
Investigating Software Developers’ Understanding of
Open Source Software Licensing

by

Daniel A. Almeida

Bachelor of Computer Science, Universidade Salvador, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

August 2017

© Daniel A. Almeida, 2017

Abstract

Software provided under open source licenses is widely used, from forming high-

profile stand-alone applications (e.g., Mozilla Firefox) to being embedded in com-

mercial offerings (e.g., network routers). Despite the high frequency of use of

open source licenses, there has been little work about whether software developers

understand the open source licenses they use. To help understand whether or not

developers understand the open source licenses they use, I conducted a survey that

posed development scenarios involving three popular open source licenses (GNU

GPL 3.0, GNU LGPL 3.0 and MPL 2.0) both alone and in combination. The 375

respondents to the survey, who were largely developers, gave answers consistent

with those of a legal expert’s opinion in 62% of 42 cases. Although developers

clearly understood cases involving one license, they struggled when multiple li-

censes were involved. To understand the context in which licensing issues arise in

practice, I analyzed real-world questions posed by developers on online question-

and-answer communities. The analysis of these questions indicate that licensing

issues can constrain software evolution and technical decisions can have an impact

on future licensing issues. Finally, I interviewed software developers in indus-

try to understand how developers reason about and handle license incompatibility

in practice. The developers I interviewed are cautious of restrictive licenses. To

identify potential licensing issues, these developers rely on licensing guidelines

provided by their organization and sometimes use specialized tools to automati-

cally detect licensing issues in their projects. When faced with a situation in which

a component that suits their needs is not compatible, developers tend to look for

alternative components made available by open source communities. They some-

times leverage the technical architecture of their projects to enable the use of com-

ii

ponents under restrictive licenses and might rewrite the required functionality if

necessary. An analysis of the results indicate a need for tool support to help guide

developers in understanding the structure of the code and the technical details of a

project while taking into account the exact requirements imposed by the licenses

involved.

iii

Lay Summary

Software developers rely on software components created by other developers to

build new software applications. These components are made available under spe-

cific licenses that specify under which terms and conditions others can use them.

Because modern software applications frequently use many components, it is im-

portant for developers to understand how they are allowed to use components. This

requires a correct understanding of their licenses. In this thesis, I report on the re-

sults of a survey that investigates whether software developers understand a number

of hypothetical scenarios involving the use of software components under different

licenses. The results indicate that developers struggle to interpret what actions are

allowed in those scenarios. To understand the contexts in which these issues arise

in practice and how developers handle them, I report on the results of the anal-

ysis of real-world cases involving software licensing issues and interviews with

software developers in industry.

iv

Preface

All of the work presented in this thesis was conducted in the Software Practices

Lab at the University of British Columbia, Point Grey campus. All projects and as-

sociated methods were approved by the University of British Columbia’s Research

Ethics Board [certificate #H16-01527].

A version of Chapter 4 has been published [2]. I was involved in concept

formation and responsible for all data collection and analysis, as well as manuscript

composition. Greg Wilson and Mike Hoye were involved in the early stages of

concept formation. Gail C. Murphy was the supervisory author on this project

and was involved throughout the project in concept formation, data analysis, and

manuscript composition.

v

Table of Contents

Abstract . ii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . viii

Acknowledgments . ix

Dedication . x

1 Introduction . 1

2 Related Work . 5

3 Overview of Licenses . 7

4 Survey . 9
4.1 Method . 9

4.1.1 Participant Recruitment . 10

4.1.2 Analysis . 10

4.2 Survey Results . 12

4.2.1 Participants . 13

4.2.2 Quantitative Results . 13

vi

4.2.3 Qualitative Analysis . 15

4.2.4 Detailed Examples . 20

4.3 Threats to Validity . 22

4.4 Summary of Results . 23

5 The Context of License Incompatibilities 26
5.1 Mining Real-World Cases . 27

5.2 Interviews . 30

5.3 Threats to Validity . 32

5.4 Summary of Results . 33

6 Conclusion and Future Work . 35

Bibliography . 38

A StackExchange Cases . 41

B Interview Script . 48

vii

List of Tables

Table 4.1 Survey scenarios . 11

Table 4.2 Participant demographics . 14

Table 4.3 Participant responses by case. Dots indicate answer of legal

expert. Green bar for each case is a “Yes” answer; red bar is a

“No” answer and blue bar is a “Unsure” answer. 16

Table 4.4 Codes for assumptions . 17

Table 4.5 Codes for comments for cases . 20

Table 4.6 Codes describing assumptions . 20

Table 4.7 Codes describing cases . 25

Table 5.1 Number of questions per community for each query 28

Table 5.2 Codes used to describe real-world cases 28

Table 5.3 Codes assigned to each question 29

Table 5.4 Job title and company size for each participant 31

viii

Acknowledgments

I would like to thank my parents for their unconditional support and love. They are

examples of integrity, without which no work should ever be done. I also thank my

sister for her kindness and support at all times.

I must thank my supervisor, Gail Murphy, for her invaluable guidance and

support. She is an example for those who strive for excellence and deeply care

about their work. It was my privilege to learn from her.

I thank my friends, both in Brazil and in Canada, for being there for me when-

ever I needed them. I also thank the colleagues and friends at the Software Practices

Lab and at the Department of Computer Science at UBC.

Finally, I must thank my better half, Larissa, for joining me in this adventure.

She not only listened to me as I rambled on or ranted about a variety of topics

that were not particularly interesting, but supported me through difficult times and

celebrated my victories.

DANIEL A. ALMEIDA

The University of British Columbia

August 2017

ix

Dedication

For of Him and through Him and to Him are all things, to whom be
glory forever. Amen. (Rom. 11:36)

x

Chapter 1

Introduction

Software developers increasingly use open source software to build applications.

As one example, Sonatype, the organization behind the Central Repository that

helps Java developers access open source components as part of the build of an ap-

plication, reports that the average number of open source components relied upon

in 2014 was 106 per application [15].

Most often when an open source software component is selected and used in

a new application, it is accessed via an application programming interface (API).

Over the last twenty years, there has been substantial investigation of challenges

developers face in understanding and using APIs (e.g., [13], [4], [12]). This pre-

vious work has focused primarily on technical aspects of components, such as the

code and related documentation. However, when developers who are working on

a software project, whether open or closed source, choose to use an open source

component, they must also understand and determine if the software to be used is

licensed in a way that is compatible with their intended use of the component.

If there were only one or two open source licenses in existence, understand-

ing the licenses and how they can be used would be reasonably straightforward.

Unfortunately for developers, there are many open source licenses. As just one

example of the diversity of licenses for software in one programming language,

Vendome and colleagues found over 25 licenses used in a sample of Java GitHub

projects [17]. When a developer makes use of open source software, the use may

take many forms, such as through copying a code snippet, using a self-contained

1

library, extending code that is structured as a framework, to name just a few. Not

all of the ways in which a developer may wish to make use of open source code

may be allowed by the license applied to that code and the way in which the code

is used may affect the resultant license of the application being built. The intri-

cacies of licenses and how they apply in different situations can result in license

incompatibility issues. Germán and colleagues report finding license incompatibil-

ity issues as a result of dependencies between software with different licenses [8].

Hermel and colleagues describe how the gpl-violations.org project has detected li-

cense compliance problems on over 150 products, such as a Linksys router [10].

It is possible that the developers working in these situations knowingly used the

licensed software inappropriately. However, it is also possible that the developers

did not understand the implications of using the open source software as they did.

Despite an indication that license problems occur when using open source soft-

ware components, there is little research investigating whether developers under-

stand the licenses and how to use them. I could find evidence of only one investi-

gation of license interactions from a developer’s point of view. Vendome and col-

leagues surveyed developers from projects in which licenses for software changed,

asking how licenses were picked and reasons for license evolution [20]. The fo-

cus of their study was thus on developers involved in license change decisions as

opposed to developers involved in using components.

In this thesis, I first explore whether developers involved in open source soft-

ware development understand licenses and their interactions through a survey. The

survey asked developers about 42 different cases of the use of code under differ-

ent open source licenses. To make the survey tractable for developers to answer,

I focused on three popular open source licenses (GNU GPL 3.0, GNU LGPL 3.0

and MPL 2.0). I advertised the survey on mailing lists and Twitter and collected

responses from 375 participants, who were largely developers and who came from

many parts of the world.

Analyzing the survey responses required determining, for each case, appropri-

ate answers. The answers were determined by recruiting an intellectual property

lawyer with deep knowledge of the open source community as our oracle. This

expert, who has over a decade’s specialization in patent reform, open source li-

censing, and related issues, kindly gave us his opinion on each of the scenarios in

2

gpl-violations.org

the survey, and helped identify ambiguities and missing information that could be

checked to see if developer respondents spotted the same issues and analyzed them

the same way.

An analysis of the survey responses indicate that developers had a good grasp

on development cases involving a single license. However, developers struggled

when more than one license was involved. Developers recognized that some license

interaction cases were more dependent on technical details and others on license

details, but they lacked a deep grasp of the intricacies of license interactions.

The survey results indicate that software developers struggle with license in-

compatibility issues. However, these results do not shed light on the situations in

which these issues happen and how software developers reason and handle license

incompatibility issues in practice.

To better undertand the context in which licensing incompatibility issues arise,

I analyzed real-world questions involving licensing issues. These questions were

obtained from a popular network of question-and-answer communities. To gain

insight into how software developers reason about and handle license incompati-

bility situations in practice, I interviewed software developers who have built or

are currently building on open source software in their projects.

The analysis of real-world cases shows many situations in which licensing

incompatibility can constrain software evolution. In other situations, developers

seem to struggle due to previous technical decisions that can have an impact on

licensing issues.

The interviews with software developers indicate that they tend to be cautious

of restrictive licenses. They rely on licensing guidelines provided by their organi-

zation or use specialized tools to identify potential licensing issues in their projects.

In a situation in which a component that suits their needs is under an incompati-

ble license, developers tend to look for alternative components provided by open

source communities. In some of these cases, they are able to leverage the technical

architecture of the project to enable the use of a component or rewrite the required

functionality themselves.

