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Abstract

In this thesis, we study properties of the fractional Hardy-Schrodinger op-
erator Lo o := (—A)2 — ‘x% both on R™ and on its bounded domains. The
following functional inequality is key to our variational approach.
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where 0 <s < a<2,n>a,2}(s):= 22”__;) and v < v (), the latter being
the best fractional Hardy constant on R™. We address questions regarding
the attainability of the best constant C' > 0 attached to this inequality.
This allows us to establish the existence of non-trivial weak solutions for the

following doubly critical problem on R,

| ‘2;(5)—2

L%au: |u|22—2u+ (] U

P in R"  where 2}, := 2}(0).
We then look for least-energy solutions of the following linearly perturbed
non-linear boundary value problem on bounded subdomains of R™ contain-

ing the singularity 0:
(Lyo—M)u=——-— onf (0.2)

We show that if v is below a certain threshold ~.(c), then such solutions
exist for all 0 < A < A{(L~,q), the latter being the first eigenvalue of L. 4.
On the other hand, for y.i(a) < v < yg(a), we prove existence of such
solutions only for those A in (0, A1 (L)) for which 2 has a positive fractional
Hardy-Schrodinger mass mS, 1(£2). This latter notion is introduced by way
of an invariant of the linear equation (L, — Al)u =0 on Q.

We then study the effect of non-linear perturbation h(x)u?=!, where h €
C°(), h > 0 and 2 < g < 2. Our analysis shows that the existence of
solutions is guaranteed by this perturbation whenever 0 < v < ~veir(),
while for e () < v < yg(a), it depends on both the perturbation and
the geometry of the domain.
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Lay Summary

Many physical and probabilistic phenomena can be described by either de-
terministic or stochastic differential equations. In this thesis, we focus on
a class of partial differential equation driven by non-local operators. These
describe long range interactions between the objects under study, and not
only by those interacting with their closest neighbours. These equations
have deep connections to probability theory and geometry, and they ap-
pear in many physical applications such as elasticity, thin obstacle, phase
transition, flames propagation, as well as mathematical finance.
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Preface

Much of this dissertation is adapted from three of the author’s research pa-
pers: [38], [39] and [66]. In particular, Chapter 3, which evolves around the
proof of Theorem and , form the main content of [39], Borderline vari-
ational problems involving fractional Laplacians and critical singularities.
All of Chapter 4| are adapted from [38], Mass and asymptotics associated to
fractional Hardy-Schrédinger operators in critical regimes. Chapter 5], where
the proof of Theorem is presented, is in accordance with [66], Ezistence
results for non-linearly perturbed Hardy-Schrodinger problems: Local and
non-local cases. The first manuscript [39] (joint work with Dr. Ghoussoub)
was published in Advanced Non-linear Studies Journal. The second paper
[38] (joint work with Dr. Ghoussoub, Dr. Robert and Dr. Zhao) has been
submitted, and the third one [66] has been written and will be submitted
for publication soon.
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Chapter 1

Introduction

The main focus of research in this thesis is the study of borderline variational
problems and corresponding functional inequalities involving the fractional
Hardy-Schrodinger operator. This thesis is based on three research papers
[38, 39, 66] that can be found in Chapters and |5 Each of the chapters
begins with a detailed introduction to the results it contains. In this intro-
duction, I will give a general description of the problems I address in this
thesis.

Equations driven by non-local operators appear in many areas of mathe-
matics such as probability theory, fluid mechanics, and geometry, as well as
other sciences such as physics, and economics. In analysis and PDE, these
phenomena originate in potential theory, conformal geometry, and a wide
class of physical systems modeled by a-stable Levy processes and related
stochastic interfaces. Primary examples of non-local operators are those rep-
resented by the fractional Laplacians (—A)2 for 0 < o < 2, which are clear
generalizations of the well-studied Laplace operator (o = 2). Over the last
decade or so, many well-known properties of standard elliptic and parabolic
equations have been extended to their non-local counterparts. Much of the
progress can be summarized as follows:

e Representation and regularity results such as those in Silvestre [62],
Caffarelli-Silvestre [13, 14], Ros-Oton and Serra [58, 59] and others.

e Variatonal formulations and methods, such as in Servadei [65], Bisci-
Radulescu-Servadei [6], Servadei-Valdinoci [64] and others.

e Conformal Geometry and Yamabe type problems, such as in Chang-
Gonzalez [16], Gonzalez-Qing [42] and others.

In the first part of this thesis, we study problems of existence of equa-
tions involving the fractional Hardy-Schrédinger operator on R™. In [39],
N. Ghoussoub and I consider issues of existence of the variational solutions
of the following borderline problem associated with the fractional Hardy-
Schrodinger operator L o = (—A)2 on R":

.
[

CAVS, u _wkat ey
{( A2y —ry in R (1.1)
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where 0 < @ < 2,0 < s < a < n, 2%(s) = 22":;), and v < yg(a) =
2(n+a
2¢ EQEQ ; is the best fractional Hardy constant on R™. For any « € (0,2),
4

the fractional space Hg (R") is defined as the completion of C§°(R™) under
the norm

Il 3 gy = . PR IFu@PdE = [ (-8 TP

where F(u)(§) = [z e @ Cu(x)dz denotes the Fourier transform of u.
In order to study problem (1.1), we address the attainability of the best
constant corresponding to the fractional Hardy-Sobolev inequality in R",
that is

n 4u| dx — -~ n|u|ad:z:
fry,5,0(R") := inf fR fR il

(] u2a(s -
ueHy? (R")\{0} ( fRn‘ T dz) %o

(1.2)

In the following, we check for which parameters v and s, the best constant
Loy,s,a(R™) is attained. Using the Caffarelli-Silvestre representation [12] and
Ekeland’s variational principle [25], we establish the following.

Theorem 1.1 (Ghoussoub- Shakerian [39]). Suppose 0 < v < 2,0 < s <
r2(de)

a<n, and v < yg(a) =245,
r2(n79)

1. If either {s > 0} or {s =0 and v > 0}, then iy so(R"™) is attained.
2. If s =0 and y < 0, then there are no extremals for fiy s q(R™).

3. If either {0 < v < yu(a)} or {0 < s < a andy = 0}, then any
non-negative minimizer for jiy s o(R™) is positive, radially symmetric,
radially decreasing, and approaches zero as |x| — oo.

The results in Theorem allow us to show the existence of non-trivial
weak solutions for the following doubly critical problem on R”,

2% (s)—2
g u 252 Juf % uo
(—A)2u—’yw = |u] @ U—f—T m Rn, (13)
where 2}, = nz_—"a is the critical a-fractional Sobolev exponent, and 0 <

v < yu(a). We used the Caffarelli-Silvestre representation [12] and the
Mountain Pass lemma [3] to prove the following result.
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Theorem 1.2 (Ghoussoub-Shakerian [39]). Let 0 < a <2, 0<s<a<mn
and 0 <~ < yg(«). Then, there exists a non-trivial weak solution of .

In the next step, we use the ground state representation introduced by
Frank-Lieb-Seiringer [34], and Moser iteration, to establish the following
asymptotic properties of the extremals of ji, s o(R"™) at zero and infinity.

Theorem 1.3 (Ghoussoub-Robert-Shakerian-Zhao [38]). Assume 0 < s <

a<2,n>aand0<vy<~vyy(a). Then, any positive extremal u € HZ (R™)
for piys.o(R) satisfies u € CH(R™\ {0}) and

lim |25~ Du(z) = Ao and lim |z Du(z) = A, (1.4)

z—0 |z|—o00

where Ao, Ao > 0 and B_(7y) (resp., B+(7)) is the unique solution in (0, %)
(resp., in (%,n - a)) of the equation

L("FHT(%5)
L("=5)C(3)
In particular, there exist Cv,Cy > 0 such that
Cl 02
< <
-0 e = @) S e

U, oft) :=2¢

for all z € R™\ {0}.

Remark 1.4. We point out that the functions ui(z) = |z| =%~ ) and uy(z) =
\x|_ﬁ+('y) are the fundamental solutions for the fractional Hardy-Schrédinger
operator L o 1= (—A)% — = on R™. Indeed, a straightforward computation

yields (see Section|4.3) "
Lol = (Tna(B) =zl ™7 =0 on R*\{0}  for B € {B-(7), B+ (1)},
which implies that 54 () and B—(v) satisfy Uy, o(5) = 7.

We then tackle the more challenging problems on bounded domains €2
of R™ with an interior singularity by considering the role of linear and non-
linear perturbations on the existence of positive solutions. More precisely,
if Q is now a smooth bounded domain in R™ containing 0 in its interior, we

then consider the fractional Sobolev space H () as the closure of C§°(Q)
with respect to the norm

2 Cn,a |u(x )‘2 2°r (n;a)
o« = 7 dxd where Cp, o = 775,
||'LL|| 7 /n /n |x — |n+a xay ere n,a 2 |I_‘ (_%)‘
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as well as the best constant in the fractional Hardy-Sobolev inequality on
domain {2, namely,

Hry,s a(Q) = inf Cn a fRn fRn dedy 0% fQ ‘|x||a d(L‘

o u 2(1(5) *2
ueHZ ()\{0} (Jo [ul )22

ER

(1.5)

As in the local case, one can show by translating, scaling and cutting off

the extremals of fiy s o(R™) that fiysq(2) = fiy.so(R™), which means that

[y,s,0(£2) has no extremals if 2 is bounded. We therefore resort to a set-

ting popularized by Brezis-Nirenberg [11] in the local case, where one de-

homogenizes the problem by considering the following equation:
“22};?_1 +Au in Q

=0 in R\ ,

(1.6)

/\ S R

where 0 < A < A{(L,,) and Ai(L,,q) is the first eigenvalue of the operator
Lo = (mA)2 — ﬁ with the Dirichlet boundary condition. One then

considers the quantity

foy,s,0,0(§2) = ginf Ka(u),
weHF ()\{0}

Cre @)l 4. — A Jpud
n n T—y|nta y ’y ,1:0‘ u Xr
Ko(u) = Jrn R lz—y["t {Q CE \ Ja ’

w25 () 0o 5EG
fQ W )2

and uses the fact that compactness is restored as long as fiysqx(€2) <
y,s,0(R™); see [11, 37]. Janelli [45] showed that the behaviour of problem
(1.6) - in the case when @ = 2 and s = 0 - is deeply influenced by the
value of the parameter v. Roughly speaking, when ~ is sufficiently near to
va () then problem becomes critical, in the sense of Pucci-Serrin [55].
Following [45], we prove that there exists a constant 0 < e () < ypr ()
such that the operator L. , becomes critical when v € (Yerit(a), e ().

We also show that the existence results in [64] can be extended to the
case when 0 < s < a and 0 < v < yg(«) as long as the operator L, , is not
critical.

The critical case is more delicate and the existence of solutions requires
the domain € to satisfy a positive mass condition, defined as follows. Indeed,
following the work of [36, 37] in the local setting, we define the fractional
Hardy singular interior mass of a domain is the following way.
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Theorem 1.5 (Ghoussoub-Robert-Shakerian-Zhao [38]). Let Q be a bounded
smooth domain in R™ (n > a) and consider, for 0 < a < 2, the boundary
value problem

[N]])

(—A) H—(#qLa(a:))H:O in Q\ {0}
H>0 inQ\{0} (1.7)
H=0 inR"\Q,

where a(z) € CO7(Q) for some T € (0,1). Assuming the operator (—A)2 —
(ﬁ—l—a(m’)) is coercive, there exists then a threshold —oco < erit(a) < vr ()
such that for any v with Yeri (@) < v < vg(«), there exists a unique solution
to (in the sense of Deﬁnition H:Q— R, H#0, and a constant
c € R such that

1 c 1
H(ZE) = ’;1;‘|B+('Y) + |I|5*(7) +o <$|6('Y)> as x — 0.

We define the fractional Hardy-singular internal mass of €1 associated to the
operator L. o to be

ms,(Q2) :=ceR.

We then establish the following results.

Theorem 1.6 (Ghoussoub-Robert-Shakerian-Zhao [38]). Let Q be a smooth
bounded domain in R™(n > «) such that 0 € Q, and let 0 < s < a, 0 <y <
ya(a), and 0 < X < X(Ly,a). Then, there are extremals for piy s q x(£2)
under one of the following two conditions:

(1) 0 <7 < Yerit()

(2) Yerit(@) < v < yu(a) and mS () is positive.

One can then complete the picture as follows.

Linearly perturbed problem (1.6) with 0 € 2 and 0 < A < A(L,,q)

Hardy term Dimension | Singularity| Analytic. cond. | Ext.

0 <7 <Aerit(a) n > 2« s>0 A>0 Yes
Yerit(a) < v < v (@) n > 2 s>0 mg)\(ﬂ) >0 | Yes
0<~<~vym(a) a<n<2a >0 mJ,(2) >0 | Yes
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In this direction, we address the following non-linearly perturbed prob-
lem associated with the operator L, , — Al on bounded domains €2 :

N 25(s)—1
(—AﬁU—’Y%—)\u: %+h(m)uq_l in Q
v = , (1.8)
u>0 in €,
u=20 in R™\ €,

where h € C°(Q), h > 0 and q € (2,2%). We study the combined effect of
the non-linear perturbation (i.e., h(z)u?"!) and the geometry of the domain
(i.e., the mass introduced in Theorem on the existence of a positive
solution for (1.8).

Inspired by the work of Jaber [44], in a Riemannian context, we in-
vestigate the existence of solutions using the Mountain Pass Lemma of
Ambrosetti- Rabinowitz [3] (see Lemma [3.6). It turns out that the exis-
tence of a solution for depends only on the non-linear perturbation
whenever the operator L., is non-critical (i.e., when 0 < v < e (a)).
On the other hand, in the critical case (i.e., when verit(a) < v < yu(a)),
solvabiliy can either depend on the non-linear perturbation or the global
geometry of the domain, or both. The difference between these regimes is
determined by another threshold, but this time on the values of ¢ in (2,2}).

We shall utilize ideas of [38] and [44] to prove the following.

Theorem 1.7 (Shakerian[66]). Let Q be a smooth bounded domain in R™(n
> «) such that 0 € Q, and let 2} (s) := 25::5), 0<s<a —00 <A<

AM(Ly.a), and 0 < v < v (). We also assume that 2 < q < 2%, h € C°(Q)

and h > 0. Then, there exists a non-negative solution u € HZ (Q) to
under one of the following conditions:

(1) 0 <~ < Aerit(a) and h(0) > 0.

h<0) >0 ifq > (erit
(2) ’Ycrit(a) <7 < 'YH(a) and Clh(o) + 62m$7)\(9) >0 ifq = {crit
mfoyé,)\(Q) >0 Z.fq < Gerit-

Here c1,co are two positive constant that can be computed explicitly (see
Section , while qerit = 2%, — 2% €(2,2%).

In order to summarize the results in Theorem 1.7, we set Yerit := Yerit(Q),
Y =y (@) and mg \ :=mS ,(Q), and assume that 0 < s <aand 2 < ¢ <
2.
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One can then complete the picture as follows.

Non-linearly perturbed problem (1.8): n > o and A < A(L,,q)

Hardy term | Dim. q A Analytic. cond Ext.
0 <7< Yerit n>22a | >2 > —00 h(0) > 0 Yes
gcgt’v<<ij " Z <Z 22aa > Gerit | > =00 h(0) >0 Yes
gcgt,y<<77; " Z 522;[ = Gerit | > —00 | c1th(0)+comS , >0 | Yes
gcrgit7<<77; YH Z <222aa < Gerit | >0 m2, >0 Yes




Chapter 2

Preliminaries and a
Description of The
Functional Setting

In this chapter, we introduce the concepts and the classical results related
to the non-local framework that will be the focus of this dissertation. Our
main sources for this chapter are [6] and [20].

The basic operator is the so-called fractional Laplacian (—A)2 with
a € (0,2). This chapter is devoted to introducing its various formulations,
its associated fractional Sobolev spaces as well as the corresponding frac-
tional Hardy-Sobolev inequalities. Since our main focus in this thesis is the
study of fractional laplacians with Dirichlet boundary data via variational
methods, we first introduce suitable function spaces required for the varia-
tional principles to apply. In Section [2.3, we introduce a weighted Sobolev
space in higher dimension R™ x (0,00), which will provide a suitable func-
tion space for our approach. Its construction is based on the a-extension
formula that Caffarelli-Silvestre [12] associate to equations involving frac-
tional laplacians. We later introduce functional inequalities involving the
fractional Hardy-Schrodinger operator L, o, which play a crucial role in the
non-local problems under study.

2.1 The fractional Laplacian operator

In this section, we start by presenting the different definitions for the frac-
tional Laplacian operator (—A)2. First, consider the Schwartz space S(R™)
which consists of all rapidly decreasing functions in C*°(R"), equipped with
the following norm: If

7 ={a = (a1,a2,...,an) : a; > 0 and a; € Z for i = 1,2,3,...,n},

and 5 5 9
a . __ aj a2 Qn
o (axl) (Bxg) (arn) ’



2.1. The fractional Laplacian operator

then, the Schwartz space S(R"™) consists of all functions i € C*°(R") such
that

[9]lap = sup |2°8"(x)]
T€R”™
is finite for every pair of multi-indices a,b € Z}.

Remark 2.1. An element of S(R") is essentially a smooth function (x)
such that ¢ (xz) and all of its derivatives exist everywhere on R and decay
faster than any inverse power of z, as |x| — +oo. In particular, S(R™) is a
subspace of the function space C*°(R™) of infinitely differentiable functions.

The Fourier transform of a function ¢ € S(R") is then defined as

Fip(&) == / ) e M Cy (1) d. (2.1)

Note that for every ¢ € S(R™), we have F¢p € S(R™). It is easy to verify
that the Fourier transform and the inverse Fourier transform, given by

Flue)i= [ (e
are both continuous on S(R™) to S(R™). Moreover, we have
FF W =FFo =y,

which implies that each of 7 and F~! is an isomorphism and a homomor-
phism of S(R™) onto S(R™).

The dual space of S(R"), denoted by S’'(R"), is the space of continuous
linear functionals 7' : S(R™) — R. The elements of S'(R™) are called tem-
pered distributions. The space S'(R") is a linear space under the pointwise
addition and scalar multiplication of functionals. If ' € §’(R™), the Fourier
transform of T" can be defined as the tempered distribution given by

(FT, ¢y =(T,F) for every ¢p € S(R"),

where (.,.) denotes the usual duality bracket between S(R™) and S’(R").

One can use the definition to prove the Parseval-Plancherel formula
, which will be crucial in what follows for proving the equivalence be-
tween the fractional spaces will be defined in the next section; see formula

2.6).

ullZ2gny = [ FullFzgny for all w € L*(R™). (2.2)



2.1. The fractional Laplacian operator

For a detailed introduction to the classical theory of distribution and Fourier
transform, we refer to the monograph [60] and to the recent book [18] for
several applications to elliptic problems of linear and nonlinear functional
analysis.

We now present various definitions for the fractional Laplacian operator
on Schwartz space S(R™). In the first definition, we define the operator
(=A)Z as a singular integral.

Definition 2.2. For any o € (0,2), the fractional Laplacian operator (—A)z
is defined on the Schwartz class S(R™) as

(—A)su = cn,ap.v./ ulw) = ulv) g
re [T —y|"te

. u(z) — u(y)

dxdy,
e—0t R™\ B, () |x - y|n+a

where P.V. stands for the principal-value and

B 1 —cos((1) >_1
Cna = </n 7C d¢ .

We refer the readers to [6, Section 1.3.1] and [20] for properties of the con-
stant C), o. It has been shown there that

_ 1COS<Q>>1_2QF<"5G>
C”’“_</n % R EIVE

The operator (—A)2 can be also defined via the Fourier transform. It
was shown in [20, Proposition 3.3] that the fractional Laplacian operator
(—A)% can be viewed as a pseudo-differential operator as follows.

Definition 2.3. Let o € (0,2). For any u € S(R™), we have
(—A)2u = F(|2n|*(Fu)) VE € R™ (2.3)

There is another way to define the fractional Laplace operator via the
inverse Fourier transform . In fact, in the case a = 1, the half-Laplacian
acting on a function u in the whole space R™ can be computed as the normal
derivative on the boundary of its harmonic extension to the upper half-space
R"*! .= R" x (0, 4+00). In other words, it is the Dirichlet to Neumann oper-
ator (see [12]). The operator (—A)?2 can be characterized in a similar way,
by defining its a-harmonic extension to the upper half-space (See formula
2.5)). Indeed, Caffarelli-Silvestre [12] proved the following:

10



2.2. The fractional Sobolev spaces

Definition 2.4. Let a € (0,2). The fractional Laplacian operator (—A)?2
on R™ can be expressed on the higher dimension Ryt = R™ x (0,00) in the
following way:

a ow ow
—A)2 = — 1= —kq lim ym*—— 2.4
( )2U(I’) O ayigler ay (xay)v ( )
where ko, = #ﬁlg), and w : R:‘_H — R is the a-harmonic extension of
2

u, that solves

: 11—« _ . n+1
{ div(y' ~*Vw) =0 in RY (2.5)

w=u onR"x{y=0}

See also [6, 20] and references therein for the basics on the fractional
Laplacian.

2.2 The fractional Sobolev spaces

In this section, we introduce the classical fractional Sobolev space on R"”
and its bounded subsets.

2.2.1 The classical fractional Sobolev space

For a € (0,2), the classical fractional Sobolev space of order § is defined as

H%(R") = {u € L*(R") such that / (1 + |27€|%) | Fu(€)2de < oo}

n

equipped with the norm

= [|Fu(®)ll 2@y + I127€)2 Fu(€) ] 2 m)-

ol 1% gy =

One can use Parseval-Plancherel’s formula (2.2)) to rewrite this norm as
45 gy = il + [ 12061717 )6 P

The space H %(R”) is well defined and is a Hilbert space for every a > 0.
The following relation between the fractional Laplacian operator (—A) 2 and
the fractional Sobolev space H 2 (R™) was proved in [34, Lemma 3.1]; see also
[20, Proposition 3.4]:

2
/ |27T§| ‘FU( ng_ na/n /n ‘u|x_ |n+a| dx dy7 (26)

11



2.2. The fractional Sobolev spaces

for all u € H2 (R™). Using this relation, one can obtain a new expression for
the norm of the space Hz (R™) :

2 2 Cn.a Ju@) —u@)P , 2.7
o2, gy = Vil + 552 [ [ O gy 2

Consequently, the space H 2 (R™) can be defined as the linear space of
Lebesgue measurable functions u from R™ to R such that the norm defined
in (2.7)) is finite.

