
Embodied Perception during Walking using Deep
Recurrent Neural Networks

by

Jacob Chen

B.Sc Electrical Engineering, University of Maryland, College Park, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

July 2017

c© Jacob Chen, 2017

Abstract

Movements such as walking require knowledge of the environment in order to

be robust. This knowledge can be gleaned via embodied perception. While in-

formation about the upcoming terrain such as compliance, friction, or slope may

be difficult to directly estimate, using the walking motion itself allows for these

properties to be implicitly observed over time from the stream of movement data.

However, the relationship between a parameter such as ground compliance and the

movement data may be complex and difficult to discover. In this thesis, we demon-

strate the use of a Deep LSTM Network to estimate slope and ground compliance

of terrain by observing a stream of sensory information that includes the character

state and foot pressure information.

ii

Lay Summary

Accurately estimating the environment that an agent is in is beneficial because it

allows for immediate, robust, and effective responsiveness. Allowing the agent to

build their own structured representations from input streams is a notion borrowed

from the recent ideas in the cognitive sciences. In order to do this data driven

approach, we use a modern machine learning model called the Deep Recurrent

Neural Network, which enables the system to receive a stream of inputs that include

the state of the bipedal agent as well as foot pressure sensors to estimate terrain

properties that are difficult to analyze analytically. Using such a model allows the

agent to build its own structured representations of the data that enable high fidelity

estimation that may be used as supplemental information to inform decisions that

the agent may make in the future.

iii

Preface

My supervisor Michiel Van de Panne, was instrumental in providing the guidance

and direction for this thesis. I was responsible for its implementation, experimental

setup, and results, as well as the writing of this thesis.

iv

Table of Contents

Abstract . ii

Lay Summary . iii

Preface . iv

Table of Contents . v

List of Tables . viii

List of Figures . ix

Glossary . xii

Acknowledgments . xiii

1 Introduction . 1
1.1 Motivations . 1

1.2 Thesis Overview . 4

2 Related Work . 6
2.1 Embodied Perception . 6

2.2 Robot Locomotion with Environmental Knowledge 7

2.2.1 Terrain Classification . 7

2.2.2 Terrain Estimation . 10

2.3 System Identification and State Estimation 11

v

2.4 Prediction from Time Series . 12

3 Background . 14
3.1 Bipedal Walking Control Policy 14

3.2 Ground Contact Model . 16

3.3 State Estimation and System Identification 18

3.4 Neural Networks . 19

3.4.1 Feed Forward Networks 20

3.4.2 Recurrent Neural Networks (RNNs) 22

3.4.3 Vanilla RNN . 22

3.4.4 LSTM (Long Short Term Memory) Cells 25

4 Methodology . 28
4.1 Physics Simulation . 28

4.1.1 Biped Simulation . 28

4.1.2 Terrain Generation . 30

4.2 Network Architecture . 30

4.3 Training Process . 31

4.3.1 Data Collection . 31

4.3.2 Training . 32

5 Experiments . 33
5.1 Parameter Settings . 33

5.2 Experiments . 34

5.2.1 Shared Network . 35

5.3 Separate Networks . 36

5.3.1 Compliance . 36

5.3.2 Slope . 37

5.4 Decreased Parameter Space . 38

5.5 Varying Window Sizes . 38

5.6 Removal of Features . 39

5.7 Discussion . 40

6 Conclusions . 50

vi

Bibliography . 52

vii

List of Tables

Table 4.1 Body parameters . 28

Table 4.2 Joint PD Gains . 29

Table 4.3 Finite State Machine parameters, WF represents with respect to

World Frame . 29

Table 5.1 Validation losses between the separate and shared models. Low-

est validation losses per trial are indicated by their respective

arrows . 37

viii

List of Figures

Figure 1.1 Sample features plotted with respect to time along with their

labels . 4

Figure 1.2 Simulation snapshots in order from left to right, top to bot-

tom. The character is estimating the terrain properties. Red

circles represent the actual values, blue circles represent the

predictions. All predictions are normalized with respect to the

training set. 5

Figure 2.1 Simple contact sensor [Giguere and Dudek, 2009] used for sur-

face identification . 7

Figure 2.2 Legged Robot [Walas, 2015] used for classifying terrains . . . 8

Figure 2.3 Robot [Sandeep Manjanna, 2013] used for classifying terrains

using gait . 9

Figure 2.4 UP-OSI System Diagram of [Wenhao Yu, 2017] 10

Figure 3.1 System Diagram. SIMple BIped CONtrol (SIMBICON) Walk-

ing controller generates data from physics simulation by being

applied on the environment. This data is then used to train a

learning model, where the estimations can be displayed in real

time. 15

ix

Figure 3.2 Example Finite State Machine for SIMBICON. The state tran-

sitions that exit states 1 and 3 occur after a time delay, ∆ t.

States 2 and 4 are completed up until the corresponding foot

has made contact. States 1 and 2, shown in green, are in right

stnace, while states 3 and 4, shown in orange, are in left stance. 17

Figure 3.3 The rigid body is drawn as a light green rectangle. Red circles

represent vertices of rigid body that will be used for collision

detection and response. X’s represent the location of first con-

tact with the ground point. Green arrows represent the restora-

tive force vectors applied to the vertices. 18

Figure 3.4 Spring and Damper system used for the contact model. 18

Figure 3.5 The rigid body is represented as a light green rectangle. The

circle represents a vertex of rigid body to track. The X rep-

resents the collision point of the vertex with the surface. The

green arrow represents the restorative force vector applied to

the vertex. 19

Figure 3.6 Example architecture of a dense feed forward network. 20

Figure 3.7 Example architecture of an unrolled dense Recurrent Neural

Network. Inputs are combined with the previous hidden state

and the result is linearly combined before being passed through

an activation function. hi represent the neurons with weighted

inputs followed by the activation function. 22

Figure 3.8 Function φ transforms the hidden state into an output. This

operation can be performed at any stage in the sequence. . . . 23

Figure 3.9 Various RNN Output forms 24

Figure 3.10 LSTM cell proposed by Hochreiter. This architecture intro-

duces the input and output gates which regulate the cell’s hid-

den state. 25

Figure 3.11 Modern LSTM cell with forget gate proposed by [Gers et al.,

1999]. The Forget gate allows LSTM cell to flush out irrele-

vant contents from the cell state while maintaining the constant

error carousel. 27

x

Figure 4.1 The slope pattern that the bipedal character traverse across. . 30

Figure 4.2 The standard multilayer LSTM architecture 31

Figure 5.1 The experiments that were carried out. Each experiment branches

off from the shared network architecture to measure its effect

on accuracy. 34

Figure 5.2 The Shared LSTM architecture for predicting both slope ŝ and

compliance ĉ. 36

Figure 5.3 Results for Slope and Compliance prediction using a shared

architecture . 41

Figure 5.4 Results for compliance prediction using separate model 42

Figure 5.5 Results for slope prediction using separate model 43

Figure 5.6 Results for using half of the units. 44

Figure 5.7 Results for a window size of 15 45

Figure 5.8 Results for a window of 7 46

Figure 5.9 Results for a window of 3 47

Figure 5.10 Results of only using state features 48

Figure 5.11 Results of only using foot pressure forces 49

xi

Glossary

SIMBICON SIMple BIped CONtrol

PD Proportional Derivative

LSTM Long Short Term Memory

RNN Recurrent Neural Network

BPTT Back Propagation Through Time

SVM Support Vector Machines

UP Universal Control Policy

OSI On-line System Identification Model

RELU Rectified Linear Unit

CEC Constant Error Carousel

EKF Extended Kalman Filters

POMDP Partially Observed Markhov Decision Processes

FFNN Feed Forward Neural Network

FSM Finite State Machine

COM Center Of Mass

xii

Acknowledgments

I thank my supervisor Dr. Michiel van de Panne for his mentoring and support

throughout my Master’s track. I thoroughly appreciate your oversight, patience,

and your willingness to work alongside your students. It is clearly evident that you

take your students’ interests to heart by the kinds of relationships you foster with

them. Your inquisitive nature and character will be one that I will always strive to

emulate.

I also thank my lab mates, Xue Bin Peng, Glen Berseth, and Shailen Agrawal

that I had the pleasure and honor of meeting and sharing time in the lab. Even

though I was not directly involved in your projects, you had no qualms in dis-

cussing your work. The enthusiasm you had for it was palpable and contagious. I

was able to grow and learn so much from our discussions. I wish I could bother

you guys forever. I couldn’t have asked for a more fostering lab for knowledge.

I also extend my thanks to Dr. Dinesh Pai for being the second reader of my

thesis.

Furthermore, I would like to thank Kimberly Dextras Romagnino for providing

the necessary comedic relief of the lab. Without it, I may very well have gone

insane.

Lastly, and most importantly, I thank my parents for all the support and love

they have shown me. The opportunities that I have had would not have been possi-

ble without your encouragement, understanding, patience, and willingness to help.

