
FlowRep: Extracting Descriptive Curve Networks from
Free-Form Design Shapes

by

Giorgio Gori

B. in Informatics, Università della Svizzera Italiana, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

August 2017

c© Giorgio Gori, 2017

Abstract

This thesis presents FlowRep, an algorithm for extracting descriptive compact 3D

curve networks from meshes of free-form man-made shapes. FlowRep output net-

works provide a concise visual description of the underlying surface, and can be

used as a compact proxy for shape compression, editing and manipulation. While

artists routinely and successfully create descriptive curve networks to depict com-

plex 3D shapes in 3D space or on 2D media, the method described here is the first

to achieve this goal algorithmically. FlowRep infers the desired compact curve

network from complex 3D geometries by using a series of insights derived from

perception, computer graphics, and design literature which point to two sets of ge-

ometric properties that such networks should satisfy. These sources suggest that

visually descriptive networks are cycle-descriptive, i.e their cycles unambiguously

describe the geometry of the surface patches they surround. They also indicate that

such networks are designed to be projectable, or easy to envision when observed

from a static general viewpoint; in other words, 2D projections of the network

should be strongly indicative of its 3D geometry.

Research suggests that both properties are best achieved by using networks

dominated by flowlines, surface curves aligned with principal curvature directions

across anisotropic regions and strategically extended across sharp-features and

isotropic areas. The algorithm leverages these observations in the construction of

a compact descriptive curve network. Starting with a curvature aligned quad dom-

inant mesh I first extract sequences of mesh edges that form long, well-shaped and

reliable flowlines by leveraging directional similarity between nearby meaningful

flowline directions. This process overcomes topological noise, and inaccuracies

and singularities in the underlying curvature field. I then use the extracted flow-

ii

lines and the model’s sharp-feature, or trim, curves to form a projectable network

which describes the underlying surface. Finally, I simplify this network while pre-

serving its descriptive power to obtain the final result. My co-authors and I validate

our method by demonstrating a range of networks computed from diverse inputs,

using them for surface reconstruction, and showing extensive comparisons with

prior work and artist generated networks.

iii

Preface

The ideas and algorithms described in this thesis, unless stated below, were devel-

oped by myself in consultation with Dr. Alla Sheffer, Dr. Nathan Carr and Dr. Tao

Ju.

The content of Section 4.5 (Regularization) was developed by Nicholas Vining

in consultation with Dr. Alla Sheffer and included here for completeness. The

user studies mentioned in Section 8.3 (Figures A.1, A.2) were conducted by En-

rique Rosales and Nicholas Vining with UBC approval (UBC BREB Number H16-

02320).

All the ideas and algorithms described were submitted in the research paper:

• Giorgio Gori, Alla Sheffer, Nicholas Vining Enrique Rosales, Nathan Carr

and Tao Ju. 2017. FlowRep: Descriptive Curve Networks for Free-Form

Design Shapes. ACM Trans. Graph. 36, 4, Article 59 (July 2017), 14 pages.

[23]

iv

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . v

List of Figures . viii

Acknowledgments . xiii

1 Introduction . 1

2 Related Work . 6
2.1 Curvature Aligned Meshes. 6

2.2 Mesh Segmentation and Reverse Engineering. 7

2.3 Quad Patch Layout. 7

2.4 Feature Curves and Curve Networks. 8

2.5 Shape Proxies. 9

2.6 Analysis of Design Networks and Drawings. 10

3 Descriptive Curve Networks . 11
3.1 Cycle Description . 11

3.2 Flowline Dominance . 12

3.3 Network Projectivity . 13

v

4 Overview . 15
4.1 Problem Statement . 17

4.2 Solution Framework . 17

4.3 Strand-based Flowline Extraction 18

4.4 Network Computation . 19

4.5 Regularization . 21

5 Measuring Network Properties . 22
5.1 Cycle Descriptiveness . 22

5.2 Flowline Cost. 24

5.2.1 Flowline Projectivity . 24

5.2.2 Flowline Dominance . 26

6 Flowline Computation . 28
6.1 Initial Strands and Flowlines. 29

6.1.1 Initial Strands . 29

6.1.2 Initial Flowline Extraction 30

6.2 Reliable Strands and Flowlines. 30

6.2.1 Reliable Strands . 30

6.2.2 Reliable Flowline Extraction 31

7 Network Computation . 33
7.1 Top-Down: Dense Descriptive Network Computation 34

7.1.1 Network Initialization 34

7.1.2 Network Refinement . 34

7.1.3 Flowline Shortening . 34

7.2 Bottom-Up: Network Simplification 35

7.2.1 Simplification . 36

7.2.2 Connectivity Optimization 36

7.2.3 Post-process Local Optimization 37

8 Validation . 39
8.1 Comparison to Artist Generated Networks 39

8.2 Comparison to Prior Art . 40

vi

8.3 Qualitative Evaluation . 43

8.4 Reproduction . 44

9 Results . 46
9.1 Symmetry . 46

9.2 Network Resolution . 46

9.3 Impact of Design Choices . 47

9.4 Input Mesh Impact . 48

9.4.1 Curvature re-alignment 49

9.5 Parameters and Runtimes . 50

9.6 Limitations . 50

10 Conclusions . 52

Bibliography . 53

A Supporting Materials . 58

vii

List of Figures

Figure 1.1 Artist generated 3D (a) and 2D (b) descriptive curve networks

succinctly convey complex free-form shapes. 1

Figure 1.2 FlowRep describes complex free-form 3D geometries (a) by a

compact network of descriptive and projectable curves (e) that

can be used to both depict and reconstruct (f) the input (L2

distance between (a) and (f) is 0.1% of bounding box diago-

nal). Given an input quad mesh (a) it extracts strands of dom-

inant flowlines (b), uses those to computes a dense descriptive

network (c) and then systematically simplifies it to obtain the

desired compact net (d). 2

Figure 1.3 Quad-meshing methods that optimize for mesh regularity, such

as [7], use quad partitions (a) as a starting point and often ex-

hibit systemic misalignment with curvature directions as high-

lighted in (b). Meshing methods that seek to adhere to curva-

ture directions more strictly often result in meshes with multi-

ple sporadic singularities and non-quad elements (c). To avoid

systemic curvature misalignment we use the latter type of meshes

as a starting point for generating descriptive curve networks

(d). 4

viii

Figure 2.1 Projectivity and cycle descriptiveness (all renders show the

same 3D model in same view). Projection of an orthogonal

quad mesh (b) conveys the underlying 3D geometry better than

that of a non-orthogonal mesh (a). A flowline network (f) over

a curvature aligned field (e) succinctly describes the surface,

while a network (d) generated from an arbitrary smooth cross-

field (c) does not. 6

Figure 3.1 Descriptiveness; The curve network in the middle incorrectly

conjures a flat surface, while the cycles on the right are de-

scriptive of the originating surface on the left. 11

Figure 3.2 Examples of artist drawn lines to demarcate roundings. 12

Figure 3.3 A less (a) and more (b) projectable curve network in two views.

All figures show the same model. 13

Figure 4.1 Algorithm stages: (a) Input quad-dominant mesh; (b) flowline

strands; (c) compact descriptive network; (d) regularized final

network. 15

Figure 4.2 Detailed algorithm overview: (a) Input quad-dominant mesh;

(b) initial flowline strands; (c) initial conservative flowlines;

(d) final flowline strands; (e) reliable flowlines; (f) dense de-

scriptive network; (g) simplified network; (h) network post lo-

cal optimization; (i) regularized final network. 16

Figure 4.3 Examples of flowlines. 16

Figure 4.4 Overview of the method steps. 18

Figure 4.5 Flowlines extracted with just local information (left) and with

global information (right). 19

Figure 4.6 Independently formed flowlines (a,b,e) can be sub-optimal and

may occasionally persist through network computation (e). Strand

computation (c,d,f) correctly splits edges between different strands

overriding purely local alignment and resulting in better final

networks (f). 20

Figure 4.7 Regularization; Before (left) and after (right). 21

ix

Figure 5.1 (a) More (green) and less (red) well described cycles on a row-

boat, before and after local optimization. (b) Flowlines colored

by decreasing projectivity (blue to red). (c) More (blue) and

less (red) dominant flowlines. 22

Figure 5.2 Coverage; At the vertex v, interpolating along the flowline f1

the boundary normals n1
1 and n2

1 yield the prediction np
1 . The

error is the difference between np
1 and the actual normal n.

Similarly, another error is computed interpolating along f2.

FlowRep aggregates all of those errors for every vertex in the

region. 23

Figure 5.3 Projectivity; Three planes are fit to a sliding sequence of ver-

tices from vi to vi + 2k. Their normals n j, nk, and nh are

used to compute planarity (as the difference between them)

and geodesicity (comparing them against the vertex normals). 25

Figure 5.4 Normal predictions match the actual normals (left). Remov-

ing the middle flowline affects the normal predictions (right),

that then diverge from the actual normals, leading to a high

dominance cost. 26

Figure 6.1 Dominant flowline strands on the mug: (a) initial edge strands

and (b) extracted conservative flowlines; (c) final strands and

(d) flowlines. 28

Figure 6.2 Positive and negative cluster associations of edges around edge e 29

Figure 7.1 Network computation: (a) Initial trim curve network; (b) de-

scriptive dense network; (c) final network. 33

Figure 7.2 A flowlines is shortened to terminate at trim curves when pos-

sible (left) or to other flowlines (right). 35

Figure 8.1 Comparison against artist generated networks: (left to right)

input model, artist generated 2D design drawings and 3D net-

work (red), and our algorithmic result (blue). 40

x

Figure 8.2 Suggestive contours combined with ridge and valley lines [17]

(b) convey the overall input shape (a); a FlowRep descriptive

network (c) provides a more detailed and accurate description

of the input geometry. 40

Figure 8.3 Surface segmentation (e.g. VSA [14]) (b) and reverse engi-

neering methods (d,e) are not designed for, and do not produce,

projectable curve networks; their output is often not descrip-

tive to a human observer. FlowRep networks (c,f) satisfy both

criteria. 41

Figure 8.4 (a) Quad-partition [7] of the treball and ellipsoid (a) compared

to our network (b). Quad partitions, here [24], are highly de-

pendent on the singularity locations in the initial mesh drifting

from curvature directions (c). FlowRep result on same model

(d). 42

Figure 8.5 While exoskeletons [16] only roughly capture coarse part struc-

tures of shapes (b), our method describes the geometry in more

detail (c). Planar slices [32] are restricted in their ability to

convey free-form shape (e,h), while FlowRep networks are

well suited for this task (f,i). 43

Figure 8.6 Study questionaire layouts: FlowRep compared to artists (left)

and FlowRep compared to previous work (right). 43

Figure 8.7 Reproduction. Pairs of input models with computed FlowRep

networks (wireframes) and these networks resurfaced using

[36] (blue). 45

Figure 8.8 Reproduction. Input curve networks (green), surfaces produced

by [3, 36], and our networks (blue) computed from these sur-

faces. 45

Figure 9.1 Networks with different descriptiveness thresholds, shown on

the ellipsoid model. 47

xi

Figure 9.2 Alternative network extraction methods: (a) bottom-up cycle

clustering results in poorly descriptive networks with highly

irregular connectivity; network optimization using only flow-

line projectivity (b) or only their dominance (c), versus full

optimization (d). 47

Figure 9.3 Impact of systemic mesh vs curvature tensor misalignment: (a)

Interleaved spiral flowlines resulting from curvature drift may

result in undesirable T-junctions (mesh from [28]); (b) more

significant misalignment predictably distorts the network ori-

entation (mesh from [7]); (c) large patches of randomly aligned

quads (top of the hat) similarly lead to artifacts. 48

Figure 9.4 Curve networks generated from different meshes of same model:

(a) [7], (b) ArtMesh. The input mesh in (a) exhibits feature

drift (sharp features migrating between mesh flowlines); lead-

ing FlowRep to preserve these flowlines generating visual re-

dundancy. 48

Figure 9.5 Impact of halving/doubling default algorithm parameters

(weights used for correlation clustering; weights of different

elements of En (Eq. 4.1)). 50

Figure 9.6 Additional results. 51

Figure A.1 User Study 1. 59

Figure A.2 User Study 2. 60

xii

Acknowledgments

Many thanks to Nathan Carr from Adobe and Tao Ju from Washington University

in St. Louis for helpful discussion, insight and feedback.