This thesis makes three contributions:

• It provides empirical evidence that software developers understand how to

3

use individual open source licenses in both simple and complex development

scenarios, but struggle to understand cases involving combinations of open

source licenses.

• It provides an analysis of the factors that developers consider as they work

with combinations of open source licenses.

• It identifies contextual situations in which license incompatibility issues arise

in practice and investigates how software developers reason about and handle

these issues.

The results of the survey and analysis of real-world cases and interviews with

software developers indicate a need to help developers better understand the ram-

ifications of the licenses associated with open source software components upon

which they rely. This help needs to include tool support that can help a devel-

oper comprehend, and reason about interactions between licenses in the context

of how components are being incorporated and modified into the software being

built. There is also potentially a role for recommenders that can recommend how

code should be structured to enable the use of components with particular license

characteristics.

I begin with an overview of previous related research on open source licenses

(Chapter 2) and a brief overview of the licenses used in this work (Chapter 3). I

then describe the survey, including our method and results, and the analysis of real-

world cases and interviews with software developers (Chapter 5). Finally, I present

my conclusions and discuss ways forward to improve the situation (Chapter 6).

4

Chapter 2

Related Work

The role of open source licenses on open source projects has been the focus of

research from a number of different perspectives.

Some researchers have focused on the overall trends of open source license

use. For example, Aslett has shown the ratio of permissive (e.g., MIT style licenses

that have limited restrictions on reuse) vs. restrictive (e.g., GPL style licenses that

require changes to be open source) licensed projects shifted in favour of permissive

licenses between 2008 and 2011 [1]. This result is echoed in the work of Hofmann

and colleagues [11]. Di Penta and colleagues have looked at the issue of open

source license use at a more detailed level, considering how licenses can change for

and within a project over time [6]. By considering overall trends, these researchers

have helped provide a characterization of open source license use, showing that

many licenses are used in practice and that the choice of a license is not static for a

project as a whole or for parts of a project.

Other researchers have taken a different perspective, considering how the choice

of a particular open source license (or licenses) can impact a project. Through

analysis of open source project artifacts, Stewart and colleagues found business-

friendly open source licenses had a positive association with project success [16],

where success is defined as user interest in and development activity on a project.

Using a similar analysis approach, Sen and colleagues determine factors that affect

the choice of a license for a project (e.g., [14]).

Another area of research focus has been on the impact of license interactions

5

on software development. Germán and Hassan were the first to describe the license

mismatch problem, which occurs when two or more pieces of software with dif-

ferent licenses with different restrictions are combined in a new project. Germán

and Hassan developed a model to describe mismatch problems and to document

integration patterns for solving such problems [7]. Researchers have since looked

at the license mismatch problem in several different ways. For example, Alspaugh

and colleagues developed a meta-model to analyze the interaction of licenses from

the viewpoint of software architecture [3]. Germán and colleagues developed the

Ninka tool [9] to identify licenses in source code, making possible larger scale

studies of license use and evolution (e.g., [19] and [21]). The research in this area

has focused largely on technical aspects and implications of licenses, such as the

detection of license interactions and the role of software structure both in causing

inappropriate interactions and ways to resolve interactions.

In this thesis, I focus on the developer perspective on open source licenses, con-

sidering how well developers understand open source licenses, particularly when

those licenses interact, and how developers reason about and deal with licensing

issues. In considering the developers’ perspectives, our work is closest to Vendome

and colleagues [20]. Their work includes a survey of 138 developers chosen from

projects in which the evolution of a license use occurred. Their survey focused on

how developers picked licenses and motivations for license changes. This survey

relies on the fact that developers responding to the survey understood the licenses

with which they work and the situations in which the licenses are used. In this

thesis, I focus on a more general population of developers, not just those who have

dealt with license changes, and delve into the question of whether the more general

population understands open source license use both when one license is used and

when a combination of licenses is in use. Furthermore, I analyze real-world cases

in which licensing issues arise to understand their situational context and conduct

interviews with software developers in industry to understand how developers rea-

son about and deal with license incompatibility issues in practice.

6

Chapter 3

Overview of Licenses

Before we introduce the method we used to investigate questions regarding devel-

oper knowledge of the use of open source licenses, we present a brief overview of

the licenses referred to in the survey. We focused on these licenses because they

represent common licenses in use (e.g., [20]), because they represent a range from

restrictive (e.g., GNU GPL) to permissive (e.g., Mozilla Public License (MPL))

and because they represent different technological choices in license application

and resultant restrictions (e.g., GNU GPL vs. GNU LGPL).

GNU General Public License (GPL), Version 3.0 (GPL-3.0) The GNU General

Public License (GPL)1 ensures end users of the software being licensed will be

able to run, view, share and modify the software. The GPL is a copyleft license

that requires the rights to be retained when software is shared or modified. The

updates to the GPL in Version 3.0 were instituted to protect the copyleft features

given recent legal and technological changes.

GNU Lesser General Public License, Version 3.0 (LGPL-3.0) The GNU Lesser

General Public License (LGPL)2 is a weak copyleft license. The LGPL can be

applied to software that is deployed as a shared library; code in the shared library

must be available to be viewed, modified and shared, but proprietary code using

1https://opensource.org/licenses/GPL-3.0
2https://opensource.org/licenses/LGPL-3.0

7

https://opensource.org/licenses/GPL-3.0
https://opensource.org/licenses/LGPL-3.0

the library need not be made freely available.

Mozilla Public License, Version 2.0 (MPL-2.0) The Mozilla Public License (MPL-

2.0)3 provides a different balance between proprietary and free software. The

MPL-2.0 is copyleft, similar to the GPL-3.0, but at the file level, easing the combi-

nation of code under different licenses. For example, software that is a mixture of

both proprietary and MPL code requires only modifications to files licensed under

the MPL to be made available.

3https://opensource.org/licenses/MPL-2.0

8

https://opensource.org/licenses/MPL-2.0

Chapter 4

Survey

We chose a survey instrument to investigate whether developers understand open

source licenses because we were interested in trends about which aspects of li-

censes developers understand and which aspects developers struggle with. Trends

identified in a survey can later be investigated in more depth using other instru-

ments, such as interviews.

4.1 Method
To develop the survey, two authors of this paper posited a number of different cases

of how software might be licensed, how a software system might be built out of

existing components and how software might evolve. The other two authors of

the paper, each of whom has extensive development experience, commented and

helped refine the cases. All authors of the paper then collaboratively developed a

set of scenarios based on the identified cases. We originally planned to include four

licenses in our survey. After piloting, we decided to reduce the number of licenses

(to 3) and scenarios (to 7) to keep survey completion time under 40 minutes.

The on-line survey we distributed consisted of:

• six demographic questions,

• seven hypothetical software development scenarios, some of which included

multiple license combinations, and

9

• four open-ended questions.

A copy of the full survey is available for reference.1

Table 4.1 summarizes the seven development scenarios in the survey. The first

scenario description in Table 4.1 is laid out similar to how the questions appeared

in the survey. The second scenario description shows how questions were posed

about different combinations of licenses. The remaining scenario descriptions are

in compact form. These scenarios included a total of 45 cases. In this paper, we

refer to the cases by their scenario number (as in S1) and the license (or licenses

involved, as in S2-GPL-GPL). For each case, a participant could answer yes, no

or unsure. If a participant answered unsure, an extra textbox appeared after

the question asking for further clarification as an open-ended text comment. For

each scenario, there was also an open-ended text box for the participant to state any

assumptions she or he made about the scenario posed.

In developing the survey, we had to make a choice between full and long-

specifications of all the details of a given scenario, such as detailed descriptions

of the architecture of the software being combined in some scenarios, versus more

brief descriptions. We chose the latter approach to make the survey tractable for

participants and as we were interested in the assumptions participants may (or may

not) make.

4.1.1 Participant Recruitment

We recruited participants in two ways. First, three authors of the paper, with over

6,000 followers combined, tweeted about the survey with a link to the survey. Sec-

ond, the authors used mailing lists to advertise the survey.

4.1.2 Analysis

We analyzed the results of the survey both quantitatively and qualitatively.

Quantitative analysis required correct answers for each of the 45 cases. As

described in Chapter 1, we asked a lawyer with relevant expertise to rule on each

case and to point out ambiguities and omissions that could affect the answer. This

1https://goo.gl/v2JGol

10

https://goo.gl/v2JGol

Table 4.1: Survey scenarios

Scenario #1 - Layout similar to survey
John has been working on ToDoApp, his own personal task management application. ToDoApp is going to be a desktop-based application that will
be used exclusively by John on his own computer. To make sure he does not lose any of his very special tasks, John is planning to use a lightweight
library called LightDB to persist ToDoApp’s data.

If LightDB is distributed under the following licenses, would John be allowed to use it as part of ToDoApp?

GNU GPL3.0 (S1-GPL) ○ Yes ○ No ○ Unsure
GNU LGPL3.0 (S1-LGPL) ○ Yes ○ No ○ Unsure
MPL 2.0 (S1-MPL) ○ Yes ○ No ○ Unsure

Scenario #2 - Layout abbreviated but similar to survey
Having used ToDoApp for three months, John realized how much his productivity has improved. To help other people manage their tasks as efficiently
as well, John has decided to make ToDoApp available as open source.

If LightDB, the lightweight library used to persist ToDoApp’s data is distributed under GNU GPL 3.0 would John be allowed to make ToDoApp
available under the following licenses?

GNU GPL3.0 (S2-GPL-GPL) ○ Yes ○ No ○ Unsure
GNU LGPL3.0 (S2-GPL-LGPL) ○ Yes ○ No ○ Unsure
MPL 2.0 (S2-GPL-MPL) ○ Yes ○ No ○ Unsure

Survey repeats the question for LightDB under GNU LGPL 3.0 and MPL 2.0 for each license combination for ToDoApp.

Scenario #3 - Compact Form
After the success of the open source version of ToDoApp, John has decided to create a brand new commercial task management application: TaskPro.
TaskPro is going to be built from scratch and use LightDB as a lightweight library to persist data.

If LightDB, is distributed under {GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0}, would John be allowed to make TaskPro commercially available
under each of the {GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0} licenses?

