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Abstract

Douglas-Rachford algorithm is important due to its applications on the Heron
problem and on the image denoising. Mathematically, it can be considered as
finding a point such that the point belongs to a zero set of the sum of two maximally
monotone operators.
In this thesis, previous work on Douglas-Rachford algorithm is presented and the
Douglas-Rachford algorithm with a changed parameter is considered. I give it the
name "α-Douglas-Rachford algorithm". The new algorithm which has the changed
parameter is shown to have a convergent result and other conclusions similar to
those of the classic Douglas-Rachford algorithm. At the same time, it has been
shown that the application of the α-Douglas-Rachford algorithm is wider than the
application of the classic one.
Later on, the α-Douglas-Rachford algorithm is proved to converge to the solution
of the composited monotone inclusion problems, and in a special-limit case, it has
some other properties. The numerical experiments confirm that the α-Douglas-
Rachford algorithm does have the properties that I proved theoretically.
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Chapter 1

Introduction

In this chapter, we will introduce some background materials on inner product
spaces and some necessary convex analysis used later in the thesis.

1.1 Inner product space

Definition 1.1.1. A vector space consists of a set V with elements called vectors,
along with two operations such that the following properties hold:

1 Vector addition: Let u, v ∈ V , then there is a vector u + v ∈ V and the
following are satisfied.

i Commutativity: u+ v = v + u, ∀u, v, w ∈ V.
ii Associativity: u+ (v + w) = (u+ v) + w,∀u, v, w ∈ V.

iii Zero: there is a vector 0 ∈ V such that 0 + u = u = u+ 0,∀u ∈ V.
iv Inverses, for each u ∈ V , there is a vector−u such that u+ (−u) = 0.

2 Scalar multiplication: Let u, v ∈ V and r, s ∈ R, then the following are
satisfied.

i Left distributivity: (r + s)v = rv + sv.

ii Associativity: r(sv) = (rs)v.

iii Right distributivity: r(u+ v) = ru+ rv.

iv Neutral element: 1v = v.

v Absorbing element: 0v = 0.

vi Inverse neutral element:(−1)v = −v.

Example 1.1.2. The space Rn consists of vectors v = (v1, . . . , vn) with vi ∈ R
for 1 ≤ i ≤ n and operations defined by

(u1, . . . , un) + (v1, . . . , vn) := (u1 + v1, . . . , un + vn);

r(v1, . . . , vn) := (rv1, . . . , rvn).

where r ∈ R.
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1.1. Inner product space

Definition 1.1.3. Let V be a vector space over R, and letW be a subset of V . Then
W is a subspace if:

(1) The zero vector, 0, is in W .

(2) If u and v are elements of W , then u + v is an element of W .

(3) If u is an element of W and c is a scalar from R, then the scalar multiple cu
is an element of W .

Definition 1.1.4. A norm ‖ · ‖ on a vector space V over the field R is a function
V → R with the following properties:

(1) Positive definite: ‖x‖ ≥ 0 for all x ∈ V and ‖x‖ = 0 if and only if x = 0.

(2) Homogeneous: ‖αx‖ = |α|‖x‖ for all α ∈ R and x ∈ V.

(3) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V.

Here, (V, ‖ · ‖) is called a normed space.
Definition 1.1.5. An inner product on a vector space V is a function 〈·, ·〉 : V ×
V → R with the following properties.

(1) Positive definite: 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0.

(2) Symmetry: 〈x, y〉 = 〈y, x〉.

(3) Bilinearity: 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉 for α, β ∈ R, x, y, z ∈ V.

We call a vector space paired with an inner product and norm induced by
‖x‖ :=

√
〈x, x〉 an inner product space.

Example 1.1.6. In Rn, define

(∀x ∈ Rn)(∀y ∈ Rn), 〈x, y〉 :=
n∑
i=1

xiyi.

Then Rn is an inner product space.
Fact 1.1.7. Let x, y ∈ Rn, and 〈x, z〉 = 〈y, z〉 for all z ∈ Rn. Then x = y.

Proof. For all z ∈ Rn, 〈x, z〉 = 〈y, z〉 implies that 〈x, x − y〉 = 〈y, x − y〉 (by
setting z = x− y). Moreover,

0 = 〈x, x− y〉 − 〈y, x− y〉
⇒ 0 = 〈x− y, x− y〉
⇒ 0 = ‖x− y‖2.

Thus, x = y.
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1.1. Inner product space

In this thesis, we use the Euclidean norm, which is given by

‖x‖ =
√
xᵀx =

√√√√ n∑
i=1

x2
i .

In the following thesis, ‖x‖ refers to the Euclidean norm of x.

Fact 1.1.8. (Cauchy Schwarz Inequality) Let x and y be in Rn. Then

|〈x, y〉| ≤ ‖x‖ · ‖y‖, i.e.

∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ≤
√√√√ n∑

i=1

x2
i

√√√√ n∑
i=1

y2
i .

Moreover, 〈x, y〉 = ‖x‖ · ‖y‖ ⇔ ∃α ∈ [0,+∞) such that x = αy or y = αx.

Definition 1.1.9. In a normed vector space (V, ‖ · ‖), a sequence (vn)+∞
n=1 is said

to converge (or strongly converge) to a point v ∈ V if ∀ε > 0, ∃N > 0 such that
‖vn − v‖ < ε for all n ≥ N.

In the following thesis, (xn)+∞
n=1 → x denotes the sequence (xn)+∞

n=1 converges
(or strongly converges) to x. We also write it as xn → x.

Definition 1.1.10. Let (xn)+∞
n=1 be a sequence in a vector space (V, ‖ · ‖), let

(nk)
+∞
k=1 be a strictly increasing sequence in N. Then the sequence (xnk)+∞

k=1 is
called a subsequence of (xn)+∞

n=1.

Definition 1.1.11. A sequence (xn)+∞
n=1 is bounded if ∃M > 0 such that ‖xn‖ ≤

M,∀n ≥ 1.

Fact 1.1.12. (Bolzano-Weierstrass Theorem) Every bounded sequence (xn)+∞
n=1 in

Rm has a convergent subsequence, i.e., there exists a subsequence (xnk)+∞
k=1 of

(xn)+∞
n=1 such that xnk → x, for some x ∈ Rm.

Definition 1.1.13. A sequence (xn)+∞
n=1 is called a Cauchy sequence if for every

ε > 0, there exists an integer N > 0 such that ‖xn − xk‖ < ε for all n, k > N.

Fact 1.1.14. Let (xn)+∞
n=1 be a Cauchy sequence in a normed vector space (V, ‖·‖).

Let x ∈ V . Then (xn)+∞
n=1 converges to x if and only if it has a subsequence that

converges to x.

Proof. We separate this proof into two parts:

(1) “ ⇒ ” If the Cauchy sequence (xn)+∞
n=1 → x, it follows that (xn)+∞

n=1 is a
subsequence of itself which converges to x.

3



1.1. Inner product space

(2) “ ⇐ ” Suppose (xnk)+∞
k=1 is a subsequence of (xn)+∞

n=1 and converges to x.
Then for all ε > 0,∃N1 > 0(N1 ∈ N) such that ‖xnk − x‖ < ε

2 ,∀k > N1.

Since (xn)+∞
n=1 is a Cauchy sequence, ∀ε > 0,∃N2 > 0(N2 ∈ N) such that

‖xm − xnk‖ < ε
2 ,∀m, k > N2.

Let M = max(N1, N2), we have nM > M. Then ∀ε > 0,m > M :

‖xm − x‖ ≤ ‖xm − xnM ‖+ ‖xnM − x‖

<
ε

2
+
ε

2
= ε.

That is, (xn)+∞
n=1 converges to x.

Definition 1.1.15. An inner product spaceH is called complete, or a Hilbert Space,
if each Cauchy sequence inH converges to a point inH.

In the following thesis,H denotes a Hilbert space.

Example 1.1.16. Rm is complete. Thus, Rm is a Hilbert space.

Proof. Suppose (xn)+∞
n=1 is a Cauchy sequence in Rm, we want to prove its con-

vergence. According to Fact 1.1.14, we only need to prove it has a subsequence
which is convergent.
Since (xn)+∞

n=1 is a Cauchy sequence, let ε = 1. Then, there existsN ∈ N such that
for all m, k > N, ‖xm − xk‖ < 1. Thus, for all k > N ,

‖xk‖ = ‖xk − xN+1 + xN+1‖
≤ ‖xk − xN+1‖+ ‖xN+1‖
< 1 + ‖xN+1‖.

Let M = max(‖x1‖, ‖x2‖, . . . , ‖xN‖, ‖xN+1‖, 1 + ‖xN+1‖), then for all k ≥ 1,
‖xk‖ ≤M. According to the definition of the bounded sequence, we find (xn)+∞

n=1

is bounded. By using Bolzano-Weierstrass theorem, (xn)+∞
n=1 has a convergent

subsequence, which completes the proof.

Definition 1.1.17. A sequence (xn)+∞
n=1 in a Hilbert space H is said to converge

weakly to a point v ∈ H if for all y ∈ H, 〈vn, y〉 → 〈v, y〉.
Fact 1.1.18. [4, Lemma 2.51] Let (xn)+∞

n=1 and (un)+∞
n=1 be sequences in H, and

let x and u be points inH. Then the following hold:

(1) Suppose thatH is finite-dimensional. Then xn ⇀ x⇔ xn → x.

4



1.1. Inner product space

(2) Suppose that xn ⇀ x and un → u. Then 〈xn, un〉 → 〈x, u〉.

Fact 1.1.19. [4, Lemma 2.46] Let (xn)+∞
n=1 be a sequence in Rm. Then (xn)+∞

n=1

converges if and only if it is bounded and possesses at most one sequential cluster
point.

Definition 1.1.20. Let l2 be a space such that each element in it is a sequence
x = (ζj)

+∞
j=1 = (ζ1, ζ2, . . .) of numbers such that

+∞∑
j=1

|ζj |2 < +∞,

and its distance function is defined by

d(x, y) =

√√√√+∞∑
j=1

|ζj − µj |2,

where y = (µj)
+∞
j=1 and

+∞∑
j=1

|µj |2 < +∞.

Remark 1.1. Let (xn)+∞
n=1 and (un)+∞

n=1 be weakly convergent sequences in l2,
xn ⇀ x and un ⇀ u do not imply 〈xn, un〉 → 〈x, u〉. A counter example is:
let (xn)+∞

n=1 = (en)+∞
n=1 and (un)+∞

n=1 = (en)+∞
n=1, where (en)+∞

n=1 is an orthonormal
sequence in l2. We have

〈xn, un〉 = 〈en, en〉 = 1;

while
xn ⇀ 0, un ⇀ 0 and 〈0, 0〉 = 0.

Remark 1.2. We show en ⇀ 0. We need 〈en, x〉 → 〈0, x〉 ∀x ∈ l2 as n → +∞.
Because x ∈ l2, let x = (ζn)+∞

n=1, we have

+∞∑
n=1

|ζn|2 < +∞⇒ ζ2
n → 0⇒ ζn → 0 as n→ +∞.

Therefore, lim
n→+∞

ζn = 0. So

lim
n→+∞

〈en, x〉 = ζn = 0 = 〈0, x〉

for all x ∈ l2. Hence en ⇀ 0.

5



1.1. Inner product space

1.1.1 Sets in vector spaces

Definition 1.1.21. A set C ⊆ Rm is closed if it contains all limit points, i.e.,
whenever there exists a sequence (xk)

∞
k=1 in C and xk → x, then x ∈ C.

Fact 1.1.22. For a Hilbert space H, let S be a subspace of H. Then S is closed if
and only if S is complete.

Proof. (1) ⇒ Let (xn)+∞
n=1 be a Cauchy sequence in S. Because the Hilbert

space H is complete, (xn)+∞
n=1 must converge to some x ∈ H. However, as

S is closed, x ∈ S. Thus, S is complete.

(2) ⇐ Let x ∈ S̄. Then there exists a sequence (xn)+∞
n=1 ∈ S that converges

to x. Since a convergent sequence must be a Cauchy sequence, moreover,
since S is complete, (xn)+∞

n=1 ∈ S must converge to a point included in S.
Because a convergent sequence cannot converge to more than one point, we
have x ∈ S. Thus, S is closed.

Definition 1.1.23. A set O ⊆ Rm is open if ∀x ∈ O,∃r > 0 such that the open
ball B(x; r) ⊆ O, where

B(x; r) = {y ∈ Rm : ‖y − x‖ < r}.

Definition 1.1.24. The interior of a subset C ofH can be expressed as

intC := {x ∈ C|(∃r ∈ R++) B(0; r) ⊂ C − x}.

Definition 1.1.25. The orthogonal complement of a subset C of H is denoted by
C⊥, i.e.,

C⊥ := {u ∈ H|(∀x ∈ C) 〈x, u〉 = 0}.

Example 1.1.26. For any Hilbert spaceH,H⊥ = {0}.

Proof. (1) {0} ⊆ H⊥ is clear.

(2) Suppose there exists a u 6= 0 such that u ∈ H⊥. According to the definition
of H⊥, for any x ∈ H, 〈x, u〉 = 0. However, since u ∈ H and u 6= 0, we
have 〈u, u〉 6= 0, which is a contradiction. Therefore, u must equal 0.

Altogether, we haveH⊥ = {0}.

Fact 1.1.27. Let C and D be two subsets ofH. Then D⊥ ⊆ C⊥ if C ⊆ D.

Proof. Let u ∈ D⊥. Then u is a vector in H such that for all x ∈ D, 〈x, u〉 = 0.
Since C ⊆ D, all y ∈ C also contained in D. Thus we have ∀y ∈ C, 〈y, u〉 = 0.
Therefore, u ∈ C⊥ and so D⊥ ⊆ C⊥.

6



1.1. Inner product space

Fact 1.1.28. [12, Lemma 3.3-6] If S is a closed subspace of a Hilbert space H,
then

S = S⊥⊥.

Definition 1.1.29. A set C ⊆ Rm is convex if for any x, y ∈ C and α ∈ (0, 1) we
have

αx+ (1− α)y ∈ C.
Graphically, a set C is convex if the line segment between any two points in C

is also contained in C, see Figure 1.1.

Figure 1.1: Examples of convex sets

Figure 1.2 shows two nonconvex sets.

Figure 1.2: Examples of nonconvex sets

Example 1.1.30. Let r ∈ R++. Then the closed ball

B(c; r) = {x ∈ Rm : ‖x− c‖ ≤ r}

7



1.1. Inner product space

is convex.

Proof. Let x, y ∈ B(c; r) and a ∈ (0, 1). Then

‖ax+ (1− a)y − c‖ =‖a(x− c) + (1− a)(y − c)‖
≤a‖x− c‖+ (1− a)‖y − c‖
≤ar + (1− a)r = r.

Therefore, ax+ (1− a)y ∈ B(c; r), which implies B(c; r) is convex.

Example 1.1.31. Let ai ≤ bi for all i ∈ {1, 2, . . . ,m}. Then the box

C = {x ∈ Rm : ai ≤ xi ≤ bi}

is convex.

Proof. Let x, y ∈ C and a ∈ (0, 1). Then for all i ∈ {1, 2, . . . ,m},

aai + (1− a)ai ≤ axi + (1− a)yi ≤ abi + (1− a)bi

⇔ai ≤ axi + (1− a)yi ≤ bi.

Therefore, ax+ (1− a)y ∈ C, which implies C is convex.

Definition 1.1.32. Let A ⊆ R. The infimum of A is the largest lower bound and
denoted by inf A; the supremum of A is the smallest upper bound and denoted by
supA.

Remark 1.3. When A = ∅, inf A = +∞ and supA = −∞.
Definition 1.1.33. Let C be a nonempty convex subset of H and let x ∈ H. The
normal cone to C at x is

NCx =

{
{u ∈ H| sup〈C − x, u〉 ≤ 0}, if x ∈ C;
∅ otherwise.

Example 1.1.34. [4, Example 6.39] Let C = B(0; 1) and let x ∈ C. Then

NCx =


R+x, if ‖x‖ = 1;
{0} if ‖x‖ < 1;
∅ if ‖x‖ > 1.

Lemma 1.1.35. In Rm, we have

N{0}x =

{
Rm, if x = 0;
∅ if x 6= 0.

Then, domN{0} = {0} and ranN{0} = Rm.
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1.2. Operators

Proof. According to the definition of the normal cone, y ∈ N{0}x if and only if
sup〈0− x, y〉 ≤ 0. When x = 0, the inequality

sup〈0− 0, y〉 ≤ 0

is satisfied by all y ∈ Rm. Therefore,

N{0}x = Rm if x = 0.

That is, domN{0} = {0} and ranN{0} = Rm.

1.2 Operators

Definition 1.2.1. Let M : H → 2H be a set-valued operator, the domain of M is

domM := {x ∈ H : Mx 6= ∅};

the range of M is

ranM := {u ∈ H : ∃x ∈ H, u ∈Mx};

the graph of M is

graM := {(x, u) ∈ H ×H : u ∈Mx};

the set of zeros of M is:

zerM := {x ∈ H : 0 ∈Mx};

the set of fixed points of M is

FixM := {x ∈ H : x ∈Mx};

the inverse of M is

M−1 : H → 2H : u 7→ {x ∈ H : u ∈Mx}.

Definition 1.2.2. Let M1,M2 : H → 2H,

(1) The sum of M1,M2 is defined as (M1 +M2)(x) := M1(x) +M2(x) for all
x ∈ H;

(2) The parallel sum of M1,M2 is M1�M2 : H → 2H, defined by

M1�M2 := (M−1
1 +M−1

2 )−1.
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1.2. Operators

Definition 1.2.3. The identity operator is denoted by Id : Rm → Rm, for which
we have

(∀x ∈ Rm) Idx = x.

Definition 1.2.4. Let A : Rm → Rn. The induced norm or operator norm on
Rn×m is given by :

‖A‖ := sup

{
‖Ax‖
‖x‖

: x ∈ Rm with x 6= 0

}
.

Example 1.2.5. On space Rm,

‖ Id ‖ = sup

{
‖x‖
‖x‖

: x ∈ Rm with x 6= 0

}
= 1.

Definition 1.2.6. The distance to a set C ⊂ H is the function

dC : H → [0,+∞] : x 7→ inf
y∈C
‖x− y‖.

Note that if C = ∅ then dC ≡ +∞.
Definition 1.2.7. Let C be a subset of H, let x ∈ H, and let p ∈ C. Then p is a
projection of x onto C if ‖x − p‖ equals to the distance between x and C, which
denoted by dC . If every point in H has at least one projection onto C, then C is
proximinal. If every point in H has exactly one projection onto C, then C is a
Chebyshev set. In this case, the projector onto C is the operator, denoted by PC ,
that maps every point inH to its unique projection onto C.

Definition 1.2.8. An operator M : Rm → Rm is called ρ-strongly positive (ρ ∈
R+) if 〈Mx, x〉 ≥ ρ‖x‖2.

Example 1.2.9. For all α ∈ R++, the following two operators are ρ-strongly
positive:

(1) α Id is ρ-strongly positive for any 0 < ρ ≤ α.

(2) Let V : R2 → R2 : (x1, x2)→ (x1+x2
α , x2−x1α ). V is ρ-strongly positive for

any 0 < ρ ≤ 1
α .

Proof. (1) For any x ∈ Rm,

〈α Idx, x〉 = α‖x‖2.

Therefore, α Id is ρ-strongly positive for any 0 < ρ ≤ α.
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1.2. Operators

(2) For any x1 ∈ R, x2 ∈ R,

〈V (x1, x2), (x1, x2)〉 = 〈(x1 + x2

α
,
x2 − x1

α
), (x1, x2)〉

=
x2

1 + x2
2

α

=
1

α
‖x‖2.

Therefore, V is ρ-strongly positive for any 0 < ρ ≤ 1
α .

1.2.1 Linear operators

Definition 1.2.10. An operator L : Rn → Rm is said to be linear if and only if

L(αx+ βy) = αL(x) + βL(y)

for all x, y ∈ Rn and α, β ∈ R.
Definition 1.2.11. Let L : Rn → Rm be a linear operator. The adjoint of L is the
unique linear operator L? : Rm → Rn that satisfies

(∀x ∈ Rn)(∀y ∈ Rm) 〈Lx, y〉 = 〈x, L?y〉.

Fact 1.2.12. [12, Theorem 3.9-2] The Hilbert-adjoint operator L? of L in Defini-
tion 1.2.11 exists, is unique and is a bounded linear operator with norm

‖L?‖ = ‖L‖.

Fact 1.2.13. Let L : Rn → Rm be a linear operator, let λ ∈ R. Then

(1) λL is a linear operator.

(2) (λL)? = λL?.

Proof. (1) Clear.

(2)

〈x, (λL)?y〉 = 〈λLx, y〉
= λ〈x, L?y〉
= 〈x, λL?y〉.

Thus, (λL)? = λL?.
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1.2. Operators

Fact 1.2.14. Let L : Rn → Rm be a linear operator. Then L? = Lᵀ. In this thesis,
we use Aᵀ to denote the transpose of a matrix A.

Proof. Since L : Rn → Rm, we set

L =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .

Then, let x = (x1, x2, . . . , xn) ∈ Rn; let y = (y1, y2, . . . , ym) ∈ Rm. We
have:

〈Lx, y〉 =

〈
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



x1

x2
...
xn

 ,


y1

y2
...
ym


〉

=

〈
a11x1 + a12x2 + . . .+ a1nxn
a21x1 + a22x2 + . . .+ a2nxn

...
am1x1 + am2x2 + . . .+ amnxn

 ,


y1

y2
...
ym


〉

=
m∑
i=1

(ai1x1 + ai2x2 + . . .+ ainxn)yi

=
n∑
j=1

(a1jy1 + a2jy2 + . . .+ amjym)xj

=

〈
x1

x2
...
xn

 ,


a11y1 + a2122 + . . .+ am1ym
a12y1 + a22y2 + . . .+ am2ym

...
a1ny1 + a2ny2 + . . .+ amnym


〉

=

〈
x1

x2
...
xn

 ,


a11 a21 . . . am1

a12 a22 . . . am2
...

...
. . .

...
a1n a2n . . . amn



y1

y2
...
ym


〉
.
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1.2. Operators

Thus,

L? =


a11 a21 . . . am1

a12 a22 . . . am2
...

...
. . .

...
a1n a2n . . . amn

 = Lᵀ.

Fact 1.2.15. Let L : Rn → Rm be a linear operator. If L−1 exists, then L−1 is
also a linear operator.

Proof. Let x, y ∈ Rn, and let α, β ∈ R. Since L is a linear operator and L−1L =
Id, we have

L−1[αL(x) + βL(y)] = L−1[L(αx+ βy)]

= αx+ βy. (1.1)

Let x′ = L(x), y′ = L(y), equation (1.1) becomes

L−1(αx′ + βy′) = αL−1(x′) + βL−1(y′),

that is, L−1 is a linear operator.

Fact 1.2.16. [12, Theorem 2.4-2] Every finite dimensional subspace of a normed
space is complete.