I would like to thank my supervisor Alla Sheffer for guidance, support and for

being my academic sounding board in the past two years.

Thanks to Nicholas Vining, Enrique Rosales and Chenxi Liu for the help when

was most needed and for complementing my skills.

Many thanks to University of British Columbia and the Department of Com-

puter Science for offering me this fantastic opportunity and for the financial aid

they provided.

Thanks especially to my parents, who encouraged and supported my choice of

studying far from home.

xiii

Chapter 1

Introduction

(a) (b)

Figure 1.1: Artist generated 3D (a) and 2D (b) descriptive curve networks
succinctly convey complex free-form shapes.

Artists employ sparse descriptive networks of 3D curves lying on the surface

of imagined objects as a starting point for modeling such envisioned shapes, with

curve generation followed by surfacing, and quickly communicate 3D shapes on

paper by sketching 2D projections of such 3D curve networks depicted from infor-

mative viewpoints (Figure 1.1). In addition to providing an effective visual com-

munication tool, sparse descriptive curve-network representations of 3D models

provide designers with intuitive handles for shape editing [21]; facilitate compact

shape representation and abstraction [33]; support shape-preserving mesh simplifi-

cation [22]; and enable other high-level operations. This thesis proposes FlowRep,

a method for computing visually descriptive compact curve networks of free-form

1

(a) Input

(b) Flow-line Strands (c) Dense Network (d) Sparse Network

Intermediate Stages

(e) Output (f) Reconstructed

Figure 1.2: FlowRep describes complex free-form 3D geometries (a) by a
compact network of descriptive and projectable curves (e) that can be
used to both depict and reconstruct (f) the input (L2 distance between (a)
and (f) is 0.1% of bounding box diagonal). Given an input quad mesh
(a) it extracts strands of dominant flowlines (b), uses those to computes
a dense descriptive network (c) and then systematically simplifies it to
obtain the desired compact net (d).

2

man-made, or designed, shapes from existing models (Figure 1.2). FlowRep net-

works effectively convey the shape of an input 3D object geometry to human ob-

servers and can be used for the range of applications described above. They accu-

rately encode input geometry enabling both perceptual and geometric reconstruc-

tion; the mouse in Figure 1.2f was accurately reconstructed from our curve network

alone using the method of [36].

While previous methods have addressed the related problems of surface parti-

tioning [4, 10, 14, 20, 34] and extraction of sets or networks of different feature

curves [17, 22, 33], the partition boundaries or sets of curves they produce do not

provide a detailed description of complex man-made free-form shapes (Chapter 2);

the compact sets of curves they generate either do not allow a human viewer to vi-

sualize the detailed 3D shape that they represent, or are not sufficient to reconstruct

the shape using existing surfacing methods. In contrast, and as demonstrated by

the comparisons presented later in this thesis, FlowRep addresses the fundamental

problem of generating a curve network that unambiguously defines the target shape

for human observers and allows for effective reconstruction of the shape from the

curves alone using perception-driven surfacing techniques [3, 36].

The first challenge that I face in extracting the desired curve networks from in-

put models is determining the properties these networks must possess to adequately

describe a given shape. The design literature points to two sets of criteria that these

curve configurations should satisfy (Chapter 3). The desired curve networks should

be projectable - i.e. the 3D shape of the curves should be predictable from their 2D

projection when viewed from non-accidental viewpoints - and the network cycles

should clearly describe the surface regions they bound. As observed by previous

literature [36, 45], artist drawn networks are typically dominated by a combination

of trimming curves, which indicate sharp features, and flowline curves, or sur-

face curves aligned with principal curvature directions in anisotropic regions and

smoothly extending into and traversing isotropic areas. These flowlines are key to

both network projectivity and cycle descriptiveness (Chapter 3). By construction,

curvature tensor-aligned curves are orthogonal; this is a key property for recov-

ering their 3D shape from a 2D projection of the curve network [45]. Moreover,

human observers tend to mentally surface 3D network cycles by interpreting most

cycle curves as aligned with principal curvature directions on an imaginary surface.

3

Figure 1.3: Quad-meshing methods that optimize for mesh regularity, such as
[7], use quad partitions (a) as a starting point and often exhibit systemic
misalignment with curvature directions as highlighted in (b). Meshing
methods that seek to adhere to curvature directions more strictly often
result in meshes with multiple sporadic singularities and non-quad ele-
ments (c). To avoid systemic curvature misalignment we use the latter
type of meshes as a starting point for generating descriptive curve net-
works (d).

They consequently envision surfaces on which the curvature directions are interpo-

lating the directions of these curves and the curvature magnitudes are a blend of the

curvatures along these curves [3, 36]. When extending flowlines across isotropic

regions, artists leverage the extra degree of freedom these regions provide to op-

timize both curve projectivity and descriptiveness. While dense flowline and trim

networks adequately describe shape, the design literature indicates a strong pref-

erence for using compact, minimalist, cycle-descriptive networks to avoid visual

clutter [18]. When creating such compact networks, artists use dominant flowline

curves to delineate regions with monotone curvature variation, whose geometry is

consequently well described by their boundaries. Using these guidelines for cre-

ating the desired descriptive networks, I seek to compute a compact descriptive

set of projective dominant flow lines on the input shapes. To extract this compact

network, I leverage observations about the desired properties of such curves de-

rived from design and modeling literature (Chapter 3) and use those to quantify

dominance, descriptiveness and projectivity. I then employ these definitions in a

network computation algorithm.

Tracing individual flowlines, especially across isotropic regions and near curvature-

field singularities, is inherently unreliable. This thesis provides global context

for flowline computation by using a curvature aligned quad-dominant mesh as

4

a starting point for our algorithm. Edge sequences on such meshes are largely

aligned with curvature directions in anisotropic regions and typically smoothly ex-

tend across isotropic ones; such edge sequences provide a natural starting point for

tracing an initial set of flowlines from which we can subsequently distill the desired

dominant subset.

Using such meshes as a starting point, however, introduces different challenges.

First, quad-meshing methods balance mesh quality and vertex regularity against

curvature alignment. Generation of more regular meshes, e.g. [7, 11], often re-

quires significant deviation from curvature directions (Figure 1.3b). In my setting,

the requirement for curvature field alignment is paramount, necessitating the use

of curvature aligned, but potentially highly irregular, meshes with singular vertices

and non-quad faces (Figure 1.3c). I and my co-authors extrapolate projectable

and dominant flowlines, overcoming misaligned edges and mesh irregularities, by

leveraging directional affinity between adjacent meaningful flowlines. We note that

dominant principal curvature directions are characterized by clusters, or strands,

of adjacent similarly directed flowlines or sequences of mesh edges. My flowline

extraction method first clusters the mesh edges into strands, and then extracts indi-

vidual flowlines from these strands. We use the extracted flowlines to compute the

desired network. We first assemble a dense descriptive trim and flowline network

that describes the input surface within a given tolerance, and then simplify and op-

timize this network using the dominance, projectivity and descriptiveness metrics

identified above to obtain the desired compact solution.

The contribution of this thesis is two-fold. I identify and enumerate the key

properties of descriptive curve networks suitable for communicating complex de-

signer shapes; I then propose the first curve network extraction algorithm that gen-

erates networks with these desired properties. I and my co-authors test the method

on a diverse range of inputs, showcasing its ability to generate the desired results on

complex free-form models, and validating it through comparison to artist outputs,

designer evaluation, and comparisons to prior art (Chapters 8, 9). As this validation

confirms, the output networks successfully capture and convey the essence of the

input shapes both in 3D space, and when viewed from general viewpoints.

5

Chapter 2

Related Work

While our focus on computing perceptually descriptive curve networks for design

shapes is new, our method is related to a range of works that seek to either partition

surfaces, or to extract different types of feature curves from an input mesh. I briefly

review these works, analyzing how well their outputs adhere to our three goals:

descriptiveness, projectivity, and compactness.

2.1 Curvature Aligned Meshes.
At the finest level, curvature aligned polygonal meshes provide two of the qual-

ities we seek: descriptiveness and projectivity (Figure 2.1b). For example, Al-

liez et al. [1] extract a curvature aligned quad-dominant mesh from the curvature

Figure 2.1: Projectivity and cycle descriptiveness (all renders show the same
3D model in same view). Projection of an orthogonal quad mesh
(b) conveys the underlying 3D geometry better than that of a non-
orthogonal mesh (a). A flowline network (f) over a curvature aligned
field (e) succinctly describes the surface, while a network (d) generated
from an arbitrary smooth cross-field (c) does not.

6

tensor field. However, such meshes are clearly not compact. We use them as a

starting point for our framework, which compacts them while maintaining these

two key properties (Figure 2.1f).

2.2 Mesh Segmentation and Reverse Engineering.
Methods for mesh segmentation, e.g. [14, 29] and reverse engineering, e.g. [4, 35,

44] aim to segment models into regions with particular surface characteristics, for

instance developable surfaces, planes, or conics. Cohen-Steiner et al. [14] approx-

imate the mesh with geometric proxies and Wu et al. [44] expand that method by

using different primitives. Julius et al. [29] segment the mesh in quasi-developable

charts. Nieser et al. [35] use feature lines and surface curvature to reverse engi-

neer the surface in regions. Beniere et al. [4] detect various geometric primitives

and their intersections to reverse engineer CAD models. All those methods pay

minimal attention to the properties of the boundary networks that arise from the

partition they produce, and at best optimize for boundary straightness or compact-

ness. While they facilitate algorithmic reconstruction of approximate input geom-

etry from the curve network and compactly encoded region descriptors (such as

surface type, axis of revolution or radius), the curve networks they generate are

often not cycle-descriptive and, when projected to 2D space, provide little infor-

mation on the originating 3D curves (Figure 8.3). The key distinguishing feature

of our method compared to these approaches is our focus on network properties

rather than region properties, and consequently the ability to concisely and effec-

tively describe input surfaces independent of their specific geometry using network

curves alone.