I would not be who I am today without your influences.

xiii

Chapter 1

Introduction

Our perception of the environment influences the way we interact with it. Thus,

building an accurate perception that reflects reality accurately is crucial in inform-

ing the decisions we make. Furthermore, building an accurate representation of

reality is restricted to the physical and sensory modalities that are afforded to the

agent. The agent has the task of discovering the relationship mapping between

information gleaned from its modalities and their environment. Traditional ap-

proaches for allowing an agent to discover this relationship require domain knowl-

edge that is not representative of how humans and other organisms learn to discover

and interact with their environment. For instance, in order to catch a ball, humans

do not calculate the trajectory of the ball and predict where it will land. Instead,

humans use the strategy of a constant stream of sensory information to position

themselves in order to catch the ball successfully. In this work, we seek to emulate

aspects of such behavior. This work seeks to explore insight related to sensory-

motor embodiment and therefore how an agent should learn and interact with its

environment without the need for embedding domain knowledge.

1.1 Motivations
A major theme in cognitive science is the idea of perception and its relation to

cognition and how this is framed. Embodied perception and cognition is the idea

that cognition is deeply dependent upon characteristics of the physical body of the

1

agent [Berthoz, 2002; Wilson and Foglia, 2017]. Part of the theory is that percep-

tion is tied to the physical make up of the agent and so the cognitive system of the

agent is constrained by the capabilities of the physical modalities and movements

afforded to the agent. The agent thus uses an interplay between the simulated con-

sequences of its actions and the environment as a means of understanding their

environment. This thesis addresses this theme by using the consequences of the

environment on its own modalities through walking to understand and estimate ter-

rain properties. By using the recent window of past consequences, we explore how

this understanding can be achieved, possibly similar to how humans gain a better

understanding through repeated temporal exposure and feedback. Thus this the-

sis’ primary motivation is to explore and validate how well movement of an agent

can help it understand its own environment and discover its relationship to latent

variables that may be difficult to discover analytically.

Our work is also motivated by controls in animation and robotics. Typically in

order to animate characters, motion capture techniques and/or artist involvement

is required to provide realistic high quality animation. Physics based animation

through control offers an alternative to these techniques along with many desirable

benefits. If successful, these techniques for control provide responsive realism,

interaction, and generalization towards a variety of environments. Using these

kinds of approaches may reduce the effort and cost for animation by removing the

need for tailoring animations to specific environments.

In the above context, this thesis also seeks to improve the capacity of using

physics based controllers by introducing predictive models for environment state

estimation. By using these models, the controllers gain the ability to anticipate

changes and perturbations in the environment and respond intelligently. If the pre-

dictive model has enough fidelity, then it may be useful for the controller to aug-

ment the current state of the physical agent to propose an action. This work lies

in the realm of state estimation and system identification where the agent uses an

awareness of itself and its encompassing environment. Traditional system identifi-

cation techniques include discovering the behaviors of a system through strategic

sampling. Depending on the response of the system, the appropriate model is cho-

sen and introduced to minimize the error between prediction and actual. Traditional

state estimation techniques seek to estimate current state based on a combination of

2

new observations and previous estimate. This is most clearly demonstrated through

the Kalman filter technique which is used extensively in many applications. Our

work estimates the state of the environment through continuous sampling and con-

structs a model to approximate the system that transforms character movement and

modality information to estimates of environmental latent variables, such as com-

pliance and slope.

Deep Learning techniques have been shown to be successful in the field of com-

puter graphics. Some examples include motion manifold learning and synthesis,

physics based controllers, and 3D Mesh Labeling [Guo et al., 2015; Holden et al.,

2016; Peng et al., 2016]. Additionally, much progress has been made using Recur-

rent Neural Network (RNN)s in Natural Language Processing due to its ability to

process time sequenced inputs [Socher et al., 2013]. This work demonstrates the

potential to leverage RNNs for the purpose of enhancing physics based controllers.

Furthermore, deep learning is able to discover relationships between variables that

may be difficult to discover analytically. This work relates environmental proper-

ties to the movement of the agent’s afforded modalities which is difficult to model

analytically. Here, the slope and compliance act as latent variables that affect the

walking movement of the bipedal character. By using a data driven approach, we

can discover this relationship with sufficient enough accuracy that there is no need

to resort to complex analytical models.

We propose that by using the recent history of the states and other sensory

information of a bipedal walker, we are able to find key patterns hidden in the state

sequence that would enable the bipedal character to accurately estimate the ground

properties of the terrain it is traversing such as slope and compliance. We thus

allow the model to record and decide which elements in its input stream it should

pay close attention to. An accurate estimate might only be obtainable during a

particular part of the walk cycle, and so the model needs to remember this event in

order to provide good estimates at other points in time. Similarly, the best result

may only be obtainable by integrating together important pieces of information

that are obtained at different points in the walk cycle. To accomplish this, we use a

multi-layer LSTM network as our predictive model in order to learn temporal state

dependencies that can be used for the prediction of ground properties. For this

thesis, we require a walking controller and use the well known SIMBICON control

3

Figure 1.1: Sample features plotted with respect to time along with their la-
bels

strategy [Yin et al., 2007] with a robust enough gait along with our own contact

model in order to predict the slope and compliance of the terrain. This introduces

the possibility to use high fidelity predictive models in order to enhance controls.

The terrain follows a pattern of presentation, but each terrain segment consists

of randomized slopes and ground compliance. We model ground compliance by

using our own contact model based on springs and dampers. Further details on the

simulation are found in Chapter 4. Figure 1.2 displays snapshots of the simulation.

Figure 1.1 displays some state features plotted against time along with the terrain

labels that the model uses to estimate terrain properties. The purpose is to illustrate

the complex relationship that the model must learn to capture.

1.2 Thesis Overview
This thesis explores the effectiveness and potential of using deep Long Short Term

Memory (LSTM) networks to build an embodied perception of the environment.

In Chapter 2, we review the related work that has inspired this work. Chapter 3

serves to provide the background needed to understand the implementation of the

thesis. We examine in fine detail each of the components that this thesis builds

4

(a) Snapshot 1 (b) Snapshot 2

(c) Snapshot 3 (d) Snapshot 4

Figure 1.2: Simulation snapshots in order from left to right, top to bottom.
The character is estimating the terrain properties. Red circles represent
the actual values, blue circles represent the predictions. All predictions
are normalized with respect to the training set.

upon. Chapter 4 provides the details of the experimental methodology of the exper-

iments and describes the simulation and strategy for obtaining our results. Chap-

ter 5 presents and discusses the results of our experiments and compares them to

provide meaningful conclusions. Lastly, Chapter 6 concludes with limitations of

the work and the possible future directions it can take.

5

Chapter 2

Related Work

Using motion as a means for understanding the environment has its foundation in

the cognitive sciences and extends into robotics and control. Furthermore, under-

standing the environment using time series data in a data driven fashion is still

being explored as a major research topic. In this chapter, we provide the relevant

work that shapes and defines our research question.

2.1 Embodied Perception
Embodied perception, also referred to as grounded perception, is the notion that

perception and cognitive activity is rooted in sensorimotor experience, namely sit-

uated actions and bodily states [Barsalou, 2007]. This approach states that per-

ception is shaped by the brain capturing the states and experiences across the

modalities afforded to it and integrating them into a multi modal representation

of an event. Later when the event is recalled, these representations are replayed

as simulations that allow the brain to represent and reason across events. This

type of approach shifts the paradigm of control strategies [Vernon, 2008]. Tradi-

tional strategies involve embedding symbols and intent into the agent and using

those representations for learning and task completion. This strategy is known as

the cognitivist position. The emergent strategy allows the agent to self organize

and represent their environment given the modalities afforded it through agent-

environment interaction over time. Recent advances in Machine Learning explore

6

Figure 2.1: Simple contact sensor [Giguere and Dudek, 2009] used for sur-
face identification

this paradigm by allowing representations of the data to emerge through repeated

exposure and training instead of relying on hand-engineered symbols that are ide-

alized descriptions of human cognitive representations.

2.2 Robot Locomotion with Environmental Knowledge
Locomotion in robotics has long been a challenging and continual effort. Creating

robust controllers for robots requires exploiting the degrees of freedom inherent in

the robot in a manner that optimizes its traversal across a dynamic environment.

Thus, the more knowledge the robot has of itself and the environment the better it

will perform. By decoupling system identification and control, each problem can

be solved separately for more flexibility and robustness. System identification of

the environment can be seen as separating the problem into Terrain Classification

or Terrain Estimation.

