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Abstract

The low energy effective theory of quantized gravity is currently our most

successful attempt at unifying general relativity and quantum mechanics. It

is expected to serve as the universal low energy limit of any future micro-

scopic theory of quantum gravitation, so it is crucial to properly understand

its low frequency, long wavelength, “infrared” limit. However, this effec-

tive theory suffers from the same kind of infrared divergences as theories

like quantum electrodynamics. It is the aim of this work to characterize

these divergences and isolate the infrared behavior of quantum gravity us-

ing functional methods. We begin with a review of infrared divergences, and

how they are treated in QED. This includes a brief overview of the known

applications of functional methods to the problem. We then discuss the con-

struction of the effective field theory of quantum gravity in the linearized

limit, coupled to scalar matter. Proceeding to the main body of the work,

we employ functional techniques to derive the form of the scalar propaga-

tor after soft graviton radiation is integrated out. An eikonal form for the

generating functional of the theory is then presented. In the final chapter,

we use this generating functional to derive the soft graviton theorem and

the eikonal form of the two-body scalar scattering amplitude. The result is

a concise derivation of multiple known results, as well as a demonstration

of the factorization of soft graviton radiation against the eikonal amplitude.

We conclude with some comments on how these results can be extended, and

we argue that the functional framework is the best candidate for a unified

understanding of all relevant infrared features of quantum gravity.
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Lay Summary

It is often said that the two most successful theories of modern physics -

quantum mechanics and general relativity - are incompatible. This is not

strictly true. At low energies, these two theories can be combined to some

success, though the approach has its own limits. This work examines how

to unify the discussion of various phenomena in quantum gravity under one

mathematical framework, in the limit of extremely low energies. It is hoped

that such a description will also contain insight into more general properties

of quantum gravity and quantum field theory.
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Preface

This dissertation is original, unpublished, independent work by the author,

C. DeLisle.
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Chapter 1

Introduction

From Newtonian gravity to electroweak theory, the draw of unifying seem-

ingly unrelated phenomena under one framework has been responsible for

much of the current landscape of physical understanding. Tying together

quantum mechanics (QM) and general relativity (GR) remains perhaps the

most sought-after unification in the field. In many aspects, the two theories

seem utterly at odds with one another, and even the question of whether

gravity must be quantized is still unanswered. However, it is a remarkable

fact that assuming gravity is quantized, GR and QM can get along at low

energies as an effective field theory. Indeed, in the low energy limit we

expect any sensible theory of quantized gravity to reduce to this effective

description in this picture. Using this intuition as motivation, we note that

the infrared limit of the effective field theory may provide a more accessi-

ble way to search for hints of a full unified theory of quantum gravity, as

opposed to the more difficult path of quantizing GR at extremely high en-

ergies and short distances, as is attempted by theories of strings [6], loops

[7], etc.

The problem with this approach is that even our best understood physi-

cal theory - quantum electrodynamics - is still suffering from a problem of

infinities in its infrared limit. While it is known in a technical sense how

to make physical predictions by carefully discarding these divergences [29–

31], it should be uncontroversial to say that their origin and cancellation is

unsatisfactorily understood on physical grounds. The same can be said for

analogous problems that remain in the quantum gravity case.

It is the purpose of this work to apply a powerful functional technique orig-
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Chapter 1. Introduction

inally developed by E.S. Fradkin [2] to the problem of IR divergences in

quantum gravity. We aim to show that this method is well-suited to dis-

cussion of these issues in a single language by reproducing known results

from the literature. We also offer comments and examples of ways in which

these known results can be extended or better understood in the functional

picture. This work too is a sort of unification, in that we believe the func-

tional picture of soft gravity provides an easier way to analyze all of the

contributions to IR issues in parallel.

The organization of the thesis is as follows. In Chapter 1, we introduce these

general issues arising in the study of IR physics in quantum field theory, us-

ing QED as an example, and lay out the basic elements of the most simple

theory of quantum gravity coupled to matter - Einstein GR minimally cou-

pled to one real scalar field. Chapter 2 then deals with how to analyze this

theory in the functional eikonal framework. We derive the eikonal form of

the generating functional, as well as the scalar propagator. Finally, chapter

5 shows how to use these results to compute S-matrix elements, as well as

demonstrating how the soft graviton theorem emerges naturally in this limit

from the nonperturbative calculation. We conclude with some comments on

what new results may emerge from this framework.

What is meant by soft? For the entirety of this thesis, we define soft

radiation as that which has momentum q that satisfies

q2 � m2, (1.1)

where m is the mass of the scalar particle. For a scalar particle interacting

with virtual soft quanta, this means that the scalar loses (gains) negligible

momentum to emitted (absorbed) gravitons. This enforces the condition

that, throughout the process, the scalar remains nearly on-shell. Calling the

momentum of the scalar at some point in the process k, this means

k2 ≈ m2, (1.2)

2



Chapter 1. Introduction

even in situations where the virtual particle momenta are integrated over.

Furthermore, the words “soft” and “eikonal” will often be used interchange-

ably.

Regarding Notation: In this thesis, we use the mostly-minus metric

signature,

ηµν = diag(+1,−1,−1,−1), (1.3)

use commas to denote partial derivatives (A,α≡ ∂αA), and employ the Ein-

stein summation convention, where repeated indices are summed implicitly.

We also commonly suppress coordinate-dependence, Lorentz indices, inte-

gration measures, and integration variables, where these things should be

clear from the context. A few examples:∫
fj ≡

∫
d4x f(x)j(x), (1.4)

∫
jA ≡

∫
d4x jµ(x)Aµ(x), (1.5)∫

δ

δI
∆
δ

δI
≡
∫
d4x

∫
d4y

δ

δIµν(x)
∆µναβ(x, y)

δ

δIαβ(y)
, (1.6)

etc. Unless otherwise specified, seeing
∫

with no measure implies
∫
d4x or∫

d4x
∫
d4y depending on the context. For momentum integrals, we use the

notation
(D)∑
q

≡
∫

dDq

(2π)D
, (1.7)

with the special case ∑
q

≡
(4)∑
q

≡
∫

d4q

(2π)4
, (1.8)

since we usually work in (3+1) dimensions. Lastly, we choose to use natural

units, where ~ = c = 1.

3



1.1. Infrared Problems in Quantum Field Theory

1.1 Infrared Problems in Quantum Field

Theory

Quantum field theory - quantum electrodynamics (QED) in particular - is

the most well-tested theory in the history of science [25]. It is the foundation

of our current understanding of the interaction of matter via all forces except

gravity, though as we will see, even gravity can in some limits be accounted

for. In spite of its experimental success, the theory is still imperfect. We

more or less know how to obtain sensible results from QED calculations

despite many integrals resulting in infinite answers, though some of the

current methods for dealing with such divergences leave a lot to be desired.

Divergences that come from low energy massless excitations are particularly

interesting, and in this section we will discuss why that is.

In this introduction, we introduce the topic of IR divergences using results

as presented in [29] and chapter 6 of [26], and borrow their conventions as

needed. The discussion of IR divergences is first presented from a diagram-

matic perspective, followed by some background on the functional methods

used to attack the same problems. We assume the reader is familiar with

QED and its Feynman rules.

1.1.1 IR Divergences

Consider the amplitude corresponding to Figure 1.1 in QED.

The momentum q can be thought of as an arbitrary external source. Evalua-

tion of this diagram involves an integral over the virtual photon momentum

l - an integral (eq. (6.38) of [26]) which is seen to diverge both as |l| → ∞
and as |l| → 0. The first type of divergence, we call a UV divergence. These

are infinities coming from the naive assumption that the theory of QED is

valid up to arbitrarily high energy scales. We will not be concerned with

this type of infinity in this work except to refer to textbook discussions of

renormalization, in e.g. [5, 26].

4



1.1. Infrared Problems in Quantum Field Theory

q
l

p

p′

Figure 1.1: Loop correction to the QED vertex.

As the photon momentum goes to zero however, we encounter IR diver-

gences. These are caused by the photon’s masslessness and we will discuss

their effects here. Beyond showing up as an infinity in the calculation of an

amplitude, IR divergences appear in computation of observables. The effect

of this diagram’s IR divergence on the differential cross section in the limit

of strong external field (q2 →∞, used for computational convenience) turns

out to be

dσ

dΩ
(p→ p′) =

(
dσ

dΩ

)
0

[
1− α

π
ln

(
−q2

m2

)
ln

(
−q2

µ2

)
+O(α2)

]
(1.9)

where α ≡ e2/4π,
(
dσ
dΩ

)
0

is the cross section without the inclusion of the

virtual photon, m is the mass of the electron, and µ is a fictitious photon

mass used to regulate the integral. Taking the massless limit, we see that

this makes the logarithm diverge. This form was first discovered by Sudakov

[27] and is now referred to as the Sudakov double logarithm.

What are we to do with this? Of course observed cross sections do not

diverge. The key actually lies in the expression of a seemingly unrelated

process - the emission of a single low energy photon. This amplitude really

has two contributions, displayed in figure 1.2, as the photon can couple to

either the ingoing or outgoing fermion leg.

This amplitude is tree level, and so easy to compute. The addition of the

5



1.1. Infrared Problems in Quantum Field Theory

q

p

l +

p′

q

p

p′l

Figure 1.2: Amplitude for scattering and producing a low energy photon.

external photon, as |l| → 0, causes the following amendment to the original

cross section:

dσ

dΩ
(p→ p′ + γ) =

(
dσ

dΩ

)
0

[
α

π
ln

(
−q2

m2

)
ln

(
−q2

µ2

)
+O(α2)

]
(1.10)

Remarkably, this looks identical to the second term in (1.9), with the oppo-

site sign. This means that these processes on their own seem to be unphys-

ical, while their sum is perfectly finite. To interpret this result, we must

realize that in any real experiment, we cannot measure emitted photons of

arbitrarily low energy. We denote the lower end of the momentum scale we

can resolve by λ. To compute the inclusive cross section of these two pro-

cesses, we simply add the two previous results, but integrate the momentum

of the emitted photon from 0 to λ, allowing for all photon energies that

are indistinguishable to our experiment. The divergent contributions to the

physical result give

dσ

dΩphys
=

(
dσ

dΩ

)
0

[
1− α

π
ln

(
−q2

m2

)
ln

(
−q2

λ2

)
+O(α2)

]
. (1.11)

This is a result depending only on perfectly well-defined physical parameters.

The continuation of this argument to higher orders in perturbation theory

is not trivial. Details can be found in [29, 31], but we will give an overview

of the results here.
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1.1. Infrared Problems in Quantum Field Theory

In ref. [27], Sudakov actually goes beyond showing eq. (1.9). He sums all

similar diagrams in perturbation theory (vertex corrections involving low

energy virtual quanta) and shows that the result exponentiates. This means

that the full contribution of the vertex correction, after summing to all

orders, is

dσ

dΩ
(p→ p′) =

(
dσ

dΩ

)
0

exp

[
−α
π

ln

(
−q2

m2

)
ln

(
−q2

µ2

)
+O(α2)

]
. (1.12)

Notice that now
dσ

dΩ
(p→ p′)

µ→0−−−→ 0 (1.13)

so that this IR divergence causes the cross section to vanish! What remains

is to look at the contribution of processes that involve emission of more than

one soft photon. We will go over this in some detail, as we will make contact

with this derivation in later chapters.