2.3 Quad Patch Layout.
A range of methods extract coarse quad patch layouts to facilitate parameteriza-

tion and surface fitting. Early methods, such as [5] generate such layouts semi-

manually based on a coarse layout provided by the user. This approach is still

popular; for example Campen et al. [9] let the user specify “elastica strip” (closed

geodesic loops aligned with curvature) while Zhuang et al. [47] have the user

choose segmentation boundaries by picking geodesics in a carefully crafted met-

7

ric. More recent frameworks use motorcycle graphs, starting at quad mesh singular

points [20] to obtain singularity-free quad patches. Recent works [6, 42] improve

the patch layouts by simplifying spiraling patch boundaries and merging nearby

singularities. Gunpinar et al. [24, 25] augment the graph tracing with geometric

considerations, leading to better capture of prominent features. Alternative ap-

proaches use a curvature-aligned tensor field instead of a mesh as a starting point

[7, 10, 34, 38] and trace separatrices from field singularities to form quad patches.

Bommes et al. [7] use a mixed-integer approach to produce reliable quad-meshes.

Campen et al. [10] construct patch layouts guided by the curvature field, then ex-

tract the dual graph and finally generate the quad mesh. Myles et al. [34] generate

a parameterization aligned with a cross field by tracing along the field and then

optimizing for consistent parametric edge lengths. Razafindrazaka et al. [38] for-

mulate the problem of finding patch layouts as a global optimization on the cross

field singularity graph. Whether starting from a quad mesh or a field, the results of

these methods are highly dependent on the location of singularities and can there-

fore be significantly misaligned with curvature directions (Figures 1.3,8.4). Even

when aligned with curvature the separatrice boundaries used by such networks

form irregular valence vertices, resulting in networks that contain few orthogonal

intersections, making the mental leap from the network to the underlying surface

challenging (Figure 8.4a). Similar to the first group of layout methods, we use

meshes as a starting point; however, we seek a distinctly different set of network

curves, one aimed at perceptual rather than purely geometric approximation of the

input model.

2.4 Feature Curves and Curve Networks.
A large body of research addresses detection of both sharp features and prominent

curves, such as ridge and valley lines on meshes. Hildebrandt et al. [26] present

a stable algorithm to produce visually pleasing feature lines, while Lai et al. [31]

detect and classify features into ridges, valleys and prongs (a slender pointed part).

These curves are often used to augment contours when generating sketches of in-

put models, e.g. [17], and are effective at quickly conveying the overall shape of

objects [15, 18] (Figure 8.2b). When aiming to convey proportions and geometric

8

details, artists utilize more detailed descriptive, or “precise”, drawings [18] which

augment contours and sharp feature curves with dominant flowlines and typically

do not include smooth ridges or valleys (Figure 1.1). Our work focuses on captur-

ing the curve networks artists use in the latter context (Figures 8.1, 8.2c).

Mehra et al. [33] represent 3D shapes using networks of sharp feature curves

with specified normals along them, selecting a suitable curve subset to achieve a

desired abstraction. To describe smooth regions, they augment those networks to

include the boundaries of coarse planar segmentation regions [14] (Figure 8.3b).

Gehre et al. [22] allows for a more effective control of network density using a

global scale parameter and support inclusion of other feature curves, such as ridges

and valleys in the output networks. As noted earlier, feature curves alone are

not sufficient to accurately describe smooth shapes, while segmentation bound-

ary networks are rarely projectable and are therefore not suitable for our needs.

Moreover, while the network resolution constraints these methods use are largely

spatial, FlowRep network density is controlled by its descriptiveness, resulting in

much denser spacing on prominent details, such as the mouse wheel, and sparser

ones on more monotone areas such as the top of the mouse (Figure 1.2).

2.5 Shape Proxies.
de Goes et al. [16] propose a user-assisted method for coarse abstraction of natural

shapes. They first segment models into roughly convex parts, and then partition

those using an extension of VSA [14] that seeks to reduce T-junction count. Our

automatic framework targets free-form man-made shapes and is designed to accu-

rately capture their geometry (Figure 8.5, top).

Planar curves, or slices, aligned with major curvature direction or key symme-

try planes are successfully used to fabricate real-life proxies of 3D shapes [13, 32].

This representation requires a leap of imagination to envision the intended surface,

and performs worst when curvature streamlines are non-planar (Figure 8.5,e,h),

leading Cignoni et al. [13] to use hundreds of slices to obtain recognizable rep-

resentations of medium complexity shapes. Our alternative approach effectively

describes shapes of similar complexity with just a few curves (Figure 8.5,f,i).

9

2.6 Analysis of Design Networks and Drawings.
There is a growing body of work on recovering 3D information from professional

design drawings [27, 39, 45]. Iarussi et al. extrapolate line directions in designer

drawings to form a cross field and then estimate the 3D surface normals. Shao et al.

[39] use the intersections between sketch lines to infer the normals. Xu et al. [45]

reconstruct 3D curve networks from design sketches using multiple insights from

perception and design literature. Recent methods use such reconstructed or artist-

created 3D networks to extract the 3D surface; Bessmeltsev et al. [3] interpolate the

input curves with a set of quad patches whose iso-lines match the input network.

Pan et al. [36] iteratively adapt a triangle mesh to optimize the agreement between

its curvature field and the input. This line of work has been the catalyst for our

exploration of the inverse problem - extracting a descriptive network from a given

3D geometry. We discuss the insights we derive from these papers and which we

utilize in our work in Chapter 3.

10

Chapter 3

Descriptive Curve Networks

Our goal is to compute a sparse network of curves on the surface of an arbitrary 3D

model that succinctly describes the model’s shape (Figure 1.1). Based on obser-

vations from design tutorials and relevant perception and computer graphics liter-

ature, we identify and formulate three major sets of geometric criteria that jointly

determine the overall network effectiveness: cycle description, curve dominance,

and network projectivity.

3.1 Cycle Description
A curve cycle is a collection of curve segments that demarcate the boundary of a

single surface patch, whether that surface is a real surface or merely implied. Per-

ceptual studies [40], validated by recent modeling research [3, 36], suggest that,

X×

Figure 3.1: Descriptiveness; The curve network in the middle incorrectly
conjures a flat surface, while the cycles on the right are descriptive of
the originating surface on the left.

11

when shown a curve cycle consisting of several smooth curve segments, human

observers opt for a unique mental interpretation of the cycle’s implied interpolating

surface. Specifically, viewers tend to perceive most of the provided curves as rep-

resentative curvature lines on an imaginary underlying surface. They subsequently

imagine a surface whose principal curvature lines smoothly blend these curves.

Since surface principal curvatures fully define its geometry, viewers consequently

imagine a unique surface interpolating this cycle.

Observation of industrial design practices [8, 18] indicates that artists leverage

this property when creating 3D curve networks or depicting 3D geometry in 2D

space. Their networks are dominated by flowline curves aligned with principal

curvature directions in anisotropic areas and extended across isotropic regions and

are augmented by trimming curves which demarcate open boundaries and sharp

features. As demonstrated in Figure 3.1, for the surface on the left the trimming

curve alone (middle) incorrectly conjures a flat surface, while the cycles of the

rightmost network are descriptive of the originating surface on the left.

3.2 Flowline Dominance

Figure 3.2: Examples of artist drawn lines to demarcate roundings.

Design literature [8, 18] highlights the need to keep the number of network

curves minimal for aesthetic reasons. It consequently provides helpful guidelines

as to what subset of flowlines and trimming curves is dominant, or best at suc-

cinctly conveying surface geometry. This literature indicates a preference for using

flowlines which delineate large areas of monotone curvature, and are representative

of one of the curvature directions within these areas. As a specific example, Eissen

12

and Steur [2008] recommend that artists demarcate roundings (marked in red in

Figure 3.2). They also recommend using “bigger sized curves first” and adding

more curves as necessary “to emphasize the transformation of the surface”. This

advice suggests a preference for hierarchical network constructions - first captur-

ing major anisotropic regions by tracing their dominant principal curvature stream-

lines, and then refining the network to add finer details.

3.3 Network Projectivity

front view

side view

front view

side view

(a) (b)

Figure 3.3: A less (a) and more (b) projectable curve network in two views.
All figures show the same model.

Artist-generated descriptive curve networks are designed to serve as a self-

sufficient proxy of the 3D shape. Consequently, evidence indicates that artists

construct networks whose 2D projections in many, if not all, views can be used

by human observers to successfully predict their 3D shape [32]. In Figure 3.3

the network on the right satisfies this property, while the one on the left does not.

Perception research [40] points out that smoothly crossing 2D curves in design

drawings are universally perceived as orthogonal. As highlighted by [39, 45] this

cue is critical when extrapolating depth from line drawings. Artists ubiquitously

13

employ such crossing orthogonal 3D curves in their networks. Curves meeting

at T-junctions are similarly perceived as likely orthogonal, unless contradicted by

the surrounding context [45]. There is no indication in research that any other

type of intersection or curve ending contributes to viewer understanding of 3D

network geometry given a 2D projection. These observations suggest a preference

for orthogonal curve networks dominated by regular (valence-4) vertices, with no

open-ended curves.

Human observers are more successful at inferring 3D curve shape from 2D

projections of flatter curves [40, 43]. While restricting the set of network curves to

strict planes reduces the set of models one can effectively describe [45], artists are

strongly encouraged to use planar curves when depicting shapes [18], whenever

possible.

Lastly, artists are strongly encouraged to draw local symmetry, or geodesic

curves when depicting complex surfaces [18, 19]. The symmetry cue is known to

be helpful in recovering the 3D shape of network curves from a 2D view [39, 45].

14

Chapter 4

Overview

Figure 4.1: Algorithm stages: (a) Input quad-dominant mesh; (b) flowline
strands; (c) compact descriptive network; (d) regularized final network.

Based on the criteria outlined in the previous chapter, I seek to construct a

sparse cycle-descriptive network of trim curves and projective dominant flowlines.

I seek flowlines that are aligned with curvature directions in anisotropic areas, and

which smoothly extend across features and isotropic regions.

To make the problem tractable, this thesis discretizes the solution domain by

starting from a finite set of potential flowlines. While one could start from a net-

work constructed by directly tracing on a smooth curvature-aligned tensor field,

tensor field tracing raises numerous accuracy issues [34, 37] and requires the con-

sideration of subtle streamline seeding and termination choices [11, 34]. Ex-

isting methods for generating curvature-aligned quad-dominant meshes robustly

address these issues, and their outputs can provide a suitable starting point for

the method presented. Most of the edges in anisotropic regions on such meshes

15

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4.2: Detailed algorithm overview: (a) Input quad-dominant mesh; (b)
initial flowline strands; (c) initial conservative flowlines; (d) final flow-
line strands; (e) reliable flowlines; (f) dense descriptive network; (g)
simplified network; (h) network post local optimization; (i) regularized
final network.

f1

f2
f3

Figure 4.3: Examples of flowlines.

are, by design, aligned with curvature directions, and most edges in isotropic re-

gions are aligned with a smooth extension of the curvature field. Moreover such

meshes, when dense enough, satisfy both projectivity and cycle-descriptiveness

(Figure 1.3c, Figure 2.1e); the task can therefore be formulated as extracting a

compact subset of the mesh edges which maximally retains both properties. I con-

trol the trade-off between compactness and descriptiveness by imposing a bound

on the cycle-descriptiveness error, and optimizing for the most compact dominant

and projective edge network that satisfies this bound.