2.2.1 Terrain Classification

A number of works have addressed terrain classification by leveraging machine

learning techniques. A first approach is to determine the degree of simplifica-

tion a modality can have to accomplish terrain classification. This approach uses

a very simple contact dynamic sensor for surface identification as shown in Fig-

ure 2.1. Giguere and Dudek [2009] The authors attach an accelerometer to a rigid

rod that contacts the surface and is dragged along by the robot to collect readings

at a particular speed. The authors used a supervised learning method for surface

identification of 10 surfaces and explore using an unsupervised technique for dis-

7

Figure 2.2: Legged Robot [Walas, 2015] used for classifying terrains

criminating against 2 surfaces. In the supervised setting, the data is aggregated

with non-overlapping time-windows. Features are then extracted and processed by

a 2 layer dense network. In this way, time dependence is preserved since sequential

data is preprocessed before being presented to the network. The supervised setting

achieved a score of 94.6%. In the unsupervised setting, the authors explore using

a mixture of 2 Gaussian classifiers to classify the feature vector into 2 classes. The

intuition is to discover the parameters that minimize the variability of classification

across sequential data points. This setting was limited to the discriminatory power

of the sensor across the 2 different terrains and was not competitive with their su-

pervised approach but also was not fully explored. However, using unsupervised

approaches is promising for terrain classification since it allows the agent to be

trained online.

Another supervised approach is to classify 12 types of terrains by using a

combination of visual, depth, and compliance data with a Support Vector Ma-

chines (SVM) classifier [Walas, 2015]. The data is collected and trained offline

to find the best method for combining the separate classifiers from each sensing

modality to maximize classification accuracy. Their best results come from com-

bined classifiers from all three sensing modalities with a precision of 94.44% and

a recall of 95.15%, which is sufficient to perform control actions based on this

feedback. The authors modify the gait by changing the PD gains of their internal

8

Figure 2.3: Robot [Sandeep Manjanna, 2013] used for classifying terrains us-
ing gait

controller. Depending on the type of terrain, the optimal gait is selected that will

allow the robot to traverse the terrain in the most efficient manner with regards to

speed and distance. The authors were able to see improvements using the optimal

gait adjusted for terrain. The authors do not exploit any time dependencies in this

work. The robot is displayed in Figure 2.2.

Finally an approach similar to our work is to identify the terrain using the gait

itself. All sensory information is proprioceptive and does not acquire information

about the surrounding environment [Sandeep Manjanna, 2013]. This work has ties

to the emergent idea mentioned above of using movement and action to build per-

ception. The authors found that classification of terrain was possible by analyzing

the effect of different terrains on the gaits. The robot the authors experimented

with is modeled in Figure 2.3. The robot was equipped with sensors measuring leg

rotations, accelerations, rotations, magnetic orientation, as well as an estimation

of electrical currents. The robot would then sample these modalities at a rate of

20Hz with the goal of classifying 4 types of terrain. They used an unsupervised

clustering algorithm where each batch represents a sequence of consecutive sample

measurements which embeds time dependent information. The parameters for the

algorithm are discovered by attempting to make consistent classifications across

consecutive temporal samples in the batch. The authors found that at particular

settings of the robot, the data had more separability thereby making their classi-

fier more effective. Using their unsupervised approach enabled them to achieve a

success rate of 92.11% which is competitive with previous supervised approaches.

9

Figure 2.4: UP-OSI System Diagram of [Wenhao Yu, 2017]

It should be noted that the authors inject knowledge of optimal data separation in

order for their algorithm to be the most effective rather than allowing that behavior

to emerge automatically.

2.2.2 Terrain Estimation

Because of the many types of terrain, it may be beneficial to estimate the properties

of the terrain rather than attempting to classify the terrain as being one of N dis-

crete types. One work uses direct sensory information from the foot to analytically

compute the surface gradient underneath the foot [Yi et al., 2010]. The agent fol-

lows a unique walking strategy to collect noisy sensory measurements of the pose

and displacement of the foot at each step. This information is used to maintain and

update a local estimate of the surface normal. The estimates are then used to adapt

the gait. The learning is performed online for a small number of model parameters

which allow learning to be achieved rapidly. The authors then compare using their

method to enhance the locomotion of their robot and found it to be more stable and

robust than using a baseline locomotion strategy.

Another approach to terrain estimation replaces LIDAR information with stereo

vision to generate footstep plans for the robot on uneven terrain [Marion et al.,

2015]. Using stereo vision, the authors build a 3D height map which then allows

them to segment the terrain into possible regions for the footstep planning of robot.

Using this approach, they found that the results were comparable to using LIDAR

as a means for gathering the height map and can act as a direct replacement with

the benefit of smaller weight and power costs.

10

In an attempt to leverage simulation to address a wide array of environmental

conditions, the authors build a system utilizing neural networks which consists of a

Universal Control Policy (UP) and a On-line System Identification Model (OSI) for

terrain estimation [Wenhao Yu, 2017]. The UP outputs a control vector based on

the current state and dynamic model parameters. The OSI uses a history of previous

states and control vectors to predict the dynamic model parameters. The complete

system diagram is shown in Figure 2.4. The intuition is that if the dynamic model

parameters are correctly predicted for the environment, then the UP should be able

to output the correct control vector that responds appropriately. The authors train

the systems by sampling from a distribution of model parameters so that the sys-

tem is robust to many variations of model parameters. During training, they couple

the OSI model with the UP in order for the interaction to be more representative of

the combined system. This system can then be used in a variety of unknown en-

vironments by leveraging data that is easily attainable by simulation. The authors

test their approach on 4 different low-dimensional testing environments. They dis-

covered that their approach was comparable to using the true model parameters in

each scenario and in some cases performed better.

2.3 System Identification and State Estimation
System identification is the task of accurately modeling the behaviors of a system

on the basis of observing input-output relationships [Ljung, 1999]. The general

approach is to strategically sample the system, collect the outputs, determine the

class of models that represent the relationship well, and modify the parameters of

the model to accurately fit the input-output relationship. There are three main types

of system identification frameworks that are known as white box modeling, black

box modeling, and grey box modeling. These differ in the amount of prior knowl-

edge the modeler injects into the modeled representation of the system. System

identification techniques are well studied and various techniques exist depending

on the demands of the system approximation [Sjöberg et al., 1995]. Our work is

a data driven black box approach using a parametric model to model non-linear

relationships.

State estimation seeks to continuously make estimates of the dynamics of a

11

system through feedback and observing input-output relationships [Simon, 2006].

A common approach to this is using a technique called Kalman filtering. This tech-

nique is an iterative process which uses previous state distribution and uncertainty

modeled by a covariance matrix with sensor readings with uncertainty of its own.

A new state distribution and uncertainty is estimated and the process repeats. Many

versions of this filter exist to handle various conditions. State estimation with RNNs

has been compared with Extended Kalman Filters (EKF) [N. Yadaiah, 2006]. The

authors found that in their scenario the RNN based state estimator was more accu-

rate than the EKF implementation. They develop an architecture which cascades a

RNN layer into a Feed Forward Neural Network (FFNN). The motivation is that the

RNN layers would represent the system state dynamics while the FFNN transforms

the dynamics into measurements. This is similar to our architecture, where the we

cascade RNN layers into FFNN layers for final estimation. However, we use the

modern LSTM architecture with higher input dimensions.

2.4 Prediction from Time Series
Prediction from time series data has been studied and applied extensively in many

fields including economics, biology, linguistics, and industrial settings [Debasish Sena,

2015; Socher et al., 2013; Yazdani, 2009; Ziv Bar-Joseph, 2012]. Using time series

data allows for deeper analysis of the behavior of a system. A popular choice for

time series prediction is a class of models known as RNNs [Connor et al., 1994;

Gers et al., 2000; Prasad and Prasad, 2014]. These models enable accurate and

robust data driven approaches to prediction problems which address the issues

of highly nonlinear, non-stationary, noisy data. As such, these models are very

promising in their capabilities of modeling complex systems. Similar applications

to this thesis leverage RNNs for control or state estimation tasks [Alanis et al., 2011;

HuH and Todorov, 2009]. By training the RNN to emulate specific behaviors, the

authors were able to provide generalized solutions to their task domains. Another

use case of RNNs for control is to preserve sequential observation-action sequences

to solve Partially Observed Markhov Decision Processes (POMDP) in a scalable

way to solve tasks in the context of reinforcement learning [Heess et al., 2015]. By

using this model, the authors were able to hide state information such as velocity

12

from the model in order to allow the model to infer that information to achieve tasks

of balancing an inverted pendulum and cartpole swing-ups. Furthermore, time de-

pendent environmental changes could also be introduced and handled gracefully

by this model while a non-temporal model such as a feed forward neural network

performed poorly.

13

Chapter 3

Background

This chapter reviews a number of the key components of the simulation and learn-

ing system that we develop in this thesis. Figure 3.1 displays a high level overview

of the entire system. Each component will be discussed in detail beginning with the

walking controller, physics environment, and finally the learning model. At a high

level, we apply a physics based bipedal controller to the terrain generated inside

our physics simulation to gather data. This data is then given as input to our esti-

mation model and then fed back to the physics simulation for real time estimation

of the environment.

