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Abstract

The polarization of Cosmic Microwave Background can help us probe the
early universe. The polarization pattern can be classified into E-mode and B-
mode. The B-mode polarization is a smoking gun of cosmological inflation.
PIXIE is an in-proposal space telescope observing CMB polarization. It
is extremely powerful to extract CMB polarization signal from foreground
contamination. The second chapter of this thesis summarizes my work on
optimizing the optical system of PIXIE. I run a Monte-Carlo Markov Chain
for the instrument parameters to maximize the value ”Good” which judges
the behavior of the instrument. For the optimized instrument, with all kinds
of noises from inside instrument and wrong polarization taken into account,
good rays from the sky make up of 15.27% of all the rays received by the
detector. The instrument has a 1.1◦ top-hat beam response.

The third chapter summarizes my work on studying the potential con-
tamination in the reconstructed y map by doing cross-correlation between
tSZ signal and weak lensing. The weak lensing data is the convergence map
from the Red Sequence Cluster Lensing Survey. I reconstruct the tSZ map
with a Needlet Internal Linear Combination method with 6 HFI sky maps
made by Planck satellite. The reconstructed cross correlation is consistent
with Planck NILC SZ map. I take Cosmic Infrared Background (CIB) and
galactic dust as two potential source of contamination in the reconstructed
map. I find that κ×CIB contributes (5.8±4.6)% in my reconstructed NILC
y map for 500 < ` < 2000 with 2.2σ significance. Dust residuals only change
the error bar of the cross correlation signal. I find the best value for dust
index is βd = 1.57. I then introduce a piecewise power spectrum for the CIB
and make a NILC CIB map to make a CIB-nulled NILC y map. κ×y signal
from this y map differs by only ∼ 0.08σ to the CIB-uncleaned y map.
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Lay Summary

Chapter 2 of my thesis presents research towards the development of a new
space-borne telescope, called PIXIE, aimed at testing whether or not cosmic
inflation occurred in the first fraction of a second of our universe. Specifically
we investigate the optical design parameters for this telescope.

Chapter 3 aims to better understand the connection between dark matter
and atomic matter in the large-scale distribution of galaxies in our universe.
I investigate whether emission from dusty galaxies is contaminating previous
measures of the the dark matter - gas correlation.
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Preface

Chapter 2 is a summary of my work on PIXIE instrument simulation under
the instruction of Prof. Gary Hinshaw, Alan Kogut and Dale Fixsen from
GCSC/NASA. The original IDL code for the instrument simulation was
written by Dale Fixsen and I translated and modified it in python. The
MCMC work is entirely executed by myself.

Chapter 3 of this thesis is based on a discussion between myself and
Alireza Hojjati. Section 3.3, 3.4, 3.5 are my original, independent work with
the instruction of Prof. Ludovic van Waerbeke, Prof. Gary Hinshaw in
discussion with Alireza Hojjati. A paper on this work is in progress.

The computation of both projects are executed on our group server jade.
The figures in this manuscript, if not stated in the caption, are plotted by
myself. The manuscript is written entirely by myself with feedback from
Gary Hinshaw and Ludovic van Waerbeke. The third chapter also received
feedback from Alireza Hojjati.
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Chapter 1

Introduction

Cosmology is the study of our universe as a whole. Currently we use physics
to describe its origin, evolution and content. Though it might not be as
beautiful as from the literature or arts, it is exciting due to its highly logical
and precise language, and also the capability to know the past, learn the
current and predict the future in a convincing way.

Like other disciplines in astronomy, cosmology depends critically on ob-
servations. Instead of single celestial objects, cosmologists observe the struc-
ture of the whole universe. The improving observational techniques have
boosted the development of cosmology in the past half century. And we
have reasons to believe that our understanding of the universe will continue
to advance.

This chapter is an introduction to cosmology. The first section introduces
the history of cosmology. The second to the fifth sections discuss topics in
the standard cosmological model. The sixth section introduces cosmological
inflation.

The calculations in this chapter, unless otherwise noted, follows [28],
[72], [86], [88] and [53].

1.1 Historical Introduction

Human beings have never stopped thinking about the universe. In ancient
time, there already existed several theories to describe our universe. Each
civilization has its own interpretation of the universe. The Chinese word for
universe is yu zhou. Its definition is described in an ancient Chinese text
Shizi from 2400 years ago:

All the directions named ’yu’; all the ages named ’zhou’.

So yu zhou can be directly translated into English as ’In all the direction
and through all the age’, or ’overall spacetime’, which coincidences with the
physical definition of the universe. Around 300 A.D, Chinese philosophers
believe that the universe is like an egg and the earth is yolk. The sun

1



1.1. Historical Introduction

and stars are moving in the murky ’egg white’. Chinese Taoists believed
that there was an underlying natural order of the universe called ’Tao’ that
generates and gauges everything. The Greek philosopher Aristotle thought
our earth was fixed in the universe surrounded by concentric celestial sphere
of planets and stars. There also exists some seemingly funny model like
the ’Turtles all the way down’ from ancient Indian philosophy. Since these
thoughts are mainly based on thought, they are more like philosophy than
science. Scientists and philosophers like Newton, Laplace and Kant all have
their own idea, but observation was very limited to judge them.

That cosmology became a science dates back to 1917, when Einstein
published his paper Cosmological Considerations in the General Theory of
Relativity [29]. In this paper, Einstein firstly applied his General Relativity
to describe the universe as cylindrical space-time manifold. It is the first
attempt to describe the geometric structure of the universe. In the same
year, de Sitter [26] developed a ’spherical’ model for cosmological geome-
try. The first work to study the dynamics of the universe is by Alexander
Friedmann [33] who generalized Einstein and de Sitter’s cosmological met-
ric and plugged it into the Einstein Equation. Thus he discovered the first
form of Friedmann equations. In 1935 and 1936, H.P.Roberson [71] and
A.G.Walker [85] introduced the curvature k and completed the mature form
of the Friedmann-Roberson-Walker metric and the Friedmann equations.

The FRW metric is based on the Cosmo Principle which states that
the universe is isotropic and homogeneous. Beyond the Cosmo Principle,
people studied inhomogeneities and anisotropy of the universe which tells
us how the large scale structure forms and evolves. From 1970s to 1990s, the
general theories to describe the evolution of fluctuations of each ingredient
(matter, photon, neutrino and so on) on the ’stage’ of an evolving universe
has been developed (see, for example, P.Peebles and J.Yu [61]; R. Sunyaev
and Zeldovich [78]; M. Wilson and J. Silk [87]). These theories describe the
physics of those fluctuations guide observation.

In the early 20th century, studies of the rotation curves of galaxies [93]
suggested that there exists some dark matter in the galaxies. Dark matter
does not significantly interact with electro-magnetic field so they neither
emit photons nor absorb or scatter photons. One way to detect it is to
observe its gravitational effect. From cosmological observations like weak
lensing [83] and the CMB [42], it is realized that dark matter makes up
84.5% of the total matter of the universe. Dark matter must be accounted
for in the study of large scale structure. It is still an open question as to
what the dark matter is. Particle physicists come up with many models
for dark matter, like WIMPs, sterile neutrinos, axions, etc, which are open

2



1.1. Historical Introduction

to test. For cosmologists, the current generally-accepted phenomenological
model for dark matter is cold dark matter (CDM, see Peebles [63]). CDM
particles move at a speed which are much lower than the speed of light.

In 1998, Adam Riess [70], Brian Schmidt, Saul Perlmutter [65] studied
the Hubble diagram of distant supernovae and found that the expansion of
universe is actually accelerating. This suggests the existence of dark energy
which has a negative pressure and is responsible for cosmological accelera-
tion. Based on CMB and Baryonic Acoustic Oscillation (BAO) data, the
amount of dark energy is constrained to be 70% of the critical density. Like
the dark matter, people know very little about the dark energy. Observa-
tions suggest that dark energy is likely to be the cosmological constant Λ
with the equation of state p = −ρ.

A model that treats dark energy to be Λ and dark matter to be cold (the
movement of dark matter particle is much less than the speed of light) is
called the Λ-Cold Dark Matter model (ΛCDM). The ΛCDM model now es-
tablished as the standard model for cosmology. Yet there are some problems
that can’t be resolved under this work. Among them the most famous ones
are the horizon problem, flatness problem and magnetic monopole problem.
These questions can be solved by cosmological inflation. See section 1.6 for
details.

The first observational evidence for modern cosmology is the discovery
of Hubble’s Law [47]. Hubble’s law states that distant galaxies are moving
apart from us with a velocity proportional to its distance.

v = H0d (1.1)

where H0 is the Hubble constant, v is the speed that an object is moving
away from us, d is the distance of that object. This law can be directly
derived from Friedmann equations. Hubble’s law states that our universe is
expanding.

The cosmic microwave background was first predicted in 1948 by George
Gamow [34], Ralph Alpher and Robert Herman [13]. R. Alpher and R.
Herman estimated the temperature of the blackbody radiation should be
around 5K based on cosmological nucleosynthesis. This radiation, often
quoted as the Cosmic Microwave Background (CMB) was detected in 1965
by Penzias and Wilson [64]. The CMB radiation is significantly consistent
with a blackbody spectrum with temperature 2.7K and is highly isotropic.
As an isotropic blackbody radiation is hard to be produced from a nearby
process, CMB should be from very far away. It is the relic radiation of hot
plasma during the early universe. So it serves as a robust evidence for the

3



1.2. The Big Bang Cosmology

thermal big bang theory of cosmology.
In 1989 the Cosmic Background Explorer (COBE) was launched to ob-

serve the CMB. It made the first discovery of the anisotropy in the CMB
[77]. In 2001, the second generation space-based CMB detector, the Wilkin-
son Microwave Anisotropy Probe (WMAP) began to take data with higher
precise [42]. In 2013, the third generation of detector, the Planck satellite
put forward the precision further [6] .

Another observational evidence for physical cosmology is the Big Bang
Nucleosynthesis. It studies the nucleosynthesis of light elements (H, He, Li)
in the early phase of the universe. The theory outline was first proposed
in the famous AlpherBetheGamow paper[12]. The BBN theory gives a pre-
diction of the relative abundance of light elements, which have been tested
with multiple observations. See [80] as a review.

Other types observations like surveys of distant galaxy clusters (for ex-
ample, 2dS survey, SDSS), weak lensing, BAO, Cosmic Infrared Background
also provide large amounts of data for different scales, spectral frequen-
cies and objects. The improving quality and quantity of observational data
greatly enhance the power of model testing. Cosmology is now a precise
observational science.

1.2 The Big Bang Cosmology

We can use classical mechanics to describe the movements of local planets
and stars. But since classical mechanics deals with action at a distance, it
is not appropriate for studying the universe as a whole.

The general theory of relativity describes the geometrical and dynamical
property of spacetime manifold. It can deal with the large scale spacetime
precisely. Since the universe is the largest spacetime that contains everything
we know of, we need to use general relativity to describe it.

The standard model of cosmology is based on two basic assumption: 1.
The universe is homogeneous; 2. The universe is isotropic. These assump-
tion asserts that the metric of the universe is invariant under translation
and rotation. To satisfy this two assumption, the metric should be written
as:

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdφ2

]
(1.2)

This is called the Friedmann-Roberson-Walker (FRW) metric. ds is the
infinitesimal interval, dt is the infinitesimal time change and dr, dθ,dφ are
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the infinitesimal difference of spherical coordinate. a(t) is the scale factor
which describes the time evolution of the scale of universe. By convention,
the value of a today is 1. K is the curvature of the universe, which can
have values −1, 0,+1. For K = 0 the universe is flat, and K = ±1 shows
the positive (spherical) and negative (saddle surface-like) curvature of the
universe.

Inserting the FRW metric into the Einstein Field equation, we can derive
the dynamical equations of universe.

ä = −4π

3
(ρ+ 3p)a(t) (1.3)

ȧ2 +K =
8π

3
ρa2(t) (1.4)

where ρ and p are the density and pressure contained in the energy-momentum
tensor. Their relation is defined by the equation of state:

pi = wiρi (1.5)

Here the suffix i denotes different physical components in the universe. For
massive matter (including dark matter) wm = 0; radiation wr = 1

3 , dark
energy (cosmological constant Λ) wΛ = −1. Combining Eq.1.5 and Eq.1.3
we get:

ρi ∝ a−3(1+wi) (1.6)

By inserting different values of wi, we can determine the evolution of
density for different components in the universe. For matters, ρ ∝ a−3,
radiation ρ ∝ a−4, dark energy ρ is constant. So every era of the universe
is dominated by one component. The early universe was dominated by
radiation. Matter dominated the universe until recently being surpassed by
dark energy.

Use suffix 0 to represent the current value for all the variables and set
t=0 in Eq.1.4. Note that a0 = 1, we have

3H2
0

8π
−
∑
i

ρi0 =
3K

8π
(1.7)

H is defined as H ≡ ȧ
a and H0 is the Hubble constant. In the above equation,

if

∑
i

ρi0 = ρc ≡
3H2

0

8π
(1.8)
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1.2. The Big Bang Cosmology

Figure 1.1: Density of each content of the universe. Source: http:

//planck.cf.ac.uk/results/cosmic-microwave-background

then the curvature of the universe is zero. We call this ρc the critical density.
Cosmologists often normalize the densities to be Ωi0 ≡ ρi0

ρc
.

The Friedmann equations Eq.1.3 and Eq.1.4 are the dynamical equation
for the scale of the universe. With knowledge of w and Ωi0, we can derive
the time dependence of the scale factor a. Under each cosmic epoch, the
content and temperature are different. Combining with thermal dynamics
and particle physics we can study the cosmological thermal history and Big
Bang Nucleosynthesis. Table.1.1 is a summary of the thermal history of the
universe.

A crucial object for modern cosmology is to constrain these cosmological
parameters with observational data. The current constraints on the densities
is shown in Table.1.1

The hot big bang model has been tested with several observations in-
cluding Hubble expansion, CMB spectrum and Big Bang Nucleosynthesis.
It is the foundation for the standard model of cosmology.
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Time Event

10−43s Planck time. Unknown physics
10−38s GUT phase transition
10−34s Cosmological inflation
10−14s EM and weak interaction decoupling
3min Big-Bang nucleosynthesis
60kyr matter-radiation equality
380kyr Recombination and decoupling
100-400Myr Reionization
13.8Gyr Present

Table 1.1: Thermal history of the universe. Data are from
http://www.damtp.cam.ac.uk/user/db275/Cosmology/Chapter3.

pdf and http://www.astro.caltech.edu/~george/ay127/

kamionkowski-earlyuniverse-notes.pdf

1.3 The Evolution of Large Scale Structure

The homogeneous and isotropic assumption of the universe is an important
pillar of big bang cosmology and gives precise description for the cosmo-
logical spacetime. But the spatial distribution of matter in the universe is
by no means homogeneous. According to large scale sky surveys, galax-
ies in the universe tend to concentrate to be clusters while leaving some
space as nearly empty voids (see Fig.1.2). COBE also find that the CMB is
not perfectly isotropic [77], which tells us that the early universe is slightly
inhomogeneous.

According to inflation theory, the seed of large scale structure is the
quantum fluctuation during the inflation era. The quantum fluctuation per-
turbs the matter-radiation fluid and the metric of the universe. Although
the universe is continuously diluting and cooling down, some place is faster
than the other. So there is fluctuations around the average temperature
and density. When the universe cools down to about 1eV, the photons
and baryons decouples. Photons propagates freely and becomes CMB. The
anisotropy observed by COBE reflects perturbation in the early universe. I
will discuss the CMB anisotropy in the next section.

Baryons and dark matter continue to form the large scale structure. We
can treat them to be continuous fluid governed by gravity and write down
the classical fluid equations:
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1.3. The Evolution of Large Scale Structure

Figure 1.2: The distribution of galaxies in part of the 2dF
sky survey. Source: http://planck.cf.ac.uk/results/

cosmic-microwave-background

∂ρ

∂t
+∇ · (ρv) = 0

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p−∇Φ

∇2Φ = 4πρ

(1.9)

The equations above have a stationary solution, that is

v = 0

and {ρ, p,Φ} are constant {ρ0, p0,Φ0}. The stationary solution is the aver-
aged density. What we are interested in is the overdensity δ ≡ ρ−ρ0

ρ0
. Since

we have 3 equations and 4 variables, we only need to find the solution for δ
and the other variables can be derived from it.

For weak fluctuations, we only need to keep the first-order term in the
equation. We are considering perturbations in the background of an ex-
panding universe, neglect peculiar velocity and according to Hubble’s law:

v =
ȧ

a
r (1.10)
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Combining (1.10) with (1.9) and considering the equation of state Eq.1.5,
we find the evolution equation for δ:

δ̈k + 2
ȧ

a
δ̇k +

(
c2
sk

2 − 4π(1 + w)(1 + 3w)ρ
)
δk = 0 (1.11)

cs is the adiabatic sound speed defined as cs ≡
√(

∂p
∂ρ

)
s
. This is the most

simplified equation for the perturbation δ. But we also need to consider
the perturbation of the spacetime metric itself and the interaction between
different contents. At later times and at small scales,where gravity is very
strong, we also need to consider the nonlinear effect. which are beyond our
scope of discussion. For more detailed discussion, see [28], [89].

