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Abstract

This thesis comprises three independent essays in operations management. The first essay

explores a specific issue encountered by mobile gaming companies. The remaining two essays

address the contracting problem in a supply chain setting.

In the first essay, we study the phenomena of game companies offering to pay users in

“virtual” benefits to take actions in-game that earn the game company revenue from third

parties. Examples of such “incentivized actions” include paying users in “gold coins” to watch

video advertising and speeding in-game progression in exchange for filling out a survey etc.

We develop a dynamic optimization model that looks at the costs and benefits of offering

incentivized actions to users as they progress in their engagement with the game. We find

sufficient conditions for the optimality of a threshold strategy of offering incentivized actions to

low-engagement users and then removing incentivized action to encourage real-money purchases

once a player is sufficiently engaged. Our model also provides insights into what types of games

can most benefit from offering incentivized actions.

In the second essay, we propose what we call a generalized price-only contract, which is a

dynamic generalization of the simple wholesale price-only contract. We derive some interesting

properties of this contract and relate them to well-known issues such as double marginaliza-

tion, relative power in a supply chain due to Stackelberg leadership, contract structure and

commitment issues.

In the third essay, we consider a supplier selling to a retailer with private inventory infor-

mation over multiple periods. We focus on dynamic short-term contracts, where contracting

takes place in every period. At the beginning of each period, with inventory or backlog kept

privately by the retailer, the supplier offers a one-period contract and the retailer decides his

order quantity in anticipation of uncertain customer demand. We cast the problem as a dynam-

ic adverse-selection problem with Markovian dynamics. We show that the optimal short-term

contract has a threshold structure, with possibly multiple thresholds. In certain cost regimes,

the optimal contract entails a base-stock policy yet induces partial participation.
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Lay Summary

In the first essay, we explore whether the mobile gaming company should pay users in “virtual”

benefits to watch video advertising or fill out surveys so that the company earns revenue from

third parties. We help the company to target what games benefit most from this practice, and

we design the best way to implement it.

Essays 2 and 3 consider a supplier selling to a downstream retailer who faces random cus-

tomer demand. The supplier determines the type and terms of the contract. In essay 2, we

study a dynamic generalization of the simple wholesale price-only contract. We examine the

impacts on the decisions and profits, if the two companies are allowed to trade multiple times.

In essay 3, we characterize the optimal short-term contract in the case where the supplier needs

to offer a new contract in every period, without knowing the retailer’s beginning inventory or

backorder.
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Chapter 1

Introduction

The area of operations management has found many applications and connections to other

disciplines, such as economics, marketing and information systems. This thesis presents three

essays in the domain of operations management. Although the topics are diverse, they can

be sorted into two major streams. One is the application of operations management to study

issues in the digital economy (Chapter 2). The other is the application of mechanism design in

operations management (Chapters 3 and 4).

Operations Management in the Digital Economy

The digital economy, especially the emergence of smartphones, social media and cloud data

service, is radically changing the ways in which people work, learn, entertain themselves and

socialise. By 2015, the worth of the mobile content market alone reached 27.5 billion U.S. dollars

worldwide, and the number of social network users exceeded 2 billion. The emergence of the

digital economy also impacts the way people do business. In particular, as technical innovation

spurs the era of big data, decision makers are able to collect personalized data and apply data

driven analytics to understand customers better and improve decision-making. Moreover, a

number of new business models have emerged. One example is freemium games that are free to

download where revenue is generated only after use either through in-app transactions or from

other third parties. The first essay (Chapter 2) explores a particular practice called incentivized

actions that are commonly implemented in mobile games.

Mobile games are the fastest growing segment of the entertainment industry globally, which

itself is dominated by freemium games. A recent innovation is to offer “incentives” for players

by paying them with “virtual” benefits for clicking on banner ads, watching videos, or filling

out surveys. These are collectively called incentivized actions, or shortened as incented actions.

Such a new business model raises many interesting questions.

In Chapter 2, we take the perspective of a game publisher and explore the use of incented

actions in mobile games. Specifically, we study the following questions: Should game publishers

offer incented actions? If so, how to optimally design a policy for offering incented actions? If

a gaming company offers several products, which of its games can most benefit from offering

incented actions?

We model the publisher’s problem as a Markov decision process where the underlying state

is the player’s engagement levels and the publisher’s decision is whether or not to offer incented
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actions. We provide sufficient conditions for the optimality of a threshold strategy of offering

incented actions to low-engaged players and then removing them to encourage real-money

purchases once a player is sufficiently engaged. We also explore the settings where the optimality

of the threshold policy breaks down. Moreover, we provide managerial insights and assist game

publishers in targeting which types of games can take most advantage of delivering incented

actions. For instance, we show analytically that social games that include player interactions as

part of the design should offer incented actions more broadly. We also discuss different effects

of the design of incented actions for attracting and engaging players, including their “strength”,

i.e. the power of their associated virtual benefits.

Mechanism Design in Operations Management

Mechanism design is a field pioneered by economists but has recently found important ap-

plications in operations management, especially the areas of supply chain management and

healthcare management. Numerous studies have analyzed how contracts should be designed to

mediate interactions among self-interested firms. The major part of the literature has focused

on the static setting with complete information. In the real world, however, multi-period con-

tracting is also (if not more) prevalent, with contracting parties having private information and

decisions being made dynamically. Dynamic contracting is known to be a challenging problem

due to a host of technical and expositional difficulties. Several researchers have exerted a sig-

nificant effort to characterize the optimal mechanism in certain specific settings. For instance,

Battaglini [4] characterizes the optimal long-term contract between a monopolist and a buyer

whose private preferences evolve as a two-state Markov process. He finds that the optimal con-

tract is contingent on the buyer’s complete purchase history and once the buyer reveals himself

to be the high-type, the supply will become efficient in all future periods. This is considered a

significant finding in dynamic contracting, yet limited by the two-state assumption.

Chapters 3 and 4 focus on a two-echelon supply chain in which a retailer (“he”) buys

inventory from an upstream supplier (“she”) dynamically in anticipation of uncertain customer

demand. The supplier needs to determine the terms of the contract. We are interested in

finding how dynamic interactions affect bilateral business relationships and whether it will lead

to significantly different contracts than under one-shot interactions.

In Chapter 3, we look at a two-stage supply chain with symmetric information. We pro-

pose a generalized price-only contract that is a dynamic generalization of the simple wholesale

price-only contract. The supplier first informs the retailer that n wholesale prices will be of-

fered sequentially and dynamically. For each wholesale price proposed, the retailer chooses an

order quantity at that price. At the end of the last offer, the retailer uses the total quantity

cumulatively purchased to satisfy market demand. We examine how it will affect the firms’

decisions if, instead of having one opportunity to trade, they are allowed to engage multiple

times, still using a simple linear price-only contract.

2
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It is well known that the classical wholesale price-only contract causes supply chain in-

efficiency due to the double marginalization effect. We show that the generalized price-only

contract benefits both players. Moreover, as the number of price offers n approaches infinity,

the supply chain profit approaches the first best profit. We also demonstrate that for a given

contract with a specific n, the wholesale prices monotonically decrease. However, somewhat

surprisingly, for a fixed n, the order quantities within the n periods may not be monotone. We

provide necessary and sufficient conditions for the stationarity of the supplier’s per period prof-

it. Finally, we derive closed form solution for three settings in which the demand is exponential,

uniform or constant.

In Chapter 4, we consider a supplier selling to a retailer with private inventory information

over multiple periods. A few pioneering studies have explored the contracting problem in this

setting. Zhang et al. [57] focus on dynamic short-term contract in the lost sales case and they

show that the optimal contract is a batch-order contract under certain assumptions. Ilan and

Xiao [27] study the optimal long-term contract and prove that it takes a simple form in both

lost-sales and backlogging cases.

Filling a gap in the literature, our work focuses on dynamic short-term contracts, where

contracting takes place in every period, with inventory or backlog kept privately by the retail-

er. We cast the problem as a dynamic adverse-selection problem with Markovian dynamics.

Markovian adverse-selection models, in which the state and action in a period affect the state

in the subsequent period, are theoretically challenging and much less understood. Our work

contributes to a better understanding of such models, especially under short-term contracting.

We show that the optimal short-term contract has a threshold structure, with possibly

multiple thresholds, under exponentially distributed demand. In a high cost regime, the optimal

short-term contract may entail a base-stock order policy and an exclusion region. If the retailer’s

inventory (or backlog) falls in the exclusion region, the supplier terminates the relationship with

the retailer. If not, the retailer participates and orders up to a constant base-stock level. It is

drastically different from the lost sales setting.

Moreover, in the backlogging case, the supplier finds more sales opportunities in the retailer’s

backlog situation, which increases the retailer’s bargaining power. As an interesting result,

the information rent (profit yielded to the retailer) under the optimal contract may be non-

monotone in the retailer’s inventory (or backlog) level. The supplier would sometimes prefer

to deal with retailers with high inventory, which is different from the lost-sales case where the

supplier always wants to trade with retailers who have low inventory.

The rest of the thesis is organized as follows. Each essay is self-contained and is presented

in one chapter, with a more exhaustive discussion of literature review, research question and

main contributions. All proofs are relegated to Appendices.

3



Chapter 2

Incentivized Actions in Freemium

Games

2.1 Introduction

Games represent the fastest growing sector of the entertainment industry globally, which in-

cludes music, movies and print publishing [39]. Moreover, the online/mobile space is the fastest

growing segment within games, which itself is dominated by games employing a “freemium”

business model. Freemium games are free to download and play and earn revenue through ad-

vertising or selling game enhancements to dedicated players. When accessed on 23 April 2015,

Apple Inc.’s App Store showed 190 out of the 200 top revenue generating games (and all of

the top 20) were free to download.1 On Google Play, the other major mobile games platform,

297 out of the 300 top revenue generating games were freemium.2 Moreover, games are the

dominant revenue generators in the global app market. Revenues from mobile games account

for 79% of total app revenue on Apple’s App Store and 92% of revenue on Google Play [48].

The concept behind freemium is to attract large pools of players, many of whom might

never “monetize”; that is, pay for an in-app purchase. The process by which a player begins

to pay out-of-pocket for a freemium game is called monetization. In general, successful games

have a monetization rate of between 2 and 10 per cent, with the average much closer to 2 per

cent [36]. As for unsuccessful games, the monetization rate can be virtually zero.

When game publishers cannot earn directly from the pockets of consumers they turn to

other sources of revenue. This is largely through earning revenue from third parties willing

to pay publishers for delivering advertising content, have players download other apps, fill out

surveys, or apply for services, such as credit cards. This stream of revenue is less lucrative per

conversion than in-app purchases. For instance, delivering a video ad typically earns a fraction

of a cent while an in-app purchase typically earns the publisher fifty cents or more.

Like most modern consumers, however, players can become irritated by advertising, espe-

cially when it interrupts the flow or breaks the fiction of a game. A recent innovation is to

offer “incentives” for players to click on a banner ad, watch a video, or fill out a survey. These

are collectively called incentivized actions, or as it is commonly shortened, incented actions. To

get a clearer sense of the structure of an incented action and the value of the “incentive” to a

1http://appshopper.com/bestsellers/games/gros/?device=iphone
2https://play.google.com/store/apps/collection/topgrossing?hl=en

4



2.1. Introduction

player, details of the mechanics and goals of a game are needed to provide context. We feel this

is best achieved through the description of the following two concrete examples.

Crossy Road

Crossy Road is a freemium game developed by Hipster Whale that has recently (since 2014) seen

great success with incented video advertising, earning over 10 million USD in the first three

months after its launch [19]. In Crossy Road, the player controls a character who attempts

to cross busy streets full of fatal obstacles. The main progression of the game is to collect

additional characters to play, including animals, avatars of famous people, and many others.

The characters must be unlocked through earning “coins”. “Coins” are earned organically by

playing the game at a slow rate. Periodically the player has an option to watch a video ad to

earn a large bundle of coins all at once. Once a player collects one hundred coins she can use

them to randomly draw a character. If the player is unlucky she may draw a character she

previously unlocked. If the player wishes to purchase a specific character (of which there are

now dozens) it will cost at least 0.99 USD. The incented action (watching an ad) accelerates

the progression of the player by rewarding large bundles of coins, but the value of the incentive

weakens as random draws are increasingly unlikely to unlock a new character as the player

progresses. Moreover, there can be long stretches of time where video ads are not offered,

forcing the player to either make progress organically or purchase characters with real money.

Candy Crush Saga

A second illustrative example is Candy Crush Saga, published by King. King was recently

acquired by Activision-Blizzard for 5.9 billion USD based on the enduring popularity of Candy

Crush Saga and its portfolio of successful games [37]. In Candy Crush Saga, a player attempts

to solve a progression of increasingly challenging puzzles. At the higher levels it is typical for

players to get stuck for extended periods of time on a single puzzle. Player progression is further

hindered by a “lives” mechanic where each failed attempt at a puzzle consumes one of at most

five total lives. Lives are regenerated either through waiting long periods of real time or by

purchasing additional lives with real money. In addition to lives, players can also pay for items

that enhance their chances of completing a puzzle.

Early versions of Candy Crush Saga had incented actions, including advertising. A player

could take an incented actions to earn lives or items without using real money. However, in

June of 2013, six months after Candy Crush Saga launched on Apple iOS, King decided to drop

all forms of in-game advertising in the game [18].

King’s choice was surprising to many observers. What was the logic for removing a po-

tential revenue stream? How did this move affect the monetization rate? The ramifications

from such decisions vary depending on the game and can potentially have significant financial

consequences. To get a sense of this, note that an in-app-purchase can be between a dollar to

5



2.1. Introduction

around $5 and Supercell earned approximately 2.3 billion in revenue in 2015 purely through

monetization of its three games [51]. Our two examples of games that have experimented with

the use of incented actions also raise several related important questions about the impact of

incented actions. For example, when is it best to offer incented actions? If offered, is it optimal

to offer them to certain players at certain times, but not others? Also, if a gaming company

offers several products, which of its games are better suited to offering incented actions? Our

paper develops a framework for answering some of these important questions.

Our contributions

In this paper we present an analytical model to explore the use of incented actions. In particular,

we are interested in a game publisher’s decision of when to offer incented actions to players, and

when to remove this option. Our model emphasizes the connection of incented actions to two

other useful concepts often discussed in the game industry – engagement and retention. The

engagement of a player measures their commitment. Highly engaged players are more likely

to make in-app purchases and less likely to quit. Retention refers to a game’s effectiveness at

keeping players from quitting. Intuitively, the longer a player is retained in the game, the more

likely they are to become engaged and monetize. Clearly, these two concepts are interrelated.

Analytically, player engagement levels are modeled as states in a Markov chain and retention

is captured as the time a player stays in the system before being absorbed into a “quit” state.

The main insights from our model deal with the relationship between engagement, retention

and incented actions. We identify, and provide analytical characterizations for, three main

effects of incented actions. These effects are described in with greater precision below, but we

mention them here at a conceptual level.

First is the revenue effect : by offering incented actions game publishers open up another

channel of revenue. However, the net revenue of offering incented actions may nonetheless be

negative if one accounts for the opportunity costs of players not making in-app purchases. That

is, this captures the possibility that a player would have made an in-app purchase if an incented

action was not available. For instance, in Crossy Road a player may collect characters entirely

through watching video ads, but if this option were removed a player may begin to purchase

characters with real money.

The retention effect measures how effective an incented action is at keeping players from

quitting. Again, in the example of Crossy Road, at some point the organic accumulation of

“coins” may feel prohibitively slow to a player. If the option of watching video ads were removed,

a player may prefer to quit rather than start to use real money to purchase characters. In other

words, incented actions can delay a player’s decision to quit the game.

Finally, the progression effect refers the effectiveness of an incented action in deepening

the engagement level of the player. It refers to an incented actions ability to increase the

player’s attachment to the game. In Crossy Road video ads allow players to collect characters,

potentially deepening their engagement. These three effects are intuitively understood by game
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developers and the topic of much discussion and debate in the gaming industry.3 Gaming

companies grapple with the issue of understanding how these effects interact with each other

in the context of specific games. As we shall see in concrete examples below, all three effects

can act to either improve or erode the overall revenue available to the publisher. Each effect

is clearly connected and they often move in similar directions as players progress. Part of our

analysis is to describe situations where the effects move in different, sometimes counter-intuitive,

directions.

We are able to analytically characterize each effect, allowing us to gain insights into how to

optimally design a policy for offering incented actions. To understand the interactions between

these effects and to capture the dynamics in a game, we use Markov chains to model player

engagement and how they transition from one level of engagement to another. Then, using a

Markov Decision Process (MDP) model we study the effect of specific decisions or policies of

the game publisher. For example, we provide sufficient conditions for when a threshold policy

is optimal. In a threshold policy incented actions are offered until a player reaches a target

engagement level, after which incented actions are removed. The intuition of these policies is

clear. By offering incented actions, the retention effect and progression effect keep the player

in for longer by providing a non-monetizing option for progression. However, once a player

is sufficiently engaged, the revenue effect becomes less beneficial and the retention effect less

significant because highly engaged players are more likely to buy in-app purchases and keep

playing the game. This suggests that it is optimal to remove incented actions and attempt

to extract revenue directly from the player through monetization. Our sufficient conditions

provide justification for this logic, but we also explore settings where this basic intuition breaks

down. For instance, it is possible that the retention effect remains a dominant concern even

at higher engagement levels. Indeed, a highly engaged player may be quite likely to monetize

and so there is a strong desire on the part of the publisher to keep the player in the system for

longer by offering incented actions to bolster retention.

MDPs are used to study dynamics in systems such as ours and are popular in the economics,

operations management and marketing literatures. There are several advantages to using MDPs

to model and study settings such as ours. First of all, they are an effective tool for theoretical

analyses, such as the one we are interested in. This is because MDP theory is rich and allows

one to prove formal results on the interactions between different variables of interest. Second,

with the availability of player level data as is the case with games, it is relatively easy to validate

these models and perform “what if” scenarios using simulations to test different scenarios of

interest. We believe ours is the first formal model and study using these ideas in a gaming

setting and we anticipate that the results and modeling approach will be useful to researchers

in this area as well as practitioners.

Clearly, the relative strengths of these three effects depend on the characteristics the game,

including all the parameters in our MDP model. We examine this dependence by tracking

3Discussion of issues is a regular occurrence on gaming industry forums, such as gaminginsiders.com.
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how the threshold in an optimal threshold policy changes with the parameters. This analysis

provides insights into the nature of optimal incented action policies.

For instance, we show analytically that the more able players are at attracting their friends

into playing the game, the greater should be the threshold for offering incented actions. This

suggests that social games that include player interaction as part of their design should offer

incented actions more broadly, particularly when the retention effect is strongly positive, since

keeping players in the game for longer gives them more opportunities to invite friends. Indeed, a

common incented action is to contact friends in your social network or to build a social network

to earn in-game rewards. This managerial insight can assist game publishers in targeting what

types of games in a portfolio of game projects can take most advantage of delivering incented

actions.

We also discuss the different effects of the design of incented actions, in particular their

“strength” at attracting and engaging players. “Strength” here refers to how powerful the

reward of the incented action is in the game. For instance, the number of “coins” given to the

player when an incented action is taken. If this reward is powerful, in comparison to in-app

purchases, then it can help players progress, strengthening the progression effect. On the other

hand, a stronger incented action may dissuade players further from monetizing, strengthening

cannibalization. Through numerical examples we illustrate a variety of possible effects that

tradeoff the behavioral effects of players responding to the nature of the incented action reward

and show that whether or not to offer incented actions to highly engaged players depends in

a nonmonotonic way on the parameters of our model that indicate the strength of incented

actions.

The rest of the paper is organized as follows. In Section 2.2 we review related work, paying

close attention to contributions from the information systems and marketing literatures. Sec-

tion 2.3 presents our model, first developing a stochastic model of player behavior and then

formulating the game publisher’s decision problem as an MDP. In Section 2.4 we formally de-

fine the three effects mentioned above and characterize them analytically. These effects are

leveraged to provide sufficient conditions for an optimal threshold policy in Section 2.5. Sec-

tion 2.6 draws out policy implications and managerial insights that arise from studying optimal

threshold policies. Section 2.7 concludes. Proofs of all results are in the appendix.

2.2 Related Literature

As freemium business models have grown in prominence, so has interest in studying various

aspects of freemium in the management literature. While papers in the marketing literature

on freemium business models have been largely empirical (see for instance Gupta et al. [24]

and Lee et al. [33]), our work connects most directly to a stream of analytical studies in the

information systems literature that explore how various approaches to the concept of “free”

have been used in the software industry. Two important papers for our context are Niculescu
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and Wu [43] and Cheng et al. [13] that together establish a taxonomy of different freemium

strategies and examine in what situations a given strategy is most advantageous. Seeding is a

strategy where a number of products are given away entirely for free, to build a user base that

attracts new users through word-of-mouth and network effects. Previous studies explored the

seeding strategy by adapting the Bass model [3] to the software setting (see for instance Jiang

and Sarkar [28]). Another strategy is time-limited freemium where all users are given access to

a complete product for a limited time, after which access is restricted (see Cheng and Liu [12]

for more details). Our setting is best captured by the feature-limited freemium category where

a functional base product can always be accessed by users, with additional features available

for purchase by users. In freemium mobile games, a base game is available freely for download

with additional items and features for sale through accumulated virtual currency or real-money

purchases.

Our work departs from this established literature in at least two dimensions. First, we

focus on how to tactically implement a freemium strategy, in particular, when and how to

offer incented actions to drive player retention and monetization. By contrast, the existing

literature has largely focused on comparing different freemium strategies and their advantage

over conventional software sales. This previous work is, of course, essential in understanding the

business case for freemium. Our work contributes to a layer of tactical questions of interest to

firms committed to a freemium strategy in need of further insights in how it should be deployed.

Second, games present a specific context that may be at odds with some common conceptu-

alizations of a freemium software product. For a productivity-focused product, such as a PDF

editor, a typical implementation of freemium is to put certain advanced features behind a pay

wall, such as the ability to make handwritten edits on files using a stylus. Once purchased,

features are typically unlocked either in perpetuity or for a fixed duration by the paying player.

By contrast, in games what is often purchased are virtual items or currency that may enhance

the in-game experience, speed progression, or provide some competitive advantage. These pur-

chases are often consumables, meaning that they are depleted through use. This is true, for

instance, of all purchases in Candy Crush Saga. Our model allows for a player to make repeated

purchases and the degree of intensity of monetization to evolve over the course of play.

Other researchers have examined the specific context offered by games, as opposed to general

software products, and have adapted specialized theory to this specific context. Guo et al. [23]

examine how the sale of virtual currencies in digital games can create a win-win scenario for

players and publishers from a social-welfare perspective. They make a strong case for the value

created by games offering virtual currency systems. Our work adds an additional layer by

examining how virtual currencies can be used to incentivize players to take actions that are

profitable to the firm that does not involve a real-money exchange. A third-party, such as an

advertiser, can create a mutually beneficial situation where the player earns additional virtual

currency, the publisher earns revenue from the advertiser, and the advertiser promotes their

product. Also, Guo et al. [23] develop a static model where players decide on how to allocate
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a budget between play and purchasing virtual currency. We relate a player’s willingness to

take incented actions or monetize as their engagement with the game evolves, necessitating the

use of a dynamic model. This allows us to explore how a freemium design can respond to the

actions of players over time. This idea of progression in games has been explored empirically

in Albuquerque and Nevskaya [1] and we adapt similar notions to derive analytical insights in

our setting.

The dynamic nature of our model also shares similarities with threads of the vast customer

relationship management (CRM) literature in marketing. In this literature, researchers are

interested in how firms balance acquisition, retention and monetization of players through the

pricing and design of their product or service over time. For example, Libai et al. [35] adapt

Bass’s model to the diffusion of services where player retention is an essential ingredient in the

spread of the popularity of a platform. Fruchter and Sigué [21] provide insight into how a service

can be priced to maximize revenue over its lifespan. Both studies employ continuous-time and

continuous-state models that are well-suited to examine the overall flow of player population.

Our focus of analysis is at the player level and asks how to design the game (i.e. service)

to balance retention and monetization through offering incented actions for a given acquired

player. Indeed, game designs on mobile platforms can, in principle, be specialized down to a

specific player. With the increasing availability of individual player level data, examination

of how to tailor design with more granularity is worthy of exploration. By contrast, existing

continuous models treat a single player’s choice with measure zero significance.

Finally, our modeling approach of using a discrete time Markov decision process model

in search of threshold policies is a standard-bearer of analysis in the operations management

literature. We have mentioned the advantages of this approach earlier. Threshold policies,

which we work to establish, have the benefit of being easily implementable and thus draw favor

in studies of tactical decision-making that is common in multiple areas including the economics

and operations management literature. The intuition for their ease of use is somewhat easy

to understand. The simplest type of threshold policies allows the system designer to simply

keep track of nothing but the threshold (target) level and monitor the state of the system and

take the appropriate action to reap the benefits of optimality. This is in contrast to situations

where the optimal policy can be complex and has nontrivial state and parameter dependencies.

Examples of this policy being effectively used in dynamic settings include inventory and capacity

management and control [58], revenue management [52] and adaptive learning and pricing [50].

2.3 Model

We take the perspective of a game publisher who is deciding how to optimally deploy incented

actions in its game. Incented actions can be offered (or not) at different times during a player’s

experience with the game. For example, a novice player may be able to watch video ads for

rewards during the first few hours of game play, only later to have this option removed.
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Our model has two agents: the game publisher and a single player. This assumes that

the game publisher has the ability to offer a customized policy to each its player, or at least

customized policies to different classes of players. In other words, the “player” in our model

can be seen as the representative of a class of players who behave similarly. The publisher may

need to decide on several different policies for different classes of players for an overall optimal

design.

We assume that the player in our two-agent model behaves stochastically according to the

options presented to her by the game publisher. The player model is a Markov chain with

engagement level as the state variable. The game publisher’s decision problem is a Markov De-

cision Problem (MDP) where the stochasticity is a function of the underlying player model and

the publisher decision whether or not to offer incented actions. The player model is described

in detail in the next subsection. The publisher’s problem is detailed in Section 2.3.2.

2.3.1 Player Model

The player can take three actions while playing the game. The first is to monetize (denoted

M) by making an in-app purchase with real money. The second is to quit (denoted Q). Once

a player takes the quit action she never returns to playing the game. Third, the player can

take an incented action (denoted I). The set of available actions is determined by whether the

publisher offers an incented action or not. We let A1 = {M, I,Q} denote the set of available

actions when an incented action is offered and A0 = {M,Q} otherwise.

The probability that the player takes a particular action depends on her engagement level.

Engagement level is a general concept that can be understood in different ways depending on

the specifics of the game. For example, in Crossy Road engagement level may be a function of

the number of characters that have been collected, in Candy Crush Saga the level of the puzzle

the player is currently on. Let E = {0, 1, . . . , N} be the set of possible engagement levels of the

player.

The probability that the player takes an action also depends on what actions are available

to her. We used the letter “p” to denote probabilities when an incented action is available

and write pa(e) to denote the probability of taking action a ∈ A1 at engagement level e ∈ E.

For example, pM (2) is the probability of monetizing at engagement level 2 while pI(0) is the

probability of taking an incented action at engagement level 0. We use the letter “q” to denote

action probabilities when the incented action is unavailable and write qa(e) for the probability

of taking action a ∈ A0 at engagement level e ∈ E. By definition pM (e) + pI(e) + pQ(e) = 1

and qM (e) + qQ(e) = 1 for all e ∈ E.

There is a relationship between pa(e) and qa(e). When an incentivized action is not available

the probability pI(e) is allocated to the remaining two actions M and Q. We assume this

probability is allocated as follows.
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Assumption 2.3.1. For each e ∈ E there exists a parameter α(e) ∈ [0, 1] such that:

qM (e) = pM (e) + α(e)pI(e) (2.1)

qQ(e) = pQ(e) + (1− α(e))pI(e). (2.2)

Note that α(e) must be such that pM (e)+pI(e)+pQ(e) = 1 and qM (e)+qQ(e) = 1 for all e ∈ E.

We call α(e) the cannibalization parameter at engagement level e, since α(e) measures the

impact of removing an incented action on the probability of monetizing and thus captures the

degree to which incented actions cannibalize demand for in-app purchases. A large α(e) (close to

1) implies strong cannibalization whereas a small α(e) (close to 0) signifies weak cannibalization.

It remains to consider how a player transitions from one engagement level to another en-

gagement level. We must first describe the time epochs where actions and transitions take place.

The decision epochs where actions are undertaken occur when the player is assessing whether

they want or not to continue playing the game. For example, in Crossy Road a player must

choose to monetize, watch a video ad, or quit once she can no longer tolerate the organic rate of

progression. The real elapsed time between decision epochs is not constant, since it depends on

the behavior of the player between sessions of play. Some players may play frequently, others

only for a few minutes per day. A player might be highly engaged but nonetheless have little

time to play due to other life obligations. This reality underscores that the elapsed time be-

tween decision epochs should not be a critical factor in our model. We denote the engagement

level at decision epoch t by et and the action at decision epoch t by at.

Returning to the question of transitioning from engagement level to engagement level, in

principle we would need to determine individually each transition probability P(et+1 = e′|et =

e and at = a) (or more simply, P(e′|e, a) since we will assume that transition probabilities are

stationary over time). However, we make the following simplifying assumption about state

transitions: (i) engagement increases by at most one level at every decision epoch and never

goes down, (ii) the transition probability is independent of the current engagement level and

depends only on the action taken by the player, (iii) the impact on transitioning to a higher

engagement level when taking the monetize action M is independent of whether an incented

action was offered or not. This implies the following structure.

Assumption 2.3.2. The engagement level transition probabilities satisfy the following condi-

tions:

P(e′|e, a) =



τa if e′ = e+ 1 and e < N

1− τa if e′ = e < N

1 if e = e′ = N

0 otherwise

(2.3)

for a ∈ {M, I}. For a = Q the player transitions with probability one to a quit state denoted
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1− τM
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Figure 2.1: A visual representations of the Markov chain model of player behavior with two
engagement levels and incented actions available at engagement level 0.

−1.

The overall state transition probabilities are:

P1(e′|e) =



pM (e)τM + pI(e)τI if e′ = e+ 1 and e < N

pM (e)(1− τM ) + pI(e)(1− τI) if e′ = e < N

pM (e) + pI(e) if e = e′ = N

pQ(e) if e′ = −1

0 otherwise

(2.4)

when an incented action is available to the player and

P0(e′|e) =



qM (e)τM if e′ = e+ 1 and e < N

qM (e)(1− τM ) if e′ = e < N

qM (e) if e = e′ = N

qQ(e) if e′ = −1

0 otherwise

(2.5)

when incented actions are not offered. Figure 2.1 provides a visual representation of the Markov

chain describing player behavior when there are two engagement levels, with incented action

only offered at engagement level 0. Our assumptions make the structure of state transitions

relatively simple, but nonetheless still capture the complexity of first having a probabilistic

realization of an action followed by a random transition depending on the action taken. Indeed,

despite the simplicity of these assumptions they still turn out to be insufficient to ensure some

seemingly intuitive properties of incented actions (see further discussion below, in particular

the need for several additional assumptions to drive analysis).
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We close this subsection by providing some additional basic assumptions on the Markov

chain data. These assumptions ensure that the model is consistent with what we mean by

player engagement and our understanding of what holds in practice.

Assumption 2.3.3. We make the following assumptions:

(A3.1) pM (e) and qM (e) increase in e,

(A3.2) pQ(e) and qQ(e) decrease in e,

(A3.3) pQ(e), qQ(e) > 0 for all e ∈ E,

(A3.4) pI(e) decreases in e,

(A3.5) τM > τI , and

(A3.6) α(e) is increasing in e.

Assumptions (A3.1) and (A3.2) ensure that more engaged players are more likely to make

in-app purchases and less likely to quit. This is precisely how we understand the concept of

engagement – the more invested a player is in a game the more likely they are to spend and

the less likely they are to quit. Assumption (A3.3) ensures that there is always a nonzero

probability of quitting, no matter the level of engagement. This acknowledges the fact that

games are entertainment activities, and there are numerous reasons for a player to quit due to

factors in their daily lives, even when engrossed in the game. Moreover, this turns out to be

an important technical assumption that allows us to consider a total reward criterion for the

publisher’s decision problem that avoids mathematical complexities (see Section 2.3.2 below).

Assumption (A3.4) ensures that players are less likely to take an incented action as their

engagement level increases. One interpretation of this is that the rewards associated with an

incented action are less valuable as a player progresses, decreasing the probability of taking

such an action. Observe that (A3.1)–(A3.4) put implicit assumptions on the cannibalization

parameter α(e) via (2.1) and (2.2).

Assumption (A3.5) implies that a player is more likely to increase their engagement when

monetizing than taking an incented action. This assumption is well-justified for two reasons.

The first is that players may view the making an in-app purchase as a kind of investment and

become more committed to playing to ensure their investment pays off. Second, the rewards

for incented actions are typically less powerful than what can be purchased for real money.

The example of Crossy Road is illustrative: specific characters can be directly bought with real

money, but watching video ads only contributes to random draws for characters.

Finally, (A3.6) implies that a greater share of the probability of taking an incented actions

when offered is allocated to monetization when an incented ad is removed (see (2.1)). This

assumption is intuitive and consistent again with our concept of engagement – as a player

becomes more engaged the monetization option becomes relatively more attractive than quitting

when the incented action is removed.
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2.3.2 The Publisher’s Problem

We model the publisher’s problem as an infinite horizon Markov decision process under a total

reward criterion (for details see Puterman [46]). A Markov decision process is specified by a

set of states, controls in each state, transition probabilities under pairs of states and controls,

and rewards for each transition.

Specifically in our setting based on the description of the dynamics we have laid out thus far,

the set of states is {−1}∪E and the set of controls U = {0, 1} is independent of the state, where

1 represents offering an incented action and 0 not offering an incented action. The transition

probabilities are given by (2.4) when u = 1 and (2.5) when u = 0. The reward depends on

the action of the player. When the player quits, the publisher earns no revenue, denoted by

µQ = 0. When the player takes an incented action the publisher earns µI , while a monetization

actions earns µM .

Assumption 2.3.4. We assume µI < µM .

This assumption is in concert with practice, as discussed in the introduction.

The expected reward in state e under control u is:

r(e, u) =


pM (e)µM + pI(e)µI if e ∈ E and u = 1

qM (e)µM if e ∈ E and u = 0

0 if e = −1.

(2.6)

Note that expected rewards do not depend on whether the player transitions to a higher en-

gagement level and so the probabilities τM and τI do not appear in (2.6).

A policy y for the publisher is a mapping from E to U . Figure 2.1 illustrates the policy

y(0) = 1 and y(1) = 0. Each policy y induces a stochastic process over rewards, allowing us to

write its value as:

W y(e) := Eye

{ ∞∑
t=1

r(et, y(et))

}
(2.7)

where e is the player’s initial engagement level and the expectation is from the induced stochastic

process. In many examples of Markov decision processes, the sum in (2.7) does not converge,

but under our assumptions (in particular, (A3.3)) the expected total reward does converge for

every policy y. In fact, our problem has a special structure that we can exploit to derive a

convenient analytical form for (2.7) as follows:

W y(e) =
∑
e′≥e

nye,e′r(e
′, y(e′)) (2.8)

where nye,e′ is the expected number of visits to engagement level e′ starting in engagement level e.

We derive closed-form expressions for ne,e′ that facilitate analysis. For details see Appendix A.
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(c) y3 = (1, 0)
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(d) y4 = (1, 1)

Figure 2.2: Induced absorbing Markov chains for alternate policies in the two-engagement level
case.

Policy W y(0) W y(1)

y1 = (0, 0) qM (0)µM
1−qM (0)(1−τM )

+ qM (0)τM
(1−qM (0)(1−τM ))qQ(1)

qM (1)µM
qM (1)µM
qQ(1)

y2 = (0, 1) qM (0)µM
1−qM (0)(1−τM )

+ qM (0)τM
(1−qM (0)(1−τM ))pQ(1)

(pM (1)µM + pI(1)µI)
pM (1)µM+pI (1)µI

pQ(1)

y3 = (1, 0) pM (0)µM+pI (0)µI
1−pM (0)(1−τM )−pI (0)(1−τI )

+ pM (0)τM+pI (0)τI
(1−pM (0)(1−τM )−pI (0)(1−τI ))qQ(1)

qM (1)µM
qM (1)µM
qQ(1)

y4 = (1, 1) pM (0)µM+pI (0)µI
1−pM (0)(1−τM )−pI (0)(1−τI )

+ pM (0)τM+pI (0)τI
(1−pM (0)(1−τM )−pI (0)(1−τI ))pQ(1)

(pM (1)µM + pI(1)µI)
pM (1)µM+pI (1)µI

pQ(1)

Table 2.1: Total expected profit for Example 1.

