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Abstract 

 

High-throughput RNA sequencing (RNA-seq) is primarily used in measuring gene expression, 

quantifying transcript abundance, and building reference transcriptomes. Without bias from a 

reference sequence, de novo RNA-seq assembly is particularly useful for building new reference 

transcriptomes, detecting fusion genes, and discovering novel spliced transcripts. This is a 

challenging problem, and to address it at least eight approaches, including Trans-ABySS and 

Trinity, were developed within the past decade. For instance, using Trinity and 12 CPUs, it takes 

approximately one and a half day to assemble a human RNA-seq sample of over 100 million 

read pairs and requires up to 80 GB of memory. While the high memory usage typical of de novo 

RNA-seq assemblers may be alleviated by distributed computing, access to a high-performance 

computing environment is a requirement that may be limiting for smaller labs. In my thesis, I 

present a novel de novo RNA-seq assembler, “RNA-Bloom,” which utilizes compact data 

structures based on Bloom filters for the storage of k-mer counts and the de Bruijn graph in 

memory. Compared to Trans-ABySS and Trinity, RNA-Bloom can assemble a human 

transcriptome with comparable accuracy using nearly half as much memory and half the wall-

clock time with 12 threads. 
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Lay Summary 

 

High-throughput RNA sequencing (RNA-seq) is used for the identification and quantification of 

transcripts (RNA molecules) in cells, and it has a variety of applications in genomics research. 

RNA-seq assembly is the process of reconstructing full-length transcripts from short but highly 

accurate sequences. For well-studied species, transcript reconstruction can be guided by a 

reference genome. In the absence of a suitable reference genome, transcripts can be 

reconstructed with de novo assembly methods. Because the cost of sequencing experiments has 

drastically decreased since its introduction, RNA-seq data becomes much more readily available 

than previous years, resulting in a demand for fast and resource-efficient RNA-seq analysis 

methods. Although multiple algorithms for de novo RNA-seq assembly were developed within 

the past decade, the current state-of-the-art methods are slow and require sizable amount of 

computing resources. I describe in my thesis a competitive, fast, and lightweight approach that 

uses a compact data structure called Bloom filter.   



iv 

 

Preface 

 

The concept and design of my research was conceived by my supervisor, Dr. Inanc Birol, and 

myself. All software programming and analyses were carried out by myself with very helpful 

discussions with Mr. Justin Chu, Mr. Readman Chiu, Dr. Hamid Mohamadi, and Mr. Ben 

Vandervalk. Mr. Readman Chiu created Figure 3.1 and provided the fusion detection results for 

Tophat-Fusion in Chapter 3. 



v 

 

Table of Contents 

 

Abstract .......................................................................................................................................... ii 

Lay Summary ............................................................................................................................... iii 

Preface ........................................................................................................................................... iv 

Table of Contents ...........................................................................................................................v 

List of Tables .............................................................................................................................. viii 

List of Figures ............................................................................................................................... ix 

List of Abbreviations .....................................................................................................................x 

List of Genes ................................................................................................................................. xi 

Acknowledgements .................................................................................................................... xiii 

Chapter 1: Introduction ................................................................................................................1 

1.1 High throughput RNA sequencing.................................................................................. 1 

1.2 De novo RNA-seq assembly ........................................................................................... 1 

1.3 Inspirations for a lightweight de novo RNA-seq assembly algorithm ............................ 4 

1.3.1 Bloom filter de Bruijn graph ....................................................................................... 4 

1.3.2 Synthetic reads ............................................................................................................ 7 

1.3.3 Alignment-free methods ............................................................................................. 7 

1.4 Thesis objectives ............................................................................................................. 8 

Chapter 2: Methods .......................................................................................................................9 

2.1 Stage 1: Construction of de Bruijn graph ....................................................................... 9 

2.2 Stage 2: Reconstruction of read fragments ................................................................... 12 

2.2.1 Error correction of paired end reads ......................................................................... 12 



vi 

 

2.2.2 Connecting paired-end reads ..................................................................................... 14 

2.2.3 Storage of k-mer pairs ............................................................................................... 16 

2.2.4 Stratification of assembled fragments ....................................................................... 16 

2.3 Stage 3: Reconstruction of transcripts .......................................................................... 18 

2.3.1 Complexity reduction of de Bruijn graph ................................................................. 18 

2.3.2 Extension of fragment sequences with paired k-mers............................................... 18 

Chapter 3: Results........................................................................................................................20 

3.1 Benchmarking Specification ......................................................................................... 20 

3.1.1 Choosing de novo RNA-seq assemblers ................................................................... 20 

3.1.2 Datasets ..................................................................................................................... 20 

3.1.3 Assembly assessment tools ....................................................................................... 21 

3.1.4 Computational specification ..................................................................................... 22 

3.2 Benchmark 1: Simulated Human Transcriptome .......................................................... 24 

3.2.1 Computational performance...................................................................................... 24 

3.2.2 Assembly sensitivity ................................................................................................. 24 

3.2.3 Assembly specificity ................................................................................................. 27 

3.3 Benchmark 2: Human Blood Transcriptome ................................................................ 28 

3.3.1 Computational performance...................................................................................... 28 

3.3.2 Assembly sensitivity ................................................................................................. 28 

3.3.3 Assembly specificity ................................................................................................. 32 

3.4 Benchmark 3: Universal Human Reference RNA ........................................................ 33 

3.4.1 Memory usage and runtime ...................................................................................... 33 

3.4.2 Fusion transcripts detected ........................................................................................ 33 



vii 

 

Chapter 4: Discussion ..................................................................................................................37 

Bibliography .................................................................................................................................39 

 



viii 

 

List of Tables 

 

Table 1.1 De novo RNA-seq assemblers published within the past decade. .............................. 3 

Table 1.2 Performance of current state-of-the-art methods. ....................................................... 3 

Table 3.1 Data Specification. .................................................................................................... 21 

Table 3.2 Performance in assembling simulated RNA-seq using 12 threads. .......................... 24 

Table 3.3 Specificity metrics for assembling simulated RNA-seq. .......................................... 27 

Table 3.4 Performance in assembling human blood transcriptome using 12 threads. .............. 28 

Table 3.5 Specificity metrics for assembling human blood transcriptome. .............................. 32 

Table 3.6 Performance in assembling UHRR using 12 threads. ............................................... 33 

Table 3.7 Number of fusion transcripts detected. ..................................................................... 34 

