A parameterized Douglas-Rachford
algorithm: theory and applications
by

Dongying Wang
B.Sc., Xi’an Jiaotong-Liverpool University, China, 2015

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in
THE COLLEGE OF GRADUATE STUDIES

(Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA
(Okanagan)
August 2017
(© Dongying Wang, 2017



The undersigned certify that they have read, and recommend to the College of
Graduate Studies for acceptance, a thesis entitled: A PARAMETERIZED DOUGLAS-
RACHFORD ALGORITHM: THEORY AND APPLICATIONS submitted by DONGY-
ING WANG in partial fulfilment of the requirements of the degree of Master of
Science

Dr. Shawn Wang, Irving K. Barber School of Arts and Sciences
Supervisor, Professor

Dr. Heinz Bauschke, Irving K. Barber School of Arts and Sciences
Supervisory Committee Member, Professor

Dr. Julian Cheng, School of Engineering
Supervisory Committee Member, Professor

Dr. Philip D. Loewen, University of British Columbia (Vancouver)
University Examiner, Professor

August 17, 2017
(Date Submitted to Grad Studies)

ii



Abstract

Douglas-Rachford algorithm is important due to its applications on the Heron
problem and on the image denoising. Mathematically, it can be considered as
finding a point such that the point belongs to a zero set of the sum of two maximally
monotone operators.

In this thesis, previous work on Douglas-Rachford algorithm is presented and the
Douglas-Rachford algorithm with a changed parameter is considered. I give it the
name "a-Douglas-Rachford algorithm". The new algorithm which has the changed
parameter is shown to have a convergent result and other conclusions similar to
those of the classic Douglas-Rachford algorithm. At the same time, it has been
shown that the application of the a-Douglas-Rachford algorithm is wider than the
application of the classic one.

Later on, the a-Douglas-Rachford algorithm is proved to converge to the solution
of the composited monotone inclusion problems, and in a special-limit case, it has
some other properties. The numerical experiments confirm that the a-Douglas-
Rachford algorithm does have the properties that I proved theoretically.
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Chapter 1

Introduction

In this chapter, we will introduce some background materials on inner product
spaces and some necessary convex analysis used later in the thesis.

1.1 Inner product space

Definition 1.1.1. A vector space consists of a set V' with elements called vectors,
along with two operations such that the following properties hold:

1 Vector addition: Let u,v € V, then there is a vector u + v € V and the
following are satisfied.

i Commutativity: v +v =v +u, VYu,v,w € V.
ii Associativity: v + (v + w) = (u +v) + w,Yu,v,w € V.
iii Zero: there is a vector 0 € V suchthat 0 +u =u =u+ 0,Vu € V.
iv Inverses, for each u € V/, there is a vector —u such that u + (—u) = 0.
2 Scalar multiplication: Let u,v € V and r,s € R, then the following are
satisfied.
i Left distributivity: (r + s)v = rv + sv.
ii Associativity: r(sv) = (rs)v.
iii Right distributivity: r(u 4+ v) = ru + rv.
iv Neutral element: 1v = v.
v Absorbing element: 0v = 0.
vi Inverse neutral element:(—1)v = —wv.

Example 1.1.2. The space R™ consists of vectors v = (v1,...,v,) with v; € R
for 1 <4 < n and operations defined by

(Ugy ooy tup) + (V1,0 .y 0p) = (UL + V1, ...y Uy + Vp);

r(viy. .. ) 1= (U1, ., TUR).

where r € R.



1.1. Inner product space

Definition 1.1.3. Let V' be a vector space over R, and let W be a subset of V. Then
W is a subspace if:

(1) The zero vector, 0, is in W
(2) If u and v are elements of W, then w 4 v is an element of .

(3) If wis an element of W and c is a scalar from R, then the scalar multiple cu
is an element of W.

Definition 1.1.4. A norm || - || on a vector space V over the field R is a function
V' — R with the following properties:

(1) Positive definite: ||z|| > 0 forall z € V and ||z|| = 0 if and only if z = 0.
(2) Homogeneous: ||az|| = |a|||z| forall« € Rand x € V.
(3) Triangle inequality: ||z + y|| < ||z[| + [ly|| forall z,y € V.

Here, (V.|| - ||) is called a normed space.

Definition 1.1.5. An inner product on a vector space V' is a function (-,-) : V' x
V' — R with the following properties.

(1) Positive definite: (z,z) > 0, and (x,z) = 0 if and only if x = 0.
(2) Symmetry: (z,y) = (y, ).
(3) Bilinearity: (ax + By, z) = alx, z) + By, z) fora, B € R, z,y, 2z € V.

We call a vector space paired with an inner product and norm induced by

lz|| :== \/{x, z) an inner product space.
Example 1.1.6. In R"”, define

n
(Ve € R")(Vy € R"), (z,y) := leyz
i=1
Then R"™ is an inner product space.

Fact 1.1.7. Let z,y € R", and (z, z) = (y, z) for all z € R™. Then x = y.

Proof. For all z € R", (x,z) = (y, z) implies that (x,z — y) = (y,x — y) (by
setting z = x — y). Moreover,
0= <$,$—y> - <y,x—y>
:>0:<$—y7:1,’—y>
= 0=z —y|*

Thus, z = y. O



1.1. Inner product space

In this thesis, we use the Euclidean norm, which is given by

]l = VaTe =

n
E 2
xz;.
=1

In the following thesis,

x|| refers to the Euclidean norm of x.

Fact 1.1.8. (Cauchy Schwarz Inequality) Let x and y be in R™. Then

(@) < =l - llyll, e

n
g TiYi
i=1

n n
=SNDBE NP
=1 =1

Moreover, (z,y) = ||z|| - [|y|| & Ja € [0,400) such that x = ay or y = au.

Definition 1.1.9. In a normed vector space (V, || - ||), a sequence (vy,);>] is said

to converge (or strongly converge) to a point v € V if Ve > 0,3N > 0 such that
||lvn, —v|| < eforalln > N.

In the following thesis, (x,);7>] — z denotes the sequence (z,,),}>] converges

(or strongly converges) to z. We also write it as x,, — .

Definition 1.1.10. Let (z,,) > be a sequence in a vector space (V| - ||), let
(ny){2] be a strictly increasing sequence in N. Then the sequence (z,, )25 is

called a subsequence of ().

Definition 1.1.11. A sequence (z,,);3 is bounded if 3M > 0 such that ||z, || <
M,¥n > 1.

Fact 1.1.12. (Bolzano-Weierstrass Theorem) Every bounded sequence (z,,);>] in
R™ has a convergent subsequence, i.e., there exists a subsequence (z,, )} of
(z);2] such that x,,, — z, for some = € R™.

n=1
Definition 1.1.13. A sequence ()% is called a Cauchy sequence if for every

€ > 0, there exists an integer N > 0 such that ||z, — 2| < eforalln,k > N.

Fact 1.1.14. Let (,,);>] be a Cauchy sequence in a normed vector space (V, ||-|).
Letz € V. Then (z,,) 2] converges to x if and only if it has a subsequence that
converges to .

Proof. We separate this proof into two parts:
(1) “ = 7 If the Cauchy sequence (z,,)>] — =, it follows that (x,,)
subsequence of itself which converges to .

“+o00

T2 isa



1.1. Inner product space

(2) “ <=7 Suppose (2, );>] is a subsequence of (z,,),">] and converges to .

Then for all € > 0,3N; > 0(N; € N) such that ||z, — z|| < §,Vk > Ni.
Since (,)>9 is a Cauchy sequence, Ve > 0,3Ny > 0(N2 € N) such that

n=1

|Zm — Zn, || < §,Ym, k> No.
Let M = max(N1, N3), we have ny; > M. Then Ve > 0,m > M:

[#m — 2| < lzm = T, || + l2n,, — |
<L €
2 2
= €.

That is, (), converges to .

n—

O]

Definition 1.1.15. An inner product space H is called complete, or a Hilbert Space,
if each Cauchy sequence in H converges to a point in H.

In the following thesis, H denotes a Hilbert space.
Example 1.1.16. R™ is complete. Thus, R™ is a Hilbert space.

Proof. Suppose ()12 is a Cauchy sequence in R™, we want to prove its con-

vergence. According to Fact 1.1.14, we only need to prove it has a subsequence
which is convergent.
Since (x,)t> is a Cauchy sequence, let € = 1. Then, there exists N € N such that

n=1

forallm,k > N, ||z, — x| < 1. Thus, forall £ > N,

okl = llzx — N1 + TNl
< llze — ol + 241l

Let M = max(||z1]|, [|z2|l,-- -, lz~], lzn+1]], 1 + ||z n41]|), then for all & > 1,
|zx|| < M. According to the definition of the bounded sequence, we find (z,,),7>
is bounded. By using Bolzano-Weierstrass theorem, (J:n):g has a convergent

subsequence, which completes the proof. O

Definition 1.1.17. A sequence (,,),">] in a Hilbert space H is said to converge
weakly to a point v € H if forall y € H, (vn,y) — (v,y).

Fact 1.1.18. [4, Lemma 2.51] Let (z,,);2] and (u,),> be sequences in H, and
let x and u be points in H. Then the following hold:

(1) Suppose that H is finite-dimensional. Then x,, — z < x, — .



1.1. Inner product space

(2) Suppose that x,, — = and u,, — w. Then (X, uy) — (x, u).

Fact 1.1.19. [4, Lemma 2.46] Let (ycn):i'i be a sequence in R™. Then (x,,)>

n=1
converges if and only if it is bounded and possesses at most one sequential cluster

point.

Definition 1.1.20. Let /% be a space such that each element in it is a sequence
x = (C]);r:“f = (¢1, (2, . . .) of numbers such that

+00
D G < 4o,
j=1

and its distance function is defined by

d(l’,y) -

+o00
> OIG = il
j=1
where y = (,u]);;oi’ and
+o0
> luyl? < +o0.
j=1

Remark 1.1. Let ()12 and (uy,);>] be weakly convergent sequences in 2,
Zn — x and u, — u do not imply (z,,u,) — (x,u). A counter example is:
let (z,);29 = (en)2] and (uy,) 25 = (e,);2], where (e,,)12] is an orthonormal
sequence in [?. We have

(@, Un) = (€, €n) = 1;

while
Zp — 0,u, — 0and (0,0) = 0.

Remark 1.2. We show e, — 0. We need (e, ) — (0,2) Vo € [? as n — +o0.

Because x € 12, letz = ({,);2], we have

“+00
Z\QJQ<+oo:>g“721—>0:>§n—>0asn—>+oo.
n=1

Therefore, lim ¢, = 0. So

n—-+o0o

lim (en,z) =(¢, =0=(0,x)

n—-+00

for all « € [2. Hence e,, — 0.
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1.1.1 Sets in vector spaces

Definition 1.1.21. A set C' C R™ is closed if it contains all limit points, i.e.,
whenever there exists a sequence (x);2, in C and x;, — x, thenz € C.

Fact 1.1.22. For a Hilbert space H, let S be a subspace of 7. Then S is closed if
and only if S is complete.

Proof. (1) = Let ()2 be a Cauchy sequence in S. Because the Hilbert
space H is complete, (,,);7>] must converge to some = € H. However, as

S'is closed, z € S. Thus, S is complete.

(2) <= Let € S. Then there exists a sequence (z,,)7>] € S that converges

to z. Since a convergent sequence must be a Cauchy sequence, moreover,
since S is complete, (z,,),:> € S must converge to a point included in S.
Because a convergent sequence cannot converge to more than one point, we
have x € S. Thus, S is closed.

O

Definition 1.1.23. A set O C R™ is open if Vo € O, dr > 0 such that the open
ball B(z;7) C O, where

B(z;r) ={y e R™: |ly —zf| <r}.
Definition 1.1.24. The interior of a subset C' of H can be expressed as
intC:={zxeC|(IreRiy) BO;r)CC—=zx}.

Definition 1.1.25. The orthogonal complement of a subset C' of H is denoted by
Ctie.,
Ct ={ucH|VreC) (x,u)=0}.
Example 1.1.26. For any Hilbert space H, H*+ = {0}.
Proof. (1) {0} C H' is clear.

(2) Suppose there exists a u # 0 such that v € H*. According to the definition
of Ht, for any x € H, (x,u) = 0. However, since v € H and u # 0, we
have (u,u) # 0, which is a contradiction. Therefore, « must equal 0.

Altogether, we have H+ = {0}. O

Fact 1.1.27. Let C and D be two subsets of 2. Then D+ C CL+if C C D.

Proof. Let u € D*. Then u is a vector in # such that for all z € D, (z,u) = 0.
Since C' C D, all y € C also contained in D. Thus we have Vy € C, (y,u) = 0.
Therefore, u € C+ and so D+ C C+. O
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Fact 1.1.28. [12, Lemma 3.3-6] If S is a closed subspace of a Hilbert space H,
then
S =S5+

Definition 1.1.29. A set C' C R™ is convex if for any z,y € C and « € (0,1) we
have
ax+ (1—a)yeC.

Graphically, a set C'is convex if the line segment between any two points in C
is also contained in C, see Figure 1.1.

Figure 1.1: Examples of convex sets

Figure 1.2 shows two nonconvex sets.

B

Figure 1.2: Examples of nonconvex sets

Example 1.1.30. Let r € R4 .. Then the closed ball
Blgr)y={zeR": |z —¢| <r}
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is convex.
Proof. Letx,y € B(c;r) and a € (0,1). Then
laz + (1 —a)y —cf =lla(z —c) + (1 = a)(y — |

<allz — |+ (1 —a)lly —
<ar+(l—a)r=r.

Therefore, ax + (1 — a)y € B(c; ), which implies B(c; r) is convex.

Example 1.1.31. Let a; < b; foralli € {1,2,...,m}. Then the box
C={zeR":q; <z; <b}

is convex.

Proof. Letx,y € C'anda € (0,1). Then forall i € {1,2,...,m},

aa; + (1 —a)a; < ax; + (1 —a)y; < ab; + (1 —a)b;
sa; < azr;+ (1 —a)y; <b;.

Therefore, ax + (1 — a)y € C, which implies C' is convex.

O]

Definition 1.1.32. Let A C R. The infimum of A is the largest lower bound and
denoted by inf A; the supremum of A is the smallest upper bound and denoted by

sup A.
Remark 1.3. When A = (), inf A = +00 and sup A = —o0.

Definition 1.1.33. Let C' be a nonempty convex subset of H and let x € H. The

normal cone to C' at x is

{u € H|sup(C — z,u) <0}, ifx e C;
ch = .
0 otherwise.

Example 1.1.34. [4, Example 6.39] Let C' = B(0; 1) and let z € C. Then

Roa, if |z = 1;
Nezx=¢ {0}  if|lz] <1,
0 if ||z|| > 1.

Lemma 1.1.35. In R™, we have

R™, if z = 0;
N{O}x_{ 0 ifz#0.

Then, dom Nyp, = {0} and ran Ny = R™.



1.2. Operators

Proof. According to the definition of the normal cone, y € Nygyx if and only if
sup(0 — z,y) < 0. When z = 0, the inequality

sup(0 — 0,y) <0
is satisfied by all y € R™. Therefore,

That is, dom Ny = {0} and ran Nyp, = R™. O

1.2 Operators
Definition 1.2.1. Let M : H — 27! be a set-valued operator, the domain of M is
domM :={z e H: Mz #0D}
the range of M is
ran M :={ueH: 3z e H,uec Mzx};
the graph of M is
graM = {(z,u) e H x H:u € Mz};
the set of zeros of M is:
zer M :={xeH:0e Mz},
the set of fixed points of M is
Fix M :={zxeH:xec Mz};
the inverse of M is
Mt —=2"us {zeH ue Mz}
Definition 1.2.2. Let M, My : H — 2™,

(1) The sum of My, My is defined as (M7 + My)(x) := M;(x) + Mz (z) for all
x € H;

(2) The parallel sum of My, My is M1LMs : H — 21 defined by

MOMy = (M7 + My~



1.2. Operators

Definition 1.2.3. The identity operator is denoted by Id : R™ — R™, for which
we have
(Ve e R™)Idx = x.

Definition 1.2.4. Let A : R™ — R". The induced norm or operator norm on

R™ ™ ig given by :

A
|A] == sup{”;ﬁu cx € R™ with z # 0}.

Example 1.2.5. On space R™,

HIdH:sup{”x}:xemeithx#O}zl.
x

Definition 1.2.6. The distance to a set C' C H is the function

do i H — [0,+00] :  — inf ||z — y|.
yeC

Note that if C' = () then d¢ = +oo0.

Definition 1.2.7. Let C be a subset of H,let x € H, and letp € C. Then pis a
projection of x onto C' if ||z — p|| equals to the distance between x and C, which
denoted by d¢. If every point in H has at least one projection onto C, then C'is
proximinal. If every point in H has exactly one projection onto C, then C is a
Chebysheyv set. In this case, the projector onto C' is the operator, denoted by Pp,
that maps every point in 7{ to its unique projection onto C.

Definition 1.2.8. An operator M : R”™ — R™ is called p-strongly positive (p €
Ry if (M, z) > plla]?

Example 1.2.9. For all @« € R, ., the following two operators are p-strongly
positive:

(1) aldis p-strongly positive for any 0 < p < a.

(2) Let V : R? = R?: (w1, x9) — (¥:E22 22221) 'V js p-strongly positive for
any 0 < p < é

Proof. (1) For any z € R™,
(aldz,x) = al|z|.

Therefore, a Id is p-strongly positive for any 0 < p < a.

10



1.2. Operators

(2) Forany z; € R, 22 € R,

r1+x2 T2 — X
V(@1 22), (21, 22)) = (T =), (@1,22))
x%+x%

«

1 2
=~

Therefore, V' is p-strongly positive for any 0 < p < é

1.2.1 Linear operators

Definition 1.2.10. An operator L : R” — R™ is said to be linear if and only if
L(ax + By) = aL(z) + BL(y)

forall z,y € R" and o, 5 € R.

Definition 1.2.11. Let L : R" — R be a linear operator. The adjoint of L is the
unique linear operator L* : R” — R" that satisfies

(Vz e R")(Vy € R™) (Lx,y) = (x, L*y).

Fact 1.2.12. [12, Theorem 3.9-2] The Hilbert-adjoint operator L* of L in Defini-
tion 1.2.11 exists, is unique and is a bounded linear operator with norm

1L = 1L
Fact 1.2.13. Let L : R™ — R be a linear operator, let A € R. Then
(1) AL is a linear operator.
(2) (AL)* = \L*.
Proof. (1) Clear.
2

(,(AL)"y) = (AL, y)
= XNz, L*y)
= (x, \L*y).

Thus, (AL)* = AL*.

11



1.2. Operators

Fact 1.2.14. Let L : R™ — R™ be a linear operator. Then L* = LT. In this thesis,
we use AT to denote the transpose of a matrix A.

Proof. Since L : R™ — R™, we set

all a2 e A1n

a21 a2 ... Q2n
L =

aAml Am2 ... Qmn

Then, let z = (z1,29,...,2,) € R lety = (y1,%2,...,ym) € R™. We
have:

aip a2 ... Qin €1 Al
a1 Q22 ... Q2p Z2 Y2
(Lz,y) = . . . A
Aml am2 ... amn Tn Ym
a11x1 + a12T2 + ... + a1pTy Y1
2171 + a22%2 + ... + a2pTy Y2
- . b .
Am1T1 + amax2 + ... + AmnTy Ym

(ainx1 + aigxo + ... + ainTn)y;

|

N
Il
i

(aljyl =+ a2 Y2 + ...+ amjym)xj

I
NE

<.
Il
-

1 a11y1 +a2122 + ... + am1Ym
T2 a12y1 + a2y + ... + ama2Ym >

T aip a1 ... Gml Y1
x2 a2 a2 ... am2 Y2 >

Tn A1nY1 + a2pY2 + ... + GmnYm

Tn aln A2n ... Omn Ym

12



1.2. Operators

Thus,
aill a9 e Qm1
a a Lol Q
L* _ 12 22 m2 T
alnp a2n ... Qmn

O

Fact 1.2.15. Let L : R® — R™ be a linear operator. If L' exists, then L~ is
also a linear operator.