In this chapter, I give a high-level formulation of the problem and overview

the key components of our method. Details of the formulation and method will be

discussed in the next three chapters.

16

4.1 Problem Statement
Given an input quad-dominant mesh M (Figure 4.2a), I formulate the computation

of our target network N as selection of a subset of mesh edges with the following

properties. Define a flowline as a (possibly closed) path made up of a sequence

of vertex-adjacent edges (see Figure 4.3; three flowlines f1, f2, f3 are identified by

three different colors). Each flowline f is associated with positive projectivity and

dominance costs p f and d f . These costs are designed to decrease as a flowline’s

projectivity or dominance increases. Each network cycle c is also associated with

a descriptiveness error dc. The exact formulations of p f , d f and dc are detailed

in Chapter 5. Using these measures, the discrete optimization goal can then be

formulated as computing a connected set of network flowlines f that minimizes

network cost while satisfying a descriptiveness threshold:

minEN = ∑(p f +d f) (4.1)

subect to maxdc < dmax ∀c ∈ N

Here dmax is a user specified descriptiveness threshold that controls the network

sparsity.

Two key properties make this problem distinct from those addressed by tra-

ditional discrete mesh segmentation frameworks. First, the network computation

operates on two distinct sets of entities. While the optimization function is defined

on flowlines, or sequences of mesh edges, the constraints are defined on the cy-

cles, or patches of mesh faces, that the flowlines bound. Second, unlike classical

segmentation frameworks, the function to optimize is essentially independent of

the number of edges within each selected flowline, but highly dependent on the a

priori unknown number of network flowlines and their overall properties.

4.2 Solution Framework
The algorithm developed in this thesis obtains the desired output network, by using

the observation that an assignment of mesh edges to flowlines can be made largely

independently of the choice of which flowlines will be eventually used in the final

17

network. Therefore I first group sequences of edges into flowlines (Figure 4.2b-e)

and then select a subset of these flowlines, in combination with the surface trim

curves, to assemble the desired network (Figure 4.2f-h). I contrast our approach

against classical segmentation methods in Chapter 8.

Flowline Extraction
Initial Flowline Computation

Edge Correlation Clustering

Initial Flowline Extraction

Reliable Flowline Computation
Flowline Correlation Clustering

Reliable Flowline Extraction

Network Computation
Dense Network Computation
Simpli�cation

(Optional) Regularization

Figure 4.4: Overview of the method steps.

The following sections contain overviews of the solution framework steps (Fig-

ure 4.4), then Chapter 6 describes in detail flowline extraction and Chapter 7

presents network computation.

4.3 Strand-based Flowline Extraction
In general I expect pairs of similarly directed edges that share a common vertex to

belong to the same flowline and orthogonal adjacent edges to belong to different

flowlines. I use these criteria to determine when flowlines should terminate, i.e.

under which conditions adjacent edges should belong to different flowlines, and

when local geometry allows for multiple alternatives to determine which pairs of

adjacent edges should be joined into the same flowline. Due to meshing artifacts,

singularities, misaligned edges, and inaccuracies in curvature field computation,

making these choices based on purely local geometry around the edges in question

18

× X
Figure 4.5: Flowlines extracted with just local information (left) and with

global information (right).

(Figure 4.5, left) can introduce flowlines misaligned with dominant flow directions.

I obtain flowlines aligned with dominant flow (Figure 4.5, right) by taking

global context into account. I note that dominant and meaningful curvature cross-

field directions on the surface are characterized by groups of multiple long, adja-

cent, similarly directed streamlines, or streamline strands. FlowRep leverages this

behavior by first extracting similarly directed flowline strands (Figure 4.2b-d) and

then using these strands to extract individual, reliable flowlines (Figure 4.2e). I do

not know a priori the number of strands we seek; however, as noted earlier, I gen-

erally expect consecutive edges across vertices and opposite edges within quads to

belong to the same strand if they have similar directions, and expect orthogonal

edges and intersecting flowlines to belong to different strands. I use these observa-

tions to formulate strand extraction as a correlation clustering problem [2] (Figure

4.2d). I then use these strands to extract individual, reliable flowlines (Chapter 6,

Figure 4.2e). Figure 4.6 demonstrates the differences between the local and global

approaches on real-life inputs.

4.4 Network Computation
Selecting an optimal subset of the computed flowlines requires solving a discrete

constrained optimization problem within a large solution space. Adding flowlines

into a network individually is problematic. While humans can easily identify dom-

inant curvature streamlines i.e. surface curves across which curvature changes

19

Figure 4.6: Independently formed flowlines (a,b,e) can be sub-optimal and
may occasionally persist through network computation (e). Strand com-
putation (c,d,f) correctly splits edges between different strands overrid-
ing purely local alignment and resulting in better final networks (f).

non-linearly, algorithmically identifying such locations on a mesh is error prone.

Absent this information, dominance is best assessed in the context of an existing

network, where it can be directly evaluated by comparing the impact on cycle-

descriptiveness of removing individual flowlines from the network. Intuitively,

keeping more dominant flowlines results in a more cycle-descriptive network. Us-

ing all flowlines at once to first form a dense network, and then simplifying it by

gradually removing flowlines, provides an adequate solution but is computationally

expensive as it involves multiple redundant insertion and removal operations.

To efficiently compute the desired network I adopt a mixed top-down/bottom-

up strategy. The network construction process starts from a minimal network of

only trim curves (Figure 7.1a) and progressively refines the inadequately described

cycles on this network (Figure 7.1, Section 7.1). At each refinement stage I add all

flowlines that span, or cross, these cycles into the network (Figure 7.1b), delaying

the decision on which of them are best until the network is sufficiently descriptive.

Refinement terminates once all network cycles are sufficiently described; specif-

ically, when the description error dc for each cycle is below our threshold dmax

(Figure 4.2f).

At this point I have sufficient context to proceed with the simplification pro-

cess, and can remove redundant flowlines (Section 7.2, Figures 4.1c, 4.2g, 7.1c).

I greedily remove less dominant and less projectable flowlines while enforcing the

descriptiveness threshold. I then further reduce the network energy EN , subject

20

to the descriptiveness constraints, by reassessing local flowline selection (Figure

4.2h). While this combined process is not guaranteed to converge to a global mini-

mum, it works well in practice, resulting in networks of similar complexity to those

produced by artists.

4.5 Regularization
The work presented in this section (Section 4.5) was developed by Nicholas Vining

in consultation with Alla Sheffer and is provided here for completeness.

Figure 4.7: Regularization; Before (left) and after (right).

The network produced by the framework discussed so far is constrained by the

underlying mesh discretization. This can lead to sub-optimal wiggles along flow-

lines and some approximately orthogonal, rather than strictly orthogonal, flowline

intersections (Figure 4.7, left). As a post-processing step, we eliminate these ar-

tifacts by directly optimizing flowline geometry. We first use an iterative Gauss-

Seidel smoother which straightens flowlines while maintaining and improving flow-

line orthogonality at their intersections. Specifically, for each interior flowline ver-

tex we project its neighbors to its tangent plane and the vertex toward the average of

these projections. We relocate flowline intersections by applying the angle equal-

izing mesh formula proposed by [41]. The newly computed positions are projected

to the input surface at each step. Finally, we detect all near-planar flowlines (a

flowline is near-planar if every point on the flowline is less than half of the av-

erage mesh edge length from its best-fit plane, computed via least squares) and

make them strictly planar, and straighten all near-linear flowlines (using the same

distance threshold, but tested against the best-fit line) (Figure 4.2i).

21

Chapter 5

Measuring Network Properties

Figure 5.1: (a) More (green) and less (red) well described cycles on a row-
boat, before and after local optimization. (b) Flowlines colored by de-
creasing projectivity (blue to red). (c) More (blue) and less (red) domi-
nant flowlines.

The framework of this thesis seeks to solve the optimization problem described

by Equation 4.1. I now derive the formulas used to measure the optimized energy

and constraints. To enable meaningful combination of different values I express all

quantities as angles (measured in degrees).

5.1 Cycle Descriptiveness
My descriptiveness metric assesses how well a given network curve cycle describes

the region it surrounds (Figure 5.1a). Intuitively, I wish to measure how well the

curvature directions and magnitudes in the interior of a region can be reproduced

from the magnitudes and directions along the boundary. However, estimating cur-

vature differences is sensitive to different scales in high versus low curvature re-

22

n1
1

n2
1np

1
n

v f1
f2

Figure 5.2: Coverage; At the vertex v, interpolating along the flowline f1 the
boundary normals n1

1 and n2
1 yield the prediction np

1 . The error is the
difference between np

1 and the actual normal n. Similarly, another error
is computed interpolating along f2. FlowRep aggregates all of those
errors for every vertex in the region.

gions. To enable conservative and robust descriptiveness computation I use dif-

ferences in normals as proxy for curvature changes: in particular, I measure the

angle differences between real normals across the patch and ones predicted based

on normals along the cycles.

I predict interior normals based on the boundary by locally mimicking the

method of Bessmeltsev et al. [2012]. Specifically, I follow each flowline fi fully

traversing the region from boundary to boundary. I use the normals at the cycle

intersections n1
i and n2

i to obtain a normal prediction for each vertex v that belongs

to the flowline and is inside the region (Figure 5.2):

np
i =

d1

d1 +d2
n1

i +
d2

d1 +d2
n2

i (5.1)

Where di is the distance along the flowline from v to respective intersection point.

I consider as the error the angle difference between the predicted normal and the

actual surface normal n, which is defined as the average of the normals of the faces

adjacent to the vertex that belong to the region:

d(vi) = 6 (n
p
i ,n). (5.2)

23

In theory I could extend this mechanism to handle vertices with no crossing flow-

lines, e.g. by computing some directed paths from them to the boundary. However,

given that the normals within the regions change gradually, if the region is suffi-

ciently well spanned by flowlines, I found that it is safe to simply omit all such

vertices from my region descriptiveness computation.

I seek a conservative descriptiveness estimate. Thus I refrain from using vertex

descriptiveness average as the per cycle value, yet I also wish to avoid using the

worst value as it may be an outlier. Thus, rather than using the largest angle d(v)

as the per-cycle error dc, I collect all errors for the vertices along a flowline strand

and compute their 90th percentile value, then set dc to the maximum of those per

strand errors.

It is possible that a region does not have enough spanning flowlines, or even

none at all. During the previous step I keep track of how many vertices were

processed, and if more than a third of the total were missed, I then fallback to a

simple planarity test. I compute the average of all face normals of the region, then

set dc as the maximum difference of each normal to the average normal.

5.2 Flowline Cost.
This thesis assigns a cost p f + d f to each flowline based on how its presence im-

pacts the descriptiveness d f and projectivity p f of the network N.