Table 3.8 Fusion transcripts supported by literature. ................................................................ 35 

 



ix 

 

List of Figures 

 

Figure 1.1 An example of Bloom filter. ................................................................................... 6 

Figure 1.2 A Bloom filter representation of de Bruijn graph. .................................................. 6 

Figure 2.1 An overview of RNA-Bloom. ............................................................................... 10 

Figure 2.2 Hash collision in counting Bloom filter. ............................................................... 11 

Figure 2.3 Marking candidate error k-mers using a count-based method. ............................. 13 

Figure 2.4 Replacing error k-mer candidates using a graph-based method. .......................... 13 

Figure 2.5 Connecting paired reads. ....................................................................................... 15 

Figure 2.6 Stratification of assembled fragments. .................................................................. 17 

Figure 2.7 Extension with k-mer pairs. .................................................................................. 19 

Figure 3.1 Comparison of PAVFinder, Tophat-Fusion, and deFuse...................................... 23 

Figure 3.2 Number of isoforms covered by assembled transcripts. ....................................... 25 

Figure 3.3 Number of exons covered by assembled transcripts. ............................................ 26 

Figure 3.4 Number of isoforms covered by assembled transcripts. ....................................... 30 

Figure 3.5 Number of exons covered by assembled transcripts. ............................................ 31 

Figure 3.6 Venn diagram of fusion transcripts not supported by literature. .......................... 36 

 



x 

 

List of Abbreviations 

 

bp Base pair 

c-Bf Counting Bloom filter 

CPU Central processing unit 

DBG De Bruijn graph 

DBG-Bf De Bruijn graph Bloom filter 

DNA Deoxyribonucleic acid 

ENCODE Encyclopedia of DNA Elements 

FPR False-positive rate 

Gbp Giga-base pair (one billion base pairs) 

GB Gigabyte (1,073,741,824 bytes) 

GRCh38 Genome Reference Consortium Human Build 38 

k-mer Sequence of k letters 

MCF-7 A breast cancer cell line 

Q1 First quartile 

RNA Ribonucleic acid 

RNA-seq High-throughput RNA sequencing 

RT-PCR Reverse-transcription polymerase chain reaction 

TB Terabyte (1,099,511,627,776 bytes) 

UHRR Universal Human Reference RNA 

 

 



xi 

 

List of Genes 

 

ABL1 ABL proto-oncogene 1, non-receptor tyrosine kinase 

APPBP2 amyloid beta precursor protein binding protein 2 

ARL17A ADP ribosylation factor like GTPase 17A 

ARFGEF2 ADP Ribosylation Factor Guanine Nucleotide Exchange Factor 2 

BAG6 BCL2 associated athanogene 6 

BCAS3 BCAS3, microtubule associated cell migration factor 

BCAS4 breast carcinoma amplified sequence 4 

BCR BCR, RhoGEF and GTPase activating protein 

CA4 carbonic anhydrase 4 

GAS6 growth arrest specific 6 

FGFR1 fibroblast growth factor receptor 1 

HOMEZ homeobox and leucine zipper encoding 

KANSL1 KAT8 regulatory NSL complex subunit 1 

MYH6 myosin heavy chain 6 

NSD3 nuclear receptor binding SET domain protein 3 

NUP214 nucleoporin 214 

RASA3 RAS p21 protein activator 3 

RPS6KB1 ribosomal protein S6 kinase B1 

SLC44A4 solute carrier family 44 member 4 

SULF2 Sulfatase 2 



xii 

 

TANC2 tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2 

USP32 ubiquitin specific peptidase 32 

VMP1 vacuole membrane protein 1 

XKR3 XK related 3 

 



xiii 

 

Acknowledgements 

 

First, I would like to thank Dr. Inanc Birol for providing me the opportunity to develop 

my research skills and communication skills as a graduate student under his guidance. I also 

would like to thank him for his patience, his constructive criticisms, and providing me multiple 

opportunities to present my research at various international conferences. 

I would like to thank my thesis committee members, Dr. Sara Mostafavi and Dr. Wyeth 

Wasserman, for their very valuable feedbacks and time throughout my degree. 

My sincerest gratitude goes to the Canadian Institutes of Health Research, for providing 

financial support for my thesis project.  

I would like to thank all members of the Bioinformatics Technology Lab at the Genome 

Sciences Centre, especially Mr. Readman Chiu, Mr. Justin Chu, Mr. Ben Vandervalk, and Dr. 

Hamid Mohamadi for their valuable discussions on various aspects of my thesis project.   

Finally, I would like to thank my parents and my sister for their time, encouragement, and 

unconditional support for me throughout my life. 



1 

 

Chapter 1: Introduction 

1.1 High throughput RNA sequencing 

High-throughput RNA sequencing (RNA-seq) is used for the identification and 

quantification of transcripts in cells. RNA-seq enables the study of a spectrum of RNA species 

and it has a variety of applications in genomics research such as, gene expression analysis, 

building new reference transcriptomes, and splice variant detection and discovery [1]. Moreover, 

RNA-seq has the potential to be translated into clinical diagnostics due to its ability to profile 

transcript expression and detect aberrant transcription and gene fusions in human diseases [2].  

RNA sequencing has been dominated by Illumina’s sequencing technologies, due to their 

highly accurate reads with a small percentage of substitution errors, their relatively high 

throughput, and the ability to identify and quantify transcripts from a single sequencing 

experiment [3]. Consequently, “RNA-seq” has been typically referred to Illumina’s RNA 

sequencing technologies. Although long-read sequencing technologies from Pacific Biosciences 

and Oxford Nanopore Technologies have shown premise in transcriptome analyses [4-6], they 

have a much higher sequencing error rate, more indel errors, higher cost, and lower throughput 

than Illumina sequencing technologies. Since the cost of Illumina sequencing experiments has 

drastically decreased over the years, RNA-seq data becomes much more readily available than 

previous years, resulting in a demand for resource-efficient RNA-seq analysis software. 

 

1.2 De novo RNA-seq assembly 

RNA-seq assembly is the process of reconstructing full-length transcripts from short but 

highly accurate RNA-seq read sequences ranging from 100 to 300 bp. For well-studied species, 

transcript reconstruction can be guided by the alignment of read sequences against the reference 
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genome. In the absence of a suitable reference genome, transcripts may still be reconstructed 

with de novo RNA-seq assembly. Without bias from a reference sequence, de novo RNA-seq 

assembly is particularly useful for building reference transcriptomes [7-10] and detecting gene 

fusions [11-14]. Consequently, de novo RNA-seq assembly has been applied for structural 

variant detection in cancer cohort studies [11-14] and personalized oncogenomic profiling [15]. 

