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Abstract

This thesis explores the problem of tracking the diffusion of contagion processes on social

networks. Infection (or Information) diffusion is modeled using the Susceptible-Infected-

Susceptible (SIS) model. Mean field approximation is employed to approximate the discrete

valued infection dynamics by a deterministic ordinary differential equation, thereby yielding

a generative model for the infection diffusion. The infection is shown to follow polynomial

dynamics and is estimated using an exact non-linear Bayesian filter. We compute posterior

Cramér-Rao bounds to obtain the fundamental limits of the filter which depend on the

structure of the network. The SIS model is extended to include homophily, and filtering on

these networks using the exact non-linear Bayesian filter is illustrated. With consideration

for the collaborative or antagonistic nature of some social processes on networks, we present

an alternative, game theoretic, model for the spread of information based on the evolutionary

Moran process. The diffusion of collaboration following this Moran model is estimated using

a particle filter. Additionally, we validate the efficacy of our method with diffusion data

from a real-world online social media platform, Twitter. We find that SIS model is a good

fit for the information diffusion and the non-linear filter effectively tracks the information

diffusion.
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Lay Summary

In this thesis we use expert knowledge in the form of models for infectious disease in com-

bination with statistical algorithms to better understand how an infection is spreading and

who the afflicted are. Electrical engineers are practiced at using models of underlying sys-

tems to combine observations and form predictions, and these techniques can be extended

beyond the world of electrons, bits and binary. By better understanding the flow of viruses

and disease we can better mobilize our knowledge and efforts to manage, slow and eventually

eradicate microscopic dangers. While these contagions pose real threat, they are not as ever-

present as other viral phenomena in the developed world. Our lives are more immediately

impacted by viral news, entertainment, and opinion. The same methods which allow us to

better understand the presence of Ebola in a population can be utilized to better understand

the population’s outlook on, or exposure to, a political movement.
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MCMC : Markov Chain Monte Carlo

RDS : Respondent Driven Sampling

HMM : Hidden Markov Model

ER : Erdős-Rényi
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Chapter 1

Introduction

1.0.1 From Electrical Engineering to Infectious Disease

Compared to social, political and economic structures, which are often influenced by enig-

matic desires or hidden impetuses, the world of electrical signals is relatively straightforward.

We have a good and ever improving understanding of the physical processes that underlie a

signal’s generation and propagation. We can, for instance, look to Schroödinger’s equation or

the telegrapher’s equations to understand electrical phenomena on scales as small as atoms

or as large as international electrical grids. We have studied for centuries these phenomena

and can summarize their states with words like phase, voltage, current, potential, and field

strength. These are all measurable quantities and, if we want to know the voltage of a line

on a computer, we can make use of tools such as a digital voltmeter or a galvanometer (an

old type of voltmeter). Sometimes we need to make measurements quickly and accurately,

more accurately than our tool can provide in any one measurement. We can utilize our

knowledge of electrodynamics and multiple measurements to improve our estimate. If we

measure the current of a power line directly and measure the magnetic field at some known

distance from the line, we know, through Maxwell’s Equations, that our measurement of

the magnetic field provides information about the current in the line. Thus, we have mul-

tiple sources of information about a signal. The combination of imperfect information into

better and better estimates through knowledge of the underlying system is the foundation

of statistical signal processing. Electrical signals were a natural cradle for the development

of these processing algorithms, but the same algorithms that allow us to better estimate

the voltage of a connector on a motherboard can be used to combine expert knowledge and
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1.1. Overview

imperfect measurements in other areas. In this thesis, we consider measurements of the lev-

els of infection in a population. We can combine models borrowed from epidemiology with

signal processing algorithms to eke out more information from any measurements of how an

infection is propagating through a population. By doing this we heighten the value of every

data point collected. A longitudinal survey of communities in a disease ridden area can be

used in combination with model informed algorithms to more accurately estimate how many

people are infected and which subpopulations are infected. Furthermore, we realize that epi-

demiological models are increasingly useful outside of epidemiology. The internet has many

viral phenomena, which spread in a manner similar to diseases. These social infections can

relate to politics, marketing, religion, or entertainment and play an increasingly large role

in our lives as individuals and society as a whole.

1.1 Overview

The dark spectre of disease has stalked humanity since our collective infancy. Mankind’s

greatest enemy in the kingdom Animalia is neither the noble tiger nor the colossal great

white. These beasts, as terrifying as they may have been to our ancestors, pose no more

threat to humanity than falling vending machines. Our greatest animal adversary is the

petite and easily squished mosquito. It is through disease that the mosquito, a potential

vector of many illnesses, earns this distinction. More deadly than the conquistadors and their

guns were their germs. More deadly than the trenches and munitions of the First World War

were the beautifully and woefully efficient distribution systems that brought men from every

corner of the world to the European theater and sent back the Spanish Flu. For most of

human history, mankind’s relative immobility has been a bulwark against the spread of

disease. Even though trade did spread the Black Death throughout Asia and Europe, the

plague spread at the speed of sail and could only fly as fast as the feet that carried it. Today,

those feet can travel more quickly than ever. A flight attendant might have breakfast in Abu

2



1.1. Overview

Dhabi, lunch in Frankfurt, and find themselves in California the following day. This poses

a new-dramatic risk for humankind, how can we defend against an infectious disease in a

world that is more connected than ever before? Scares such as SARS, the Avian influenza

and Ebola have garnered public interest, even panic, but have not yet laid down our defenses.

Today, we fight the spread of these diseases and infections through the efforts of medical

professionals and epidemiologists. Quarantines, vaccines, massive laboratory efforts all serve

to stem the tide of infectious disease, but more tools are necessary in this fight. We need to

better understand the spread of infections if we are to effectively curb the next microscopic

threat to humanity, which may be frozen just beneath some now precariously warm layer

of permafrost. To better understand the spread of infections, we need to track them in

real time. We must gather information about who is infected, how quickly the infection is

spreading and who we can target with health services to most effectively diminish its spread.

The filtering algorithms of engineering literature have a role to play in this titanic effort.

Through statistical algorithms, we can more accurately estimate the level of infection in

populations. It is the development of this idea that we pursue in this thesis.

The speed of infection spread depends upon the structure of human interactions. As peo-

ple become more connected, infections can more easily spread between distinct portions of the

population. The structure over which human interactions occur is the human social network.

Our local social environments dictate our exposure to new information, susceptibility to dis-

ease, and the network of these connected local environments determines how vulnerable an

entire population is to contagion. In this thesis, we will speak of infection, cooperation, and

information diffusion as analogous processes, a parallel motivated by the knowledge that vi-

ral phenomena online behave similarly to virulent disease spreading throughout a population

[74]. We therefore extend analysis performed on biological networks and epidemic models to

the spread of knowledge and technology through social and online networks [58]. Motivating

the inclusion of these more generalized contagions is the importance of understanding the

spread of technologies, social learning theory, and the economic theory of interacting agents.

3



1.1. Overview

Further to this motivation, the statistical filtering techniques of this work are more readily

applicable in the context of social contagions than to classical disease propagation1.

When considering adoption of a new technology, influence often seeps in from those

around us, indirectly by observing their behaviour or directly through recommendations.

This diffusive tide of information, central to technological adoption, has been studied in

[18, 31] where the diffusion of hybrid corn and CNC machines were investigated, respectively.

The application of epidemic and, in particular, Susceptible-Infected-Susceptible (SIS) model

approximations to the diffusion of technology are considered in [42, 55, 59].

The adoption of a technology or behaviour because of a neighbour’s adoption can be

viewed as an act of social learning. Adoption is an action which represents a piece of

information about the technology or behaviour itself and its quality [18]. The diffusion

models considered in this work can therefore be considered in the context of agents who are

learning in a social network. The statistical methods presented for tracking infections are

thus applicable to tracking the process by which a population learns [49]. These diffusion

and learning processes depend upon interaction between and influence by individuals, or

agents, in the network. Agent based models have also been used to model infection diffusion

[72], highlighting the interrelation between the two models.

Models for infection and information diffusion on social networks utilize established

knowledge to predict how these processes spread, however, in the real world, randomness

can dominate the ultimate outcome. Consumers may flock to a product for unpredictable

reasons, and diseases may be spread or stopped by the whims of a single traveler. Because of

these random factors, we cannot formulate models which can predict infection/information

diffusion exactly. To better estimate the state of the diffusion process, we utilize observations

from the real world. These observations can come in the form of polls of political preferences

or surveyor information reporting on the state of an epidemic. Since information can rarely

1Health related fields adopt new technologies at a highly conservative pace. Significant further research
and development of the ideas presented in this thesis are necessary before the work can be applied in the
context of mitigating contagion and saving lives. This work serves as a stepping stone, by which we stride
closer to that ultimate goal.
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1.1. Overview

be gathered about the entire population of interest, observations provide noisy (containing

error) estimates. To combine the expert information engrained in diffusion models with the

crucial updates provided by real world observations, we use tracking algorithms borrowed

from previous work in statistical signal processing.

In this thesis, we consider the problem of attempting to track the diffusion of information

or infections on social networks. We formulate a model for infection diffusion, apply Bayesian

filtering algorithms to estimate the infected population state, provide extensions to the

infection diffusion model, and finally demonstrate the filtering methods on a dataset derived

from analyzing real world tweets relating to the 2011 Arab Spring Uprising.

1.1.1 SIS model and Mean Field Dynamics

Individuals interacting with one another may share knowledge, pathogens, political opinions,

or particularly funny jokes. Common to all of these is an underlying social mechanism of

transfer: Contact is made, either online or in person, and the phenomena spreads. By

formulating and analyzing a mathematical framework for contact diffusion processes, we

may reveal a realm in which we can better understand and control their spread. A natural

starting point is in epidemiology, the study of the spread of infectious disease. Infectious

diseases have a profound impact on human societies. Some infections insidiously lay within

a population and damage their hosts without warranting action on a massive scale, while

others collapse towns, cities and even civilizations. In the threat they pose, they gather a

great deal of interest. One attempt to model infectious disease is the SIS model [71]. In the

SIS model, an individual who is susceptible may become infected if they come into contact

with another infected individual and, should they become infected, may recover to become

susceptible again. The transitions from infected to susceptible (and vice versa) are assumed

to be probabilistic. In the SIS model, real world details about specific interactions between

individuals, for instance whether an individual sneezed during a encounter, are encapsulated

into a single transition probability. The scenario outlined by the SIS model emulates a disease

5



1.1. Overview

which may be inflicted upon the same individual repeatedly - superficially, like the common

cold. The evolution of such an infection occurs over a structured population. This structure

is formed of social connections. Our friends, family, acquaintances, and colleagues form our

social environment, and the overlap of all social environments form a social network. As

described in [59], there is a wide range of social phenomena such as diffusion of technological

innovations, cultural fads, and economic conventions [18] where individual decisions are

influenced by the decisions of others. A large body of research on social networks has been

devoted to the diffusion of information (e.g., ideas, behaviors, trends) [34], and particularly

on finding a set of target nodes so as to maximize the spread of a given product [19, 65].

In the SIS model, given an individual, its neighbourhood and its current state, its next

state can be considered a weighted coin toss. While these individual interactions are ex-

tremely simple, when the entire network is considered, the exact spread of the infection is

combinatorially complex. In statistical physics, a similar scaling of complexity was encoun-

tered in the study of spin glasses, lattices of particles with interacting magnetic dipoles.

Except in trivial structures, such as lines, the spin systems could not be analyzed exactly.

To model these systems, physicists replaced all the exact interactions between particles with

interactions between individual particles and the ensemble average of all other particles.

This approximation is called mean field theory (MFT) and can be applied to other many

particle systems, such as the SIS model.

We apply a mean field theory that discriminates between nodes of differing degree.

Through this discrimination, we are able to encode network structure into the dynamics

of the infection diffusion. These degree-based mean field dynamics (MFD) approximations

for SIS model have been derived in [59, 74].

There are several models for studying the spread of infection and technology in com-

plex networks including Susceptible-Infected-Susceptible (SIS), Susceptible-Alert-Infected-

Susceptible (SAIS), and Susceptible-Exposed-Infected-Vigilant (SEIV); see [27, 41]. Susceptible-

Infected-Susceptible (SIS) models have been extensively studied in [42, 49, 58, 59, 71, 82, 83,

6



1.1. Overview

88] to model information/infection diffusion, for example, the adoption of a new technology

in a consumer market. In this thesis we follow a similar approach and utilize mean field

dynamics to approximate the discrete-valued infection dynamics by a deterministic ordinary

differential equation. The mean field dynamics yield a tractable model for Bayesian filter-

ing in order to estimate the infection dynamics given a sampling procedure for the social

network.

1.1.2 Non-linear filter and PCRLB for Bayesian Tracking of

Infected Populations

The infection (or information diffusion) dynamics of the SIS model, and the underlying dif-

fusion processes which it represents, are non-deterministic. Every disease, product launch,

rumor, or news piece is influenced by factors which can best be described as random. These

random factors make it impossible to predict apriori (before observation) how many indi-

viduals in a network are infected. Since even precise models would be unable to predict

these random elements, we are motivated to observe the state of the system directly. These

observations may be formed by sampling 2 a representative subset of the population. If every

individual in the network could be sampled, we would know the precise infected population

state at that instant. Unfortunately, sampling can be expensive or prohibitively difficult. In

the case of infection, sampling may require physically interacting with infected individuals; a

dangerous task for those involved. Additionally, the individuals we want to sample may not

be known to us. For example, we may be interested in learning about how infection spreads

amongst drug users. In this case, members may be willing to anonymously share information

for compensation, but the structure and members of this population may be unknown to

researchers. For all of these cases, sampling an entire population at one time instant may not

be possible, and repeatedly sampling all individuals to track an infection over time is even

2We use sampling to refer to learning the state of individuals by some means. The mechanism of learning
is not specified but may be surveying or querying directly.

7



1.1. Overview

more challenging. The SIS model for the underling infection dynamics, discussed in Sec. 2.2,

contributes information about how the infection evolves. We can utilize this information to

predict how the state evolves. To combine this model based knowledge of state evolution

with the direct observations of the state, we can use a Bayesian filtering algorithm.

Bayesian filtering algorithms allow us to combine observations with apriori state estimates

to form a posteriori (after observation) estimate. The most commonly known Bayesian filter

is the Kalman filter. The Kalman filter is a finite dimensional optimal filter that combines

noisy (contains random errors) linear observations of a linearly evolving noisy (affected by

random changes) state. It assumes Gaussian observation noise and Gaussian state noise.

When the state evolution is not linear, or noise is non-Gaussian, other filtering algorithms

may produce more accurate estimates of the state. The SIS dynamics described in Sec. 2.2

are not linear, but we show that the Mean Field Dynamics (MFD) are polynomial in the

state. That is, in MFD the state at timestep n + 1 depends polynomially on the state at

time n. We utilize a Bayesian filter which computes an optimal estimate of the state in

polynomially evolving systems with Gaussian state and observation noise.

Now that we have a filtering algorithm, we are interested in knowing how “good” the

estimates generated by these filtering algorithms are. We compute the Posterior Cramer-

Rao Lower Bound (PCRLB) of the non-linear filter. The PCRLB provides a lower bound

on the error covariance of our filter estimate. We examine via numerical examples and

posterior Cramér-Rao lower bounds, how state estimation over large networks is affected

by the network; see [79] for posterior Cramér-Rao bounds for non-linear filters. Numerical

examples illustrate the difference in performance between power law (scale-free) and Erdős-

Rényi graphs.