3.1 Bipedal Walking Control Policy
Virtual bipedal characters can be animated using physics, leading to rich and re-

alistic interactions with their environment that would be difficult to achieve using

traditional animation methods that ignore physics. Accomplishing this requires

generating actuation patterns that enable the physics-based character to accomplish

its tasks. There are three design approaches that have been explored for generat-

ing such patterns. These include Pose-driven feedback control, dynamics-based

optimization control, and stimulus-response network control. In a pose-driven ap-

proach, target trajectories are proposed for the character which the controller uses

to minimize the distance between its current measured state and the target states.

In a dynamics-based optimization control approach, actuator torques are proposed

14

Figure 3.1: System Diagram. SIMBICON Walking controller generates data
from physics simulation by being applied on the environment. This
data is then used to train a learning model, where the estimations can be
displayed in real time.

which try to optimize a set of high level objectives while obeying constraints. Com-

pared to the previous approach, this method establishes a definitive causal effect of

torques. However, these methods are computationally more expensive since a sys-

tem of equations have to be solved at regular intervals, though at a lower rate than

the physics time step of the simulation. Finally, a stimulus-response network con-

trol seeks to map stimuli from the environment to actuations. These methods do not

assume any a priori knowledge and seeks to build the mapping through repeated

simulation and evaluation of a fitness function. However, developing and tuning

this fitness function to produce natural motion for humans and animals remains

elusive and requires extensive knowledge from a variety of different fields.

To that end, we require an effective and robust control approach for bipedal

locomotion. This locomotion needs to be robust enough to handle slight terrain per-

turbations. We settle on the well-known bipedal control policy known as SIMBICON,

which is a pose-driven feedback control design [Yin et al., 2007]. This control

strategy allow for customization of a wide range of gaits and styles that are ro-

bust enough to handle small unexpected forces, terrain changes, and dynamics. It

controls characters by defining targets for the joint angles and uses Proportional

15

Derivative (PD) feedback controllers to compute torques that minimize the differ-

ence between the target pose and the current pose.

The controller is based on a Finite State Machine (FSM) along with a feed-

back mechanism for determining swing hip position. The FSM can be altered

to produce different style gaits while remaining robust towards small perturba-

tions. Each state provides a set of target joint positions and velocities for each

individual joint. FSM state transitions either when the time duration of the state

has been reached or a contact has been made with the surface as shown in Fig-

ure 3.2. PD controllers are used to compute joint torques as computed according to

τ = kp(θd −θ)+ kd(θ̇d − θ̇). Here, θd is the desired orientation of the child link

with respect to its parent link, θ is the current orientation, θ̇d is the desired angular

velocity, θ̇ is the current angular velocity, and kp and kd are gains for position and

velocity respectively. Typically the desired angular velocity θ̇d is set to 0. Fur-

thermore, there is a feedback law specific to the swing hip that modifies the target

orientation based on the stance foot distance to the Center Of Mass (COM) and its

linear velocity in order to keep the character stable. This feedback component is

computed according to θd = θd0 + cdd + cvv. Where θd0 is the original desired

orientation, d is the distance between the hip and the stance foot, v is the linear

velocity of the hip, and cd and cv are gain parameters. Virtual torque is applied

to the torso to keep it upright with respect to the world frame, which is realized

through the hips so that it can be produced via internal torques.

For our purposes, we require a basic walking gait that is able to traverse vari-

ations in terrain. These variations take the form of ground slope and ground com-

pliance. A walking gait robust to these perturbations is found through manual

selection of the parameters as based on the original SIMBICON paper [Yin et al.,

2007]. Further details are given in Chapter 4.

3.2 Ground Contact Model
We require a ground contact model that can provide the information needed to

model the sensing of pressure at various predetermined points along the sole of the

foot. These pressures are assumed to be available as part of the sensory stream.

we model ground compliance using dynamically instanced springs and dampers,

16

Figure 3.2: Example Finite State Machine for SIMBICON. The state transi-
tions that exit states 1 and 3 occur after a time delay, ∆ t. States 2 and 4
are completed up until the corresponding foot has made contact. States
1 and 2, shown in green, are in right stnace, while states 3 and 4, shown
in orange, are in left stance.

which apply restorative forces to specific points on a rigid body in order to keep it

above the ground.

Figure 3.3 shows an example of the forces being applied to a set of vertices on

the foot. Each restorative force is computed using a spring and damper according

to

Fr = kp(Cp−P)− kdṖ

where Cp is the point of first contact with the ground, P is the current position

of the vertex, Ṗ is the velocity of the vertex, and kp,kd are stiffness and damping

constants. A closeup of the spring and damper model is shown in Figure 3.4. In

order to avoid creating unrealistic forces that pull the foot down, we further filter

the vertical reaction force according to F ′y = min(0,Fy).

We apply a friction cone to limit the allowable directions that the forces can

be directed according to the coefficient of friction as defined by µ = tanθ = |Ft |
|Fn|

17

Figure 3.3: The rigid body is drawn as a light green rectangle. Red circles
represent vertices of rigid body that will be used for collision detection
and response. X’s represent the location of first contact with the ground
point. Green arrows represent the restorative force vectors applied to
the vertices.

Figure 3.4: Spring and Damper system used for the contact model.

where Ft is the tangential force component, and Fn is the normal force compo-

nent as shown in Figure 3.5. Once the restorative force is calculated for each

vertex, we compare it with the allowable ranges specified by the friction coeffi-

cient. If the force exceeds the bounds of the friction cone, we clip the force to

the outside edge of the cone and move the collision point to reflect this change, i.e

|Ft | = min(|Ft |,µ ∗ |Fn|). The forces felt on the feet are shown in the blue lines in

Figure 1.2

3.3 State Estimation and System Identification
The problem we seek to solve is related to the task of determining the state of a

dynamical system, which can be generalized to also model the state of the envi-

18

Figure 3.5: The rigid body is represented as a light green rectangle. The cir-
cle represents a vertex of rigid body to track. The X represents the col-
lision point of the vertex with the surface. The green arrow represents
the restorative force vector applied to the vertex.

ronment. Accurate knowledge of the state of the system is crucial for stabilization

through state feedback. In our case, we are interested in using a series of character

state measurements observed over time as a means to better approximate the en-

vironmental state. Our approach is loosely related to what the Kalman filter seeks

to accomplish with continuous states. The Kalman filter recursively predicts and

updates its current estimates and covariances with corrections from observed mea-

surements at each step. The predict step is characterized by predicting the next

estimate of the state as well as the uncertainty modeled by the updated covari-

ance. Different variations of the Kalman Filter are used ubiquitously in the field of

robotics for state estimation depending on the type of system encountered. Exam-

ples include applications estimating joint friction of bipedal walkers, vehicle states,

and robot positioning [Hashlamon and Erbatur, 2016; N. Houshangi, 2005; Reina

et al., 2017].

3.4 Neural Networks
Neural Networks are hierarchical models which learn useful representations of the

data at each layer. Each layer consists of a particular model that extracts its own

19

purposeful and useful representations from its input. Neural Networks are well

known as flexible function approximators that can be trained end-to-end through

supervised learning. Because of their success in accurate generalization, these

models are applied in fields including linguistics, computer vision, graphics, con-

trol, and biology.

3.4.1 Feed Forward Networks

Figure 3.6: Example architecture of a dense feed forward network.

Traditional neural networks are feed-forward neural networks, which have a

fixed input size and are fully connected. Figure 3.6 displays an example of a clas-

sical Feed Forward Deep Neural Network. Each neuron in the previous layer is

connected to a neuron in the subsequent layer. Neurons, represented as circles,

compute a weighted sum of its inputs and are typically followed by a subsequent

non-linear activation function to produce an output. This is expressed as:

a j
i = σ

(
∑
k

w j−1
ik a j−1

k +b j
i

)
(3.1)

where a j
i is the activation value of the ith neuron in the jth layer, σ is the activation

function, w j−1
ik is the weight that connects the kth neuron to the ith neuron in previ-

ous layer j− 1, and b j
i is the bias of the ith neuron in layer j. As more layers are

added, the complexity of the model grows because the parameter space increases.

As model complexity grows, the risk of overfitting also increases.

In order to train these models, we require a loss function which represents

20

the deviation between the desired values and the values predicted by the network.

The backpropagation algorithm is used for training the network by computing the

gradients of the loss function with respect to each of the parameters of the network

by taking advantage of the chain rule of calculus. Four equations are used for

backpropagation:

δ
L = ∇aC�σ

′

(
∑
k

wL−1
ik aL−1

k +bL
i

)
(3.2)

δ
j =
(
(w j+1)ᵀδ

j+1)�σ
′

(
∑
k

w j−1
ik a j−1

k +b j
i

)
(3.3)

∂C

∂b j
i

= δ
j

i (3.4)

∂C

∂w j
ik

= a j−1
k δ

l
i (3.5)

Equations 3.2 and 3.3 describe how to compute the gradients of the activation func-

tions with respect to any layer. � represents the Hadamard product. In all cases,

C is the loss function, w j
ik represents the weights connecting the kth node to the

ith node in layer j, a represents the activation value, and b represents the biases.