Proof. Let x,y € R", and let o, 8 € R. Since L is a linear operator and L™ 'L =
1d, we have

L™ YaL(z) + BL(y)] = L™ [L(az + By)]
= az + Py. (L.1)

Letz’ = L(z),y" = L(y), equation (1.1) becomes
Lil(OA’L’/ +By/) — OéLil(IL’/) _’_/B‘Lfl(y/)7
that is, L ™! is a linear operator. 0

Fact 1.2.16. [12, Theorem 2.4-2] Every finite dimensional subspace of a normed
space is complete.

Fact 1.2.17. Let T' : R™ — R™ be a linear operator. Then ran 7" is a subspace, so
is closed. In other words, ranl’ = ranT". Here we use Tan to denote the closure
of ranT.

Proof. We set this proof into two parts.
(1) Prove ranT is a subspace of R™.

(a) Since T is a linear operator, 7'(0) = 0. Thus, 0 € ranT..

(b) For any u,v € ranT), there must exists x,y € R™ such that Tx =
u, Ty = v. Meanwhile, T'(z +y) = Tx + Ty = u+v. Thus,u +v €
ranTl’.

(¢c) For any u € ranT, there must exists x € R™ such that Tx = wu.
Meanwhile, for any scalar ¢, T'(cz) = ¢T'(x) = cu. Thus, cu € ranT.

Since ran T satisfies all the conditions of being a subspace, ran 7" is a sub-
space of R™.

13



1.2. Operators

(2) Since R™ is a finite dimensional complete space and ran T is a subspace of
it, by using Fact 1.2.16 and Fact 1.1.22, we get ran 7' is closed.

O
Fact 1.2.18. [4, Fact 2.25] Let T' : R™ — R"™ be a linear operator. Then

(ranT)* = zer T*.

1.2.2 Nonexpansive operators

Definition 1.2.19. Let D be a nonempty subset of R™. Let T : D — R™. Then T’
is

(1) nonexpansive if

Ve e D,Vye D, |Tzx—Tyl<lz—yl;

(2) firmly nonexpansive if

Ve e D,Vye D, |Tz-Ty|?*<|z—y|*>—]|0d-T)z— (Id-T)y|>

Example 1.2.20. For any 0 < o < 1, a Id is firmly nonexpansive.

Proof. Since 0 < o < 1, we have a?

— a < 0, which also implies
o’ +1+a”—2a<1.
That is, for any z,y € R, and x # v,
?+(1-a)<lead®z—y|* <o -yl - (1 -a)fe -yl
& llaz —ay|* < fla —ylI* — (1 - a)o — (1 - a)y|.
Thus, for any 0 < a < 1, o Id is firmly nonexpansive. O

Fact 1.2.21. [4, Proposition 4.2] Let D be a nonempty subset of R, let T : D —
‘H.Then the following are equivalent:

(1) T is firmly nonexpansive.
(2) 1d —T is firmly nonexpansive.
(3) 27" — 1d is firmly nonexpansive.

4 (VzeD) (YyeD) |Tz-Ty|*<(z—y Te—Ty).

14



1.2. Operators

(5) (Vz € D) (Vye D) 0<(Tx—Ty,(Id-T)z — (Id=T)y).

6 (vre D) (WyeD) (Vael1]) |Te—Ty| < |ale—y)+(1-
o) (Tz — Ty)||.

Fact 1.2.22. [4, Theorem 5.15] Let D be a nonempty closed convex subset of R™,
let T : D — D be a nonexpansive operator such that Fix T" # (), where the fixed
points set
FixT ={x e R" : Tz = x}.
Let (A\,)123 be a sequence in [0, 1] such that "7 A, (1 — \,,) = +oc, and let
zg € D. Set
(VneN) zpp1 =zp+ (T — x0).

Then the following hold:
(1) (Txy, — xn):;i‘j converges to 0.

2) (:z:n);fg converges to a point in Fix T

Definition 1.2.23. Let D be a nonempty subset of H, let T : D — H be nonex-

pansive, and let v € (0, 1). Then T is averaged with constant y, or v — averaged,
if there exists a nonexpansive operator R : D — H such that

T=(1—-~)Id+vR.

1.2.3 Monotone operators

Definition 1.2.24. [4] An operator M : H — 2™ is monotone if (x —y,u—1v) > 0
for all (z,u), (y,v) € gra M.

M is a maximally monotone operator if there is no monotone operator whose graph
properly contains gra M.

M is a strictly monotone operator if

(V(z,u), (y,v) €egraM) z#y= (r—y,u—v)>0 (1.2)

M is a uniformly monotone operator if there exists an increasing function ¢js :
Ry — [0, +00] with ¢pr(0) = 0, and (z — y,u — v) > épn(||z — yl|) for all
(z,u), (y,v) € graM. When ¢p(||z — y||) = ||z — y||?, M is called strongly
monotone.

Remark 1.2.25. [4, Remark 22.3] The notions of strict, uniform, and strong mono-
tonicity of A : H — 2" can naturally be localized to a subset C' of dom A.

Proposition 1.2.26. If M is uniformly monotone on H, then A is strictly mono-
tone.
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1.2. Operators

Proof. M is uniformly monotone on H implies there exists a continuous increasing
function ¢y : Ry — [0, +00] with ¢3,(0) = 0, and (z —y, u—v) > dp(||z—y|)
for all (z,u), (y,v) € graM. Thus, in the case x # y, for all (z,u), (y,v) €
gra M, we have

(z —y,u—v) > om(llz - yll) (1.3)
According to the definition of ¢y, (1.3) means ¢ns(|lz — y||) > 0, so M is a
strictly monotone operator. O

Fact 1.2.27. [4, Proposition 23.35] Let A : H — 2" be strictly monotone. Then
zer A is at most a singleton.

Proof. Suppose x € zer A,y € zer A,z # y,ie.,0 € Ax,0 € Ay. Since A is
strictly monotone, we have

(x —y,0—-0)>0
=0>0

which is a contradiction. Thus, zer A is at most a singleton. O

Fact 1.2.28. [4, Corollary 25.5] Let A and B be maximally monotone operators
from H to 27 such that one of the following holds:

(1) dom A Nintdom B # 0.
(2) 0 € int(dom A — dom B).
Then A+ B is maximally monotone. In particular, (1) and (2) hold when dom B =

H.

Fact 1.2.29. [4, Propositions 20.22] Let A : H — 2" be maximally monotone,
let 2z € H,u € H,andy € Ry,. Then A~! and C : x — u + yA(z + 2) are
maximally monotone.

Fact 1.2.30. [4, Propositions 20.22, 20.23] Let A : H — "and B: G — 29
be maximally monotone. Then A x B : H x G — 27X9 :(z,y) — Az x By is
maximally monotone.

Fact 1.2.31. [4, Example 20.35] Let A : H — H be a bounded linear operator
such that A* = —A. Then A is maximally monotone.

Fact 1.2.32. [4, Minty’s Theorem] Let A : % — 27 be monotone. Then A is
maximally monotone if and only if ran(Id +A) = H.

Example 1.2.33. The following are maximally monotone operators:
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1.2. Operators

(1) Let C be a nonempty convex set in R™. Then N, NEI, Ngl + Id, and
(NZ' +1d)~! are all maximally monotone.

(2) Forany v € R, ,~Id is maximally monotone.

Proof. (1) C is closed and convex, so due to Example 1.3.13, (o € T'o(R™).
As Ouc is maximally monotone by Fact 1.3.27 and 0. = N¢ by Example
1.3.25, we get N¢ is maximally monotone. Because dom Id = R™ and N¢
is maximally monotone, by Fact 1.2.28 and Fact 1.2.29, Nc_l, Nal + Id,
and (N;' +1d)~" are all maximally monotone.

(2) For any x € R™, we have vId « = yx. Therefore, for any x,y € R™,

(y —z,yIldy —~yIdz) =(y — z,vy — yx)

=7y — |
>0.

Moreover, we have
ran(Id +vy1d) = ran(1 4+ v) Id = R™.

Therefore, by Fact 1.2.32, v Id is maximally monotone.
O

Lemma 1.2.34. Let A : R™ — 28" be maximally monotone. Then —A(—-) is
also maximally monotone.

Proof. Forany y; € —A(—x1) and yo € —A(—x2), we have

{ —y1 € A(—x1)
—Y2 € A(—.’L‘Q).

Since A is maximally monotone,
(=y1 = (=y2), —z1 — (—x2)) > 0,

which is equivalent to
(Y2 — y1, 02 — 1) > 0.

Therefore, — A(—-) is monotone. Since A is maximally monotone, we have —A(—-)
is maximally monotone. O
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1.2.4 Resolvent

Definition 1.2.35. [4] Let A : % — 2% be maximally monotone. The resolvent of
A is defined as
Ja = (Id+4)~1

Fact 1.2.36. Let A : % — 2" be monotone and let v € R, . Then Jya is
single-valued.

Proof. Suppose J, 4 is not single-valued. Then there exists z,y1,y2 € H and
Y1 7 Yo such that
Y1 € J,YA(QJ) and y9 € J’YA(x)'

That is,

z € (Id+~vA)y

which implies
y2 —y1 € Y(Ayr — Aya).

Therefore, there exists (y1,u) € gra A and (y2,v) € gra A such that u — v =
%(yz — y1). That implies

1
(y1 — y2,u—v) = —§Hy1 — )%,

which is less than 0 as y; # y2. This contradicts the assumption that A is mono-
tone. Therefore, J, 4 must be single-valued. O

Fact 1.2.37. [4, Proposition 23.20] Let A : H — 21 be maximally monotone and
let v € R4++. Then
Id = Jya + YJy-14-10 7_1 1d.

In particular,
Jp-1=1d—-Jga.

Fact 1.2.38. [4, Proposition 23.10] Let D be a nonempty subset of ,let T : D —
H, and set A = T—! — Id. Then the following hold:

1) T'=Jga.
(2) T is firmly nonexpansive if and only if A is monotone.

(3) T is firmly nonexpansive and D = H if and only if A is maximally mono-
tone.
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Definition 1.2.39. An operator 7' : R™ — R is Lipschitz continous with constant
B € [0, 00) if

(Ve e R")(Vy € R") [[Tz — Tyl < Bz —y|.

The operator 7' is locally Lipschitz continuous near a point xg € R" if there exists
r € Ry such that T'|g(4,.), Which means the restriction of 7" to B(xo;7), is
Lipschitz continuous.

Fact 1.2.40. [4, Corollary 23.11] Let A : % — 27 be maximally monotone and
let v € Ry . Then the following hold:

() Jya:H — Hand Id—Jy4 : H — H are firmly nonexpansive and maxi-
mally monotone.

(2) The reflected resolvent R, 4 : H — H : v — 2J, 42 — x is nonexpansive.

1.3 Functions
Definition 1.3.1. Let f : R™ — [—o00, +00]. The domain of f is

dom f :={x e R™: f(z) < +o0},
the epigraph of f is

epif = {(2,6) eR™ x R: f(x) < €},

and the reversal of f is

=z eR™: fY(z) = f(—2)}.
Definition 1.3.2. A function f : R™ — [—o0,+00] is proper if its domain is

nonempty and —oo ¢ f(R™).

1.3.1 Convex functions

Definition 1.3.3. Let f : H — [—o00, +0o0]. Then f(z) is conve if its epigraph
{(z,7) : f(x) < r}isaconvex subset of H x R. Moreover, f is concave if — f is
convex.

Fact 1.3.4. [4, Proposition 8.4] Let f : H — [—00, +00]. Then f(z) is convex
if and only if for all z € dom f, for all y € dom f, for all « € (0,1)

flaz+ (1 —a)y) < af(z)+ (1 —a)f(y).
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Fact 1.3.5. Let f : R™ — [—o00, +00] be convex. Then its domain dom f = {x €
R™ : f(x) < 400} is convex.

Proof. For any x,y € dom f, we have f(x) < +oo, f(y) < 4oc. Thus, for all
€ (0,1),af(x) + (1 —a)f(y) < +oo. By Fact 1.3.4, for all x € dom f, for all
y € dom f, forall « € (0,1)

flax+ (1= a)y) < af(x)+ (1 —a)f(y)
< H00.

That is, ax + (1 — )y € dom f. According to the definition of the convex set, we
find dom f is a convex set. O

Definition 1.3.6. Let f : R™ — [—00,400] be a proper function. Then f(z) is
strictly convex if Vo € dom f,Vy € dom f,Va € (0,1), and for z # y, we
have

flaz + (1 —a)y) <af(z)+ (1 —-a)f(y).
Now let C be a nonempty subset of dom f. Then f is convex on C' if Vz € C,Vy €
C,Va € (0,1), and for x # y, we have

flaz+ (1 —a)y) <af(z)+(1—a)f(y),

and f is strictly convex on C' if Vo € C,Vy € C,Va € (0,1), and for = # y, we
have

flaz + (1 —a)y) <af(x)+(1—a)f(y).

Example 1.3.7. The function || - ||? is strictly convex.
Proof. Letx,y € R™ and x # y. Let 0 < a < 1. Then
laz + (1 = a)yl® = allz]* - (1 - a)|ly|*
=a?z? + (1 — a)®y% + 2a(1 — a)(z,y) — az?® — (1 — a)y?
=—a(l —a)(a® +y* — 2(z,y))
——a(l - a)(z - y)*
Because * # y and 0 < a < 1, we have —a(1 — a)(z — y)? < 0. That is,
laz + (1 = a)y* < allz|® + (1 - a)lly]*.

Therefore, the function || - ||2 is strictly convex. O

Fact 1.3.8. Let f : R™ — R be a convex function, A : R™ — R™ be a linear
operator. Then g = f o A is convex.
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Proof. For all x € dom g, for all y € dom g, for all « € (0, 1). Since g = f o A,
we have

glar + (1 - a)y) = f(Alax + (1 — a)y]).

Because A is a linear operator, we have
f(Alaz + (1 — a)y]) = f(adz + (1 — ) Ay). (1.4)
As f is convex, equation (1.4) implies
gloax + (1 —ay)) < af(Az) + (1 - a) f(Ay)
= ag(z) + (1 - a)g(y).
Therefore, g is a convex function. ]

Fact 1.3.9. Let f : R, — R be convex and increasing, g : R”* — R be convex.
Then h = f o g is convex.

Proof. For all x € dom h, for all y € dom h, for all « € (0,1). Since h = f o g,
we have

hlaz + (1 - a)y) = f(glar + (1 — a)y)). (1.5)

As f is convex and increasing, g is convex, equation (1.5) implies that

h(az + (1 - a)y) < flag(z) + (1 - a)y)
<af(g(x))+ (1 —a)f(g(y))
= ah(x) + (1 — a)h(y).

Therefore, h is a convex function. O

1.3.2 Lower semicontinuous functions

In the following thesis, I shall use B(x;r) to denote the closed ball with center
at  and radius r € R .

Definition 1.3.10. The lower limit of a function f : R™ — R at Z is the value in
R™ defined by

liminf f(z) : = Jim  inf = f(2)

= su inf ).
5>Ig € B(T;0) f( )
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Definition 1.3.11. A function f is lower semicontinous at a point xzq if

liminf f(z) > f(zo).

T—T0

The function is said to be lower semicontinuous on H if it is lower semicontinous
at every point xg € H.

Example 1.3.12. The following functions are lower semicontinous:
(1) All continuous functions are lower semicontinous.
(2) The piecewise function

sin(x) ifx <37,
flo) = { sin(z) +1 ifx >3

1s lower semicontinuous.

Example 1.3.13. [4, Example 1.25] The indicator function of a set C' € H, i.e.,
the function

0 ifred,

o H = [—o0,+o0] t { +oo otherwise

is lower semicontinuous if and only if C' is closed. Moreover, if C' is closed and
convex, then ¢ is a proper, lower semicontinuous, and convex function.

In the following thesis, I use I'(#H) to denote the set of lower semicontinuous
convex functions from H to [—oo, +00], and use I'g(#) to denote the set of proper
lower semicontinuous convex functions from H to (—oo, +00].

Fact 1.3.14. [4, Corollary 9.4] Let (f;);cs be a family in ['(#). If I is finite and
—00 ¢ Uer fi(H). Then Y. fi € T(H).

Lemma 1.4. Let f,g € To(H), and dom f Ndom g # (). Then f + g € To(H).

Proof. Since f,g € I'g(H), thatis, —oo ¢ f(H)Ug(H), we have f+g > —o0. As
dom f N dom g # (), there must exists at least an x such that f(x) + g(x) < 4o0.
Therefore, combining with Fact 1.3.14, f + g € T'o(H). ]

Fact 1.3.15. [4, Theorem 9.20] Let f € I'g(#). Then for any = € H, there exists
au € H and an n € R such that f(x) > (z,u) + 7.
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1.3.3 Coercive and supercoercive functions

Definition 1.3.16. Let f : H — [—o0, +0o0]. Then f is coercive if

im  f(x) = +oo,
l|#]|—=+o00

and supercoercive if

@ = +0o0
llz]|—+oo ||

By convention, we say f is coercive and supercoercive if H = {0}.
Example 1.3.17. The function || - ||? is supercoercive.
Fact 1.3.18. Let f be in I'o(H), and let g : H — (—o0, +00] be supercoercive.

Then f + g is supercoercive.

Proof. According to Fact 1.3.15, there exists a u € H and an 7 € R such that for
allz € H,
f@) = (@, u) +1.

Then we have

f@)+g@) 0 w+ntg(@)

lim > 1
lzll—+o0 ||zl [E ]|
—[lulll|z]] +n + g(x)
T Jlzf 400 ||
. n+ g(x)
= lim (~[lull + —5—)
||| —-+o0 ]|

. g\x
> )~ ol +_tim 42
e &l

— +00.

Thus, f + g is supercoercive. [

Fact 1.3.19. [4, Corollary 11.16] Let f and g be in I'o(H). Suppose that dom f N
dom g # () and f is supercoercive. Then f + g is coercive and it has a minimizer
over H. If f or g is strictly convex, then f + g has exactly one minimizer over H.
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1.3.4 Subgradient and subdifferential

Definition 1.3.20. Let f : R™ — [—o00,+00], and let = be a point such that
|f(z)] < +o0. We say that f is differentiable (or Fréchet differentiable) at = if and
only if there exists a vector x* with the property

i W) = fla) = {a%y — @)

e ly — ||

= 0.

If such z* exists, it is called the gradient of f at x and is denoted by V f(x).

Definition 1.3.21. A vector v € R™ is said to be a subgradient of a convex function
f :R™ — R at the point x if we have

Yy e R™ (y —z,u) + f(z) < f(y).

The set of all subgradients of f at x is called the subdifferential of f at  and is
denoted by O f ().

Definition 1.3.22. (Fenchel Subdifferential) For a (not necessarily convex) f :
R™ — R, define its Fenchel subdifferential at x

Of () :={veR™: f(y) > f(x) + (v,y — z) for ally € R™}.

When f is convex, df(x) is the usual subdifferential.

Fact 1.3.23. [15, Proposition 2.36] Let f : R™ — (—o0, +00] be proper and
convex, and let x € dom f. Suppose that f is differentiable at . Then

Of () = {Vf(z)}.
Example 1.3.24. Let f(z) = 32| Then 0f(z) = {Vf(z)} = {z}.
Proof. We already proved || - ||? is strictly convex in Example 1.3.7, therefore in
thecase z,y e R™, x £ yand 0 < a < 1,
1 1
Sllaz + (1 = a)y|* <5 (allz]* + (1 = @) llylI*)

I—a, o
Sl

_ay 2
=2 llzl? +

Therefore, f(z) = 1|/z||? is strictly convex. Since f(z) is proper, convex, and
differentiable on R™, applying Fact 1.3.23 here, we have

Of(x) ={Vf(x)} = {«}.
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Figure 1.3: Figure of f(x) = |z

Example 1.3.25. [4, Example 16.13] Let C be a nonempty convex subset of .
Then aLC = Nc.