For concrete expressions in a special case see Example 1 below.

The game publisher’s decision is to choose a policy to solve the optimization problem: given

a starting player’s engagement level e solve:

max
y∈{0,1}E

W y(e). (2.9)

In the discussion in later sections, we will often refer to a simple setting with two engagement

levels. Here we can use (2.8) to derive clean expressions for the total expected reward of all

four possible policies.

Example 1. Consider the case where N = 1 and there are two engagement levels E = {0, 1}.
There are four possible policies: y1 = (0, 0), y2 = (0, 1), y3 = (1, 0) and y4 = (1, 1). Figure 2.2

gives a visual representation of these four policies.

Table 2.1 shows the total expected reward functions for all four policies. Details of their

derivation are in Appendix A. Which of the four policies y1, . . . , y4 is optimal depends on the

values of the parameters in the model. Most of the numerical examples in the paper refer to the

formulas in Table 2.1.
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2.4 Understanding the Effects of Incented Actions

In this section we show how our analytical model helps us sharpen our insight into the costs

and benefits of offering incented actions in games. In particular, we give precise analytical

definitions of the revenue, retention and progression effects of offering of incented actions to a

player.

Let y1
ē be a given policy with y1

ē(ē) = 0 for some engagement level ē. Consider a local

change to a new policy y2
ē where y2

ē(ē) = 1 but y2
ē(e) = y1

ē(e) for e 6= ē. We call y1
ē and y2

ē paired

policies with a local change at ē. Analyzing this local change at the target engagement level ē

gives insight into the effect of starting to offer an incented action at a given engagement level.

Moreover, this flavor of analysis suffices to determine an optimal threshold policy, as discussed

in Section 2.5 below. For ease of notation, let W 1(e) = W y1
ē (e) and W 2(e) = W y2

ē (e).

Our goal is to understand the change in expected revenue moving from policy y1
ē to policy y2

ē

where the player starts (or has reached) engagement level ē. Indeed, because the engagement

does not decrease (before the player quits) if the player has reached engagement level ē the

result is the same as if the player just started at engagement level ē by the Markovian property

of the player model. Understanding when, and for what reasons, this change has a positive

impact on revenue provides insights into the value of incented actions.

The change in total expected revenue from the policy change from y1
ē to y2

ē at engagement

level ē is:

W 2(ē)−W 1(ē) = n2
ē,ēr(ē, 1)− n1

ē,ēr(ē, 0)︸ ︷︷ ︸
(i)

+
∑
e>ē

(n2
ē,e − n1

ē,e)r(e, y(e))︸ ︷︷ ︸
(ii)

(2.10)

= C(ē) + F (ē)

Term (i), denoted C(ē), is the change of revenue accrued from visits to the current engagement

level ē. We may think of C(ē) as denoting the current benefits of offering an incented action

in state ē, where “current” means the current level of engagement. Term (ii), denoted F (ē),

captures the change due to visits to all other engagement levels. We may think of F (ē) as

denoting the future benefits of visiting higher (“future”) states of engagement. We can give

explicit formulas for C(ē) and F (ē) for e < N (after some work detailed in the Appendix A) as

follows:

C(ē) = pM (ē)µM+pI(ē)µI
1−pM (ē)(1−τM )−pI(ē)(1−τI) −

qM (ē)µM
1−qM (ē)(1−τM ) (2.11)

and

F (ē) = { pM (ē)τM+pI(ē)τI
1−pM (ē)(1−τM )−pI(ē)(1−τI) −

qM (ē)τM
1−qM (ē)(1−τM )}{

∑
e′>ē

ny
1

ē+1,e′r(e
′, y(e′))}. (2.12)
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One interpretation of the formula C(ē) is that the two terms in (2.11) are conditional expected

revenues associated with progressing to engagement level ē + 1 conditioned on the event that

the player does not stay in engagement level e (by either quitting or advancing). Thus, C(ē) is

the change in conditional expected revenue from offering incented actions. There is a similar

interpretation of the expression

pM (ē)τM+pI(ē)τI
1−pM (ē)(1−τM )−pI(ē)(1−τI) −

qM (ē)τM
1−qM (ē)(1−τM ) (2.13)

in the definition of F (ē). Both terms in (2.13) are conditional probabilities of progressing from

engagement level ē to engagement level ē + 1 conditioned on the event that the player does

not stay in engagement level ē (by either quitting or advancing). Thus, F (ē) can be seen as

the product of a term representing the increase in the conditional probability of progressing to

engagement level ē and the sum of revenues from expected visits from state ē+ 1 to the higher

engagement levels.

These expressions turn out to be quite useful in later development and numerical examples.

For now, we want to provide some intuition behind what drives the benefits of offering incented

action, both current and future, that is not easily gleaned from these detailed formulas. In par-

ticular, we provide precise identification of three effects of incented actions that were discussed

informally in the introduction. To this end, we introduce the notation:

∆r(e|ē) := r(e, y2
ē(e))− r(e, y1

ē(e)), (2.14)

which expresses the change in the expected revenue per visit to engagement level e and

∆n(e|ē) = n2
ē,e − n1

ē,e, (2.15)

which expresses the change in the number of expected visits to engagement level e (starting at

engagement level ē) before quitting.

Note that ∆r(e|ē) = 0 for e 6= ē since we are only considering a local change in policy at

engagement level ē. On the other hand,

∆r(ē|ē) = −(qM (ē)− pM (ē))µM + pI(ē)µI . (2.16)

The latter value is called the revenue effect as it expresses the change in the revenue per visit

to the starting engagement level ē. The retention effect is the value ∆n(ē|ē) and expresses the

change in the number of visits to the starting engagement level ē. Lastly, we refer to the value

∆n(e|ē) for e > ē as the progression effect at engagement level e. At first blush it may seem

possible for the progression effect to have different in sign at different engagement levels, but

the following result shows that the progression effect is, in fact, uniform in sign.

Proposition 2.4.1. Under Assumptions 2.3.1–2.3.4, the progression effect is uniform in sign;

that is, either ∆n(e|ē) ≥ 0 for all e 6= ē or ∆n(e|ē) ≤ 0 for all e 6= ē.
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The intuition for the above result is simple. There is only a policy change at the starting

engagement level ē. Thus, the probability of advancing from engagement level e to engagement

level e + 1 is the same for policy y1
ē and y2

ē for e > ē. Hence, if ∆n(ē + 1|ē) is positive then

∆n(e|ē) is positive for e > ē+1 since there will be more visits to engagement level ē+1 and thus

more visits to higher engagement levels since the transition probabilities at higher engagement

levels are unchanged. In light this proposition we may refer to the progression effect generally

(without reference to a particular engagement level).

If both the revenue effect and retention effects are positive C(ē) in (2.10) is positive and

there is a net increase in revenue due to visits to engagement level ē. Similarly, if both effects

are negative then C(ē) is negative. When one effect is positive and the other is negative, the

sign of C(ē) is unclear. The sign of F (ē) is completely determined by the direction of the

progression effect.

One practical motivation for incented actions is that relatively few players monetize in

practice, and so opening up another channel of revenue the publisher is able to earn more from

its players. Indeed, if qM (ē) and pM (ē) are small (say in the order of 2%) then the first term

in the revenue effect (2.16) is insignificant when compared to the second term pI(ē)µI and so

most likely to be positive at low engagement levels. Moreover, having an incented action as an

alternative to monetizing also suggests that it will keep players from quitting and build their

commitment to playing the game. This motivation suggests that the retention and progression

effects are also likely to be positive, particularly at early engagement levels when players are

most likely to quit and least likely to invest money into playing a game.

However, our current assumptions do not fully capture the above logic. It is straightfor-

ward to construct specific scenarios that satisfy Assumptions 2.3.1–2.3.4 where the revenue and

progression effects are negative even at low engagement levels (see Example 3 below). Further

refinements are needed (see Section 2.5 for further assumptions). This complexity is somewhat

unexpected, given the parsimony on the model and structure already placed on the problem.

Indeed, the assumptions do reveal a certain structure as demonstrated in the following result.

Proposition 2.4.2. Under Assumptions 2.3.1–2.3.4, the retention effect is always nonnegative;

that is ∆n(ē|ē) ≥ 0.

There are two separate reasons for why offering incented actions at engagement level ē

changes the number of visits to ē. This first comes from the fact that the quitting probability

at engagement level ē goes down from qQ(ē) to pQ(ē). The second is that the probability of

progressing to a higher level engagement also changes from qM (ē)τM to pM (ē)τM +pI(ē)τI when

offering an ad. Intuitively, the overall affect is somewhat unclear. However, the proposition

reveals that the net effect is always nonnegative as a consequence of our assumptions. Observe

that the probability of staying in engagement level e always improves when an incented action

is offered:

pM (ē)(1− τM ) + pI(ē)(1− τI)− qM (ē)(1− τM ) = pI(e)(−α(e)(1− τM ) + (1− τI)) > 0.
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However, it is not necessarily desirable for there to be more visits to engagement e if it is

primarily at the expense of visits to more lucrative engagement levels. We must, in addition,

consider the future benefits of the change in policy. The following examples illustrate how these

current and future benefits can be in opposing directions, making it qualitatively more difficult

to decide whether to offer an incented action.

Example 2. Consider the following two engagement level example. Assume µM = 1, µI =

0.25, τM = 0.8, τI = 0.1. At level 0, pM (0) = 0.05, pI(0) = 0.65, α(0) = 0.5 and thereby

qM (0) = 0.375. At level 1, pM (1) = 0.2, pI(1) = 0.6, α(1) = 0.75 and thereby qM (1) = 0.65.

At level 0, the revenue effect is ∆r(0|0) = pM (0)µM + pI(0)µI − qM (0)µM = 0.05(1) +

0.65(0.25)− 0.375(1) = −0.1625 while the retention effect is ∆n(0|0) = 1/(1− pM (0)(1− τM )−
pI(0)(1− τI))− 1/(1− qM (0)(1− τM )) = 1/(0.405)− 1/(0.925) = 1.388. Therefore,

C(0) = pM (0)µM+pI(0)µI
1−pM (0)(1−τM )−pI(0)(1−τI) −

qM (0)µM
1−qM (0)(1−τM ) = 0.2125

0.405 − 0.375
0.925 = 0.1193 > 0 (2.17)

Suppose y1(1) = y2(1) = 0, the progression effect is

∆n(1|0) = pM (0)τM+pI(0)τI
(1−pM (0)(1−τM )−pI(0)(1−τI))qQ(1) −

qM (0)τM
(1−qM (0)(1−τM ))qQ(1) (2.18)

= 0.105
0.405(0.35) − 0.3

0.925(0.35) = −0.1859 (2.19)

as a result,

F (0) = ∆n(1|0)qM (1)µM = −0.1859(0.65) = −0.1207 < 0 (2.20)

Notice that τI/τM = 0.125 but µI/µM = 0.25 and therefore τI is much smaller than τM . This

implies that the progression effect is negative and so F (0) is negative. But C(0) is positive since

the retention effect is dominant. In other words, although the “current” benefits of offering

an incented action at engagement level 0 are positive, these gains out outweighed by losses in

“future” benefits.

Example 3. Consider the following two engagement level example. Assume µM = 1, µI =

0.05, τM = 0.8, τI = 0.3. At level 0, pM (0) = 0.05, pI(0) = 0.65, α(0) = 0.5 and thereby

qM (0) = 0.375. At level 1, pM (1) = 0.2, pI(1) = 0.6, α(1) = 0.75 and thereby qM (1) = 0.65.

At level 0, the revenue effect is ∆r(0|0) = pM (0)µM + pI(0)µI − qM (0)µM = 0.05(1) +

0.65(0.05)− 0.375(1) = −0.2925 while the retention effect is ∆n(0|0) = 1/(1− pM (0)(1− τM )−
pI(0)(1− τI))− 1/(1− qM (0)(1− τM )) = 1/(0.535)− 1/(0.925) = 0.788. Therefore,

C(0) = pM (0)µM+pI(0)µI
1−pM (0)(1−τM )−pI(0)(1−τI) −

qM (0)µM
1−qM (0)(1−τM ) = 0.0825

0.535 − 0.375
0.925 = −0.2512 < 0 (2.21)
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Suppose y1(1) = y2(1) = 0, the progression effect is

∆n(1|0) = pM (0)τM+pI(0)τI
(1−pM (0)(1−τM )−pI(0)(1−τI))qQ(1) −

qM (0)τM
(1−qM (0)(1−τM ))qQ(1) (2.22)

= 0.235
0.535(0.35) − 0.3

0.925(0.35) = 0.3284 (2.23)

hence

F (0) = ∆n(1|0)qM (1)µM = 0.3284(0.65) = 0.2134 > 0 (2.24)

In contrast to the previous example, there are “current” losses and “future” gains to be had by

offering incented actions at engagement level 0 but, similar to that example, the overall verdict

is that it is better not to offer incented actions.

These example underscore that it is a nontrivial task to assess the optimality of an incented

action policy. Whether and how to offer incented actions depends on the specifics of the game

and must weigh how the current and future benefits of incented actions, described in terms of

the three effects, change as the engagement level evolves. This is the task of the next section.

2.5 Optimal Policies for The Publisher

Recall the publisher’s problem described in (2.9). This is a dynamic optimization problem where

the publisher must decide on whether to deploy incented actions at each engagement level, with

the knowledge that a change in policy at one engagement level can effect the behavior of the

player at subsequent engagement levels. This “forward-looking” nature adds a great deal of

complexity to the problem. A much simpler task would be to examine each engagement level in

isolation, implying that the publisher need only consider term (i) of (2.10) at engagement level

e to decide if y(e) = 1 or y(e) = 0 provides more revenue. A policy built in this way is called

myopically optimal. More precisely, policy y is myopically optimal if y(e) = 1 when C(e) > 0

and y(e) = 0 when C(e) < 0.

A myopically optimal policy need not be optimal because it fails to consider future impacts,

which can be significant (see Example 2). However, the next result gives a sufficient condition

for a myopically-optimal policy to be optimal.

Proposition 2.5.1. Under Assumptions 2.3.1–2.3.4, if µI
µM

= τI
τM

then a myopically-optimal

policy is optimal.

This result is best understood by looking at the two terms in the change in revenue formula

(2.10) discussed in the previous section. It is straightforward to see from (2.11) and (2.12)

that when τI = µI and τM = µM that the sign of C(ē) and F (ē) are identical. That is, if the

current benefit of offering the incented action has the same sign as the future benefit of offering

an action then it suffices to consider the term first C(ē) only when determining an optimal

policy. Given our interpretation of C(ē) and F (ē), the conditions of Proposition 2.5.1 imply
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that the conditional expected revenue from progressing one engagement level precisely equals

the conditional probability of progressing one engagement level. This is a rather restrictive

condition.

Since we know of only the above strict condition under which an optimal policy is myopic,

in general we are in search of forward-looking optimal policies. Since the game publisher’s

problem is a Markov decision process, an optimal forward-looking policy y must satisfy the

optimality equations for e = 0, . . . , N − 1

W y(e) =

r(e, 1) + P1(e|e)W (e) + P1(e+ 1|e)W (e+ 1) if y(e) = 1

r(e, 0) + P0(e|e)W (e) + P0(e+ 1|e)W (e+ 1) if y(e) = 0
(2.25)

and for e = N

W y(N) =

r(N, 1) + P1(N |N)W y(N) if y(N) = 1

r(N, 0) + P0(N |N)W y(N) if y(N) = 0,
(2.26)

where P1 and P0 are as defined in (2.4) and (2.5) respectively. The above structure shows

that an optimal policy can be constructed by backwards induction (for details see Chapter 4 of

Puterman [46]): first determine an optimal choice of y(N) and then successively find optimal

choices for y(N −1), . . . , y(1) and finally y(0). We use the notation W (e) to denote the optimal

revenue possible with a player starting at engagement level e, called the optimal value function.

In addition we use the notation W (e, y = 1) to denote the optimal expected total revenue

possible when an incented action is offered at starting engagement level e. Similarly, we let

W (e, y = 0) denote the optimal expected revenue possible when an incented action is not offered

at starting engagement level e. Then W (e) must satisfy Bellman’s equation for e = 0, . . . , N−1:

W (e) = max {W (e, y = 1),W (e, y = 0)}
= max {r(e, 1) + P1(e|e)W (e) + P1(e+ 1|e)W (e+ 1),

r(e, 0) + P0(e|e)W (e) + P0(e+ 1|e)W (e+ 1)} .
(2.27)

A key fact that we leverage throughout our development is the following.

Theorem 2.5.2. Under Assumptions 2.3.1–2.3.4, W (e) is a nondecreasing function of e.

This result underscores the value of having players progress in engagement with the game.

The higher the engagement of a player, the more revenue can be extracted from them. This

result has a natural intuition. Indeed, if the theorem were not true it would even suggest that

our use of the word “engagement” to describe the states would be ill-placed. However, this

result serves as an important reality check and goes towards establishing the validity of our

modeling approach.

The focus of our discussion is on optimal forward threshold policies that start by offering

incented action. Such a threshold policy y is determined by a single engagement level ē where
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y(e′) = 1 for e′ ≤ ē and y(e) = 0 for e′ > ē. According to (2.27) this happens when W (ē+1, y =

1) ≤ W (ē + 1, y = 0) implies W (e′, y = 1) ≥ W (e′, y = 0) for all e′ ≤ ē and W (e′, y = 0) <

W (e′, y = 0) for all e′ > ē+ 1. In the general nomenclature of Markov decision processes other

policies would be classified as threshold policies. This includes policies that start with not

offering the incented action until some point and thereafter offering the incented action. We

call these policies backward threshold.

Our interest in forward threshold policies comes from the following appealing practical logic,

already hinted at in the introduction. When players start out playing a game their engagement

level is low and they are likely to quit. Indeed, Theorem 2.5.2 says we get more value out of

players at higher levels of engagement. Hence, retaining players at early stages and progressing

them to higher levels of engagement is important for overall revenue. In Proposition 2.4.2,

we see the retention effect of offering incented actions is always positive, and intuitively, the

revenue and progression effects are largest at low levels of engagement because players are

unlikely to monetize early on and the benefits derived from increasing player engagement are

likely to be at their greatest. This suggests it is optimal to offer incented actions at low levels

of engagement. However, once players are sufficiently engaged it might make sense to removed

incented actions to focus their attention on the monetization option. If sufficiently engaged

and α(e) is sufficiently large, most of the probability of taking the incented action shifts to

monetizing which drives greater revenue.

Despite this appealing logic, the following example shows that our current set of assump-

tions (Assumptions 2.3.1–2.3.4) are insufficient to guarantee the existence an optimal forward

threshold policy.

Example 4. Consider the following two engagement level example. Assume µM = 1, µI =

0.05, τM = 0.5, τI = 0.4. At level 0, pM (0) = 0.05, pI(0) = 0.65, α(0) = 0.5 and thereby

qM (0) = 0.375. At level 1, pM (1) = 0.2, pI(1) = 0.6, α(1) = 0.55 and thereby qM (1) = 0.53.

We solve the optimal policy by backward induction. At level 1, W (1, y = 1) = pM (1)µM+pI(1)µI
1−pM (1)−pI(1) =

0.23
0.2 = 1.15 while W (1, y = 0) = qM (1)µM

1−qM (1) = 0.53
0.47 ≈ 1.13. Therefore, y∗(1) = 1 and W (1) =

max {W (1, y = 1),W (1, y = 0)} = 1.15.

At level 0,

W (0, y = 1) = pM (0)µM+pI(0)µI
1−pM (0)(1−τM )−pI(0)(1−τI) + pM (0)τM+pI(0)τI

(1−pM (0)(1−τM )−pI(0)(1−τI))
qM (1)µM
qQ(1) (2.28)

= 0.0825
0.585 + 0.285

0.585(1.15) = 0.141 + 0.56 = 0.701 (2.29)

W (0, y = 0) = qM (0)µM
1−qM (0)(1−τM ) + qM (0)τM

1−qM (0)(1−τM )

qM (1)µM
qQ(1)

(2.30)

= 0.375
0.8125 + 0.1875

0.8125(1.15) = 0.462 + 0.265 = 0.727 (2.31)

hence y∗(0) = 0 and W (0) = max {W (0, y = 1),W (0, y = 0)} = 0.727.

Next we show that y∗ = (0, 1) is the only optimal policy. In fact, we compute W y(0) and

W y(1) under all possible policies in the following table. We observe that none of (0, 0), (1, 0) and
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Policy W y(0) W y(1)

y = (0, 0) 0.723 1.13

y = (1, 0) 0.691 1.13

y = (1, 1) 0.701 1.15

y∗ = (0, 1) 0.727 1.15

Table 2.2: Total expected profit for Example 4.

(1, 1) are optimal. This implies y∗ is the only optimal policy. Since y∗ is not a forward threshold

policy, this implies there is no optimal forward threshold policy. Thus we see it is optimal to

offer incented actions at the higher engagement level because of the dramatic reduction in the

quitting probability when offering incented actions to 0.2 quitting probability compared to a 0.47

quitting probability when not offering incented actions. Although the expected revenue per period

the player stays at the highest engagement level is lower when incented actions are offered (0.23

as compared to 0.47) the player will stay longer and thus earn additional revenue. However, at

the lowest engagement level the immediate reward of not offering incented actions (0.462 versus

0.141) outweighed the losses due to a lower chance of advancing to the higher engagement level.

The goal for the remainder of this section is to devise additional assumptions that are rel-

evant to the settings of interest to our paper and that guarantee the existence of an optimal

forward threshold policy. The previous example shows how α plays a key role in determin-

ing whether an threshold policy is optimal or not. When incentives actions are removed the

probability pI(e) is distributed to the monetization and quitting actions according to α(e). The

associated increase in the probability of monetizing from pM (e) to qM (e) makes removing incent-

ed actions attractive, since the player is more likely to pay. However, the quitting probability

increases from pQ(e) to qQ(e), a downside of removing incented actions. Intuitively speaking, if

α(e) grows sufficiently quickly, the benefits will outweigh the costs of removing incented actions.

From Assumption (A3.6) we know that α(e) increases, but this alone is insufficient. Just how

quickly we require α(e) to grow to ensure a threshold policy requires careful analysis. This

analysis results in lower bounds on the growth of α(e) that culminates in Theorem 2.5.8 below.

Our first assumption on α(e) is a basic one:

Assumption 2.5.3. α(N) = 1; that is, qQ(N) = pQ(N) and qM (N) = pM (N) + pI(N).

It is straightforward to see that under this assumption it is never optimal to offer incented

action at the highest engagement level. This assumption also serves as an interpretation of what

it means to be in the highest engagement level, simply that players who are maximally engaged

are no more likely to quit when the incented action is removed. Under this assumption, and

by Bellman’s equation (2.27), every optimal policy y∗ has y∗(N) = 0. Note that this excludes

the scenario in Example 4 and also implies that backwards threshold policies are not optimal

(except possibly the policy that y(e) = 0 for all e ∈ E that is both a backward and forward

threshold). Given this, we restrict attention to forward threshold policies and drop the modifier

“forward” in the rest of our development.
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The next step is to establish further sufficient conditions on the data that ensure that once

the revenue, retention and progression are negative, they stay negative. As in Section 2.4,

we consider paired policies y1
ē and y2

ē with a local change at ē. Recall the notation ∆r(e|ē)
and ∆n(e|ē) defined in (2.14) and (2.15), respectively. We are concerned with how ∆r(e|ē) and

∆n(e|ē) change with the starting engagement level ē. It turns out that the revenue effect ∆r(e|ē)
always behaves in a way that is consistent with a threshold policy, without any additional

assumptions.

Proposition 2.5.4. Suppose Assumptions 2.3.1–2.3.4 hold. For every engagement level ē

let y1
ē and y2

ē be paired policies with a local change at ē. Then the revenue effect ∆r(ē|ē) is

nonincreasing in ē when ∆r(ē|ē) ≥ 0. Moreover, if ∆r(ē|ē) < 0 for some ē then ∆r(e
′|e′) < 0

for all e′ ≥ ē.

This proposition says that the net revenue gain per visit to engagement level ē is likely to

only be positive (if it is ever positive) at lower engagement levels, confirming our basic intuition

that incented actions can drive revenue from low engagement levels, but less so from highly

engaged players. To show a similar result for the progression effect we make the following

assumption.

Assumption 2.5.5. α(e+ 1)− α(e) > qM (e+ 1)− qM (e) for all e ∈ E.

This provides our first general lower bound on the growth of α(e). It says that α(e) must

grow faster than the probability qM (e) of monetizing when the incented action is not offered.

Proposition 2.5.6. Suppose Assumptions 2.3.1–2.5.5 hold. For every engagement level ē let

y1
ē and y2

ē be paired policies with a local change at ē such that y1
ē and y2

ē are identical to some

fixed policy y (fixed in the sense that y is not a function of ē) except at engagement level ē.

Then

(a) If ∆n(e|ē) < 0 for some ē then ∆n(e|e′) < 0 for all e′ ≥ ē.

(b) If C(ē) < 0 for some ē then C(e′) < 0 for all e′ ≥ ē, where C is as defined in (2.10).

This result implies that once the current and future benefits of offering an incented action

are negative, they stay negative for higher engagement levels. Indeed, Proposition 2.5.6(a)

ensures that the future benefits F in (2.10) stay negative once negative, while (b) ensures the

current benefits C stay negative once negative. In other words, once the game publisher stops

offering incented actions it is never optimal for them to return. Note that Proposition 2.5.4

does not immediately imply Proposition 2.5.6(b), Assumption 2.5.5 is needed to ensure the

retention effect has similar properties, as guaranteed by Proposition 2.5.6(a) for e′ = ē.

As mentioned above, the conditions established in Proposition 2.5.6 are necessary for the

existence of an optimal threshold policy, but does not imply that an threshold policy exists.

This is due to the fact that C and F in (2.10) may not switch sign from positive to negative at

the same engagement level. This is illustrated in the following example.

25



2.5. Optimal Policies for The Publisher

Example 5. Consider the following two engagement level example. Assume µM = 1, µI = 0.2,

τM = 0.91, τI = 0.47. At level 0, pM (0) = 0.03, pI(0) = 0.51, α(0) = 0.59 and thereby

qM (0) = 0.3309. At level 1, pM (1) = 0.05, pI(1) = 0.5, α(1) = 0.62 and thereby qM (1) = 0.36.

At level 2, pM (2) = 0.34, pI(2) = 0.45, α(2) = 1 and thereby qM (1) = 0.79.

The optimal policy is y∗ = (0, 1, 0). We use backward induction. At the highest level 2, we

have y∗(2) = 0 and W (2) = 0.79/0.21 = 3.7619. At level 1,

W (1, y = 1) = pM (1)µM+pI(1)µI
1−pM (1)(1−τM )−pI(1)(1−τI) + pM (1)τM+pI(1)τI

(1−pM (1)(1−τM )−pI(1)(1−τI))

qM (2)µM
qQ(2)

= 0.15
0.7305 + 0.2805

0.7305(3.7619) = 0.2053 + 0.3840(3.7619) = 1.6498

W (1, y = 0) = qM (1)µM
1−qM (1)(1−τM ) + qM (1)τM

1−qM (1)(1−τM )

qM (2)µM
qQ(2)

= 0.36
0.9676 + 0.3276

0.9676(3.7619) = 0.3721 + 0.3386(3.7619) = 1.6459

therefore y∗(1) = 1 and W (1) = W (1, y = 1) = 1.6498. Moreover, C(1) = 0.2053 − 0.3721 =

−0.1668 and F (1) = (0.3840− 0.3386)(3.7619) = 0.0454(3.7619) = 0.1708. Finally, we look at

level 0.

W (0, y = 1) = pM (0)µM+pI(0)µI
1−pM (0)(1−τM )−pI(0)(1−τI) + pM (0)τM+pI(0)τI

(1−pM (0)(1−τM )−pI(0)(1−τI))

qM (1)µM
qQ(1)

= 0.1320
0.7270 + 0.2670

0.7270(1.6498) = 0.1816 + 0.3673(1.6498) = 0.7876

W (0, y = 0) = qM (0)µM
1−qM (0)(1−τM ) + qM (0)τM

1−qM (0)(1−τM )

qM (1)µM
qQ(1)

= 0.3309
0.9702 + 0.3011

0.9702(1.6498) = 0.3411 + 0.3104(1.6498) = 0.8532

as we can see y∗(0) = 0 and W (0) = W (0, y = 0) = 0.8532. Besides, C(0) = 0.1816− 0.3411 =

−0.1595 and F (0) = (0.3673− 0.3104)(1.6498) = 0.0569(1.6498) = 0.0939. The optimal policy

is not a threshold policy.

In fact, Assumption 2.5.5 is satisfied because α(1)−α(0) = 0.62−0.59 = 0.03 while qM (1)−
qM (0) = 0.3600− 0.3309 = 0.0291.

We thus require one additional assumption:

Assumption 2.5.7. 1−α(e+1) ≤ (1−α(e)) pM (e+1)τM+pI(e+1)τI
pQ(e+1)+pM (e+1)τM+pI(e+1)τI

for e = 1, 2, . . . , N−1.

Note that the fractional term in the assumption is the probability of advancing from engage-

ment level e+1 to e+2 conditioned on leaving engagement level e+1 and is thus less than one.

Hence, this is yet another lower bound on the rate of growth in α(e), complementing Assump-

tions 2.5.3 and 2.5.5. Which of the bounds in Assumptions 2.5.5 or 2.5.7 is tighter depends on

the data specifications that arise from specific game settings. In Example 5 we noted that As-

sumption 2.5.5 holds but observe that Assumption 2.5.7 fails, since (1−α(1)) = 1−0.62 = 0.38

and (1− α(0)) pM (1)τM+pI(1)τI
(1−pM (1)(1−τM )−pI(1)(1−τI)) = (1− 0.59)0.2805

0.7305 = 0.1574.
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Theorem 2.5.8. Suppose Assumptions 2.3.1–2.5.7 hold. Then there exists an optimal threshold

policy with threshold engagement level e∗. That is, there exists an optimal policy y∗ with y∗(e) =

1 for any e ≤ e∗ and y∗(e) = 0 for any e > e∗.

The existence of an optimal threshold is the cornerstone analytical result of this paper.

From our development above, it should be clear that obtaining a sensible threshold policy is

far from a trivial task. Indeed, in many MDP models great effort is put into establishing

their existence. We believe our assumptions are reasonable based on our understanding of the

games, given the difficult standard of guaranteeing the existence of a threshold policy. Of course,

such policies will be welcomed in practice, precisely because of their simplicity and (relatively)

intuitive justification. We also remark that none of these assumptions are superfluous. In the

Appendix A we show that if you drop Assumptions 2.5.5 then a threshold policy may no longer

be optimal. Example 5 shows that the same is true if Assumption 2.5.7 is dropped. As we see in

some examples in the next section, our assumptions are sufficient but not necessary conditions

for an optimal threshold policy to exist.

To simplify matters further, we also take the convention that when there is a tie in Bellman’s

equation (2.27) whether to offer an incented action or not, the publisher always chooses not to

offer. This is consistent with the fact that is a cost to offering incented actions. Although we

do not model costs formally, we will use reasoning to break ties. Under this tie-breaking rule

there is, in fact, a unique optimal threshold policy guaranteed by Theorem 2.5.8. This unique

threshold policy is our object of study in the remainder of the paper.

2.6 Game Design and Optimal Use of Incented Actions

So far we have provided a detailed analytical description of the possible benefits of offering in-

cented actions (in Section 2.4) and the optimality of certain classes of policies (in Section 2.5).

There remains the question of what types of games most benefit from offering incented actions

and how different types of games may qualitatively differ in their optimal policies. We focus

on optimal threshold policies and concern ourselves with how changes in the parameters of

the model affect the optimal threshold e∗ of an optimal threshold policy y∗ that is guaranteed

to exist under Assumptions 2.3.1–2.5.7 by Theorem 2.5.8. Of course, these are only sufficien-

t conditions and so we do not restrict ourselves to that setting when conducting numerical

experiments in this section.

We first consider how differences in the revenue parameters µI and µM affect e∗. Observe

that only the revenue effect in (2.16) is impacted by changes in µI and µM , the retention and

progression effects are unaffected. This suggests the following result:

Proposition 2.6.1. The optimal threshold e∗ is a nondecreasing function of the ratio µI
µM

.

Note that the revenue effect is nondecreasing in the ratio µI
µM

. Since the other effects are

unchanged, this implies that the benefit of offering incented actions at each engagement level

is nondecreasing in µI
µM

, thus establishing the monotonicity of e∗ in µI/µM .
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To interpret this result we consider what types of games have a large or small ratio µI
µM

.

From the introduction in Section 2.1 we know that incented actions typically deliver far less

revenue to the publisher than in-app purchases. This suggests that the ratio is small, favoring

a lower threshold. However, this conclusion ignores how players in the game may influence each

other. Although our model is a single player model, one way we can include the interactions

among players is through the revenue terms µI and µM . In many cases, a core value of a player

to the game publisher is the word-of-mouth a player spreads to their contacts. Indeed, this is

the value of non-paying players that other researchers have mostly focused on (see, for instance

Lee et al. [33], Jiang and Sarkar [28], and Gupta et al. [24]). In cases where this “social effect”

is significant it is plausible that the ratio of revenue terms is not so small. For instance, if δ

is the revenue attributable to the word-of-mouth or network effects of a player, regardless of

whether the player takes an incented actions or monetizes, then the ratio of interest is µI+δ
µM+δ .

The larger is δ the larger is this ratio, and according to Proposition 2.6.1, the larger is the

optimal threshold.

This analysis suggests that games with a significant social component should offer incented

actions more broadly in social games. For instance, if a game includes cooperative or competitive

multi-player features, then spreading the player base is of particular value to the company.

Thought of another way, in a social game it is important to have a large player base to create

positive externalities for new players to join, and so having players quit is of greater concern in

more social games. Hence, it is best to offer incented action until higher levels of engagement

are reached. All of this intuition is confirmed by Proposition 2.6.1.

Besides the social nature of the game, other factors can greatly impact the optimal thresh-

old. Genre, intended audience, and structure of the game affect the other parameters of our

model; particularly, τI , τM , and α(e). We first examine the progression probabilities τI and

τM . As we did in the case of the revenue parameters, we focus on the ratio τI
τM

. This ratio

measures the relative probability of advancing through incented actions versus monetization.

By Assumption (A3.5), τI
τM
≤ 1 but its precise value can depend on several factors. One is the

relative importance of the reward granted to the player when taking an incented action. Recall

our discussion of Crossy Road in the introduction, one measure of engagement could be the

number of unique characters accumulated by the player. Because characters can be purchased

directly with real money, this makes τM = 1. However, the reward for watching a video ad is

only coins that can be used in a random draw for new characters. Depending on the odds of

that draw, τI can be large or small.

Taking τM fixed (possibly at 1 as in the example of Crossy Road) we note that increasing

τI decreases the “current” benefit of offering incented actions, as seen by examining term C(ē)

in (2.10). Indeed, the revenue effect is unchanged by τI , but the retention effect is weakened.

The impact on future benefits is less obvious. However, we know players are more likely to

advance to a higher level of engagement with a larger τI . From Theorem 2.5.2 we also know

higher engagement states are more valuable, and so we expect the future benefits of offering
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incented actions to be positive with a higher τI and even outweigh the loss in current benefits.

This reasoning is confirmed in the next result.

Proposition 2.6.2. The optimal threshold e∗ is a nondecreasing function of the ratio τI
τM

.

One interpretation of this result is that the more effective an incented action is at increas-

ing engagement of the player, the longer the incented action should be offered. This is indeed

reasonable under the assumption that pI(e) and pM (e) are unaffected by changes in τI . How-

ever, if increasing τI necessarily increases pI(e) (for instance, if the reward of the incented

action becomes more powerful and so drives the player to take the incented action with greater

probability) the effect on the optimal threshold is less clear.