As in the classical case, any function in the fractional Sobolev space H 2 (R™)
can be approximated by a sequence of smooth functions with compact sup-
port. Indeed, for 0 < a < 2,

HS (R) := Cgo®n) 8 em,

In addition, the operator (—A)2 can be extended by density from S(R™) to

H3(R"™) . In this way, the associated scalar product can be formulated as
follows

= (u,v) + (u,v)

_ "a// |x_)(|l;(f£_U(y))d:cdy+/nuvdx.

Clearly, the norm | . ||, 4 $ @) defined in 1D induced by this scalar product.

The following proposition states a crucial formulation which will be used
freely in this thesis and it is a direct consequence of (2.6) coupled with
Proposition 3.6 in [20].

Proposition 2.5. Let 0 < o < 2 and u € Hz (R"). Then,

_ 2
/ 27| Fu(€)[2de = / A) 5 u)2dx C’W/ Ju(@) = wWIF ),
2 (n)2 |x_y|n+a

Let now « € (0,2) be fixed and €2 be an open-bounded subset of R™ with
(n > «). We define H2 () as the space of measurable functions u such that
the following norm is finite

na u\x
Il gy = Tl + = [ [ 2= ) =w@)F g, (28)

We also define ﬁO% (€2) to be the closure of C§°(€2) with respect to the norm
that is

(u’ U>H 2 (Rn)

I % e
7§ (©) =@ o,

One can find many properties of the above spaces in [20] and [6, Section 1].

12



2.2. The fractional Sobolev spaces

Remark 2.6. It is well known that if w € H'(S), which is the classical
Sobolev space corresponding to the case o = 2, then its null extension outside
Q, a, is in H'(R™) and |Jull g1 () = |||l g1(rny. This is, however, not true in
general for functions in H= (Q), for 0 < o < 2.

In order to deal with problems on bounded domain, we shall need func-
tion spaces where null extensions are controlled. This will be done in the
next section.

2.2.2 The variational fractional Sobolev space

We now consider the following Hilbert space on R"™:

Definition 2.7. For 0 < a < 2, we define the fractional Sobolev space
Hg (R™) as the completion of C3°(R™) under the norm

I N s Ny
J®)  Jrn n JRn Ix—ylnﬂ“ v

Let O = R" x R™\ (CQ x CQ), where CQ :=R"\ Q, and define H2 (Q) as
the linear space of all Lebesgue measurable functions u from R™ to R such
that the restriction to Q of any function u in H2 () belongs to L*(), and

the mapp (z,y) — (u(x) —u(y))|z — y|% is in L2(O, dxdy).

The norm in H2 () is defined as follows:

— [lull2 Cna |u(z
gy = ol + = [ =t Caray. (29)

Remark 2.8. Note that the norms in (@ and are not the same
because €2 x Q) is strictly contained in O: this makes the classical fractional
Sobolev space approach not sufficient for studying the nonlocal problem we
constider in this thesis.

We are now ready to introduce a suitable function space on a bounded
domain €2 for the variational setting that will be needed later in this thesis.
One can easily check that if u € H?2 (€2), then the null extension of u outside
Q is in H?2 (R™). This allows us to define the desired space as

HO%(Q) = {u € H?2(Q) such that u = 0 a.e. in CQ}.

13



2.3.  The a-harmonic extension and weighted Sobolev space

Observe that since u = 0 in Cf2, the integral in formula (2.9) can be extended

to R™; that is for any HZ (£2), the norm can be written as:

[l s = fulZagn + 20 Ju@) =P yg (210)
HE(Q) L2 T n Jrn ]:):— y|nto Y. '

It has been shown in [6] that the norm on HOE (Q) defined by 1 is
equivalent to the following norm — still denoted by || . ||

HE(©)

Ju(@) — u(y)l?
||u||2 — na/n/n |$_y‘n+a = I dady.

The density propertles of smooth and compactly supported functions in
space Ho% () is studied in [6], and it was proved there that the space C5°(2)
is a dense subspace of Ho% (Q); see [6, Theorem 2.6]. So, it follows from this
density result that the space HO% (©) eventually can be expressed in the
following way:

Definition 2.9. Let 0 < a < 2. We define the fractional Sobolev space
HO% (Q) on the smooth bounded domain Q as the completion of C§°(2) under

the norm u( )‘2
na ul\x
ol g g, = // |x_ ‘W ful@) = u)i® 5o gy (2.11)

2.3 The a-harmonic extension and weighted
Sobolev space

In this subsection, we present an useful representation given in [5] and [9]
for the fractional Laplacian (—A)2 as a trace class operator, as well as a

corresponding representation for the space Hg (R™).
For a function u € HZ (R"), let w = E,(u) be its a-harmonic extension
to the upper half-space, erfl, that is the solution of:
div (y'=*Vw) =0 in R}
w=u onR"x {y=0}.
Recall that the extension function w = E,(u) satisfies (2.4) and belongs
to the Hilbert space X O‘(R’ffl) defined as the closure of C§°(R"™) for the

norm
— l—a 2
L= (ka /Rnﬂy Vol dmdy) ,

+

N

14



2.4. Fractional Hardy-Sobolev type inequalities

(%)
ToT(1-9)

that the extension operator E,(u) : HZ (R") — Xa(RiH) is an isometry,

where k, = is a normalization constant chosen in such a way

that is, for any u € HZ (R"), we have

1Ea (Wl oy = el ;8 gy = 1(=A) S llz2@en)- (2.12)
Conversely, for a function w € X*(R'/*!), we denote its trace on R"x {y = 0}
as Tr(w) := w(.,0). This trace operator is also well defined and satisfies

lol 05 o < ol oy (2.13)

H (R™)

We shall frequently use the following useful fact: Since a € (0,2), the
weight '~ belongs to the Muckenhoupt class Ag; [56], which consists of all
non-negative functions w on R™ satisfying for some constant C, the estimate

L wax L w
s%p(|B‘/B d )(’B|/B dzx) < C, (2.14)

where the supremum is taken over all balls B in R".
If Q C R"! is an open domain, we denote by L?((,|y|*~®) the space of
all measurable functions on 2 such that Hw||%2(Q yli—oy = Jo lyI' 2 w|dzdy <

o0, and by HY(Q, |y|!=®) the weighted Sobolev space
HY (S, [y' ™) = {w € L*(Q, [y'™*) : Vw € L*(Q, |y'™)} .

It is remarkable that most of the properties of classical Sobolev spaces,
including the embedding theorems have a weighted counterpart as long as
the weight is in the Muckenhoupt class As; see [28] and [41]. Note that
H 1(R’}r+1, y'~) -up to a normalization factor- is also isometric to X O‘(Rf”fl).

2.4 Fractional Hardy-Sobolev type inequalities

The starting point of the study of existence of weak solutions of borderline

variational problems (1.1)), (1.3) and (1.6) is based on the following fractional
Hardy-Sobolev inequalities which guarantee that the associated functionals

are well defined and sometimes bounded below on the right function spaces.
We start with the fractional Sobolev inequality [19], which asserts that
for n > o and 0 < a < 2, there exists a constant C'(n, ) > 0 such that

2 o a
(Jgn [u?od2)2% < C(n, ) [go [(=A)1ul?dz  for all u € HZ (R™), (2.15)

15



2.4. Fractional Hardy-Sobolev type inequalities

where 2¥ = 21,
n—«

Another important inequality is the fractional Hardy inequality (see [34]
and [43]), which states that under the same conditions on n and «, we have

@) fpn |'g"a dr < [o |(=A)Tul2dz  for allu € HZ (R"),  (2.16)
where g () is the best constant in the above inequality on R™, that is

S (=A% u]2d1:

| Iul2
Rn |I‘O‘

~vi(@) = inf ue HE (RY)\ {0} 5. (2.17)

F2(M)

It has also been shown there that vyg(a) = 2¢ Note that vg(«)

converges to the best classical Hardy constant v (2) = =2 Ghen o — 2.
By interpolating these inequalities via Holder’s inequality, one gets the fol-
lowing fractional Hardy-Sobolev inequalities.

Lemma 2.10 (Fractional Hardy-Sobolev Inequalities). Assume that 0 <
a<?2and0<s<a<n. Then, there exists positive constant ¢ such that

2a 2 a =3
(/ [l dx)%e < c/ |(—=A)aul*dz  for allu € HZ (R"). (2.18)

|z]*

Moreover, if v < vg(a) = 20‘%, then
4
25.(s) 2 o 2
C(/ ’u“x’s dr)%® S/ |(—A)4u|2d1‘—7/ |\u’\ dzx, (2.19)
n n R

for all w € HE (R™) and some positive constant C.

Proof of Lemma|2.10. Note that for s = 0 (resp., s = «) the first inequality
is just the fractional Sobolev (resp., the fractional Hardy) inequality. We
therefore have to only consider the case where 0 < s < « in which case
2! (s) > 2. By applying Hoélder’s inequality, then the fractional Hardy and

16



2.4. Fractional Hardy-Sobolev type inequalities

the fractional Sobolev inequalities, we have
24 (s) ®
[,
no R ||
2 —s
< ([ a0
Rr |Z| n

2 —s
= ([ P ey [ iy
e |2|* Rn

From the definition of vx (), it follows that for all u € Ho% (R™),

fRn - 4U‘2d.'1: - ’Yf]Rn “Zﬂa dx > (1 ’)/ fR" 4U‘2d$
o a0 m@) (f, MEO
Rn |x‘9 R ‘x|€

Hence (2.18) implies (2.19) whenever v < yg(a).

O

Remark 2.11. One can use (2.12)) and (2.13)) to rewrite inequalities (2.16]),

(2.18) and (2.19)) as the following trace class inequalities:

w(z, 0
wnfa) [ IR do < ol

.l
w(z, 0)[2: S
([ e ) < el gy,
and
’w(]">o)|22(8) 2*2 2 |w(:1;,0)]2
-~ 7/ o (s) — L S
C</n e )T < e, —y [ e,

for allw € X*(RTY) and v < v ().
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Chapter 3

Borderline Variational
Problems Involving
Fractional Laplacian and
Critical Singularities

3.1 Introduction

In this chapter, we consider the problem of existence of nontrivial weak solu-
tions to the following doubly critical problem on R™ involving the fractional
Hardy-Schrodinger operator:

2% (s)—2

a u * u u .

(—A)gu—’yw = ‘U 2a_2u+||‘:{;|3 m Rn, (31)
where 0 < s < a <2, n>a, 2, = 2L 2% (s) 1= 25;1__;) and v € R.

Problems involving two non-linearities have been studied in the case of
local operators such as the Laplacian —A, the p-Laplacian —A, and the
Biharmonic operator A? (See [8], [33], [47] and [68]). Problem (3.1) above is
the non-local counterpart of the one studied by Filippucci-Pucci-Robert in
[33], who treated the case of the p-Laplacian in an equation involving both
the Sobolev and the Hardy-Sobolev critical exponents.

Questions of existence and non-existence of solutions for fractional el-
liptic equations with singular potentials were recently studied by several
authors. All studies focus, however, on problems with only one critical ex-
ponent —mostly the non-linearity u?=~1- and to a lesser extent the critical

”2?;’;?_1 (see [19], [31], [70] and the references
therein). These cases were also studied on smooth bounded domains (see
for example [5], [7], [9], [29], [65] and the references therein). In general, the
case of two critical exponents involve more subtleties and difficulties, even

for local differential operators.

Hardy-Sobolev singular term

18



3.1. Introduction

The variational approach that we adopt here, relies on the following
fractional Hardy-Sobolev type inequality:

Jul?s) a1 Jul?
C’(/ P dx)2a0) §/ |(—A) %yl dm—*y/ PE ——dxr Yue€ HQ(R”)
n n Rn
(3.2)

2(nta

O‘;E ey ; is the best fractional Hardy constant on
4

R™. Recall that the fractional space HZ (R™) is defined as the completion of

C§°(R™) under the norm

lul s o = [ el iFu©Pd = [ |-8) .
0

The best constant in the above fractional Hardy-Sobolev inequality is defined
as:

where v < yp(a) = 2

2
. Jon 1(= A)Su|Adr — ’YIR" |:|a dx
frsa(R") == inf A T (3.3)
ueHg (R)\(0) (o 5" ) 0

One step towards addressing Problem consists of proving the ex-
istence of extremals for ji, s (R"), when s € [0,) and v € (—o0, vm(®)).
Note that the Euler-Lagrange equation corresponding to the minimization
problem for pi, . (R™) is —up to a constant factor— the following:

o w _ u2als)-1 . n
{ (=A)2u =y = in R (3.4)

When o = 2, i.e., in the case of the standard Laplacian, the above
minimization problem has been extensively studied. See for example
[15], [17], [33], [35], [36] and [40]. The non-local case has also been the
subject of several studies, but in the absence of the Hardy term, i.e., when
~v = 0. In [31], Fall, Minlend and Thiam proved the existence of extremals
for p10,50(R™) in the case a = 1. Recently, J. Yang in [70] proved that
there exists a positive, radially symmetric and non-increasing extremal for
to.s,o(R™) when a € (0,2). Asymptotic properties of the positive solutions
were given by Y. Lei [48], Lu and Zhu [54], and Yang and Yu [71].

In section we consider the remaining cases in the problem of de-
ciding whether the best constant in the fractional Hardy-Sobolev inequality
Hy,s,a(R™) is attained. We use Ekeland’s variational principle to show the
following.
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3.1. Introduction

Theorem 3.1. Suppose 0 < o < 2,0 < s < a <n andy < yg(a) :=
pal*(52)
r2(%7%)

1. If either {s > 0} or {s =0 and v > 0}, then iy so(R"™) is attained.
2. If s =0 and y < 0, then there are no extremals for fiy s q(R™).

3. If either {0 < v < yu(a)} or {0 < s < a andy = 0}, then any
non-negative minimizer for jiy s o(R™) is positive, radially symmetric,
radially decreasing, and approaches zero as |x| — co.

In section we consider problem (3.1) and use the Mountain Pass
lemma to establish the following result.

Theorem 3.2. Let0 < a<2,0<s<a<nand0 <y < yg(a). Then,
there exists a non-trivial weak solution of .

We say u € HO% (R™) is a weak solution of 1D if we have for all ¢ €
Hg (R™),

|2

The standard strategy to construct weak solutlons of ( is to find

|u|2;(s)72u

u(—A)%goda::/ ‘ |a<pdx—|—/ \u|23*2ugpdx+/ Tgpdm.
n n Rn

S}s)

critical points of the corresponding functional on Hj; 2 (R™). However
is invariant under the following conformal one parameter transformatlon
group,

T,: H (RY) — HZ (R™);  u(z) — T)(z) = r*Fu(rz) r>0, (3.5)

which means that the convergence of Palais-Smale sequences is not a given.
As it was argued in [33], there is an asymptotic competition between the
energy carried by the two critical nonlinearities. Hence, the crucial step
here is to balance the competition to avoid the domination of one term
over another. Otherwise, there is vanishing of the weakest one, leading to
a solution for the same equation but with only one critical nonlinearity. In
order to deal with this issue, we choose a suitable minimax energy level, in
such a way that after a careful analysis of the concentration phenomena, we
could eliminate the possibility of a vanishing weak limit for these well chosen
Palais-Smale sequences, while ensuring that none of the two nonlinearities
dominate the other.
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3.1. Introduction

With representation (2.4]), the non-local problem (3.1)) can then be writ-
ten as the following local problem:

—div (y' " *Vw) = 0 in R
ow w(.,(]) 9% 1 w(.,O)QZ(S)_l n (36)
ove = T ae +w(.,0)% +T on R",

for which w € X O‘(}erfl). Recall that the Hilbert space X O‘(erfl) defined

as the closure of C§° (R’}fl) for the norm

. l—a 2
HwHXa(szLl) = (ka /1Rn+1y |V’w‘ dwdy) ,

+

N|=

r($)
2o (1-2)
A function w € XO‘(R?FH) is said to be a weak solution to 1j if for

all p € X(R),

where k, = is a normalization constant.

w(z,0)
Ed

ka y' N (Vw, Vo)dady = v / pdx
Rn

Ry
—i—/ ]w(x,O)\%*Qw(a:,O)goda:
Rn

2% (s)—2
[ O ),

|z[*

Note that for any weak solution w in X*(R7*!) to (3.6), the function u =

w(.,0) defined in the sense of traces (see Section , is in HZ (R™) and is
a weak solution to problem (3.1). The energy functional corresponding to

(3:6) is

1 ~y |w(z,0)? 1 .
Bw) = 5ol — 3 [ e = o [l 0) de

2 |z|® o Jre
1 25.(s)
L[ le0E,
2%(s) Jrn 2]

Hence, the associated trace of any critical point w of ® in X O‘(erfl) is a

weak solution for (3.1).
It follows from Remark that there exist positive constants ¢, C' such

that the following fractional trace inequalities hold for all w € X*(R'}*)
and v < yp (o) :
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3.2. Proof of Theorem

fm(a)/n |w (’ ‘ OF 4 < ol ey (3.7)
w(z,0)[%(s) 2
(/n ’("x|)s‘ d:L‘) 25.(s) S C ||wH2Xa(]Ri+1), (3'8)
and
w(z,0)[2(s) i, w(z,0)]?
C(/n |(‘:L,|)s dx )2 (S) < Hw||2 o R"+1) ’y/Rn |(|;[;‘a)|d$ (39)

The best constant ji, s (R"™) can then be written as:

' o fRn+1 y' Y Vw|Pdzdy — v [gn w|£|2)| dx
S(n,a,y,s) = H}Lfﬂ e .
weX R\ {0} (fin %d )zms)

We shall therefore investigate whether there exist extremal functions
where this best constant is attained. Theorems and [3.2] can therefore be
stated in the following way:

Theorem 3.3. Suppose 0 < a < 2,0<s<a<nandy < vg(a). We
then have the following:

1. If {s > 0} or {s = 0 andy > 0}, then S(n,q,~,s) is attained in
Xo(RTH.

2. If s = 0 and v < 0, then there are no extremals for S(n,a,~,s) in
X(RM
).

Theorem 3.4. Let 0 < a <2,0<s<a<n and 0 <~y < yug(a). Then,
there exists a non-trivial weak solution to (@) in X*(RTH).

3.2 Proof of Theorem [3.1]

We shall minimize the functional

kq fRn+l Y| Vw|?dady — Y Jgn @) 7.,

||
(f ; |lw(z,0)|2&( )d )2;;(3)

|=[°

I%S(w =

on the space Xa(Rfrl). Whenever S(n,a,7,s) is attained at some w €
X*(RTHY), then it is clear that u = Tr(w) := w(.,0) will be a function in

Hg (R"), where iy (R") is attained.
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3.2. Proof of Theorem

Note first that inequality 1) asserts that X Q(erfl) is embedded in
the weighted space L?(R"™,|z|~) and that this embeding is continuous. If
v < vm(«), it follows from (3.7) that

1
2 2
Jwl| := (ka/ yl“!VwIdedy—’y/ de)
RnJrl R |x|a
+

is well-defined on XO‘(]R:LLH). Set 74 = max{~,0} and 7_ = —max{~,0}.
The following inequalities then hold for any u € X¢ (Rﬁ“),

T+ 2 2 V- 2
1-— 1y < < (1 ntly - 3.10
( ,YH(Q))HU}HXa(R:l) = HwH = ( + ’YH(a))HwH "‘(R++1) ( )
Thus, || . || is equivalent to the norm || . HXa(RiH).