In Equation 3.2 and 3.3, the gradient with respect to the node is stored as δ since

all the parameters of the network require this value. Equation 3.2 computes the

gradient with respect to the node in the last layer, while equation 3.3 computes the

gradient with respect to an arbitrary node in layer j. Equations 3.4 and 3.5 de-

scribe how to compute the gradients with respect to each parameter given the layer

gradients. Finally each parameter is updated via gradient descent according to

θ
′ = θ −α

∂C
∂θ

where θ represents the parameter to be updated, and α is the learning rate. The

update shifts the parameter towards minimizing the cost function.

Having overly complex models allows the possibility of overfitting, which is

an issue described as having a minimal training error but poor generalization per-

formance. In order to combat this, we employ a regularization technique known as

21

dropout. In dropout, random node activations are taken away during training with

some probability. This technique can be interpreted as model averaging where the

network sees a high volume of different possible network architectures and av-

erages their outputs at test time. Though not necessarily required when copious

amount of training data is available, we employ this regularization technique to

ensure that the network does not overfit.

3.4.2 Recurrent Neural Networks (RNNs)

Figure 3.7: Example architecture of an unrolled dense Recurrent Neural Net-
work. Inputs are combined with the previous hidden state and the result
is linearly combined before being passed through an activation function.
hi represent the neurons with weighted inputs followed by the activation
function.

RNNs differ from traditional feed-forward neural networks in their ability to

store and propagate internal memory across arbitrary length sequences of inputs.

These types of networks specialize in retaining time dependencies hidden in the

input sequence.

3.4.3 Vanilla RNN

Figure 3.7 shows a basic architecture of an unrolled vanilla RNN. These networks

operate sequentially on one input at a time with the same parameters and compute a

hidden state at each step. This makes learning much faster compared to traditional

networks because the number of parameters is much smaller than a feed-forward

network that receives the entire temporal sequence of data. The hidden values are

then passed forward in time and combined with the next input. The final output of

22

the network can be viewed as another layer which uses the hidden state as an input

to an activation function. Formally, the hidden state value is computed as:

hi = σ (Uxt +WHt−1 +bi) (3.6)

where hi represents the hidden activation at time t for the ith hidden unit, U is a vec-

tor of weights to multiply the input, W is a vector of weights that is multiplied with

the previous hidden state, b is the bias for the hidden unit, and σ is an activation

function. A common activation function is the tanh function which compresses the

output to the range [−1,1]. At the beginning of each sequence, the hidden state can

be reset to an initial value.

Figure 3.8: Function φ transforms the hidden state into an output. This oper-
ation can be performed at any stage in the sequence.

The power and flexibility of these networks lies in leveraging the hidden states

to produce meaningful outputs. Figure 3.8 shows an example of how to use the

hidden state to compute an output. Using this capability, the RNN is able to provide

many forms of sequential output. Figure 3.9 shows the various forms that RNN

outputs can take. The output form of the RNN depends on the task it is trying to

accomplish.

There are several methods for training a RNN. By far, the most popular one

23

(a) One to One (b) One to Many

(c) Many to One (d) Many to Many

(e) Many to Many

Figure 3.9: Various RNN Output forms

is the Back Propagation Through Time (BPTT) algorithm, which is what we use

to train our network. The BPTT algorithm is essentially the same as the standard

backpropagation algorithm on the unrolled RNN network. The difference is that the

same parameters of the RNN are used at every step and each gradient contribution at

each time step is summed together. As with deep feed-forward networks, gradients

24

may vanish or explode when propagated through a long sequence since gradient

multiplications results in small or large values as more multiplication operations

take place depending on the magnitude of the weights and activation function types

[Pascanu et al., 2012]. These gradients pose a problem because exploding gradi-

ents cause instabilities in the training and vanishing gradients make learning long

term dependencies difficult. There are numerous techniques to deal with exploding

gradients such as time step truncation and gradient clipping, but vanishing gradi-

ents are much more difficult to remedy. In order to solve this problem, a different

architecture of the Recurrent Neural Network was conceived, known as the LSTM

[Lipton, 2015].

3.4.4 LSTM (Long Short Term Memory) Cells

LSTM networks have the same capabilities of the vanilla RNN. However, LSTM

networks solve the vanishing gradient problem by introducing a memory cell state

with gates that dictate when the cell state is written to and read from through the

use of input and output gates [Hochreiter and Schmidhuber, 1997].

Figure 3.10: LSTM cell proposed by Hochreiter. This architecture introduces
the input and output gates which regulate the cell’s hidden state.

Figure 3.10 shows the architecture of the LSTM cell proposed by Hochreiter

25

in 1997 [Hochreiter and Schmidhuber, 1997]. In this figure, the input and previous

hidden state are linearly combined and fed into the input node, the input gate, and

the output gate. These gates have non-linear activation functions that operate on

the inputs. In order to reach the cell state, the input node is multiplied elemental-

wise by the input gate. This restricts the information that is allowed to modify the

cell state. The cell state keeps its internal state across many iterations by having its

own self recurrent connection. The equations dictating the LSTM cell is specified

as:

It = σ(Wxt +Uht−1 +bi) (3.7)

Nt = σ(Wxt +Uht−1 +bn) (3.8)

Ct = Gt � It +Ct−1 (3.9)

Ot = σ(Wxt +Uht−1 +bo) (3.10)

ht = Og
t �Ct (3.11)

where Nt is the input node, It is the input gate, Ct is the hidden cell state, Ot is

the output gate, and ht is the hidden state that is propagated forward. Having the

self recurrent connection Ct allows for the error to be propagated back for long

depths. σ represents a non-linear function and is usually the tanh function. Having

a recurrent connection which spans adjacent time steps with a constant weight

allows errors to be back propagated without vanishing or exploding. This is known

as the Constant Error Carousel (CEC). More specifically, because the cell state is

linearly combined, the gradients from the upper levels of computation can flow

directly down to the lower levels of the cell. The input and output gates enable the

LSTM cell to selectively update or read from its cell state.

Since its first conception in 1997, there has been a recent addition of another

gate known as the forget gate [Gers et al., 1999]. The motivation for this addition

is to give the LSTM cell the ability to flush its cell state to discard irrelevant infor-

mation thereby learning to forget. This gate modulates the previous cell state to

produce a new cell state. The modern LSTM cell is shown in Figure 3.11.

26

Figure 3.11: Modern LSTM cell with forget gate proposed by [Gers et al.,
1999]. The Forget gate allows LSTM cell to flush out irrelevant con-
tents from the cell state while maintaining the constant error carousel.

The forget gate and the new cell state equations are:

Ft = σ(Wxt +Uht−1 +b f) (3.12)

Ct = Gt � It +Ft �Ct−1 (3.13)

As with the RNN there can be multiple hidden units that make up the hidden state.

If the dimension of ht is k, then the concatenated input is d + k where d is the di-

mensionality of the state vector. Each gate and node receives its own copy of the

inputs which are densely connected to each hidden unit. Thus there are approxi-

mately 4k(d+ k) parameters per LSTM cell. The LSTM network is likewise trained

using the BPTT algorithm.

27

Chapter 4

Methodology

In this chapter we discuss how the physics simulation is set up, the architecture of

the LSTM network, as well as the training process of the LSTM network.

4.1 Physics Simulation
As previously mentioned, we use the Bullet physics engine to develop our simu-

lation. We use a time step of 0.0005s in order to achieve stable simulation while

maintaining real-time performance.

4.1.1 Biped Simulation

To drive the biped, we compute torques using PD controllers along with a feedback

component for calculating swing hip angle. These torques are applied before each

Body Mass (kg) Length (m)
Torso 70 0.48
URL 5 0.45
ULL 5 0.45
LRL 4 0.45
LLL 4 0.45
RF 1 0.25
LF 1 0.25

Table 4.1: Body parameters

28

Body kp kd

Torso 4200 420
URL 800 80
ULL 800 80
LRL 700 70
LLL 700 70
RF 80 8
LF 80 8

Table 4.2: Joint PD Gains

Parameter State 1,3 State 2, 4
∆t 0.31s contact
Cd 10 10
Cv 4 4
Torso (WF) 1.5◦ 1.5◦

Swing hip 46.0◦ -7.0◦

Swing knee 68◦ 17◦

Swing ankle -9◦ -5◦

Stance knee 8◦ 15.7◦

Stance ankle -7◦ -3.0◦

Table 4.3: Finite State Machine parameters, WF represents with respect to
World Frame

physics step. The body parameters of the 2D Biped are shown in Table 4.1, while

joint parameters are shown in Table 4.2. The finite state machine parameters are

shown in table 4.3. The segments are connected using revolute joints with joint

limits. There is also a maximum allowable torque of 300Nm per application.

As previously noted, the ground compliance model that we implement is based

on a spring-and-damper restorative forces. The compliance model consists of a

stiffness gain, kp and a damping gain, kd . We set kd = 0.1kp. The stiffness is

sampled uniformly from a range kp ∈ [1000,3000]Nm. We apply this spring system

to 22 vertices located on the bottom edge of each foot of the biped. We found that

using more vertices along the feet offered more robustness to the gait. Figure 1.2

shows the force vectors in blue, that act upon the vertices along the bottom of the

foot.