Practically, we measure the power spectrum for perturbations:

P (k, t) ≡ 〈δk(t)〉2 (1.12)

For linear perturbation, the later-time power spectrum can be formally
written as:

P (k, tf ) = P (k, t0)T (k)2D(t0, tf )2 (1.13)

Here P (k, t0) is the primordial power spectrum from the end of inflation.
The transfer function T (k) accounts for the scale-dependent evolution during
the epoch of horizon-passing and radiation/matter transition. The growth
factor D(t0, tf ) describes the scale-independent growth during the later pe-
riod.

According to inflation theory, the spatial distribution of primordial fluc-
tuation is Gaussian, in case of both amplitude and phase [62]. And is also
a power law primordial power spectrum:

P (k, t0) = A∗

(
k

k∗

)ns
(1.14)

where A∗ is the amplitude and k∗ is chosen to be a characteristic scale, and
ns is the power-law index. The primordial fluctuations evolves to form the
observed large scale structure. A∗ and power index ns are undetermined
which can be constrained with data. From Eq.1.11, the large scale structure
is closely relative to the density of cosmological material and their equa-
tions of state. So the observation of large scale structure can also constrain
{Ωi, wΛ}.

The primordial power-law index is directly related to the inflationary
physics [28]. By constraining this parameter we can study inflation. The
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transfer function helps us to study the epoch of horizon-passing and radia-
tion/matter transition [30]. While growth factor describe the late evolution
of fluctuation. Since the late universe becomes dominated by dark energy,
growth factor contains the information of it [56].

Another quantity is often used to describe large scale structure is the
two-point correlation function:

ξ(r) ≡ 〈δ(x+ r)δ(x)〉 (1.15)

which is the Fourier transformation of the power spectrum

P (k) =

∫
exp(−ik · r)ξ(r)d3r (1.16)

Observations of large scale structure cover a broad range of wavelengths
and different kind of objects. Sky surveys like SDSS[24] and 2dF[90] projects
make redshift surveys of distant galaxies. CMB observations like WMAP
and Planck measures the secondary effects of large scale structure on CMB[79].
The Canadian Hydrogen Intensity mapping Experiment is going to map the
distribution of neutral Hydrogen over the redshift range from 0.8 to 2.5[15].
CFHTLens, RCSLens and KiDS are measuring the weak lensing effect. The
cross analysis of different observations give us more precise knowledge about
large scale structure.

In this thesis, I will discuss the role of cross correlation between thermal
Sunyaev-Zeldovich effect, weak lensing and the Cosmic Infrared Background
in the study of large scale structure.

1.4 Anisotropy in the Cosmic Microwave
Background

In the very early universe, when temperature is much higher than the ioniza-
tion energy of hydrogen, electrons are free. The optical depth is extremely
high so photons are tightly coupled with baryon, and they behave like a sin-
gle fluids. When the temperature cools down to about 10eV, electrons are
trapped by protons, and photons decouple from the baryons. These earliest
photons propagate nearly freely to us and comprise the Cosmic Microwave
Background.

We can treat fluctuations of the photon fluid the same way as the for-
mer section. In order to relate the calculation with observation, it is more
convenient to use the temperature fluctuation Θ ≡ δT

T instead of density to
describe the fluctuation. Here the average temperature scales proportional

10



1.4. Anisotropy in the Cosmic Microwave Background

Figure 1.3: Linear matter power spectrum P(k) versus wavenumber ex-
trapolated to z = 0, from various measurements of cosmological structure.
The black line is the best-fit ΛCDM model. Source: https://ned.ipac.

caltech.edu/level5/Sept11/Norman/Figures/figure2.jpg
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1.4. Anisotropy in the Cosmic Microwave Background

to 1/a, with the current value 2.728K [31]. To study CMB anisotropy, we
mainly consider a single-wave Θ(k) in ` space, that is:

Θ`(k) ≡ 1

(−i)`

∫
dµ

2
P`(µ)Θ(k, µ) (1.17)

where µ is the cosine of the polar angle of k, and P`(µ) is the Legendre
polynomial.

The complete dynamical equations for the photon-baryon fluid are de-
rived from Boltzmann equation. The dominate term is Θ0 which satisfies:

Θ̈0 +
ȧ

a

R

1 +R
Θ̇0 + k2c2

sΘ0 = F (k, η) (1.18)

The derivative Θ̇0 shows the derivative with respect to the comoving
time η. Here R ≡ 3ρb

4ργ
denotes the ratio between baryon density and the

photon density. cs is the sound speed of the baryon-photon fluid:

cs =

√
1

1 +R
(1.19)

The right side of the equation F (k, t) denotes the driving force from
the metric. So this equation looks exactly like the equation of a damping
oscillator with a driving force. If we neglect the damped term and the
driving force, the solution would be:

Θ0(k) ∼ cos[krs(η)] (1.20)

where the comoving sound horizon at the time η is defined as:

rs(η) ≡
∫ η

0
cs(η

′)dη′ (1.21)

The peaks will appear at kp = nπ/rs where n is an integer. After the
recombination, the sound horizon freezes to be rs(η∗) and kp also fixes to be
kp = nπ/rs(η∗).

For other angular scales, we can always write the dynamic equation and
solve for Θ`(k, η). These equations hold until recombination that happens at
η∗. The first free photons propagates to us today and we need to consider the
imprint of inhomogeneities of large scale structure including gravitational
wells and barriers; scattering by high energy electron (thermal Sunyaev-
Zeldovich effect). As a result, the anisotropy today Θ`(k, η0) is a mixture of
Θ`(k, η∗) and dominated by Θ0(k, η∗).
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A perturbation with wavenumber k contributes predominantly to an an-
gular scale of order ` ∼ kη0, where η0 is the comoving time today. Since the
dominant term Θ0(k, η∗) peaks at kp = nπ/rs(η∗), Θ`(k, η0) has the maxi-
mum at `p = nπη0/rs(η∗), and the corresponding angle is θp = rs(η∗)/nη0,
which is a fraction of the angle corresponding to sound horizon at recombi-
nation.

The observed CMB map is Θ(n̂). We can expand the signal in terms of
spherical harmonics:

Θ(n̂) =
∞∑
`=0

∑̀
m=−`

a`mY`m(n̂) (1.22)

According to inflation, the a`m are expected to be Gaussian random
variables with mean value zero, and variance:

〈a`ma∗`′m′〉 = δ``′δmm′C` (1.23)

where C` is the angular power spectrum of CMB. The angular power spec-
trum may be estimated from data by.

Ĉ` =
1

2`+ 1

∑̀
m=−`

a`ma
∗
`m (1.24)

For each `, we have 2` + 1 samples of the a`m, so there will be an
inevitable uncertainty for our estimated Ĉ` even from an all-sky observation,
which is called the cosmic variance. For a Gaussian sample, the variance is
proportional to one over square root of number of samples, so:

∆C`
C`
∼
√

2

2`+ 1
(1.25)

At low ` the cosmic variance is relatively high and cannot be improved by
any observation from earth since it is due to the limited number of samples
that we have.

The relation between C` and Θ`(k) is

C` =
2

π

∫ ∞
0

P (k)

∣∣∣∣Θ`(k, η0)

δ(k)

∣∣∣∣2 k2dk (1.26)

where δ(k) is the overdensity and P (k) is the mass power spectrum defined
in Eq.1.12. By solving the equation for δ and Θ` we can know the angular
spectrum of CMB.
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Figure 1.4: Sensitivity of the angular power spectrum to four fundamental
cosmological parameters. (a) The curvature as quantified by Ωtot = 1− Ωk

. (b) The dark energy as quantified by the cosmological constant ΩΛ(wΛ =
−1) . (c) The physical baryon density Ωbh

2. (d ) The physical matter
density Ωmh

2. All are varied around a fiducial model of Ωtot = 1, ΩΛ =
0.65, Ωbh

2 = 0.02, Ωmh
2 = 0.147. Image is from [45]

In the equations governing δ and Θ` depend many cosmological param-
eters. The observed shape of the angular power spectrum helps us to con-
strain these cosmological parameters. For example, based on observation
we can find the angular distance of the sound horizon at recombination by
identifying the first peak of the angular power spectrum. If the universe
is not flat, then the angular distance of the sound horizon will not equal
to the comoving distance which can be derived with the knowledge of R
and η∗. So the cosmic curvature can in fact change the position of the
acoustic peaks. An illustration of sensitivity of angular power spectrum to
cosmological parameters is shown in Fig.1.4.
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The decoupled baryons will also contain the information of the sound
horizon at recombination. Before recombination, a single density peak prop-
agates with the sound speed cs. The baryons are pushed by photons since
they are tightly coupled. After recombination, photons propagate away as
the CMB and leave the acoustic peak of baryon concentrating the sound
horizon r(η∗). This concentration makes a higher overdensity called acous-
tic peak. When we analyze the two-point correlation function of galaxies,
we can see this peak at a scale of ∼ 150h−1Mpc. This effect is called the
Baryon Acoustic Oscillation (BAO). As the sound horizon is a fixed value
(irrespective of what object we observe), the scale of the BAO peak serves as
a standard ruler. And its position can probe the distance-redshift relation.

1.5 The ΛCDM Model

The current standard model of cosmology is called the ΛCDM model. It is a
parametrized model of the big bang cosmology. Λ stands for the cosmological
constant which serves as the dark energy. Its state of equation is w = −1 so
it has an effective negative pressure. CDM is the abbreviation of ’cold dark
matter’, which means that the dark matter particles, no matter what they
are, move with a low speed compared to speed of light.

In the framework of the ΛCDM model, there are 6 free parameters to
be fixed by observation. They are: physical baryon density Ωb, the dark
matter density Ωc, the age of the universe t0, the scalar spectral index
ns, and the fluctuation amplitude As. The other model values, including
the Hubble constant and age of the universe can be derived from these
parameters assuming a flat universe.

The estimation of ΛCDM parameters from observations is one of the fore-
most tasks in modern cosmology. In the context of statistics, it is basically
a process to maximize P (M |D̂), the probability distribution of parameters
(M) given the condition of observational data (D̂). According to Bayes’
theorem:

P (M |D̂) =
P (D̂|M)P (M)

P (D̂)
(1.27)

The prior for D is generally set such that
∫
P (M |D)dnM = 1 and the

prior for model parameters is set by prior information. P (M |D̂) depends
on P (D̂|M), which is also called the likelihood L(M,D). The simplest
likelihood predicted by inflation is the Gaussian likelihood:
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Figure 1.5: 68.3%, 95.4%, and 99.7% confidence regions of the (Ωm, w) plane
from supernovae data combined with the constraints from BAO and CMB.
This image is from [14]

L(M,D) ≈ 1√
(2π)ND detCD

exp

[
−1

2
(D̂ −D(M))TC−1

D (D̂ −D(M))

]
(1.28)

Here D(M) is the theoretical value for the data given model the parameters
M and CD is the data covariance matrix. Since P (M |D̂) is proportional
to likelihood, what we need to do is to maximize the likelihood to find the
best-fit values for M . Moreover, we need to estimate the error of M to
evaluate the goodness of fit.

A quick and dirty estimate of parameter covariance matrix is provided
by Fisher matrix:

Fij ≡
∂Da

∂Mi
C−1
D,ab

∂Db

∂Mj
(1.29)
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Parameter Value

Ωbh
2 0.0223± 0.00014

Ωch
2 0.1188± 0.001

t0 13.799± 0.021Gyr
ln(1010As) 3.064± 0.023
ns 0.9667± 0.004
τ 0.066± 0.012

Table 1.2: ΛCDM independent parameters given by Planck Collaboration
[5]

If the model is purely linear, then the parameter covariance matrix is
exactly the Fisher matrix. For cosmology it is typically not. A commonly-
used method to estimate parameter errors is the Markov-Chain-Monte-Carlo
method (MCMC).

An MCMC chain is a sampler in parameter space. The chain is generated
by comparing the likelihood of a randomly-picked new point with the last
point in the existing chain to decide whether keep the new point in the
chain or discard it. After many iterations, the Markov Chain will sample
the parameter distribution. Then we can draw the contour corresponding
to different confidence level to present the parameter error.

There are data from many different experiments including distant super-
novae, sky survey, CMB observations etc. Different data set can be combined
to make better constraints on ΛCDM parameters. Take Fig.1.5 as an ex-
ample. In this figure blue, orange and green contours are confidence regions
of the (Ωm, w) plane from supernovae data combined with the constraints
from BAO and CMB. SNe data is from the Supernova Cosmology Project;
BAO data is from SDSS DR7 and 2dFGRS; CMB data is from WMAP7.
The grey contour shows the combined confidence region of these three ob-
servations which gives a much better constrain on (Ωm, w) than any single
experiment.

Table.1.2 gives the ΛCDM parameters given by Planck Collaboration.
Other experiments may give a slightly different value but most of them are
compatible. It is expected that with the continuously improving observa-
tional precision, we can make better constraints on these parameters in the
future.
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1.6 Brief Introduction to Cosmological Inflation

1.6.1 Problems in Standard Cosmology Model

The standard ΛCDM model for cosmology has become a successful model
to describe our universe. However, there are some puzzles in our universe
that cannot be explained by the ΛCDM model. The 3 important puzzles
are:

1. The horizon problem: the standard cosmology model cannot explain
the fact that the sky looks quite similar between two largely separated points
in space. In the past these two points should have interacted with each other
to reach equilibrium. But information could only travel at most light speed
or less

The particle horizon dH at time t is defined as the proper distance that
light can travel from the beginning of the universe to t. For light we have
d2s = 0. According to the definition of FRW metric:

dH(t) ≡ a(t)

∫ t

0

dt′

a(t′)
(1.30)

If we assume that the universe is dominated by radiation at early times,
it can be easily calculated that at the time of last scattering the particle
horizon is dH(tls) = 0.251Mpc where tls is the time of last scattering. The
CMB is at an angular distance from our position to the last scattering surface
dA ≈ 12.8Mpc. Assuming a flat universe (which is shown to be true with
multiple observations), points on the last scattering surface separated by a
horizon distance will have an angular separation:

θH =
dH(tls)

dA
≈ 0.251Mpc

12.8Mpc
≈ 1.1◦ (1.31)

This means that two points in a CMB map which are separated by an
angle larger than 1.1 ◦ should had never interacted with each other. This
conflicts with the fact that the temperature of CMB is highly isotropic to
one part in 105.

2. The flatness problem: The spatial curvature of the universe at time t
can be defined as:

1− Ωtot(t) = −K
(
H(t)

a(t)

)2

=
H2

0 (1− Ωtot(t0))

H(t)2a(t)2
(1.32)

With the current data, we have
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1− Ωtot(t0) ≤ 0.005 (1.33)

Combine Eq.1.4, 1.5 and the definition of H. In the context of big bang
cosmology, the early universe is dominated by matter and radiation, so that:

H(t)2

H2
0

=
Ωr,0

a4
+

Ωm,0

a3
(1.34)

so the curvature parameter evolves as:

1− Ωtot(t) =
1− Ωtot(t0)a2

Ωr,0 + aΩm,0
(1.35)

We can see that this parameter is always increasing as a function of time.
Given the values of Ωr,0 and Ωm,0 and 1−Ωtot(t0) we can calculate the value
at the earliest time we dare to describe the universe using general relativity,
the Planck time:

|1− Ωtot(tP )| ≤ 2× 10−62 (1.36)

This is an extremely tiny value, which means that the early universe
should be extremely flat. It is unnatural to require such a fine-tuned uni-
verse.

3. The magnetic monopole problem: Earlier than tGUT ∼ 10−36s, the
universe is thought to be in the the Grand Unified Theories (GUT) epoch,
when strong, weak and the electromagnetic interaction cannot be distin-
guished from one another. When t = tGUT, the strong interaction decouples
from electroweak interaction, which is called the GUT phase transition. This
phase transition is associated with a loss of symmetry and it gives rise to
flaws known as topological defects. GUT theories predict that the GUT
phase transition creates point-like topological defects that act as magnetic
monopoles.

From GUT theory, the number density of monopoles is n(MM)(tGUT ) ∼
1082m3. Given the mass of magnetic monopoles, it can be directly calculated
that the energy density of magnetic monopoles is

εM (tGUT) ∼ 1094Tev m−3 (1.37)

which is 10 orders of magnitude less than the energy density of radiation. As
magnetic monopoles are massive particles, their energy density evolves at
the rate ∝ a−3 while for radiation ∝ a−4. So at the time around t ∼ 10−16s,
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the energy density of magnetic monopoles and radiation should be equal
and the current universe should be dominated by magnetic monopoles.

However, there is no strong evidence that they exist now at all. Obser-
vations show that the upper bound of the density of the magnetic monopole
is ΩMM,0 < 5× 10−16.

1.6.2 The Inflation Solution

All of the three problems are based on the standard model of cosmology
for which the early universe is dominated by massive matter and radiation.
This suggests that the solution to these problem may be that the very early
universe experiences a different expansion history.

In 1980, Alan Guth proposed the cosmological inflation on a SLAC sem-
inar primarily to solve the magnetic monopole problem. The idea is that
at some time after the GUT time, the universe experienced a extremely
dramatic expansion, which diluted the density of monopoles to a very small
number. Guth first proposed an accelerating expansion of the early uni-
verse which is called ’cosmological inflation’[37] and then showed that it
successfully solved the horizon and flatness problems.