De novo RNA-seq assembly is a challenging problem and at least eight algorithms [16-

23] were developed within the past decade (Table 1.1). Trans-ABySS, Oases, SOAP-denovo-

Trans, IDBA-Tran, and SSP use de novo genome assemblers for building the initial set of 

contiguous sequences, which are then further connected to form transcript sequences. Trinity 

clusters overlapping reads into closely-related gene groups where transcript sequences are 

derived. Bridger and BinPacker produce transcript sequences based on splice graphs derived 

from RNA-seq reads and they borrow ideas from Trinity, SOAP-denovo-Trans, and Cufflinks 

[24], which is a reference-based RNA-seq assembler. However, the performance of these 

methods varies. 

In a recent comprehensive benchmarking study [25], Trans-ABySS [16] was ranked the 

best in full-length transcript reconstruction and gene coverage. Trinity [17], another assembler, 

was also ranked relatively high and had received several updates since the benchmarking study 

was published. However, these two state-of-the-art methods require sizable amount of 

computational resources (Table 1.2) and thus are typically run on specialized hardware. For 

instance, using Trinity and 12 CPUs, it takes approximately one and a half day to assemble a 

human RNA-seq sample of over 100 million read pairs and requires up to 80 GB of memory. 

While the high memory usage typical of de novo RNA-seq assemblers may be alleviated by 
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distributed computing, access to a high-performance computing environment is a requirement 

that may be limiting for smaller labs. 

 

Table 1.1 De novo RNA-seq assemblers published within the past decade. 

Assembler Year Published Reference 

Trans-ABySS 2010 [16] 

Trinity 2011 [17] 

Oases 2012 [18] 

IDBA-Tran 2013 [19] 

SSP 2013 [20] 

SOAP-denovo-Trans 2014 [21] 

Bridger 2015 [22] 

BinPacker 2016 [23] 

 

 

Table 1.2 Performance of current state-of-the-art methods. 

Assemblers were run in 12 threads. The RNA-seq dataset is an ENCODE MCF-7 sample 

(ENCLB555AVR) that has 148 million strand-specific read pairs of length 2 x 100 bp. 

 

Assembler Peak Memory (GB) Wall-clock Time (hours) 

Trans-ABySS 32 23 

Trinity 84 34 
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1.3 Inspirations for a lightweight de novo RNA-seq assembly algorithm 

In this section, I describe recent advances in sequence assembly algorithms and other 

sequence analysis methods that provide insights for a fast and memory-efficient algorithm for de 

novo RNA-seq assembly. 

 

1.3.1 Bloom filter de Bruijn graph 

In a de Bruijn graph (DBG), the nodes represent k-mers (sequences of k letters) and the 

edges represent the overlap of k – 1 letters between k-mers. Overlapping reads and the sequences 

of their underlying DNA/RNA molecules may be represented by paths in a DBG, where k-mers 

are sub-sequences of reads. Hence, DBG has been widely adopted in de novo assembly 

algorithms for genomes, metagenomes, and transcriptomes [26]. 

A typical hash-table implementation of DBG for de novo sequence assembly, such as the 

one in ABySS [27], uses two-bit encoding to represent four bases, “A,” “C,” “G,” and “T,” hence 

requires a minimum of two bits in memory for every base in a k-mer. For k = 28, a practical hash 

table DBG representation of the human genome, which is over 3 Gbp in length, (assuming every 

28-mer in the genome is unique) would require at least 21 GB of memory, where each unique k-

mer occupies exactly 7 bytes. Since DBG representation of larger genomes and noisy 

experimental data would require even more memory, reducing the memory usage of DBG has 

been an active area of research for de novo sequence assembly [26]. 

A Bloom filter, which is a compact probabilistic data structure for set-membership tests 

[28], can be used as a memory-efficient representation of DBG for sequence assembly [29]. A 

Bloom filter is initialized as an empty binary array of zero-bits; select bits are set to denote the 

presence of set elements, where bit positions are assigned by one or more hash functions (Figure 
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1.1). To represent a DBG in a Bloom filter, k-mers are first stored as set-bits in the Bloom filter, 

and then the DBG is traversed from a given k-mer by testing each possible neighboring k-mer 

with the Bloom filter (Figure 1.2). However, Bloom filters may have false-positives due to hash 

collisions in assigning bit positions within the binary array. The probability of false-positives, 

also known as false-positive rate (FPR), for a Bloom filter can be estimated with the formula, 

(1 − 𝑒−ℎ𝑛 𝑚⁄ )
ℎ
, where h is the number of hash functions, n is the number of set elements stored 

in the Bloom filter, and m is the size of the Bloom filter. As the formula indicates, inserting more 

set elements always increases the FPR and increasing the Bloom filter size always decreases the 

FPR. Increasing the number of hash functions decreases the FPR to some extent before 

detrimental effects are observed. Essentially, the memory efficiency of a Bloom filter comes at 

the cost of false-positives. 

Furthermore, Birol et al. recently introduced the concept of a counting Bloom filter for 

counting k-mers in de novo assembly applications [30]. The k-mer counts are represented 

compactly as 8-bit minifloats, which are exact from 0 to 16 but are non-exact from 17 up to 

122,880. For comparison, the smallest exact representation of integers in this range would 

require a 32-bit integer data type, which uses four times more memory. Although higher counts 

are non-exact in their concept, Birol et al. showed that counts at different orders of magnitude 

rarely overlap. This property is especially important for RNA-seq assembly because transcript 

abundance has a dynamic range across six orders of magnitude in RNA-seq data. 

Several methods have adapted Bloom filters for the de novo assembly of genomes and 

metagenomes [29, 31, 32], but Bloom filters remained to be explored in de novo RNA-seq 

assembly. 
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Figure 1.1 An example of Bloom filter. 

This is an example of a Bloom filter, which uses 3 bits to store each item in the set containing 

only “Adam” and “Bart.” “Nathan” does not exist in the set, as indicated by the presence of 0-

bits at its hash locations. “Frank,” which is not in the set, is a Bloom filter false-positive because 

the bits at its hash locations have been set previously for “Adam” and “Bart”. 