29

4.1.2 Terrain Generation

The terrain that the biped traverses follows repeated instances of 3-segment chunks.

Each segment is 4 meters in length. The first segment uses a slope m1 ∈ [−5◦,5◦].

The second segment receives a slope m2 = 0◦. The last segment’s slope is given

by m3 =−m1. The purpose of the flat terrain segments, i.e., m2 = 0, is to give the

biped the opportunity to reset its gait. Figure 4.1 displays an example of the terrain

pattern that the biped is traversing.

Figure 4.1: The slope pattern that the bipedal character traverse across.

4.2 Network Architecture
For our experiments, we employ a 2 layer LSTM network with a dense feed forward

network with a Rectified Linear Unit (RELU) before the final output. Selecting this

architecture was performed while varying hyper-parameters and verifying the vali-

dation loss. Deeper LSTM layers are helpful for more complex relationships. More

parameters allow for modeling of more complex relationships but leaves the possi-

bility of overfitting. Finding an architecture which generalizes well depends on the

complexity of the problem and the number of parameters should scale accordingly.

Having a Dense Feed-Forward network at the end of the model transforms the hid-

den state into the estimation. For our intuition, the first LSTM layer transforms the

input sequence into a hidden sequence that the model learns to understand well.

The second LSTM layer takes this hidden sequence and learns to recognize impor-

tant data representations which is then decoded by the final dense layers. Figure 4.2

displays the architecture that we use in our experiments.

Our framework uses the many-to-many output form of the RNN as shown in

Figure 3.9d for training to take advantage of all the corresponding labels for each

time step in the sequence. When testing, we use the many-to-one output form as

shown in Figure 3.9c which predicts the terrain properties after the last input from

the sequence has been consumed. The outputs of the model are linear units because

30

Figure 4.2: The standard multilayer LSTM architecture

our problem resembles a regression.

4.3 Training Process
The training process consists of data collection and offline training of the model.

Data collection is the process of consolidating the simulation results which include

the biped character state as well as the terrain labels. Our training process consists

of sampling batches of data, providing the corresponding labels, and updating the

model.

4.3.1 Data Collection

We collect consecutive input vectors along with their associated labels. The input

vector includes features representing the torso’s linear velocity, each bodies dis-

tance to the root (hip joint), orientation, angular velocity, as well as an averaged

window of forces. In total, our input vector has 45 dimensions. We gather the

labels for the terrain based on the position of hip joint with respect to the ground.

That is, the label for the state is determined by which ground segment the hip po-

sition is currently over. Thus, there are cases where the swing leg is ahead of the

hip and contacts the next terrain segment first while the hip is still over the current

terrain segment. These situations give the model a notion of anticipation where it

observes a change in terrain prior to its complete arrival. Along with our proposed

31

network model and state input, we experiment with different window lengths and

state features as well. In total, our state vector has a maximum of 45 dimensions.

We found that sampling at greater frequencies allowed for more accurate re-

sults. For our simulation we sample at approximately 30Hz. Each sample consists

of a state vector which includes the biped state as well as the foot pressure forces

computed by the compliance model. Each state vector includes the linear velocity

of the hip, each body’s orientation and angular velocity, and the restorative force

vectors acting upon each vertex along the bottom edge of the foot. We run the

simulation on an Intel Core i5 CPU at 2.66 GHz.

4.3.2 Training

Once we have collected the data, we begin our offline training of the model. During

preprocessing, we normalize the inputs and the outputs to have zero mean and unit

variance. We then employ an overlapping windowing strategy to present sequences

to the network. Each window includes 30 consecutive states and an average foot

pressure forces. This corresponds to roughly having a 1 second stream of data

that is given to the model for estimation. Because the data does not fit into RAM,

we select batches of sequences uniformly during training. Our network uses the

mean squared error loss along with the RMSProp optimizer [Tieleman and Hinton,

2012]. Furthermore, it should be noted that for final test prediction, we normalize

test values with respect to the training values using the mean and and variance from

the training data.

32

Chapter 5

Experiments

This chapter describes the experiments that we perform. Each experiment tests

different architectures and input state configurations. In the following sections,

we describe our training framework and the evaluation results we use to gauge

performance.

5.1 Parameter Settings
For all of our experiments, we use a training, validation, and test set framework;

the model updates itself on the training set while measuring its performance on the

validation set after each epoch. We stop training if the validation error does not

improve after a patience parameter (The number of consecutive epochs where the

validation loss does not decrease) of 10 or if the maximum number of epochs, 40,

is reached. The training is performed using batches of 32 samples for 530 times

as sufficient performance was reached using those metrics. Validation losses were

computed and aggregated and averaged over every sample in a sequence since we

predict on each sample. We then use the model with the smallest validation loss for

testing. The final test score is realized by predicting on the test set. Experiments

are each run 3 times in order to gain an understanding of the distribution of the

final models. Each experiment contains a validation loss graph, a sample test error

graph, and a histogram of errors. With regard to the validation loss graph, the

arrows represent the minimum validation losses for each trial. With regard to the

33

Figure 5.1: The experiments that were carried out. Each experiment branches
off from the shared network architecture to measure its effect on accu-
racy.

sample test error graphs, the blue circles represent the model estimates while the

red circles represent the actual values, the black lines show the distance between

the actual values and the estimation.-

5.2 Experiments
We begin with the shared network model where the outputs share the same LSTM

layers before splitting into separate outputs. Each experiment follows from the

base case of using shared LSTM layers to measure its effect on estimation accu-

racy. We try separate experiments where each experiment consists of a separate

model that estimates individual terrain parameters. By doing this, we determine if

each estimation benefits from having dedicated parameters. Next, we determine if

having fewer hidden units affects the estimation accuracy. Finally, we gauge the

effect of different input state configurations. Specifically, we measure the effect of

including only bipedal character state and the effect of including only foot pressure

forces to estimate terrain properties. Figure 5.1 graphically displays the conducted

experiments. To get an idea of the scale of the errors, we note that 0.1σs = 0.288◦,

and 0.1σc = 57.192Nm where σs and σc stand for slope and compliance standard

34

deviation respectively.

5.2.1 Shared Network

We introduce the shared LSTM network with separate time distributed fully con-

nected layers as separate outputs for slope and ground compliance shown in Fig-

ure 5.2. Each LSTM layer consists of 128 hidden units. Each fully connected layer

consists of 128 units. There are 2 linear outputs from the model for slope and

compliance. The total number of trainable parameters is 253,954. We use a fixed

window size of 30 and predict at every step in the sequence. Figure 5.3a displays

the validation losses per trial. For comparison, the validation error of using the

average label value for both slope and compliance estimation is 1.892. This value

gives an idea of the improvement that this model has over just using the average la-

bel. The lowest achieved validation loss is 0.0481.Using the trained model with the

lowest validation loss, we run the model on a test set of 2000 samples to get an idea

of the estimation accuracy as shown in Figure 5.3b. Here, the blue circles represent

the prediction made by the model, the red circles are the actual labels, and the black

lines represent the distance of the prediction to the actual labels. We see that the

predictions estimate the labels quite closely. There are leading and trailing edges

during estimation because the correct label corresponds to the terrain segment that

the hip is currently over, which have discrepancies since the swing foot is ahead

of of the hip and anticipates terrain changes. Finally, to get an understanding of

the distribution of errors, we plot a histogram of errors as shown in Figure 5.3c.

In both histogram plots, the errors are closely centered around 0, which suggests

high fidelity to the actual labels. Note that the test losses for slope are smaller than

compliance for two main reasons. One, the slope generation has a specified terrain

pattern while compliance generation does not, which means that a terrain slope of 0

occur more frequently than other slopes, giving the model the opportunity to learn

its representation and minimize errors. And two, the range of compliance values is

much greater than that of slope, which may require more sampling in order for the

model to build an accurate representation of the data. Furthermore, to explain the

multimodal distribution of the slope, we see that there are much larger errors along

the edges of the estimations than between the edges, which gives rise to the small

35

sharp peaks in the error histogram.

Figure 5.2: The Shared LSTM architecture for predicting both slope ŝ and
compliance ĉ.

5.3 Separate Networks
The model that we use for separate slope and compliance predictions is shown in

Figure 4.2. Each model is dedicated to estimating one of the terrain properties.

Each LSTM layer has 128 hidden units. The Dense layer consists of 128 units

as well. The total number of trainable parameters is 237,313. We begin with

the dedicated compliance model followed by a dedicated slope model. Table 5.1

displays the validation losses across all trials. The validation loss for the separate

models are added to compare with the validation losses from the model with shared

parameters. It is interesting to note that the lowest validation loss for the shared

model is lower than the combined lowest validation losses of the separate models

for slope and compliance.