Scenario #4 - Compact Form
As the lead developer of a new product at GreatSoftware Inc., Laura decided to use an existing authentication library she found on the Web called
SafeAuth. She realizes that SafeAuth could be improved using a stronger cryptographic algorithm when storing users’ information. The product
is going to be released under a commercial software license, but Laura would like to release the improved version of SafeAuth as open source.

If SafeAuth, is distributed under {GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0}, would Laura and her team be allowed to release the improved
version of SafeAuth under each of the {GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0} licenses?

Scenario #5 - Compact Form
Laura who works for GreatSoftware Inc. has changed the open version of SafeAuth found on the Web and added a new, stronger cryptographic
algorithm to it. Despite Laura’s intentions to release the modified version of SafeAuth as open source, her manager sees a very strong competitive
advantage for their products and decides not to release the modified version as open source.

Considering that the new product is going to be distributed under a commercial license, if SafeAuth is distributed under the {GNU GPL 3.0, GNU
LGPL 3.0 and MPL 2.0}, can Laura and her team use the modified version as part of their new product?

Scenario #6 - Compact Form
Shaoqing believes there are unhappy users out there willing to pay for a premium email client. To get to market faster, she decided to use an open
source implementation of the Simple Mail Transfer Protocol (SMTP).

If the SMTP implementation is released under {GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0}, would Shaoqing be allowed to fork the SMTP project
and change the fork’s license to the {GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0} license in order to use it in her commercial e-mail client?

Scenario #7 - Compact Form
Shaoqing has been trying to optimize the way her email client handles old e-mails. Browsing on the Web, she found a fairly sophisticated implemen-
tation of a compression algorithm on a software developer’s blog that could be used on archived emails. The algorithm implementation has hundreds
of lines of code and does not include an explicit license, but there is a copyright notice on the blog that states “All Rights Reserved”.
If Shaoqing used the source code she found on the blog in her e-mail client, would be allowed to distribute the e-mail client commercially under the
{GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0} license?

11

allowed us to score responses from developers and also to check how many were

able to correctly identify the same issues.

Qualitative analysis was performed on the open-ended comments provided by

participants about answers for cases for which they were unsure and assumptions

made for the scenarios in which the case appeared. Two of the authors open-coded

the collected comments [5]. We focused on comments and assumptions for ques-

tions for which over 30% of the answers did not match the legal expert’s answer

(14 cases) or for which over 10% of the answers were “unsure” (14 cases). We

chose 30% as the threshold for which answers did not match the legal expert’s an-

swer to allow room for ambiguity; we believe a simple majority threshold would

have suggested the answers are always clearcut. We choose to analyze cases for

which over 10% of the answers were “unsure” to capture where ambiguity seemed

to be likely occurring. Applying these thresholds, nine out of the 28 cases identi-

fied overlapped, resulting in the coding of comments for 19 cases and assumptions

for four scenarios. We took the approach of assigning only one code to each com-

ment, choosing the code that best described the comment. For comments for five

of the cases (a total of 132 comments), each coder independently coded the case

and then the coders met to discuss the codes and form agreement. After five cases

were coded, the coders independently coded the remaining 14 cases and then met

to form an agreement. The Cohen’s kappa score for the 14 cases that involved

393 comments was .836. Similarly, the coders independently coded assumptions

for one scenario (a total of 53 comments), met to form agreement and then inde-

pendently coded the assumptions for the remaining three scenarios. The Cohen’s

kappa score for coding assumptions for the 282 assumptions across the three sce-

narios was .853.

4.2 Survey Results
The survey was started 825 times. Ultimately, 375 individuals completed the sur-

vey for a completion rate of 45%. We report on the demographics of the partici-

pants before providing a quantitative and qualitative analysis of the respondents’

results. A data package containing aggregate results and participants’ comments

12

may be consulted for further information.2

4.2.1 Participants

Participants came from all over the world (i.e., USA (267), UK (133), Germany

(63), Canada (62), etc.). Table 4.2 summarizes the roles and experience of the

participants. As the majority of the participants identified their role as developer

or team lead, we will refer to our findings from the survey in terms of findings

about developers. The participants had significant software development experi-

ence, with 93% reporting at three years or more. The participants came from a

range of size of company with 20% working in companies with over 5000 employ-

ees down to 7% working solely. Most participants have previously chosen software

licenses and most contribute to open source. The table shows the top five languages

used, with participants reporting use of over 10 different programming languages.

4.2.2 Quantitative Results

Table 4.3 presents the participants’ survey answers. For each case, a bar chart is

shown that compares the participants’ responses for the case to the legal expert’s

opinion: a dot is used to indicate the response of the legal expert in each case. For

each chart, the green bar represents “Yes” answers, the red bar represents “No”

answers and the blue bar represents “Unsure” answers.

As we delved into the details of participants’ responses, we noted an issue with

Scenario 5. By comparing the assumptions of the legal expert with the participants’

assumptions, we determined that the scenario was not stated clearly enough in

terms of which source code would eventually be released. As a result, we have

omitted the results for Scenario 5 in Table 4.3 and we do not include Scenario 5 in

any further reporting or analysis. Its removal leaves 42 cases for analysis.

We consider that the participants’ answers for a case are correct when 70% or

over of the participants’ answers match the legal expert’s. We chose this threshold

to account for the potential ambiguity in our short scenario descriptions, which

may lead participants to be unsure of the meaning of the scenarios. Applying

2https://www.cs.ubc.ca/labs/spl/projects/softwarelicensing/resources/UBC SPL software
licensing survey data.zip

13

https://www.cs.ubc.ca/labs/spl/projects/softwarelicensing/resources/UBC_SPL_software_licensing_survey_data.zip
https://www.cs.ubc.ca/labs/spl/projects/softwarelicensing/resources/UBC_SPL_software_licensing_survey_data.zip

Table 4.2: Participant demographics

Demographics
Job title

Programmer/Soft. Dev./Soft. Eng. 67.2%
Technical Lead/Team Leader 13.3%
Other 13%
Sys. Administrator/Network Engineer 3.2%
Project Manager 2.9%

Level of Experience
More than 7 years 61.3%
At least 3 years 32.3%
Less than 3 years 6.4%

Ever chose a software project’s license?
Yes 85.3%
No 14.7%

Often contribute to open source projects?
Yes 74.7%
No 25.3%

Programming languages used the most
Python 51.6%
JavaScript 25.7%
C++ 25.4%
Java 22.5%
C 19.8%

this threshold, participants’ responses matched the legal expert’s in 26 of the 42

cases (62%). This rate of matching the legal expert’s opinion is encouraging as

it suggests that participants understood many aspects of the open source licenses

used in the scenarios. Participants also matched the opinion of the legal expert

whenever only one open source license is in use in the scenario (e.g., S2-GPL-

GPL or S7-MPL-MPL, etc.). However, when more than one license is involved,

the participants’ answers differed from the expert’s. We were not able to find any

trend in particular license combinations that were troublesome: four cases involved

GPL and LGPL, three cases involved GPL and MPL and five cases involved LGPL

and MPL. From these results, we make the following two observations.

14

Observation 1. Developers cope well with single licenses even in complex

scenarios.

Observation 2. Developers have difficulty interpreting which actions are

allowed in scenarios where more than one open source license is in use.

To learn what aspects the participants struggled with, we focus our remaining

analysis on the 12 cases in which the participants answered differently than the

legal expert and the 13 cases for which over 10% of the participants were not sure

which answer to choose. These cases overlap, resulting in 17 cases on which we

focus our remaining analysis.

4.2.3 Qualitative Analysis

The qualitative analysis we conducted considered assumptions at the scenario level

and comments made by participants about individual cases.

Assumptions

For each scenario, participants had the opportunity to express assumptions that they

made when answering the cases. We coded the assumptions for the three scenarios

(S2, S3 and S4) on which we focus our qualitative analysis.

We ended up defining 11 codes to describe the assumptions; Table 4.4 de-

scribes these codes. The codes demonstrate the wide range of concerns partici-

pants considered when thinking about the use of the open source licenses. For

instance, participants thought deeply about how the nature of the change—which

files (CD), who is making changes (AG), where the author was located (AG), ef-

fects on the product architecture (TA)—could affect the situation. Participants also

thought deeply about how licenses might interact, such as how code under one li-

cense might be re-licensed or dual licensed (LI), and whether the licenses in use

included particular exhibits, such as Exhibit B for the MPL that enables an author

to mark certain files as incompatible with secondary licenses (LA). Other codes

capture comments that we could not interpret (I), such as “All’s good”, descrip-

15

Table 4.3: Participant responses by case. Dots indicate answer of legal expert.
Green bar for each case is a “Yes” answer; red bar is a “No” answer and
blue bar is a “Unsure” answer.

Case S1 Case S2-GPL Case S2-LGPL

MPL

LGPL

GPL
2.1%

0.8%

4.8%

3.5%

0.8%

0.5%

94.4%

98.4%

94.7%
MPL

LGPL

GPL
0.5%

6.7%

14.7%

1.3%

66.5%

63.1%

98.1%

26.8%

22.2%
MPL

LGPL

GPL
3.5%

0.8%

12.3%

5.3%

0.8%

26%

91.2%

98.4%

61.7%

Case S2-MPL Case S3-GPL Case S3-LGPL

MPL

LGPL

GPL
14.8%

13.9%

6.2%

10.8%

8.3%

0.5%

74.5%

77.7%

93.3%
MPL

LGPL

GPL
1.9%

5.6%

13.9%

12%

60.5%

58.4%

86.1%

33.9%

27.7%
MPL

LGPL

GPL
2.9%

1.3%

11.6%

11.2%

4%

24.5%

85.8%

94.7%

64%

Case S3-MPL Case S4-GPL Case S4-LGPL

MPL

LGPL

GPL
13.1%

12.6%

9.1%

14.7%

9.9%

2.7%

72.2%

77.5%

88.2%
MPL

LGPL

GPL
1.3%

5.3%

9.1%

2.7%

83.7%

82.1%

96%

10.9%

8.8%
MPL

LGPL

GPL
5.6%

2.1%

11.1%

24.9%

1.9%

70.5%

69.5%

96%

18.4%

Case S4-MPL Case S5 - Removed Case S6-GPL

MPL

LGPL

GPL
15.5%

16.4%

7.5%

31%

29.2%

2.1%

53.5%

54.4%

90.3%
MPL

LGPL

GPL
1.6%

3.5%

7%

24.2%

90%

86.8%

74.2%

6.5%

6.2%

Case S6-LGPL Case S6-MPL Case S7

MPL

LGPL

GPL
6.2%

2.4%

8.4%

36.4%

16.9%

77.5%

57.4%

80.6%

14.1%
MPL

LGPL

GPL
13.9%

14.1%

8.9%

42.9%

41.5%

11.1%

43.2%

44.4%

80.1%
MPL

LGPL

GPL
5.3%

5.3%

7.5%

92.5%

92%

88.5%

2.1%

2.7%

4%

16

Table 4.4: Codes for assumptions

AG Authorship/Geo Who is author and where are
they located

CD Change Dependent What system files are to be
modified

I Invalid Text could not be interpreted
IQ Invalid Question Participant felt question was

invalid
LA License Assumption Characteristics of licenses
LI License Interactions Ramifications of more than

one license
TA Tech. Assumption System structure, deploy-

ment, etc.
PA Patent Assumption Patent or IP
SC Specific Case Dual licensing
TeA Term Assumption Meaning of term unclear in

license or scenario
U Unsure Unsure about scenario or li-

cense

tions of why the participant felt the question was invalid (IQ), where participants

questioned the meaning of terms in the question (i.e., TeA) and where participants

were unsure, such as not knowing a license being asked about (i.e., U).