 

 

 

Figure 1.2 A Bloom filter representation of de Bruijn graph. 

A k-mer has four possible neighbors on each side. Testing for the presence of each neighbor is 

equivalent to a set-membership test, which is the lookup operation of a Bloom filter. 
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1.3.2 Synthetic reads 

The quality of de novo assembly usually improves with longer input reads because longer 

reads permits the use of longer k-mers, resulting in a smaller and simpler DBG. Several methods 

aim to generate synthetic reads by extending read sequences before assembly. Overlapping 

paired reads may be merged if there is sufficient overlap [33]. Non-overlapping paired reads can 

be joined with methods such as Konnector [34] and MaSuRCa [35], which aim to find a unique 

path in the DBG between each read pair. Since the fragment length for paired-end sequencing are 

much shorter than the underlying nucleotide sequence (eg. chromosome), joining paired reads is 

a much less challenging task than reconstructing the entire nucleotide sequence. Consequently, 

Konnector and MaSuRCa were instrumental to creating the draft assemblies of conifer tree 

genomes over 20 Gbp in length [36, 37]. Konnector uses a Bloom filter DBG in its 

implementation and thus has a much lower memory footprint than MaSuRCa. StringTie, a 

reference-guided RNA-seq assembler, has the option to include MaSuRCa’s output reads for 

assembling transcripts [38]. However, existing de novo RNA-seq assemblers do not include 

synthetic read construction in their algorithms. 

 

1.3.3 Alignment-free methods 

Alignment of high-throughput sequencing reads is an important but relatively time-

consuming step in methods for processing high-throughput sequencing data; reducing the 

runtime of this operation in genomics applications has been an active area of research [39]. 

Although de novo assembly algorithms, by definition, do not utilize alignment of reads against a 

reference genome or transcriptome, a typical de novo assembly algorithm such as ABySS still 

requires two rounds of read alignments against the assembled sequences for contiging and 
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scaffolding. The current state-of-the-art de novo RNA-seq assemblers (Table 1.1) also rely on 

alignment of reads throughout the assembly process. An alignment-free assembly approach 

would likely have a much quicker runtime. To the best of my knowledge, LINKS is the only 

alignment-free method for scaffolding genome assemblies so far, and it uses a Bloom filter for 

the storage of k-mer pairs in long reads [40].  

In recent years, several alignment-free methods have emerged for RNA-seq 

quantification [41-44], and their runtimes are over 100 times faster than the fastest alignment-

based method. In the past, RNA-seq quantification methods, such as RSEM [45], deduce the 

transcript expression levels based on the alignment of reads against a reference genome or 

transcriptome. However, these alignment-free RNA-seq quantification methods are not de novo 

methods because they still rely on given reference sequences (and reference annotations in some 

cases). 

 

1.4 Thesis objectives 

Recent advances in high-throughput sequencing analyses methods have motivated the 

development of a fast and memory-efficient de novo RNA-seq assembler. Compared to the 

current state-of-the-art RNA-seq assemblers, my assembly algorithm, RNA-Bloom, was 

developed with the following objectives: 

1. lower memory usage, 

2. quicker runtime, and 

3. similar or better accuracy. 

The following chapters illustrate how these objectives were achieved. 
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Chapter 2: Methods 

RNA-Bloom consists of three stages: construction of de Bruijn graph, reconstruction of 

synthetic long reads representing sequencing library fragments, and reconstruction of transcripts. 

Each stage is described in the following sections. An overview of the workflow of RNA-Bloom 

is illustrated in Figure 2.1. 

 

2.1 Stage 1: Construction of de Bruijn graph 

In this stage, all sequencing reads are parsed and all k-mers containing only “A,” “C,” 

“G,” or “T” characters are loaded into a Bloom filter, representing an implicit DBG. The counts 

of k-mers are stored in a counting Bloom filter based on the concept discussed in the previous 

chapter. The count of each k-mer is incremented every time the k-mer is observed in the 

sequencing reads. To account for hash collisions, only the hash positions with the smallest value 

are incremented during update. Figure 2.2 illustrates how hash collisions in the c-Bf are handled. 

The DBG Bloom filter (DBG-Bf) and the counting Bloom filter (c-Bf) co-operate to reduce 

false-positives in each other. For example, a k-mer found in the DBG-Bf is deemed as “present” 

in the DBG only if it has a positive count in the c-Bf. Similarly, a non-zero count from the c-Bf 

is reported only if the k-mer is found in the DBG-Bf; otherwise, a zero-count is reported. To 

ensure quick update and lookup of Bloom filters, all k-mers are hashed with a custom hashing 

function based on an ultrafast nucleotide hashing algorithm called ntHash [46]. Once all 

sequencing reads have been parsed, the DBG-Bf and the c-Bf are ready for use in subsequent 

stages. 
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Figure 2.1 An overview of RNA-Bloom.  
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Figure 2.2 Hash collision in counting Bloom filter. 

This counting Bloom filter uses three hash functions and it has a hash collision at the green cell. 

To account for hash collisions, only the minimum value of all three hash positions of a k-mer is 

reported or updated. Hence, “ATAT” would be reported to have a count of 2 despite “5” is stored 

at one of its hash positions. If the count for “ATAT” were incremented, the yellow cells would 

be updated to “3” and the green cell would remain untouched. However, if the yellow cells 

become “5,” both yellow and green cells would be updated to “6” during an increment.  
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2.2 Stage 2: Reconstruction of read fragments 

In this stage, paired-end reads are first corrected for errors and are then connected to 

reconstruct the read fragment. Pairs of k-mers at a fixed distance along each reconstructed 

fragment are stored for use in the next stage. Each fragment is assigned a bin according to its 

length and its lowest k-mer count. 

 

2.2.1 Error correction of paired end reads 

Since RNA-seq reads may contain errors due to sequencer miscalls, paired-end reads are 

corrected before they are connected to reconstruct the underlying fragment sequence. Sequencing 

errors can be corrected based on k-mer counts because sequencer miscalls tend to be rarer than 

the correct calls. Since transcript abundance has a range across six orders of magnitude, applying 

a global threshold on k-mer counts, as done in genome assembly [32], may remove low 

expressed transcripts and thus is not preferable for RNA-seq assembly. 