Example 1.3.26. Let f : R — R defined as f(z) = |z|.

Through the graph of this fuction, we can easily see its global minimizer is at
z = 0. However, this function is not differentiable at x = 0. At points other than
0, f is differentiable. According to the definition of the subgradient of a convex
function, we can get the the subdifferential of f(x) = |z| is

{-1} ifz <0,
of(x) =< [-1,1] ifx=0,
{1} ifz>o0.

Proof. Because f is differentiable when z < 0 (or £ > 0). According to Fact
1.3.23,

0f (x) = {Vf(z)} = {1} forz >0;
of () ={Vf(x)} ={-1} forz <O0.
For z =0, letv € 0f(Z). Then we have
(v,x—7) < f(x) — f(Z)Vx € R
& (v,z) < f(x) for z =0,Vx € R
—F=-1 ifx <0

v > 1@
<:> X
v flo) — =y if >0

swve[-1,1].

VALY
I

8|
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Thus, we have 0f(0) = [—1, 1]. O

Fact 1.3.27. [4, Theorem 20.25] Let f € I'g(#). Then O f is maximally monotone.
Fact 1.3.28. Let f € I'o(R™) Then ran(Id +0f) = R™.

Proof. Since f € T'o(R™), by Fact 1.3.27, 0f is maximally monotone. According
to Fact 1.2.32, we have ran(Id +0f) = R™. O

Fact 1.3.29. [4, Theorem 16.47] Let K be a real Hilbert space, let f € I'o(H), let
g € I'o(K), and let L : H — K be a nonzero bounded linear operator. Suppose
L(dom f) Nintdom g # 0. Then O(f + go L) = f + L* o (9g) o L.

Fact 1.3.30. [10, Page 20] Let f : R™ — R be convex, and let . : H — K
be a nonzero bounded linear operator. If h(z) = f(Lx + b), where b € R, then
Oh(z) = L*o0f o (Lxz +b).

Fact 1.3.31. [4, Corollary 16.50] Let m be an integer such that m > 2, set [ =
{1,...,m}, and let (f;);er be functions in I'g(?) such that

dom f,,, NI*7" intdom f; # ().

Then 032, fi) = 2232, O
Fact 1.3.32. Let f € T'o(H) andlety € Ry . Then 9(f+(v/2)|-||?) = 0f+~1d.

Proof. Since dom || - ||? = H, and f € T'o(H), we have
dom f N intdom((y/2)]| - [|*] # .
Therefore, by using Fact 1.3.31,
Of + (/2N 17) = 0f +0l(v/2)]l - I”] = 0f +~1d.
O

Definition 1.3.33. The set of global minimizers of a function f is denoted as
Argmin f.
Fact 1.3.34. Let f : R™ — (—o00, +00] be proper. Then

Argmin f =zer0f = {x € R™ : 0 € 0f(x)}.

Proof. Let x € Argmin f. Then for all y € R™, f(z) < f(y). That implies
f(z)+ (y —z,0) < f(y), which is equivalent to 0 € 9 f(z). Thus,

Argmin f = zer 0f.
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1.3.5 Conjugation
Definition 1.3.35. Let f : H — [—o0, +o0]. The conjugate of f is

f*iH = [-o0, +o0] tu 22713(@7%) = f(z)),

and the biconjugate of fis f** = (f*)*.
Fact 1.3.36. [4, Proposition 13.19] Let f : H — [—00, +00]. Then

1 *
f=§H'H2<:>f = [
Fact 1.3.37. [4, Proposition 13.23] Let f : H — (—o0,+0o0]. Then for any
a €Ryy, (af)" =af*(-/a).

Example 1.3.38. Let 2 € R™ let A € Ry ;. If f(z) = A||z]|2, then f*(u) = 142,

Proof. By applying Fact 1.3.37 together with Fact 1.3.36, we have

-y = (21 17)
=217 (55)

NE 2
=l
AL
4N
]
Fact 1.3.39. [4, Proposition 13.13] Let f : H — [—00, +00]. Then f* € I'(H).

Fact 1.3.40. [4, Theorem 13.37] Let f : H — (—o0, +0o0] be proper. Then f €
[o(H) if and only if f = f**. In this case, f* is proper as well.

Theorem 1.3.41. Let f, g € I'o(H) and dom f* N dom g* # (). Then f* + g* €
To(H).

Proof. Combine Fact 1.3.39 and Fact 1.3.40, f,g € [o(H) implies f* ¢g* €
To(H). Moreover, as dom f* N dom ¢g* # (), according to Lemma 1.4, f* + g* €
To(H). O

Fact 1.3.42. [4, Proposition 16.10] Let f be a proper function on H, let x € H,
andu € H. Thenu € Of(x) ifand only if f(z) + f*(u) = (z,u) = x € df*(u).
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Fact 1.3.43. [4, Proposition 16.49] Let f € T'y(#H). Then intdom f C dom df C
dom f.

Example 1.3.44. Let f : R — R such that

rzlnx ifz >0,
+oo  ifx < 0.

)= {

We have dom df = (0, +00) because df(0) = 0. As dom f = [0, +00), in this
example dom df C dom f.

Example 1.3.45. Let f(x) = t23(2). Then 2 € domdf but 2 ¢ intdom f.
Therefore, intdom f C dom 0f.

Fact 1.3.46. [4, Corollary 16.30] Let f € I'o(H). Then (9f)~! = Of*.

1.3.6 Infimal convolution

Definition 1.3.47. Let f and g be functions from R™ to [—oo, +0oc]. The infimal
convolution of f and g is

fOg : R™ — [—o00,400] : & = inf (f(y)+g(z —y)),
yeR

and it is exact at a point x € R™ if (fOg)(z) = mingerm{f(y) + g(z — y)}, ie.,

y e H: (fOg)(x) = fy) + g(z —y) € (—o0, +07;

fOg is exact if it is exact at every point of its domain, in which case it is denoted
by f[g.

Fact 1.3.48. [4, Proposition 12.6] Let f and g be functions from H — (—o0, +00].
Then the following hold:

(1) dom(fOg) = dom f 4 dom g.
(2) fUg =gUf.

Fact 1.3.49. [4, Proposition 13.24] Let f and g be functions in from H to (—oo, +00].
Then (fOg)" = f* +g".

Fact 1.3.50. [4, Proposition 15.2] Let f and g be functions in T'o(?) such that
0 € int(dom f — dom g). Then (f 4+ g)* = f* EH g*.

Fact 1.3.51. [4, Proposition 15.7] Let f and g be in I'g(#). Suppose
0 € int(dom f* — dom g*).

Then fOg = fg € To(H).
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Fact 1.3.52. [4, Proposition 16.61] Let f and g be in I'o(#), let 2 € dom(fOyg),
and let y € H. Then the following hold:

(1) Suppose that (fOg)(z) = f(y) + g(z — y). Then

d(fOg)(z) = of(y) N Og(x — y).

(2) Suppose that df(y) N dg(x —y) # 0. Then (fOg)(x) = f(y) + g(z —y).

Definition 1.3.53. Let f : H — (—o0,+0o0] be proper and let A € R, . The
Moreau envelope of f with parameter A is

1

exf = [0 )

Example 1.3.54. [4, Example 12.21] Let C C H and let A € R, . Then eyt =
(20)1dZ..
Proof. We have

1

exte () =leO(5 |- 7))

1
— inf —lz —q|?
yérﬁm(bc(y) + oyl = yl)

1
— inf (— ||z — y|?
ylgc(%Hw ylI9)

_ 1 2
]

Fact 1.3.55. Let f : R™ — (—o0, +00] be proper and let A € Ry ;. Then ey f is
full domain, i.e., domey f = R™.

Proof. Combining the definition of ey f with the Fact 1.3.48, we have

1
domeyf = dome(ﬁu %)

=dom f 4+ R™
=R"™.

Thus, ey, f is full domain. O
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1.3. Functions

Definition 1.3.56. Let f € I'o(#) and let x € #H. Then Prox x is the unique
point in ‘H that satisfies

. 1 1
e1f(zr) = min ( f(y) + =z — y|* ) = f(Prox; z) + =[x — Prox; z|*.
yeEH 2 2
Fact 1.3.57. [4, Proposition 16.44] Let f € T'o(), and let = and p be in H. Then

p=Proxyz & o —pedf(p).

In other words,
Prox; = (Id+0f)~" = Ja;.

1.3.7 Fenchel-Rockafellar duality

Definition 1.3.58. [4, Definition 15.19] Let f : H — (—o0,+o0], let g : K —
(—o0,+0o0], and let L : H — K be a nonezero bounded linear operator. The primal
problem associated with the composition function f + g o L is

min{f(z) + g(Lz)}, (1.6)
its dual problem is
min{ f*(L*v) + g*(~v)}, (1.7)

the primal optimal value is ¢ = inf(f + g o L)(H), the dual optimal value is
p* =inf(f* o L* + ¢*V)(K), and the duality gap is

0, ifu=—p* € {—o00,+0}
1+ p*otherwise.

Aot = {

Fact 1.3.59. [4, Proposition 15.21] Let f : H — (—oo,+oc]and g : K —
(—00, +00] be proper, and let L : H — K be a nonezero bounded linear operator.
Set = inf(f + go L)(H) and p* = inf(f*V o L* 4+ ¢*)(K). Then

p=—u" < Af,g9,L) = 0.

Remark 1.5. There exists a solution to problem (1.6) implies there must exists
a solution to problem (1.7), and vice versa. Therefore, solving problem (1.6) is
equivalent to solving problem (1.7).
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Chapter 2

Classic Douglas-Rachford
algorithm

2.1 Overview

In this chapter, the history of the Douglas-Rachford algorithm is reviewed.
There is a relation between the composited monotone inclusion problem and the
Douglas-Rachford algorithm, and there is also a relation between the composited
monotone inclusion problem and the optimization problems. Those two relations
are roughly given by Bot and Hendrich [6] in 2013. Here, I will show those rela-
tions in details.

2.2 Douglas-Rachford splitting problem and the brief
history of Douglas-Rachford algorithm

The Douglas-Rachford splitting problem is the problem of finding a point z €
‘H such that
0 € Az + Bz,

where A and B are maximally monotone operators. Naturally, this approach is
numerically viable only in those cases in which it is easy to compute J, (44 p),
where v € R4 ;. However, the Douglas-Rachford algorithm, in which the opera-
tors A and B are employed in separate steps, can be seen as a widely applicable
alternative.

The Douglas-Rachford algorithm was first be proposed by J. Douglas and H.
H. Rachford [9] in 1956 as a method for solving certain matrix equations. In 1969
Lieutaud (see [13]) extended their method to deal with (possibly nonlinear) max-
imally monotone operators that are defined everywhere. Lions and Mercier, in
their paper [14] from 1979, presented a broad and powerful generalization to its
current form, i.e., to handle the sum of any two maximally monotone operators
that are possibly nonlinear, possibly set-valued and not necessarily defined every-
where. With the joint work of Eckstein and Bertsekas (see [11, Theorem 5]) from
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2.2. Douglas-Rachford splitting problem and the brief history of Douglas-Rachford algorithm

1992, the inclusion Jp(Fix T') C zer(A + B) has been proved. Later on, in 2004,
Combettes (see [7, Lemma 2.6(iii)]) refined the results by Eckstein and Bertsekas.
Together with the earlier results by Lions and Mercier [14], the work by Eckstein
and Bertsekas and later by Combettes complete the following Douglas-Rachford
algorithm in the finite dimensional setting.

Lemma 2.2.1. [4, Douglas-Rachford algorithm] Let A and B be maximally mono-
tone operators from R™ to 28" such that zer(A + B) # 0. Let (\,);>] be a se-
quence in [0, 2] such that Z+°° A (2= Ap) = +oo, lety € Ry, and let 2y € H.
Set

Yn = J'yBﬂjn
(DR) (Vn € N) 2n = Jya(2yn — 1)
Tptl = Tn + )\n(zn - yn)

Then there exists x € Fix R, 4 o R, such that the following hold:
(1) Jypx € zer(A + B).
(2)

(Yn — 2n),:25 converges to 0.
(3) ()29 converges to x.
(

(4) (yn)25 converges to J, .
) (= ) 1 converges to J,gx.
(6) Suppose that one of the following holds:

(a) Aisuniformly monotone on every nonempty bounded subset of dom A.

(b) B isuniformly monotone on every nonempty bounded subset of dom B.
Then (y,,),2] and (2,,),7>] converge to the unique point in zer(A + B).

Later on, in 2009, Combettes [8] proved that Douglas-Rachford algorithm is
error-tolerant. Relying on the work of Combettes, in 2013, the joint work of Bot
and Hendrich [6] showed that there are two different primal-dual iterative error-
tolerant methods for solving inclusions with mixtures of composite and parallel-
sum type monotone operators.

Remark 2.1. In 2011, Svaiter (see [16]) demonstrated that A + B does not have
to be maximally monotone and (Jp(T"z)); /2] converges weakly to a point in
zer(A + B) in the general Hilbert space. In 2017, Bauschke and Moursi [5] gave a
simpler proof of the weakly convergence of the sequence (Jp(T™x));/>;. But this

is beyond the scope of this thesis.
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2.3. The composited monotone inclusion problem

2.3 The composited monotone inclusion problem

The composited monotone inclusion problems in this thesis are all considered
in the R™ space. All of them contain two parts: the primal inclusion problem;
and the dual inclusion problem. Here is the general case: Let A : R™ — 2R™,
B :R™ — 28" and D : R™ — 2R™ be maximally monotone operators. Let
r € R™, and let L : R™ — R™ be a nonzero linear invertible operator.

Let z € R™, the primal inclusion problem is to find a point £ € R™ such that

(P) z € Az + L*(BOD)(Lz — r).
The dual inclusion problem is to find a point ¥ € R™ such that

z—L*v € Ax

(D) (3z € R™) { € (BOD)(La — 1)

Lemma 2.3.1. The primal inclusion problem (P) is equivalent to the dual inclusion
problem (D).

Proof. Suppose = € R™ is the solution of the primal inclusion problem. That is,
z € Az + L*(BOD)(Lz —r),
which is equivalent to
0€—z+ Az + L*(BOD)(Lz —r). (2.1)

Equation (2.1) implies that some v € (BOD)(Lz —r) obeys 0 € —z+ Az + L*v.
In other words, that means v € R™ obeys

{OG—z+Aw+LU 22)

v e (BOD)(Lz —r).

This v solves (D), because x = Z satisfies the required conditions. Since L is a
nonzero linear operator, 0 € —z + Ax + L*v means z — L*v € Ax. Therefore,
problem (2.2) is the dual problem. Thus, finding the solution of the primal inclu-
sion problem is equivalent to finding the solution of the dual inclusion problem.
In another words, if we can find a solution to the primal inclusion problem, there
must exists a solution to the dual inclusion problem. Conversely, if we can find a
solution to the dual inclusion problem, there must exists a solution to the primal
inclusion problem. 0
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2.3. The composited monotone inclusion problem

Remark 2.2. We say (&, ) is a primal-dual solution to problem (P) together with
(D), if
z—L*v € Az and v € (BOD)(Lz — r).

Here, Z is a solution to (P) and v is a solution to (D), see Bot and Hendrich [6].

Before we get a corollary of Lemma 2.3.1, we need the following lemma.

Lemma 2.3.2. Let B : R™ — 28" and D = Nygy. Then
BOD = B.

Proof. Since D = Ny, according to Lemma 1.1.35, N{o}_ly =0, forany y €
R™. Suppose BLID # (), then there exists a pair of x € R™ and y € R™ such that

y € (BOD)(x).

That is,
ye(B™ + Ny ") (@) ex € (B™ + Ny, ()
S e B_ly
&y € B
Therefore,
BUNpy = B.

O]

Corollary 2.3.3. Let A : R™ — 28" B : R™ — 28" be maximally monotone
operators, let D = Nygy. Let 7 = 0,z = 0, and let L = Id. Then the following
problems are equivalent:

(1) the primal inclusion problem:

find a point Z € R™ such that 0 € Az + Bz, (2.3)

(2) the dual inclusion problem:

—v € Ax

v € Bx. 2.4)

find a point ¥ € R™ such that (3x € R™) {

Therefore, in this case, the dual inclusion problem (D) becomes: find v’ such
that
0c A~ (W) — B7Y(=). (2.5)
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2.3. The composited monotone inclusion problem

Proof. (1) Plugging D = Nygy, 7 = 0,z = 0, and L = Id into the primal
inclusion problem (P), we get

find a point Z € R™ such that 0 € Az + (BON{p})7.
By Lemma 2.3.2, we get 0 € AZ + (BUON{))7 is equivalent to
0€ Az + Bz.

(2) Again, we plug D = Nygy, 7 =0,z = 0, and L = Id into the dual inclusion
problem (D), we get (2.4). Since there exists x € R™ such that —v €
Az,v € Bx, x should be a solution of (2.3). Therefore, (2.4) is equivalent
to (2.3). Since —v € Az = v € A~ (~v) and ¥ € Bxr = x € B~!(1), the
inclusion problem (2.4) is equivalent to find ¥ such that

0c A (-v) - B7(9).

Now we let v/ = —, then the inclusion problem (2.4) becomes: find v’ such
that
0€ A~ (W) — B7Y(=).

Remark 2.3. (2.5) is called the Attouch-Théra duality [1] of (2.3).

Lemma 2.3.4. [6, Theorem 2.1] Let A : R™ — 2R™ B . R™ — 2R™ apd
D : R™ — 28" be maximally monotone operators. Let z and r € R™, let
L : R™ — R™ be a nonzero linear operator. Let L = R™ x R™. If we define
three set-valued operators M, () and S as follows:

M) M:K —2%:(z,0) = (—2z+ Az,r + B~1v);
Q) Q:K— 2~k (z,v) — (0, D" );
(S) S:K—K:(z,v) — (L*v,—Lx).
Moreover, define an bounded linear operator
1 1
V) V:]C—>]C:(.%',U)H(E—*L*’U,B—*LZC),
T 2 o 2

where 7,0 € Ry, and 70| L||? < 4.
Finally, define two operators on KV:

(A) A= V‘l(%S+Q).

(B) B:= V‘l(%SJrM).
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2.3. The composited monotone inclusion problem

Here, the space KV is a vector space with inner product (z, y)xy = (x, Vy)x and

norm ||z||xv = /(x, Vz)k. Then any
(z,v) € zer(A + B).

is a pair of primal-dual solution to problem (P) and (D) and vice versa, while Z is
the solution of the primal inclusion problem (P) and v is the solution of the dual
inclusion problem (D)

For the completeness of the thesis, we show the proof of this lemma here.

Proof. We split this proof into three steps.

Step 1: Prove the set-valued operators M, (), and S are maximally mono-
tone.

Since L is a nonzero linear operator, A, B, and D are maximally monotone oper-
ators, and operators M and () are maximally monotone on X by Fact 1.2.29 and

Fact 1.2.30.
For operator S, let a = (x,v),b = (y,u),a € K,b € K. Then

i.e., S* = —5. From Fact 1.2.31, it follows that S is maximally monotone.
Step 2: Show V' is maximally monotone, and prove V ~! exists.

Leta = (z,v),b = (y,u),a € K,b € K. Then
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2.3. The composited monotone inclusion problem

_ Y _ Ly Lp
- <($7U)7( 2L u, 2Ly+ O')>

T

= (a, V'b).