5.2.1 Flowline Projectivity

I measure raw flowline projectivity by locally evaluating its planarity, its deviation

from local geodesics, and its connections within the network. For each flowline

f I use short odd-length sliding sequences of vertices vi, . . .vi+k, . . . ,vi+2k to as-

sess planarity and geodesicity (we use k = 5). I fit planes to triplets of vertices

vi,vi+ j,vi+2k j ∈ [1,2k− 1]. We then measure sequence planarity as the average

angle between the normal of the central plane nk and those of the other planes n j

fitted to the sequence:

Pi =
1

k−1 ∑
j∈[1,2k−1], j 6=k

6 n jnk.

24

vi+k

vi

vi+j vi+h

vi+2knknj nh

Figure 5.3: Projectivity; Three planes are fit to a sliding sequence of vertices
from vi to vi + 2k. Their normals n j, nk, and nh are used to compute
planarity (as the difference between them) and geodesicity (comparing
them against the vertex normals).

The planarity of the entire flowline is in turn the average of local sliding sequence

planarity costs:

P(f) =
1
|i ∈ s|∑i∈s

Pi (5.3)

Recall that a curve is locally considered a geodesic if its local fitting plane contains

the surface normal. I thus measure geodesicity by evaluating the angle between the

normal to the surface n at vi+k and the plane pk. Strictly speaking, geodesicity is a

boolean property - in a continuous setting, a curve is either a geodesic or it is not.

Thus the angle measure becomes meaningless above a certain value, leading us to

compute geodesicity as

G(f) =
1
|i ∈ s|∑i∈s

min(6 nkn(vi+k),Gm) (5.4)

where Gm = 15◦.

As observed earlier, the interaction between network curves, specifically their

intersections, plays a major role in the projectivity of the overall network. When

interpreting the geometry conveyed by the network, human observers leverage or-

thogonal crossings both between flowlines and between flowlines and trimming

curves. I therefore prioritize retaining flowline curves that form such crossings

by associating endiness costs E1(f) and E2(f) with the ends of open flowlines. I

25

use an endiness value of 30 for flowline/trimming-curve T-junctions, and 60 for all

others. Both values are set to zero for a closed loop.

The flowline projectivity is set p f as follows, weighing geodesicity by dmax/Gm

to bring all values to a common scale,

p f = P(f)+
dmax

Gm
G(f)+E1(f)+E2(f) (5.5)

5.2.2 Flowline Dominance

Predicted normals
Actual normals

Figure 5.4: Normal predictions match the actual normals (left). Removing
the middle flowline affects the normal predictions (right), that then di-
verge from the actual normals, leading to a high dominance cost.

Assessing dominance by measuring curvature continuity, as suggested by de-

sign literature, is unreliable in a discrete setting. Instead, I observe that a flowline’s

dominance within a network context can be evaluated by measuring the impact of

removing this flowline on the descriptiveness of the affected cycles. The higher the

resulting descriptiveness error, the more dominant the flowline. Recalling that the

dominance error is computed as a maximum along two spanning flowline direc-

tions, I note that removing a network flowline impacts only one of these directions

(Figure 5.4). Accordingly, to better pinpoint the impact of each network flowline,

I use a modified cycle descriptiveness metric when assessing the impact of the re-

moval. For each cycle resulting from removing a flowline f , I only consider the

differences between the predicted and actual normal for normals predicted using

flowlines crossing f , and ignore the differences along other flowlines. I then use

the maximum of the cycle errors as a dominance estimate D(f). Since I want the

26

cost to be smaller the more dominant a flowline is, we use

d f = 360−D(f) (5.6)

as the cost. Figure 5.1 visualizes some flowlines colored based on projectivity

and dominance. Note that these costs are only meaningful in the context of a

network. Thus when computing flowlines prior to network construction, I require

proxy values to predict flowline properties, as discussed in the next chapter.

27

Chapter 6

Flowline Computation

Figure 6.1: Dominant flowline strands on the mug: (a) initial edge strands
and (b) extracted conservative flowlines; (c) final strands and (d) flow-
lines.

The goal of the flowline computation stage is to generate a set of reliable flow-

lines which we can use to assemble the network (see Chapter 7). Since purely local

reasoning about individual flowline formation is unreliable I employ a global ap-

proach that leverages directional similarity between edges associated with adjacent

flowlines (Figure 4.6). First I form strands, or clusters, of similarly directed edges,

and then extract individual flowlines from these strands.

When forming strands I employ the following positive (likely to be in same

strand) and negative (likely to be in different strands) cues. Edges are expected to

belong in the same strand if they are roughly parallel, and either share common

vertices or lie on opposite sides of common quads (Figure 6.2).

They are expected to belong to different strands if they share common vertices

28

e

+

+

+

−
−

−
−

Figure 6.2: Positive and negative cluster associations of edges around edge e

and are roughly orthogonal. Once formed, flowlines belonging to the same cluster

should not cross one another. While the no-crossing constraint is a very strong

clustering cue, I cannot apply it to our raw input consisting of individual edges. To

take advantage of this cue, I employ a two-stage process: I first form initial strands

using only cues applicable to edges and extract initial conservative flowlines from

those; I then use those initial flowlines to generate a set of reliable strands using the

full set of clustering cues; and finally use those strands to extract reliable extended

flowlines.

The combination of positive and negative cues that I use for strand formation

naturally feeds into a correlation clustering framework [2]. I employ the version of

correlation clustering that maximizes ∑e ceYe, where Ye ∈ 0,1 is 0 if the end nodes

of the arc e are in different clusters and 1 if they are in the same cluster. While

the general correlation clustering problem is NP-hard, it has a number of efficient

approximation methods. I use the method of [30] to compute the clusters; while

not optimal, it performs well in practice. The specific edge weights used in my two

clustering steps are defined below.

6.1 Initial Strands and Flowlines.

6.1.1 Initial Strands

To form initial strands using correlation clustering (Figure 4.2b) mesh edges are

treated as graph nodes, and I associate non-zero weights with the arc connecting

29

edge nodes i, j when these either share a common vertex, or form opposite sides in

a mesh quad. When a pair of mesh edges i, j share a common vertex, I define the

arc weight ci j as

ci j =

e−
(

αi j
σ1

)2

, if αi j ≤ 45

wne−
(90−αi j

σ2

)2

, otherwise
(6.1)

αi j is the angle difference between the unsigned edge directions projected to the

vertex tangent plane, wn =−5, σ1 = 5, and σ2 = 15. This weight is positive when

edge directions are closer to parallel than orthogonal, and negative otherwise. For

arcs connecting opposite edges within each quad, I define the weight as

ci j = wpe−
(

αi j
σ3

)2

. (6.2)

I set σ3 = 5◦ and use a very small parallel coefficient wp = 0.05, as at this stage I

desire clusters dominated by local flowline smoothness.

6.1.2 Initial Flowline Extraction

I generate flowlines from strands by segmenting the connected components of each

strand into individual flowline edge sequences (Figure 4.2c). I avoid making any

potentially ambiguous choices by using all irregular (non valence 4) and trim curve

vertices within such components as flowline termination points and define each

resulting one-dimensional edge sequence as a flowline.

6.2 Reliable Strands and Flowlines.

6.2.1 Reliable Strands

The initial flowlines allow for more global reasoning about, and consequently ex-

traction of, more reliable strands and flowlines (Figure 6.1). I use a similar process

for extracting these flowlines as for the initial ones, but incorporate additional in-

formation provided by the current segments. I obtain reliable strands using our

correlation clustering setup by treating the initial flowlines as graph nodes, and

associating arcs with pairs of flowlines f , f ′ that share common end vertices or

30

contain edges on opposite sides of mesh quads. At each shared end vertex, I first

compute the tangent vectors for the emanating flowlines f , f ′ using the average

across a local neighborhood set to five average mesh edge lengths. I then compute

c f , f ′ as a function of the angle between these tangents using Equation 6.1, but with

a more tolerant value, σ1 = 7.5. For flowlines that share two endpoints I sum up

the values obtained at both ends.

For each pair of flowlines, f and f ′, that contain opposite edges i ∈ f , j ∈ f ′

on shared quad mesh faces, I compute the arc weight as a function of both the

angles between such pairs of opposite edges, and the proportion of such opposite

edges as a function of the length l of the shorter flowline. Intuitively, the bigger

this proportion, the more likely the flowlines are to be in the same strand:

c(f , f ′) =
2
l ∑

i, j
e−
(

αi j
σ3

)2

. (6.3)

As observed earlier, crossing flowlines should not belong to the same cluster. I

therefore associate a large constant negative arc weight c(f , f ′) =−25 with each pair

of crossing flowlines (f , f ′). The overall score function that strand computation

seeks to maximize is max∑c(f , f ′)Y(f , f ′) where Y(f , f ′) is 1 if the two flowlines are in

the same cluster and 0 if not.

6.2.2 Reliable Flowline Extraction

I use the obtained strands to extract extended reliable flowlines (Figure 4.2e). The

connected components of flowline strands can form a range of graph configura-

tions, allowing for multiple individual flowline configurations. I form our reliable

flowlines using a greedy process which prioritizes extraction of more projectable

and longer flowlines within each component. I measure projectivity using the met-

ric in Section 5.2. Flowline endiness costs E1,E2 (Section 5.2) dominate all other

projectivity components and are lowest for closed loops. Thus for each connected

component I extract all closed loop flowlines first, prioritizing more projectable

closed loops when given multiple options. I then use a greedy process to extract

the longest open flowlines that cannot be extended, i.e. ones that start and end at a

valence one vertex, again prioritizing more projectable ones, given multiple same

31

length alternatives. Mesh artifacts can result in spiraling flowlines, where one edge

is directly or indirectly parallel to another edge. While sometimes these spiral flow-

lines need to be included in the final network for description purposes, one cycle

is often sufficient to describe the surrounding geometry. To facilitate processing

of individual cycles, I detect spirals in the same way as for conservative flowlines,

and split them at the point where they complete a full cycle but have yet to become

parallel. If there are multiple such points, I select the one(s) which result in the

most projectable flowlines.

Algorithm 1 Compute Flowlines

procedure COMPUTEFLOWLINES(mesh = (V,E))
Construct a graph G1 where each node is an edge of mesh
for each edge i ∈ E do

for each edge j connected to i do
G1[i, j]← ci j (Eq. 6.1)

for each edge j face-opposite to i do
G1[i, j]← ci j (Eq. 6.2)

C1 = CorrelationClustering(G1) . maximize ∑e ceYe

Join connected edges in each c ∈C1 into initial flowlines
Construct a graph G2 where each node is a flowline
for each flowline f do

for each flowline f ′ sharing an end-point v with f do
G2[f , f ′]← ci j (Eq. 6.1, with i and j being tangential vectors of f

and f ′ at v.)
for each flowline f ′ intersecting f do

G2[f , f ′]← (−25)
for each flowline f ′ parallel to f do

G2[f , f ′]← c f , f ′ (Eq. 6.3)

C1 = CorrelationClustering(G2) . maximize ∑e ceYe

Join connected flowlines in each c ∈C2 into reliable flowlines

32

Chapter 7

Network Computation

Figure 7.1: Network computation: (a) Initial trim curve network; (b) descrip-
tive dense network; (c) final network.

I use the computed flowlines to form a descriptive network by employing a

mixed top-down/bottom-up strategy. Starting with a network of trim curves only, I

first progressively add flowlines to obtain a dense network that describes the input

model within the given descriptiveness threshold dmax (Figure 4.2f, 7.1b); I then

simplify it by removing redundant flowlines (Figure 4.2g, 7.1c).