In RNA-Bloom, sequencing errors are corrected based on an algorithm called Rcorrector 

[47], which is specifically designed for de novo correction of RNA-seq data. For each read in a 

read-pair, k-mer counts are first sorted in descending order and then a local threshold is set at the 

first sharp (over 50% by default) decrease (Figure 2.3). However, only the smaller of the two 

thresholds from both reads is used. This is done to account for the read-pair potentially spanning 

a low-expressed alternative isoform or paralogous transcript. k-mers with counts less than the 

local threshold are replaced with an alternative branch in the DBG with a higher median k-mer 

count while retaining a high percent sequence identity, if such a branch exists (Figure 2.4). 
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Figure 2.3 Marking candidate error k-mers using a count-based method. 

k-mer counts within a read are sorted in descending order and the first sharp decrease determines 

a local threshold for the k-mer counts in the read. k-mers with counts below the threshold (shown 

in red) are potentially erroneous and are marked for inspection.  

 

 

 

Figure 2.4 Replacing error k-mer candidates using a graph-based method. 

Error k-mer candidates (shown in red) may be replaced by finding in the de Bruijn graph an 

alternative branch (shown in blue) with higher median k-mer count but high sequence identity 

and nearly identical length.  
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2.2.2 Connecting paired-end reads 

For each read pair, the left and right reads may be connected by one or more paths in the 

DBG. The optimal path connecting the reads should be free from sequencing errors and should 

not introduce chimeras. In RNA-Bloom, this optimal path is approximated by extending the 

paired reads towards each other, while ignoring short dead-end branches and branches that fall 

below a local k-mer count threshold. This process begins at the right-most k-mer in the left read, 

extending to the right. Each step in the extension consists of a look-ahead, which prunes short 

dead-end branches assumed to be introduced by Bloom filter false-positives. The local k-mer 

count threshold is initially set to 10% of the minimum k-mer count in the read pair. As the 

extension progresses, the threshold is dynamically adjusted to 10% of the minimum k-mer count 

in the read pair and the currently traversed path to allow fluctuation in read depth. The extension 

terminates when either the left-most k-mer in the right read is reached, a dead-end is reached, the 

maximum search depth is reached, or an ambiguous branch is reached. If the reads are not 

connected at this point, another attempt is made by extending to the left, starting at the left-most 

k-mer in the right read. The extension of the second attempt terminates when either the right-

most k-mer in the left read is reached, a k-mer in the extension path from the previous attempt is 

reached, a dead-end is reached, the maximum search depth is reached, or an ambiguous branch is 

reached. The process of connecting paired reads is illustrated in Figure 2.5. 
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Figure 2.5 Connecting paired reads. 

“L” is the right-most k-mer in the left read and “R” is the left-most k-mer in the right read. 

During extension to the right from “L,” the short dead-end branch “K” and the branch with low 

k-mer count “P-Q-S” are ignored. The extension to the right (highlighted in pink) terminates at 

“D” because the look-ahead discovers more than one possible extension. Since “R” has not been 

reached, the second attempt of extension is performed in the opposite direction from “R.” During 

the extension to the left from “R,” the branches with low k-mer count, “V-U-T” and “Z-Y-X,” 

are ignored. The extension to the left (highlighted in orange) terminates at “D,” a k-mer from the 

previous extension path. As a result, both extension paths are joined together to connect “L” to 

“R.” 
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2.2.3 Storage of k-mer pairs 

The distribution of fragment lengths is inferred from the first 1,000 fragments assembled, 

and Q1 is set as the first quartile of this set. The sample size of 1,000 is arbitrary and can be set 

by the user. Pairs of k-mers at a fixed distance along fragments are stored for the assembly of 

transcript sequences in Stage 3. The distance between paired k-mers is set to Q1 – 2k. Assuming 

fragment lengths are normally distributed, approximately 75% of fragments would be longer 

than or equal to Q1 and thus are represented by k-mer pairs. On the other hand, the remaining 

25% of fragments would not be represented by k-mer pairs, because they are likely to be too 

short to provide enough long-range information for assembling transcripts. The k-mer pairs are 

stored in three Bloom filters, separately representing left k-mers, right k-mers, and the pairing 

between k-mers. These Bloom filters are crucial to guiding graph traversal for the assembly of 

transcripts in Stage 3, which will be discussed later. 

 

2.2.4 Stratification of assembled fragments 

Assembled fragments are divided into strata (14 by default) according to their lengths and 

their minimum k-mer counts (Figure 2.6). Fragments are stratified based on their minimum k-

mer count to separate fragments representing isoforms expressed in different order of magnitude. 

Fragments are also divided into “long” and “short” groups. “Long” fragments are longer than or 

equal to the first quartile of the initial sample of assembled fragments, and therefore they are 

represented by at least one k-mer pair. Hence, “long” fragments, compared to “short” fragments, 

are more extendable with k-mer pairs. Strata are stored in separate FASTA files and are retrieved 

in a specific order in Stage 3. 
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(c
) 

100,000 ≤ c long.e5.fa short.e5.fa 

10,000 ≤ c < 100,000 long.e4.fa short.e4.fa 

1,000 ≤ c < 10,000 long.e3.fa short.e3.fa 

100 ≤ c < 1,000 long.e2.fa short.e2.fa 

10 ≤ c < 100 long.e1.fa short.e1.fa 

1 < c < 10 long.e0.fa short.e0.fa 

c = 1 long.01.fa short.01.fa 

 

Figure 2.6 Stratification of assembled fragments. 

Each assembled fragment is written to a specific FASTA file according to its length (l) class and 

its minimum k-mer count (c). Q1 is the first quartile of fragment lengths in the initial sample of 

assembled fragments. 
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2.3 Stage 3: Reconstruction of transcripts 

2.3.1 Complexity reduction of de Bruijn graph  

Owing to the error correction in Stage 2, the entire set of assembled fragments would 

contain less k-mers than the original input reads. In other words, the DBG of assembled 

fragments would be smaller and thus less complex than the original DBG constructed from input 

reads. Since a less complex DBG would increase the efficiency of graph search, the DBG-Bf is 

emptied and re-populated by k-mers of all assembled fragments. The updated DBG-Bf would 

have a lower false-positive rate than before due to the reduction in the number of k-mers in the 

DBG. 

 

2.3.2 Extension of fragment sequences with paired k-mers 

Transcripts are reconstructed by extending assembled fragments with k-mer pairs 

extracted during Stage 2. All “long” fragments are evaluated before “short” fragments. 