Consider some known amplitude in QED. Let this amplitude be denoted

M. Specifically, we consider the amplitude for n fermions to scatter to m

fermions, with no incoming or outgoing photons.

M =

p′mp′1

p1 pn

(1.14)

We now ask the question: what is the effect on this amplitude of adding one

additional soft outgoing photon line to this amplitude? We take this photon

to have momentum q, polarization εµ(q), and assume the limit |q| → 0.

7



1.1. Infrared Problems in Quantum Field Theory

M→M′ =

q

p′mp′1

p1 pn

(1.15)

First we note that attaching the line anywhere inside the blob will not lead

to any infrared divergences, as the particles in the blob are generically off-

shell. However, consider what happens when we attach the line to the ith

outgoing on-shell matter line with momentum p′i.

This multipliesM by a vertex function and a propagator factor. We enforce

the momentum shell condition for p′i, and neglect the small q2 terms, making

the total multiplicative factor

e(p′i)µ
p′i · q − iδ

, (1.16)

which is clearly divergent as |q| → 0. Similarly, if we had attached the

photon line to the jth incoming fermion, we would multiply the amplitude

by a factor

− e(pj)µ
pj · q + iδ

. (1.17)

For n→ m scattering then, the amplitude becomes simply

M′ =M× e

 m∑
i

(p′i)µ
p′i · q − iδ

−
n∑
j

(pj)µ
pj · q + iδ

 ≡M× eΩµν , (1.18)

or in pictures:

8



1.1. Infrared Problems in Quantum Field Theory

q

p′mp′1

p1 pn

=

p′mp′1

p1 pn

× Ω

q

(1.19)

The important thing here is that the contribution from the soft radiation

factorizes against the known hard amplitude M. The omegas are factors

that are gauge invariant and do not depend on the spin of the hard particles.

The Ω notation is simply to have a consistent name for these soft factors

throughout this work. It is also shown in [29] that the generalization to N

photon emissions is straightforward:

M(N) =M×
N∏
l

e

 m∑
i

(p′i)µ
p′i · ql − iδ

−
n∑
j

(pj)µ
pj · ql + iδ

 ≡M× N∏
l

e(Ωµ)l,

(1.20)

or, attaching the outgoing photon wavefunction and normalization factors

to write the full S-matrix element:

M×
N∏
l

e

(2π)3/2
√

2|ql|

 m∑
i

ε∗ · p′i
p′i · ql − iδ

−
n∑
j

ε∗ · pj
pj · ql + iδ

 ≡M× N∏
l

eΩl.

(1.21)

Equation (1.21) is called the soft photon theorem, as it describes the change

in the amplitude due to the addition of N external soft photon lines.

Let us apply this result to our simple scattering example, generalizing the

process in Figure 1.2. We recall that q now means p′ − p once again. The

correction to the cross section from all possible numbers of emitted pho-

tons with unmeasurable momenta (also summed over polarizations) is given

9



1.1. Infrared Problems in Quantum Field Theory

by

lim
µ→0

∑
n

1

n!

∫ λ

µ

dk0

2π

(3)∑
k

−e2

2k0

(
p′ν

p′ · k
− pν

p · k

)(
p′ν
p′ · k

− pν
p · k

)n

= exp

[
α

π
ln

(
−q2

m2

)
ln

(
λ2

µ2

)]
µ→0−−−→∞.

(1.22)

This infinite result seems unphysical, but combining this with the vertex

correction (1.12), as we did before, the physical cross section is

dσ

dΩphys
=

(
dσ

dΩ

)
0

exp

[
−α
π

ln

(
−q2

m2

)
ln

(
−q2

µ2

)]
exp

[
α

π
ln

(
−q2

m2

)
ln

(
λ2

µ2

)]
=

(
dσ

dΩ

)
0

exp

[
−α
π

ln

(
−q2

m2

)
ln

(
−q2

λ2

)]
.

(1.23)

This result contains information from all orders in perturbation theory, and

again only depends on physical parameters. This form can be shown to

reproduce semiclassical predictions for the number of photons radiated as a

function of the parameters [26].

This sort of cancellation seems to imply that in order to talk about physical

transitions, we should speak only of processes including infinite amounts

of soft radiation. In fact, with the above results, only these inclusive cross

sections are nonzero and finite. That this radiation is inevitable was already

discussed by Bloch and Nordsieck [30] long before the modern derivations

of the above results in e.g., [29, 31]. While our interpretation in terms of

unmeasurable soft modes is a practical one, formally it leaves much to be

desired. This discontent can be seen in the works of many authors who

attempt to redefine asymptotic states or the S-matrix in order to write

down a theory that never includes IR divergences in the first place [51–57].

We note here that application of the functional formalism discussed next to

these sorts of “dressed state” constructions could be enlightening, and will

be the subject of future work.

10



1.1. Infrared Problems in Quantum Field Theory

1.1.2 Functional Methods

The Bloch and Nordsieck approach came before the previous perturbative

arguments, and involved understanding the behavior of an electron in a

background electric field. The background field was constrained only to in-

volve low energy modes. This setup can be used in a more general functional

formalism originally due to Fradkin [2]. Here we will briefly discuss the ap-

plication of this method to QED and show some of the peculiarities of its

results. In particular, we derive the form of the electron propagator in the

presence of a slowly varying background field. This form of the propaga-

tor can be used to derive an expression for the generating functional of the

theory, as is done in the next chapter for linearized quantum gravity. Ap-

pendices C and D also discuss the relationship of the generating functional

to the S-matrix, which will be useful in deriving the soft theorems we have

just seen for gravitons. Our presentation closely follows that of Bogoliubov

and Shirkov [36], though arguments can be found in other books and papers

as well.1

The equation of motion for the fermion field ψ in some fixed background

vector potential Aµ is

[γµ (i∂µ + eAµ(x))−m]ψ(x) = 0. (1.24)

In the Bloch-Nordsieck model, we approximate the gamma matrices (making

this a scalar theory of QED) by making the replacement

γµ → uµ, u2 = 1, (1.25)

where uµ is a vector of constant numbers. Its interpretation in momentum

space is the velocity of the particle, uµ = pµ/m. This model leads to the

definition of the electron propagator on the background

[uµ (i∂µ + eAµ(x))−m]G(x, x′|A) = −δ(x− x′). (1.26)

1See e.g. [34, 35] or the books of Popov [37] or Fried [1] and references therein.

11



1.1. Infrared Problems in Quantum Field Theory

This equation can be solved using the Schwinger/Fock “proper time” repre-

sentation of the propagator, giving the formal solution

G(x, x′|A) = i

∫ ∞
0

ds exp
{
is [uµ (i∂µ + eAµ(x))−m+ iε] δ(x− x′)

}
.

(1.27)

The resulting form of G(x, x′|A) is discussed in detail when we do the calcu-

lation for gravity. We then take the result, and functionally integrate over

all possible long wavelength configurations of the background Aµ to get the

full electron propagator:

G(x, x′) =

∫
DAeiS[A]G(x, x′|A), (1.28)

where S[A] is just the action of the free vector field. The momentum space

result for the propagator in the long wavelength approximation turns out to

be

G(p) ≈ 1

m− u · p

∣∣∣1− u · p
m

∣∣∣ζ , (1.29)

where ζ ≡ − α
2π (3− ξ) +O(α2), and ξ is a gauge-fixing parameter. The form

of ζ in the gauge where ξ = 0 was found by Solov’ev [38] to all orders in α,

and this result was generalized to arbitrary gauges in [40]. This form shows

a correction to the bare propagator by the multiplicative factor
∣∣1− u·p

m

∣∣ζ ,
which can be expanded as∣∣∣1− u · p

m

∣∣∣ζ = 1− α

2π
(3− ξ) ln

∣∣∣1− u · p
m

∣∣∣+O(α2) (1.30)

showing logarithmic corrections that are reminiscent of those we saw after

cancelling off IR divergences. The difference is that now we have none of the

intuition of summing up indistinguishable processes to aid us in interpreting

this result. Looking closely, we see that the propagator no longer has a

simple pole at u · p = m. This may appear troublesome, but in the gauge of

Yennie and Fried [33], where ξ = 3, we see that this odd behavior disappears

entirely. Johnson and Zumino [32] remark that the multiplicative factor is

due only to the (gauge-dependent) description of scalar and longitudinal

12



1.1. Infrared Problems in Quantum Field Theory

modes of Aµ, which should not be interpreted as physical degrees of freedom.

Thus we should not be surprised that we can remove this factor without

changing the physics, as it is pure gauge. A proof of this at all orders

of perturbation theory was given by Braun [39], though that computation

missed a change in the wavefunction renormalization that was then corrected

in [40].

Before moving on, we mention that functional methods have also already

been applied to the computation of eikonal amplitudes in QED [41, 42] and

in gravity [45]. We will elaborate upon this approach later in this work, so

we do not discuss it in depth here. Such amplitudes result from summing

an infinite number of Feynman diagrams [43]. In the two-fermion scattering

case, these diagrams are the ladder type graphs obtained by ignoring vertex

corrections and the vacuum polarization of the exchanged photons. The

result that we reproduce with the functional formalism for gravity is found

in [44]:

iM = 8Ep

∫
d2x⊥e

−iq⊥·x⊥
(
eiχ − 1

)
(1.31)

where E is the energy and p is the center of mass momentum of both par-

ticles, q is the momentum transfer, and the “eikonal” χ is

χ ≈ −Gγ(s)

Ep
ln(µx⊥) (1.32)

for γ(s) = 1
2

[
(s− 2m2)2 − 2m4

]
, s is the usual Mandelstam variable, and

µ is a graviton mass serving as an IR regulator. We refer to this paper

after recovering this result for further comments on bound state poles in the

amplitude and relation to previous results.

We will show in this work that the functional formalism is well-equipped

to discuss all of the issues presented in this section. It contains all of the

mentioned IR divergences as well as their cancellation, and can at the same

time recover IR correlators and eikonal amplitudes. This thesis should be

seen as a unification of these ideas and a first step in using the functional

approach to better understand linearized quantum gravity.
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1.2. Theory of Quantized Gravity and Matter Fields

But first - a quick review of linearized quantum gravity.

1.2 Theory of Quantized Gravity and Matter

Fields

Shortly after the first major developments of quantum mechanics, an obvious

question presented itself: how might quantum effects appear in Einstein’s

(also still relatively new) generally covariant theory of gravity [8]? This ques-

tion is at the heart of the field appropriately named quantum gravity.

Carlo Rovelli’s “Notes for a brief history of quantum gravity” [12] helpfully

break the myriad of approaches to the field into three categories, the “co-

variant line of research,” the “canonical line of research,” and the “sum over

histories line of research.” The approach that we will focus on in this work

falls into the “covariant line of research,” in that it splits the spacetime

metric into a flat background, and a dynamical spin-two field that propa-

gates on that background. In this line of research, the dynamical field is

then quantized, and interacts with quantum matter in a way described by

conventional, flat spacetime quantum field theory. One simplifying aspect of

this approach is that it straightforwardly avoids the question of how to gen-

eralize quantum coordinate systems to allow a relativistic description. We

will give a brief discussion of the subset of this line of work that is relevant

to us, ignoring the other approaches except to refer the interested reader to

those related references in the Rovelli notes.