In this thesis, since we focus on optimal Bayesian estimation (filtering) of the infection

dynamics by sampling the network, we use the SIS model. In small sized sensor networks

represented by graphs, [75] derived an optimal estimation algorithm, based on the Kalman

filter, to estimate the state at each sensor. Further, on specific structures like trees, [75] pro-
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1.1. Overview

vides expressions for the steady-state covariance; see also [69]. Finally, for Kalman filtering

of the Susceptible-Exposed-Infected-Recovered model, see [26].

1.1.3 Extended Models in Network Analysis: Homophily and

Game Theoretic Dynamics

The infection diffusion of Chapter 2 models contagions which spread only as a function of

the immediate local environment of each individual. This model is sensible for diseases

and some types of information flow, however, it can fail to represent interactions between

self-interested, rational characters who are interacting on a cooperative or competitive way.

Consider the scenario where your decision depends upon the decisions of your neighbours, and

you neighbour’s decision on their neighbours, in this scenario each agent’s actions depends

not only on their immediate environment, but also on the network as a whole. Take for

instance, the adoption of a new smart phone, the strategy of an individual [buy, not buy]

may be dependent on their neighbourhood. Do they have a significant number of friends

with the new phone with whom they can take advantage of shared features, or is the quality

(or fitness) of such a strategy insufficient to warrant the new adoption? They may choose

to copy the choice of their friends, but they may also take into account how happy their

friends are with their current phones, which in turn depends on the current state of all their

neighbours. In this way, the fitness of any one individual’s choice is effected by the entire

state of the network.

Game theory provides a mathematical framework for interactions between rational self

interested persons, where each involved individual, or player, attempts to predict the choices

of its counterpart and act accordingly to maximize its own reward. Evolutionary game theory

was developed as a framework for researchers to explore the survival of traits or strategies

within a population in a biological context. In evolutionary game theory, individuals in a

population have traits or strategies which my promote, suppress or be uninfluential in the in-
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1.1. Overview

dividual’s survival, ultimately affecting their survival fitness in the population. Importantly,

evolutionary graph theory explores the temporal trend of these populations as individuals

of each type die and reproduce at a rate which is related to their fitness. Concepts such as

fitness, birth and death are easily generalized to non-biological systems, where fitness may

be related to monetary/wellbeing outcomes and birth and death may be of ideas, rather

than beings. Extending the example of consumers deciding whether or not to choose a

smartphone, we may consider the level of satisfaction their friends have with their current

smartphones. In this scenario, satisfaction is analogous to biological fitness. An individual

is more likely to copy the smartphone choice, or strategy, of friends who they know to be

highly satisfied with their smartphones.

The model of infection diffusion considered primarily in this thesis was the SIS model,

however, these models do not consider the fitnesses of individuals and their state. To in-

corporate this fitness information into interactions we consider the Moran process [73]. The

fitness of individuals is modeled by the predicted payoff of a two player game.

In this thesis, we consider the role of network structure in both the pair approximation

as well as the mean field approximation. We develop mean field and pair approximation

models for the Moran Process. Mean field models are developed for death-Birth updating,

Birth-death updating and for death-Rebirth updating (Diffusion). A heterogeneous model is

also developed for death-Birth updating in the Pair Approximation. All of these frameworks

then admit the investigation of the effects of network structure on the long term levels of

cooperation. The deterministic trajectories of these models are then compared against sim-

ulated trajectories of the level of cooperation in a synthetic network with the desired degree

distribution. Further, we highlight that the mean field and pair-approximation methods are

not amenable to the optimal filtering of Chapter 3, but the infected population state (or

cooperation state) can be estimated using particle filtering methods.
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1.1.4 Numerical Results

In Sec. 2.2 of this thesis, we provide theoretical justification for using a mean field dynamical

model of the state evolution, and in Sec. 3.1 we utilize this model in a filtering algorithm. The

theoretical justification relies upon the assumptions of an accurate model for the underlying

system, sufficiently large network size, sufficiently long time horizon, and Gaussian state and

observation noise. To explore the validity of these assumptions we illustrate the performance

of the filtering algorithm on synthetic and real world data. Sec. 5.2 illustrates the SIS model

and the performance of the Bayesian filter on simulated data and examines the sensitivity of

the filter to the underlying graph model (Erdős-Rényi vs scale-free). Sec. 5.4 also presents

a detailed example using a real Twitter dataset. It is shown via a goodness of fit test that

SIS is a reasonable model for information propagation in the Twitter dataset and that the

infected population state can be tracked satisfactorily over time via the Bayesian filter.

1.2 Main Contributions

In the following subsections, a brief list of contributions of each chapter of this thesis is pro-

vided. Detailed discussions of each contribution are provided in the corresponding chapters.

1.2.1 SIS model and Mean Field Dynamics

As explained in Section 1.1.1, in Chapter 2, a formulation for infection diffusion based on

the SIS model is developed, and the mean field dynamics of the model are presented. The

main contributions of this chapter are:

1. A formulation of discrete time infection dynamics on a social network based on the SIS

model.

2. Showing that mean field dynamics can be used to approximate the discrete time infec-

tion dynamics with a deterministic differential equation.
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3. Presenting two sampling methods that can be used to observe the infected population

state of a social network.

1.2.2 Non-linear filter and PCRLB for Bayesian Tracking of

Infected Populations

As explained in Section 1.1.2, in Chapter 3, a non-linear Bayesian filter is presented and

applied to the infection diffusion model of 2. The main contributions of this chapter are:

1. A formulation of the non-linear Bayesian filter applied to an infection diffusion model

2. The Posterior Cramer Rao Lower Bound of the Bayesian filter is computed for synthetic

networks and compared to the mean square error of the filter estimate for both scale-

free and Erdös-Renyi networks.

1.2.3 Extended Models in Network Analysis: Homophily and

Game Theoretic Dynamics

As explained in Section 1.1.3, in Chapter 4, we consider extensions and alternatives to the

SIS model of Chapter 2. The main contributions of this chapter are:

1. An extension to the SIS model to include network homophily is presented.

2. A framework based upon the Moran process in evolutionary game theory is presented

for the spread of infection.

3. The mean field and pair approximations to the Moran process are extended to complex

networks.

4. A particle filtering method is presented for filtering game theoretic network dynamics.
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1.2.4 Numerical Results

As explained in Section 1.1.4, Chapter 5, the filter developed in Chapter 3 is applied to

simulated and real world infections. The main contributions of this chapter are:

1. The effect of model misspecification and performance of the filter discussed in Chapter

3 is examined.

2. Numerical examples of the model extensions presented in Chapter 4 are presented.

3. The performance of the filter discussed in Chapter 3 when applied to a real world

Twitter dataset is presented.

1.3 Outline of the Thesis

The outline of the rest of this thesis is as follows.

Chapter 2 formulates a model for representing the diffusion of infection, information,

or opinion on a social network. First, we provide a mathematical description of a social

network and introduce two specific types of networks: Erdös-Renyi and scale-free. Next we

present mean field theory for interacting particle systems. Then, we present a formulation

of infection diffusion model based on the SIS model. We show that this discrete time model

can be approximated by an ordinary differential equation using mean field theory, and that

the mean field system evolves with polynomial dynamics. Finally, two sampling methods

are presented for observing the infected population.

Chapter 3 considers the problem of attempting to track the infection diffusion modeled

in Chapter 2. It begins by formulating the mean field dynamics as a polynomial state space

evolution with observations given by the sampling methods of Chapter 2. An optimal non-

linear Bayesian filter is then presented for estimating the infected population state. The

PCRLB is calculated to give a theoretical performance limit of the filtering algorithm for

Erdös-Renyi and scale-free network types.
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Chapter 4 considers an extension to the infection model presented in Chapter 2 to model

networks with homophily, as well as an alternative game theoretic model based on work

done in Evolutionary Dynamics. The evolutionary model allows for the representation of

competition within the population, expanding the scope of diffusive scenarios which can be

accurately approximated. The problem of tracking the infected population state is considered

for both models; limitations of the Bayesian filter are considered for the game theoretic model

and an particle filter is presented to track the infected population state.

Chapter 5 presents numerical simulations and investigations to establish the performance

of the filters described in this thesis. First effect of misspecified models and sampling on

filter performance is investigated. Further, numerical examples of filtering on networks with

homophily and on networks with game theoretic diffusion are presented. Finally, a real world

dataset from Twitter is used to demonstrate the performance of the filter.

Finally, Chapter 6 provides a conclusion of the work presented in this thesis and some

future research directions.
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Chapter 2

SIS Model and Mean-field

Approximation

This section discusses the discrete time SIS model [4], [17] and mean field dynamics for the

diffusion of information in a social network.

2.1 Social Networks and SIS dyamics

2.1.1 Social Networks

Humans are social creatures, and prior to the information age, social networks were predom-

inantly the networks formed by connection in the physical world. In this social network, an

individual might be considered connected to another if the two know each other, met reg-

ularly, or exchanged letters. With the rise of the Internet, the term “Social Networks” has

became ubiquitous. It, or its translated variants, are used around the World, and massive

Online Social Networks have become a cornerstone of communication, entertainment, infor-

mation dissemination, and, increasingly, politics. In 2017, among the most dominant Social

Networks are Internet leviathans Facebook, Twitter, RenRen, Sina Weibo, and Linkedin.

The usage of online Social Networks span socio-economic condition, class, education, and

interest. The ubiquity of social networks motivates increased analysis to comprehend how

these networks effect our lives on a personal and societal level. The processes that occur

on Social networks are often dependent on the network structure, and so understanding the

interplay between the social network structure and the processes that evolve on the social
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2.1. Social Networks and SIS dyamics

network is critical to understanding the spread of disease, political influence, and technolog-

ical adoption.

Mathematically, a social network is represented by graph G:

G = (V,E), where V = {1, . . . ,M}, and E ⊆ V × V. (2.1)

Here V denotes the set of M vertices (nodes) and E denotes the set of edges (relationships).

The degree of a node m is its number of neighbors3:

Ξ(m) = |{g ∈ V : g,m ∈ E}|, | · | denotes cardinality.

M(d) denotes the number of nodes in the social network G with degree d, and ρ(d) denotes

the degree distribution. That is, for d = 0, 1, . . . , D,

M(d) =
∑
m∈V

I
(
Ξ(m) = d

)
, ρ(d) =

M(d)

M
.

Here I(·) denotes the indicator function andD denotes the maximum degree. Since
∑

d ρ(d) =

1, ρ(d) can be viewed as the probability that a node selected randomly on V has degree d.

The degree distribution of a network is a powerful summary measure which gives insight

into connectedness and structure of networks. Throughout this work, we concern ourselves

with complex networks. A complex network is a network with non-trivial network topo-

logical features, such as a high degree of clustering or heavy-tailed degree distribution. In

particular, in this thesis, we consider complex networks with two commonly studied degree

distributions: Erdös-Renyi and scale-free networks.

3A vertex g is adjacent to a vertex m if there is an edge between them. The neighbors of a node m are
all the vertices that are adjacent to m.
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Erdös-Renyi Networks

Erdös-Renyi networks are generated by adding links between nodes randomly with some

probability p. These networks are predominantly of interest because of how well studied

they are in literature. The degree distribution of Erdös-Renyi networks is

ρ(d) =

(
M − 1

d

)
pd(1− p)M−1−d (2.2)

Scale-Free Networks

A scale-free network is a network with a degree distribution that follows a power law, that

is, ρ(d) ∝ d−γ. These networks are of interest because many real world networks are know

to be scale-free. Notably, network of outgoing links on the Internet has a scale-free degree

distribution [8], and an example considered in this work, the Social Network Twitter has a

scale-free Degree distribution.

2.1.2 Infection Processes on Social Networks: SIS Model

We desire to know how infectious processes evolve on Social networks. Take for instance the

Ebola epidemic that occurred in West Africa from 2013-2016. Ebola is a virulent disease

that spreads when an uninfected person comes into contact with the bodily fluids of an

infected individual. Infection can then only spread by people who have a physical connection:

their neighbours in a network. Understanding this contact process and the role of network

structure in the process dynamics may give researchers and health workers insight into how

to slow, stop, and prevent the spread of such a deadly virus. Modeling such a process is

a fundamental problem in epidemiology. One simple, but heavily investigated model is the

Susceptible-Infected-Susceptible (SIS) model [4] [17]. In the SIS model, individuals can be

infected or susceptible, that is, they are in a state which is susceptible to becoming infected.
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At each time instant n = 0, 1, . . ., an individual, or node, m has states

s(m)
n ∈ {1 (infected) 2 (susceptible) }.

and the entire population can be described by the infected population state at time n, denoted

by x̄n, the fraction of nodes with degree d at time n that are infected. That is4

x̄n(d) =
1

M

∑
m

I
(
Ξ(m) = d, s(m)

n = 1
)
, d = 1, . . . , D. (2.3)

Infection can pass from infected individuals to their susceptible neighbours. In this thesis,

this infection process is modeled probabilistically. At any discrete timepoint a susceptible

individual, or node, has some probability of becoming infected, dependent on the number of

infected neighbours and total neighbours it has. An entire population can then be described

as a state of a Markov chain where the transition probabilities depend on the degree of the

node and the number of infected neighbors.

The infection dynamics evolves as follows5,6: :

Step a.) A node m is chosen uniformly from the vertices in V . Suppose the node has degree

Ξ(m) = d and the number of infected neighbors F
(m)
n = a. The state s

(m)
n of the node m

at time n evolves from state i to j with transition probabilities P̄ij, where i, j ∈ {1, 2}.

These transition probabilities depend on the node’s degree d and its number of infected

4Note that M(d) = ρ(d)M and the infected population state is scaled by ρ(d) to have a common denom-
inator.

5The state of the network (2.1) at time n is given by an M dimensional vector with elements 1 or 2.
The state space is given by {1, 2}M and the dynamics can be formulated in terms of a transition matrix
between all possible states [74],[78]. In this thesis, we group the 2M states into D subsets, one for each
degree, resulting in a state space of dimension 2M(d) for each degree d.

6As an example, suppose there are M = 100 nodes, with 30 nodes having degree 1 and 70 nodes having
degree 2. Then d ∈ {1, 2}, M(1) = 30, M(2) = 70. Suppose the fraction of infected nodes of degree 1 and
2, are respectively, x̄n(1) = 3/30, x̄n(2) = 60/70. Then x̄n+1(1) ∈ {2/30, 3/30, 4/30} if a node of degree 1 is
chosen in Step (a), while x̄n+1(2) ∈ {59/70, 60/70, 61/70} if a node of degree 2 is chosen in Step (a).
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neighbors a as

P̄ij(d, a) = P
(
s

(m)
n+1 = j|s(m)

n = i,Ξ(m) = d, F (m)
n = a

)
. (2.4)

In real world applications, these transition probabilities can be chosen by experts, such

as a team of virologists who can estimate the probability that an individual interacting

with an Ebola infected person becomes, themselves, infected, or determined empirically,

if many individual interactions can be observed.

Step b.) The population state of degree d is updated as

 x̄n+1(d)

1− x̄n+1(d)

 =

 x̄n(d)

1− x̄n(d)

+
1

M
×

I(s(m)
n+1 = 1, s

(m)
n = 2

)
− I

(
s

(m)
n+1 = 2, s

(m)
n = 1

)
I
(
s

(m)
n+1 = 2, s

(m)
n = 1

)
− I

(
s

(m)
n+1 = 1, s

(m)
n = 2

)
 .

(2.5)

Here 1 − x̄n+1(d) denotes the fraction of susceptible nodes of degree d at time n + 1.

According to (2.5), the infected population state, x̄n+1, changes by 1
M

at every time-

step depending on the transition probabilities.