Fact 1.2.17. Let T : Rm → Rm be a linear operator. Then ranT is a subspace, so
is closed. In other words, ranT = ranT . Here we use ranT to denote the closure
of ranT.

Proof. We set this proof into two parts.

(1) Prove ranT is a subspace of Rm.

(a) Since T is a linear operator, T (0) = 0. Thus, 0 ∈ ranT.

(b) For any u, v ∈ ranT, there must exists x, y ∈ Rm such that Tx =
u, Ty = v. Meanwhile, T (x+ y) = Tx+ Ty = u+ v. Thus, u+ v ∈
ranT.

(c) For any u ∈ ranT, there must exists x ∈ Rm such that Tx = u.
Meanwhile, for any scalar c, T (cx) = cT (x) = cu. Thus, cu ∈ ranT.

Since ranT satisfies all the conditions of being a subspace, ranT is a sub-
space of Rm.
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1.2. Operators

(2) Since Rm is a finite dimensional complete space and ranT is a subspace of
it, by using Fact 1.2.16 and Fact 1.1.22, we get ranT is closed.

Fact 1.2.18. [4, Fact 2.25] Let T : Rm → Rm be a linear operator. Then
(ranT )⊥ = zerT ?.

1.2.2 Nonexpansive operators

Definition 1.2.19. Let D be a nonempty subset of Rm. Let T : D → Rm. Then T
is

(1) nonexpansive if

∀x ∈ D,∀y ∈ D, ‖Tx− Ty‖ ≤ ‖x− y‖;

(2) firmly nonexpansive if

∀x ∈ D,∀y ∈ D, ‖Tx−Ty‖2 ≤ ‖x− y‖2−‖(Id−T )x− (Id−T )y‖2.

Example 1.2.20. For any 0 ≤ α ≤ 1, α Id is firmly nonexpansive.

Proof. Since 0 ≤ α ≤ 1, we have α2 − α ≤ 0, which also implies

α2 + 1 + α2 − 2α ≤ 1.

That is, for any x, y ∈ Rm, and x 6= y,

α2 + (1− α)2 ≤ 1⇔ α2‖x− y‖2 ≤ ‖x− y‖2 − (1− α)2‖x− y‖2

⇔ ‖αx− αy‖2 ≤ ‖x− y‖2 − ‖(1− α)x− (1− α)y‖2.

Thus, for any 0 < α ≤ 1, α Id is firmly nonexpansive.

Fact 1.2.21. [4, Proposition 4.2] Let D be a nonempty subset of Rm, let T : D →
H.Then the following are equivalent:

(1) T is firmly nonexpansive.

(2) Id−T is firmly nonexpansive.

(3) 2T − Id is firmly nonexpansive.

(4) (∀x ∈ D) (∀y ∈ D) ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉.
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(5) (∀x ∈ D) (∀y ∈ D) 0 ≤ 〈Tx− Ty, (Id−T )x− (Id−T )y〉.

(6) (∀x ∈ D) (∀y ∈ D) (∀α ∈ [0, 1]) ‖Tx − Ty‖ ≤ ‖α(x − y) + (1 −
α)(Tx− Ty)‖.

Fact 1.2.22. [4, Theorem 5.15] Let D be a nonempty closed convex subset of Rm,
let T : D → D be a nonexpansive operator such that FixT 6= ∅, where the fixed
points set

FixT = {x ∈ Rm : Tx = x}.

Let (λn)+∞
n=1 be a sequence in [0, 1] such that

∑+∞
n=1 λn(1 − λn) = +∞, and let

x0 ∈ D. Set
(∀n ∈ N) xn+1 = xn + λn(Txn − xn).

Then the following hold:

(1) (Txn − xn)+∞
n=1 converges to 0.

(2) (xn)+∞
n=1 converges to a point in FixT.

Definition 1.2.23. Let D be a nonempty subset of H, let T : D → H be nonex-
pansive, and let γ ∈ (0, 1). Then T is averaged with constant γ, or γ − averaged,
if there exists a nonexpansive operator R : D → H such that

T = (1− γ) Id +γR.

1.2.3 Monotone operators

Definition 1.2.24. [4] An operatorM : H → 2H is monotone if 〈x−y, u−v〉 ≥ 0
for all (x, u), (y, v) ∈ graM .
M is a maximally monotone operator if there is no monotone operator whose graph
properly contains graM .
M is a strictly monotone operator if

(∀(x, u), (y, v) ∈ graM) x 6= y ⇒ 〈x− y, u− v〉 > 0 (1.2)

M is a uniformly monotone operator if there exists an increasing function φM :
R+ → [0,+∞] with φM (0) = 0, and 〈x − y, u − v〉 ≥ φM (‖x − y‖) for all
(x, u), (y, v) ∈ graM . When φM (‖x − y‖) = ‖x − y‖2, M is called strongly
monotone.

Remark 1.2.25. [4, Remark 22.3] The notions of strict, uniform, and strong mono-
tonicity of A : H → 2H can naturally be localized to a subset C of domA.

Proposition 1.2.26. If M is uniformly monotone on H, then A is strictly mono-
tone.
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Proof. M is uniformly monotone onH implies there exists a continuous increasing
function φM : R+ → [0,+∞] with φM (0) = 0, and 〈x−y, u−v〉 ≥ φM (‖x−y‖)
for all (x, u), (y, v) ∈ graM . Thus, in the case x 6= y, for all (x, u), (y, v) ∈
graM , we have

〈x− y, u− v〉 ≥ φM (‖x− y‖) (1.3)

According to the definition of φM , (1.3) means φM (‖x − y‖) > 0, so M is a
strictly monotone operator.

Fact 1.2.27. [4, Proposition 23.35] Let A : H → 2H be strictly monotone. Then
zerA is at most a singleton.

Proof. Suppose x ∈ zerA, y ∈ zerA, x 6= y, i.e., 0 ∈ Ax, 0 ∈ Ay. Since A is
strictly monotone, we have

〈x− y, 0− 0〉 > 0

⇒ 0 > 0

which is a contradiction. Thus, zerA is at most a singleton.

Fact 1.2.28. [4, Corollary 25.5] Let A and B be maximally monotone operators
fromH to 2H such that one of the following holds:

(1) domA ∩ intdomB 6= ∅.

(2) 0 ∈ int(domA− domB).

ThenA+B is maximally monotone. In particular, (1) and (2) hold when domB =
H.
Fact 1.2.29. [4, Propositions 20.22] Let A : H → 2H be maximally monotone,
let z ∈ H, u ∈ H, and γ ∈ R++. Then A−1, and C : x 7→ u + γA(x + z) are
maximally monotone.

Fact 1.2.30. [4, Propositions 20.22, 20.23] Let A : H → 2H and B : G → 2G

be maximally monotone. Then A × B : H × G → 2H×G :(x, y) 7→ Ax × By is
maximally monotone.

Fact 1.2.31. [4, Example 20.35] Let A : H → H be a bounded linear operator
such that A? = −A. Then A is maximally monotone.

Fact 1.2.32. [4, Minty’s Theorem] Let A : H → 2H be monotone. Then A is
maximally monotone if and only if ran(Id +A) = H.
Example 1.2.33. The following are maximally monotone operators:
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1.2. Operators

(1) Let C be a nonempty convex set in Rm. Then NC , N−1
C , N−1

C + Id, and
(N−1

C + Id)−1 are all maximally monotone.

(2) For any γ ∈ R++, γ Id is maximally monotone.

Proof. (1) C is closed and convex, so due to Example 1.3.13, ιC ∈ Γ0(Rm).
As ∂ιC is maximally monotone by Fact 1.3.27 and ∂ιC = NC by Example
1.3.25, we get NC is maximally monotone. Because dom Id = Rm and NC

is maximally monotone, by Fact 1.2.28 and Fact 1.2.29, N−1
C , N−1

C + Id,
and (N−1

C + Id)−1 are all maximally monotone.

(2) For any x ∈ Rm, we have γ Idx = γx. Therefore, for any x, y ∈ Rm,

〈y − x, γ Id y − γ Idx〉 =〈y − x, γy − γx〉
=γ‖y − x‖2

≥0.

Moreover, we have

ran(Id +γ Id) = ran(1 + γ) Id = Rm.

Therefore, by Fact 1.2.32, γ Id is maximally monotone.

Lemma 1.2.34. Let A : Rm → 2R
m

be maximally monotone. Then −A(−·) is
also maximally monotone.

Proof. For any y1 ∈ −A(−x1) and y2 ∈ −A(−x2), we have{
−y1 ∈ A(−x1)
−y2 ∈ A(−x2).

Since A is maximally monotone,

〈−y1 − (−y2),−x1 − (−x2)〉 ≥ 0,

which is equivalent to
〈y2 − y1, x2 − x1〉 ≥ 0.

Therefore,−A(−·) is monotone. SinceA is maximally monotone, we have−A(−·)
is maximally monotone.
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1.2.4 Resolvent

Definition 1.2.35. [4] Let A : H → 2H be maximally monotone. The resolvent of
A is defined as

JA := (Id +A)−1.

Fact 1.2.36. Let A : H → 2H be monotone and let γ ∈ R++. Then JγA is
single-valued.

Proof. Suppose JγA is not single-valued. Then there exists x, y1, y2 ∈ H and
y1 6= y2 such that

y1 ∈ JγA(x) and y2 ∈ JγA(x).

That is, {
x ∈ (Id +γA)y1

x ∈ (Id +γA)y2,

which implies
y2 − y1 ∈ γ(Ay1 −Ay2).

Therefore, there exists (y1, u) ∈ graA and (y2, v) ∈ graA such that u − v =
1
γ (y2 − y1). That implies

〈y1 − y2, u− v〉 = −1

γ
‖y1 − y2‖2,

which is less than 0 as y1 6= y2. This contradicts the assumption that A is mono-
tone. Therefore, JγA must be single-valued.

Fact 1.2.37. [4, Proposition 23.20] Let A : H → 2H be maximally monotone and
let γ ∈ R++. Then

Id = JγA + γJγ−1A−1 ◦ γ−1 Id .

In particular,
JA−1 = Id−JA.

Fact 1.2.38. [4, Proposition 23.10] LetD be a nonempty subset ofH, let T : D →
H, and set A = T−1 − Id. Then the following hold:

(1) T = JA.

(2) T is firmly nonexpansive if and only if A is monotone.

(3) T is firmly nonexpansive and D = H if and only if A is maximally mono-
tone.
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Definition 1.2.39. An operator T : Rn → Rm is Lipschitz continous with constant
β ∈ [0,∞) if

(∀x ∈ Rn)(∀y ∈ Rn) ‖Tx− Ty‖ ≤ β‖x− y‖.

The operator T is locally Lipschitz continuous near a point x0 ∈ Rn if there exists
r ∈ R++ such that T |B(x0;r), which means the restriction of T to B(x0; r), is
Lipschitz continuous.

Fact 1.2.40. [4, Corollary 23.11] Let A : H → 2H be maximally monotone and
let γ ∈ R++. Then the following hold:

(1) JγA : H → H and Id−JγA : H → H are firmly nonexpansive and maxi-
mally monotone.

(2) The reflected resolvent RγA : H → H : x 7→ 2JγAx− x is nonexpansive.

1.3 Functions

Definition 1.3.1. Let f : Rm → [−∞,+∞]. The domain of f is

dom f := {x ∈ Rm : f(x) < +∞},

the epigraph of f is

epi f := {(x, ξ) ∈ Rm × R : f(x) ≤ ξ},

and the reversal of f is

f∨ := {x ∈ Rm : f∨(x) := f(−x)}.

Definition 1.3.2. A function f : Rm → [−∞,+∞] is proper if its domain is
nonempty and −∞ /∈ f(Rm).

1.3.1 Convex functions

Definition 1.3.3. Let f : H → [−∞,+∞]. Then f(x) is convex if its epigraph
{(x, r) : f(x) ≤ r} is a convex subset of H× R. Moreover, f is concave if −f is
convex.

Fact 1.3.4. [4, Proposition 8.4] Let f : H → [−∞,+∞]. Then f(x) is convex
if and only if for all x ∈ dom f, for all y ∈ dom f, for all α ∈ (0, 1)

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).
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Fact 1.3.5. Let f : Rm → [−∞,+∞] be convex. Then its domain dom f = {x ∈
Rm : f(x) < +∞} is convex.

Proof. For any x, y ∈ dom f, we have f(x) < +∞, f(y) < +∞. Thus, for all
α ∈ (0, 1), αf(x) + (1− α)f(y) < +∞. By Fact 1.3.4, for all x ∈ dom f, for all
y ∈ dom f, for all α ∈ (0, 1)

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

< +∞.

That is, αx+ (1−α)y ∈ dom f. According to the definition of the convex set, we
find dom f is a convex set.

Definition 1.3.6. Let f : Rm → [−∞,+∞] be a proper function. Then f(x) is
strictly convex if ∀x ∈ dom f,∀y ∈ dom f, ∀α ∈ (0, 1), and for x 6= y, we
have

f(αx+ (1− α)y) < αf(x) + (1− α)f(y).

Now letC be a nonempty subset of dom f . Then f is convex onC if ∀x ∈ C,∀y ∈
C,∀α ∈ (0, 1), and for x 6= y, we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y),

and f is strictly convex on C if ∀x ∈ C,∀y ∈ C,∀α ∈ (0, 1), and for x 6= y, we
have

f(αx+ (1− α)y) < αf(x) + (1− α)f(y).

Example 1.3.7. The function ‖ · ‖2 is strictly convex.

Proof. Let x, y ∈ Rm, and x 6= y. Let 0 < a < 1. Then

‖ax+ (1− a)y‖2 − a‖x‖2 − (1− a)‖y‖2

=a2x2 + (1− a)2y2 + 2a(1− a)〈x, y〉 − ax2 − (1− a)y2

=− a(1− a)(x2 + y2 − 2〈x, y〉)
=− a(1− a)(x− y)2.

Because x 6= y and 0 < a < 1, we have −a(1− a)(x− y)2 < 0. That is,

‖ax+ (1− a)y‖2 < a‖x‖2 + (1− a)‖y‖2.

Therefore, the function ‖ · ‖2 is strictly convex.

Fact 1.3.8. Let f : Rm → R be a convex function, A : Rm → Rm be a linear
operator. Then g = f ◦A is convex.
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Proof. For all x ∈ dom g, for all y ∈ dom g, for all α ∈ (0, 1). Since g = f ◦ A,
we have

g(αx+ (1− α)y) = f(A[αx+ (1− α)y]).

Because A is a linear operator, we have

f(A[αx+ (1− α)y]) = f(αAx+ (1− α)Ay). (1.4)

As f is convex, equation (1.4) implies

g(αx+ (1− αy)) ≤ αf(Ax) + (1− α)f(Ay)

= αg(x) + (1− α)g(y).

Therefore, g is a convex function.

Fact 1.3.9. Let f : R+ → R be convex and increasing, g : Rm → R+ be convex.
Then h = f ◦ g is convex.

Proof. For all x ∈ domh, for all y ∈ domh, for all α ∈ (0, 1). Since h = f ◦ g,
we have

h(αx+ (1− α)y) = f(g(αx+ (1− α)y)). (1.5)

As f is convex and increasing, g is convex, equation (1.5) implies that

h(αx+ (1− α)y) ≤ f(αg(x) + (1− α)y)

≤ αf(g(x)) + (1− α)f(g(y))

= αh(x) + (1− α)h(y).

Therefore, h is a convex function.

1.3.2 Lower semicontinuous functions

In the following thesis, I shall use B(x; r) to denote the closed ball with center
at x and radius r ∈ R++.

Definition 1.3.10. The lower limit of a function f : Rm → R at x̄ is the value in
Rm defined by

lim inf
x→x̄

f(x) : = lim
δ↘0

inf
x∈B(x̄;δ)

f(x)

= sup
δ>0

inf
x∈B(x̄;δ)

f(x).
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Definition 1.3.11. A function f is lower semicontinous at a point x0 if

lim inf
x→x0

f(x) ≥ f(x0).

The function is said to be lower semicontinuous on H if it is lower semicontinous
at every point x0 ∈ H.
Example 1.3.12. The following functions are lower semicontinous:

(1) All continuous functions are lower semicontinous.

(2) The piecewise function

f(x) =

{
sin(x) if x ≤ π

2 ,
sin(x) + 1 if x > π

2

is lower semicontinuous.

Example 1.3.13. [4, Example 1.25] The indicator function of a set C ∈ H, i.e.,
the function

ιC : H → [−∞,+∞] : x 7→
{

0 if x ∈ C,
+∞ otherwise

is lower semicontinuous if and only if C is closed. Moreover, if C is closed and
convex, then ιC is a proper, lower semicontinuous, and convex function.

In the following thesis, I use Γ(H) to denote the set of lower semicontinuous
convex functions fromH to [−∞,+∞], and use Γ0(H) to denote the set of proper
lower semicontinuous convex functions fromH to (−∞,+∞].

Fact 1.3.14. [4, Corollary 9.4] Let (fi)i∈I be a family in Γ(H). If I is finite and
−∞ /∈

⋃
i∈I fi(H). Then

∑
i∈I fi ∈ Γ(H).

Lemma 1.4. Let f, g ∈ Γ0(H), and dom f ∩ dom g 6= ∅. Then f + g ∈ Γ0(H).

Proof. Since f, g ∈ Γ0(H), that is,−∞ /∈ f(H)∪g(H),we have f+g > −∞.As
dom f ∩ dom g 6= ∅, there must exists at least an x such that f(x) + g(x) < +∞.
Therefore, combining with Fact 1.3.14, f + g ∈ Γ0(H).

Fact 1.3.15. [4, Theorem 9.20] Let f ∈ Γ0(H). Then for any x ∈ H, there exists
a u ∈ H and an η ∈ R such that f(x) ≥ 〈x, u〉+ η.
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1.3.3 Coercive and supercoercive functions

Definition 1.3.16. Let f : H → [−∞,+∞]. Then f is coercive if

lim
‖x‖→+∞

f(x) = +∞,

and supercoercive if

lim
‖x‖→+∞

f(x)

‖x‖
= +∞.

By convention, we say f is coercive and supercoercive ifH = {0}.
Example 1.3.17. The function ‖ · ‖2 is supercoercive.

Fact 1.3.18. Let f be in Γ0(H), and let g : H → (−∞,+∞] be supercoercive.
Then f + g is supercoercive.

Proof. According to Fact 1.3.15, there exists a u ∈ H and an η ∈ R such that for
all x ∈ H,

f(x) ≥ 〈x, u〉+ η.

Then we have

lim
‖x‖→+∞

f(x) + g(x)

‖x‖
≥ lim
‖x‖→+∞

〈x, u〉+ η + g(x)

‖x‖

≥ lim
‖x‖→+∞

−‖u‖‖x‖+ η + g(x)

‖x‖

= lim
‖x‖→+∞

(−‖u‖+
η + g(x)

‖x‖
)

≥ −‖u‖ − |η|+ lim
‖x‖→+∞

g(x)

‖x‖
→ +∞.

Thus, f + g is supercoercive.

Fact 1.3.19. [4, Corollary 11.16] Let f and g be in Γ0(H). Suppose that dom f ∩
dom g 6= ∅ and f is supercoercive. Then f + g is coercive and it has a minimizer
overH. If f or g is strictly convex, then f + g has exactly one minimizer overH.
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1.3.4 Subgradient and subdifferential

Definition 1.3.20. Let f : Rm → [−∞,+∞], and let x be a point such that
|f(x)| < +∞. We say that f is differentiable (or Fréchet differentiable) at x if and
only if there exists a vector x∗ with the property

lim
y→x

f(y)− f(x)− 〈x∗, y − x〉
‖y − x‖

= 0.

If such x∗ exists, it is called the gradient of f at x and is denoted by∇f(x).

Definition 1.3.21. A vector u ∈ Rm is said to be a subgradient of a convex function
f : Rm → R at the point x if we have

∀y ∈ Rm 〈y − x, u〉+ f(x) ≤ f(y).

The set of all subgradients of f at x is called the subdifferential of f at x and is
denoted by ∂f(x).

Definition 1.3.22. (Fenchel Subdifferential) For a (not necessarily convex) f :
Rm → R, define its Fenchel subdifferential at x

∂f(x) := {v ∈ Rm : f(y) ≥ f(x) + 〈v, y − x〉 for all y ∈ Rm}.

When f is convex, ∂f(x) is the usual subdifferential.

Fact 1.3.23. [15, Proposition 2.36] Let f : Rm → (−∞,+∞] be proper and
convex, and let x ∈ dom f. Suppose that f is differentiable at x. Then

∂f(x) = {∇f(x)}.

Example 1.3.24. Let f(x) = 1
2‖x‖

2. Then ∂f(x) = {∇f(x)} = {x}.

Proof. We already proved ‖ · ‖2 is strictly convex in Example 1.3.7, therefore in
the case x, y ∈ Rm, x 6= y and 0 < a < 1,

1

2
‖ax+ (1− a)y‖2 <1

2
(a‖x‖2 + (1− a)‖y‖2)

=
a

2
‖x‖2 +

1− a
2
‖y‖2.

Therefore, f(x) = 1
2‖x‖

2 is strictly convex. Since f(x) is proper, convex, and
differentiable on Rm, applying Fact 1.3.23 here, we have

∂f(x) = {∇f(x)} = {x}.
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Figure 1.3: Figure of f(x) = |x|

Example 1.3.25. [4, Example 16.13] Let C be a nonempty convex subset of H.
Then ∂ιC = NC .

Example 1.3.26. Let f : R→ R defined as f(x) = |x|.
Through the graph of this fuction, we can easily see its global minimizer is at

x̄ = 0. However, this function is not differentiable at x = 0. At points other than
0, f is differentiable. According to the definition of the subgradient of a convex
function, we can get the the subdifferential of f(x) = |x| is

∂f(x) =


{−1} if x < 0,
[−1, 1] if x = 0,
{1} if x > 0.

Proof. Because f is differentiable when x < 0 (or x > 0). According to Fact
1.3.23,

∂f(x) = {∇f(x)} = {1} for x > 0;

∂f(x) = {∇f(x)} = {−1} for x < 0.

For x̄ = 0, let v ∈ ∂f(x̄). Then we have

〈v, x− x̄〉 ≤ f(x)− f(x̄) ∀x ∈ R
⇔ 〈v, x〉 ≤ f(x) for x̄ = 0, ∀x ∈ R

⇔

{
v ≥ f(x)

x = −x
x = −1 if x < 0

v ≤ f(x)
x = x

x = 1 if x > 0

⇔ v ∈ [−1, 1].
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Thus, we have ∂f(0) = [−1, 1].

Fact 1.3.27. [4, Theorem 20.25] Let f ∈ Γ0(H). Then ∂f is maximally monotone.

Fact 1.3.28. Let f ∈ Γ0(Rm) Then ran(Id +∂f) = Rm.

Proof. Since f ∈ Γ0(Rm), by Fact 1.3.27, ∂f is maximally monotone. According
to Fact 1.2.32, we have ran(Id +∂f) = Rm.