Fragments are retrieved from the highest minimum k-mer count stratum down to the second 

lowest stratum. Fragments in the lowest stratum are not extended because fragments with 

singleton k-mers (count = 1) tend to introduce misassemblies. Fragments are extended on both 

sides by finding paths supported by consecutive k-mer pairs using a depth-first-search approach, 

as illustrated in Figure 2.7. Consecutive k-mer pairs are needed to account for false-positives in 

the Bloom filters for k-mer pairs. Each step of the search is advanced by choosing the k-mer with 

the highest median look-ahead k-mer count. The extension terminates when no more paths 

supported by k-mer pairs are found. 
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Figure 2.7 Extension with k-mer pairs. 

In this example, paired k-mers are separated by 6 steps in the graph. An extension to the right at 

“O” is made by searching for a path supported by k-mer pairs (dotted lines). At “O,” more than 

one extension is possible. With a look-ahead of 3 steps, the search would visit the “U” branch 

first because the median look-ahead k-mer count of “U-V-X-Y” is higher (as indicated by the 

darker blue color of the nodes) than that of the “F-G-H-I.” Although “U” forms a k-mer pair with 

“A,” there are not enough consecutive k-mers supporting the extension into the “U” branch.  

When the maximum search depth is reached, the search backtracks to “O” and advances to “F.” 

Since sufficient (eg. 3) consecutive k-mer pairs (dotted lines) are found, an extension into the “F” 

branch is made (highlighted in pink). 
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Chapter 3: Results 

3.1 Benchmarking Specification 

3.1.1 Choosing de novo RNA-seq assemblers 

To avoid repetition of results presented in a recent benchmarking study for de novo RNA-

seq assemblers [25], I chose to compare the performance of RNA-Bloom with the two best 

performing methods that were most recently updated, Trans-ABySS v1.5.5 (August 2nd, 2016) 

and Trinity v2.4.0 (February 5th, 2017). 

 

3.1.2 Datasets 

Benchmarking was performed on three paired-end strand-specific RNA-seq datasets: a 

simulated human transcriptome, a healthy human blood transcriptome, and a sample of Universal 

Human Reference RNA. The simulated human transcriptome was generated with FluxSimulator 

v1.4.0 [48]. The human blood transcriptome is publicly available on Sequence Read Archive 

(SRR1957705) and is an Illumina RNA-seq sample of blood pooled from five healthy males. 

The simulated and real datasets were primarily used to compare the memory usage, runtime, 

sensitivity, and specificity of the assemblers. The Universal Human Reference RNA (UHRR) 

dataset comprises of the transcriptomes of ten different cancer cell lines and it is publicly 

available on Illumina BaseSpace (mRNA-UHRR-C1_S1_L001). Since a variety of fusion 

transcripts in UHRR and its constituent cell lines have been previously reported in the literature 

[49-55], the UHRR data in this benchmark was used to assess the performance in assembling 

fusion transcripts. All three datasets were preprocessed with Trimmomatic v0.36 [56] to remove 

Illumina adaptor sequences and trim poor-quality nucleotides with Phred scores less than 5, as 
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recommended in an earlier study [57]. The specifications of the datasets are summarized in the 

Table 3.1. 

 

Table 3.1 Data Specification. 

Dataset Read Length (bp)* Size# 

Simulated human transcriptome 2 x 100 41 million 

Healthy human blood transcriptome 2 x 100 44 million 

Universal Human Reference RNA 2 x 75 41 million 

 

* standard read length before trimming with Trimmomatic 
# number of read pairs after trimming with Trimmomatic 

 

3.1.3 Assembly assessment tools 

Assembly quality was assessed by rnaQUAST v1.4 [58], which is a software for 

evaluating the completeness and correctness of RNA-seq assemblies. As the name implies, 

rnaQUAST is based on QUAST [59], a popular tool for genome assembly evaluation. For all 

benchmarking performed, rnaQUAST was provided with the human reference genome build 38 

(GRCh38) and the Ensembl annotation. Since sequencing artifacts often reside in short contigs, 

only contigs longer than or equal to double the read length were considered. 

Fusion transcripts were detected from the assemblies of UHRR using Post-Assembly 

Variant Finder (PAVFinder, https://github.com/bcgsc/pavfinder) v0.2.0. To the best of my 

knowledge, PAVFinder is the only currently known method that detects fusion transcripts from 

any given RNA-seq assembly. PAVFinder detects fusion transcripts by finding split-alignments 

of assembled transcripts to the reference genome whereas older fusion detection methods, such 
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as Tophat-Fusion [60] and deFuse [61], mainly rely on discovering discordant alignments of 

reads to the reference genome. PAVFinder was developed with the assumption that assembled 

sequences, compared to individual sequence reads, would yield more sensitive and accurate 

alignments to the reference genome. Compared to Tophat-Fusion and deFuse, PAVFinder (when 

used with Trans-ABySS), indeed, has a higher true-positive rate and lower false-positive rate in 

detecting gene fusions in a simulated dataset (Figure 3.1). For comparison with PAVFinder, the 

UHRR dataset was also processed with Tophat-Fusion, which is the next best method behind 

PAVFinder.  

 

3.1.4 Computational specification 

Each assembly was generated on a 64-bit high-performance computing machine running 

CentOS 7.1.1503 with 2.5 TB of RAM and 128 Intel Xeon E7-8867 processors at 2.5 GHz. All 

assemblers used a k-mer size of 25 and were run in strand-specific mode using 12 threads. 

Particularly, Trans-ABySS was set to use a coverage threshold of 1 (default is 2) such that 

extremely low-expressed transcripts can still be assembled. RNA-Bloom and Trinity do not have 

such a setting. The peak memory usage of each assembly was tracked by a custom Python script. 
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Figure 3.1 Comparison of PAVFinder, Tophat-Fusion, and deFuse. 

A comparison of PAVFinder (coupled with Trans-ABySS), Tophat-Fusion, and deFuse in 

detecting gene fusions from a simulated dataset. Gene fusions are simulated at coverages from 

4x to 20x (step size of 2) with varying background levels from 10x to 40x (step size of 10). 
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3.2 Benchmark 1: Simulated Human Transcriptome 

3.2.1 Computational performance 

RNA-Bloom has the fastest runtime and the smallest peak memory usage in assembling 

the simulated human transcriptome. RNA-Bloom used 39 minutes and had a peak memory usage 

less than 3 GB. Trinity had the highest peak memory usage, 4.6 times more than RNA-Bloom. 