To introduce the necessary elements of this sort of quantum theory of gravity,

we first discuss the full and linearized Lagrangian derivation of the Einstein

field equations (EFEs) in the presence of matter. We then discuss previ-

ous attempts to understand how gravity can be quantized, and how even

though the best we can do is a formally nonrenormalizable theory, we can

gain understanding at low energies through the lens of effective field theory

(EFT). This discussion includes a derivation of the Feynman rules for our

theory. Throughout the discussion we will assume a basic understanding
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1.2. Theory of Quantized Gravity and Matter Fields

of QFT, renormalization, and GR for the sake of brevity, and we assume

strictly unmodified Einstein GR taking the connection to be Levi-Cevita

and imposing only minimal coupling to matter.

1.2.1 The Lagrangian Formulation of GR

The EFEs can be derived via the stationary action principle from the fol-

lowing (Einstein-Hilbert) action:

S[φ, gµν ] =

∫
d4x
√
−g
[

2

κ2
R+ Lφ

]
≡ SEH [gµν ] +

∫
d4x
√
−gLφ. (1.33)

R is the Ricci scalar, obtained by fully contracting the Riemann curva-

ture tensor. The Riemann tensor is built from the Levi-Cevita connection

coefficients (Rµναβ ∼ ∂Γ − ∂Γ + ΓΓ − ΓΓ) which are in turn built from the

spacetime metric gµν and its derivatives (Γ ∼ 1
2g[∂g+∂g−∂g]). κ2 = 32πG,

g ≡ det(gµν), and Lφ is the Lagrangian density for any matter in the the-

ory. Generically, φ can be shorthand for any types of matter fields, but for

concreteness and simplicity we take it to be a single real scalar field with

Lagrangian density

Lφ[φ] =
1

2

[
gµν∇µφ∇νφ−m2φ2

]
. (1.34)

The stationary action principle demands that δSEH/δg
µν = 0, yielding im-

mediately the EFEs:

Rµν −
1

2
gµνR =

κ2

4
Tµν (1.35)

Tµν is the stress-energy tensor of the matter, defined by

Tµν =
−2√
−g

δ(
√
−gLφ)

δgµν
. (1.36)

This formalism leads to a consistent classical field theory, but how do we

go about quantization? For our purposes, it will be sufficient to focus on

taking the limit of weak gravitational field.
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1.2. Theory of Quantized Gravity and Matter Fields

1.2.2 Linearization

If we focus our discussions on situations with only small spacetime curvature

(e.g., a few elementary particles or mesoscopic systems) we can simplify

things a great deal. We will break the metric into two pieces: a constant

Minkowski background and the dynamical field that encodes the departure

of the full metric from that background. In other words,

gµν(x) = ηµν + κhµν(x). (1.37)

The factor of κ is for convenience in defining a canonically normalized quan-

tum field theory.

So far, this procedure is exact. At this point we introduce an approximation

by assuming that |κhµν | � 1. What we want is to reproduce the linearized

version of the EFEs. To do this, we keep to leading order in κh in the pure

gravity action, and only the linear matter coupling term. After some tedious

algebra, the full action can be written as S[φ, hµν ] =
∫
d4xL, with

L = Lg + Lφ + Lint, (1.38)

Lg[h] ≡ 1

2
∂µhαβ∂

µhαβ − 1

2
∂µh∂µh− ∂αhαγ∂βhβγ + ∂αh

αβ∂βh (1.39)

Lφ[φ] ≡ 1

2
ηαβ∂αφ∂βφ−

1

2
m2φ2 (1.40)

Lint[φ, h] ≡ −κ
2
hµνTµν (1.41)

Here, h ≡ ηµνhµν is the trace of the metric perturbation. For a scalar field,

we have

Tµν = ∂µφ∂νφ− ηµνLφ (1.42)

Varying this new action w.r.t. hµν gives the linearized version of the EFEs.

This sort of formalism is not new. The above manipulations are found in

introductory GR textbooks, and we refer to [10] for introduction and [9] for

further information on the classical theory.
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1.2. Theory of Quantized Gravity and Matter Fields

1.2.3 Gravitons

Theories that quantize gravity around a flat background date back to at least

1930 [12] with Rosenfeld [13, 14] offering a first attempt at applying quan-

tization rules to the linearized EFEs. The sixties saw further development,

notably due to the contributions of Feynman [15] and DeWitt [16–18]. The

article of Feynman provides a particularly readable account of the connec-

tion of flat space quantization techniques to classical gravitational physics

via computation of tree level scattering amplitudes. It also provides a sense

of the first confusion resulting from the nonrenormalizability of quantizing

gravity in the way we are about to. In order to understand these kinds of cal-

culations, we will proceed with quantizing our linearized theory via the path

integral. We can use path integral language to simply state the vacuum-to-

vacuum amplitude for the graviton field in the presence of a classical source

Iµν . This amplitude is known as the generating functional (elaborated upon

in the appendix). Writing this down for pure gravity, we have

Zg[I] ≡
∫
Dh ei

∫
Lg+i

∫
hµνIµν , (1.43)

where h is now referred to as the graviton field. This path integral is Gaus-

sian in h, but there is a problem. After integrating by parts, the path

integral can be written in the form

Zg[I] ≡
∫
Dh e−i

∫
hµν∆−1

µναβh
αβ+i

∫
hµνIµν , (1.44)

for a differential operator ∆−1, and to evaluate it we must find ∆. However,

as is, the inverse of ∆−1 cannot be uniquely inverted. This is because h

contains redundant gauge degrees of freedom. Only once we pick a gauge

can we invert this operator.

Under an infinitesimal change of coordinates, δxµ = −ξµ, the metric per-

turbation is transformed according to δhµν = −∂µξν − ∂νξµ. The action is

invariant under this shift of the coordinate grid (gauge transformation), so

we are free to choose any ξ we would like. A convenient choice is the de
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1.2. Theory of Quantized Gravity and Matter Fields

Donder or harmonic gauge condition

(hαβ),α =
1

2
ηαβh,α (1.45)

which can be achieved with a choice of coordinates obeying

∂2ξβ = (hαβ),α −
1

2
ηαβh,α. (1.46)

In this gauge, the generating functional can be evaluated exactly, but there is

one further detail we must mention. In order to properly enforce this gauge

condition and stop ourselves from overcounting redundant gauge degrees of

freedom in the path integral, we must first implement the Faddeev-Popov

gauge fixing procedure. The result of this is [11]

Zg[I] ≡
∫
DhDG[h]δ(Gβ(h))e−i

∫
hµν∆−1

µναβh
αβ+i

∫
hµνIµν , (1.47)

where DG[h] is the Faddeev-Popov determinant corresponding to the gauge-

fixing function Gβ(h), and the delta function simply enforces the constraint

(1.45), meaning that for the de Donder gauge we have

Gβ(h) = (hαβ),α −
1

2
ηαβh,α. (1.48)

For linearized gravity, the determinant only effects a change of overall nor-

malization, so we henceforth ignore it. This leaves

Zg[I] ≡
∫
Dh δ(Gβ(h))e−i

∫
hµν∆−1

µναβh
αβ+i

∫
hµνIµν , (1.49)

which adequately defines the inverse of ∆−1 and allows the integral to be

performed, giving

Zg[I] = exp

{
i

2

∫
d4x

∫
d4y Iαβ(x)∆αβσρ(x− y)Iσρ(y)

}
, (1.50)

where the free graviton propagator ∆ is the Green function of the linearized

EFEs and is given by
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1.2. Theory of Quantized Gravity and Matter Fields

∆αβσρ(x− x′) ≡ x x′ =
∑
k

eik·(x−x
′)

k2
Pαβσρ, (1.51)

where Pαβσρ ≡ 1
2 [ηασηβρ + ηαρηβσ − ηαβησρ], and we now have an effective

quantum field theory for weak-field gravity on its own. The theory of free

(i.e., no coupling to gravity) scalar matter is even simpler, with

Zφ[J ] ≡
∫
Dφ ei

∫
Lφ+i

∫
φJ

=

∫
Dφ e−i

∫
φG−1

0 φ+i
∫
φJ ,

(1.52)

Where Lφ is given by equation (1.40), and we are now in Minkowski space.

The differential operator in the exponent is easy to write down,

G−1
0 = ∂2 +m2, (1.53)

as is its inverse,

G0(x− x′) ≡ x x′ =
∑
k

eik·(x−x
′)

k2 −m2
. (1.54)

G0 is the free scalar propagator, and we are almost done constructing the

Feynman rules for this theory.

From the interaction part of the Lagrangian density, Lint, we can imme-

diately write down the vertex (figure 1.3), here in momentum space, with

q = p1 − p2:

τµν(p1, p2; q) = κ(p1(µp2ν) −
1

2
ηµν [p1 · p2 −m2]) (1.55)
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p1 p2

q

µν

Figure 1.3: Graviton-matter vertex.

So we have established the diagrammar for this theory. This allows us to

proceed and calculate gravitational scattering amplitudes using Feynman

diagrams [24]. When we do so, we run into the usual UV divergences from

computing loop integrals. These can be absorbed into renormalized param-

eters which are compared to experiment in order to measure their physical

values. This makes it so physical quantities can still be predicted in spite of

the infinities spit out by the diagrammatics. In order for a theory to have

predictive power, it is naively required that the number of necessary renor-

malized constants needed to remove UV divergences to all orders is finite.

Unfortunately, this requirement is not satisfied by gravity [19]. To eliminate

UV divergences at every order would require an ever-increasing number of

counterterms. The naive argument then says that the theory should have no

predictive power. Can we ever hope to make predictions with such a theory,

or is this line of attack dead?2

Thankfully, it seems like we can recover predictive power if we think of lin-

earized gravity as an effective field theory [11, 20, 21]. An EFT is one that

is understood to be the low energy limit of some (perhaps unknown) micro-

scopic theory that is valid at all length scales. From this perspective, though

renormalization forces upon our theory infinitely many higher order interac-

tion terms in the Lagrangian (including terms beyond the Einstein-Hilbert

term), they are all suppressed by ever-increasing powers of κE ∼ E/MP ,

where E characterizes the energy scale at which we are interested in apply-

ing our theory and MP ∼ 1018GeV is the Planck mass. This means that,

although we are formally in trouble, we can truncate our theory as we have

done if we promise to only apply it at energy scales well below the Planck

2Rovelli says it is dead. Specifically, he claims it died in 1975 [12].
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scale. The EFT perspective also has the pleasing consequence that any

UV complete theory of quantum gravity should make predictions that agree

with ones computed with our truncated theory in the limit of low energy.

This method of reinterpretation gets concrete results. These calculations

have been shown to reproduce the classical Newtonian potential in two-body

scattering processes, and quantum corrections to the Newtonian potential

have been derived.3 This should support our intuition that the theory is

valid despite its infinitely many problem terms at higher orders.

So we have discovered a low energy effective theory that reproduces the New-

tonian potential, and contains quantum corrections. We are finally ready to

investigate the same problems that we saw arise in QED in the last section.

To that end we will proceed to apply the same functional techniques we saw

there to our quantum theory of gravity.