Fact 1.3.29. [4, Theorem 16.47] Let K be a real Hilbert space, let f ∈ Γ0(H), let
g ∈ Γ0(K), and let L : H → K be a nonzero bounded linear operator. Suppose
L(dom f) ∩ intdom g 6= ∅. Then ∂(f + g ◦ L) = ∂f + L? ◦ (∂g) ◦ L.
Fact 1.3.30. [10, Page 20] Let f : Rm → R be convex, and let L : H → K
be a nonzero bounded linear operator. If h(x) = f(Lx + b), where b ∈ R, then
∂h(x) = L? ◦ ∂f ◦ (Lx+ b).

Fact 1.3.31. [4, Corollary 16.50] Let m be an integer such that m ≥ 2, set I =
{1, . . . ,m}, and let (fi)i∈I be functions in Γ0(H) such that

dom fm ∩m−1
i=1 intdom fi 6= ∅.

Then ∂(
∑m

i=1 fi) =
∑m

i=1 ∂fi.

Fact 1.3.32. Let f ∈ Γ0(H) and let γ ∈ R++. Then ∂(f+(γ/2)‖·‖2) = ∂f+γ Id.

Proof. Since dom ‖ · ‖2 = H, and f ∈ Γ0(H), we have

dom f ∩ intdom[(γ/2)‖ · ‖2] 6= ∅.

Therefore, by using Fact 1.3.31,

∂(f + (γ/2)‖ · ‖2) = ∂f + ∂[(γ/2)‖ · ‖2] = ∂f + γ Id .

Definition 1.3.33. The set of global minimizers of a function f is denoted as
Argmin f.

Fact 1.3.34. Let f : Rm → (−∞,+∞] be proper. Then

Argmin f = zer ∂f = {x ∈ Rm : 0 ∈ ∂f(x)}.

Proof. Let x ∈ Argmin f. Then for all y ∈ Rm, f(x) ≤ f(y). That implies
f(x) + 〈y − x, 0〉 ≤ f(y), which is equivalent to 0 ∈ ∂f(x). Thus,

Argmin f = zer ∂f.
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1.3.5 Conjugation

Definition 1.3.35. Let f : H → [−∞,+∞]. The conjugate of f is

f∗ : H → [−∞,+∞] : u 7→ sup
x∈H

(〈x, u〉 − f(x)),

and the biconjugate of f is f∗∗ = (f∗)∗.

Fact 1.3.36. [4, Proposition 13.19] Let f : H → [−∞,+∞]. Then

f =
1

2
‖ · ‖2 ⇔ f∗ = f.

Fact 1.3.37. [4, Proposition 13.23] Let f : H → (−∞,+∞]. Then for any
α ∈ R++, (αf)∗ = αf∗(·/α).

Example 1.3.38. Let x ∈ Rm, let λ ∈ R++. If f(x) = λ‖x‖2, then f∗(u) = ‖u‖2
4λ .

Proof. By applying Fact 1.3.37 together with Fact 1.3.36, we have

(λ‖ · ‖2)∗ =

(
2λ

1

2
‖ · ‖2

)∗
= 2λ(

1

2
‖ · ‖2)∗

( ·
2λ

)
= λ

∥∥∥ ·
2λ

∥∥∥2

=
‖ · ‖2

4λ
.

Fact 1.3.39. [4, Proposition 13.13] Let f : H → [−∞,+∞]. Then f∗ ∈ Γ(H).

Fact 1.3.40. [4, Theorem 13.37] Let f : H → (−∞,+∞] be proper. Then f ∈
Γ0(H) if and only if f = f∗∗. In this case, f∗ is proper as well.

Theorem 1.3.41. Let f, g ∈ Γ0(H) and dom f∗ ∩ dom g∗ 6= ∅. Then f∗ + g∗ ∈
Γ0(H).

Proof. Combine Fact 1.3.39 and Fact 1.3.40, f, g ∈ Γ0(H) implies f∗, g∗ ∈
Γ0(H). Moreover, as dom f∗ ∩ dom g∗ 6= ∅, according to Lemma 1.4, f∗ + g∗ ∈
Γ0(H).

Fact 1.3.42. [4, Proposition 16.10] Let f be a proper function on H, let x ∈ H,
and u ∈ H. Then u ∈ ∂f(x) if and only if f(x) + f∗(u) = 〈x, u〉 ⇒ x ∈ ∂f∗(u).
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Fact 1.3.43. [4, Proposition 16.49] Let f ∈ Γ0(H). Then intdom f ⊂ dom ∂f ⊂
dom f.

Example 1.3.44. Let f : R→ R such that

f(x) =

{
x lnx if x ≥ 0,
+∞ if x < 0.

We have dom ∂f = (0,+∞) because ∂f(0) = ∅. As dom f = [0,+∞), in this
example dom ∂f ⊆ dom f.

Example 1.3.45. Let f(x) = ι[2,3](x). Then 2 ∈ dom ∂f but 2 /∈ intdom f.
Therefore, intdom f ⊆ dom ∂f.

Fact 1.3.46. [4, Corollary 16.30] Let f ∈ Γ0(H). Then (∂f)−1 = ∂f∗.

1.3.6 Infimal convolution

Definition 1.3.47. Let f and g be functions from Rm to [−∞,+∞]. The infimal
convolution of f and g is

f�g : Rm → [−∞,+∞] : x 7→ inf
y∈Rm

(f(y) + g(x− y)),

and it is exact at a point x ∈ Rm if (f�g)(x) = miny∈Rm{f(y) + g(x− y)}, i.e.,

∃y ∈ H : (f�g)(x) = f(y) + g(x− y) ∈ (−∞,+∞];

f�g is exact if it is exact at every point of its domain, in which case it is denoted
by f � g.

Fact 1.3.48. [4, Proposition 12.6] Let f and g be functions fromH → (−∞,+∞].
Then the following hold:

(1) dom(f�g) = dom f + dom g.

(2) f�g = g�f.

Fact 1.3.49. [4, Proposition 13.24] Let f and g be functions in fromH to (−∞,+∞].
Then (f�g)∗ = f∗ + g∗.

Fact 1.3.50. [4, Proposition 15.2] Let f and g be functions in Γ0(H) such that
0 ∈ int(dom f − dom g). Then (f + g)∗ = f∗ � g∗.

Fact 1.3.51. [4, Proposition 15.7] Let f and g be in Γ0(H). Suppose

0 ∈ int(dom f∗ − dom g∗).

Then f�g = f � g ∈ Γ0(H).
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Fact 1.3.52. [4, Proposition 16.61] Let f and g be in Γ0(H), let x ∈ dom(f�g),
and let y ∈ H. Then the following hold:

(1) Suppose that (f�g)(x) = f(y) + g(x− y). Then

∂(f�g)(x) = ∂f(y) ∩ ∂g(x− y).

(2) Suppose that ∂f(y) ∩ ∂g(x− y) 6= ∅. Then (f�g)(x) = f(y) + g(x− y).

Definition 1.3.53. Let f : H → (−∞,+∞] be proper and let λ ∈ R++. The
Moreau envelope of f with parameter λ is

eλf := f�(
1

2λ
‖ · ‖2).

Example 1.3.54. [4, Example 12.21] Let C ⊂ H and let λ ∈ R++. Then eλιC =
(2λ)−1d2

C .

Proof. We have

eλιC(x) =[ιC�(
1

2λ
‖ · ‖2)](x)

= inf
y∈Rm

(ιC(y) +
1

2λ
‖x− y‖2)

= inf
y∈C

(
1

2λ
‖x− y‖2)

=
1

2λ
d2
C(x).

Fact 1.3.55. Let f : Rm → (−∞,+∞] be proper and let λ ∈ R++. Then eλf is
full domain, i.e., dom eλf = Rm.

Proof. Combining the definition of eλf with the Fact 1.3.48, we have

dom eλf = dom f�(
1

2λ
‖ · ‖2)

= dom f + Rm

= Rm.

Thus, eλf is full domain.
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Definition 1.3.56. Let f ∈ Γ0(H) and let x ∈ H. Then Proxf x is the unique
point inH that satisfies

e1f(x) = min
y∈H

(
f(y) +

1

2
‖x− y‖2

)
= f(Proxf x) +

1

2
‖x− Proxf x‖2.

Fact 1.3.57. [4, Proposition 16.44] Let f ∈ Γ0(H), and let x and p be inH. Then

p = Proxf x⇔ x− p ∈ ∂f(p).

In other words,
Proxf = (Id +∂f)−1 = J∂f .

1.3.7 Fenchel-Rockafellar duality

Definition 1.3.58. [4, Definition 15.19] Let f : H → (−∞,+∞], let g : K →
(−∞,+∞], and let L : H → K be a nonezero bounded linear operator. The primal
problem associated with the composition function f + g ◦ L is

min
x∈H
{f(x) + g(Lx)}, (1.6)

its dual problem is
min
v∈K
{f∗(L?v) + g∗(−v)}, (1.7)

the primal optimal value is µ = inf(f + g ◦ L)(H), the dual optimal value is
µ∗ = inf(f∗ ◦ L? + g∗∨)(K), and the duality gap is

∆(f, g, L) =

{
0, if µ = −µ∗ ∈ {−∞,+∞}
µ+ µ∗otherwise.

Fact 1.3.59. [4, Proposition 15.21] Let f : H → (−∞,+∞] and g : K →
(−∞,+∞] be proper, and let L : H → K be a nonezero bounded linear operator.
Set µ = inf(f + g ◦ L)(H) and µ∗ = inf(f∗∨ ◦ L? + g∗)(K). Then

µ = −µ∗ ⇔ ∆(f, g, L) = 0.

Remark 1.5. There exists a solution to problem (1.6) implies there must exists
a solution to problem (1.7), and vice versa. Therefore, solving problem (1.6) is
equivalent to solving problem (1.7).
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Chapter 2

Classic Douglas-Rachford
algorithm

2.1 Overview

In this chapter, the history of the Douglas-Rachford algorithm is reviewed.
There is a relation between the composited monotone inclusion problem and the
Douglas-Rachford algorithm, and there is also a relation between the composited
monotone inclusion problem and the optimization problems. Those two relations
are roughly given by Bot and Hendrich [6] in 2013. Here, I will show those rela-
tions in details.

2.2 Douglas-Rachford splitting problem and the brief
history of Douglas-Rachford algorithm

The Douglas-Rachford splitting problem is the problem of finding a point x ∈
H such that

0 ∈ Ax+Bx,

where A and B are maximally monotone operators. Naturally, this approach is
numerically viable only in those cases in which it is easy to compute Jγ(A+B),
where γ ∈ R++. However, the Douglas-Rachford algorithm, in which the opera-
tors A and B are employed in separate steps, can be seen as a widely applicable
alternative.

The Douglas-Rachford algorithm was first be proposed by J. Douglas and H.
H. Rachford [9] in 1956 as a method for solving certain matrix equations. In 1969
Lieutaud (see [13]) extended their method to deal with (possibly nonlinear) max-
imally monotone operators that are defined everywhere. Lions and Mercier, in
their paper [14] from 1979, presented a broad and powerful generalization to its
current form, i.e., to handle the sum of any two maximally monotone operators
that are possibly nonlinear, possibly set-valued and not necessarily defined every-
where. With the joint work of Eckstein and Bertsekas (see [11, Theorem 5]) from
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1992, the inclusion JB(FixT ) ⊆ zer(A+B) has been proved. Later on, in 2004,
Combettes (see [7, Lemma 2.6(iii)]) refined the results by Eckstein and Bertsekas.
Together with the earlier results by Lions and Mercier [14], the work by Eckstein
and Bertsekas and later by Combettes complete the following Douglas-Rachford
algorithm in the finite dimensional setting.

Lemma 2.2.1. [4, Douglas-Rachford algorithm] LetA andB be maximally mono-
tone operators from Rm to 2R

m
such that zer(A + B) 6= ∅. Let (λn)+∞

n=1 be a se-
quence in [0, 2] such that

∑+∞
n=1 λn(2− λn) = +∞, let γ ∈ R++, and let x0 ∈ H.

Set

(∀n ∈ N)


yn = JγBxn
zn = JγA(2yn − xn)
xn+1 = xn + λn(zn − yn).

(DR)

Then there exists x ∈ FixRγA ◦RγB such that the following hold:

(1) JγBx ∈ zer(A+B).

(2) (yn − zn)+∞
n=1 converges to 0.

(3) (xn)+∞
n=1 converges to x.

(4) (yn)+∞
n=1 converges to JγBx.

(5) (zn)+∞
n=1 converges to JγBx.

(6) Suppose that one of the following holds:

(a) A is uniformly monotone on every nonempty bounded subset of domA.

(b) B is uniformly monotone on every nonempty bounded subset of domB.

Then (yn)+∞
n=1 and (zn)+∞

n=1 converge to the unique point in zer(A+B).

Later on, in 2009, Combettes [8] proved that Douglas-Rachford algorithm is
error-tolerant. Relying on the work of Combettes, in 2013, the joint work of Bot
and Hendrich [6] showed that there are two different primal-dual iterative error-
tolerant methods for solving inclusions with mixtures of composite and parallel-
sum type monotone operators.

Remark 2.1. In 2011, Svaiter (see [16]) demonstrated that A + B does not have
to be maximally monotone and (JB(Tnx))+∞

n=1 converges weakly to a point in
zer(A+B) in the general Hilbert space. In 2017, Bauschke and Moursi [5] gave a
simpler proof of the weakly convergence of the sequence (JB(Tnx))+∞

n=1. But this
is beyond the scope of this thesis.
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2.3 The composited monotone inclusion problem

The composited monotone inclusion problems in this thesis are all considered
in the Rm space. All of them contain two parts: the primal inclusion problem;
and the dual inclusion problem. Here is the general case: Let A : Rm → 2R

m
,

B : Rm → 2R
m

and D : Rm → 2R
m

be maximally monotone operators. Let
r ∈ Rm, and let L : Rm → Rm be a nonzero linear invertible operator.

Let z ∈ Rm, the primal inclusion problem is to find a point x̄ ∈ Rm such that

z ∈ Ax̄+ L?(B�D)(Lx̄− r).(P)

The dual inclusion problem is to find a point v̄ ∈ Rm such that

(∃x ∈ Rm)

{
z − L?v̄ ∈ Ax
v̄ ∈ (B�D)(Lx− r)(D)

Lemma 2.3.1. The primal inclusion problem (P) is equivalent to the dual inclusion
problem (D).

Proof. Suppose x̄ ∈ Rm is the solution of the primal inclusion problem. That is,

z ∈ Ax̄+ L?(B�D)(Lx̄− r),

which is equivalent to

0 ∈ −z +Ax̄+ L?(B�D)(Lx̄− r). (2.1)

Equation (2.1) implies that some v̄ ∈ (B�D)(Lx̄− r) obeys 0 ∈ −z+Ax̄+L?v̄.
In other words, that means v̄ ∈ Rm obeys{

0 ∈ −z +Ax̄+ L?v̄
v̄ ∈ (B�D)(Lx̄− r). (2.2)

This v̄ solves (D), because x = x̄ satisfies the required conditions. Since L is a
nonzero linear operator, 0 ∈ −z + Ax + L?v̄ means z − L?v̄ ∈ Ax. Therefore,
problem (2.2) is the dual problem. Thus, finding the solution of the primal inclu-
sion problem is equivalent to finding the solution of the dual inclusion problem.
In another words, if we can find a solution to the primal inclusion problem, there
must exists a solution to the dual inclusion problem. Conversely, if we can find a
solution to the dual inclusion problem, there must exists a solution to the primal
inclusion problem.
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Remark 2.2. We say (x̄, v̄) is a primal-dual solution to problem (P) together with
(D), if

z − L?v̄ ∈ Ax̄ and v̄ ∈ (B�D)(Lx̄− r).

Here, x̄ is a solution to (P) and v̄ is a solution to (D), see Bot and Hendrich [6].

Before we get a corollary of Lemma 2.3.1, we need the following lemma.

Lemma 2.3.2. Let B : Rm → 2R
m

and D = N{0}. Then

B�D = B.

Proof. Since D = N{0}, according to Lemma 1.1.35, N{0}−1y = 0, for any y ∈
Rm. Suppose B�D 6= ∅, then there exists a pair of x ∈ Rm and y ∈ Rm such that

y ∈ (B�D)(x).

That is,

y ∈ (B−1 +N{0}
−1)−1(x)⇔x ∈ (B−1 +N{0}

−1)(y)

⇔x ∈ B−1y

⇔y ∈ Bx.

Therefore,
B�N{0} = B.

Corollary 2.3.3. Let A : Rm → 2R
m

, B : Rm → 2R
m

be maximally monotone
operators, let D = N{0}. Let r = 0, z = 0, and let L = Id. Then the following
problems are equivalent:

(1) the primal inclusion problem:

find a point x̄ ∈ Rm such that 0 ∈ Ax̄+Bx̄, (2.3)

(2) the dual inclusion problem:

find a point v̄ ∈ Rm such that (∃x ∈ Rm)

{
−v̄ ∈ Ax
v̄ ∈ Bx. (2.4)

Therefore, in this case, the dual inclusion problem (D) becomes: find v′ such
that

0 ∈ A−1(v′)−B−1(−v′). (2.5)
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2.3. The composited monotone inclusion problem

Proof. (1) Plugging D = N{0}, r = 0, z = 0, and L = Id into the primal
inclusion problem (P), we get

find a point x̄ ∈ Rm such that 0 ∈ Ax̄+ (B�N{0})x̄.

By Lemma 2.3.2, we get 0 ∈ Ax̄+ (B�N{0})x̄ is equivalent to

0 ∈ Ax̄+Bx̄.

(2) Again, we plug D = N{0}, r = 0, z = 0, and L = Id into the dual inclusion
problem (D), we get (2.4). Since there exists x ∈ Rm such that −v̄ ∈
Ax, v̄ ∈ Bx, x should be a solution of (2.3). Therefore, (2.4) is equivalent
to (2.3). Since −v̄ ∈ Ax⇒ x ∈ A−1(−v̄) and v̄ ∈ Bx⇒ x ∈ B−1(v̄), the
inclusion problem (2.4) is equivalent to find v̄ such that

0 ∈ A−1(−v̄)−B−1(v̄).

Now we let v′ = −v̄, then the inclusion problem (2.4) becomes: find v′ such
that

0 ∈ A−1(v′)−B−1(−v′).

Remark 2.3. (2.5) is called the Attouch-Théra duality [1] of (2.3).

Lemma 2.3.4. [6, Theorem 2.1] Let A : Rm → 2R
m

, B : Rm → 2R
m

and
D : Rm → 2R

m
be maximally monotone operators. Let z and r ∈ Rm, let

L : Rm → Rm be a nonzero linear operator. Let K = Rm × Rm. If we define
three set-valued operators M,Q and S as follows:

M : K → 2K : (x, v) 7→ (−z +Ax, r +B−1v);(M)

Q : K → 2K : (x, v) 7→ (0, D−1v);(Q)

S : K → K : (x, v) 7→ (L?v,−Lx).(S)

Moreover, define an bounded linear operator

V : K → K : (x, v) 7→ (
x

τ
− 1

2
L?v,

v

σ
− 1

2
Lx),(V)

where τ, σ ∈ R++, and τσ‖L‖2 < 4.
Finally, define two operators on KV :

A := V −1(
1

2
S +Q).(A)

B := V −1(
1

2
S +M).(B)
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2.3. The composited monotone inclusion problem

Here, the space KV is a vector space with inner product 〈x, y〉KV = 〈x, V y〉K and
norm ‖x‖KV =

√
〈x, V x〉K. Then any

(x̄, v̄) ∈ zer(A + B).

is a pair of primal-dual solution to problem (P) and (D) and vice versa, while x̄ is
the solution of the primal inclusion problem (P) and v̄ is the solution of the dual
inclusion problem (D)

For the completeness of the thesis, we show the proof of this lemma here.

Proof. We split this proof into three steps.

Step 1: Prove the set-valued operators M,Q, and S are maximally mono-
tone.

Since L is a nonzero linear operator, A,B, and D are maximally monotone oper-
ators, and operators M and Q are maximally monotone on K by Fact 1.2.29 and
Fact 1.2.30.
For operator S, let a = (x, v), b = (y, u), a ∈ K, b ∈ K. Then

〈Sa, b〉 = 〈(L?v,−Lx), (y, u)〉
= 〈L?v, y〉+ 〈−Lx, u〉
= 〈v, Ly〉+ 〈x,−L?u〉
= 〈(x, v), (−L?u, Ly)〉
= 〈a,−Sb〉

i.e., S? = −S. From Fact 1.2.31, it follows that S is maximally monotone.

Step 2: Show V is maximally monotone, and prove V −1 exists.

Let a = (x, v), b = (y, u), a ∈ K, b ∈ K. Then

〈V a, b〉 =

〈
(
x

τ
− 1

2
L?v,

v

σ
− 1

2
Lx), (y, u)

〉
= 〈x

τ
, y〉+ 〈−1

2
L?v, y〉+ 〈 v

σ
− 1

2
Lx, u〉

= 〈x, y
τ
〉+

1

2
〈v,−Ly〉+ 〈v, u

σ
〉 − 1

2
〈x, L?u〉

= 〈x, y
τ
− 1

2
L?u〉+ 〈v,−1

2
Ly +

u

σ
〉
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2.3. The composited monotone inclusion problem

=

〈
(x, v), (

y

τ
− 1

2
L?u,−1

2
Ly +

u

σ
)

〉
= 〈a, V b〉.

That means V is self-adjoint, i.e., V ? = V .
Let a = (x, v), a ∈ K,

〈V a, a〉 = 〈(x
τ
− 1

2
L?v,

v

σ
− 1

2
Lx), (x, v)〉

=
‖x‖2

τ
− 〈v, Lx〉+

‖v‖2

σ

≥ ‖x‖
2

τ
− ‖v‖‖L‖‖x‖+

‖v‖2

σ
.

For any λ ∈ R++,
‖x‖2

λ
+ λ‖v‖2 − 2‖x‖‖v‖ ≥ 0.

Then we get

‖x‖2

τ
− ‖v‖‖L‖‖x‖+

‖v‖2

σ

≥‖x‖
2

τ
+
‖v‖2

σ
− 1

2
(
σ‖L‖2√
τσ‖L‖2

‖x‖2 +

√
τσ‖L‖2
σ

‖v‖2)

≥‖x‖
2

τ
+
‖v‖2

σ
− 1

2
(

√
τσ‖L‖2
τ

‖x‖2 +

√
τσ‖L‖2
σ

‖v‖2)

≥(1− 1

2

√
τσ‖L‖2)(

‖x‖2

τ
+
‖v‖2

σ
)

≥(1− 1

2

√
τσ‖L‖2) min{1

τ
,

1

σ
}‖a‖2.