Here we have presented the SIS model with respect to its classical application in infection,

but we can similarly model the spread of influence, interest, or ideas online. Information

can be passed between individuals, for example by web posts or tweets, and this information

spreads in a way analogous to an infection. A user may tweet about a news event, for

example a shark attack in Sweden. This would be sensational, and the contacts of this user

may see that tweet and share or produce their own tweets about the topic. These people may

then continue to share, and so on and so forth, as the infection propagates throughout the

online social network. This process is known to spread in a way that mimics viral infections

[84].
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2.1.3 The Mean Field Approximation

The SIS model provides a framework for understanding the spread of an infection, but in

practice, even for small network size, there are too many interactions to account for exactly,

and the dimensionality of the SIS model, namely 2M - states, becomes intractable for modeling

or signal processing algorithms. The social networks we would like to consider are sometimes

massive, such as the Facebook Social network of 1.86 billion active users [1]. To hope to

utilize this model in any real world applications, we must use an approximation. For this

we look towards mean field theory, and in this section we present a mean field dynamics

approximation to the SIS model.

Mean field theory was developed in statistical physics to approximate interactions be-

tween large number of particles. Instead of modeling interactions between individual par-

ticles, mean field approximations simplify the process by having particles interact with the

ensemble averages of all other particles. In social network analysis, the we apply this tech-

nique to groups of individuals, instead of particles. We consider the propagation of a process

spreading throughout the network, for instance a virulent disease or infection.

In its most simplistic form, in the mean field evolution of a system, a summarizing statistic

of the network, denoted here by α, evolves as a function of only itself:

αn+1 − αn = θ
[
T +(αn)− T −(αn)

]
(2.6)

Here T + is the probability that αn increases by θ, and T − is the probability that αn

decreases by θ. θ > 0 is the diffusion parameter which corresponds to the fraction of the

population that interacts per timestep. This diffusion parameter, along with the transmission

probabilities define the timescale of the infection7.

This simple mean field theory does not permit a description of network structure beyond

7Here we further note that θ may be dependent on time, n, and thus may non-linearly rescale the evolution
of the system. If, for instance, interactions between individuals occur more frequently on a Saturday than a
Tuesday, this information can be encoded into θ, to allow for more complex modeling.
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regular networks and thus may fail to capture structures that may change the rate of of

infection. For example, these mean field models do not adequately account for influential

individuals who are well connected in a network. Consider a Twitter user with a great

number of followers, if they adopt an idea, they may dramatically increase the rate at which

that idea spreads. Similarly, a social individual may singlehandedly sustain the spread of an

infection by repeatedly interacting with a great number of susceptible persons. To encode

some of these network effects, we consider a more complex mean field description when

modeling infection on networks.

Mean Field Approximation with Network Structure

Mean field theory can incorporate information about the network degree distribution to

allow for the modeling of complex networks [86]. To represent a simple mean field system

we utilized a single summarizing statistic, α. We can incorporate network structure into

the mean field dynamics by formulating the evolution of a vector of summarizing statistics.

In this case we will consider the infected population state, which is differentiated by degree

x̄n(d). Now the change in each infection probability x̄n(d) depends on degree d and the entire

current state x̄n:

x̄n+1(d)− x̄n(d) = θ
[
T +(x̄n, d)− T −(x̄n, d)

]
(2.7)

Here θ is the fractional change per interaction, and T +(x̄n, d) and T +(x̄n, d) denote the

probabilities that the fraction of infected nodes of degree d increases or decreases, respec-

tively. This incorporation of degree information allows us to model networks and differentiate

between networks based on their degree distributions.

2.2 SIS Model and Mean Field Dynamics

If we again consider our social network, over which an infection evolves according to SIS

dynamics, we can express mean field dynamical equation in terms of our infected population
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states x̄n.

The probability that a link, chosen uniformly at random among all links of a node chosen

uniformly at random in the network at time n, points to an infected node is given by α(x̄n)

as the infected link probability. Clearly,

α(x̄n) =

∑D
d=1 (# of links from infected node of degree d)∑D

d=1 (# of links of degree d)
(2.8)

=

∑D
d=1 d ρ(d) x̄n(d)∑D

d=1 d ρ(d)
.

With αn, the probability that a susceptible node with d infected neighbors has exactly a

infected neighbors is given by the binomial distribution as
(
d
a

)
αan(1−αn)d−a. Implicit to this

binomial expression is the assumption that nodes associate randomly with other nodes in a

network, or the homogeneous mixing assumption. This is a common assumption in modeling

SIS dynamics and is discussed in [59]. We can now characterize the transition probabilities

of the entire population process x̄n(d), whose sample path evolves according to (2.5). The

transition probability from susceptible to infected is:

P
(
x̄n+1(d) = x̄n(d) +

1

M(d)

)
=

d∑
a=0

P̄21(d, a)P (a out of d neighbours infected)

=
d∑
a=0

P̄21(d, a)

(
d

a

)
αan(1− αn)d−a. (2.9)

The transition probability from infected to susceptible is evaluated similarly as:

P
(
x̄n+1(d) = x̄n(d)− 1

M(d)

)
=

d∑
a=0

P̄12(d, a)P (a out of d neighbours infected)

=
d∑
a=0

P̄12(d, a)

(
d

a

)
αan(1− αn)d−a. (2.10)

With the transition probabilities (2.9) and (2.10), define the fractional change of infected
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and susceptible nodes in the population as:

P21(d, x̄n(d))
∆
=(1− x̄n(d))P

(
x̄n+1(d) = x̄n(d) +

1

M

)
(2.11)

P12(d, x̄n(d))
∆
= x̄n(d)P

(
x̄n+1(d) = x̄n(d)− 1

M

)
(2.12)

where P̄12, P̄21 are defined in (2.4). Here (2.11) is interpreted as the fraction of susceptible

nodes (1−x̄n(d)) that become infected (P̄21) and (2.12), the fraction of infected nodes (x̄n(d))

that become susceptible (P̄12).

Below we formalize the mean field approximation and show that the deviation between

the approximation and the true state satisfies an exponential bound, given a time horizon

that is of the same order as the size of the network.

Define the following 2− dimensional simplices for d = 1, 2, . . . , D,

Sd =


 x̄n(d)

1− x̄n(d)

 : x̄n(d) ∈ [0, 1]


and the following product space, S = S1 × S2 × . . .× SD.

With 1 denoting the D dimensional vector of ones, let
∼
xn = [x̄′n, (1− x̄n)′],

P21(
∼
xn) = [P21(1, x̄n(1)), . . . , P21(D, x̄n(D)), P12(1, x̄n(1)),

. . . , P12(1, x̄n(2)), . . . , P12(D, x̄n(D))]

P12(
∼
xn) = [P12(1, x̄n(1)), . . . , P12(D, x̄n(D)), P21(1, x̄n(1)),

. . . , P21(1, x̄n(2)), . . . , P21(D, x̄n(D))]. (2.13)

Theorem 1 (Mean Field Dynamics). 1. The population dynamics Markov chain
∼
xn evolves

according to the following martingale difference driven stochastic difference equation:

∼
xn+1 =

∼
xn +

1

M
[P21(

∼
xn)− P12(

∼
xn)] + ζn. (2.14)
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Here ζn is a 2D-dimensional martingale difference process8 with ‖ζn‖2 ≤ Γ
M

for some

positive constant Γ.

2. Consider the following deterministic mean field dynamics process associated with the

population state:

xn+1 = xn +
1

M
[P21(xn)− P12(xn)] (2.15)

where xn ∈ S, xn = [x′n, (1− xn)′], P21(xn) and P12(xn) are defined as in (2.13) and

x0 =
∼
x0.

Then for a time horizon of T points, the deviation between the mean field dynamics xn

in (2.15) and actual population state
∼
xn in (2.14) satisfies

P
{

max
0≤n≤T

∥∥∥xn+1 −
∼
xn+1

∥∥∥
∞
≥ ε
}
≤ C1 exp(−C2ε

2M)

for some positive constants C1 and C2 providing T = O(M)9.

Theorem 1 says that for a time horizon of T points, the deviation between the mean field

dynamics (2.15) and actual population state (2.14) satisfies an exponential bound. Since the

exponential bound
∑

M exp(−Cε2M) is summable, the Borel-Cantelli lemma applies. This

in turn implies that, if the deterministic population flow remains forever in some subset of

the state space, then the stochastic process will remain in the same subset space with a

probability arbitrarily close to one, provided that the population is large enough, see [12].

The proof of Theorem 1 given in the appendix, is inspired by the proof in [12] for approx-

imating stochastic evolution in games. An important feature of the mean field dynamics is

that it has a state of dimension D compared to the intractable state dimension
D∏
d=1

(M(d)+1)

of the infected population state x̄n
10, with x̄n(d) ∈ {0, 1

M
, 2
M
, . . . , ρ(d)}.

For the purposes of this thesis, the key outcome of Theorem 1 is that the mean field

8ζn is a martingale difference process if E{ζn|Fn−1} = 0, where Fn−1 denotes the sigma-algebra generated

by {∼x0,
∼
x1, · · · ,

∼
xn−1}.

9Here ‖x‖∞ = maxi |x| denotes the l∞ norm of vector x.
10Note that here x̄n is scaled by ρ(d).
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2.3. Sampling

system xn has polynomial dynamics, where for every d ∈ {1, 2, . . . , D} we have for the

infected population state,

xn+1(d) = xn(d) +
1

M
[P21(d, xn(d))− P12(d, xn(d))] . (2.16)

These polynomial dynamics will be exploited in chapter 3 for tracking the infected population

state.

2.3 Sampling

To track an infection we must have some method by which to learn about the underlying

state of the system. The SIS model derived earlier in this chapter informs us on the approx-

imate trajectory, however, for finite networks, there is state noise which causes the infected

population state to drift. The state noise in this example arises because even if we know

the exact network size, structure, and have estimates of the transmission probabilities that

correspond exactly to the true transmission probabilities, the interactions between users are

probabilistic. We may know how frequently an individual interacts with their neighbours,

but may not know with whom they interact on a particular Sunday, or if they sneeze during

this interaction. We encode this shortcoming in of knowledge in the probabilistic model.

Even knowing the true probabilities, we do not know a priori, except in trivial cases with

transmission probabilities of 0 and 1, if an infection will spread from one user to another at

a particular time. We therefore seek to observe the network and learn about the infected

population state through sampling.

We consider sampling the social network (2.1). For social networks with large numbers of

nodes, it is prohibitive to query each node. This necessitates choosing a sampling methodol-

ogy in order to estimate the infected population state x from a subset of the total nodes. Each

sampled node is asked if it is infected or not and the reply (measurement) noted. Below, we

consider two popular methods for sampling large networks, see [3, 16, 20, 30, 38, 39, 49, 54]

25



2.3. Sampling

for an overview of these methods:

2.3.1 Uniform Sampling

When a list of all members of the network is available, but perhaps have no precise informa-

tion of network structure, we can use uniform sampling to estimate the infected population

state. We can obtain an estimate of the infected population state from sampling a sequence

of ν individuals uniformly from the population. For each degree, ν(d) are sampled generat-

ing a sequence of independent observations denoted by {ml, l ∈ {1, 2, . . . , ν(d)}} from the

population M(d). The estimate at time n is then given by

x̂n(d) =
1

ν(d)

ν(d)∑
l=1

I(s(ml)
n = 1). (2.17)

At each time n, x̂n can be viewed as noisy observation of the infected population state xn.

2.3.2 MCMC Based Respondent-Driven Sampling (RDS)

Respondent-driven sampling (RDS) was introduced by Heckathorn [38, 39] as an approach

for sampling from hidden populations in social networks and has gained enormous popularity

in recent years. In RDS sampling, current sample members recruit future sample members.

RDS sampling does not require knowledge of the structure of the target population. This is

important as it allows observation of hidden populations. These populations may be hidden

by choice, such as sex workers and the MSM community11.

The RDS procedure is as follows: A small number of people in the target population

serve as seeds. After participating in the study, the seeds recruit other people they know

through the social network in the target population. The sampling continues according to

11MSM is the health community’s term for men who have sex with men and is a classic example of a
hidden social network. Members of the social network may know other members, but they may be reluctant
to identify themselves to researchers due to the danger or prejudice involved in being known as a member
of the community.
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2.3. Sampling

this procedure with current sample members recruiting the next wave of sample members

until the desired sampling size is reached. In real world applications, this recruitment is

typically driven by monetary incentives for participants who successfully recruit their peers.

RDS can be viewed as a form of Markov Chain Monte Carlo (MCMC) sampling (see [33]

for an excellent exposition). Let {ml, l ∈ {1, 2, . . . , ν(d)}} be the realization of an aperiodic

irreducible Markov chain with state spaceM(d) comprising of nodes of degree d. This Markov

chain models the individuals of degree d that are sampled, namely, the first individual m1

is sampled and then recruits the second individual m2 to be sampled, who then recruits m3

and so on. Instead of the independent sample estimator (2.17), an asymptotically unbiased

MCMC estimate is then generated as

∑ν(d)
l=1

I(s
(ml)
n =1)
π(ml)∑ν(d)

l=1
1

π(ml)

(2.18)

where π(m), m ∈M(d), denotes the stationary distribution of the Markov chain. For exam-

ple, a reversible Markov chain with prescribed stationary distribution is straightforwardly

generated by the Metropolis Hastings algorithm.

In RDS, the transition matrix and, hence, the stationary distribution π in the esti-

mate (2.18) is specified as follows: Assume that edges between any two nodes i and j have

symmetric weights Wij (i.e., Wij = Wji, equivalently, the network is undirected). Node i

recruits node j with transition probability Wij/
∑

jWij. Then, it can be easily seen that the

stationary distribution is π(i) =
∑

j∈V Wij/
∑

i∈V,j∈V Wij. Using this stationary distribution,

along with the above transition probabilities for sampling agents in (2.18), yields the RDS

algorithm.

Since a Markov chain over a non-bipartite connected undirected network is aperiodic [85],

the initial seed for the RDS algorithm can be picked arbitratily, and the above estimator is

asymptotically unbiased [33].

The key outcome of Sec. 2.3 is that by the central limit theorem (for an irreducible
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aperiodic finite state Markov chain), the estimate of the probability that a node is infected

in a large population (given its degree) is Gaussian. For a sufficiently large number of

samples, observation of the infected population state is approximately Gaussian, and the

sample observations can be expressed as

yn = Cxn + vn (2.19)

where vn ∼ N (0,R) is the observation noise with the covariance matrix R and observation

matrix C dependent on the sampling process and xn ∈ RD is the infected population state

which evolves according to the polynomial dynamics (2.16).

2.4 Summary

This chapter presented a formulation of a social network and infection diffusion dynamics

over that social network. Mean field theory was then utilized to approximate the discrete

time diffusion dynamics with an ordinary differential equation. This SIS model and mean

field approximation incorporate information about the degree distribution of the underly-

ing network, and so the infection dynamics depend on the underlying network structure.

Furthermore, the mean field dynamics are polynomial in the infected population state, a

property which will be utilized in the Bayesian filtering algorithm of Chapter 3. Finally, uni-

form and respondent-driven sampling were presented as methods of generating observations

of the infected population state.
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Chapter 3

Tracking Infection and Filtering

Bounds

In Sec. 2.2, we formulated the mean field dynamics for the infected population state as a

system with polynomial dynamics (2.16) and linear Gaussian observations (2.19) obtained

by sampling the network. In this section, we consider Bayesian filtering of the infected

population state for large networks.

The practical applications of knowing the infected probability state include better esti-

mating the trajectories of social and infectious epidemics. Consider an infection on a network

of known degree distribution. Again, we consider a viral infection in a real world social net-

work, such as the Ebola epidemic that occurred in West Africa from 2013-2016. It may be

expensive or prohibitively dangerous to generate large and frequent samples of the popula-

tion to learn about the infection and how it is spreading, but the high level structure of the

social network itself, such as the network degree distribution, may be approximately known

(consider that the social network in the infected areas would likely have a similar underlying

network structure to uninfected areas). We could use expert knowledge to estimate trans-

mission matrices P12 and P21. Using these pieces of information we could perform smaller

samples over time and use the filtering techniques outlined in this section to generate an

estimate that is as accurate as much larger samples. Thus the ability to filter the sampled

information and determine the infected probability state saves time, money and decreases

the amount of exposure surveyors will have with infected individuals.