3For more, see [22], and also [23] and references therein.
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Chapter 2

Eikonal Methods for

Linearized Gravity

In this section we expand upon the introduction to functional methods in

QED, as we apply the technique to linearized quantum gravity. Our pre-

sentation is similar to those of Fradkin and Fried [1, 2]. We will derive

the IR form of the scalar propagator with soft gravitons functionally inte-

grated out, and explain the details of the functional method along the way.

Another attractive aspect of the functional approach we have yet to fully

discuss is that it also allows a derivation of an incredibly convenient form of

the generating functional of the theory in the eikonal limit. This facilitates

computation of not just the infrared effective propagator, but in principle

all of the n-point functions of the theory. This too is done in this chapter.

We will not really need an expression for the generating functional in this

limit to derive many results in this work, but we write it down anyway, and

show how to extract any desired correlators. Why? As Schwartz [5] puts it,

“The generating functional is the holy grail of any particular field theory:

if you have an exact closed-form expression for Z for a particular theory,

you have solved it completely.” Our form is close to this ideal - while not

exact, it is justified in the soft limit, and while not closed-form in its final

incarnation, still very simple to use. We hope that this form for Z can be

of use in other applications beyond the scope of this work.

Our implementation of the functional method involves two explicit assump-

tions. The first is that at any point, as matter moves through spacetime, the

background graviton field is slowly varying compared to the dynamics of the
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2.1. Equation of Motion for the Scalar Field

particle. This assumption is certainly well motivated for non-relativistic pro-

cesses, and also for the isolation of soft graviton effects, which are necessarily

long wavelength. The second assumption is that at any point, the likelihood

that a virtual graviton will pair produce scalar particles is negligible. In

other words, we ignore all loop corrections to the graviton propagator, and

simply use the bare one everywhere. This too is justified by the focusing of

our attention to soft effects. Virtual quanta would need to attain energies

of order 2mc2 as in figure 2.1 in order for us to include diagrams involving

scalar loops, but this energy scale is far above that which we defined as

soft.

q

m

q

Figure 2.1: In order for virtual gravitons to be modified by loop corrections
like this one, where a pair of massive scalar particles are produced, the
momentum q must be of order 2mc2.

With our assumptions stated, we begin by asking the simplest question of

all: how does the scalar field behave in the presence of some particular

graviton background?

2.1 Equation of Motion for the Scalar Field

With the effective Lagrangian density L[φ, h] = Lg[h]+Lφ[φ]+Lint[φ, h], we

can isolate the behavior of the matter, conditioned on a particular configu-

ration of the metric. What we will do is “freeze” the perturbation field h in

some arbitrary configuration, and get an equation of motion for φ. Varying

the action w.r.t. a small variation in the field φ → φ + δφ and demanding
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2.2. The Generating Functional

that δS = 0 gives an equation of motion for φ:{
∂2 +m2 + κhαβ(x)K̂αβ

}
φ(x) = 0, (2.1)

K̂αβ ≡ −∂α∂β +
1

2
ηαβ(∂2 +m2). (2.2)

where again we have chosen to enforce the de Donder gauge condition. Then

the propagator (Green function) for a scalar on a fixed graviton background

is defined by: {
G−1

0 + κhαβ(x)K̂αβ

}
G(x, x′|h) = −δ4(x− x′) (2.3)

We will need this in what follows and its eikonal form will be discussed later.

For now we proceed to show how we can derive the generating functional of

the theory in terms of this quantity.

2.2 The Generating Functional

If J(x) and Iαβ(x) are again arbitrary classical sources of the scalar field φ(x)

and the graviton field hαβ(x) respectively, the full generating functional for

the theory with the Lagrangian given above is

Z[J, I] =

∫
Dφ
∫
Dh eiSφ+iSg+iSint+i

∫
φJ+i

∫
hI . (2.4)

Recall, Sint[φ, h] = −κ
2

∫
d4xhαβTαβ. After integrating by parts, this can

be rewritten as

Sint[φ, h] = −κ
2

∫
d4xhαβφK̂αβφ. (2.5)

Now in this form, we write Z as

Z = eiSint[
δ
δJ
, δ
δI

]

∫
Dφ
∫
DheiSφ+iSg+i

∫
φJ+i

∫
hI , (2.6)
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2.2. The Generating Functional

where we have made the substitutions φ(x) → −iδ
δJ(x) and hαβ(x) → −iδ

δIαβ(x) .

Written this way, the path integrals decouple and each can be evaluated

explicitly, as done in the previous chapter. This gives

Z = eiSint[
δ
δJ
, δ
δI

]Zφ[J ]Zg[I]. (2.7)

Now, notice that eiSint is simply a linear shift operator in I, and a quadratic

shift operator in J . Because the free generating functionals factorize and are

Gaussian, either of these operators can be applied directly. The linear shift

in I is easier, but first evaluating the quadratic shift in J is more helpful.

Applying this gives

Z = exp

{
−1

2

∫
d4x ln

(
1 + κG0(x, x)K̂αβ

−iδ
δIαβ(x)

)}

×exp

 i

2

∫
d4x

∫
d4yJ(x)

 G0(x, y)

1 + κG0K̂αβ
−iδ
δIαβ

 J(y)

Z0
φ[J ]Z0

g [I].

(2.8)

One then recognizes that the quantity G0(x,y)

1+κG0K̂αβ
−iδ
δIαβ

is the (symbolic) solu-

tion to the equation that defines the propagator G(x, y|h) on a fixed back-

ground perturbation field, with the field hµν(x) replaced by −iδ
δIµν(x) . This

means that Z can be written as

Z = exp

{
i

2

∫
d4x

∫ κ

0
dg G(x, x|g δ

δI
)K̂αβ

δ

δIαβ(x)

}
× exp

{
i

2

∫
d4x

∫
d4y J(x)G(x, y| δ

δI
)J(y)

}
Z0
φ[J ]Z0

g [I].

(2.9)

The first exponential “interaction operator” above describes the polariza-

tion of gravitons ([1], ch.3) which here means diagrams with scalar loops

(remember, we have removed all the nonlinearity at the level of the action,

so there are no graviton-only polarization contributions). Because of this,

we ignore that term in the calculations that follow, setting it to 1, as phys-
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2.3. Propagator on a Fixed Background

ical arguments presented at the beginning of this chapter say there should

be no such diagrams in the infrared.

Now all that we need is an appropriate expression for the scalar propagator

in a fixed, slowly varying background field.

2.3 Propagator on a Fixed Background

Remember, the propagator we want to find is defined by{
G−1

0 + κhαβ(x)K̂αβ

}
G(x, x′|h) = −δ4(x− x′). (2.10)

In momentum space, with G(x, x′|h) =
∑

k e
ik(x−x′)Gk(x|h), the propagator

obeys {
G−1

0 (k)− Û
}
Gk(x|h) = 1. (2.11)

Here we are expanding about the bare propagator, G0(k) = 1
k2−m2 , and

explicitly:

Û ≡ ∂2 + 2ikµ∂µ

+κhαβ
[
kαkβ − 2ikα∂β − ∂α∂β −

1

2
ηαβ(k2 −m2 − ∂2 − 2ikµ∂µ)

] (2.12)

At this point, it is also useful to scale the above relation by the scalar

mass: {
mG−1

0 (k)−mÛ
}
Gk(x|h) = m (2.13)

The reason for this is made clear below. Using the Schwinger/Fock “proper

time” representation, we can write the bare propagator as

G0(k) = im

∫ ∞
0

dse−ism(k2−m2) ≡ im
∫ ∞

0
dsG0(k, s), (2.14)

where the exponent is to be given a small negative imaginary part, and it is
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2.3. Propagator on a Fixed Background

useful to note that

i∂sG0(k, s) = m(k2 −m2)G0(k, s) = mG−1
0 (k)G0(k, s). (2.15)

It is also convenient to express the full propagator as

Gk(x|h) = im

∫ ∞
0

dsG0(k, s)Y(k, s, x|h), (2.16)

such that Y acts to weight the free propagator term under the proper time

integral. In order to do this, we must be able to satisfy{
mG−1

0 (k)−mÛ
}
i

∫ ∞
0

dsG0(k, s)Y(k, s, x|h) = 1, (2.17)

and it turns out we can, if the weighting factor obeys the Schrödinger equa-

tion

− i∂sY = mÛY, Y(s = 0) = 1. (2.18)

In deducing the form of Y, we use the ansatz

Y ≡ eχ, (2.19)

with χ inheriting all of the dependencies of Y.

Now, for this scalar theory, the equation of motion for χ is nonlinear and

generally intractable. Progress can be made, however, by expressing χ as a

power series. In order to do this, note that the coupling κ =
√

32πG can be

expressed in natural units as κ =
√

32π/MP , with MP the Planck mass. The

scaling of the perturbation Û by the scalar mass m gives naturally a small

dimensionless parameter mκ =
√

32π(m/MP )� 1. So to isolate the eikonal

behavior of the propagator, expand χ as a power series in the dimensionless
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“coupling” in the spirit of the WKB technique:

χ ≡
∞∑
n=1

(mκ)nχn (2.20)

To first order in mκ, this gives an equation of motion for χ1:

− i∂sχ1 = m
[
∂2 + 2ikµ∂µ

]
χ1 + hαβ(x)[kαkβ −

1

2
ηαβ(k2 −m2)] (2.21)

Higher order terms can be found in a similar manner. One interesting thing

to note is that, unlike in a linear theory (e.g. QED), having to perform this

expansion at this stage due to the second-order equation of motion could

lead to a different source of subleading soft effects. However this has not yet

been investigated. The ∂2 term can also be dropped at this stage due to the

assumption of a slowly-varying background field.4 We then write χ in terms

of its Fourier transform, χ1 =
∑

q e
iq·xχ̃1(q), in which case the solution for

χ̃1(q) reads

mκχ̃1(q) = im

∫ s

0
ds′e−2is′m(k·q)h̃µν(q)τµν(k), (2.22)

where the graviton-scalar vertex in de Donder gauge is again τµν(p1, p2; q) =

κ(p1(µp2ν) − 1
2ηµν [p1 · p2 −m2]). The appearance of τµν(k) ≡ τµν(k, k; 0) is

a clear manifestation of the eikonal physics here. Imposing momentum con-

servation at the vertex and setting p1 = p2 = k implies that, if one is to

truly take this object as a vertex, the momentum of the emitted graviton

is identically zero. This can also be thought of as a manifestation of the

inconsistency of the linearized theory, in which the gravitons do not source

themselves (i.e. one incorrectly assumes that the stress-energy of gravitons

is zero).

4If we do not drop this term here, we get a slightly more complicated form factor later.