That means V is self-adjoint, i.e., V* = V.
Leta = (z,v),a € K,

r 1 v 1
ST . )
Vaa) = (2 10,2~ L1y, (@)
2 2
_ Il o2 i
L
> —— = [olllElll=ll + ==

Forany A € Ry,

llz]*
v TAll 1 = 2[|z[[[|v]| > 0.
Then we get
llzl? lv ||
— ol LNzl + =—
quz HUH2 1( UHLH2 || H2 \/TO-”LHZH H
T o 2 /ro|L]?
>H96||2+ lv]f? } IILH2” 2+ \/TOII H2H )
- oT o 2 T
1 Hﬂcll2 Jlv]|?
>(1— L|]?
>( 2 roll L) (- +U>
1
>(1- wHLIP)min{;,;}HaHz-

Let p = (1 — §4/70||L|[?>) min{2, 1}. Then (Va,a) > p|lal/®. Since 7 and o
satisfy the condition 7o ||L||?> < 4, we have p > 0. That means, V is p—strongly
positive.

Leta = (z,v),b = (y,u),a € K,b € K. Since V is a bounded linear operator, we
have :

(Va—Vbya—0b)=(V(a—b),a—10)
> plla —0||?
> 0.
Thus, V' is maximally monotone.

To prove the existence of V!, we only need to prove V is one-to-one (in other
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words, zer V' = {0}), and is onto (in other words, ran V' = K).

Because V' is p-strongly positive, zer V' = {0}. Otherwise, suppose we have = €
zer V with z # 0. Then (z,0) = (x, Vx) > p||x||*> > 0, which is impossible.
According to Fact 1.2.17, since V' is a bounded linear operator, ran V' is a closed
subspace, that is, ran V' = ranV. By Fact 1.2.18,

(ran V)t = zer V*. (2.6)
As V is self-adjoint, V* = V. Thus,
zer V* = zer V = {0}. (2.7)
Combining the result of (2.6) and (2.7), we get
(ran V) = {0}.
Because (ran V)* = {0} C K*, by Fact 1.1.27,

Kt C (ran V)1 (2.8)

Since ran V and K are closed subspaces, by Fact 1.1.28, K+ = K, (ran V)1+ =
ran V. Thus, (2.8) implies that X C ran V. Therefore,

ranV = K.

That means, V! exists.

Step 3: Show that (Z,v) € zer(A + B) if and only if T is a primal solution
of (P) and v is a dual solution of (D)

Since S, M and @) are maximally monotone and dom S = K, according to Fact
1.2.28, 15+ Q and %S + M are maximally monotone on /C.
Take %S + @ as an example. Let

1 1
(v,u) € gra(5S + Q) (y,v) € gra(5S + Q).
As %S + (@ is maximally monotone on space K, we have
<$ -y u— U>IC > 0. (29)

Because V! exists, (2.9) can be written as {x — y, VV "1 (u — v)) > 0, which
equals
(@ —y,V ' (u—v))xv > 0. (2.10)
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By Fact 1.2.15,
(2.10) & (z —y, V 'u — V_lv>;a/ > 0.

That means A := V! (%S + @) is a maximally monotone operator on space V.
By using the same method, we can prove B := V_l(%S + M) is a maximally
monotone operator on space KV too.

Again, since V~1is linear,

ser(A + B) = zer(v*(%s + M)+ V*l(%s +Q)
=zer(VHS + M +Q)).
(1) On the one hand, let = € zer(V~1(S + M + Q)). Then

(VS +M+Q))(z) =0
ie, (S+M+Q)(z)=V(0)

Thus, x € zer(S + M + Q).

(2) On the other hand, let x € zer(S + M + @). Then we have

(VTHS + M +Q))(x) = V(S + M +Q)(x))
=V=1(0)
= 0.

Thus, z € zer(V=H(S + M + Q)).
Altogether, we have
zer(VHS + M + Q)) = zer(S + M + Q).
Consequently, one has
zer(A + B) = zer(S + M + Q).
If zer(M + S + Q) # (), then according to the definition of M, S, Q, there exists

(z,v) € K such that

0€ —z+ AZ + L*7,
0Ocr+B'9+D - Lz,
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which is equivalent to
z— L*v € Az,
{ v € (BOD)(Lz — 7). @10
That is, ¥ is the solution of the dual inclusion problem. Moreover, since L is a
nonzero linear operator, z — L*v € AZ means 0 € —z + AZ + L*v. Then, those

two inclusions in (2.11) implies
z € Az + L*(BOD)(Lz — r),

i.e., T is the solution of the primal inclusion problem. Altogether, we call (z, )
the primal-dual solution.

Therefore, we deduce that (z,v) € zer(A + B) if and only if Z is a solution of
the primal inclusion problem (P) and v is a solution of the dual inclusion problem

(D). O

Remark 2.4. For the operator V : K — K : (z,v) — (£ — $L*v, 2 — 1Lx),
2

it is conjectured that we can consider it as a matrix and get det V' = % - @.

Therefore, if we have 7o ||L||?> < 4, V! exists.

Remark 2.5. According to the definition of the Douglas-Rachford Splitting Prob-
lem, Lemma 2.3.4 implies that the primal inclusion problem (P) and the dual in-
clusion problem (D) can be solved by using the Douglas-Rachford algorithm.

2.4 Application to proper, lower-semicontinuous convex
functions

Before we show the relationship between the primal dual inclusion problems
and the optimization problems, we must get the following results, which can be
found in [4].

Theorem 2.4.1. Let C be a convex subset of H, let KC be a real Hilbert space,
let L : H — K be linear and continuous, and let D be a convex subset of C. If
Dnint L(C) # @ orint DN L(C) # 0, then 0 € int(D — L(C)).

Proof. Suppose that y € D N int L(C). Then there exists an open ball B(y;r) C
L(C) for some r € R . Clearly

B(0;r) =y — B(y; 7). (2.12)

Since y € D, B(y;r) C L(C), equation (2.12) implies B(0;r) C D — B(y; ).
Therefore,
0 € int(D — L(C)).
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In the case of int D N L(C) # 0, we let € int D N L(C). Then there exists an
open ball B(z;7) C D for some r € R . Clearly

B(0;r) =z — B(z;7). (2.13)

Since z € L(C), B(x;r) C D, equation (2.13) implies B(0;r) C L(C) — D.
Therefore,
0 € int(D — L(C)).

Theorem 2.4.2. Let f € T'o(H),g € T'o(H). Then
0009 C (D).

Proof. If (0f00g)(z) = 0, clearly the inclusion holds. Assume (0f0dg)(z) #
0. Let v € (0f00g)(z). Since f € T'y(H),9 € To(H), by Fact 1.3.27, 9 f
and Jg are maximally monotone. According to the definition of the parallel sum
between operators (Definition 1.2.2), v € (9f0dg)(z) implies v € ((0f)~ +
(09) )7 H(2),ie., 2z € ((0f)~1 + (0g)~1)(v). In other words, z € (Of)~1(v) +

(99)~ ().
Leta; € (0f)~!(v) and as € (0g)~*(v) such that z = a; + as. Then

{ v e df(ar),
v € dg(ag),

SO
v € 0f(a1) NIg(az) (a1 +az = 2).

According to the Fact 1.3.52,
v € 0f(a1) N dg(az) & v € A(fUg)(2).

Thus,
0f00g C o(fOg).

[
Theorem 2.4.3. Let f € T'g(R™), g € ['o(R™). If dom f* Nint dom g* # 0, then
(1) 0 € int(dom f* — dom g*).
(2) fUg = fEgeToR™).
(3) 9(fOg) = af00g.
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Proof. (1) Since f € To(R™), g € T'o(R™), by Fact 1.3.39 and Fact 1.3.40, f*
and ¢g* are in I'g(R™). Thus, dom f* and dom ¢g* are convex.

Because dom f* N int dom ¢g* # (), due to Theorem 2.4.1,

0 € int(dom f* — dom g*).

(2) Using the result of (1) with the Fact 1.3.51 to complete the proof that f{g =
fBgeToR™).

(3) Since we proved flg = f g € T'o(R™) above, according to Fact 1.3.40,
fOg = (fOg)**. Thus,

a(fOg) = o(fOg)™*
= 0[(fOg)]". (2.14)

Since fOg € I'o(R™), combine Fact 1.3.39 and Fact 1.3.40, we have
(/Og)" € To(R™).

Therefore, by Fact 1.3.46, 9[(fOg)*]* = [0(fOg)*] .

By Fact 1.3.49, [0(fOg)*]~! = [0(f* +¢*)]~!. As dom f* Nint dom g* #
@, the sum rule for subdifferentials (Fact 1.3.31) gives

P + g =[0f + 097" (2.15)
Again, because f € I'g(R™), g € I'o(R™), by Fact 1.3.46,
af* = (0f)"1, 99" = (99) .

Thogether with (2.15) yeilds

Df +0g" ] =[(0) " + (89) ]!
= 0f0dg.

O]

Lemma 2.6. Let K be a real Hilbert space, let f € To(H), let g € To(K),
and let L : H — K be a nonzero bounded linear invertible operator. Suppose
[L(dom f)+b] Nintdom g # 0. Then O[f(x) + g(Lz 4+ b)] = Of (x) + L* 0 dg o
(Lz + ).
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2.4. Application to proper, lower-semicontinuous convex functions

Proof. Let h(x) = g(Lx + b), which can implies
domh = L™ (dom g — b).
Since [L(dom f) + b] N intdom g # 0, there exists an zy € dom f such that
Lzg+ b € intdom g,

ie.,
xo € L™ (intdom g — b) C dom h.

Because L~ !(intdom g — b) is open, zg € intdom h. Therefore,

o € dom f Nintdom h.

By Fact 1.3.31,
O(f+h)=0f + Oh.

Because h(x) = g(Lx + b), we have
Oh(x) = L* 0 dgo (Lx +b)
by Fact 1.3.30. Therefore,
Of(x) +g(Lx+b)] =0f(x) + L* 0o dg o (Lx +b).
O

Theorem 2.4.4. By the definition of the primal inclusion problem (P), with A =
0f, B =0g,D = 0l, where f,g,l € T'o(R"™). Then

(1) We obtain the primal inclusion problem

find Z € R™ such that z € 8 (z) + L* o (9g0dl) o (L — 1)  (2.16)

(2) Every solution of (2.16) is also a solution of the optimization problem
Argmin,cpn { f(z) + ((900) (Lz — 7)) — (2, 2)}. 2.17)

(3) Ifinaddition, [L(dom f)—r]Nintdom(gl) # @, and dom g*Nint dom [* #
(), then (2.16) and (2.17) are equivalent.

Proof. (1) By Fact 1.3.27, df, g and 0l are maximally monotone. Thus, once
we plug them into the dual problem (P) by letting A = df, B = 0g, D = 0,
we obtain equation (2.16).
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2.4. Application to proper, lower-semicontinuous convex functions

(2) Now we show every solution & of (2.16) is also a solution of (2.17).
First, let’s move z from the left side of equation (2.16) to its right side. We
obtain
0€ df(z)+ L* o (0g00l) o (Lx — 1) — O(2, T). (2.18)

Due to Theorem 2.4.2, since g,1 € I'o(R™), equation (2.18) implies
0€9f(x)+ L*od(gOl)o (LT — 1) — {2, T).

Take
U1 € 8f(j)7
ve € O(g0l) o (Lx — 1),
v3 € 0(—z,7),

such that v1 + L*vg + v3 is a generic point in O f (z) + L* 0 d(g0l) o (LT —
r) + 0(—2, T). By the definition of subdifferential, for all y € R™

(vi,y =) < fy) — f(2),
(va, Ly —r — (L7 — 7)) < (9801)(Ly — r) — (g0 (LT — 1),
<v3,y - f> < <Z7j> - <Zay>'
Due to (v, Ly — r — (Lx — r)) = (L*v9,y — T), we have
(v1 4+ L*va +v3,y — 7) < f(y) — f(T) + [(¢O0)(Ly — )
= (@O (Lz —r)] = (2,y) + (2, T)
= f(y) + (¢OO)(Ly —r) — (2, y)
— f(@) — (g0 (Lz — 1) + (2, T).

In turn,
v1 + L*vg +v3 € O(f(Z) + (g0O)(Lx — 1) — (2, T)).
Therefore,

Of(Z)+L*00(g0l)o(Lz—r)+0{—2z,Z) C I(f(Z)+(¢0N)(Lz—r)—(z,T)).
(2.19)
Since 0 € 9f(Z) + L* 0 9(g0l) o (LT — r) — 9(z, T), (2.19) implies that

0€ (f(7) + (¢O)(LE — 1) — (z,7)). (2.20)

By Fact 1.3.34, the  which satisfies the inclusion (2.20) is also an element
of the set

Argmingepn {f(2) + (900 (Lx — 1)) — (z,2)},

and vice versa.
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2.4. Application to proper, lower-semicontinuous convex functions

(3) It suffices prove

Of(Z)+L*00(90l)o(LTz—r)+0(—2,%) = d(f(Z)+I(¢0l)(Lz—r)—(z,T)).

2.21)
Because g,1 € T'o(R™), and dom ¢g* N int dom [* # (), using the Theorem
2.4.3 we have

Of (%)+L*(9g001) (Li—r)—8(z, ) = 8f (7)+L*0(g0l) (LT—r)—0(z, T).

Again, by using the same theorem, we have g(l € I'o(R™). Then we can
apply the Lemma 2.6 to get the conclusion that

Of (z) + L* 0 d(g0l) o (LT — ) = O[f (&) + (90N)(LE — 1)]
since we have the condition [L(dom f) — r] N intdom(g0l) # 0. As
dom(z, z) = R"™,
we have

[L(dom f) — r] Nintdom(gJl) N intdom(z, Z)
=[L(dom f) — r] Nintdom(gl) NR™
=[L(dom f) — r] N intdom(gll) # 0.

Thus, by Fact 1.3.31, we get equation (2.21).
O

Theorem 2.4.5. By the definition of the dual problem (D), with A = 0f, B =
09, D = 0l, where f,g,l € T'o(R"™). Then

(1) We obtain the dual inclusion problem

2 — L0 € 9f(z)

find v € R™ such that (3z € R™) { 5 € (9g0AN)(LT — 1)

(2.22)

(2) Every solution v of (2.22) is also a solution of the the optimization problem
Argmin,cgm {(g* +1*)(v) + f*(z — L*v) + (r,v) }. (2.23)
(3) If in addition, [—L* dom(g* + I*) + z] N intdom(f*) # 0, and dom ¢g* N

int dom [* # (), then (2.22) and (2.23) are equivalent.
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2.4. Application to proper, lower-semicontinuous convex functions

Proof. (1) By Fact 1.3.27, 9f, g and Ol are maximally monotone. Thus, once
we plug them into the dual problem (D) by letting A = 0f, B = 09, D = 0l,
we obtain equation (2.22).

(2) Now we show every solution of (2.22) is also a solution of (2.23). Due to
Theorem 2.4.2, since g,1 € T'o(R™),

v € (0g001)(Lz — r) implies v € [0(g0)|(Lz — r). (2.24)
Moreover, by Fact 1.3.42, (2.24) implies Lz —r € 0((¢g0l)*)(v). In general,

T €I o(z—L"D) (2.25a)

2:22) < { Lz —r € d((900)")(v) (2.256)

Multiplying (2.25a) by L, we obtain
Lz € Lodf* o(z— L*D). (2.26)

(2.25b) — (2.26) = 0 € 9[(g01)*](v) + O(r,B) — Lo Of* o (z — L*D).

Since g € I'o(R™) and [ € T'x(R™), by Fact 1.3.49, (¢g01)* = g* 4 {*. That
is,
0€d(g"+1")(v) = Lodf*o(z— L*0) + I(r,v).
Take
vy € O(g* +1%)(0),
vy € 0f* o (2 — L*v),
v3 € a<’r7@>a
such that v1 — Ly + vs is a generic point in 9(g* 4+ 1*)(0) — Lo df* o (z —
L*v) 4+ 0(r, v). By the definition of subdifferential, for all y € R™

(01, =v) < (¢" +1)(y) = (9" + 1")(0),
(vg, 2 — L*y — (2 — L*0)) < f*(z — L*y) — f*(z — L*v),
(v3,y =) < (r,y) — (r,0).
Due to (ve,z — L*y — (z — L*v)) = (—Lve,y — v), forally € R™ :
(v1 = Lvz + w3,y —0) < (9" +17)(y) — (9" + ") (0) + f7(z = L"y)
— [z = L") + (r,y) — (r,0)

= (9" +1)(y) + f*(z = L*y) + (r,y)—
((g" +1")(0) + f*(2 = L™) + (r,v))
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2.4. Application to proper, lower-semicontinuous convex functions

3)

in turn,
v1 — Lvg +v3 € 0((¢g" +1%)(0) + f* (2 — L*0) + (r,0)).
Therefore,

Ig"+1")(v) — Lodf*o(z— L*v)+ 9(r,v)
Co((g"+1")(0) + f*(2 — L*0) + (r,0)). (2.27)

Since 0 € 9(g* +1*)(v) — Lo df* o (2 — L*v) + 0(r, v), (2.27) implies that
0€d((g"+1")(v) + f*(z — L*0) + (r,v)). (2.28)

By Fact 1.3.34, the v which satisfies the inclusion (2.28) is also an element
of the set

Argmin,cpm{(g" + ") (v) + f*(z — L*v) + (r,v)},
and vice versa.
It suffices to prove

Ig"+1")(v) = Lodf*o(z— L*v)+ 9(r,v)
=0((g" + 1) (V) + f*(z = L0) + (r,0)). (2.29)

Because g,1 € T'o(R™), and dom ¢g* N int dom [* # (), using the Theorem
1.3.41 we have (g* 4 [*) € T'o(R™). Then we can apply the Lemma 2.6 to
get the conclusion that

Ay +1%)(8) — Lo df o (= — L*0) = A((g" +1)(®) + f*(= — L*D))

since we have the condition [— L* dom(g* + *) 4+ z] Nintdom( f*) # (). As
dom(r,v) = R™, we have

[-L*dom(g* +1*) + z] N intdom(f*) N intdom(r, v)
:[—L* dom(g* +1*) + Z] N intdom(f*) NR™
:[—L* dom(g* + l*) + Z] N intdom(f*) # 0.

Thus, by Fact 1.3.31, we get equation (2.29).
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Chapter 3

Douglas-Rachford algorithm with
a changed parameter

3.1 Overview

As we saw in the previous chapter, the classic Douglas-Rachford algorithm
has a parameter 2 in its iteration. That parameter gives me an inspiration: what if
we changed the value of that parameter? In this chapter, a new algorithm which
based on the classic Douglas-Rachford algorithm is constructed. I will prove the
properties of this algorithm and then show that it can be applied on the composited
monotone inclusion problems and on the optimization problems.

3.2 «a-Douglas-Rachford algorithm, with parameter
a€ll,2)

First, let’s see some theorems and facts.
Theorem 3.2.1. If A and B are maximally monotone operators from H to 2%, and
0 € int(dom A — dom B), then zer(A + B + y1Id) # ) when vy € R .

Proof. As A and B are maximally monotone operators and 0 € int(dom A —
dom B), according to Fact 1.2.28, A + B is a maximally monotone operator. By
Fact 1.2.29, %(A+B ) is also maximally monotone. Let A = %(A‘FB). According
to Fact 1.2.32,

ran(A +1d) = H = 0 € ran(A + 1d),

Then, zer(A + 1d) # (). Because

zer(A +1d) = zer[y(A + 1d)],
= zer(A+ B +v1d),

we have zer(A + B 4+ v1d) # 0. O
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

Fact 3.2.2. [4, Corollary 26.8](see also [2, Corollary 3]) Let m be an integer such
that m > 2,set [ = {1,...,m}, and let

(Ai)ier : H — 21

be maximally monotone operators. For every i € I, let (z;, um)j{i’i be a se-
quence in gra A; and let (x;,u;) € H x H. Suppose that

Tin — T4
E Uin =0 and (Vi€ ) ujn —
iel ML; p — Zje] xjn — 0.