It may similarly by difficult to sample on online social networks to learn about techno-
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3.1. Optimal Filtering of Infected Populations

logical adoption or information diffusion. Online social networks are massive, and response

rates to petitions by interested parties are often very low. What is more, individuals become

quickly apathetic to barrages of requests online. Responses are therefore more likely if they

can be incentivised, but incentives dramatically increase the cost per sample request. Thus

we are again motivated to sample less frequently, and with smaller samples. It is through

filtering that we can do this, while maintaining or surpassing the accuracy of observations

of population states generated by larger samples.

3.1 Optimal Filtering of Infected Populations

We first describe how to express the mean field dynamics (2.16) in a form amenable to

employing the non-linear filter described in [40]. The non-linear filter in [40] can be used

with state spaces with polynomial state space evolutions and linear observations, both of

which may have Gaussian noise. One of the benefits of integrating domain knowledge of the

state space evolution of our system into a dynamical mean field equation is that this equation

has polynomial dynamics. That is that the mean field equation 2.16 can be expressed,

xn+1 = f(xn), where f(·) is a polynomial function. Once the state space has been thusly

expresed, we can directly implement the filter, here described in Sec. 3.1.2.

3.1.1 Mean Field Polynomial Dynamics

Consider a D-dimensional polynomial vector f(x) ∈ RD:

f(x) = A0 + A1x+ A2xx
′ + A3xxx

′ + . . . (3.1)
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3.1. Optimal Filtering of Infected Populations

where the co-efficients A0, A1, . . . , Ai denote rank 1, 2, . . . , (i + 1) tensors. Aixx . . . x
′ is a

vector with rth entry given by

Aixx . . . x
′(r) =

∑
j1,j2,j3,...,ji

Ai(r, j1, j2, . . . , ji)xj1xj2 . . . xji

where Ai(r, j1, j2, . . . , ji) is the r, j1, j2, . . . , ji entry of tensor Ai and xj is the jth entry of x.

Equation (2.16) has polynomial dynamics and can be expressed in the form of (3.1) by

constructing the tensors Ai from P̄12, P̄21 and ρ(d). We illustrate how to express the mean

field dynamics of (2.16) in the form (3.1) for12 d = 2. First, we note the average degree is∑D
d=1 d ρ(d) and the link probability given in (2.8) can be expressed as αn = φ′xn, where φ

is defined as:

φ =

[
ρ(1)∑D

d=1 d ρ(d)
,

2ρ(2)∑D
d=1 d ρ(d)

, . . . ,
Dρ(D)∑D
d=1 d ρ(d)

]′
.

Mean field dynamics for d = 2 in (2.16) is given as:

xn+1(2) = xn(2) +
1

M
[P21(2, xn)− P12(2, xn)] . (3.2)

For all terms with factor P̄12 there is a corresponding term with factor P̄21, so for convenience

we will account for all of the former with Ω and the latter with Ω∗.

xn+1(2) = xn(2) + Ω− Ω∗ (3.3)

12The procedure is same for all degrees.
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3.1. Optimal Filtering of Infected Populations

where Ω is all the terms in an expanded (2.16), with d = 2, containing P̄12 and

Ω = θ

[
1

M
P̄12(2, 0)(φ′xn)2 +

2

M
P̄12(2, 1)(φ′xn) − 2

M
P̄12(2, 1)(φ′xn)2 +

1

M
P̄12(2, 2)

− 2

M
P̄12(2, 2)(φ′xn) +

1

M
P̄12(2, 2)(φ′xn)2 − xn

M
P̄12(2, 0)(φ′xn)2 − 2xn

M
P̄12(2, 1)(φ′xn)

+
2xn
M

P̄12(2, 0)(φ′xn)2 − xn
M
P̄12(2, 2) +

2xn
M

P̄12(2, 2)(φ′xn)− xn
M
P̄12(2, 2)(φ′xn)2

]
. (3.4)

By grouping all of the terms of (3.3) by their order in xn(d), we can generate the tensors of

(3.1). The contributions to the tensors of (3.1) by Ω are:

A0(2) =
θP̄12(2, 2)

M

A1(2, :) = φ

[
2θ(P̄12(2, 1)− P̄12(2, 0))

M

]
A2(2, :, :) = φφ′

[
θ(P̄12(2, 0)− 2P̄12(2, 1) + P̄12(2, 2))

M

]
A2(2, 2, :) = φ

[
2θ(P̄12(2, 1)− P̄12(2, 0))

M

]
A3(2, 2, :, :) = −φφ′

[
θ(P̄12(2, 0)− 2P̄12(2, 1) + P̄12(2, 2))

M

]
(3.5)

where Ai(j1, j2, . . . , ji−1, :, :) is a submatrix of tensor Ai and Ai(j1, j2, . . . , ji, :) is a subvector

of tensor Ai. By following (3.5) for Ω and Ω∗ for all d, we can generate all the coefficients

in the tensors of (3.1) from P̄12, P̄21, and ρ(d). We note that the polynomial that defines

the dynamics of the network is of order D∗ + 1, where D∗ is the highest degree node with

complex dynamics, i.e: P̄21(d, a) = P̄12(d, a) = κ for all d > D∗ and for all a, where κ is

constant with respect to both d and a.
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3.1. Optimal Filtering of Infected Populations

3.1.2 Optimal Filter for Polynomial Dynamics

Optimal Bayesian filtering refers to recursively computing the conditional mean estimate

E{xk|Yk}, for k = 1, 2, · · · where Yk denotes the observation sequence y1, . . . , yk. (The

term optimal refers to the fact that the conditional mean estimate is the minimum variance

estimate). To estimate the infected population state using the sampled observations (2.19),

we employ an optimal Bayesian filter recently developed for polynomial systems. In general

for nonlinear or non-Gaussian systems, there is no finite dimensional filtering algorithm;

however, it is shown in [40] that for Gaussian systems with polynomial dynamics, one can

devise a finite dimensional filter (based on the Kalman filter) to compute the conditional

mean estimate.

Below we present only the relevant terms in the model that are used in the filtering equa-

tions, see [40] for details. The non-linear filter prediction and update equations are given as:

Prediction step:

x̂−n = E[xn|Yn−1] = E[f(xn−1)|Yn−1]

H−n = E[(xn − x̂n)(xn − x̂n)′|Yn−1]

= E[(f(xn−1)− E[f(xn−1)|Yn−1] + vn−1)× (f(xn−1)− E[f(xn−1)|Yn−1] + vn−1)′|Yn−1]

= E[f(xn−1)f(xn−1)′|Yn−1]− E[f(xn−1)|Yn−1]× E[f(xn−1)|Yn−1]′ + Qn−1

(3.6)

where x̂−n denotes the priori expectation of the state vector (infected population state) xn;

Yn = {Yn−1, yn} denotes the observation process; H−n denotes the priori state co-variance

estimate at time n; and vn denotes the Gaussian random variable representing the state

noise at time n, with covariance Qn.

H−n and x̂n are initialized with some initial estimate x̂0 and estimate covariance H−0 . The

filter relies upon being able to compute the expectation E[f(xn−1)f ′(xn−1)|Yn−1] in terms of

x̂n−1 and H−n . When f(·) is a polynomial, f(xn−1)f(xn−1)′ is a function of xn−1, and the
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3.2. Posterior Cramèr-Rao Bounds

conditional expectations in (3.7) can be expressed only in terms of x̂n−1 and H−n , permitting

a closed form13 prediction step.

Update step:

x̂+
n = E[xn|Yn] = x̂−n +H−n C

′(Rn + CH−n C
′)−1(yn − Cx̂−n )

Kn = H−n C
′(Rn + CH−n C

′)−1

H+
n = (I −KnC)H−n (I −KnC)′ +KnRnK

′
n

(3.7)

where x̂+
n denotes the posteriori expectation of the state vector; H+

n denotes the posteriori

state co-variance estimate at time n; C denotes the state observation matrix; Rn denotes the

observation noise co-variance matrix; Kn denotes the filter gain; and I denotes the identity

matrix.

Since the dynamics of (2.16) are polynomial, the prediction and update steps of (3.6) and

(3.7) can be implemented without approximation. These expressions constitute the optimal

non-linear filter and can be used to track the evolving infected population state.

3.2 Posterior Cramèr-Rao Bounds

The PCRLB provides a theoretical performance limit for an unbiased estimator in a nonlinear

filtering problem [79]. While not of direct practical application, the PCRLB provides an

understanding of the fundamental limits of our filtering algorithm, and provides a method

by which we can investigate the properties of a network. The PCRLB can, for instance,

inform us on the difference in performance limit of different network types, or under different

sampling schemes. Understanding the PCRLB therefore allows us to better design our data

gathering methodologies. In PCRLB, the Fisher Information Matrix (FIM) is derived by

evaluating the expectation with respect to the joint distribution of the measurements and

the system states up to the current time. It is determined only by model parameters and

13For an explicit implementation of such a filter for a third order system with an exact priori update
equation for H−n and x̂−n , see [40].
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3.2. Posterior Cramèr-Rao Bounds

the initial state and is thus independent of any specific realization of the system state.

Below we compute the PCRLB for the polynomial dynamical system (2.16) with linear

observations with Gaussian noise (2.19). We first consider the dynamical system with mean

zero Gaussian state noise having the covariance matrix Q, then formulate the PCRLB for

the polynomial dynamical system (2.16) without any state noise.

Let Xn = {Xn−1, xn} denote the state sequence at time n and Jn denote the ((n+1)D×(n+

1)D) Fisher information matrix14 of Xn [79]. The following recursion is used to evaluate Jn

in [79]. Let P(X, Y ) = pn denote the joint distribution and ∆y
x = ∇x∇′y denote the vector

differential operator. Then [79],

Jn = E{−∆xn
xn log(pn)} − E{−∆Xn−1

xn log(pn)}[E{−∆
Xn−1

Xn−1
log(pn)}]−1E{−∆xn

Xn−1
log(pn)}

and corresponds to the inverse of the D ×D right lower block of [Jn]−1. The recursion for

Jn is given by:

Jn+1 = Λ22
n − Λ21

n

(
Jn + Λ11

n

)−1
Λ12
n

where

Λ11
n = E{(∇xnf

′
n(xn))Q−1

n (∇xnf
′
n(xn))′}

Λ12
n = E{∇xnf

′
n(xn)}Q−1

n

Λ21
n = {D12

n }′

Λ22
n = Q−1

n + CR−1
n C ′

(3.8)

where C is the linear observation matrix and R is the observation noise covariance matrix

14The error covariance P is,
P = E{(X̂ −X)(X̂ −X)′} ≥ J−1

where J is the Fisher Information matrix, X is the state, X̂ is the state estimate, and Y measured data.
The elements of the Fisher information matrix J are given by:

Jij = E
(
∂2 log px,y(X,Y )

∂Xi∂Xj

)
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of (2.19) and ∇xnf
′
n(xn) is given as:

∇xnf
′
n(xn) =

[
∂f

∂xn(0)
,

∂f

∂xn(1)
, . . . ,

∂f

∂xn(D)

]′
∂f

∂xn(0)
= 0 +

∂

∂xn(0)
[A1xn] +

∂

∂xn(0)
[A2xnx

′
n] +

∂

∂xn(0)
[A3xnxnx

′
n] (3.9)

Thus

∇xnf
′
n(xn) = A1 + (A2 + A′2)xn + (A3ijk + A3jki + A3kji)xnx

′
n (3.10)

where A3ijk indicates the ordering of indices of the tensor A3 and is analogous to a higher

dimensional transpose.

When there is no state noise in the system evolution, as in the mean field dynamics

equation (2.16), to compute the PCRLB, we perturb the state evolution in (2.16) with

pairwise independent Gaussian random vectors having covariance matrix Qε = εI, replacing

the singular state evolution by a perturbed system pε(xn+1|xn). For the purturbed system

we have,

− log pε(xn+1|xn) = c+
1

2
{xn+1 − fn(xn)}′Q−1

ε {x̄n+1 − fn(xn)} (3.11)

where c is a constant. The recursion for Jn is then given by:

Jn+1 = Λ22
ε,n − Λ21

ε,n

(
Jn + Λ11

ε,n

)−1
Λ12
ε,n

where

Λ11
ε,n =

1

ε
E{(∇xnf

′
n(xn))(∇xnf

′
n(xn))′}

Λ12
ε,n =

1

ε
E{∇xnf

′
n(xn)}

Λ21
ε,n = {Λ12

n }′

Λ22
ε,n =

1

ε
I + CR−1

n C ′

(3.12)
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PCRLB: Erdős-Rényi vs Scale-Free

We used the above formulas to compute the PCRLB for the mean field dynamics model

(2.16), under two simulation schemes.

Scheme A.) Degree distribution based: The deterministic mean field evolution given in (2.16) is

simulated with linear Gaussian observations (2.19) and zero state noise. The infection

transition probabilities P̄12 and P̄21 were chosen uniformly at random over [0, 1]. The

observation noise covariance matrix R is a random positive definite matrix15 with

entries in [0, 10−6]. We note that the diffusion parameter θ = 1, observation matrix

C = I, and maximum degree D = 20 unless otherwise stated.

Scheme B.) Network based: The network based simulation consisted of generating a network, prop-

agating an infection according to Sec.2.1.2 over this network, and then finally sampling

that network using the uniform sampling mechanism described in Sec.2.3. For the net-

work simulations, scale-free networks of M = 10000 nodes were generated using the

Barabasi-Albert model and Erdős-Rényi networks of M = 10000 were generated by

randomly creating links between nodes. The infection was initialized by infecting nodes

at time n = 0 with probability 0.01. This infection was propagated for 10000 timesteps.

At each timestep 5000 samples were obtained according to the uniform sampling de-

scribed in Sec.2.3 to generate an observation at that timestep. These observations were

then filtered. State and observation covariance matrices Q and R used in filtering were

computed empirically from the data. State and observation noise covariance matrices

were estimated to be constant for all time steps n, that is Qn = Q and Rn = R for all

n.

We computed the PCRLB for two different network types:

Type a.) Scale-free network with degree distribution ρ(d) ∝ d−γ where γ = 2.7. Such networks

15One way is to generate a sample from the probability measure on real symmetric positive-definite matrices
such as Inverse-Wishart.
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arise in online social networks such as Twitter [51] and in the link network of the World

Wide Web [2].

Type b. Erdős-Rényi network with degree distribution ρ(d) ∝ e−λd

d!
where λ = 2.7. 16

Fig. 3.1 displays the PCRLB and mean square error of the degree based simulations.

Interestingly, it can be seen from Fig. 3.1 that both PCRLB and its slope are insensitive

to the underlying network structure when observation noise covariance, R in (2.19), is not

network dependent. Under the mean field model, differences between PCRLB for different

network types can therefore be attributed to either different state or different observation

noise covariances. The PCRLB and Bayesian filter estimate mean square error of network

based simulations are shown in Fig. 3.2. In Fig. 3.2, a network of 10000 nodes is generated

and an infection is propagated through the network over 10000 time steps. This infection is

then sampled 5000 times at each timestep to generate observations of the infected population

states. State and observation covariances are computed empirically and assumed constant

throughout the duration of the system dynamics. The slower convergence of the filter esti-

mate on an Erdős-Rényi when compared to a scale-free network filter estimate corresponds

to the Erdős-Rényi network observations having a larger observation noise covariance. It is

seen that PCRLB gives a lower bound on the MSE.