This would consist of replacing the factor
∫ s
0
ds′e−2is′m(k·q) with

∫ s
0
ds′e−is

′m(q2+2k·q). This
does not change the final results of our work, so for our purposes these forms are equivalent.
However if one wishes to consider slightly larger graviton momenta, this difference becomes
more important.
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2.4. Applying the Interaction Operators

Finally, keeping just the first order eikonal correction, we have that

Gk(x|h) ≈ im
∫ ∞

0
ds e−ism(k2−m2)+mκ

∑
q e
iq·xχ̃1(q), (2.23)

and the explicit dependence on the mass scale can be seen to be trivial by

choosing the integration variable to be sm rather than s (and similarly for

s′ in the form factor of χ̃1), to get

Gk(x|h) ≈ i
∫ ∞

0
ds e−is(k

2−m2)+κ
∑
q e
iq·xχ̃1(q). (2.24)

How is this different from perturbation theory? In our ansatz (2.19),

we chose to leave the s-dependence of χ arbitrary. Choosing a form like

Y ≡ e−isχ̄ (2.25)

where χ̄ is no longer a function of proper time, would give

G =
1

k2 −m2 + χ̄
. (2.26)

We would find that, to first order, χ̄ is just the one-loop self energy of the

scalar. So in this way, we could immediately recover the usual perturba-

tion theory by keeping ever-increasing orders of corrections to χ̄. However,

simply relaxing the dependence on proper time gives strictly nonperturba-

tive results and we now proceed to investigate what effect this has on the

generating functional and correlators of the theory.

2.4 Applying the Interaction Operators

So, then, the propagator given on a fixed background, to first order in mκ,

has the form

Gk(x|h) ≈ i
∫ ∞

0
ds e−is(k

2−m2)−
∑
q e
iq·xf(q)τµν(k,k)h̃µν(q), (2.27)
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2.4. Applying the Interaction Operators

where the form factor is

f(q) ≡ −i
∫ s

0
ds′e−2is′(k·q) =

e−2is(k·q) − 1

2k · q
. (2.28)

Plugging (2.27) into (2.9) and setting the first exponential to one, we see

that the generating functional in the infrared regime has the approximate

form

Z ≈ exp

{
i

2

∫
d4x

∑
k

eik·xJ(x)J̃(k)Gk(x|
δ

δI
)

}

× exp

{
i

2

∑
q

Ĩµν(q)∆µναβ(q2)Ĩαβ(−q)

}
,

(2.29)

or in convenient shorthand,

Z ≈ e
i
2

∫
JG(|−iδ

δI
)Je

i
2

∫
I∆I . (2.30)

This gets a little messy, but since the propagator here is restricted to terms in

the exponent that are linear in κh, the result is a straightforward application

of the properties of linear shift operators. To see this, write the above

as

∞∑
n=0

(−1)n

n!

[
1

2

∫
d4x

∑
k

eik·xJ(x)J̃(k)

×
∫ ∞

0
ds e

−is(k2−m2)+i
∑
q e
iq·xf(q)τµν(k) δ

δĨµν (q)

]n
Z0
g [Ĩµν(q)]

(2.31)

=
∞∑
n=0

(−1)n

n!

n∏
a=1

[
1

2

∫
d4xa

∑
ka

eika·xaJ(xa)J̃(ka)

∫ ∞
0

dsa e
−isa(k2a−m2)

]

× e
i
∑
q

∑n
a=1 e

iqa·xafa(q)τµν(ka) δ

δĨµν (q)Z0
g [Ĩµν(q)].

(2.32)
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2.5. Correlators

Recognizing this as a shift operator -

exp

{
i
∑
q

eiq·xf(q)τµν(k)
δ

δĨµν(q)

}
Z0
g [Ĩµν(q)]

= Z0
g

[
Ĩµν(q) + ieiq·xf(q)τµν(k)

] (2.33)

- and writing out the shifted Z0
g gives the explicit form for the generating

functional:

Z =
∞∑
n=0

(−1)n

n!

n∏
a=1

1

2

∫
d4xa

∑
ka

eika·xaJ(xa)J̃(ka)

∫ ∞
0

dsa e
−isa(k2a−m2)

Z0
g [I]

× exp

{
−

n∑
a=1

∑
q

e−iq·xafa(−q)τµν(ka)∆
µναβ(q2)Ĩαβ(q)

− i

2

n∑
a,b=1

∑
q

eiq·(xa−xb)fa(q)fb(−q)τµν(ka)∆
µναβ(q2)ταβ(kb)

}
(2.34)

This is not quite the “exact, closed-form expression” we may dream of, but

in fact the form (2.30) is practically just as useful. To demonstrate this, we

now run through a couple examples of finding n-point correlators.

2.5 Correlators

Now that we have an explicit form for Z in the soft graviton regime, we can

use it to find the IR form of whichever correlators we are interested in. In

particular, we focus here on finding the first couple of correlators, G2 and

G4. Defining

Z[J, I] ≡ eiW[J,I], W = −ilnZ, (2.35)

the correlators for the scalar field are

Gn(x1, . . . , xn) =
(−i)nδnZ[J, I]

δJ(x1) . . . δJ(xn)
|I=J=0. (2.36)
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2.5. Correlators

and the connected correlators are

G(c)
n (x1, . . . , xn) =

(−i)nδniW[J, I]

δJ(x1) . . . δJ(xn)
|I=J=0. (2.37)

In practice, it is most convenient to use the real space form of (2.30) to

calculate these. Doing things this way results in expressions that are simply

repeated applications of linear shift operators, so all of the n-point functions

for φ are simple to recover.

2.5.1 The Two-Point Function

Following (2.30),

−iδZ
δJ(x)

=

[
−
∫
d4a J(a)G(x, a| δ

δI
)

]
Z. (2.38)

Rinsing and repeating:

(−i)2δ2Z
δJ(x)δJ(x′)

=

[
−iG(x, x′| δ

δI
) + 0

]
Z, (2.39)

where the bold 0 indicates more terms that vanish when the auxiliary sources

are set to zero after applying all functional derivatives. Now all that is left is

to evaluate G acting on Z, as done before in (2.33), and turn off the sources.

The result is

G2(r) =
∑
k

eik·r
∫ ∞

0
ds e−is(k

2−m2)

× exp

{
− i

2

∑
q

f(q)f(−q)ταβ(k)∆αβµν(q2)τµν(k)

}
,

(2.40)

where r stands for the difference x− x′. Though the propagator found with

a fixed background was not translationally invariant, this correlator is after

integrating out background configurations.
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2.5. Correlators

2.5.2 The Four-Point Function

Computing the two particle correlator is more messy, but just as straight-

forward. By definition,

G4(w, x, y, z) =
(−i)4δ4Z

δJ(w)δJ(x)δJ(y)δJ(z)
|I=J=0, (2.41)

and after computing this we get

G4(w, x, y, z) = G(w, x|y, z) + G(w, y|x, z) + G(w, z|x, y), (2.42)

where

G(w, x|y, z) ≡
∑
k1

∑
k2

eik1·(w−x)eik2·(y−z)
∫ ∞

0
ds1

∫ ∞
0

ds2 e
−is1(k21−m2)e−is2(k22−m2)

×exp

{
− i

2

∑
q

f1(q)f1(−q)ταβ(k1)∆αβµν(q2)τµν(k1)

}
×

×exp

{
− i

2

∑
q

f2(q)f2(−q)ταβ(k2)∆αβµν(q2)τµν(k2)

}
×

×exp

{
−i
∑
q

eiq·(w−y)f1(q)f2(−q)ταβ(k1)∆αβµν(q2)τµν(k2)

}
.

(2.43)

Any correlator can be computed in this manner, and using this first approx-

imation to Z makes each of them straightforward.
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2.6. Infrared Behavior of the Two-Point Function

2.6 Infrared Behavior of the Two-Point

Function

In addition to pulling G2 from Z in the manner above, one can also recover it

by integrating out the fluctuations of the metric perturbation directly

G(x− y) =

∫
Dhµν P[h]G(x, y|h), (2.44)

in analogy with ordinary probability theory. P is a probability amplitude

for a given configuration of h. By the definition of the full correlator for φ,

P is found to be P[h] = eiSg [h], with Sg[h] the pure gravity action, which

in this treatment is only quadratic in h. The integral is then Gaussian in h

and is straightforward. From either derivation, we get the form

G(k2) =

∫ ∞
0

ds e−is(k
2−m2)exp

{
− i

2

∑
q

f(q)f(−q)ταβ(k)∆αβµν(q2)τµν(k)

}
.

(2.45)

Evaluating the integral in the phase - seen in Appendix B - and using

ταβP
αβµντµν ≈ κ2

4 k
4 ≈ κ2

4 m
4 near the mass shell,

G(k2) ≈
∫ ∞

0
ds e−is(k

2−m2)− κ2

32π2
m2[isΛ−ln(sΛ)]. (2.46)

In the new phase, the term linear in s should be thought of as a mass renor-

malization. However at this point it must be remarked that these results are

gauge-dependent, and as discussed in [1], it should simply be assumed that

all physical mass renormalization has been done at this stage, and that those

full results should rightfully be gauge-independent. Additionally, writing

ln(sΛ) = ln(sm) + ln(Λ/m) gives a divergent wavefunction renormalization.

Finally, the renormalized propagator looks like

G(k2) =

∫ ∞
0

ds e−is(k
2−m2)+ κ2

32π2
m2 ln(sm) =

∫ ∞
0

ds e−is(k
2−m2)(sm)ζ ,

(2.47)
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2.6. Infrared Behavior of the Two-Point Function

where ζ ≡ Gm2

π , and thus in harmonic gauge:

G(k2) = −iΓ(1 + ζ)(−im)ζ [k2 −m2]−(1+ζ) (2.48)

We emphasize that this result as presented is valid only in harmonic gauge.

We have suppressed the dependence on a gauge-fixing parameter to simplify

the index gymnastics. However as in the scalar QED result in the introduc-

tion, it is still possible to reduce this propagator to a form with a simple pole

by a suitable gauge choice, discussed in [66, 67]. In this way one gets rid of

spurious apparent IR divergences in the propagator. It would be interesting

to repeat the calculations performed in this work using this divergence-free

gauge.

The key results of this chapter are equations (2.30), (2.45), and (2.48). The

first gives an eikonal representation of the generating functional, and answers

the general question of how the matter-gravity theory behaves in the low

energy limit. The last gives a nonperturbative result for the new effective

propagator of the scalar field which has the same basic form as the result for

QED. It does this through the help of the convenient form (2.45). Though

a similar form for the QED propagator is known, we have presented a new

approach to calculating (2.48), which matches the known result, e.g., eq.

4.7 of [66].

The form (2.45) is crucial because it allows for efficient computation of more

physical quantities, like S-matrix elements. This connection is what will al-

low us to make contact with experiment (via probabilities from squared

S-matrix elements) and to current theoretical discussion involving soft the-

orems. To that end, we proceed by discussing how to use this functional

formalism to compute scattering amplitudes. This will also be a convincing

proof that this formalism encodes the same soft physics as diagrammatic

approaches.
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Chapter 3

Amplitudes and Soft

Theorems

So far we have obtained expressions for the generating functional and cor-

relators for our theory. How can we use this technology to derive S-matrix

elements? In this section we will show how to compute these amplitudes,

and how the soft graviton theorem comes about naturally from these calcula-

tions. In particular, we show how it emerges as a consequence of the eikonal

formulation of the theories in the specific cases of bremsstrahlung facilitated

by a classical potential and two-body scattering. We make some comments

about the cancellation of IR divergences in these cases, but those results are

more or less the same as those discussed for QED in the introduction.

The important thing about the soft photon results at the beginning of this

work one should note for this chapter is summarized in equation (1.21). The

effect of adding a soft photon emission to an amplitude is a divergent multi-

plicative factor. The same is true for gravity, with only slight modification

to the resulting factor [29]. The soft graviton correction takes some known

amplitude M to

M×
√

8πG

2(2π)3/2
√

2|q|

 m∑
i

ε∗µν(p′i)µ(p′i)ν
p′i · q − iδ

−
n∑
j

ε∗µν(pj)µ(pj)ν
pj · q + iδ

 ≡M× κΩ.