Table 4.6 states the frequency of each assumption code and indicates the total

number of assumptions received for each scenario (ranging from 14% of the par-

ticipants stating assumptions for S4 to 30% of the participants stating assumptions

for S3). For scenario 2, assumptions about the technical aspects of the scenario

were most frequent, with over 42% of the assumptions having the TA code. This

scenario involved an open source application that might be licensed differently

than an open source library that the application relies on. Participants considered

such questions as how the library might be used; for instance, would the library be

statically or dynamically linked to the application?

Participants also questioned how the code would be structured and released

for scenario 3 (52% of codes were tagged with the TA code), in which partic-

ipants were asked to consider a commercial distribution of a product including

17

open source. For this scenario, participants differed in response from the expert in

three of nine cases, with two of those cases involving MPL which describes license

constraints at the file level. The difference in participant responses from the expert

may also be related to the larger number of questions by participants about terms

used in the scenario, such as the precise meaning of the term “commercial”; the

term assumption code (TeA) accounted for 22% of the codes for this scenario.

For scenario 4, which described a developer making modifications to an open

source library and releasing the modified version of the library as open source, the

most frequently occurring code is about the nature of the change, specifically which

and how many files might be changed (over 18% of the codes are CD). Participant

responses for three of the nine cases in this scenario did not match the legal expert’s

opinion; all cases that differed involved the GPL and LGPL licenses, including

how they interact with each other and how they interact with MPL. Although many

participants understood that MPL places file-based restrictions on subsequent use

when modified, the majority of participants thought there were ways to structure

the modifications to enable MPL licensed code to be redistributed as GPL or LGPL

code (S4-MPL-GPL and S4-MPL-LGPL).

For scenarios 2 and 4, the second most frequently occurring group of codes

relates to licenses. For scenario 2, 28% of the assumptions questioned aspects of

the licenses, such as what relicensing is possible for source under a given open

source license and the possibilities for dual licensing code (i.e., the LI and LA

codes). Over 20% of the assumptions for scenario 4 relate to licenses (i.e., 20.8%

of codes are LA and 7.3% of codes are LI). Some assumptions with these codes

indicate significant knowledge of one or more of the open source licenses used in

the scenarios, such as referencing the “tri-license” header.

This analysis leads us to two additional observations.

Observation 3. Developers understand technical decisions will impact

open source license use.

Observation 4. Developers recognize that there are interactions between

18

open source licenses, but those interactions were not always correctly inter-

preted.

Case Comments

We also analyzed 462 comments provided by participants for the 17 cases of inter-

est. Table 4.5 describes the seven codes that resulted from the process described

in Chapter 4.1.2; these codes include comments about license interactions (LI),

specific cases of relicensing or dual licensing (SC), technical details regarding the

scenario (TD), and uncertainty about the scenario (U, A, Am and U).

Table 4.7 reports on the frequency of occurrences of each code in the comments

for each case. From this table, it becomes evident that different combinations of

codes appear for the same license combinations: the S2-GPL-LGPL case, as an

example, has 20% of comments as license interactions, but license interactions

were not a concern for the S3-GPL-LGPL and S6-LGPL-GPL cases. These three

cases differ in how the software is used, changed and combined (i.e., the technical

context), leading to the following observation.

Observation 5. Questions that arise about the use of multiple open source

licenses are situationally dependent.

The most frequently occurring code across the cases is the Unsure code. This

uncertainty often had to do with details related to the licenses, such as “don’t know

if GPL allows it” and “don’t know to which point GPL is viral”. The prevalence of

this code leads to the following observation.

Observation 6. A number of developers lack knowledge of the details of

open source licenses.

The second more frequently occurring code across the cases studied was for

license interactions (LI). Comments made by participants echoed concerns raised

19

Table 4.5: Codes for comments for cases

A Assumption An assumption about the
case.

Am Ambiguity Description of ambiguous
point in case.

I Invalid Meaning of comment un-
clear.

LI License Interaction Concern about actions pos-
sible with more than one li-
cense.

SC Specific Case Concern about relicensing or
dual license.

TD Technical Detail Concern about technical as-
pects of case.

U Unsure Case is unclear.

Table 4.6: Codes describing assumptions

Scenario # Code (%) Total
AG CD I IQ LA LI PA SC TA TeA U #

Scenario 2 2.1 5.2 6.3 3.1 20.8 7.3 2.1 4.2 42.7 1.0 5.2 96
Scenario 3 0.9 1.8 4.4 0.9 8.9 2.7 0.9 - 52.2 22.1 5.3 113
Scenario 4 3.8 18.9 15.1 7.6 13.2 9.4 5.7 3.8 11.3 5.7 5.7 53

in the assumption coding, such as which licenses could subsume other licenses,

when code could be dual licensed and when code could be re-licensed. This data

helps reinforce Observation 4.

4.2.4 Detailed Examples

We look at two cases in more detail to provide more context for the findings that

participants struggled with license interactions and technical assumptions. The two

cases we consider are from scenario 2, which involves the use of an existing open

source library (LightDB) to build an application that will also be released under

an open source license (ToDoApp). A full description of scenario 2 is available in

Table 4.1.

20

License Interaction

For the S2-GPL-MPL case, only 63.1% of participants responded with an answer

that matched the legal expert’s opinion and 14.7% of the participants were unsure.

After the unsure code, the second most frequently occurring code for this case

was the license interaction (LI) code. In these comments, participants expressed

their doubts about appropriate interactions. For instance, one participant wrote:

“I don’t understand how the secondary license restriction and GPL interact”. An-

other wrote: “MPL/(L)GPL dual licensing is popular, so I assume there is a reason

for that”. Even in a comment labelled unsure, a participant recognized license in-

teractions might be relevant: “Have not studied the details; generically expect

trouble when mixing non-GPL licenses with GPL so would have guessed ’No’ if

forced”. These comments highlight that although participants recognize license

interaction, they do not understand the intricate details of when interactions occur

or the results.

Technical Details

For the S2-GPL-LGPL case, only 66.5% of participants responded with an answer

that matched the legal expert’s opinion and 12.3% were unsure.

After the unsure code, the most frequently occurring code was the technical

details (TD) code. Participants expressed a need to understand more technical de-

tails about the scenario in order to interpret how the licenses would interact. For

example, one participant wrote: “It depends on how ToDoApp is distributed. If

ToDoApp was only distributed as source then this would be fine. For binary dis-

tributions, if ToDoApp is statically linked against LightDB it must be distributed

under GPL. The case is less clear for dynamically linked code - I understand the

FSF and other organizations disagree!”. This comment indicates knowledge of

the licenses and views of the communities around the licenses. Other participants

knew the technical details might matter, but not why: “I think it might depend on

how the two libraries are linked together”.

21

4.3 Threats to Validity
The survey provided links to the licenses referred to in the survey but did not re-

quire participants to answer questions to validate their understanding of individual

licenses, which may have affected the construct validity of the survey. We made

this choice for two reasons. First, we wanted to allow participants to interact with

the licenses as they normally would; for instance, some participants might rely

on their knowledge of the licenses, some might reference the licenses to answer

survey questions and others might use other sources, such as choosealicense.com

or knowledgeable colleagues. The survey asked if participants used additional re-

sources: 36% reported using resources such as Wikipedia, TLDRlegal.com and

choosealicense.com.

Second, the overall survey is lengthy and adding more questions to validate

understanding of each of three licenses would be even more time consuming for

participants. The choice not to validate individual license understanding may have

resulted in participants answering questions for which they have no background.

For some survey questions, we received a large number of comments, such as over

100; the insight in many of these comments suggests many participants had suffi-

cient background to answer the questions posed. A large number of individuals,

825, started the survey with 45% completing the survey; some of the individuals

that started the survey but did not finish might represent individuals without suffi-

cient license knowledge.

The construct validity may also have been affected by the particular three li-

censes we chose to use in the survey. We deliberately picked a mixture of restrictive

(i.e., GPL) and permissive (i.e., MPL) licenses to trigger license interactions. Our

findings might differ if only a set of more permissive licenses were used. Future

work should investigate developers’ understanding of fine-grained license interac-

tions.

The survey has limitations with regards to content validity, which considers

the degree to which the survey investigates developers knowledge of open source

license use. The survey questions required participants to understand individual

licenses, such as GPL, and how the use of the license affects scenarios involving

interactions with other licenses. Furthermore, because the questions were pre-

22

choosealicense.com
TLDRlegal.com
choosealicense.com

sented as multiple choice problems, they are likely not as complex as many of the

scenarios faced in practice. As noted above, the survey is limited in what can be

concluded about the knowledge of individual open source licenses.