3.3 Summary

This Chapter presents a filtering method for tracking the infected population state of a

social network. This enables the combination of apriori knowledge of the infection dynamics

with observations to better estimate the fraction of infected users in a network. First, we

expressed the mean field dynamics of Sec. 2.1.2 in a polynomial form, which is amenable

the non-linear Bayesian filtering algorithm described in Sec. 3.1. The non-linear Bayesian

algorithm filters observations to produce an optimal estimate of the infected population

16The value λ = 2.7 was chosen since it is similar to the the out-degree of the World Wide Web, see [15]
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Figure 3.1: Filtered estimate log mean square error and PCRLB for deterministic mean field
evolution with scale-free and Erdős-Rényi degree distributions.
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3.3. Summary

state. This online estimation tracks the infected population state as it evolves over time.

Further, the PCRLB was computed to provide a theoretical performance limit of the filtering

problem. The PCRLB was computed for two network types, scale-free networks and Erdős-

Rényi networks, and compared.
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Chapter 4

Extended Diffusion Models:

Homophily and Game Theoretic

Dynamics

The SIS model, like any model, is a simplification of a real world phenomena. Infections in

the real world operate with far more complexity than can be adequeately summarized by a

simple SIS model. To better describe real world infections and opinion diffusion we consider

a powerful extension to the SIS model, as well as an alternative model for the underlying

infection dynamics. We extend the SIS model to incorporate homophily. Homophily is the

tendency for individuals to engage with people similar to themselves [63]. These similarities

characterize distinct groups, and these groups may affect how infections spread through a

network. For example these distinct groups may be formed by the political affiliations of

individuals within the network. This affiliation may then impact how knowledge of a news

item diffuses through the network. This incorporation of types and groups into the model

does not impede the use of the Bayesian polynomial filter, and thus we can still use this

optimal filtering algorithm to track infections in networks with homophily. The alternative

model for infection dynamics we present in this thesis is one which inorporates game theoretic

interactions into the network dynamics. The Moran process from evolutionary dynamics is

adopted as the underlying model for infection (or rather, in this case cooperation) diffusion.

The Moran process models the dynamics of a population where individuals belonging to

subtypes or substrategies interacts temporally on a stuctured network. This model, when
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4.1. Infected Population Estimation in Homophily Networks

approximated with mean field dynamics, does not generally have a polynomial state evolu-

tion, which means the polynomial filter can not be applied without futher approximation.

We also consider the pair approximation for the Moran process, in which the state incorpo-

rates additional information about the local infection/cooperation structures of the network.

The pair approximation does not admit a polynomial state evolution. We therefore utilize

a particle filter for tracking the infected/cooperating population state which can be utilized

along with the mean field or pair approximations.

4.1 Infected Population Estimation in Homophily

Networks

An infection doesn’t affect the elderly the same way it affects the young. Minor annoyances

for a student athlete can be hospitalizations for the very young or immunocomprimised.

Similarly, your engagment with a news article may depend on your prior previous affiliations,

and your initial exposure to that article may depend on how many of your friends share your

political affiliation or subscribe to different beliefs. This more complex diffusion and network

dependence on individual types can be modeled by a network with homophily. In this section

we extend the SIS model presented in Sec. 2.2 to include homophily, using the approach in

[57].

4.1.1 SIS Model with Homophily

Let the social network be comprised of B distinct types of individuals17. Let µb denote the

fraction of individuals of type b, for b ∈ {1, 2 . . . ,B}. We define the total number of nodes

of type b as

M b =
∑
m∈V

I
(
T(m) = b

)
. (4.1)

17For example these types may be groups characterized by political affiliation, age, or income.
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4.1. Infected Population Estimation in Homophily Networks

where we define T(m) to be the type of node m. We define the total number of nodes of

degree d and type b as

M b(d) =
∑
m∈V

I
(
Ξ(m) = d,T(m) = b

)
. (4.2)

The degree distributions of each type can be different from one another, and so we specify

the degree distribution of each type b as ρ[b](d), where

ρ[b](d) =
M b(d)

M b
. (4.3)

These different types interact with each other according to the transition matrix Υ, with

entries ςbc = P (individual of type c meets individual of type b), and is defined as:

Υ =


ς11 . . . ς1B
... . . .

...

ςB1 . . . ςBB

 (4.4)

We denote by x̄n,b(d) the fraction of agents of type b and degree d that are infected at time n.

Recall that in Sec. 2.1.2 we defined the infected link probability, α. Since types of individuals

interact with others at different rates, ς, they do not share the same infected link probability.

Instead of one infected link probability, we define a vector of infected link probabilities, one

for each type:

αb(x̄n) =
B∑
c=1

ςbc

∑D
d=1 d ρ

[c](d) x̄n,c(d)∑D
d=1 d ρ

[c](d)
. (4.5)

In an SIS model with homophily, the transition probabilities between infected and susceptible

states, first introduced in (2.4), may depend on the type b of the node m. Therefore we define

P̄ b
ij(d, a) = P

(
s

(m)
n+1 = j|s(m)

n = i,Ξ(m) = d, F (m)
n = a,T(m) = b

)
(4.6)

As in Sec. 2.1.2, with αn,i and P̄ b
ij, the transition probability from susceptible to infected
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4.1. Infected Population Estimation in Homophily Networks

for an individual m of type b can be evaluated as:

P
(
x̄n+1,b(d) = x̄n,b(d) +

1

M b(d)

)
=

d∑
a=0

θP̄ b
21(d, a)

(
d

a

)
αan,b(1− αn,b)d−a. (4.7)

where M(d, b) =
∑

m∈V I
(
Ξ(m) = d,T(m) = b

)
is the total number of nodes of degree d and

type b. Similarly, the transition probability from infected to susceptible is evaluated as:

P
(
x̄n+1,b(d) = x̄n,b(d)− 1

M b(d)

)
=

d∑
a=0

θP̄ b
12(d, a)

(
d

a

)
αan,b(1− αn,b)d−a. (4.8)

With the transition probabilities (4.7) and (4.8), we define the change on the fraction of

infected and susceptible nodes in the population as:

P b
21(d, x̄n,b(d))

∆
=(1− x̄n,b(d))ρ[b](d)P

(
x̄n+1,b(d) = x̄n,b(d) +

1

M b(d)

)
(4.9)

P b
12(d, x̄n,b(d))

∆
= x̄n,b(d)ρ[b](d)P

(
x̄n+1,b(d) = x̄n,b(d)− 1

M b(d)

)
(4.10)

where P̄ b
12, P̄

b
21 are defined in (4.6). As in Sec. 2.2, we use P b

12 and P b
21 along with Theorem 1 to

express a mean field system xn with polynomial dynamics where for every d ∈ {0, 1, 2, . . . , D}

and every b ∈ {1, 2, . . . ,B} we have for the infected population state,

xn+1,b(d) = xn,b(d) +
1

M

[
P b

21(d, xn,b(d))− P b
12(d, xn,b(d))

]
. (4.11)

The addition of homophily to the SIS model changes the state evolution, but P b
ij(d, xn,b(d))

of (4.11) and Pij(d, xn(d)) of (2.16) are both polynomial functions of their respective states

xn,b(d) and xn(d). Thus the addition of homophily preserves the polynomial dynamics of

(2.16) and we can again exploit this polynomial state evolution to apply the optimal filter

of Sec. 3.1.
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4.2. Moran process: Game Theoretic Network Dynamics

4.2 Moran process: Game Theoretic Network

Dynamics

In this section, we present an alternative model for infection and opinion diffusion on social

networks: the Moran process. The Moran process is a model used in mathematical biol-

ogy to investigate and analyze evolution and the adoption of mutations in a population.

In the Moran process, diffusion is dependent on the defined by the expected outcomes of

games between individuals on the network. This process is distinguished from the SIS model

because the infection/cooperation transmission probabilities may depend on the current in-

fection/cooperation state of the network. We then present mean field approximations and

a pair approximation to the Moran process which incorporate network structure through

the network’s degree distribution, extending upon existing work in evolutionary dynamics

which presents mean field and pair approximations without additional network structure

information [56] [68].

4.2.1 Moran Process

We consider the Moran process with frequency dependent fitness to model the evolution of

cooperation in finite populations [56] [68]. Similar to the discrete SIS model, the Moran

process considers a population of constant size M . In the Moran process individuals interact

-play a game- with their environment. These individuals can adopt one of two states: they

can cooperate (C) with their neighbors or defect (D). Thus the state of each node is binary,

as in Sec. 2.2, and at each time instant n = 0, 1, . . ., an individual, or node, m has states

s(m)
n ∈ {1 (Cooperating), 2 (Defecting) }.

The individual is then assumed to receive some payoff which is dependent on their action and

the actions of their neighbors. Payoffs for games between two players can be summarized
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4.2. Moran process: Game Theoretic Network Dynamics

with a 2x2 table, where the row player is the individual chosen for interaction and the column

player is a neighbour with which he interacts:

C D C a b

D c d

That is, if an individual chooses to cooperate, and the neighbour with whom he is inter-

acting chooses to also cooperate, he receives a payoff of a. Similarly, if he cooperates and his

neighbour defects, he receives a payoff b. The quintessential example of a two-player game is

the prisoner’s dilemma (PD), a game in which c > a and d > b. In the prisoner’s dilemma,

two criminals are being individually questioned for a crime they committed. The investiga-

tors have enough evidence to convict each prisoner for minor sentences, but need testimony

for major convictions. To coax each prisoner to betray the the other, the investigators of-

fer a deal: “Squeal on your fellow prisoner and we’ll reduce your sentence”. Cooperating

with your fellow prisoner would then be staying silent, and not squealing on them. We can

imagine a payoff matrix which looks like:

C D C −1 −5

D 0 −3

Thus, if both prisoners stay silent each receives a minor sentence, but if one squeals and the

other stays silent, then the silent individual is punished heavily and the prisoner who squeals

goes free. If both prisoners squeal, both receive a moderate sentence. This scenario is of

interest, because the cooperating strategy is dominated by the defecting strategy. Regardless

of what the other prisoner does, a rational prisoner should choose to defect to minimize its

sentence. This dominant strategy does not, however, minimize jail time for the group. The
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4.2. Moran process: Game Theoretic Network Dynamics

lowest net jail time is both prisoner’s cooperating with each other and staying silent. In

the structured Moran process, we model a population which interacts through playing these

games.

In the Moran process, the specific neighbour with whom an individual interacts is chosen

from amongst its set of neighbours. Under frequency dependent selection, we define the

payoff for a cooperator with d neighbors, a cooperating neighbors, and d − a defecting

neighbors to be

π†1(d, a) = a · a+ (d− a)b

Similarly, the payoff for a defector with d neighbors, a cooperating neighbors, and d − a

defecting neighbors is

π†2(d, a) = c · a+ (d− a)d.

We do not always know the exact neighbourhood of the individuals we are interested in.

We thus look to the average fitnesses, given some infected link probability or, analogously,

cooperating link probability αn:

π1(d, αn) = a · αnd+ (d− αnd)b π2(d, αn) = c · αnd+ (d− αnd)d. (4.12)

We presume that the fitness of an individual is linear in these payoffs. For some selec-

tion strength w ∈ [0, 1] we have that the fitness of an individual with d neighbours and a

cooperating neighbours is:

f †1(d, αn) = 1− w + wπ†1(d, a) , f †2 = 1− w + wπ†2(d, a)

and a randomly selected cooperating/defecting individual have respective fitnesses:

f1(d, αn) = 1− w + wπ1(d, αn) , f2 = 1− w + wπ2(d, αn).
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Note that the standard Moran process is for an unstructured population, that is all

individuals interact with all others. This is equivalent to the complete network case, where

individuals are arranged in a complete graph structure with d = N − 1, where N is the total

number of individuals in the network.

Types of Updating

In the Moran process, at each timepoint n an update occurs. The Moran process assumes a

constant network size of M individuals, and at each timepoint n an update occurs in which

one individual “dies” or becomes open to changing their opinion/adopt a product/become

infected and another individual gives “birth” or influences/infects the now open individ-

ual. The probability that a particular individual “dies” or “gives birth” may depend on

their fitness. We first present two types of updating commonly investigated in evolutionary

dynamics [67].

1. death-Birth updating: One individual in the population, m, is selected uniformly at

random to die. A new individual is born at the vacant spot and its neighbors com-

pete to influence its strategy s
(m)
n+1. The strategy of the newborn individual is chosen

probabilistically from its neighbour’s strategies with probability weight according to

the fitness of the competing strategies.

P̄21(d, a, αn) = P
(
s

(m)
n+1 = 1|s(m)

n = 2,Ξ(m) = d, F (m)
n = a, αn

)
=

af1(d, αn)

af1(d, αn) + (d− a)f2(d, αn)
.

(4.13)

2. Birth-death updating: One individual from the population, m′, is chosen with proba-

bility proportional to their fitness to reproduce. This individual then picks one of its

neighbours, m, uniformly at random, and changes the strategy of that neighbour to its

own.

First, we consider the probability that a node m′ is picked from the population to
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reproduce. A randomly chosen node has degree d and a cooperating neighbours with

probability x̄n(d)ρ(d)
(
d
a

)
αdn(1 − αn)(d−a) and has fitness f2(d, a). We can, therefore,

express the probability that the reproducing node is a cooperator with degree d and

a cooperating neighbours as the fractional fitness of all nodes with degree d and a

neighbours over the fitness of the entire network.

P
(
s(m′)
n = 2,Ξ(m′) = d, F (m′)

n = a
)

=
1

Z
x̄n(d)ρ(d)

(
d

a

)
αdn(1− αn)(d−a)f2(d, a) (4.14)

where Z is a normalization function representing the total fitness in the network:

Z =
D∑
d=1

d∑
a=1

x̄n(d)ρ(d)

(
d

a

)
αdn(1− αn)(d−a)f2(d, a)

+
D∑
d=1

d∑
a=1

(1− x̄n(d))ρ(d)

(
d

a

)
αdn(1− αn)(d−a)f1(d, a).

(4.15)

Second, given thatm′ is chosen to reproduce, it selects a neighbour uniformly at random

to influence. The node m′ has a cooperating neighbours and d defecting neighbours,

so a defecting neighbour is influenced with probability:

P̄21(d, a, αn) = P
(
s

(m)
n+1 = 1|s(m)

n = 2, s(m′)
n = 2,Ξ(m′) = d, F (m′)

n = a, αn

)
=
d− a
d

(4.16)

We also present a third updating method, death-Rebirth updating, because the popula-

tion dynamics can be expressed using the SIS dynamics presented in Sec. 2.2.

1. death-Rebirth updating (Diffusion): One individual in the population is selected uni-

formly at random to die. This focal individual is removed and a new individual is

born in its place. The newborn then chooses a strategy according to the fitness of each
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strategy available to it, given its neighbourhood.

P̄21(d, a, αn) = P
(
s

(m)
n+1 = 1|s(m)

n = 2,Ξ(m) = d, F (m)
n = a, αn

)
=

f †1(d, a)

f †1(d, a) + f †2(d, a)
. (4.17)

4.2.2 Mean Field and Pair Approximations to the Moran Process

Here we present mean field state evolutions for each of the updating scenarios described in

Sec II.