(3.1)
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3.1. Gravitational Bremsstrahlung

3.1 Gravitational Bremsstrahlung

Here we will give the simplest possible example of gravitational bremsstrahlung

- a massive scalar particle in a small external metric perturbation field hext

emitting n (soft) gravitons, with momenta {qn} and polarizations labeled

by {λn}.

3.1.1 Constructing the Amplitude

The amplitude for this process (using B for Bremsstrahlung) is

Bn = IN〈p′; q1, λ1; · · · ; qn, λn|p〉IN = OUT〈p′; q1, λ1; · · · ; qn, λn|S|p〉IN , (3.2)

and we will drop the “IN/OUT” subscripts from here on out. First, consider

the case of the emission of a single graviton. The generalization to multiple

graviton emission will be easy. We construct the states by

〈p′; q, λ| = 〈0| â(p′)b̂(q) (3.3)

and

|p〉 = â†(p) |0〉 . (3.4)

The a creation/annihilation operators create/annihilate scalar particles, while

the b operators are for the gravitons. We also have (see the appendix)

that

S = : e
∫
φIND̂ δ

δJ
+
∫
hµνIN K̂

δ
δIµν : Z[J, I]|J=I=0 ≡ S̄Z|0, (3.5)

where the : (· · · ) : denotes normal ordering of operators, and Z is the full

generating functional. D̂ and K̂ are the (free) inverse propagators for the

scalar field and the graviton field respectively (to be identified with the

differential operators previously called G−1
0 and ∆−1), and the IN fields

are

φIN(x) =

(3)∑
k

1√
2ωp

[
â(k)e−ik·x + â†(k)eik·x

]
; ω2

p = k2 −m2, (3.6)
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3.1. Gravitational Bremsstrahlung

and

hµνIN(x) =

(3)∑
k

1√
2|~k|

∑
λ

[
εµν(k, λ)b̂(k)e−ik·x + εµν∗(k, λ)b̂†(k)eik·x

]
. (3.7)

Here the εµν = εµεν are the graviton polarization vectors. In this construc-

tion, the amplitude is

B1 = 〈0| â(p′)b̂(q, λ) (S̄Z|0) â†(p) |0〉 . (3.8)

Commuting the creation and annihilation operators through the S-matrix

gives for B1

B1 = 〈0|
(∫

dx
[
b̂(q, λ), hµνIN(x)

]
K̂ δ

δIµν(x)

)(∫
dy
[
â(p′), φIN(y)

]
D̂ δ

δJ(y)

)
×
(∫

dz
[
φIN(z), â†(p)

]
D̂ δ

δJ(z)

)
(S̄Z|0) |0〉

(3.9)

= (2π)−9/2 ε
∗(q, λ)√

2|~q|
1

2
√
ωpωp′

∫
dx eiq·xK̂x

∫
dy eip

′·yD̂y
∫
dz e−ip·zD̂z

× δ

δI(x)

δ

δJ(y)

δ

δJ(z)
Z[J, I]|0.

(3.10)

3.1.2 Functional Eikonal Limit

To proceed, we must employ some particular expression for the generating

functional. Let us use the eikonal form that we have already derived, eq.

(2.30):

Z[J, I] ≈ e
i
2

∫
JG(|−iδ

δI
)Je

i
2

∫
I∆I , (3.11)

where we had used

G(x, y|h) ≈
∑
k

eik·(x−y)i

∫ ∞
0

ds e−is(k
2−m2)+ i

2
τµν(k)

∫ s
0 ds

′ hµν(y+s′k), (3.12)
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3.1. Gravitational Bremsstrahlung

with τµν(k) ≈ κkµkν (as the scalar is almost on shell: k2−m2 ≈ 0). Looking

at (3.10), we see that the two functional J-derivatives bring down one G,

and we replace the h-dependence of G by −iδδI , so that G ∼ e−i
∫
f δ
δI . G then

is applied to e
i
2

∫
I∆I . After using the functional identity (A.5), we get

B1 = i(2π)−9/2 ε
∗(q, λ)√

2|~q|
1

2
√
ωpωp′

[∫
dx eiq·x

δ

δh(x)
e
−i
2

∫
δ
δh

∆ δ
δh

×
∫
dy eip

′·yD̂y
∫
dz e−ip·zD̂z

]
G(y, z|h+ hext)|h=0.

(3.13)

Note that we have finally made the dependence on hext explicit in the

above.

3.1.3 On-Shell Results

Assuming that |κhext| is small, we keep the first perturbative contribution

of the classical source by making the replacement

G(y, z|h+ hext)→ i

∫
duG(y, u|h)τ · hext(u)G(u, z|h). (3.14)

This leaves two mass-shell amputations to be performed, with the results∫
dy eip

′·yD̂yG(y, u|h)|p′2→m2 = eip
′·ue

i
2

∫∞
0 ds τ ′·h(u−sp′),∫

dz e−ip·zD̂zG(u, z|h)|p2→m2 = e−ip·ue
i
2

∫∞
0 ds τ ·h(u+sp),

(3.15)

where we have assumed that the scalar follows straight line paths from y to

x, defining the eikonal limit. The seemingly complicated eikonal correlators

have thus given simple Wilson-line-type factors that will be acted upon by

the operators corresponding to real graviton radiation. The amplitude then
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3.1. Gravitational Bremsstrahlung

becomes

B1 = i(2π)−9/2 ε
∗(q, λ)√

2|~q|
1

2
√
ωpωp′

[∫
du eiu·(p

′−p) τ · hext(u)

×
∫
dx eiq·x

δ

δh(x)
e
−i
2

∫
δ
δh

∆ δ
δh

]
ei

∫
fh|h=0,

(3.16)

where

fµν(w, u) ≡ 1

2

∑
q

e−iq·(w−u)

∫ ∞
0

ds
[
τµνe

isp·q + τ ′µνe
−isp′·q

]
≡ f inµν(w, u) + foutµν (w, u).

(3.17)

Now application of the quadratic shift e
−i
2

∫
δ
δh

∆ δ
δh is trivial, giving

B1 = i(2π)−3 1

2
√
ωpωp′

∫
du eiu·(p

′−p) τ · hext(u)e
i
2

∫
f∆f

×

(
(2π)−3/2 ε

∗(q, λ)√
2|~q|

∫
dx eiq·x

δ

δh(x)
ei

∫
fh|h=0

)
.

(3.18)

Before expanding upon this result, let us investigate what happens when n

gravitons are emitted.

3.1.4 Multiple Graviton Emission

Generalizing to n-graviton radiation, the amplitude becomes simply

Bn =i(2π)−3 1

2
√
ωpωp′

∫
du eiu·(p

′−p) τ · hext(u)e
i
2

∫
f∆f

×
n∏
m

(
(2π)−3/2 ε

∗(qm, λm)√
2| ~qm|

∫
dxm e

iqm·xm δ

δh(xm)
ei

∫
fh|h=0

)
.

(3.19)
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3.1. Gravitational Bremsstrahlung

For each graviton radiated, as q → 0, we get∫
dx eiq·x

δ

δhµν(x)
ei

∫
fh|h=0 =

√
8πG

[
p′µp
′
ν

p′ · q − iδ
− pµpν
p · q + iδ

]
+O(q0)

(3.20)

so that the full amplitude becomes

Bn =

(
i(2π)−3 1

2
√
ωpωp′

[
τ · h̃ext(p− p′)

]
e
i
2

∫
f∆f

)
×

n∏
m

( √
8πG

(2π)3/2
√

2| ~qm|

[
εµν∗m p′µp

′
ν

p′ · q − iδ
− εµν∗m pµpν
p · qm + iδ

])
.

(3.21)

In other words,

Bn = Beik.
0 ×

n∏
m

( √
8πG

(2π)3/2
√

2| ~qm|

[
εµν∗m p′µp

′
ν

p′ · q − iδ
− εµν∗m pµpν
p · qm + iδ

])
. (3.22)

We have just derived an example of the soft graviton theorem.

3.1.5 Virtual Graviton Exchange

The rest of the amplitude Beik.
0 also merits some comments. We have

e
i
2

∫
f∆f = e

i
2

∫
[f in+fout]∆[f in+fout]. (3.23)

The terms generated by

e
i
2

∫
f in∆f in , e

i
2

∫
fout∆fout (3.24)

correspond to a divergent wavefunction renormalization, as well as a renor-

malization of the mass. To see this, write out the integrals in each of these

exponentials and note that they are the same for each particle individu-

ally as the ones encountered in the previous chapter when deriving the IR

form of the propagator (see the discussion just before equation (2.47)). In

this case however, we have already done the overall proper time integrals
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3.2. Two-Body Scattering

when performing the mass shell amputation, leaving no dependence on s,

and these renormalization constants factor out. As such, we simply assume

renormalization has been carried out and drop these parts. The rest,

ei
∫
f in∆fout , (3.25)

generates vertex corrections at the perturbative point of contact with the

external field. Namely, the eikonal limit implicitly sums all graphs like the

following:

Beik.
0 =

p

p′

= + + + + · · ·

(3.26)

Though this form contains divergences, these divergences cancel with those

coming from real emission. To see this, simply evaluate the integral in

ei
∫
f in∆fout and notice that it corresponds to the virtual infrared divergences

computed in section 3 of [29], and is precisely the gravitational analog of

the Sudakov calculation [27]. With our result for the soft factors in equa-

tion (3.22), the calculation of real divergences in section 4 of [29] and the

subsequent cancellation of these divergences proceeds identically to those in

[29], section 5.

3.2 Two-Body Scattering

3.2.1 Constructing the Eikonal Amplitude

Here we will be concerned with the radiation of soft gravitons alongside a

2 → 2 scattering process. This amplitude (denoted A to distinguish from

the previous discussion) is given by

An = 〈p′1; p′2; q1, λ1; · · · ; qn, λn|p1; p2〉 , (3.27)
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and for convenience we start with the single-emission case:

A1 ≡

q

p′2p′1

p1 p2

(3.28)

This amplitude has the expression

A1 = (2π)−15/2 ε
∗(q, λ)√

2|~q|
1

4
√
ω1ω′1ω2ω′2

∫
dx eiq·xK̂x

×
∫
dy1 e

ip′1·y1D̂y1
∫
dy2 e

ip′2·y2D̂y2
∫
dz1 e

−ip1·z1D̂z1
∫
dz2 e

−ip2·z2D̂z2

× δ

δI(x)

δ

δJ(y1)

δ

δJ(y2)

δ

δJ(z1)

δ

δJ(z2)
Z[J, I]|0.

(3.29)

Using the same manipulations as we did for B, we can rewrite this as

A1 = (2π)−15/2 ε
∗(q, λ)√

2|~q|
1

4
√
ω1ω′1ω2ω′2

∫
dx eiq·x

δ

δh(x)
e
−i
2

∫
δ
δh

∆ δ
δh

×
∫
dy1 e

ip′1·y1D̂y1
∫
dy2 e

ip′2·y2D̂y2
∫
dz1 e

−ip1·z1D̂z1
∫
dz2 e

−ip2·z2D̂z2

× [G(y1, z1|h)G(y2, z2|h) + (y1 ↔ y2)]|h→0.