Let ρ = (1 − 1
2

√
τσ‖L‖2) min{ 1

τ ,
1
σ}. Then 〈V a, a〉 ≥ ρ‖a‖2. Since τ and σ

satisfy the condition τσ‖L‖2 < 4, we have ρ > 0. That means, V is ρ−strongly
positive.
Let a = (x, v), b = (y, u), a ∈ K, b ∈ K. Since V is a bounded linear operator, we
have :

〈V a− V b, a− b〉 = 〈V (a− b), a− b〉
≥ ρ‖a− b‖2

≥ 0.

Thus, V is maximally monotone.
To prove the existence of V −1, we only need to prove V is one-to-one (in other
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2.3. The composited monotone inclusion problem

words, zerV = {0}), and is onto (in other words, ranV = K).
Because V is ρ-strongly positive, zerV = {0}. Otherwise, suppose we have x ∈
zerV with x 6= 0. Then 〈x, 0〉 = 〈x, V x〉 ≥ ρ‖x‖2 > 0, which is impossible.
According to Fact 1.2.17, since V is a bounded linear operator, ranV is a closed
subspace, that is, ranV = ranV. By Fact 1.2.18,

(ranV )⊥ = zerV ?. (2.6)

As V is self-adjoint, V ? = V. Thus,

zerV ? = zerV = {0}. (2.7)

Combining the result of (2.6) and (2.7), we get

(ranV )⊥ = {0}.

Because (ranV )⊥ = {0} ⊆ K⊥, by Fact 1.1.27,

K⊥⊥ ⊆ (ranV )⊥⊥. (2.8)

Since ranV and K are closed subspaces, by Fact 1.1.28, K⊥⊥ = K, (ranV )⊥⊥ =
ranV. Thus, (2.8) implies that K ⊆ ranV. Therefore,

ranV = K.

That means, V −1 exists.

Step 3: Show that (x̄, v̄) ∈ zer(A + B) if and only if x̄ is a primal solution
of (P) and v̄ is a dual solution of (D)

Since S,M and Q are maximally monotone and domS = K, according to Fact
1.2.28, 1

2S +Q and 1
2S +M are maximally monotone on K.

Take 1
2S +Q as an example. Let

(x, u) ∈ gra(
1

2
S +Q); (y, v) ∈ gra(

1

2
S +Q).

As 1
2S +Q is maximally monotone on space K, we have

〈x− y, u− v〉K ≥ 0. (2.9)

Because V −1 exists, (2.9) can be written as 〈x − y, V V −1(u − v)〉K ≥ 0, which
equals

〈x− y, V −1(u− v)〉KV ≥ 0. (2.10)
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2.3. The composited monotone inclusion problem

By Fact 1.2.15,

(2.10)⇔ 〈x− y, V −1u− V −1v〉KV ≥ 0.

That means A := V −1(1
2S +Q) is a maximally monotone operator on space KV.

By using the same method, we can prove B := V −1(1
2S + M) is a maximally

monotone operator on space KV too.
Again, since V −1 is linear,

zer(A + B) = zer(V −1(
1

2
S +M) + V −1(

1

2
S +Q))

= zer(V −1(S +M +Q)).

(1) On the one hand, let x ∈ zer(V −1(S +M +Q)). Then

(V −1(S +M +Q))(x) = 0

i.e., (S +M +Q)(x) = V (0)

= 0.

Thus, x ∈ zer(S +M +Q).

(2) On the other hand, let x ∈ zer(S +M +Q). Then we have

(V −1(S +M +Q))(x) = V −1((S +M +Q)(x))

= V −1(0)

= 0.

Thus, x ∈ zer(V −1(S +M +Q)).

Altogether, we have

zer(V −1(S +M +Q)) = zer(S +M +Q).

Consequently, one has

zer(A + B) = zer(S +M +Q).

If zer(M + S + Q) 6= ∅, then according to the definition of M,S,Q, there exists
(x̄, v̄) ∈ K such that {

0 ∈ −z +Ax̄+ L?v̄,
0 ∈ r +B−1v̄ +D−1v̄ − Lx̄,
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2.4. Application to proper, lower-semicontinuous convex functions

which is equivalent to {
z − L?v̄ ∈ Ax̄,
v̄ ∈ (B�D)(Lx̄− r). (2.11)

That is, v̄ is the solution of the dual inclusion problem. Moreover, since L is a
nonzero linear operator, z − L?v̄ ∈ Ax̄ means 0 ∈ −z + Ax̄ + L?v̄. Then, those
two inclusions in (2.11) implies

z ∈ Ax̄+ L?(B�D)(Lx̄− r),

i.e., x̄ is the solution of the primal inclusion problem. Altogether, we call (x̄, v̄)
the primal-dual solution.
Therefore, we deduce that (x̄, v̄) ∈ zer(A + B) if and only if x̄ is a solution of
the primal inclusion problem (P) and v̄ is a solution of the dual inclusion problem
(D).

Remark 2.4. For the operator V : K → K : (x, v) 7→ (xτ −
1
2L

?v, vσ −
1
2Lx),

it is conjectured that we can consider it as a matrix and get detV = 1
τσ −

‖L‖2
4 .

Therefore, if we have τσ‖L‖2 < 4, V −1 exists.

Remark 2.5. According to the definition of the Douglas-Rachford Splitting Prob-
lem, Lemma 2.3.4 implies that the primal inclusion problem (P) and the dual in-
clusion problem (D) can be solved by using the Douglas-Rachford algorithm.

2.4 Application to proper, lower-semicontinuous convex
functions

Before we show the relationship between the primal dual inclusion problems
and the optimization problems, we must get the following results, which can be
found in [4].

Theorem 2.4.1. Let C be a convex subset of H, let K be a real Hilbert space,
let L : H → K be linear and continuous, and let D be a convex subset of K. If
D ∩ intL(C) 6= ∅ or intD ∩ L(C) 6= ∅, then 0 ∈ int(D − L(C)).

Proof. Suppose that y ∈ D ∩ intL(C). Then there exists an open ball B(y; r) ⊆
L(C) for some r ∈ R++. Clearly

B(0; r) = y − B(y; r). (2.12)

Since y ∈ D, B(y; r) ⊆ L(C), equation (2.12) implies B(0; r) ⊆ D − B(y; r).
Therefore,

0 ∈ int(D − L(C)).
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2.4. Application to proper, lower-semicontinuous convex functions

In the case of intD ∩ L(C) 6= ∅, we let x ∈ intD ∩ L(C). Then there exists an
open ball B(x; r) ⊆ D for some r ∈ R++. Clearly

B(0; r) = x− B(x; r). (2.13)

Since x ∈ L(C), B(x; r) ⊆ D, equation (2.13) implies B(0; r) ⊆ L(C) − D.
Therefore,

0 ∈ int(D − L(C)).

Theorem 2.4.2. Let f ∈ Γ0(H), g ∈ Γ0(H). Then

∂f�∂g ⊆ ∂(f�g).

Proof. If (∂f�∂g)(z) = ∅, clearly the inclusion holds. Assume (∂f�∂g)(z) 6=
∅. Let v ∈ (∂f�∂g)(z). Since f ∈ Γ0(H), g ∈ Γ0(H), by Fact 1.3.27, ∂f
and ∂g are maximally monotone. According to the definition of the parallel sum
between operators (Definition 1.2.2), v ∈ (∂f�∂g)(z) implies v ∈ ((∂f)−1 +
(∂g)−1)−1(z), i.e., z ∈ ((∂f)−1 + (∂g)−1)(v). In other words, z ∈ (∂f)−1(v) +
(∂g)−1(v).
Let a1 ∈ (∂f)−1(v) and a2 ∈ (∂g)−1(v) such that z = a1 + a2. Then

{
v ∈ ∂f(a1),
v ∈ ∂g(a2),

so
v ∈ ∂f(a1) ∩ ∂g(a2) (a1 + a2 = z).

According to the Fact 1.3.52,

v ∈ ∂f(a1) ∩ ∂g(a2)⇔ v ∈ ∂(f�g)(z).

Thus,
∂f�∂g ⊆ ∂(f�g).

Theorem 2.4.3. Let f ∈ Γ0(Rm), g ∈ Γ0(Rm). If dom f∗ ∩ int dom g∗ 6= ∅, then

(1) 0 ∈ int(dom f∗ − dom g∗).

(2) f�g = f � g ∈ Γ0(Rm).

(3) ∂(f�g) = ∂f�∂g.

41



2.4. Application to proper, lower-semicontinuous convex functions

Proof. (1) Since f ∈ Γ0(Rm), g ∈ Γ0(Rm), by Fact 1.3.39 and Fact 1.3.40, f∗

and g∗ are in Γ0(Rm). Thus, dom f∗ and dom g∗ are convex.

Because dom f∗ ∩ int dom g∗ 6= ∅, due to Theorem 2.4.1,

0 ∈ int(dom f∗ − dom g∗).

(2) Using the result of (1) with the Fact 1.3.51 to complete the proof that f�g =
f � g ∈ Γ0(Rm).

(3) Since we proved f�g = f � g ∈ Γ0(Rm) above, according to Fact 1.3.40,
f�g = (f�g)∗∗. Thus,

∂(f�g) = ∂(f�g)∗∗

= ∂[(f�g)∗]∗. (2.14)

Since f�g ∈ Γ0(Rm), combine Fact 1.3.39 and Fact 1.3.40, we have

(f�g)∗ ∈ Γ0(Rm).

Therefore, by Fact 1.3.46, ∂[(f�g)∗]∗ = [∂(f�g)∗]−1.

By Fact 1.3.49, [∂(f�g)∗]−1 = [∂(f∗+ g∗)]−1. As dom f∗ ∩ int dom g∗ 6=
∅, the sum rule for subdifferentials (Fact 1.3.31) gives

[∂(f∗ + g∗)]−1 = [∂f∗ + ∂g∗]−1. (2.15)

Again, because f ∈ Γ0(Rm), g ∈ Γ0(Rm), by Fact 1.3.46,

∂f∗ = (∂f)−1, ∂g∗ = (∂g)−1.

Thogether with (2.15) yeilds

[∂f∗ + ∂g∗]−1 = [(∂f)−1 + (∂g)−1]−1

= ∂f�∂g.

Lemma 2.6. Let K be a real Hilbert space, let f ∈ Γ0(H), let g ∈ Γ0(K),
and let L : H → K be a nonzero bounded linear invertible operator. Suppose
[L(dom f) + b]∩ intdom g 6= ∅. Then ∂[f(x) + g(Lx+ b)] = ∂f(x) +L? ◦ ∂g ◦
(Lx+ b).
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Proof. Let h(x) = g(Lx+ b), which can implies

domh = L−1(dom g − b).

Since [L(dom f) + b] ∩ intdom g 6= ∅, there exists an x0 ∈ dom f such that

Lx0 + b ∈ intdom g,

i.e.,
x0 ∈ L−1(intdom g − b) ⊂ domh.

Because L−1(intdom g − b) is open, x0 ∈ intdomh. Therefore,

x0 ∈ dom f ∩ intdomh.

By Fact 1.3.31,
∂(f + h) = ∂f + ∂h.

Because h(x) = g(Lx+ b), we have

∂h(x) = L? ◦ ∂g ◦ (Lx+ b)

by Fact 1.3.30. Therefore,

∂[f(x) + g(Lx+ b)] = ∂f(x) + L? ◦ ∂g ◦ (Lx+ b).

Theorem 2.4.4. By the definition of the primal inclusion problem (P), with A =
∂f,B = ∂g,D = ∂l, where f, g, l ∈ Γ0(Rm). Then

(1) We obtain the primal inclusion problem

find x̄ ∈ Rm such that z ∈ ∂f(x̄) + L? ◦ (∂g�∂l) ◦ (Lx̄− r) (2.16)

(2) Every solution of (2.16) is also a solution of the optimization problem

Argminx∈Rm{f(x) + ((g�l)(Lx− r))− 〈z, x〉}. (2.17)

(3) If in addition, [L(dom f)−r]∩intdom(g�l) 6= ∅, and dom g∗∩int dom l∗ 6=
∅, then (2.16) and (2.17) are equivalent.

Proof. (1) By Fact 1.3.27, ∂f, ∂g and ∂l are maximally monotone. Thus, once
we plug them into the dual problem (P) by lettingA = ∂f,B = ∂g,D = ∂l,
we obtain equation (2.16).
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(2) Now we show every solution x̄ of (2.16) is also a solution of (2.17).
First, let’s move z from the left side of equation (2.16) to its right side. We
obtain

0 ∈ ∂f(x̄) + L? ◦ (∂g�∂l) ◦ (Lx̄− r)− ∂〈z, x̄〉. (2.18)

Due to Theorem 2.4.2, since g, l ∈ Γ0(Rm), equation (2.18) implies

0 ∈ ∂f(x̄) + L? ◦ ∂(g�l) ◦ (Lx̄− r)− ∂〈z, x̄〉.

Take 
v1 ∈ ∂f(x̄),
v2 ∈ ∂(g�l) ◦ (Lx̄− r),
v3 ∈ ∂〈−z, x̄〉,

such that v1 +L?v2 + v3 is a generic point in ∂f(x̄) +L? ◦ ∂(g�l) ◦ (Lx̄−
r) + ∂〈−z, x̄〉. By the definition of subdifferential, for all y ∈ Rm

〈v1, y − x̄〉 ≤ f(y)− f(x̄),
〈v2, Ly − r − (Lx̄− r)〉 ≤ (g�l)(Ly − r)− (g�l)(Lx̄− r),
〈v3, y − x̄〉 ≤ 〈z, x̄〉 − 〈z, y〉.

Due to 〈v2, Ly − r − (Lx̄− r)〉 = 〈L?v2, y − x̄〉, we have

〈v1 + L?v2 + v3, y − x̄〉 ≤ f(y)− f(x̄) + [(g�l)(Ly − r)
− (g�l)(Lx̄− r)]− 〈z, y〉+ 〈z, x̄〉

= f(y) + (g�l)(Ly − r)− 〈z, y〉
− f(x̄)− (g�l)(Lx̄− r) + 〈z, x̄〉.

In turn,

v1 + L?v2 + v3 ∈ ∂(f(x̄) + (g�l)(Lx̄− r)− 〈z, x̄〉).

Therefore,

∂f(x̄)+L?◦∂(g�l)◦(Lx̄−r)+∂〈−z, x̄〉 ⊆ ∂(f(x̄)+(g�l)(Lx̄−r)−〈z, x̄〉).
(2.19)

Since 0 ∈ ∂f(x̄) + L? ◦ ∂(g�l) ◦ (Lx̄− r)− ∂〈z, x̄〉, (2.19) implies that

0 ∈ ∂(f(x̄) + (g�l)(Lx̄− r)− 〈z, x̄〉). (2.20)

By Fact 1.3.34, the x̄ which satisfies the inclusion (2.20) is also an element
of the set

Argminx∈Rm{f(x) + ((g�l)(Lx− r))− 〈z, x〉},

and vice versa.
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(3) It suffices prove

∂f(x̄)+L?◦∂(g�l)◦(Lx̄−r)+∂〈−z, x̄〉 = ∂(f(x̄)+∂(g�l)(Lx̄−r)−〈z, x̄〉).
(2.21)

Because g, l ∈ Γ0(Rm), and dom g∗ ∩ int dom l∗ 6= ∅, using the Theorem
2.4.3 we have

∂f(x̄)+L?(∂g�∂l)(Lx̄−r)−∂〈z, x̄〉 = ∂f(x̄)+L?∂(g�l)(Lx̄−r)−∂〈z, x̄〉.

Again, by using the same theorem, we have g�l ∈ Γ0(Rm). Then we can
apply the Lemma 2.6 to get the conclusion that

∂f(x̄) + L? ◦ ∂(g�l) ◦ (Lx̄− r) = ∂[f(x̄) + (g�l)(Lx̄− r)]

since we have the condition [L(dom f)− r] ∩ intdom(g�l) 6= ∅. As

dom〈z, x〉 = Rm,

we have

[L(dom f)− r] ∩ intdom(g�l) ∩ intdom〈z, x̄〉
=[L(dom f)− r] ∩ intdom(g�l) ∩ Rm

=[L(dom f)− r] ∩ intdom(g�l) 6= ∅.

Thus, by Fact 1.3.31, we get equation (2.21).

Theorem 2.4.5. By the definition of the dual problem (D), with A = ∂f,B =
∂g,D = ∂l, where f, g, l ∈ Γ0(Rm). Then

(1) We obtain the dual inclusion problem

find v̄ ∈ Rm such that (∃x̄ ∈ Rm)

{
z − L?v̄ ∈ ∂f(x̄)
v̄ ∈ (∂g�∂l)(Lx̄− r). (2.22)

(2) Every solution v̄ of (2.22) is also a solution of the the optimization problem

Argminv∈Rm{(g∗ + l∗)(v) + f∗(z − L?v) + 〈r, v〉}. (2.23)

(3) If in addition, [−L? dom(g∗ + l∗) + z] ∩ intdom(f∗) 6= ∅, and dom g∗ ∩
int dom l∗ 6= ∅, then (2.22) and (2.23) are equivalent.
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Proof. (1) By Fact 1.3.27, ∂f, ∂g and ∂l are maximally monotone. Thus, once
we plug them into the dual problem (D) by lettingA = ∂f,B = ∂g,D = ∂l,
we obtain equation (2.22).

(2) Now we show every solution of (2.22) is also a solution of (2.23). Due to
Theorem 2.4.2, since g, l ∈ Γ0(Rm),

v̄ ∈ (∂g�∂l)(Lx̄− r) implies v̄ ∈ [∂(g�l)](Lx̄− r). (2.24)

Moreover, by Fact 1.3.42, (2.24) implies Lx̄−r ∈ ∂((g�l)∗)(v̄). In general,

(2.22)⇔
{
x̄ ∈ ∂f∗ ◦ (z − L?v̄) (2.25a)

Lx̄− r ∈ ∂((g�l)∗)(v̄) (2.25b)

Multiplying (2.25a) by L, we obtain

Lx̄ ∈ L ◦ ∂f∗ ◦ (z − L?v̄). (2.26)

(2.25b)− (2.26)⇒ 0 ∈ ∂[(g�l)∗](v̄) + ∂〈r, v̄〉 − L ◦ ∂f∗ ◦ (z − L?v̄).

Since g ∈ Γ0(Rm) and l ∈ Γ0(Rm), by Fact 1.3.49, (g�l)∗ = g∗ + l∗. That
is,

0 ∈ ∂(g∗ + l∗)(v̄)− L ◦ ∂f∗ ◦ (z − L?v̄) + ∂〈r, v̄〉.

Take 
v1 ∈ ∂(g∗ + l∗)(v̄),
v2 ∈ ∂f∗ ◦ (z − L?v̄),
v3 ∈ ∂〈r, v̄〉,

such that v1−Lv2 + v3 is a generic point in ∂(g∗+ l∗)(v̄)−L ◦ ∂f∗ ◦ (z−
L?v̄) + ∂〈r, v̄〉. By the definition of subdifferential, for all y ∈ Rm

〈v1, y − v̄〉 ≤ (g∗ + l∗)(y)− (g∗ + l∗)(v̄),
〈v2, z − L?y − (z − L?v̄)〉 ≤ f∗(z − L?y)− f∗(z − L?v̄),
〈v3, y − v̄〉 ≤ 〈r, y〉 − 〈r, v̄〉.

Due to 〈v2, z − L?y − (z − L?v̄)〉 = 〈−Lv2, y − v̄〉, for all y ∈ Rm :

〈v1 − Lv2 + v3, y − v̄〉 ≤ (g∗ + l∗)(y)− (g∗ + l∗)(v̄) + f∗(z − L?y)

− f∗(z − L?v̄) + 〈r, y〉 − 〈r, v̄〉
= (g∗ + l∗)(y) + f∗(z − L?y) + 〈r, y〉−

((g∗ + l∗)(v̄) + f∗(z − L?v̄) + 〈r, v̄〉)
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in turn,

v1 − Lv2 + v3 ∈ ∂((g∗ + l∗)(v̄) + f∗(z − L?v̄) + 〈r, v̄〉).

Therefore,

∂(g∗ + l∗)(v̄)− L ◦ ∂f∗ ◦ (z − L?v̄) + ∂〈r, v̄〉
⊆ ∂((g∗ + l∗)(v̄) + f∗(z − L?v̄) + 〈r, v̄〉). (2.27)

Since 0 ∈ ∂(g∗+ l∗)(v̄)−L ◦ ∂f∗ ◦ (z−L?v̄) + ∂〈r, v̄〉, (2.27) implies that

0 ∈ ∂((g∗ + l∗)(v̄) + f∗(z − L?v̄) + 〈r, v̄〉). (2.28)

By Fact 1.3.34, the v̄ which satisfies the inclusion (2.28) is also an element
of the set

Argminv∈Rm{(g∗ + l∗)(v) + f∗(z − L?v) + 〈r, v〉},

and vice versa.

(3) It suffices to prove

∂(g∗ + l∗)(v̄)− L ◦ ∂f∗ ◦ (z − L?v̄) + ∂〈r, v̄〉
= ∂((g∗ + l∗)(v̄) + f∗(z − L?v̄) + 〈r, v̄〉). (2.29)

Because g, l ∈ Γ0(Rm), and dom g∗ ∩ int dom l∗ 6= ∅, using the Theorem
1.3.41 we have (g∗ + l∗) ∈ Γ0(Rm). Then we can apply the Lemma 2.6 to
get the conclusion that

∂(g∗ + l∗)(v̄)− L ◦ ∂f∗ ◦ (z − L?v̄) = ∂((g∗ + l∗)(v̄) + f∗(z − L?v̄))

since we have the condition [−L? dom(g∗+ l∗) + z]∩ intdom(f∗) 6= ∅. As
dom〈r, v〉 = Rm, we have

[−L? dom(g∗ + l∗) + z] ∩ intdom(f∗) ∩ intdom〈r, v̄〉
=[−L? dom(g∗ + l∗) + z] ∩ intdom(f∗) ∩ Rm

=[−L? dom(g∗ + l∗) + z] ∩ intdom(f∗) 6= ∅.

Thus, by Fact 1.3.31, we get equation (2.29).
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Chapter 3

Douglas-Rachford algorithm with
a changed parameter

3.1 Overview

As we saw in the previous chapter, the classic Douglas-Rachford algorithm
has a parameter 2 in its iteration. That parameter gives me an inspiration: what if
we changed the value of that parameter? In this chapter, a new algorithm which
based on the classic Douglas-Rachford algorithm is constructed. I will prove the
properties of this algorithm and then show that it can be applied on the composited
monotone inclusion problems and on the optimization problems.

3.2 α-Douglas-Rachford algorithm, with parameter
α ∈ [1, 2)

First, let’s see some theorems and facts.

Theorem 3.2.1. If A and B are maximally monotone operators fromH to 2H, and
0 ∈ int(domA− domB), then zer(A+B + γ Id) 6= ∅ when γ ∈ R++.