33

7.1 Top-Down: Dense Descriptive Network Computation

7.1.1 Network Initialization

I compute feature curves on the input model using ridge and valley detection [46]

with conservative settings designed to capture only sharp features. The boundary

and extracted feature curves form the initial network, which I use to partition the

input surface into a set of cycles surrounded by network curves (Figure 7.1a). I

evaluate the descriptive error dc of each cycle and classify these cycles as either

covered or uncovered depending on whether it is below, or above, the descriptive-

ness threshold dmax. Note that the trim curve network may not form any cycles,

and may even be empty; in this case, the initial cycle set contains one uncovered

region which spans the entire input surface.

7.1.2 Network Refinement

I define a flowline as spanning a region if it splits it into two or more separate re-

gions. I refine the network by iteratively incorporating flowlines that span currently

uncovered regions: for each uncovered region, I detect all flowlines that span it; I

add all located spanning flowlines into the network, shortening them as described

below to avoid forming undesirable network topology. I then compute the cycle-

descriptiveness error (Section 5.1) for all newly formed regions. The algorithm

repeats the above step until all regions are covered or there are no more flowlines

that can be added to the network.

7.1.3 Flowline Shortening

As noted in Chapter 3, network projectivity depends on its connectivity. In partic-

ular, flowlines are least projectable when terminating at valence one or two end-

points and T-junctions between flowlines and trim curves are more projectable than

T-junctions between flowlines.

I maximize the projectivity of each open flowline we embed in the network, by

collapsing open end-points to T-junctions (Figure 7.2, right) and collapsing purely

flowline T-junctions to flowline-trim curve T-junctions (Figure 7.2, left), while con-

straining the shortened flowline to span the same set of uncovered regions. I first

34

×
×

f

Figure 7.2: A flowlines is shortened to terminate at trim curves when possible
(left) or to other flowlines (right).

identify the section of each flowline that spans this set of regions and the excess

sections on either end of it. If an excess section does not end at a trimming curve,

but does intersect one, I shorten it to the closest such intersection to its current end

point. Similarly, if it ends at a valence 1 or 2 vertex, I shorten it to end at the nearest

flowline intersection to the current end point.

7.2 Bottom-Up: Network Simplification
I formulate the extraction of a compact network out of the dense descriptive net-

work produced by the previous step as a direct optimization of the constrained

problem formulated in Chapter 4. In contrast to the original formulation, which

operated by assigning edges to flowlines, I keep the flowlines computed in the pre-

vious stage largely fixed, and focus on selecting the optimal subset among them

(Figure 4.2g).

My discrete optimization goal can consequently be formulated as computing

the subset of flowlines f ∈ N that minimizes EN , subject to the constraint that

maxdc < dmax over all cycles c in the resulting network. While such discrete con-

strained minimization problems often require sophisticated machinery to optimize,

my co-authors and I found that a greedy approach that mimics classical mesh sim-

35

plification, followed by local flowline movement, works sufficiently well for our

needs.

7.2.1 Simplification

I place the flowlines in a priority queue ordered by their cost (Section 5.2), then

repeatedly remove the highest cost flowlines whose removal does not violate the

descriptiveness constraint from the network. After each flowline is removed, I

update the cost of its neighboring flowlines and compute the descriptiveness error

for the newly formed, merged, regions. This process terminates when no flowlines

can be removed without violating the constraints. A typical simplification output

is shown in Figure 7.1.

Removing a flowline from a network can result in undesirable valence 2 or

1 joints at the endpoints of remaining flowlines. To avoid these, I shorten such

remaining flowlines by removing the sections between the undesirable endpoints

and their nearest network intersections. Before shortening the flowlines I check

if doing so would violate the descriptiveness threshold. If the threshold would be

violated I abort the precipitating flowline removal; otherwise I remove the flowline

and perform the shortening step.

7.2.2 Connectivity Optimization

When two or more flowlines end at a common valence four vertex, removing one

of these flowlines reduces network projectivity by reducing the valence of the in-

tersection. It is important to penalize valence reduction, but not completely prevent

it. Prior to starting the simplification, I locate all sequences of compatibly oriented

flowlines that share common endpoints. Flowlines are deemed compatible if the

angle between their tangents at the shared point is obtuse. I merge these sequences

into composite flowlines. A composite flowline is a proxy for the flowline formed

by its components, shares the same score and properties of a regular flowline and

is placed in the same simplification queue. For each flowline within a compos-

ite flowline we set the endiness Ei cost (Section 5.2) for the endpoint within the

composite to zero, decreasing the likelihood of these flowlines being targeted for

removal, before the composite. The result is that the simplification algorithm can

36

remove a whole composite flowline in a single step, but it can also potentially re-

move a part of it, if appropriate. During simplification, when any such interior

flowline is removed, I update the composite and the cost of the other flowlines

interior to this composite accordingly.

7.2.3 Post-process Local Optimization

Post-simplification I locally further optimize the network as follows (Figure 4.2h,

5.1a). First, for each flowline, I locate its immediately adjacent left and right flow-

lines in the same strand, and test the impact of removing the current flowline from

the network and adding its immediate neighbor instead. I perform the substitu-

tion if it decreases the network energy and the resulting network still satisfies the

descriptiveness threshold. I repeat these steps as long as the energy decreases.

After local optimization, I once again shorten open network flowlines, remov-

ing end-sections if doing so replaces valence 1 or 2 endpoints with T-junctions or

replaces pure flowline T-junctions by flowline-trim curve ones, and does not violate

our cycle-descriptiveness threshold.

As in many other segmentation setups, output networks may occasionally end

up with close by parallel flowlines none of which can be removed without lifting

the descriptiveness error for a neighboring cycle just above the threshold. To avoid

visual clutter, I detect such pairs of adjacent parallel flowlines (using a distance

bound of two average mesh edge lengths) and examine the impact on the descrip-

tiveness error of removing either one or the other. I select as a candidate a flowline

whose removal increases the error the least. I remove this flowline if the increase

in the descriptiveness error is less than 20%.

37

Algorithm 2 Network Computation
procedure COMPUTENETWORK(network N)

for each trimming curve t do . Network Refinement
N← (N∪{t})

while ∃(cycle c) | dc < dmax do
for each cycle c with dc > dmax do

for each flowline f splitting c in two parts do
N← (N∪{ f})

Construct all composite flowlines fc . Network Simplification
Let C be the set of all composite flowlines
Let Q be a priority queue
for each flowline f ∈ (N∪C) do

Compute flowline cost p f +d f of f (Eq. 5.5, 5.6)
Q← Q∪{ f}

while Q is not empty do
f ← maximal cost flowline in Q
Q← (Q\{ f})
if ∀cycles c ∈ (N \{ f}),dc < dmax then

N← (N \{ f})
Update costs p fn +d fn of neighbors fn of f

for each flowline f ∈ N do . Local Optimization
for each neighbor fn of f do

if p fn < p f ∧∀cycle c ∈ ((N \{ f})∪{ fn}),dc < dmax then
N← ((N \{ f})∪{ fn})

38

Chapter 8

Validation

The user studies presented in this chapter were conducted by Enrique Rosales and

Nicholas Vining, in consultation with Alla Sheffer and myself. They are described

here for completeness.

We validate the results produced by our method in a number of ways: by com-

paring our outputs against artist-generated networks and prior art, by performing a

qualitative evaluation study, and by demonstrating that the networks generated by

our method can be used to closely reproduce the originating models.

8.1 Comparison to Artist Generated Networks
We selected 4 models (rounded cube, treball, mouse, boat) ranging from simple

(cube) to highly complex (mouse, boat) and provided them to three industrial de-

signers/artists. We asked one artist to manually generate descriptive 3D curve net-

works for these models, and asked two artists to create design drawings of them

from given descriptive views. While the artist results are, as expected, not iden-

tical, they all share common characteristics, which are similarly captured by our

outputs (Figure 8.1). It took the artist over three hours to generate the 3D curve

networks (two hours for the mouse, one for the boat, and about half an hour total

for the simpler two models). Our fully automatic method takes a fraction of this

time, generating all four results in under five minutes.

To provide further comparison to artist-created networks, we qualitatively com-

39

Figure 8.1: Comparison against artist generated networks: (left to right) input
model, artist generated 2D design drawings and 3D network (red), and
our algorithmic result (blue).

pared our output to the inputs used by [3, 36] (Figure 8.8, right). We directly

processed quad-meshes produced by Bessmeltsev et al. [2012] (coffee-machine,

airplane). We also quad-meshed and processed the dog-head surface produced

by Pan et al. [2015]. Our output networks (blue) are very similar to their inputs

(green).

8.2 Comparison to Prior Art

Figure 8.2: Suggestive contours combined with ridge and valley lines [17] (b)
convey the overall input shape (a); a FlowRep descriptive network (c)
provides a more detailed and accurate description of the input geometry.

Figures 8.2, 8.3, 8.4, and 8.5 show representative comparisons of our outputs

against prior art. As Figure 8.2 demonstrates, while suggestive contours combined

with ridge/valley lines convey the overall input shape, our networks provides a

40

Figure 8.3: Surface segmentation (e.g. VSA [14]) (b) and reverse engineer-
ing methods (d,e) are not designed for, and do not produce, projectable
curve networks; their output is often not descriptive to a human ob-
server. FlowRep networks (c,f) satisfy both criteria.

more precise description of the input. Figure 8.3 contrasts our networks with those

generated by planar segmentation and reverse engineering approaches; as demon-

strated FlowRep outputs support better mental visualization of the input than such

approaches.

41

Figure 8.4: (a) Quad-partition [7] of the treball and ellipsoid (a) compared
to our network (b). Quad partitions, here [24], are highly dependent
on the singularity locations in the initial mesh drifting from curvature
directions (c). FlowRep result on same model (d).

As demonstrated in Figures 1.3 and 8.4a, quad partition boundaries (e.g. [7])

are not projective, making it hard for viewers to envision the originating geom-

etry. They are also often misaligned with curvature directions as highlighted by

the mismatch between shading and curve directions in Figure 8.4c (network cour-

tesy of [24]). Such misalignment results in non-descriptive cycles. Our networks

are strictly aligned with curvature directions (Figure 8.4d) and enable viewers to

envision the originating shape from a 2D projection.

While exoskeletons [16] reduce the number of T-junctions formed by uncon-

strained VSA [14], this semi-automatic method is only suitable for coarse abstrac-

tion, while our automatic framework captures much finer details on the same ge-

ometry (Figure 8.5, top). As highlighted by Figure 9.2, mimicking their bottom-up

approach using an automatic process results in fragmented flowlines. Lastly, as

shown in Figure 8.5 (bottom) planar slice proxies [32], while descriptive of multi-

part simple shapes, compare poorly to our networks on typical design shapes.

42

Figure 8.5: While exoskeletons [16] only roughly capture coarse part struc-
tures of shapes (b), our method describes the geometry in more detail
(c). Planar slices [32] are restricted in their ability to convey free-form
shape (e,h), while FlowRep networks are well suited for this task (f,i).