Example 6. In this example we show that when the incented action is more effective it can

lead to a decrease in the optimal threshold if pI(e) and pM (e) are affected by changes in τI .

Consider the following two engagement level example. In the base case let µM = 1, µI = 0.05,

τM = 0.8, τI = 0.2. At level 0, pM (0) = 0.3, pI(0) = 0.5, α(0) = 0.7 and thereby qM (0) = 0.65.

At level 1, pM (1) = 0.5, pI(1) = 0.4, α(1) = 1 and thereby qM (1) = 0.9. One can show that the

unique optimal policy is y∗ = (0, 1) (for details see Appendix A).

Now change the parameters as follows: increase τI to 0.25, which affects the decision-making

of the player so that pM (0) = 0.1, pI(0) = 0.7, pM (1) = 0.3 and pI(1) = 0.6. In other words,

the incented action became so attractive it reduces the probability of monetizing while increasing

the probability of taking the incented action. One can show that the unique optimal policy in this

setting is y∗ = (0, 0). Hence the optimal threshold has decreased. In conclusion, a change in the

effectiveness of the incented action in driving engagement can lead to an increase or decrease

in the optimal threshold policy, depending on the player’s behavioral response.

This leads to an important investigation of the changes in the degree of cannibalization

between incented actions and monetization. Recall that α(e) is the vector of parameters that

indicates the degree of cannibalization at each engagement level. For sake of analysis, we assume

that α(e) is an affine function of e with

α(e) = α(0) + αstepe (2.32)

where α(0) and αstep are nonnegative real numbers. A very high α(0) indicates a design where

the reward of the incented action and the in-app purchase have a similar degree of attractiveness

to the player so that when the incented action is removed the player is likely to monetize. This

suggests that the cost-to-reward ratio of the incented action is similar to that of the in-app

purchase. If one is willing, for instance, to endure the inconvenience of watching a video

ad in order to get some virtual currency, they should be similarly willing to pay real money

for a proportionate amount of virtual currency. A very low α(0) is associated with a very

attractive cost-to-reward ratio for the incented action that makes monetization seem expensive

in comparison.
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(a) Initial value α(0) = 0 (b) Initial value α(0) = 0.16

Figure 2.3: Sensitivity of the optimal threshold to changes in αstep.

The rate of change αstep represents the strength of increase in cannibalization as the player

advances in engagement. A fast rate of increase is associated with a design where the value of

the reward of the incented action quickly diminishes. For instance, in Crossy Road the reward

of earning coins to watch a video ad for a chance of randomly drawing a character naturally

diminishes in value as the player accumulates more characters. Despite the reward weakening,

this option still attracts a lot of attention from players, especially if they have formed a habit of

advancing via this type of reward. If, however, the videos are removed, the value proposition of

monetizing seems attractive in comparison to the diminished value of the reward for watching

a video. Seen in this light, the rate at which the value of the reward diminishes is controlled

by the parameter αstep.

Analysis of how different values for α(0) and αstep impact the optimal threshold is not

straightforward. This is illustrated in the following two examples. The first considers sensitivity

of the optimal threshold to αstep.

Example 7. Consider the following example with nine engagement levels and the following

data: µm = 1, µI = 1, 0.05 τM = 0.8, τI = 0.4, pM (e) = 0.0001 + 0.00005e and pI(e) =

0.7 − 0.00001e for e = 0, 1, . . . , 8. We have not yet specified α(e). We examine two scenarios:

(a) where α(0) = 0 and we vary the value of αstep (see Figure 2.3(a)) and (b) where α(0) = 0.16

and we vary the value of αstep (see Figure 2.3(b)). The vertical axis of these figures is the

optimal threshold of the unique optimal threshold policy for that scenario. What is striking is

that the threshold e∗ is nonincreasing in αstep when α(0) = 0 but nondecreasing in αstep when

α(0) = 0.16.

One explanation in the difference in patterns between Figures 2.3(a) and 2.3(b) concerns

whether it is optimal to include incented actions initially or not. In Figure 2.3(a) the initial

degree of cannibalization is zero, making it costless to offer incented actions initially. When

αstep is very small cannibalization is never an issue and incented actions are offered throughout.

However, as αstep increases, the degree of cannibalization eventually makes it optimal to stop

offering incented actions to encourage monetization. This explains the nonincreasing pattern

in Figure 2.3(a).
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Figure 2.4: Sensitivity of the optimal threshold to changes in α(0).

By contrast, in Figure 2.3(b) the initial degree of cannibalization is already quite high, making

it optimal to start by offering for low values of αstep. However, when αstep is sufficiently large,

there are benefits to encouraging the player to advance. Recall, α(e) affects both the probability

of monetization and the probability of quitting. In the case where αstep is sufficiently high there

are greater benefits to the player progressing, making quitting early more costly. Hence it can

be optimal to offer incented actions initially to discourage quitting and encourage progression.

This explains the nondecreasing pattern in Figure 2.3(b).

As the following example illustrates, adjusting for changes in α(0) reveals a different type

of complexity.

Example 8. Consider the following two engagement level example. Assume µM = 1, µI =

0.0001, τM = 0.01, τI = 0.009. At level 0, pM (0) = 0.05, pI(0) = 0.68. At level 1, pM (1) = 0.3,

pI(1) = 0.65. We set α step size be 0.6, i.e. α(1) = α(0)+0.6. Figure 2.4 captures how changes

in α(0) lead to different optimal thresholds. For complete details on the derivation of the figure

see Appendix A.

The striking feature of the figure is that the optimal threshold decreases, and then increas-

es, as α(0) becomes larger. This “U”-shaped pattern reveals competing effects associated with

changes in α(0). As α(0) increases, the benefit of increasing retention (at the cost of harming

retention) weakens. This contributes to downward pressure on the optimal threshold. On the

other hand, increasing α(0) also increases α(1). This increases the attractiveness of reaching a

higher engagement level and dropping the incented action. Indeed, referring to Table 2.1, W y(1)

is increasing in α(1) when y(0) = 1. This puts upward pressure on the optimal threshold. This

latter “future” benefit is weak for lower levels of α(0), where it may be optimal to offer an

incented action in the last period. This provides justification for the “U”-shaped pattern.

The scenarios in the above two examples provide a clear illustration of the complexity of

our model. At different engagement levels, and with different prospects for the value of future
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benefits, the optimal strategy can be influenced in nonintuitive ways. This is particularly true

for changes in α(e) as it impacts all three effects – revenue, retention, and progression. In

some sense, cannibalization is the core issue in offering incented actions. This is evident in our

examples and a careful examination of the definitions in Section 2.4 – the parameter α(e) is

ubiquitous.

2.7 Conclusion

In this paper we investigated the use of incented actions in mobile games, a popular strategy

for extracting additional revenue from players in freemium games where the vast majority of

players are unlikely to monetize. We discussed the reasons for offering incented actions, and

built an analytical model to assess the associated tradeoffs. This understanding lead us to define

sufficient conditions for the optimality of threshold policies, which we later analyzed to provide

managerial insights into what types of game designs are best suited to offering incented actions.

Our approach of using an MDP has some direct benefits to practitioners. With player data and

relevant game parameters that companies have access to in the age of big data, validating our

model and using it to derive insights on the impact of certain policies is plausible.

Our analytical approach was to devise a parsimonious stylized model that abstracts a fair

deal from reality and yet nonetheless maintained the salient features needed to assess the impact

and effects of offering incented actions. For instance, we assume the publisher has complete

knowledge about the player’s transition probabilities and awareness of the engagement state. In

the setting where transition probabilities are unknown, some statistical learning algorithm and

classification of players into types would be required. Moreover, in the situation where engage-

ment is difficult to define or measure, a partially observed Markov decision process (POMDP)

model would be required, where only certain signals of the player’s underlying engagement can

be observed. There is also the question of microfounding the player model that we explore,

asking what random utility model could give rise to the transition probabilities that we take as

given in our model. All these questions are outside of our current scope but could nonetheless

add realism to our approach. Of course, the challenge of establishing the existence of threshold

policies in these extensions is likely to be prohibitive. Indeed, discovering analytical properties

of optimal policies of any form in a POMDP is challenging [30]. It is likely that these exten-

sions would produce studies that are more algorithmic and numerical in nature, whereas in the

current study we were interested in deriving insights.

Finally, the current study ignores an important actor in the case of games hosted on mobile

platforms – the platform holder. In the case of the iOS App Store, Apple has made several

interventions that either limited or more closely monitored the practice of incented actions (see,

for instance, Connelly [15]). In fact, the platform holder and game publisher have misaligned

incentives when it comes to incented actions. Typically, the revenue derived from incented

actions is not processed through the platform, whereas in-app purchases are. We feel that
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investigation of the incentive misalignment problem between platform and publisher, possibly

as a dynamic contracting problem, is a promising area of future research. The model developed

here is a building block for such a study.

33



Chapter 3

A Dynamic Price-Only Contract:

Exact and Asymptotic Results

3.1 Introduction

Consider a simple supply chain with two firms with symmetric information, wherein a seller

trades with a downstream buyer who faces customer demand for the product. This system is

perhaps the most well understood decentralized model and has been analyzed in the extant

literature in industrial organization and operations management among others. In this paper,

we revisit this simple system under what we call a generalized price-only contract. We demon-

strate several interesting properties of this system under this easy to understand contract, show

interesting connections to established results in the literature and explore the implications of

our findings to future research.

A price-only contract, otherwise known as a simple linear wholesale price contract, specifies a

per unit price w at which the seller offers her product to the buyer who then buys some quantity

q. The buyer uses this quantity (and potentially other levers such as selling price when relevant)

to generate revenue from customer demand. Therefore, in the simplest setting where players are

strategic, these decisions are arrived at as an equilibrium of a corresponding game. The common

paradigm is one where the seller moves first, setting a wholesale price w, which is followed by the

buyer’s decision of purchasing a quantity q. This is referred to as a Stackelberg game (with the

seller as the leader in this case). It is well known that the resulting vertical competition between

the players in this model leads to inefficiencies referred to as double marginalization. This loss

of efficiency (failing to get to the first best) can be addressed by numerous contracting recipes

when there are no information asymmetries. Our interest is not in addressing this inefficiency,

although one consequence of our analysis is related to achieving first best. Rather, we explore

what would be the effect on the equilibrium decisions if instead of providing the two firms

one opportunity to trade, they are allowed to engage dynamically, multiple times, still using a

simple linear price-only contract. To be precise, for some n positive, the seller first informs the

buyer that n wholesale prices will be offered sequentially and dynamically. Then she proposes

the first price, w1, and the retailer decides upon an order quantity, q1, at this price. Thereafter,

the supplier offers a new price, w2, and the retailer orders a new quantity q2, etc. At the end of

the last offer, indexed by n, the buyer has cumulatively purchased Qn = q1 + · · ·+ qn, which is

used to satisfy market demand. Figure 3.1 illustrates the sequence of events. Thus, transactions
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Figure 3.1: Sequence of events under n-stage generalized price-only contract

(a) n = 1
(b) n = 2

Figure 3.2: Illustration of generalized price-only contract

between the firms occur dynamically and incrementally, in anticipation of downstream revenues

that will accrue by meeting demand after the n transactions were concluded. We refer to this

contract as a generalized price-only contract, and we study some properties of this contract.

Figure 3.2 gives two examples when n = 1 and n = 2.

Special instances of the generalized price-only contract were introduced and studied by Er-

hun et al. [20] and by Mart́ınez de Albéniz and Simchi-Levi [38]. Specifically, Erhun et al.

[20] study a dynamic model of a procurement between a supplier and a buyer, when demand

is deterministic and linear with price. They prove that the supplier, the buyer and the end

customers benefit from multiple trading opportunities versus a one-shot procurement agree-

ment. Mart́ınez de Albéniz and Simchi-Levi [38] extend the results to the newsvendor setting.

They provide sufficient conditions for the existence and uniqueness of a well-behaved sub-game

perfect equilibrium and they show that as the number of rounds increases, the profits of the

supply chain increases towards the supply chain optimum.

In this paper, we consider a similar model, but we allow for fairly general demand settings.

Similar to [20] and [38], we show that in our more general setting, both parties benefit from

multiple trading opportunities. Indeed, the benefit increases with the value of n, the horizon

specified in the contract. Moreover, as n approaches infinity, the sum of the profits of the two
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players approaches the first best profit. This, of course, implies that the total order quantity is

non decreasing and converges to the corresponding first best order quantity as n increases. The

results hold without specifying the demand function. We only require that the buyer’s revenue

function satisfies some mild conditions.

We also show that for a given generalized price-only contract with a specified n, the whole-

sale prices monotonically decrease. However, somewhat surprisingly, for a fixed n, the order

quantities within the n periods may not be monotonic; that is, it can decrease or increase in

t = 1, . . . , n. Finally, we provide necessary and sufficient conditions for the supplier’s revenue

to increase, decrease or remain constant from one period to another, and we derive closed form

solutions for three settings in which demand is exponential, uniform or constant.

Our paper is also related to three streams in the literature. The first deals with documenting

and quantifying the loss to the supply chain of using a simple linear wholesale price contract.

Lariviere and Porteus [31] study this problem in the newsvender setting and derive conditions

on the demand distribution for the existence of an interior (equilibrium) solution. They also

empirically calculate the potential efficiency losses for various demand distributions. Perakis

and Roels [45] obtain a theoretical bound on the worst-case loss in this system, and extend

the analysis to other related systems. One of our results demonstrates that as the number of

transactions, n, grows, the efficiency loss decreases and approaches zero as n goes to infinity. In

fact, this seems to be true for more general systems where the buyer may not be a newsvendor.

The second stream in the literature is from industrial organization and is related to the

work of Coase [14] on durable goods. Coase’s result (a conjecture to be precise) was that a

duropolist (a monopolist selling a durable good) does not have monopoly power due to her

inability to commit. The simple intuition behind the Coase conjecture is that if the duropolist

charges a high price for the durable good, then consumers anticipate a future price reduction (as

they expect the duropolist to later target consumers with lower valuations), and therefore they

prefer to wait. The duropolist, anticipating such consumer behavior, will then drop prices down

to the competitive level. Thus, a duropolist faces intense competition, not from other players

but from future incarnations of herself. This intuition does not quite translate when customers

are atomic and have impact on the outcome of the game. In this case, the subgame perfect

equilibrium, known as the Pacman equilibrium, delivers a non zero profit to the duropolist and

decreases the effect of the commitment problem. An excellent of discussion of this topic and

bounds on the duropolist profits are given in Berbeglia et al. [6]. The results in our note are

related as we look at a setting with two players, a buyer and a seller, trading with each other,

and the buyer selling to the market. Our results indicate that in such a setting, the commitment

problem is weakened and the first best solution emerges that distributes the profit between the

players. We also note that our results cannot be recovered from this stream in the literature.

The third stream in the literature that is related to our paper is the one on negotiation

power and contracting in supply chains. If one thinks of contracts as a way to achieve efficiency

in a competitive supply chain, allocations of the first best solution is usually delegated to
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some sort of negotiation process. The outcome of this process depends on various factors, an

important one being the negotiation power of the players. The results in our paper provide an

organic division of the first best profits as n approaches infinity. The seller enjoys some power

due to her role as a Stackelberg leader, but is unable to extract the entire surplus, both in

the regular setting as well as in our dynamic and incremental setting. The exact division of

the pie, in the dynamic setting, depends on several factors including the elasticity of demand,

the shape of the demand distribution etc., which will be discussed later. Thus, our results

provide an alternative way of looking at the notion of bargaining power in supply chains (see

also Bernstein and Nagarajan [7] for a more extensive discussion of this topic). A related but

somewhat different paper on this topic is the one by Anand et al. [2]. They study a simple

dynamic problem where a buyer and a seller transact using wholesale prices and the buyer

faces a demand which is price sensitive and deterministic. Unlike our model, the buyer faces

customer demand in each period. Anand et al. [2] show that the buyer carries over inventory

from one period to another purely for strategic reasons — as demand is certain, there are no

fixed costs or other economies of scale. The main reason for carrying inventory is that by

doing so, the buyer forces the seller to offer lower wholesale prices in future periods since the

buyer is able to start future periods with a positive inventory. The monotonic nature of the

wholesale prices in their model is similar to the monotonicity of wholesale prices that we derive

in our model. Moreover, they similarly show that the dynamic interaction (and the presence

of strategic interactions) is beneficial to both players despite the seller’s channel relative power

being eroded by the dynamic interaction.

3.2 Generalized Price-only Contracts with n Offers

We consider a seller (henceforth referred to as a supplier) who transacts with a buyer (referred

to as a retailer) using a generalized price-only contract. For some n exogenous, the supplier

informs the retailer that n wholesale prices will be offered sequentially. For each wholesale price

proposed, the retailer decides upon the quantity he will purchase at that price. Thus, indexing

the offers forward, the supplier first offers a price w1, and the retailer commits to buying q1;

then the supplier offers w2, and the retailer commits to q2, and so on so forth. The issue of

commitment is not significant here. For example, we can simply assume that each transaction

is completed and money and goods are exchanged before the next price is announced by the

supplier. All decisions are made in anticipation of the demand. We will assume that both

players are risk neutral. At the end of the n-th offer, trade occurs between the two players and

the total amount of units that the retailer has purchased is denoted by Qn = q1 + · · ·+ qn. The

retailer then uses Qn to satisfy market demand.

We first assume that the demand faced by the retailer can be quite general. Let R(Q) be

the retailer’s (expected) sales revenue given the total inventory level Q. For example, under

the newsvendor setting, R(Q) = p
∫ Q

0 F̄ (z)dz, where p is the exogenous retail price and F is
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the CDF of demand distribution (F̄ = 1 − F ). If demand is deterministic but price sensitive

with inverse demand function p = P (Q), we have R(Q) = P (Q)Q. We assume that R(Q) is

sufficiently smooth, as will be clear from the analysis. A stronger assumption can be R(Q)

is analytic, which requires that the function is infinitely differentiable and the power series

converges to it. Further, we assume R(Q) to be strictly concave. This holds for most economic

settings we are interested in. For simplicity, we assume the supplier’s marginal production cost

c = 0. As long as costs are linear, this assumption is without loss of generality. We define πnR,

πnS and πnT be the retailer, the supplier and the supply chain total profit, respectively, which

are given by

πnR = R(q1 + · · ·+ qn)− w1q1 − w2q2 − · · · − wnqn ,
πnS = w1q1 + w2q2 + · · ·+ wnqn ,

πnT = πnR + πnS = R(q1 + · · ·+ qn) .

Denote by QFB the first-best order quantity which maximizes the total supply chain profit

πT = R(Q). Since the problem is concave, QFB can be characterized by the first-order condition

R′(QFB) = 0.

When the supplier and the retailer are independent self-interested rational players, we model

the problem as a dynamic game with perfect information where the supplier and the retailer

take actions sequentially with the supplier being the first mover. We are interested in the

subgame perfect Nash equilibrium (SPNE). Due to the lack of commitment issue and the fact

that in any epoch t, the only relevant information that both players use in computing their

strategies is the length of the horizon and total order quantity traded up until t, relatively

mild conditions are needed to guarantee the existence of a SPNE. Denote by w∗t and q∗t the

equilibrium solution, t = 1, . . . , n. We denote by xt the pre-order inventory level at period

t, so x1 = 0 and xt = q1 + · · · + qt−1, t = 2, . . . , n. We let x∗t = q∗1 + · · · + q∗t−1 be the

corresponding equilibrium pre-order inventory level at period t, and we let Qn,∗ = q∗1 + · · ·+ q∗n

be the corresponding equilibrium total quantity purchased.

We use backward induction to find a SPNE. At the last offer, we first determine the retailer’s

optimal order quantity q∗n for each possible wholesale price wn and history of the previous

offers. Then, given the retailer will follow his strategy, we compute what price w∗n the supplier

will offer for each possible history. Note that the pre-order inventory level xn summarizes all

useful information about the history of previous offers to determine the equilibrium solution.

Hence, the equilibrium strategy can be denoted by q∗n(xn, wn) and w∗n(xn). Now, one can show

that there exists a mapping between wn and q∗n for any given xn, so we equivalently denote

the equilibrium strategy as w∗n(xn, qn) and q∗n(xn). Therefore, solving the n-th offer problem

allows us to naturally revert back to the (n− 1)-th offer and compute the equilibrium strategy

w∗n−1(xn−1, qn−1) and q∗n−1(xn−1). We repeat this process until we solve the first offer problem

w∗1(x1, q1) and q∗1(x1). The following theorem provides a characterization of the SPNE for this

38



3.2. Generalized Price-only Contracts with n Offers

problem.

Proposition 3.2.1. Suppose the subgame perfect Nash equilibrium exists, the equilibrium so-

lution at t = n− k (k ≥ 0) satisfies the following condition:

w∗n−k(xn−k, qn−k) = (k + 1)R′(Qn)
k∏
j=1

(1 +
∂q∗n−k+j

∂xn−k+j
)−

k∑
j=1

w∗n−k+j

∂q∗n−k+j

∂xn−k+j

j−1∏
m=1

(1 +
∂q∗n−k+m

∂xn−k+m
)(3.1)

q∗n−k(xn−k) =

the solution of: R′(Qn)
∏k
j=1(1 +

∂q∗n−k+j

∂xn−k+j
) +

∂w∗n−k
∂qn−k

qn−k = 0 if xn−k < QFB

0 if xn−k ≥ QFB
(3.2)

where Qn = xn−k + qn−k + q∗n−k+1 + · · ·+ q∗n.

Proposition 3.2.1 characterizes the equilibrium solution if it exists. Naturally, for general

demand functions, condition (3.2) does not lead to closed form algebraic expressions. Howev-

er, our interest is not to derive closed form expressions, but rather, primarily to analyze the

properties of the equilibrium solution and the effect of multiple price offers on the supplier, the

retailer and the whole supply chain.

Our first result is intuitive and shows that multiple price offers mitigate the double marginal-

ization effect.

Theorem 3.2.2. (a) The equilibrium total inventory Qn,∗ strictly increases in the number of

offers n but will not exceed the first best inventory level QFB.

(b) When the total number of price offers n increases, both the supplier’s total profit and

the retailer’s total profit increase; moreover the supply chain’s total profit strictly increases.

Intuitively, the opportunity to order multiple times will weaken the supplier’s power and

introduce a competition among the different offers. As a result, the supplier is forced to lower

her wholesale prices and consequently, double marginalization is reduced. Furthermore, since

the supply chain profit πn,∗T = R(Qn,∗) is increasing in Qn,∗, Theorem 3.2.2(a) implies the

total size of the pie, i.e., total supply chain profit, increases with the number of price offers.

One reason for this is that multiple wholesale prices, in the case of stochastic demand, better

matches the marginal return on risk for units of inventory that are purchased in anticipation of

the demand. Furthermore, Theorem 3.2.2 claims that not only the whole supply chain profit

increases in n but also neither the supplier nor the retailer will be worse off with more offers.

As expected, the retailer takes advantage of the multiple chances for ordering and induces

successively lower wholesale prices. On the other hand, by offering multiple wholesale prices,

the supplier price-discriminates the retailer’s orders. Therefore, the supplier can extract a higher

profit and benefits herself. It should be noted that it is possible that either the supplier’s profit

or the retailer’s profit “weakly increases”, but the channel profit must strictly increase. We

next show that full efficiency will be achieved in the limit. In other words, the total inventory

level will get closer to the first-best when the number of price offers n increases. Thus, with

the generalized price-only contract, the price of anarchy asymptotically vanishes.
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Theorem 3.2.3. The equilibrium total inventory level Qn,∗ approaches the first best order

quantity QFB when n goes to infinity.

So far, we have argued that under generalized price-only contract, the supplier’s monopoly

power will diminish and the markup she can charge will be reduced due to the retailer’s previous

orders. Nevertheless, the supplier is strategic and can anticipate this, so she would prefer to

discourage the retailer from ordering large amounts in the early offers. As a result, we expect

higher wholesale prices in earlier offers. This result is consistent with similar findings in other

settings under dynamic contracting in supply chains, such as the one considered by Anand et al.

[2].

Proposition 3.2.4. Given a fixed n, on the equilibrium path, the wholesale prices strictly

decrease, i.e. w∗1 > w∗2 > · · · > w∗n.

As the equilibrium wholesale prices decrease in t, one may similarly expect the order quan-

tities to correspondingly increase in t. Interestingly, we find out that the order quantities may

not increase in t. In fact, the order quantities may exhibit fairly arbitrary patterns. Next, let

us consider the supplier’s per-period profit w∗n−kq
∗
n−k. Define αn−k as follows

αn−k = 1 +
n∑

m=1

k∏
j=m

(1 +
∂q∗n−k+j

∂xn−k+j
).

For instance, αn = 1 and αn−1 = 1 + (1 + ∂q∗n
∂xn

) = 2 + ∂q∗n
∂xn

. One can directly verify from

Proposition 3.2.1 that w∗n−k = R′(Qn)αn−k. The next result demonstrates that αn−k plays an

important role in comparing successive profits by the supplier.

Proposition 3.2.5. w∗n−k+1q
∗
n−k+1(>,=, <)w∗n−kq

∗
n−k if and only if

∂(αk/αk+1)
∂xk

(<,=, >)0.

The proposition provides a necessary and sufficient condition for determining the pattern

of the sequence of w∗n−kq
∗
n−k. For example, in the last two periods, ∂(αn−1/αn)/∂xn−1 =

∂2q∗n/∂x
2
n. Therefore, whether w∗n−1q

∗
n−1 is greater than w∗nq

∗
n depends on the convexity of q∗n

with respect to xn. Let us consider the inverse demand function p = a−bQγ . One can show that

if γ = 1, ∂2q∗n/∂x
2
n = 0, so w∗n−1q

∗
n−1 = w∗nq

∗
n; if γ > 1, ∂2q∗n/∂x

2
n > 0, so w∗n−1q

∗
n−1 > w∗nq

∗
n;

if γ < 1, ∂2q∗n/∂x
2
n < 0, so w∗n−1q

∗
n−1 < w∗nq

∗
n. Thus, one can provide examples such that the

supplier’s per period profit decreases or increases or even stays the same over time for a fixed

n.

Theorem 3.2.2 has shown that the size of the pie increases with the number of price offers.

In addition, both the supplier’s and the retailer’s profits increase. A question of interest is

whether the relative power of the two players changes with multiple offers. To illustrate this,

note that when n =1, we have a simple static Stackelberg game. Under such game structure,

the first mover (in our case the supplier) generally extracts a larger share of the overall profit.

In fact, in newsvendor type settings, when demand is deterministic, linear and price sensitive,
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the supplier extracts two-thirds of the total profits. In what follows, we try to understand how

the profit will be actually allocated between the two parties as n increases and whether the

shares of the supplier and the retailer become more balanced. In particular, we investigate how

multiple price offers will influence the ratio of the retailer’s total profit over the supplier’s total

profit. One may suspect that this ratio will increase with the total number of price offers n.

In other words, multiple price offers help to balance the channel power. In order to check this

intuition, we will study three specific demand cases: exponential demand, uniform demand and

linear (price-sensitive) demand.

Theorem 3.2.6. In a n-stage generalized price-only contract:

(1) Suppose demand is exponentially distributed with a parameter λ and market price p is

exogenous, then the equilibrium strategies are

q∗j =
1

(n− j + 1)λ
j = 1, . . . , n

w∗j = (n− j + 1)pe−λ
∑n
l=1 1/l j = 1, . . . , n .

(2) Suppose demand is uniformly distributed on [0,M ] and market price p is exogenous, then

the equilibrium strategies are

q∗1 =
1

2n
M and w∗1 = β1p

q∗j =

j−1∏
l=1

2(n− l) + 1

2(n− l) q∗1 j = 2, . . . , n

w∗j =

j−1∏
l=1

2(n− l)
2(n− l) + 1

w∗1 j = 2, . . . , n

where βn = 1
2 and βj = (2(n−j)+1)2

4(n−j)(n−j+1)βj+1, j = 1, . . . , n− 1.

(3) Suppose demand is deterministic with inverse demand function p = a − bQ, then the

equilibrium strategies are

q∗1 =
a

4bn
and w∗1 = β1a

q∗j =

j−1∏
l=1

2(n− l) + 1

2(n− l) q∗1 j = 1, . . . , n

w∗j =

j−1∏
l=1

2(n− l)
2(n− l) + 1

w∗1 j = 1, . . . , n

where βn = 1
2 and βj = (2(n−j)+1)2

4(n−j)(n−j+1)βj+1, j = 1, . . . , n− 1.
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Thus, under exponential demand, uniform demand or linear (price-sensitive) demand, the

problem is tractable and the analytical form of the equilibrium solution is clean and elegan-

t. We find, remarkably, that in these three cases, for a fixed n, the supplier’s per-period

profit is identical, w∗t q
∗
t = w∗t+1q

∗
t+1, t = 1, . . . , n − 1. This result follows because the ratio,

q∗t /q
∗
t+1, is always a constant which leads to a constant αt, independent of qt, implying that

∂(αt/αt+1)/∂qt = 0. Thus, by Proposition 3.2.5, it follows that the supplier’s profits per period

are identical. Hence, note also that in these scenarios, since the equilibrium wholesale price

decreases in t, the equilibrium order quantity increases in t.

Finally, let us investigate how the ratio of the retailer’s total profit and the supplier’s total

profit changes with n for the three scenarios considered in Theorem 3.2.6. As is illustrated in

Figure 3.3, the ratio, πn,∗R /πn,∗S , increases in n, but does not converge to 1. This can be verified

by exploiting the expressions in Theorem 3.2.6. Therefore, based on these three examples, it

appears that under generalized price-only contract, the supplier still has a somewhat decreasing

first-mover advantage.
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Figure 3.3: The ratio of the retailer’s total profit over the supplier’s total profit as the number
of price offers n increases under (1) exponential demand (2) uniform demand or linear demand

3.3 Conclusion

In this paper, we study a generalization of the well-known wholesale price contract – the gen-

eralized price-only contract. We extend known results in the literature about this contract to

more general demand settings and we derive some new interesting properties of the correspond-
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ing sub-game perfect equilibrium. We demonstrate that the introduction of additional trading

opportunities benefits both players. Moreover, as the number of price offers n in the generalized

price-only contract approaches infinity, the supply chain profit approaches the first best profit.

We also show that for a given contract with a specified n, the wholesale prices monotonically

decrease. We also reveal some curious properties of the generalized price-only contract, such as

the stationarity of the supplier’s per period profit in the three specific demand cases: exponen-

tial demand, uniform demand and linear (price-sensitive) demand, and we provide necessary

and sufficient conditions for this to hold (see Proposition 3.2.5). Future research, for example,

can attempt to derive theoretical characterizations of the balance of power, as the number of

interactions increases, and bounds on the performance of this contract for a fixed n larger than

one.
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Chapter 4

Dynamic Short-term Supply

Contracts under Private Inventory

and Backorder Information

4.1 Introduction

We consider a two-echelon supply chain where a single supplier sells to a retailer in multiple

periods. The sequence of events is as follows: In each period t, the supplier offers a one-period

contract to the retailer. If the retailer rejects the contract, the relationship between the two

parties is terminated and the game is over. If the retailer accepts the contract, he makes

his order decision in anticipation of the random demand. The demand is then realized and the

retailer collects his revenue (given an exogenous selling price r). Unmet demand is backordered,

subject to a unit stock-out penalty b, and left-over inventory is carried over to the next period,

subject to a unit holding cost h. In the next period t+ 1, the supplier designs a new contract,

and the above events are repeated.

We make three fundamental assumptions in this paper: (1) Unmet demand in each period

is backordered; (2) The retailer’s inventory or backorder level at the beginning of each period is

unobservable by the supplier; (3) A one-period contract is offered and executed in each period.

The first assumption differentiates our underlying inventory model from the lost-sales mod-

el. Backorder and lost-sales are the two standard dynamic inventory models. The lost-sales

counterpart of our problem has been investigated by Zhang et al. [57], but the backorder setting

has been left unattended until now. It will be shown in this chapter that the optimal solutions in

these two settings are drastically different. We will come back to this assumption shortly. Note

that the beginning inventory or backorder in period t is denoted by xt, which can be positive

(representing inventory) or negative (representing backorder). For convenience, we may refer

to both inventory and backorder as (possibly negative) inventory when there is no confusion.

In contrast, xt is always non-negative in the lost-sales setting.

The second assumption characterizes our model as a dynamic adverse-selection model, or

equivalently, a dynamic principal-agent model with hidden information. Asymmetric infor-

mation is prevalent in operations management. As a core subject of operations management,

inventory management has traditionally overlooked the transparency or accessibility of inven-

tory information. In reality, retailers are reluctant to share sales and inventory information
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with their suppliers. For instance, according to a study of the Canadian logistics industry

by Statistics Canada (2003) [11], only about 10% of Canadian retailers share inventory data

over established platforms. There are a variety of reasons. One reason comes from strategic

considerations by the retailer. Retailers may take advantage of this private information and

underreport past sales to elicit discount from suppliers. Other reasons include the lack of trust

between supply chain members and confidentiality restrictions of different parties.

It is well known that in the “selling to the newsvendor” model, simple contracts, such as

wholesale price contract or buyback contract, is sub-optimal when the retailer has private in-

formation. Burnetas et al. [9] showed that in the static setting, the optimal contract entails

concave quantity discount with the marginal unit payment decreasing in the order quantity.

In general, the optimal contract can be very complex in a multi-period setting. Dynamic con-

tracting is documented to be a challenging problem due to a host of technical and expositional

difficulties. There is a large economics literature on dynamic contracting (e.g: [4] and [5]). The

related literature in operations management is scant, with few published papers.

The third assumption delineates the type of contract under investigation. In the multi-

period setting, there are at least two contracting modes that the supplier can choose from,

short-term contracting and long-term contracting. Under long-term contracting, the principal

(supplier) needs to commit to a contingency plan covering the entire decision horizon, while

under short-term contracting, the principal only commits to a short-term (usually one-period)

contract and a new contract is put in place once the previous one ends. The latter contracting

mode is appropriate if the supplier lacks the credibility of carrying out a long-term contract or

if she prefers the relative simplicity of managing one-period contracts. This paper will focus on

short-term contracting with a new contract in each period. Indeed, there are a large number of

real-world examples that the suppliers do not provide retailers with long-term price guarantees

and replenishment schedules.

A key concept in the analysis of a short-term contracting problem is the belief of the

private information. In our problem, knowing the demand distribution and the quantity ordered

by the retailer in period t − 1, the supplier can only tell the distribution of the retailer’s

inventory/backorder level at the beginning of period t (denoted by xt), but not the exact value.

The supplier’s belief can be described by CDF Gt(xt) or PDF gt(xt). One major source of

difficulty in dynamic short-term contracting results from the complexity of the supplier’s belief

which is updated according to the contract and the retailer’s response in every period following

Bayes’ rule.

To summarize, the three fundamental assumptions define our problem as a dynamic short-

term adverse-selection problem on top of a backorder inventory system. It belongs to the most

challenging type of contract design problems and fills a significant gap in the existing literature.

The papers most closely related to our work are Zhang et al. [57] and Ilan and Xiao [27]. Zhang

et al. [57] introduced the first dynamic contracting problem with private inventory information,

which formalizes an important problem in supply chain management. They focus on dynamic
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short-term contracts in the lost-sales setting and show that the optimal contract takes the form

of a batch-order contract under certain model assumptions. Ilan and Xiao [27] studied optimal

long-term contracts in both lost-sales and backorder settings. They prove that in the backorder

case, the optimal long-term contract consists of a menu of wholesale prices and upfront fees,

whereas in the lost-sales case, the optimal long-term contract takes the same form with an

additional option to lower the wholesale price (at a future time, after paying a fee). Our work

fills the gap in this literature. The contracting takes place in every period, with inventory or

backorder kept privately by the retailer. Our goal is to characterize the optimal short-term

contract. We want to know if the optimal contract will still have a simple structure and be

easy to implement. We are also interested in how short-term contracting plus the backorder

assumption may lead to different managerial insights.

In this chapter, we will investigate three scenarios of the modeling horizon: (1) a single

period; (2) two periods; and (3) an infinite horizon. For tractability of the model, we assume

that the demand Dt is i.i.d. and follows an exponential distribution with rate λ. This as-

sumption is supported by extant operations management literature (see Iglehart [26], Lau and

Lau [32] and Nagarajan and Rajagophlan [41]). A summary of our main findings is as follows.