Proof. As A and B are maximally monotone operators and 0 ∈ int(domA −
domB), according to Fact 1.2.28, A + B is a maximally monotone operator. By
Fact 1.2.29, 1

γ (A+B) is also maximally monotone. Let Ā = 1
γ (A+B).According

to Fact 1.2.32,
ran(Ā+ Id) = H ⇒ 0 ∈ ran(Ā+ Id),

Then, zer(Ā+ Id) 6= ∅. Because

zer(Ā+ Id) = zer[γ(Ā+ Id)],

= zer(A+B + γ Id),

we have zer(A+B + γ Id) 6= ∅.
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3.2. α-Douglas-Rachford algorithm, with parameter α ∈ [1, 2)

Fact 3.2.2. [4, Corollary 26.8](see also [2, Corollary 3]) Let m be an integer such
that m ≥ 2, set I = {1, . . . ,m}, and let

(Ai)i∈I : H → 2H

be maximally monotone operators. For every i ∈ I , let (xi,n, ui,n)+∞
n=1 be a se-

quence in graAi and let (xi, ui) ∈ H ×H. Suppose that

∑
i∈I

ui,n → 0 and (∀i ∈ I)


xi,n ⇀ xi
ui,n ⇀ ui
mxi,n −

∑
j∈I xj,n → 0.

Then there exists x ∈ zer
∑

i∈I Ai such that the following hold:

(i) x = x1 = · · · = xm.

(ii)
∑

i∈I ui = 0.

(iii) (∀i ∈ I) (x, ui) ∈ graAi.

(iv)
∑

i∈I〈xi,n, ui,n〉 → 〈x,
∑

i∈I ui〉 = 0.

Theorem 3.2.3. Let A be a maximally monotone operator from K to 2K, let α ∈
[1, 2). Define RαA = αJA − Id . Then RαA is nonexpansive.

Proof. Let x, y ∈ K. We derive an equivalent criterion for nonexpansivity:

RαA is nonexpansive

⇔‖RαAx−RαAy‖ ≤ ‖x− y‖
⇔‖(αJA − Id)x− (αJA − Id)y‖ ≤ ‖x− y‖
⇔‖α(JAx− JAy)− (x− y)‖ ≤ ‖x− y‖
⇔‖α(JAx− JAy)− (x− y)‖2 ≤ ‖x− y‖2

⇔〈α(JAx− JAy)− (x− y), α(JAx− JAy)− (x− y)〉 ≤ ‖x− y‖2

⇔α2‖(JAx− JAy)‖2 + ‖x− y‖2 − 2α〈JAx− JAy, x− y〉 ≤ ‖x− y‖2

⇔α2‖(JAx− JAy)‖2 ≤ 2α〈JAx− JAy, x− y〉

⇔α

2
‖(JAx− JAy)‖2 ≤ 〈JAx− JAy, x− y〉

Since A is maximally monotone, it follows from Fact 1.2.38 that JA is firmly
nonexpansive. According to Fact 1.2.21, we have

(∀x ∈ H) (∀y ∈ H) ‖JAx− JAy‖2 ≤ 〈x− y, JAx− JAy〉.
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3.2. α-Douglas-Rachford algorithm, with parameter α ∈ [1, 2)

As α ∈ [1, 2], α2 ∈ [1
2 , 1],

α

2
‖(JAx− JAy)‖2 ≤ ‖JAx− JAy‖2 ≤ 〈JAx− JAy, x− y〉.

Thus, RαA is nonexpansive.

Remark 3.1. Theorem 3.2.3 holds whenever 0 ≤ α ≤ 2.

Similarly, if we let B be a maximally monotone operator from K to 2K, and
define RαB = αJB − Id, RαB is nonexpansive.

Theorem 3.2.4. Let α ∈ [1, 2), let A, B be maximally monotone operators from
K to 2K, and 0 ∈ int(domA− domB). Let T = RαA ◦RαB . Then

(1) T is nonexpansive;

(2) JB(FixT ) = zer(A+B + (2− α) Id);

(3) FixT 6= ∅.

Proof. (1) According to Theorem 3.2.3, both RαA and RαB are nonexpansive.
Thus, for any x, y ∈ K,

‖Tx− Ty‖ = ‖RαA ◦RαBx−RαA ◦RαBy‖
≤ ‖RαBx−RαBy‖
≤ ‖x− y‖,

that is, T is nonexpansive.

(2) Since A+B is maximally monotone, according to Theorem 3.2.1,

zer(A+B + (2− α) Id) 6= ∅.

Consider an arbitrary x ∈ K from this set, i.e.,

0 ∈ Ax+Bx+ (2− α)x.

Therefore, there exists y ∈ K such that

x− y ∈ Ax+ (2− α)x and y − x ∈ Bx,

which is equivalent to

(α− 1)x− y ∈ Ax and x = JBy.
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3.2. α-Douglas-Rachford algorithm, with parameter α ∈ [1, 2)

Thus,
αJBy − y ∈ A ◦ JBy + JBy.

which implies
JBy = JA(αJBy − y).

Therefore,

0 = αJA(αJBy − y)− αJBy
⇔y = αJA(αJBy − y)− (αJBy − y)

⇔y = (αJA − Id) ◦ (αJB − Id)y

⇔y = RαA(RαBy).

Note that x = JBy and x ∈ zer(A + B + (2 − α) Id). Consequently, we
have

JB(FixT ) ∈ zer(A+B + (2− α) Id).

Since 2− α > 0, A+B + (2− α) Id is strictly monotone, we obtain that

zer(A+B + (2− α) Id)

is a singleton by using Fact 1.2.27. Hence,

JB(FixT ) = zer(A+B + (2− α) Id).

(3) In the proof of (2), we have y ∈ FixT, so FixT 6= ∅.

The following result is well-known.

Lemma 3.2. Consider the Douglas-Rachford algorithm with λn = 1 for all n and
γ = 1. Then (DR) becomes

yn = JBxn,
zn = JA(2yn − xn),
xn+1 = xn + (zn − yn).

This algorithm can also be written as

xn+1 = xn +
1

2
(RA ◦RBxn − xn),

in terms of
xn+1 = DA,B(xn), (3.1)

where
DA,B =

Id +RA ◦RB
2

=
1

2
Id +

1

2
RA ◦RB.
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3.2. α-Douglas-Rachford algorithm, with parameter α ∈ [1, 2)

Proof.

xn+1 = xn + (zn − yn)

= xn + JA(2JBxn − xn)− JBxn

=
xn + (xn − 2JBxn) + 2JA(2JBxn − xn)

2

=
xn −RBxn + 2JA(RBxn)

2

=
xn +RA ◦RBxn

2

=
Id +RA ◦RB

2
xn

That is, xn+1 = xn + 1
2(RA ◦RBxn − xn). Hence, (3.1) holds.

We now introduce α-Douglas-Rachford algorithm.

Lemma 3.3. Changing the parameter 2 of the algorithm (DR) into α, where α ∈
[1, 2), we propose the α-DR algorithm

yn = JγBxn
zn = JγA(αyn − xn)
xn+1 = xn + λn(zn − yn).

(α-DR)

If we keep the assumption that λn = 1 for all n and γ = 1, then following holds:

(1) (α-DR) can also be written as

xn+1 = xn +
1

α
(RαA ◦RαBxn − xn),

in terms of
xn+1 = Dα

A,B(xn), (3.2)

where
Dα
A,B = (1− 1

α
) Id +

1

α
RαA ◦RαB.

(2) Dα
A,B is an averaged mapping.
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3.2. α-Douglas-Rachford algorithm, with parameter α ∈ [1, 2)

Proof. (1) According to the definition of the α-DR algorithm,

xn+1 = xn + (JA(αyn − xn)− yn)

= xn + (JA(αJBxn − xn)− JBxn)

=
αxn − αJBxn + αJA(αJBxn − xn)

α

=
(α− 1)xn + xn − αJBxn + αJA(αJBxn − xn)

α

=
(α− 1)xn + (αJA − Id) ◦ (αJB − Id)xn

α

=
(α− 1)xn +RαA ◦RαBxn

α

= (1− 1

α
)xn +

1

α
RαAR

α
Bxn.

It follows that

xn+1 =

[
(1− 1

α
) Id +

1

α
RαA ◦RαB

]
xn.

So (3.2) holds.

(2) Because RαA ◦ RαB is nonexpansive, as 1 ≤ α < 2, Dα
A,B is an averaged

operator.

Remark 3.4. [4, Remark 4.34] Let D be a nonempty subset ofH, let T : D → H.

(1) If T is averaged, then it is nonexpansive.

(2) If T is nonexpansive, it is not necessarily averaged: consider T = − Id :
H → H whenH 6= {0}.

(3) T is firmly nonexpansive if and only if it is 1/2-averaged.

Theorem 3.2.5. Let α ∈ [1, 2), let A and B be maximally monotone operators
from K to 2K with 0 ∈ int(domA− domB). Let λn = 1 for all n, let γ = 1, and
let x0 ∈ Rm. Set 

yn = JBxn
zn = JA(αyn − xn)
xn+1 = xn + (zn − yn).

(3.3)

Then there exists x ∈ FixRαA ◦RαB such that the following hold:

(1) JBx = zer(A+B + (2− α) Id). Moreover, the answer is unique.
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3.2. α-Douglas-Rachford algorithm, with parameter α ∈ [1, 2)

(2) (yn − zn)+∞
n=1 converges to 0.

(3) (xn)+∞
n=1 converges to x.

(4) (yn)+∞
n=1 converges to JBx.

(5) (zn)+∞
n=1 converges to JBx.

Proof. (1) Let T = RαA ◦ RαB. According to Theorem 3.2.4, FixT 6= ∅. Then
for any x ∈ FixT , we have x = RαA(RαBx), and this together with RαA =
αJA − Id and RαB = αJB − Id, yields that

(α− 1)JBx− x ∈ AJBx,

that is,
JBx− x ∈ AJBx+ (2− α)JBx.

Thus,
0 ∈ AJBx+ (2− α)JBx+ (x− JBx). (3.4)

By the definition of the resolvent, we have

x ∈ (B + Id)JBx,

and so,
x− JBx ∈ B ◦ JBx.

Combining with (3.4), one has

0 ∈ AJBx+ (2− α)JBx+B ◦ JBx,

that is
0 ∈ [A+B + (2− α) Id] ◦ JBx.

Consequently, we have

JBx ∈ zer(A+B + (2− α) Id).

Since 2− α > 0, A+B + (2− α) Id is strictly monotone, we obtain that

zer(A+B + (2− α) Id)

is a singleton by using Fact 1.2.27. Therefore

JBx = zer(A+B + (2− α) Id).
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(2) From (3.3), it follows that

zn − yn = JA(αyn − xn)− JBxn
= JA(αJBxn − xn)− JBxn

=
αJA(αJBxn − xn)− αJBxn

α

=
αJA(αJBxn − xn)− (αJBxn − xn)− xn

α

=
αJA(RαBxn)−RαBxn − xn

α

=
RαA ◦RαBxn − xn

α

=
1

α
(Txn − xn).

Thus, xn+1 = xn+ 1
α(Txn−xn).By Fact 1.2.22(1), we have Txn−xn → 0.

Therefore, zn − yn → 0.

(3) Since 1 ≤ α < 2, we can apply Fact 1.2.22(2) to complete this proof.

(4) It follows from (3.3) and JB = (Id +B)−1 that xn ∈ (B + Id)yn, i.e.,
xn − yn ∈ Byn. Hence, (yn, xn − yn) ∈ graB.

Similarly, (zn, αyn − xn − zn) ∈ graA. Set

∀n ∈ N, vn := xn − yn, wn := αyn − xn − zn. (3.5)

Then we have 
(zn, wn) ∈ graA
(yn, vn) ∈ graB
wn + vn = (α− 1)yn − zn

(3.6)

Since result (3) tells us that (xn)+∞
n=1 converges to x, (xn)+∞

n=1 is bounded.
According to the algorithm (3.3), yn = JBxn. By Fact 1.2.40 (1), JA and
JB are firmly nonexpansive. Thus,

∀n ∈ N ‖yn − y0‖ = ‖JBxn − JBx0‖ ≤ ‖xn − x0‖,

which implies (yn)+∞
n=1 is bounded.

Then there exists a subsequence (ynk)+∞
k=1 of (yn)+∞

n=1 such that (ynk)+∞
k=1

is a convergent sequence. Suppose ynk → ȳ, as zn − yn → 0 has been
proved, there exists a corresponding subsequence (znk)+∞

k=1 of (zn)+∞
n=1 such

that zkn → ȳ. By (3.5), we have vnk → x− ȳ and wnk → (α− 1)ȳ − x.
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Let’s set A1 := A + (2 − α) Id, A2 := B. It follows from Fact 1.2.28 that
A1 and A2 are maximally monotone. Since

(zn, wn) ∈ graA and (yn, vn) ∈ graB

as showed in (3.6), we have{
(znk , wnk + (2− α)znk) ∈ graA1

(ynk , vnk) ∈ graA2,

with znk → ȳ, ynk → ȳ, wnk + (2 − α)znk → ȳ − x, vnk → x − ȳ, znk −
ynk → 0, ynk − znk → 0. Again, from (3.5), we have

wnk + (2− α)znk + vnk = αynk − xnk − znk + (2− α)znk + xnk − ynk
= (α− 1)(ynk − znk)→ 0

This combining with Fact 3.2.2, yields that there exists a ∈ zer(A1 + A2)
such that

a = ȳ and
{

(a, ȳ − x) ∈ graA1,
(a, x− ȳ) ∈ graA2.

That is, {
(ȳ, ȳ − x) ∈ gra(A+ (2− α) Id),
(ȳ, x− ȳ) ∈ graB.

In view of (ȳ, ȳ − x) ∈ gra(A+ (2− α) Id), one has

ȳ − x ∈ [A+ (2− α)]ȳ.

which is equivalent to
(α− 1)ȳ − x ∈ Aȳ.

In view of (ȳ, x− ȳ) ∈ graB, one has

ȳ = JBx.

Together, we obtain

ȳ = JBx and ȳ ∈ domA.

Thus, JBx is a sequential cluster point of (yn)+∞
n=1. Because JBx emerges

as the limit of every convergent subsequence for (yn)+∞
n=1, we conclude that

JBx is the unique sequential cluster point. Since yn is bounded and has only
one sequential cluster point, by Fact 1.1.19, yn → JBx.
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3.2. α-Douglas-Rachford algorithm, with parameter α ∈ [1, 2)

(5) Combining result (2) and result (4), we have zn = (zn−yn)+yn → 0+JBx,
i.e., zn → JBx.

Remark 3.5. The proof of (4) works in a Hilbert space by replacing strong con-
vergence with weak convergence in appropriate places. In particular, we have
yn ⇀ JBx.

Remark 3.6. In Rm, the proof of (4) is simple by using that JB is Lipschitz con-
tinuous:

lim
n→+∞

yn = lim
n→+∞

JB(xn) = JBx.

Remark 3.7. The application of the α-Douglas-Rachford algorithm is wider than
the classic Douglas-Rachford algorithm since there is a requirement on the clas-
sic one that zer(A + B) 6= ∅, while the α-Douglas-Rachford algorithm does
not need a strict condition like that. Because according to Theorem 3.2.1, once
0 ∈ int(domA− domB), zer[A+B + (2− α) Id] 6= ∅ for sure.

3.2.1 Application to composited monotone inclusion problems

Definition 3.2.6. Let B : H → 2H, D : H → 2H. Define B
β

� D = (B−1 +
D−1 + β Id)−1, where β ∈ R.
Lemma 3.2.7. Let B : Rm → 2R

m
and D = β2 Id with β1, β2 ∈ R++. Then

(B
β1
� D) = B�

(
β2

1 + β1β2
Id

)
.

Proof. Since D = β2 Id,

(B
β1
� D) =[B−1 + (β2 Id)−1 + β1 Id]−1

= [B−1 +
1 + β1β2

β2
Id]−1.

Therefore,

(B
β1
� D) = B�

(
β2

1 + β1β2
Id

)
.

Lemma 3.2.8. Let B : Rm → 2R
m
, D = N{0}, and β ∈ R++. Then

(B
β

� D) = B�

(
1

β
Id

)
.
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Proof. Since D = N{0},

(B
β

� D) = (B−1 +N{0}
−1 + β Id)−1. (3.7)

According to Lemma 1.1.35, N{0}−1y = 0, for any y ∈ Rm. Thus,

(B−1 +N{0}
−1 + β Id)−1 = (B−1 + β Id)−1

Therefore, (3.7) is equivalent to

(B
β

� N{0}) = B�

(
1

β
Id

)
.

Now suppose A : Rm → 2R
m

, B : Rm → 2R
m

and D : Rm → 2R
m

are
maximally monotone operators, and L : Rm → Rm is a nonzero linear invertible
operator.

Also recall that M,Q, S, V,A, and B : Let K = Rm × Rm, τ, σ ∈ R++, and
τσ‖L‖2 < 4.

M : K → 2K : (x, v) 7→ (−z +Ax, r +B−1v);(M)

Q : K → 2K : (x, v) 7→ (0, D−1v);(Q)

S : K → K : (x, v) 7→ (L?v,−Lx);(S)

V : K → K : (x, v) 7→ (
x

τ
− 1

2
L?v,

v

σ
− 1

2
Lx);(V)

A := V −1(
1

2
S +Q);(A)

B := V −1(
1

2
S +M).(B)

Theorem 3.2.9. Suppose M,Q, S, V,A, and B are constructed by (M), (Q), (S),
(V), (A) and (B) respectively. Let α ∈ [1, 2). Then the following two inclusion
problems are equivalent:

(1) Find (x, v) ∈ Rm × Rm such that (x, v) ∈ zer(A + B + (2− α) Id).

(2) Solve the problem with primal inclusion: find x ∈ Rm such that

z ∈ Ax+
2− α
τ

x+
α

4− α
L? ◦ (B

2−α
σ

� D) ◦ (Lx− r) (3.8)
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3.2. α-Douglas-Rachford algorithm, with parameter α ∈ [1, 2)

where L = 4−α
2 L, τ ∈ R++ and σ ∈ R++, together with the dual inclusion:

find v such that there exists an x ∈ Rm that z − α
4−αL

?v ∈ Ax+ (2−α)
τ x

v ∈ (B

2−α
σ

� D) ◦ (Lx− r).
(3.9)

Proof. By the definitions of M,Q, S, V,A, and B, and step 3 of the proof of
Lemma 2.3.4, we have B := V −1(1

2S + M) and A := V −1(1
2S + Q). Note

that

zer(A + B + (2− α) Id) = zer(V −1(M + S +Q) + (2− α) Id)

= zer(V −1(M + S +Q+ (2− α)V ))

= zer(M + S +Q+ (2− α)V ))

For all (x, v) ∈ zer(M + S +Q+ (2− α)V )), we have

(0, 0) ∈(M + S +Q+ (2− α)V )(x, v)

=(−z +Ax+ L?v + (2− α)
x

τ
− 2− α

2
L?v,

r +B−1v +D−1v − Lx+ (2− α)
v

σ
− 2− α

2
Lx).

That is {
0 ∈ −z +Ax+ L?v + (2− α)xτ −

2−α
2 L?v

0 ∈ r +B−1v +D−1v − Lx+ (2− α) vσ −
2−α

2 Lx.

⇔
{

0 ∈ −z +Ax+ (2− α)xτ + α
2L

?v
4−α

2 Lx− r ∈ B−1v +D−1v + (2−α)
σ v.

According to Definition 3.2.6, 4−α
2 Lx−r ∈ B−1v+D−1v+ (2−α)

σ v can be written
as

v ∈ (B

2−α
σ

� D) ◦ (
4− α

2
Lx− r).

Thus, we have  0 ∈ −z +Ax+ (2−α)
τ x+ α

2L
?v

v ∈ (B

2−α
σ

� D) ◦ (4−α
2 Lx− r).

Since L = 4−α
2 L, L? = 2

4−αL
?. Then we have

z ∈ Ax+
2− α
τ

x+
α

4− α
L? ◦ (B

2−α
σ

� D) ◦ (Lx− r).
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3.2. α-Douglas-Rachford algorithm, with parameter α ∈ [1, 2)

Therefore, for any (x, v) ∈ zer(A + B + (2− α) Id), x is also the solution of the
primal inclusion problem (3.8), and v is the solution of the dual inclusion problem
(3.9).

Theorem 3.2.10. Suppose M,Q, S, V,A, and B are constructed by (M), (Q), (S),
(V), (A) and (B) respectively. Let α ∈ [1, 2). The inclusion problem (3.8) together
with inclusion problem (3.9) can be solved by using α-Douglas-Rachford algo-
rithm if domD−1 = Rm. In particular, domD−1 = Rm if one of the following
holds:

(1) D = N{0}.

(2) D = Id .

Proof. Because domD−1 = Rm, we get domQ = K. Since domS = K, we
conclude that

dom(
1

2
S +Q) = K.

As Lemma 2.3.4 shows V is invertible (one-to-one, onto), one has

domA = domV −1(
1

2
S +Q)

= dom(
1

2
S +Q)

=K.

Then
domA− domB = K.

Therefore, we get
0 ∈ int(domA− domB).

As Lemma 2.3.4 also shows A and B are maximally monotone, by Theorem 3.2.9
and Theorem 3.2.5, the composited monotone inclusion problem (3.8) together
with inclusion problem (3.9) can be solved by using α-Douglas-Rachford algo-
rithm.

3.2.2 The application to proper, lower-semicontinuous convex
functions

As f, g, l ∈ Γ0(Rm), we consider the maximal monotone operators: A =
∂f,B = ∂g,D = ∂l. Thus the primal inclusion problem:

find x ∈ R such that z ∈ Ax+
2− α
τ

x+
α

4− α
L? ◦ (B

2−α
σ

� D) ◦ (Lx− r)
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3.2. α-Douglas-Rachford algorithm, with parameter α ∈ [1, 2)

is equivalent to the following inclusion problem:

find x ∈ R such that z ∈ ∂f(x) +
2− α
τ

x+
α

4− α
L? ◦ (∂g

2−α
σ

� ∂l) ◦ (Lx− r).

Theorem 3.2.11. Let f, g, l ∈ Γ0(Rm), let L be a nonzero linear invertible op-
erator, let z, r ∈ Rm, let τ ∈ R++ and σ ∈ R++, and α ∈ [1, 2). If dom g∗ ∩
intdom l∗ 6= ∅, then the following primal inclusion problem

Find x ∈ Rm such that z ∈ ∂f(x)+
2− α
τ

x+
α

4− α
L? ◦ (∂g

2−α
σ

� ∂l)◦ (Lx−r)
(3.10)

can be characterized by the following optimization problem

Argmin{f(·)+
2− α

2τ
‖ ·‖2 +

α

4− α
[(g� l)� (

σ

2(2− α)
‖ ·‖2)](L ·−r)−〈z, ·〉}.

(3.11)

Proof. According to Definition 3.2.6,

∂g

2−α
σ

� ∂l = [(∂g)−1 + (∂l)−1 +
2− α
σ

Id]−1.

Since g, l ∈ Γ0(Rm), by Fact 1.3.46,

[(∂g)−1 + (∂l)−1 +
2− α
σ

Id]−1 = (∂g∗ + ∂l∗ +
2− α
σ

Id)−1.