8.3 Qualitative Evaluation

How well do the design drawings on the
bottom reflect the shape on the top?

A B C D

Which figure on the bottom (B or C) more
accurately describes the shape on the top (A)?

B C

A

Figure 8.6: Study questionaire layouts: FlowRep compared to artists (left)
and FlowRep compared to previous work (right).

We showed seven designers (including the two who produced the drawn net-

works) images of our results and of the results produced by the artists, without

telling them which is which. To ensure uniform style we used identical views, line

style and color, and generated non-transparent renders for the 3D models. The

43

model was shown in top row and the renders in bottom row (Figure 8.6, left). We

then asked the designers “How well do the design drawings on the bottom reflect

the shape on the top?”. All seven designers assessed all the shown networks as

reflective of the input, ranking ours on par with other renders; three of them com-

mented on our mouse and boat as being most descriptive. The positive comments

included “easier to understand”, “precise and simple”, “great sense of depth”. On

the negative side one commented that some of our curves were not smooth, and

one designer felt that the curves on the mouse were too close to one another.

We also conducted a study to compare our outputs to previous work. We asked

34 nonexpert users to compare our outputs to curve networks generated by alter-

native methods. Each query in this study included an input model (A, top) and

two curve networks (B and C, bottom), arranged in random order and presented

side by side: one generated by our algorithm, and one generated by an alterna-

tive method (suggestive contours [17], quad patch layouts generated by [7] and

[24], variational shape approximation [14], exoskeletons [16], and planar slices

[32], totaling eight queries.) (Figure 8.6, right). Users were asked the question,

“Which figure on the bottom (B, or C) more accurately describes the shape on the

top (A)?”. Across all queries participants preferred our outputs to the alternatives

92% of the time. The individual comparison with lowest majority preference for

our method (80%) was against quad partition [7] on the ellipsoid (Figure 8.4). The

network drawings used for the evaluation were generated using descriptive views,

and the same view was used for all models. The exact questionnaires used in the

evaluation are included in our supplementary material.

8.4 Reproduction
Our method aims to create networks that can be used to reproduce the input shapes

both mentally and algorithmically. To validate the algorithmic reconstruction fea-

ture we ran the surfacing framework of [36] on a subset of our outputs (Figure 8.7).

As shown, the surfaced networks look very similar to the input models. The L2

distance between the inputs and the re-surfaced networks measured using [12] was

under 0.3% of the bounding box diagonal, leading us to conclude that our networks

do not only describe the models perceptually but also compactly and accurately en-

44

Figure 8.7: Reproduction. Pairs of input models with computed FlowRep
networks (wireframes) and these networks resurfaced using [36] (blue).

Figure 8.8: Reproduction. Input curve networks (green), surfaces produced
by [3, 36], and our networks (blue) computed from these surfaces.

code their geometry.

45

Chapter 9

Results

This thesis demonstrated my method on a large set of inputs, ranging from simple

(rounded cube, spiral, torus, bump) to highly complex (shuttle, boats, mouse, toi-

let). I tested various models including open surfaces (beetle, bathtub), ones with

sharp features (mouse, row-boat), and smoother, more organic ones (treball, spi-

ral, ellipsoid, phone handle, dog-head, big buck bunny). I tested my method on

coarsely meshed complex shapes (beetle, at 4K triangles) as well as fine meshed

ones (mouse, boat, toilet, at 30K triangles each). My results on all these models

are consistent with human expectations.

9.1 Symmetry
Most quad-meshers do not detect or enforce global symmetry. To produce globally

reflectively symmetric results we use external code to detect global reflective sym-

metries, quad-mesh one half of a symmetric model, and use a reflected mesh as

input. We used this approach for the boat, mouse, bottle, phone-handle, big buck

bunny, and dog-head.

9.2 Network Resolution
Our framework allows users to control the density of the output curve networks by

changing the descriptiveness threshold dmax, as illustrated in Figure 9.1. By default

we use a threshold of 20◦. For the rowboat and wineglass we used thresholds of

46

Figure 9.1: Networks with different descriptiveness thresholds, shown on the
ellipsoid model.

30◦ and 10◦ to obtain more aesthetically pleasing results. We use 30◦ for more

organic models (doghead, phone).

9.3 Impact of Design Choices

Figure 9.2: Alternative network extraction methods: (a) bottom-up cycle
clustering results in poorly descriptive networks with highly irregular
connectivity; network optimization using only flowline projectivity (b)
or only their dominance (c), versus full optimization (d).

Figures 4.6 and 9.2 demonstrate the impact of the key algorithmic choices on

the final results. Figure 4.6 demonstrates the importance of using my strand forma-

tion process to obtain reliable flowlines. This process contributes to my success in

processing highly irregular meshes, with singularities and numerous edges which

are misaligned with curvature directions. Figure 9.2 shows a comparison against

a number of alternative network formation strategies. The first mimics [16] as

it uses a bottom up cycle growth strategy directly optimizing EN (Equation 4.1)

while aiming to keep consecutive flow-lines or edges together to minimize the ap-

pearance of T-junctions. Even on simple models, this strategy results in highly

47

irregular networks with redundant T-junctions and fragmented flowlines.

Figures 9.2b and c show the impact of using a network simplification strategy

that takes only flowline projectivity (b) or only its dominance (c) into account. Both

networks satisfy the descriptiveness threshold, but select different representative

flowlines within individual strands. Absent dominance (Figure 9.2b) the result has

more geodesic flowlines but has some less well described cycles; in contrast in

Figure 9.2c the cycles are well described but the interior symmetry curve is not

included. My solution (Figure 9.2d) balances both sets of criteria, and is more

reflective of traditional drawings of such toroidal shapes.

9.4 Input Mesh Impact

Figure 9.3: Impact of systemic mesh vs curvature tensor misalignment: (a)
Interleaved spiral flowlines resulting from curvature drift may result in
undesirable T-junctions (mesh from [28]); (b) more significant misalign-
ment predictably distorts the network orientation (mesh from [7]); (c)
large patches of randomly aligned quads (top of the hat) similarly lead
to artifacts.

Figure 9.4: Curve networks generated from different meshes of same model:
(a) [7], (b) ArtMesh. The input mesh in (a) exhibits feature drift (sharp
features migrating between mesh flowlines); leading FlowRep to pre-
serve these flowlines generating visual redundancy.

I tested my framework on quad-meshes produced by a range of sources. Most

of our inputs were generated using ArtMesh (http://www.topologica.org) or were a

48

priori given to me in quad-mesh format (spiral, glass, bathtub, beetle). The plane

and coffee-machine in Figure 8.8 were generated by [3]. I also tested inputs gen-

erated using quad-patch layout [7] (Figures 9.4, 9.3b) and Instamesh [28] (phone

handle, and Figure 9.3a). As the examples demonstrate, FlowRep is largely agnos-

tic to mesh artifacts, such as non-quad elements, irregular connectivity, and uneven

element sizing, e.g. Figure 1.3b. The method is more sensitive to consistent curva-

ture misalignment and irregular mesh flow in isotropic areas (hat, Figure 9.3c). In-

put meshes whose edges form long spirals due to systemic edge direction drift [28]

may lead to extra T-junctions in the final output (Figure 9.3a). While FlowRep

can process meshes whose edge directions consistently and significantly deviate

from curvature directions, such as those sometimes produced by quad-patch layout

(e.g. [7]), the results in this case are, as expected, less reflective of human expecta-

tions (Figure 9.3b).

9.4.1 Curvature re-alignment

ArtMesh meshes are generated with quad shape and size in mind, often sacrificing

edge alignment to curvature for those properties. For this thesis the regularity of

the quads is not as important as the alignment to the flow, so I need to undo that

process and optimize for better alignment.

Consecutive segments of the same flowline at any given point on the surface

tend to share the same tangent and the tangents of intersecting streamlines to be

orthogonal, up to discretization accuracy. I therefore wish for all angles on the

mesh to be as close as possible to either 90◦ or 180◦.

For each vertex v, consider the angle α described by one of its adjacent faces

f . We find whether α is closer to 90◦ or 180◦ and compute its difference ω to that.

ω =

α−90◦ if α < 135◦

α−180◦ otherwise
(9.1)

Then, I simply push or pull v away or to the center of the face, according to ω .

v = v+ω(v− center(f)) (9.2)

49

I repeat the above for every face of every vertex with valence 4 or less. Higher

valence vertices are often misleading, meaning that the procedure would improve

the wrong angle, and are best left untouched.

9.5 Parameters and Runtimes

half

double

Wn Wp D(f) G(f) pf

Figure 9.5: Impact of halving/doubling default algorithm parameters
(weights used for correlation clustering; weights of different elements
of En (Eq. 4.1)).

With the exception of the descriptiveness threshold dmax all other algorithm

parameters are fixed across all inputs, and as shown in Figures 9.2, 9.5 changing

them has fairly minimal impact on the outcome.

FlowRep runtimes range from 3 seconds for simple models such as the wine-

glass (5K faces) to 48 and 111 seconds for complex ones such as the mouse (30K

faces) and the toilet (28K faces) respectively. Roughly 75% of the time is spent

performing edge correlation clustering for flowline initialization. Once initial flow-

lines are formed, the simplification stage dominates, taking another 20%. Overall,

the dominating runtime factors are the original mesh resolution and geometric com-

plexity.

9.6 Limitations
My method relies on curvature-aligned quad-dominant meshes to serve as a reli-

able proxy of a curvature aligned tensor field smoothly extended across isotropic

areas. It successfully overcomes sporadic topological noise (e.g. Figure 1.3) but

is affected by systemic misalignment and uneven mesh sizing (Figure 9.3). The

50

Figure 9.6: Additional results.

trade-off I require is supported by many research and commercial meshers. My

framework does not explicitly account for symmetries, beyond global reflection,

even when these are present in the mesh. Detecting such symmetries at the mesh

level using existing methods, and then enforcing similar processing on symmetric

edges and flowlines, would alleviate this concern.

51

Chapter 10

Conclusions

This thesis presented FlowRep, the first algorithm for computing descriptive com-

pact curve networks from an input mesh. My output networks succinctly describe

complex free-form shapes and are suitable for both perceptual and algorithmic

reconstruction. When computing the networks my method optimizes two main

criteria: cycle-descriptiveness, or the network’s ability to describe the underlying

surface, and network projectivity — the ability to perceive the network’s 3D shape

from its 2D projection. I use these properties to first trace reliable flowline curves

on the surface, then use the flowlines to extract an initial projectable and descriptive

network, and finally coarsen the network while maintaining a given descriptiveness

threshold. Combined together, these steps result in descriptive networks compara-

ble with those produced by artists, and which have been extensively validated to

show that they agree with viewer perception.

This work opens many avenues for future research. As noted, the results are

contingent on the quality of the input quad meshes. Producing initial meshes tuned

to optimally adhere to my requirements can both simplify the algorithm and im-

prove its results. Mine is the first attempt to evaluate network suitability for the task

at hand. Additional perception research may be able to improve this formulation,

and machine learning algorithms based on perceptual studies might better pinpoint

the necessary balance between the key geometric properties I have identified.