(1) In the single-period setting, the optimal contract induces trade only when the retailer re-

ports a negative inventory level, and the retailer obtains exactly his reservation profit. (2) In

the two-period setting, the supplier’s optimal contract in the first period involves at most two

thresholds. The retailer obtains his reservation profit when the beginning inventory/backorder

is below the lower threshold whereas he receives a positive information rent when it is above

the upper threshold. In the middle range, the partnership will be terminated and the retailer

will be excluded from future business with the supplier. (3) In the infinite-horizon setting, the

optimal short-term contract is complicated and non-stationary in general. An interesting con-

tract emerges. It induces a generalized base-stock policy, where the order-up-to level increases

with and converges to the beginning inventory. This contract leaves zero information rent to

the retailer (zero profit increment beyond his reservation profit) at any beginning inventory

level. Although this contract is sub-optimal in general, it is intuitive, easy to implement, and

provides a good heuristic for the optimal contract. We also conjecture that when the backorder

cost is relatively low, the optimal contract induces a base-stock policy with an exclusion region

for the beginning inventory.

The insights we obtain in the backorder case are substantially different from those in the

lost-sales case. In our setting, the optimal short-term contract has a threshold structure, with

possible exclusion in a middle range. The information rent under the optimal contract may be

non-monotone in the retailer’s beginning inventory. The supplier would sometimes prefer to

deal with a retailer with high inventory, in contrast to the lost-sales case where the supplier

always prefers a retailer with low inventory. In addition, the optimal contract may terminate

the partnership when the retailer’s inventory falls in a certain interval. The above observa-

tions accord with the troublesome phenomenon of “countervailing incentives” examined in the
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contract design literature (see e.g., Lewis and Sappington [34] and Jullien [29]). From this

perspective, the backorder setting results in a more complex information structure than the

lost-sales setting. Consequently, contrary to the common wisdom from inventory management,

the dynamic short-term contracting problem is more involved under backorder than under lost

sales.

The emergence of countervailing incentives in our problem is related to our assumptions

about the backorder arrangement. To be consistent with the backorder inventory model, we

assume that when ordering from the supplier, the retailer is required to take backorder from

customers as needed. To avoid the arbitrage opportunity for the retailer to take backorder

intentionally, we assume b > (1− δ)r, i.e., the penalty for backorder is greater than the possible

interest that can be earned. As a result, if the retailer abandons the relationship, he should

not take backorder anymore, as it is unprofitable. The pressure of accommodating backorder

devalues the relationship with the supplier and in turn increases the retailer’s bargaining power.

When the beginning inventory falls into a certain region, the supplier suffers even without

leaving any information rent to the retailer and would rather let the retailer go.

The rest of the paper is organized as follows. Section 4.2 provides a brief literature review.

In Section 4.3, we describe the general problem and establish the mathematical model. Then we

analyze the single period case in Section 4.4, two-period case in Section 4.5 and infinite-horizon

case in Section 4.6. Finally we conclude in Section 4.7. All proofs are deferred to the appendix.

4.2 Literature Review

Our work is related to the literature on dynamic adverse-selection problems. This topic is pio-

neered by economists and has recently found important applications in operations management.

Myerson [40] introduced the famous revelation principle. He proves that any outcome that is

implementable in equilibrium in an arbitrary mechanism can also be implemented in equilibri-

um via a direct revelation mechanism. The revelation principle serves as the starting point in

analyzing adverse-selection problems, as well as other mechanism design problems. Dynamic

adverse-selection problem is known to be a challenging problem and is much less understood

than static adverse-selection problems due to a host of technical and expositional difficulties.

Economists have made great efforts to characterize the optimal mechanism in certain specific

settings. For instance, the majority of the literature focus on simplified cases where the hid-

den state is either constant or the state is sampled from time-independent distributions. See

illustrative examples in Salanie [47] and Bolton and Dewatripont [8].

However, these models are too restrictive to capture the setting we are interested in. In

this paper, we assume that the supplier cannot observe the retailer’s inventory before ordering.

The hidden state is the retailer’s pre-order inventory level which will be affected by the state

and action in the previous period. Thus, our problem belongs to a particular type of dynamic

adverse-selection problems with an underlying Markov decision process. Battaglini [4] studied
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the optimal long-term contract between a monopolist and a buyer whose private preferences

evolve as a two-state Markov process. Long-term contracting means that the manufacturer

offers a contingency plan over the entire horizon and she has to commit to that plan at the

beginning of the time horizon. It is considered a significant finding in Markovian adverse-

selection problems, yet with a significant limitation about the two-state assumption. Zhang

and Zenios [56] consider a general framework with more than two state, and develop a dynamic

programming algorithm to derive optimal long-term contracts. To the best of our knowledge,

dynamic short-term adverse-selection problems are even less studied in the literature, at least

partly due to the very complex belief process mentioned in the introduction. The only noticeable

work with an underlying Markov process is Zhang et al. [57]. Thus, the current work makes a

theoretical contribution in deepening our understanding of this class of problems.

There is a growing number of papers that explore the contracting problem among self-

interested firms with private information in a supply chain. For instance, Corbett and Groote

[16], Ha [25] and Corbett et al. [17] examine the situation in which the supplier does not know

the cost structure of the buyer. Other examples include Nazerzadeh and Perakis [42] on capacity

information asymmetry and Cachon and Lariviere [10], Shin and Tunca [49] and Taylor and Xiao

[54] on demand information asymmetry. All of these papers focus on static models. The paper

by Burnetas et al. [9] studied a similar setting as our work, except that they only considered

the single-period model. They show when a manufacturer sells to a newsvendor retailer with

private demand information, the optimal contract takes the form of concave quantity discount.

Recently, several pioneering studies have explored multi-period contracting problem where

private information arises over time and operational decisions need to be made dynamically

based on available information. Ilan and Xiao [27] studied the optimal long-term contract

when a manufacturer sells to a retailer over multiple periods with asymmetric demand and

inventory information. They showed that in the backorder case, the optimal long-term contract

consists of a menu of wholesale prices and associated upfront fees, whereas in the lost sales case,

the optimal long-term contract takes the same form but has an additional option at a later time

to lower the wholesale price after paying an option fee. In contrast, this paper will focus on

short-term contracting, where the supplier only offers a one-period contract to the retailer in

every period. The paper by Zhang et al. [57] is the closest to this paper. They examine the

optimal short-term contract in the lost-sales case. They show that the optimal contracts take

the form of batch-order contracts under certain cost regimes.

4.3 Problem Formulation

In this section, we formulate our problem and discuss some basic facts about the model. We

will derive the optimal (short-term) contract in the single-period case, two-period case, and

infinite-horizon case in subsequent sections. The sequence of events is as follows. In period t,

the supplier offers a one-period contract to the retailer. If the retailer rejects the contract, the
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partnership is broken and the game is over. If the retailer accepts the contract, he makes his

order decision in anticipation of the random demand. We assume zero lead time. Units are

transferred to the retailer immediately and payments are received by the supplier. The demand

is then realized and the retailer collects his sales revenue. After that, the retailer carries over

any excess inventory or unmet backorder to the next period t+ 1. In period t+ 1, the supplier

offers a new contract to the retailer, and the game is played dynamically. The total number of

periods is T .

We introduce some notation. We write r for the unit selling price, c for the unit production

cost, h for the unit holding cost, b for the backorder cost and δ ∈ (0, 1) for the discount factor.

Throughout this paper, we make the following assumption:

Assumption 4.3.1. The demand Dt in every period is i.i.d. and follows an exponential dis-

tribution with rate λ.

We assume that the supplier cannot observe the sales, i.e. the realized demand, at the

retailer in any period. As a result, knowing the demand distribution and the quantity ordered

by the retailer in period t − 1, the supplier can barely tell the distribution of the retailer’s

pre-order inventory level xt. We describe the supplier’s belief about the pre-order inventory

level by CDF Gt(xt) and PDF gt(xt).

If the retailer orders qt in period t, his post-order inventory level will be yt = xt + qt. We

define vt(yt) as the retailer’s one-period profit in period t before transferring any payment to

the supplier. More specifically, vt(yt) is equal to the retailer’s expected revenue, minus the

holding cost and backorder cost (holding cost and backorder cost are absent in the last period).

We let Πt+1(yt) be the supplier’s expected profit-to-go from period t + 1 onwards given the

true yt. Because xt is only known by the retailer, the supplier may perceive the post-order

inventory to be ŷt. The supplier’s perception will affect her belief about xt+1 and thereby the

optimal contract in period t + 1. Therefore, we write Ut+1(yt|ŷt) as the retailer’s expected

profit-to-go from period t+ 1 onwards given his true post-order inventory yt and the supplier’s

perception ŷt; and Ψt+1(yt) = Πt+1(yt) + Ut+1(yt|yt) as the channel’s expected profit-to-go

from period t + 1 onwards if the supplier’s perception is correct. Finally, we define ut(xt) as

the retailer’s reservation profit-to-go from period t onwards if the two parties have terminated

their relationship at the beginning of period t.

As we study short-term contracting, a proper solution concept is the “Perfect Bayesian

Equilibrium.” (See [22] and [44].) In period t, the contract maximizes the supplier’s expected

profit-to-go given her belief about xt; and assuming the optimal contracts are offered in all

future periods, the retailer’s response maximizes his expected profit-to-go given the contract;

and the supplier’s belief about xt+1 is derived according to the Bayes’ rule.

According to the Revelation Principle (Myerson [40]), we can focus on direct revelation

contracts. The supplier designs a menu contract {qt(xt), st(xt)}xt∈(−∞,x̄t]. We assume that the

pre-order inventory xt in period t is upper bounded by x̄t. For instance, xt is the result of

the previous period’s sales, i.e. xt = x̄t −Dt−1. For each possible xt, the contract specifies a
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quantity plan qt(xt) and payment plan st(xt). The supplier’s goal is to maximize her expected

profit-to-go, with respect to her belief Gt of the beginning inventory or backorder level xt. We

formulate the contracting problem using the principal-agent framework. The supplier solves

the following problem:

max
st,qt

∫ x̄t

−∞
{st(xt)− cqt(xt) + δΠt+1(xt + qt(xt))}dGt(xt) (4.1)

s.t. vt(xt + qt(xt))− st(xt) + δUt+1(xt + qt(xt)|xt + qt(xt))

= max
x̂t

vt(xt + qt(x̂t))− st(x̂t) + δUt+1(xt + qt(x̂t)|x̂t + qt(x̂t)), xt, x̂t ∈ (−∞, x̄t](4.2)

vt(xt + qt(xt))− st(xt) + δUt+1(xt + qt(xt)|xt + qt(xt)) ≥ ut(xt), xt ∈ (−∞, x̄t](4.3)

Constraint (4.2) is the “incentive compatibility” (IC) constraint. It prevents the retailer from

lying. Reporting a different state x̂t does not bring any benefit. Constraint (4.3) is the “in-

dividual rationality” (IR) constraint. It guarantees the retailer’s participation. The profit

from choosing (qt(xt), st(xt)) is at least as good as his reservation profit-to-go. In each period

t = 1, . . . , T , the supplier needs to solve the above problem (4.1)-(4.3). In the following sections,

we will investigate three situations (1) the single-period case: T = 1; (2) the two-period case:

T = 2; and (3) the infinite-horizon case: T =∞.

4.4 Single Period

First, we consider the single-period case which also includes the last period of a finite-horizon

model. In this case, there is no backorder or inventory holding cost at the end. Instead, we

assume that the retailer must refund any backorder or throw away any leftover units at the end

of the period. Then, the retailer’ revenue, given the post-order inventory y1, is:

v1(y1) =

rE[min(y1, D)] = r
λ(1− e−λy1), y1 ≥ 0

ry1, y1 < 0.
(4.4)

Recall that the post-order inventory y1 = x1 + q1 is the sum of the pre-order inventory x1 and

the order quantity q1. When y1 ≥ 0, the retailer collects all possible sales revenue and v1(y1)

coincides with the revenue function in the lost-sales case. When y1 < 0, the retailer reimburse

his consumers. As a result, the backorder assumption does not play a role here. The retailer’s

reservation profit, by quitting the business relationship, is:

u1(x1) = v1(x1), x1 ∈ R. (4.5)

We further assume that the initial inventory is the result of the previous period’s sales, i.e.,

x1 = y0−D0 where y0 is the period 0 post-order inventory level and D0 is the period 0 demand.

Without knowing the realized demand, the supplier is only able to form a belief about x1
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through CDF G1(x1) = e−λ(y0−x1) and PDF g1(x1) = λe−λ(y0−x1).

As mentioned before, without loss of generality, we focus our attention on the direct reve-

lation contracts. The supplier offers a menu contract {q1(x1), s1(x1)}x1∈(−∞,y0]. The retailer is

asked to report his inventory or backorder x1, and then the corresponding order q1(x1) and pay-

ment s1(x1) are executed. We define u1(x1) as the net profit for the retailer, after transferring

the payment to the supplier. Given the pre-order inventory x1, u1(x1) = v1(x1+q1(x1))−s1(x1).

The optimal contract solves the following problem:

max
s1,q1

∫ y0

−∞
{s1(x1)− cq1(x1)}dG1(x1) (4.6)

s.t. u1(x1) = max
x̂1∈(−∞,y0]

{v1(x1 + q1(x̂1))− s1(x̂1)}, x1 ∈ (−∞, y0] (4.7)

u1(x1) ≥ u1(x1), x1 ∈ (−∞, y0] (4.8)

Given her belief G1(x1) (or equivalently g1(x1)) of the retailer’s pre-order inventory x1, the

supplier maximizes her expected profit subject to two constraints. As described, Constraint

(4.7) is called the “incentive compatibility” (IC) constraint and (4.8) is called the “individual

rationality” (IR) constraint. The IC constraint encourages the retailer to report his true state

x1. The IR constraint ensures that the retailer is willing to participate and accept the contract.

By the envelop theorem, we obtain the local IC constraint from the global IC constraint

(4.7):

u′1(x1) =
∂

∂x1
{v1(x1 + q1(x̂1))− s1(x̂1)}|x̂1=x1 = v′1(x1 + q1(x1)) (4.9)

One feature of the single-period problem is that the retailer does not need to pay any holding

or backorder cost. In other words, it does not make a difference between the lost-sales case and

backorder case when there is only one period. As a result, we are able to show similar results

as [57]. We leave the proof and technical details to the Appendix C.

Lemma 4.4.1. (1) A contract {q1(x1), s1(x1)} satisfies the (global) IC constraint if and only

if it satisfies the local IC constraint and q1(x1) is weakly decreasing in x1;

(2) Under the optimal contract, the IR constraint must be binding at y0 and redundant at

x1 < y0 where x1 = y0 −D0.

Lemma 4.4.1 suggests that we can replace the IC constraint (4.7) by the local IC constraint

(4.9) and the monotonicity of q1(x1). It is true as long as the problem satisfies the so-called

single-crossing property ∂2v1(x1+q1)
∂x1∂q1

≤ 0 (Topkis [55]). Indeed, the function v1(y1) is concave

and we have v′′1(y1) =

λre−λy1 , y1 > 0

0, y1 < 0
. Moreover, we look at the information rent u1(x1)−

u1(x1), which is interpreted as the extra profit to the retailer arising from his informational

advantage. Its derivative is equal to u′1(x1)−u′1(x1) = v′1(x1 +q1(x1))−v′1(x1). As the function

v1(y1) is concave, it has decreasing differences and consequently the information rent decreases
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in x1. In fact, for any x1 < x̂1, we have

u1(x1)− u1(x1) = v1(x1 + q1(x1))− s1(x1)− v1(x1)

≥ v1(x1 + q1(x̂1))− s1(x̂1)− v1(x1)

= v1(x̂1 + q1(x̂1))− s1(x̂1)− v1(x̂1)

+[v1(x1 + q1(x̂1))− v1(x̂1 + q1(x̂1)) + v1(x̂1)− v1(x1)]

≥ v1(x̂1 + q1(x̂1))− s1(x̂1)− v1(x̂1)

= u1(x̂1)− u1(x̂1)

Therefore, the retailer with a higher inventory is a “worse” type as he gets less information

rent. In order to ensure that the retailer will not inflate his inventory level to elicit discounts,

the supplier has to provide more incentives (i.e. larger rent) to those who have low inventory.

Next, we compute the so-called virtual surplus in the literature. We replace s1(x1) with

v1(x1 + q1(x1))−u1(x1). Since the IR constraint is binding at y0, we rewrite u1(x1) = u1(y0)−∫ y0

x1
u′1(ξ)dξ = u1(y0)−

∫ y0

x1
v′1(ξ+ q1(ξ))dξ. Thus, s1(x1) = v1(x1 + q1(x1))−u1(y0) +

∫ y0

x1
v′1(ξ+

q1(ξ))dξ. Finally, the objective function (4.6) can be reformulated as follow:∫ y0

−∞
{s1(x1)− cq1(x1)}dG1(x1)

=

∫ y0

−∞
{v1(x1 + q1(x1))− u1(y0) +

∫ y0

x1

v′1(ξ + q1(ξ))dξ − cq1(x1)}g1(x1)dx1

=

∫ y0

−∞
{v1(x1 + q1(x1))− cq1(x1)}g1(x1)dx1 +

∫ y0

−∞

∫ y0

x1

v′1(ξ + q1(ξ))dξg1(x1)dx1 − u1(y0)

=

∫ y0

−∞
{v1(x1 + q1(x1))− cq1(x1)}g1(x1)dx1 +

∫ y0

−∞
v′1(ξ + q1(ξ))G(ξ)dξ − u1(y0)

=

∫ y0

−∞
{v1(x1 + q1(x1))− cq1(x1) + v′1(x1 + q1(x1)

G1(x1)

g1(x1)
}g1(x1)dx1 − u1(y0)

=

∫ y0

−∞
J1(q1(x1)|x1)g1(x1)dx1 − u1(y0) (4.10)

We call J1(q1|x1) = v1(x1 + q1)− cq1 + v′1(x1 + q1)G1(x1)
g1(x1) the “virtual surplus”, which represents

the redistributed profit for the supplier in relation to the order q1 at x1. The optimal quantity

plan q∗1(x1) maximizes the virtual surplus. Given x1, the first-order derivative of J1(q1|x1) is

∂J1(q1|x1)

∂q1
= v′1(x1 + q1)− c+ v′′1(x1 + q1)

G1(x1)

g1(x1)

=

re−λ(x1+q1) − c− λre−λ(x1+q1)G1(x1)
g1(x1) , x1 + q1 > 0

r − c, x1 + q1 < 0

=

−c, x1 + q1 > 0

r − c, x1 + q1 < 0
(4.11)
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where the last equality holds because G1(x1)
g1(x1) = 1/λ. As we can see, J1(q1|x1) increases in q1 < 0

but decreases in q1 > 0. Therefore, the optimal quantity plan is q∗(x1) = max{0,−x1}, i.e. the

optimal order-up-to level is y∗(x1) = x1 + q∗(x1) = max{0, x1}. Theorem 4.4.2 provides a full

characterization of the optimal contract. The optimal contract entails a base-stock policy with

base-stock level 0. Moreover, the payment is a linear function of the order quantity q1 with

marginal price r.

Theorem 4.4.2. In the single period case, the optimal contract is:

q∗1(x1) =

0, x1 ≥ 0

−x1, x1 < 0
and s∗1(x1) =

0, x1 ≥ 0

−rx1, x1 < 0
. (4.12)

Theorem 4.4.2 says that under the optimal contract, trade happens only when the retailer

reports negative inventory. Moreover, the retailer gets exactly his reservation profit u1(x1) =

v1(x1) = u1(x1). Under an exponential demand distribution, the distortion is so severe that

it is optimal not paying any information rent to the retailer. The supplier is only willing to

clear up the backorder and bring the inventory level up to 0. More interestingly, the optimal

contract is independent of the supplier’s belief G1. In other words, no matter what belief the

supplier has about the pre-order inventory x1, she will always offer the contract proposed in

Theorem 4.4.2. This property is uncommon in dynamic adverse-selection problems, and gives

us hope that there might exist a simple optimal contract in more general cases.

4.5 Two Periods

We now look at the two-period case. We solve the problem by backward induction. Since we

have already characterized the optimal contract in the last period, t = 2, in Theorem 4.4.2, we

focus our attention on the first period, t = 1. Similarly as before, we assume that there exists

a known y0 and the pre-order inventory in period 1 is x1 = y0 − D0. The supplier solves the

following problem to find the optimal contract {q1(x1), s1(x1)}x1∈(−∞,y0]:

max
s1,q1

∫ y0

−∞
{s1(x1)− cq1(x1) + δΠ2(x1 + q1(x1))}dG1(x1) (4.13)

s.t. u1(x1) = v1(x1 + q1(x1))− s1(x1) + δU2(x1 + q1(x1))

= max
x̂1

v1(x1 + q1(x̂1))− s1(x̂1) + δU2(x1 + q1(x̂1)), x1 ∈ (−∞, y0] (4.14)

u1(x1) ≥ u1(x1), x1 ∈ (−∞, y0] (4.15)
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The retailer’s expected profit in period 1 (before payment s1) is given by the expected sales

revenue minus the holding and backorder costs:

v1(y1) = rE[D]− bE[D − y1]+ − hE[y1 −D])+

=

 r
λ − b

λe
−λy1 − hy1 + h

λ(1− e−λy1), y1 ≥ 0

by1 + (r − b)/λ, y1 < 0.

In addition, Π2(y1) is the supplier’s expected profit-to-go in period 2 given the post-order

inventory y1 in period 1 and U2(y1) is the retailer’s expected profit-to-go in period 2 given

y1. Notice that the optimal contract in period 2 is independent of the supplier’s belief G2(x2).

Therefore, the supplier’ perceived post-order inventory ŷ1 is irrelevant and we can simplify the

notation U2(y1|ŷ1) to U2(y1). According to Theorem 4.4.2, for a given pre-order inventory x2 in

period 2, the retailer’s profit in period 2 is u2(x2) = u2(x2) =

 r
λ(1− e−λx2), x2 ≥ 0

rx2, x2 < 0.
and the

supplier’s profit in period 2 is π2(x2) = s∗2(x2)− cq∗2(x2) =

0, x2 ≥ 0

−(r − c)x2, x2 < 0.
As a result,

given the post-order inventory y1 in period 1, the retailer’s expected profit-to-go in period 2 is:

U2(y1) = E[u2(x2)] = E[u2(y1 −D1)] =

 r
λ − 2r

λ e
−λy1 − ry1e

−λy1 , y1 ≥ 0

ry1 − r
λ , y1 < 0,

the supplier’s expected profit-to-go in period 2 is

Π2(y1) = E[π2(x2)] = E[π2(y1 −D1)] =

 r−c
λ e−λy1 y1 ≥ 0

(r − c)( 1
λ − y1) y1 < 0

,

and the expected profit-to-go for the whole channel is the sum of the two:

Ψ2(y1) = U2(y1) + Π2(y1) =

 r
λ − r

λe
−λy1 − c

λe
−λy1 − ry1e

−λy1 , y1 ≥ 0

cy1 − c
λ , y1 < 0.

We need to be careful when defining the retailer’s reservation profit-to-go in the backorder

case. We assume that once the retailer decides to abandon the relationship, he will no longer

take backorders. That is to say, if the retailer starts with a backorder, x1 < 0, he will return

the payment to customers and stop the business right away. If the retailer has positive initial

inventory, x1 ≥ 0, he will keep satisfying demand until no inventory is left, but he will not take

backorder at the end of period 1. This is consistent with the following assumption:

Assumption 4.5.1. b > (1− δ)r.

This assumption prevents the retailer from taking backorder intentionally. If b ≤ (1 − δ)r,
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the retailer has an arbitrage opportunity by carrying backorder all the time and refunding the

customers at the end of the horizon. Therefore, it is more plausible to assume b > (1 − δ)r.
Then, the retailer’s reservation profit-to-go at the beginning of period 1 is equal to:

u1(x1) =

rE[min(x1, D)]− hE[x1 −D]+ + δU2(x1), x1 ≥ 0

rx1, x1 < 0

=

 r
λ(1− e−λx1)− hx1 + h

λ(1− e−λx1) + δ[ rλ − r
λe
−λx1 − rx1e

−λx1 ], x1 ≥ 0

rx1, x1 < 0,

where U2(x1) is the retailer’s reservation profit-to-go in period 2 given the beginning inventory

x1 in period 1. When x1 < 0, we know U2(x1) = 0. When x1 ≥ 0, we have

U2(x1) = E[u2(x1 −D1)+] = E[u2(x2)+] =

∫ x1

0

r

λ
(1− e−λx2)λe−λ(x1−x2)dx2 =

r

λ
− r

λ
e−λx1 − rx1e

−λx1

For convenience, we define µ1(y1) = v1(y1) + δU2(y1), more specifically,

µ1(y1) = v1(y1) + δU2(y1) =

 r+h
λ − b+h

λ e−λy1 − hy1 + δ[ rλ − 2r
λ e
−λy1 − ry1e

−λy1 ], y1 ≥ 0

r−b
λ + by1 + δ(ry1 − r

λ), y1 < 0.

We interpret µ1(y1) as the pre-transfer profit-to-go function for the retailer, if he orders up

to y1, before transferring any payment to the supplier. Note that the retailer is assumed to

take backorder at the end of period 1, if needed, as a requirement for doing business with the

supplier. The IC constraint (4.14) becomes

u1(x1) = µ1(x1 + q1(x1))− s1(x1) = max
x̂1

µ1(x1 + q1(x̂1))− s1(x̂1), x1 ∈ (−∞, y0] (4.16)

We make a few observations about the pre-transfer profit-to-go function µ1(y1). First of all, we

have µ′′1(y1) =

−λ(b+ h+ δrλy1)e−λy1 y1 > 0

0 y1 < 0
, and hence the period 1 problem still satisfies

the single-crossing property. By a similar proof as Lemma 4.4.1, we can show that the optimal

quantity plan in period 1, q∗1(x1), will satisfy the following local IC constraint

u′1(x1) = µ′1(x1 + q1(x1)) (4.17)

and weakly decrease in x1 ∈ (−∞, y0].

Next, we compare µ1(x1) and u1(x1) to obtain insights for the optimal contract.

µ1(x1)− u1(x1) =

− 1
λe
−λx1 [b− (1− δ)r], x1 ≥ 0

−( 1
λ − x1)[b− (1− δ)r], x1 < 0.
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Figure 4.1: The retailer’s reservation and pre-transfer profit-to-go functions in period 1.

Cleary, whether µ1(x1) is greater or smaller than u1(x1) depends on the term b− (1− δ)r. By

Assumption 4.5.1, we have µ1(x1)− u1(x1) < 0 for all x1. The two functions are illustrated in

Figure 4.1. It implies that the supplier has to provide incentive in order to keep the retailer

in the relationship. More importantly, the base-stock policy with base-stock level 0 proposed

in Theorem 4.4.2 (i.e. y1(x1) = max{0, x1}, for all x1 ∈ (−∞, y0]) violates the IR constraint

and is no longer a feasible quantity plan in period 1. In fact, under the quantity plan y1(x1) =

max{0, x1}, we have

u′1(x1)− u′1(x1) =

µ′1(x1)− u′1(x1), x1 ≥ 0

µ′1(0)− u′1(x1), x1 < 0
=

(b+ δr − r)e−λx1 x1 ≥ 0

b+ δr − r, x1 < 0
.

We end up with u′1(x1) > u′1(x1) for all x1 ∈ (−∞, y0]. As a result, we claim that as long as

there exists a point x∗1 at which u1(x∗1) = u1(x∗1), the IR constraint must be violated for all

x1 < x∗1. So the quantity plan y1(x1) = max{0, x1} (x1 ∈ (−∞, y0]) is infeasible. We shall

expect that the optimal contract in period 1 to be quite different from that in period 2.

In the single-period case, we have shown that the information rent decreases in the pre-order

inventory level. However, when there are two periods to go, we fail to have a similar result.

The information rent u1(x1) − u1(x1), the difference between the retailer’s profit-to-go under

the contract and his reservation profit-to-go, may not be monotone. In fact, the first-order

derivative of the information rent is

u′1(x1)− u′1(x1) = µ′1(y1(x1))− u′1(x1)

=


(b+ h+ δr)e−λy1 + δrλy1e

−λy1 − (r + h)e−λx1 − δrλx1e
−λx1 , y1 ≥ x1 ≥ 0

(b+ h+ δr)e−λy1 + δrλy1e
−λy1 − h− r, y1 ≥ 0 > x1

b− (1− δ)r. 0 > y1 ≥ x1

Whether the information rent is monotone will depend on the choice of y1. That is to say, it

56



4.5. Two Periods

Figure 4.2: Illustration of “bump”

is unclear at which point the IR constraint will be binding. This is the main difference from

the lost-sales case where the IR constraint must be binding at the highest inventory level and

redundant at other points. In the backorder case, the IR constraint might be binding at a single

point or multiple points. The good news is that we can exclude the possibility of “bump” in

the retailer’s profit-to-go function. Here “bump” means that the IR constraint is binding at

two points but redundant at other points in between. If a “bump” occurs, the optimal contract

would be too complicated to analyze. See Figure 4.2 for an illustration of “bump”.

Proposition 4.5.2. Under the optimal contract, there does not exist a “bump” in the retailer’s

profit-to-go function, i.e. there does not exist two points x+
1 and x−1 such that the IR constraint

is binding at x+
1 and x−1 but redundant at x1 ∈ (x−1 , x

+
1 ).

Proposition 4.5.2 guarantees that the optimal contract will not lead to a “bump.” Further-

more, we know for sure that there must exist at least one point x∗1 where the IR constraint is

binding. If not, the supplier will be able to increase the payment uniformly across all possible

x1 to increase her profit. As a result, we conclude that at x1 < x∗1, the IR constraint is either

always binding or never binding. Similar argument holds at x1 > x∗1.

Next, we derive the virtual surplus function J1(y1|x1). By a similar approach as the single-

period case, we replace s1(x1) with µ1(x1 + q1(x1)) − u1(x1) = µ1(y1(x1)) − u1(x1). At x1 <

x∗1, the IR constraint is anchored at the right (or top). So we rewrite u1(x1) = u1(x∗1) −∫ x∗1
x1
u′1(ξ)dξ = u1(x∗1) −

∫ x∗1
x1
µ′1(y1(ξ))dξ. At x1 > x∗1, the IR constraint is anchored at the left

(or bottom). So we rewrite u1(x1) = u1(x∗1) +
∫ x1

x∗1
u′1(ξ)dξ = u1(x∗1) +

∫ x1

x∗1
µ′1(y1(ξ))dξ. Finally,

we reformulate the objective function (4.13) as∫ x∗1

−∞
{s1(x1)− cy1(x1) + cx1 + δΠ2(y1(x1))}g1(x1)dx1 +

∫ y0

x∗1

{s1(x1)− cy1(x1) + cx1 + δΠ2(y1(x1))}g1(x1)dx1
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4.5. Two Periods

where the first part is equal to∫ x∗1

−∞
{s1(x1)− cy1(x1) + cx1 + δΠ2(y1(x1))}g1(x1)dx1

=

∫ x∗1

−∞
{µ1(y1(x1))− u1(x∗1) +

∫ x∗1

x1

µ′1(y1(ξ))dξ − cy1(x1) + cx1 + δΠ2(y1(x1))}g1(x1)dx1

=

∫ x∗1

−∞
{µ1(y1(x1))− cy1(x1) + cx1 + δΠ2(y1(x1)) + µ′1(y1(x1))

G1(x1)

g(x1)
}g1(x1)dx1

−
∫ x∗1

−∞
u1(x∗1)g1(x1)dx1, (4.18)

and the second part is equal to∫ y0

x∗1

{s1(x1)− cy1(x1) + cx1 + δΠ2(y1(x1))}g1(x1)dx1

=

∫ y0

x∗1

{µ1(y1(x1))− u1(x∗1)−
∫ x1

x∗1

µ′1(y1(ξ))dξ − cy1(x1) + cx1 + δΠ2(y1(x1))}g1(x1)dx1

=

∫ y0

x∗1

{µ1(y1(x1))− cy1(x1) + cx1 + δΠ2(y1(x1))− µ′1(y1(x1))
1−G1(x1)

g(x1)
}g1(x1)dx1

−
∫ y0

x∗1

u1(x∗1)g1(x1)dx1. (4.19)

(4.18) and (4.19) lead to the following expressions for the virtual surplus anchored at the right

end and the left end, respectively:

J1(y1|x1) =

cx1 − cy1 + µ1(y1) + δΠ2(y1) + µ′1(y1)G1(x1)
g(x1) , x1 < x∗1

cx1 − cy1 + µ1(y1) + δΠ2(y1)− µ′1(y1)1−G1(x1)
g(x1) , x1 > x∗1

(4.20)

The virtual surplus takes different forms for x1 > x∗1 and x1 < x∗1. It will be used later in finding

the optimal contract. The optimal quantity plan y∗(x) will maximize the virtual surplus subject

to the IR constraint. In order to characterize the optimal contract in period 1, we first introduce

two special quantity plans.

Definition 1. Define yR1 (x1) as the solution of u′1(x1) = µ′1(y1), i.e., yR1 (x1) solves

(b+ h+ δr + δrλyR1 )e−λy
R
1 = (r + h+ δrλx1)e−λx1 (4.21)

for x1 ∈ [0, y0], and yR1 (x1) = yR1 (0) for x1 ∈ (−∞, 0).

Definition 2. Define yL1 (x1) as the solution of the first-order condition d
dy1
J1(y1|x1) = 0, given

the “virtual surplus” anchored at the left (or bottom)

J1(y1|x1) = cx1 − cy1 + µ1(y1) + δΠ2(y1)− µ′1(y1)
1−G1(x1)

g(x1)
, (4.22)
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4.5. Two Periods

Figure 4.3: Retailer’s profit-to-go in period 1 under the optimal contract

i.e., yL1 (x1) solves

δce−λy
L
1 + eλ(y0−x1)(b+ h+ δrλyL1 )e−λy

L
1 = c+ h, (4.23)

or yL1 (x1) = x1 if the above solution is less than x1.

If the supplier implements the quantity plan yR1 (x1), the retailer will receive exactly his

reservation profit-to-go, because yR1 (x1) is such that u′1(x1) = µ′1(yR1 (x1)) = u′1(x1). The first

equality follows from the local IC constraint. The quantity plan yL1 (x1) maximizes the “virtual

surplus” anchored at the left. By taking the derivative, we can easily check that yR1 (x1) increases

in x1 while yL1 (x1) decreases in x1 whenever yL1 (x1) > x1.

The full characterization of the optimal contract in period 1 is given by the following theo-

rem.

Theorem 4.5.3. The optimal contract in period 1 has at most two thresholds x∗∗1 ≤ x∗1 ≤ y0:

(a) At x1 ∈ (−∞, x∗∗1 ], the retailer orders up to yR1 (x1) and gets his reservation profit;

(b) at x1 ∈ (x∗∗1 , x
∗
1], the retailer is excluded;

(c) and at x1 ∈ (x∗1, y0], the retailer orders up to yL1 (x1) and receives a positive information

rent.

Theorem 4.5.3 indicates that the optimal contract in period 1 consists of three regions at

most, as illustrated in Figure 4.3. In the first region x1 ∈ (−∞, x∗∗1 ], the retailer participates and

gets exactly his reservation profit-to-go. To see that, we examine the virtual surplus anchored

at the right J1(y1|x1) = cx1− cy1 + µ1(y1) + δΠ2(y1) + µ′1(y1)G1(x1)
g(x1) . Recall that x1 = y0−D0,

therefore we have G1(x1) = e−λ(y0−x1) and g1(x1) = λe−λ(y0−x1). The first-order derivative of
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4.5. Two Periods

J1(y1|x1) is given by

dJ1(y1|x1)

dy1
= −c+ µ′1(y1) + δΠ′2(y1) + µ′′1(y1)

G1(x1)

g(x1)

=

−h− c+ δce−λy1 < 0, y1 > 0

b+ δc− c > 0, y1 < 0

The supplier wants to maximize the virtual surplus subject to the IR constraints. However,

the function J1(y1|x1) increases in y1 < 0 whereas it decreases in y1 > 0. As a result, the base-

stock policy with bast-stock level 0 (i.e. y1(x1) = max{0, x1}) maximizes the virtual surplus.