Trans-ABySS was the slowest, 3.97 times slower than RNA-Bloom. The computational 

performance of the three assemblers is summarized in Table 3.2. 

 

Table 3.2 Performance in assembling simulated RNA-seq using 12 threads. 

Assembler Peak Memory (GB) Wall-clock Time (hour) 

RNA-Bloom 2.84 0.65 

Trans-ABySS 4.66 2.58 

Trinity 13.18 1.43 

 

The best results are highlighted in bold. 

 

3.2.2 Assembly sensitivity 

The number of annotated isoforms recovered and the number of exons recovered from 

the three assemblies are shown in Figure 3.2 and Figure 3.3, respectively. The Trans-ABySS 

assembly has the largest number of annotated isoforms covered 90% or less, followed by RNA-

Bloom and Trinity. The RNA-Bloom assembly has the most full-length annotated isoforms, 

marginally higher than Trinity and Trans-ABySS. 
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Figure 3.2 Number of isoforms covered by assembled transcripts. 

The histogram bars are two-toned. The lighter tone represents the number of isoforms covered at 

or above the threshold fraction by one assembled transcript. If multiple assembled transcripts are 

covering the isoform, the largest covered fraction is selected. The darker tone represents the 

number of isoforms covered at or above the threshold fraction by more than one assembled 

transcripts. 

RNA-Bloom 
Trans-ABySS 
Trinity 

transcripts 
=1     >1 
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Figure 3.3 Number of exons covered by assembled transcripts. 

The histogram bars are two-toned. The lighter tone represents the number of exons covered at or 

above the threshold fraction by one assembled transcript. If multiple assembled transcripts are 

covering the isoform, the largest covered fraction is selected. The darker tone represents the 

number of exons covered at or above the threshold fraction by more than one assembled 

transcripts. 
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transcripts 
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3.2.3 Assembly specificity 

Among the three assemblers, RNA-Bloom has the highest specificity; it has the least 

misassemblies and the lowest average mismatches per assembled transcript. Trinity created the 

most misassemblies, whereas Trans-ABySS has the highest average mismatches per assembled 

transcript. The specificity metrics are summarized in Table 3.3. 

 

Table 3.3 Specificity metrics for assembling simulated RNA-seq. 

Assembler Average mismatches per transcript Misassemblies 

RNA-Bloom 0.213 13 

Trans-ABySS 0.522 21 

Trinity 0.499 66 

 

The best results are highlighted in bold. 
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3.3 Benchmark 2: Human Blood Transcriptome 

3.3.1 Computational performance 

RNA-Bloom has the fastest runtime and the smallest peak memory usage in assembling 

the human blood transcriptome. RNA-Bloom used 1.11 hour and has a peak memory usage of 

5.69 GB. Trinity has the highest peak memory usage of 20.05 GB, which is 3.52 times more than 

RNA-Bloom. Trinity also has the slowest runtime of 11.96 hours, which is 10.77 times slower 

than RNA-Bloom. The computational performance of the three assemblers is summarized in 

Table 3.4. 

 

Table 3.4 Performance in assembling human blood transcriptome using 12 threads. 

Assembler Peak Memory (GB) Wall-clock Time (hour) 

RNA-Bloom 5.69 1.11 

Trans-ABySS 10.16 6.00 

Trinity 20.05 11.96 

 

The best results are highlighted in bold. 

 

3.3.2 Assembly sensitivity 

As shown in Figure 3.4 and 3.5, the Trinity assembly has the largest number of isoforms 

covered 50% or more in length and the largest number of exons covered 90% or more in length. 

This is completely different from the benchmarking with simulated data where Trans-ABySS 

performed the best throughout the entire range of isoform coverage fractions (Figure 3.2) and 

exon coverage fractions (Figure 3.3). Despite of this, the RNA-Bloom assembly has the largest 
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number of isoforms above 0 ~ 40% coverage in length and the largest number of exons above 0 

~ 70% coverage in length. This suggests that RNA-Bloom has the best capability of 

reconstructing transcripts that are partially represented in the presence of experimental noise. 
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Figure 3.4 Number of isoforms covered by assembled transcripts. 

The histogram bars are two-toned. The lighter tone represents the number of isoforms covered at 

or above the threshold fraction by one assembled transcript. If multiple assembled transcripts are 

covering the isoform, the largest covered fraction is selected. The darker tone represents the 

number of isoforms covered at or above the threshold fraction by more than one assembled 

transcripts. 
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Figure 3.5 Number of exons covered by assembled transcripts. 

The histogram bars are two-toned. The lighter tone represents the number of exons covered at or 

above the threshold fraction by one assembled transcript. If multiple assembled transcripts are 

covering the isoform, the largest covered fraction is selected. The darker tone represents the 

number of exons covered at or above the threshold fraction by more than one assembled 

transcripts. 
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3.3.3 Assembly specificity 

Trans-ABySS has the best specificity while Trinity has the worst in assembling the 

human blood transcriptome. RNA-Bloom produced 1.49 times more misassemblies than Trans-

ABySS whereas Trinity produced nearly 7 times more misassemblies than Trans-ABySS. The 

specificity of the three assemblers is summarized in Table 3.5. Trinity created the most 

misassembled transcripts in both simulated and real data. Although Trinity has the largest 

average mismatches per transcripts for real data, it has less average mismatches per transcript 

than Trans-ABySS for the simulated data. However, Trans-ABySS and RNA-Bloom are very 

comparable in terms of specificity for both simulated and real data. 

 

Table 3.5 Specificity metrics for assembling human blood transcriptome. 

Assembler Average mismatches per transcript Misassemblies 

RNA-Bloom 0.676 556 

Trans-ABySS 0.599 373 

Trinity 1.162 2598 

 

The best results are highlighted in bold. 
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3.4 Benchmark 3: Universal Human Reference RNA 

3.4.1 Memory usage and runtime 

RNA-Bloom has the fastest runtime and the smallest peak memory usage in assembling 

the UHRR dataset. RNA-Bloom used 22 minutes and has a peak memory usage of 4.15 GB. 

Trinity has the highest peak memory usage of 19.93 GB, which is 4.8 times more than RNA-

Bloom. Trinity also has the slowest runtime of 16.73 hours, which is 45.22 times slower than 

RNA-Bloom. The computational performance of the three assemblers is summarized in Table 

3.6. 