We start by considering the case when s > 0. Ekeland’s variational
principle [25] applied to the functional I(w) := I, s(w) yields the existence
of a minimizing sequence (wg)ken for S(n, «,, s) such that as k — oo,

25(s)
/ [, O . (3.11)
n |z|°
I(wg) — S(n, a7, s), (3.12)
and
I'(wy) = 0 in (X*(RTH)), (3.13)

where (X%(R’))’ denotes the dual of X*(R'}*1). Consider the functionals
J K X“R}T) — R by

1, o ke - 5 7/ w(z,0)]?
= — = —_— @ dd _—— 7d
J() =5l 2/R¢+ly Vuldedy - 3 | S d

and

L[ e, 00
K = .
W) =55 L. P

Straightforward computations yield that as k — oo,
1
J(wk) — §S(TL, a, 7, 8)7

and
J'(wi) — S(n,a, 7, s)K'(wy) — 0 in (X*(RTH)). (3.14)
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3.2. Proof of Theorem

. . . 23,(s)
Consider now the Levy concentration functions ¢ of %, defined as

2%.(s)
Q(r):/ —|wk(:c,0)| dx for r >0,

. . . . 25,(s)
where B, is the ball of radius r in R”. Since fR” %dw =1 for all
k € N, then by continuity, and up to considering a subsequence, there exists

rr > 0 such that
25(s) 1
Q@wz/)h%@ﬁ”(MZQ for all k € N.
B

—

Define the rescaled sequence vg(z,y) := r, 2 wi(rpz,rpy) for k € N and
(x,y) € RTFI, in such a way that (vg)ren is also a minimizing sequence
for Sgn,a,v,g). Indeed, it is easy to check that vy € Xa(RTrl) and that
lwell* = llvell*,

2
lim k:a/ yl_a|Vvk|2dmdy—7/ de =S(n,a,,s)
R1+1 Rn

k—o0 ‘l‘|a
(3.15)
and 2:(5) 2:(5)
/ |Uk:($701| * dr — / |wk($7 02| * dr = 1.
n || n ||
Moreover, we have that
2:.(s) 1
/‘WM%m|dx: for all k € N. (3.16)
B ||® 2

In addition, |lvg]|? = S(n,a,7,s) + o(1) as k — oo, so (3.10) yields that
(vk)ken is bounded in XO‘(RTrl). Therefore, without loss of generality,
there exists a subsequence -still denoted vg- such that

vp — v in X¥(R%M) and wvg(.,0) — v(.,0) in L{_(R") for all 1 < g < 2,

(3.17)

We shall show that the weak limit of the minimizing sequence is not

identically zero, that is v # 0. Indeed, suppose v = 0. It follows from
that

vp — 0 in X¥(R%™) and wvg(.,0) — 0in L (R™) for every 1 < q < 2.
(3.18)
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3.2. Proof of Theorem

For § > 0, define By = {(z,y) € R7™ 1 |(z,y)| < 6}, By :=={z e R": |z| <
§} and let n € C§°(B) be a cut-off function such that n = 1 in B and
2

0<n<1inRPH.
We use nvy as test function in (3.14)) to get that

vi(@,0) (*vr(x, 0))

k:a/ " yl_aVvk.V(n%k)dxdy—'y/ P dx
Ri n X
(3.19)
2% (s)—1 (2
= Sna..5) (2, 0) | |8(" @0 414 o).
n X

Simple computations yield |V (nvg)|? = |vxVn|? + V. V(n?vk), so that we
have

kq / y =V (o) Pdady — ke / y =V, V (n?uy)dzdy
= ka/ y' o,V dady
R+

ke / y'=o 2o 2 derdy,
FE

where E := supp(|Vn]). Since a € (0,2), y'~% is an Ag-weight, and since
E is bounded, we have that the embedding H'(E,y'~%) — L?(E,y'~?) is
compact (See [5] and [41]). It follows from (3.18]); that

k‘a/ y V2o Pdady — 0 as k — oco.
E
Therefore,
ka/ o yl_a]V(nvk)|2d$dy = ka/ o yl_aVvk.V(nQU)k)d:de +o(1).
RY n

By plugging the above estimate into (3.19), we get that

—a nug(x,0
lorl® = ka/ y' =V (o) Pdady — 7/ e OF
Ri+1 R™

— S(n,a,%s) /n ’vk(w70>‘22(8)72(‘77vk($,0)’2)d$ +0(1) (320)

2% (s)—2 2
_ S(n, Ck,")/,S)/ ]vk(x,0)| ’x‘s(|nvk($70)‘ )d$+ 0<1)
B1

25



3.2. Proof of Theorem

Note that in the last equality we used the fact that supp(n(x,0)) C B;. We
now apply Hoélder’s inequality with exponents 22(9)_ and 2a2(s) to get that

2% (s)—2
o (2, 0) P2 (jnow (2, 0)*) , [ vw(, 0)*>) 72 oy, (z, 0)|*
. dr = 25 (=2 - dz
B, |$‘ B, |{E|€ 2% (5) |1-| 25(s)

2% (s)—2 . 2
<( / '“k@’O)'QO‘(”dw) = < / |nvk<x,o>|2a<”dm)2“”.
T \Um, |z|* B |z|*

It then follows from (3.16) that

2

[ e OF 08, (1 RN
B =\2 - '

|z]* |z[*

Plugging the above inequality into (3.20)), we get that

o nug(x, 0
i = o [ S Py - [ 1O
;

no el

2
2% (s) 2% (s)
- S(n,a,;y,s) (/ Inuk(x, 0)| dm) +o(1).

9l tme |z|®

On the other hand, it follows from the definition of S(n, «,~,s) that

2
2% (s) 2505
S, a7, 5) ( / '“(O)'dx> < Iyoull?

|z|®
2% (s) 0
*(s 2%, (s
< S(naaagvs) / |77Uk(x708)’ dr +0(1)
ol m® n ||
Note that w < S(n,a,,s) for s € (0, «), which yields that
2" 240
25,(s)
/ WT’?S)'da: = o(1). (3.21)
n X

By straightforward computations and Holder’s inequality, we get that

1 . %3
</ M(“’)Z”(S)dx> wO (/ Invk(z,0)+(1n)vk(x,0)|2a<s>dx> =
B, |{L‘|5 Bi |Z)3‘|5
1 1
2(s) \%m® _ 2(s)  \ @
< (/ Ivvwc(%())dx> . (/ |(1 = n)vk(z,0)| dx)
B |x|3 B, |1.|5

1

0)2(5) e . o)
< (/ de) +C (/ vk(x,0)|2a(s)da?> .
n x|5 B
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3.2. Proof of Theorem

From (3.18))2, and the fact that 2 (s) < 2, we obtain

/ lop(z,0))%E)de — 0 as k — .
B

Therefore,

2(s) |\ %O () \ %O

(s 25(s (s 25,(s
PR LN R G LR
B ] n ||
(3.22)
It then follows from (3.21) and (3.22) that
2;(s) 25(9)
o(l) = / —|7]vk(a:,08)\ dr = / —|Uk(x’0)s dx + o(1).
n ] B |zl

This contradicts (3.16) and therefore v # 0.
We now conclude by proving that vy converges weakly in R’}fl to v, and
that

Indeed, for k € N, let 0 = vy, — v, and use the Brezis-Lieb Lemma (see [10]
and [70]) to deduce that

25.(s) 25,(s) 25.(s)

|z[* |z]* |z[*

which yields that both

= +)5|2a(5)dx are in the interval [0,1].  (3.23)

[0(,0)[2a () 10k (x
fRn ﬁdﬁ? and f]Rn z]

The weak convergence f), — 0 in X*(R7*") implies that

lorll? = Ilv + OxlI* = loll* + 16x]* + o(1).
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3.2. Proof of Theorem

By using (3.14) and the definition of S(n,a,~, s), we get that

v (2, 0)[2a(5)
o(1) = onl = S(n,,7,5) [ 1)

25.(s)
= (ol = St0.a7) [ ol O,
R |~’U\

2%,(s)
T <H9kll2 - S(mas) [ W’“”m) To(1)

dx

2% (s) 25() 25.(s)
+ S(n,a,v,s) (/ k(. O dx) —/ [0k (z, O)F">) dx

|z[* |z[*
+o(1).

Set now

and

b / Oz, 0) = 23<s>_/ O, 0) =
noo 2l w2l

Note that since 2} (s) > 2, we have a% > a for every a € [0,1], and
equality holds if and only if a = 0 or @ = 1. It then follows from
that both A and B are non-negative. On the other hand, the last inequality
implies that A + B = o(1), which means that A =0 and B = o(1), that is

2
2% (s) 2%,(s) 25.(s)
[ OO, (] e, )
no el N

2%,(s)
either/ 7‘0@70)’ dx:()or/ 7‘1)(3;’0) T =

Hence,
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3.2. Proof of Theorem

The fact that v # 0 yields [p, %

which yields that

dx # 0, and [p, @O 5 1,

ER

2
ka/ Y=\ Voldzdy — ’y/ Mdaj =S(n,q,7,s).
R1+1 Rn

Without loss of generality we may assume v > 0 (otherwise we take |v| in-
stead of v), and we then obtain a positive extremal for S(n,a,~,s) in the
case s € (0, ).

Suppose now that s = 0 and v > 0. By a result in [19], extremals exist
for S(n,a,~,s) whenever s = 0 and v = 0. Hence, we only need to show
that there exists an extremal for S(n,a,~,0) in the case v > 0. First note
that in this case, we have that

S(n,a,7,0) < S(n,a,0,0). (3.24)

Indeed, if w € X*(R:) \ {0} is an extremal for S(n,a,0,0), then by
estimating the functional at w, and using the fact that v > 0, we obtain

u(z,0)|?
[l gy — 7 i OO
. (R}™)
S(n,a,v,0) = inf | y
ueX (R} TH\{0} (Jgn lu(z,0)|%5dz)?

2 _ lw(z,0)|?
Hw”X"‘(RTH) PYfR” || dx

=z
(Jan lw(z, 0)?ada) 25

< =S(n,a,0,0).

2
(Jpn lw (2, 0)[?ad) %

Now we show that S(n,«,v,0) is attained whenever S(n,a,v,0) <
S(n,a,0,0). Indeed, let (wg)reny C X*(R1)\{0} be a minimizing sequence
for S(n,a,v,0). Up to multiplying by a positive constant, we assume that

2
lim k:a/ yl_o‘\Vkadxdy—’y/ Mdm = S(n,a,v,0)
Ri+1 Rn

k—o0
(3.25)
and

/ lwg(z,0) > dz = 1. (3.26)
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3.2. Proof of Theorem

The sequence (HwkH Yo (RiJrl))kGN is therefore bounded, and there exists a

subsequence - still denoted wy- such that wy — w weakly in X (]Rffl). The
weak convergence implies that

2 _ 2 2
||wkHXO‘(R1+1) = ||wk - ’U)H a(Ri-H) + ||wHXO‘(R7fr+1) + 0(1)5
and
0 2 _ 0 2 0 2
[P [ Wm0 [ O,
n |zl n || no |zl

The Brezis-Lieb Lemma ([10, Theorem 1]) and (3.26) yield that

/ |(wy, — w)(x,0)[*2dz < 1,

for large k, hence

|wi (2, 0)?
S(n7a7770) = Hwk||§(a(Ri+l) - ’Y/Rn Wdl' + 0(1)

> Hwk - wHAQXOt(R’_f_*l) + HwH‘QXQ(R1+1) — ’Y/Rn Wd:r + 0(1)

> S(n,a,0,0)(/ \(wp — w)(z, 0)[25dz) %

n

+ S(n,a,%O)(/ (s, 0)Podar) 2 + o(1)

Rn

> S(n, a,0,0)/ |(wy, — w)(z,0)|?>dz

n

S, a,7,0) / w(, 0)[2da + o1).

]Rn

Use the Brezis-Lieb Lemma again to get that

S(n,a,7,0) > (S(n,a,0,0) — S(n, a, 7, 0))/ |(wy, — w)(x,0)|%>da

R
+ S(n,a,7,0) /]R” lwy (2, 0)[?dx + o(1)
= (S(n,,0,0) — S(n,a,~, 0))/ |(wg, — w)(x,0)|23dx

R”

+ S(n,a,7,0) + o(1).
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3.2. Proof of Theorem

Since S(n,a,7,0) < S(n,a,0,0), we get that wg(.,0) — w(.,0) in L% (R"),

that is
/ lw(z,0)|?dz = 1.

The lower semi-continuity of I then implies that w is a minimizer for S(n, a,

7,0). Note that |w| is also an extremal in X*(R7*!) for S(n,a,~,0), there-

fore there exists a non-negative extremal for S(n,a,,s) in the case v > 0

and s = 0, and this completes the proof of the case when s = 0 and ~v > 0.
Now we consider the case when v < 0.

Claim 3.5. If v < 0, then S(n,a,~,0) = S(n,«,0,0), hence, there are no
extremals for S(n, «,~,0) whenever v < 0.

Indeed, we first note that for v < 0, we have S(n, a,~,0) > S(n,a,0,0).
On the other hand, if we consider w € X*(R")\ {0} to be an extremal for
S(n,a,0,0) and define for 6 € R, and & € R", the function ws := w(x—0Z,y)
for x € R™ and y € R, then by a change of variable, we get

lws (,0)]
H’U)(;HXQ(Rn.H ')’fRn w6|;“a dx
2
(Jgn lws(z, 0)[%dz) %

|w(z,0)|2
Xo Rn+l Fyf]Rn |CC+§:E|O‘ de

S(TL,O[,’Y,O) SI(S:

el

)

o
(fgn |w(z,0)|?5dz) 2%
so that

HwHXa R”H—l)

S(n,a,v,0) < lim Iy =

- = S(n,,0,0).
d—00 (fRn ‘w x, 0)|2ad$) 2%

Therefore, S(n,«,v,0) = S(n,a,0,0). Since there are extremals for S(n, a,
0,0) (see [19]), there is none for S(n, a, 7, 0) whenever v < 0. This establishes
(2) and completes the proof of Theorem 3.3|

Back to Theorem since the non-negative a-harmonic function w is a
minimizer for S(n, a,7, s) in X O‘a(R1+1)\{O}, which exists from Theorem ,
then u := Tr(w) = w(.,0) € HZ (R") \ {0} and by 1) u is a minimizer
for fiysa(R™) in He (R™) \ {0}. Therefore, (1) and (2) of Theorem
hold. For (3), let u* be the Schwarz symmetrization of u. By the fractional
Polya-Szeg6 inequality [57], we have

I(=2) 20 [ Zaggny < I1(=2) 2wl Z2(gn)-
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3.3. Proof of Theorem

Furthermore, it is clear (Theorem 3.4. of [51]) that

‘u‘2a(5 |u |2a<5>

dr <fR" E dx.

fR" |Ig\|a de < f]R" \a “dr and fRn
Combining the above inequalities and the fact that v > 0, we get that
a *|2
(=8 F w2, ) — van {iiad
|u*|2 2*2(5)
fRn |z\b da)*
o 2
N E e = 7 fon fifed
- [wf25) 5\
(Jgn “gp—dx)%©

N’y,s,a(Rn) <

= fy,s5,0(R").

This implies that «* is also a minimizer and achieves the infimum of p, ¢ o (R™).
Therefore the equality sign holds in all the inequalities above, that is

[uf g — Ju*|? Jul?a( Jur [2a()
’YIRn de = ’YfRn Wdﬂf and fRn W = fRn W

From Theorem 3.4. of [51], in the case of equality, it follows that u = |u| = u*
if either v # 0 or if s # 0. In particular, u is positive, radially symmetric
and decreasing about origin. Hence u must approach a limit as |z| — oo,
which must be zero.

3.3 Proof of Theorem 3.2

We shall now use the existence of extremals for the fractional Hardy-Sobolev
type inequalities, established in Section to prove that there exists a non-
trivial weak solution for . The energy functional ¥ associated to (3.6))
is defined as follows:

1 1 " 1 25(s)
U(w) = HwHQ—*/ || dz— . / [u —dz  forwe X*(RTH,
2 2a R™ 204(5) R™ ‘.%"
(3.27)
where again u := Tr(w) = w(.,0). Fractional trace Hardy, Sobolev and

Hardy-Sobolev inequalities yield that ¥ € C'(X*(R")). Note that a weak
solution to (3.6) is a non-trivial critical point of W.

Throughout this section, we use the following notation for any sequence
(wi)ken € X* (R

uy := Tr(wy) = wg(.,0) for all k € N.

We split the proof in three parts:
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3.3. Proof of Theorem

3.3.1 Existence of a suitable Palais-Smale sequence

We first verify that the energy functional W satisfies the conditions of the
Mountain Pass Lemma leading to a minimax energy level that is below a
suitable threshold. The following is standard.

Lemma 3.6 (Ambrosetti and Rabinowitz [3]). Let (V,|||) be a Banach
space and U : V — R a C'—functional satisfying the following conditions:

(a) ¥(0) =0
(b) There exist p, R > 0 such that U(u) > p for all u € V, with ||u|| =
(c) There exists vg € V' such that limsup ¥(tvg) < 0.

t—r00
Let ty > 0 be such that |[tovo|| > R and ¥(tovg) < 0, and define

cu(¥) := inf sup W(o(t)),
o€l 4e0,1]

where
I''={ceC([0,1,V):0(0) =0 and (1) = tovo}.

Then, ¢y, (V) > p > 0, and there exists a Palais-Smale sequence at level
Coo (), that is there exists a sequence (wi)reny € V' such that

lim W(wg) = ¢y (¥) and lim W' (wg) =0 strongly inV'.

k—o00 k—o00

Moreover, we have that ¢y, (V) < sup ¥(tvp).
t>0

We now prove the following.

Proposition 3. 7 Suppose 0 < v < yg(a) and 0 < s < «, and consider
U defined in on the Banach space X*(R'T1). Then, there exists

w e X(RM) \ {O} such that w > 0 and 0 < ¢, (¥) < ¢*, where
« nooa—S n-s
= —5( o, —F§ a=s 3.28
{Qn n a’ ’Y? ) 9 2(7’],— S) (n7 a?’Y? 8) } Y ( )

and a Palais-Smale sequence (wg)ren in X*(RTHY) at energy level ¢, (T),
that is,

klim U(wy) = (V) and klim U'(wy) =0 strongly in (X*RTH)).
—00 —00
(3.29)
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3.3. Proof of Theorem

Proof of Proposition|3.7. In the sequel, we will use freely the following ele-
mentary identities involving 27 (s):

1 a—s

_ 1l _a 25 _n 1_ _
% T o Ee3 T a0 3 e ames M oS = oy

N[ =

First, we note that the functional ¥ satisfies the hypotheses of Lemma
and that condition (c) is satisfied for any w € X*(R’:")\ {0}. Indeed,
it is standard to show that ¥ & Cl(Xa(R’}FH)) and clearly ¥(0) = 0, so
that (a) of Lemma is satisfied. For (b), note that by the definition of
S(n,a,”,s), we have that

S 0 2dr) % < w2
(n, a,7,0)( . lul“dz) % < ||lwl]

and
,u|22(s) 2 N
S(m.0,9,9)( | ) < .
n |z
Hence,
1 1 - * 1 MO -
W) 2 gl = 58007, 00 F s — s Sy, )7
1 1 2%, . 2% (s) X
=(2—2Zs<n,a,%0>2||w|2a2—2z(8)s<n,a,ms> 2l 02 ) .

(3.30)
Since s € [0,a), we have that 2}, —2 > 0 and 2}(s) —2 > 0. Thus, by
3.10), we can find R > 0 such that W(w) > p for all w € X*(R™) with
|wHXa(R1“) = R. Regarding (c), note that

2 24 . +24(s) |u|22(8)
U(tw) = 5HwH2 ~ / \u]%dx ~ o / —dx,
Rn 5(8) Jrn [z

(0%
hence lim ¥(tw) = —oo for any w € X*(R’™)\ {0}, which means that

— 00

there exists ¢,, > 0 such that ||twwHXa(R1+1) > R and ¥(tw) < 0, for t > t,,.
Now we show that there exists w € X*(R"™)\ {0} such that w > 0 and

a n
cw(P) < %S(n, a,7v,0)a. (3.31)

From Theorem we know that there exists a non-negative extremal w in
X*(RH) for S(n,a,~,0) whenever v > 0. By the definition of ¢, and the
fact that ¢, (V) > 0, we obtain
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3.3. Proof of Theorem

cw (W) < sup ¥(tw) < sup f(t),

>0 >0
where o
2 _ U
2%

2 .
£6) = S| / fZds it > 0.
2 -

Simple computations yield that f(¢) attains its maximum at the point f =
1

[
— = . It then follows that

fR" |u\23dx

*

11 Jw? T g Jw]? "
sup f(t) = (5 — 5, 2 o AN
20 &\ (fyn [uf?da) 2 (fign uf28der) 2

Since w is an extremal for S(n, «a,~,0), we get that

cw(W) < sup f(t) = ~-S(n,a,7,0)s.
t>0 2n

We now need to show that equality does not hold in (3.31)). Indeed, otherwise
we would have that 0 < ¢, (V) = sup U(tw) = sup f(¢). Consider t; > 0
>0 >0

(resp., ta > 0) where sup ¥ (tw) (resg_)., sup f(t)) is attained. We get that
>0

t>0
25.(s) 2% (s)
_ tl \w(x,0)| * _
f(tl) 22(8) /n |:1:|8 d$—f(t2)7

which means that f(¢1) > f(t2) since t; > 0. This contradicts the fact that
to is a maximum point of f(¢), hence the strict inequality in (3.31) holds.
To finish the proof of Proposition [3.7, we can assume without loss that

2(n—s)

n
a

S(n,a,, s)% < %S(n, a,7,0)

Let now w in X“ (Rffl) \ {0} be a positive minimizer for S(n, a, ", s), whose
existence was established in Section and set

_ 2 9 +2a.(s) |u,221(s)
t) = — — dx.
F(t) = S lwl %@/nmsx
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3.3. Proof of Theorem

As above, we have

33(s>
)l e
cw(V) <sup f(t) = (5 2% ( )) [u|2&(9) S
>0 als (fRn ums d$)2’&(s)
— 275 S(n,a,y,s)a

2(n—s)
Again, if equality holds, then 0 < c,(¥) < sup ¥(tw) = sup f(t), and if
>0 >0

t1,to > 0 are points where the respective suprema are attained, then a
contradiction is reached since

2%, B
fty -5 [ JuPido = fe)

Therefore,

0 < ¢u(¥) < ¢ = min {;S(n, a,’y,O)%, %S(n,a,'y, 3)2:z } .
Finally, the existence of a Palais-Smale sequence at that level follows imme-
diately from Lemma [3.6 O

3.3.2 Analysis of the Palais-Smale sequences

We now study the concentration properties of weakly null Palais-Smale se-
quences. For § > 0, we shall write B} = {(z,y) € R : |(z,y)| < 6} and
Bs:={x e R": |z| < d}.

Proposition 3.8. Let 0 < v < yg(a) and0 < s < «a. Assume that
(wk)ken is a Palais-Smale sequence of ¥ at energy level ¢ € (0,c¢*). If
wp, — 0 in X*(RTT) as k — oo, then there exists a positive constant
€0 = eo(n,a,7,¢,8) > 0 such that for every § > 0, one of the following
holds:

: 2% 0 1 lug 22 .
1. limsup st |ug|?dz = lim sup fBa e dx =0
k—o0 k—o0
2. limsup [, |ug|>*>dz and limsup |, s 2o 5 €0-
Bs Bs |x|S -
k—oo k—o0

The proof of Proposition requires the following two lemmas.

36



3.3. Proof of Theorem

Lemma 3.9. Let (wi)ken be a Palais-Smale sequence as in Proposition
If wy — 0 in X(R%), then for any w cC R™\ {0} and any D CC
R"+1 \ {0}, there exists a subsequence of (wi)ken, still denoted by (wg)ken,
such that

2 2% (s)
i [ g o [ (3.32)
k—oo J,, |$‘a k—oo J,, |ZC‘S
and
lim lug|**dz = lim / y' | V| *dedy = 0, (3.33)
k—o0 D* k—o0 D

where uy, = wg(.,0) for all k € N, and D* := {(z,y) € D : y = 0} CC
R™\ {0}.

Proof of Lemma|3.9. Fix w CcC R™\ {0}, and note that the following frac-
tional Sobolev embedding is compact:

Hf (R") < LY(w) for every 1 < ¢ < 2.

Using the trace inequality 1} and the assumption wg — 0 in X O‘(RTFI),
we get that
up — 0 strongly for every 1 < g < 27,

On the other hand, the fact that |x|~! is bounded on w CcC R™\ {0} implies
that there exist constants C7,Cy > 0 such that

0 < lim [ ——dr < C hm/|uk|2daz
k—o00 |l’| w

and

2% (s)
0< lim/| T” dx < Cy hm/|uk|2 als)q

k—o0

Since s € (0, a) we have that 1 < 2,2%(s) < 2%. Thus, ) holds.