Mean Field Dynamics: death-Birth

In the death-Birth mean field approximation, a node m of degree d and state s
(m)
n = 2

(defecting strategy) is chosen at time n with probability ρd(1 − x̄n(d)), and this node has

a neighbours with a cooperating strategy with probability
(
d
a

)
αan(1 − αn)(d−a) , finally a

cooperating neighbour is chosen to influence m with probability given in 4.13. Analogous

probabilities exist for calculating the probability that a cooperating strategy is replaced by

a defecting strategy. Thus the update equation for population state x̄n in the death-Birth

scenario is:

x̄n+1(d)− x̄n(d) =
1

M

(
T +(x̄n, d)− T −(x̄n, d)

)
T +(x̄n, d) =

d∑
a=0

(
d

a

)
αan(1− αn)(d−a) af1(d, αn)

af1(d, αn) + (d− a)f2(d, αn)
(1− x̄n(d))

T −(x̄n, d) =
d∑

d′=0

(
d

a

)
αan(1− αn)(d−a) (d− a)f2(d, αn)

af1(d, αn) + (d− a)f2(d, αn)
x̄n(d)

(4.18)

Recall that αn is a function of x̄n. In the Moran process, when the prisoner’s dilemma is

played under weak selection w << 1 there may paradoxically be a surviving fraction of

cooperators in the network.
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Mean Field Dynamics: Birth-death

In the Birth-death mean field approximation, a node is chosen with probability proportional

to its fitness, so a node with a cooperating strategy and degree d is chosen and replaces a

defecting node m with probability.

P
(
s(m)
n = 1|s(m)

n = 2
)

=P
(
s(m)
n = 1|s(m)

n = 2, s(m′)
n = 2,Ξ(m′) = d, F (m′)

n = a
)

× P
(
s(m′)
n = 2,Ξ(m′) = d, F (m′)

n = a
)

=
1

Z

D∑
d=1

d∑
a=1

x̄n(d)ρ(d)

(
d

a

)
αdn(1− αn)(d−a)f2(d, a)

d− a
d

For convenience we define

Ω1 =
1

Z

D∑
d=1

d∑
a=1

(1− x̄n(d))ρ(d)

(
d

a

)
αdn(1− αn)(d−a)f1(d, a)

a

d

Ω2 =
1

Z

D∑
d=1

d∑
a=1

x̄n(d)ρ(d)

(
d

a

)
αdn(1− αn)(d−a)f2(d, a)

d− a
d

If a cooperating node reproduces and replaces a defecting node then the probability that the

defecting node has degree d is given by ρ(d)(1−x̄n(d))d∑
d ρ(d)(1−x̄n(d))d

. We notice, however, that the focal

node can have any degree and still reproduce on a node of different degree. Thus we must

sum the contributions from all degrees and our update is given:

x̄n+1(d)− x̄n(d) =
1

M

(
T +(x̄n, d)− T −(x̄n, d)

)
T +(x̄n, d) =

ρ(d)(1− x̄n(d))d∑
d ρ(d)(1− x̄n(d))d

Ω2

Z

T −(x̄n, d) =
ρ(d)x̄n(d)d∑
d ρ(d)x̄n(d))d

Ω1

Z

(4.19)
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All degrees have had their dynamics tied together by the terms Ωi
Z , i ∈ {1, 2}. This mean field

approximation does not allow for nodes of different degree to reach different equilibria. The

reason why cooperation cannot persist when the prisoner’s dilemma is played is that, due

to the nature of random replacement (regardless of fitness), local structures do not promote

cooperation.

Mean Field Dynamics: death-Rebirth (Diffusion)

In the death-Rebirth mean field approximation, a node m of degree d and state s
(m)
n = 2

(defecting strategy) is chosen at time n with probability ρd(1− x̄n(d)), and this node has a

neighbours with a cooperating strategy with probability
(
d
a

)
αan(1− αn)(d−a). It now changes

its state according to its own fitness in its neighbourhood. It therefore becomes a coop-

erator with probability proportional to the fitness of the cooperating strategy. Analogous

probabilities exist for calculating the probability that a cooperating strategy is replaced by

a defecting strategy. Thus the update equation for population state x̄n in the death-Rebirth

scenario is:

x̄n+1(d)− x̄n(d) =
1

M

(
T +(x̄n, d)− T −(x̄n, d)

)
T +(x̄n, d) =

d∑
a=0

(
d

a

)
αan(1− αn)(d−a) f †1(d, a)

f †1(d, a) + f †2(d, a)
(1− x̄n(d))

T −(x̄n, d) =
d∑

d′=0

(
d

a

)
αan(1− αn)(d−a) f †2(d, a)

f †1(d, a) + f †2(d, a)
x̄n(d)

(4.20)

Because the fitnesses of the reproducing node does not depend on the current cooperation

state of the network, the dynamics of the moran process with death-Rebirth updating can be

represented exactly with the SIS model. The death-Rebirth Moran process can be tracked

using the optimal Bayesian filter of Chapter 3.

Mean field approximations do not incorporate local structural information that can be
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effect long term cooperation (or infection) levels. We can extend our analysis to determine

the effect network structure has on long term cooperation. This can be done using the pair

approximation.

Pair Approximation: death-Birth

The mean field description of spreading cooperation does not incorporate local structural

information. The network structure is assumed to be entirely encoded in the degree dis-

tribution, and the population is assumed to be mixed such that there are no connection

correlations between nodes of the same state. That is, cooperating nodes do not have a

higher probability of being connected to other cooperating nodes than defecting nodes being

connected to cooperating nodes. This assumption can be relaxed using the pair approxima-

tion. Local information can be critical to appropriately characterizing the Moran process.

Under weak selection prisoner’s dilemma cannot result in a positive steady state fraction of

cooperators, however under the pair approximation, the steady state cooperating population

state may have a positive fraction of cooperators. This is because local areas of cooperators

may be more fit than defectors, resulting in higher population fitness, even when the indi-

vidual stategy for defecting is always the better (dominant) individual choice. In the pair

approximation, the state of the network is summarized not simply as the degree segregated

cooperation probabilities, x̄n, but also the conditional probabilities that a neighbour of a

cooperating individual is cooperating/defecting, the conditional infected population state ū,

where:

ūi|j(d) =
1

M

M∑
m=1

I
(
Ξ(m) = d, s(m)

n = i
∣∣s(g)
n = j : g ∈ V : g,m ∈ E

)
, d = 1, . . . , D. (4.21)

These conditional probabilities provide a more local description of the cooperation state.

Note that we can also represent this conditional probability as the joint probability that

a node of degree d and a randomly chosen neighbour are both cooperators ū11(d) over the
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probability that a node of degree d is a cooperator x̄n(d), that is ūi|i(d) = ūii(d)
x̄n(d)

. We can

represent the state of the network can be described in as an augmented state:

z̄n(d) = [x̄n(d), ū11(d)] , d = 1, . . . , D. (4.22)

We can express all joint and conditional probabilities relating cooperating and defecting

neighbour pairs as follows:

ū11(d) = ū1|1(d) · x̄n(d) (4.23)

ū21(d) = ū12(d) = (1− ū1|1(d))x̄n(d) (4.24)

ū22(d) = 1− x̄n(d)(2− ū1|1(d)) (4.25)

ū2|2(d) = 1−
x̄n(d)(1− ū1|1(d))

(1− x̄n(d))
(4.26)

ū1|2(d) =
x̄n(d)(1− ū1|1(d))

(1− x̄n(d))
(4.27)

ū2|1(d) = 1− ū1|1(d) (4.28)

Pair approximation can, for instance, more accurately describe a population in which there

are high cooperator-cooperator/defector-defector correlations. These correlations may allow

cooperation to persist. The superiority of this approximation is made evident in the setting

where two dense network substructures are connected by a chain of individuals, such that

the network may be visualized in a dumbbell shape. Consider network dynamics wherein a

node m has fitness 1 if it has more cooperating neighbours than defecting neighbours:

P̄21(d, a, αn) =


1, a > d

2

0, a < d
2

0.5, a = d
2

, P̄12(d, a, αn) =


1, a < d

2

0, a > d
2

0.5, a = d
2

If one dense subnetwork is of all cooperators and the other all defectors, then a positive

fraction of cooperators is expected in the steady state system. Consider this same sce-
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4.2. Moran process: Game Theoretic Network Dynamics

nario under the mean field approximation, here the populations of cooperators and defectors

are presumed mixed and the steady state system will drift towards the state (cooperat-

ing/defecting) of the largest subnetwork. Clearly, the pair approximation provides a better

description of the system dynamics. In evolutionary game theory, these local state cor-

relations are important as it is known that in regular networks, the pair approximation

supports a positive fraction of cooperators in the defection dominated prisoner’s dilemma

under death-Birth updating. Previous derivations of heterogeneous pair approximation did

not lend themselves to the Moran process with general fitness, motivating us to explore

further [64] [13].

Much like in the mean field approximation we have derived degree dependent update

equation, only now we must update both the cooperating population state and the condi-

tional cooperating population state simultaneously. To perform this update, we generalize

the cooperating link probability αn to the conditional cooperating link probabilities αn,i|j for

states i, j ∈ {1, 2}:

αi|1(z̄n) =

∑D
d=1 (# of links from infected node of degree d and type 1 to type i)∑D

d=1 (# of links of degree d and type 1)
(4.29)

=

∑D
d=1 d ρ(d) ūi|1(d)∑D
d=1 d ρ(d)x̄n(d)

.

With this conditional link probability, we can represent the expected payoff of a cooper-

ating/defecting individual:

π1(d, αn,1|1, αn,2|1) = a·αn,1|1d+(d−αn,2|1d)b π2(d, αn,2|2, αn,1|2) = c·αn,1|2d+(d−αn,2|2d)d.

(4.30)

In the death-Birth pair approximation, the infected population state changes in much the

same way as in the mean field approximation, only now the cooperating link probability

depends on the state of the node being chosen. A node m of degree d and state s
(m)
n = 2
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(defecting strategy) is chosen at time n with probability ρd(1 − x̄n(d)), and this node has

a neighbours with a cooperating strategy with probability
(
d
a

)
αan,1|2(1 − αn,1|2)(d−a) , finally

a cooperating neighbour is chosen to influence m with probability given in 4.13. Analogous

probabilities exist for calculating the probability that a cooperating strategy is replaced by

a defecting strategy. Thus the update equation for population state x̄n in the death-Birth

scenario is:

x̄n+1(d)− x̄n(d) =
1

M

(
T +(x̄n, ū11, d)− T −(x̄n, ū11, d)

)
T +(x̄n, ū11, d) =

d∑
a=0

(
d

a

)
αan,1|1(1− αn,1|1)(d−a) af1(d, αn)

af1(d, αn) + (d− a)f2(d, αn)
(1− x̄n(d))

=
d∑
a=0

U+(x̄n, ū11, d, a)

T −(x̄n, ū11, d) =
d∑

d′=0

(
d

a

)
αan,1|2(1− αn,1|2)(d−a) (d− a)f2(d, αn)

af1(d, αn) + (d− a)f2(d, αn)
x̄n(d)

=
d∑
a=0

U−(x̄n, ū11, d, a)

(4.31)

Where U+(x̄n, ū11, d, a) is the contribution of nodes of degree d with a cooperating neigh-

bours to the increase in the cooperating population state. For each individual m that changes

its state from cooperating to defecting the joint probability of an edge connecting two cooper-

ating individuals decreases by a
d
, and there is a similar increase for defecting to cooperating

transitions. We can, therefore, update the joint probability of neighbouring cooperating

nodes as:

ū11,n+1(d)− ū11,n(d) =
1

M

d∑
a=0

(a
d

(
U+(x̄n, ū11, d, a)− U−(x̄n, ū11, d, a)

))
+

D∑
d′=0,d′ 6=d

d′∑
a=0

(
aρ(d)

d

(
U+(x̄n, ū11, d

′, a)− U−(x̄n, ū11, d
′, a)
)) (4.32)
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The second term accounts for the probability that a change in a node not of degree d

causes a change in the probability that a cooperating node of degree d interacts with another

cooperating node of arbitrary degree.

4.2.3 Tracking Cooperation in Game theoretic Networks

In Chapter 3, we presented a non-linear optimal filter for tracking the infected population

state of a network. This filter cannot be directly applied to the cooperation models presented

in 4.2.2 for all updating methods because the mean field approximation and pair approxima-

tions presented in these sections do not have a polynomial state evolution. In the mean field

approximation, the in death-Birth and Birth-death updating, the update contains a term

in the denominator which depends on the state18. In the pair approximation, no matter

which updating type is chosen (although we have only explored death-Birth in this thesis),

the state does not have a polynomial evolution. As with the simpler polynomial infected

population state, we are motivated to track the cooperating population state. Through the

sampling mechanisms presented in Sec. 2.3, we can generate observations of the cooperating

population state. The Bayesian polynomial filter of Chapter 3 cannot be applied without

approximation, and so we are motivated to utilize other filtering methods. We, therefore, uti-

lize the suboptimal filtering method, particle filtering, to tracked the cooperating population

state.

In this thesis, we provide a brief overview of particle filtering for the nonlinear dynamics of

the presented mean field and pair approximations to the Moran process, for a more complete

exposition we refer readers to [7]. Particle filtering is a Monte Carlo algorithm for recursive

Bayesian estimation of the system state, here the system state is the cooperating population

state. In particle filtering, weighted random samples are used to approximate the posterior

densities of the state prediction and update. As the number of particles increases, this

18We can however note that death-Rebirth updating has polynomial dynamics that match the polynomial
dynamics of Sec. 2.1.3.
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approximation converges to the true posterior densities and the approximation approaches

an optimal Bayesian estimate.

As in the polynomial filter, the filtering problem consists of prediction and updating.

The posterior density is approximated by a set of Np particles and weights {xin,win}Np :

p(xn|yn) ≈
∑
i

winδ(xn − xin)

At each time step we sample particles from a proposal density xin ∼ π(x0:n, Yn) and each

particle is weighted according to

win =
p(xi0:n|y1:n)

π(xi0:n|Yn)

and we can approximate the filtered posterior density as:

p(xn|yn) ≈
∑
i

win∑
j w

j
n

δ(xi0:n) (4.33)

The posterior state estimate can be computed directly from the filtered posterior density,

and, therefore, approximated by the weighted particles:

x̂n+1 = E(xn|Yn) ≈
∑
i

xin
win∑
j w

j
n

The proposal density is updated in real time

π(x0:n|Yn) = π(x0)
n∏
t=1

π(xn|x0:n−1, Yn) (4.34)

π(xn|xn−1, Yn) = p(xn|xin−1, yn) =
p(yn|xn)p(xn|xn−1)

p(yn|xn−1)

which in turn yields a recursion for the particle weights

win =
p(xi0:n|Yn)

π(xi0:n|Yn)
∝
p(yn, Yn−1, x

i
0:n)p(xin|xi0:n−1)

π(xin|xi0:n−1, Yn)
win−1. (4.35)
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From Eq. 4.35 and Eq. 4.35, we obtain the optimal update equation for the particle weights.

win = p(yn|xin−1)win−1 (4.36)

Since our system has nonlinear dynamics and linear measurements 2.19 and both have

Gaussian noise with known covariance, there is a closed form expression p(yn|xn−1) and

p(xn|xn−1, yn). First we define mean vector m and precision matrix Σ. Recall that Q denotes

the state noise covariance and R denotes the observation noise covariance. From eq. 4.18,

we can express the mean field evolution of the state, xn, with death-Birth updating as the

nonlinear function f(x):

xn+1(d) = f(xn) = xn(d) +
1

M

(
T +(xn, d)− T −(xn, d)

)
.

The state update can be expressed as similar nonlinear functions for the pair approximation

as well as mean field approximations with other updating types. Utilizing this functional

update as well as the state and observation noise covariances we define

Σ−1 =Q−1 + C ′R−1C

m =Σ
(
Q−1f(xn−1) + C ′R−1yn

)
(4.37)

Utilizing this mean vector and covariance we present analytic evaluations of the conditional

densities which can be used to re -sample particles and update their respective weights:

p(yn|xn−1) =N (Cf(xn−1), (Q + CRC ′))

p(xn|xn−1, yn) =N (m,Σ). (4.38)

The presented particle filtering algorithm does not depend on the state evolution having

polynomial dynamics and can, therefore, be employed to filter the mean field death-Birth and
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Birth-death Moran processes, as well as the pair approximation to these Moran processes.