 

Table 3.6 Performance in assembling UHRR using 12 threads. 

Assembler Peak Memory (GB) Wall-clock Time (hour) 

RNA-Bloom 4.15 0.37 

Trans-ABySS 7.31 1.95 

Trinity 19.93 16.73 

 

The best results are highlighted in bold. 

 

3.4.2 Fusion transcripts detected 

PAVFinder detected 49 fusions in the RNA-Bloom assembly, 46 fusions in the Trans-

ABySS assembly, and 89 fusions in the Trinity assembly (Table 3.7). On the other hand, Tophat-

Fusion detected 77 fusions in total. RNA-Bloom assembled the most fusion transcripts supported 

by the literature, whereas Trinity assembled the least (Table 3.8). PAVFinder, when used with 

RNA-Bloom or Trans-ABySS, detected more literature-supported gene fusions than Tophat-
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Fusion. This appears to agree with the higher true positive rate of PAVFinder shown in Figure 

3.1. A large portion of fusions detected by PAVFinder and Tophat-Fusion are not supported by 

the literature and there is little overlap among the four sets of fusions detected (Figure 3.5). This 

suggests that the fusions detected lacking literature support may be false-positives, but the 

validity of these fusions may be verified with RT-PCR. 

 

Table 3.7 Number of fusion transcripts detected. 

 RNA-Bloom Trans-ABySS Trinity Tophat-

Fusion 

Supported by literature 12 10 4 6 

Not supported by literature 37 36 85 71 

Total 49 46 89 77 
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Table 3.8 Fusion transcripts supported by literature. 

5’ Gene 3’ Gene RNA-

Bloom 

Trans-

ABySS 

Trinity Tophat-

Fusion 

Literature 

BCR ABL1 ✓  ✓ ✓ [49, 50] 

BAG6 SLC44A4 ✓ ✓   [51] 

RPS6KB1 VMP1 ✓ ✓  ✓ [49] 

GAS6 RASA3 ✓ ✓   [49] 

NUP214 XKR3 ✓ ✓ ✓ ✓ [49, 50] 

FGFR1 NSD3 ✓    [50] 

BCAS4 BCAS3 ✓ ✓ ✓ ✓ [49] 

HOMEZ MYH6 ✓ ✓   [52] 

KANSL1 ARL17A ✓ ✓   [52, 55] 

USP32 APPBP2 ✓ ✓   [53] 

TANC2 CA4 ✓ ✓  ✓ [54] 

ARFGEF2 SULF2 ✓ ✓ ✓ ✓ [49] 

 

‘✓’ indicates that the fusion was found in the assembly. 

‘’ indicates that the fusion was not found in the assembly.  
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Figure 3.6 Venn diagram of fusion transcripts not supported by literature. 
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Chapter 4: Discussion 

RNA-Bloom has superior runtime and memory usage in the three benchmarks performed, 

while achieving comparable sensitivity and specificity to Trans-ABySS and Trinity in 

assembling simulated and real RNA-seq data. Compared to Trans-ABySS, RNA-Bloom was 

3.97 ~ 5.41 times quicker using 12 threads and used 55.9 ~ 60.0% of Trans-ABySS’ peak 

memory usage. Compared to Trinity, RNA-Bloom was 2.20 ~ 45.22 times quicker using 12 

threads and used 20.8 ~ 28% of Trinity’s peak memory usage. RNA-Bloom has made the least 

misassemblies for the simulated data. Its sensitivity in assembling simulated data and real data is 

between Trans-ABySS and Trinity. RNA-Bloom’s significantly faster runtime, lower memory 

usage, and superior reconstruction of fusion transcripts present its utility in a potential clinical 

setting, where resources and accuracy are of utmost importance. 

While it has the best sensitivity in assembling the simulated data, Trans-ABySS has the 

worst sensitivity in assembling the real data. However, Trans-ABySS reconstructed only two less 

known fusion transcripts in UHRR when compared to RNA-Bloom. On the other hand, Trinity 

recovered the most annotated isoforms in the human blood transcriptome at the cost of 

significantly more misassemblies than those of Trans-ABySS and RNA-Bloom combined. Since 

misassemblies are inherently chimeric transcripts, one would expect Trinity to have the best 

reconstruction of known fusion transcripts in UHRR. Surprisingly, Trinity performed the worst 

in the benchmark with UHRR. Trinity’s extremely slow runtime (over 45 times slower than 

RNA-Bloom) and poor reconstruction of known fusion transcripts in UHRR suggest that Trinity 

is not a robust tool for assembling complex transcriptomes in cancer cells. PAVFinder, when 

used with RNA-Bloom or Trans-ABySS, appeared to have a higher sensitivity in detecting gene 

fusions than Tophat-Fusion. 
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Although it is unanimous that RNA-Bloom has the best resource utilization in RNA-seq 

assembly, it would be worthwhile to investigate in the higher sensitivity of Trinity observed in 

the human blood transcriptome data and the higher sensitivity of Trans-ABySS observed in the 

simulated data. A potential starting point would be to understand why certain read-pairs could 

not be connected in Stage 2. Moreover, RNA-Bloom currently only uses pairs of k-mers 

separated by the first quartile of fragment lengths. Since longer range linkage information may 

help assembly of long transcripts, RNA-Bloom can perhaps incorporate pairs of k-mers separated 

by the third quartile of fragment lengths at the cost of slight increase in memory consumption.    

RNA-Bloom currently only supports Illumina RNA-seq data, but long noisy reads from 

Pacific Biosciences or Oxford Nanopore can potentially be utilized to resolve ambiguous 

branching in the DBG due to alternative splicing and paralogous transcripts. In addition, 10x 

Genomics’ linked-reads technology, which emerged recently, provides long range linkage 

information for assembling genomes [62] and single-cell 3’ profiling of transcripts [63]. Since 

the linked-reads technology is based on Illumina’s sequencing platform, this new data type can 

be adapted in RNA-Bloom once it gains traction in transcriptome research. 

In this thesis, I have presented the work on my lightweight de novo RNA-seq assembler, 

which has fulfilled the objective of achieving lower runtimes and lower memory usage and 

retaining similar or better accuracy than current state-of-the-art methods. I foresee that RNA-

Bloom would be used by many researchers, in both large and small labs, that study 

transcriptomics and RNA biology. 
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