5.3.1 Compliance

Figure 5.4 displays the results of using a separate network for compliance esti-

mation. Each validation trial where the network is trained from random different

parameter initializations. The validation loss for comparison using the average

36

compliance value as an estimate is 3.484551. The lowest achievable validation

loss is 0.031. We then use the model with the lowest validation loss as our final test

prediction model. Each test sample represents a sequence of inputs. We take the

last predicted output as our final prediction to compare with the ground truth. Note

the anticipation towards the next compliance values shown by the large compliance

errors towards the edges; the model tries to predict the next values but the hip is

still over the current terrain segment. Once the foot pressures are felt for the next

segment, the model anticipates the change in terrain and adjusts its estimate. The

histogram distribution of errors shows the concentration of errors which is centered

around 0, implying accurate prediction. Comparing the test histogram of a dedi-

cated compliance model with the shared model, we see that the test errors of the

dedicated compliance model are actually less accurate than the shared model. The

dedicated model has a larger mean and standard deviation, implying that there may

be information gained from using slope estimations as well.

5.3.2 Slope

We perform the same experiments with slope as we did with compliance. Fig-

ure 5.5a displays the validation losses across 3 different parameter initializations.

The validation loss for comparison using the average slope value is 0.298591. The

lowest validation loss is 0.015. Once we have established the model with the min-

imum validation loss, we use that model on our test data set. The test estimations

are shown in Figure 5.5b. As mentioned previously, since the model sees more

examples of 0 slope, it learns that representation very well, keeping the variance

of the errors minimal during those stretches. To get a better understanding of the

distribution of the errors we plot the error histogram as well shown in Figure 5.5c.

Test Trial 1 Trial 2 Trial 3
Slope 0.0169 0.0177 0.0159
Compliance 0.0314 0.0329 0.0320
Shared 0.0453 0.0482 0.0509

Table 5.1: Validation losses between the separate and shared models. Lowest
validation losses per trial are indicated by their respective arrows

37

Comparing this histogram of errors with the histogram of errors from the shared

model, we see that the distributions look about the same with minor improvements

in mean and spread. Thus, we conclude that there is not too much of an improve-

ment using a dedicated model for slope estimation than using a shared model.

5.4 Decreased Parameter Space
We now perform our same methodology using half the number of units in the

shared architecture. Each LSTM layer consists of 64 units. Each fully connected

layer consists of 64 units as well. The total number of trainable parameters be-

comes 69,634.

Figure 5.6a displays the validation losses across 3 separate trials from different

parameter initializations. Comparing the validation losses with the shared model

of more parameters, we see that the shared model achieves lower validation loss

consistently across all trials. The lowest validation loss from using half of the

units is 0.053. Test predictions are shown in Figure 5.6b. Comparing sample test

predictions, we see that the predictions made by this model have slightly more

variance. We verify this by comparing the histogram plots of test errors generated

by this model and the previous model. The test histogram is shown in Figure 5.7c.

Comparing slope error distributions, this model has a mean farther from 0 as well

as a larger deviation. When comparing compliance errors, we see that the mean is

slightly farther from 0 and the spread is slightly larger for this model. We conclude

that the size of the parameter space affects the estimation quality of the model,

but more experiments are needed to gauge the relationship between number of

parameters, parameter selection, and estimation quality.

5.5 Varying Window Sizes
In this experiment we vary the window sizes of the input data to gauge its effect

on the prediction quality of the shared architecture. Our initial experiment with

the shared architecture were run with a window of size 30. In this section, we

display the results of changing the window to sizes of 15, 7, and 3. We run each

experiment with 20 epochs instead of 40 because the validation improvements after

20 are minimal.

38

Experimental results using a window of 15 are displayed in Figure 5.7. Ex-

perimental results using a window of 7 are displayed in Figure 5.8. Experimental

results using a window of 3 are shown in Figure 5.9. Comparing these results

together, we observe a general trend of loss of predictive quality as window size

decreases. The validation losses are larger as window size decreases. From the

sample test examples, we see that the variance of the estimates increases as win-

dow sizes decreases. This is reflected through the spread of test error which also

increases for both the slope and compliance estimations as the window size de-

creases. This leads us to conclude that using a larger window size indeed provides

greater accuracy for estimations. There is relevant information contained in the

sequence history that requires a larger window to track it.

5.6 Removal of Features
The following experiments gauge the effect that the inputs have on estimation ac-

curacy. In all cases, the model using the entire feature set had higher estimation

accuracy and precision. We begin with removing the foot pressure forces from

the inputs, thereby only using bipedal character state features to estimate terrain

properties. Afterwards, we remove the bipedal character state features and only

use foot pressure forces to estimate terrain properties. We then compare the results

of these experiments together to draw a conclusion on how each feature set affects

estimation.

Results of removing the foot pressure forces and only using state features are

shown in Figure 5.10. Results of removing the state features and only using foot

pressure forces are shown in Figure 5.11. Comparing the validation losses together,

we see that in all cases the validation loss after one epoch with just using the foot

pressure forces improved more sharply than that of just using state information.

This may be due to the homogeneity of the foot pressure force data. Regardless,

the validation losses at the end of training appear similar. By comparing test pre-

dictions together, we begin to see some interesting behavior. Using only bipedal

character state features, we see that the test predictions of slope fluctuate less and

are more accurate than that of just using foot pressure forces for the same estima-

tion. Conversely, when looking at the test predictions for compliance using only

39

foot pressure forces we see that the estimations oscillate less than that of just using

state information for the same estimations. This hints at the notion that bipedal

character state captures slope more accurately than using foot pressure forces, and

foot pressure forces capture compliance more accurately than bipedal state fea-

tures. We verify this by comparing the test histograms. By comparing the error

histograms for slope from the respective figures, we see that using state results in

lower spread for slope with higher accuracy. By comparing the error histograms

for compliance, we see that the spread of errors from the compliance estimation

using bipedal state features is slightly larger than that of using foot pressure forces.

This hints that the model learns to be sensitive to certain features that may capture

the desired variable to estimate more accurately.

5.7 Discussion
This section provides a brief discussion about the results. We show that a shared

architecture gives a sufficient model for our estimation purposes. This model scales

the number of parameters with the complexity of the estimation task appropriately.

In general, larger window sizes provide better estimates. From our experiments,

we believe that slope information is contained in the bipedal state of the character

while foot pressure forces contain compliance values. Having memory of the time

series inputs that is represented by the cell state of the LSTM cell allows the model

to pick up on important patterns hidden in the input sequence. We suspect that by

using the sequence of bipedal states, the model is able to pick up on the difference

in state values and map those differences to slopes. To make this more obvious,

we conducted an experiment (not shown) where we provided a sequence of state

differences as time series input to make the information more explicit and verified

similar performance quality.

40

(a) Validation losses for Slope and Compliance predic-
tions. The arrows point to the respective minimum losses
of each trial

(b) Sample Test Predictions for each output.

(c) Histograms of test error predictions for slope and
compliance. µs = 0.006,σs = 0.084,µc = −0.001,σc =
0.113

Figure 5.3: Results for Slope and Compliance prediction using a shared ar-
chitecture

41

(a) Validation losses for compliance predictions.

(b) Sample compliance test predictions for each output.

(c) Histograms of test error predictions for compliance.
µ = 0.027,σ = 0.118

Figure 5.4: Results for compliance prediction using separate model

42

(a) Validation losses for Slope predictions.

(b) Sample slope test predictions for each output.

(c) Histograms of test error predictions for slope. µ =
−0.002,σ = 0.072

Figure 5.5: Results for slope prediction using separate model

43

(a) Validation losses for Slope and Compliance predic-
tions.

(b) Sample Test Predictions for each output with half of
the units.

(c) Histograms of test error predictions for slope and
compliance. µs = 0.008,σs = 0.094,µc = −0.020,σc =
0.124

Figure 5.6: Results for using half of the units.

44

(a) Validation losses for Slope and Compliance predic-
tions for a window of size 15.

(b) Sample Test Predictions for each output with a win-
dow size of 15.

(c) Histograms of test error predictions for
slope and compliance for a window of size
15. µs = 0.001,σs = 0.144,µc =−0.009,σc =
0.235

Figure 5.7: Results for a window size of 15

45

(a) Validation losses for Slope and Compliance predic-
tions.

(b) Sample Test Predictions for each output.

(c) Histograms of test error predictions for slope and
compliance. µs = 0.016,σs = 0.151,µc = 0.025,σc = 0.242

Figure 5.8: Results for a window of 7

46

(a) Validation losses for Slope and Compliance predic-
tions.

(b) Sample Test Predictions for each output.

(c) Histograms of test error predictions for slope and
compliance. µs = −0.131,σs = 0.334,µc = 0.161,σc =
0.406

Figure 5.9: Results for a window of 3
47

(a) Validation losses for Slope and Compliance predic-
tions.

(b) Sample Test Predictions for each output.

(c) Histograms of test error predictions for slope and
compliance. µs = 0.00178,σs = 0.120,µc = −0.005,σc =
0.152

Figure 5.10: Results of only using state features

48

(a) Validation losses for Slope and Compliance predic-
tions.