To show , we let n € C§° (R”H) be a cut-off functlon such that
N« :==n(.,0) ECO (R"\ {0}),=1in D and 0 <7 <1 in R We first
note that

ka/ yl_a\V(nwk)\Qdmdy = ka/ yl_a]ank\Qda:dy +o(1). (3.34)
Ri+1 RiJrl

Indeed, apply the following elementary inequality for vectors X,Y in R*+!,

X + Y] = |XP| < CUX|IY]+ Y P),
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3.3. Proof of Theorem

with X = yliTaank and Y = ykTakan, to get for all k£ € N, that
|y =V () |2 =y~ VP < C (v Vgl lwr Vnl + v [w, V) -

By Holder’s inequality, we get

/ yl_a|V(nwk)|2dxdy - / yl_a|77Vwk|2dxdy
Ri+l Rn+1

+

ylf‘)‘|wk\2dmdy
supp(Vn)

(/ y' O w [Pdwdy)? +/ y' " wy*dady | .
supp(Vn) supp(Vn)
(3.35)

Since the embedding H!(supp(Vn),y*~®) — L?(supp(Vn),y'~®) is com-
pact, and w, — 0 in XO‘(]RZLFH), we get that

< O3 |l o ( / Y1 g Pdedy) o+ /
+ supp(Vn)

<C4

/ Y=g Pdady = o(1),
supp(Vn)

which gives

/ Y |V (qwy)|Pdady = / y' " InVwg|*dzdy + o(1).
Rn+1 Rn+1

+ +

Thus, (3-34) holds.

Now recall that the sequence (wg)ien has the following property:

lim '(wy) =0 strongly in (X*(R%)). (3.36)

k—o0

Since n?wy, € X“(R’fﬁl) for all k € N, we can use it as a test function in

(3.36) to get that
o(1) = (V' (wy,), n*wy,)

11—« 2 nf‘uk‘Z
= kq /Rn y~*(Vuwy, V(n wy))dzdy —7/
+

—dx
re |7
) 2 2% (s)
/ nf|uk|2adaz/ ol e dz.
n no|xl®

+1
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3.3. Proof of Theorem

Regarding the first term, we have

ka/ y1*a<Vwk,V(n2wk))dwdy = ka/ ylfa]ank\dedy
RiJrl Rn+1

+

+ ka yl_awk<v(n2)v VlUk>d$dy

n+1
R+

From Hélder’s inequality, and the fact that wy, — 0 in L?(supp(|Vn]), y'=%),
it follows that as k& — oo,

k‘a/ yl_a(Vwk,V(T]ka»dxdy - ka/ yl_o‘|77Vwk|2dxdy
Rn+1 Rn+1

+ +

ka / Y wp(V(n?), V) dady
Ri“

s%/ Y=g |V (1) | V| dedy
Rffl

<C y' O k| [V |dzdy
supp(|Vn|)

< CHwk”X“(Ri‘H) (/ o) yl—a’wk|2d:cdy)
supp(|Vn
=o(1).

Thus, we have proved that

1
2

ka/ yl_O‘<Vwk, V(ngwk»dazdy = ka/ yl_o‘|17Vwk\2dxdy +o(1).
Ri+l RiJrl

Using the above estimate coupled with (3.34), we obtain
o(1) = (V' (wg), n*w)

1 2 772|Uk|2
—ka/ y Y nVwgl dafdy—'y/ T ——dx
R7H! K |zl

. zu 25(s)
—/ nf!uk!%dx—/KwdwﬂLO(U (3.37)

|z[®

:m/ wﬂvmemw—/nmwwmwm
Rt Rn

+

> [lnwgl|® - /R n2|ug|®*dz +o(1)  as k — oo,
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3.3. Proof of Theorem

where K = supp(ns). Therefore,
g2 < / Invun 2wl 2dz + o(1) s k = oo. (3.38)
]Rn

By Hoélder’s inequality, and using the definition of S(n, ,~,0), we then get
that

®

2 24
rwg | < 2y ) " Zdr) Y 4ol
nwg|* < A |nur| > dx A lug |“>dx +o(1)

e (3.39)
-1 2 2 2
< 800020l ([ ulae) o)
R
Thus,
2% -2
-1 2 % 2
1= S(n, a,,0) </ g adx> ol < o(1).  (3.40)
Rn
In addition, it follows from (3.29) that
1
W) — (¥ (an), i) = o),
that is,
11 o 1 1 || 2o (5)
S bd + (= — " g = 1), (341
5-50) [ nlede+ G = 5o [ Hde = erolt), (341
from which follows that
x 2
/ lug| %o dz < L o(l) ask — oc. (3.42)
R™ «

Plugging (3.42) into (3.40]), we obtain that
—1/2n e 2
1—S(n,a,v,0)" (—c)n | [[nwg]* <o(l) ask — oo.
«
On the other hand, by the upper bound (3.28)) on ¢, we have that
c < %S(n,a,’y,O)%.
This yields that 1 — S(n,a, 7, 0)*1(%”0)% > 0, and therefore,
lim [Jy]® = 0.
k—o00
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3.3. Proof of Theorem

Using (2.13) and (3.10), we obtain that

lim ka/ y 7|V (nwy ) |Pdady = 0.
R

k—o0

It also follows from the definition of S(n,a,~y,0) that

lim [Nty ?e dz = 0.
k—o00 Rn
= 1, the last two equality yield (3.33). 0

Since n‘ =1 and 7,
D

D*

Lemma 3.10. Let (wg)ren be Palais-Smale sequence as in Proposition .
For any 6 > 0, set

. 2* . |uk|22‘(s)
0 .= hmsup/ |ug|“edx; (= hmsup/ ———dx and

k—oo JBj k—oo JBj || (3.43)
Jug|? '

[

= lim y =¥V |Pdady — 7/ dx,
B
&

k—oo BT s

where wy, == Tr(wg) = wy(.,0) for all k € N. If wy, — 0 in X*R}H!) as
k — oo, then the following hold:

2

2
1. 0% < S(n,a,7,0)" 'y and (%G < S(n,a,7,8) .

2. p<O+C.

Proof of Lemma|3.10. First note that it follows from Lemma that 6, ¢
and p are well-defined and are independent of the choice of § > 0. Let now
n € C& (R be a cut-off function such that 7, := n(.,0) € Cg°(R™\ {0}),
n=1in By, andOﬁnﬁlinRT‘l.

1. Since nuwy, € Xa(RiH), we get from the definition of S(n,a,~, s)

* 2
S(n, a7, 0)( / 25 dr)
Rn

dx.

2

_ UL

< ke / Y| () [2dady — / il
e e 12l

(3.44)
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3.3. Proof of Theorem

On the other hand, from the definition of 7, it follows that

2
o [ 0oV sy — [
Rn+1

n R |T|*

2
_/ yl_o‘\VwkIdedy—’y/ | dx
B} ||

5 Bs

1—a 2 ’U*Uk|2
+ y Y| Vg |*dedy — ~ ——du,
supp(n)\ By supp(n.)\Bs ||

and

« 2 ¥ 2
</ stl%dxvzé(/ ey dar) %
Bs R™

Note that supp(n) \ By ccC R\ {0} and supp(n:) \ Bs cC R™\ {0}.
Therefore, taking the upper limits at both sides of (3.44), and using Lemma
we get that

2 1N 1-a 2 _ |ug[?
S(n,a,v,0)( [ |ug|dx)? < y Vg |*dxdy — —dx+o(1),
Bs BY Bs ||

as k — oo, which gives

2
02 < S(TL, a, 7, O)_llu'

Similarly, we can prove that

2
(%G < S(n,a,7,s)

2. Since n*wy € X(RT) and (W'(wy),n*wy) = o(1) as k — oo, we
have
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3.3. Proof of Theorem

o(1) = (¥’ (wk), 1*wy)

2
zka/ yl‘”‘ka,V(n?wmdxdy—v/ |77*u;;\ dz
Ri+1 n ’:L'|

. 2 2% (s)
_/ Uf\uk\%d%—/ Mdm
R™ noo |zl

2 3.45
= ka/ yl_“\anklzd:cdy—’Y/ |?7*u;;| dx ( )
R+ R |7

. 2 2% (s)
_/ nz‘uk‘Qadl‘_/ 77*|Uk| dx
n no|xl®

By Holder’s inequality, and the fact that wy — 0 in L?(supp(|Vn|), y' =),
we obtain that

ka/ ) ylfawk<V(n2),Vwk>dxdy
RTL 1

ko [ 907 [V dedy
R}

<c / y1=0 || Vg | derdy
supp(|Vn|)

< C”wk HXQ(Ri*l) Hwk HLZ(supp(|V77|),y1*°‘)

<o(l) ask— cc.
Plugging the above estimate into (3.45), and using (2.13)), we get that

o(1) = (¥’ (wk), n*wy)

2
- ka/ ylaV(nwk)\dedy—’Y/ |"*“’j dx
R+ R 2|

. 2145 [26(5)
—/ nf]uk]%dx—/ %dw—i—o(l)
- 2 |ug|?
> y Y| Vwg|“dedy — ~ —dx

B;’ Bs |3’)|
. 25(s)

- </ ]uk’%dx> - / %dm

Bs Bs ‘$|
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3.3. Proof of Theorem

2 20, 125(s)
U * LU
—/ 7‘77 i dx+nf|uk|2ad:v—|—n [ dx + o(1).
supp(n+)\Bs

|]*

Noting that supp(n«) \ Bs CC R™\ {0}, and taking the upper limits on both
sides, we get that pu < 60+ (. O

Proof of Proposition |3.8. It follows from Lemma that

2
025 < S(n,,7,0) ' u < S(n,a,7,0)7'0 + S(n, a,v,0)7'¢,
which gives

2% —2

2 (e}
0% (1 — S(n,a,v,0)71072%5 ) < S(n,a,v,0)" . (3.46)
On the other hand, by (3.41), we have

2n
0 < —ec.
a
Substituting the last inequality into (3.46), we get that

2n a2
(1= S(m.7,0) " (Ze) )0 < S(n,a,7,0)7¢.

Recall that the upper bounded (3.28) on ¢ implies that

2n L a
1—-58(n, a,’y,O)*l(Enc)ﬁ > 0.

2
Therefore, there exists §; = d1(n, a,,¢) > 0 such that 2 < §;¢. Similarly,

2
there exists do = da2(n,,v,¢,8) > 0 such that (2 < §26. These two
inequalities yield that there exists g = €y(n, o, 7y, ¢, s) > 0 such that

either  §=(=0 or {0>e¢eand(>ep}. (3.47)
It follows from the definition of 6 and ¢ that

2x |Uk|2“(s)
either lim sup/ lug|“dz = lim Sup/ ———dx = 0;
Bs Bs

k—o00 k—o00 ’CE|S
. 2% . |uk|2;(s)

or lim sup |ug|“edx > €y and limsup ——dz > ¢.
k—oo JBs k—oo JBs |T[®
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3.3. Proof of Theorem

3.3.3 End of proof of Theorem

We shall first eliminate the possibility of a zero weak limit for the Palais-
Smale sequence of ¥, then we prove that the nontrivial weak limit is indeed
a weak solution of Problem (3.6). In the sequel (wy)ren will denote the
Palais-Smale sequence for ¥ obtained in Proposition

First we show that

limsup/ lup|2dz > 0. (3.48)

k—o00

Indeed, otherwise klim Jgn |ug|?*dz = 0, which once combined with the fact
—00

that (U'(wy), wy) — 0 yields

5 ”U,kPZ(S)
il :/R Mt o(l) ek o

By combining this estimate with the definition of S(n,«,~, s), we obtain

2
25(s) \ m®
(/ '“k'dw) < S(n, @, 7, 8) "y

||
< S(n,a,”, 8)_1/

which implies that

2
2% (s) 25(s) 2% (s) 2% (s)—2

It follows from (3.28) and (3.41) that as k — oo,

28.(s) _
/ wdl’ —92.0 "% 4 o(1)

|z|* a—s
and el
(1—=S(n,a,7,s) 1(2004 — S)n—S) >0
Hence,
lim de =0. (3.49)
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3.3. Proof of Theorem

Using that klim fR" lug|>>dx = 0, in conjunction with (3.49) and (3.41), we
—00
get that ¢+ o(1) = 0, which contradicts the fact that ¢ > 0. This completes

the proof of .

Now, we show that for small enough € > 0, there exists another Palais-
Smale sequence (vi)gen for U satisfying the properties of Proposition ,
which is also bounded in X®(R’"!) and satisfies

/ log(z,0)[?ede = ¢ for all k € N. (3.50)
By

For that, consider ¢y as given in Proposition ﬁ Let 8 = limsup fR" |y |2
k—

(o9}
dz, which is positive by (3.48). Set €1 := min{3, ¢} and fix € € (0,¢1). Up
to a subsequence, there exists by continuity a sequence of radii (7x)xen such
that [, |ug|?*dz = € for each k € N. Let now
Tk

n—«

vp(z,y) =71, 2 wi(rpz,rpy)  for z € R™ and y € R,

It is clear that

/ lu(, 0)|%e dx = / lup|?>dz =€ for all k e N. (3.51)
By .
It is easy to check that (vg)ren is also a Palais-Smale sequence for ¥ that
satisfies the properties of Proposition

We now show that (vg)ken is bounded in Xa(RTrl). Indeed, since
(vk)ken is a Palais-Smale sequence, there exist positive constants Cp,Cy > 0
such that

C1 + Collvg|| > ¥ (vg) — 2 (5) (U (vg), vi)

1 1 5 1 1 o
> (= ——— — - 0)[%>d
—(2 2z<s>)””’“”+(2z 2;(8))/an<x, Fede

1 1

The last inequality holds since 2 < 2%(s) < 2¥. Combining with
(3.10), we obtain that (vy)gey is bounded in X*(R7H).

It follows that there exists a subsequence — still denoted by vy — such
that vy, — v in X*(R7) as k — co. We claim that v is a nontrivial weak
solution of . Indeed, if v = 0, then Proposition yields that

either limsup/ o (2, 0)|%>dz = 0 or limsup/ o (,0) % dx > e.
B1 Bl

k—o0 k—o0

46



3.3. Proof of Theorem

Since € € (0, %), this is in contradiction with (3.51), thus, v # 0.
To show that v € X O‘(R?fl) is a weak solution of 1) consider any ¢ €
Cse (R, and write

o(1) = (¥'(vg), p)
= ka/ y' Vg, Vo) dady — 7/ U2, 0)p
R Rn

x 2;(s)—2
—/ (2, 0) 2 2vg (2, 0)pda — / vk (2, 0)] o ’Uk(a:,())godx'
(3.53)
Since vy, — v in X*(R™) as k — oo, we have that
v Ve Veldady o |y Vo, Veldudy, Ve € CFRE)
RiJrl Ri+1

In addition, the boundedness of v; in X (R’7*) yields that

k(- 0), [oi (-, 0) 2220, (, 0) and |ug(., 0)[2) =20, (., 0)
are bounded in LQ(R",|x]_“),L%(R") and L%(R", |z|~*), respec-
tively. Therefore, we have the following weak convergence:
vk(-,0) = v(.,0) in L*(R™,|z|7%)
vk (- 0)[22 20 (., 0) = v(.,0)>*%v(,,0) in L%(R”)
(-, 0))2 ()20, 0) = [o(.,0)[2)"2p(.,0)  in L%(Rn, l2|7%).

Thus, taking limits as k — oo in (3.53)), we obtain that

0= (¥'(v), )

= ka/ y =V, V)dzdy — 'y/ U(ZE’O)(’Od:c
Ri"'l Rn

||

x 25(s)—2
[ oG0P, 0 - [ DB kO,
8 Rn T

Hence v is a weak solution of (3.6).
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Chapter 4

Mass and Asymptotics
Associated to Fractional
Hardy-Schrodinger
Operators in Critical
Regimes

4.1 Introduction

Throughout this chapter, we shall assume that

n+a
)
FQ(n;a)?

0<a<n and 0<~vy<~yg(a)=2“ (4.1)
which is the best fractional Hardy constant on R™ (see below). We may also

sometimes use the following notations for S4(y) and f_(v) introduced in
Remark [1.4:
By = PB(y) and B :=B_(7).

Our main focus will be on the case when o < 2, that is when (—A)?2
is not a local operator. We shall study problems on bounded domains, but
will start by recalling the properties of (—A)% on the whole of R", where it
can be defined on the Schwartz class S(R™) (the space of rapidly decaying
C* functions on R™) via the Fourier transform,

(=2)3u = FH(|2n¢]*F (u)).
Here F(u) is the Fourier transform of u. For a € (0, 2), the fractional Sobolev

space HO% (R™) is defined as the completion of C2°(R™) under the norm

Jul® o
HE (&™)

- / 2me|*| Fu(€) Pde = / (~A) % ufd.
Rn R
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4.1. Introduction

As we mentioned before in (2.17)), the fractional Hardy inequality in R™ then
states that

L f n 4U|2d{13 n _ aFQ(m)
~vi(a) ;= inf R fRn ||;LI\Z (R )\ {0} p =2 W%“),

which means that the fractional Hardy-Schrodinger operator L., , is positive
whenever (4.1) is satisfied. In this case, a Hardy-Sobolev type inequality
holds for L. It states that if 0 < s < a < m, and 2%(s) = 20=5) then

n—o ’

[y,s,0(R™) is finite and strictly positive, where the latter is the best constant

2
. Jen 1(= A) T ul2de — 'YfRn |g|a dzx
Poy,s,0(R™) := inf R - l2l* (4.2)
ueHZ (R™)\{0} (fgn FE dx)2a<5>

Note that any minimizer for (4.2) leads —up to a constant— to a variational
solution of the following borderline problem on R",

{(‘A)2 TRl = in R (4.3)

Indeed, a function v € HF (R") is said to be a weak solution to 1' if
u >0, u# 0 and for any ¢ € H7 (R"), we have

Cra (u(@) —uly) (@) =) , [ w w7
2 /<Rn>2 & — y[rre dzdy‘/ Ol T P

Unlike the case of the Laplacian (o = 2), no explicit formula is known for
the best constant 11, (R™) nor for the extremals where it is achieved. We
therefore try to describe their asymptotic profile whenever they exist. This
was considered in Ghoussoub-Shakerian [39]; where Theorem is proved.

Note that the cases when v = 0 are by now well known. Indeed, it
was stated in [19] that the infimum in pg0o(R") is attained. Actually, a

function u € HO% (R™)\ {0} is an extremal for pg 0, (R") if and only if there
exist zgp € R, k € R\ {0} and r > 0 and such that

_(nfoc)
i(z) =k (r* + |z —x0?) 2 for all € R"™.

Asymptotic properties of the positive extremals of ji s (R™) (i.e., when
v=0and 0 < s < a) were given by Y. Lei [48], Lu-Zhu [54], and Yang-Yu
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4.1. Introduction

[71]. The latter proved that an extremal @(z) for p0 s (R™) must have the
following behaviour: There is C' > 0 such that

_(n—ao) _(n—a)
CHa+1z)" 7 <al@) <C(1+]z*) 2 for all z € R™. (4.4)

Recently, Dipierro-Montoro-Peral-Sciunzi [21] found a similar control of the
extremal for py0(R") (i.e., when 0 < v < yg(a) and s = 0). Our first
result is an improvement of their estimate since it gives the exact asymptotic
behaviour of the extremal of fi, s (R™) in the general case. For that, we
consider the function

(4.5)

Theorem 4.1. Assume 0 < s<a <2, n>a and 0 <y < yg(a). Then,

any positive extremal u € HO% (R™) for iy s o(R™) satisfies u € CH(R™\ {0})
and

lim |z|% Mu(z) = Ao and  lim |z Du(z) = A, (4.6)
z—0 |z|—o00
where Ao, Aoo > 0 and B () (resp., B+ (7)) is the unique solution in (0, “5%)

n—«o

(resp., in (T,n - a)) of the equation ¥, (t) = ~. In particular, there
exist C1,Cy > 0 such that

Ch < u(z) < Cy
2P~ ¢ [P = = B0 2B+ ()

for all x € R™ \ {0}.

Remark 4.2. Note that a direct consequence of Theorem is (4.4) and
the corresponding control by Dipierro-Montoro-Peral-Sciunzi [21].

Also note that if « = 2, that is when the fractional Laplacian is the
classical Laplacian, the best constant in the Hardy inequality is then vy (2) =

%. The best constant associated with the Hardy-Sobolev inequality is
2
. . Jgn [VulPdz — v [z %daz
s (RY) o= ueplé?u{n)\{o} G - B
(fR" Pk dz) )

where s € [0,2), 2*(s) := %, 0 <~y <2 = % and D'2(R")
is the completion of C£°(Q) with respect to the norm ||ul|? = [, [Vu|*dz.
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4.1. Introduction

The extremals for jiy s 2(R™) are then explicit and are given by multiples of
the functions u(z) = e U(%) for € > 0, where

U(z) = ! L for R™\ {0},

(=)o (1) =)oy () 25
Bl S

and
n—2 n—2)?2

Note that the radial function u(x) = |z|=# is a solution of L, 2(u) = 0 on
R™\ {0} if and only if

_fy'

pefo-(7),0:(M} (4.7)

Back to the case 0 < a < 2, we now turn to when 2 is a smooth bounded
domain in R™ with 0 in its interior. The best constant in the corresponding
fractional Hardy-Sobolev inequality is then,

u\r)—u u 2
. %= 5 Jrn Jrn | |(a: )y|n+yc)v| drdy — [, %dﬂf
IU,%&(X(Q) = <;1¢nf \u|20‘(5) *2
ueHZ ()\{0} (Jo Hapdr) %0

)

where H%(Q) is the closure of CSO(Q) with respect to the norm

2 _ na lu(z ‘2 _ AN 12
HuH = |x_ |n+a ————=" dxdy = |(—A)1u|*dx.