This more general filtering method is not optimal for finite numbers of particles and, as such,

the state estimates produced using particle filtering are inferior to the state estimates of the

polynomial Bayesian filter presented in Chapter 3 when the underlying state has polynomial

dynamics. Even when the underlying system follows polynomial dynamics, it may be sensible

to employ a particle filter over the Bayesian filter. The particle filter computation time scales

with the number of particles, whereas the polynomial filter computation time scales with the

dimension of the system. Since the dimension of the proposed system scales directly with

the maximum degrees of the considered networks, for extremely large networks, it may be

sensible to utilize a particle filtering method to generate state estimates.

4.3 Summary

This chapter presented two extensions to the SIS model of chapter 2. The first extension

considered was the addition of homophily in the network, wherein individuals were delin-

eated by type, and the frequency and outcome of interactions between individuals depended

upon the types of individuals involved. The second extension considered is an alternative un-

derlying model, the Moran process. The Moran process is a model for network evolutionary

dynamics which is considered in the context of modeling game theoretic cooperation. The

dynamics of the Moran process are approximated using both the mean field approximation

considered in chapter 2 and the pair approximation. A particle filter is presented for tracking

the cooperating population state of a network.
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Chapter 5

Numerical Results

Sec. 5.1 first presents an example of an infected population state, observations of the in-

fected population state, and a filtered state estimate. The parameters for this network are

determined empirically from the Twitter dataset, as outlined explicitly in Sec. 5.4.

Sec. 5.2 below examines the effect of sampling and model misspecification on the perfor-

mance of the non-linear filter discussed in Sec.3.1. This analysis is useful for selecting the

sampling methodology and for assessing the performance trade-off due to imperfect knowl-

edge of the degree distribution of the underlying network.

Sec. 5.3 presents numerical examples of filtering on networks with homophily as well as

filtering on game theoretic networks. Additional network simulations illustrate the role of

homophily in modeling SIS dynamics and mean field approximations to the Moran process.

Sec. 5.4 presents the performance analysis on a real-world Twitter dataset. First, using

a goodness-of-fit test, we validate the sufficiency of the SIS model to capture the infection

propagation on the Twitter network. Second, the non-linear filter of Sec.3.1 is shown to

track the infection diffusion satisfactorily.

5.1 Example: Tracking the Infected Population State

Following Scheme B of Sec. 3.2, we generated scale-free networks with M = 13000 (number

of nodes) to emulate the Twitter Social network. The infections were initialized by infecting

nodes at time 0 with probability 0.01. This infection was propagated for 2× 104 timesteps19

with a healing probability ξ = 0.001 and P̄12 generated empirically from Twitter data of

19Recall from Theorem 1 that the duration is of the order of number of nodes.
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5.1. Example: Tracking the Infected Population State

Sec. 5.4. At each timestep, 104 samples were obtained according to the uniform sampling

described in Sec.2.3. The state and observation covariance matrices Qn and Rn used in

filtering were computed empirically from the true underlying state and observation data,

and were estimated to be constant for all time steps n. The resulting observations and

filtered estimates are shown in Fig. 5.1, where the network was simulated, sampled and

filtered according to ‘Scheme B’ of Sec. 3.2. It can be seen that the estimates converge

towards the true state for all degrees. The mean square error of the filter estimates are

shown in Fig. 5.12 and compared to the filtered estimate for the Twitter data of Sec. 5.4.

The displayed mean square errors are the average of 50 independent simulations.
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Figure 5.1: Diffusion of infected population states and their corresponding filtered estimates
in a scale-free network.
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5.2 Factors Affecting Filter Performance

As in Sec. 3.2, we consider ER and SF networks and analyze the effect of sampling and

model misspecification on the filter performance. To isolate these simulation tests from the

approximation of Rn, as well as state noise, we utilize Scheme A of Sec. 3.2, which simulates

a deterministic trajectory with noisy observations.

5.2.1 Effect of Sampling on Filtering

The observation noise variance R in (2.19) depends on the sampling method employed. Using

the uniform sampling mechanism outlined in Sec.2.3, the effect of sampling on filtering is

illustrated.

Under uniform sampling, the noise variance of each observation depends upon the network

degree distribution. In the uniform sampling of Sec. 2.3, for any given degree, an observation

at time n will have a variance which corresponds to that of a scaled binomial distribution

σ2(x̂n(d)) = xn(d)(1−xn(d))
ν(d)

, where ν(d) are the number of samples of nodes of degree d and

ν =
∑

d ν(d). For a large number of independent samples, by the central limit theorem,

ν(d) ≈ νρ(d), and the observation noise variance is inversely related to the probability that

a node is of degree d. Consequently, the noise covariance depends upon degree distribution

parameters γ and λ. In Fig. 5.2, the mean square error of the filter estimate is seen to

depend on the network parameters λ and γ.

In these simulations, the observation error covariance matrices were chosen as the error

covariance matrices from network based simulations(Scheme B). We isolate the experiment

from finite network state noise, which can dominate the MSE of the filter estimate. By

simulating the system with Scheme A, with observation noise informed by the synthetic

network simulations of Scheme B, we can observe the effect of sampling more clearly.
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(a) Filtered estimate log mean square error of infection population states on
Erdős Rényi degree distributions.
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Figure 5.2: Filtered estimate log mean square error of infection population states for two
network types: Erdős Rényi and scale-free.
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5.2.2 Sensitivity of Filter Performance to Misspecified Model

The SIS model in Sec. 2.1.2 is misspecified if the degree distribution ρ is not known/specified

exactly. The Bayesian filter (Sec. 3.1) implemented using a misspecified model is referred to

as a misspecified filter. This section compares the MSE of a Bayesian filter and a misspecified

filter, both formulated for the same underlying network. The misspecified filter was derived

with the degree distribution ρ(d) = 1
D
∀d. For further comparison, we use a moving average

(linear) estimator:

ˆ̂xn = ϑ1yn−1 + ϑ2yn−2 + ϑ3yn−3 + · · ·+ ϑιyn−ι + ϑ0. (5.1)

Here ˆ̂xn is the moving average estimate at time n, the matrices ϑi are computed using mul-

tivariate least squares estimation, and time delay ι was chosen to be 10, for simplicity. In

Fig. 5.3, the infection transition probabilities P̄12 and P̄21 were chosen uniformly at random

over [0, 1]. The observation noise covariance matrix R is a random positive definite matrix

with entries in [0, 3 × 10−2]. The initial state was simulated as x0 = 1
2
∀d. The misspecified

filter exhibits a plateau in performance. This plateau corresponds to the incorrect computa-

tion of the priori state estimate, x̂−n , due to the misspecified filter parameters. It is observed

in Fig. 5.3 that, even when the degree distribution is misspecified, the Bayesian filters out-

perform the moving average filter with an MSE of the order of 10−6, compared to 10−4 of

the moving average filter.

5.3 Extended and Alternative Diffusion Models

5.3.1 Numerical Exploration of Homophily

In this section, we illustrate the performance of the filter on a social network having ho-

mophily as an additional attribute. The network was simulated according to Scheme B of

Sec. 3.2 with two population types, b and c, as shown in Fig. 5.4. These populations interact
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Figure 5.3: Comparison of the estimate log mean square error between a Bayesian filter, a
misspecified Bayesian filter and a moving average estimator.

more with members of their own type than those of the other type, specifically ςbb = ςcc = 0.8.

To differentiate the populations, we choose the infection probabilities for population b to be

four times20 that of population c , that is P̄ b
21 = 4P̄ c

21. The recovery probabilities and scale-

free degree distributions are the same for both populations. In Fig. 5.4, we plot the infected

population state, observed state and filtered state estimate for both population types, us-

ing degree d = 2 as an example. The network was simulated according to ‘Scheme B’ of

Sec. 3.2 and each node was labeled as type b or c with equal probability. The network was

then sampled and filtered according to ‘Scheme B’ of Sec. 3.2. The filtered estimate of the

infected population state converges to the true infected population state. The two different

20Population b is therefore more resistant to infection.
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population types can be observed to behave differently as the low infection probabilities of

the type c population and insular network structure, cause a low infected population state

in nodes of c.
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Figure 5.4: Diffusion of infected population states and their corresponding filtered estimates
in a scale-free network.

The SIS model with homophily also enables the use of additional degree distribution

information to generate a more accurate mean field description of a system. In a network the

degree distribution of nodes attached to each degree d may not equal the degree distribution

of the entire network. For example, solitary people may be more likely to also associate

with other solitary people, resulting in high level of internal connections between all nodes

of low degree. Thus the degree distribution of low degree nodes may differ from the degree

distribution of high degree nodes. These degree-degree correlations are not accounted for in
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the SIS model presented in Sec. 2.2, however, we can use the SIS model with homophily to

incorporate this information. To model additional degree information, we map each degree

in the network to a type b, so that the number of types B equals the maximum degree in the

network plus one21 D+ 1, and allowing each type to have its own degree distribution ρ[b](d),

which may be different from the network’s degree distribution ρ.

In Fig. 5.5, we illustrate the effect additional degree distribution information can have

on the dynamics of a network by simulating and comparing the deterministic mean field

trajectories for two SIS models, one with homophily and one without. We consider a scale-

free network segregated by degree, where individuals with d neighbours associate primarily

with others having d neighbours. The network has an overall degree distribution ρ(d) ∝ d−γ,

where γ = 3.0, and maximum degree D = 20. The degree distribution of each type b ∈

{1, . . . ,B} is given by:

ρ[b](d) = (1− ε)I(d = b− 1) + ερ(d). (5.2)

where I is an indicator function. In Fig. 5.5, the infection probabilities, maximum degree,

and overall degree distributions are identical for both systems. The degree distributions

used in both simulations are scale-free degree distributions, ρ, with γ = 3.0, and the degree

specific degree distributions, ρ[b](d), in the simulation with homophily is given by (5.2) with

ε = 0.02. The additional degree distribution information incorporated into the model with

homophily changes the system dynamics, and a difference between the models with and

without homophily can be observed. The key observation here is that under a simple SIS

model as presented in Sec. 2.2, both these systems are identical, however, we can utilize

additional degree distribution information and the SIS model with homophily to better

capture the mean field dynamics of the population.

21There are D + 1 types because degree d = 0 is also modeled.
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Figure 5.5: Deterministic mean field trajectories of an SIS model with and without homophily
are compared.

5.3.2 Numerical Exploration of Game Theoretic Dynamics

In this section, we investigate game theoretic network dynamics. The networks structures

investigated were generated with N = 10, 000 and were Erdős Rényi networks with parameter

λ = 2.0. We observed the dynamics of the prisoner’s dilemma with payoffs [a = 4, b = 0, c =

5, d = 2] and death-Birth updating. In Fig. 5.6, we plot the cooperating population state,

observed state and filtered state of degree d = 2 as an example. The filtered state estimate

is generated by the particle filter described in Sec. 4.2.3 using 1000 particles and is seen

to track the true cooperation state. In Fig. 5.7 and Fig. 5.8, we plot the mean field state

and simulated state under strong (w = 0.9) and weak selection (w = 0.01), respectively.

The mean field approximation is fairly accurate under strong selection, however, it fails to
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accurately describe the population state under weak selection. Under weak selection, the

cooperating population state does not decay towards 0 as predicted by mean field dynamics.

Instead, local structures can promote cooperation as predicted in regular networks [56].
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Figure 5.6: Cooperating population state of an Erdős Rényi network, as well as state obser-
vations, and particle filter state estimate.

5.4 Analysis and Validation on Twitter Dataset

This section illustrates the tracking of infection diffusion on social networks using real dif-

fusion data from the microblog platform Twitter. Twitter is a social media platform over

which users can communicate in short < 140 character messages, images and video files. We

analyze the diffusion of information through the Twitter Social network to demonstrate the

effectiveness of the SIS model of Sec. 2.2.

Twitter played a critical role in the Egyptian revolution of 2011 or January 25th (#Jan25)
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Figure 5.7: Simulated and mean field approximation of cooperating population state under
strong selection w = 0.9.

uprising [70]. Twitter was used by protesters to organize the protest and recruit members

and as a medium to discuss and share information about the protest. Below, we refer to

the interest and engagement with the news of the uprising as infection and track the dis-

tribution of infection over time. Modeling this online process as an epidemic is supported

by the virality of the #Jan25 hashtag. Viral online information is found to follow complex

contagion models in [84].

5.4.1 Dataset

The dataset consists of tweets sampled between January 23rd and February 8th, 2011 and

are available from Twitter (http://trec.nist.gov/data/tweets/). The tweet collection period
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Figure 5.8: Simulated and mean field approximation of cooperating population state under
weak selection w = 0.01.

encapsulates the time-frame of the first major developments relating to the January 25th

uprising event. In Twitter, a “hashtag” follows the discussion topics, i.e., a word or a phrase

prefixed with the number sign #. We make use of the hashtags to track the spreading of a

specific topic on Twitter. The most used hashtag related to this protest is “#Jan25”. To

obtain the information spreading among users participating in this protest, we filtered 26,313

tweets containing “#Jan25” published by 13,341 different users, from around 10 million

tweets. These tweets contain the event of interest and the social network is (re-)constructed

from them as follows: two users are connected if one user has mentioned another user

(“@username”) in the tweet containing “#Jan25” at least once over the duration of interest.
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On this constructed social network, information diffusion is analysed.

All users in the constructed social network are assumed to be susceptible initially. Users

who initiate tweets on the event of interest are assumed to be infected and act as seeds for

the spread of information. Once a user, say User#A becomes infected, it has some constant

probability, say ξ, of becoming susceptible in each time period. This modeling assumption is

motivated by the frequently observed Poisson-like decay of an individual’s interest in social

media topics [23]. The decay probability was chosen to be 0.001, motivated heuristically by

an average interest duration of 2 hours. Our dataset is thus a hybrid dataset, wherein the

network and infection process is informed by true Tweets between users, and these infected

individuals become susceptible according the synthetic Poisson-like process described above.

The effect the choice of ξ has on the infection dynamics can be seen in Fig. 5.9. The decay

parameter does affect the twitter infection trajectory, however, for decay parameters that

correspond to an average forgetting timescale on the order of hours, the trajectories appear

similar.
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Figure 5.9: Comparison of infected population state of d = 1, 2, 3 for varying decay parameter
ξ.

5.4.2 SIS model for Twitter data

In case of the spread of engagement in Twitter, individuals can either be inactive or active

depending on if they are willing and able to spread information and interest on a topic. Active

users can be considered ‘infected’, and inactive users can become ‘infected’ by interacting

with other ‘infected’ individuals, in particular, any of its active neighbors in a social network.

In this way, engagement and knowledge of a topic spreads throughout the network. People

can also become disinterested in a subject they have already been exposed to, in this way they

are not currently engaged, but may become engaged if contacted by an infected neighbor;
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thus inactive individuals are assumed to be susceptible. The SIS model has been applied to

information diffusion in [51], [46].

We adopt the SIS model for the Twitter data, mapping engagement in the January 25th, 2011

uprising as an infection spreading over the Twitter network created from Twitter users.

Below we analyze the goodness-of-fit of the SIS model for the Twitter data using the

Kolmogorov-Smirnov test [24], and measure the square and absolute difference between the

data and model predictions.