Then there exists « € zer ), ; A; such that the following hold:
D)zrz=x1="+=2Tm,.
(ii) > ;erui = 0.
(i) (Viel) (x,u;) € grad,.
@iv) Zi61<$i,naui,n> — (x, Zz‘el u;) = 0.

Theorem 3.2.3. Let A be a maximally monotone operator from K to 2%, let o €
[1,2). Define R = aJ4 —Id. Then R is nonexpansive.

Proof. Let x,y € K. We derive an equivalent criterion for nonexpansivity:

‘4 is nonexpansive
< Riz — Ryl < |lz -yl
&l(aa —Id)z — (as — Id)y| < [l —y||
ella(Jaz — Jay) — (z —y)|| < [z -yl
Slla(Jaz — Jay) — (z = y)|* < |lo -y
Sla(Jaz — Jay) — (z —y),a(Jaz — Jay) — (x —y)) < |z -y
Sa?|[(Jax = Jay) | + llz — y|* = 20{Jaz — Jay,x —y) < ||z —y]?
sa?||(Jaz — Jay)||? < 2a(Jax — Jay,x — y)
&5 (Taz = Jay)* < (Jaz = Jay,x — y)

Since A is maximally monotone, it follows from Fact 1.2.38 that J4 is firmly
nonexpansive. According to Fact 1.2.21, we have

VxeH) (VyeH) ||JA33—JAyH2§(a:—y,JAm—JAy>.
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

Asa€[1,2],% € [3,1],
(6]
5 I(Jaz — Ta|? < | Jazx = Jayl* < (Jaz = Jay, — y).

Thus, R is nonexpansive. O

Remark 3.1. Theorem 3.2.3 holds whenever 0 < o < 2.

Similarly, if we let B be a maximally monotone operator from /C to 2%, and
define R = aJp — Id, R% is nonexpansive.

Theorem 3.2.4. Let o € [1,2), let A, B be maximally monotone operators from
K to 2%, and 0 € int(dom A — dom B). Let T = R% o R$. Then

(1) T is nonexpansive;
(2) Jp(FixT) = zer(A+ B+ (2 — a) Id);
(3) FixT # 0.

Proof. (1) According to Theorem 3.2.3, both RY and R¢ are nonexpansive.
Thus, for any z,y € K,

[Tz — Tyl = [|R3 o Rgx — R o Ryl
< [|REz — Ry
< [l —yll,

that is, 7" is nonexpansive.
(2) Since A + B is maximally monotone, according to Theorem 3.2.1,
zer(A+ B+ (2 — a)1d) # 0.
Consider an arbitrary = € K from this set, i.e.,
0€ Az + Bz + (2 — a)x.
Therefore, there exists y € K such that
x—y€Ar+ (2—a)randy — x € Bz,
which is equivalent to

(o — 1)z —y € Az and x = Jpy.
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

Thus,
aJpy—y € Ao Jpy + Jpy.

which implies
Jpy = Jalapy —y).
Therefore,
0= aJa(aJpy —y) — aJpy
ey =alalaJpy —y) — (aJpy —y)
sy = (aJy —1d) o (aJp — Id)y
sy = R3(Rzy).

Note that z = Jpy and = € zer(A + B + (2 — «) Id). Consequently, we
have
Jp(FixT) € zer(A+ B + (2 — a) Id).

Since 2 — o > 0, A+ B + (2 — «) Id is strictly monotone, we obtain that
zer(A+ B+ (2 —«a)1d)
is a singleton by using Fact 1.2.27. Hence,

Jp(FixT) = zer(A+ B+ (2 — o) Id).

(3) In the proof of (2), we have y € Fix T, so Fix T # (.

The following result is well-known.

Lemma 3.2. Consider the Douglas-Rachford algorithm with \,, = 1 for all n and
~ = 1. Then (DR) becomes

Yn = JB:L'TM
zn = Ja(2yn — zp),
Tpt1 = Tp + (Zn - yn)'

This algorithm can also be written as

1
Tptl = Ty + i(RA oRpxp — xn)a

in terms of
Tn+l1l = DA,B(xn)a (31)

where

Id+R4s0 Rp

Dap=
A,B >

1 1
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

Proof.
Tp+l = Tp + (Zn - yn)
=xn + Ja(2Jpxy — x0) — JBy,
T+ (v — 2JBwy) +2J4(2JBTy — 1)
N 2
_ xp, — Rpxy +2J4(Rpxy)
N 2
_ Zn+ Rao Rpzy
N 2
Id+Rao0Rp
= —:L’n
2
That is, Tp+1 = T, + %(RA o Rpx, — xy). Hence, (3.1) holds. O

We now introduce a-Douglas-Rachford algorithm.

Lemma 3.3. Changing the parameter 2 of the algorithm (DR) into o, where o €
[1,2), we propose the a-DR algorithm

Yn = J'yB:L'n
(Oé-DR) Zn = J’yA(ayn - xn)
Tpyl = Tp + )\n(zn - yn)

If we keep the assumption that \,, = 1 for all n and v = 1, then following holds:

(1) (a-DR) can also be written as
1 (0%
mn+1:xn+a( %o Rgxy — ),

in terms of
Tn+1 = Di7B($n)7 (3.2)

where ] 1
DY n=(1—-—=)Id+—RS% %.
a5 =( a) +aRA o Rp

(2) D3 g is an averaged mapping.
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

Proof. (1) According to the definition of the a-DR algorithm,

Tni1 = Tn + (Ja(Wn — 2n) — Yn)
=z, + (JalaJpzy — xy) — JBTs)
oy, —aJpr, + aJa(adpr, — )

o
(a — Dy + 2 — aJpzy, + aJa(adpr, — x5)

«
_ (a—=1znp+ (aJa —1d) o (aJp — Id)z,
N @
_ (a—1)xz, + R o Ry,
N a
1 1

=(1- )z, + —RER%z,.

( a)x +a ANBT

It follows that
1 1 Id + ! RS o R%
T = - = — .
n+1 ( a) oA ©chLip| Tn

So (3.2) holds.

(2) Because RY o Ry is nonexpansive, as 1 < a < 2, Dj p is an averaged
operator.
O

Remark 3.4. [4, Remark 4.34] Let D be a nonempty subset of H,letT : D — H.
(1) If T is averaged, then it is nonexpansive.

(2) If T is nonexpansive, it is not necessarily averaged: consider 7' = —1d :
H — H when H # {0}.

(3) T is firmly nonexpansive if and only if it is 1/2-averaged.

Theorem 3.2.5. Let o € [1,2), let A and B be maximally monotone operators
from KC to 2% with 0 € int(dom A — dom B). Let \,, = 1 for all n, let v = 1, and
let xg € R™. Set

Yn = JBTy

zn = Ja(oyn — xy) (3.3)

Tntl = Tn + (Zn - yn)

Then there exists x € Fix RY o R such that the following hold:

(1) Jpx = zer(A + B + (2 — a) Id). Moreover, the answer is unique.
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

(2) (Yn — 2n);729 converges to 0.
(3) ()25 converges to z.

4) (yn) 29 converges to Jp.

(

B) (= ) 1 converges to Jpx.

Proof. (1) Let T = R o R%. According to Theorem 3.2.4, FixT" # (). Then
for any z € FixT, we have x = R4 (R%z), and this together with R =
aJy —1d and R = aJp — 1d, yields that

(o —1)Jpr —z € AJpz,

that is,
Jpx —x € AJpr + (2 — a)Jpx.

Thus,
0€ AJpx + (2 — «a)Jpx + (x — Jpx). (3.4)

By the definition of the resolvent, we have
€ (B+1d)Jpx,

and so,
r— Jpx € BoJgx.

Combining with (3.4), one has
0e AJgz + (2 — a)JBZL‘ + B o Jpx,

that is
€[A+ B+ (2—«)ld]o Jpz.

Consequently, we have
Jpx € zer(A+ B+ (2 — «a)Id).
Since 2 — o > 0, A+ B + (2 — «) Id is strictly monotone, we obtain that
zer(A+ B+ (2 —«a)1d)
is a singleton by using Fact 1.2.27. Therefore

Jpr =zer(A+ B + (2 — a)1d).
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

(2) From (3.3), it follows that

Zn = Yn = Ja(ayn — Tn) — JpTy
= Ja(aJpxy — xy) — Jpy,
aJa(apx, — xy) — aJpzy,

o
adJa(adpxy, — xy) — (apxy — Tp) — T
o

aJa(RExn) — Rz, — xp

«
%o REx, — xy

[0}

1

Thus, z,4+1 = a?n—i—é(Txn—xn). By Fact 1.2.22(1), we have Tz, —x,, — O.
Therefore, z, — y, — 0.

(3) Since 1 < a < 2, we can apply Fact 1.2.22(2) to complete this proof.

(4) Tt follows from (3.3) and Jg = (Id+B)~! that z,, € (B + Id)y,, ie.,
Xy — Yn € Byn. Hence, (yp, xn — yn) € gra B.

Similarly, (2, @y, — x, — 2z,) € gra A. Set
VneN, v, :=Tp—Yn, Wp:i=QY, — Tp— 2n. 3.5)

Then we have
(2n,wy) € gra A

(yna 'Un) € graB (3.6)
Wp + vy = (0 — D)y, — 2p

Since result (3) tells us that (z,,)>] converges to z, (x,,)° is bounded.

According to the algorithm (3.3), y,, = Jpx,. By Fact 1.2.40 (1), J4 and
Jp are firmly nonexpansive. Thus,

Vn €N lyn = yoll = [|Jp2n — Jpxol| < [lzn — o,

which implies (y,,),12] is bounded.

Then there exists a subsequence (yy,, )32 of (y,,),7>5 such that (yn, )5
is a convergent sequence. Suppose yn, — ¥, as z, — yn — 0 has been
proved, there exists a corresponding subsequence (zy, )25 of (z,,),:°9 such

that z;,, — 7. By (3.5), we have v,, = = — gy and w,, — (o — 1)y — x.

55



3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

Let’s set A1 := A+ (2 — a)Id, Ay := B. It follows from Fact 1.2.28 that
Aj and A, are maximally monotone. Since

(zn,wyn) € graA and (yp,vn) € graB
as showed in (3.6), we have

{ (anvwnk + (2 - Q)an) S graAl
(y”k7 vnk) € gra Ao,

with 2z, = ¥, yn, = U, Wn, + (2 — Q)2n, = §— 2, Un, = T — Y, 2n, —
Ynp — 0,Yn, — 2n, — 0. Again, from (3.5), we have

Wy, + (2 - a)an + Uny = QYn;, — Ty, — Zny + (2 - a)znk + Tny, — Yny,
= (Oé - 1)(ynk - znk) —0

This combining with Fact 3.2.2, yields that there exists a € zer(A; + As)
such that

a:gand (aay_%)EgraAl7
(a,z —7) € gra As.
That is,

{ (7,5 —x) € gra(A+ (2 — ) Id),
(y,2 —y) € gra B.

In view of (y,y — =) € gra(A + (2 — «) Id), one has
g—r €A+ (2—-a)ly.

which is equivalent to
(o — 1)y —z € Ay.

In view of (g, = — ) € gra B, one has
iy = Jpz.
Together, we obtain
y=Jpr and ¢ € dom A.

Thus, Jpz is a sequential cluster point of (y,); /2. Because Jpx emerges
as the limit of every convergent subsequence for (y,,),>], we conclude that
Jpx is the unique sequential cluster point. Since y,, is bounded and has only

one sequential cluster point, by Fact 1.1.19, y,, — Jp=z.
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

(5) Combining result (2) and result (4), we have z, = (zp,—yn)+yn — 0+Jpx,
ie., z, — Jpx.
]

Remark 3.5. The proof of (4) works in a Hilbert space by replacing strong con-
vergence with weak convergence in appropriate places. In particular, we have
Yp — Jpzx.

Remark 3.6. In R™ the proof of (4) is simple by using that Jp is Lipschitz con-
tinuous:

s U = B, Tlen) = T

Remark 3.7. The application of the a-Douglas-Rachford algorithm is wider than
the classic Douglas-Rachford algorithm since there is a requirement on the clas-
sic one that zer(A + B) # (), while the a-Douglas-Rachford algorithm does
not need a strict condition like that. Because according to Theorem 3.2.1, once
0 € int(dom A — dom B), zer[A + B + (2 — «) Id] # 0 for sure.

3.2.1 Application to composited monotone inclusion problems

3
Definition 3.2.6. Let B : H — 2", D : % — 2. Define B0 D = (B! +
D~!+31d)~!, where B € R.

Lemma 3.2.7. Let B : R™ — 2R™ and D = B, 1d with 8y, 2 € R, . Then

B B
(BO D) = BO <1+61521d>.

Proof. Since D = (5 1d,

(B % D) =[B7' + (BoId)™' + g 1d] !
1+ B1B2 141,

=[B!
B+ B2

Therefore,

ﬁl o 52
(BO D) = BO <1+ﬁ1521d>.

Lemma 3.2.8. Let B : R™ — 28" D = Ny, and 8 € Ry Then
B 1
(BO D)= BO <Id) .

B
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

Proof. Since D = Nyqy,

B _ _ _
(BOD)=(B™'+ Ny ' +pI1d)~". (3.7)
According to Lemma 1.1.35, N{O}_ly = 0, for any y € R™. Thus,
(B™'+ Nypy ' +81d) ' = (B~ + pId) ™!

Therefore, (3.7) is equivalent to
B 1
(B O Nyoy) = BO (5 Id) .

O]

Now suppose A : R™ — 28" B : R™ — 2R™ and D : R™ — 28" are
maximally monotone operators, and L : R”™ — R™ is a nonzero linear invertible
operator.

Also recall that M, Q,S,V,A,and B : Let C = R™ x R™, 7,0 € R, 4, and
To||L||? < 4.

™M) M:IC—>2K:(:U,v)r—>(—z+Aa:,r+B_1v);
Q) Q:K— 2k (z,v) — (0, D" );
(S) S:K—K:(z,v) — (L*v,—Lx);

z 1 , v 1 )
(V) VIC—>IC($,U)|—>(;—§LU,E—§L.T),
(A) A= V‘1(§S+Q>;
(B) B:= V—l(%SJrM).

Theorem 3.2.9. Suppose M, (Q,S,V, A, and B are constructed by (M), (Q), (S),
(V), (A) and (B) respectively. Let o € [1,2). Then the following two inclusion
problems are equivalent:

(1) Find (z,v) € R™ x R™ such that (z,v) € zer(A + B + (2 — a) Id).

(2) Solve the problem with primal inclusion: find £ € R™ such that

2—«a
2 e
2 € Av+ O‘x+4 L*o(B 8 D)o(Lz—1) (3.8)
T —
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

where L = 4_TO“L, 7 € Ry4 and 0 € R, together with the dual inclusion:
find v such that there exists an x € R™ that

z—ﬁL*veAx—i—@x
2o 3.9)
ve (B O D)o (Lx—r).

Proof. By the definitions of M,Q,S,V, A, and B, and step 3 of the proof of
Lemma 2.3.4, we have B := V"1(15 + M)and A := V(35 + Q). Note
that

zer(A+ B+ (2 —a)Id) = zer(V (M + S+ Q) + (2 — o) Id)
= zer(V I M+ S+ Q+ (2—a)V))
=zer(M +S+Q+(2—a)V))

For all (z,v) € zer(M + S+ Q + (2 — a)V)), we have
(0,0) (M +S5+Q+ (2 —a)V)(x,v)

9 _
=(—z+Az+ L*v+ (2 - oz)E -3 aL*v,
T
9 _
T+B*10+D710—Lx+(2—o¢)3— aLx).
o
That is
0€—z+Ax+Lv+ (2— )% —259L%
0Ocr+Blv+Dv— Lo+ (2—a)?—252La.
0€—z+Ar+(2—-a)f+ 5L
4_TC“L:L“ —reBw+D W+ 7(2;(1)1).
According to Definition 3.2.6, 4_T°‘Lx—r € Bflv—i-D*lv—i—@v can be written
as
= 44—«
ve (B O D)o Lx —r).
Thus, we have
0€e —2+Aa:+(2;—°‘)x+%l}*v
2—a
ve (B O D)o (3%52Lx —r).
Since L = 4_TO‘L, L* = ﬁL*. Then we have
2—-«a « . e
z € Az + x+ L*o(B O D)o(Lz—r).
T 4—a
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

Therefore, for any (z,v) € zer(A + B + (2 — a) Id), « is also the solution of the
primal inclusion problem (3.8), and v is the solution of the dual inclusion problem
(3.9). O

Theorem 3.2.10. Suppose M, @, S, V, A, and B are constructed by (M), (Q), (S),
(V), (A) and (B) respectively. Let « € [1,2). The inclusion problem (3.8) together
with inclusion problem (3.9) can be solved by using a-Douglas-Rachford algo-
rithm if dom D~ = R™. In particular, dom D~! = R™ if one of the following
holds:

(1) D = Nyg.
) D=1d.

Proof. Because dom D~! = R™, we get dom @ = K. Since dom S = K, we
conclude that

dom(%S +Q) =K.

As Lemma 2.3.4 shows V is invertible (one-to-one, onto), one has
1
@mA:%mv4§s+@

= dom(%S +Q)
=K.

Then
dom A —dom B = K.

Therefore, we get
0 € int(dom A — dom B).