In Proposmon we note that —just like the case when o = 2— we have
Hy,s,0(2) = M%S’a(Rn), and therefore restricted to €, with Dirichlet
boundary condition has no extremal, unless €2 is essentially R™. We therefore
resort to a setting popularized by Brezis-Nirenberg [11] by considering the
following boundary value problem:

2% (s)—1

(8)Fu = = S e inQ
‘ (4.8)
u>0 in Q)
u=20 in R™\ €,

where 0 < A < )\1( v,a) and Ai(Ly.q) is the first eigenvalue of the operator
Lyo=(—A)% — e |a with Dirichlet boundary condition, that is

C’I’L (e 2
S S D= Gy — o [,

A= MLy o) = inf
1 1(Lya) M Jq utdzx

weH? (@)\{0}

51



4.1. Introduction

One then considers the quantity

—Uu 2 u
G [on fion P Gy — o [ 2 da — A [y uPda

2 |[z—y[nte

M’y,s,a,)\(ﬂ) = ginf - =
u€Hg (2)\{0} (fﬂ u2a () dx) 25 ()

|z[*

b

and uses the fact that compactness is restored as long as iy sqx(2) <
Hy,s,a(R™); see Proposition and also [11] for more details. This type of
condition is now classical in borderline variational problems; see Aubin [4]
and Brezis-Nirenberg [11].

When o = 2, i.e., in the case of the standard Laplacian, the minimization
problem /iy s o2 (€2) has been extensively studied, see for example Lieb [50],
Chern-Lin [17], Ghoussoub-Moradifam [35] and Ghoussoub-Robert [36]. The
non-local case has also been the subject of several studies, but in the absence
of the Hardy term, i.e., when v = 0. In [65], Servadei proved the existence of
extremals for 110,001 (R™), and completed the study of problem (4.8)) which
has been initiated by Servadei-Valdinoci [63, 64]. Recently, it has been
shown by Yang-Yu [71] that there exists a positive extremal for i 5 (R")
when s € [0,2). In this chapter, we consider the remaining cases.

In the spirit of Jannelli [45], who dealt with the Laplacian case, we
observe that problem is deeply influenced by the value of the parameter
7. Roughly speaking, if 7 is sufficiently small then /i s oA (€2) is attained for
any 0 < A < A;. This is essentially what was obtained by Servadei-Valdinoci
[64] when s = = 0 and n > 2« via local arguments. This is, however not
the case, when ~ is closer to vy (), which amounts to dealing with low
dimensions: see for instance Servadei-Valdinoci [63]. In this context of low
dimension, the local arguments generally fail, and it is necessary to use global
arguments via the introduction of a notion of mass in the spirit of Schoen
[61]. In the present case, and as in the work of Ghoussoub-Robert [37], we
define a notion of mass for the operator L, o, — AI, which again turns out to
be critical for this non-local case. The mass is defined via the following key
result.

Theorem 4.3. Let 2 be a bounded smooth domain in R™ (n > «) and
consider, for 0 < a < 2, the boundary value problem

(—A)SH — (#—i—a(a:))H:O in Q\ {0}
H>0 inQ\{0} (4.9)
H=0 inR"\Q,

where a(z) € CO7(Q) for some T € (0,1). Assuming the operator (—A)z —
(s + a(x)) coercive, there exists then a threshold —oo < Yerit(a) < vh ()

ER
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such that for any v with Yerit (@) < v < vu(«v), there exists a unique solution

to (in the sense of Deﬁnitian H:Q—R, H#QO0, and a constant
c € R such that

1 c 1
H(Jj) = ’w‘6+(7) + ‘x’ﬂf(ﬂ + o <x|ﬁ(7)> as T _> O

We define the fractional Hardy-singular internal mass of €2 associated to the

operator L. o to be
ms () :=ceR.

We then prove the following existence result, which complements those in
[65] and [71] to the case when v > 0.

Theorem 4.4. Let Q be a smooth bounded domain in R™(n > a) such that
0€Q, andlet 0 < s < a, 0 <7 < vyg(a).Then, there exist extremals for
Hy,s.a.0(§2) under one of the following two conditions:

1. 0 <y < verit(a) and 0 < A < Ai(Ly,a),
2. Yerit(@) <y <vym(a), 0 <A < Ai(Ly,a) and mg,(2) > 0.

The idea of studying how critical behavior occurs while varying a param-

eter v on which an operator L o continuously depends goes back to [45], who

considered the classical Hardy-Schrédinger operator L. o := —A — #, and

showed the existence of extremals for any A > 0 provided 0 < v < % —1.

In this case, Verit(2) = % — 1. The definition of the mass and the coun-
terpart of Theorem for the operator L. 2 was established by Ghoussoub-

Robert [37]. The complete picture can be described as follows.

Hardy term Dimension | Singularity| Analytic. cond. | Ext.

0 <7 <Aeit(e) n > 2« >0 A>0 Yes
Yerit(@) < v < vr(a) n > 2« s>0 mS,(2) >0 | Yes
0 <~ <~vyu(a) a<n<22a 5>0 mS () >0 | Yes

Even though the constructions and the methods are heavily inspired by
the work of Ghoussoub-Robert [37] on the Laplacian case, the fact that the
operator is nonlocal here induces several fundamental difficulties that had
to be overcome. First, the construction of the mass in the local case uses
a precise classification of singularities for solutions of corresponding elliptic
equations, that follows from the comparison principle stating that behavior
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in a domain is governed by the behavior on its boundary. In the nonlocal
case, this fails since one needs to consider the whole complement of the
domain, and not only its boundary. We were able to bypass this difficulty
by using sharp regularity results available for the fractional Laplacian. An-
other difficulty we had to face came from the test-functions estimates in the
presence of the mass. In the classical local case, one estimates the associ-
ated functional on a singular test-function, counting on the mass to appear
after suitable integrations by parts. In the nonlocal context, this strategy
fails. We overcome this difficulty by looking at the integral on the boundary
of a domain as a limit of integrals on the domain after multiplying by a
cut-off functions whose support converge to the boundary. This process is
well-defined in the nonlocal context and proves to be efficient in tackling the
estimates involving the mass.

4.2 The fractional Hardy-Schrodinger operator
L., onR"

In this section, we study the local behavior of solutions of the fractional
Hardy-Schrédinger operator L o := (—A)2 — # on R™. The most basic
solutions for L, ,u = 0 on R™ are of the form u(z) = |z|~”, and a straight-
forward computation yields (see [34])

(=A)z|z| P = U, (B)]x] 7%~ in the sense of S'(R™) when 0 < § <n — a,

where

D(25)r(242)

L("=5=*)0(5)

Recall that the best constant in the fractional Hardy inequality

U, 0 (B) = 2° (4.10)

Jor =8 TuPde gy g0y

va (@) == po,a,o(R") = inf

|ul?
Jzn ﬁ?d:ﬁ
i i ‘ ; n—a o2
is never achieved (see Fall [29]), is equal to Vpo("5%) = 295 (ﬁ ) (see
4
Herbst and Yafaev [43, 69]), and it converges to the best classical Hardy

T on2
% whenever o — 2.

constant v (2) =

We summarize some properties of the function 8 +— ¥, ,(/5) which will be
used freely in this section. They are essentially consequences from known
properties of Gamma function I'.
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4.2. The fractional Hardy-Schrodinger operator L, , on R"

Proposition 4.5 (Frank-Lieb-Seiringer [34]). The following properties hold:

1. Wy, o(B) >0 forall € (0,n — a).

2. The graph of ¥y, o in (0,n — ) is symmelric with respect to "5*, that
is,

U, alB) =Vpaln—a—p) forall e (0,n—a).

3. Wy, o is strictly increasing in (0, "5%), and strictly decreasing in ("2,
n—a).
n—a«a
4. VUp o < 5 > =y ().

5. lim ¥, , = lim W, =0.
i Wa(8) = lim V()

n—«

6. For any v € (0,vu(a)), there exists a unique B_(v) € (0, "5%) such
that Wp.a(B-(7)) =7

7. For any 0 < B <n — «, we have that
(=A)2 |2 ? = Wy o (B2 P + cnalipen—ado in S'(R™), (4.11)

where we define ¥, o(n —a) =0 and ¢, o > 0 is a constant.

In particular, for 0 < 8 < n — a,

((-80% = 2 ol = 0n /@) i and oniy if 8 € {6.(2). 5-(2),
x
where 0 < B_(y) < "5% is as in Proposition and 1 (y) == n—a —
B-(v) € (%,n — a). In particular, it follows from Proposition that
B-(7), B+ () are the only solutions to ¥, o(5) = v in (0,n — «). Since
0 < B-(7) < 5% < Br(y) < n—a, we get that o — |2|77-() is locally
in Hy (R™). Tt is the“small” or variational solution, while z + |z|=#+()
is the“large” or singular solution. We extend S_(7v),5+(y) to the whole
interval [0, yg ()] by defining
n— o
p-(0):=0, B+(0)=n—-a, and B-(yu(a))=L+(vu(a)) =——,
(4.12)
which is consistant with Proposition
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4.2. The fractional Hardy-Schrodinger operator L, , on R"

We now proceed to define a critical threshold 7.t (c) as follows. Assuming
first that n > 2a, then "5% < § <n — «a and therefore, by Proposition ,
there exists () € (0, («)) such that

3 <Bi() <n—a ifye(0.7()
B =5  ify=73(
<A<y iy e () ym(a).
We then set
¥(a) if n>2a
Yerit(ar) := 0 ifn=2«a (4.13)

-1 ifn < 2a.

One can easily check that for v € [0,vx(«)), we have that

S (VCrit(a)ar}/H(a)) ~ ﬁ+(7) < <~ T |$|—5+ ”) € Lloc(Rn)'

|3

We now introduce the following terminology in defining a notion of solution
on a punctured domain.

Definition 4.6. Let Q be a smooth domain (not necessarily bounded) of R™,
n > 1. Let f be a function in L} (Q\ {0}). We say that u:Q — R is a

solution to N
(—A)2u=f inQ\{0}
0 in 09,

provided

1. For any n € C(R™\ {0}), we have that nu € HO% (Q);

2. fQ 1+\o:|"+“ dr < oo;

3. For any ¢ € C(Q\ {0}), we have that

Cna y)(e(z) — ¢(y)) B o) da
/n/n |:c_ ot dady = Rnf( Jo(z)d

Note that the third condition is consistent thanks to the two preceding it.
If Q is bounded, the second hypothesis rewrites as v € L'(€2).
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4.3. Profile of solutions

4.3 Profile of solutions

Throughout this chapter, we shall frequently use the following fact:

Proposition 4.7. A measurable function u : R™ — R belongs to H%(R") if
and only if [o, [u|260) dz < 400 and f 2 [u(@)—u()l® drdy < 4o00.

[z—y[nto

The proof consists of approximating v by a compactly supported func-
tion satisfying the same properties. Then, by convoluting with a smooth
mollifier, this approximation is achieved by a smooth compactly supported
function. The rest is classical and the details are left to the reader.

To prove Theorem we shall use a similar argument as in Dipierro-
Montoro-Peral-Sciunzi [21]. The main idea is to transform problem
into a different nonlocal problem in a weighted fractional space by using a
representation introduced in Frank-Lieb-Seiringer [34].

Lemma 4.8 (Ground State Representation [34]; Formula (4.3)). Assume
0<a<2,n>a 0<fp <52 Foruec CPR"{0}), we let vg(x) =
|z|Pu(z) in R™\{0}. Then,

na |’LL )’2 B u2($)
/n /n |:L‘— |n+a dxdy\ljn,a(ﬁ)/ |$’0‘ dx

na/ / |Uﬁ _vﬁ(y)|2 dxﬂ
n Jrr \90— e el [yl

Let now u € HO% (R™) be a positive weak solution to (4.3). Then by (4.4)
and Remark 4.4 in [21], we have

2 2 2% (s)
na/ / |u u(y)| d:L‘dy—*y/ u (@) dw—i—/ ui(x)dx.
n JRn \x — \”+0‘ n x| no|x)®

Set v(z) = |z|?Mu(z) on R"\{0}. It follows from Lemma and the
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4.3. Profile of solutions

definition of S_(v) that

Cra jvo(z) —v(y)]? dx  dy
/"/" ’x_ ’"*“ ]P0 [y[F-()
’ 2
_ na /n /n |u‘$— n+a’ dxdy—{ln,a(gf(w)) /Rn U’m(‘ez) d
25(s) )
—"Y/ ( daj—i—/n ui() dx_qj”,a(ﬁ—('y))/ u*(z) i

| z[* R 2]

25(s)
= / SRk 7 . (xz dx
Rn |x|8+ﬁ_ (7)2a(s)

For 0 < 8 < 52, define the space HZ ’B(R”) as the completion of C°(R™ \
{0}) with respect to the norm

() —¢(y)|* dz dy
||¢” 2/3 n — n+a B 1B
12 @)\ Jgn Joe !93 ! |7 [y

Many of the properties of the space H 2P (R™) were established in [22]. By

Lemma Remark 4.4 in [21] and [1], we have that v € Hi’ﬁ(R”) Now,
we introduce the operator (— Ag) , Whose action on a function w is given

via the following duality: For ¢ € H;; 2P (R™),

. O W)(02) — o(y)) d dy
(it =S [ f SRR ol Tyl

This means that v is a weak solution to
in R, (4.14)
in the sense that for any ¢ € H 27~ (R™), we have that

Cna y)(@(x) —¢ly)) drx dy _ 2a(9)-1
/n /n |x—y|n+a 2|8~ |y|P- _/ W@ﬁdw.

The following proposition gives a regularity result and a Harnack inequality
for weak solutions of (4.14).
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4.3. Profile of solutions

Proposition 4.9. Assume 0 <s<a <2, n>aand0 << "5%, and let
vE HE’B(R”) be a non-negative, non-zero weak solution to the problem
p2a(s)—1

_ ; n
= |$|8+523(5) in R".

(—Ag)2v
Then, v € L*(R") and there exist constants R > 0 and C > 0 such that
C < wv(x) in Bgr(0).

Proof. The statement that v(z) > C in Br(0) is essentially the Harnack
inequality for super-harmonic functions associated to the nonlocal operator
(—=Apg)?, which is just Theorem 3.4 in Abdellaoui-Medina-Peral-Primo [2).

3

See also the proof of Lemma 3.10 in [2] and also [21]. We now show that
v € L®(R™) by using a similar argument as in [21]. For any p > 1 and
T > 0, define the function

6,1 (1) = tP ifo<t<T
P prrl =Ty + TP ift > T
It is easy to check that the function ¢, 7 (t) has the following properties:
e ¢, 7(t) is convex and Lipschitz in [0, 00).

o ¢,7(t) <t forall t > 0.
o ¢}, 7(t) < 2pdy,r(t) for all ¢ > 0, since

16 (1) = popr(t) f0<t<T
pT pTP~1t  ift>T.

o If 75 > Ty >0, then ¢p 7 (t) < ¢p1,(t) for all ¢ > 0.
Since ¢p, 7(t) is convex and Lipschitz, then as noted in [49],
(—2p)%¢p1(v) < G r(v)(~Ap)2v n R™ (4.15)

Since ¢, 7(t) is Lipschitz and ¢, 7(0) = 0, then ¢, 7(v) € HE’B(R”). By the
weighted fractional Hardy-Sobolev inequality, the ground state representa-
tion formula, Lemma and , we get that there exists some constant
Coy > 0 which only depends on n, «, s and 3 such that

2
/ [Epr (@) 1= G / / (¢p.r(v(2) = dpr(v(y))* dz dy
n P20 =2 Jen e o =yl 17 Jyl?”

(4.16)
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4.3. Profile of solutions

Since ¢, 7 (t) > 0 for all t > 0, we get from (4.15)) that

6 (0(x)) — Gprw@)P de dy
/(R”)2 |z — y|te |z|P \y|ﬂ / Gpr(v)(—Ap)2 Ppr(v)de
= / ¢p,T(U)¢;,T(U)(—A5)%Uda:

2% (s)—1
/ ¢pT pT )| |s+52* )dl’
_ N 25, (s)—2
< QP/Rn |pp,(v)] mdfﬁ-

Note that the last inequality holds, since t¢j, 1-(t) < 2pg(t) for all t > 0. By

(4.16), we have

2

(Gpr ()2 %O L %2
[/n W dz S ng /]Rn |¢P,T(U)| W dr. (4.17)

2,(5)
2

Letting p; = , then

2
‘(ﬁ ,T(U)Pz(s) 25(s) p2a(s)—2
[/n Q‘SJFW dx < p1Co /R” |¢p1,T(U)|2W dz. (4.18)

For m > 0, a simple computation and Hoélder’s inequality yield that

) 023(5)—2
r1Co /R” |Ppy,7 (V)] de
) ,022;(8)—2 J
=20 [ OO i

) 02’&(3)72
+ p1Co /v(ac)>m |61, 7(v)] de

2
< p1Com2a(s)=2 / [ ()
(

o(@)<m || s+624(s)
2 2 (5)—
+p100/ ‘(ﬁsgs’f;:;z)(‘w) U serEzRGy 00
v(x)>m ’m‘ 23(3) ‘$|S+62a(5)_ 23(3)
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4.3. Profile of solutions

2
< 2%, (s)—2 |Pp1,7 (V)]
< piCom /R PO

2 a—s
2% (s) 25(s) 2% (s) n—s
/ ‘¢P1,T(U)l dm / v . d.%'
v(@)>m  |z]sHA%) o(@)>m |@]5TH2a()

2
2% (s)—2 |Ppy,1 (V)]
< piCom /R FECHeR

_2
|¢p1,T(U)|2;(S) i 2a(s) U%(s) "
" ’x‘s-i—BQj;(s) o(@)>m |x’s+,32’&(s)

o 25(s)
38 mn v
Recall that v € H; " (R"), hence /Rn FEZRG

take a large My > 1 and fix it in such a way that

+p1Co

S‘Q
@

+p1Co

dxr < oo. Thus, we can

a—s
n—s

IN

p1Co

/ 1)2:; (S) d
G
o(@)> Mo 2]*TF2a()

Since ¢y, 7(t) < tP* for all t > 0, then by (4.18) and the fact that py = =<
we get

_2
|bp, (V)220 |20 (-2 [ |bpr (@)
) < o )
[/n Gl dx < 2p1Co M, /]R” PR dx

o
n |x|3+623(5)

25(s)
_ 2%.(5)2 v
= 2p100M0 /Rn W dx. (419)

S 2p100M§Z(s)72 / dx
R

Let C; = 2COM023(5)_2. By taking T — oo in (4.19) and applying Fatou’s
lemma, we get that

2
vp122(s) d 2a(s) c 1)2:1(8) d
— < —_— .
/Rn |2|5+52a%(s) o =P 1/Rn || s+825(5) T

Define now recursively the sequence {py}rey as follows:

20k4+1 + 25(s) — 2 =pg2.(s) forall k> 1. (4.20)
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4.3. Profile of solutions

Using (4.17)) and (4.20]), we have

2

25,.(s) 25(5) 2% (5)—2
[ / . |¢pf;|1;fggls> dx] < pe+1Co /R i |¢pk+1,T(v)|2’;|s+(,3;3(s) dx
2 /1)22(5)_2
< pk+1CO /an pk“mdx
Pr25(s)
Copk+1 /Rn de (421)

We also have used the fact that ¢, ., 7(t) < tPs+1 for all ¢ > 0. By taking
T — oo in (4.21) and applying Fatou’s lemma, we get that

2
VPR+125(5) 25 PrE25(s) de for all k
_ < _ > 1.
/Rn P < Coper /Rn g e forallk 21
Hence, by (4.20), we obtain that
1
,Upk_HQZ(S) 25, (8)(Pr41—1)
[,
e 2] TB2()

_ _ 1
. 1 5 Pr25(s) 2(Pp+1—D
Pk+1— -
< (Coppt1) 27+ /Rn 2 dx

- 1
o N P25 (5) . S re—T)
= Pr+1— J— €T
(Copir) an 2] HPEG)

For k > 1, set

SPR25(9) EOwD S i
— — Pey1—1)
Iy /]R” FEEAN dx and Dy = (Copiy1)

We have I 11 < Dyl for all kK > 1, and

InCo+1Inpjq

Inlpyy < lnDk—i—lnIk<ZlnD —|—lnI1<Z 20 0
7+1 —

7j=1

+lnI1.

It follows from (4.20)) that pyy1 = p§(p1 — 1) 41 for all & > 0. This coupled
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4.3. Profile of solutions

with the fact that p; > 1 yield

+Inly

~ InCy Z nfp](pr — 1) + 1]
i —1) = 2wl - 1)

In Cy k 111]3]1Jrl
217] (pl - 1) j=1 2pj1(p1 - 1)

IN

< <
”Mk HM?T
— —

In Iy 41

+Inl; < Cy < 0.

For any fix R > 1, we then have

P24 (5) EOGED
/ de <, <e®?=:Cy forallk>1.
|z|<R T o

Since s + 327,(s) > 0, we then get

» o ()P S+ﬂ22(5)
/ P20 g < C3R %Gk for all k > 1.
|[z|<R

Since lim pj = oo, we have
k—o00

1

. 28 (s)p
0]l 2o (B(0)) = lim / vPE2() dy < C,
j2|<R

k—o0

and finally, that [|v||fecgrn) < Cs. O

Proof of Theorem [f.1. Let v(x) = ||~ Mu(x) in R"\{0}, by the discussion
before at the beginning of section 3, we know that v € HO% " (R™) is a positive
weak solution to . We deduce from Proposition that for all R > 0,
there exist some constant C' > 1 such that C~1 < v(z) < C in Bg(0). Since
v(x) = |z~ Mu(z) in R"\{0}, then

~1
|;|’;_(V) < ufz) < WC_M in Br(0)\{0}. (4.22)

In order to prove the asymptotic behavior at zero, it is enough to show that
lin%) |2|P~Mu(z) exists. To that end, we proceed as follows:
T—

Claim 1: uw € CH(R™\ {0}).
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4.3. Profile of solutions

This is consequence of regularity theory and we only sketch the proof. First
we define fo(x) := v|z|"%u + u?()= 2|73, so that for any w CC R™\ {0},
we have that (—A)*/?u = fy in w in the sense that u € H? (R™) and

Cna / (u(x) — u(y))(d(x) — o(y))
(R™)?

2 |z — y|te

dxdy = / fop dz for all p € C°(w).