During the inflation epoch, ä > 0. According to (1.3), this means that

P < −1

3
ρ (1.38)

So there existed something with negative pressure during the inflation
epoch of the universe. The simplest implementation of inflation states that
the universe was temporarily dominated by a positive cosmological constant
ρΛ. According to 1.4, the scale factor scales as

a(t) ∝ eHit (1.39)

where Hi is the Hubble constant during inflation, which is defined as:

Hi ≡
8π

3
ρΛ (1.40)

It remains a constant during inflation and keeps the universe expands
exponentially. Thus, between the time ti, when the exponential inflation
began, and the time tf , when the inflation terminated, the scale factor
increased by a factor

a(tf )

a(ti)
= eN (1.41)
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where N, the number of e-foldings of inflation, was

N ≡ Hi(tf − ti) (1.42)

The number of e-foldings of inflation is a very important parameter de-
scribing inflation. The value can be constrained by studying how inflation
can solve the three problems. Let’s first look at the flatness problem. As-
sume that inflation happens right after the GUT time, so ti = 10−36s with
Hi ≈ t−1

i and lasts N e-foldings, ending at tf ≈ (N + 1)ti. Putting 1.39 into
1.32 yields:

|1− Ωtot(t)| ∝ e−2Hit (1.43)

Suppose that the universe is strongly curved (which seems not that un-
natural) before inflation, so at the time tf after N e-foldings

|1− Ωtot(tf )| ∼ e2N (1.44)

After inflation, the universe became dominated by radiation. So we can
extrapolate the scale factor back to the time tf ≈ (N + 1) · 10−36s

a(tf ) ≈ 2× 10−28
√
N + 1 (1.45)

Given the measured value |1−Ωtot(t0)| ≤ 0.005 today, the flatness factor
had the value

|1− Ωtot(tf )| ≤ 2× 10−54(N + 1) (1.46)

Comparing (1.44) and (1.46) gives an estimate N ≥ 60. This means
that if the universe inflated this number of e-foldings, the curvature density
|1− Ωtot| can be of order of 1, which solves the flatness problem.

To resolve the horizon problem, we first calculate the horizon distance
at the beginning of inflation using (1.30) and assume that the universe is
dominated by radiation at this epoch:

dH(ti) = a(ti)

∫ ti

0

dt

a(t)
= 2ti (1.47)

Then the horizon size at the end of inflation was

dH(tf ) = a(ti)e
N

(∫ ti

0

dt

a(t)
+

∫ tf

ti

dt

a(ti) exp[Hi(t− ti)]

)
≈ 3eN ti (1.48)
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Given ti ∼ 10−36s, the horizon size immediately before inflation was:

dH(ti) = 2ti ≈ 6× 10−28m (1.49)

After 65 e-foldings of inflation (we take this value for concreteness. This
value is compatible with the requirement to solve the flatness problem, for
which N ≥ 60.), the horizon size immediately after inflation was

dH(tf ) ≈ 3eN ti ∼ 15m (1.50)

Given the current radius of the last scattering surface dp(tls) ≈ 2 ×
14000Mpc, at the end of inflation, this radius was

dp(tf ) = a(tf )dp(t0) ∼ 3× 10−23Mpc ∼ 0.9m (1.51)

This value is less than the horizon size at the end of inflation, which
means that particles in this radius can interact with each other during that
epoch. So any point on the last scattering surface could have interacted
during inflation. So the horizon problem is resolved.

For the monopole problem, the inflationary universe can greatly dilute
the number density of monopoles. Too see how it works, let’s take the
number density of monopoles at ti to be nMM(ti) ∼ 1082m−3. After 65
e-foldings of expansion, the number density would have been nMM(tf ) =
e−195nMM(ti) ∼ 0.002m−3. The number density today, after the additional
expansion from a(tf ) ∼ 2 × 10−27 to a0 = 1, would then be nMM(t0) ∼
2×10−83m−3 ∼ 5×10−16Mpc−3, which means that within the last scattering
surface, the total number of monopole is of order 10−11. It is absolutely
unlikely to be detected.

1.6.3 The Physics of Inflation

The first success of inflation is that it provides solutions to these three
problems. But the physics of inflation remains a question both for cosmology
and for high energy physics. The first theory that describes the physics of
inflation was proposed by Alan Guth. The idea is that there exists a scalar
field φ (Guth thought it was actually the Higgs field) that is responsible
for inflation. During the cooling process of the very early universe, this
field was trapped in a local minimum of its potential V0 (the false vacuum).
When the other contents cooled to an energy density lower than V0, then
the universe was dominated by this field. During the inflation epoch, the
universe was actually in a metastable state with a constant energy V0, so
it underwent an exponential expansion (inflation). At the end of inflation
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Figure 1.6: A potential of the inflaton field that can give rise to inflation.
This figure comes from [72].

epoch, the scalar field tunneled through the potential barrier and rolled
toward the true minimum of the potential (true vacuum). The energy of the
scalar field (latent heat) reheated the universe.

There is a problem with this model called ’graceful exit problem’. Dur-
ing inflation, the universe was in a false vacuum state everywhere. At the
end of inflation, the universe did not tunnel into the true vacuum simultane-
ously. Instead, there appeared many true vacuum ’bubbles’ and they expand
quickly and the walls of bubbles collapsed with each other then made the
universe decay into the true vacuum. The problem is that reheating only
happened around the walls while the interior of the bubble is completely
empty. which means that at the end of inflation, reheating was very inho-
mogeneous. So the universe would be highly inhomogeneous and anisotropic
today.

The original version of inflation model by Guth was soon supplanted by
a new version proposed by Linde[55] and by Albrecht and Steinhardt[11].
The new inflation model is called the slow-roll inflation. It assumes that
the potential of the inflaton field was very flat around V0 in the beginning
and then goes down to the vacuum state at φ = φ0. The field started at
φ = 0 where V (0) = V0 and very slowly rolled toward φ0 (see Fig.1.6). The
universe cooled down enough that the inflaton field dominated the energy
density to cause inflation. At the end of inflation φ rolled down to φ0 and
the reached its true vacuum state. The phase transition also happened by
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forming bubbles, but under this scenario the interior of the bubble started
at φ ∼ 0 and slow-rolled to φ0. Eventually the field energy was converted
into radiation by oscillating around the minimum of the potential. The
horizon is assumed to be within one bubble so the universe homogeneous
and isotropic.

For the inflaton field φ, its energy density and pressure take the form:

ρ =
1

2
φ̇2 + V (φ), P =

1

2
φ̇2 − V (φ) (1.52)

I drop the suffix φ for ρ and P here for simplicity. But reader should bear in
mind that in this subsection all the density and pressure terms are associated
with the inflaton field.

The energy conservation equation ρ̇ = −3H(ρ+ P ) takes the form

φ̈+ 3Hφ̇+ V ′(φ) = 0 (1.53)

The Hubble parameter during inflation is given by

H =

√
8πρ

3
=

√
8π

3

(
1

2
φ̇2 + V (φ)

)
(1.54)

Combining (1.53) and (1.54), we have

Ḣ = −4πφ̇2 (1.55)

In order to have exponential expansion, the fractional change of H in a
Hubble time, 1/H, must be much less than unity:

ε ≡ |Ḣ|
H

1

H
� 1 (1.56)

With (1.55), this requires that

φ̇2 � |V (φ)| (1.57)

This has the consequence that P ' −ρ, and also

H '
√

8πV (φ)

3
(1.58)

Notice that the Hi value discussed in the last section is nothing but the
H value at φ = 0. We require that φ changes very slowly so that during
inflation H is approximately constant.
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Usually it is also assumed that the fractional change of φ̇ during a Hubble
time is also much less than unity, that is:

η ≡ |φ̈|
|φ̇|

1

H
� 1 (1.59)

This means that in (1.53), we can drop the term φ̈ and the equation becomes

φ̇ = −V
′(φ)

3H
= − V ′(φ)√

24πV (φ)
(1.60)

Then (1.56) becomes ∣∣∣∣V ′(φ)

V (φ)

∣∣∣∣� √16π (1.61)

Taking time derivative of (1.60) and combining with inequality (1.61), we
have ∣∣∣∣V ′′(φ)

V (φ)

∣∣∣∣� 24π (1.62)

(1.61) and (1.62) are two flatness conditions that insure the slow roll
of φ. Also we have defined two slow-roll parameters ε and η. The two
flatness conditions are equivalent to the requirement that the two slow-roll
parameters are both much less than 1. With these two conditions, we can
estimate the length of inflation to be tf − ti ' φ0/φ̇. and the number of
e-foldings is

N = Hi(tf − ti) '
√

8πV0

3

φ0

φ̇
= 8π

V0φ0

V ′(φ)
(1.63)

The last equation comes from taking into account (1.60). Large values of φ0

and V0 (that is, a broad, high plateau) and small values of V ′(φ) (that is, a
flat plateau) lead to more e-foldings of inflation.

After rolling off the plateau, the inflaton field φ oscillates about the
minimum at φ0. But the oscillation are damped by the term Hφ̇ in (1.53)
and energy is carried away by particles. These particles reheat the universe
after the inflation.

So far we have only discussed the zero-th order term of the inflaton field
φ. Actually it has fluctuations, δφ, during the inflation era. Such fluctuation
actually serves as the seed of cosmological structure. For detailed calculation
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please see [28]. There is a relation between the matter power spectrum index
ns and the slow-roll parameters:

ns = 1− 4ε− 2η (1.64)

So the observation of a ’tilt’ in the matter power spectrum, ns < 1, can
provide evidence of inflation.

A ’smoking-gun’ of inflation is the existence of tensor perturbations, or
so-called primordial gravitational waves. There are generated from quantum
fluctuation during inflation. I will discuss this process in the next section.

The three phenomenological parameters N, ε, η of inflation can be con-
strained by observation of large scale structure and the CMB (especially
CMB polarization). We have not discuss the origin of the inflaton field and
what the exact form of V (φ): these are still open questions. There are many
models for inflation and most (if not all) of them need to be ruled out with
observation. See [54] for a summary of recent developments in the study of
inflation.
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Chapter 2

Observing CMB
Polarization: The PIXIE
Experiment

The frequency spectrum and temperature anisotropy of the CMB have con-
tributed immensely to our understanding of the universe. It’s polarization
anisotropy also carries unique information from the early universe, especially
the polarization anisotropy can tell us more. Especially about the physics
of inflation.

Research on CMB polarization started in the 1980s [18] and matured
around 1997. [75][49] give a clear mathematical description of CMB polar-
ization and how to relate it to observations. Reviews of CMB polarization
may be found in [91][46].

In the first section I will some theoretical and some observational issues
in CMB polarization. The calculation follows [28] and [66]. The second
section briefly introduces the PIXIE experiment and the last section discuss
my work on instrument simulation for PIXIE.

2.1 Studying the Inflation Era with CMB
Polarization

2.1.1 The Stokes Parameters

There are several ways to describe the polarization of photons, for example,
the x and y components (when taking z as the propagation direction) and
the Jones matrix. For the CMB, we often use the Stokes parameters. For
monochromatic light propagating along the z direction, its electric field can
be written ~E = (Exx̂+Eyŷ)eiωt+iφ(~r) where x̂, ŷ are unit vector along x and
y direction, and φ(~r) is an arbitrary phase factor which depends only on
position. Define the Stokes parameters as:
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I ≡
〈
E2
x

〉
+
〈
E2
y

〉
Q ≡

〈
E2
x

〉
−
〈
E2
y

〉
U ≡2Re 〈E∗xEy〉
V ≡2Im 〈E∗xEy〉

(2.1)

where 〈·〉 represents expectation values. I only contains information on the
intensity but not polarization. V only appears when there is a circular
polarization component. When the light is monochromatic and linearly
polarized 1, the Q and U parameters can be simplified as:

Q ≡E2
x − E2

y

U ≡2ExEy
(2.2)

The polarized intensity and polarization angle can be denoted as:

P =
√
Q2 + U2

ψ =
1

2
arctan

(
U

Q

)
(2.3)

The information is fully included in Q and U parameters, which agrees with
the fact that a linearly polarized light has 2 degrees of freedom.

If we rotate the light wave around z axis by an angle of α, then Q and
U will change into: (

Q′

U ′

)
=

(
cos 2α − sin 2α
sin 2α cos 2α

)(
Q
U

)
(2.4)

So the Q and U parameters change like a spin-2 particle. Note that if
we set α = π

2 then Q and U interchange.

2.1.2 Thomson Scattering

CMB photons that we receive today are the photons which were last-scattered
at the last scattering surface. Thomson scattering leaves footprint on CMB
polarization. For Thomson scattering, the cross section of ith component is

proportional to
2∑
j=1
|ε̂i(n̂) · ε̂′j(n̂′)|2. n̂′ is the incoming direction and n̂ is the

outcoming direction, while ε̂ and ε̂′ are the polarizations for incoming and

1CMB photons are linearly polarized. And we can always deal with a ’template’ of Q
and U then multiply it by the black body spectrum.

28



2.1. Studying the Inflation Era with CMB Polarization

outcoming rays. According to (2.2), the Q and U parameters for scattered
light are:

Q = A

∫
dΩ′f(n̂)

2∑
j=1

(
|x̂ · ε̂′j |2 − |ŷ · ε̂′j |2

)
(2.5)

U = 2A

∫
dΩ′f(n̂)

2∑
j=1

|x̂ · ε̂′j |2 ·
2∑
j=1

|ŷ · ε̂′j |2 (2.6)

where A is a normalization factor which we are not interested in. Ω′ is the
solid angle of the incoming light. f(n̂′) is the amplitude of light incoming
from n̂′ direction. In xyz coordinate, assume n̂′ = (sin θ′ cosφ′, sin θ′ sinφ, cos θ′).
Choose x̂′ and ŷ′ direction so that the z component of ŷ′ is zero. So

x̂′ = (cos θ′ cosφ′, cos θ′ sinφ′,− sin θ′)

ŷ′ = (− sinφ′, cosφ′, 0)
(2.7)

plug this into (2.5) and (2.6), we have:(
Q
U

)
= A

∫
dΩ′f(n̂) sin2 θ′

(
cos 2φ′

sin 2φ′

)
(2.8)

In terms of spherical harmonic functions, (2.8) reads:(
Q
U

)
= A

∫
dΩ′f(n̂) sin2 θ′

(
Y 2

2 (Ω′) + Y −2
2 (Ω′)

1
i

[
Y 2

2 (Ω′)− Y −2
2 (Ω′)

]) (2.9)

We are only interested in the fluctuation of the amplitude, which is
proportional to the temperature fluctuation, so

(
Q
U

)
∝ A

∫
dΩ′Θ(n̂) sin2 θ′

(
Y 2

2 (Ω′) + Y −2
2 (Ω′)

1
i

[
Y 2

2 (Ω′)− Y −2
2 (Ω′)

]) (2.10)

So the perturbation on Q and U only depends on the quadrupole of the
temperature anisotropy Θ. We need to solve the Boltzmann equation for
photons to get Θ(n̂), then integrate (2.10) to get the exact form for Q and
U .
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2.1.3 Angular Power Spectrum of Polarization

First define Q± ≡ Q ± iU . From (2.4) the transformation of Q± is Q± →
e±2iαQ±. So Q± can be decomposed into spin 2-weighted spherical harmon-
ics

Q±(n̂) =

inf∑
`=2

∑̀
m=−`

Q±`m±2Y
m
` (n̂) (2.11)

The definition of spin2-weighted spherical harmonics ±2Y
m
` (n̂) will be dis-

cussed in the Appendix A.
The E and B mode of the polarization anisotropy are defined as:

E`m ≡ −
Q+
`m +Q−`,−m

2
, B`m ≡ i

Q+
`m −Q

−
`,−m

2
(2.12)

Under parity transformation, Q does not change while U changes into
−U . Also ±Y

m
` → (−1)`±Y

m
` , thus E`m → (−1)`E`m andB`m → (−1)`+1B`m.

E is a scalar field while B is a pseudo-scalar field. E has the same parity as
Θ but opposite to B, so EB and ΘB cross-correlations are both zero.

Define the angular power spectra:

〈E∗`mE∗`′m′〉 = δ``′δmm′CEE`

〈B∗`mB∗`′m′〉 = δ``′δmm′CBB`

〈Θ∗`mE∗`′m′〉 = δ``′δmm′CΘE
`

(2.13)

The EE signal is relatively strong and was first detected by DASI in 2002[21].
It can be used to constrain cosmological parameters when combined with
other observations. ΘE at low ` contains information about the reionization
era. BB is what this chapter mainly concern about because it serves as a
good method to study the inflation.

At small angular scales (high `), the spin 2-weighted spherical harmonics

can be approximated as ±Y
m
` (n̂) → e±2iφ`ei

~̀·n̂. The spherical harmonic
decomposition is then approximately equal to a Fourier transformation in
2-d.