Another issue we faced in the design of the survey was the specificity to pro-

vide in the scenarios posed in the survey questions. As some of the participants

noted, the wording of the scenarios had some ambiguity. In particular, participants

struggled with the wording in scenario 3 in which the term “commercial” was used;

the confusion involved whether the term implied any changes made to open source

software were to be kept as closed source or whether the term meant money may

be charged for use of the resultant software. We did not foresee this ambiguity

and note that the term commercial has also been used in previous surveys on open

source software [20]. The ambiguity also did not arise in pilots we conducted of the

survey questions. The lack of specificity may have also caused differences between

the legal expert’s reading of the cases and the participants’. We have tried to miti-

gate the effects of question ambiguity through careful analysis of the legal expert’s

input and careful analysis and reporting of the qualitative comments provided by

participants.

As described in Section 4.2, the participants in the survey came from a large

number of countries, used a wide variety of programming languages and largely

described their job as a software developer. As noted above, the techniques we

used to recruit participants for the survey may have biased the population from

which the participants are drawn. In particular, we observed that the large majority

of the participants (85.3%) had chosen a software project’s license before, which

might be an instance of self-selection bias. The diversity of participants suggests

the results may be applicable to a reasonable segment of open source developers.

4.4 Summary of Results
The software developers who took our survey were able to correctly interpret a

variety of simple and complex development scenarios involving one license (Ob-

servation 1). These software developers understand that how the software is built

affects license interactions, but they have neither a consistent and deep grasp of

what technical details matter (Observation 2 and Observation 3) nor a solid un-

23

derstanding of the intricacies of how licenses interact (Observation 4). Developers

are aware that different characteristics matter in different situations of multiple li-

cense use (Observation 5), but overall lack the knowledge to tease apart license

interactions across multiple situations (Observation 6).

24

Table 4.7: Codes describing cases

Case Code (%)
A Am I LI SC TD U #

Scenario 2
S2-GPL-LGPL - - - 20.0 - 32.0 48.0 25
S2-GPL-MPL - - 2.2 17.4 6.5 8.7 65.2 46
S2-LGPL-MPL - - 5.9 14.7 2.9 11.8 64.7 34
S2-MPL-GPL - 2.5 7.5 25.0 7.5 - 57.5 40
S2-MPL-LGPL - 5.6 - 19.4 5.6 - 69.4 36

Scenario 3
S3-GPL-LGPL - - 46.7 - - 26.7 26.7 15
S3-GPL-MPL 2.9 - 11.4 8.6 5.7 8.6 62.9 35
S3-LGPL-MPL - - 8.0 12.0 4.0 4.0 72.0 25
S3-MPL-GPL 3.5 - 6.9 17.2 3.5 3.5 65.5 29
S3-MPL-LGPL - 3.6 3.6 17.9 3.6 3.6 67.9 28

Scenario 4
S4-LGPL-GPL - - 15.4 15.4 46.2 - 23.1 13
S4-LGPL-MPL - - 5.6 33.3 5.6 5.6 50.0 18
S4-MPL-GPL - 3.3 10.0 23.3 13.3 - 50.0 30
S4-MPL-LGPL - 6.1 15.2 21.2 12.1 - 45.5 33

Scenario 6
S6-LGPL-GPL - 7.1 7.1 - - - 85.7 14
S6-MPL-GPL - - - 9.5 33.3 - 57.1 21
S6-MPL-LGPL - - - 10.0 10.0 - 80.0 20

25

Chapter 5

The Context of License
Incompatibilities

The survey results indicate that software developers struggle with license incom-

patibilities and that technical details and license interaction seem to be particularly

important. The survey considered hypothetical cases, with limited information

about real cases gathered through open-ended comments by participants.

To gain insight into the context in which license incompatibilities arise, I posed

two research questions:

RQ#1 In what real-life situations do license incompatibilities arise?

RQ#2 How do software developers reason about and handle license incompatibil-

ities?

To investigate the first question, I mined and analyzed questions posed by de-

velopers, and the answers they received, on popular online question-and-answer

communities. To investigate both questions, I also interviewed software develop-

ers in industry to better understand how software developers approach and handle

license incompatibility issues in practice.

26

5.1 Mining Real-World Cases
To obtain real-world cases involving software licensing issues, I mined information

from StackExchange, a popular network of question-and-answer (Q&A) commu-

nities. One community within StackExchange is Open Source Stack Exchange,

which is a community for ”people organizing, marketing or licensing open source

development projects”1. In addition to this source, I considered two other StackEx-

change communities —Software Engineering and Stack Overflow—because these

are popular communities that also deal with licensing issues and may be more

likely to see a mix of open and closed source licensing questions.

To find real-world cases on these sites, I performed queries about software li-

censes. To focus the exploration, I narrowed my queries to those involving two

of the three licenses considered in the survey: GPL, LGPL and MPL. I made this

choice to increase the likelihood of finding discussions of license incompatibilities,

because more than one license is mentioned, and to follow-up on situations hinted

at in the survey. I performed three queries on each of the three StackExchange

communities to search for questions containing the following combinations in their

body: ”GPL” and ”LGPL”, ”GPL” and ”MPL”, or ”LGPL” and ”MPL”. The re-

sults of these queries are exchanges from the community that consist of a question

with different answers and threaded replies to each answer.

Performing the queries on the StackExchange communities produced 60 re-

sults. Table 5.1 shows the number of questions retrieved from the different com-

munities for each search query. As analysis of each result is qualitative, I chose to

sample from the results to analyze whether a license incompatibility had occurred.

I randomly sampled a third of the results to analyze. For each selected result, I

summarized the question and tagged the question with codes from the qualitative

analysis of the survey’s case comments (Table 4.5). I also considered whether any

new codes needed to be added to capture the intent of the question; no new codes

emerged. Table 5.2 reports on the number of times each code was assigned to one

of the questions. A full list of the questions analyzed, their summary and assigned

codes can be found in Appendix A.

As Table 5.2 shows, seven of the 20 questions analyzed were assigned the

1https://opensource.stackexchange.com/

27

https://opensource.stackexchange.com/
https://opensource.stackexchange.com/
https://opensource.stackexchange.com/

Table 5.1: Number of questions per community for each query

Community GPL and LGPL GPL and MPL LGPL and MPL
Stack Overflow 30 4 3
Software Engineering 15 0 4
Open Source 4 0 0

Table 5.2: Codes used to describe real-world cases

Code # Questions Description
Invalid (I) 7 Unrelated to licensing.
License Interaction (LI) 9 Actions possible with more than one license.
Specific Case (SC) 2 Relicensing or dual license.
Technical Detail (TD) 10 Technical aspects of case.

invalid code (I), meaning that the question was not related to licensing issues.

These questions are not considered in any further analysis and can be seen as false

positives due to the fact that our search queries considered any questions containing

two of the three open source licenses in their body.

For each of the analyzed questions assigned a valid code, Table 5.3 shows

the exact codes assigned to the question. From the analysis of the remaining 13

questions, three kinds of contextual situations emerged. I describe each in turn.

Situation #1: Constrained Software Evolution

Many of the cases analyzed involved developers looking for components released

under permissive licenses because they were unable to use open source components

under more restrictive licenses such as GPL and LGPL. The authors had a specific

task they were trying to complete and were looking for existing open source com-

ponents that implemented the required functionality. This theme occurred in eight

cases (Questions 1, 3, 5, 6, 8, 10, 11, and 13).

For example, the author of question #6 was asking for a recommendation of

an asymmetric cryptographic algorithm. The author was willing to implement the

algorithm from scratch or use an existing library that implements the algorithm,

but the library could not be licensed under GPL or LGPL because the project uses

static linking, and the author did not want to have GPL or LGPL apply to their

28

Table 5.3: Codes assigned to each question

Community Code(s)
0 Software Engineering SC, TD
1 Stack Overflow SC
3 Stack Overflow TD
4 Software Engineering TD, LI
5 Stack Overflow TD
6 Stack Overflow TD
7 Stack Overflow LI
8 Stack Overflow TD, LI

10 Stack Overflow TD, LI
11 Software Engineering LI, TD
13 Open Source LI, TD
15 Software Engineering TD, LI
19 Stack Overflow LI, TD

entire project. Similarly, the author of question #5 was trying to improve the way

a legacy application encodes/decodes video, but seemed to be constrained because

the current solution was built around an existing open source library (ffmpeg).

The author recognizes that ffmpeg is a popular solution to the problem at hand,

but is looking for an alternative because a co-worker made him believe that changes

or improvements to the existing code would result in a violation of ffmpeg’s

licensing requirements.

Situation #2: Technical Decisions Impact Future Licensing

Another theme in the analyzed question was that of a developer who is struggling

with licensing issues because of previous technical decisions. Some of these were

due to characteristics of the project itself. This theme occurred in six question

(Questions 3, 5, 11, 13, 15, and 19).

For instance, the author of question #3 is in need of a library for an Android

application, but states that libraries under GPL or LGPL cannot be used. One of the

respondents (OleGG) seems to think that the author holds a misconception about

LGPL and suggests that it is possible to use LGPL components without making the

author’s code open source. Another respondent (bovine) replies and explains that

29

OleGG’s suggestion only applies when there is a ”suitable shared library mecha-

nism”, which is not the case for Android projects by definiton because the resulting

application would be released as a single Dalvik Executable (DEX) file.

In a different question (#11), a developer is facing difficulties while trying to

eliminate dependencies acquired during the development of a prototype. The team

had decided to use a number of open source components and made design deci-

sions based on the existence of these components. Later on, they realized that one

of the components imposed licensing requirements that were incompatible with

their intended use, requiring a significant amount of effort to work around previous

design decisions and eliminate that dependency.

Situation #3: Developers Struggle to Find Appropriate Licenses

In most of the cases analyzed, authors described facing difficulties related to li-

censing while working with existing open source components. In a few cases, in

contrast, authors describe trying to choose a license for their own projects. They

seem aware of the implications of licensing decisions and are trying to better un-

derstand their options. Questions #0 and #4 are examples of this theme. The author

of the first question seems to be aware of the implications of a number of popu-

lar licenses, but is unable to identify which licensing option meets a number of

requirements. Similarly, the author of the second question needs help to confirm

his understanding of how MPL and LGPL relate to the specific details of a project.