However, we have discussed that the quantity plan y1(x1) = max{0, x1} does not satisfy the

IR constraint at all x1 ≤ x∗1. In fact, if the retailer quits, he does not need to incur the higher

backorder cost, which gives him more bargaining power. The information rent corresponding

to the base-stock policy is not large enough (in fact it yields negative profit) to ensure the

retailer’s participation. In other words, the supplier faces a trade-off between maximizing her

profit and keeping the retailer in the relationship. Since J1(y1|x1) is decreasing in y1 > 0, the

optimal quantity plan will be y∗1(x1) = yR1 (x1), which makes the IR constraint binding.

The second region (x∗∗1 , x
∗
1] suggests that the supplier may be able to improve her profit by

excluding some types of retailers. Figure 4.4 shows the supplier’s profit π1(x1) for each possible

pre-order inventory x1 if she follows the quantity plan yR1 (x1), i.e

π1(x1) = v1(yR1 (x1)) + δU2(yR1 (x1))− u1(x1)− cyR1 (x1) + cx1 + δΠ2(yR1 (x1)). (4.24)

We observe that when x1 is large, the supplier starts getting negative profit π1(x1) < 0. In this

case, it is better to exclude the retailer, as even zero information rent would lead to negative

profit for the supplier. In the backorder case, as the retailer has more bargaining power by

threatening to quit, the optimal contract induces partial participation. The threshold x∗∗1 is

determined by sending (4.24) to 0. We can prove that the threshold x∗∗1 can be uniquely

determined if the costs are not too high.

Lemma 4.5.4. Suppose r + h + δr > e(h + c). There exists a unique x∗∗1 that satisfies

v1(yR1 (x1)) + δU2(yR1 (x1))− u1(x1)− cyR1 (x1) + cx1 + δΠ2(yR1 (x1)) = 0.

In fact, even when r + h + δr < e(h + c), we observe numerically that the threshold x∗∗1 is

unique. So we postulate that under all circumstances, there always exists a unique x∗∗1 that

solves v1(yR1 (x1)) + δU2(yR1 (x1))− u1(x1)− cyR1 (x1) + cx1 + δΠ2(yR1 (x1)) = 0.

Finally, in the third region x1 ∈ (x∗1, y0], we investigate the virtual surplus anchored at the
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Figure 4.4: Supplier’s profit-to-go in period 1 under yR1 (x1). (Parameters: r = 10, c = 5, b = 3,
h = 3, λ = 1 and δ = 0.9.)

left J1(y1|x1) = cx1 − cy1 + µ1(y1) + δΠ2(y1) + µ′1(y1)1−G1(x1)
g(x1) . Its derivative is given by

dJ1(y1|x1)

dy1
= c+ µ′1(y1) + δΠ′2(y1) + µ′′1(y1)

1−G1(x1)

g(x1)

=

−c− h+ δce−λy1 + eλ(y0−x1)(b+ h+ δrλy1)e−λy1 , y1 > 0

b+ δc− c, y1 < 0

By definition, the quantity plan yL1 (x1) maximizes the virtual surplus when x1 ∈ (x∗1, y0]. In

order to satisfy the IR constraint, the threshold x∗1 has a lower bound.

Lemma 4.5.5. The threshold x∗1 satisfies x∗1 ≥ xL1 , where xL1 is the unique solution of yR1 (x1) =

yL1 (x1). In addition, yR1 (x1)− yL1 (x1) =

< 0, x1 < xL1

> 0, x1 > xL1

.

The IR constraint requires u1(x1) = u1(x∗1)+
∫ x1

x∗1
v′1(yL(ξ))dξ ≥ u1(x1) = u1(x∗1)+

∫ x1

x∗1
v′1(yR(ξ))dξ.

Note that the IR constraint is binding at x∗1. By rearranging the terms, we argue that x1 should

satisfy
∫ x1

x∗1
[µ′1(yL(ξ)) − µ′1(yR(ξ))]dξ ≥ 0. Now we let x1 approach x∗1 and the IR constrain-

t becomes µ′1(yL(x∗1)) − µ′1(yR(x∗1)) ≥ 0, which implies x∗1 ≥ xL1 due to the concavity of µ1.

Finally, the IR constraint will be automatically satisfied at x1 ∈ (x∗1, y0] because we have

µ′1(yL(x1)) − µ′1(yR(x1)) ≥ 0 for all x1 > x∗1. As a result, yL1 (x1) is the optimal quantity plan

in this case.

Moreover, the retailer starts getting positive information rent u1(x1)−u1(x1) =
∫ x1

x∗1
[µ′1(yL(ξ))−

µ′1(yR(ξ))]dξ. Surprisingly, the information rent is increasing in x1 since u′1(x1) − u′1(x1) =

µ′1(yL(x1))− µ′1(yR(x1)) > 0. The retailer with a higher inventory becomes a “better” type in

the two-period case. This is opposite to the single-period case. As we see, the backorder case

leads to totally different insights from the lost-sales case.

However, there may not be a closed-form expression for the threshold x∗1. It will be found
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(a) Special Case 1: no exclusion
(b) Special Case 2: no tail

Figure 4.5: Two special cases of the optimal contract in period 1.

numerically by maximizing the supplier’s expected profit in the region (x∗1, y0].

Depending on the parameters, there might exist two special cases as shown in Figure 4.5.

The first case (Figure 4.5(a)) is x∗∗1 = x∗1 where we do not have an exclusion region. The

second one (Figure 4.5(b)) is x∗1 = y0 where the positive information rent region (or the “tail”)

disappears.

4.6 Infinite Horizon

In Section 4.5, we have derived the optimal contract in the two-period case. We have seen

that the optimal contract can be fairly complex and involve three regions. This manifests the

complexity of the optimal contract in the general T -period case. There seems little hope to

derive closed-form expressions for the optimal contracts. To eliminate the end-of-horizon effects,

we consider the infinite horizon case in this section. We would like to investigate if there exists

a stationary optimal contract with a simple structure.

Our analysis proceeds as follows. We first propose a simple stationary contract. Then

we compute the supplier’s profit-to-go functions under such a contract. Finally we show that

when the model parameters lie in a certain region, the proposed contract is indeed the optimal

short-term contract.

4.6.1 Retailer’s Reservation Profit-to-go

We start with the retailer’s reservation profit-to-go. Suppose the retailer decides to quit at

the beginning of period t, we make the following assumptions. If the retailer has backorder on

hand, he will return the payments to customers and leave the market right away. On the other

hand, if the retailer has positive inventory, he will keep selling the goods but no longer take

backorder (because it is unprofitable due to b > (1 − δr)). Once the retailer sells out all the

inventory, he will leave the market. Therefore, the retailer’s reservation profit in period t from
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inventory xt (without ordering) is

vt(xt) =

rE[min(D,xt)]− hE[xt −D]+ = r+h
λ (1− e−λxt)− hxt, xt ≥ 0

rxt, xt < 0.

We further define U t+1(xt) as the retailer’s expected reservation profit-to-go (with no future

orders or backorders) given the previous period’s inventory xt. Clearly, when xt ≤ 0, the retailer

will reimburse his customers and leave the market in period t. Hence, we have U t+1(xt) = 0.

When xt > 0, U t+1(xt) can be determined recursively as

U t+1(xt) =

∫ xt

0
{vt+1(xt+1) + δU t+2(xt+1)}dGt+1(xt+1)

=

∫ xt

0
{vt+1(xt+1) + δU t+2(xt+1)}λe−λ(xt−xt+1)dxt+1 (4.25)

Over the infinite horizon, both U t+1 and U t+2 can be replaced by a stationary function U (the

time index is unnecessary). Thus, Equation (4.25) becomes

U(x) =

∫ x

0
{v(z) + δU(z)}λe−λ(x−z)dz (4.26)

where x denotes the beginning inventory of the “previous” period and z denotes the beginning

inventory of the “current” period.

We multiply both sides of (4.26) by eλx which yields eλxU(x) =
∫ x

0 {v(z) + δU(z)}λeλzdz.
By a transformation Ũ(x) = eλxU(x), we get Ũ(x) =

∫ x
0 {v(z)λeλz + δλŨ(z)}dz. Finally, we

take derivative on both sides and obtain the following ODE:

Ũ
′
(x) = λeλxv(x) + δλŨ(x) (4.27)

Through straightforward algebra, the solution to (4.27) can be found as

Ũ(x) =
r + h

δλ
+
r(1− δ) + h[2− λx− δ(1− λx)]

λ(1− δ)2
eλx + eδλxMU

in which MU is a constant to be determined from the boundary condition Ũ(0) = eλ0U(0) = 0.

So we have MU = −h+r(1−δ)
δλ(1−δ)2 .

In conclusion,

U(x) =

 r+h
δλ e

−λx + r(1−δ)+h[2−λx−δ(1−λx)]
λ(1−δ)2 − h+r(1−δ)

δλ(1−δ)2 e
−λx(1−δ), x > 0

0, x ≤ 0

=


h(2−δ)+r(1−δ)

λ(1−δ)2 − hx
1−δ + r+h

δλ e
−λx − h+r(1−δ)

δλ(1−δ)2 e
−λx(1−δ), x > 0

0, x ≤ 0
(4.28)
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u(x) = v(x) + δU(x)

=

 r+h
λ − hx+ δ r(1−δ)+h[2−λx−δ(1−λx)]

λ(1−δ)2 − h+r(1−δ)
λ(1−δ)2 e

−λx(1−δ), x > 0

rx, x ≤ 0

=


h+r(1−δ)
λ(1−δ)2 − hx

1−δ −
h+r(1−δ)
λ(1−δ)2 e

−λx(1−δ), x > 0

rx. x ≤ 0
(4.29)

4.6.2 The Zero-rent Plan yR(x)

In the two-period case, we observe that when the pre-order inventory is relatively small (below

x∗∗1 ), the retailer should receive exactly his reservation profit-to-go under the optimal contract.

The corresponding quantity plan does not depend on the supplier’s belief and is easy to char-

acterize. Motivated by the two-period problem, we compute the quantity plan yR(x) such that

the retailer always gets his reservation profit-to-go. In other words, we propose a feasible con-

tract with quantity plan yR(x). Following such a contract, the retailer receives his reservation

profit-to-go u(x) in each period. One of our goals is to find conditions such that this contract

is indeed the optimal short-term contract.

First, given his participation, the retailer’s expected pre-transfer profit in period t from the

post-order inventory yt is equal to

vt(yt) = rE[D]− bE[D − yt]+ − hE[yt −D]+ =

 r
λ − b

λe
−λyt − hyt + h

λ(1− e−λyt), yt ≥ 0

byt + (r − b)/λ, yt < 0,

with first-order derivative v′t(yt) =

(b+ h)e−λyt − h, yt ≥ 0

b, yt < 0
and second-order derivative

v′′t (yt) =

−λ(b+ h)e−λyt , yt > 0

0, yt < 0
.

We define U(y) as the retailer’s expected profit-to-go given the post-order inventory y of

the “previous” period. By following the proposed quantity plan yR(x), the retailer always gets

his reservation profit in the “current” period. It implies U(y) =
∫ y
−∞ u(z)λe−λ(y−z)dz. If y ≤ 0,
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we obtain U(y) =
∫ y
−∞ rzλe

−λ(y−z)dz = ry − r
λ . If y > 0, we have

U(y) =

∫ y

−∞
u(z)λe−λ(y−z)dz

=

∫ 0

−∞
u(z)λe−λ(y−z)dz +

∫ y

0
u(z)λe−λ(y−z)dz

=

∫ 0

−∞
rzλe−λ(y−z)dz + U(y)

= − r
λ
e−λy + U(y)

=
h(2− δ) + r(1− δ)

λ(1− δ)2
− hy

1− δ +
h+ r(1− δ)

δλ
e−λy − h+ r(1− δ)

δλ(1− δ)2
e−λy(1−δ)

We compare the “no-order” profit-to-go v(x)+δU(x) for the retailer with his reservation profit-

to-go:

v(x) + δU(x)− u(x) =

−(b+ δr − r)e−λx/λ < 0, x > 0

(b+ δr − r)(x− 1/λ) < 0, x ≤ 0.

As b > (1− δ)r, the “no-order” profit-to-go v(x) + δU(x) is smaller than u1(x1). Similar as the

two-period case, the retailer is forced to accommodate backorders if he is doing business with

the supplier. However, as b > (1 − δ)r, the retailer gains bargaining power by threatening to

quit and avoid possible backorder penalty. As a result, the supplier needs to provide sufficient

incentive to keep him in the relationship.

We further define u(x) as the retailer’s profit-to-go under the contract and the pre-order

inventory x of the “current” period, i.e u(x) = v(y(x)) + δU(y(x))− s(x) in which y(x) is the

order-up-to level and s(x) is the payment to the supplier. The local IC constraint indicates

u′(x) = v′(y(x)) + δU ′(y(x)) =

[b− r(1− δ)]e−λy + h+r(1−δ)
1−δ e−λy(1−δ) − h

1−δ , y > 0

b+ δr. y ≤ 0

By definition, the quantity plan yR(x) is such that the retailer receives his reservation profit-

to-go. Thus it should satisfy u′(x) = v′(yR(x)) + δU ′(yR(x)) = u′(x), i.e. yR(x) solves

[b− r(1− δ)]e−λy +
h+ r(1− δ)

1− δ e−λy(1−δ) − h

1− δ =


h+r(1−δ)

1−δ e−λx(1−δ) − h
1−δ , x > 0

r, x ≤ 0
(4.30)

Clearly, the solution yR(x) is positive for all x. Moreover, when x ≤ 0, yR(x) is a constant,

yR(0). When x > 0, yR(x) > x is uniquely determined. In fact, yR(x) has the following

properties:

Lemma 4.6.1. When x > 0,
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Figure 4.6: Supplier’s profit-to-go under yR(x)

(1) the quantity plan yR(x) is strictly increasing and convex in x.

(2) limx→∞[yR(x)− x] = 0.

In fact, when x > 0, yR(x) satisfies [b−r(1−δ)]e−λyR(x)+h+r(1−δ)
1−δ e−λy

R(x)(1−δ) = h+r(1−δ)
1−δ e−λx(1−δ).

By taking derivative with respect to x on both sides of the equation, we will get Lemma

4.6.1(1). To show Lemma 4.6.1(2), we rewrite the equation to be [b−r(1−δ)]e−λ[yR(x)−x]−δλx+
h+r(1−δ)

1−δ e−λ[yR(x)−x](1−δ) = h+r(1−δ)
1−δ . Clearly, as x → ∞, we must have [yR(x)− x] → 0. Oth-

erwise, the limit of the left-hand side of the equation would not equal to the constant h+r(1−δ)
1−δ .

Finally we compute the supplier’s profit-to-go under the quantity plan yR(x). We define

πt(x) as the supplier’s profit-to-go from period t onwards given pre-order inventory x in period

t; Πt+1(y) as the supplier’s profit-to-go from period t+ 1 onwards given post-order inventory y

in period t. πt(x) and Πt+1(y) have the following relationships:

πt(x) = vt(y(x)) + δUt+1(y(x))− ut(x)− cy(x) + cx+ δΠt+1(y(x))

Πt+1(y) =

∫ y

−∞
πt+1(z)dG(z) =

∫ y

−∞
πt+1(z)λe−λ(y−z)dz

By assumption, the supplier implements the quantity plan yR(x) in each period. In this case,

we apply the contraction mapping theorem to obtain the convergence of πt and Πt as the total

number of periods T goes to infinity.

Lemma 4.6.2. Suppose the supplier implements the quantity plan yR(x) in each period. As

the total number of periods T → ∞, the supplier’s profit-to-go function π = limT→∞ πt exists

and is unique.

In the infinite-horizon case, the supplier’s profit-to-go functions are stationary and satisfy:

π(x) = v(yR(x)) + δU(yR(x))− u(x)− cyR(x) + cx+ δΠ(yR(x)) (4.31)

Π(y) =

∫ y

−∞
π(z)dG(z) =

∫ y

−∞
π(z)λe−λ(y−z)dz (4.32)

Figures 4.6 demonstrates the supplier’s profit-to-go π(x) under the quantity plan yR(x). As
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we can see, π(x) presents different structures given different cost parameters. In Figure 4.6(a),

π(x) ≥ 0 for all x. The supplier always gets positive profit by implementing yR(x). However,

in Figure 4.6(b), π(x) is first positive but later becomes negative. In this case, the supplier gets

negative profit by implementing yR(x) for some types of retailers. The supplier is better off to

exclude such types of retailers. Therefore, we conjecture that the optimal short-term contract

in the backorder case may involve an exclusion region in certain parameter regimes.

4.6.3 The Optimal Contract

We explore if the optimal short-term contract is such that the retailer gets his reservation profit

in each period. In order to show the optimality of the zero-rent contract, we use inductive

argument. Suppose it holds from the “next” period onwards, we want to show the proposed

contract with yR(x) is also optimal in the “current” period. By a similar approach as the

two-period case, we obtain the virtual surplus anchored at the right end or left end:

JR(y|x) = cx− cy + v(y) + δU(y) + δΠ(y) + [v′(y) + δU ′(y)]
G(x)

g(x)
, (4.33)

JL(y|x) = cx− cy + v(y) + δU(y) + δΠ(y)− [v′(y) + δU ′(y)]
(1−G(x))

g(x)
. (4.34)

We first look at the virtual surplus anchored at the right JR(y|x). Its first-order derivative

is:

dJR(y|x)

dy
= −c+ v′(y) + δU ′(y) + δΠ′(y) + [v′′(y) + δU ′′(y)]

G(x)

g(x)
.

We assume x = y0−D for some known y0. Therefore, G(x) = e−λ(y0−x) and g(x) = λe−λ(y0−x).

By straightforward algebra, we have that when y < 0, dJR(y|x)
dy = −c + b + δr + δΠ′(y), and

when y > 0,

dJR(y|x)

dy
= −c+ [b− r(1− δ)]e−λy +

h+ r(1− δ)
1− δ e−λy(1−δ) − h

1− δ + δΠ′(y)

−λ{[b− r(1− δ)]e−λy + [h+ r(1− δ)]e−λy(1−δ)} 1

λ

= −c− h

1− δ + δ
h+ r(1− δ)

1− δ e−λy(1−δ) + δΠ′(y).

The following proposition gives us several properties of JR(y|x) which will play a role in char-

acterizing the optimal contract.

Proposition 4.6.3. Suppose that the supplier offers the zero-rent contract yR(x) from the

“next” period onwards. For any given x, the virtual surplus anchored at the right JR(y|x)

increases when y < 0 but decreases when y > 0. Moreover, JR(y|x) is concave at y > 0. In
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Figure 4.7: Retailer’s profit-to-go under quantity plan y(x) = max{0, x} and his reservation
profit-to-go. (Parameters: r = 10, c = 5, b = 3, h = 3, λ = 1 and δ = 0.9.)

other words, it satisfies

dJR(y|x)

dy
=

< 0, y > 0

> 0, y < 0
and

d2JR(y|x)

dy2
< 0 when y > 0.

By the inductive assumption, from the “next” period onwards, the supplier offers the

contract with quantity plan yR(x). So π(z) = v(yR(z)) + δU(yR(z)) − u(z) − cyR(z) +

cz + δΠ(yR(z)). When y ≤ 0, yR(z) = yR(0) is a constant for all z ≤ y. Therefore,

π(z) = v(yR(0)) + δU(yR(0)) − u(z) − cyR(0) + cz + δΠ(yR(0)) = π(0) − (r − c)z. We can

show that Π(y) =
∫ y
−∞ π(z)λe−λ(y−z)dz is also a linear function of y with slope −(r − c). As a

result, when y < 0, dJR(y|x)
dy = −c+ b+ δr + δΠ′(y) = −c+ b+ δr − δ(r − c) = b+ δc− c > 0.

When y > 0, we need to prove the result by induction. Please refer to the Appendix C for more

details.

Proposition 4.6.3 indicates that the virtual surplus JR(y|x) is maximized at point 0 for any

given x. Suppose the IR constraint is binding at some point x∗. For x < x∗, the quantity

plan y(x) = max{0, x} maximizes JR(y|x). However, Figure 4.7 shows y(x) = max{0, x} is

infeasible as the IR constraint is violated at x < x∗. We will soon prove that yR(x) is actually

the optimal quantity plan when x < x∗.

Next we consider the case x > x∗. We look at the virtual surplus anchored at the left
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JL(y|x). Its derivative is:

dJL(y|x)

dy
= −c+ v′(y) + δU ′(y) + δΠ′(y) + [v′′(y) + δU ′′(y)]

G(x)− 1

g(x)

=


−c− h

1−δ + δ h+r(1−δ)
1−δ e−λy(1−δ) + δΠ′(y)

+{[b− r(1− δ)]e−λy + [h+ r(1− δ)]e−λy(1−δ)}eλ(y0−x), y > 0

−c+ b+ δr + δΠ′(y), y < 0

=


−c− h

1−δ + δ h+r(1−δ)
1−δ e−λy(1−δ) + δΠ′(y)

+{[b− r(1− δ)]e−λy + [h+ r(1− δ)]e−λy(1−δ)}eλ(y0−x), y > 0

−c+ b+ δc, y < 0

The y that maximizes JL(y|x) is either the boundary point 0 or the solution(s) of the first-order

condition dJL(y|x)
dy = 0. Thanks to Proposition 4.6.4 below, which guarantees there exists at

most one point yL(x) > 0 such that dJL(y|x)
dy = 0, we just need to compare between 0 and yL(x),

and see which one leads to a larger JL(y|x).

Proposition 4.6.4. Suppose the supplier offers the zero-rent contract yR(x) from the “next”

period onwards. For any given x, the first-order condition dJL(y|x)
dy = 0 has at most one positive

solution, denoted as yL(x). In addition, yL(x) is decreasing in x.

In fact, the first-order condition can be written as

c+ h
1−δ − δ

h+r(1−δ)
1−δ e−λy(1−δ) − δΠ′(y)

[b− r(1− δ)]e−λy + [h+ r(1− δ)]e−λy(1−δ) = eλ(y0−x).

The right-hand side is independent of y whereas the left-hand side is decreasing in x, because

the numerator is increasing in y by Proposition 4.6.3 yet the denominator is decreasing in y.

Therefore, the solution yL(x) is unique (if exists) and is decreasing in x.

We have discussed the quantity plans that maximize JR(y|x) and JL(y|x) respectively.

However, it is based on the fact of no “bump” in the retailer’s profit-to-go function. If there

exists a “bump”, where the IR constraint is binding at two points but redundant in between,

our previous analysis would not hold. In addition to maximizing the virtual surplus, we would

have to take into account the boundary conditions at the two end points when characterizing

the optimal quantity plan. As such, the existence of a “bump” would make the analysis more

complicated. However, we are able to show if the supplier offers the proposed contract yR(x)

from the “next” period onwards, the optimal contract in the “current” period will not lead to

any “bump” in the retailer’s profit-to-go function.

Theorem 4.6.5. Suppose that the supplier implements the zero-rent plan yR(x) from the “next”

period onwards. In the “current” period, the optimal contract will not create a “bump” in the

retailer’s profit-to-go function, i.e. there can not exist two points x+ and x− such that the IR
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Figure 4.8: Retailer’s profit-to-go under quantity plans yR(x) and max{yL(x), x}. (Parameters:
r = 10, c = 5, b = 3, h = 3, y0 = 3, λ = 1 and δ = 0.9.)

constraint is binding at x+ and x− but redundant at x ∈ (x−, x+).

Theorem 4.6.5 simplifies our analysis in finding the optimal short-term contract in the

following sense. Under the optimal contract, there must exist a point x∗ where the IR constraint

is binding. Thanks to Theorem 4.6.5, we expect the optimal contract to have the following

property: at x < x∗ (and at x > x∗), the IR constraint is either always binding (with the

possibility of exclusion) or never binding. As a result, it suffices to only study the virtual

surplus anchored at the right JR(y|x) and at the left JL(y|x).

In fact, when x < x∗, we look at JR(y|x) and we have known that y = 0 maximizes the

virtual surplus. But the IR constraint cannot be satisfied given the quantity plan y(x) =

max{0, x}. It implies that the IR constraint will always be binding at x < x∗. In other words,

it is optimal to implement yR(x) for x < x∗. However, when x > x∗, this may not be the

case. We found examples where, instead of yR(x), it is better for the supplier to implement

max{yL(x), x}. Interestingly, by doing so, both the supplier and the retailer are better off. See

Figures 4.8 and 4.9.

We need some conditions on the anchor point x∗ in order to satisfy the IR constraint when

x > x∗. By similar analysis as the two-period case, we require v′(yL(x∗)) + δU ′(yL(x∗)) >

u′(x∗) = v′(yR(x∗))+δU ′(yR(x∗)). The following lemma provides a lower bound for the thresh-

old x∗, which is xL.

Lemma 4.6.6. The threshold x∗ satisfies x∗ ≥ xL, where xL is the unique solution of yR(x) =

yL(x). In addition, yR(x)− yL(x) =

< 0, x < xL

> 0, x > xL
.
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Figure 4.9: Supplier’s profit-to-go under quantity plans yR(x) and max{yL(x), x}. (Parameters:
r = 10, c = 5, b = 3, h = 3, y0 = 3, λ = 1 and δ = 0.9.)

Because yR(x) strictly increases in x and yL(x) strictly decreases in x when yL(x) > x, the

solution of yR(x) = yL(x) must be unique, as shown in Figure 4.10. As we can see, the optimal

short-term contract can be much more complex than the proposed zero-rent contract yR(x). In

the “current” period, the optimal contract is such that when x < x∗, the retailer either orders

up to yR(x) or is excluded; when x > x∗, the retailer orders up to max{yL(x), x}. The quantity

plan yL(x) depends on the supplier’s belief G(x). Moreover, the optimal contract may result in

a “pooling” region in which the order quantity is 0 and the supplier is unable to differentiate

the retailer’s true inventory level x. In this sense, we do not expect a stationary optimal

(short-term) contract, as the supplier’s belief evolves over time in a very complex pattern.

However, the proposed zero-rent contract yR(x), though not optimal, serves as a good

heuristic. We show numerically that this contract is inferior than the optimal one by only a

small percentage. But it is much simpler to understand and implement. Table 4.1 presents

the gap between the zero-rent contract yR(x) and the optimal contract in the supplier’s profit-

to-go, which can be less than 2%. Figure 4.11 illustrates a sample trajectory of pre-order and

post-order inventory levels under the zero-rent contract yR(x). We start with y0 = 0. Demand

unravels and the retailer has backorders x1 < 0 at the beginning of period 1. According to the

contract, the retailer orders up to yR(0). As long as the retailer holds backorder at the beginning

of the periods, his order-up-to remains the same as yR(0). Once the retailer has positive pre-

order inventory xt > 0 in period 4, he orders up to a higher level yR(x4) > yR(0). In addition,

when the pre-order inventory x is positive, the order-up-to level yR(x) is an strictly increasing

function of x. As we can see, the zero-rent contract yR(x) leads to a generalized base-stock

policy.
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Figure 4.10: Two quantity plans yR(x) and max{yL(x), x}. (Parameters: r = 10, c = 5, b = 3,
h = 3, y0 = 3, λ = 1 and δ = 0.9.)
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Figure 4.11: Sample inventory trajectory under the quantity plan yR(x). (Parameters: r = 10,
c = 5, b = 3, h = 3, y0 = 0, λ = 1 and δ = 0.9.)
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x 0 0.5 1 1.5 2 2.2 2.4 2.6 2.8 3

πR(x) 31.51 29.44 27.73 26.07 24.63 24.15 23.64 23.11 22.68 22.24

π∗(x) 31.51 29.44 27.73 26.07 24.63 24.48 23.9 23.35 22.81 22.29

(π∗(x)− πR(x))/π∗(x) 0 0 0 0 0 1.38% 1.11% 0.99% 0.56% 0.25%

Table 4.1: Supplier’s profit-to-go under the zero-rent contract yR(x) and the optimal contract.
(Parameters: r = 10, c = 5, b = 3, h = 3, y0 = 3, λ = 1 and δ = 0.9.)

x 0 0.5 1 1.5 2 2.2 2.4 2.6 2.8 3

πR(x) -3.99 -5.36 -6.215 -6.6775 -6.8764 -6.91 -6.89 -6.88 -6.83 -6.79

πL(x) -3.99 -5.36 -6.215 -6.6775 -6.8764 -5.93 -6.11 -6.26 -6.38 -6.47

Table 4.2: Supplier’s profit-to-go under yR(x) and max{yL(x), x}. (Parameters: r = 10, c = 6,
b = 7, h = 5, y0 = 3, λ = 1 and δ = 0.9.)

However, we find that when the cost parameters are large enough, the supplier gets negative

profit-to-go no matter she implements yR(x) or max{yL(x), x} (see Table 4.2). The supplier is

able to improve her profit-to-go by terminating the relationship with such retailer. In this case,

we can actually show that the optimal short-term contract is stationary and takes a simple

form. The optimal contract consists of a threshold x∗∗ (maybe different from the x∗ described

above) and a base-stock policy with a positive order-up-to level yR(0). When x ≤ x∗∗, the

retailer orders up to yR(0). Yet when x > x∗∗, the supplier terminates the relationship with the

retailer. In other words, the optimal short-term contract in the backorder case induces partial

participation. When the beginning inventory is high, it would be too expensive for the supplier

to encourage the retailer’s participation, and the supplier would rather exclude the retailer. So

far this result is only shown numerically. We state it as a conjecture.

Conjecture 1. Suppose the cost parameters (c, b, h and r) are such that (i) v(yR(0)) +

δU(yR(0))− cyR(0) + δ r−cλ e−λy
R(0) < 0 and (ii) yR(0) < xL. The optimal short-term contract

is stationary and takes the following form: there exists a threshold x∗∗ ≤ 0; at x ≤ x∗∗, the

retailer participates and orders up to yR(0); at x > x∗∗, the retailer is excluded. The threshold

x∗∗ solves (r − c)x∗∗ = v(yR(0)) + δU(yR(0))− cyR(0) + δ r−cλ e−λ(yR(0)−x∗∗).

Figure 4.12 demonstrates a sample trajectory of pre-order and post-order inventory levels

under the contract in Conjecture 1. The corresponding threshold is x∗∗ = −0.009. We still

start with y0 = 0. Demand is realized and the retailer has pre-order inventory x1 which is

below the threshold. Then the retailer orders up to yR(0). As long as the retailer’s pre-order

inventory level is smaller than the threshold x∗∗ = −0.009, the order-up-to level is always yR(0).

Yet at the beginning of period 5, the retailer holds positive inventory x5 > 0, the two parties

terminates their relationship and the game ends.

As we can see, the optimal short-term contract in the backorder case can be drastically

different from the lost-sales case. Our results yield valuable insights to practitioners. In order

to improve customer satisfaction, the supplier may require the retailer to take backorder instead
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Figure 4.12: Sample inventory trajectory under the quantity plan in Conjecture 1. (Parameters:
r = 10, c = 6, b = 7, h = 5, y0 = 0, λ = 1 and δ = 0.9.)

of simply losing excess demand. This has a huge impact on the contract design. If the cost

parameters lie in a certain region, the supplier’s optimal short-term contract has a simple

structure. It entails a base-stock policy and an exclusion region. However, in other cases, the

optimal short-term contract may be complex and hard to implement. As a result, the supplier

may search for some simple contract that has a good, though not optimal, performance, such

as the zero-rent contract. Alternatively, the supplier may consider switching to long-term

contracting.

4.7 Conclusion

We study a dynamic adverse-selection model in which a supplier sells to a retailer with private

inventory and backorder information. Our work fills a significant gap and tackles an open

problem in the dynamic contracting literature and the supply chain management literature.

First, we show that in the single-period case, the supplier’s optimal contract consists of a

base-stock policy with base-stock level 0. With backorder (negative inventory) on hand, the

retailer should order up to 0 whereas with positive inventory, the retailer should order nothing.

He will receive zero information rent in any case. Similar results do not hold in the multi-period

setting. In the two-period case, we demonstrate that the optimal contract in the first period can

be fairly complex. It has a threshold structure with possibly two thresholds. More interestingly,

the retailer starts getting positive information rent when his inventory is high enough. It is

drastically different from the lost-sales case in which a higher inventory level makes the retailer

a “worse” type. In the backorder case, it may be a good thing to have high inventory. Moreover,

the optimal contract may entail an exclusion region. When the retailer’s beginning inventory
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falls into that region, the supplier will terminate the relationship with him, because it is too

costly for the supplier to ensure the retailer’s participation.

Finally, we analyze the optimal short-term contract in the infinite-horizon case. We show

that a stationary optimal contract may not exist in general. However, in certain cost regimes,

the optimal short-term contract may have a simple threshold structure. If the retailer’s be-

ginning inventory is below the threshold, he orders up to a positive base-stock level, and he

obtains his reservation profit. In this case, the contract looks similar as the single-period case.

However, if the retailer’s beginning inventory is beyond the threshold, he will be excluded, i.e.

the supplier terminates the business relationship with the retailer.

In the paper, we make a few assumptions to improve the tractability of the analysis. For

instance, we only consider the exponential demand. In the future, we will further explore the

problem under more general demand types, such as Erlang distribution. Notice that Erlang

distribution with shape parameter 1 is exponential distribution, so we may extend the results

to cases with shape parameters other than 1. Although there may not be a closed-form solution

under general demand, we will pursue interesting structural properties. For instance, under

more general demand assumptions, can we still have a threshold structure? If so, how will the

threshold change when the number of no-ordering periods is larger?
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Conclusion

The first essay explores the use of incentivized action in mobile games. To our best knowledge,

our work provides the first analytical model to study incented actions. We provide sufficient

conditions for the optimality of a threshold strategy of offering incented actions to low-engaged

players and then removing them to encourage real-money purchases once a player is sufficiently

engaged. We also explore the settings where the optimality of the threshold policy breaks down.

Moreover, we provide managerial insights and assist game publishers in targeting which types

of games can take most advantage of delivering incented actions. The results and modeling

approach will be useful to researchers as well as practitioners.

In the future, we plan to investigate the setting where transition probabilities are unknown

and therefore some statistical learning algorithm would be required. We are also interested

in the situation where engagement is difficult to define or measure and a partially observed

Markov decision process (POMDP) model would be required. Also in the age of big data, with

the increasing availability of player-level data, we would like to develop data-driven approaches

to establish appropriate player behavior models, estimate game parameters, and derive insights

on the impact of certain policies. Furthermore, for games hosted on mobile platforms, the

platform holder is able to make interventions into the practice of incented actions. In fact,

the platform holder and the game publisher have misaligned incentives. Typically, the revenue

derived from incented actions is not processed through the platform whereas in-app purchases

are. We would like to investigate the incentive misalignment problem between the platform and

game publisher, possibly as a dynamic contracting problem.

The second essay studies a simple but new dynamic contract that generalizes the well-known

wholesale price-only contract and is related to well-known ideas such as double marginalization,

contract structure and commitment issues. We show that the generalized price-only contract

benefits both players. Moreover, the inefficiency approaches 0 as the number of price offers

n approaches infinity. We also demonstrate that for a given contract with a specific n, the

wholesale prices monotonically decrease. However, somewhat surprisingly, for a fixed n, the

order quantities within the n periods may not be monotone. We provide necessary and sufficient

conditions for the stationarity of the supplier’s per period profit. As one of the future research

directions, we are interested in characterizing the bound on the performance of generalized price-

only contract for a fixed n. Another interesting direction is to investigate the performance of

other contracts when subjected to the same dynamics as in this paper.

The third essay contributes to the dynamic contracting literature. We analyze a dynamic
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adverse-selection problem where a supplier sells to a retailer with private inventory or back-

log information. Our work fills the gap in the literature and focuses on dynamic short-term

contracts. We demonstrate that the information rent (profit yielded to the retailer) under the

optimal contract may be non-monotone in the retailer’s inventory (or backlog) level. In the

lost-sales case, Zhang et al. [57] shows that the retailer with a higher inventory is a “worse” type

because he gets less information rent. However, in the backlogging case, the information rent

will sometimes increase in the retailer’s inventory (or backlog) level. Hence, the retailer with a

higher inventory can be a “better” type. More interestingly, we find that the supplier may be

better off by excluding some types of retailers. Specially, under exponentially distributed de-

mand, if the cost parameters fall into a certain regime, the optimal short-term contract entails

a base-stock order policy and a exclusion region. It is drastically different from the lost-sales

setting and yields new insights to academics and practitioners. In the future, we will further

explore the problem under more general demand types. Although there may not be closed-form

solution under general demand, we will pursue interesting structural properties. For instance,

under more general demand assumptions, can we still have a threshold structure? If so, how

will the threshold change when the number of no-ordering periods is larger?
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Appendix A

Proofs of Results in Chapter 2

Derivation of expected total value in (2.8)

Given a policy y, the induced stochastic process underlying our problem is an absorbing Markov

chain (for a discussion on absorbing Markov chains see Chapter III.4 of Taylor and Karlin [53]).