It follows from (4.22)) that fo € L*(w). Since u > 0 and fy € L™®(w), it
follows from Remark 2.5 (see also Theorem 2.1) in Jin-Li-Xiong [46] that
there exists 7 > 0 such that u € Cloo’g(]R” \ {0}). Then, using recursively

Theorem 2.1 in Jin-Li-Xiong [46], we get that u € C1(R™\ {0}). This proves
the claim.

Claim 2: There exists C' > 0 such that |z|?-+|Vu(z)| < C for all 2 €
B1(0) \ {0}
If not, then there exists a sequence (z;);en € B1(0) \ {0} such that

dim |z~ V()| = +oo.
1—>+00

For simplicity, we write f_ := f_(7). It follows from from Claim 1 that

lim x; = 0.
1——400

We define r; := |z;| and we set
u;i(z) == r?’u(m-x) for all x € R™ \ {0}.

It is easy to see that u; € HO% (R™), u; > 0for alli € Nand (—A)*/?u; = f; in

w CC R™\ {0} where fi(z) := v|z|™“u; +7‘14(22“(8)_2)(%_&)1;?3(8)_1|ac]*5 for
all x € R™\ {0}. Using the apriori bound of Remark 2.5 (see also Theorem
2.1) in Jin-Li-Xiong [46], we get that there exists 7 > 0 such that for any
R > 1, there exists C(R) > 0 such that [|uillcor(Bg(0)-B, ,(0) < C(R) for
all i € N. Using recursively Theorem 2.1 of [46] as in Step 1, we get that
for any w CC R™ \ {0}, there exists C'(w) > 0 such that [Ju;|c1(,) < C(w).
Taking w large enough and estimating \Vul(m—zlﬂ, we get a contradiction,

|z
which proves Claim 2.
Set now h(z) := w2972 5o that (=A)*?y — Jzu = h(z)u in R™. It

|z[* ER

follows from Claims 1 and 2, that h € C*(R" \ {0}), and for some C > 0,

h(z)| + || - |Vh(z)] < Cz]0= for all z € B1(0) \ {0},
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4.4. Analytic conditions for the existence of extremals

where 0 := (2},(s) — 2)("5* — 3-) > 0. It then follows from Lemma m
below that there exists A\g > 0 such that

lim |2|%-u(z) = .
xli%\x] u(z) =X >0

In order to deal with the behavior at infinity, let w be the fractional Kelvin
transform of wu, that is,

wle) = el "ula) = laf* a2 ) i B0}

By Lemma 2.2 and Corollary 2.3 in [32], we have that w € Hg (R"). A
simple calculation gives us that w is also a positive weak solution to (4.3).
Indeed, we have

(—A)S w(z) = mim ((_A)%u) <|xx|2> _ @) WO z)

Ed |z]*

Arguing as in the first part of the proof, we get that there exists Ao, > 0
such that
lim |z|% Mw(z) = Ao > 0.

z—0

Coming back to u, this implies that
lim |z Mu(z) = Ao > 0.

|z|—o00

This ends the proof of Theorem [4.1] O

4.4  Analytic conditions for the existence of
extremals

Let a € C%7(Q) for some 7 € (0, 1), and define the functional JS? : HO% Q) —
R by

C’na u\xr u
J(u) = Jer Joe wdmy 'me e — [ aude

‘u‘Qa() 2;‘!(5)
(fsz EE dzx

in such a way that

toysa($) = inf { JHu) s u € HE (Q)\ {0}} .

We now prove the following proposition, which gives analytic conditions
for the existence of extremals for fiy s a,q(€2).
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4.4. Analytic conditions for the existence of extremals

Proposition 4.10. Let Q be a bounded domain in R™ (n > «) such that
0 € Q, and assume that 0 < v < vyg(a) and 0 < s < a.

1. If py,s,0,a(2) < fiy,5,a(R™), then there are extremals for piys.a.q(S2) in
HZ ().

2. If a(x) is a constant A, with 0 < X < Ai(L,q) and if s < «, then
oy, s,0,a(€2) > 0.

Proof. Let (ug)ren C H%( 2)\ {0} be a minimizing sequence for fiy s a,q(£2),
that is,

JHug) = fy s.0.a() +0(1) as k — oo.

Up to multiplying by a constant, we may assume that

25(s)
/ UT‘\ de =1 (4.23)
Q X
na U, —u i
e [ e s [ (o) ukde = (@40t
(4.24)

as k — 4oo. By (4.23), we have /u%d:c < C < oo for all k. Since 0 <

Q
v < vu(«), the fractional Hardy inequality combined with (4.24) yields that

|lug| o < C for all k. It then follows that there exists u € HZ (Q) such
HZ () 0

that, up to a subsequence, such that (uy) goes to u weakly in HZ () and
strongly in L?(Q2) as k — oo.

We first show that fQ |“||iT:S) dx = 1. Define 0;, = uy, —u for all £k € N. It

follows from the boundedness in Hog (Q) that, up to a subsequence, we have

that 6 — 0 weakly in HO%(Q), strongly in L?(Q) as k — oo, and 6y (x) — 0
for a.e. x € Q as k — +o0o. Hence, by the Brezis-Lieb lemma (see [10] and
[70]), we get that

|ug (2 / / |0k (z )P
d dy = dxdy
/n /n |$_y|n+a n n |$_y|n+a
2
u\x
+) / e o),

2: B 2% ()
T A |k| +/ |ul :
X

Q \93|5

dx + o(1),
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4.4. Analytic conditions for the existence of extremals

0 2
/ukd /kd+/udx+o()
Q |z Q |z]* Q |z
/u%dmz/quaE—i—o(l), as k — oo.
Q Q
Thus, we have

insna® =52 [ [ MR ety [ (i o) ]
5L yekix—yw daty o [ ein] ot

(4.25)

and

as k — +00. The definition of iy () and HZ () C

|u|22(5) 2*(9) na/ / u(z |2
sa.a( d —————dxd
“%””<Q o o e
G
|z
and

|9k|2‘§(5) (S) na/ / |9k )|
sa(R™ dx dxdy
:U’% s ( ) < Q |SC|S " " |$C 7y|n+a
—’y/ k —dz.
|zl

Summing these two inequalities and using (4.23)) and (4.25), and passing to
the limit k& — oo, we obtain

. 2 \BO u2a®) O\ "o
oy s,0(R™) <1 —/ . dx) < Py s,a,a(2) | 1 — (/ . dx) .
o |z o 7

RIS

R

(4.26)

Finally, the fact that fiy s a,qa(Q) < fiy,s,o(R™) implies that [, dr =1.

It remains to show that u is an extremal for p s ,q(€2). For that, note that
Ju|2a ()

since fQ Ik dx = 1, the definition of u%s,ma(Q) yields that

’“’//‘“ ‘Qdd—/ T4 a) wlde.
/"y,s,aa " " |x_ |?’L+CM y | |a
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The second term in the right-hand-side of (4.25)) is nonnegative due to (4.26)).
Therefore, we get that

M’y,s,aa " " |x _ |n+a y | |a

This proves the first claim of the Proposition.
Now assume that A € (0,A(L,,)) and 0 < v < yg(a), then for all u €

HE @)\ {0},

Cn « €T u
Jun Jion B0 dway — [, (e + ) wPda

JQ(U) = WA %)
ulcals 23 s
(fQ ER dx)
Ch,a u(z)—u(y)|? u?
- (1 A =5 Jpn Jre %dwd(y —7 Jo ppde
- AI(L'y,oc) |u\23(5) %
(ffz EE df”)
A v >
> 11— —Fi— 1- H0,s,a,0 Q
< Al@%a)) < vu (o) )
A y >
=(1-—2—)(1- 110,5,0,0(R™) > 0.
< Al@%a)) < vu (o) &
Therefore, 11y 5q,1(£2) > 0. O

4.5 The fractional Hardy singular interior mass
of a domain in the critical case

In this section, we define the fractional Hardy singular interior mass of a
domain by proving Theorem We shall need the following five lemmae.

Lemma 4.11. Assume 0 < f < n —a, and let n € C°(Q) be a cut-off
function such that 0 < n(z) < 1 in Q, and n(z) = 1 in Bs(0), for some

§ > 0 small. Then z +— n(x)|z|™" € HZ (Q) and there exists fz € LS. (R")
with fs(z) >0 on Bs(0) and fz € C1(Bs(0)) such that

(=A)2 (]2 7P) = @ua(B)lz| 0|z + f5 i D'(Q\{0}),  (427)
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4.5. The fractional Hardy singular interior mass of a domain in the critical case

in the sense that, if va(x) := n(z)|z| =P, then for all p € CX(Q\ {0}),
M/ / (vs(2) — vs () (p(x) —w(y))dxdy: <I>na(5)/ 8P 4.

|z — y[rre Q ||
+ [ fptaydo
Q
Moreover, if B < 5%, then vg € H0 (Q) and equality (4.27) holds in the

classical sense of HO2 (Q)

Proof. When 8 < 5%, it follows from Propositionthat z e )|z e

HO% (©). In the general case, for ¢ € C°(Q\ {0}), straightforward compu-
tations yield

Cn,a (v5(2) —vs (W) (2(@) = ¢()) , o 2P .
// o — y|nte dady = ((—=A)*% ||~ /fﬂsod

where

f5(x) := Cp o lim n(@) = ny)

dy for all x € R™.
€20 J|z—y|>e ’1‘ - y’n-l—oz ’y‘ﬁ

Note that fg € LS (R™), and for x € B5(0), we have that

_ 1-nly)
) _O"’a/n o —y[rte !ylﬂ =0
yielding that f3 € C'(Bs(0)). Since ¢ = 0 around 0, the lemma is a conse-

quence of (4.11). O

Lemma 4.12 (A comparison principle via coercivity). Suppose be a
bounded smooth domain in R", 0 < a < 2, v < yg(«) and a(z) € COJ(Q)

a

for some T € (0,1). Assume that the operator (—A)z — (# + a(x)) is

coercive. Let u be a function in HF (R™) that satisfies

(—A)gu—<’7‘a+a( )>u >0 inQ
v >0 on 0f,

in the sense that u >0 in R™\ Q and

for allv e HO%(Q) with v > 0 a.e. in Q. Then, u > 0 in .
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4.5. The fractional Hardy singular interior mass of a domain in the critical case

=2
2

Proof. Let u_(x) = —min(u(x),0) be the negative part of u. It follows from
)-

Proposition 4.7 that u_ € Hy (£2). We can therefore use it as a test function
to get

I - na/ / )(’U,_([E>—U_(y))d d

- e o

uu_
-y [ —=dx — / a(z)uu_dx > 0.
a |z 0

Let

O i={r:u(x) >0} and Q :={z:u(r)<0}.

Straightforward computations yield

0< —(Lu_,u_ ”a/ /Q+ _y|£z(y)dxdy

(W)uta) o
ot Ja- ’»T - y|"+a
which yields via coercivity
2
el g ) < (L) <0
Thus, u_ = 0, and therefore, v > 0 on 2. ]

Lemma 4.13. Assume that u € HO%(Q) is a weak solution of
(—A)5u — (”OW)) w=0 inHZ(Q),

for some T > 0. If u # 0 and u > 0, then there exists a constant C' > 0 such
that
C7' < |z Du(z) < C forxz—0, z €.

Proof. We use the weak Harnack inequality to prove the lower bound. In-
deed, using Theorem 3.4 and Lemma 3.10 in [2], we get that there exists
C7 > 0 such that for 6; > 0 small enough,

w(x) > Cylz| %) in Bs,.

The other inequality goes as in the iterative scheme used to prove Proposi-
tion 4.9. O
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4.5. The fractional Hardy singular interior mass of a domain in the critical case

Lemma 4.14 (See Fall-Felli [30]). Consider an open subset w C Q with
0 € w, and a function h € C'(w) such that for some T > 0,

|h(2)| + |z| - [Vh(z)| < Clz|"™% for all z € w\ {0}.

Let u € HO% (Q) be a weak solution of

in the sense that for all ¢ € C°(w),

C;a/n/n (“(x)_“(y))(“’(”:)_‘P(y»dxdy_y/gWd:vz/gh(m)wdfﬂ-

|z — y[te kg

Assume further that there exists C' > 0 such that
C < |z-Du(z) < C forz —0, z €.
Then, there exists [ > 0 such that

lim |2]%-Mu(z) = 1.

z—0
Proof. This result is an extension of Theorem 1.1 proved by Fall-Felli [30],
who showed that under these conditions, one has

tig a2 VO () = (0.5) in Gl o)\ (0} (029

where ¢ € R and 1 : S?fl = {0 € S"*! §; > 0} — R are respectively an
eigenvalue and an eigenfunctions for the problem

1 l—a — l—a : n+1
{ div(0;" V) = pb; ™Y in S7 (4.29)

—limg, 0 011 70,10 (61, 0") = vkatp(0,60')  for 0 € OST,

where k, is a positive constant defined in Section We refer to [30] for
the explicit definition of this eigenvalue problem, in particular the relevant

spaces used via the Caffarelli-Silvestre classical representation [12]. It then
follows from the pointwise control (4.22) that
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and by Proposition 2.3 in Fall-Felli [30], that p is the first eigenvalue of the
eigenvalue problem . Then, using classical arguments, we get that the
corresponding eigenspace is one-dimensional and is spanned by any positive
eigenfunction of (no matter the value of u, it must necessarily be the
first eigenvalue).

We are left with proving that (0, %) is independant of x. In view of the
remarks above, this amonts to prove tLe existence of a positive eigenfunction
that is constant on the boundary.

We now exhibit such an eigenfunction by following the argument in Propo-
sition 2.3 in [30]. First, use ([29], Lemma 3.1) to obtain T' € C°([0, +00) x
R™) N C2((0,4+00) x R™) such that

—div(t!=eVI) =0 in (0, +00) x R"
—limy_o t'799,I'(t,7) = kaﬁ for x € R™ = 0((0,4+00) x R")
0,z) = |z| -0 for x € R" = 9((0,400) x R™).

(4.30)
Moreover, I' is in the relevant function space, I' > 0 and satisfies

[(z) = |2|7%-0r <|Z|> for all z € (0,400) x R"
2

where |z| = \/t? + |z]? if z = (¢,2z). In particular, we have that I'(z) =
|2| 7B Mg (8) for 6 = 177 and some v € CO(SH) N C2(STH). Following
[30], we get that 1) is an eigenfunction for the problem (4.29). Moreover,
o > 0. Therefore, 1y corresponds to the first eigenvalue and spans the
corresponding eigenspace. Finally, we remark that for 6 € aSTffl, we have

that

¥0(0,0) =T(0,0) = 9| #-) = 1.

Since the eigenspace is one-dimensional, there exists [ € R such that ¢ =
L+ tho. Therefore ¢(0, 7) = for all z € B1(0) \ {0} ¢ R™. It then follows

from (4.28) that

lim |z]%-Mu(z) =1 >0,
z—0
which complete the proof of Lemma |4.14 O

Proof of Theorem [4.5. We first prove the existence of a solution. For § > 0
small enough, let n € C°(Q2) be a cut-off function as in Lemma such
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4.5. The fractional Hardy singular interior mass of a domain in the critical case

that n(z) =1 in Bs(0). Set 8 := f4+(y) < n — « in (4.27) and define

)= (=A% - (L talx x| P+0)
s == (=80 = (Z5 +a@) ) alel 2+
= —fno e V0L

in the distribution sense. In particular, f € C*(Bs(0)\ {0}) and there exists
a positive constant C' > 0 such that

()] + |z - [V f(2)] < Clz| P+ for 2 # 0 close to 0. (4.31)

In the sequel, we write Sy = [B4+(y) and B- := [_(v). Note that the
assumption v > 7er¢(a) implies that 51 < § < ’”Ta Thus, using 1)
and the fact that By < 2%, we get that f € L%(Q) Since L%(Q) =

n / o / o
(Lffa(Q)) C <H02 (Q)) , there exists g € Hy (2) such that

((—A)Z‘ - ('y + a(m))) g = f weakly in H ().

Edi
Set
H(z) = ‘Zﬁﬁ +g(z) for all z € 0\ {0} (4.32)
Thanks to (4.27), H : Q@ — R is a solution to
AV H - (2 -0
(—A)SH (W +a(a:))H 0 inQ)\ {0} (433)
H=0 inR"\Q,

in the sense of Definition [4.6. The idea is to now write f as the difference of
two positive C! functions. The decomposition f = |f| — 2f_ does not work
here since the resulting functions are not necessarily C''. To smooth out the
functions z — |x| and x — x_, we consider

1(x) ==V 1+ 22 and @a(x) := p1(z) — x for all z € R.
It is clear that 1,2 € C1(R) and there exists C' > 0 such that
0<gi(z) <C(L+]z]), l¢i(z)| < Cand z = @i(z) — 2(z),  (4.34)

for all z € R and ¢ = 1,2. Define f; := ¢; o f for i = 1,2. In particular,
f = f1— fo. Let g1, 92 € HF () be solutions to

R

(—A)2g; — <|;’a + a(m)) gi = fi weakly in HO%(Q) (4.35)
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4.5. The fractional Hardy singular interior mass of a domain in the critical case

for ¢ = 1,2. Since f1, fo > 0, Lemma yields g1, g2 > 0. Also

((_A)‘§ N (7 +a($)>> (9—(1—92))=f—(f—f2)=0.

Ed

It follows from coercivity that g = g1 — g2. Assuming g; # 0, it follows from
Lemma 3.10 in [2] that there exists K’ > 0 such that g;(z) > K'|z|~%- in

B5(0) \ {0}.

Since ¢ € HO% (€), it follows from (4.35) and Theorem 2.1 of Jin-Li-Xiong
[46] that g € C27(Q\ {0}) for some 7 > 0. Arguing as in the proof of

loc

Theorem 4.1, we get that g; € C1(Q2\ {0}). Setting

_ hi(@)
91()

we have that h € C1(Bs(0)). Now use (4.31) and (4.34) to get that

filz) < CA+|f(2)]) < Cla| P+ = Cla| P~ |a|* O+ =8|z~
< Kl‘$|—a+(a—(ﬁ+—57))gl(m)_

h(z) :

for x close to 0,

Using the fact that v > vei () if and only if o — (B4 — 5-) > 0, we get
that |h(z)| < Clz|"~¢ for x — 0 where 7 := a — (f4+ — 5—) > 0. Therefore,
we have that

v+ O(|z| (= (B+=F-)))

kg

g1 = 0 weakly in HO% (Q),

with g1 > 0 and g1 # 0. It then follows from Lemma that there exists
¢ > 0 such that ¢! < [z|%-g1(2) < ¢ for & € Q, 2 # 0 close to 0. Arguing
as in Claim 2 in the proof of Theorem we get that there exists C' > 0
such that

¢t < |z|Pg1(x) < ¢ and |2|P-F1 Vg (x)] < C for all z € B5(0).  (4.36)

We now deal with the differential of h. With the controls (4.31), (4.34) and
(4.36), we get that

2] - [VA(x)] < Clal"™ for @ € Bs(0) \ {0}.

Now, writing (—A)2 g, — |%%gl = h(z)g in  and using Lemma we get
that |z|~%-g1(x) has a finite limit as 2 — 0. Note that this is also clearly
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the case if g1 = 0. The same holds for go. Therefore, there exists a constant
¢ € R such that |2| 7%~ g(x) — ¢ as © — 0. In other words,

1 c 1
H = —0
(=) \xrﬂ++\xrﬂ+°<1xrﬁ> o0,

and there exists C' > 0 such that |g(z)| < C|z|~#- for all z € Q.

We now prove that H > 0 in Q \ {0}. Indeed, from the above asymptotic
expansion we have that H(z) > 0 for x — 0, z # 0. Since YH € HZ (R")
for all x € C°(R™\ {0}), it follows from Proposition 4.7 that H_ € HZ (2
B(0)) for some ¢ > 0 small. We then test (4.33) against H_, and arguing
as in the proof of Lemma we get that H_ = 0, and then H > 0. Since
H #0, H € C1(2\{0}), it follows from the Harnack inequality (see Lemma
3.10 in [2]) that H > 0 in Q\ {0}. This proves the existence of a solution u
to Problem (4.9) with the relevant asymptotic behavior.

We now deal with uniqueness. Assume that there exists another solution
u' satisfying the hypothesis of Theorem [4.3l We define 4 := v — u’. Then
u: Q2 — R is a solution to

{ (~A)%a (= +a@)) a=0 inQ\ {0}
=0 inR"\Q,

in the sense of Definition . Since |u(x)| < C|z|~#- for all 2z € Q where
C' > 0 is some uniform constant, then by using Proposition 4.7 one concludes

that u € HZ (Q2) is a weak solution to

that is, for all ¢ € HO% (Q),
o [ (@) 5@ —pw) , [ (4, N
/(Rn)2 dxdy /]R" ( +a( )> pdr = 0.

2 |z — y[rte [

Taking ¢ := u and using the coercivity, we get that 4 = 0, and then u = v/,
which yields the uniqueness. O

4.6 Existence of extremals

This section is devoted to prove the main result, which is Theorem By
choosing a suitable test function, we estimate the functional J$(u), and

75



4.6. FExistence of extremals

we show that the condition fiya,a(2) < fiy,s0(R™) holds under suitable
conditions on the dimension or on the mass of the domain. Recall that
Proposition 4.10, implies that it is this strict inequality that guarantees the
existence of extremals for fiy sq,q(£2).

We fix a € C7(Q), 7 € (0,1) and n € C°(Q) such that
n=11in Bs(0) and n = 0 in R™\ Bys(0) with Bys(0) C Q. (4.37)

Let U € HZ (R") be an extremal for iy s 4.0(R™). It follows from Theorem
that, up to multipliying by a nonzero constant, U satisfies for some
Kk >0,

a ’7 . UQZL(S)_l . % n
(—A) 2U — WU = K/W Weakly 1m ‘HU (R ) (438)
x x
Moreover, U € C*(R™\ {0}), U > 0 and
‘?m\ﬂmU@ﬂ:L (4.39)
T|—00
Set
Cn,a (u(@)—u(y))®
Py oo iy U dedy — fo (fr+a)edr A
- 2 - 2
| (7 ) st
(4.40)
where
) [ uf%B®
A(u) := (u,u) — | auder and B(u):= (4.41)
0 o |zl
with
Cno / (u(z) — uy))(v(zr) = v(y))
u,v) = ’ dxdy 4.42
< > 2 (Rm)2 ’1’ — y’n-l—oz ( )
g 3 (mon
_/]Rn Wuvdw for u,v € Hy (R").
Consider

n—ao

uc(z) :=¢ 2 Ule tx) for x € R™\ {0}.