Because dom g∗ ∩ intdom l∗ 6= ∅, we can use the sum rule for subdifferentials
(Fact 1.3.31) to get

(∂g∗ + ∂l∗ +
2− α
σ

Id)−1 = (∂(g∗ + l∗) +
2− α
σ

Id)−1.

Again, since g, l ∈ Γ0(Rm) and dom g∗ ∩ intdom l∗ 6= ∅, Theorem 1.3.41 implies
that g∗ + l∗ ∈ Γ0(Rm). Therefore, we can use Fact 1.3.32 to get

(∂(g∗ + l∗) +
2− α
σ

Id)−1 = [∂(g∗ + l∗ +
2− α

2σ
‖ · ‖2)]−1,

which is equivalent to

∂(g∗ + l∗ +
2− α

2σ
‖ · ‖2)∗ (3.12)

as g∗ + l∗ + 2−α
2σ ‖ · ‖

2 ∈ Γ0(Rm). By using the same method, as f ∈ Γ0(Rm), we
have

∂f +
2− α
τ

Id = ∂(f +
2− α

2τ
‖ · ‖2). (3.13)
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3.2. α-Douglas-Rachford algorithm, with parameter α ∈ [1, 2)

Obviously, dom ‖·‖2 = Rm and ‖·‖2 ∈ Γ0(Rm). Thus, we have 0 ∈ int[dom(g∗+
l∗)− dom 2−α

2σ ‖ · ‖
2].

By Fact 1.3.50, equation (3.12) can be rewritten as ∂[(g∗ + l∗)∗ � (2−α
2σ ‖ · ‖

2)∗].
Again, by using the Theorem 2.4.1 and Fact 1.3.50 with the reason that dom g∗ ∩
intdom l∗ 6= ∅, the set in line (3.12) can be written as

∂[(g∗∗ � l∗∗)� (
2− α

2σ
‖ · ‖2)∗].

Because g, l ∈ Γ0(Rm), by Fact 1.3.40, g∗∗ = g and l∗∗ = l. Moreover, as Exam-
ple 1.3.38 says (2−α

2σ ‖ · ‖
2)∗ = ( σ

2(2−α)‖ · ‖
2), expression (3.12) finally equals

∂[(g � l)� (
σ

2(2− α)
‖ · ‖2)]. (3.14)

Combining the result of (3.13) and (3.14), and moving z to the end of the right
hand side, the inclusion problem showed by (3.10) becomes

0 ∈ ∂(f+
2− α

2σ
‖·‖2)+

α

4− α
L?◦∂[(g�l)�(

σ

2(2− α)
‖·‖2)]◦(Lx−r)+∂〈−z, x〉

(3.15)
Since (g � l) � σ

2(2−α)‖ · ‖
2 can be considered as a Moreau envelope with the

function g � l and λ = 2−α
σ . Thus, by using Fact 1.3.55, we have

dom[(g � l)�
σ

2(2− α)
‖ · ‖2] = Rm.

For f + 2−α
2τ ‖ · ‖

2, we have

dom(f +
2− α

2τ
‖ · ‖2) = dom f 6= ∅.

Since L is a nonempty linear operator and r ∈ Rm, once dom f 6= ∅,

[Ldom(f +
2− α

2τ
‖ · ‖2)]− r 6= ∅. (3.16)

Combining the result that dom[(g � l)� σ
2(2−α)‖ · ‖

2] = Rm with (3.16), we have

[Ldom(f +
2− α

2τ
‖ · ‖2)− r] ∩ intdom[(g � l)�

σ

2(2− α)
‖ · ‖2] 6= ∅. (3.17)

Due to Lemma 2.6

∂(f +
2− α

2τ
‖ · ‖2) +

α

4− α
L? ◦ ∂[(g � l)� (

σ

2(2− α)
‖ · ‖2)] ◦ (L · −r)

=∂{f +
2− α

2τ
‖ · ‖2 +

α

4− α
[(g � l)� (

σ

2(2− α)
‖ · ‖2)] ◦ (L · −r)} (3.18)
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Combining with the fact that intdom〈−z, x〉 = Rm, we get

∂{f +
2− α

2τ
‖ · ‖2 +

α

4− α
[(g � l)� (

σ

2(2− α)
‖ · ‖2)] ◦ (L · −r)}+ ∂〈−z, x〉

=∂{f +
2− α

2τ
‖ · ‖2 +

α

4− α
[(g � l)� (

σ

2(2− α)
‖ · ‖2)] ◦ (L · −r) + 〈−z, ·〉}

(3.19)

by Fact 1.3.31. Combining the result of (3.15), (3.18) and (3.19), we get

0 ∈ ∂{f +
2− α

2τ
‖ · ‖2 +

α

4− α
[(g� l)� (

σ

2(2− α)
‖ · ‖2)]◦ (L ·−r)−〈z, ·〉}(x).

(3.20)
By Fact 1.3.34, the inclusion (3.20) is equivalent to the statement that x belongs to

Argmin{f(·)+
2− α

2τ
‖·‖2 +

α

4− α
[(g� l)�(

σ

2(2− α)
‖·‖2)]◦(L ·−r)−〈z, ·〉},

which is exactly the optimization problem (3.11). Thus, the primal inclusion prob-
lem (3.10) is equivalent to the optimization problem (3.11).

Remark 3.8. Combining Theorem 3.2.11 and Theorem 3.2.10, the optimization
problem (3.11) can be solved by using α-Douglas-Rachford algorithm if we have
dom(∂l)−1 = Rm. This holds when l = ι{0} or l = 1

2‖ · ‖
2.
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Chapter 4

Special cases of the composited
monotone inclusion problems and
the double regularization

4.1 Overview

In this chapter, we still let A : Rm → 2R
m

, B : Rm → 2R
m

and D : Rm →
2R

m
be maximally monotone operators. Let z, r ∈ Rm and α ∈ [1, 2), let L :

Rm → Rm be a nonzero linear invertible operator, let τ, σ ∈ R++ and τσ‖L‖2 <
4. Setting the α inclusion problem in the general case: find x ∈ Rm such that

z ∈ Ax+
2− α
τ

x+
α

4− α
L?(B

2−α
σ

� D)(Lx− r), (4.1)

where L = 4−α
2 L. The general case of the α inclusion problem (4.1) is too com-

plex to get some direct result. In this chapter, we will consider the α inclusion
problem (4.1) in some special cases, and then get some particular results. In those
special cases, operator D satisfies domD−1 = Rm, that means, all of the spe-
cial cases that will be showed below can be solved by using α-Douglas-Rachford
algorithm.

4.2 The special cases

Theorem 4.2.1. Let a ∈ R++,L = a Id, D = Id, z = 0, r = 0. Then

(1) The α inclusion problem (4.1) becomes: find x ∈ Rm such that

0 ∈ Ax+
2− α
τ

x+
αa

4− α
[B�(

σ

2− α+ σ
Id)](ax). (4.2)

(2) If in addition, A = ∂f,B = ∂g, where f, g ∈ Γ0(Rm), then the primal
inclusion problem (4.2) can be characterized by the following optimization
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problem

Argminx∈Rm{f(x) +
2− α

2τ
‖x‖2 +

α

4− α
(g�

γ

2
‖ · ‖2)(ax)} (4.3)

where γ = σ
2−α+σ .

Proof. (1) Since L = a Id, z = 0, r = 0, the α inclusion problem (4.1) be-
comes: find x ∈ Rm such that

0 ∈ Ax+
2− α
τ

x+
αa

4− α
(B

2−α
σ

� D)(ax), (4.4)

Since D = Id, according to Lemma 3.2.7,

(B

2−α
σ

� D) = B�(
σ

2− α+ σ
Id).

Thus, (4.1) is equivalent to

0 ∈ Ax+
2− α
τ

x+
αa

4− α
[B�(

σ

2− α+ σ
Id)](ax)

(2) Let γ = σ
2−α+σ , since ∂f = A, ∂g = B, (4.2) is equivalent to

0 ∈ ∂f(x) +
2− α
τ

x+
αa

4− α
(∂g�γ Id)(ax). (4.5)

Because f ∈ Γ0(Rm), we have

∂f(x) +
2− α
τ

x = ∂[f(x) +
2− α

2τ
‖x‖2]

by Example 1.3.32. Moreover, since ∂(γf) = γ∂f for any γ ∈ R++,
combining this with the Example 1.3.24, we have

γ Id = γ∂(
1

2
‖x‖2) = ∂(

γ

2
‖x‖2).

Therefore, (4.5) becomes

0 ∈ ∂[f(x) +
2− α

2τ
‖x‖2] +

αa

4− α
[∂g�∂(

γ

2
‖ · ‖2)](ax). (4.6)
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As shown in Example 1.3.38, (γ2‖x‖
2)∗ = ‖x‖2

4γ/2 = ‖x‖2
2γ . Because g ∈

Γ0(Rm), by Fact 1.3.40, dom g∗ 6= ∅. Therefore,

dom g∗ ∩ intdom(
γ

2
‖ · ‖2)∗ = dom g∗ ∩ intdom(

‖ · ‖2

2γ
)

= dom g∗ ∩ Rm

= dom g∗ 6= ∅.

Combing the above result with the fact that g ∈ Γ0(Rm), we get

∂g�∂(
γ

2
‖ · ‖2) = ∂(g�

γ

2
‖ · ‖2)

by Fact 2.4.3.
Again, we use the fact ∂(γf) = γ∂f, (4.6) is equivalent to

0 ∈ ∂[f(x) +
2− α

2τ
‖x‖2] + a∂[

α

4− α
(g�

γ

2
‖ · ‖2)](ax). (4.7)

Because (g�γ
2‖ · ‖

2) can be considered as a Moreau envelope with the func-
tion g and λ = 1

γ . Thus, by using Fact 1.3.55, we have

dom(g�
γ

2
‖ · ‖2) = Rm.

Thus,

adom[f(·) +
2− α

2τ
‖ · ‖2] ∩ intdom(g�

γ

2
‖ · ‖2)

=adom f ∩ Rm

=adom f 6= ∅.

Thus, by Fact 1.3.29, (4.7) is equivalent to

0 ∈ ∂[f(x) +
2− α

2τ
‖x‖2 +

α

4− α
(g�

γ

2
‖ · ‖2)(ax)]. (4.8)

Due to Fact 1.3.34, finding x such that

0 ∈ ∂[f(x) +
2− α

2τ
‖x‖2 +

α

4− α
(g�

γ

2
‖ · ‖2)(ax)]

is equivalent to x being a solution of

Argminx∈Rm{f(x) +
2− α

2τ
‖x‖2 +

α

4− α
(g�

γ

2
‖ · ‖2)(ax)}

Therefore, we completed the proof.
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Theorem 4.2.2. Let a ∈ R++,L = a Id, D = N{0}, z = 0, r = 0. Then

(1) the α inclusion problem (4.1) becomes: find x ∈ Rm such that

0 ∈ Ax+
2− α
τ

x+
αa

4− α
(B�

σ

2− α
Id)(ax). (4.9)

(2) If in addition, A = ∂f,B = ∂g, where f, g ∈ Γ0(Rm), then the primal
inclusion problem (4.9) can be characterized by the following optimization
problem

Argminx∈Rm{f(x) +
2− α

2τ
‖x‖2 +

α

4− α
(g�

γ

2
‖ · ‖2)(ax)}, (4.10)

where γ = σ
2−α .

Proof. (1) Since L = a Id, z = 0, r = 0, the α inclusion problem (4.1) be-
comes: find x ∈ Rm such that

0 ∈ Ax+
2− α
τ

x+
αa

4− α
(B

2−α
σ

� D)(ax), (4.11)

Since D = N{0}, by Lemma 3.2.8

(B

2−α
σ

� N{0}) = B�
σ

2− α
Id .

Thus, (4.11) is equivalent to

0 ∈ Ax+
2− α
τ

x+
αa

4− α
(B�

σ

2− α
Id)(ax).

(2) Since the only difference between (4.2) and (4.9) is the parameter of the
identity function. Thus, as we proved in 4.2.1(2), if we let γ = σ

2−α here,
the primal inclusion problem (4.9) can be characterized by the following
optimization problem

Argminx∈Rm{f(x) +
2− α

2τ
‖x‖2 +

α

4− α
(g�

γ

2
‖ · ‖2)(ax)}.
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4.3 Double regularization: Moreau regularization and
Tychonov regularization combined

Let f, g : Rm → R be proper, lower-semicontinuous and convex. Often we
must find the minimizer of f + g. The functions f, g might not be differentiable.
We can first make one of the function differentiable by using the Moreau envelope.
In order to obtain the least norm solution, we can do Tychonov regularization.
Therefore, we can consider minimization of the following function:

f + β1 q +β2[g�(β3 q)] (4.12)

where βi > 0 (i ∈ {1, 2, 3}), and q = 1
2‖ · ‖

2. Put h = f + β2[g�(β3 q)]. While
g�(β3 q) is the Moreau regularization with the function being g and λ = 1

β3
, and

h + β1 q is the Tychonov regularization. Therefore, Problem (4.12) is a double
regularization.
Remark 4.1. In (4.12), we usually require β1 ↓ 0, β2 → 1, and β3 ↓ 0.

4.3.1 Subdifferential of infimal convolutions

Let q(x) = 1
2‖x‖

2.
Corollary 4.3.1. Let f : Rm → (−∞,+∞] be proper, lower semicontinuous and
convex. Then for any β3 ∈ R++,

∂[f�(β3 q)] = ∂f�β3 Id = [
1

β3
Id +(∂f)−1]−1.

Proof. By Fact 1.3.39 and Fact 1.3.40, f ∈ Γ0(Rm) implies f∗ ∈ Γ0(Rm); in
particular, dom f∗ 6= ∅. According to Example 1.3.38, we have

[β3 q(x)]∗ =

(
β3

2
‖x‖2

)∗
=
‖x‖2

2β3
.

Therefore, dom(β3 q)∗ = Rm = int dom(β3 q)∗. Thus, dom f∗∩int dom(β3 q)∗ =
dom f∗ 6= ∅. Applying Fact 2.4.3, we get

∂(f�β3 q) = ∂f�∂(β3 q)

= ∂f�β3 Id

= [(∂f)−1 + (β3 Id)−1]−1

= [(∂f)−1 +
1

β3
Id]−1.
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4.3.2 Main results

Theorem 4.2. Let f, g : Rm → (−∞,+∞] be proper, lower semicontinuous and
convex, let q(x) = 1

2‖x‖
2. For every β1 > 0, β2 > 0, β3 > 0, consider

min
x∈Rm

{f + β1 q +β2[g�(β3 q)]}. (p)

Then the following hold:

(1)
∂{f + β1 q +β2[g�(β3 q)]} = ∂f + β1 Id +β2[∂g�(β3 Id)].

(2) (p) always has a unique solution.

(3) The Fenchel Dual of (p) is

min
v∈Rm

{(
f∗ �

q

β1

)
(v) +

1

β2β3
q(v) + β2g

∗
(
−v
β2

)}
, (d)

and it also has a unique solution.

Proof. (1) Because f and g are proper, dom f 6= ∅ and dom g 6= ∅. Since
g�(β3 q) is actually a Moreau envelope with the function g and λ = 1

β3
,

according to Fact 1.3.55,

intdom[g�(β3 q)] = intRm

= Rm. (4.13)

For β1 q, we have

intdom(β1 q) = intRm = Rm.

Thus,

dom f ∩ intdomβ2[g�(β3 q)] ∩ intdom(β1 q)

= dom f ∩ Rm ∩ Rm

= dom f

6=∅.

Additionally, f ∈ Γ0(Rm), g ∈ Γ0(Rm). Thus, by Fact 1.3.31,

∂{f + β1 q +β2[g�(β3 q)]} = ∂f + ∂(β1 q) + ∂[β2(g�(β3 q))]. (4.14)

Again, since g ∈ Γ0(Rm), by using Corollary 4.3.1, we have ∂[g�(β3 q)] =
∂g�(β3 Id). Therefore, (4.14) yields

∂{f + β2[g�(β3 q)] + β1 q} = ∂f + β1 Id +β2[∂g�(β3 Id)].
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(2) Because g ∈ Γ0(Rm), by Fact 1.3.40, dom g∗ 6= ∅. As noted in the proof of
Corollary 4.3.1, dom(β3 q)∗ = Rm. Consequently,

dom g∗ ∩ int dom(β3 q)∗ = dom g∗ 6= ∅.

Thus, by Fact 2.4.3(2),

[g�(β3 q)] = [g � (β3 q)] ∈ Γ0(Rm).

Because f ∈ Γ0(Rm), dom f 6= ∅. According to (4.13),

dom f ∩ dom[β2g�(β3 q)] = dom f 6= ∅.

Thus, by using Lemma 1.4, we have

f + β2[g�(β3 q)] ∈ Γ0(Rm).

Since dom f ∩ dom{β2[g�(β3 q)]} = dom f,

dom(β1 q) ∩ {dom f ∩ dom[β2(g�(β3 q))]}
=Rm ∩ dom f

= dom f

6=∅.

In addition, according to Example 1.3.17 and Example 1.3.7, q is supercoer-
cive and strictly convex. By Fact 1.3.19, β1 q +f+β2[g�(β3 q)] has exactly
one minimizer over Rm. In another words, (p) always has a unique solution.

(3) According to Fenchel duality (see Definition 1.3.58), we have

min
x∈Rm

{f(x) + β1 q(x) + β2[g�(β3 q)](x)}

= min
v∈Rm

{(f + β1 q)∗(v) + [β2(g�(β3 q))]∗(−v)}. (4.15)

Since dom q = Rm and f ∈ Γ0(Rm), we have

dom f ∩ intdom q = dom f 6= ∅.

Thus, by Theorem 2.4.1 and Fact 1.3.50,

(f + β1 q)∗ = f∗ � (β1 q)∗. (4.16)

As we showed in Example 1.3.38, for λ > 0, (λ‖x‖2)∗ = ‖x‖2
4λ . Thus,

(β1 q)∗ = (
β1

2
‖x‖2)∗ =

‖x‖2

2β1
=

q

β1
. (4.17)
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That is,
f∗ � (β1 q)∗ = f∗ �

q

β1
. (4.18)

For [β2(g�(β3 q))]∗(−v), according to Fact 1.3.37, we have

[β2(g�(β3 q))]∗(−v) = β2[g�(β3 q)]∗
(
−v
β2

)
.

Due to Fact 1.3.49 and equation (4.17)

[g�(β3 q)]∗
(
−v
β2

)
= [g∗ + (β3 q)∗]

(
−v
β2

)
= g∗

(
−v
β2

)
+

1

β3
q

(
−v
β2

)
= g∗

(
−v
β2

)
+

1

β2
2β3

q(v). (4.19)

Combining the result of (4.18) and (4.19), we have

min
v∈Rm

{(f + β1 q)∗(v) + [β2(g�(β3 q))]∗(−v)}

= min
v∈Rm

{(
f∗ �

q

β1

)
(v) +

1

β2β3
q(v) + β2g

∗
(
−v
β2

)}
.

Therefore, we complete the proof that the Fenchel Dual of (p) is (d). For the
similar reason as (2), (d) has a unique solution.

Remark 4.3. We are interested in considering: β1 = 2−α
τ and β2 = α

4−α , where
τ ∈ R++ and α ∈ [1, 2).

If we apply Theorem 4.2 to the optimization problem (4.3), we can get the
following corollary.

Corollary 4.3.2. Let f, g ∈ Γ0(Rm), let q = 1
2‖ · ‖

2. Consider the optimization
problem (4.3) where a = 1, γ = σ

2−α+σ . Then the following hold:

(1) For any x ∈ Rm,

∂{f(x) +
2− α

2τ
‖x‖2 +

α

4− α
(g�

γ

2
‖ · ‖2)(x)}

=∂f(x) +
2− α
τ

x+
α

4− α
[∂g(x)�(γx)].
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4.3. Double regularization: Moreau regularization and Tychonov regularization combined

(2) The following problem, where γ = σ
2−α+σ , always has a unique solution:

min
x∈Rm

{f(x) +
2− α

2τ
‖x‖2 +

α

4− α
(g�

γ

2
‖ · ‖2)(x)}. (4.20)

(3) The Fenchel Dual of (4.20) is

min
v∈Rm

{[
f∗ �

(
τ

2− α
q

)]
(v) +

4− α
αγ

q(v) +
α

4− α
g∗
(
α− 4

α
v

)}
.

Moreover, this Fenchel Dual has a unique solution.

If we apply Theorem 4.2 to the optimization problem (4.10), we can get the
following corollary.

Corollary 4.3.3. Let f, g ∈ Γ0(Rm), let q = 1
2‖ · ‖

2. Consider the optimization
problem (4.10) where a = 1, γ = σ

2−α . Then the following hold:

(1) For any x ∈ Rm,

∂{f(x) +
2− α

2τ
‖x‖2 +

α

4− α
(g�

γ

2
‖ · ‖2)(x)}

=∂f(x) +
2− α
τ

x+
α

4− α
[∂g(x)�(γx)].

(2) The following problem, where γ = σ
2−α , always has a unique solution:

min
x∈Rm

{f(x) +
2− α

2τ
‖x‖2 +

α

4− α
(g�

γ

2
‖ · ‖2)(x)}. (4.21)

(3) The Fenchel Dual of (4.21) is

min
v∈Rm

{[
f∗ �

(
τ

2− α
q

)]
(v) +

4− α
αγ

q(v) +
α

4− α
g∗
(
α− 4

α
v

)}
.

Moreover, this Fenchel Dual has a unique solution.

72



Chapter 5

The α-Douglas-Rachford
algorithm with α→ 2

5.1 Overview

As we set α ∈ [1, 2) in the α-Douglas-Rachford algorithm, we want to consider
the properties of that algorithm when α is in its limit case. Therefore, the α-
Douglas-Rachford algorithm is considered in a special-limit case in this chapter.

5.2 Parameter α→ 2

Fact 5.2.1. [4, Theorem 23.44] Let A : H → 2H be a maximally monotone
operator and let x ∈ H. Then the inclusions

(∀γ ∈ (0, 1)) 0 ∈ Axγ + γ(xγ − x)

define a unique curve (xγ)γ∈(0,1). Moreover, exactly one of the following holds:

(1) zerA 6= ∅ and xγ → PzerAx as γ ↓ 0.

(2) zerA = ∅ and ‖xγ‖ → +∞ as γ ↓ 0.

Fact 5.2.1 and Theorem 3.2.5 yield the following characterizations of the α-
Douglas-Rachford algorithm. However, before we go to the theorem, we need to
get the following lemma.

Lemma 5.2.2. Let A be a maximally monotone operator from K to 2K, (αk)
+∞
k=1

be an increasing sequence in [1, 2) such that lim
k→+∞

αk = 2. Then,

lim
k→+∞

RαkA = R2
A.

Proof. As RαkA = αkJA − Id and R2
A = 2JA − Id, we have for fixed x,

‖RαkA x−RAx‖ = ‖αkJAx− 2JAx‖ ≤ |αk − 2|‖JAx‖.
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5.2. Parameter α→ 2

Clearly the right side tends to 0 as k → +∞, so RαkA x → RAx. This holds for
every x.