An absorbing Markov chain is one where every state can reach (with nonzero probability) an

absorbing state. In our setting the absorbing state is the quit state −1 and (A3.3) assures that

the quit state is reachable from every engagement level.

The absorbing Markov chain structure allows for clean formulas for the total expected

reward. Policy y induces a Markov chain transition matrix

P y :=

[
Sy sy

0 1

]
(A.1)

where Sy is an n+ 1 by n+ 1 matrix with entries corresponding to the transition probabilities

between engagement levels, given the policy y (see Example 9 below for an illustration). The

vector sy has entries corresponding to the quitting probabilities of the engagement levels, and

the bottom right corner “1” indicates the absorbing nature of the quitting state −1.

Associated with policy y and the transition matrix P y is a fundamental matrix

My :=

∞∑
k=0

Sk = (In+1 − S)−1 (A.2)

where In+1 is the n+ 1 by n+ 1 identity matrix. The fundamental matrix is a key ingredient

for analyzing absorbing Markov chains. Its entries have the following useful interpretation: the

(e, e′)th entry nye,e′ of My is the expected number of visits to engagement level e′ starting in

engagement level e before being absorbed in the quit state. Using the entries of the fundamental

matrix we can write a closed-form formula for the total expected revenue of policy y:

W y(e) =
∑
e′∈E

nye,e′r(e
′, y(e′)). (A.3)

An advantage of (A.3) over (2.7) is that the former is a finite sum over the number of engagement

levels and does not explicitly involve the time index t. However, this formula can be simplified

further. Observe that ne,e′ = 0 for e′ < e since engagement can only increase over time (provided
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the player does not quit). Hence we can write:

W y(e) =
∑
e′≥e

nye,e′r(e
′, y(e′)).

Example 9. In this example we derive the formulas given in Example 1 using the fundamental

matrix. For policy y1 the matrix S1 introduced in (A.1) is

S1 =

[
qM (0)(1− τM ) qM (0)τM

0 qM (1)

]

where the entries come from the transition probabilities in (2.5). The fundamental matrix is

M1 =

[
1

1−qM (0)(1−τM )
qM (0)τM

1−qM (0)(1−τM )(1−qM (1))

0 1
1−qM (1)

]

and the total expected rewards (2.8) for in each of the two starting engagement levels are:

W 1(0) = 1
1−qM (0)(1−τM )qM (0)µM + qM (0)τM

(1−qM (0)(1−τM ))(1−qM (1))qM (1)µM

and

W 1(1) = qM (1)µM
qQ(1)

respectively.

Proof of Proposition 2.4.1

The following is an important lemma to understand the nature of the fundamental matrix in

our setting:

Lemma A.0.1. The matrix Q is upper bidiagonal and its component is denoted by ki,j,

S =


k1,1 k1,2 0 . . . 0 0

0 k2,2 k2,3 0 . . . 0

. . . . . .

0 0 . . . 0 kN−1,N−1 kN−1,N

0 0 0 0 . . . kN,N


the corresponding fundamental matrix (I − S)−1 is upper triangular and its (i, j)-th entry is

1
(1−ki,i) if i = j and

∏j−1
v=i kv,v+1∏j
v=i(1−kv,v)

if i < j, i.e.
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(I − S)−1 =



1
(1−k1,1)

k1,2

(1−k1,1)(1−k2,2) . . .
∏N−2
j=1 kj,j+1∏N−1
j=1 (1−kj,j)

∏N−1
j=1 kj,j+1∏N
j=1(1−kj,j)

0 1
(1−k2,2)

k2,3

(1−k2,2)(1−k3,3) . . .
∏N−1
j=2 kj,j+1∏N
j=2(1−kj,j)

. . .

0 . . . 0 1
(1−kN−1,N−1)

kN−1,N

(1−kN−1,N−1)(1−kN,N )

0 0 0 . . . 1
(1−kN,N )


Proof. We prove the lemma by showing (I −S)× (I −S)−1 = I where (I −S)−1 is proposed

above. Denote R as the production of (I − S) and (I − S)−1. The (i, j)-th entry of R results

from the multiplication of the i-th row of (I − S) and the j-th column of (I − S)−1.

The i-th row of (I−S) is (0, . . . , 0, 1− ki,i︸ ︷︷ ︸
i

,−ki,i+1︸ ︷︷ ︸
i+1

, 0, . . . , 0). For the j-th column of (I−S)−1,

we consider three possible cases:

1) If j < i, the j-th column of (I − S)−1 is (
∏j−1
v=1 kv,v+1∏j
v=1(1−kv,v)

, . . . , 0︸︷︷︸
i

, 0︸︷︷︸
i+1

, 0, . . . , 0)T . Clearly

the (i, j)-th entry of R is 0.

2) If j = i, the j-th column of (I −S)−1 is (
∏j−1
v=1 kv,v+1∏j
v=1(1−kv,v)

, . . . , 1
(1−ki,i)︸ ︷︷ ︸

i

, 0︸︷︷︸
i+1

, 0, . . . , 0)T . So the

(i, i)-th entry of R is 1.

3) If j > i, the j-th column of (I−S)−1 is (
∏j−1
v=1 kv,v+1∏j
v=1(1−kv,v)

, . . . ,
∏j−1
v=i kv,v+1∏j
v=i(1−kv,v)︸ ︷︷ ︸

i

,
∏j−1
v=i+1 kv,v+1∏j
v=i+1(1−kv,v)︸ ︷︷ ︸

i+1

, 0, . . . , 0)T .

By simply algebra, we obtain the (i, j)-th entry of R is 0.

In conclusion, the (i, j)-th entry of R is 1 if i = j and is 0 otherwise. This implies that R

is an identity matrix.

In our model, ki,j indicates the transition probability from state i to state j. Suppose

the policy is y1, we have kē,ē = qM (ē)(1 − τM ) and kē,ē+1 = qM (ē)τM . Suppose the policy

is y2, we have kē,ē = pM (ē)(1 − τM ) + pI(ē)(1 − τI) and kē,ē+1 = pM (ē)τM + pI(ē)τI . By

definition, the expected number of visits nyē,e is the (ē, e)-th entry of the fundamental matrix

My. According to Lemma A.0.1, we have n1
ē,e = qM (ē)τM

1−qM (ē)(1−τM ) ×
∏e−1
j=ē+1 kj,j+1∏e
j=ē+1(1−kj,j) and n2

ē,e =

pM (ē)τM+pI(ē)τM
1−pM (ē)(1−τM )−pI(ē)(1−τI) ×

∏e−1
j=ē+1 kj,j+1∏e
j=ē+1(1−kj,j) . (We assume

∏ē
j=ē+1 kj,j+1 = 1). Because we only

make local change of the policy at engagement level ē, n1
ē,e and n2

ē,e share the same term
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∏e−1
j=ē+1 kj,j+1∏e
j=ē+1(1−kj,j) where kj,j and kj,j+1 depend on the policy y1(j) for j > ē. In fact,

kj,j =



qM (j)(1− τM ) if y∗(j) = 0 and j < N

pM (j)(1− τM ) + pI(j)(1− τI) if y∗(j) = 1 and j < N

qM (j) if y∗(j) = 0 and j = N

pM (j) + pI(j) if y∗(j) = 1 and j = N

kj,j+1 =

qM (j)τM if y∗(j) = 0 and j < N

pM (j)τM + pI(j)τI if y∗(j) = 0 and j < N

Moreover, we find out that n
y1(ē+1)
ē+1,e =

∏e−1
j=ē+1 kj,j+1∏e
j=ē+1(1−kj,j) . Hence, we rewrite n1

ē,e = qM (ē)τM
1−qM (ē)(1−τM )n

y1(ē+1)
ē+1,e

and n2
ē,e = pM (ē)τM+pI(ē)τM

1−pM (ē)(1−τM )−pI(ē)(1−τI)n
y1(ē+1)
ē+1,e for all e > ē. Finally, the progression effect is e-

quivalent to the following:

∆n(e|ē) = n2
ē,e − n1

ē,e

= pM (ē)τM+pI(ē)τM
1−pM (ē)(1−τM )−pI(ē)(1−τI)n

y1(ē+1)
ē+1,e − qM (ē)τM

1−qM (ē)(1−τM )n
y1(ē+1)
ē+1,e

= [ pM (ē)τM+pI(ē)τM
1−pM (ē)(1−τM )−pI(ē)(1−τI) −

qM (ē)τM
1−qM (ē)(1−τM ) ]n

y1(ē+1)
ē+1,e

= pI(ē){τI−α(ē)τM+qM (ē)[(1−τI)τM−(1−τM )τI ]}
[1−qM (ē)(1−τM )][1−pM (ē)(1−τM )−pI(ē)(1−τI)]n

y1(ē+1)
ē+1,e (A.4)

Since the denominator of (A.4) is positive and n
y1(ē+1)
ē+1,e is positive, the sign of ∆n(e|ē) is com-

pletely determined by the term τI − α(ē)τM + qM (ē)[(1 − τI)τM − (1 − τM )τI ] for all e > ē.

It is only affected by ē but not e. It means that the progression effect is uniform in sign with

respect to e.

Proof of Proposition 2.4.2

By definition, nyē,ē is the (ē, ē)-th entry of the fundamental matrix Ny. According to Lemma

A.0.1 if the policy is y1, k1
ē,ē = qM (ē)(1 − τM ) and thereby n1

ē,ē = 1
1−qM (ē)(1−τM ) . If the policy

is y2, k2
ē,ē = pM (ē)(1− τM ) + pI(ē)(1− τI) and consequently n2

ē,ē = 1
1−pM (ē)(1−τM )−pI(ē)(1−τI) .

Therefore, the retention effect is equal to

∆n(ē|ē) = n2
ē,ē − n1

ē,ē

= 1
1−pM (ē)(1−τM )−pI(ē)(1−τI) − 1

1−qM (ē)(1−τM )

= [1−qM (ē)(1−τM )]−[1−pM (ē)(1−τM )−pI(ē)(1−τI)]
[1−qM (ē)(1−τM )][1−pM (ē)(1−τM )−pI(ē)(1−τI)]

= pI(ē)[(1−τI)−α(ē)(1−τM )]
[1−qM (ē)(1−τM )][1−pM (ē)(1−τM )−pI(ē)(1−τI)]

where the last equality comes from the fact qM (ē) = pM (ē) + α(ē)pI(ē). The sign of ∆n(ē|ē)
completely depends on (1 − τI) − α(ē)(1 − τM ). Under Assumptions 2.3.1–2.3.4, we have
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(1 − τI) ≥ (1 − τM ) ≥ α(ē)(1 − τM ). Hence the retention effect is always nonnegative, i.e

∆n(ē|ē) ≥ 0 for all ē.

Proof of Theorem 2.5.2

In order to prove the Theorem, we first introduce the following lemma.

Lemma A.0.2. For any e = 1, . . . , N , W (e, y = 0) ≥ qM (e)µM
1−qM (e) and W (e, y = 1) ≥ pM (e)µM+pI(e)µI

1−pM (e)−pI(e)

Proof of Lemma A.0.2: The proof is by induction. Clearly, at the highest engagement

level e = N , we have W (N, y = 0) = qM (N)µM
1−qM (N) and W (N, y = 1) = pM (N)µM+pI(N)µI

1−pM (N)−pI(N) . Now

suppose it holds for level j ≥ e+ 1, we would like to show that the result still holds for level e.

W (e, y = 0)− qM (e)µM
1− qM (e)

=
qM (e)µM

1− qM (e)(1− τM )
+

qM (e)τM
1− qM (e)(1− τM )

W (e+ 1)− qM (e)µM
1− qM (e)

=
[qM (e)µM + qM (e)τMW (e+ 1)][1− qM (e)]− qM (e)µM [1− qM (e)(1− τM )]

[1− qM (e)(1− τM )][1− qM (e)]

=
qM (e)τM [W (e+ 1)(1− qM (e))− qM (e)µM ]

[1− qM (e)(1− τM )][1− qM (e)]

By the inductive assumption, W (e + 1) ≥ W (e + 1, y = 0) ≥ qM (e+1)µM
1−qM (e+1) ≥

qM (e)µM
1−qM (e) , we finally

obtain W (e, y = 0)− qM (e)µM
1−qM (e) ≥ 0. Similarly,

W (e, y = 1)− pM (e)µM + pI(e)µI
1− pM (e)− pI(e)

=
pM (e)µM + pI(e)µI

1− pM (e)(1− τM )− pI(e)(1− τI)
+

[pM (e)τM + pIτI ]W (e+ 1)

1− pM (e)(1− τM )− pI(e)(1− τI)
− pM (e)µM + pI(e)µI

1− pM (e)− pI(e)

=
(pM (e)τM + pIτI)[W (e+ 1)(1− pM (e)− pI(e))− pM (e)µM − pI(e)µI ]

[1− pM (e)(1− τM )− pI(e)(1− τI)][1− pM (e)− pI(e)]

By the inductive assumption, we have W (e + 1) ≥ W (e + 1, y = 1) ≥ pM (e+1)µM+pI(e+1)µI
1−pM (e+1)−pI(e+1) ≥

pM (e)µM+pI(e)µI
1−pM (e)−pI(e) . Therefore, W (e, y = 1) − pM (e)µM+pI(e)µI

1−pM (e)−pI(e) ≥ 0. This completes the proof for

Lemma A.0.2.

We return to the proof of Theorem 2.5.2, to show the optimal value function W (e) is

increasing in e. It suffices to show W (e, y = 1) ≤ W (e + 1) and W (e, y = 0) ≤ W (e + 1) for

any e < N , in that we will have W (e) = max{W (e, y = 1),W (e, y = 0)} ≤W (e+ 1). First, we
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compare W (e, y = 1) and W (e+ 1).

W (e, y = 0)−W (e+ 1)

=
qM (e)µM

1− qM (e)(1− τM )
+

qM (e)τM
1− qM (e)(1− τM )

W (e+ 1)−W (e+ 1)

=
qM (e)µM

1− qM (e)(1− τM )
− 1− qM (e)

1− qM (e)(1− τM )
W (e+ 1)

=
1− qM (e)

1− qM (e)(1− τM )
[
qM (e)µM
1− qM (e)

−W (e+ 1)] ≤ 0 (A.5)

The inequality (A.5) holds because qM (e)µM
1−qM (e) ≤

qM (e+1)µM
1−qM (e+1) ≤ W (e + 1, y = 0) ≤ W (e + 1).

Similarly, we compare W (e, y = 1) and W (e+ 1).

W (e, y = 1)−W (e+ 1)

=
pM (e)µM + pI(e)µI

1− pM (e)(1− τM )− pI(e)(1− τI)
+

pM (e)τM + pI(e)τI
1− pM (e)(1− τM )− pI(e)(1− τI)

W (e+ 1)−W (e+ 1)

=
pM (e)µM + pI(e)µI

1− pM (e)(1− τM )− pI(e)(1− τI)
− 1− pM (e)− pI(e)

1− pM (e)(1− τM )− pI(e)(1− τI)
W (e+ 1)

=
1− pM (e)− pI(e)

1− pM (e)(1− τM )− pI(e)(1− τI)
[
pM (e)µM + pI(e)µI
1− pM (e)− pI(e)

−W (e+ 1)] ≤ 0 (A.6)

where the inequality (A.6) holds since pM (e)µM+pI(e)µI
1−pM (e)−pI(e) ≤

pM (e+1)µM+pI(e+1)µI
1−pM (e+1)−pI(e+1) ≤ W (e + 1, y =

1) ≤W (e+ 1).

Finally, since W (e) = max{W (e, y = 1),W (e, y = 0)} and we have shown that both

W (e, y = 1) and W (e, y = 0) are no greater than W (e + 1), we conclude that W (e) ≤ W (e +

1).

Proof of Proposition 2.5.1

We denote W 2(ē) − W 1(ē) = C(ē) + F (ē), where C(ē) represents the “current” benefits of

offering incented actions and F (ē) represents the “future” benefits. In order to prove the

optimality of the myopic policy, we first take a close look at C(ē) and F (ē). By definition,

C(ē) = pM (ē)µM+pI(ē)µI
1−pM (ē)(1−τM )−pI(ē)(1−τI) −

qM (ē)µM
1−qM (ē)(1−τM )

= {[pM (ē)µM+pI(ē)µI ][1−qM (ē)(1−τM )]−qM (ē)µM [1−pM (ē)(1−τM )−pI(ē)(1−τI)]}
[1−qM (ē)(1−τM )][1−pM (ē)(1−τM )−pI(ē)(1−τI)]

= pI(ē)
[1−qM (ē)(1−τM )][1−pM (ē)(1−τM )−pI(ē)(1−τI)]{µI − α(ē)µM + qM (ē)[(1− τI)µM − (1− τM )µI ]}

F (ē) = { pM (ē)τM+pI(ē)τI
1−pM (ē)(1−τM )−pI(ē)(1−τI) −

qM (ē)τM
1−qM (ē)(1−τM )}{

∑
e′>ē

ny
1

ē+1,e′r(e
′, y(e′))}

= {[pM (ē)τM+pI(ē)τI ][1−qM (ē)(1−τM )]−qM (ē)τM [1−pM (ē)(1−τM )−pI(ē)(1−τI)]}
[1−qM (ē)(1−τM )][1−pM (ē)(1−τM )−pI(ē)(1−τI)] {

∑
e′>ē

ny
1

ē+1,e′r(e
′, y(e′))}

=
pI(ē){

∑
e′>ē n

y1(ē+1)

ē+1,e′ r(e
′,y(e′))}

[1−qM (ē)(1−τM )][1−pM (ē)(1−τM )−pI(ē)(1−τI)]{τI − α(ē)τM + qM (ē)[(1− τI)τM − (1− τM )τI ]}
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We further define

δ1(ē) = µI − α(ē)µM + qM (ē)[(1− τI)µM − (1− τM )µI ]

δ2(ē) = τI − α(ē)τM + qM (ē)[(1− τI)τM − (1− τM )τI ]

Clearly, the sign of C(ē) is determined by δ1(ē) and the sign of F (ē) is determined by δ2(ē).

Now suppose τI/τM = µI/µM , it leads to δ1(ē)/µM = δ2(ē)/τM . Therefore, δ1(ē) and δ2(ē)

must have the same sign. It implies that whenever δ1(ē) is positive, we must have δ2(ē) positive

and thereby W 2(ē)−W 1(ē) positive. Similarly, whenever δ1(ē) is negative, we must have δ2(ē)

negative and thereby W 2(ē)−W 1(ē) negative.

Notice that the previous analysis does not rely on the policy for higher engagement level

e > ē. Even if we fix y1(e) to be the optimal action which is solved by backward induction for

e > ē, we still have that the “current” benefit C(ē) and the “future” benefit F (ē) share the

same sign. Therefore, the optimal action at engagement level ē can be determined by whether

C(ē) is positive or negative. Equivalently speaking, the myopically-optimal policy will be the

optimal policy.

Proof of Proposition 2.5.4

By definition, the revenue effect is

∆r(ē) = pM (ē)µM + pI(ē)µI − qM (ē)µM = pI(ē)[µI − α(ē)µM ]

where the last equality comes from the fact qM (ē) = pM (ē) + α(ē)pI(ē).

First of all, as pI(ē) is non-negative, the sign of ∆r(ē) is determined by µI −α(ē)µM which

is decreasing in ē. Thus if ∆r(ē) < 0 for some ē, we will also have ∆r(e
′) < 0 for all e′ ≥ ē.

Moreover, both pI(ē) and µI −α(ē)µM are nonincreasing in ē, so we conclude that ∆r(ē) is

nonincreasing in ē whenever µI − α(ē)µM > 0, i.e. whenever ∆r(ē) > 0.

Proof of Proposition 2.5.6

(a) Recall the expression for ∆n(e|ē).

∆n(e|ē) =
pI(ē)n

y1(ē+1)
ē+1,e

[1−qM (ē)(1−τM )][1−pM (ē)(1−τM )−pI(ē)(1−τI)]{τI − α(ē)τM + qM (ē)[(1− τI)τM − (1− τM )τI ]}

The sign of ∆n(e|ē) is completely decided by δ2(ē) = τI − α(ē)τM + qM (ē)[(1 − τI)τM − (1 −
τM )τI ] = τI − α(ē)τM + qM (ē)[τM − τI ].

Assumption 2.5.5 indicates that −α(ē)τM + qM (ē)τM will decrease in ē. Besides, −qM (ē)τI

will also decrease in ē. Therefore, δ2(ē) will be a decreasing function of ē. It implies ∆n(e|ē)
satisfies the following property: if ∆n(e|ē) > 0 for some ē, then ∆n(e|e′) > 0 for all e′ ≤ ē; and

if ∆n(e|ē) < 0 for some ē, then ∆n(e|e′) < 0 for all e′ ≥ ē
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(b) From the previous analysis, we have already seen that the sign of C(ē) only depends

on the term δ1(ē) = µI − α(ē)µM + qM (ē)[(1− τI)µM − (1− τM )µI ] and the sign of F (ē) only

depends on the term δ2(ē) = τI − α(ē)τM + qM (ē)[τM − τI ]. From (a), we have already shown

that δ2(ē) will decrease in ē. Therefore, if F (ē) > 0 for some ē, then F (ē) > 0 for all e′ ≤ ē; if

F (ē) < 0 for some ē, then F (ē) < 0 for all e′ ≥ ē.
Similarly, Assumption 2.5.5 ensures that −α(ē)µM + qM (ē)(1 − τI)µM will also decrease

in ē, in that α(ē + 1)µM − qM (ē + 1)(1 − τI)µM − α(ē)µM + qM (ē)(1 − τI)µM = [α(ē + 1) −
α(ē)]µM − [qM (ē+ 1)− qM (ē)]µM (1− τI) ≥ µM [(α(ē+ 1)− α(ē))− (qM (ē+ 1)− qM (ē))] ≥ 0.

In addition, −qM (ē)(1 − τM )µI will decrease in ē as well. As a result, δ1(ē) will also be an

decreasing function of ē. Hence C(ē) satisfies the following property: if C(ē) > 0 for some ē,

then C(ē) > 0 for all e′ ≤ ē; if C(ē) < 0 for some ē, then C(ē) < 0 for all e′ ≥ ē.

Proof of Theorem 2.5.8

In order to prove the optimal policy is a threshold policy, it suffices to show if there exists some

ē such that W (ē, y = 1)−W (ē, y = 0) > 0, then we must have W (e, y = 1)−W (e, y = 0) > 0

for all e < ē.

First of all, Assumption 2.5.3 guarantees that it is optimal not to offer incented action at

the highest engagement level. Because W (N, y = 1) = pM (N)µM+pI(N)µI
pQ(N) < pM (N)µM+pI(N)µM

pQ(N) =
qM (N)µM
qQ(N) = W (N, y = 0). Suppose that W (ē, y = 1)−W (ē, y = 0) > 0 for some ē < N where

W (ē, y = 1)−W (ē, y = 0) = pI(ē)
[1−qM (ē)(1−τM )][1−pM (ē)(1−τM )−pI(ē)(1−τI)]{δ1(ē) + δ2(ē)

∑
e>ē

n
y∗(ē+1)
ē+1,e r(e, y(e))}

so it is equivalent to assume δ1(ē) + δ2(ē)
∑

e>ē n
y∗(ē+1)
ē+1,e r(e, y(e)) > 0. It implies that at

least one of δ1(ē) and δ2(ē) has to be positive.

We would like to show W (ē − 1, y = 1) −W (ē − 1, y = 0) > 0. It suffices to show δ1(ē −
1) + δ2(ē− 1)

∑
e>ē−1 n

y∗(ē)
ē,e r(e, y(e)) > 0. Now we consider three possible scenarios:

(1.1) Suppose δ1(ē) > 0 and δ2(ē) > 0. We have already proven that δ1(ē) and δ2(ē)

are decreasing functions in ē under Assumption 2.5.5. Therefore, δ1(ē − 1) > δ1(ē) > 0 and

δ2(ē− 1) > δ2(ē) > 0. Clearly, we have W (ē− 1, y = 1)−W (ē− 1, y = 0) > 0 in this case.

(1.2) Suppose δ1(ē) < 0 but δ2(ē) > 0 (which may happen only if µI/µM < τI/τM ). We first

prove under Assumption 2.5.7, δ2(ē− 1)
∑

e>ē−1 n
y∗(ē)
ē,e r(e, y(e)) > δ2(ē)

∑
e>ē n

y∗(ē+1)
ē+1,e r(e, y(e)).

Notice that

δ2(ē− 1)
∑
e>ē−1

n
y∗(ē)
ē,e r(e, y(e)) = δ2(ē− 1){ny

∗(ē)
ē,ē r(ē, y∗(ē)) + n

y∗(ē)
ē,ē+1r(ē+ 1, y∗(ē+ 1)) + · · ·+ n

y∗(ē)
ē,N r(N, y∗(N))}

δ2(ē)
∑
e>ē

n
y∗(ē+1)
ē+1,e r(e, y(e)) = δ2(ē){ny

∗(ē+1)
ē+1,ē+1r(ē+ 1, y∗(ē+ 1)) + · · ·+ n

y∗(ē+1)
ē+1,N r(N, y∗(N))}

For e > ē, we have such relationship n1
ē,e = pM (ē)τM+pI(ē)τI

1−pM (ē)(1−τM )−pI(ē)(1−τI)n
y∗(ē+1)
ē+1,e since y∗(ē) = 1.
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As a result,

δ2(ē− 1)
∑
e>ē−1

n
y∗(ē)
ē,e r(e, y(e))

= δ2(ē− 1)n
y∗(ē)
ē,ē r(ē, y∗(ē)) + δ2(ē− 1) pM (ē)τM+pI(ē)τI

1−pM (ē)(1−τM )−pI(ē)(1−τI)

∑
e>ē

n
y∗(ē+1)
ē+1,e r(e, y(e))

Next we are going to show δ2(ē − 1) pM (ē)τM+pI(ē)τI
1−pM (ē)(1−τM )−pI(ē)(1−τI) > δ2(ē) under Assumption 2.5.7.

Since δ2(ē − 1) > δ2(ē) > 0, we can compare δ2(ē)
δ2(ē−1) with pM (ē)τM+pI(ē)τI

1−pM (ē)(1−τM )−pI(ē)(1−τI) . For the

ratio δ2(ē)
δ2(ē−1) , we have

δ2(ē)
δ2(ē−1) = τI−α(ē)τM+qM (ē)[τM−τI ]

τI−α(ē−1)τM+qM (ē−1)[τM−τI ] = τI/τM−α(ē)+qM (ē)[1−τI/τM ]
τI/τM−α(ē−1)+qM (ē−1)[1−τIτM ]

= 1−qM (ē)
1−qM (ē−1) +

[α(ē−1)−qM (ē−1)]
1−qM (ē)

1−qM (ē−1)−[α(ē)−qM (ē)]

τI/τM−α(ē−1)+qM (ē−1)[1−τI/τM ] ≤ 1−α(ē)
1−α(ē−1) (A.7)

Because [α(ē− 1)− qM (ē− 1)] 1−qM (ē)
1−qM (ē−1) − [α(ē)− qM (ē)] < 0 and 1− qM (ē− 1) > 0, the ratio

δ2(ē)
δ2(ē−1) will increase in τI/τM and reach maximum when τI/τM = 1. We achieve (A.7).

Finally, Assumption 2.5.7 claims that 1−α(ē)
1−α(ē−1) ≤

pM (ē)τM+pI(ē)τI
1−pM (ē)(1−τM )−pI(ē)(1−τI) . Hence, we end

up with δ2(ē− 1) pM (ē)τM+pI(ē)τI
1−pM (ē)(1−τM )−pI(ē)(1−τI) > δ2(ē). We further have

δ2(ē− 1)
∑
e>ē−1

n
y∗(ē)
ē,e r(e, y(e))

= δ2(ē− 1)n2
ē,ēr(ē, y

∗(ē)) + δ2(ē− 1) pM (ē)τM+pI(ē)τI
1−pM (ē)(1−τM )−pI(ē)(1−τI)

∑
e>ē

n
y∗(ē+1)
ē+1,e r(e, y(e))

> δ2(ē)
∑
e>ē

n
y∗(ē+1)
ē+1,e r(e, y(e))

Finally we conclude

δ1(ē− 1) + δ2(ē− 1)
∑
e>ē−1

n
y∗(ē)
ē,e r(e, y(e)) > δ1(ē) + δ2(ē)

∑
e>ē

n
y∗(ē+1)
ē+1,e r(e, y(e)) > 0

equivalently, we have W (ē− 1, y = 1)−W (ē− 1, y = 0) > 0 in this case.

(1.3) Suppose δ1(ē) > 0 but δ2(ē) < 0 (which may happen only if µI/µM > τI/τM ). If

δ2(ē− 1) ≥ 0, we easily get δ1(ē− 1) + δ2(ē− 1)W (ē) > δ1(ē) + δ2(ē− 1)W (ē) > 0. Else if 0 >

δ2(ē− 1) ≥ δ2(ē), Theorem 2.5.2 indicates that 0 ≤W (ē) ≤W (ē+ 1), therefore we have δ2(ē−
1)W (ē) > δ2(ē)W (ē) > δ2(ē)W (ē + 1). Finally, δ1(ē − 1) + δ2(ē − 1)

∑
e>ē−1 n

y∗(ē)
ē,e r(e, y(e)) =

δ1(ē− 1) + δ2(ē− 1)W (ē) > δ1(ē) + δ2(ē)W (ē+ 1) = δ1(ē) + δ2(ē)
∑

e>ē n
y∗(ē+1)
ē+1,e r(e, y(e)) > 0.

Therefore, W (ē− 1, y = 1)−W (ē− 1, y = 0) > 0.

In conclusion, we have shown that once W (ē, y = 1)−W (ē, y = 0) > 0 for some ē, we must

also have W (ē − 1, y = 1) −W (ē − 1, y = 0) > 0. As a result, the optimal policy should be a

forward threshold policy.
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Example of a non-threshold policy when Assumption 2.5.5 is violated

Consider the following two engagement level example. Assume µM = 1, µI = 0.27, τM = 0.99,

τI = 0.25. At level 0, pM (0) = 0.23, pI(0) = 0.54, α(0) = 0.75 and thereby qM (0) = 0.635.

At level 1, pM (1) = 0.34, pI(1) = 0.52, α(1) = 0.81 and thereby qM (1) = 0.7612. At level 2,

pM (2) = 0.42, pI(2) = 0.45, α(2) = 1 and thereby qM (1) = 0.87.

The optimal policy is y∗ = (0, 1, 0). We use backward induction. At the highest level 2, we

have y∗(2) = 0 and W (2) = 0.87/0.13 = 6.692. At level 1,

W (1, y = 1) = pM (1)µM+pI(1)µI
1−pM (1)(1−τM )−pI(1)(1−τI) + pM (1)τM+pI(1)τI

(1−pM (1)(1−τM )−pI(1)(1−τI))

qM (2)µM
qQ(2)

= 0.4804
0.6066 + 0.4666

0.6066(6.692) = 0.7920 + 0.7692(6.692) = 5.9395

W (1, y = 0) = qM (1)µM
1−qM (1)(1−τM ) + qM (1)τM

1−qM (1)(1−τM )

qM (2)µM
qQ(2)

= 0.7612
0.9924 + 0.7536

0.9924(6.692) = 0.7670 + 0.7594(6.692) = 5.849

therefore y∗(1) = 1 and W (1) = W (1, y = 1) = 5.9395. Moreover, C(1) = 0.7920 − 0.7670 =

0.025 and F (1) = (0.7692− 0.7594)(6.692) = 0.0098(6.692) = 0.066. Finally, we look at level 0.

W (0, y = 1) = pM (0)µM+pI(0)µI
1−pM (0)(1−τM )−pI(0)(1−τI) + pM (0)τM+pI(0)τI

(1−pM (0)(1−τM )−pI(0)(1−τI))

qM (1)µM
qQ(1)

= 0.3758
0.5927 + 0.3627

0.5927(5.9395) = 0.6340 + 0.6119(5.9395) = 4.2684

W (0, y = 0) = qM (0)µM
1−qM (0)(1−τM ) + qM (0)τM

1−qM (0)(1−τM )

qM (1)µM
qQ(1)

= 0.635
0.9937 + 0.6287

0.9937(5.9395) = 0.6391 + 0.6327(5.9395) = 4.3969

as we can see y∗(0) = 0 and W (0) = W (0, y = 0) = 4.3969. Besides, C(0) = 0.6340− 0.6391 =

−0.0051 and F (0) = (0.6119 − 0.6327)(5.9395) = −0.0208(5.9395) = −0.1232. The optimal

policy is not a threshold policy.

In fact, Assumption 2.5.5 is violated because α(1) − α(0) = 0.81 − 0.75 = 0.06 while

qM (1) − qM (0) = 0.7612 − 0.635 = 0.1262. Assumption 2.5.7 is satisfied since 1 − α(1) =

1− 0.81 = 0.19 and (1− α(0)) pM (1)τM+pI(1)τI
(1−pM (1)(1−τM )−pI(1)(1−τI)) = (1− 0.75)0.4666

0.6066 = 0.1923.

Example of a non-threshold policy when Assumption 2.5.7 is violated

Consider the following two engagement level example. Assume µM = 1, µI = 0.2, τM = 0.91,

τI = 0.47. At level 0, pM (0) = 0.03, pI(0) = 0.51, α(0) = 0.59 and thereby qM (0) = 0.3309.

At level 1, pM (1) = 0.05, pI(1) = 0.5, α(1) = 0.62 and thereby qM (1) = 0.36. At level 2,

pM (2) = 0.34, pI(2) = 0.45, α(2) = 1 and thereby qM (1) = 0.79.

The optimal policy is y∗ = (0, 1, 0). We use backward induction. At the highest level 2, we
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have y∗(2) = 0 and W (2) = 0.79/0.21 = 3.7619. At level 1,

W (1, y = 1) = pM (1)µM+pI(1)µI
1−pM (1)(1−τM )−pI(1)(1−τI) + pM (1)τM+pI(1)τI

(1−pM (1)(1−τM )−pI(1)(1−τI))

qM (2)µM
qQ(2)

= 0.15
0.7305 + 0.2805

0.7305(3.7619) = 0.2053 + 0.3840(3.7619) = 1.6498

W (1, y = 0) = qM (1)µM
1−qM (1)(1−τM ) + qM (1)τM

1−qM (1)(1−τM )

qM (2)µM
qQ(2)

= 0.36
0.9676 + 0.3276

0.9676(3.7619) = 0.3721 + 0.3386(3.7619) = 1.6459

therefore y∗(1) = 1 and W (1) = W (1, y = 1) = 1.6498. Moreover, C(1) = 0.2053 − 0.3721 =

−0.1668 and F (1) = (0.3840− 0.3386)(3.7619) = 0.0454(3.7619) = 0.1708. Finally, we look at

level 0.

W (0, y = 1) = pM (0)µM+pI(0)µI
1−pM (0)(1−τM )−pI(0)(1−τI) + pM (0)τM+pI(0)τI

(1−pM (0)(1−τM )−pI(0)(1−τI))

qM (1)µM
qQ(1)

= 0.1320
0.7270 + 0.2670

0.7270(1.6498) = 0.1816 + 0.3673(1.6498) = 0.7876

W (0, y = 0) = qM (0)µM
1−qM (0)(1−τM ) + qM (0)τM

1−qM (0)(1−τM )

qM (1)µM
qQ(1)

= 0.3309
0.9702 + 0.3011

0.9702(1.6498) = 0.3411 + 0.3104(1.6498) = 0.8532

as we can see y∗(0) = 0 and W (0) = W (0, y = 0) = 0.8532. Besides, C(0) = 0.1816− 0.3411 =

−0.1595 and F (0) = (0.3673− 0.3104)(1.6498) = 0.0569(1.6498) = 0.0939. The optimal policy

is not a threshold policy.