The author wants to make sure he chooses a license that effectively imposes certain

restrictions on those making use of his open source component in the future.

5.2 Interviews
To better understand the context in which license incompatibility issues take place

and how developers approach and handle these issues in practice, I conducted semi-

structured interviews with developers in industry. Appendix B contains the script

for these interviews.

To find participants who are more likely to have experienced license incom-

patibility issues in practice, I recruited software developers that have built or are

currently building on open source software in their projects. Six developers vol-

30

Table 5.4: Job title and company size for each participant

P# Job Title Company Size
P1 Software Developer (DevOps) 51 to 200
P2 Senior Software Engineer 501 to 1000
P3 Solutions Architect 51 to 200
P4 Principal Engineer 201 to 500
P5 Principal Engineer 201 to 500
P6 Software Engineer (DevOps) 201 to 500

unteered to participate and were interviewed via a web conferencing system. Ta-

ble 5.4 shows, for each participant, their job title and company’s size. All partici-

pants are male. The interviews were recorded and simultaneously analyzed by an

experienced researcher in the field and the author. We then compared and discussed

our findings to identify themes that might shed light on how developers handle li-

cense incompatibility situations in practice. I describe each one of the themes in

turn.

Theme #1: Developers and software development companies are cautious
of restrictive licenses. Five interviewees mentioned avoiding software compo-

nents under restrictive licenses, such as GPL. They also mentioned that, in such

situations, they tend to consider alternative components available under permissive

licenses.

Two interviewees mentioned situations in which GPL components were rewrit-

ten as the functionality was required, but GPL components could not be used. An

interviewee also mentioned that, in his organization, there can be requests to use

components under the LGPL license; such a request would be made if the compo-

nent could be used in the right technical structure or if the component was the best

in its class.

Theme #2: Developers use the technical architecture of the product to en-
able the use of components under restrictive licenses. Three interviewees talked

about using the architecture of the system to enable the use of components under

restrictive licenses. One of them mentioned a situation in which a GPL licensed

component was used in development, but not in the version of the product shipped

to customers.

31

Similarly, other participants talked about how specific architectural decisions

can enable the use of components under restrictive licenses, e.g., by offering soft-

ware as a service or having the end-user download a specific component.

Theme #3: Developers assume communities use a certain kind of license.
Three interviewees mentioned that they believe certain open source communities

would generally use permissive licenses. One of the interviewees seemed to believe

that JavaScript packages found on npm are usually available under permissive li-

censes. While talking about a Java project on which he had been working, another

participant admitted to making what is a dangerous assumption in his opinion:

namely that components available through Maven are under permissive licenses.

Finally, a third participant, as a member of an open source community, suggested

that most members of that community use a specific license.

Theme #4: License incompatibility situations arise but not frequently. Five

interviewees mentioned remembering a situation in which license incompatibility

was a concern, but such situations do not seem to happen often for these individu-

als. One interviewee mentioned the frequency of about once per year dealing with

a license incompatibility between components.

Theme #5: Developers use specialized tools to detect licenses. Three inter-

viewees mentioned having used specialized tools to identify what licenses are used

by a project and its dependencies and help them detect possible licensing issues.

5.3 Threats to Validity
The extent to which results of the real-world cases describe the frequency of situa-

tions in which license compatibilities arise is unclear for two reasons.

First, the cases I analyzed were obtained from a single source (StackExchange)

and might not be representative of all kinds of licensing incompatibility issues

faced by software developers in practice. I focused on StackExchange instead

of other online communities dedicated to specific licenses because: 1) StackEx-

change communities are widely used by software developers,StackOverflow alone

has more than 14 million questions and is visited by 51,000 developers per month

on average.2 and 2) StackExchange draws a wide variety of developers given its

2https://stackoverflow.com/company

32

https://stackoverflow.com/company
https://stackoverflow.com/company
https://stackoverflow.com/company
https://stackoverflow.com/company

diverse forums.

Second, I obtained the real-world cases using search queries that included the

names of the three licenses used in the survey. I made this decision because the

purpose of this analysis is to better understand the context in which licensing is-

sues first identified in the survey happen. Just as the results of the survey are not

necessarily representative of all kinds of licensing issues developers struggle with,

the contextual situations identified in the real-world cases I analyzed cannot be

generalized to all other licenses. A better understanding of the types of existing

open source licenses and of their different characteristics would help us understand

to what extent the contextual situations I identified can be generalized.

The interviews with software developers also may not represent all themes that

arise in license incompatibility scenarios. The population of developers was com-

prised of developers motivated to discuss issues involving open source licenses.

They came from organizations that had between 51 and 1000 employees. Licensing

incompatibility issues might be more or less frequent in organizations of different

sizes and the themes that emerged could be different given a different population.

5.4 Summary of Results
The analysis of real-world cases suggests that the contextual situations in which

license incompatibility takes place involve a mix of technical details and license

interactions. In many of these cases, technical decisions had an impact on future

licensing issues, while in other cases licensing issues imposed constraints on soft-

ware evolution. In a few of the cases developers were struggling to understand

what licensing approach to use in order to impose the restrictions they intended for

their own open source projects.

The developers I interviewed are cautious of restrictive licenses, such as GPL

and LGPL. They use specialized tools to detect the licenses being used in their

projects and possible licensing issues. When faced with a situation in which a

component that suits their needs is under a restrictive license, developers tend to

rely on open source communities to find alternative components that can be used.

They sometimes leverage the product’s technical architecture to enable the use of

components under restrictive licenses and might rewrite the required functionality

33

if necessary.

34

Chapter 6

Conclusion and Future Work

Open source software is not a self-contained world with a specific set of develop-

ers involved and a small set of open source licenses with well-defined interactions.

Many closed-source, commercially-oriented software projects rely on open source

software. Many open source licenses exist with different ramifications depend-

ing on how the software with different licenses interact (i.e., via dynamic linking,

copying of source code, etc.). Many software developers work on a variety of open

source projects with different licenses and move back and forth between open and

closed source software projects.

The results of our survey indicate that many of the 375 respondents to our sur-

vey, who were largely software developers, have a good grasp of at least three open

source licenses (MPL, GPL, LGPL) when only one of those licenses is being used.

When a combination of open source licenses is being used, developers struggle

to ask the right questions for the situation, such as whether to focus on technical

details of the situation or generic issues of how two licenses interact (i.e., is one

license more permissive than another). Overall, our survey indicates that the devel-

opers who responded lack the knowledge and understanding to tease apart license

interactions across multiple situations.

The analysis of real-world cases and the interviews with experienced software

developers in industry shed light on the context in which license incompatibility

issues take place in practice.

We found that although some developers make use of specialized tools to iden-

35

tify licenses being used in a project and potential problems arising from the in-

teraction of those licenses, others rely on licensing guidelines provided by their

organization to decide if a component under a license can be used.

Across the cases we analyzed and interviews we conducted, there is a clear ten-

dency towards avoiding restrictive licenses in favour of more permissive licenses.

This tendency can be seen in many real-world cases in which developers ask for

help to find a component under a permissive license and that satisfies their needs

as well as from the experiences of the developers I interviewed and the guidelines

adopted at their organizations.

In situations where a specific component seems to fit the developers’ needs but

is incompatible with their project’s licensing guidelines, the software developers

interviewed and the cases analyzed suggest at least three approaches to resolve this

issue.

The first approach is to find an alternative component available under a per-
missive license. The increasing number of open source components available to

developers allows them to look for alternative components released under a license

compatible with their projects. In this case, developers rely on the open source

community and seemed fairly confident that many of the components available

through existing package management tools, such as npm and Maven, are under

permissive licenses.

The second approach is to rewrite a component from scratch. Depending

on the effort necessary to implement the required functionality, developers may

prefer to rewrite the component themselves and avoid any risks involved in using

components under restrictive licenses.

The third approach is to restructure the system code to enable the use of a
component. In some cases, developers can enable the use of certain components

or work around them by restructuring the way that component is being used in

their project. This was observed in multiple interviews and the examples given in-

volved changes to the packaging and distribution of the software (e.g., by adopting

a software as a service (SaaS) distribution model) and changes to the architecture

of the product (e.g., removing a component from a software product and allowing

the end-user to download such component).

To improve the support for developers in dealing with license incompatibili-

36

ties, enhanced tool support is needed. This enhanced support can build on existing

efforts of researchers. For example, Germán and Hassan [7] provide a model for

identifying possible mismatches when different open source licenses interact, but

this model is not able to recognize code structures that cause these mismatches.

Vendome’s research goes further, suggesting a need for tools that are able to find

incompatibilities, explain why there is an incompatibility, and recommend a way

to fix incompatibilities, possibly through a license change or through code restruc-

turing [18]. The comments we analyzed from participants completing our survey

and the analysis of the context in which license incompatibility happens suggest

that such a recommendation engine may need to be more extensive and robust than

suggested by Vendome. Our results indicate a need for tools capable of analyzing

the structure of the code and the technical details of the project while taking into

account the exact requirements imposed by the licenses involved in that project.

Such tools should be able to suggest ways to restructure the code and/or change

the open source code to enable the use of a component without causing license in-

compatibilities. This type of recommender may require a means of formally mod-

elling licenses, the effects of a license in terms of how it is used in code, and the

variability allowed by the license in terms of code interactions. This formal model

would then need to be potentially integrated with code refactoring tools, to per-

haps automatically search for refactorings that would allow a license compatibility

check to pass. Models, such as that introduced by Alspaugh and colleagues [3],

may provide a starting point for building such tools.