52

Bibliography

[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun.
Anisotropic Polygonal Remeshing. ACM Trans. Graph., 22(3):485–493,
2003. → pages 6

[2] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Mach. Learn.,
56(1-3):89–113, 2004. ISSN 0885-6125. → pages 19, 29

[3] M. Bessmeltsev, C. Wang, A. Sheffer, and K. Singh. Design-driven
quadrangulation of closed 3d curves. ACM Trans. Graph., 31(6):
178:1–178:11, 2012. ISSN 0730-0301. → pages xi, 3, 4, 10, 11, 23, 40, 45,
49

[4] R. Bnire, G. Subsol, G. Gesquire, F. L. Breton, and W. Puech. A
comprehensive process of reverse engineering from 3d meshes to CAD
models. Computer-Aided Design, 45(11):1382 – 1393, 2013. ISSN
0010-4485. → pages 3, 7

[5] D. Bommes, T. Vossemer, and L. Kobbelt. Quadrangular parameterization
for reverse engineering. volume 5862 of Lecture Notes in Computer Science,
pages 55–69. Springer, 2008. → pages 7

[6] D. Bommes, T. Lempfer, and L. Kobbelt. Global structure optimization of
quadrilateral meshes. Computer Graphics Forum, 30(2):375–384, 2011. →
pages 8

[7] D. Bommes, M. Campen, H.-C. Ebke, P. Alliez, and L. Kobbelt. Integer-grid
maps for reliable quad meshing. ACM Trans. Graph., 32(4):98:1–98:12,
2013. ISSN 0730-0301. → pages viii, xi, xii, 4, 5, 8, 42, 44, 48, 49

[8] M. Bordegoni and C. Rizzi. Innovation in product design. Springer, 2011.
→ pages 12

53

[9] M. Campen and L. Kobbelt. Dual strip weaving: Interactive design of quad
layouts using elastica strips. ACM Trans. Graph., 33(6), 2014. → pages 7

[10] M. Campen, D. Bommes, and L. Kobbelt. Dual loops meshing: Quality
quad layouts on manifolds. ACM Trans. Graph., 31(4):110:1–110:11, 2012.
ISSN 0730-0301. → pages 3, 8

[11] M. Campen, M. Ibing, H.-C. Ebke, D. Zorin, and L. Kobbelt.
Scale-Invariant Directional Alignment of Surface Parametrizations.
Computer Graphics Forum, 2016. → pages 5, 15

[12] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring Error on
Simplified Surfaces. Computer Graphics Forum, 1998. → pages 44

[13] P. Cignoni, N. Pietroni, L. Malomo, and R. Scopigno. Field-aligned mesh
joinery. ACM Trans. Graph., 33(1):11:1–11:12, 2014. ISSN 0730-0301. →
pages 9

[14] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape
approximation. ACM Trans. Graph., 23(3):905–914, 2004. ISSN
0730-0301. → pages xi, 3, 7, 9, 41, 42, 44

[15] F. Cole, A. Golovinskiy, A. Limpaecher, H. S. Barros, A. Finkelstein,
T. Funkhouser, and S. Rusinkiewicz. Where do people draw lines? ACM
Trans. Graph., 27(3), 2008. → pages 8

[16] F. De Goes, S. Goldenstein, M. Desbrun, and L. Velho. Exoskeleton: Curve
network abstraction for 3d shapes. Comput. Graph., 35(1):112–121, 2011.
ISSN 0097-8493. → pages xi, 9, 42, 43, 44, 47

[17] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella. Suggestive
contours for conveying shape. ACM Trans. Graph., 22(3):848–855, 2003.
→ pages xi, 3, 8, 40, 44

[18] K. Eissen and R. Steur. Sketching: Drawing Techniques for Product
Designers. Bis Publishers, 2008. → pages 4, 8, 9, 12, 13, 14

[19] K. Eissen and R. Steur. Sketching: The Basics. Bis Publishers, 2011. →
pages 14

[20] D. Eppstein, M. T. Goodrich, E. Kim, and R. Tamstorf. Motorcycle graphs:
Canonical quad mesh partitioning. In Proceedings of the Symposium on
Geometry Processing, pages 1477–1486, 2008. → pages 3, 8

54

[21] R. Gal, O. Sorkine, N. J. Mitra, and D. Cohen-Or. iwires: An
analyze-and-edit approach to shape manipulation. ACM Trans. Graph., 28
(3):#33, 1–10, 2009. → pages 1

[22] A. Gehre, I. Lim, and L. Kobbelt. Adapting Feature Curve Networks to a
Prescribed Scale. Computer Graphics Forum, 2016. → pages 1, 3, 9

[23] G. Gori, A. Sheffer, N. Carr, T. Ju, N. Vining, and E. Rosales. Flowrep:
Descriptive curve networks for free-form design shapes. ACM Transaction
on Graphics, 36(4), 2017. doi:http://dx.doi.org/10.1145/3072959.3073639.
→ pages iv

[24] E. Gunpinar, M. Moriguchi, H. Suzuki, and Y. Ohtake. Feature-aware
partitions from the motorcycle graph. Comput. Aided Des., 47:85–95, 2014.
ISSN 0010-4485. → pages xi, 8, 42, 44

[25] E. Gunpinar, M. Moriguchi, H. Suzuki, and Y. Ohtake. Motorcycle graph
enumeration from quadrilateral meshes for reverse engineering. Comput.
Aided Des., 55:64–80, 2014. ISSN 0010-4485. → pages 8

[26] K. Hildebrandt, K. Polthier, and M. Wardetzky. Smooth feature lines on
surface meshes. In Proc. SGP 2005, SGP ’05, Aire-la-Ville, Switzerland,
Switzerland, 2005. Eurographics Association. ISBN 3-905673-24-X. →
pages 8

[27] E. Iarussi, D. Bommes, and A. Bousseau. Bendfields: Regularized curvature
fields from rough concept sketches. ACM Trans. Graph., 2015. → pages 10

[28] W. Jakob, M. Tarini, D. Panozzo, and O. Sorkine-Hornung. Instant
field-aligned meshes. ACM Trans. Graph, 34(6), 2015. → pages xii, 48, 49

[29] D. Julius, V. Kraevoy, and A. Sheffer. D-Charts: Quasi-Developable Mesh
Segmentation. Computer Graphics Forum, 2005. → pages 7

[30] M. Keuper, E. Levinkov, N. Bonneel, G. Lavoué, T. Brox, and B. Andres.
Efficient decomposition of image and mesh graphs by lifted multicuts. In
Proc. ICCV, 2015. → pages 29

[31] Y.-K. Lai, Q.-Y. Zhou, S.-M. Hu, J. Wallner, and H. Pottmann. Robust
feature classification and editing. IEEE Trans. Vis. Comp. Graphics, 13(1):
34–45, 2007. → pages 8

[32] J. McCrae, K. Singh, and N. J. Mitra. Slices: A shape-proxy based on planar
sections. ACM Trans. Graph., 30(6), 2011. → pages xi, 9, 13, 42, 43, 44

55

[33] R. Mehra, Q. Zhou, J. Long, A. Sheffer, A. Gooch, and N. J. Mitra.
Abstraction of man-made shapes. ACM Trans. Graph., 28(5), 2009. →
pages 1, 3, 9

[34] A. Myles, N. Pietroni, and D. Zorin. Robust field-aligned global
parametrization. ACM Trans. Graph., 33(4):135:1–135:14, 2014. ISSN
0730-0301. → pages 3, 8, 15

[35] M. Nieser, C. Schulz, and K. Polthier. Patch layout from feature graphs.
Comput. Aided Design, 42(3), 2010. → pages 7

[36] H. Pan, Y. Liu, A. Sheffer, N. Vining, C. Li, and W. Wang. Flow aligned
surfacing of curve networks. ACM Trans. Graph., 34(4), 2015. → pages xi,
3, 4, 10, 11, 40, 44, 45

[37] N. Ray and D. Sokolov. Robust polylines tracing for n-symmetry direction
field on triangulated surfaces. ACM Trans. Graph., 33(3):30:1–30:11, 2014.
ISSN 0730-0301. → pages 15

[38] F. H. Razaflndrazaka, U. Reitebuch, and K. Polthier. Perfect matching quad
layouts for manifold meshes. In Proceedings of the Eurographics
Symposium on Geometry Processing, pages 219–228, 2015. → pages 8

[39] C. Shao, A. Bousseau, A. Sheffer, and K. Singh. Crossshade: shading
concept sketches using cross-section curves. ACM Trans. Graph., 31(4),
2012. → pages 10, 13, 14

[40] K. A. Stevens. The visual interpretation of surface contours. Artificial
Intelligence, 17, 1981. → pages 11, 13, 14

[41] V. Surazhsky and C. Gotsman. High quality compatible triangulations. Eng.
Comput. (Lond.), 20(2):147–156, 2004. → pages 21

[42] M. Tarini, E. Puppo, D. Panozzo, N. Pietroni, and P. Cignoni. Simple quad
domains for field aligned mesh parametrization. ACM Trans. Graph., 30(6):
142:1–142:12, 2011. ISSN 0730-0301. → pages 8

[43] J. Todd and F. Reeichel. Visual perception of smoothly curved surfaces from
double-projected contour patterns. J. of Exp. Psych.: Human Percep. and
Performance, 16:665–674, 1990. → pages 14

[44] J. Wu and L. Kobbelt. Structure recovery via hybrid variational surface
approximation. Computer Graphics Forum, 24(3):277–284, 2005. → pages
7

56

[45] B. Xu, W. Chang, A. Sheffer, A. Bousseau, J. Mccrae, and K. Singh.
True2Form: 3D Curve Networks from 2D Sketches via Selective
Regularization. ACM Trans. Graph., 33(4), 2014. → pages 3, 10, 13, 14

[46] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. Fast and robust detection of
crest lines on meshes. In Proc. Symp. on Solid and Physical Modeling, SPM
’05, pages 227–232, 2005. → pages 34

[47] Y. Zhuang, M. Zou, N. Carr, and T. Ju. Anisotropic Geodesics for Live-wire
Mesh Segmentation. Computer Graphics Forum, 2014. ISSN 1467-8659.
→ pages 7

57

Appendix A

Supporting Materials

58

How well do the design drawings on the
bottom reflect the shape on the top?

A B C D

How well do the design drawings on the
bottom reflect the shape on the top?

A B C D

How well do the design drawings on the
bottom reflect the shape on the top?

A B C D

How well do the design drawings on the
bottom reflect the shape on the top?

A B C D

Figure A.1: User Study 1.

59

Which figure on the bottom (B or C) more
accurately describes the shape on the top (A)?

B C

A
A

CB

Which figure on the bottom (B or C) more
accurately describes the shape on the top (A)?

A

CB

Which figure on the bottom (B or C) more
accurately describes the shape on the top (A)?

B C

A

Which figure on the bottom (B or C) more
accurately describes the shape on the top (A)?

A

C

Which figure on the bottom (B or C) more
accurately describes the shape on the top (A)?

B

A

C

Which figure on the bottom (B or C) more
accurately describes the shape on the top (A)?

B

B C

A

Which figure on the bottom (B or C) more
accurately describes the shape on the top (A)?

A

C

Which figure on the bottom (B or C) more
accurately describes the shape on the top (A)?

B

Figure A.2: User Study 2.

60