In fact, Assumption 2.5.5 is satisfied because α(1) − α(0) = 0.62 − 0.59 = 0.03 while

qM (1)− qM (0) = 0.3600−0.3309 = 0.0291. But Assumption 2.5.7 is violated since (1−α(1)) =

1− 0.62 = 0.38 and (1− α(0)) pM (1)τM+pI(1)τI
(1−pM (1)(1−τM )−pI(1)(1−τI)) = (1− 0.59)0.2805

0.7305 = 0.1574.

Proof of Proposition 2.6.1

We will restrict ourselves only to threshold policies. According to the backward induction, in

order to prove the optimal threshold is non-decreasing in µI , we only need to show W 2(e) −
W 1(e) is non-decreasing in µI given that y1(e′) = 0 for e′ > e. Because the optimal threshold e∗

is solved by W 2(e∗)−W 1(e∗) > 0 where y1(e′) = 0 for e′ > e∗ and W 2(e∗+1)−W 1(e∗+1) ≤ 0

where y1(e′) = 0 for e′ > e∗ + 1.

We have already characterized the explicit expression for W 2(e)−W 1(e) which is

W 2(e)−W 1(e) =


pI(e)

[1−qM (e)(1−τM )][1−pM (e)(1−τM )−pI(e)(1−τI)]{δ1(e) + δ2(e)
∑

e′>e n
y1(e+1)
e+1,e′ r(e

′, y(e′))}, e < N

pI(N)
pQ(N)qQ(N){µI − α(N)µM + qM (N)(µM − µI)}, e = N

where δ1(e) = [µI − α(e)µM + qM (e)(1− τI)µM − qM (e)(1− τM )µI ]

δ2(e) = [τI − α(e)τM + qM (e)(τM − τI)]
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Clearly, W 2(N) −W 1(N) will increase in µI . For any e < N , δ1(e) will increase in µI while

δ2(e) will keep constant. In addition, both n
y1(e+1)
e+1,e′ and r(e′, y(e′)) will remain the same since

we fix y1(e′) = 0 unchanged for all e′ > e. Hence, W 2(e) −W 1(e) will increase in µI . Let ê∗

be the largest engagement level such that W 2(e) −W 1(e) > 0. By definition, ê∗ is actually

the new optimal threshold under a larger µI . Since originally W 2(e∗) −W 1(e∗) > 0 and the

difference W 2(e)−W 1(e) is increasing in µI , we conclude that ê∗ ≥ e∗. The optimal threshold

must be non-decreasing in µI .

Proof of Proposition 2.6.2

Similarly as Proposition 2.6.1, we will still restrict ourselves to threshold policies. It suffices to

show W 2(e)−W 1(e) is non-decreasing in τI given that y1(e′) = 0 for e′ > e.

Obviously, W 2(N) − W 1(N) does not depend on τI . For e < N , since y1(e′) = 0 for

e′ > e, we have r(e′, y(e′)) and n
y1(e+1)
e+1,e′ unrelated with τI . Therefore, W 1(e) = qM (e)µM

1−qM (e)(1−τM ) +

qM (e)τM
1−qM (e)(1−τM )

∑
e′>e n

y1(e+1)
e+1,e′ r(e

′, y(e′)) will not be affected by τI . Now we would like to show

W 2(e) = pM (e)µM+pI(e)µI
1−pM (e)(1−τM )−pI(e)(1−τI) + pM (e)τM+pI(e)τI

1−pM (e)(1−τM )−pI(e)(1−τI)

∑
e′>e n

y1(e+1)
e+1,e′ r(e

′, y(e′)) will in-

crease in τI . In fact, if τI increases by ε > 0, we have

[ pM (e)µM+pI(e)µI
1−pM (e)(1−τM )−pI(e)(1−τI−ε) + pM (e)τM+pI(e)(τI+ε)

1−pM (e)(1−τM )−pI(e)(1−τI−ε)

∑
e′>e

n
y1(e+1)
e+1,e′ r(e

′, y(e′))]

− [ pM (e)µM+pI(e)µI
1−pM (e)(1−τM )−pI(e)(1−τI) + pM (e)τM+pI(e)τI

1−pM (e)(1−τM )−pI(e)(1−τI)

∑
e′>e

n
y1(e+1)
e+1,e′ r(e

′, y(e′))]

=
εpI(e)qQ(e)

[1−pM (e)(1−τM )−pI(e)(1−τI−ε)][1−pM (e)(1−τM )−pI(e)(1−τI)]{
∑
e′>e

n
y1(e+1)
e+1,e′ r(e

′, y(e′))− pM (e)µM+pI(e)µI
pQ(e) }

=
εpI(e)qQ(e)

[1−pM (e)(1−τM )−pI(e)(1−τI−ε)][1−pM (e)(1−τM )−pI(e)(1−τI)]{W y1
(e+ 1)− pM (e)µM+pI(e)µI

pQ(e) } > 0

(A.8)

where W y1
(e + 1) is the revenue at engagement level e + 1 if Publisher follows the policy

y1(e′) = 0 for all e′ > e. The inequality (A.8) holds because of Lemma A.0.2. As a result,

W 2(e) will increase in τI and consequently W 2(e) −W 1(e) will increase in τI for all e < N .

This implies that the optimal threshold must be non-decreasing in τI .

Details of Example 6

Consider the following two engagement level example. Assume µM = 1, µI = 0.05, τM = 0.8,

τI = 0.2. At level 0, pM (0) = 0.3, pI(0) = 0.5, α(0) = 0.7 and thereby qM (0) = 0.65. At level

1, pM (1) = 0.5, pI(1) = 0.4, α(1) = 1 and thereby qM (1) = 0.9.

Because α(1) = 1, we easily get y∗(1) = 0 and W (1) = qM (1)µM
1−qM (1) = 9. Now we solve for level
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0. At level 0,

W (0, y = 1) = pM (0)µM+pI(0)µI
1−pM (0)(1−τM )−pI(0)(1−τI) + pM (0)τM+pI(0)τI

(1−pM (0)(1−τM )−pI(0)(1−τI))

qM (1)µM
qQ(1)

= 0.325
0.54 + 0.34

0.54(9) = 0.6019 + 0.6296(9) = 6.2683

W (0, y = 0) = qM (0)µM
1−qM (0)(1−τM ) + qM (0)τM

1−qM (0)(1−τM )

qM (1)µM
qQ(1)

= 0.65
0.87 + 0.52

0.87(9) = 0.7471 + 0.5977(9) = 6.1264

hence y∗(0) = 1 and W (0) = max {W (0, y = 1),W (0, y = 0)} = 6.2683.

Now we change the parameters as follows: µM = 1, µI = 0.05, τM = 0.8, τI = 0.25. At level

0, pM (0) = 0.1, pI(0) = 0.7, α(0) = 0.7 and thereby qM (0) = 0.59. At level 1, pM (1) = 0.3,

pI(1) = 0.6, α(1) = 1 and thereby qM (1) = 0.9.

We still have y∗(1) = 0 and W (1) = qM (1)µM
1−qM (1) = 9. But at level 0,

W (0, y = 1) = pM (0)µM+pI(0)µI
1−pM (0)(1−τM )−pI(0)(1−τI) + pM (0)τM+pI(0)τI

(1−pM (0)(1−τM )−pI(0)(1−τI))

qM (1)µM
qQ(1)

= 0.135
0.425 + 0.225

0.425(9) = 0.3176 + 0.5294(9) = 5.0823

W (0, y = 0) = qM (0)µM
1−qM (0)(1−τM ) + qM (0)τM

1−qM (0)(1−τM )

qM (1)µM
qQ(1)

= 0.59
0.882 + 0.472

0.882(9) = 0.6689 + 0.5351(9) = 5.4852

hence y∗(0) = 0 and W (0) = max {W (0, y = 1),W (0, y = 0)} = 5.4852.

Suppose the incented action becomes so attractive (e.g. Candy Crush), it will increase τI .

At the same time it will attract from Monetization to Incented action. In other words, it will

increase pI and decrease pM . From the above example, we observe that the optimal threshold

may decrease.

Details of Example 8

Consider the following two engagement level example. Assume µM = 1, µI = 0.0001, τM = 0.01,

τI = 0.009. At level 0, pM (0) = 0.05, pI(0) = 0.68. At level 1, pM (1) = 0.3, pI(1) = 0.65.

Besides, we set α step size be 0.6, i.e. α(1) = α(0) + 0.6.

We start with α(0) = 0.25 and α(1) = 0.85. Therefore, qM (0) = 0.05 + 0.68(0.25) = 0.22

and qM (1) = 0.3 + 0.65(0.85) = 0.8525. We solve the optimal policy by backward induction.

At level 1,

W (1, y = 1) = pM (1)µM+pI(1)µI
1−pM (1)−pI(1) = 0.300065

0.05 = 0.4616

W (1, y = 0) = qM (1)
1−qM (1) = 0.8525

0.1475 = 5.7797
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therefore, y∗(1) = 0 and W (1) = 5.7797. Now we solve for level 0. At level 0,

W (0, y = 1) = pM (0)µM+pI(0)µI
1−pM (0)(1−τM )−pI(0)(1−τI) + pM (0)τM+pI(0)τI

(1−pM (0)(1−τM )−pI(0)(1−τI))

qM (1)µM
qQ(1)

= 0.050068
0.27662 + 0.00662

0.27662(5.7797) = 0.18099 + 0.02393(5.7797) = 0.3193

W (0, y = 0) = qM (0)µM
1−qM (0)(1−τM ) + qM (0)τM

1−qM (0)(1−τM )

qM (1)µM
qQ(1)

= 0.22
0.7822 + 0.0022

0.7822(5.7797) = 0.28125 + 0.00281(5.7797) = 0.2975

hence y∗(0) = 1 and W (0) = max {W (0, y = 1),W (0, y = 0)} = 0.3193. In conclusion, the

optimal policy is y∗ = (0, 0) under this case.

Next we increase α(0) by 0.1 but keep all the other parameters unchanged, i.e. α(0) = 0.35

and α(1) = 0.95. Correspondingly, qM (0) = 0.05 + 0.68(0.35) = 0.288 and qM (1) = 0.3 +

0.65(0.95) = 0.9175. Under this case, at level 1,

W (1, y = 1) = pM (1)µM+pI(1)µI
1−pM (1)−pI(1) = 0.300065

0.05 = 0.4616

W (1, y = 0) = qM (1)
1−qM (1) = 0.9175

0.0825 = 11.1212

therefore, y∗(1) = 0 and W (1) = 11.1212. Now we solve for level 0. At level 0,

W (0, y = 1) = pM (0)µM+pI(0)µI
1−pM (0)(1−τM )−pI(0)(1−τI) + pM (0)τM+pI(0)τI

(1−pM (0)(1−τM )−pI(0)(1−τI))

qM (1)µM
qQ(1)

= 0.050068
0.27662 + 0.00662

0.27662(11.1212) = 0.18099 + 0.02393(11.1212) = 0.4471

W (0, y = 0) = qM (0)µM
1−qM (0)(1−τM ) + qM (0)τM

1−qM (0)(1−τM )

qM (1)µM
qQ(1)

= 0.288
0.71488 + 0.00288

0.71488(11.1212) = 0.40286 + 0.00403(11.1212) = 0.4477

hence y∗(0) = 0 and W (0) = max {W (0, y = 1),W (0, y = 0)} = 0.4477. In conclusion, the

optimal policy is y∗ = (0, 0) under this case. The optimal threshold decreases as α(0) increases.

Now we further increase α(0) by 0.05 but still keep all the other parameters unchanged, i.e.

α(0) = 0.4 and α(1) = 1. Therefor qM (0) = 0.05 + 0.68(0.4) = 0.322 and qM (1) = 0.3 + 0.65 =

0.95. Under the new parameters, at level 1,

W (1, y = 1) = pM (1)µM+pI(1)µI
1−pM (1)−pI(1) = 0.300065

0.05 = 0.4616

W (1, y = 0) = qM (1)
1−qM (1) = 0.95

0.05 = 19
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so y∗(1) = 0 and W (1) = 19. At level 0,

W (0, y = 1) = pM (0)µM+pI(0)µI
1−pM (0)(1−τM )−pI(0)(1−τI) + pM (0)τM+pI(0)τI

(1−pM (0)(1−τM )−pI(0)(1−τI))

qM (1)µM
qQ(1)

= 0.050068
0.27662 + 0.00662

0.27662(19) = 0.18099 + 0.02393(19) = 0.63566

W (0, y = 0) = qM (0)µM
1−qM (0)(1−τM ) + qM (0)τM

1−qM (0)(1−τM )

qM (1)µM
qQ(1)

= 0.322
0.68122 + 0.00322

0.68122(19) = 0.47268 + 0.00488(19) = 0.5654

therefore we get y∗(0) = 1 and W (0) = max {W (0, y = 1),W (0, y = 0)} = 0.63566. In conclu-

sion, the optimal policy is y∗ = (1, 0). The optimal threshold increases as α(0) increases.

To summarize, the optimal threshold may increase or decrease with α(0) and it is possible

to have U-shape.

97



Appendix B

Proofs of Results in Chapter 3

We first introduce a lemma.

Lemma B.0.3. At each t = 1, . . . , n, the solution of (3.2) satisfies: 1 +
∂q∗t
∂xt

> 0, i.e. the

post-order inventory xt + q∗t (xt) strictly increases in xt.

Proof of Lemma B.0.3: Suppose q∗n−k(xn−k) satisfies (3.2), i.e.

R′(Qn)
k∏
j=1

(1 +
∂q∗n−k+j

∂xn−k+j
) +

∂w∗n−k(xn−k, q
∗
n−k)

∂qn−k
q∗n−k = 0 .

We apply the Implicit Function Theorem and take derivative with respect to xn−k on both sides

which yields

d

dxn−k
[R′(Qn)

k∏
j=1

(1 +
∂q∗n−k+j

∂xn−k+j
) +

∂w∗n−k
∂qn−k

qn−k]|qn−k=q∗n−k
(1 +

∂q∗n−k
∂xn−k

) +
∂w∗n−k(xn−k, q

∗
n−k)

∂qn−k

∂q∗n−k
∂xn−k

= 0 .(B.1)

q∗n−k(xn−k) satisfies the second-order condition, i.e., at qn−k = q∗n−k(xn−k)

d

dxn−k
[R′(Qn)

k∏
j=1

(1 +
∂q∗n−k+j

∂xn−k+j
) +

∂w∗n−k
∂qn−k

qn−k] ≤ 0 . (B.2)

Suppose the derivative (B.2) is equal to 0, then from (B.1),

∂w∗n−k(xn−k, q
∗
n−k)

∂qn−k

∂q∗n−k
∂xn−k

= 0 =⇒ ∂q∗n−k
∂xn−k

= 0 =⇒ 1 +
∂q∗n−k
∂xn−k

= 1 > 0 .

Suppose the derivative (B.2) is less than 0, then from (B.1),

1 +
∂q∗n−k
∂xn−k

=

∂w∗n−k(xn−k,q
∗
n−k)

qn−k

d
dxn−k

[R′(Qn)
∏k
j=1(1 +

∂q∗n−k+j

∂xn−k+j
) +

∂w∗n−k
∂qn−k

qn−k]|qn−k=q∗n−k(xn−k)

> 0 ,

where the inequality holds because w∗n−k(xn−k, q
∗
n−k) must decrease in q∗n−k. Otherwise, if

∂w∗n−k(xn−k,q
∗
n−k)

∂qn−k
≥ 0, (3.2) is positive for all qn−k ≥ 0, and the equilibrium solution at t = n−k

does not exist.

In conclusion, we have shown 1 +
∂q∗t
∂xt

> 0, and the proof is complete.
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Proof of Proposition 3.2.1

The proof is by induction.

At the last offer t = n, given pre-order inventory level xn and wholesale price wn, the retailer

decides upon his optimal order quantity to maximize his profit which is πnR = R(xn + qn) −
w1q1 − · · · − wnqn. The problem is concave in qn and the first-order derivative is dπnR/dqn =

R′(xn + qn) − wn. If wn ≥ R′(xn), then ∂πnR/∂qn = R′(xn + qn) − wn < R′(xn) − wn ≤ 0 for

all qn > 0. Thus the retailer should order 0; else if wn < R′(xn), then the retailer will order a

positive quantity, q∗n(xn, wn), which satisfies the first-order condition wn = R′(xn + qn).

As for the supplier, she anticipates the retailer’s order for any wholesale price and chooses wn

to maximize πnS = w1q1 + · · ·+wn−1qn−1 +wnq
∗
n(xn, wn). Trivially, if wn > R′(xn), the supplier

will earn nothing since the retailer will not order. We focus on the case wn ≤ R′(xn). Since R′

is strictly decreasing, there exists a one-to-one map between wn (wn ≤ R′(xn)) and q∗n(xn, wn)

(q∗n ≥ 0). We can focus on an equivalent problem where the supplier faces the inverse demand

curve w∗n(xn, qn) = R′(xn+ qn) and has to decide upon an optimal quantity qn to maximize her

profit πnS = w1q1 + · · ·+wn−1qn−1 +w∗n(xn, qn)qn, where the first-order derivative is ∂πnS/∂qn =

R′(xn + qn) +R′′(xn + qn)qn. The optimal q∗n has to be either the boundary solution 0, or the

solution of first-order condition. If xn ≥ QFB, R′(xn + qn) +R′′(xn + qn)qn ≤ R′(xn + qn) < 0

for all qn > 0, hence we have q∗n = 0; else if xn < QFB, ∂πnS/∂qn|qn=0 = R′(xn) > 0, so the

optimal solution q∗n cannot be the boundary solution, and thereby must be a solution of the

first order condition R′(xn + qn) + R′′(xn + qn)qn = R′(Qn) + ∂w∗n
∂qn

qn = 0. The Theorem holds

for the last offer.

Suppose the equilibrium solution {w∗n−k+j(xn−k+j , qn−k+j), q
∗
n−k+j(xn−k+j)} satisfy (3.1)

and (3.2) for j = 1, . . . , k. For t = n− k, the retailer’s profit is

πnR = R(xn−k + qn−k + q∗n−k+1 + · · ·+ q∗n)− w1q1 − · · · − wn−kqn−k − w∗n−k+1q
∗
n−k+1 − · · · − w∗nq∗n ,

and its corresponding first-order derivative is

∂πnR
∂qn−k

= R′(Qn)
dQn

dqn−k
− wn−k −

d

dqn−k
(w∗n−k+1q

∗
n−k+1 + · · ·+ w∗nq

∗
n) (B.3)

= R′(Qn)(1 +
k∑
j=1

dq∗n−k+j

dqn−k
)− wn−k −

n∑
j=1

(q∗n−k+j

dw∗n−k+j

dqn−k
+ w∗n−k+j

dq∗n−k+j

dqn−k
) .

Next, we closely investigate the terms
dq∗n−k+j

dqn−k
and

dw∗n−k+j

dqn−k
. Note that both q∗n−k+j and w∗n−k+j

are functions of xn−k+j which is equal to xn−k + qn−k + q∗n−k+1 + · · ·+ q∗n−k+j−1. Furthermore,
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for all 1 ≤ m ≤ j − 1, q∗n−k+m also depends on qn−k. Therefore, we have

dq∗n−k+j(xn−k+j)

dqn−k
=

dq∗n−k+j(xn−k + qn−k +
∑j−1

m=1 q
∗
n−k+m)

dqn−k

=
∂q∗n−k+j

∂x∗n−k+j

{1 +

j−1∑
m=1

dq∗n−k+m

dqn−k
}

=
∂q∗n−k+j

∂x∗n−k+j

{1 +
∂q∗n−k+1

∂x∗n−k+1

+
∂q∗n−k+2

∂x∗n−k+2

(1 +
∂q∗n−k+1

∂x∗n−k+1

) + . . .

+
∂q∗n−k+j−1

∂x∗n−k+j−1

(1 +
∂q∗n−k+1

∂x∗n−k+1

)(1 +
∂q∗n−k+2

∂x∗n−k+2

) . . . (1 +
∂q∗n−k+j−2

∂x∗n−k+j−2

)}

=
∂q∗n−k+j

∂x∗n−k+j

j−1∏
m=1

(1 +
∂q∗n−k+m

∂xn−k+m
) ,

and

dw∗n−k+j(xn−k+j , q
∗
n−k+j(xn−k+j))

dqn−k
=

∂w∗n−k+j

∂x∗n−k+j

(
dxn−k+j

dqn−k
+
dq∗n−k+j(xn−k+j)

dqn−k
)

=
∂w∗n−k+j

∂x∗n−k+j

{
j−1∏
m=1

(1 +
∂q∗n−k+m

∂x∗n−k+m

) +
∂q∗n−k+j

∂x∗n−k+j

j−1∏
m=1

(1 +
∂q∗n−k+m

∂x∗n−k+m

)}

=
∂w∗n−k+j

∂x∗n−k+j

j∏
m=1

(1 +
∂q∗n−k+m

∂xn−k+m
) .

In addition, we simplify dQn

dqn−k
as follows:

dQn

dqn−k
=

d(xn−k + qn−k + q∗n−k+1 + · · ·+ q∗n)

dqn−k
= 1 +

k∑
j=1

dq∗n−k+j(xn−k+j)

dqn−k

= 1 +
k∑
j=1

∂q∗n−k+j

∂x∗n−k+j

j−1∏
m=1

(1 +
∂q∗n−k+m

∂xn−k+m
)

= 1 +
∂q∗n−k+1

∂x∗n−k+1

+
∂q∗n−k+2

∂x∗n−k+2

(1 +
∂q∗n−k+1

∂x∗n−k+1

) + · · ·+ ∂q∗n
∂x∗n

n−1∏
m=1

(1 +
∂q∗n−k+m

∂xn−k+m
)

=
k∏
j=1

(1 +
∂q∗n−k+j

∂xn−k+j
) .
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By the inductive assumption, we have

q∗n−k+j

dw∗n−k+j

dqn−k
= q∗n−k+j

∂w∗n−k+j

∂x∗n−k+j

j∏
m=1

(1 +
∂q∗n−k+m

∂q∗n−k+m−1

)

= −R′(Qn)

k∏
m=1

(1 +
∂q∗n−k+j+m

∂xn−k+j+m
)

j∏
m=1

(1 +
∂q∗n−k+m

∂xn−k+m
)

= −R′(Qn)
k∏

m=1

(1 +
∂q∗n−k+m

∂xn−k+m
) .

Finally, by the first-order condition, we end up with the inverse demand function

w∗n−k(xn−k, qn−k) = R′(Qn)
dQn

dqn−k
−

n∑
j=1

(q∗n−k+j

dw∗n−k+j

dqn−k
+ w∗n−k+j

dq∗n−k+j

dqn−k
)

= R′(Qn)
k∏
j=1

(1 +
∂q∗n−k+j

∂xn−k+j
) +

k∑
j=1

R′(Qn)
k∏

m=1

(1 +
∂q∗n−k+m

∂xn−k+m
)

−
k∑
j=1

w∗n−k+j

∂q∗n−k+j

∂xn−k+j

j−1∏
m=1

(1 +
∂q∗n−k+m

∂xn−k+m
)

= (k + 1)R′(Qn)

k∏
j=1

(1 +
∂q∗n−k+j

∂xn−k+j
)−

k∑
j=1

w∗n−k+j

∂q∗n−k+j

∂xn−k+j

j−1∏
m=1

(1 +
∂q∗n−k+m

∂xn−k+m
) .

Given the inverse demand function w∗n−k(xn−k, qn−k), the supplier chooses qn−k to maximize

her profit which is

πnS = w1q1 + · · ·+ w∗n−kqn−k + w∗n−k+1q
∗
n−k+1 + · · ·+ w∗nq

∗
n

and the corresponding first-order derivative is

∂πnS
∂qn−k

= w∗n−k +
∂w∗n−k
∂qn−k

qn−k +
d

dqn−k
(w∗n−k+1q

∗
n−k+1 + · · ·+ w∗nq

∗
n)

= R′(Qn)
k∏
j=1

(1 +
∂q∗n−k+j

∂xn−k+j
) +

∂w∗n−k
∂qn−k

qn−k , (B.4)

where the equality holds because w∗n−k satisfies (B.3).

Now if xn−k ≥ QFB, we have
∂πnS
∂qn−k

= R′(Qn)
∏k
j=1(1+

∂q∗n−k+j

∂xn−k+j
)+

∂w∗n−k
∂qn−k

qn−k ≤ R′(Qn)
∏k
j=1(1+

∂q∗n−k+j

∂xn−k+j
) < 0 for all qn−k > 0. So the optimal solution is the boundary solution q∗n−k = 0. If

xn−k < QFB, then
∂πnS
∂qn−k

|qn−k=0 = R′(Qn)
∏k
j=1(1 +

∂q∗n−k+j

∂qn−k+j−1
) > 0 (by Lemma B.0.3), so the

optimal solution must satisfy the first-order condition rather than the boundary solution, and

the proof is completed.
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Proof of Theorem 3.2.2

(a) Consider Qn = q1 + q∗2 + · · ·+ q∗n as a function of q1. Lemma B.0.3 implies that Qn strictly

increases in q1 because

∂Qn

∂q1
=

n−1∏
j=1

(1 +
∂q∗j+1

∂xj+1
) > 0 .

Notice that the equilibrium total inventory Qn−1,∗ under the (n − 1)-offer case is equivalent

to the total inventory Qnq1=0 under the n-offer case by forcing q1 = 0. The equilibrium total

inventory Qn,∗ under the n-offer case has q1 = q∗1 > 0. Therefore, we conclude that Qn,∗ =

Qnq1=q∗1
> Qnq1=0 = Qn−1,∗, and we have shown that Qn−1,∗ < Qn,∗.

Finally, we would like to show that the equilibrium total inventory Qn,∗ ≤ QFB. We prove

it by contradiction. Suppose Qn,∗ > QFB, then there exists a certain t̂, 1 ≤ t̂ ≤ n − 1, such

that x∗
t̂
≤ QFB but x∗

t̂+1
> QFB. The retailer’s total profit is πn,∗R = R(Qn,∗)− w∗1q∗1 − w∗2q∗2 −

· · · − w∗nq∗n.

We construct a new strategy for the retailer where q̂j is the same as q∗j except that (i)

q̂j(xj) = 0 whenever xj > QFB and (ii) at j = t̂, we decrease the order quantity from

q∗
t̂
(xt̂) to q̂t̂(xt̂) = QFB − xt̂. Under this strategy, the retailer’s order quantities will be

{q∗1, . . . , q∗t̂−1
, q̂t̂, 0, . . . , 0} and the retailer’s total profit will be π̂nR = R(QFB)− w∗1q∗1 − w∗2q∗2 −

· · · − w∗
t̂
q̂t̂. Thus,

π̂nR − πn,∗R = R(QFB)−R(Qn,∗) + w∗
t̂
q∗
t̂

+ · · ·+ w∗nq
∗
n − w∗t̂ q̂t̂ .

Since the function R(Q) strictly decreases when Q ≥ QFB, we have R(QFB) − R(Qn,∗) > 0

as Qn,∗ > QFB. Further, the supplier’s wholesale price w∗t must be non-negative and q∗
t̂
> q̂t̂.

Therefore, w∗
t̂
q∗
t̂

+ · · ·+w∗nq
∗
n−w∗t̂ q̂t̂ > 0. We found a strictly profitable unilateral deviation for

the retailer which is a contradiction. In conclusion, we must have Qn,∗ ≤ QFB.

We prove (b) by contradiction. Suppose the retailer’s total profit, πn,∗R , or the supplier’s

total profit, πn,∗S , is not monotonically increasing. In other words, there exists some n̂ > 1, such

that πn̂,∗R < πn̂−1,∗
R and/or πn̂,∗S < πn̂−1,∗

S .

As we can see, the pre-order inventory, xt, at each offer provides all necessary information

to determine the equilibrium strategy. Therefore, in the n̂-offer case, if the retailer (mistakenly)

orders zero at the first offer, then the remaining game will have the same equilibrium outcome

as the game with n̂− 1 offers.

Now suppose the retailer’s equilibrium total profits satisfy πn̂,∗R < πn̂−1,∗
R . Under the n̂-offer

game, the retailer is able to unilaterally deviate to a strategy where he orders 0 in the first

period but returns to his equilibrium strategy in later periods. By doing so, the retailer will

get total profit πn̂−1,∗
R . So there exists a strictly profitable unilateral deviation for the retailer,

which is a contradiction. Therefore, we must have πn̂,∗R ≥ πn̂−1,∗
R .

Similarly, suppose the supplier’s equilibrium total profit satisfies πn̂,∗S < πn̂−1,∗
S . Under the
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n̂-offer game, the supplier can unilaterally deviate to a strategy where she uses the equilibrium

strategy in periods t ≥ 2 but in the first period she sets a wholesale price so high that the

retailer’s best response is to order 0. In particular, if the supplier proposes a wholesale price

to be maxR(Q), the retailer will definitely order nothing. Otherwise the retailer will surely

get negative profit if he orders, since his profit is not greater than R(Q) − w1q1 < R(Q) −
maxR(Q)q1 < 0. As a result, by applying this new strategy, the supplier can achieve a total

profit πn̂−1,∗
S . The supplier has a strictly profitable unilateral deviation, which is a contradiction.

Therefore, we must have πn̂,∗S ≥ πn̂−1,∗
S .

In conclusion, we proved that πn,∗R ≥ πn−1,∗
R and πn,∗S ≥ πn−1,∗

S for all n ≥ 2. Furthermore,

the supply chain profit πn,∗ = R(Qn,∗) will strictly increase in Qn,∗ as Qn,∗ ≤ QFB. Therefore,

Theorem 3.2.2(a) implies πn,∗T 6= πn−1,∗
T . We conclude that πn,∗T > πn−1,∗

T , i.e., the supply chain

total profit is strictly increasing.

Remark: An implicit assumption that was made is that maxR(Q) is finite. However, we

merely need the existence of a price w, high enough, for which the retailer will not order. Taking

maxR(Q) is only an example.

Proof of Theorem 3.2.3

By Theorem 3.2.2, the equilibrium total inventory level Qn,∗ strictly increases in n. Moreover,

Theorem 3.2.2 guarantees that Qn,∗ is bounded from above by QFB. Therefore, the limit of Qn,∗

exists as n goes to infinity. We denote it as Q∗, i.e limn→+∞Q
n,∗ = Q∗. By a similar proof as

Theorem 3.2.2, we can show, on the equilibrium path, x∗n strictly increases in n and is bounded

from above by QFB, so its limit also exists, denoted as limn→+∞ x
∗
n = x∗. Consequently,

limn→+∞ q
∗
n(x∗n) = limn→+∞Q

n,∗ − x∗n = Q∗ − x∗, i.e. the limit of q∗n(x∗n) also exists. Finally,

since the last period wholesale price is w∗n = R′(Qn,∗), it will strictly decreases and bounded

from below by 0. So the limit of w∗n(x∗n) exists and is denoted as limn→+∞w
∗
n(x∗n) = w∗

We now prove the theorem by contradiction. Suppose that Q∗ < QFB. As n goes to

infinity, the optimality condition (3.1) for the last period becomes w∗ = R′(Q∗) > 0. Because

the equilibrium supply chain profit πn,∗T is strictly increasing in n and bounded from above by

the first-best supply chain profit πFB, πn,∗T will converge to a constant when n goes to infinity,

which also implies that

lim
n→+∞

dπnT
dxn

= 0 .

However, since πnT = R(xn + qn) and wn = R′(xn + qn), we have

dπnT (xn)

dxn
= R′(xn + q∗n)[1 +

dq∗n(xn)

dxn
] = w∗n(xn)[1 +

dq∗n(xn)

dxn
] .
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Therefore

lim
n→+∞

dπnT (xn)

dxn
= lim

n→+∞
w∗n(xn)[1 +

dq∗n(xn)

dxn
]

= w∗ lim
n→+∞

[1 +
dq∗n(xn)

dxn
]

= w∗ lim
n→+∞

R′′(xn + q∗n(xn))

2R′′(xn + q∗n(xn)) +R(3)(xn + q∗n(xn))q∗n(xn)
,

The last equality follows from (B.1). Specifically, by Proposition 3.2.1, q∗n(xn) is the solution

of R′(Qn) + ∂w∗n
∂qn

qn = R′(Qn) +R′′(Qn)qn = 0. We apply the Implicit Function Theorem,

R′′(Qn)(1 +
dq∗n(xn)

dxn
) +R(3)(Qn)(1 +

dq∗n(xn)

dxn
)q∗n(xn) +R′′(Qn)

dq∗n(xn)

dxn
= 0 ,

which leads to

1 +
dq∗n(xn)

dxn
=

R′′(xn + q∗n(xn))

2R′′(xn + q∗n(xn)) +R(3)(xn + q∗n(xn))q∗n(xn)
.

As we assume w∗ 6= 0, in order to achieve limn→+∞
dπnT
dxn

= 0, we should have

lim
n→+∞

R′′(xn + qn(xn))

2R′′(xn + qn(xn)) +R(3)(xn + qn(xn))q(xn)
=

R′′(x∗ + q∗)

2R′′(x∗ + q∗) +R(3)(x∗ + q∗)q∗
= 0 .

However, if the equality holds, R′′(x∗+q∗) = 0, the optimality condition (3.2) for the last period

becomes R′(x∗ + q∗) + R′′(x∗ + q∗)q∗ = R′(x∗ + q∗) = 0, implying that x∗ + q∗ = QFB. But

R′′(QFB) < 0 and as a result, limn→+∞
dπnT
dxn
6= 0, which leads to a contradiction. In conclusion,

we must have limn→+∞Q
n,∗ = QFB.

Proof of Proposition 3.2.4

By (3.1), we have

w∗n−k = (k + 1)R′(Qn)

k∏
j=1

(1 +
∂q∗n−k+j

∂xn−k+j
)−

k∑
j=1

w∗n−k+j

∂q∗n−k+j

∂xn−k+j

j−1∏
m=1

(1 +
∂q∗n−k+m

∂xn−k+m
)

w∗n−k+1 = kR′(Qn)
k−1∏
j=1

(1 +
∂q∗n−k+1+j

∂xn−k+1+j
)−

k−1∑
j=1

w∗n−k+1+j

∂q∗n−k+1+j

∂xn−k+1+j

j−1∏
m=1

(1 +
∂q∗n−k+1+m

∂xn−k+1+m
) .
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Therefore,

w∗n−k − w∗n−k+1

= (1 +
∂q∗n−k+1

∂xn−k+1
)[(k + 1)R′(Qn)

k∏
j=2

(1 +
∂q∗n−k+j

∂xn−k+j
)− w∗n−k+1 −

k∑
j=2

w∗n−k+j

∂q∗n−k+j

∂xn−k+j

j−1∏
m=1

(1 +
∂q∗n−k+m

∂xn−k+m
)]

= (1 +
∂q∗n−k+1

∂xn−k+1
)[(k + 1)R′(Qn)

k∏
j=2

(1 +
∂q∗n−k+j

∂xn−k+j
)− kR′(Qn)

k∏
j=2

(1 +
∂q∗n−k+j

∂xn−k+j
)]

= R′(Qn)

k∏
j=1

(1 +
∂q∗n−k+j

∂xn−k+j
) ≥ 0 , (B.5)

where the inequality holds by Lemma B.0.3.

Proof of Proposition 3.2.5

Since (B.5) provides a recursive equation for the equilibrium wholesale price, we have

w∗n−k = R′(Qn)

k∏
j=1

(1 +
∂q∗n−k+j

∂xn−k+j
) +R′(Qn)

k−1∏
j=1

(1 +
∂q∗n−k+1+j

∂xn−k+1+j
) + · · ·+R′(Qn)(1 +

∂q∗n
∂xn

) +R′(Qn)

= R′(Qn){1 +

n∑
m=1

k∏
j=m

(1 +
∂q∗n−k+j

∂xn−k+j
)}

= R′(Qn)αn−k .