37

Bibliography

[1] On the continuing decline of the gpl. http://blogs.the451group.com/
opensource/2011/12/15/on-the-continuing-decline-of-the-gpl/, 2011. →
pages 5

[2] D. A. Almeida, G. C. Murphy, G. Wilson, and M. Hoye. Do software
developers understand open source licenses? In Proceedings of the 25th
International Conference on Program Comprehension, ICPC ’17, pages
1–11. IEEE Press, 2017. → pages v

[3] T. A. Alspaugh, W. Scacchi, and H. U. Asuncion. Software licenses in
context: The challenge of heterogeneously-licensed systems. Journal of the
Association for Information Systems, 11(11):730, 2010. → pages 6, 37

[4] S. Clarke. Measuring API usability. Dr. Dobb’s Journal, Special
Windows/NET Supplement, 2004. → pages 1

[5] J. Corbin and A. Strauss. Grounded theory research: Procedures, canons and
evaluation criteria. Qualitative Sociology, 13:3–21, 1990. → pages 12

[6] M. Di Penta, D. M. German, Y.-G. Guéhéneuc, and G. Antoniol. An
exploratory study of the evolution of software licensing. In Proceedings of
the 32Nd ACM/IEEE International Conference on Software Engineering -
Volume 1, ICSE ’10, pages 145–154. ACM, 2010. → pages 5

[7] D. M. German and A. E. Hassan. License integration patterns: Addressing
license mismatches in component-based development. In Proceedings of the
31st International Conference on Software Engineering, ICSE ’09, pages
188–198. IEEE Computer Society, 2009. → pages 6, 37

[8] D. M. German, M. Di Penta, and J. Davies. Understanding and auditing the
licensing of open source software distributions. In Proceedings of the 2010
IEEE 18th International Conference on Program Comprehension, ICPC ’10,
pages 84–93. IEEE Computer Society, 2010. → pages 2

38

http://blogs.the451group.com/opensource/2011/12/15/on-the-continuing-decline-of-the-gpl/
http://blogs.the451group.com/opensource/2011/12/15/on-the-continuing-decline-of-the-gpl/

[9] D. M. German, Y. Manabe, and K. Inoue. A sentence-matching method for
automatic license identification of source code files. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering,
ASE ’10, pages 437–446. ACM, 2010. → pages 6

[10] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra. Finding software
license violations through binary code clone detection. In Proceedings of the
8th Working Conference on Mining Software Repositories, MSR ’11, pages
63–72. ACM, 2011. → pages 2

[11] G. Hofmann, D. Riehle, C. Kolassa, and W. Mauerer. A dual model of open
source license growth. In IFIP International Conference on Open Source
Systems, pages 245–256. Springer, 2013. → pages 5

[12] M. P. Robillard and R. Deline. A field study of api learning obstacles.
Empirical Software Engineering, 16(6):703–732, Dec. 2011. → pages 1

[13] M. B. Rosson and J. M. Carroll. The reuse of uses in smalltalk
programming. ACM Trans. Comput.-Hum. Interact., 3(3):219–253, Sept.
1996. → pages 1

[14] R. Sen, C. Subramaniam, and M. Nelson. Determinants of the choice of
open source software license. J. Manage. Inf. Syst., 25(3):207–240, Dec.
2008. → pages 5

[15] Sonatype. 2015 state of the software supply chain report: Hidden speed
bumps on the road to ”continuous”, 2015. → pages 1

[16] K. J. Stewart, A. P. Ammeter, and L. M. Maruping. Impacts of license
choice and organizational sponsorship on user interest and development
activity in open source software projects. Info. Sys. Research, 17(2):
126–144, June 2006. → pages 5

[17] C. Vendome. A large scale study of license usage on github. In Proceedings
of the 37th International Conference on Software Engineering - Volume 2,
ICSE ’15, pages 772–774. IEEE Press, 2015. → pages 1

[18] C. Vendome and D. Poshyvanyk. Assisting developers with license
compliance. In Proceedings of the 38th International Conference on
Software Engineering Companion, ICSE ’16, pages 811–814. ACM, 2016.
→ pages 37

39

[19] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. German, and
D. Poshyvanyk. License usage and changes: A large-scale study of java
projects on github. In Proceedings of the 2015 IEEE 23rd International
Conference on Program Comprehension, ICPC ’15, pages 218–228. IEEE
Press, 2015. → pages 6

[20] C. Vendome, M. Linares-Vasquez, G. Bavota, M. Di Penta, D. M. German,
and D. Poshyvanyk. When and why developers adopt and change software
licenses. In Proceedings of the 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), ICSME ’15, pages 31–40.
IEEE Computer Society, 2015. → pages 2, 6, 7, 23

[21] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. German, and
D. Poshyvanyk. Machine learning-based detection of open source license
exceptions. In Proceedings of the 39th International Conference on Software
Engineering, ICSE ’17, pages 118–129. IEEE Press, 2017. → pages 6

40

Appendix A

StackExchange Cases

Question #0: Help me choose an Open-Source license

Link: https://softwareengineering.stackexchange.com/questions/50764/

help-me-choose-an-open-source-license

Codes: Specific Case, Technical Details

Summary: Question asks for help to select a license that fulfills a number

of requirements. The author is implementing a library and wants to allow its

use in other open source projects regardless of their licenses, but not in closed-

source/commercial projects unless s/he grants written authorization. The proposed

solution is dual licensing and answers suggest it isn’t possible to fulfill all of the

requirements.

Question #1: digital signature with specific itext version 4.2.0

Link: https://stackoverflow.com/questions/25879897/

digital-signature-with-specific-itext-version-4-2-0

Codes: Specific Case

Summary: The author wants to know if the iText library offers a certain feature

in version 4.2 (instead of 5.0) because the latest version has been released under

AGPL (according to its GitHub repository, they ”moved to the AGPL to improve

their ability to sell commercial licenses”). Version 4.2 was released under dual

licensing (MPL/LGPL).

Question #2: Use default authentication and separate cloaking/impersonation in

41

https://softwareengineering.stackexchange.com/questions/50764/help-me-choose-an-open-source-license
https://softwareengineering.stackexchange.com/questions/50764/help-me-choose-an-open-source-license
https://stackoverflow.com/questions/25879897/digital-signature-with-specific-itext-version-4-2-0
https://stackoverflow.com/questions/25879897/digital-signature-with-specific-itext-version-4-2-0

DCOM call

Link: https://stackoverflow.com/questions/1993651/

use-default-authentication-and-separate-cloaking-impersonation-in-dcom-call

Codes: Invalid

Summary: Author has a programming question and mentions that his project will

be released under GPL/MPL as an incentive (”So your help will go GPL/MPL.”).

Question #3: Use default authentication and separate cloaking/impersonation in

DCOM call

Link: https://stackoverflow.com/questions/9213152/

override-mapview-tile-source

Codes: Technical Details

Summary: Author is looking for an Android component/library that overrides the

MapView behaviour. The component cannot be based on GPL/LGPL. One of the

answers suggests a couple of libraries that are under LGPL, but the author reiterates

that he was trying to avoid anything under LGPL. The respondent clarifies to the

author that it’s possible to use LGPL libraries without making his code available.

A second respondent goes further and explains that it’s possible to use LGPL if

there’s a ”suitable shared library mechanism”, which is not the case for Android

because the resulting application will be a single DEX (Dalvik Executable format)

file.

Question #4: Mozilla Public License (MPL 2.0) vs Lesser GNU General Public

License (LGPL 3.0)

Link: https://softwareengineering.stackexchange.com/questions/221365/

mozilla-public-license-mpl-2-0-vs-lesser-gnu-general-public-license-lgpl-3-0

Codes: Technical Details, License Interaction

Summary: The author wants to release a library as open source while making it

possible for others to use it in proprietary/closed projects. He is considering either

LGPL or MPL and identifies the type of linking as the main difference (static for

MPL and dynamic for LGPL). He believes that LGPL imposes extra obstacles for

packaging and that neither of them (LGPL or MPL) requires extensions of the

software library to be released as open-source. His solution is: ”With the help of

42

https://stackoverflow.com/questions/1993651/use-default-authentication-and-separate-cloaking-impersonation-in-dcom-call
https://stackoverflow.com/questions/1993651/use-default-authentication-and-separate-cloaking-impersonation-in-dcom-call
https://stackoverflow.com/questions/9213152/override-mapview-tile-source
https://stackoverflow.com/questions/9213152/override-mapview-tile-source
https://softwareengineering.stackexchange.com/questions/221365/mozilla-public-license-mpl-2-0-vs-lesser-gnu-general-public-license-lgpl-3-0
https://softwareengineering.stackexchange.com/questions/221365/mozilla-public-license-mpl-2-0-vs-lesser-gnu-general-public-license-lgpl-3-0

the discussion in the accepted answer, I choose to stick to the MPL because of the

popularity, freedom in linking and because it is an official, unmodified license.”

Question #5: How to encode/decode video using C#?

Link: https://stackoverflow.com/questions/1834667/

how-to-encode-decode-video-using-c

Codes: Technical Details

Summary: Author is trying to find a better way of encoding/decoding video to

improve a legacy application built around ffmpeg, an open-source library released

under GPL or LGPL. The author seems to be confused about what he can or cannot

do with the current code (co-workers made him believe that improvements/changes

to the current code might result in violations of ffmpeg’s license and possibly its

dependencies’ licenses as well.

Question #6: Fast asymmetric cypher for C++ application

Link: https://stackoverflow.com/questions/2247697/

fast-asymmetric-cypher-for-c-application

Codes: Technical Details

Summary: Author is looking for an algorithm for asymmetric cryptography so

that he can implement it himself OR a library that implements the algorithm. He

needs to use static linking in his proprietary application, which means that the

library cannot be under GPL or LGPL. He says that MIT/BSD or public domain

code would be fine.

Question #7: GPL, LGPL licensed product in a comercial software [closed]

Link: https://stackoverflow.com/questions/12030426/

gpl-lgpl-licensed-product-in-a-comercial-software

Codes: License Interaction

Summary: Author is confused about what GPL, LGPL allows him to do. He

wants to use a piece of software’s documentation in his commercial product. It

turns out that the product (processing.org) is released under GPL or LGPL, but its

documentation is under Creative Commons.

Question #8: How to handle DWG files in C++

43

https://stackoverflow.com/questions/1834667/how-to-encode-decode-video-using-c
https://stackoverflow.com/questions/1834667/how-to-encode-decode-video-using-c
https://stackoverflow.com/questions/2247697/fast-asymmetric-cypher-for-c-application
https://stackoverflow.com/questions/2247697/fast-asymmetric-cypher-for-c-application
https://stackoverflow.com/questions/12030426/gpl-lgpl-licensed-product-in-a-comercial-software
https://stackoverflow.com/questions/12030426/gpl-lgpl-licensed-product-in-a-comercial-software

Link: https://stackoverflow.com/questions/22597111/

how-to-handle-dwg-files-in-c

Codes: Technical Details, License Interaction

Summary: Author asks for a library to handle a certain file type but specifies that

it has to be under a permissive license (e.g, MIT or BSD) or a weak copyleft license

that allows him to statically link (he mentions LGPL but isn’t sure if it allows static

linking).