It follows from Proposition 4.7 that nu. € Hg (€2).
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4.6.1 General estimates for nu,

We define the following bilinear form B, on HO% (R™) as follows: For any
o, ¢ € Hy (R),

By(p,9) == (nw, ) — (@, mb)
_ Cha n(z) —n(y)
_ /(R n(x) = i

2 ny2 |z — ylrte

(pW)(z) — @(z)(y)) dzdy.
(4.43)

This expression makes sense since 7 = 1 around 0 and n = 0 around oo.
Note that

8 Ue NUe
(ue,nue) = (ue, n*uc) + P Bn( R /3+—ﬁ>' (4.44)
€ 2 € 2

It follows from (4.38)) and the definition of u. that

25(s)—1 o
(Ue, ) = I-’i/Rn unTscpdx for all p € HZ (R").

By a change of variable, we get as ¢ — 0,

2, 25(s)
Uu
<u57772ue> = /‘3/ Tt

|z[*

25,(s) 23,(s)
= /<;/ Ue " dz + O / Ue " dx
re |7 R"\ Bs(0) |z|
2%,(s) 25.(s)
= /i/ u p dx + O / v . dr | .
n |zl R\B, 1,(0) ||

With (4.39), we get that

dx

no |zl
22(s) (4.45)
— ° B+—B-
m/n E dx+0<e )

We now deal with the second term of (4.44). First note that

Bﬂ( Ue MU ):Cn,a / (n(x) = nW)* uele) —uew) , o
¢ ()2

By—B_ 7 By—PB_ _ anta By—B— By—B_
p) € 2 2 ’x y| € 2 € 2
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It follows from (4.39)) and the pointwise control of Theorem that there
exists C' > 0 such that for any = € R™ \ {0}, we have that

C

ue () 1

=8(z) = 2] and ()

By—B_
€ 2

hm —
e—0 ﬂ+ A

(4.46)

Since n(x) = 1 for all z € Bs(0) and B4 (y) < n, Lebesgue’s convergence
theorem yields

lim B, ( Ue 1te )zCn’a/(n) (n(x)_n(y))QS(ﬂf)S(y)dmdy

By—B_ 7 By—PB_ _ ylnta
e—0 e T e T 2 ’.T y|

= By(S,n5).

(4.47)

By plugging together (4.44)), (4.45) and (4.47)), we get as € — 0,

2:(s)
(nue, Mue) = K / UMS dz + B, (S,nS)e’+ =P 40 (6’3+_B*> . (4.48)

Arguing as in the proof of (4.45)), we obtain as € — 0,
(nue)®a / yZals) 818
\be) 27 gy = dz + o(e®+P-). (4.49)
/ nozlf -
As an immediate consequence, we get

Proposition 4.15. Suppose that 0 < s < a<n, 0 <a<2and0 <~y <
~vi(a). Then,

N’y,s,a,O(Q) = M’y,s,a(Rn)~
Proof. 1t follows from the definition of i s o (€2) that fiy 5 0,0(2) > fiys.a(R™).

We now show the reverse inequity. Using the estimates ( - ) and (| -
above, we have as ¢ — 0,

K frn U2 fﬁ
JPUe) = ! +O(eP+5-)

I M D)
R |$‘S

= JU)+0(e +-Bf> — iysa(B") + O(H ),

Letting € — 0 yields fiy.5,0,0(2) < fty,5,o(R™) from which follows that

Hy,5,0,0(82) = fhy, 5,0 (R™).
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4.6.2 The test functions for the non-critical case

We now estimate J(nu.) when 0 < v < 7.4(a), that is in the case when
B- > 5. Note that since 8 + B4 = n — a, we have that

B+ — B— > a when v < veie(a) and Sy — - = aif v = verie(a). (4.50)
We start with the following:

Proposition 4.16. Let 0 < s < a < 2,0 < v < 7eit(@) and n > 2a. Then,
as € — 0,

a2y — 1 € (e U?dz) a(0) + o) if 0 <7 < Yerin(@)
/Q (ue)d _{ wn,lRa(O)ea In(e™!) +o(e*Ine) if v = vYerir().

Proof of Proposition |4.16. We write

/a(nuE)Qdac:/ auzd:v—l—/ a(nue)?dx
Q Bs Bas\Bs
= / a(ex)U%dz + O(P+=P-).
B

e—1s

Assume that v < 7erit(). Since 1 > % and U € CH(R™\{0}) satisfies (4.6),
we get that U € L?(R") and therefore, Lebesgue’s convergence theorem and
the assumption 4 (y) — - (y) > «a yield

/Qa(nue)2 dx = e* </ Uzdx> a(0) + o(e*) ase—0.

If now v = yerit(@), then limyg o |z|2U(z) = 1 and 34 —B_ = a. Therefore
/Q(nue)Qdaz = wn_1a(0)e*In(e™!) + o(e*Ine) as e — 0.

This proves Proposition 4.16. O

Plugging together (4.48)), (4.49) and Proposition then yields, as e — 0,

U2 (s)
K Jgn "l L U?d
T (nue) = Je —a(0) fR o)
(f Uz g ) a<s) (f ) 25(5)
Rn ‘xP Rn |xP
n LU d
= JY(U) - a(0) Je et o(e), (4.51)

f U24(s ) 2% (s)
Rn ‘x|s
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when v < Yerit (), and

Wn—1

n 1 1
T nue) = JE(U) - a(0) < s ) T € In - + o0(e%In €)7 (4.52)
fRn UI;\: dz )"

when v = vt ().

4.6.3 The test function for the critical case

Here, we assume that 7 > et (a). It follows from Theorem that there
exists H : '\ {0} — R such that

He Y\ {0}), ¢H € HZ (Q) for all £ € CX(R™\ {0}),
(~2)FH — (e +a)) H=0  weaklyin 0 {0}

H >0 in )\ {0}

H=0 in 02

and lim, o |z|?+ H(z) = 1.

Here the solution is in the sense of Definition [4.6. In other words, the second
identity means that for any ¢ € C2°(2\ {0}), we have that

C%“A%W(H@ﬁ_fﬂwxwm)_¢@»dm@—/;<7+a)H¢dx:0

2 |z —y[rte Eds

(4.53)
Note that this latest identity makes sense since H € L(Q) (since 85 < n).
Let now 7 be as in (4.37)). Following the construction of the singular function

H in (4.32), there exists g € HZ () such that

H(x):= |Zg(]32 + g(z) for x € Q\ {0},

where

wlR

(32— (s +a)o=17 (454)

||
with f € L>(Q) and f € C*(B;(0) \ {0}). It follows from (4.31) that there
exists ¢ > 0 such that

[f(x)| < :U|CB+ for x € Q\ {0} and |V f(x) for all z € Bs/2(0) \ {0}.

(4.55)

| S L
[P+
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We also have that

S .02
_m'y,a( )+0< 1

I = gl ]~

) as z — 0, and |g(z)| < Clz| P~ for all z € Q.
(4.56)
Define the test function as
By —B— —
Te(z) =nue(z)+e 2 g(xz) forallz e\ {0},

where

uc(x) =€ 2 U(e 'a) for € R™\ {0},

and U € HO% (R™) is such that U > 0, U € CY(R™\ {0}) and satisfies (4.38)

above for some £ > 0 and also (4.39). It is easy to see that T, € H (Q) for
all € > 0.
This subsection is devoted to computing the expansion of JS}(T,) where

JS is defined in (4.40)), (4.41) and (4.42)). For simplicity, we set S(z) := |x|1ﬁ -

for x € R™\ {0}. In particular, it follows from (4.11) that we have that

(—A)$S — 1§ = 0 weakly in R™\ {0}, (4.57)

e
in the sense that (S, ¢) = 0 for all ¢ € C°(R™ \ {0}). First note that

T, ) —
lim ——— = H in Ly, (2\ {0}).

By —
e—0 e T —

By—B_
Therefore, since |e~ 3 T.(z)| < Clz|=P+ for € Q\ {0} with 28, < n,
Lebesgue’s theorem yields as € — 0,

/ aT? dx = P+=F- / aH? dx + o (em_ﬁ*) ,
Q Q

By—B_

Since T, = nu. + €~ 2 g, we have that

A(T.) = (T.,T.) — P+ 5 /

aH?*dz + o (em_B*)
9

By—B_ .
= (Nue,nue) + 26 2 (Nue, g) + 2+ (g, g)

— eﬁ+_5/aH2dx+0(eﬁ+_ﬁ)
9
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We are now going to estimate these terms separately. First, Formula (4.43)

and (4.48)) yield, as € — 0

2a(s) By—B_
A(Te) = Ii/ L dx + 26%@15, ng) + €6+_B*M€ +o (€ﬂ+—57> 7
(4.58)

As to the second term of (4.58), we have
UQ:;(S)_l
(weng) = [ H M

28, (s)—1 a
We set 0 := [pn W dz. It is easy to check that, since ng € Hj (),

(ue)e is bounded in Hg (R™) and goes to 0 weakly as e — 0, we have that

lim 0, = 0. (4.59)

e—0

Therefore we can rewrite (4.58) as

25(s) By—B_
AT) =x [ S dut 2w T 04 BB Mo (HP) (160)

as e — 0.

where

Ue Ue

Fi(a,y) = 100 ( e ()g(a) - M(m>g<y>> .

- _ +
|z —y[rte .

Remembering that n = 1 in Bs(0) and n = 0 in Bys(0)¢ and using (4.56)),
we get that

|Fe(@,y) jgj<s/2| < Clpnjes/aliysslal Py~ Tot8-) e LY(R™)?).
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4.6. FExistence of extremals

Similarly, we have a bound on F; on {|z| > 3§}. By symmetry, this yields
also a bound on {|y| < 6/2} U {|y| > 3d}. We are then left with getting a
bound on A := [Bs5(0) \ B5/2(0)]2.

For (z,y) € A, we have that

e,y < O,x‘fyﬂm-(esf}_ <y>—6ﬁf}_<x>> g(z)
+ c,x‘f T (% (@)(g(x) —g<y>>>
< Clz—yio" ( () — ()| + g () —g<y>\>.

As noticed in the proof of Theorem 4.3] it follows from elliptic theory that
g € CY(Q\ {0}). Therefore, there exists C' > 0 such that |g(z) — g(y)| <

Clz — y| for all (z,y) € A.
Byr—B_
Setting e := €2, it follows from (4.38) that

* (g)— ‘*22(8)71
(=A)S G — i, = re 2G(Br—0-) e

Ue

e eakly in HE (R™).
It then follows from (4.46|) and arguments similar to the Proof of Theorem
(see Remark 2.5 and Theorem 2.1 of Jian-Li-Xiong [46]) that () is
bounded in CL _(R™\ {0}). Therefore, there exists C > 0 such that |G (z) —
te(y)| < Clz —y| for all (z,y) € A. Then, we get

|[Fe(z,y)| < Clz -y~ € LY(A).

Therefore, (F,) is uniformly dominated on (R")?. Noting that — S (z) =

€ 2

S(x) as € — 0 for all z € R™\ {0}, Lebesgue’s theorem yields

e—0

. Ue
€ 2

Here again, note that B, (S, g) makes sense. Therefore, we get that M, =
M + o(1) as € — 0 where

M= By(S0S) + 28, (S,9) + {g.9) — [ aldo. (162)
Q
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4.6. Existence of extremals

We now estimate B(7¢). Note first that since p > 2, there exists C(p) > 0
such that

llz +ylP — |z|P — plz[P2zy| < C(p) (Jz[P2y* + |y[P) for all 2,y € R.

We therefore get that

By—B_ (2a(s)
‘77“6‘1‘6 2 g
B(T.) = /n PE dx
(nu€>2*(s) By —p_ w2 2% (s)— 1772;;(5)719
:/ 7(11‘—}—2*( ) 2 / dx
" ‘x’s n ’.CL“S

“(8)=2 9% (s)—2 2 * (s
+0 [ +7F- / UE . o g dr + €2a2(‘)(ﬂ+_67) l9 o dr | .
n ||® re  |2|®

Since n = 1 around 0, we get that

/ ugz<s>—1nzz(s>—1gdx:/ O g / WOy
n |z no ol O\Bs(0)  |T|®

as € — 0. Therefore, in view of (4.49), we deduce that

25(s) By—B_
B(T,) = / UP dn 4 2 (s)e 2= 0t o (), (4.63)

j]*

as € — 0. Plugging (4.60), (4.59)) and (4.63)) into (4.40)), we get that

/{f 7[]2*( 2 M
JNT,) = R ol e T PP o (Prr)
(fer O™ ) 7 £ Jen T
n M _ _
“ R |x|

as € — 0, where M is defined in (4.62) and J&" is as in (4.40).

We now express M in term of the mass. Note that in the classical
(pointwise) setting, an integration by parts yield that B,(p, ) defined in
is an integral on the boundary of a domain. Hence, the mass appears
by simply integrating by part independently the singular function H. The
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4.6. FExistence of extremals

central remark we make here is that the integral on the boundary on a
domain (defined in the local setting) can be seen as the limit of an integral on
the domain via multiplication by a cut-off function with support converging
to the boundary —which happened to be defined in the nonlocal setting.
Therefore, despite the nonlocal aspect of our problem, we shall be able to
apply the same strategy as in the local setting.

We shall be performing the following computations in the same order as
the ones above made to get A(T.). The constant M will therefore appear
naturally in the two settings.

Let x € C*°(R™) such that y = 0 in B1(0) and y = 1 in R™\ B(0). For
k € N\ {0}, define xy(x) := x(kx) for x € R™, so that

1 2
Xk(z) =0 for |z] < z and yi(z) =1 for |z| > 7

In particular, (xx)x is bounded in L*>°(R™) and yx(z) — 1 as k — 400 for

a.e. v € R". Since xyH € HZ (), then by the very definition of H (see
(4.53)), we have that

n

0 = <H,XkH>—/ aHxH dx
= S+ g, xxnS + xr9) — / xraH? dx
Rn

= (S, xxnS) + (S, xx9) + (xxnS, 9) + (9, Xx9) — /R xraH? da
= (S, xen*S) + By (S, xamS) + (S, mxkg) + By (S, xx9) + (S, xxm9)
+By,n (S, 9) + (9, Xx9) — /R xkaH? dz.

Since aH? € L'() (this is a consequence of 23, < n) and S is a solution

to (4.57)), we get that

0 = B, (S, xknS) + By(S, xx9) + Bxun(S,9) + (9, xx9) — / aH?dz + o(1),

n

as k — +00. We now estimate these terms separately.
Our first claim is that

lim (xx9,9) = (9, 9)- (4.65)

k—+4o0
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4.6. Existence of extremals

Indeed,
Cra / (1= xk) (2)g(x) — (1= xi) (W)g(y)
—qll? « — I dxd
Ixkg gHHO2 @ "2 Jgey P y
_ 2
<Cha 11— Xk(x)\zw dxdy
(R")2 |z —y[rte
_ 2

(Rn)?2 lz — 9]

The first integral goes to 0 as k — 400 with Lebesgue’s convergence theorme

since ¢ € HZ (R™). For the second term, we use the change of variable
X = kz, Y = ky and the control of g(z) by |z|7-. This proves that

(xkg) = g in HO% (R™) as k — +o00. The claim follows and (4.65)) is proved.

We now write

Cn (0% e
By (S, xxnS) = ? (/(R")2 Xk (z)F(z,y) dxdy—i—/( e

Gr(r,y) dxdy) ,

where

Fle,y) = "= (503 08) () — S(@)(0S)())

and
(n(z) —n(y) xw(z) — xx () (1S)(y)S(z)
|z — y[rte '

Gi(z,y) ==

As in the proof of (4.61) and (4.47), F € L'((R")?) and Lebesgue’s conver-
gence theorem yields

. Cn,a
lim
k——+oo 2

o V) ddy = By (5,0S).

Arguing as in the proof of (4.61), we get the existence of G € L'((R™)?)
such that |Gi(z,y)| < G(x,y) for all (z,y) € (R™)? such that || < §/2
or |z| > 35. By symmetry, a similar control also holds for (z,y) € (R")?
such that |y| < §/2 or |y| > 30. Moreover, for 6 > 0 small enough, we
have that Gy (z,y) = 0 for (z,y) € (R")? such that |z| > 6/2 and |y| > §/2
(this is due to the definition of xx). Therefore, since limg_, oo (xr(z) —
xk(y)) = 0 for a.e. (z,y) € (R")?, Lebesgue’s convergence theorem yields
f(Rn)Q Gi(z,y)dzdy — 0 as k — +oo. We can then conclude that

kgl}rloo B, (S, xxnS) = By(S,nS).
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4.6. FExistence of extremals

Similar arguments yield

lim B, (S, xx9) = By(S,9).

k—+o00

Therefore, we get that

n

0= B, (5,1mS) + By(S,9) + By,n(S,9) + (9,9) — / aH?dx + o(1),

as k — +o0o. We also have that

BXkT](S,g) = C;,a /([Rn)2 Xk(x)w (S(y)g(:];) — S(m)g(y)) dﬂ?dy
* Cga /(Rn)Q W (S(y)g(x) — S(x)g(y)) dady.

As above, the first integral of the right-hand-side goes to B, (S, g) as k —
+00. We now deal with the second integral. Using that 54 + - =n — «,
the change of variables X = kz and Y = ky yield

[ X (5(3)g(a) — S(@lg) dody = [ R(XY)dxaY.
(®n)2 z =y (&n)2

where

Fp(X,Y) =1 (1,:) )TE(X);XS? (IYTMQ (ij) kP — ﬁg (Z) k—ﬂ) .

Note that there exists C' > 0 such that |g(x)| < C|z|75- for all z € Q\ {0}.
Since x(X) = 0 for |X| < 1 and x(X) = 1 for |X| > 2, arguing as in the
proof of (4.61), we get that |Fj(X,Y)| is uniformly bounded from above by
a function in L*((R™)?) for (X,Y) € (R™)? such that X & B3(0) \ By/»(0)
or Y & B3(0) \ B1/2(0)~

There exists C' > 0 such that [n(X) — n(Y)
[B3(0) \ By/5(0)]?. Therefore, for such (X,Y

(s ~ i) (%)

1 X Y
+CO|X —Y[tmon g <k> e <k> k‘5’

‘X‘B+

X Y

) 8- 2 ) B-
()i - (5) |

| < C|X —Y| for all (X,Y) €
), we have that

|IFL(X,Y)] < C|X-Y[|lem

IN

C|X o Y|2—a—n

+C|X — Y |tron
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4.6. Existence of extremals

Define g;(X) := g (%) k=P~ for X € kQ. Tt follows from (4.54) and (
k
that

(~A)Fg, - (

where

Fo(X) = k=P~ (kLX) so that |f(X)] < Ch (@38 x| B+,

X + k@ (k1X)> gk = fr weakly in HS/?(kSQ),

for all X € kQ. Here again, elliptic regularity yields that (g) is bounded in
CL.(R™\ {0}). Therefore, there exists C' > 0 such that

l9k(X) — ge(Y)| < C1X =Y,
for all (X,Y) € [B3(0) \ By /2(0)]%. Therefore, we get that
|F(X,Y)| < CIX = Y[P"* " for all (X,Y) € [B3(0)\ By2(0)]>.

Therefore, since a < 2, (F}) is also dominated on this domain, and then on
(R™)2. Finally, it follows from the definition (4.56)) of the mass that

X(X) —x(Y) 1 _ !
Bl—il-looFk(X Y)= (Q) |X — Y|nto ‘Y’/3+‘X|f3— ‘X|B+|Y|B_ ’

for a.e. (X,Y) € (R™)2. Therefore, Lebesgue’s convergence theorem yields
0= B,(5,18) + 28, (5,9) + K -mS,(2) + (9.9) - [ aH?do,

where

Cna X(X) B X(Y) 1 1
K.=— — dXxXdy.
2 /(R”)2 [ X =Yt \ Y]] X[P- [ X|P Y|P~

Without loss of generality, we can assume that y is radially symetrical and
nondecreasing. Therefore, we get that K > 0. With (4.62)), we then get that

M = —-K-mJ () with K > 0.
Plugging this identity in (4.64)) yields

n K
JHNT) =T U) [ 1- W.mgva(g)em—ﬂf +0<66+—67)
K Jon "o A

(4.66)

4.6.4 Proof of Theorem

Theorem |4.4]is now a direct consequence of (4.51)), (4.52), (4.66) and Propo-
sition
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Chapter 5

Existence Results for
Non-linearly Perturbed
Fractional
Hardy-Schrodinger Problems

5.1 Introduction
Throughout this chapter, we shall use the following notations:
By = B4+(7), B- = pB-(7) and mJ, :=mJ,(Q).

Recall that the mass mg‘ 1(€) is defined in Theorem [1.5, and parameters
B+(v) and S_(7) are introduced in Section |4.2; see also Remark [1.4.

We consider the following perturbed problem associated with the oper-
ator L, , on bounded domains {2 C R" with 0 € €2

N 25(s)—1
(~A)Fu— i —du= "+ hut"! in Q
u >0 in €,
u=0 in R™\ €,
where 0 < s <a <2, n>aq,2i(s) = 2;"__;), and A,y € R. We also assume

that h € C%(Q), h > 0, and q € (2,2},) with 2% := 2%(0).

When (h = 0), Problem (5.1) has been studied in both the local and non-
local setting. See [17, 36, 37] and [38] and the references therein. In [44],
Jaber considered the local version of the problem in the Riemannian context
but in the absence of the Hardy term (i.e.,y = 0). A similar problem, with
the second order operator replaced by the fourth order Paneitz operator,
was studied by Esposito-Robert [26] (see also Djadli- Hebey-Ledoux [23]).
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5.1. Introduction

By using ideas from [38] and [44], we now investigate the role of the
linear perturbation (i.e., Au), the non-linear perturbation (i.e., hud=1), as
well as the geometry of the domain (the mass ms ) on the existence of a
positive solution of .

As in Jaber [44], our main tool here to investigate the existence of so-
lutions is the Mountain Pass Lemma of Ambrosetti- Rabinowitz [3] (see
Lemma [3.6). We shall use the extremal of iy« (R") (defined in (1.2)) and
its profile at zero and infinity to build appropriate test-functions for the
functional under study.