As Lemma 2.3.4 also shows A and B are maximally monotone, by Theorem 3.2.9
and Theorem 3.2.5, the composited monotone inclusion problem (3.8) together
with inclusion problem (3.9) can be solved by using a-Douglas-Rachford algo-
rithm. O

3.2.2 The application to proper, lower-semicontinuous convex
functions

As f,g,1 € To(R™), we consider the maximal monotone operators: A =
of, B =0g, D = 9l. Thus the primal inclusion problem:

2—a
2 — e
find z € R such that z € Ax + ax+4a L*o(B O D)o(Lx—r)
T -«
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

is equivalent to the following inclusion problem:

2_ 2;&
find z € R such that z € 9f(x) + aw+4a L*o(0g O 0Ol)o(Lx—r).
T -«

Theorem 3.2.11. Let f,g,l € T'o(R™), let L be a nonzero linear invertible op-
erator, let z,r € R™,let7 € Ry, and 0 € Ry, and a € [1,2). If dom g* N
intdom [* # (), then the following primal inclusion problem

9 _ 2—a
Find z € R™ such that z € df(x) + am—|—4faL*o(8g 0 Ol)o(Lx—r)
(3.10)
can be characterized by the following optimization problem
2—-«a «o o
Argmin{ f(- AP+ —[(gODE (|| IP](L- =7) = (2, )}
ramin{ () + =5 P4 2L 0B O (g P —r) = (2,9)
(3.11)
Proof. According to Definition 3.2.6,
2—«
e -1 o, 2—a g
dg O 0l =1(0g) "+ (0l)"" + . Id] .
Since g,1 € T'o(R™), by Fact 1.3.46,
2— 2—
[(Dg)~  + (0D + =2 1d]7! = (9g" + 9" + =—L1d).
o

Because dom ¢g* N intdom [* # (), we can use the sum rule for subdifferentials
(Fact 1.3.31) to get

2 — 2 —
Og" + 0 + ~—L1a)! = (8(g* +1*) + —— 2

g o

Id)~

Again, since g, 1 € T'o(R™) and dom g* N intdom [* # (), Theorem 1.3.41 implies
that g* + [* € T'o(R™). Therefore, we can use Fact 1.3.32 to get

2 _
@(g" +17) + —=

— * * 2—« —
)~ =[0(g" + 1"+ =~ - ),
o
which is equivalent to
-«
20

as g* + I* + 2| - |* € [y (R™). By using the same method, as f € T'o(R™), we
have

2
g™+ 1"+ -1 (3.12)

2—«

- 11%). (3.13)

8f+277a1d =0(f+
T 2T
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

Obviously, dom ||-]|> = R™and ||-||? € To(R™). Thus, we have 0 € int[dom(g*+
I*) — dom %2 - |1?].
By Fact 1.3.50, equation (3.12) can be rewritten as 9[(g* + I*)* B (52| - |*)*].
Again, by using the Theorem 2.4.1 and Fact 1.3.50 with the reason that dom ¢g* N
intdom [* # (), the set in line (3.12) can be written as
2-« 2\ *

1)
Because g,l € I'o(R™), by Fact 1.3.40, g** = g and [** = [. Moreover, as Exam-
ple 1.3.38 says (52 - [|?)* = (sl |?), expression (3.12) finally equals

Ol(g™ BI™) B (

22-a)

Combining the result of (3.13) and (3.14), and moving z to the end of the right
hand side, the inclusion problem showed by (3.10) becomes

Ao - 11%)]. (3.14)

0¢e 8(f+22_0a||-||2)+L6L*00[(95l)5(2(20_a)II'HQ)]O(Lw—?“)Jr@(—z,:v)
(3.15)

Since (g L 1) mﬂ - ||# can be considered as a Moreau envelope with the

function g 1] and A = 2776‘ Thus, by using Fact 1.3.55, we have

I

g

d O)E ——| |} =R™
oml(g B10) 8 5711 I
For f + 222| - ||?, we have
2—-«a
dom(f + =2+ ) = dom f #0.
Since L is a nonempty linear operator and r € R™, once dom f # 0,
2—«
[Ldom(f + == -] -7 #0. (3.16)
Combining the result that dom|[(g (1) [ ﬁ\\ -|I?] = R™ with (3.16), we have
2 — 2 . g 2
[Ldom(f + =5 ) =] Aintdom(g ©0) B gz TSl ) # 0. (.17)
Due to Lemma 2.6
2—-«a 9 o o
—- — L OO (=—— - |))]o(L-—
O+ g I IP) + a0 0o B B (g™ - )] o (B~ =)
_ 2—-«a 9 a o 9
=07 + 25 1P+ o 0B B (g sl P o (=)} (18)
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3.2. «-Douglas-Rachford algorithm, with parameter o € [1, 2)

Combining with the fact that intdom(—=z, ) = R™, we get

2-a 9 o o 9
oNf+ o [l +m[(955)5(m”"’ o (L-—r)}+9(—zx)
_ 2-ay 2@ _T e ) (s
=0 + T P+ oL B B (Tl P o (B =)+ =2,9)
(3.19)
by Fact 1.3.31. Combining the result of (3.15), (3.18) and (3.19), we get
2-o o, o 7 2 ) — (2
0eoif+——II +4_a[(gﬂl)ﬂ(2(2_a>|! 19)] e (L-—r)—(z,) }(z).
(3.20)
By Fact 1.3.34, the inclusion (3.20) is equivalent to the statement that = belongs to
- 2o o, @ A T ) — (2.
Argmin{ £+ =3 P4 7 (0P B (g TS I IPo (B =r) — (2.},

which is exactly the optimization problem (3.11). Thus, the primal inclusion prob-
lem (3.10) is equivalent to the optimization problem (3.11). O

Remark 3.8. Combining Theorem 3.2.11 and Theorem 3.2.10, the optimization
problem (3.11) can be solved by using a-Douglas-Rachford algorithm if we have
dom(dl)~* = R™. This holds when | = 1oy or i = 3| - ||2.
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Chapter 4

Special cases of the composited
monotone inclusion problems and
the double regularization

4.1 Overview

In this chapter, we still let A : R™ — 28" B : R™ — 28" and D : R™ —
2R™ be maximally monotone operators. Let z, r € R™ and a € [1,2), let L :
R™ — R™ be a nonzero linear invertible operator, let 7,0 € R,y and 7o||L||? <
4. Setting the « inclusion problem in the general case: find € R™ such that

2—« a 2e

* e .
2 € Ax + - x+4—aL (B O D)(Lx —r), 4.1)

where L = 47T"‘L. The general case of the « inclusion problem (4.1) is too com-
plex to get some direct result. In this chapter, we will consider the « inclusion
problem (4.1) in some special cases, and then get some particular results. In those
special cases, operator D satisfies dom D~! = R™, that means, all of the spe-
cial cases that will be showed below can be solved by using a-Douglas-Rachford
algorithm.

4.2 The special cases

Theorem 4.2.1. Leta ¢ R, {, L =ald,D =1d, z =0, = 0. Then
(1) The « inclusion problem (4.1) becomes: find z € R™ such that

2 —« aa o
0e A BO
T T x+4—a[ (2—a+o

Id)](ax). 4.2)

(2) If in addition, A = 0f, B = g, where f,g € T'o(R™), then the primal
inclusion problem (4.2) can be characterized by the following optimization
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problem

« Y 2
> (g0 Paa)}  @3)

« 2
Il + -

ArgminxeRm{f(x) +

where Y= ﬁ

Proof. (1) Since L = ald, z = 0,r = 0, the « inclusion problem (4.1) be-
comes: find x € R™ such that

2 — e
0€ Az + Yt (B O D)(ax), (4.4)
T 44—«

Since D = Id, according to Lemma 3.2.7,

2—a
= o
B D)= BO(——1Id).
(B O D) (2—a+a )
Thus, (4.1) is equivalent to
2 —« aa o
A BO Id
0€ Ax + . x+4_a[ (2_a+0 )] (az)

(2) Lety = 27g+0, since 0f = A,0g = B, (4.2) is equivalent to

0caf(z)+ =%+ 40‘6‘@ (990 1d)(az). 4.5)

T —

Because f € I'g(R™), we have

2= o) + 52 ]

of (x) + - 5

by Example 1.3.32. Moreover, since O(yf) = ~vdf for any v € Ry,
combining this with the Example 1.3.24, we have

1 v
Y1d =95 le|2) = (Fle?).

Therefore, (4.5) becomes

2 «

a
4—

0 € 9ff(x) + =~ [lall”) +

; 9900 |- Pl (ax).  @6)
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— l=l?

As shown in Example 1.3.38, (3||z[?)* = Il o

4v/2
['o(R™), by Fact 1.3.40, dom g* # (). Therefore,

. Because g €

||'H2)
2y

dom g* N intdom(%” -I?)* = dom ¢g* N intdom(

=domg* NR™
= dom g* # 0.

Combing the above result with the fact that g € I'o(R™), we get

900 I7) = 2O - 1)

by Fact 2.4.3.
Again, we use the fact 9(yf) = v0f, (4.6) is equivalent to
2 -« «
0 €0l () + 20 XalP] + a0l 2 (O] P)(ar). @)

Because (g% || - ||*) can be considered as a Moreau envelope with the func-
tion g and A = % Thus, by using Fact 1.3.55, we have

g m
dom(g0IZ |- I?) =R™.

Thus,

2 -« ) ¥
— |- I”] intdom (g0 | - [I*)

adOHﬂft)%’AEA*
=adom f NR™
=adom f # (.
Thus, by Fact 1.3.29, (4.7) is equivalent to

2 —«
2T
Due to Fact 1.3.34, finding = such that

2 o g 2
121" + = (O [l - [I)(az)]. (4.8)

0€d[f(x)+

2—«
2T

is equivalent to = being a solution of

0 € d[f(x) +

ol + 7= (905 - ) (az)]

22—«
2T

Therefore, we completed the proof.

(67

Avgming g (/) + = ] +

y
(95511 - ") (a)}
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4.2. The special cases

Theorem 4.2.2. Leta € Ry, L = ald, D = Nyg), 2 = 0,7 = 0. Then
(1) the « inclusion problem (4.1) becomes: find x € R™ such that

2 _
0€ Az + L+ -2 (BO 7
T

i—a Id)(ax). 4.9)

(2) If in addition, A = Of, B = Jg, where f,g € T'o(R™), then the primal
inclusion problem (4.9) can be characterized by the following optimization
problem

2—«
2T

ol + == (051 P (@)}, .10y

Argming, cpm{ f(x) + 5

where 7 = 57

Proof. (1) Since L = ald, z = 0,r = 0, the « inclusion problem (4.1) be-
comes: find x € R™ such that

0c Azt 2%y 00 (BZTE&D)(am), @.11)
T 14—«

Since D = Nygy, by Lemma 3.2.8

2-a

(B ) Nypy) = BOg—Id.

Thus, (4.11) is equivalent to

2—-—« aa o

0€ Az + - $+4_a(BD2_aId)(az).

(2) Since the only difference between (4.2) and (4.9) is the parameter of the
identity function. Thus, as we proved in 4.2.1(2), if we let v = ﬁ here,
the primal inclusion problem (4.9) can be characterized by the following
optimization problem

2—«
2T

Argmin, g {f(2) + o] + 77— (902 | - [*)(ax)}.

4—«
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4.3 Double regularization: Moreau regularization and
Tychonov regularization combined

Let f,g : R™ — R be proper, lower-semicontinuous and convex. Often we
must find the minimizer of f + g. The functions f, g might not be differentiable.
We can first make one of the function differentiable by using the Moreau envelope.
In order to obtain the least norm solution, we can do Tychonov regularization.
Therefore, we can consider minimization of the following function:

[+ Bra+pB2[90(B3q)] (4.12)

where 3; > 0 (i € {1,2,3}),and q = || - |[>. Put h = f + B2[g0)(B3 q)]. While
90(53 q) is the Moreau regularization with the function being g and A = %, and
h + (1 q is the Tychonov regularization. Therefore, Problem (4.12) is a double
regularization.

Remark 4.1. In (4.12), we usually require 31 | 0,82 — 1, and B3 | 0.

4.3.1 Subdifferential of infimal convolutions

Let a(a) = &%
Corollary 4.3.1. Let f : R™ — (—o0, +00] be proper, lower semicontinuous and
convex. Then for any 53 € R4,

OLfTI(Bs q)] = D01 1d = [513 1d+(0f)"1".

Proof. By Fact 1.3.39 and Fact 1.3.40, f € I'o(R™) implies f* € I'o(R™); in
particular, dom f* # (). According to Example 1.3.38, we have

Brafa) = (Flel?)
_ llzl?
203
Therefore, dom(f3 q)* = R™ = int dom(/33 q)*. Thus, dom f*Nint dom (3 q)*
dom f* # (). Applying Fact 2.4.3, we get
9(fOPsq) = 0f89(Bs3q)
=0f0p31d
=0+ (Bs1a) 1!

_ EEE S
=[(9/) +ﬁ31d] :
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4.3.2 Main results

Theorem 4.2. Let f,g : R™ — (—o0, +00] be proper, lower semicontinuous and
convex, let q(z) = 3||z||%. For every 1 > 0,82 > 0, 83 > 0, consider

uin {f + Bra+052[g0( a)l}- (p)
Then the following hold:

(1)
O f + Bra+62[90(Bsq)]} = Of + B11d +52[090(B31d)].

(2) (p) always has a unique solution.

(3) The Fenchel Dual of (p) is

. % q 1 « [ U
Jnin { (f [ 51) (v) + 5, qa(v) + Bag <ﬁ2> } (d)

and it also has a unique solution.

Proof. (1) Because f and g are proper, dom f # () and domg # (. Since
g0(B3 q) is actually a Moreau envelope with the function g and A = 51—3,
according to Fact 1.3.55,

intdom[g0d(B3 q)] = int R™
—R™, (4.13)

For 31 q, we have
intdom(S; q) = int R™ = R™.
Thus,

dom f N intdom Ba2[g(B3 q)] N intdom (51 q)
=dom f NR™ NR™
=dom f
#0.
Additionally, f € To(R™), g € To(R™). Thus, by Fact 1.3.31,

o{f + Bra+B2[g0(Bs )} = Of + 0(B1q) + 9[B2(90(Bs q))]. (4.14)

Again, since g € I'o(R™), by using Corollary 4.3.1, we have 0[g[]((3 q)] =
0g0(B3 1d). Therefore, (4.14) yields

NS+ B2lgB(Bs )] + Bra} = Of + S 1d +52[090(B3 1d))].
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(@)

3

Because g € I'o(R™), by Fact 1.3.40, dom g* # (). As noted in the proof of
Corollary 4.3.1, dom(S3 q)* = R™. Consequently,

dom ¢* M int dom(Bs q)* = dom g* # 0.

Thus, by Fact 2.4.3(2),
[90(Bsq)] = [ (Bsq)] € To(R™).

Because f € To(R™), dom f # ). According to (4.13),

dom f N dom[B2901(83 q)] = dom f # 0.
Thus, by using Lemma 1.4, we have

f+ B2[g8(B3 q)] € To(R™).

Since dom f N dom{f>[g0(B3 q)]} = dom f,

dom(p1 q) N {dom f N dom[f(g0(B3 a))]}
=R™ Ndom f
=dom f
#0.

In addition, according to Example 1.3.17 and Example 1.3.7, q is supercoer-
cive and strictly convex. By Fact 1.3.19, 51 q + f + B2[¢0J( 03 q)] has exactly
one minimizer over R™. In another words, (p) always has a unique solution.

According to Fenchel duality (see Definition 1.3.58), we have
min {£(z) + B a(x) + falgD(Bs @)} (2)}
= min {(f + £19)"(v) + [B2(90(B3 )] (—v) }- (4.15)
Since dom q = R™ and f € ['y(R™), we have
dom f Nintdom q = dom f # 0.
Thus, by Theorem 2.4.1 and Fact 1.3.50,
(f+Bia) = f"O(Bra) (4.16)

As we showed in Example 1.3.38, for A > 0, (\||z]|?)* = ”Z‘f. Thus,

* Bl 2*_Hx||2_q
By = (5 el = 55 = 5. @17)
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That is,
FEB) =0 4.18)

1
For [82(90(B3 q))]*(—v), according to Fact 1.3.37, we have

[ﬁﬂgDU%qDF(—w==BﬂgDU%qﬂ*<5§>.

Due to Fact 1.3.49 and equation (4.17)

OGal (52) =10+ Gar (3)
— % <_U> + i <_U>
-9 B2 By ! B2
o Gl D
_, (Bz ) + g, (4.19)
Combining the result of (4.18) and (4.19), we have

min {(f + B1a)"(v) + [B2(98(Bs )" (—v)}

= min *gv 1 v « (Y
—mﬁm{(ftﬂﬁ)<>+7%&q<>+ﬁw (52)}.

Therefore, we complete the proof that the Fenchel Dual of (p) is (d). For the
similar reason as (2), (d) has a unique solution.

O]

Remark 4.3. We are interested in considering: 51 = =2 and o =
TER;;and o € [1,2).

1, Where

If we apply Theorem 4.2 to the optimization problem (4.3), we can get the
following corollary.

Corollary 4.3.2. Let f,g € Fo(Rm) letq = 3| - ||%. Consider the optimization
problem (4.3) where a = 1,y = 5=2—. Then the following hold:

(1) Forany z € R™,

2

O{f(x) + IIszJri( *H %) ()}

2 —« o

=W@%%7_x+4_J®@EW@L
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(2) The following problem, where v = 5—2——, always has a unique solution:
. 2—a, ! ¥ 9
—(gO=]| - . 4.20
min {f(@) + o2+ =03 - D@} @20

(3) The Fenchel Dual of (4.20) is

)

Moreover, this Fenchel Dual has a unique solution.

If we apply Theorem 4.2 to the optimization problem (4.10), we can get the
following corollary.

Corollary 4.3.3. Let f,g € I'o(R™),letq = 1| - ||?. Consider the optimization

problem (4.10) where a = 1,y = 5%~ Then the following hold:

(1) Forany z € R™,

2—ay o - v 2
mEA
U (@) + =l + =2 (g0 1) ()}
9
=0f(x) + =" + ;——[99()D(ra)]
(2) The following problem, where v = 5%, always has a unique solution:

. 2—a, o - 2l 2
—(gd—=]|| - . 4.21
min {f(@) + =2l + o0 @) @2

(3) The Fenchel Dual of (4.21) is

s {[ro (oo s 2 (54}

Moreover, this Fenchel Dual has a unique solution.
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Chapter 5

The a-Douglas-Rachford
algorithm with o — 2

5.1 Overview

Aswe set « € [1,2) in the a-Douglas-Rachford algorithm, we want to consider
the properties of that algorithm when « is in its limit case. Therefore, the a-
Douglas-Rachford algorithm is considered in a special-limit case in this chapter.

5.2 Parameter o — 2

Fact 5.2.1. [4, Theorem 23.44] Let A : # — 2 be a maximally monotone
operator and let z € H. Then the inclusions

(Vy€(0,1)) 0€ Azxy+y(zy — )
define a unique curve (:cfy)ye(oyl). Moreover, exactly one of the following holds:
(1) zer A# Qand z — Pyer az asy | 0.
(2) zer A =0 and ||z,|| - +ooasy | 0.

Fact 5.2.1 and Theorem 3.2.5 yield the following characterizations of the a-
Douglas-Rachford algorithm. However, before we go to the theorem, we need to
get the following lemma.

Lemma 5.2.2. Let A be a maximally monotone operator from K to 2%, (o)

be an increasing sequence in [1,2) such that lim «j = 2. Then,
k—4o00

lim R% = RZ.
k—+oco A A

Proof. As RZ"' = aiJa — Id and Ri = 2J4 — Id, we have for fixed z,

IRz — Rax|| = [lagJaz — 2Jaz < |y, — 2||[Jaz].
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5.2. Parameter o — 2

Clearly the right side tends to 0 as k — 400, so R}*z — R4x. This holds for

every .
O

Theorem 5.2.3. Let A and B be maximally monotone operators from & to 2,

0 € int(dom A — dom B) and zer(A + B) # (. Let (ay);}>; be an increasing

sequence in [1,2) such that i lim oy = 2. for each k, consider the sequences
—+o00

Yn = Jpxy
Zn = JA(akyn - xn) (5.1)
Tn41l = Tn + (Zn — Yn)-

Then the sequence x,, converges to some z, € Fix RZ’“ o R%’“ such that
Jpx), = zer(A+ B+ (2 — ay) Id).
For any resulting sequence ()%,

(1 kEE,I-loo JBx}, = Pyer(atB)(0).

(2) Suppose (z})} 2 is a convergent sequence. Let lim z} = z*. Then Jpz*

k——+o0

is a solution to 0 € Az + Bz, and ||Jpz*|| < ||y|| for any y € zer(A + B).
Proof. The existence of . follows from Theorem 3.2.5.

(1) Because A, B are maximally monotone and 0 € int(dom A — dom B), Fact
1.2.28 implies that A + B is also maximally monotone. According to Theo-
rem 3.2.5 (1), we have Jpa} € zer(A + B + (2 — oy) Id). That means:

0€ (A+ B)Jpzy + (2 — ag) Bz,
which can also be written as
0€ (A+ B)Jpzy + (2 — ag)(Jpxy, — 0).
As zer(A + B) # (), according to Fact 5.2.1,
JBx) = Preratn)(0) as (2 —ay) 1 0.

Since lim a3 = 2, we can also write this as
k—+4o0

kgrfoo Jpay = Pzer(A+B) (0).
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5.2. Parameter o — 2

(2) Here we want to prove lim Jg(z}) = Jp(z*), where lim z} = z*.
k——+o0 k——+o0

For any € > 0, there exists N € N such that for any | > N,
lx] — %] <e.

Because B is maximally monotone, by Fact 1.2.38, Jp is firmly nonexpan-
sive on R™. Thus,

1B(x7) = Jp ()| < a7 — 2™ <,

that is,

kll)l_il_loo Jp(zy) = Jp(x™).