(3.30)

We will from now suppress the coordinate dependence by G(y1, z1|h) ≡ G1,

etc. Now, again following [1], ch. 10, we compute not A, but ∂A/∂κ2. This

is so that we can again produce similar Wilson line factors that generate the

soft radiation dependence of the amplitude. We also remind ourselves that
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in this notation, τ ∼ κ. After some work,

∂A1

∂κ2
=

(2π)−15/2 ε
∗(q, λ)√

2|~q|
1

4
√
ω1ω′1ω2ω′2

∫
du1

∫
du2 ∆αβσρ(u1 − u2)

∫
dx eiq·x

δ

δh(x)
e
−i
2

∫
δ
δh

∆ δ
δh

×
∫
dy1 e

ip′1·y1D̂y1
∫
dy2 e

ip′2·y2D̂y2
∫
dz1 e

−ip1·z1D̂z1
∫
dz2 e

−ip2·z2D̂z2

× (G1

τ
(1)
αβ

κ
G1)(G2

τ
(2)
σρ

κ
G2)|h→0 + 0.

(3.31)

The 0 indicates terms that do not vanish identically, but will not contribute

to the final results at leading order.

3.2.2 On-Shell Results

Using (3.15), we put the scalar particles on shell, giving

∂A1

∂κ2
=

(2π)−6 1

4
√
ω1ω′1ω2ω′2

∫
du1

∫
du2 ∆αβσρ(u1 − u2)

τ
(1)
αβ τ

(2)
σρ

κ2
eiu1·(p

′
1−p1)eiu2·(p

′
2−p2)

× e
i
2

∫
[f1+f2]∆[f1+f2]

(
(2π)−3/2 ε

∗(q, λ)√
2|~q|

∫
dx eiq·x

δ

δh(x)
ei

∫
[f1+f2]h|h→0

)
,

(3.32)

with

(f1|2)µν(w, u1|2) ≡ 1

2

∑
q

e−iq·(w−u1|2)

∫ ∞
0

ds
[
τ1|2
µν e

isp1|2·q + τ ′1|2µν e
−isp′

1|2·q
]
.

(3.33)

Note that this result can also be written as

(f1|2)µν(w, u1|2) ≡ 1

2

∫ ∞
0

ds
[
τ1|2
µν δ(w − u1|2 − sp1|2) + τ ′1|2µν δ(w − u1|2 + sp′1|2)

]
,

(3.34)
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revealing that these functions are just the classical gravitational sources of

particles traveling at constant velocity.

3.2.3 Multiple Graviton Emission

The generalization to n gravitons is the same as before, meaning

∂An
∂κ2

=

(2π)−6 1

4
√
ω1ω′1ω2ω′2

∫
du1

∫
du2 ∆αβσρ(u1 − u2)

τ
(1)
αβ τ

(2)
σρ

κ2

× eiu1·(p′1−p1)eiu2·(p
′
2−p2)e

i
2

∫
[f1+f2]∆[f1+f2]

×
n∏
m

(
(2π)−3/2 ε

∗(qm, λm)√
2| ~qm|

∫
dxm e

iqm·xm δ

δh(xm)
ei

∫
[f1+f2]h|h→0

)
,

(3.35)

and as before, the graviton part simplifies to

n∏
m

 2∑
j=1

√
8πG

(2π)3/2
√

2| ~qm|

[
εµν∗m (p′j)µ(p′j)ν

p′j · q − iδ
− εµν∗m (pj)µ(pj)ν

pj · qm + iδ

] ≡ n∏
m

κΩm,

(3.36)

but the factorization of the soft graviton dependence of A is not yet estab-

lished - only for ∂A/∂κ2 so far. In order to argue that the κΩm factor at the

level of the amplitude, we will specialize to the case of small virtual graviton

momenta as well.

3.2.4 Virtual Graviton Exchange

Inside of exp
(
i
2

∫
[f1 + f2] ∆ [f1 + f2]

)
are terms like (i, j ∈ {1, 2}) pi∆pi,

pi∆p
′
i, pi∆pj , etc. The pi∆pi terms again just lead to renormalization of a

single particle in the forward limit. The pi∆p
′
i terms contribute to renormal-

izing the vertex, which was seen in the bremsstrahlung calculation, equation

(3.26), but here we choose to drop them. The remaining cross terms will
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generate the ladder type graphs that are known to give the eikonal amplitude

when summed [44]. Thus, we approximate

e
i
2

∫
[f1+f2]∆[f1+f2] → ei

∫
f1∆f2 . (3.37)

If the momenta of the virtual radiation are small, we have that pi ≈ p′i, and

we also replace

(f1|2)µν(w, u1|2)→ 1

2

∑
q

e−iq·(w−u1|2)

∫ ∞
−∞

ds τ1|2
µν e

−isp1|2·q

=
1

2

∫ ∞
−∞

ds τ1|2
µν δ(w − u1|2 − sp1|2),

(3.38)

so that

ei
∫
f1∆f2 ≈ eiτ

1
αβτ

2
σρ

∫∞
−∞ ds1

∫∞
−∞ ds2 ∆αβσρ(u1−u2−s1p1+s2p2). (3.39)

To evaluate the exponent, use the integral representation of ∆, repeated

here for convenience,

∆αβσρ(x) = lim
M→0

∑
k

eik·x

k2 −M2
Pαβσρ, Pαβσρ ≡ 1

2
[ηασηβρ+ηαρηβσ−ηαβησρ],

(3.40)

where we have introduced a fictional graviton mass M in order to keep track

of divergences later. The limit will remain implicitly. We work in the center-

of-mass frame, where p1 = (E, 0, 0, p), and p2 = (E, 0, 0,−p). The proper

time integrals give

ei
∫
f1∆f2 ≈ exp

 iκ2γ(s)

16Ep

(2)∑
k

eik⊥·u⊥

k2
⊥ −M2

 , (3.41)

where γ(s) ≡ 2(p1 · p2)2 −m4 = 1
2(s − 2m2)2 −m4, to be consistent with

the notation in [44], and s is the usual Mandelstam variable, s ≡ (p1 + p2)2.

For some four-vector v, we have defined v⊥ ≡ (v1, v2) ≡ (vx, vy), and u ≡
u1−u2. We see then, that taking the eikonal limit has effectively reduced the

46



3.2. Two-Body Scattering

problem to one with a two-dimensional dependence (i.e., dependence on u⊥,

rather than all of u). The two-dimensional integral can also be performed,

giving

iκ2γ(s)

16Ep

(2)∑
k

eik⊥·u⊥

k2
⊥ −M2

=
iκ2γ(s)

32πEp
K0(Mu⊥) ≈ − iκ

2γ(s)

32πEp
ln(Mu⊥). (3.42)

Then in the limit of small virtual momenta, inserting the same integral

representation of the other graviton propagator in (3.35) - the one not in

the exponent - the amplitude becomes 5

∂An
∂κ2

= (2π)−2δ(p1 + p2 − p′1 − p′2)

[
n∏
m

κΩm

]
1

4
√
ω1ω′1ω2ω′2

×
∫
du⊥ e

iu⊥·Q
(

8Ep
∂

∂κ2

)
exp

 iκ2γ(s)

16Ep

(2)∑
k

eik⊥·u⊥

k2
⊥ −M2

 (3.43)

We will drop the δ-function henceforth. Q ≡ (p′1 − p1)⊥ parameterizes the

two-dimensional momentum transfer.

3.2.5 Soft Factorization

Displaying the factorization property is now reduced to solving a differential

equation. Defining a via

An ≡ (2π)−2

[
n∏
m

Ωm

]
8Ep

4
√
ω1ω′1ω2ω′2

∫
du⊥ e

iu⊥·Q an(u⊥, κ), (3.44)

5Really, the δ-function showing up here should be δ(p1 + p2 − p′1 − p′2 −
∑
m qm), but

to leading order in 1/q, this reduces to what appears in eq (3.43).
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a obeys

∂an(u⊥, κ)

∂κ2
= κn

∂

∂κ2
exp

 iκ2γ(s)

16Ep

(2)∑
k

eik⊥·u⊥

k2
⊥ −M2

 ≡ κn ∂

∂κ2
exp

(
iκ2f

)
.

(3.45)

This equation has the solution [4]

an(u⊥, κ) = κn
Γ
[
n
2 + 1,−iκ2f

]
(−iκ2f)n/2

+ const., (3.46)

where Γ[a, x] is the incomplete Gamma function. However, recalling (3.42)

we can use the fact that the graviton is massless, and that limM→0 f =

+∞. We must also enforce the boundary conditions, which state that

limκ→0An = 0, and that as n → 0, we recover the amplitude with no

soft radiation. Then to leading order, [3]

an(u⊥, κ) = κn
(
eiκ

2f − 1
)

+O(
1

f
), (3.47)

An = (2π)−2

[
n∏
m

κΩm

]
8Ep

4
√
ω1ω′1ω2ω′2

∫
du⊥ e

iu⊥·Q
[
eiχ(s,u⊥) − 1

]
,

(3.48)

in which,

χ ≡ κ2f ≡ −κ
2γ(s)

32πEp
ln(Mu⊥) = −Gγ(s)

Ep
ln(Mu⊥), (3.49)

in agreement with [44]. Finally, we have shown that the radiative two-

body eikonal amplitude factorizes precisely as predicted by the soft theo-

rems:

An = Aeik.
0 ×

n∏
m

 2∑
j=1

√
8πG

(2π)3/2
√

2| ~qm|

[
εµν∗m (p′j)µ(p′j)ν

p′j · q − iδ
− εµν∗m (pj)µ(pj)ν

pj · qm + iδ

]
(3.50)
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The soft theorems are universal, in that they do not discriminate based on

the spin of the matter or the particular hard process. We have claimed

here that they are also encoded in the functional formalism in a natural

way. The key result of this section is the derivation of the soft factors for

two concrete processes, gravitational bremsstrahlung and two-body eikonal

scattering, with the latter being a new result of this formalism. The results

are not surprising, however a few questions still remain. The cancellation of

infrared divergences is straightforward in the bremsstrahlung case, following

closely the pattern of [29], but the same cancellation has not yet been explic-

itly demonstrated in the two-body scattering case. Additionally, we have

throughout this thesis simply stated things at the lowest contributing order

when expanding in small momenta. A great deal though has been said about

subleading soft effects [59–61] and they have been associated with new sym-

metries and memory effects in both QED [62] and gravity [63, 64]. It seems

that now that the functional formalism has been shown to neatly reproduce

known results at leading order, it would be a mistake not to attempt to take

it to subleading order as well. The scalar theory also has an extra source of

subdominant contributions, namely the higher order terms in the expansion

(2.20).
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Chapter 4

Conclusion

The aim of this work has been to demonstrate the utility of the functional

formalism in understanding the infrared limit of quantum gravity in a uni-

fied language. To that end, we show here that it neatly reproduces many

important known results from the literature. This should be seen as a first

step in using this formalism to fully understand all universal properties of

soft gravity, due to the ease of applying this formalism to many aspects of

the IR theory.