Our analysis shows that the existence of a solution for problem
depends only on the non-linear perturbation when the operator L, , is non-
critical (i.e.,0 <y < yerit()). The critical case ( i.e., Verit(a) < v < yu(@))
is more complicated and depends on other conditions involving both the
perturbation and the global geometry of the domain. More precisely, when
0 < v < veit(a), the competition is between the linear and non-linear
perturbations, and since ¢ > 2, the non-linear term dominates. In the critical
case, this competition is more challenging as it is between the mass and the
non-linear perturbation. In this situation, there exists a threshold q..;+ €
(2,27), where the dominant factor switches from the non-linear perturbation
to the mass. The transition at 27, is most interesting. We shall establish the
following result.

Theorem 5.1 (Shakerian [66]). Let Q be a smooth bounded domain in
R™(n > «) such that 0 € Q, and let 2%(s) = 2%"_7;), 0<s<a —x<

A< A (Lya), and 0 < v < yg(a). We consider 2 < q < 2%, h € C°(Q) and

h > 0. Then, there exists a positive solution u € HZ () to under one
of the following conditions:

(1) 0 <~ < veit(a) and h(0) > 0.

h(()) >0 if > qerit
(2) Yerit(e) < v < yu(e) and § c1h(0) +camS\ >0 if ¢ = gerat
mfoy")\ >0 qu < {erit,

where c1,co are two positive constant and can be computed explicitly (see
Section , and qerit = 2%, — 2% €(2,2).

Remark 5.2. When the operator L, , is non-critical, our condition de-
pends only on the non-linear perturbation A (i.e., h(0) > 0), and not on the
positivity of A, which was the case in the non-perturbed case.
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5.2. The Palais-Smale condition below a critical threshold

For v < vg(«), the same argument as in the beginning of Section
coupled with the fractional Hardy inequality yield that

ull = ( [ ot W) TR
ul|| = e da:dyv/dx)
e AFE

is a well defined norm on HZ (£2), and is equivalent to the norm Hu||H%(Q).
0

We shall consider the following functional ® : HZ (2) — R whose critical
points are solutions for 1) For u € HZ (), let

25,(s)
1 A 1 U 1
dw) = ~Nulll — 2 | wlde — + _/ q
(w) = Sl 2/Qu dx 2;;(3)/9 T dx p Qhu+dm,

where u4 = max(0,u) is the non-negative part of u. Note that any critical
point of the functional ®(u) is essentially a variational solution of (5.1)).

Indeed, we have for any v € HZ (),

/ o na )(1)(.%') — U(y)) T
<(I)( B /n/n ‘x_y‘n—ka d dy

2% (s)—1
_/n('y‘x’ +)\u—|—ﬁ+hu‘i—1)v dx.

5.2 The Palais-Smale condition below a critical
threshold

In this section, we prove the following

Proposition 5.3. If ¢ < 5 = S)umsa(R )%z, then every Palais-Smale se-

quence (ug)gen for @ at level ¢ has a convergent subsequence in HZ (€2).

Proof of Proposition [5.5. Assume ¢ < ﬁy%s’a(R”)E and let(ug )ren €

HO% (©2) be a Palais-Smale sequence for ® at level ¢, that is ®(ux) — ¢ and
O (up) 0 in (HZ (), (5.2)

where (HO% (Q))" denotes the dual of HO%(Q)
We first prove that (ug)gen is bounded in HgZ (€2). One can use uy, € HZ (Q)
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5.2. The Palais-Smale condition below a critical threshold

as a test function in (5.2)) to get that

25(s)
u
||\ukH|2—)\/Quida::/Q(k)J“da:—i—/(zh(uk)idx%-o(\\]ukm) as k — oo.

Edl
(5.3)
On the other hand, from the definition of ®, we deduce that

2,(s)
|||uk||2—)\/uzdx:2(1>(uk)+ 2 / () +2/ h(ug)d dz. (5.4)
Q 2:(s) Ja  |af® q Jo

It follows from the last two identities that as k — oo,

20, (uy) = <1 _ 2;;2(3)> /Q (qui(S) dz + <1 _ 3) /Qh(uk)idm—ko(\HukHD.
(5.5)

This coupled with the Palais-Smale condition ®(uy) — ¢, and the fact that
h >0 yield

2 = <1 _ 2;(3)) /Q (“7;%(8) dz + <1 - fJ) /Qh(uk)idx +o(1)

25.(s)
> <1— 5 2 >/ (ue) dxr +o(1) ask — oo.
Q

Thus,
2
(1 - > / h(ug)lde = O(1) ask — oo.
Q

We finally obtain
mm%aéﬁwgmwﬂmmm as & - oo.

Using that A < A1(L+,) and v < vg (), we get that

i A 2
0< (11— ——— 1— —— | ||u o
< ’VH(OZ)) ( )‘I(L%a)> | kHHOQ @)
A

<(1— —— u2

< (1= 5y ) N

swm%w/ﬁmsmnﬂmmm s k = oo,
Q
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5.2. The Palais-Smale condition below a critical threshold

We then deduce that (uy)ken is bounded in HO% (Q), which implies that there

exists u € H{ (Q2) such that, up to a subsequence,

(1) wup — u weakly in HO%(Q)
(2) wug — u strongly in LP1(Q) for all p; € [2,2}). (5.6)
(3)  wug — u strongly in LP?(Q, |x| *dz) for all py € [2,27(s)).

We now claim that, up to a subsequence, we have

2
g — w2 = / de Fo(l) ask — oo, (5.7)
Q
and
a—s 9
mmuk —ul|]* <e+o0(l) ask— oc. (5.8)

Indeed, straightforward computations yield

o(1) = (P’ (ug) — @' (u), up — u)
- muk—uHP—A/Q(uk—u)?

— up — U T
Q

+/ h(ug — u) [(uk)i_l — uq_l} dr as k — oo.
Q

|z[*

We first write

(Uk)Q(*l(s)fl _ u22(8)*1 2% (s) a(s)—1
/<uk—u>< ! - )d%:/(uk)+dﬂ”‘/“’“u+ dw
o EE o |z Q

It now follows from integral theory that

2* (s)—1 2% (s 2% (s)—1
Q

lim up————dx = dr = lim U
k—oo J |x|* || k—oo Jo ||

So, we get that
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5.2. The Palais-Smale condition below a critical threshold

In order to deal with the right hand side of the last identity, we use the
following basic inequality:

(uk)iZ(S) _ ui?l(s) — (up — u)i?;(s)’ < c(uiZ(s)_l]uk—u|+(uk—u)?§‘(s)_1|u’>,

for some constant ¢ > 0. We multiply both sides of the above inequality by
|z| 7% and take integral over €2, and then use (5.6) to get that

2%,(s) 25(s) 25(s)

lim ()" — (g = W)y dr = / s
k—oo Jq ’l‘|s Q

We therefore have

/(uk—u) ( ’ * >d3: = / Md:1:+0(1) as k — oo.
Q Q

In addition, the embeddings (5.6]) yield that

|z[*

/(uk —u)?=o0(1) ask— oo,
Q
and

/Qh(uk—u) [(uk)‘fl — ui_l] dr = /Q(uk—u)‘idm—i—o(l) =o(1) as k — occ.

Plugging back the last three estimates into gives . On the other
hand, since u is a weak solution of then ®(u) > 0, and since ®(uy) — ¢
as k — oo, it follows that ﬁ”uk —ul|? < ¢+ o0(1). This proves the claim.
We now show that N
lim up = in HZ(Q). (5.10)
k—o0

Indeed, test the inequality (1.5) on uj — u, and use (5.6) and Proposition
to obtain that

(Uk _ u)22(8) . _23(3) ”
/Q|£l?|s+dm < H'y,s,a(]R ) 2 |||uk — u|H2a( ) + 0(1) (511)

Combining this with (5.7)), we get

_23(3) * _
e — w2 (1—uw,s,a(R”) g — w250 2+o<1>) < o(1).
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5.3. Mountain pass geometry and existence of a Palais-Smale sequence

It then follows from the last inequality and (5.8) that

23(8) 25 (s)—2
2

(1 e G I o<1>) Il =l < o(D)

a—S

Note that the assumption ¢ < ﬁ ,ums’oé(]R”)g implies that

2% (s)—2

2(n—s) \ ™2 — 24,(5)
(o)™ <),

and therefore
25 (s)—2

(1 - M%s,a(Rn)_@ (Mc) 2) > 0.

o — S

Thus, |||ug — ul|] = 0 as k — oo, and this proves (/5.10).

Finally, we have that ®(u) = ¢, since the functional is continuous on HZ ().
O

5.3 Mountain pass geometry and existence of a
Palais-Smale sequence

Proposition 5.4. For every w € HZ () \ {0} with w > 0, there exists an
energy level c, with

0 < ¢ <sup ®(tw), (5.12)
t>0

and a Palais-Smale sequence (ug)y for ® at level ¢, that is
O(up) — ¢ and O (up) — 0 in (HZ (Q)).

Proof. We show that the functional ® satisfies the hypotheses of the moun-

tain pass lemma It is standard to show that ® € C* (HO% (©2)) and clearly
®(0) = 0, so that (a) of Lemma 3.6, is satisfied.

For (b), we show that 0 is a strict local minimum. Indeed, by the defi-
nition of Ai(Ly,) and fiy s (€2), we have that

2
dz) %O < |wl]*.

|w‘22:(s)
x|

(L) /Q wlPde < wlll? and j.a(®) /Q ,
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5.4. Proof of Theorem

In addition, it follows from (5.6)2 that there exists a positive constant S > 0
such that

S(/ Blwltdz)s < ||lw]]*
Q

Hence,
B(w) > glwll? = 5zl = 25w
- g ne ®) T 5
=l @(1 ) S
= g gy e B ] 0072).

Since A < A(Ly,a), ¢ € (2,2,) and s € [0, ), we have that 1 — m > 0,

g—2 >0 and 2}(s) —2 > 0, respectively. Thus, we can find R > 0 such
that ®(w) > p for all w € HZ () with ||wHH%(Q) =R

0
Regarding (c), we have

2 2 £25(9) 25(s) 1
O(tw) = t—|||w|||2 _tA w?dzr — . / at —dr — / hw? dz,
2 2 Ja 28(s) Ja o] 7 Jo

hence tlim O(tw) = —oo for any w € HO% (©) \ {0} with wy # 0, which
— 00
means that there exists t,, > 0 such that ||tww||H%(Q) > R and ®(tw) < 0,

0
for ¢t > t,,. In other words,

0 < p < inf{®(w); HwHHﬁ(Q) =R} <c= Wig;tim D(v(t) < iglgfﬁ(tw%

where F is the class of all path v € C([0, 1];H0% (©)) with v(0) = 0 and

v(1) = tyw.
The rest follows from the Ambrosetti-Rabinowitz lemma.

5.4 Proof of Theorem 5.1

This section is devoted to prove Theorem Since & satisfies the Palais-
Smale condition only up to level ﬁ firy,5.0(R™)o=s  we need to check which
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5.4. Proof of Theorem

conditions on 7, ¢, h and the mass of the domain ) guarantee that there
exists a w € HZ (2) such that

a—s

sup P(tw) < —

>0 (f) 2(n — s)

We shall use the test functions nu(resp., T¢) constructed in Section for

the case when the operator L, , is non-critical (resp., critical) to obtain the
general condition of existence.

One can summarize the definition and properties of the test-functions as

follows (see also Section |4.6)):
Ue = NUe if 0 <~ < 7crit(a)
Ve = By—B— .
Te:=Uc+e 2 g(x) if veir(a) <v <ymu(a),
where the cut-off function n € C§°(Q2) verifies (4.37) and

lu”Y:'S7a (Rn) ai; °

(5.13)

uc(x) :=¢ 7 Ul ') for z € R"\ {0},

and U € Ho% (R™) is such that U > 0, U € CY(R™\ {0}) and satisfies (4.38)
for some k > 0 and also (4.39)). Also, the function g satisfies

my 1
YA —B-
o) = ||~ +0<| |5_> as x — 0, and |g(z)| < C|z| for all x € Q.

We refer the readers to Subsection for the definition and properties of
g(z) in detail.

We now prove the following proposition which plays a crucial role in the
proof of Theorem [5.1].

Proposition 5.5. There exists ; > 0 forl =1,..,5 such that
1) Ifo < Y < ’Ycrit(a)a then
sup ®(tve) = T — 71 h(0)e" 173" 4+ o(" 1727, (5.14)

t>0
2) If Yerit(a) < v < yu (), then

—Toh(0)e" 1T 4 o(e"137) if g > Gerit
sup (tvg) =T+ 0 —(r3h(0) + mams )€™+ o(e ) if 4 = gt
- —Tsm e+~ +0( Be=h- if 4 < Qerit

(5.15)

where T := %M%S@(R”)TZ% and Qerit 1= 2}, — 2% €(2,2).
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Proof of Proposition [5.5. We expand ®(tv,) in the following way:

d(tv.) = 2y J- Yk 0
te) = =1l — ——Jc— — as e — 0,
€ 2 € 2:’;(8) € q €

where

|ve

|2a(s)
E dzr and K := / hlve|Ydzx.
Q

L= w2 = MvelZaqy, Je = /Q -

Here is a summary of the estimates obtained in Section which will be
used freely in this section:

Let Fy := fRn U%S)dx. There exist positive constant cy, ca, c3 such that
kEy — 1 Ae® + o(e%) if 0 <y < yerit(a)
I = KBy — code®Ine ! + o(e*Inet) if v =7yerit(@)
By—B_ .
kEy — c;;mfy‘,/\em’ﬁ* +2ke 2z 0.+ o(eﬂJr*B*) if Yerie(a) < v < vu (),
(5.16)
as € — 0, and
Ey + 0(€ﬂ+_’6—) if 0 < v < 'YCTit(a)
[ By—B_ 3 .
Ey+25(s)e 2 0.+ o(P+7P=) i ygur(a) < v < vr (),
(5.17)
25 (s)—1
as € — 0. Here, 0 := [, ““——"2 dz and we have lim 0. = 0; see (4.59).
R || e—0

We are then left with estimating K.

Estimate for K. : We will consider two following cases.

Case 1: 0 < v < verit(a). We split K. into two integrals as follows

KEZ/h|Ue|qde:/ h|UE|qu+/ h|Uc|Ydzx.
Q Bs Q\Bs
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We start by estimating the first term:

/ h|U€|qu:eqa2”/ h(z)|U ()] %dx
Bg €

Bs

_e"—q"z"/ h(eX)|U(X)|7dX
Bs

a3 (0) / U(x)fax

+ T h(eX)|U(X)|%dX.
R™\B s

Note that we used the change of variable x = ¢X . From the asymptotic
(4.39) and the fact that ¢ > 2, it then follows that

By—B_

/ B|U|9da — enq%“h(m/ U(X)|9dX + O™
Bs n

=1 () / U)X + o),

Following the same argument that we treat the second integral in the last
term yields that

By—B_

/ h|Uc|%dz = O(e9™ = ) = o(P+7F-).
Q\Bjs

Therefore,

/ hU %z = €72 h(0) [ / \U(X)]qu} + o(P+=F-). (5.18)
Q n
It now follows from (4.50) that
B—i-_ﬁ— >« ifOS'YS’Ycrit(a)-
On the other hand, the condition 2 < ¢ < 2}, implies that

n—a
0O<n—gq

< .

Combining the last two inequalities, we then get that

= < B =B,

n—q
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and therefore
K. = 97" h(0) U U (X),qu] Fo(e™1™E),  (5.19)
when 0 < < VCrit(Oé)-

Case 2: Yerit(a) < v < yg(a). In order to estimate K, in the critical
case, we need the following inequality: For ¢ > 2, there exists C = C(q) > 0
such that

X + V|7 = |X|9] - ¢XY|X|97? < C(IX|72Y2 4 |Y]9)  forall X,Y € R.

We write

By —B By —B_

KE:/mTEyqu:/ BU. + €7 g(a)9dz + O(177),
Q Bs

where the last term came from the fact that

By —

B_
/ BT Tde = O™ 5= ) = o(e+—5-).
O\B;

By—B_
Let now X = U, and Y = ¢ 2 g(x) in the above inequality. Taking
integral from both sides then leads us to

By —B_ By—B_ 1
/ hMUc+e 2 g(x)|%dx = / h|Ue|%dx + qe— 2 / hg|Uc|"™ dz + R,
Bs Bs Bs

where

By —B_
R.=0 <eﬁ+ﬁ— / WU 2% + ¢t 2 / hqua:>
B§ Bé (520)

= O(¢™F7) = ofP ).

Regarding the second term, we have

By—B_
2

By—B_ n—o
e / hglUJ™ de = O(eP+—F-1H(=a"5%)) 4 O(e1™577)
Bs

(5.21)
= o(eP+7F-) for all ¢ € (2,2}).

Combining (5.18)), (5.20)) and (5.21)), we get that there exist a constant C' >

0 such that

K= Ch(O)En_q% + O(En_q%) + 0<€ﬂ+_’8_) if VCrit(a) <7< 'YH(O‘)'
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We point out that the situation in the critical case is more delicate, and
unlike the non-critical case, we have that both

n—«o

B+ —pB-and n—gq are in the interval (0, «).

Therefore, there is a competition between the terms e+ —#- and 1T
In order to find the threshold, namely g..;;, we equate the exponents of the
€ terms, and solve the equation for ¢ to get that

QM'

*
qerit =2, —
« n—ao

One should note that gqir € (2,2%), since @ > S+ — f— > 0 in the critical
case. This implies that

o(€" 71T + o) = o("T1") if ¢ > Geri
o(€" 12 )+ o(P ) = o(e" 12T ) = o(e?+ H) if g = gerar
o(€""9TY) + o(eP+F-) = o(P+P-) i ¢ < Gerit-

C4h(0)e"_q% + o(e”_q%) if ¢ > qerit
Ke= 19 csh(0)P+=P~ 1 o(P+B-) if ¢ = qepir (5.22)
0(€B+_67) if ¢ < qerit-

for some ¢4, c5 > 0, and as long as Yerit(@) < v < v ().

We now define

U2a(s)
Iy :=lim I, = KJ/ ———dzr and Jp:=lim J. = /
e—0 n e—=0

Ed

U2a(s)
—dx,
o faf?
and it is easy to check that

lim K. =0 for all cases.
e—0

In the next step, we claim that, up to a subsequence of (u¢)e>o, there exists
Ty := To(n, s,a) > 0 such that
2% (s) Tq

sup ®(tve) = d(V(v))2a-2 — ?UK6 + o(K,), (5.23)
>0
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where I[oell® = Allvell3
V|| |7 = Al|ve 12(9) I
\II v == = .
(ve) |ve| 24 (s) 232<s> 232(5)
(fQ [x]® dw) Je

The proof of this claim goes exactly as Step II in [44, Proposition 3]. We
omit it here.

Let us now compute ¥(ve). It follows from (4.51), (4.52) and (4.66) that

there exist positive constants cg, c7, cg such that

qmve)::uvﬁﬁ(Rﬂ)(1+-@ay) (5.24)
where
—cgAe” + 0o(e?) if 0 <75 < verit(@)
Oy = ¢ —crAde®Ine ! +o(e“Ine ) if 4 = yepir ()

—Cgm,\a{7/\€’8+_’8_ + 0(6ﬁ+_’8_) if 'Ycrit(a) <7< ’YH(O‘)

We are now going to estimate sup ®(tv.). This will be done again by con-
>0
sidering two cases:

Case 1: 0 < v < 7it(a). In this case, plugging (5.19) and (5.24) into
(5.23)) implies that there exist constants cg, c19, €11, c12 > 0 such that
a—s
sup ®(tve) = ——
t>0 ( 6) 2(%—8)

— cgAe® — Cloh(O)Gniq% + O(ea) + o(enfq%%

fy,5,0(R™) s

when 0 <7y < et (), and

a—Ss
sup @(tve) = ——
tZE (tve) 2(n—s)

M%S,a(]Rn)E
— e Ae” ln(e_l) — Clgh(0)€n_q% + o(e” ln(e_l)) + o(e”_q%),
when ¥ = erie(@).
Recall that o > n — ¢"5%, since ¢ > 2. This implies that
0(€%) + 0("TT) = o(" 1),

Thus, there exist a positive constant 71 such that, for every 0 < v < . (a),
we have

sup ®(tv) =T — Tlh(())e”*q% + o(e”*q%)’
>0
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where T := %u%&a(R")%.

Case 2: Yerit(@) < v < yg(a). The critical case needs a careful anal-
ysis as a new phenomena happens in this situation. We shall show that
there is a competition between the geometry of the domain, the mass (i.e.,
Br=h- mS ,), and the non-linear perturbation (i.e., "~ 1(0)). Indeed, it
follows from plugging (5.22) and (5.24) into that there exist constants
c12, €13, c14 > 0 such that

sup ®(tve) =T — 012m;">\€5+—57 + 0(65+—57)
t>0 ’

—Cl3h(0)€n_q% + O(ER_Q%) if ¢ > qgerit
+ —014h(0 65'*'75_ + 0(66"'7[3_) if q = (crit
0(6/8+_67) if q < {Gerit-

Following our analysis in the critical case of estimating K., one can then
summarize the competition results as follows.

Competitive Terms | g > qerit q = Qerit q < Qerit-
NIt h(0) Dominate | Equally Dominate X
PP mg oy X Equally Dominate Dominate

Therefore, we finally deduce that there exists 73 > 0 for [ = 2,..,5 such that

—Tph(0)e" 17T+ o(" 1) if ¢ > gerit
igg P(tve) =T+ —(3h(0) + T4m3‘7/\)6f3+_5* +o(P+78=) if ¢ = qerit
- —T5mf;7>\66+_67 + o(eP+=P-) if ¢ < qerit,

where T := ﬁp7787a(R”)5. -

Remark 5.6. We point out that the value g+ corresponds to the wvalue
q = 4 obtained in |44, Proposition 3]. Indeed, when o =2,y =0 andn = 3,
our problem turns to the perturbed Hardy-Sobolev equation considered by
Jaber [44] in the Riemannian setting. We then have that B+ (0) =n—a =1,
B-(0) =0, and therefore

p+(0) = 5-(0)

n—auoa

Qerit = 25, — 2 =6—2=4.
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