As we already proved lim Jp(7}) = P,er(a4-8)(0), we have
k——+o00

JB (5[;*) = Pzer(A+B) (0)

Therefore, Jpz* is a solution to 0 € Ax + Bz, and ||Jpz*| < ||y|| for any
y € zer(A+ B).

O

This theorem shows that when zer(A+ B) # (), we can either use the Douglas-
Rachford algorithm or the a-Douglas-Rachford algorithm to get a solution of it.
Moreover, when zer( A+ B) has multiple solutions, we can use a-Douglas-Rachford
algorithm to get the one which has the shortest norm.

Theorem 5.2.4. Let f, g, € T'o(R™), let L : R™ — R™ be a nonzero invert-
ible linear operator where [L(dom f) — 7] N intdom(g0l) # 0, and dom g* N
intdom!* # (. Let z and r € R™, let7 € Ry, and 0 € R,,. We set
A = 0f,B = 0g,D = 0l which dom D~! = R™, and let o, be a increasing

convergent sequence in [1, 2) such that . lim o = 2, the following holds:
—+00

(1) The sequence of problems: find z € R™ such that

2—ay
2 — 5
cedr+ Yy M Ixo(B O Do(Lz-1) (52
T 4 — Qe
where L = 4_20* L, together with the sequence of duals: find v such that

there exists an x € R™ that

z— 43‘(’“% L*v € Az + 7(2_Ta’“)x

2-oy (5.3)
ve (B [0 D)o (Lx—r).
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5.2. Parameter o — 2

have solution pairs (x, vy ) that converge to (z,v) satisfying the primal in-
clusion:
z € Az + L*(BOD)(Lx — ) (5.4)

together with the dual inclusion:

{z—LveAw (5.5)

v e (BOD)(Lx —r).

(2) The sequence of optimization problems

2 — ap

Argmin, cpm{f(z) + TH%”2+
Qg o 9
) (=——— Lx —r)—
T 0O O (T s el o (B =) = (.2},
(5.6)
where L = 4_2""“ L, has a sequence of solutions x; that converges to an
element x of
Argmingcpn{f(z) + (¢E1) o (Lx — 1) — (2,2)}, (5.7)

when ap — 2.

Proof. (1) Because f,g,l € I'o(R™), by Fact 1.3.27, A, B, D are maximally
monotone. Suppose Iy, is the solution of (5.2), and vy, is the solution of (5.3).
Then by Theorem 3.2.9, (Z, U, ) is the solution of the inclusion problem:

find (x,v) € R™ xR such that (z,v) € zer(A+ B+ (2—ay) Id), (5.8)
and vice versa. Here A := V~1(35+Q), and B := V(354 M), where
M:K— 28 (z,0) — (=2 + Az,r + B~ 1w);

Q:K— 2% (z,0)— (0,D71v);
S:K—K:(z,v)—~ (L*v,—Lz);

vzlc—nc;(x,v)H(z—%L*v,g—%Lx).

We proved that A and B are maximally monotone in Lemma 2.3.4. Since
dom D1 =R™, by Theorem 3.2.10 and Theorem 3.2.5 (1), there exists an
zy € Fix R%" o R such that Jgx}, € zer(A+ B+ (2 — ay) Id). Suppose
zer(A + B) # (). By Theorem 5.2.3, one has

kgrfoo Jpay, = Pzer(A+B) (0).
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5.2. Parameter o — 2

In other words, if we set (z*,v*) = klim Jpxy, which z*,v* € R™,
—+00
from Lemma 2.3.4, it follows that z* is the solution of the primal inclusion

problem: find x € R™ such that

z € Az + L*(BOD)(Lx — r),

and v* is the solution of the dual inclusion problem: find v such that there
exists an z € R™ that

z— L*v € Ax
v € (BOD)(Lx — ).

Therefore, we complete the proof.

(2) According to Theorem 3.2.11, we get that the optimization problem (5.6)
is equivalent to the primal inclusion problem (5.2). Moreover, by using the
Theorem 2.4.4, the inclusion problem (5.7) is equivalent to the optimization
problem (5.4). Therefore, by using the result of (1), we complete the proof.

O

Remark 5.1. If welet A := V=135 +Q), and B := V(35 + M), where

M:K—2%: (z,0) = (=2 + Az,r + B"lv);
Q:K =28 (z,v) = (0,D 1),
S:K—K:(z,v) = (L*v,—Lx);

1 v 1

V:IC—>IC:(x,v)H(%—ﬁL*v,;—iLx).

According to Lemma 2.3.4, (x,v) € zer(A + B) if and only if (z,v) € zer(M +
Q+S),ie.,

(0,0) € (—z+ Az + L*v,r + B~ 'v + D7 'v — La). (5.9
(5.9) is the exactly: find (x, v) such that

z € Ax+ L*v
v e (BOD)(Lx —r).

From Theorem 5.2.3, we know if we let (z*,v*) = lim2 JBxy, \/||x*]|? + [|v*]|?
of—r

is the shortest norm for all (x, v) € zer(A+B), since lim2 IBT), = Per(a+B)(0).
ap—r
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5.2. Parameter o — 2

Remark 5.2. In 2011, Wang [17] gave two self-dual regularizations of maximal
monotone operators on H, which can be effectively used to find the least norm
solution to maximally monotone operators.

Remark 5.3. Dykstra method can also be used to find the least norm solution. See
Bauschke and Borwein’s paper [3].
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Chapter 6

The application of the
a-Douglas-Rachford algorithm

6.1 Overview

In this chapter, we are going to use the a-Douglas-Rachford algorithm to solve
the inclusion problem
0 € Ax + Bx,

where A : R™ — 28" and B : R™ — 2R™ are maximally monotone operators, in
two different ways.

6.2 Least norm solution of the primal problem

Theorem 6.2.1. Let A : R™ — 28" and B : R™ — 2R™ be maximally monotone
operators, 0 € int(dom A — dom B) and zer(A + B) # (). In order to solve

0 € Az + B, (6.1)
we can let o, be an increasing convergent sequence in [1, 2) such that kgrfoo ag =
2. Then we use the a-Douglas-Rachford algorithm to solve the problem

0€ Az + Bx+ (2 — ag)1d. (6.2)

When «a;, — 2, the answers of problem (6.2) converge to the shortest norm solution
of problem (6.1).

Proof. Since A, B are maximally monotone operators, 0 € int(dom A — dom B)
and zer(A + B) # (), by Theorem 5.2.3, if we use the a-Douglas-Rachford al-
gorithm to solve problem (6.2), for any fixed a4, there exists a corresponding
z; € Fix RY* o Ry such that Jpz} € zer(A + B + (2 — ay)Id). Moreover,
we have kginoo Jpx) = PLer(at-p)(0). Thatis,
li <
| tim Jgail < ]

for any y € zer(A + B). O
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6.3. Least norm solution of the primal-dual problem

6.3 Least norm solution of the primal-dual problem

Theorem 6.3.1. Let A : R — 28" and B : R™ — 2R™ be maximally monotone
operators, and zer(A + B) # (), let L = Id. In order to solve the problem with
primal inclusion: find z € R™ such that

0 € Az + Bz, (6.3)
together with the dual inclusion: find v € R™ such that for some z,

{—UEA:E

v € Bz, ©.4)

we can let o, be an increasing convergent sequence in [1, 2) such that

lim ap = 2.
k——+o0
Let L = 4‘% Id. Then we use the a-Douglas-Rachford algorithm to solve the
problem with primal inclusion: find x € R™ such that

2 _
0Ocdp+ Yy M prpo2
T 4-—-ak — O

1d)(Lz), (6.5)

where 7 € Ry4, 0 € Ry, and 7o < 4, together with the dual inclusion: find v
such that there exists an z € R™ that

- L*v e Ax + 2ok
NS

(B0 1d)(La). ©.6)

2—ay,

When oy, — 2, the sequence of solutions of the primal-dual problem (6.5) together
with (6.6) converge to the primal-dual shortest norm solution of problem (6.3)
together with (6.4).

Proof. Let
M:K =28 (z,v) = (Az, B );
Q:K —2%: (z,v) — (0,D 'v) where D = Nyoy;
S:K—=K:(z,v) = (v,—z);
1 1
V:K%K:(x,v)»%(f—fv,g—fw).
T 2 0 2
A:=VYLi5+Q),and B :== V-1(3S + M). According to Lemma 2.3.4, we
get A and B are maximally monotone and

zer(A + B) = zer(M + S + Q) = zer(M + S),
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6.3. Least norm solution of the primal-dual problem

as for any v € R™, D'y = 0 by the definition of Nyoy. That means for all
(x,v) € zer(A + B), we have

(0,0) (M + S)(x,v)
=(Az +v,B v — ).

That is
0€ Az +v
0€ B v —uz,
which is equivalent to
0 € Az + Bx
together with
—v € Ax
v € Bz.

Therefore, solving (x,v) € zer(A + B) is equivalent to solving the problem with
primal inclusion (6.3) together with dual inclusion (6.4). Since we have zer(A +
B) # (0, according to Lemma 2.3.1, the primal inclusion (6.3) is equivalent to the
dual inclusion (6.4). Therefore zer(A + B) # ().

In the proof of Theorem 3.2.10, we showed that once dom D~! = R™, we have
0 € int(dom A — dom B). Since D = Ny, by Lemma 1.1.35, we have

dom D~ ! =ran D = R™.

Therefore, we know A, B are maximally monotone, 0 € int(dom A — dom B)
and zer(A + B) # (. By Theorem 6.2.1, we can use the a-Douglas-Rachford
algorithm to solve each problem

zer(A+ B + (2 — ag) Id). (6.7)

When aj — 2, the answers from problem (6.7) converge to the shortest norm
solution of problem zer(A + B). By Theorem 3.2.9, the solution of problem
zer(A + B + (2 — ) Id) is also the primal-dual solution of problem (6.5) to-
gether with (6.6). Therefore, when o — 2, the sequence of solutions of the
primal-dual problem (6.5) together with (6.6) converge to the primal-dual shortest
norm solution of problem (6.3) together with (6.4). ]

Remark 6.1. The operator

M+S:K—2%: (z,0)— (Az +v,B v —z)
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6.3. Least norm solution of the primal-dual problem

is maximally monotone. Because M = (A, B~!) : K — 2% is maximally mono-
tone according to Fact 1.2.30. And because S is skew and linear, by Fact 1.2.31,
S is maximally monotone. Moreover, since dom .S = K, by Fact 1.2.28, we get
M + S is maximally monotone.

Remark 6.2. Note that Theorem 6.2.1 gives the primal shortest norm solution, but
Theorem 6.3.1 gives the primal-dual shortest norm solution.

Remark 6.3. According to Corollary 2.3.3, the dual inclusion (6.4) is equivalent to
the problem: find v’ such that

0e A Y(v) — B~ Y=, (6.8)

which is the Attouch-Théra dual [1] of (6.3).
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Chapter 7

Numerical experiments

7.1 Overview

In this chapter, we describe numerical experiments whose results confirms the
properties of the a-Douglas-Rachford algorithm derived above.
In the following three numerical experiments, the operator D satisfies

dom D! = R™,

Before we go to the numerical examples, the following formulas for proximal
points are necessary.

Lemma 7.1.1. Let C be a closed convex set in R™, let 7 € R, and f = i¢.
Then we have:

(1) Prox.f(xz) = Pc(x).
(2) Prox;p«(z) = — 7Pc(%).

Proof. (1) Since C is a closed convex set, by by Example 1.3.13, f € I'o(R™).
Then, for any x € R™, we have

Prox,f(x) = Prox,,.(x)
. 1
= Argmin, cgm{7Tc(u) + §||u —z||?}
. 1
= Argmin, §Hu — :r||2

=Pco(z).

(2) Since f € I'o(R™), by Fact 1.3.40, f = f**. Therefore, we use Fact 1.2.37
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7.2. A feasibility problem

to get

Lemma 7.1.2.

Proof. As

Prox; p«(x) =[Id —7 Prox -1 o(r7 1d)](z)
x
=r — TProfolLC(;)

1 e
=z — 7 Argmin,, .o 5”“ - ;”2

=x — 7 P¢o (§> .
T
Letg=| -||,let 7 € Ryy. Then for any x € R™,

Prox;g« () = Pp(o.1) (7).

g*(u) = sup {{u,z) — [lz]|}
TzER™

ZLB(0;1)(U),

by Lemma 7.1.1, we have

Prox,g«(z) = Pp(o;1)(2).

7.2 A feasibility problem

In this part, we consider solving the inclusion problem

where A, B are maximally monotone operators and z,r € R" are given.

z€ Av+ B(x — 1),

(7.1)

Example 7.2.1. Let f = 1c,, 9 = tc,, where (1 is a circle centred at (5,0) with
radius 2, and C» is a box centred at (3, 1.5) with radius 1. Let z = 0,r = 0. If we

let A=df,B

= Jg, the problem (7.1) becomes

0 € N¢, (2) + Ney ().

(7.2)
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7.2. A feasibility problem

Figure 7.1: The plot of Example 7.2.1

Let o, be a increasing convergent sequence in [1,2) such that lim ay = 2.

k—4o0
Then the following holds:

(1) The inclusion problem: The solution of problem: finding x € R? such that
0 € Ney(z) + Ney(z) + (2 — ag)(2) (7.3)
is the shortest norm solution of problem (7.2) when oy — 2.

(2) The problem (7.3) can be solved by the a-Douglas-Rachford algorithm.
Moreover, as oy — 2, the optimization result which is gotten by the a-
Douglas-Rachford algorithm converges to the shortest norm solution of (7.2).

Proof. (1) We apply Theorem 6.2.1 to complete this proof.

Since C'1 and Cs are closed, bounded and convex sets, according to Example
1.2.33, N¢, and N¢, are maximally monotone operators. Because we also
have int(C7 N Cy) # 0, according to Theorem 3.2.5, the inclusion problems
(7.3) can be solved by the a-Douglas-Rachford algorithm (3.3) by letting
A = N¢, and B = Ng¢,. That is:

Yn = JN02 (zn)
zn = JINg, (kYn — xn) (7.4)
Tpil = Ty + (Zn - yn)
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According to Example 1.3.25,
N¢, = 0uey, No, = Oug,.
Therefore, algorithm (7.4) becomes

Yn = J8L02 (mn)
Zn = J{)Lcl (akyn - xn) (7.5)
Tptl = Tp + (Zn - yn)

By Fact 1.3.57, we have
Joe, = Prox,, , and Jp,, = Prox,. .

Let’s plug Proch2 , Proxbcl, into (7.5) instead of J&cza and J8Lc1 respec-
tively, we get

Yn = Prox, (zn)
zn = Prox,, (gYn — Tp) (7.6)
Tnt1l = Tn + (20 — Yn).

According to Lemma 7.1.1(1), we have
Prox,, () = Pey ()

and
Prox,., (¥) = Pc, ().

As () is a circle centred at (5, 0) with radius 2, we can also write
Prox,. () = (5,0) + Ppo;2)(z — (5,0)).

Hence, when we choosing oy = (5, 1) as starting values, for any fixed k, let
ap =2 — %, the iterative scheme algorithm (7.6) becomes:

Yn = PCQ (.%'n)
Zn = (5’ O) + PB(0;2) (akyn - xn)
Tpt1 = Tp + (Zn - yn)

The stopping criteria of this algorithm is: Let ¢ = 10~°, continue running
this iteration until ||z, 11 — z,|| < €.
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Table 7.1: Example 1: Six fixed o where a, = 2 — 1/k, the corresponding
optimization point y*, and the norm of y*.
k Y Iy
1 (3.0635,0.5) 3.104
10 (3.0635,0.5) 3.104
50  (3.0635,0.5) 3.104
100 (3.0635,0.5) 3.104

1000  (3.0635,0.5) 3.104
10000 (3.0635,0.5) 3.104

As we can see, the optimization result y* doesn’t change its value when we
use different value of k. It is clear that y* locate at the boundary of C; and
also locate at the boundary of Cy. With the help of Figure 7.2.1, we get y* is
the smallest norm solution of problem (7.2).

We also tried to run this algorithm from different starting point, and the result
shows once we fix the value of k, the result we get does not change if we
change its starting point.

However, when we use the classic Douglas-Rachford algorithm to solve
(7.2), the answer changes if we choose different starting point. Here is the
result:

Table 7.2: Example 1: starting point xg, the corresponding optimization point y*,
and the norm of y*.

T v ly”|
(5. (4,0.8944)  4.0988
(-3,1)  (3.0785,0.5548) 3.1281
(-4,-6) 4.,0.5) 4.0311

(10,-20) 4,0.5) 4.0311

That means, in this example, if we directly use the classic Douglas-Rachford
algorithm to solve problem (7.2), the answer we get may not have the short-
est norm. However, if we use the a-Douglas-Rachford algorithm to solve

problem (7.3) and let oy, — 2, the answer we get has the shortest norm.
O
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7.3 A Heron problem

In this part, we are going to consider solving a primal-dual inclusion problem
by using a-Douglas-Rachford algorithm.
Theorem 7.3.1. Let A : R™ — 28", B : R™ — 28" and D : R™ — 2R”
be maximally monotone operators and dom D! = R™. Let z,r € R™, and let
L : R™ — R™ be a nonzero linear invertible operator. Let o be an increasing

convergent sequence in [1,2) such that lim oy = 2.
k——+o00

(1) The problem with primal inclusion: find z € R™ such that

2—ay

2 ;
sede+ "%y M B O D)Lz—r), (17
T 4 — ag

where L = 4720%11, T €Riy,0 € Ry, and 7o||L||? < 4, together with

the dual inclusion: find v such that there exists an z € R™ that

z— 743@% L*v e Ax + Lff‘“w
2-ay (7.8)
ve(B 1 D)o(Lx—r)

can be solved by using the a-Douglas-Rachford algorithm:

Yn = JBZn
zn = Ja(Qgyn — Tn) (7.9)
Tptl = Tp + (Zn - yn)
Here, A := V~1(3S+Q),and B := V~(15 + M), where

M:K =28 (z,0) = (=2 + Az,r + B");

Q:K =28 (z,v)— (0,D 1),

S:K—K:(x,v)— (L*v,—Lx);

1 v 1

V:IC—>IC:(x,v)H(f—iL*v,——§Lm).
T o

(2) The algorithm (7.9) can be rewritten as

Yin = JTA(xlTL - %L*lﬁn + TZ)

Yon = Jop-1 (220 — §Lx10 + 0Ly1n — 07)

Win = OkY1ln — Tin

Wan = Akdfon 7 Ton (7.10)
Z1ln = Win — fL Wan

2on = Jop-1(wan — §Lwiy + 0L21y)

Tint1 = Tip + (Z1n — Yin)

Ton41 = Ton + (22n — Y2n),
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(3) Let f,g,l € To(R™),and A = 0f, B = 0g, D = 0l. Then algorithm (7.10)
implies the following algorithm

( y1n = Prox;¢(z1n — 5L 220 + 72)

Yon = Proxgg« (w2, — $La1n + 0 Ly1n — or)
Win = OkYin — Llin

Won = OYan — T2n

Zln = Win — %L*an

Zon = Proxgps (wop — §Lwiy, + 0L21y,)
ZTint1 = Tin + (Z1n — Yin)

\ Zont1 = Ton + (220 — Yon)-

(7.11)

Proof. (1) For any fixed oy, we can apply Theorem 3.2.10 to complete this
proof.