(Q± iU)(n̂) =
∑
`

∑
m

(E`m + iB`m)±2Y
m
` (n̂)

→
∫ [

E(~̀) + iB(~̀)
]
e±2iφ`ei

~̀·n̂d~l

(2.14)

Transform (Q± iU)(n̂) into ~̀ space:
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Figure 2.1: E and B-mode polarization patterns. (left panel) A representa-
tive Fourier mode of a density perturbation. (middle) E-mode polarization
pattern resulting from Thomson scattering of this mode (growing ampli-
tude). (right) B-mode polarization pattern. Figure is from [21]

(Q± iU)(n̂) =

∫
(Q± iU)(ˆ̀)ei

~̀·n̂d~l (2.15)

plug into (2.14) we get:(
E(~̀)

B(~̀)

)
=

(
cos 2φ` sin 2φ`
− sin 2φ` cos 2φ`

)(
Q(~̀)

U(~̀)

)
(2.16)

Here ~̀ is the wave vector in 2-D plane and φ` is the angle between ` and
polar axis. Note that this wave vector is for the perturbation pattern but
not for the light wave. For a single `, E and B distribute just like a single-
mode wave. If we choose x axis as the polar axis and let φ` = 0, we have
E = Q and B = U . So the pure E polarization is parallel or perpendicular
to ` while pure B mode is π

4 or 3π
4 off ` (see Fig.2.1).

So the small-scale power spectra for E and B mode are defined as:〈
E∗(~̀)E(~̀′)

〉
= (2π)2δ(~̀− ~̀)CEE`〈

B∗(~̀)B(~̀′)
〉

= (2π)2δ(~̀− ~̀)CBB`
(2.17)

ΘE power spectrum can be similarly defined. The early papers like [75][44][91]
use 2.13, while [74] and [28] use 2.17 as the definition of E and B modes.
The definition 2.13 shows the parity property of E and B modes while 2.17
has a more clear picture and easy to calculate. [49] decomposes the rank-2
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Figure 2.2: Local quadrupole perturbation field. Red color represents red-
shift and blue is blueshift. Figures are from http://background.uchicago.

edu/~whu/index.html

trace-free polarization matrix into a curl part (C) and gradient part (G).
They are equivalent to E and B modes.

2.1.4 From Temperature Fluctuations to Polarization
Fluctuations

The perturbation of the spacetime metric can be denoted as:

g00 = −1− 2Ψ

g0i = Vi

gij = a2δij(1 + 2Φ) + a2hij

(2.18)

where Ψ and Φ are called the scalar perturbations; Vi is the vector pertur-
bation and the symmetric-traceless matrix hij is the tensor perturbation.
Plug this metric into Einstein’s Field Equation to obtain the dynamical
equations for the three modes of perturbation. The scalar fluctuations act
like a harmonic oscillator, vector perturbations act a vortex field and tensor
perturbations are gravitational waves.

These three modes of perturbation have different origins. The scalar
perturbations are driven by matter fluctuations; the vector modes cannot
be generated by inflation and decay quickly to zero; tensor modes originate in
the quantum fluctuations during inflation. Their amplitude is proportional
to the energy scale of inflation. So tensor perturbation can probe the physics
behind inflation. The tensor-to-scalar ratio r represents the energy level of
inflation. ns (see (1.64)) and r are two most important parameters for the
inflation model.

The perturbations of the metric affects the photon-baryon fluid because
it perturbs the movement of photons and baryons. See Fig.2.2. We can
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solve the exact Boltzmann equation for the photon polarization combining
with the Einstein Field Equation with a perturbed metric. The scalar and
tensor perturbation are decoupled and we can treat them separately.
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Figure 2.3: Angular power spectra of EE,BB and ΘE generated by CAMB.
Reionization and gravitational lensing are taken into account. The cosmol-
ogy is: Ωk = 0, Ωbh

2 = 0.02, Ωmh
2 = 0.16,ns = 1, r = 0.1, TCMB = 2.7255K.

The dashed line represents negatively correlated.

For scalar perturbation, one can solve the Boltzmann equation and find
that

CEE` ≈ CP`
CBB` = 0

(2.19)

CP` is the angular power spectrum for the polarization intensity. These
equations means that scalar field can only produce E mode perturbation.
Tensor perturbation can generate both E and B mode:
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CEE` = (2π)2

∫ {[
D1,+
` (~k)

]2
+
[
D1,×
` (~k)

]2
}

d3k

CBB` = (2π)2

∫ {[
D2,+
` (~k)

]2
+
[
D2,×
` (~k)

]2
}

d3k

(2.20)

Where D is defined as:

D1,ε
` =

2

2`+ 1

[
(`+ 1)Θε

`+1(~k) + `Θε
`−1(~k)

]
D2,ε
` =

2

2`+ 1

[
(`+ 1)(`+ 2)

2`+ 3
Θε
`+2(~k) + 2

6`3 + 9`2 − `− 2

(`− 1)(2`+ 3)
Θε
`(
~k)

+
`(`− 1)

2`− 3
Θε
`−2(~k)

] (2.21)

where Θε
` are the two modes of CMB temperature perturbation generated by

tensor metric perturbation. From (2.20) we can see thatB mode polarization
can be only generated by tensor perturbation. So it is a ’smoking gun’ for
inflation.

The previous discussion only considers the ’primordial’ effect on CMB
polarization. However, secondary scattering from foreground also leaves
trace on CMB polarization. Reionization causes a boost on large scales
(` < 10) because it introduces Thomson scattering from nearby reionlized
clouds. Weak lensing can displace CMB polarization and cause leakage
from E mode to B mode. Fortunately this effect only happens at small
scale (` & 100). See Fig.2.3 for an example of angular power spectra of
CMB temperature and polarization. The B mode is very weak compare to
the E mode signal.

Polarized dust emission from hot galactic dust contaminate the CMB
polarization. It is a crucial task for all the CMB polarization experiments
to separate the dust component from true CMB signal.

2.1.5 CMB Polarization Observations

The first detection of polarized CMB signal was given by DASI in 2002[21].
It detected a 4.9σ E mode signal and obtained EE and ΘE power spectra.
In 2003 WMAP also detected ΘE signal. Some following experiments (like
CBI[57], CAPMAP[16], BICEP1[50], QUaD[20]) gave more precise observa-
tions of E mode polarization, but none of them has made a detection of B
mode polarization yet.
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In 2013, Planck provided constraints on ns and r by combining their
data with some other observations [8]. Fig.2.4 shows their constraints for ns
and r. Since no B mode had been detected, the confidence region only gives
upper limits on r, but it is enough to rule out some of the inflation models.

Figure 2.4: Marginalized joint 68% and 95% CL regions for ns and r0.002

from Planck in combination with other data sets compared to the theoretical
predictions of selected inflationary models. r0.002 is the tensor-to-scalar ratio
at a pivot scale k∗ = 0.002Mpc−1.; N∗ is the number of e-fold. This image
is from [8]

Secondly, in March, 2014, BICEP2 announced a first 5σ detection of B
mode in 30 < ` < 150 at 150GHz. From this data, they derived constraints
on r of r = 0.2+0.07

−0.05. r = 0 was ruled out in 7σ confidence level.
However, the BICEP2 interpretation was soon be questioned. Firstly,

their constraint on r was larger than the upper limit given by Planck an
WMAP. In May 2014, [59] and [32] pointed out that BICEP2 might have
underestimated the polarized emission from galactic dust. In September,
2014, Planck released its first measurement of dust polarization at 353GHz
[4]. After extrapolating to 150GHz in BICEP2 region, the Planck Collabora-
tion found a similar dust B-mode signal. A joint analysis between BICEP2
and Planck showed a highly significant cross correlation suggesting that the
CBB` signal detected by BICEP2 was indeed due to dust. Taking this cor-
relation into account, the new constraint on r is an upper limit r < 0.12 at
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95% confidence.
There are currently many experiments aiming to detect CMB B-mode

polarization. Most of them are ground-based experiments. These experi-
ments use a variety of polarizers to separate the different polarization com-
ponents and bolometers or HEMT amplifiers to measure the brightness of
the signal. Table.2.1 gives a summary of current and future CMB polariza-
tion experiments.

Project Name Year Status ` range Frequency(GHz) Type

POLARBEAR 2012-date Active 50-2000 150 Ground
KECKArray 2010-date Active 21-335 95, 150, 220 Ground
ACTPol 2013-date Active 225-8725 90, 146 GHz Ground
SPTpol 2012-date Active 501-5000 95, 150 GHz Ground

QUIJOTE 2012-date Active 10-300
11, 13, 17,
19, 30, 40

Ground

AMiBA 2007-date Active n/a-4300 90 Ground
COMPASS 2003-date Active 200-600 26-36 Ground
POLAR 2000 Active 2-30 26-46 Ground

BEAST 2000-date Active 10-1000 100 and 150
Balloon,
Ground

KUPID 2003-date Active 100-600 12-18 Ground
ABS 2011-date Active 25-200 145 Ground
SPIDER - Active 10-300 90, 150, 280 Balloon

CLASS 2016-date Active 2-200
40, 90, 150,
220

Ground

BICEP3/Keck Array 2016-date Active degree scale 95,150,220 Ground
MBI-B - Future 360-16000 90 Ground
EBEX - Future 25-1000 150-450 Balloon

PIPER - Future -
200, 270, 350,
800

Balloon

PIXIE - Future 30GHz-6THz Satellite
QUBIC Future - 150,220 Ground

Table 2.1: The state of some current and future CMB polarization experi-
ments. Part of the data is from https://lambda.gsfc.nasa.gov/product/

suborbit/su_experiments.cfm
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2.2. Overview of the PIXIE Experiment

2.2 Overview of the PIXIE Experiment

The misinterpretation of the BICEP2 data was a reminder to pay close
much attention to foreground contamination. The B-mode signal is faint
compared to the polarized Galactic synchrotron and dust foregrounds [73].
Fig.2.5 shows the frequency spectra for the CMB B-mode with different r
values, compared with synchrotron and dust foregrounds. The best window
to observe the CMB B-mode is around 80GHz. But reliably separating CMB
emission from foreground emission based on their different frequency spectra
requires observations at multiple frequency channels.

Figure 2.5: The RMS on angular scales of 1 for the polarized CMB with
different r value compared with that from foregrounds extracted from the
WMAP data at ` = 90.[73]

The Primordial Inflation Explorer (PIXIE)[51] is an Explorer-class mis-
sion to detect the primordial CMB polarization signal. The proposed instru-
ment combines multi-moded optics with a Fourier Transform Spectrometer
(FTS) to provide breakthrough sensitivity for CMB polarimetry using only
four semiconductor detectors. The FTS system synthesizes 400 channels
across 2.5 decades in frequency (30GHz to 6THz). This frequency range is
broader than any operating and proposed CMB polarization experiment and
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the channels are continuous, which provides extraordinarily strong capabil-
ity to separate CMB from Galactic foregrounds. In addition, PIXIEs highly
symmetric design enables operation as a nulling polarimeter to provide the
necessary control of instrumental effects.

Figure 2.6: Theoretical angular power spectra for the unpolarized, E-mode,
and B-mode polarization in the CMB. The dashed red line shows the
PIXIE sensitivity to B-mode polarization.Red points and error bars show
the response within ` bins to a B-mode power spectrum with amplitude
r = 0.01[51].

Fig.2.6 shows the sensitivity of PIXIE to the B-mode polarization signal
in the CMB. PIXIE is sensitive to a B-mode signal on a relatively large
scale.

Fig.2.7 shows the instrument concept. Two off-axis primary mirrors 550
mm in diameter produce twin beams co-aligned with the spacecraft spin
axis. A folding flat and 50 mm secondary mirror route the beams to the
FTS. A set of six transfer mirror pairs (also called the Totem mirrors), each
image the previous mirror to the following one and shuttles the radiation
through a series of polarizing wire grids. Polarizer A transmits vertical po-
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2.2. Overview of the PIXIE Experiment

larization and reflects horizontal polarization, separating each beam into
orthogonal polarization states. A second polarizer (B) with wires oriented
45◦ relative to grid A mixes the polarization states. A Mirror Transport
Mechanism moves back-to-back dihedral mirrors to inject an optical phase
delay. The phase-delayed beams re-combine (interfere) at Polarizer C. Po-
larizer D (oriented the same as A) splits the beams again and routes them
to two multi-moded concentrator feed horns. Each concentrator is square to
preserve linear polarization and contains a pair of identical bolometers, each
sensitive to a single linear polarization but mounted at 90◦ to each other
to measure orthogonal polarization states. To control stray light, all inter-
nal surfaces except the active optical elements are coated with a microwave
absorber, forming a blackbody cavity isothermal with the sky.
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2.2. Overview of the PIXIE Experiment

Figure 2.7: Upper panel: Schematic view of the PIXIE optical signal path.
As the dihedral mirror moves, the detectors measure a fringe pattern propor-
tional to the Fourier transform of the difference spectrum between orthog-
onal polarization states from the two input beams (Stokes Q in instrument
coordinates). A full-aperture blackbody calibrator can move to block either
input beam, or be stowed to allow both beams to view the same patch of
sky; Lower panel: Instrument physical layout showing the beam-forming
optics and Fourier Transform Spectrometer[51].
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2.2. Overview of the PIXIE Experiment

Each of the four detectors measures an interference fringe pattern be-
tween orthogonal linear polarizations from the two input beams. For this
and the following sections, we use the convention that z axis is the direction
of the optical axis and the FTS lies in xz plane. Let ~E = Exx̂+Eyŷ repre-
sent the electric field incident from the sky. The power at the detectors as
a function of the dihedral mirror position l may be written:

PLy =

∫
(E2

Ax + E2
By) + (E2

Ax − E2
By) cos(4lω/c)dω

PLz =

∫
(E2

Ay + E2
Bx) + (E2

Ay − E2
Bx) cos(4lω/c)dω

PRy =

∫
(E2

Ay + E2
Bx) + (E2

Bx − E2
Ay) cos(4lω/c)dω

PRz =

∫
(E2

Ax + E2
By) + (E2

By − E2
Ax) cos(4lω/c)dω

(2.22)

where ω is the angular frequency of incident radiation, L and R refer to the
detectors in the left and right concentrators, and A and B refer to the two
input beams (Fig.2.7).

The term modulated by the mirror scan is proportional to the Fourier
transform of the frequency spectrum for Stokes Q linear polarization in
instrument-fixed coordinates. Rotation of the instrument about the beam
axis interchanges x̂ and ŷ on the detectors. The sky signal (after the Fourier
transform) then becomes:

S(ν)Ly =
1

4
[I(ν)A − I(ν)B +Q(ν)sky cos 2γ + U(ν)sky sin 2γ]

S(ν)Lz =
1

4
[I(ν)A − I(ν)B −Q(ν)sky cos 2γ − U(ν)sky sin 2γ]

S(ν)Ry =
1

4
[I(ν)B − I(ν)A +Q(ν)sky cos 2γ + U(ν)sky sin 2γ]

S(ν)Rz =
1

4
[I(ν)B − I(ν)A −Q(ν)sky cos 2γ − U(ν)sky sin 2γ]

(2.23)

where γ is the spin angle and S(ν) denotes the synthesized frequency spec-
trum with bins ν set by the fringe sampling.

PIXIE operates as a nulling polarimeter: when both beams view the
sky, the instrument nulls all unpolarized emission so that the fringe pat-
tern responds only to the sky polarization. The resulting null operation
greatly reduces sensitivity to systematic errors from unpolarized sources.
Normally the instrument collects light from both co-aligned telescopes. A
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2.2. Overview of the PIXIE Experiment

Parameter Value Notes

Primary Mirror Diameter 55 cm Sets beam size on
sky

Etendu 4 cm2 sr 2.7 times larger
than FIRAS

Beam Diameter 2.◦6 tophat Equivalent 1.◦6
Gaussian FWHM

Throughput 82.00% Excludes detector
absorption

Detector Absorption 54.00% Reflective back-
short

Mirror Stroke ±2.6 mm peak-peak Phase delay ±10
mm

Spectral Resolution 15 GHz Set by longest
mirror stroke

Highest Effective Frequency 6 THz Spacing in polar-
izing grids

Detector NEP 0.7× 10−16 W Hz−1

System NEP 2.7× 10−16 W Hz−1 Background limit

Table 2.2: Optical Parameters.

full-aperture blackbody calibrator can move to block either beam, replac-
ing the sky signal in that beam with an absolute reference source, or be
stowed to allow both beams to view the same sky patch. The calibrator
temperature is maintained near 2.725 K and is changed ±5mK every other
orbit to provide small departures from null as an absolute reference signal.
When the calibrator blocks either beam, the fringe pattern encodes infor-
mation on both the temperature distribution on the sky (Stokes I) as well
as the linear polarization. Interleaving observations with and without the
calibrator allows straightforward transfer of the absolute calibration scale to
linear polarization, while providing a valuable cross-check of the polarization
solutions obtained in each mode.

Table.2.2 summarizes the instrument optics. For detailed information
about PIXIE instrument performance, please check the white paper [51].
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Figure 2.8: A 2-D sketch of the PIXIE instrument. Black curves and lines
shows the mirrors. Red line is the track of a ray generated perpendicular to
the detector.

2.3 Instrument Simulation

My job on PIXIE is to optimize its optical system. For now, we only con-
centrate on the right half of the telescope and treat the half-transparent grid
to be flat mirrors, and we temporarily remove the movable dihedral mirror.
Fig.2.8 is a 2-d sketch of the simulated elements.