(b) Sample Test Predictions for each output.

(c) Histograms of test error predictions for slope and
compliance. µs = 0.028,σs = 0.146,µc = −0.014,σc =
0.140

Figure 5.11: Results of only using foot pressure forces

49

Chapter 6

Conclusions

In this thesis, we explored using a deep recurrent network along with a recent his-

tory of locomotion and foot pressure data for terrain estimation. We were able

to develop an architecture with enough complexity that can handle temporal data.

Our approach was motivated by the idea of building perception through structured

movement and physical sensations gained through the agent’s modalities. Through

our experiments, we discovered that history length, parameter size, as well as fea-

ture type all contribute to the fidelity of the model. Using a longer history allowed

the model more opportunity to capture key patterns. Increasing parameter space

gave the model more freedom to search for optimal parameter values. Lastly, our

experiments hinted that key pieces of information were embedded in the type of

features given to the model; the model was able to learn which set of features gave

greater correspondences with terrain parameters without any explicit information.

Automatically learning these correspondences is similar to how humans learn to

pay attention to certain modalities to learn more about certain aspects of the envi-

ronment. We show that this model achieves high fidelity that can be used in real

time as supplemental information. A limitation of this model is the tight coupling

of the model with the locomotion, sensory information, and environment; a change

in either of these components would require a separate model to be trained. Gener-

alizing a model like this for a variety of motion, terrain, and sensory information is

a challenge. In the future, we would like to explore the best use cases for a similar

model for boosting controllers. Incorporating a memory element into a controller

50

may enable it to memorize key events and anticipate important changes allowing

for highly dynamic responses by the agent.

51

Bibliography

Alanis, A. Y., Sanchez, E. N., Loukianov, A. G., and Perez, M. A. (2011).
Real-time recurrent neural state estimation. IEEE Transactions on Neural
Networks, 22(3):497–505. → pages 12

Barsalou, L. W. (2007). Grounded Cognition. Annual Review of Psychology,
59:1–21. → pages 6

Berthoz, A. (2002). The Brain’s Sense of Movement. Harvard University Press.
→ pages 2

Connor, J. T., Martin, R. D., and Atlas, L. E. (1994). Recurrent Neural Networks
and Robust Time Series Prediction. IEEE Transactions on Neural Networks,
5(2):240–254. → pages 12

Debasish Sena, N. K. N. (2015). Application of time series based prediction
model to forecast per capita disposable income. IEEE. → pages 12

Gers, F., Eck, D., and Schmidhuber, J. (2000). Applying lstm to time series
predictable through time-window approaches. Technical report. → pages 12

Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget:
Continual prediction with lstm. Neural Computation, 12:2451–2471. → pages
x, 26, 27

Giguere, P. and Dudek, G. (2009). Surface identification using simple contact
dynamics for mobile robots. In 2009 IEEE International Conference on
Robotics and Automation, pages 3301–3306. → pages ix, 7

Guo, K., Zou, D., and Chen, X. (2015). 3d mesh labeling via deep convolutional
neural networks. ACM Trans. Graph., 35(1):3:1–3:12. → pages 3

Hashlamon, I. and Erbatur, K. (2016). Joint friction estimation for walking
bipeds. Robotica, 34(7):16101629. → pages 19

52

Heess, N., Hunt, J. J., Lillicrap, T. P., and Silver, D. (2015). Memory-based
control with recurrent neural networks. CoRR, abs/1512.04455. → pages 12

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput., 9(8):1735–1780. → pages 25, 26

Holden, D., Saito, J., and Komura, T. (2016). A deep learning framework for
character motion synthesis and editing. ACM Trans. Graph.,
35(4):138:1–138:11. → pages 3

HuH, D. and Todorov, E. (2009). Real-time motor control using recurrent neural
networks. In 2009 IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning, pages 42–49. → pages 12

Lipton, Z. C. (2015). A critical review of recurrent neural networks for sequence
learning. CoRR, abs/1506.00019. → pages 25

Ljung, L., editor (1999). System Identification (2Nd Ed.): Theory for the User.
Prentice Hall PTR, Upper Saddle River, NJ, USA. → pages 11

Marion, P., Fallon, M., Deits, R., Whelan, T., Antone, M., McDonald, J., and
Tedrake, R. (2015). Continuous Humanoid Locomotion over Uneven Terrain
using Stereo Fusion, pages 881–888. IEEE. → pages 10

N. Houshangi, F. A. (2005). Accurate mobile robot position determination using
unscented kalman filter. IEEE. → pages 19

N. Yadaiah, G. S. (2006). Neural network based state estimation of dynamical
systems. IEEE. → pages 12

Pascanu, R., Mikolov, T., and Bengio, Y. (2012). Understanding the exploding
gradient problem. CoRR, abs/1211.5063. → pages 25

Peng, X. B., Berseth, G., and van de Panne, M. (2016). Terrain-adaptive
locomotion skills using deep reinforcement learning. ACM Trans. Graph.,
35(4):81:1–81:12. → pages 3

Prasad, S. C. and Prasad, P. (2014). Deep recurrent neural networks for time
series prediction. CoRR, abs/1407.5949. → pages 12

Reina, G., Paiano, M., and Blanco-Claraco, J.-L. (2017). Vehicle parameter
estimation using a model-based estimator. Mechanical Systems and Signal
Processing, 87:227 – 241. → pages 19

53

Sandeep Manjanna, Gregory Dudek, P. G. (2013). Using gait change for terrain
sensing by robots. 2013 10th International Conference on Computer and Robot
Vision (CRV 2013), 00:16–22. → pages ix, 9

Simon, D. (2006). Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches. Wiley-Interscience. → pages 12

Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.-Y.,
Hjalmarsson, H., and Juditsky, A. (1995). Nonlinear black-box modeling in
system identification: A unified overview. Automatica, 31(12):1691–1724. →
pages 11

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., and
Potts, C. (2013). Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 1631–1642, Stroudsburg, PA.
Association for Computational Linguistics. → pages 3, 12

Tieleman, T. and Hinton, G. (2012). Lecture 6.5—RmsProp: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural Networks
for Machine Learning. → pages 32

Vernon, D. (2008). Cognitive vision: The case for embodied perception. Image
and Vision Computing, 26(1):127 – 140. Cognitive Vision-Special Issue. →
pages 6

Walas, K. (2015). Terrain classification and negotiation with a walking robot. J.
Intell. Robotics Syst., 78(3-4):401–423. → pages ix, 8

Wenhao Yu, C. Karen Liu, G. T. (2017). Preparing for the unknown: Learning a
universal policy with online system identification. Pre print. → pages ix, 10, 11

Wilson, R. A. and Foglia, L. (2017). Embodied cognition. In Zalta, E. N., editor,
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, spring 2017 edition. → pages 2

Yazdani, H. (2009). Prediction of chaotic time series using neural network. In
Proceedings of the 10th WSEAS International Conference on Neural Networks,
NN’09, pages 47–54, Stevens Point, Wisconsin, USA. World Scientific and
Engineering Academy and Society (WSEAS). → pages 12

Yi, S.-J., Zhang, B.-T., and Lee, D. D. (2010). Online learning of uneven terrain
for humanoid bipedal walking. In Proceedings of the Twenty-Fourth AAAI

54

Conference on Artificial Intelligence, AAAI’10, pages 1639–1644. AAAI
Press. → pages 10

Yin, K., Loken, K., and van de Panne, M. (2007). Simbicon: Simple biped
locomotion control. ACM Trans. Graph., 26(3). → pages 4, 15, 16

Ziv Bar-Joseph, Anthony Gitter, . I. S. (2012). Studying and modelling dynamic
biological processes using time-series gene expression data. Nature. → pages
12

55

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	1.1 Motivations
	1.2 Thesis Overview

	2 Related Work
	2.1 Embodied Perception
	2.2 Robot Locomotion with Environmental Knowledge
	2.2.1 Terrain Classification
	2.2.2 Terrain Estimation

	2.3 System Identification and State Estimation
	2.4 Prediction from Time Series

	3 Background
	3.1 Bipedal Walking Control Policy
	3.2 Ground Contact Model
	3.3 State Estimation and System Identification
	3.4 Neural Networks
	3.4.1 Feed Forward Networks
	3.4.2 Recurrent Neural Networks (RNNs)
	3.4.3 Vanilla RNN
	3.4.4 LSTM (Long Short Term Memory) Cells

	4 Methodology
	4.1 Physics Simulation
	4.1.1 Biped Simulation
	4.1.2 Terrain Generation

	4.2 Network Architecture
	4.3 Training Process
	4.3.1 Data Collection
	4.3.2 Training

	5 Experiments
	5.1 Parameter Settings
	5.2 Experiments
	5.2.1 Shared Network

	5.3 Separate Networks
	5.3.1 Compliance
	5.3.2 Slope

	5.4 Decreased Parameter Space
	5.5 Varying Window Sizes
	5.6 Removal of Features
	5.7 Discussion

	6 Conclusions
	Bibliography