Theorem 5.2.3. Let A and B be maximally monotone operators from K to 2K,
0 ∈ int(domA − domB) and zer(A + B) 6= ∅. Let (αk)

+∞
k=1 be an increasing

sequence in [1, 2) such that lim
k→+∞

αk = 2. for each k, consider the sequences


yn = JBxn
zn = JA(αkyn − xn)
xn+1 = xn + (zn − yn).

(5.1)

Then the sequence xn converges to some x∗k ∈ FixRαkA ◦R
αk
B such that

JBx
∗
k = zer(A+B + (2− αk) Id).

For any resulting sequence (x∗k)
+∞
k=1,

(1) lim
k→+∞

JBx
∗
k = Pzer(A+B)(0).

(2) Suppose (x∗k)
+∞
k=1 is a convergent sequence. Let lim

k→+∞
x∗k = x∗. Then JBx∗

is a solution to 0 ∈ Ax+Bx, and ‖JBx∗‖ ≤ ‖y‖ for any y ∈ zer(A+B).

Proof. The existence of x∗k follows from Theorem 3.2.5.

(1) Because A,B are maximally monotone and 0 ∈ int(domA− domB), Fact
1.2.28 implies that A+B is also maximally monotone. According to Theo-
rem 3.2.5 (1), we have JBx∗k ∈ zer(A+B + (2− αk) Id). That means:

0 ∈ (A+B)JBx
∗
k + (2− αk)JBx∗k,

which can also be written as

0 ∈ (A+B)JBx
∗
k + (2− αk)(JBx∗k − 0).

As zer(A+B) 6= ∅, according to Fact 5.2.1,

JBx
∗
k → Pzer(A+B)(0) as (2− αk) ↓ 0.

Since lim
k→+∞

αk = 2, we can also write this as

lim
k→+∞

JBx
∗
k = Pzer(A+B)(0).
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5.2. Parameter α→ 2

(2) Here we want to prove lim
k→+∞

JB(x∗k) = JB(x∗), where lim
k→+∞

x∗k = x∗.

For any ε > 0, there exists N ∈ N such that for any l ≥ N,

‖x∗l − x∗‖ < ε.

Because B is maximally monotone, by Fact 1.2.38, JB is firmly nonexpan-
sive on Rm. Thus,

‖JB(x∗l )− JB(x∗)‖ ≤ ‖x∗l − x∗‖ < ε,

that is,
lim

k→+∞
JB(x∗k) = JB(x∗).

As we already proved lim
k→+∞

JB(x∗k) = Pzer(A+B)(0), we have

JB(x∗) = Pzer(A+B)(0).

Therefore, JBx∗ is a solution to 0 ∈ Ax + Bx, and ‖JBx∗‖ ≤ ‖y‖ for any
y ∈ zer(A+B).

This theorem shows that when zer(A+B) 6= ∅,we can either use the Douglas-
Rachford algorithm or the α-Douglas-Rachford algorithm to get a solution of it.
Moreover, when zer(A+B) has multiple solutions, we can useα-Douglas-Rachford
algorithm to get the one which has the shortest norm.

Theorem 5.2.4. Let f, g, l ∈ Γ0(Rm), let L : Rm → Rm be a nonzero invert-
ible linear operator where [L(dom f) − r] ∩ intdom(g�l) 6= ∅, and dom g∗ ∩
int dom l∗ 6= ∅. Let z and r ∈ Rm, let τ ∈ R++ and σ ∈ R++. We set
A = ∂f,B = ∂g,D = ∂l which domD−1 = Rm, and let αk be a increasing
convergent sequence in [1, 2) such that lim

k→+∞
αk = 2, the following holds:

(1) The sequence of problems: find x ∈ Rm such that

z ∈ Ax+
2− αk
τ

x+
αk

4− αk
L? ◦ (B

2−αk
σ

� D) ◦ (Lx− r) (5.2)

where L = 4−αk
2 L, together with the sequence of duals: find v such that

there exists an x ∈ Rm that z − αk
4−αkL

?v ∈ Ax+ (2−αk)
τ x

v ∈ (B

2−αk
σ

� D) ◦ (Lx− r).
(5.3)
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5.2. Parameter α→ 2

have solution pairs (xk, vk) that converge to (x, v) satisfying the primal in-
clusion:

z ∈ Ax+ L?(B�D)(Lx− r) (5.4)

together with the dual inclusion:{
z − L?v ∈ Ax
v ∈ (B�D)(Lx− r). (5.5)

(2) The sequence of optimization problems

Argminx∈Rm{f(x) +
2− αk

2τ
‖x‖2+

αk
4− αk

[(g � l)� (
σ

2(2− αk)
‖x‖2)] ◦ (Lx− r)− 〈z, x〉},

(5.6)

where L = 4−αk
2 L, has a sequence of solutions xk that converges to an

element x of

Argminx∈Rm{f(x) + (g � l) ◦ (Lx− r)− 〈z, x〉}, (5.7)

when αk → 2.

Proof. (1) Because f, g, l ∈ Γ0(Rm), by Fact 1.3.27, A,B,D are maximally
monotone. Suppose x̄k is the solution of (5.2), and v̄k is the solution of (5.3).
Then by Theorem 3.2.9, (x̄k, v̄k) is the solution of the inclusion problem:

find (x, v) ∈ Rm×Rm such that (x, v) ∈ zer(A+B+(2−αk) Id), (5.8)

and vice versa. Here A := V −1(1
2S+Q), and B := V −1(1

2S+M), where

M : K → 2K : (x, v) 7→ (−z +Ax, r +B−1v);

Q : K → 2K : (x, v) 7→ (0, D−1v);

S : K → K : (x, v) 7→ (L?v,−Lx);

V : K → K : (x, v) 7→ (
x

τ
− 1

2
L?v,

v

σ
− 1

2
Lx).

We proved that A and B are maximally monotone in Lemma 2.3.4. Since
domD−1 = Rm, by Theorem 3.2.10 and Theorem 3.2.5 (1), there exists an
x∗k ∈ FixRαkA ◦R

αk
B such that JBx∗k ∈ zer(A+B + (2−αk) Id). Suppose

zer(A + B) 6= ∅. By Theorem 5.2.3, one has

lim
k→+∞

JBx
∗
k = Pzer(A+B)(0).
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5.2. Parameter α→ 2

In other words, if we set (x∗, v∗) = lim
k→+∞

JBx
∗
k, which x∗, v∗ ∈ Rm,

from Lemma 2.3.4, it follows that x∗ is the solution of the primal inclusion
problem: find x ∈ Rm such that

z ∈ Ax+ L?(B�D)(Lx− r),

and v∗ is the solution of the dual inclusion problem: find v such that there
exists an x ∈ Rm that {

z − L?v ∈ Ax
v ∈ (B�D)(Lx− r).

Therefore, we complete the proof.

(2) According to Theorem 3.2.11, we get that the optimization problem (5.6)
is equivalent to the primal inclusion problem (5.2). Moreover, by using the
Theorem 2.4.4, the inclusion problem (5.7) is equivalent to the optimization
problem (5.4). Therefore, by using the result of (1), we complete the proof.

Remark 5.1. If we let A := V −1(1
2S +Q), and B := V −1(1

2S +M), where

M : K → 2K : (x, v) 7→ (−z +Ax, r +B−1v);

Q : K → 2K : (x, v) 7→ (0, D−1v);

S : K → K : (x, v) 7→ (L?v,−Lx);

V : K → K : (x, v) 7→ (
x

τ
− 1

2
L?v,

v

σ
− 1

2
Lx).

According to Lemma 2.3.4, (x, v) ∈ zer(A + B) if and only if (x, v) ∈ zer(M +
Q+ S), i.e.,

(0, 0) ∈ (−z +Ax+ L?v, r +B−1v +D−1v − Lx). (5.9)

(5.9) is the exactly: find (x, v) such that{
z ∈ Ax+ L?v
v ∈ (B�D)(Lx− r).

From Theorem 5.2.3, we know if we let (x∗, v∗) = lim
αk→2

JBx
∗
k,
√
‖x∗‖2 + ‖v∗‖2

is the shortest norm for all (x, v) ∈ zer(A+B), since lim
αk→2

JBx
∗
k = Pzer(A+B)(0).
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5.2. Parameter α→ 2

Remark 5.2. In 2011, Wang [17] gave two self-dual regularizations of maximal
monotone operators on H, which can be effectively used to find the least norm
solution to maximally monotone operators.

Remark 5.3. Dykstra method can also be used to find the least norm solution. See
Bauschke and Borwein’s paper [3].
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Chapter 6

The application of the
α-Douglas-Rachford algorithm

6.1 Overview

In this chapter, we are going to use the α-Douglas-Rachford algorithm to solve
the inclusion problem

0 ∈ Ax+Bx,

where A : Rm → 2R
m

and B : Rm → 2R
m

are maximally monotone operators, in
two different ways.

6.2 Least norm solution of the primal problem

Theorem 6.2.1. Let A : Rm → 2R
m

and B : Rm → 2R
m

be maximally monotone
operators, 0 ∈ int(domA− domB) and zer(A+B) 6= ∅. In order to solve

0 ∈ Ax+Bx, (6.1)

we can let αk be an increasing convergent sequence in [1, 2) such that lim
k→+∞

αk =

2. Then we use the α-Douglas-Rachford algorithm to solve the problem

0 ∈ Ax+Bx+ (2− αk) Id . (6.2)

When αk → 2, the answers of problem (6.2) converge to the shortest norm solution
of problem (6.1).

Proof. Since A,B are maximally monotone operators, 0 ∈ int(domA− domB)
and zer(A + B) 6= ∅, by Theorem 5.2.3, if we use the α-Douglas-Rachford al-
gorithm to solve problem (6.2), for any fixed αk, there exists a corresponding
x∗k ∈ FixRαkA ◦ R

αk
B such that JBx∗k ∈ zer(A + B + (2 − αk) Id). Moreover,

we have lim
k→+∞

JBx
∗
k = Pzer(A+B)(0). That is,

‖ lim
k→+∞

JBx
∗
k‖ ≤ ‖y‖

for any y ∈ zer(A+B).
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6.3. Least norm solution of the primal-dual problem

6.3 Least norm solution of the primal-dual problem

Theorem 6.3.1. Let A : Rm → 2R
m

and B : Rm → 2R
m

be maximally monotone
operators, and zer(A + B) 6= ∅, let L = Id . In order to solve the problem with
primal inclusion: find x ∈ Rm such that

0 ∈ Ax+Bx, (6.3)

together with the dual inclusion: find v ∈ Rm such that for some x,{
−v ∈ Ax
v ∈ Bx, (6.4)

we can let αk be an increasing convergent sequence in [1, 2) such that

lim
k→+∞

αk = 2.

Let L = 4−αk
2 Id . Then we use the α-Douglas-Rachford algorithm to solve the

problem with primal inclusion: find x ∈ Rm such that

0 ∈ Ax+
2− αk
τ

x+
αk

4− αk
L?(B�

σ

2− αk
Id)(Lx), (6.5)

where τ ∈ R++, σ ∈ R++, and τσ < 4, together with the dual inclusion: find v
such that there exists an x ∈ Rm that{

− αk
4−αkL

?v ∈ Ax+ 2−αk
τ x

v ∈ (B� σ
2−αk Id)(Lx).

(6.6)

When αk → 2, the sequence of solutions of the primal-dual problem (6.5) together
with (6.6) converge to the primal-dual shortest norm solution of problem (6.3)
together with (6.4).

Proof. Let

M : K → 2K : (x, v) 7→ (Ax,B−1v);

Q : K → 2K : (x, v) 7→ (0, D−1v) where D = N{0};

S : K → K : (x, v) 7→ (v,−x);

V : K → K : (x, v) 7→ (
x

τ
− 1

2
v,
v

σ
− 1

2
x).

A := V −1(1
2S + Q), and B := V −1(1

2S + M). According to Lemma 2.3.4, we
get A and B are maximally monotone and

zer(A + B) = zer(M + S +Q) = zer(M + S),
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6.3. Least norm solution of the primal-dual problem

as for any v ∈ Rm, D−1v = 0 by the definition of N{0}. That means for all
(x, v) ∈ zer(A + B), we have

(0, 0) ∈(M + S)(x, v)

=(Ax+ v,B−1v − x).

That is {
0 ∈ Ax+ v
0 ∈ B−1v − x,

which is equivalent to
0 ∈ Ax+Bx

together with {
−v ∈ Ax
v ∈ Bx.

Therefore, solving (x, v) ∈ zer(A + B) is equivalent to solving the problem with
primal inclusion (6.3) together with dual inclusion (6.4). Since we have zer(A +
B) 6= ∅, according to Lemma 2.3.1, the primal inclusion (6.3) is equivalent to the
dual inclusion (6.4). Therefore zer(A + B) 6= ∅.
In the proof of Theorem 3.2.10, we showed that once domD−1 = Rm, we have
0 ∈ int(domA− domB). Since D = N{0}, by Lemma 1.1.35, we have

domD−1 = ranD = Rm.

Therefore, we know A,B are maximally monotone, 0 ∈ int(domA − domB)
and zer(A + B) 6= ∅. By Theorem 6.2.1, we can use the α-Douglas-Rachford
algorithm to solve each problem

zer(A + B + (2− αk) Id). (6.7)

When αk → 2, the answers from problem (6.7) converge to the shortest norm
solution of problem zer(A + B). By Theorem 3.2.9, the solution of problem
zer(A + B + (2 − αk) Id) is also the primal-dual solution of problem (6.5) to-
gether with (6.6). Therefore, when αk → 2, the sequence of solutions of the
primal-dual problem (6.5) together with (6.6) converge to the primal-dual shortest
norm solution of problem (6.3) together with (6.4).

Remark 6.1. The operator

M + S : K → 2K : (x, v) 7→ (Ax+ v,B−1v − x)
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6.3. Least norm solution of the primal-dual problem

is maximally monotone. Because M = (A,B−1) : K → 2K is maximally mono-
tone according to Fact 1.2.30. And because S is skew and linear, by Fact 1.2.31,
S is maximally monotone. Moreover, since domS = K, by Fact 1.2.28, we get
M + S is maximally monotone.

Remark 6.2. Note that Theorem 6.2.1 gives the primal shortest norm solution, but
Theorem 6.3.1 gives the primal-dual shortest norm solution.

Remark 6.3. According to Corollary 2.3.3, the dual inclusion (6.4) is equivalent to
the problem: find v′ such that

0 ∈ A−1(v′)−B−1(−v′), (6.8)

which is the Attouch-Théra dual [1] of (6.3).
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Chapter 7

Numerical experiments

7.1 Overview

In this chapter, we describe numerical experiments whose results confirms the
properties of the α-Douglas-Rachford algorithm derived above.

In the following three numerical experiments, the operator D satisfies

domD−1 = Rm.

Before we go to the numerical examples, the following formulas for proximal
points are necessary.

Lemma 7.1.1. Let C be a closed convex set in Rm, let τ ∈ R++ and f = ιC .
Then we have:

(1) Proxτf (x) = PC(x).

(2) Proxτf∗(x) = x− τ PC(xτ ).

Proof. (1) Since C is a closed convex set, by by Example 1.3.13, f ∈ Γ0(Rm).
Then, for any x ∈ Rm, we have

Proxτf (x) = ProxτιC (x)

= Argminu∈Rm{τιC(u) +
1

2
‖u− x‖2}

= Argminu∈C
1

2
‖u− x‖2

= PC(x).

(2) Since f ∈ Γ0(Rm), by Fact 1.3.40, f = f∗∗. Therefore, we use Fact 1.2.37
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to get

Proxτf∗(x) =[Id−τ Proxτ−1f ◦(τ−1 Id)](x)

=x− τ Proxτ−1ιC (
x

τ
)

=x− τ Argminu∈C
1

2
‖u− x

τ
‖2

=x− τ PC

(x
τ

)
.

Lemma 7.1.2. Let g = ‖ · ‖, let τ ∈ R++. Then for any x ∈ Rm,

Proxτg∗(x) = PB(0;1)(x).

Proof. As

g∗(u) = sup
x∈Rm

{〈u, x〉 − ‖x‖}

=ιB(0;1)(u),

by Lemma 7.1.1, we have

Proxτg∗(x) = PB(0;1)(x).

7.2 A feasibility problem

In this part, we consider solving the inclusion problem

z ∈ Ax+B(x− r), (7.1)

where A,B are maximally monotone operators and z, r ∈ Rm are given.

Example 7.2.1. Let f = ιC1 , g = ιC2 , where C1 is a circle centred at (5, 0) with
radius 2, and C2 is a box centred at (3, 1.5) with radius 1. Let z = 0, r = 0. If we
let A = ∂f,B = ∂g, the problem (7.1) becomes

0 ∈ NC1(x) +NC2(x). (7.2)
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Figure 7.1: The plot of Example 7.2.1

Let αk be a increasing convergent sequence in [1, 2) such that lim
k→+∞

αk = 2.

Then the following holds:

(1) The inclusion problem: The solution of problem: finding x ∈ R2 such that

0 ∈ NC1(x) +NC2(x) + (2− αk)(x) (7.3)

is the shortest norm solution of problem (7.2) when αk → 2.

(2) The problem (7.3) can be solved by the α-Douglas-Rachford algorithm.
Moreover, as αk → 2, the optimization result which is gotten by the α-
Douglas-Rachford algorithm converges to the shortest norm solution of (7.2).

Proof. (1) We apply Theorem 6.2.1 to complete this proof.

Since C1 and C2 are closed, bounded and convex sets, according to Example
1.2.33, NC1 and NC2 are maximally monotone operators. Because we also
have int(C1 ∩C2) 6= ∅, according to Theorem 3.2.5, the inclusion problems
(7.3) can be solved by the α-Douglas-Rachford algorithm (3.3) by letting
A = NC1 and B = NC2 . That is:

yn = JNC2
(xn)

zn = JNC1
(αkyn − xn)

xn+1 = xn + (zn − yn).

(7.4)
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According to Example 1.3.25,

NC1 = ∂ιC1 , NC2 = ∂ιC2 .

Therefore, algorithm (7.4) becomes
yn = J∂ιC2

(xn)

zn = J∂ιC1
(αkyn − xn)

xn+1 = xn + (zn − yn).

(7.5)

By Fact 1.3.57, we have

J∂ιC2
= ProxιC2

, and J∂ιC1
= ProxιC1

.

Let’s plug ProxιC2
,ProxιC1

, into (7.5) instead of J∂ιC2
, and J∂ιC1

respec-
tively, we get


yn = ProxιC2

(xn)

zn = ProxιC1
(αkyn − xn)

xn+1 = xn + (zn − yn).

(7.6)

According to Lemma 7.1.1(1), we have

ProxιC1
(x) = PC1(x)

and
ProxιC2

(x) = PC2(x).

As C1 is a circle centred at (5, 0) with radius 2, we can also write

ProxιC1
(x) = (5, 0) + PB(0;2)(x− (5, 0)).

Hence, when we choosing x0 = (5, 1) as starting values, for any fixed k, let
αk = 2− 1

k , the iterative scheme algorithm (7.6) becomes:
yn = PC2(xn)
zn = (5, 0) + PB(0;2)(αkyn − xn)

xn+1 = xn + (zn − yn).

The stopping criteria of this algorithm is: Let ε = 10−5, continue running
this iteration until ‖xn+1 − xn‖ < ε.
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Table 7.1: Example 1: Six fixed αk where αk = 2 − 1/k, the corresponding
optimization point y∗, and the norm of y∗.

k y∗ ‖y∗‖

1 (3.0635,0.5) 3.104
10 (3.0635,0.5) 3.104
50 (3.0635,0.5) 3.104
100 (3.0635,0.5) 3.104

1000 (3.0635,0.5) 3.104
10000 (3.0635,0.5) 3.104

As we can see, the optimization result y∗ doesn’t change its value when we
use different value of k. It is clear that y∗ locate at the boundary of C1 and
also locate at the boundary of C2. With the help of Figure 7.2.1, we get y∗ is
the smallest norm solution of problem (7.2).

We also tried to run this algorithm from different starting point, and the result
shows once we fix the value of k, the result we get does not change if we
change its starting point.

However, when we use the classic Douglas-Rachford algorithm to solve
(7.2), the answer changes if we choose different starting point. Here is the
result:

Table 7.2: Example 1: starting point x0, the corresponding optimization point y∗,
and the norm of y∗.

x0 y∗ ‖y∗‖

(5,1) (4,0.8944) 4.0988
(-3,1) (3.0785,0.5548) 3.1281
(-4,-6) (4,0.5) 4.0311

(10,-20) (4,0.5) 4.0311

That means, in this example, if we directly use the classic Douglas-Rachford
algorithm to solve problem (7.2), the answer we get may not have the short-
est norm. However, if we use the α-Douglas-Rachford algorithm to solve
problem (7.3) and let αk → 2, the answer we get has the shortest norm.
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7.3 A Heron problem

In this part, we are going to consider solving a primal-dual inclusion problem
by using α-Douglas-Rachford algorithm.
Theorem 7.3.1. Let A : Rm → 2R

m
, B : Rm → 2R

m
and D : Rm → 2R

m

be maximally monotone operators and domD−1 = Rm. Let z, r ∈ Rm, and let
L : Rm → Rm be a nonzero linear invertible operator. Let αk be an increasing
convergent sequence in [1, 2) such that lim

k→+∞
αk = 2.

(1) The problem with primal inclusion: find x ∈ Rm such that

z ∈ Ax+
2− αk
τ

x+
αk

4− αk
L?(B

2−αk
σ

� D)(Lx− r), (7.7)

where L = 4−αk
2 L, τ ∈ R++, σ ∈ R++, and τσ‖L‖2 < 4, together with

the dual inclusion: find v such that there exists an x ∈ Rm that z − αk
4−αkL

?v ∈ Ax+ (2−αk)
τ x

v ∈ (B

2−αk
σ

� D) ◦ (Lx− r)
(7.8)

can be solved by using the α-Douglas-Rachford algorithm:
yn = JBxn
zn = JA(αkyn − xn)
xn+1 = xn + (zn − yn).

(7.9)

Here, A := V −1(1
2S +Q), and B := V −1(1

2S +M), where

M : K → 2K : (x, v) 7→ (−z +Ax, r +B−1v);

Q : K → 2K : (x, v) 7→ (0, D−1v);

S : K → K : (x, v) 7→ (L?v,−Lx);

V : K → K : (x, v) 7→ (
x

τ
− 1

2
L?v,

v

σ
− 1

2
Lx).

(2) The algorithm (7.9) can be rewritten as

y1n = JτA(x1n − τ
2L

?x2n + τz)
y2n = JσB−1(x2n − σ

2Lx1n + σLy1n − σr)
w1n = αky1n − x1n

w2n = αky2n − x2n

z1n = w1n − τ
2L

?w2n

z2n = JσD−1(w2n − σ
2Lw1n + σLz1n)

x1n+1 = x1n + (z1n − y1n)
x2n+1 = x2n + (z2n − y2n),

(7.10)
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(3) Let f, g, l ∈ Γ0(Rm), and A = ∂f,B = ∂g,D = ∂l. Then algorithm (7.10)
implies the following algorithm

y1n = Proxτf (x1n − τ
2L

?x2n + τz)
y2n = Proxσg∗(x2n − σ

2Lx1n + σLy1n − σr)
w1n = αky1n − x1n

w2n = αky2n − x2n

z1n = w1n − τ
2L

?w2n

z2n = Proxσl∗(w2n − σ
2Lw1n + σLz1n)

x1n+1 = x1n + (z1n − y1n)
x2n+1 = x2n + (z2n − y2n).