The set of instrument elements we want to optimize is summarized as
follows:

The detector is a 12.7 x 12.7 mm square.
These rays rattle around in the horn. The horn is rotated 45 deg about

the optic axis so that the two polarizations are treated symmetrically. Each
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2.3. Instrument Simulation

horn surface is a section of an elliptic cylinder. In order to make a symmetric
horn, the top two walls and bottom two walls share the same shape.

There is a round iris at the mouth of the horn.
Next is the totem mirror-grid mirror system. There are 5 totem mirrors

staggered with 4 round grid mirrors. The totem mirrors are a round segment
of ellipsoids around the vertex. They are set up so that each totem mirror
is at one of the foci of the previous (and following) totem mirror. This is a
”periscope” structure.

Once we get to T1 (Totem mirror No.1, we refer to Totem mirror No.n
as Tn hereafter) we change focal length to get to the secondary mirror. The
secondary, folding flat and primary have several constraints. The polariza-
tion on the sky depends on the angles of the secondary, folding flat and
primary. This is critical so that the polarization from the left is orthogonal
to the polarization from the right one. The folding flat also needs to avoid
blocking of the beam from the sky to the primary and the beam from the
secondary to T1.

The basic logic of the optimization is to set a bunch of rays launch from
the detector, let them travel through the whole instrument until they leave
the aperture or go stray. In operation, the stray rays are thermal radia-
tion from the instrument that could be received by the detector as excess
noise. We define a parameter called ’Good’ to evaluate the performance of
the instrument. Our goal is to adjust the parameters (like sizes, foci and
positions) to maximize Good.

2.3.1 Code Realization of the PIXIE Instrument

We use a custom Python code to do the optimization. Firstly we package all
the information of each element into a 3-D array L. For each element (except
the horn, which I will discuss later), we need to consider its position, shape
and size. All the ellipsoid mirrors (including totem mirror and secondary
mirror) are rotationally symmetric so the positions are represented by the
vertex, and the shapes are determined by their foci. For round flat mirrors
(including Grid mirrors and Folding flat), their position is their center and
their shape is determined by the direction of normal vector. For the primary
mirror, its position is the vertex and its shape is determined by the focus.
The size of all round elements are naturally described by their radius. The
instrument coordinate system is set up so that the z axis is parallel to the
optic axis and the FTS part (see 2.7 is in xz-plane (see Fig.2.7(a)).

The detector and horn are rotated around the x axis by 45◦. We set
up a horn coordinate with the origin point at the center of the detector.
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In the following text, I will use a ′ to denote the coordinate in the horn
coordinate system. The x′ axis points in the same direction as the x axis
of the instrument coordinate system. The y′ and z′ axes are parallel to the
edge of the detector.

In the code, there are 3 vectors for each ray: the positions ~R, directions
~D and polarizations ~P . ~D and ~P are normalized. We originate rays on the
detector. The detector is divided into 23× 23 grids which covers the whole
area. The lowest distance between two grid vertices is 12.7/23 = 0.55mm.
So a photon with wavelength larger than 2×0.55 = 1.1mm (corresponding to
frequency 271GHz) is well modeled. Since the intensity for rays coming with
an angle θ0 to the normal of detector is weighted by cos2 θ0, we assign cos2 θ0

weight for a evenly distributed ~D on each point of the grid. The uniformly
distributed ~D is generated by calling a Healpix function. Healpix is an
algorithm to pixelize a sphere [36]. The finess of pixelization is characterized
by a factor called Nside. The pixels are denoted by a normalized direction
vector. The number of pixels on a whole sphere is: Np = 12N2

side. So the
total number of rays from the detector is M ≡ 23× 23× 6N2

side = 3174N2
side

2. So Nside actually counts the number of rays we want to track in the
instrument. Based on the limit of our computer, we typically take Nside = 8
(corresponding to M = 203136 rays). The original polarization ~P ’s are
defined as:

~P = (− Dz′Dx′√
D2
x′ +D2

y′

,−
Dz′Dy′√
D2
x′ +D2

y′

,
√
D2
x +D2

y) (2.24)

This definition satisfies ~P · ~P = 1 and ~P · ~D = 0, and it gives the
largest value of Pz′ . If we treat it as the polarization of a ’detected’ ray,
then the detected Q2 value is maximized. Note that this definition is in
the horn coordinate system, when we rotate to the instrument coordinate,
then U2 is maximized. Ideally, the output ray should have a polarization
~P =

(
−
√

2
2 ,
√

2
2 , 0

)
.

The simulation is initialized by a function detector(L,Nd) which out-
puts the initial R,D,P,G.

Once the rays are launched from the detector, they travel from element
to element using specular reflection until leaving the aperture or going stay.
For detector-horn-iris system, ray tracking is executed in the horn coordi-
nate system. After getting out of the iris, the code will transfer ~R ~D and

2I will use the same letter to label parameters as in my code.
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Inst # Inst Name Position Function

0 detector (3,0,-679.5) detector

1 horn - horn

2 iris (103,0,-651) iris

3 T5 (244,0,-617) elp

4 GD (0,0,-553.5) flat

5 T4 (240,0,-490) elp

6 GC (0,0,-426.5) flat

7 T3 (240,0,-363) elp

8 GB (0,0,-299.5) flat

9 T2 (240,0,-236) elp

10 GA (0,0,-172.5) flat

11 T1 (244,0,-109) elp

12 secondary (65,45,-60.5) elp

13 flat (80,200,-5) flat

14 primary (320,480,-776.5) par

15 Aperture (320,480,0) aperture

Table 2.3: A summary of instrument elements to be optimized. All the
functions take (R,D,P,G,B,L,K) as input and output (R,D,P,G,B).

~P into the instrument coordinate system, then carry out the subsequent
propagation.

For each reflective element, there is a function which outputs the falling
point ~R on that element, and the corresponding reflected ~D and ~P . The rays
with an incident point outside of the element are assumed stray and removed
from the system. The input is ~R, ~D and ~P from the previous element, a
1-D vector G is an auxiliary array to record the index of ’surviving’ rays,
the element index K, and the element information L. Another 1-D vector B

is defined with size M which record where the rays end their tracks. For
example, if the second ray ends up on T5, then we assign B[1] = 3. The
output for each function is the incident point ~R, reflected ~D and ~P , G and
B.

The horn is more complicated than the subsequent elements. Rays can
bounce several times in the horn, so I wrote a loop in horn function to
call a function HitA that calculates the incident point of the rays after one
bounce. In each loop, I rule out the rays that bounced back to the detector
and record the rays that reaches the horn mouth. The loop ends when a
large fraction (99.99%) of rays leaving the mouth.
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Except the horn, we define three kinds of functions for 3 different mirror
shape: elp for ellipsoid mirrors; flat for flat mirrors, par for paraboloid
mirrors.

For the transparent elements, iris and aperture, the function iris and
aperture simply record dead rays.

Table 2.3 summarizes the instrument element to be optimized. The posi-
tion coordinates here are in the instrument coordinate system. Some of the
position coordinates are parameters that need to be optimized. The values
shown here are nominal values. The optimized value should be similar.

2.3.2 Parameters and Criteria

A key problem for optimization is how to define Good to weight the various
rays. Suppose after one run of ray tracking, indices set for out-coming rays
is Gout. The index set of rays stray element a (a is the element number, see
2.3) is Ba.

Take an on axis ray on the sky with the right polarization as the standard,
i.e Good = 1, for this ray. Now consider a ray that gets lost in the horn (or
iris). It contributes to neither signal nor noise so its Good = 0.

Consider rays that get lost in the FTS. These contribute noise but no
signal. I define a penalty number, pa, for each ray that misses element a.
For T5,GD,T4,GC,T3, I set a penalty pa = −0.8. For T2 to the secondary,
pa = −1.2, flat to Aperture pa = −1.5. For late instrument elements the
penalty is higher as they will be modulated and add signal as well as noise.

Rays that get to the sky with the wrong polarization are really bad.
Not only do they add noise but they subtract signal from the correct po-
larization. So they get Good = -4. Since the correct polarization should be

perpendicular to ~V ≡
(√

2
2 ,
√

2
2 , 0

)
, the penalty for the wrong polarization is

defined as −4×
(
~V · ~P

)2

Finally there are still rays with the correct polarization, but which are
off axis: 1− (D2

x+D2
y)/α

2 gives a gentle nudge to points a little off axis and
pushes harder far off axis. α is a tolerance parameter which describes the
largest off axis angle we could bear. I take α = 0.035 which corresponds to
2◦

In summary, Good is calculated as:
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Good ≡

{ ∑
i∈Gout

cos2 θ0i

[
1− (D2

xi +D2
yi)/α

2 − 4×
(
~V · ~Pi

)2
]

+
15∑
a=3

pa
∑
i∈Ba

cos2 θ0i

}/
Mw × 100%

(2.25)

where Mw ≡
M∑
i=1

cos2 θ0i gives the total number of rays, where M is the total

ray number. θ0i is the angle between ith ray and the normal of the detector
when it is launched. I need to weight each ray with cos2 θ0i because the initial
rays have uniformly generated ~D. There is a function good(R,D,P,G,B) to
calculate Good after the calling of aperture.

We are mainly interested in two parts of the instrument, the first is the
horn-iris-T5 system (HIT5 hereafter) because it is the most complicated and
it is also nearest the detector so there should be more stray photon coming
around T5. The top two walls of the horn share the same shape and so do
the bottom walls. There are 4 foci to be optimized. In horn coordinates,
each focus is represented by two coordinates (note that the horn walls are
elliptical cylinders which are parallel to z′ or y′ axis, so there are only two
coordinates). The first coordinate is x′ and the second is either y′ or z′

depending on which wall it is.
We fix the first focus for both top and bottom walls to be on the con-

tralateral edge of the detector, so the only free parameters to be optimized
are the four coordinates of f t2 and f b2 . See the side-view of the horn in
Fig.2.9.

The position of the iris is also free. Considering symmetry, its center
should be in the xz plane of the instrument coordinate system and right
at the mouth of the horn so there is only one degree of freedom. We set
the elevation angle of the iris center θiris to be a free parameter. Also the
complicated optical path through the horn makes the first focus of T5 fT5

1

un-determined. It should be in the xz plane.
The other part of the instrument to be optimized is the secondary-flat-

primary system (SFP system hereafter). A 2-D sketch of this system is
shown in Fig.2.10. The first focus of the secondary ~fSec

1 is fixed at the image
of T1. The normal vector of the flat should be the bisector of flat-secondary
and flat-primary link:
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Figure 2.9: The side-view of the horn in the horn coordinate system with
a nominal focus. The shaded part is the horn, the short left side is the
detector and long right side the mouth. The black line is the top wall and
the purple line is the bottom wall. The foci of the horn are denoted by
points with corresponding colors.

~nflat = F̂S + P̂S

n̂flat =
~nflat

|nflat|
(2.26)

Where F̂S is the unit vector pointing from the flat to the secondary center
and F̂P is similarly defined. n̂flat is the normal vector to the flat mirror.

The secondary and primary mirrors should see each other from the flat
mirror, so ~fSec

2 , the second focus of the secondary mirror should be on the
axis between the secondary mirror and the flat mirror and it should coincide
with the image of the primary and vice visa. We can parametrize these foci
as:

~fPri = ~rF + FfPri × F̂P

~fSec
2 = ~rF + FfSec

2 × F̂S
(2.27)

where FfPri is the distance between fPri and F and FfSec
2 is the distance

between fSec
2 and F. ~rF is the position vector for F. The center and size of
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Figure 2.10: A 2-D sketch of the SFP system . Grey curves and lines shows
the mirrors. Red arrows track the central ray from T1 to the aperture. The
blue arrow is the normal vector of the flat. Points S, F, P are the center of
the corresponding elements. Blue points are focus of primary and Second.

the mirrors are fixed. Ideally FfPri =SF and FfSec
2 =PF, but practically we

let FfPri and FfSec
2 be free parameters.

In summary, there are 11 independent parameters to be optimized:

• 5 for the horn: f t2x′ , f
t
2y′ or z′ , f

b
2x′ , f

b
2y′ or z′ ; horn length lhorn;

• 2 for the iris: iris size riris; iris elevation angle θiris

• 2 for T5: fT5
1x , fT5

1z ;

• 2 for SFP system: FfPri and FfSec
2 .

In the code, I wrap all these parameters into an array called Z and con-
struct the instrument model L with it. The main function raystrack(Z,Nd)
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traces the rays from the detector down to the aperture. First it calls
instrument(Z) to generate the instrument model and then all the func-
tions one by one in Table.2.3, and then Good. Our task is to maximize
raystrack(Z,Nd = 8).

2.4 MCMC for Instrument Parameters

As discussed above, the optimization is executed separately for HIT5 and
SFP systems. Both of them are implemented with a Markov-Chain Monte
Carlo method. I use the python package emcee to run the MCMC procedure.
The code runs a 300 step burn in. Each chain contains 3000Nd points
where Nd is the dimension of parameter space. As we only want to find
the best set of parameters, we do not really care about the confidence level
of the parameters. However, we can use them to better understand the
performance of the instrument.

We first apply MCMC for the HIT5 system3, then keep the optimized
HIT5 parameters fixed for the SFP optimization. The HIT5 system is very
complicated. First, the rays bounce several times in the horn and are dis-
persive at the iris. So it is likely that many rays will miss T5. Also, the first
focus of T5 fT5

1 is not easily identified. A displacement of fT5
1 will result in

a lot of rays missing T4.
Intuitively, the horn should point directly towards T5. The iris should

be placed on the center of the horn with a proper size. If it is too big, then
the rays from the corner of the horn will be likely to miss T4; if it is too
small, then we will not have enough out-going rays. fT5

1 should be on the
detector-T5 link, and near the mouth of the horn. However, if I include all
of these parameters into an MCMC chain, it is very likely to converge into a
solution which yields a very large horn mouth and a very small iris blocking
about half of the rays. This configuration gives a high Good value because
the penalty for iris is 0.0 while the penalty for T5,GD,T4 is -0.8. So the
MCMC chain will easily go to a small iris on a large horn mouth to block
many rays on the iris instead of T5-GD-T4.

To recover from this, I run an MCMC with only the 6 parameters of the
horn and T5. The output to be maximized is the number of rays ending
up on T1 instead of Good. This chain will give a very small horn mouth
pointing directly towards T5, and fT5

1 should be near the center of the horn.

3All the result presented in this section is from the most recent run. Actually I have
run MCMC for many times, each time taking the best-fit point from the last run as the
starting point of the chain.
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Then I fix the horn parameters and optimize riris,θiris by maximizing Good.
The result for horn and T5 is shown in Fig.2.11. It is a scatter plot

showing the MCMC chain color-coded by the number of rays landing on
T1. The number of rays have been weighted by cos2 θ0. The optimized
values for these parameters are labeled by crossing dashed lines. I then
fixed the shape of horn and T5 with these best-fit parameters and run an
MCMC for the iris to maximize Good. The result is shown in Fig.2.12.
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Figure 2.11: The MCMC result for f t2,f b2 and fT5
1 . The colors show the

number of rays reaching T1 with corresponding parameters. The crossing
dashed lines labels the position of maximum on the parameter space. In each
panel, the black points with labels on it shows the center of corresponding
instrument elements as reference points.
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Figure 2.12: The MCMC result for iris angle and size. Upper and bottom
right panels show the histogram for θiris and riris. The bottom left plot
shows the chain points in the 2-D parameter space color-coded by Good.
The crossing dashed lines labels the position of maximum on the parameter
space. Contours shows the 68.3%, 95.4% and 99.7% level of confidence.

The left panel of Fig.2.13 shows the 2-D projection of the HIT5 system in
xz plane. With the optimized parameters, the horn is pointing towards T5
and fT5

1 is very close to the center of the horn mouth, just as expected. The
right panel is the 2-D histogram of weighted rays number on the horn mouth.
The circle is the iris with optimized θiris and riris. And not surprisingly, the
iris centers at the center of the horn mouth.
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Figure 2.13: Upper panel: 2-D projection of the optimized HIT5 system.
Red lines shows part of the rays from iris to T5. Blue point is fT5

1 . Note
that here we use the instrument coordinate. Lower panel: the horn mouth
with iris represented by a circle. The color plot shows the 2-D histogram
for number of rays landing on the horn mouth. To show a more smooth
histogram, I take Nside = 64 for this plot.
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2.4. MCMC for Instrument Parameters

Given the optimized parameters for HIT5, I run another MCMC for SFP
system. The result is shown in Fig.2.14
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Figure 2.14: The MCMC result for FfPri and FfSec
2 . Upper and bottom

right panels show the histogram for FfPri and FfSec
2 . The bottom left plot

shows the chain points in the 2-D parameter space color-coded by Good.
The crossing dashed lines labels the position of maximum on the parameter
space. Contours shows the 68.3%, 95.4% and 99.7% level of confidence.

The MCMC result shows that FfPri is well constrained to be 167.11mm,
which is very near to SF(163mm), as expected. FfSec

2 is very loosely con-
strained. Given the fact that sec is very small comparing with Pri, this is
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2.5. Discussion

not too surprising. Because if FfPri is very near the center of Sec, then
no matter what shape the sec is, the rays reflected by Pri will likely to be
co-aligned.