(2) According to the definition of A and B, (7.9) can be rewritten as

2 = [V ES + M) +1d](yn),
apyn — o = [V (59 + Q) +1d](zn),
Tpt1 = Tp + (Zn - yn)

Set wy, = apyn — Tn, Wwe have

V(zn —yn) = (%S + M) (yn),
Wn = OpYn — Tnp,

V(wn — zn) = (%S + Q)(2n),
Tng1 = Tn + (20 — Yn)-

(7.12)

Here, we let

T = (x1n7$2n)7yn = (ylnuyZn)a Wp = (wln)w2n)u Zn = (xlna ZZn)‘

Since M, Q,S,V, A, and B are constructed by (M), (Q), (S), (V), (A) and
(B) respectively, (7.12) is equivalent to

- %L*(:Z:Qn - an) = %L*an —z+ Ayln

w2 — 3 L(x1n = Yin) = —3Lyin + 7+ B yan
Win = OklYin — Tlin

W2n = OkY2n — T2n

7“’1";21" — %L*(wgn — Zgn) = %L*Zgn +0

wan—Z2n - %L(wln - Zln) = _%Lzln + D_lz2n
Tintl = Tin + (Zln - yln)

Tony1 = Ton + (220 — Y2n)-

( Tin—Yin
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7.3. A Heron problem

Finally, we simplify each line of the above algorithm and get:

Yin = TA(xln - %L*x2n + TZ)

Yon = Jngl (-7;211 - %Lmln + ULyln - UT)
Win = OkYin — T1n

W2on = CkY2n — T2n

Rln = Win — %L*U@n

Z29n = JUD*1 (UJQn — %me + O'Lzln)
Tin+l = Tin + (Zln - yln)

Topt+1 = Top + (z2n - y2n)7

which is algorithm (7.10). Therefore, algorithm (7.9) is equivalent to algo-

rithm (7.10)
(3) Since A = 3f, B = 0g, D = 0l, we can write (7.10) as

Yin = Jrof(T1n — 5L T2, + 72)

Yon = Jo-((')g)—l(x2n - %Lxln + ULyln - O'T)
Win = CkYin — Tin

W2p = OkY2n — T2n

Rlp = Wip — %L*u&n

2on = Ja(al)—l(w2n — %Lwln + ULzln)
Tin+l = Tin + (Zln - yln)

Ton+1 = Ton + (Z2n - y2n)-

Because g, € T'g(R™), by Fact 1.3.46,

(0g)~' =08g* and (01)7' = al*.

Forany A\ € R, ;, we have A\0f = d(\f). By Fact 1.3.57, we have

Jrof = Proxrp; Jyag)-1 = Proxgg«;  and  Jy(g)-1 = Proxg .

Let’s plug Prox; s, Proxs ¢+, and Prox,; into (7.13) instead of J-5¢, Ja.(ag)fl ,

and J, ;)1 respectively, we get

( Y1n = Prox,j(z1, — L 22, + 72)

Yon = Proxgg« (w2, — §Lx1 + 0 Ly1n — 0T)
Win = OkYin — Tlin

Won = QgY2n — T2n

Zln = Win — %L*w%z

Zon = Proxgps (won — § Lwiy, + 0L21y)
Tintl = Tin + (Zln - yln)

\ Tont1 = T2, + (220 — Y2n),




7.3. A Heron problem

which is exactly the alorithm (7.11). Therefore, algorithm (7.10) implies
(7.11) in this case.
O

Lemma 7.3.2. Let C be a closed convex set in R™. Then we have
do = || - [[Bec,

and
ddo = 0| - [|[ONe¢.

Proof.
do(z) = inf |1z =y
= inf {lz =yl +ec(y)}
yeR
=(cO]] - 1)) ().

Since C'is a closed bounded convex set, for any v € R™,
to(u) = sup {(z,u) — ()}
TrER™
=sup(z,u) < 4o0.
zeC

Therefore, dom ¢ = R™. According to Fact 1.3.40, dom || - [|* # 0, that means
dom [| - ||* Nintdom ¢}, # (). Moreover, from Example 1.3.25, we have N¢ = Ouc.
By using Theorem 2.4.3 , we have

ddc =0(|| - |Occ)
=0|| - |00
=d|| - [[ONc.

O]

Example 7.1. Let f = ¢y, = tc,, where C] is a circle centred at (5,0) with
radius 2, and Cs is a box centred at (—2,4) with radius 0.5. A simple Heron
problem is to solve

min dg, (z) = min (i, (2) + dey ().
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7.3. A Heron problem

Figure 7.2: The plot of Example 7.1

Letg = - ||, 2 = 0,7 = 0. Then, we aim to solve the problem with the primal
inclusion: find z € R™ such that

0 € Ney(z) + (9] - [N, ) () (7.14)

together with the dual inclusion: find v such that there exists an x € R that

—v € N, ()
{ v € (] - |[BNe, ) (). (7.15)

Here, L = Id. Let o be an increasing convergent sequence in [1,2) such that

lim «p = 2. For each oy, let L = 4720"“ Id . Then the following holds:
k——+o0

(1) When o — 2, the sequence of problems: find x € R™ such that

2—ay

2 — -
0 Noy (@) + 2 et L) B Ne(E), (16)
- G

where 7 € Ry, 0 € Ry 1, and 70| L||? < 4, together with the sequence of
duals: find v such that there exists an x € R that
7743"2% L*v € N¢, (z) + 7(2_70”“):5*
2-ay (7.17)
ve @ O Ng,)(Lz)
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7.3. A Heron problem

2

Proof.

2

have solution pairs (x, vy ) that converge to (z,v) satisfying the primal in-
clusion (7.14) together with the dual inclusion (7.15).

The problem with primal inclusion (7.16) and dual inclusion (7.17) can be
solved by the a-Douglas-Rachford algorithm. Moreover, the optimization
result which is obtained by the classic Douglas-Rachford algorithm is the so-
lution of the problem with primal inclusion (7.14) and dual inclusion (7.15).

(1) Since C'; and C) are closed, bounded and convex sets, according to
Example 1.2.33, N¢, and N¢, are maximally monotone operators. Because
| || € To(R?), by Fact 1.3.27, 9| - || is maximally monotone. According to
Example 1.3.25,

NCl = 8L01,N02 = aLCQ,
and according to Example 1.3.13, 1, , 1o, € To(R?).

As g = | - ||, and dom(¢Jl) = domg + dom!, we have L(dom f) N
intdom(gl) # 0. As | = ¢, where Cy is a closed bounded convex set, for
any u € R?,

1 () = sup { (2, ) — 1(2))
z€R2

= sup (x, u) < +00.
zeCo

Therefore, dom [* = R2. Consequently, dom g* N intdom [* # (.

By Fact 1.3.46,
D™t = (o))~ = ar*.

As dom I* = R?, we can use Fact 1.3.43 to get
intdom I* = dom dl* = dom [* = R?.

That is, dom D~ = R?.

Now, we can apply Theorem 5.2.4 to complete the proof.

As
dom D! = R?,

by Theorem 3.2.10, the problem with primal inclusion: For any fixed oy,
find x € R? such that

2—ap

2 — -
0eNeyo+—Fpqp M @] O Ng)(Lz).  (7.18)
T 4 — o
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together with the dual inclusion: find v such that there exists an x € R™ that
— % Ty € Npjo + 0%y
4—oyp G T ’
2-ay (7.19)
ve@- O Ne)(Lz).

can be solved by the a-Douglas-Rachford algorithm.

Because t¢,,tc, € Io(R?), according to Theorem 7.3.1, we can use al-
gorithm (7.11) to solve the problem with primal inclusion (7.18) and dual
inclusion (7.19).

When solving that problem with algorithm (7.11), by Lemma 7.1.1(1),
Prox;¢(z) = Pc, ().
As (1 is a circle centred at (5, 0) with radius 2, we can also write
Prox;¢(x) = (5,0) + Pp(o2) (7 — (5,0)).

We use Lemma 7.1.1(2) to get
x
Proxyi«(z) =z — 0 P, (7> .
o
Asg=1 -], by Lemma7.1.2,
Prox,¢«(x) = Pp,1) (7).

Because 7,0, | L|| must satisfy the relation 7o ||L||*> < 4, and L = Id. To
be on the safe side, we let 0 = 2, and 7 = 3/2. Hence, when we choosing
xo = (5,—2),v9 = (0, 0) as starting values, for any fixed k, let o, = 2 — %,
the iterative scheme algorithm (7.11) becomes:

Yin = (5,0) + Ppo:2) (T1n — 5%on — (5,0))

Yon = Ppo:1)(T2n — §T1n + 0Y1n)

Win = OgYin — Tlin

W2n = OEY2n — T2n

Rln = Win — %w2n

Zon = Wap — §W1in + 0210 — 0 Poy ((won — §win + 0210)/0)
Tint1 = T1n + (210 — Y1n)

Topt+1 = Top + (ZQn - y2n)-

(7.20)
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The stopping criteria of this algorithm is: Let ¢ = 10~°, continue running
this iteration until ||x1,41 — Z1,|| < €, and ||x2p+1 — T2n|| < €.

Table 7.3: Example 2: Seven fixed oy, where a, = 2 — 1/k, the corresponding
optimal point y} and y5, together with the case o = 2.

Qp yi (0
1 (3.0041,0.1277)  (0.8759,-0.4825)
2 — (3.1449,0.7475)  (0.8705,-0.4922)
2 — 50 (3.2156,0.9033) (0.8781,-0.4786)
2 — 190 (3.2270,0.9254) (0.8792,-0.4764)
2 — 1000 (3.2378,0.9459) (0.8803,-0.4743)
2 — 10éoo (3.2389,0.9480) (0.8805,-0.4741)
2— 155 (3.2391,0.9482) (0.8805,-0.4741)
a=2 (3.2391,0.9482) (0.8805,-0.4741)

As we can see, the numerical result shows that as k gets larger, or we can
say as oy, gets closer to 2, the optimal result ¢} and y5 which are gotten by
the a-Douglas-Rachford algorithm gets closer to the optimal result which is
gotten by the classic Douglas-Rachford algorithm.

Then we run the algorithm (7.20) again with the same starting point and
same stoping criteria, but in this time, we set 7 = 1,0 = 1. Here is the
result:

Table 7.4: Example 2: Seven fixed oy, where a, = 2 — 1/k, the corresponding
optimal point y7 and y5, together with the case o = 2.

ag yi s

1 (3.0020,0.0899)  (0.8723,-0.4890)

2 -4 (3.1196,0.6813) (0.8639,-0.5037)
2 510 (3.2063,0.8847)  (0.8762,-0.4820)
92— 1§o (3.2219,0.9157) (0.8783,-0.4782)
2 — s (3.2373,0.9449)  (0.8802,-0.4745)
2 wéoo (3.2389,0.9479)  (0.8804,-0.4741)
2 — b5 (3.2391,0.9482) (0.8805,-0.4741)
a=2 (3.2391,0.9482) (0.8805,-0.4741)

Again, the numerical result shows that as k gets larger, or we can say as



7.4. A feasibility problem solved by the primal-dual formulation

oy, gets closer to 2, the optimal result i and y5 which are gotten by the a-
Douglas-Rachford algorithm gets closer to the optimal result which is gotten
by the classic Douglas-Rachford algorithm.

We also tried to run this algorithm with different starting point with fixed 7
and o, and the result shows that once we fix the value of k, the result we
get does not change if we change its starting point. This is because when o
fixed, 0 € (A + B + (2 — o) Id)(x) has a unique solution. So it does not
matter when we change the starting point of the algorithm.

O

7.4 A feasibility problem solved by the primal-dual
formulation

Example 7.2. Let f = v¢,,9 = tc,, where C is a circle centred at (5,0) with
radius 2, and C is a box centred at (3,1.5) with radius 1. Let z = 0,7 = 0. If we
let A= 0f, B = dg, then, we aim to solve the problem with the primal inclusion:
find x € R™ such that

0 € N¢, () + Ng, (). (7.21)

together with the dual inclusion: find v € R™ such that

—v € N¢y ()
{ v € Ney (), (7.22)
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7.4. A feasibility problem solved by the primal-dual formulation

Figure 7.3: The plot of Example 7.2

We can solve (7.22) by our a-Douglas-Rachford method.

Let oy, be a increasing convergent sequence in [1,2) such that i lim o = 2.
—+00

For each oy, let L = 4‘% Id . Then we use the a-Douglas-Rachford algorithm to

solve the problem with primal inclusion: find x € R™ such that

2_0% (677 g
0e N L* (N, O
Cl(m)_'_ T x+4—04k ( 2 2—0[;€

1d)(Lz), (7.23)

where 7 € Ry4, 0 € Ry, and 7o < 4, together with the dual inclusion: find v
such that there exists an € R™ that

2—
{ — 1%L € Ne, (z) + 52 (124)

v € (Ng,d5%—1d)(Lx).

ap

When ap — 2, the sequence of solutions of the primal-dual problem (7.23)
together with (7.24) converge to the primal-dual shortest norm solution of problem
(7.21) together with (7.22).

7.4.1 The algorithm

Since C; and Cs are closed, bounded and convex sets, according to Example
1.2.33, N¢, and N¢, are maximally monotone operators. Because int(C; NCa) #
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7.4. A feasibility problem solved by the primal-dual formulation

(). we have zer(N¢, + N¢,) # 0. Due to Theorem 6.3.1, we can use a-Douglas-
Rachford algorithm to solve the problem with primal inclusion (7.23) together with
the dual inclusion (7.24).

According to Example 1.3.25,

N¢, = 0uey, No, = Oue,,

and according to Example 1.3.13, 1, , tc, € To(R?).
Because tc,,tc, € I'o(R?), Theorem 7.3.1 shows that we can use algorithm
(7.11) to solve the problem with primal inclusion (7.23) and dual inclusion (7.24).
When solving that problem with algorithm (7.11), according to Lemma 7.1.1
(1),
Prox,f(z) = Pc, ().

As (1 is a circle centred at (5, 0) with radius 2, we can also write
Prox;¢(x) = (5,0) + Pp(o2) ( — (5,0)).

We use Lemma 7.1.1 (2) to get
T
Proxyg¢«(x) = x — o Pg, <7> .
o

Because 7, 0 must satisfy the relation 7o < 4, to be on the safe side, we let
o = 2,and 7 = 3/2. Hence, when we choose xo = (5,1),v9 = (0, 0) as starting
values, for any fixed k, let o, = 2 — %, the iterative scheme (7.11) becomes:

Yin = (5,0) + Ppo;2)(T1n — 5720 — (5,0))

Yon = (Tan — $21n + 0Y1n) — 0 Py (20 — §21n + 0Y1n)/0)

Win = OkYin — Tin

Wan, = QkY2n T— Lon (7.25)
Zin = Wip — 5W2n

Z9n = Wop — %wln +ozin

Tin+l = Tin + (Zln - yln)

\ T2n+1 = T2n + (Zgn - y2n)-

The stopping criteria of this algorithm is: Let € = 107>, continue running this
iteration until ||z1,+1 — Z1n|| < €, and ||zop41 — Ty || < €.

7.4.2 Numerical results

We summarize our numerical implementation in three tables.
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Table 7.5: Example 3: Six fixed oy, where oy = 2 — 1/k, the corresponding
optimal point y; and y3, and /||y ||? + [|y;]|?, together with the case o = 2.

o, yi s lyil? =+ llys 1|2
1 (3.0053,0.1460) (1.0160.-0.5621) 3.2251
2 L (3.0565,0.4721)  (0,-0.0852) 3.0939
92— 19 (3.0622,0.4949)  (0,-0.0172) 3.1020
92— 0 (3.0629,0.4975)  (0,-0.0086) 3.1030
92— 1090 (3.0634,0.4997)  1.0e-03 #(0,-0.8606) 3.1039
2 — i (3.0635,0.5000) 1.0e-04 #(0,-0.8607) 3.1040
o =2 (3.6259,0.6339) (0,0) 3.6809

Then we run the algorithm (7.25) again with the same starting point and same
stoping criteria, but in this time, we set 7 = 1,0 = 1. Here is the result:

Table 7.6: Example 3: Six fixed oy, where oy, = 2 — 1/k, the corresponding
optimal point y; and y3, and /||y ||? + [|y;]|?, together with the case o = 2.

o yi s lyil? + llys 1|2
1 (3.0014,0.0740) (0.5021,-0.3890) 3.0687
- & (3.0546,0.4642)  (0,-0.1256) 3.0922
—_ % (3.0621,0.4945)  (0,-0.0258) 3.1019
2 - [ (3.0628,0.4974) (0,-0.0129) 3.1030
92— @ (3.0634,0.4997)  (0,-0.0013) 3.1039
2 — ooop (3.0635,0.5000)  1.0e-03 *(0,-0.1291)  3.1040
o =2 (3.7500,0.7500) (0,0) 3.8243

We also tried to run this algorithm with the starting point o = (—4, —6), vy =
(0,0), and fix 7 = 1 and o = 1, Here is the result:
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Table 7.7: Example 3: Six fixed oy, where oy = 2 — 1/k, the corresponding
optimal point y; and y3, and +/||y}||? + ||y5]|?, together with the case o = 2.

a vi Y5 ly7l1* + llys 12
1 (3.0014,0.0740)  (0.5021,-0.3890) 3.0687
2— 4 (3.0546,0.4642) (0,-0.1256) 3.0922
2— 19 (3.0621,0.4945)  (0,-0.0258) 3.1019
2-qp (3062804974 (0-00129) 3.1030
2 — 1090 (3.0634,0.4997)  (0,-0.0013) 3.1039
2— o505 (3.0635,0.5000)  1.0e-03 *#(0,-0.1291)  3.1040
a=2 (3.3945,0.6448)  (0,0) 3.4552

According to the numerical result above, we can get the following conclusions:

(1) If we let y* = (3.0635,0.5000) and w* = (0, 0),tables 7.5, 7.6, and 7.7 all
show that when o — 2, we have the smallest norm primal-dual solution
(y*, w*). y* solves the primal and w* solves the dual.

(2) Once we fix the value of k£ with fixed 7 and o, the result we get by using a-
Douglas-Rachford algorithm does not change if we change its starting point.

(3) In three tables 7.5, 7.6, and 7.7, o = 2 gives different y] because
0 € Ney () + Ny (2)
has multiple solutions.

Remark 7.3. In Bot and Hendrich’s paper (see [6]), they have Douglas-Rachford
algorithm applications on denoising problems in image processing. We believe
similar work can be done for the a-Douglas-Rachford algorithm.
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Chapter 8

Conclusions and future work

In this thesis, the Douglas-Rachford algorithm is studied. This is an algorithm
for solving the split problem: find x € R™ such that

0 € Az + Bz,

where A and B are maximally monotone operators. The Douglas-Rachford algo-
rithm can be written as

Yn = Jan
(Vn € N) zn = JA(2yn — xn)
Tpitl = Tp + (zn - yn)

In this thesis, I built a new algorithm based on Douglas-Rachford algorithm and
called it the a-Douglas-Rachford algorithm. This algorithm solves the split prob-
lem: find z € R™ such that

0€ Az+Bx+ (2—a)x

where « € [1,2), A and B are maximally monotone operators. The new algorithm
can be written as

Yn = Jpxn
(Vn € N) zn = Ja(ayn — zp)
Tnt1 = Tn + (20 — Yn).

I proved that the a-Douglas-Rachford algorithm has very similar properties to the
Douglas-Rachford algorithm, and also showed the connection between those two
algorithms when o« — 2. One distinctive feature of a-Douglas-Rachford algorithm
is that it can be used to find the least norm solution.

Possible future work:

(1) Is the a-Douglas-Rachford algorithm error torlerant?

(2) In the primal-dual problems, what are the optimal parameters 7, o to imple-
ment the a-Douglas-Rachford algorithms?
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Chapter 8. Conclusions and future work

(3) If we change the space from R™ to a more general space, like H, a general
Hilbert space, does the a-Douglas-Rachford algorithm have the same results
and properties?

(4) Comparing with the Douglas-Rachford algorithm, does the a-Douglas-Rachford
algorithm converge faster?

(5) More numerical experiments on the a-Douglas-Rachford algorithm for higher
dimensions and practical applications are required.
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