Question #9: Restful Webservice Java, server side

Link: https://stackoverflow.com/questions/14971059/

restful-webservice-java-server-side

Codes: Invalid

Summary: Author is looking for a simple embedded servlet container and says it

cannot be under GPL/LGPL.

Question #10: iText 2.1.7 in commercial Project

Link: https://stackoverflow.com/questions/8705697/

itext-2-1-7-in-commercial-project

Codes: Technical Details, License Interaction

Summary: Author wants to use a library (iText, a Java PDF library) in his com-

mercial project but isn’t sure about how to proceed and what is allowed. The library

used to be under MPL/LGPL until version Version 2.1.7, but is now under AGPL.

He has questions regarding a number of different aspects, such as: a) if the lib can

be used in a commercial project;

b) if he can choose which license to use (MPL or LGPL);

c) if he has to ship only the license text or the library source code as well;

d) if he can put everything in an executable or if the iText should be in a separate

jar file.

Question #11: Legal problem on lifting from open source libraries

Link: https://softwareengineering.stackexchange.com/questions/321722/

legal-problem-on-lifting-from-open-source-libraries

Codes: License Interaction, Technical Details

44

https://stackoverflow.com/questions/22597111/how-to-handle-dwg-files-in-c
https://stackoverflow.com/questions/22597111/how-to-handle-dwg-files-in-c
https://stackoverflow.com/questions/14971059/restful-webservice-java-server-side
https://stackoverflow.com/questions/14971059/restful-webservice-java-server-side
https://stackoverflow.com/questions/8705697/itext-2-1-7-in-commercial-project
https://stackoverflow.com/questions/8705697/itext-2-1-7-in-commercial-project
https://softwareengineering.stackexchange.com/questions/321722/legal-problem-on-lifting-from-open-source-libraries
https://softwareengineering.stackexchange.com/questions/321722/legal-problem-on-lifting-from-open-source-libraries

Summary: Author used a number of libraries during prototyping development and

now wants to reduce external dependencies. It turns out that he is heavily using a

class (LazyInitializer) from the apache common-lang3 library (under Apache 2.0)

to implement the Singleton Pattern and isn’t sure about the licensing implications.

He says that removing that dependency would implicate in the creation of more

than 40 static inner private classes to implement the Singleton Pattern. Finally, he

simply asks what are the implications of other major open source licenses (men-

tions MIT, GPL, LGPL, and BSD).

Question #12: Is there any free opensource (GNU GPL, LGPL etc) Comet Video

Chat? (PHP)

Link: https://stackoverflow.com/questions/2766018/

is-there-any-free-opensource-gnu-gpl-lgpl-etc-comet-video-chat-php

Codes: Invalid

Summary: Author is looking for an open-source/free Comet Video Chat imple-

mentation to use in his own CMS (Content Management System).

Question #13: Which licenses can I use?

Link: https://opensource.stackexchange.com/questions/4484/

which-licenses-can-i-use

Codes: License Interaction, Technical Details

Summary: Author understands that some licenses are not compatible with each

other and is concerned with compatibility issues between GPL or LGPL and a

license already in use in his project (MongoDB driver in Java released under AGPL

3). He wants to know which licenses are compatible if the project or libs in the

project are under GPL, LGPL, and AGPL. Respondent explains AGPL license and

possible license combinations. Another respondent suggests that LGPL and AGPL

code are compatible provided that they’re linked (doesn’t specify if dynamic or

static linking though).

Question #14: Qt License now after Digia bought it

Link: https://stackoverflow.com/questions/11893121/

qt-license-now-after-digia-bought-it

Codes: Invalid

45

https://stackoverflow.com/questions/2766018/is-there-any-free-opensource-gnu-gpl-lgpl-etc-comet-video-chat-php
https://stackoverflow.com/questions/2766018/is-there-any-free-opensource-gnu-gpl-lgpl-etc-comet-video-chat-php
https://opensource.stackexchange.com/questions/4484/which-licenses-can-i-use
https://opensource.stackexchange.com/questions/4484/which-licenses-can-i-use
https://stackoverflow.com/questions/11893121/qt-license-now-after-digia-bought-it
https://stackoverflow.com/questions/11893121/qt-license-now-after-digia-bought-it

Summary: Author doesn’t know if a set of libraries (Qt platform) is still under

the same license (LGPL) and is afraid of any changes that might prevent its use

in commercial projects. Respondent quotes the company’s website suggesting that

both versions (one under LGPL and the other under a commercial license) will

continue to be maintained.

Question #15: Can I use GPL, LGPL, MPL licensed packages with my application

and make it closed source?

Link: https://softwareengineering.stackexchange.com/questions/125606/

can-i-use-gpl-lgpl-mpl-licensed-packages-with-my-application-and-make-it-close

Codes: Technical Details, License Interaction

Summary: The author is not sure about the extent to which a program released

under GPL affects the licensing of other software in the same ”aggregate” [2] (a

bundle of individual programs under different licenses). In this case, he mentions

a company building closed-source applications mixed with/using BusyBox [1], an

application released under GPL.

The most accepted answer suggests that GPL allows the use of open and

closed-source software in an aggregate as long as the GPL license is respected,

i.e., the source code of the software under GPL is released. According to the re-

spondent, GPL doesn’t extend to other programs running on the same computer.

It’s possible to have closed-source software interacting/communicating with open-

source code under GPL. ”As a rule of thumb, the GPL reaches as far as the address

space of the licensed code.”

Question #16: Efficient Multiply/Divide of two 128-bit Integers on x86 (no 64-bit)

Link: https://stackoverflow.com/questions/8776073/

efficient-multiply-divide-of-two-128-bit-integers-on-x86-no-64-bit

Codes: Invalid

Summary: Author wants to know how to efficiently do something and cannot use

GPL/LGPL code.

Question #17: How to read utf-16 file into utf-8 std::string line by line

Link: https://stackoverflow.com/questions/29012472/

how-to-read-utf-16-file-into-utf-8-stdstring-line-by-line

46

https://softwareengineering.stackexchange.com/questions/125606/can-i-use-gpl-lgpl-mpl-licensed-packages-with-my-application-and-make-it-close
https://softwareengineering.stackexchange.com/questions/125606/can-i-use-gpl-lgpl-mpl-licensed-packages-with-my-application-and-make-it-close
https://stackoverflow.com/questions/8776073/efficient-multiply-divide-of-two-128-bit-integers-on-x86-no-64-bit
https://stackoverflow.com/questions/8776073/efficient-multiply-divide-of-two-128-bit-integers-on-x86-no-64-bit
https://stackoverflow.com/questions/29012472/how-to-read-utf-16-file-into-utf-8-stdstring-line-by-line
https://stackoverflow.com/questions/29012472/how-to-read-utf-16-file-into-utf-8-stdstring-line-by-line

Codes: Invalid

Summary: Author wants to know how to do something and cannot use GPL/LGPL

code.

Question #18: Which Licenses to ship within an NW.js - application?

Link: https://stackoverflow.com/questions/29234304/

which-licenses-to-ship-within-an-nw-js-application

Codes: Invalid

Summary: Author is using a library built on top of Chromium, which has a num-

ber of dependencies under different licenses. The author doesn’t know what licens-

ing information he has to provide to respect those dependencies’ licenses.

Question #19: Requirements for using ffmpeg to create mpeg4 files in SaaS solu-

tion

Link: https://stackoverflow.com/questions/39082573/

requirements-for-using-ffmpeg-to-create-mpeg4-files-in-saas-solution

Codes: License Interaction, Technical Details

Summary: Author is building a SaaS solution and is trying to avoid a commonly

used library (ffmpeg) because it introduces ”licensing hell” not only with GPL/L-

GPL, but because it is not available under a commercial license. He doesn’t not

how licensing applies to SaaS solutions since the code will not be distributed.

A respondent clarifies that a few of the license’s requirements don’t seem to

apply to his case (SaaS solution) based on his own interaction with the company

that owns the library’s rights.

47

https://stackoverflow.com/questions/29234304/which-licenses-to-ship-within-an-nw-js-application
https://stackoverflow.com/questions/29234304/which-licenses-to-ship-within-an-nw-js-application
https://stackoverflow.com/questions/39082573/requirements-for-using-ffmpeg-to-create-mpeg4-files-in-saas-solution
https://stackoverflow.com/questions/39082573/requirements-for-using-ffmpeg-to-create-mpeg4-files-in-saas-solution

Appendix B

Interview Script

1. What is your current role in your organization?

2. What are your main responsibilities?

3. How are you involved with the software products produced at your organi-

zation?

(a) Do you write code? Select open source components? Test?

4. How are licensing decisions made at your organization?

(a) How are developers involved? Could you give a few examples of deci-

sions you have been involved in?

5. Have you ever encountered license incompatibility issues?

6. Could you describe a particular scenario in which license incompatibilities

occurred?

(a) What were the licenses? What was the structure of the code carrying

the licenses?

(b) How did the code with different licenses interact?

(c) What was your role in identifying or resolving the challenge?

7. How often has a situation like this occurred?

48

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	Acknowledgments
	Dedication
	1 Introduction
	2 Related Work
	3 Overview of Licenses
	4 Survey
	4.1 Method
	4.1.1 Participant Recruitment
	4.1.2 Analysis

	4.2 Survey Results
	4.2.1 Participants
	4.2.2 Quantitative Results
	4.2.3 Qualitative Analysis
	4.2.4 Detailed Examples

	4.3 Threats to Validity
	4.4 Summary of Results

	5 The Context of License Incompatibilities
	5.1 Mining Real-World Cases
	5.2 Interviews
	5.3 Threats to Validity
	5.4 Summary of Results

	6 Conclusion and Future Work
	Bibliography
	A StackExchange Cases
	B Interview Script