(7.11)

Proof. (1) For any fixed αk, we can apply Theorem 3.2.10 to complete this
proof.

(2) According to the definition of A and B, (7.9) can be rewritten as
xn = [V −1(1

2S +M) + Id](yn),
αkyn − xn = [V −1(1

2S +Q) + Id](zn),
xn+1 = xn + (zn − yn).

Set wn = αkyn − xn, we have
V (xn − yn) = (1

2S +M)(yn),
wn = αkyn − xn,
V (wn − zn) = (1

2S +Q)(zn),
xn+1 = xn + (zn − yn).

(7.12)

Here, we let

xn = (x1n, x2n), yn = (y1n, y2n), wn = (w1n, w2n), zn = (x1n, z2n).

Since M,Q, S, V,A, and B are constructed by (M), (Q), (S), (V), (A) and
(B) respectively, (7.12) is equivalent to



x1n−y1n
τ − 1

2L
?(x2n − y2n) = 1

2L
?y2n − z +Ay1n

x2n−y2n
σ − 1

2L(x1n − y1n) = −1
2Ly1n + r +B−1y2n

w1n = αky1n − x1n

w2n = αky2n − x2n
w1n−z1n

τ − 1
2L

?(w2n − z2n) = 1
2L

?z2n + 0
w2n−z2n

σ − 1
2L(w1n − z1n) = −1

2Lz1n +D−1z2n

x1n+1 = x1n + (z1n − y1n)
x2n+1 = x2n + (z2n − y2n).
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Finally, we simplify each line of the above algorithm and get:

y1n = JτA(x1n − τ
2L

?x2n + τz)
y2n = JσB−1(x2n − σ

2Lx1n + σLy1n − σr)
w1n = αky1n − x1n

w2n = αky2n − x2n

z1n = w1n − τ
2L

?w2n

z2n = JσD−1(w2n − σ
2Lw1n + σLz1n)

x1n+1 = x1n + (z1n − y1n)
x2n+1 = x2n + (z2n − y2n),

which is algorithm (7.10). Therefore, algorithm (7.9) is equivalent to algo-
rithm (7.10)

(3) Since A = ∂f,B = ∂g,D = ∂l, we can write (7.10) as

y1n = Jτ∂f (x1n − τ
2L

?x2n + τz)
y2n = Jσ(∂g)−1(x2n − σ

2Lx1n + σLy1n − σr)
w1n = αky1n − x1n

w2n = αky2n − x2n

z1n = w1n − τ
2L

?w2n

z2n = Jσ(∂l)−1(w2n − σ
2Lw1n + σLz1n)

x1n+1 = x1n + (z1n − y1n)
x2n+1 = x2n + (z2n − y2n).

(7.13)

Because g, l ∈ Γ0(Rm), by Fact 1.3.46,

(∂g)−1 = ∂g∗ and (∂l)−1 = ∂l∗.

For any λ ∈ R++, we have λ∂f = ∂(λf). By Fact 1.3.57, we have

Jτ∂f = Proxτf ; Jσ(∂g)−1 = Proxσg∗ ; and Jσ(∂l)−1 = Proxσl∗ .

Let’s plug Proxτf ,Proxσg∗ , and Proxσl∗ into (7.13) instead of Jτ∂f , Jσ(∂g)−1 ,
and Jσ(∂l)−1 respectively, we get

y1n = Proxτf (x1n − τ
2L

?x2n + τz)
y2n = Proxσg∗(x2n − σ

2Lx1n + σLy1n − σr)
w1n = αky1n − x1n

w2n = αky2n − x2n

z1n = w1n − τ
2L

?w2n

z2n = Proxσl∗(w2n − σ
2Lw1n + σLz1n)

x1n+1 = x1n + (z1n − y1n)
x2n+1 = x2n + (z2n − y2n),
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which is exactly the alorithm (7.11). Therefore, algorithm (7.10) implies
(7.11) in this case.

Lemma 7.3.2. Let C be a closed convex set in Rm. Then we have

dC = ‖ · ‖�ιC ,

and
∂dC = ∂‖ · ‖�NC .

Proof.

dC(x) = inf
y∈C
‖x− y‖

= inf
y∈Rm

{‖x− y‖+ ιC(y)}

=(ιC�‖ · ‖)(x).

Since C is a closed bounded convex set, for any u ∈ Rm,

ι∗C(u) = sup
x∈Rm

{〈x, u〉 − ιC(x)}

= sup
x∈C
〈x, u〉 < +∞.

Therefore, dom ι∗C = Rm. According to Fact 1.3.40, dom ‖ · ‖∗ 6= ∅, that means
dom ‖ ·‖∗∩ intdom ι∗C 6= ∅.Moreover, from Example 1.3.25, we haveNC = ∂ιC .
By using Theorem 2.4.3 , we have

∂dC =∂(‖ · ‖�ιC)

=∂‖ · ‖�∂ιC
=∂‖ · ‖�NC .

Example 7.1. Let f = ιC1 , l = ιC2 , where C1 is a circle centred at (5, 0) with
radius 2, and C2 is a box centred at (−2, 4) with radius 0.5. A simple Heron
problem is to solve

min
x∈C1

dC2(x) = min
x∈R2

(ιC1(x) + dC2(x)).

91



7.3. A Heron problem

Figure 7.2: The plot of Example 7.1

Let g = ‖ · ‖, z = 0, r = 0. Then, we aim to solve the problem with the primal
inclusion: find x ∈ Rm such that

0 ∈ NC1(x) + (∂‖ · ‖�NC2)(x) (7.14)

together with the dual inclusion: find v such that there exists an x ∈ Rm that{
−v ∈ NC1(x)
v ∈ (∂‖ · ‖�NC2)(x).

(7.15)

Here, L = Id . Let αk be an increasing convergent sequence in [1, 2) such that
lim

k→+∞
αk = 2. For each αk, let L = 4−αk

2 Id . Then the following holds:

(1) When αk → 2, the sequence of problems: find x ∈ Rm such that

0 ∈ NC1(x) +
2− αk
τ

x+
αk

4− αk
L?(∂‖ · ‖

2−αk
σ

� NC2)(Lx), (7.16)

where τ ∈ R++, σ ∈ R++, and τσ‖L‖2 < 4, together with the sequence of
duals: find v such that there exists an x ∈ Rm that −

αk
4−αkL

?v ∈ NC1(x) + (2−αk)
τ x

v ∈ (∂‖ · ‖
2−αk
σ

� NC2)(Lx)

(7.17)
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have solution pairs (xk, vk) that converge to (x, v) satisfying the primal in-
clusion (7.14) together with the dual inclusion (7.15).

(2) The problem with primal inclusion (7.16) and dual inclusion (7.17) can be
solved by the α-Douglas-Rachford algorithm. Moreover, the optimization
result which is obtained by the classic Douglas-Rachford algorithm is the so-
lution of the problem with primal inclusion (7.14) and dual inclusion (7.15).

Proof. (1) Since C1 and C2 are closed, bounded and convex sets, according to
Example 1.2.33, NC1 and NC2 are maximally monotone operators. Because
‖ · ‖ ∈ Γ0(R2), by Fact 1.3.27, ∂‖ · ‖ is maximally monotone. According to
Example 1.3.25,

NC1 = ∂ιC1 , NC2 = ∂ιC2 ,

and according to Example 1.3.13, ιC1 , ιC2 ∈ Γ0(R2).

As g = ‖ · ‖, and dom(g�l) = dom g + dom l, we have L(dom f) ∩
intdom(g�l) 6= ∅. As l = ιC2 where C2 is a closed bounded convex set, for
any u ∈ R2,

l∗(u) = sup
x∈R2

{〈x, u〉 − l(x)}

= sup
x∈C2

〈x, u〉 < +∞.

Therefore, dom l∗ = R2. Consequently, dom g∗ ∩ intdom l∗ 6= ∅.
By Fact 1.3.46,

D−1 = (∂l)−1 = ∂l∗.

As dom l∗ = R2, we can use Fact 1.3.43 to get

intdom l∗ = dom ∂l∗ = dom l∗ = R2.

That is, domD−1 = R2.

Now, we can apply Theorem 5.2.4 to complete the proof.

(2) As
domD−1 = R2,

by Theorem 3.2.10, the problem with primal inclusion: For any fixed αk,
find x ∈ R2 such that

0 ∈ NC1x+
2− αk
τ

x+
αk

4− αk
L?(∂‖ · ‖

2−αk
σ

� NC2)(Lx). (7.18)
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together with the dual inclusion: find v such that there exists an x ∈ Rm that −
αk

4−αkL
?v ∈ NC1x+ (2−αk)

τ x,

v ∈ (∂‖ · ‖
2−αk
σ

� NC2)(Lx).

(7.19)

can be solved by the α-Douglas-Rachford algorithm.

Because ιC1 , ιC2 ∈ Γ0(R2), according to Theorem 7.3.1, we can use al-
gorithm (7.11) to solve the problem with primal inclusion (7.18) and dual
inclusion (7.19).

When solving that problem with algorithm (7.11), by Lemma 7.1.1(1),

Proxτf (x) = PC1(x).

As C1 is a circle centred at (5, 0) with radius 2, we can also write

Proxτf (x) = (5, 0) + PB(0;2)(x− (5, 0)).

We use Lemma 7.1.1(2) to get

Proxσl∗(x) = x− σPC2

(x
σ

)
.

As g = ‖ · ‖, by Lemma 7.1.2,

Proxσg∗(x) = PB(0;1)(x).

Because τ, σ, ‖L‖ must satisfy the relation τσ‖L‖2 < 4, and L = Id . To
be on the safe side, we let σ = 2, and τ = 3/2. Hence, when we choosing
x0 = (5,−2), v0 = (0, 0) as starting values, for any fixed k, let αk = 2− 1

k ,
the iterative scheme algorithm (7.11) becomes:



y1n = (5, 0) + PB(0;2)(x1n − τ
2x2n − (5, 0))

y2n = PB(0;1)(x2n − σ
2x1n + σy1n)

w1n = αky1n − x1n

w2n = αky2n − x2n

z1n = w1n − τ
2w2n

z2n = w2n − σ
2w1n + σz1n − σPC2((w2n − σ

2w1n + σz1n)/σ)
x1n+1 = x1n + (z1n − y1n)
x2n+1 = x2n + (z2n − y2n).

(7.20)
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The stopping criteria of this algorithm is: Let ε = 10−5, continue running
this iteration until ‖x1n+1 − x1n‖ < ε, and ‖x2n+1 − x2n‖ < ε.

Table 7.3: Example 2: Seven fixed αk, where αk = 2 − 1/k, the corresponding
optimal point y∗1 and y∗2 , together with the case α = 2.

αk y∗1 y∗2

1 (3.0041,0.1277) (0.8759,-0.4825)
2− 1

10 (3.1449,0.7475) (0.8705,-0.4922)
2− 1

50 (3.2156,0.9033) (0.8781,-0.4786)
2− 1

100 (3.2270,0.9254) (0.8792,-0.4764)
2− 1

1000 (3.2378,0.9459) (0.8803,-0.4743)
2− 1

10000 (3.2389,0.9480) (0.8805,-0.4741)
2− 1

106
(3.2391,0.9482) (0.8805,-0.4741)

α = 2 (3.2391,0.9482) (0.8805,-0.4741)

As we can see, the numerical result shows that as k gets larger, or we can
say as αk gets closer to 2, the optimal result y∗1 and y∗2 which are gotten by
the α-Douglas-Rachford algorithm gets closer to the optimal result which is
gotten by the classic Douglas-Rachford algorithm.

Then we run the algorithm (7.20) again with the same starting point and
same stoping criteria, but in this time, we set τ = 1, σ = 1. Here is the
result:

Table 7.4: Example 2: Seven fixed αk, where αk = 2 − 1/k, the corresponding
optimal point y∗1 and y∗2 , together with the case α = 2.

αk y∗1 y∗2

1 (3.0020,0.0899) (0.8723,-0.4890)
2− 1

10 (3.1196,0.6813) (0.8639,-0.5037)
2− 1

50 (3.2063,0.8847) (0.8762,-0.4820)
2− 1

100 (3.2219,0.9157) (0.8783,-0.4782)
2− 1

1000 (3.2373,0.9449) (0.8802,-0.4745)
2− 1

10000 (3.2389,0.9479) (0.8804,-0.4741)
2− 1

106
(3.2391,0.9482) (0.8805,-0.4741)

α = 2 (3.2391,0.9482) (0.8805,-0.4741)

Again, the numerical result shows that as k gets larger, or we can say as
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αk gets closer to 2, the optimal result y∗1 and y∗2 which are gotten by the α-
Douglas-Rachford algorithm gets closer to the optimal result which is gotten
by the classic Douglas-Rachford algorithm.

We also tried to run this algorithm with different starting point with fixed τ
and σ, and the result shows that once we fix the value of k, the result we
get does not change if we change its starting point. This is because when αk
fixed, 0 ∈ (A + B + (2 − αk) Id)(x) has a unique solution. So it does not
matter when we change the starting point of the algorithm.

7.4 A feasibility problem solved by the primal-dual
formulation

Example 7.2. Let f = ιC1 , g = ιC2 , where C1 is a circle centred at (5, 0) with
radius 2, and C2 is a box centred at (3, 1.5) with radius 1. Let z = 0, r = 0. If we
let A = ∂f,B = ∂g, then, we aim to solve the problem with the primal inclusion:
find x ∈ Rm such that

0 ∈ NC1(x) +NC2(x). (7.21)

together with the dual inclusion: find v ∈ Rm such that{
−v ∈ NC1(x)
v ∈ NC2(x),

(7.22)
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Figure 7.3: The plot of Example 7.2

We can solve (7.22) by our α-Douglas-Rachford method.
Let αk be a increasing convergent sequence in [1, 2) such that lim

k→+∞
αk = 2.

For each αk, let L = 4−αk
2 Id . Then we use the α-Douglas-Rachford algorithm to

solve the problem with primal inclusion: find x ∈ Rm such that

0 ∈ NC1(x) +
2− αk
τ

x+
αk

4− αk
L?(NC2�

σ

2− αk
Id)(Lx), (7.23)

where τ ∈ R++, σ ∈ R++, and τσ < 4, together with the dual inclusion: find v
such that there exists an x ∈ Rm that{

− αk
4−αkL

?v ∈ NC1(x) + 2−αk
τ x

v ∈ (NC2�
σ

2−αk Id)(Lx).
(7.24)

When αk → 2, the sequence of solutions of the primal-dual problem (7.23)
together with (7.24) converge to the primal-dual shortest norm solution of problem
(7.21) together with (7.22).

7.4.1 The algorithm

Since C1 and C2 are closed, bounded and convex sets, according to Example
1.2.33, NC1 andNC2 are maximally monotone operators. Because int(C1∩C2) 6=
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∅. we have zer(NC1 + NC2) 6= ∅. Due to Theorem 6.3.1, we can use α-Douglas-
Rachford algorithm to solve the problem with primal inclusion (7.23) together with
the dual inclusion (7.24).
According to Example 1.3.25,

NC1 = ∂ιC1 , NC2 = ∂ιC2 ,

and according to Example 1.3.13, ιC1 , ιC2 ∈ Γ0(R2).
Because ιC1 , ιC2 ∈ Γ0(R2), Theorem 7.3.1 shows that we can use algorithm

(7.11) to solve the problem with primal inclusion (7.23) and dual inclusion (7.24).
When solving that problem with algorithm (7.11), according to Lemma 7.1.1

(1),
Proxτf (x) = PC1(x).

As C1 is a circle centred at (5, 0) with radius 2, we can also write

Proxτf (x) = (5, 0) + PB(0;2)(x− (5, 0)).

We use Lemma 7.1.1 (2) to get

Proxσg∗(x) = x− σPC2

(x
σ

)
.

Because τ, σ must satisfy the relation τσ < 4, to be on the safe side, we let
σ = 2, and τ = 3/2. Hence, when we choose x0 = (5, 1), v0 = (0, 0) as starting
values, for any fixed k, let αk = 2− 1

k , the iterative scheme (7.11) becomes:



y1n = (5, 0) + PB(0;2)(x1n − τ
2x2n − (5, 0))

y2n = (x2n − σ
2x1n + σy1n)− σPC2((x2n − σ

2x1n + σy1n)/σ)
w1n = αky1n − x1n

w2n = αky2n − x2n

z1n = w1n − τ
2w2n

z2n = w2n − σ
2w1n + σz1n

x1n+1 = x1n + (z1n − y1n)
x2n+1 = x2n + (z2n − y2n).

(7.25)

The stopping criteria of this algorithm is: Let ε = 10−5, continue running this
iteration until ‖x1n+1 − x1n‖ < ε, and ‖x2n+1 − x2n‖ < ε.

7.4.2 Numerical results

We summarize our numerical implementation in three tables.
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Table 7.5: Example 3: Six fixed αk, where αk = 2 − 1/k, the corresponding
optimal point y∗1 and y∗2 , and

√
‖y∗1‖2 + ‖y∗2‖2, together with the case α = 2.

αk y∗1 y∗2
√
‖y∗1‖2 + ‖y∗2‖2

1 (3.0053,0.1460) (1.0160,-0.5621) 3.2251
2− 1

10 (3.0565,0.4721) (0,-0.0852) 3.0939
2− 1

50 (3.0622,0.4949) (0,-0.0172) 3.1020
2− 1

100 (3.0629,0.4975) (0,-0.0086) 3.1030
2− 1

1000 (3.0634,0.4997) 1.0e-03 *(0,-0.8606) 3.1039
2− 1

10000 (3.0635,0.5000) 1.0e-04 *(0,-0.8607) 3.1040
α = 2 (3.6259,0.6339) (0,0) 3.6809

Then we run the algorithm (7.25) again with the same starting point and same
stoping criteria, but in this time, we set τ = 1, σ = 1. Here is the result:

Table 7.6: Example 3: Six fixed αk, where αk = 2 − 1/k, the corresponding
optimal point y∗1 and y∗2 , and

√
‖y∗1‖2 + ‖y∗2‖2, together with the case α = 2.

αk y∗1 y∗2
√
‖y∗1‖2 + ‖y∗2‖2

1 (3.0014,0.0740) (0.5021,-0.3890) 3.0687
2− 1

10 (3.0546,0.4642) (0,-0.1256) 3.0922
2− 1

50 (3.0621,0.4945) (0,-0.0258) 3.1019
2− 1

100 (3.0628,0.4974) (0,-0.0129) 3.1030
2− 1

1000 (3.0634,0.4997) (0,-0.0013) 3.1039
2− 1

10000 (3.0635,0.5000) 1.0e-03 *(0,-0.1291) 3.1040
α = 2 (3.7500,0.7500) (0,0) 3.8243

We also tried to run this algorithm with the starting point x0 = (−4,−6), v0 =
(0, 0), and fix τ = 1 and σ = 1, Here is the result:
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Table 7.7: Example 3: Six fixed αk, where αk = 2 − 1/k, the corresponding
optimal point y∗1 and y∗2 , and

√
‖y∗1‖2 + ‖y∗2‖2, together with the case α = 2.

αk y∗1 y∗2
√
‖y∗1‖2 + ‖y∗2‖2

1 (3.0014,0.0740) (0.5021,-0.3890) 3.0687
2− 1

10 (3.0546,0.4642) (0,-0.1256) 3.0922
2− 1

50 (3.0621,0.4945) (0,-0.0258) 3.1019
2− 1

100 (3.0628,0.4974) (0,-0.0129) 3.1030
2− 1

1000 (3.0634,0.4997) (0,-0.0013) 3.1039
2− 1

10000 (3.0635,0.5000) 1.0e-03 *(0,-0.1291) 3.1040
α = 2 (3.3945,0.6448) (0,0) 3.4552

According to the numerical result above, we can get the following conclusions:

(1) If we let y∗ = (3.0635, 0.5000) and w∗ = (0, 0),tables 7.5, 7.6, and 7.7 all
show that when αk → 2, we have the smallest norm primal-dual solution
(y∗, w∗). y∗ solves the primal and w∗ solves the dual.

(2) Once we fix the value of k with fixed τ and σ, the result we get by using α-
Douglas-Rachford algorithm does not change if we change its starting point.

(3) In three tables 7.5, 7.6, and 7.7, α = 2 gives different y∗1 because

0 ∈ NC1(x) +NC2(x)

has multiple solutions.

Remark 7.3. In Bot and Hendrich’s paper (see [6]), they have Douglas-Rachford
algorithm applications on denoising problems in image processing. We believe
similar work can be done for the α-Douglas-Rachford algorithm.

100



Chapter 8

Conclusions and future work

In this thesis, the Douglas-Rachford algorithm is studied. This is an algorithm
for solving the split problem: find x ∈ Rm such that

0 ∈ Ax+Bx,

where A and B are maximally monotone operators. The Douglas-Rachford algo-
rithm can be written as

(∀n ∈ N)


yn = JBxn
zn = JA(2yn − xn)
xn+1 = xn + (zn − yn).

In this thesis, I built a new algorithm based on Douglas-Rachford algorithm and
called it the α-Douglas-Rachford algorithm. This algorithm solves the split prob-
lem: find x ∈ Rm such that

0 ∈ Ax+Bx+ (2− α)x

where α ∈ [1, 2), A and B are maximally monotone operators. The new algorithm
can be written as

(∀n ∈ N)


yn = JBxn
zn = JA(αyn − xn)
xn+1 = xn + (zn − yn).

I proved that the α-Douglas-Rachford algorithm has very similar properties to the
Douglas-Rachford algorithm, and also showed the connection between those two
algorithms when α→ 2. One distinctive feature of α-Douglas-Rachford algorithm
is that it can be used to find the least norm solution.

Possible future work:

(1) Is the α-Douglas-Rachford algorithm error torlerant?

(2) In the primal-dual problems, what are the optimal parameters τ, σ to imple-
ment the α-Douglas-Rachford algorithms?
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Chapter 8. Conclusions and future work

(3) If we change the space from Rm to a more general space, like H, a general
Hilbert space, does the α-Douglas-Rachford algorithm have the same results
and properties?

(4) Comparing with the Douglas-Rachford algorithm, does theα-Douglas-Rachford
algorithm converge faster?

(5) More numerical experiments on theα-Douglas-Rachford algorithm for higher
dimensions and practical applications are required.
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