang. Gaze-contingent 3D control
for focused energy ablation in robotic assisted surgery. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 5242 LNCS(PART 2):
347–355, 2008. → pages 16

[60] Y. Sugano, Y. Matsushita, Y. Sato, and H. Koike. An incremental learning
method for unconstrained gaze estimation. European Conference on
Computer Vision, pages 656–667, 2008. → pages 9

[61] S. Suzuki and K. be. Topological structural analysis of digitized binary
images by border following. Computer Vision, Graphics, and Image
Processing, 30(1):32 – 46, 1985. → pages 31, 46

[62] L. Swirski, A. Bulling, and N. Dodgson. Robust real-time pupil tracking in
highly off-axis images. Etra, pages 1–4, 2012. → pages 40

[63] K. Takemura, Y. Kohashi, T. Suenaga, J. Takamatsu, and T. Ogasawara.
Estimating 3d point-of-regard and visualizing gaze trajectories under natural
head movements. In Proceedings of the 2010 Symposium on Eye-Tracking
Research & Applications, pages 157–160. ACM, 2010. → pages 14

[64] K.-h. Tan, D. J. Kriegman, and N. Ahuja. Appearance-based eye gaze
estimation. Proc. WACV, pages 191–195, 2002. → pages 9

[65] B. W. Tatler, C. Kirtley, R. G. Macdonald, K. M. A. Mitchell, and S. W.
Savage. The Active Eye: Perspectives on Eye Movement Research, pages
3–16. Springer International Publishing, Cham, 2014. → pages 75

[66] F. Timm and E. Barth. Accurate eye centre localisation by means of
gradients. Visapp, pages 125–130, 2011. → pages 11

[67] F. Timm and E. Barth. Accurate eye centre localisation by means of
gradients. Visapp, pages 125–130, 2011. → pages 35

108



[68] F. Timm and E. Barth. Accurate , fast , and robust centre localisation for
images of semiconductor components. Image Processing: Machine Vision
Applications IV, 7877(0):787705–787705–10, 2011. → pages 35, 36, 37

[69] P. M. Tostado, W. W. Abbott, and A. A. Faisal. 3d gaze cursor: Continuous
calibration and end-point grasp control of robotic actuators. In 2016 IEEE
International Conference on Robotics and Automation (ICRA), pages
3295–3300, May 2016. → pages 15

[70] A. Villanueva and R. Cabeza. Models for gaze tracking systems. J. Image
Video Process., 2007(3):4:1–4:16, Nov. 2007. → pages 12

[71] P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001,
volume 1, pages I–511–I–518, 2001. → pages 34

[72] M. Visentini-Scarzanella, G. P. Mylonas, D. Stoyanov, and G. Z. Yang.
”i-BRUSH: A Gaze-Contigent Virtual Paintbrush for Dense 3D
Reconstruction in Robotic Assisted Surgery”. Medical Image Computing
and Computer-Assisted Intervention (MICCAI ’09), pages 353–360, 2009.
→ pages 16

[73] R. I. Wang, B. Pelfrey, A. T. Duchowski, and D. H. House. Online 3d gaze
localization on stereoscopic displays. ACM Transactions on Applied
Perception (TAP), 11(1):3, 2014. → pages 14, 15
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Appendix A

Eye Gaze Tracking Parameters

A.1 Region of Interest (ROI) Settings
Parameter Value Range Units

Rough ROI 120 x 80 pixels

Fine ROI 120 x 120 pixels

Glint ROI 100 x 50 pixels

A.2 Pupil Detection Settings

A.2.1 Gradient Eye Localization

Parameter Value Range Units

Scale 25 %

Number of step sizes 10 Steps

Minimum step size 100.001 pixels

Maximum step size 100.5 pixels
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A.2.2 Starburst

Parameter Value Range Units

Maximum ray length 1.5× previous pupil radius pixels

Number of rays 140 Rays

Glint threshold µ +1.5σ o f intensity 200 < x < 250

A.2.3 RANdom SAmple Consensus (RANSAC)

Parameter Value Range Units

Number of iterations 200 iterations

Early termination threshold 90 %

Inlier error threshold 3 pixels

A.3 Glint Detection
Parameter Value Range Units

Glint threshold µ +1.5σ o f intensity 200 < x < 250

Glint area 0 < x < 60 pixels2

Sort angle threshold 45 ◦

Sort distance threshold 70 % of template distance
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