I summarize the value for the best-fit MCMC result for these 11 param-
eters in the following

f t2 = (376.24mm,−36.18mm)

f b2 = (919mm, 522.9mm)

θiris = 11.79◦

riris = 15.54mm

FfPri = 167.11mm

FfSec
2 = 9730.52mm

(2.28)

I then run raystrack(Z,Nd = 8) one time with Z chosen to be the
optimized parameters. The output is summarized in Table.2.4 .

We can see that most of the rays got lost at the iris and T5, which
indicates that they are two most important noise source. However, the iris
does not contribute to the total gain. The total fraction of out-coming rays
is 42% which shows the efficiency of the instrument. Since the worst part
happens at the HIT5 system, there might still be space to further improve
it.

2.5 Discussion

From the optimized instrument model I run a ray track with Nside = 64 and
collect all the out-going rays. PIXIE is not a perfect optical system, so the
out-going rays are scattered about the optical axis.

Note that the ray tracking is a time-reversed process from the detector
to the aperture. In practice, the distribution of this scattered out-going
rays means that an in-coming ray in that direction can be detected. So this
scatter actually shows the beam behavior. The number of rays in each pixel
reflects the strength of radiation from that direction.

The upper right panel of Fig.2.15 shows a 2-D histogram of weighted
rays number in the ~D space. The upper left and bottom right panels are the
marginalized 1-D histogram for θy and θx. This plot defines the shape of the
beam function. The beam is a 1.1◦ top-hat, slightly better than the original
design shown in Table:2.2. However, this beam is not perfectly symmetric.

Fig.2.16 shows the distribution of co-polarization and cross-polarization
in the ~D space. We see that the co-polarization distributes very much like
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2.5. Discussion

Index (a) Inst Name Living rays Missing rays pa
∑
i∈Ba

cos2 θ0i/Mw

0 Det 67613.73 0 0
1 horn 67041.52 572.21 0
2 iris 44243.23 22798.29 0
3 T5 33265.1 10978.13 -12.99%
4 GD 33265.1 0 0
5 T4 33211.61 53.49 -0.06%
6 GC 33211.61 0 0
7 T3 33211.61 0 0
8 GB 33211.61 0 0
9 T2 33211.61 0 0
10 GA 33211.61 0 0
11 T1 33211.61 0 0
12 Sec 32668.62 542.99 -0.96%
13 Flat 32668.62 -0.00069 0
14 Pri 32395.89 272.73 -0.61%
15 Aper 32394.24 1.65 -0.0037%∑
i∈Gout

cos2 θ0i

[
1− (D2

xi +D2
yi)/α

2
]
/Mw = 40.53%

∑
i∈Gout

cos2 θ0i

[
−4×

(
~V · ~Pi

)2
]
/Mw = -10.63%

Good = 15.27%

Fraction of out-coming rays: = 42%

Table 2.4: The output for a rays track with the optimized parameters. The
numbers of living rays and missing rays have been weighted by cos θ0. The
’Missing rays’ column shows the number of rays that miss the corresponding
element. Note that according to (2.25), the Good value is calculated by
taking the sum of the last column.
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Figure 2.15: Upper right panel: the 2-D histogram in ~D space of the out-
coming rays. x and y axis are two components of the polar angle of ~D. The
color bar shows the weighted rays number. Upper left and bottom right
panels: marginalized 1-D histogram for θy and θx.

the beam, and the cross-polarization signal is very weak. This means that
the polarization of the out-going rays are not distorted evidently.

It is clear that this set of instrument parameters are not the best one,
because: 1. they are only a fraction of all the instrument parameters in-
cluded in the fit; 2. the MCMC chain has a limited number of points; 3. we
decouple the HIT5 and SFP system, but they could be correlated with each
other; 4. We optimized the horn first then add iris and fT5

1 ; 5. xFP and xSP

are not necessarily on the link of Pri-flat or Sec-flat.
There are a couple of directions we can go from here. One is that we

should allow other parameters to float maybe all of the foci of T1-5 and
small tweaks on the primary, flat and secondary.

A second direction is to look more closely at the polarization on various
elements: the mouth of the horn, on T5, and on the sky.
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Figure 2.16: Left right panel: the 2-D histogram in ~D space of the co-
polarization of out-going rays. Right right panel: the 2-D histogram in ~D
space of the cross-polarization of out-going rays.

A third direction is to reconsider the definition of Good, especially the
penalty for stray rays.

In my simulation I discuss only a little about the polarization. It is
definitely a crucial task for the future. We can study the pattern for polar-
ization on each element to get an insight of how they affect the polarization.
Then we can add the dihedral mirror between GC and GB and move it
back and forth to see how it changes the output. Our ultimate task for this
work is replace the Grid mirrors with polarizers and add the left part of the
instrument to simulate a true differential FTS.
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Chapter 3

Observing the Gas
Distribution in Galaxy
Clusters: The y-κ
Cross-Correlation

3.1 General Introduction

The Sunyaev-Zeldovich effect [92] is the inverse Compton scattering of the
Cosmic Microwave Background (CMB) photon by high energy electrons.
CMB photons get an energy boost through this effect and thus the energy
spectrum gets distorted. This observable effect provides a useful tool to
observe distant clusters of galaxies. The thermal SZ effect (tSZ effect here-
after) arises from the scattering of the CMB photons by electrons that have
high energies due to their high temperature. It it mainly occurs in the hot
intracluster gas in galaxy clusters. The effect is independent of redshift be-
cause it is a scattering effect. So high redshift clusters can be observed as
easily as nearby ones. Besides searching for new clusters, SZ effect can also
be used to constrain cosmological parameters by providing information on
the abundance of galaxy clusters, which depends on Ωm [58].

With current observational precision and angular resolution, it is possi-
ble to detect tSZ signal from galaxy clusters [e.g. 38] after filtering out other
components like CMB, dust components and point sources. Moreover, since
the frequency dependence of the tSZ is well understood, it is possible to ex-
tract the demensionless tSZ template from multi-frequency sky signal data.
In 2015, the Planck group constructed two full-sky tSZ maps [9] using 30 to
857 GHz frequency channel maps from the Planck satellite survey with two
specifically tailored component separation algorithms (NILC [27]: Needlet
Internal Linear Combination and MILCA[48]: A Maximum Internal Linear
Component Analysis). Several subsequent analyses have been using from
these tSZ maps (e.g.[3] and [84]).
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3.1. General Introduction

The tSZ effect offers a unique method to observe the diffuse baryonic
component in galaxy clusters. In those clusters, only about 10% of the
baryons are in compact objects like stars and dust while 90% are in the
form of diffuse gas [82]. A comparison of group and cluster masses de-
rived from dynamical and x-ray data reveals that baryons are missing at all
scales, especially at galactic halo scales. This is likely related to the “miss-
ing baryon” problem occurring at redshift z < 2, where the intercluster gas
becomes ionized in a warm phase that is particularly difficult to observe.
Recently, it has also been realized that missing baryons poses a problem for
the interpretation of gravitational lensing because baryonic processes could
impact the dark matter distribution, even on large scales, via gravitational
feedback [81]. To solve these question, we need an unbiased tracer of large
scale structure which can be feasibly observed. Unlike x-ray luminosity, the
tSZ signal is linearly proportional to the baryon density, which makes it
easier to be detected low-density gas. Since it does not depend on redshift,
it is useful to cross correlate with signals more localized in redshift. But for
area with very low density, the signal of tSZ can be lower than the noise.
So it is useful to cross-correlate it with some other probe to extract it out.
Gravitational lensing provides an unbiased tracer of the projected mass, in-
dependent of its dynamical and physical state. Cross correlating tSZ and
gravitational lensing data is a potential method to help us understand the
missing baryon problem and the interaction between baryons and dark mat-
ter. [82] presented the first detection of a correlation signal between the tSZ
and weak lensing with a confidence level of 6σ . This discovery traces the
spatial distribution of the missing baryons and has also been used to con-
strain the feedback mechanism of AGN in the host galaxies. Other studies,
like [41], detect the cross correlation signal between tSZ and CMB lensing,
which also reveals the information about intracluster gas.

However, residual of noise in the tSZ map can cause contamination on
the cross correlation results. The Cosmic Infrared Background (CIB) and
the thermal galactic dust emission are the two potential sources of contam-
ination. CIB [39] is the redshifted starlight from distant galaxies. We find
that the Planck CIB map shows a nonzero cross correlation with weak lens-
ing, which remind us that the CIB residual in the y map we used might
cause significant contamination signal in the cross correlation result of the
previous studies. Galactic dust emission is not correlated with weak lens-
ing because it is a local effect, but it contributes to the noise in the y map
since it dominates the high frequency channels. [82] made a set of y maps
with a uniform power-law model for dust emission, which is imprecise at
high frequencies. The Planck NILC and MILCA y map only take CMB as
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3.2. Studying the Large Scale Structure with Weak Lensing and tSZ Effect

foreground signal but include dust as noise. Thus the dust signal is not
completely removed.

In this chapter I summarize my study of the residual CIB and dust
contamination in y maps by calculating the lensing-tSZ cross correlation
in collaboration with Alireza Hojjati. We reconstruct the NILC y map.
The weak lensing data is from the Red Sequence Cluster Lensing Survey
(RCSLens) mass map. We carefully examine the CIB and dust residual
in our y map and calculate the cross correlation. The structure of this
chapter is as following: Section 2 introduces the formalism for our study;
Section 3 discuss our reconstruction of the y map; Section 4 provides our
cross correlation results; Section 5 is an attempt to introduce an all-sky CIB
model. The last section is a brief discussion and conclusion.

3.2 Studying the Large Scale Structure with
Weak Lensing and tSZ Effect

Gravitational lensing is the phenomenon that light rays get deflected by
the gravitational field generated by some mass between the observer and a
source. The shape of the source will be magnified and distorted and can be
described with the following formula:[

θix
θiy

]
=

[
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

] [
θsx
θsy

]
(3.1)

where θi denotes the angular coordinate of the image and θi is the angular
coordinate of the source. The convergence κ describes the magnification of
the source while the shear γ1 and γ2 describe the distortion (see Fig.3.1).

Lensing by mass fluctuations in large scale structure is usually too weak
to generate noticeable distortions of a source galaxy, but it can leave foot-
print on the statistical properties of a large number of source galaxies. This
is called the Weak Lensing. We can study the power spectrum and two-point
correlation functions for κ, γ1 and γ2. In this thesis, I focus on κ.

A κ map can be modeled as a projected mass density along the line
of sight specified by position angle θ on the sky. It can be formulated as
the integral of the density fluctuation δm(fK(w)(θ), w) weighted by a kernel
W κ(w), that is:

κ(θ) =

∫ wH

0
dwW κ(w)δm(fK(w)(θ), w) (3.2)
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Figure 3.1: Effect of κ and γ ≡ γ1 + iγ2 on a spherical source.
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This is called the Limber approximation. Here w(z) is the radial comov-
ing distance, wH is the comoving distance to the horizon and fK(w) is the
corresponding angular diameter distance. For κ, the kernel W κ(w) is

W κ(w) =
3

2
Ω0

(
H0

c

)2

g(w)
fK(w)

a
(3.3)

g(w) is a function which depends on the redshift distribution of the sources
pS(w):

g(w) =

∫ wH

w
dw′pS(w′)

fK(w′ − w)

fK(w′)
(3.4)

The angular power spectrum of κ is calculated from a κ map and a y
map via:

Ĉκ×κ` ≡ 1

2`+ 1

∑
m

aκ`m
∗aκ`m (3.5)

where aκ`m is the spherical harmonic decomposition of κ. In theory, the
correlation signal should be:

Cκ×κ` =

∫ wH

0
dw

[
W κ(w)2

f2
K(w)

]
Pm

(
`

fK(w)
, w

)
(3.6)

where Pm is the matter power spectrum:

〈δm(k, z)δm(k′, z)〉 = (2π)3δ(k − k′)Pm(k, z) (3.7)

So the angular power spectrum of κ contains information on cosmological
parameters via Pm.

The thermal Sunyaev-Zeldovich (tSZ) effect is the distortion of the CMB
frequency spectrum through inverse Compton scattering by energetic elec-
trons in cluster gas. These electrons move quickly and pass energy to the
CMB photons.

The tSZ-induced temperature change at frequency ν is characterized by
the Compton parameter y:

∆T (θ, x)

TCMB
= y(θ)SSZ(x) (3.8)

where SSZ(x) = x coth(x/2) − 4 is the tSZ spectral dependence in terms
of x ≡ hν/kBTCMB. Here h is the Planck constant, kB is the Boltzmann
constant and TCMB is the mean temperature of CMB.
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3.3. Reconstruction of the y signal

The Compton parameter y is given by the line-of-sight integral of the
electron pressure:

y(θ) =

∫ wH

0
adw

kBσT
mec2

ne(fK(w)(θ), w)Te(w) (3.9)

where σT is the Thomson cross section, ne(fK(w)(θ), w) and Te(w) are the
number density of electrons and their temperature, respectively. The elec-
tron number density depends both on angular position and radial distance.
For the electron gas, it can be written as ne(fK(w)(θ), w) = n̄eδgas(fK(θ), w)
where n̄e is the mean electron number density and δgas is the gas density con-
trast, which is given by bgas(z)δm with bgas ∝ (1+z)−1 the gas bias [35]. The
electron temperature depends only on radial distance by Te(w) ∝ (1 + z)−1.
So the y can also be estimated by the Limber approximation with the kernel:

W SZ = bgas(0)n̄eσT
kBTe(0)

mec2

1

1 + z
(3.10)

So the tSZ effect probes the electron temperature Te and baryon bias
bgas which reveals the baryon physics in clusters.

The κ× y cross correlation can be calculated from:

Ĉκ×y` ≡ 1

2`+ 1

∑
m

aκ`m
∗ay`m (3.11)

where ay`m is the spherical harmonic decomposition of y. Theoretically, the
correlation signal should be[25]:

Cκ×y` =

∫ wH

0
dw

[
W SZ(w)W κ(w)

f2
K(w)

]
Pm

(
`

fK(w)
, w

)
(3.12)

3.3 Reconstruction of the y signal

Our y map is made from 6 Planck HFI all-sky temperature maps: 100
GHz, 143 GHz, 217 GHz, 353 GHz, 545 GHz and 857 GHz. They are from
Planck’s 2nd data release [1]. To evaluate the contamination by CIB and
galactic dust, we also use the Planck CIB map [10] and the all-sky dust
model maps [6]. The CIB maps cover the 3 highest frequencies: 353GHz,
545GHz and 857GHz, with about 40% of the sky near the galactic plane
masked out. Dust model maps contain a map for the dust temperature and
dust spectral index, which are used to make our y map. All of these maps
are in HealPix format [36] with Nside = 2048.
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3.3. Reconstruction of the y signal

The raw temperature map is a superposition of different emission com-
ponents, including CMB, galactic dust emission, free-free radiation, syn-
chrotron radiation, CIB, y signal etc. A well-known method to extract one
of those components and null other components is the Internal Linear Com-
bination (ILC) technique, which is used by WMAP and Planck to make
CMB and other component maps [52]. The basic idea of the ILC method
is to use a linear combination to keep the target component and to project
other components out.

y, CMB and galactic dust intensity for certain frequency can be modeled
as an isotropic frequency dependence multiply by a template map which
is independent of frequency. Let Iα(θ) be the template of component α
(α = y, CMB or dust). The signal of component α at frequency ν and
angular coordinate θ is Iαν = fα(ν)Iα(θ), where fα(ν) is the frequency
dependence for component α at frequency ν. The observed frequency map
di is a combination of all the components plus noise:

di(θ) =
∑
α

Iανi(θ) + ni(θ)

=
∑
α

fα(νi)Iα(θ) + ni(θ)

=
∑
α

MiαIα + ni(θ)

(3.13)

Miα ≡ fανi is the mixing matrix which shows the frequency dependence
for the αth component in ith frequency (we use Latin letters i, j, k... for
frequency channels and Greek letters α, β, γ... for components). In our
analysis, νi ∈ {100GHz, 143GHz, 217GHz, 353GHz, 545GHz, 857GHz} and
α ∈ {CMB, y,dust}. ni(θ) is the sum of some other components that are
not included in Iα (like CIB, whose frequency dependence is not uniform
across the sky) and systematic plus statistical errors.