Model Evaluation (Goodness of Fit for SIS model): We used the KS test on the empirical

infected degree distribution at the final timepoint to evaluate the goodness of fit of the SIS

model. The KS test statistic was 0.2286 with p-value 0.2813. The null hypothesis for this

statistical test is that both the observed Twitter and SIS model infected degree distributions

are samples of the same infected degree distribution. At a confidence level of 0.01, the null

hypothesis cannot be rejected. This test therefore provides little evidence for or against

the quality of SIS model for Twitter. To further explore the agreement between the model

and the true data, we computed the average and maximum square difference between the

Twitter data and predicted SIS degree infection probabilities. These values can be seen in

Table 5.1 and the trajectories are shown in Fig. 5.10. The underlying degree distribution of

the Twitter network is scale-free, and thus degree and number of nodes of that degree are

inversely related. In Fig. 5.10, the simulated trajectories use ξ = 0.001 and the empirically

generated ρ and ˆ̄P12 (5.3). Recall that without added state noise, or finite networks, the

simulations for the mean field dynamics are deterministic. The deterministic mean field

dynamics effectively capture the trajectory of the Twitter infection. Empirically, we observe

that the fewer nodes there are of a particular degree, the higher the probability that the

empirical infection deviates from the asymptotic case.

The low magnitude of the model deviations in Table 5.1 for the Twitter dataset and the fail-

ure to reject the hypothesis that the Twitter data and model infected degree distributions

come from the same distribution, suggest that the SIS model is a satisfactory model with
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Table 5.1: Goodness of fit for the SIS model: The average and maximum deviations between
the Twitter data and SIS model predictions are presented.

Degree 1 2 3+
Average Square
Difference

0.0011 0.0014 0.0235

Average
Absolute
Difference

0.0273 0.0294 0.1000

Maximum
Absolute
Difference

0.0644 0.0719 0.8403

respect to the infection dynamics of interest in the January 25th uprising.

Sampling for tracking the infected population state

The mean field dynamics for the SIS model can be used to track and predict the evolution

of the infection on Twitter. We must generate estimates of P̄12, P̄21, and determine the

degree distribution from samples obtained from (2.19). P̄12 is given by ξ, since all infected

nodes become susceptible with probability ξ at each time point. We compute the empirical

transmission rates ˆ̄P21 directly by observing the frequency with which an infected individual

with d neighbors, a of which are infected, becomes infected.

ˆ̄P12(d, a) =

T∑
n=0

M∑
m=1

I
(
s

(m)
n+1 = 2|s(m)

n = 1,Ξ(m) = d, F
(m)
n = a

)
T∑
n=0

M∑
m=1

I
(
s

(m)
n = 1,Ξ(m) = d, F

(m)
n = a

) (5.3)

The degree distribution used is the empirical degree distribution. The true degree infection

probabilities are computed directly from the entire network for each 1 minute time interval.

Next, we sample the data using the RDS sampling scheme described in Sec. 2.3, every

1 minute and track the infected population states over time using the non-linear Bayesian

Filtering technique described in Sec. 3.1. The parameters used in the Bayesian filter are

ξ = 0.001, the empirically generated ρ and ˆ̄P12. The filter estimates are shown in Fig. 5.11. It
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Figure 5.10: The true Twitter infection and Twitter infection as predicted by the determin-
istic mean field dynamical equations are compared for nodes of degree d = 1, 2, 3.
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is seen that the filtered estimates track the true infected population states over time. Fig. 5.12

shows the mean square errors of the filter estimate22 of Twitter infection and the mean square

errors of the filter estimate of the numerical example shown in Fig. 5.1. This figure illustrates

the superiority of the filter on the numerical example and highlights the shortcomings of the

Twitter dataset. The filter performs adequately for both the Twitter data and the simulated

network, however the estimate for the simulated network, the infection of which follows

the SIS model, performs dramatically better at a filtered estimate MSE of 10−11 versus the

filtered estimate of the Twitter data around 10−6.

5.5 Summary

In this Chapter, we numerically illustrated the performance of the filtering algorithms pre-

sented in Chapters 3 and 4 on scale-free and Erdős Rényi networks. We investigated the

sensitivity of the non-linear filtering algorithm to errors in model specification. Further, the

model with homohphily was numerically investigated and estimates of simulated infected

population states were generated using the non-linear filtering algorithm of Chapter 3, and

the game theoretic model based on the Moran process was investigated and filtered using

the particle filter presented in 4. We then introduced, motivated and analyzed a real world

dataset from Twitter. This dataset consists of a corpus of tweets taken during the Arab

Spring uprising of 2011. The non-linear filtering algorithm was applied to this dataset and

shown to satisfactorily estimate the infected population state.

22The MSE of the Twitter estimate starts extremely low. During early timesteps in the Twitter data,
there are almost no infected nodes. The sampled observations similarly estimate nearly 0 infection, which
is why the filtered infection appears so accurate at these early timesteps. Thus, as the system dynamics
evolves from the trivial 0 infection, the state observations become less accurate.
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Chapter 6

Conclusions and Future Work

In this thesis, we developed a method for tracking infections, information and opinions

as they diffuse through social networks. By utilizing statistical signal processing filtering

algorithms, we are able to combine domain knowledge of the underlying infection process

and observations to generate accurate estimates of the infected population state. Tracking

diffusion in social networks is applicable to the commercialization, political analysis, and

fundamental understanding of large online social networks as well as policy making in public

health through deepening our epidemiological understanding of the evolution of a disease.

The second chapter presented a formulation of infection diffusion dynamics over social

networks, a mean field approximation to this complex process, and finally sampling methods

for generating observations of the underlying infected population state. Two types of social

network structures were primarily considered: Erdős-Rényi and scale-free networks. An

infection diffusion model was developed based on the SIS model. We presented a general

description of mean field theory and its ability to approximate complex interacting systems.

Mean field dynamics for the SIS model were then formally presented, including a theorem

which states that the difference between the underlying population state and the mean field

approximation satisfies an exponential bound, and therefore the mean field dynamics can be

utilized as a model which can generate the observable infection dynamics. Under discrete

time mean field dynamics, the state at time n+ 1 depends polynomially on the state at time

n. These polynomial dynamics are exploited by the optimal Bayesian filter of Chapter 3.

The third chapter describes an optimal non-linear Bayesian filter for estimating the in-

fected population state. First the polynomial mean field dynamics are presented so that
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the polynomial dependence is explicit. A non-linear Bayesian filter is then described for

optimally estimating the infected population state of the social network. The fundamental

limits of filtering the mean field dynamics are then explored through the computation of the

PCRLB. The PCRLB is computed for Erdős-Rényi and scale-free networks.

In the fourth chapter we incorporate homophily into to the SIS model of chapter 2 and

present a game theoretic contagion model. The homophily extension improves the generality

and expressive power of the underlying SIS model. The model with homophily allows the

population to be stratified by type, permits these different types to interact with different

frequencies, and enables the use of different infection transmission probabilities based on

type. The model with homophily does this without sacrificing any of the polynomial prop-

erties of the state evolution that make the model amenable to optimal Bayesian filtering.

We also present a game theoretic contagion model which uses the Moran process as the

underlying model for infection dynamics. This model, which is similar to the SIS model,

allows for interactions to be game theoretic. Under the mean field and pair approximations

we develop in this chapter, this Moran model introduces a dependence of the infection trans-

mission probabilities on the infected/cooperating population state of the network. Finally,

in this chapter we present a particle filter for tracking the infected/cooperating population

state under when the underlying infection follows this Moran model.

The fifth chapter presented numerical results substantiating the infection diffusion model

and filtering algorithms presented in earlier chapters. In this section, first, the effect of net-

work structure on the filtered infected population state estimate as investigated. Next, the

effect of model misspecification on the mean square error of the filter estimate was inves-

tigated. Numerical examples of the influence of homophily as well as examples of filtering

game theoretic contagion using a particle filter are presented. The non-linear filtering algo-

rithm is then applied to a dataset based on real world tweets from the social media website

Twitter. The filtering algorithm is shown to perform satisfactorily. Finally, a two timescale

co-evolving network is simulated and the underlying degree distribution and infected popu-
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lation state are estimated.

In future work, more work could be done to extend the analysis of scale-free and Erdős-

Rényi networks. Currently, we have begun to explore the effect that network structure has on

our ability to estimate the infected population state on these networks, however, simulations

of larger networks may provide useful information to future researchers wishing to track

diffusion on networks of known network type. Further, we considered two sampling types

in this thesis, RDS sampling and simple random sampling. These sampling methods can

be further assessed in the context of large scale-free and Erdős-Rényi networks, with and

without homophily, to better understand the effect of the sampling type has on the filter

generated state estimates.

In this thesis, the networks and infection parameters we analyzed and investigated were

static. The infection transmission probabilities P̄12/P̄21 as well as diffusion parameter θ were

independent of time n in all numerical investigations, however, the models presented were

amenable to dynamics parameters, so long as the dynamics of these parameters is known

apriori. The effect of time varying infection parameters can be explored numerically, to

determine the effect these parameters have on the mean square error of the filter estimate.

A dynamic diffusion parameter is especially relevant to modeling real world interactions,

because human contact processes rarely occur at a uniform rate. We may, for instance,

tweet more in the morning and evenings, or engage with more people on weekends. Further,

future work could be done to extend this work to filtering on evolving networks. In [48],

two-timescale network dynamics are outlined, as well as a Hidden-Markov-Model (HMM)

filter for tracking evolving network structure. This two-timescale model requires the strong

assumption that network dynamics are much slower than infection dynamics, which does not

always hold. Analytic and numerical investigations of more complex co-evolving networks

could prove enlightening and extend the set of networks on which the infected population

state can be adequately filtered.

The game theoretic contagions provide a rich arena for exploration. In this thesis, the

84



Chapter 6. Conclusions and Future Work

prisoner’s dilemma was presented as the persistent example of the game underlying the

Moran process, but other two-player or even multi-player games can be considered. Games

such as the Hawk-Dove game and Stag-hunt game both provide dramatically different coop-

eration dynamics. Further, the network-based mean field approximations can be analyzed

to explore the effect network structure has on the equilibrium states of the various games.

Finally, the filtering model can be applied to more real world data to entrench its effi-

cacy. In this thesis, we analyzed a dataset from Twitter and showed that the polynomial

filter performed adequately, however, it was observed that the polynomial filter performed

significantly better at filtering the infected population state of synthetic network contagions.

This discrepancy may be investigated further both to establish that the real world ”infec-

tions” are well modeled by the SIS model, as well as utilizing a larger share of the tools at

the modeler’s disposal, such as dynamic diffusion parameters, infection transmission proba-

bilities, game theoretic contagion models and models with homophily to better model and

ultimately filter the infection process.
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Appendix A

Related Proofs

In this Appendix, we provide a proof of the Mean Field Approximation used in Chapter 2.

A.1 Proof of Theorem 1

(Mean Field Dynamics) [48]

Part 1 of the theorem is a standard martingale representation of a Markov chain, see for

example [47, page 20].

The proof of the mean field dynamics approximation in [12] is not readily accessible to

an engineering reader. We show below that the proof is a simple consequence of Azuma-

Hoeffding inequality and Gronwall’s inequality.

Theorem 2 (Azuma-Hoeffding Inequality [14]). Suppose ST =
∑T

τ=1 ζτ + S0 where {ζτ} is

a martingale difference process with bounded differences satisfying |ζτ | ≤ ∆τ almost surely

where ∆τ are finite constants. Then for any ε > 0,

P(|ST − S0| ≥ ε) ≤ 2 exp

(
− ε2

2
∑T

τ=1 ∆2
τ

)

A bound on the deviation between the mean field dynamics xn in (2.15) and infected

population state
∼
xn in (2.14) is evaluated in the form of two lemmas, namely, Lemma 1

and Lemma 2 below. Recall that ζτ is a 2D-dimensional finite-state martingale increment

process defined in (2.14) with ‖ζτ‖2 ≤ Γ
M

for some positive constant Γ.
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Lemma 1. Let ϕn = xn −
∼
xn. Then ‖ϕn‖ satisfies

‖ϕn+1‖∞ ≤ ‖ϕ0‖∞ +
β

M

n∑
τ=1

‖ϕτ‖∞ + ST .

Lemma 2. Let ST = max1≤n≤T ‖
∑n

τ=1 ζτ‖∞. Then

P
(
ST ≥ ε

)
≤ 2 exp

(
−ε

2M2

2ΓT

)

Proof of Theorem 1: With Lemmas 1 and 2, the proof of Theorem 1 is as follows.

Applying Gronwall’s inequality23 to Lemma 1 yields ‖ϕn‖∞ ≤ ST exp
[
βn
M

]
, which in turn

implies

max
1≤n≤T

‖ϕn‖∞ ≤ ST exp

[
βT

M

]
.

As a result

P( max
1≤n≤T

‖ϕn‖∞ > ε) ≤ P(ST exp

[
βT

M

]
> ε)

= P
(
ST > exp

[
−βT
M

]
ε
)

Next applying Lemma 2 to the right hand side yields

P( max
1≤n≤T

‖ϕn‖∞ > ε) ≤ 2 exp

(
− exp

(−2βT

M

)
ε2
M2

2ΓT

)

Finally choosing T = c1M , for some positive constant c1 yields

P( max
1≤n≤T

‖ϕn‖∞ > ε) ≤ 2 exp(−C2ε
2M)

23Gronwall’s inequality: if {xn} and {bn} are non-negative sequences and a ≥ 0, then

x̄n ≤ a+

n−1∑
j=1

xjbj =⇒ xn ≤ a exp(

n−1∑
j=1

bj)
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where C2 = exp(−2βc1) 1
2Γc1

.

Proof of Lemma 1: Define the following 2D− dimensional vectors:

H(xn) = P21(xn)− P12(xn),

H(
∼
xn) = P21(

∼
xn)− P12(

∼
xn).

Recall from (2.14) and (2.15),

ϕn+1 = ϕn +
1

M
[H(xn)−H(

∼
xn)] + ζn

= ϕ0 +
1

M

n∑
τ=1

[H(xτ )−H(
∼
xτ )] +

n∑
τ=1

ζτ

‖ϕn+1‖∞ ≤ ‖ϕ0‖∞ +
1

M

n∑
τ=1

‖H(xτ )−H(
∼
xτ )‖∞ + ‖

n∑
τ=1

ζτ‖∞

≤ ‖ϕ0‖∞ +
β

M

n∑
τ=1

‖ϕτ‖∞ + ST

The last inequality is justified as follows: From (2.11) and (2.12), P21(d, x̄n(d)) = ρ(d)(1 −

x̄n(d))P̄21(d, a) and P12(d, x̄n(d)) = ρ(d)x̄n(d)P̄12(d, a) for some a, where a is the number of

infected neighbors. Hence

H(xn, i)−H(
∼
xn, i) ≤ β(x̄n(i)− xn(i)),

where β = max
d

[
ρ(d)(P̄21(d, a) + P̄12(d, a))

]
is bounded.

Proof of Lemma 2: ‖
∑n

τ=1 ζτ‖∞ = maxi |
∑n

τ=1 e
′
iζτ | = |

∑n
τ=1 e

′
i∗ζτ | for some i∗,

where ei denotes the vector having 1 at the ith position and zero elsewhere. Since e′i∗ζτ is a

martingale difference process with |e′i∗ζτ | ≤
√

Γ/M applying the Azuma-Hoeffding inequality

(Theorem 2) yields

P(‖
n∑
τ=1

ζτ‖∞ ≥ ε) = P(|
n∑
τ=1

e′i∗ζτ | ≥ ε) ≤ 2 exp

[
−ε

2M2

2Γn

]
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The right hand side is increasing with n. So clearly,

P( max
1≤n≤T

‖
n∑
τ=1

ζτ‖∞ ≥ ε) ≤ 2 exp

[
−ε

2M2

2ΓT

]
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