In this thesis we have introduced the major problems in IR gravitational

physics, and solved them using functional techniques. Chapter 1 covered

the example of quantum electrodynamics, and discussed how to construct

a simple theory of low energy quantized Einstein GR minimally coupled to

scalar matter. The theory was then investigated using functional methods

and nonperturbative results were obtained in the main body of the work.

In Chapter 2, we applied the powerful Fradkin technique to the linearized

theory, yielding a useful representation for the generating functional. We

then demonstrated the ease at which correlation functions could be recov-

ered from this expression. As an example, the infrared effective form of

the propagator was derived and its form discussed. Chapter 3 contained a

recipe for computing S-matrix elements with the help of the eikonal form of

the generating functional and the two-point function derived from it. We

then finally demonstrated that the soft graviton theorem is encoded in this

formalism by deriving in parallel the eikonal form of the two-body scattering

amplitude and the soft graviton factorization property.

We have already begun to speculate on potential applications of this work

50



Chapter 4. Conclusion

beyond the scope of this thesis. Future investigations using this framework

may include applications to decoherence due to quantum gravity [58], an

attempt at understanding “dressed state” type approaches [51–57], and the

relation of the functional formalism to the “infrared triangle” and the black

hole information problem as presented in e.g. [46–50]. Additionally, some

more technical aspects of this formalism play a central role, but are some-

what opaque and deserve to be better understood. For example, the form

of the proper time dependence of χ in (2.22) and the Wilson line factors

appearing in the expression of every amplitude, e.g., the ei
∫
fh factor in

eq. (3.16). These forms are crucial for getting correct results, though not

transparent in the way that they lead to eikonal physics, and should be

investigated further. The other obvious question is that of how this for-

malism responds to the inclusion of higher order interaction terms in the

gravity-matter lagrangian. Because gravity behaves qualitatively differently

than QED when these diagrams are included [65], this may be a worthwhile

effort.
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Appendix A

Selected Functional

Identities

Here we state without proof some necessary functional identities.

The action of an operator linear in functional derivatives on any functional

F of some function j can be shown to be

e
∫
f δ
δjF [j] = F [j + f ], (A.1)

simply shifting the functional dependence of F .

We also need to know the action of a quadratic shift on certain types of

functionals. The quadratic shift operator is of the form, e.g.,

e
− i

2

∫
δ
δj
A δ
δj (A.2)

and we have the special cases

e
− i

2

∫
δ
δj
A δ
δj ei

∫
fj = e

i
2

∫
fAfei

∫
jf , (A.3)

when acting on a linear functional, and

e
− i

2

∫
δ
δj
A δ
δj e

i
2
jDj = exp

{
i

2

∫
jD(1−AD)−1j − 1

2
Tr ln(1−AD)

}
, (A.4)

acting on a Gaussian functional.

Another identity that is extremely useful for evaluating S-matrix elements
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in this formalism is

e
−i

∫
f δ
δj e

i
2

∫
j∆j = e

i
2

∫
j∆je−

i
2

∫
δ
δh

∆ δ
δh e

∫
fh, (A.5)

where h ≡
∫

∆j.
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Appendix B

Evaluation of Phase

Integrals

The exponent in eq. (2.45) has a phase

∑
q

f(q)f(−q)ταβ(k, k)∆αβµν(q2)τµν(k, k) = ταβP
αβµντµν

∑
q

f(q)f(−q)
q2

≡ ταβPαβµντµνI,
(B.1)

where Pαβµν ≡ 1
2 [ηαµηβν + ηανηβµ − ηαβηµν ]. Now using the expression for

the form factor in (2.28), we can approach I in a simple way. First, write I
using the unintegrated expressions for the form factors:

I =−
∫ s

0
ds′
∫ s

0
ds′′

∑
q

1

q2
e−i(s

′−s′′)(2k·q)

≡−
∫ s

0
ds′
∫ s

0
ds′′

∑
q

1

q2
e−is−(2k·q)

(B.2)

This expression is ∼
∫∞

0 QdQ and thus still has a divergence in the UV.

However, we can move this divergence out of the momentum integrals and

into the proper time ones by introducing yet another proper time (and going

to Euclidean momentum space)

I = −
∫ s

0
ds′
∫ s

0
ds′′

∫ ∞
0

du
∑
q

eiuq
2−is−(2k·q). (B.3)
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Appendix B. Evaluation of Phase Integrals

Now the momentum integral is Gaussian and can be done, giving

I = − i

4π2

∫ s

0
ds′
∫ s′

0
ds′′

∫ ∞
0

du

u2
exp

(
−i
k2s2
−

u

)
, (B.4)

The integral over u is elementary when s2
− is given a small imaginary part:

s2
− → s2

−− iε. Actually it is more convenient to take s− → s−− iε, which is

equivalent in the limit of small ε since s′′ < s′. The result is

I = − i

4π2k2

∫ s

0
ds′
∫ s′

0
ds′′(s− − iε)−2, (B.5)

and with a little bit of algebra this can be shown, to leading order, to behave

as

I =
i

4π2k2

[
isΛ− ln(sΛ) +O(Λ0)

]
, (B.6)

where Λ ≡ ε−1 may be identified as the UV cutoff avoided in the momentum

integrals earlier.
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Appendix C

The Generating Functional

This appendix and the next deal with deriving eq. (3.5). We closely follow

the arguments given in chapters 3 and 4 of [1].

In classical probability theory, the expectation value of some observable O

that depends on a random variable x is given by

〈O〉 =

∫
dxP (x)O(x), (C.1)

where P (x) is the probability of some value of x, with
∫
dxP (x) = 1. Quan-

tum field theory is similar, in that we typically consider expectation values

of, e.g., field operators at different spacetime points,

〈φ(x1) · · ·φ(xn)〉 =

∫
Dφ(x) P[φ]φ(x1) · · ·φ(xn). (C.2)

Here, P[φ] = eiS[φ] is the probability amplitude for the field configuration

φ(x). We can consider the following expectation value:

Z[j] ≡ 〈z[j]〉 ≡ 〈T ei
∫
φj〉 (C.3)

with T the time ordering operator. Writing out the functional average,

Z[j] = N
∫
Dφ eiS[φ]+i

∫
φj , (C.4)

we see that this is just the usual generating functional, which generates

correlation functions in a particular theory (this formalism extends trivially

to multiple interacting fields). N−1 =
∫
Dφ eiS[φ], to ensure that Z[j = 0] =
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Appendix C. The Generating Functional

〈0|0〉 = 1 (using the IN state basis). However, we can learn a bit more by

investigating z instead of just Z. We generalize z by defining

z
b
a[j] ≡ T ei

∫ b
a φj , (C.5)

where now
∫ b
a φj ≡

∫
d3x

∫ tb
ta
dt φ(x)j(x). Then,

δz
b
a

δj(x)
= i z

b
x φ(x) z

x
a, (C.6)

by time ordering, or for z ≡ z
∞
−∞,

δz

δj(x)
= i z

∞
x φ(x) z

x
−∞. (C.7)

This property of z will allow a connection with the S-matrix.
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Appendix D

The Generating Functional

Generates the S-Matrix

First define the usual asymptotic IN/OUT states,

|a〉OUT = lim
t→∞
|a, t〉 , |a〉IN = lim

t→−∞
|a, t〉 (D.1)

and the S-matrix via

|a〉OUT = S† |a〉IN , φOUT(x) = S†φIN(x)S. (D.2)

Generally, the stationary action principle enforces an on-shell relation like

D̂xφ(x) = j(x), (D.3)

where D̂ is some differential operator acting w.r.t. the coordinate x, and j(x)

is a spacetime-dependent source. The general solution to this equation can

be expressed in terms of the Green function G(x, x′) satisfying D̂xG(x, x′) =

δ(x− x′) as

φ(x) = φ0(x) +

∫
dy G(x, y)j(y) = φ0(x) +

∫
dy G(x, y)D̂yφ(y), (D.4)

or in terms of the IN/OUT fields,

φ(x) = φ IN
OUT

(x) +

∫
dy GR

A
(x, y)D̂yφ(y), (D.5)
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Appendix D. The Generating Functional Generates the S-Matrix

Where R (A) denotes the retarded (advanced) propagator. By putting (D.5)

into (C.7), we get that

δz

δj(x)
= i z φIN(x) +

∫
d4y GR(x, y)D̂y

δz

δj(y)

= i z φOUT(x) +

∫
d4y GA(x, y)D̂y

δz

δj(y)
.

(D.6)

It does not matter whether we choose to express this using the IN or OUT

fields. Take the difference of the two equivalent expressions to see that

0 = i (φOUT(x)z − zφIN(x)) +

∫
d4y G(x, y)D̂y

δz

δj(y)
, (D.7)

G now meaning the causal propagator. Multiply this expression by S and

use (D.2) to show that

[φIN(x),Sz] = iS
∫
d4y G(x, y)D̂y

δz

δj(y)
, (D.8)

which can be rewritten as

[φIN(x),Sz] = i

∫
d4y G(x, y)D̂y

δ

δj(y)
(Sz), (D.9)

because S will not depend explicitly on j(x). This relation is not immedi-

ately useful, but we will see that is enough to determine the form of Sz. To

do this, consider another operator similar to z, but with normal ordering

rather than time ordering. The normal ordering operation is denoted by ::,

and demands that, for everything between the colons, creation operators are

placed to the left of annihilation operators. E.g.,

: â†â : = â†â, : ââ† : = â†â, (D.10)

etc. We consider the operator

: e
∫
φINf :, (D.11)
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and make use of the result[
φIN(x), : e

∫
φINf :

]
= : e

∫
φINf : i

∫
d4y G(x, y)f(y). (D.12)

Looking at this as well as (D.9), it appears that

Sz = : e
∫
φIND̂ δ

δj : g[j], (D.13)

for some g[j]. In fact, this form is fixed as well from the fact that 〈: e
∫
φINf :〉 =

1, and we get

Sz[j] = : e
∫
φIND̂ δ

δj : 〈Sz[j]〉 . (D.14)

Finally, if the source j(x) is set to zero after the functional derivatives are

taken, we isolate the form of S up to normalization:

S = : e
∫
φIND̂ δ

δj : Z[j]|j=0, (D.15)

where again, Z ≡ 〈z〉. The argument proceeds in the same way for theories

with multiple fields.

66


	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Infrared Problems in Quantum Field Theory
	IR Divergences
	Functional Methods

	Theory of Quantized Gravity and Matter Fields
	The Lagrangian Formulation of GR
	Linearization
	Gravitons


	Eikonal Methods for Linearized Gravity
	Equation of Motion for the Scalar Field
	The Generating Functional
	Propagator on a Fixed Background
	Applying the Interaction Operators
	Correlators
	The Two-Point Function
	The Four-Point Function

	Infrared Behavior of the Two-Point Function

	Amplitudes and Soft Theorems
	Gravitational Bremsstrahlung
	Constructing the Amplitude
	Functional Eikonal Limit
	On-Shell Results
	Multiple Graviton Emission
	Virtual Graviton Exchange

	Two-Body Scattering
	Constructing the Eikonal Amplitude
	On-Shell Results
	Multiple Graviton Emission
	Virtual Graviton Exchange
	Soft Factorization


	Conclusion
	Bibliography
	Selected Functional Identities
	Evaluation of Phase Integrals
	The Generating Functional
	The Generating Functional Generates the S-Matrix