To extract the α component while nulling the other components, we have
to solve the linear equations:∑

i

cαif
α(νi) = 1∑

i

cαif
β(νi) = 0, β 6= α

(3.14)

or more concisely: ∑
i

cαiMiβ = δαβ (3.15)
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cαi is the ILC coefficient for α component at frequency νi. We use Îα to
denote the estimated template for component α which is calculated by su-
perposing the observed sky maps with the ILC coefficients:

Îα(θ) =
∑
i

cαidi(θ) = Iα(θ) +
∑
i

cαini (3.16)

The number of components (Nc) cannot be larger than the number of
channels (Nf ), or we will run out of degrees of freedom. For Nc < Nf , the
remaining degrees of freedom are used to minimize the noise residual by
minimizing the χ2:

χ2(θ) ≡
∑
ij

(di(θ)−
∑
α

MiαÎα(θ))(N−1)ij(dj(θ)−
∑
α

MjαÎα(θ)) (3.17)

where N is the signal covariance matrix. Taking the partial derivative with
respect to Îα(θ):

∂χ2(θ)

∂Îα(θ)
= −2

∑
ij

Mαi(N
−1)ij(dj(θ)−

∑
β

Mjβ Îβ(θ)) (3.18)

To minimize χ2, set this to zero, then

∑
ij

Mαi(N
−1)ijdj(θ) =

∑
ij

Mαi(N
−1)ij

∑
β

Mjβ Îβ(θ) (3.19)

This leads to

Îα(θ) =
∑
αβkl

[(MTN−1M)−1]αβMβk(N
−1)kldl(θ) (3.20)

Comparing with Eq:3.16, the coefficient for component α at frequency chan-
nel l is

cαl =
∑
αβk

[(MTN−1M)−1]αβMβk(N
−1)kl (3.21)

The frequency dependence for each component is contained in the mix-
ing matrix Miα. Free-free scattering and synchrotron only effect the low
frequency data, so we ignore it here and take CMB, galactic dust as the
contaminating components to be projected out. The frequency dependence
for each component is as following:
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Input: 6 Planck HFI
All-sky maps, di,raw

Unify the angu-
lar resolutions

and units, get di

Needlet filter the
maps, get d

(a)
i

a = 1

Calculate Cov ma-
trices with Eq.3.26

Calculate needlet
y maps y(a)(θ)
with Eq.3.20

a ≥ 10?

a = a+ 1

Stack needlet y maps,

y(θ) =
∑
a

y(a)(θ)

Output: NILC
y map y(θ)

yes

no

Figure 3.2: Flow chart for our NILC procedure.
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cluster sample measured in Planck NILC map and our y map.
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3.3. Reconstruction of the y signal

1. Primary CMB fluctuation is a black body spectrum with monopole
temperature 2.725K [31]:

ICMB
ν (θ) =

2kBν
2

c2

x2ex

(ex − 1)2
ICMB(θ) (3.22)

ICMB(θ) is the CMB template which depends only on position θ. x is defined
as hν

kBTCMB
.

2. For thermal galactic dust we use a grey body spectrum [6]:

Idust
ν (θ) ∝ νβdBν(Td)Idust(θ) (3.23)

where Td is the dust temperature and βd is the dust spectral index taken
from the Planck dust model map. Since we only use a very limited RCS
field, we use a spatially independent Td and βd by choosing them as the
mode in this field. The values we use here are Td = 20.5K and βd = 1.57.

3. For SZ signal [19]:

ISZ
ν (θ) = SSZ(x)ISZ(θ) = SSZ(x)I0y(θ) (3.24)

where SSZ = x coth(x/2)− 4 and I0 ≡ 2kBT
3
CMB/(hc)

2 is the average inten-
sity of the CMB. The Compton-y parameter y(θ) is a dimensionless param-
eter which describes the strength the SZ effect. We need to first solve for
ISZ(θ) with Eq.3.20 then divide it by I0 to get the y map.

In practice, before we form the ILC map, we need to prepocess the raw
temperature maps as follows:
1. The units of the first four maps (100GHz, 143GHz, 217GHz and 353GHz)
are µK and for the last two are MJy/sr. We convert all maps to MJy/sr.
2. The corresponding angular resolutions are FWHM0 = {9.2, 7.1, 5.0, 5.0,
5.0, 5.0} arcmin. To first order we can take the Planck beam function to
be Gaussian[23]. We smooth the maps to a common angular resolution of
10 arcmin by convolving each map with a Gaussian beam with FWHM =√

102 − FWHM2
0 arcmin.

At different spatial scales, the noise may have different frequency depen-
dence. We use the Needlet Internal Linear Combination (NILC) method to
generate the y map. The raw temperature map is first transformed into `
space and multiplied by a needlet filter {h(a)(`)} then transformed back into
real space. The output map is called a needlet-filtered map. {h(a)(`)} peaks
at a certain scale `a, so a needlet-filtered map corresponding to {h(a)(`)}
preserves intensity around scale `a. We form ILC maps independently for
each needlet-filter, so noise is minimized for each angular scales
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3.3. Reconstruction of the y signal

Based on [17], we use 10 Gaussian window functions each peaked at a
different scale as {h(a)(`)}. We first filter the raw intensity maps correspond-
ing to 6 frequencies with these 10 needlet filters. We then have 10 sets of

intensity maps d
(a)
i , 1 ≤ a ≤ 10 each corresponds to a needlet window . Each

set has 6 intensity maps at different frequencies. For details about needlet
ILC procedure, please check Appendix.B.

The ILC is formed independently with each set of filtered maps. First
calculate the covariance matrix within each set:

N
(a)
ij =

〈
d

(a)
i (θ)d

(a)
j (θ)

〉
θ∈D

(3.25)

Here a is the number of needlet window. D is the domain in the real space
which we are interested in, typically a masked map. In practice, the covari-
ance matrix is calculated by multiplying together signals of the same pixel
in ith and jth map, then summing over pixels in the domain D.

N
(a)
ij =

1

Np

∑
p∈D

d
(a)
i (p)d

(a)
j (p) (3.26)

Where Np is the number of pixels in domain D. For our analysis, we mask
40% of sky, around the Milky Way and point sources.

The weight for component separation is calculated independently in do-
mains of a needlet decomposition (in ` space) and then added together to
make the whole component map. Our Needlet process is summarized as
a flow chart in Fig.3.2. This method is used by Planck collaboration to
make their y maps [9](Planck NILC map hereafter.) and CMB maps [67].
Our reconstructed y map (labeled as ŷrec hereafter) is different from Planck
NILC y map (labeled as ŷPlanck hereafter) in that we take galactic dust as a
foreground component while Planck NILC map only considered CMB. We
only use 6 HFI maps while Planck NILC uses LFI maps at large angular
scales. Also the Planck’s NILC map only masked the most central part of
the Milky Way, which is about 2% of the sky

Fig.3.3 shows the y signal in the same field for ŷrec and ŷPlanck. The
signals look close to each other. We also calculate integrated y signal within
R500 for 858 Planck tSZ clusters [68] on each maps. The signal-to-signal
scatter plot is shown in Fig.3.4. From Fig.3.4 we can see that the y signal
from both maps agree well with each other. A paired Student t-test shows
that the SZ flux in our map agree with that from Planck NILC map to a
confidence level of 7σ. The difference is due to the different ILC model and
covariance matrices.
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0 1

Figure 3.5: Footprint of RCSLenS field in galactic coordinate.

3.4 A Worked Example: κ× y Cross Correlation

Our analysis focused on calculating the cross correlation between the weak
lensing convergence κ and y. The lensing data is from Red Sequence Cluster
Lensing Survey (RCSLenS) which is part of the second Red sequence Cluster
Survey [40]. Data was acquired from the MegaCAM camera from 14 separate
fields and covers a total area of 785 deg2 of the sky. For our analysis we
use the reconstructed projected mass map (convergence map). This map is
provided as a HealPix map with Nside = 2048.

We use the PolSpice package [22] to calculate the cross correlation func-
tion. It is a HealPix-based package calculating angular power spectrum (see
(3.12)) for masked and weighted sky map.

3.4.1 The CIB Contamination

The CIB signal comes from the thermal radiation emitted by dust in early
galaxies. It is actually discretely distributed in the sky. It depends on
frequency, redshift and spatial distribution. For a single galaxy cluster, it
is characterized by the integrated luminosity within 500 times virial radius
[76]:
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Figure 3.6: Cross correlation between CIB signal and κ for three different
CIB maps in ` space. The cross correlation signal is binned to 5 ` bins
centered at 290, 670, 1050, 1430, 1810.

ICIB
500 (ν, z) = L0

[
M500

1014M�

]εCIB

Ψ(z)Θ[(1 + z)ν, Td(z)] (3.27)

where L0 is the normalization parameter, Td = Td0(1 + z)αCIB and Θ[ν, Td]
is the spectral energy distribution for a typical galaxy that contributes to
the total CIB emission,

Θ[ν, Td] =

{
νβCIBBν(Td), if ν < ν0

ν−γCIB , if ν ≥ ν0

(3.28)

with ν0 being the solution of d log[νβCIBBν(Td)]/d log(ν) = −γCIB. The
redshift dependence is assumed to be the form:

Ψ = (1 + z)δCIB (3.29)

whereTd0, αCIB, βCIB, γCIB, δCIB are the CIB model parameters given in
[69].

The Planck collaboration made 3 CIB maps corresponding to 353GHz,
545GHz and 857GHz [10]. The maps are made by disentangling CIB sig-
nal from a galactic dust emission map. The galactic dust emission map is
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3.4. A Worked Example: κ× y Cross Correlation

generated with a Generalized ILC method. The CIB covariance matrix is
acquired from simulated CIB maps [7]. The units of the maps are MJy/sr
and their angular resolution is 5 arcmin.

Since the CIB traces the spatial distribution of distant galaxy clusters,
it should also have a non-zero cross correlation with the weak lensing by
large scale structure. We first estimate the cross correlation between the 3
Planck CIB maps and the RCSLens κ map in the same field. All three CIB
maps show a non-zero cross correlation signal (Fig.3.6) with a confidence
level of {3.6,3.7,4}σ respectively. The uncertainties are derived from the χ2

statistics. It is therefore possible that CIB residual in our reconstructed y
map can contaminate the κ× y cross correlation signal.

Our reconstructed NILC y map is calculated as:

ŷ(θ)rec =
∑
i,a

c
(a)
i d

(a)
i (θ)

= y(θ) +
∑
i,a

c
(a)
i n

(a)
i (θ)

= y(θ) +
∑
i,a

c
(a)
i ICIB,(a)

νi (θ) +
∑
i,a

c
(a)
i n

′(a)
i (θ)

(3.30)

Where, in the last line, we single out the residual CIB contributions to the

y map explicitly. Here (a) denotes the ath needlet window. c
(a)
ν is the ILC

coefficient for y (I omit the component label α for Eq.3.21 because we are
only concerned about y now). ŷ is the estimated y signal and y is the true
y signal. CMB and galactic dust are removed while noise is minimized but
not completely removed. The noise term ni(θ) contains both CIB signal
and other noise either from the sky (CO emission) or from the instrument
(photon noise). Cross correlating both side of Eq.3.30 with κ, we get:

Cκ×ŷ` = Cκ×y` +
∑
i,a

c
(a)
i h(a)(`)C

κ×ICIB
νi

`

+
∑
i,a

c
(a)
i h(a)(`)C

κ×n′
i

`

(3.31)

where Cκ×ŷ` is the estimated κ×y cross correlation directly from the y map.
It consists of the true κ × y signal as well as contamination from CIB and
other noise.

To correct for the CIB contamination, we make a CIB-subtracted y map.
CIB signal is not isotropically dependent on frequency (see Eq.3.27). It
depends on redshift and individual galaxy clusters. So we do not include it as
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an ILC foreground. We subtract the CIB map from the original temperature
map and make the y map using the same NILC procedure:

ŷ(θ)CIB−subtracted =
∑
i,a

c
(a)
i (d

(a)
i (θ)− ICIB,(a)

νi (θ))

= y(θ) +
∑
i,a

c
(a)
i n

′(a)
i (θ)

(3.32)

Here ŷ(θ)CIB−subtracted is the CIB-subtracted y map. We subtract the 3
Planck CIB maps from the 3 highest frequency maps. Since most CIB
models give a grey body spectrum with peak higher than 857GHz [7], we
assume that the CIB contribution in the 3 lowest frequencies (100, 143,
217GHz) is negligible.

We estimate the CIB contamination in our cross correlation function by
calculating κ× ŷrec and κ× ŷCIB-subtracted. The cross correlation signals are
shown in the upper panel of Fig.3.7. The cross correlation values are calcu-
lated as the average signals in 5 ` bins centered at ` = {290, 670, 1050, 1430, 1810}.
The error bars are the standard error for each bin.

err` bin ≡
1

∆`

√ ∑
`∈`bin

(C` − C̄`)2 (3.33)

where ∆` is the length of each ` bin, C̄` is the mean cross correlation signal
in that bin. The three sets of points with 3 different color are corresponding
to 3 different y maps cross correlated with a same κ map: the Planck y map,
out fiducial NILC map, and our CIB-corrected NILC map.

All the 3 cross correlation functions show a nonzero signal with > 5σ
confidence level. ŷrec has an 8σ signal which is consistent with [43].

To evaluate the fractional of CIB contamination in the κ × ŷ cross cor-
relation, we performed a bootstrap resampling for all of the five ` bins. The
inherent covariance between C`’s are negligible compare to the sample noise.
The mode coupling covariance can be calculated by PolSpice by given the
RCS field mask and the galactic mask. The covariance matrix shows a cou-
pling within δ` ∼ 5, so we make a ’blocked’ bootstrap resampling to recover
it. Specifically, we first divide the 380 `’s into 76 blocks and calculate the
average C`’s and ∆C`’s in each block.

For each ` bin, we made 10000 realizations of 75 block-averaged C`’s and
∆C`’s from the measured κ× ŷrec and κ× ŷrec−κ× ŷCIB-subtracted. Then we
calculate 〈∆C`〉 / 〈C`〉 for each realization. 〈·〉 is the mean value of the 76
bootstrap samples. The error bar is estimated by calculating the 68% C.L.
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Figure 3.7: Upper panel: Cross correlation between y signal and κ for three
different y maps in ` space. The cross correlation signal is binned to 5 `
bins centered at 290, 670, 1050, 1430, 1810. Blue, green and red points are
corresponding to Planck NILC y map, our NILC y map, our CIB-subtracted
y map (see Eq.3.32); lower panel: The bootstrap estimation of 〈∆C`〉 / 〈C`〉
for each ` bin. The error bars correspond to a 68% C.L.
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For the last ` bin where the signal is very weak, the probability distribution
of 〈∆C`〉 / 〈C`〉 is highly non-Gaussian, so the standard deviation is larger
than the 68% C.L.

The resulting 〈∆C`〉 / 〈C`〉 is shown in the lower panel of Fig.3.7. The
first ` bin has a 3.6σ non-zero fraction. From a Pearson Null test with χ2

statistics, the contamination fraction is only around ∼ 2σ significant for the
last 4 ` bins which corresponds to an ` range of 600∼2000. By calculating
the average number of bootstrap realizations for the last four ` bins, we
found the contamination fraction is 7.75%± 5.21%.

3.4.2 The Galactic Dust Contamination

Thermal radiation from galactic dust does not correlate with weak lens-
ing since weak lensing is extragalactic in origin. However, since the dust
radiation dominates the highest frequency maps, an improper estimate of
the dust signal may result in additional noise in the y map. The improper
estimation of dust emission could result from the fact that both the dust
temperature and its spectral index are spatially dependent (see Fig.3.8).To
analyze the impact of galactic dust contamination, we also make some other
non-standard y maps with different dust residual by slightly varying βd value
in Eq(22). We use βd = 1.30, 1.43, 1.76, 1.85 to generate the more y maps.
These numbers correspond to ∼ ±1σ and ∼ ±2σ around our fiducial βd
value, which is 1.57. We then calculate the cross correlation of these y maps
and the weak lensing mass map.

Fig.3.9(a) shows that the change of dust index does not significantly
affect the cross correlation signal. But as is shown in Fig.3.9(b), different
dust residual do have an effect on the error. Our fiducial dust index gives
the lowest errorbar, which suggests that this model removes the dust signal
most completely.

In our analysis, we take the model for dust to be isotropic in the RCS
field, but this is not precise. Both the dust temperature and dust index vary
spatially. Our analysis of the cross correlation points out that this variation
does contribute to the cross correlation signal. So a spatially dependent dust
model is needed for a more precise y map.

3.5 An Attempt to Reconstruct the CIB Signal

One notable feature is that the frequency dependence of the three cross
correlation signals in Fig.3.6 seems to be independent of scale, which suggests
that there might be a template for the κ × CIB cross correlation signal
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Figure 3.8: Histogram for Td (upper panel) and βd (lower panel) in RCS
field. The dust model we use here is the Planck COMMANDER thermal
dust map [2].
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Figure 3.9: Upper panal: κ×y cross correlation for the fiducial y map (βd =
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cross correlation signal in each ` bin.
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Figure 3.10: Histogram for CIB indices β1 and β2 in the unmasked domain.

which is independent of frequency. We also want a CIB map that is free
of y signal. According to [7], the Planck CIB maps were made by taking
the difference between two dust maps. One dust map contains CIB and
with CIB suppressed in another dust map. The tSZ signal in the CIB
map is suppressed but not nulled. So the nonzero κ× CIB signal might be
contaminated by κ × y signal. So we propose another way to construct a
CIB map with tSZ signal completely removed.

Our method to reconstruct CIB signal is again based on NILC. This
time we take CMB, tSZ and galactic dust as foregrounds. From Fig.3.6, it
is appealing to try a homogeneous CIB frequency spectrum fCIB(ν). The
CIB intensity map for frequency ν is the template ICIB(θ) multiplied by the
spectrum:

ICIB
ν (θ) = fCIB(ν)ICIB(θ) (3.34)

Here we use a piecewise power law function for CIB:

fCIB(ν) ∝

{
νβ1 , if ν ≤ 545GHz

νβ2 , if ν > 545GHz
(3.35)
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3.5. An Attempt to Reconstruct the CIB Signal

We first mask the CIB maps with the 40% galactic mask, then the power-
law indices are calculated with

β1 =
ln(ICIB

545GHz/I
CIB
353GHz)

ln(545/353)

β2 =
ln(ICIB

857GHz/I
CIB
545GHz)

ln(857/545)

(3.36)

where β1 and β2 are calculated for each pixel in the unmasked domain, and
the estimated value is chosen to be the mode, which is β1 = 2.2 and β2 = 1.3
(Fig.3.10). We make the NILC CIB template map ICIB(θ) following the
same procedure in Section 3.3. and the CIB intensity maps for 353GHz,
545GHz and 857GHz by multiplying the template map with fCIB(ν).

We calculate and compare the κ× CIB cross correlation signal between
our NILC CIB map and the Planck CIB map. The κ data is the same as
that for κ × y.From Fig.3.11 we see that the shapes of two cross correla-
tion functions are different, and our CIB map produces larger errors and a
negligible cross correlation. Little can be told from our CIB map about the
κ× CIB cross correlation signal because it is buried in noise.
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Figure 3.11: κ × CIB cross correlation signal for our NILC CIB map and
Planck CIB map. Three panels are corresponding to three frequencies.
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3.5. An Attempt to Reconstruct the CIB Signal

We also make a NILC y map using this CIB spectrum model by including
fCIB(ν) in the mixing matrix Miα. We perform exactly the same analysis
as in Section 3.3. We call this map the CIB-nulled NILC y map. The
difference between an CIB-nulled map and a CIB-subtracted map is that
the CIB-subtracted map is made by subtracting the CIB signal from the
raw intensity map before the NILC procedure, while the CIB nulled map
employs a CIB frequency model in the NILC analysis. We compute the
κ× y cross correlation function just like Section 3.3. Only this time we use
the CIB-nulled NILC y map.

The difference κ× ŷPlanck,NILC−κ× ŷCIB nulled and κ× ŷrec−κ× ŷCIB nulled

are each with 0.03σ and 0.06σ significance. So our CIB-nulled NILC y map
is not significantly different from the Planck NILC y map.
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× ŷrec
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Figure 3.12: Upper panel: cross correlation signals between κ and three y
maps; lower panel: Difference of κ×y cross correlation signals NILC y maps
and NILC-(CIB-nulled) y map.
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3.6 Discussion

We estimate the contamination from CIB and galactic dust signal in the
NILC y map. We make a new y map using the NILC method. Our method
differs from the Planck NILC y map in that we only use the 6 HFI maps and
include a grey body spectrum for dust, while the Planck group only nulls the
CMB component. We find a nonzero cross correlation signal between Planck
CIB map and the weak lensing κ, which suggest that a CIB-contaminated y
map may produce a false cross correlation signal. To estimate this contami-
nation, we then make a CIB-subtracted y map by subtracting the CIB signal
from the raw 353GHz, 545GHz and 857GHz temperature map. We estimate
the contamination from CIB by taking the cross correlation between the y
map and the RCSLenS mass map. Our NILC y map shows very similar
cross correlation signal as the Planck NILC y map, which means that our y
map is reliable for cross correlation analysis. The difference between κ×yrec

and κ× yCIB−subtracted is (5.8± 4.6)% within 600 < ` < 2000.
[82] presented a detection of κ × y cross correlation and constrained

bgas(Te(0)/0.1keV)(ne/m
−3) = 2.01± 0.31± 0.21, where bgas is the gas bias,

ne is the mean electron number density and Te(0) is the electron tempera-
ture. The first error is statistical and the second is systematic. This combi-
nation of parameters is proportional to the amplitude of the cross correlation
signal (see Eq.3.10 and Eq.3.11). So a shift of (5.8 ± 4.6)% causes a com-
parable shift in the constrained result. But this is not a very significant
contamination. The largest uncertainty in the cross correlation still comes
from the noise.

Our study does not take the 100-217GHz CIB signal into account. So
in our CIB-subtracted y map, some CIB still remains which depends both
on the CIB amplitude and the ILC coefficients for those frequencies. In a
future study, it would be fruitful to construct an all sky CIB map for more
frequencies so that we can remove the CIB more completely. In addition, as
we find a significant κ × CIB result, it is helpful to understand this signal
and investigate how it can constrain cosmological parameters. Our study is
based on the assumption that the Planck CIB map is not contaminated by
tSZ signal. If it is, then the CIB-subtracted y map is not accurate because
we subtracted some y signal as well. Future studies should estimate the
leakage of tSZ signal in the CIB maps.

Galactic dust contamination affects the noise in the output y map. We
control the dust residual in our y map by varying the dust spectral index βd
in the dust model. The cross correlation result Fig.3.9 shows that this change
does not affect the amplitude of the κ×y cross correlation but indeed changes
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the error bar for the signal. The error bar for βd = 1.57 is the lowest one,
which means that this is our best estimate of dust contamination. However,
it needs to be pointed out that our dust model is an isotropic model, so it is
biased because both βd and Td are expected to vary spatially. Taking ILC
for each pixel is time consuming and will also introduce more noise from the
unequal zero point for different frequency maps. It’s not clear how to solve
this problem.

The noise term n′ in Eq.3.30 contains photon noise which is proportional
to the square root of photon number. So it depends on the spatial distribu-
tion of SZ signal and could also be correlated with weak lensing. We don’t
consider it in this work.

Finally, we come up with a piecewise power spectrum for the CIB and
make a CIB-nulled y map by introducing the CIB spectrum in the mixing
matrix. Cross correlation of the CIB-nulled y map and κ map makes little
difference with the cross correlation of the y map and the κ map. With this
CIB spectrum, we make a NILC CIB map. But the κ×CIB cross correlation
signal is noisy and not significant.
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Chapter 4

Conclusions

• PIXIE: We wrote a code model for a simplified optical system for the
PIXIE telescope and simulated ray propagation in the instrument. We
let some instrument parameters to be free and optimize them by max-
imizing a judging parameter Good (defined in (2.25)). The optimized
parameters are summarized in (2.28) and the output with this parame-
ters Table.2.4 The optimized instrument yields a good value of 15.27%
and the telescope gets a 1.1◦ beam resolution. Future work for this
instrumental simulation includes:

1. Looking at the polarization performance of the instrument: di-
vide the area of interest into many squares, and sum P‖ and P⊥
(parallel and perpendicular to the desired polarization) weighted
by cos2 θ0. Then plot a little line showing the average polariza-
tion direction in each square. This shows the curvature of the
polarization across the field.

2. Include more free parameters to be optimized: for example, the
foci of other mirrors.

3. Include the moving dihedral mirror in future simulations, and
optimize Good with moving dihedral mirror.

• κ× y cross-correlation: we estimate the contamination from CIB and
galactic dust signals in the reconstructed κ× y cross-correlation. The
result shows that CIB contributes only (5.8 ± 4.6)% with only 2.2σ
confidence within 600 < ` < 2000. The dust does not change the signal
amplitude but only the noise level. A dust spectral index βd = 1.57
minimizes the standard variance in κ × y. There are couple of the
future plans:

1. Model the CIB signal in a better way: Section 3.5 shows that
the overall piecewise power law CIB model does not work well.
We need to take into account the spatial dependence of the CIB
signal to null it from the y map.
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2. Use better data to do the cross-correlation: our work suggests
that the main noise of cross-correlation comes from systematic
errors. We can reduce it with better data. There is new lensing
data from KiDS experiment, and a y map with higher resolution
that is made by including the ACT sky map.
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[48] Hurier, G., Maćıas-Pérez, J., & Hildebrandt, S. 2013, Astronomy &
Astrophysics, 558, A118

92



Bibliography

[49] Kamionkowski, M., Kosowsky, A., & Stebbins, A. 1997, Physical Re-
view D, 55, 7368

[50] Keating, B. G., Ade, P. A., Bock, J. J., et al. 2003, in Astronomi-
cal Telescopes and Instrumentation, International Society for Optics and
Photonics, 284–295

[51] Kogut, A., Fixsen, D., Chuss, D., et al. 2011, Journal of Cosmology
and Astroparticle Physics, 2011, 025

[52] Leach, S. M., Cardoso, J.-F., Baccigalupi, C., et al. 2008, Astronomy
& Astrophysics, 491, 597

[53] Liang, C., & Zhou, B. 2009, Differential Geometry Primer and General
Relativity, Volume One (Science Press)

[54] Linde, A. 2014, arXiv preprint arXiv:1402.0526

[55] Linde, A. D. 1982, Physics Letters B, 108, 389

[56] Linder, E. V., & Jenkins, A. 2003, Monthly Notices of the Royal As-
tronomical Society, 346, 573

[57] Mason, B., Pearson, T., Readhead, A., et al. 2001, in AIP Conference
Proceedings, AIP, 178–183

[58] Molnar, S., Birkinshaw, M., & Mushotzky, R. 2002, The Astrophysical
Journal, 570, 1

[59] Mortonson, M. J., & Seljak, U. 2014, Journal of Cosmology and As-
troparticle Physics, 2014, 035

[60] Narcowich, F. J., Petrushev, P., & Ward, J. D. 2006, SIAM Journal on
Mathematical Analysis, 38, 574

[61] Peebles, P. J., & Yu, J. 1970, The Astrophysical Journal, 162, 815

[62] Peebles, P. J. E. 1980, The large-scale structure of the universe

[63] —. 1982, Astrophysical Journal, Letters, 263, L1

[64] Penzias, A. A., & Wilson, R. W. 1965, The Astrophysical Journal, 142,
419

[65] Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, The Astro-
physical Journal, 517, 565

93



Bibliography

[66] Peter, P., & Uzan, J.-P. 2013, Primordial cosmology (Oxford University
Press)

[67] Planck Collaboration XII. 2014

[68] Planck Collaboration XXIX. 2014

[69] Planck Collaboration XXX. 2014, 571, A30

[70] Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, Astronomical
Journal, 116, 1009

[71] Robertson, H. P. 1935, The Astrophysical Journal, 82, 284

[72] Ryden, B. 2016, Introduction to cosmology (Cambridge University
Press)

[73] Samtleben, D., Staggs, S., & Winstein, B. 2007, Annu. Rev. Nucl. Part.
Sci., 57, 245

[74] Seljak, U. 1997, The Astrophysical Journal, 482, 6

[75] Seljak, U., & Zaldarriaga, M. 1997, Physical Review Letters, 78, 2054

[76] Shang, C., Haiman, Z., Knox, L., & Oh, S. P. 2012, Monthly Notices
of the Royal Astronomical Society, 421, 2832

[77] Smoot, G. F., Bennett, C. L., Kogut, A., et al. 1992, The Astrophysical
Journal, 396, L1

[78] Sunyaev, R. A., & Zeldovich, Y. B. 1970, Astrophysics and Space Sci-
ence, 7, 3

[79] Tegmark, M., Strauss, M. A., Blanton, M. R., et al. 2004, Physical
Review D, 69, 103501

[80] Tytler, D., O’Meara, J. M., Suzuki, N., & Lubin, D. 2000, Physica
Scripta, 2000, 12

[81] van Daalen, M. P., Schaye, J., Booth, C., & Dalla Vecchia, C. 2011,
Monthly Notices of the Royal Astronomical Society, 415, 3649

[82] Van Waerbeke, L., Hinshaw, G., & Murray, N. 2014, Physical Review
D, 89, 023508

94



Bibliography

[83] Van Waerbeke, L., Mellier, Y., Erben, T., et al. 2000, Astronomy and
Astrophysics, 358, 30

[84] Vikram, V., Lidz, A., & Jain, B. 2017, Monthly Notices of the Royal
Astronomical Society, stw3311

[85] Walker, A. G. 1937, Proceedings of the London Mathematical Society,
2, 90

[86] Weinberg, S. 2008, Cosmology (Oxford University Press)

[87] Wilson, M., & Silk, J. 1981, The Astrophysical Journal, 243, 14

[88] Xiang, S., & Feng, L. 2010, The Formation of Large Scale Structure of
the Universe (China Science & Technology Press)

[89] —. 2012, Formation of the Large Scale Structure of the Universe (China
Science and Technology Press)

[90] York, D. G., Adelman, J., Anderson Jr, J. E., et al. 2000, The Astro-
nomical Journal, 120, 1579

[91] Zaldarriaga, M. 2003, arXiv preprint astro-ph/0305272

[92] Zeldovich, Y. B., & Sunyaev, R. 1969, Astrophysics and Space Science,
4, 301

[93] Zwicky, F. 1937, The Astrophysical Journal, 86, 217

95



Appendix A

The Spin-Weighted Spherical
Harmonic Function

A spin-weighted function is a function of the spherical angular coordinates
θ and φ that transforms like:

sf(θ, φ)→ e−2isψf(θ, φ) (A.1)

under rotation around z axis by an angle of ψ. They can be decomposed
by spin-weighted spherical harmonic function which satisfy the normaliza-
tion relation: ∫ 2π

0
dφ

∫ π

0
sY
∗
`m(θ, φ)sY`′m′(θ, φ)dθ = δ``′δmm

′∑
`m

sY
∗
`m(θ, φ)sY

(
`mθ
′, φ′) = δ(φ− φ′)δ(cos θ − cos θ′)

(A.2)

As what we do for angular momentum in quantum mechanics, we can
define the upper and lower operator ∂± which can transform an s spin-
weighted function to a s+1 or s−1 spin-weighted function. Under spherical
coordinate, ∂± writes:

∂± = − sin±s θ

(
∂

∂θ
± i

sin θ

∂

∂φ

)
sin±s θ (A.3)

when acting on sY`m, repeat the calculation for angular momentum, we
get a familiar relation:

∂±sY`m = ±
√

(`∓ s)(`+ 1± s)s±1Y`m (A.4)

So the spherical harmonic function with spin weight = s can be obtained
by acting ∂± s times on Y`m (for which s = 0):

sY`m =

√
(`− s)!
(`+ s)!

(
∂±
)s
Y`m (A.5)
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Appendix A. The Spin-Weighted Spherical Harmonic Function

for s = 2:

2Y`m =

√
(`− 2)!

(`+ 2)!

(
∂±
)2
Y`m (A.6)

For a regular spherical harmonic function, under flat plane approxima-

tion (`→ inf), Y`m → (e)i
~̀·n̂. So for s = 2:

2Y`m →
1

`2
(
∂±
)2

ei
~̀·n̂ = e±2i(φ−φ`)ei

~̀·n̂ (A.7)

Thus we prove (2.14)

97



Appendix B

The Needlet ILC

Our ILC process is performed in a Needlet frame. Needlet is first introduced
by Narcowich et al. [60] as a particular construction of a wavelet frame on a
sphere. The most distinctive property of the needlets is their simultaneous
perfect localization in the spherical harmonic domain (actually they are
spherical polynomials) and potentially excellent localization in the spatial
domain.

Basically, the raw temperature maps are first filtered into needlet win-
dows by first make spherical harmonic transforms of the maps x`m, then
multiplied by the needlet window h(a)(`) and transformed back into real
space. The result is called a needlet map, characterized by a given range
of angular scales given in h(a)(`). ILC is performed for each needlet scale,
and the synthesized map is obtained by co-adding the ILC estimates for
each needlet scale. In this work,the needlet bandpass windows are defined
following Aghanim et al. [10], which is a set of successive Gaussian beam
transfer functions in harmonic space.

h(1)(`) =
√
b1(`)2,

h(a)(`) =
√
ba+1(`)2 − ba(`)2,

h(10)(`) =
√

1− b10(`)2,

(B.1)

where

ba(`) = exp
(
−`(`+ 1)σ2

a/2
)

(B.2)

and

σa =

(
1√

8 ln 2

)(
π

180× 60′

)
FWHM[a] (B.3)

with FWHM = [300′, 120′, 60′, 45′, 30′, 15′, 10′, 7.5′, 5′]. So we have

10∑
a=1

(
h(a)(`)

)2
= 1 (B.4)
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Figure B.1: Needlet windows acting as bandpass filters in ` space.

So the signal for the output synthesized map from different needlet is
conserved.

To calculate the needlet filtered map d
(a)
i , we first calculate the spherical

harmonic transformation of di:

di(θ) =
∑
`m

xi,`mY`m(θ) (B.5)

xi,`m is the spherical harmonic coefficient for map of the ith channel.
Multiply it by the needlet filter h(a)(`) and transform back, we get the
needlet filtered map:

d
(a)
i (θ) =

∑
`m

h(a)(`)xi,`mY`m(θ) (B.6)

With all the information given in section 3, we present the ILC coeffi-
cients for our fiducial NILC y map at different needlet scales in Table ??.
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Table B.1: The ILC coefficients for the fiducial NILC y map in different
needlet scales

hi(`) 104 × c100 104 × c143 104 × c217 104 × c353 104 × c545 104 × c857

1 -23.414 12.546 1.395 0.642 -0.696 0.112
2 -10.955 -0.177 5.736 -0.188 -0.615 0.121
3 -7.235 -2.745 5.577 0.414 -0.855 0.154
4 -4.942 -4.268 5.416 0.802 -0.962 0.160
5 -4.682 -4.263 5.194 0.947 -0.966 0.152
6 -4.772 -3.943 4.911 1.062 -0.915 0.130
7 -3.561 -4.540 4.602 1.353 -0.894 0.105
8 -2.537 -5.110 4.418 1.551 -0.857 0.081
9 -1.387 -5.690 4.143 1.808 -0.816 0.052
10 -0.139 -5.915 3.388 2.305 -0.727 -0.007
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