According to Proposition 3.2.1, we have

w∗n−k
w∗n−k+1

=
αn−k
αn−k+1

q∗n−k+1

q∗n−k
=
−R′(Qn)

∏k−1
j=1(1 +

∂q∗n−k+1+j

∂xn−k+1+j
)/
∂w∗n−k+1

∂qn−k+1

−R′(Qn)
∏k
j=1(1 +

∂q∗n−k+j

∂xn−k+j
)/
∂w∗n−k
∂qn−k

=

∂w∗n−k
∂qn−k

(1 +
q∗n−k+1

xn−k+1
)
∂w∗n−k+1

∂qn−k+1

.
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As w∗n−k =
αn−k
αn−k+1

w∗n−k+1, we further obtain

q∗n−k+1

q∗n−k
=

∂
αn−k
αn−k+1

w∗n−k+1

∂qn−k

(1 +
q∗n−k+1

xn−k+1
)
∂w∗n−k+1

∂qn−k+1

=
αn−k
αn−k+1

∂w∗n−k+1

∂qn−k

(1 +
q∗n−k+1

xn−k+1
)
∂w∗n−k+1

∂qn−k+1

+
∂(

αn−k
αn−k+1

)

∂qn−k

w∗n−k+1

(1 +
q∗n−k+1

xn−k+1
)
∂w∗n−k+1

∂qn−k+1

=
αn−k
αn−k+1

+
∂(

αn−k
αn−k+1

)

∂qn−k

w∗n−k+1

(1 +
q∗n−k+1

xn−k+1
)
∂w∗n−k+1

∂qn−k+1

=
w∗n−k
w∗n−k+1

+
∂(

αn−k
αn−k+1

)

∂qn−k

w∗n−k+1

(1 +
q∗n−k+1

xn−k+1
)
∂w∗n−k+1

∂qn−k+1

.

As a result, w∗n−k+1q
∗
n−k+1 − w∗n−kq∗n−k, or, equivalently, whether

q∗n−k+1

q∗n−k
− w∗n−k

w∗n−k+1
is positive

or negative completely depends on the term
∂(

αn−k
αn−k+1

)

∂qn−k

w∗n−k+1

(1+
q∗
n−k+1
xn−k+1

)
∂w∗
n−k+1

∂qn−k+1

. Since w∗n−k+1 ≥ 0,

(1 +
q∗n−k+1

xn−k+1
) > 0 and

∂w∗n−k+1

∂qn−k+1
< 0, we conclude that

q∗n−k+1

q∗n−k
− w∗n−k

w∗n−k+1
(>,=, <)0 if and only if

∂(
αn−k
αn−k+1

)

∂qn−k
(<,=, >)0.

Proof of Theorem 3.2.6

(1) Exponential demand: We will show that at each offer n − k, the equilibrium strategy is

as follows:

w∗n−k(xn−k, qn−k) = (k + 1)pe−λQ
n

(B.6)

q∗n−k(xn−k) =
1

λ(k + 1)
. (B.7)

Under exponential demand, the revenue function is R(Q) = p
∫ Q

0 e−λξdξ, so R′(Q) =

pe−λQ and R′′(Q) = pλe−λQ.

According to Proposition 3.2.1, at the last offer, w∗n(xn, qn) = R′(Qn) = pe−λQ
n

and q∗n is

the solution of pe−λQ
n − pλe−λQnqn = 0. Therefore, q∗n(xn) = 1/λ. Suppose these results

hold for offers n − k + j, with j = 1, . . . , k, and consider offer n − k. By the inductive

assumption, q∗n−k+j is a constant for all j ≥ 1, hence
∂q∗n−k+j

∂xn−k+j
= 0. Proposition 3.2.1 leads

to

w∗n−k(xn−k, qn−k) = (k + 1)pe−λQ
n

q∗n−k solves pe−λQ
n − p(k + 1)λe−λQ

n
qn−k = 0 ,
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hence q∗n−k = 1
λ(k+1) and we have proven (B.6) and (B.7).

Finally, on the equilibrium path, q∗j = 1
λ(n−j+1) , so Qn,∗ =

∑n
l=1 1/l and w∗j = (n − j +

1)pe−λ
∑n
l=1 1/l.

(2) Uniform demand: Instead of directly using Proposition 3.2.1, we prove the result by

induction. We will show that at each offer j, given any initial inventory xj , the equilibrium

strategy satisfies the following equation:

q∗j (xj) =
M

2(n− j + 1)
− xj

2(n− j + 1)
(B.8)

w∗j (xj , q
∗
j (xj)) = βj [1−

xj
M

]p . (B.9)

Under uniform demand, the revenue function is R(Q) = p(Q − Q2/2M). So R′(Q) =

p(1 − Q/M) and R′′(Q) = −p/M . According to Proposition 3.2.1, at the last offer,

w∗n(xn, qn) = R′(Qn) = p(1−Qn/M) and q∗n is the solution of p(1−Qn/M)−pqn/M = 0.

Hence, q∗n = M
2 − xn

2 . For simplicity we denote w∗n(xn, q
∗
n(xn)) as w∗n, and note that

w∗n = 1
2 [1− xn

M ]p.

Suppose the result holds for offer j ≥ k + 1, and consider the offer k. For j ≥ k + 1, q∗j
and w∗j satisfy the following recursive equations:

q∗j+1 =
M

2(n− j) −
xj+1

2(n− j) =
M

2(n− j) −
xj + q∗j
2(n− j) =

M

2(n− j) −
xj + M

2(n−j+1) −
xj

2(n−j+1)

2(n− j)

=
2(n− j) + 1

2(n− j) [
M

2(n− j + 1)
− xj

2(n− j + 1)
] =

2(n− j) + 1

2(n− j) q∗j ,

w∗j+1 = βj+1[1− xj+1

M
]p = βj+1[1−

xj + q∗j
M

]p = βj+1[1−
xj + M

2(n−j+1) −
xj

2(n−j+1)

M
]p

=
2(n− j) + 1

2(n− j + 1)
βj+1[1− xj

M
]p =

2(n− j)
2(n− j) + 1

βj [1−
xj
M

]p =
2(n− j)

2(n− j) + 1
w∗j .

Moreover, the total inventory level Qn can be expressed as

Qn = xn + q∗n =
1

2
(M + xn) =

1

2
(M + xn−1 + q∗n−1) =

1

2
(M + xn−1 +

M − xn−1

4
)

= M [
1

2
+

1

2 ∗ 4
] +

1

2
∗ 3

4
xn−1 = M [

1

2
+

1

2 ∗ 4
] +

1

2
∗ 3

4
(xn−2 + q∗n−2)

= . . .

= M
n∑

i=k+1

1

2(n− i+ 1)

n∏
l=i+1

2(n− l) + 1

2(n− l + 1)
+

n∏
l=k+1

2(n− l) + 1

2(n− l + 1)
xk+1

= Ak+1 ∗M +Bk+1 ∗ (xk + qk) ,

where Ak+1 =
∑n

i=k+1
1

2(n−i+1)

∏n
l=i+1

2(n−l)+1
2(n−l+1) and Bk+1 =

∏n
l=k+1

2(n−l)+1
2(n−l+1) .
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We next compute the equilibrium for period k. The retailer’s total profit is equal to

πnR = p(Qn − (Qn)2/2M)− w1q1 − · · · − wkqk − w∗k+1q
∗
k+1 − · · · − w∗nq∗n

= p[Ak+1 ∗M +Bk+1 ∗ (xk + qk)−
(Ak+1 ∗M +Bk+1 ∗ (xk + qk))

2

2M
]

−w1q1 − · · · − wkqk − (n− k)w∗k+1q
∗
k+1

= p(Ak+1 ∗M +Bk+1 ∗ (xk + qk)−
(Ak+1 ∗M +Bk+1 ∗ (xk + qk))

2

2M
)

−w1q1 − · · · − wkqk − βk+1p
(M − (xk + qk))

2

2M
,

where the third equality follows the observation that w∗k+1q
∗
k+1 = w∗k+2q

∗
k+2 = · · · =

w∗nq
∗
n = βk+1p

(M−(xk+qk))2

2(n−k)M . Hence, the first-order condition is

∂πnR
∂qk

= p(1− Ak+1 ∗M +Bk+1 ∗ (xk + qk)

M
)Bk+1 − wk + βk+1p

M − (xk + qk)

M
= 0 .

Therefore, the supplier’s inverse demand function is

w∗k(xk, qk) = p(1− Ak+1 ∗M +Bk+1 ∗ (xk + qk)

M
)Bk+1 + βk+1p

M − (xk + qk)

M
.

The supplier needs to determine an order quantity qk to maximize her total profit, given

by

πnS = w1q1 + · · ·+ w∗kqk + w∗k+1q
∗
k+1 + · · ·+ w∗nq

∗
n

= w1q1 + · · ·+ wk−1qk−1 + [p(1− Ak+1 ∗M +Bk+1 ∗ (xk + qk)

M
)Bk+1 + βk+1p

M − (xk + qk)

M
]qk

+βk+1p
(M − (xk + qk))

2

2M
.

The first-order condition is

∂πkS
∂qk

= p(1− Ak+1 ∗M +Bk+1 ∗ (xk + qk)

M
)Bk+1 − [

pB2
k+1

M
+
rβk+1

M
]qk = 0 .

As a result,

q∗k(xk) =
M(1−Ak+1)Bk+1

2B2
k+1 + βk+1

− B2
k+1xk

2B2
k+1 + βk+1

.

However, we have βk+1 = 2(n− k)B2
k+1 and Ak+1 +Bk+1 = 1, which finally leads to

q∗k(xk) =
M

2(n− k + 1)
− xk

2(n− k + 1)
.
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The corresponding wholesale price is

w∗k = w∗k(xk, q
∗
k(xk)) = p(1− Ak+1 ∗M +Bk+1 ∗ (xk + q∗k)

M
)Bk+1 + βk+1p

M − (xk + q∗k)

M

= [
pB2

k+1

M
+
pβk+1

M
]q∗k + βk+1p

M − (xk + q∗k)

M

=
pB2

k+1

M
(

M

2(n− k + 1)
− xk

2(n− k + 1)
) + βk+1p

M − xk
M

= p(
B2
k+1

2(n− k + 1)
+ βk+1)[1− xk

M
]

= p
(2(n− k + 1))2

2(n− k + 1)2(n− k)
βk+1[1− xk

M
]

= pβk[1−
xk
M

] ,

and the proof is complete.

(3) Linear demand: Under linear (price-sensitive) demand, the revenue function is R(Q) =

(a− bQ)Q. Note that if we re-write a = p and b = p/2M , the revenue function becomes

R(Q) = r(Q−Q2/2M), the same as in the uniform demand case. Therefore, by parameter

transformation, the problem under linear demand is equivalent to the one under uniform

demand.
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Proof of Lemma 4.4.1

The proof is almost the same as Zhang et al. [57] with little modification.

(1) ⇒ direction: Suppose {q1(x1), s1(x1)} satisfies the global IC constraint. By the envelop

theorem, as analyzed in the main text, we can show q1(x1) satisfies the local IC constraint.

Because ∂2v1(x1+q1)
∂x1∂q1

= v′′1(x1 + q1) =

−λre−λ(x1+q1) x1 + q1 > 0

0 x1 + q1 < 0
. The function v1(x1 +

q1)−s1(x1) has decreasing differences and thereby q1(x1) must be weakly decreasing in x1. (See

Topkis [55])

⇐ direction: Suppose q1(x1) satisfies the local IC constraint and is weakly decreasing in x1.

Without loss of generality, we only consider the case x1 > x̂1. The case x1 < x̂1 is similar.

u1(x1)− [v1(x1 + q1(x̂1))− s1(x̂1)]

= [u1(x̂1) +

∫ x1

x̂1

v′1(ξ + q1(ξ))dξ]− [u1(x̂1) + v1(x1 + q1(x̂1))− v1(x̂1 + q1(x̂1))]

= [u1(x̂1) +

∫ x1

x̂1

v′1(ξ + q1(ξ))dξ]− [u1(x̂1) +

∫ x1

x̂1

v′1(ξ + q1(x̂1))dξ]

=

∫ x1

x̂1

[v′1(ξ + q1(ξ))− v′1(ξ + q1(x̂1))]dξ ≥ 0

The last inequality holds because q1(ξ) ≤ q1(x̂1) and v′1 is a decreasing function. So the global

IC constraint holds.

(2) The IC constraint says v1(x1+q1(x1))−s1(x1)−v1(x1) ≥ v1(x1+q1(y0))−s1(y0)−v1(x1).

In addition, since v′′1 ≤ 0, i.e. v1 has decreasing differences, we have v1(x1 + q1(y0))− v1(x1) ≥
v1(y0+q1(y0))−v1(y0). Combining the two inequalities, we get v1(x1+q1(x1))−s1(x1)−v1(x1) ≥
v1(y0+q1(y0))−s1(y0)−v1(y0) ≥ 0, for all x1 < y0. The supplier wants to maximize her expected

profit, therefore she should let v1(y0 + q1(y0))− s1(y0)− v1(y0) = 0 at optimum. In conclusion,

the IR constraint must be binding at y0 and redundant at x1 < y0.

Proof of Theorem 4.4.2

Because the IR constraint must be binding at y0, we replace s1(x1) with v1(x1 + q1(x1)) −
u1(x1) = v1(x1 + q1(x1)) − v1(y0) +

∫ y0

x1
v′1(z + q1(z))dz and rewrite the supplier’s objective
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function as∫ y0

−∞
[s1(x1)− cq1(x1)]dG1(x1) =

∫ y0

−∞
J1(q1(x1)|x1)g1(x1)dx1 − u1(y0)

The detailed analysis is in the main text. And J1(q1|x1) = v1(x1 + q1)− cq1 + v′1(x1 + q1)G1(x1)
g1(x1)

is the so-called virtual surplus. The optimal quantity plan q∗1(x1) maximizes J1(q1|x1). We look

at the derivative of J1(q1|x1) with respect to q1.

∂J1(q1|x1)

∂q1
= v′1(x1 + q1)− c+ v′′1(x1 + q1)

G1(x1)

g1(x1)

=

re−λ(x1+q1) − c− λre−λ(x1+q1)G1(x1)
g1(x1) x1 + q1 > 0

r − c x1 + q1 < 0

Since we assume x1 = y0−D0 for some constant y0, we have CDF G1(x1) = e−λ(y0−x1) and PDF

g1(x1) = λe−λ(y0−x1). Therefore, G1(x1)/g1(x1) = λ−1. When x1 + q1 > 0, ∂J1(q1|x1)/∂q1 =

−c < 0. But when x1 +q1 < 0, ∂J1(q1|x1)/∂q1 = r− c > 0. It indicates that J1(q1|x1) increases

when x1 + q1 < 0 but decreases when x1 + q1 > 0. As a result, the optimal quantity should

be q∗1(x1) = max{0,−x1}, or equivalently y∗1(x1) = max{0, x1}. The corresponding payment is

solved by

s∗1(x1) = v1(x1 + q∗1(x1))− u∗1(x1)

= v1(x1 + q∗1(x1))− v1(y0) +

∫ y0

x1

v′1(ξ + q∗1(ξ))dξ

=

v1(0)− v1(y0) +
∫ 0
x1
v′1(0)dξ +

∫ y0

0 v′1(ξ)dξ, x1 < 0

v1(x1)− v1(y0) +
∫ y0

x1
v′1(ξ)dξ, x1 ≥ 0

=

−rx1, x1 < 0

0, x1 ≥ 0.

Proof of Proposition 4.5.2

We prove the result by contradiction. Suppose under the optimal contract, there exists “bump”

at [x−1 , x
+
1 ] in the retailer’s profit-to-go function. Now we focus on the interval [x−1 , x

+
1 ] and we

solve a subproblem P[x−1 , x
+
1 ], where we keep the IC constraint unchanged but we let the IR

constraint binding at the two endpoints x−1 and x+
1 and we ignore the IR constraint at points
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in between:

(P[x−1 , x
+
1 ]) max

s1(x1),y1(x1)

∫ x+
1

x−1

{s1(x1)− cy1(x1) + cx1 + δΠ2(y1(x1))}dG1(x1)

s.t. µ1(x1 + q1(x1))− s1(x1) ≥ µ1(x1 + q1(x̂1))− s1(x̂1), x1, x̂1 ∈ [x−1 , x
+
1 ]

µ1(y1(x−1 ))− s1(x−1 ) = u1(x−1 ) and µ1(y1(x+
1 ))− s1(x+

1 ) = u1(x+
1 )

Suppose the hypothesis holds, the optimal solution of P[x−1 , x
+
1 ] will automatically satisfy the

IR constraint at x1 ∈ (x−1 , x
+
1 ).

Next, we replace the global IC constraints by the local IC constraints u′1(x1) = µ′1(y1(x1))

and the monotonicity condition y′1(x1) ≤ 1. Then we rewrite u1(x1) = u1(x−1 )+
∫ x1

x−1
µ′1(y1(ξ))dξ =

u1(x−1 )+
∫ x1

x−1
µ′1(y1(ξ))dξ and replace s1(x1) with µ1(x1 +q1(x1))−u1(x1) in the objective func-

tion. By doing so, we obtain the virtual surplus anchoring at the bottom endpoint x−1 :

J1(y1|x1) = cx1 − cy1 + µ1(y1) + δΠ2(y1)− µ′1(y1)
G1(x+

1 )−G1(x1)
g1(x1) (C.1)

As a result, the subproblem P[x−1 , x
+
1 ] can be re-formulated as follows:

(P[x−1 , x
+
1 ]) max

y1(x1)

∫ x+
1

x−1

J(y1(x1)|x1)g1(x1)dx1

s.t.


u′1(x1) = µ′1(y1(x1)), x1 ∈ [x−1 , x

+
1 ]

u1(x−1 ) = u1(x−1 ) and u1(x+
1 ) = u1(x+

1 )

y1(x1) ≥ x1 and y′1(x1) ≤ 1 x1 ∈ [x−1 , x
+
1 ]

Following the standard notations in the optimal control literature, we define x1 → t

as the time; u1(x1) → x(t) as the state variable; y1(x1) → u(t) as the control variable;

µ′1(y1) → g(t, x, u) as the state transition function; J(y1(x1)|x1)g1(x1) → f(t, x, u) as the

objective function; x−1 → t0 and x+
1 → tf as the initial and final time; u1(x−1 ) → x0 and

u1(x+
1 ) → xf as the initial and final state. Therefore, the subproblem P[x−1 , x

+
1 ] is trans-

lated into an optimal control problem with two fixed endpoints and two constraints on the

control variable y′1(x1) ≤ 1 and y1(x1) ≥ x1. The corresponding Hamiltonian should be

H(y1|x1, η) = J(y1|x1)g1(x1) + η(x1)µ′1(y1) and the Lagrangian should be L(y1|x1, η, ρ) =

H(y1|x1, η) + ρ1(y1 − x1) + ρ2(y′1(x1)− 1).

The maximum principle requires that the optimal control y∗1(x1) and the optimal state

variable u∗1(x1) should satisfy the following conditions:

(1) Feasibility: u̇∗1(x1) = µ′1(y∗1(x1)), u∗1(x−1 ) = u1(x−1 ) and u∗1(x+
1 ) = u1(x+

1 ); y∗1(x1) ≥ x1

and ẏ∗1(x1) ≤ 1.

(2) Adjoint equation for η: η should satisfy

η′(x1) = ∂L
∂u1

= 0

η(x+
1 ) = β for some constant β

. Clearly, η
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is a constant, i.e. η(x1) = β for all x1 ∈ [x−1 , x
+
1 ].

(3) Condition for Lagrange multiplier: ρ are such that ∂L
∂y1
|y1=y∗1

= 0; ρ ≥ 0 and satisfy the

complementary slackness condition ρ1(y∗1(x1)− x1) = 0, ρ2(ẏ∗1(x1)− 1)) = 0.

(4) Hamiltonian maximization condition: y∗1(x1) maximizes the HamiltonianH(y∗1(x1)|x1, η) ≥
H(y1|x1, η) for all y1.

The analysis proceeds as follows. We will first characterize the optimal control y∗1(x1).

Then we will show under the optimal control, the IR constraint at the two endpoints can not

be binding simultaneously. This will lead to a contradiction and thereby we will conclude there

is no “bump”.

We start with characterizing the optimal control y∗1(x1). First of all, we look at the first-

order derivative of the Hamiltonian:

∂H
∂y1

= ∂J1(y1|x1)
∂y1

g1(x1) + βµ′′1(y1)

=

g1(x1){b+ δc− c}, y1 < 0

g1(x1){−h− c+ δce−λy1 + (b+ h+ δrλy1)e−λy1eλ(y0−x1)(G1(x+
1 )− β)}. y1 > 0

(C.2)

Clearly, when y1 < 0, we have ∂H
∂y1

> 0 because b > c(1 − δ). The function H increases in y1

when y1 is negative. However, when y1 > 0, the sign of ∂H
∂y1

is determined by the function

ϕ(y1|x1, β) = −h− c+ δce−λy1 + (b+ h+ δrλy1)e−λy1eλ(y0−x1)(G1(x+
1 )− β) (C.3)

In other words, the first order condition ∂H
∂y1

= 0 is equivalent to ϕ(y1|x1, β) = 0.

One observation is that β must be smaller than G1(x+
1 ) under the optimal control. If not,

β ≥ G1(x+
1 ), we have ϕ(y1|x1, β) ≤ −h − c + δce−λy1 ≤ −h − c + δc < 0. Therefore, the

function H decreases in y1 when y1 is positive. Correspondingly, the optimal control will be

y∗(x1) = max{0, x1}. Notice that y∗(x1) < yR1 (x1) for all x1. We obtain:

u∗1(x+
1 )− u1(x+

1 ) = [u∗1(x−1 ) +

∫ x+
1

x−1

µ′1(y∗1(z))dz]− [u1(x−1 ) +

∫ x+
1

x−1

µ′1(yR1 (z))dz]

=

∫ x+
1

x−1

(µ′1(y∗1(z))− µ′1(yR1 (z))dz < 0

where the equality holds because u∗1(x−1 ) = u1(x−1 ) and the inequality holds because y∗(x1) <

yR1 (x1). Hence, the constraint u∗1(x+
1 ) = u1(x+

1 ) can not be satisfied, which is a contradiction.

From now on, we only consider the case β < G1(x+
1 ).

Another observation is that there does not exist any constant β such that y∗1(x1) = yR(x1)

for all x1 ∈ [x−1 , x
+
1 ]. This can be easily checked by comparing the definition of yR1 and the first

order condition ∂H
∂y1

= 0.
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Now we would like to show that the optimal control y∗1(x1) will be a decreasing function of

x1. We examine the structure of ϕ(y1|x1, β). First of all, ϕ, as a function of y1, will decrease

in x1, i.e. ϕ(y1|x1, β) > ϕ(y1|x̃1, β) for all y1 if x1 < x̃1. It is because

∂ϕ(y1|x1,β)
∂x1

= −λ(b+ h+ δrλy1)e−λy1eλ(y0−x1)(G1(x+
1 )− β) < 0 (C.4)

where the inequality holds in that β < G1(x1).

Secondly, we have

∂ϕ(y1|x1,β)
∂y1

= λe−λy1{−δc+ [δr − (b+ h+ δrλy1)]eλ(y0−x1)(G1(x+
1 )− β)}. (C.5)

Given x1 and β, there are two possible scenarios: either (i) ∂ϕ(y1|x1,β)
∂y1

is always negative or

(ii) ∂ϕ(y1|x1,β)
∂y1

is first positive and then becomes negative. It implies that ϕ(y1|x1, β) = 0 has

most two solutions. More preciously, if ϕ(y1|x1, β) = 0 has no solution, the optimal control

y∗1(x1) = max{ 0, x1}; if ϕ(y1|x1, β) = 0 has unique solution, the optimal control y∗1(x1) is the

maximum of this solution and x1; and if ϕ(y1|x1, β) = 0 has two solutions, we pick the larger

one. When x1 is negative, we compare it with 0 and choose the one that leads to a bigger H

as the optimal control. When x1 is positive, the y∗1(x1) is the maximum of the solution and x1.

See Figure C.1 for different scenarios. However, no matter how many zero points ϕ(y1|x1, β)

has, we argue that as long as y∗1(x1) is solved by the first-order condition, i.e. ϕ(y1|x1, β) = 0,

y∗1(x1) must be decreasing in x1. This is illustrated by Figure C.2.

Now we want to show under the optimal control y∗1(x1), the IR constraint will be violated

at some x1 ∈ (x−1 , x
+
1 ). We need to introduce the following lemma:

Lemma C.0.4. (a) Suppose at some point 0 ≤ x̂1 < y0, the optimal control is such that

y∗(x̂1) = x̂1. We must also have y∗(x1) = x1 for x̂1 < x1 ≤ y0.

(b) Suppose at some point x̂1 < 0, the optimal control is such that y∗(x̂1) = 0. We must

also have y∗(x1) = 0 for x̂1 < x1 ≤ 0.

Proof of Lemma C.0.4:

(a) According to the feasibility condition, we must satisfy y∗1(x1) ≥ x1 and ẏ∗1(x1) ≤ 1.

However, ẏ∗1(x1) ≤ 1 implies that the order quantity q∗1(x1) is weakly decreasing in x1. As a

result, once y∗1(x̂1) = x̂1, i.e. q∗1(x̂1) = 0, we will have q∗1(x1) = 0 for all x1 > x̂1. So y∗1(x1) = x1

for all x1 > x̂1.

(b) We know y∗1(x̂1) = 0. It can happen only when has ϕ(y1|x1, β) = 0 has 0 solution or 2

solutions. We need to discuss these two possible cases.

If ϕ(y1|x1, β) = 0 has 0 solution, it means ϕ(y1|x̂1, β) < 0 for all y1 ≥ 0. We have already

shown ϕ, as a function of y1, will decrease in x1, therefore ϕ(y1|x1, β) < ϕ(y1|x̂1, β) < 0 for all

x1 ≥ x̂1 and y1 ≥ 0. So we conclude that the optimal control will be y∗1(x1) = 0 for x̂1 < x1 ≤ 0.

If ϕ(y1|x1, β) = 0 has 2 solutions, as mentioned earlier, we pick the larger solution denoted as

ylarge−FOC1 (x1) and compare it with 0. Then we select the one which gives us a higher H as the
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Figure C.1: Illustration of function ϕ(y1|x1, β) under different x1 and β.
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Figure C.2: Function ϕ(y1|x1, β) when choosing two different x1. Parameters: r = 10, c = 5,
b = 2, h = 3, y0 = 3, β = 0.1, λ = 1 and δ = 0.9.
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Figure C.3: Function ϕ(y1|x1, β) = 0 has 2 solutions but the optimal control is y∗1(x1) = 0.

optimal control. That is to say, y∗1(x̂1) = 0 implies that H(ylarge−FOC1 (x̂1)|x̂1, β) ≤ H(0|x̂1, β).

Now we compare H(ylarge−FOC1 (x1)|x1, β) and H(0|x1, β) for x̂1 < x1 ≤ 0. Notice that

H(ylarge−FOC1 (x̂1)|x̂1, β) = H(0|x̂1, β) +
∫ ylarge−FOC1 (x̂1)

0 g1(x̂1)ϕ(z|x̂1, β)dz,

and H(ylarge−FOC1 (x̂1)|x̂1, β) ≤ H(0|x̂1, β) implies
∫ ylarge−FOC1 (x̂1)

0 ϕ(z|x̂1, β)dz ≤ 0. Moreover,

we have ϕ(z|x̂1, β) > ϕ(z|x1, β) for all z when x̂1 < x1. Therefore,

∫ ylarge−FOC1 (x1)

0
ϕ(z|x1, β)dz <

∫ ylarge−FOC1 (x1)

0
ϕ(z|x̂1, β)dz

Also, we have claimed that ylarge−FOC1 (x̂1) > ylarge−FOC1 (x1) if both of them are solved by first-

order condition. In addition, the function ϕ(z|x̂1, β) is positive when z ∈ (ylarge−FOC1 (x1), ylarge−FOC1 (x̂1)).

Please refer to Figure C.3. As a result, we obtain

∫ ylarge−FOC1 (x1)

0
ϕ(z|x̂1, β)dz <

∫ ylarge−FOC1 (x̂1)

0
ϕ(z|x̂1, β)dz

Finally,

∫ ylarge−FOC1 (x1)

0
ϕ(z|x1, β)dz <

∫ ylarge−FOC1 (x1)

0
ϕ(z|x̂1, β)dz <

∫ ylarge−FOC1 (x̂1)

0
ϕ(z|x̂1, β)dz ≤ 0

which implies

H(ylarge−FOC1 (x1)|x1, β) = H(0|x1, β) +

∫ ylarge−FOC1 (x1)

0
g1(x1)ϕ(z|x1, β)dz < H(0|x1, β).
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Therefore, it is optimal to have y∗1(x1) = 0 for 0 ≥ x1 > x̂1.

Next, we show that the IR constraint cannot be satisfied at the two end points simultaneous-

ly. One necessary condition for the IR constraint satisfied at x1 ∈ [x−1 , x
+
1 ] is y∗1(x−1 ) ≤ yR1 (x−1 )

and y∗1(x+
1 ) ≥ yR1 (x+

1 ). We consider three possible cases:

Case 1): Suppose x−1 < x+
1 ≤ 0. In this case, yR1 (x1) = yR1 (0) is a constant for all x1 ∈

[x−1 , x
+
1 ].

If y∗1(x−1 ) happens to be 0, Lemma C.0.4 implies that y∗1(x+
1 ) = 0 < yR1 (x+

1 ). This violates

the necessary condition.

If y∗1(x−1 ) is the (larger) solution of the first-order condition, we have 0 < y∗1(x−1 ) ≤ yR1 (x−1 ).

However, at the endpoint x+
1 , we may get y∗1(x+

1 ) = 0 or y∗1(x+
1 ) > 0. If y∗1(x+

1 ) = 0, it already

violates the necessary condition since 0 < yR1 (x+
1 ). If y∗1(x+

1 ) > 0, it implies that the optimal

control is solved by the first-order condition. Therefore, we have y∗1(x+
1 ) < y∗1(x−1 ) ≤ yR1 (x−1 ) =

yR1 (x+
1 ), which also violates the necessary condition.

In conclusion, the IR constraints must be violated at some point in (x−1 , x
+
1 ) in Case 1).

Case 2) Suppose 0 ≤ x−1 < x+
1 . In this case, yR1 (x1) will increase in x1 ∈ [x−1 , x

+
1 ] because

dyR1
dx1

=
u′′1 (x1)
µ′′1 (x1)

> 0.

If y∗1(x−1 ) = x−1 , according to Lemma C.0.4, we have y∗1(x+
1 ) = x+

1 < yR1 (x+
1 ), which violates

the necessary condition.

If x−1 < y∗1(x−1 ) ≤ yR1 (x−1 ), we either have y∗1(x+
1 ) = x+

1 or y∗1(x+
1 ) > x+

1 . If y∗1(x+
1 ) = x+

1 ,

it violates the necessary condition since x+
1 < yR1 (x+

1 ). If y∗1(x+
1 ) > x+

1 , it also violates the

necessary condition in that y∗1(x+
1 ) < y∗1(x−1 ) ≤ yR1 (x−1 ) < yR1 (x+

1 ). The first inequality holds

because y∗1(x1) is the (larger) solution of the first-order condition and is decreasing in x1.

In conclusion, the IR constraints must be violated at some point in (x−1 , x
+
1 ) in Case 2).

Case 3) Suppose x−1 < 0 < x+
1 , we apply a similar approach as the previous two cases.

If y∗1(x−1 ) = 0, we also have y∗1(0) = 0. Therefore, y∗1(x+
1 ) = x+

1 < yR1 (x+
1 ), which violates

the necessary condition.

If 0 < y∗1(x−1 ) ≤ yR1 (x−1 ), we either have y∗1(x+
1 ) = x+

1 or y∗1(x+
1 ) > x+

1 . If y∗1(x+
1 ) = x+

1 ,

it violates the necessary condition. If y∗1(x+
1 ) > x+

1 , it also violates the necessary condition in

that y∗1(x+
1 ) < y∗1(0) < y∗1(x−1 ) ≤ yR1 (x−1 ) < yR1 (x+

1 ).

In conclusion, the IR constraints must be violated at some point in (x−1 , x
+
1 ) in Case 3).

In summary, we conclude that the optimal contract does not have “bump” in the retailer’s

profit-to-go function.
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Proof of Lemma 4.5.4

π1(x1) =µ1(yR1 (x1))− cyR1 (x1) + cx1 + δΠ2(yR1 (x1))− u1(x1) (C.6)

=



r+h
λ − b+h

λ e−λy
R
1 (0) − hyR1 (0)− cyR1 (0) + cx1 − rx1

+δ[ rλ − r+c
λ e−λy

R
1 (0) − ryR1 (0)e−λy

R
1 (0)], x1 ≤ 0

r+h
λ − b+h

λ e−λy
R
1 (x1) − hyR1 (x1)− cyR1 (x1) + cx1

+δ[ rλ − r+c
λ e−λy

R
1 (x1) − ryR1 (x1)e−λy

R
1 (x1)]

−{ rλ(1− e−λx1)− hx1 + h
λ(1− e−λx1) + δ[ rλ − r

λe
−λx1 − rx1e

−λx1 ]}. x1 > 0

(C.7)

Recall the definition of yR1 (x1):

(b+ h+ δr + δrλyR1 )e−λy
R
1 =

(r + h+ δrλx1)e−λx1 , x1 > 0

r + h, x1 ≤ 0

We can further simplify the supplier’s profit as follows:

π1(x1) =

−(h+ c)yR1 (0)− (r − c)x1 + δ r−ce
−λyR1 (0)

λ x1 ≤ 0

−(h+ c)(yR1 (x1)− x1) + δ re
−λx1−ce−λy

R
1 (x1)

λ x1 > 0
(C.8)

When x1 < 0, π1(x1) is a linear function x1 with slope −(r − c). Thus, when x1 → −∞, we

have π1(x1) → +∞. When x1 > 0, π1(x1) may not be monotone. But we can see that π1(x1)

approaches 0 from the negative side as x1 → +∞. Therefore, π1(x1) has at least one root. Now

we look at its first-order derivative when x1 > 0.

π′1(x1) = µ′1(yR1 (x1))
dyR1
dx1
− cdy

R
1

dx1
+ c− δ(r − c)e−λyR1 (x1) dy

R
1

dx1
− u′1(x1)

= [(r + h+ δrλx1)e−λx1 − h− c](dy
R
1

dx1
− 1)− δ(r − c)e−λyR1 (x1) dy

R
1

dx1

= (h+ c)(1− dyR1
dx1

)− δre−λx1 + δce−λy
R
1 (x1) dy

R
1

dx1
(C.9)

Without loss of generality, we let λ = 1. We compare (C.8) and (C.9) when x1 > 0:

π1(x1) = −(h+ c)qR1 (x1) + δe−x1 [r − ce−qR1 (x1)]

π′1(x1) = −(h+ c)
dqR1 (x1)
dx1

− δe−x1 [r − ce−qR1 (x1)] + δce−x1−qR1 (x1) dq
R
1 (x1)
dx1

Therefore, π1(x1) + π′1(x1) = −(h+ c)[qR1 (x1) +
dqR1 (x1)
dx1

] + δce−x1−qR1 (x1) dq
R
1 (x1)
dx1

. Since qR1 (x1) is

decreasing in x1, we have
dqR1 (x1)
dx1

< 0. Next we examine the term qR1 (x1) +
dqR1 (x1)
dx1

. Recall that
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qR1 (x1) = yR1 (x1)− x1, so we have

dqR1 (x1)
dx1

=
dyR1 (x1)
dx1

− 1 = − δr(eq
R
1 (x1)−1)

b+h+δryR1 (x1)
= − δr(eq

R
1 (x1)−1)

(r+h+δrx1)eq
R
1 (x1)−δr

When x1 ≥ 2− (r + h)/(δr), we further have

−dqR1 (x1)
dx1

= δr(eq
R
1 (x1)−1)

(r+h+δrx1)eq
R
1 (x1)−δr

≤ δr(eq
R
1 (x1)−1)

(r+h+δrx1−δr)eq
R
1 (x1)

= δr
(r+h+δrx1−δr)(1− e−qR1 (x1)) ≤ (1− e−qR1 (x1)) ≤ qR1 (x1)

As a result, we get π1(x1) + π′1(x1) = (h + c)(−dqR1 (x1)
dx1

− qR1 (x1)) + δce−x1−qR1 (x1) dq
R
1 (x1)
dx1

≤ 0.

That is to say, π1 and π′1 cannot be positive simultaneously when x1 ≥ 2− (r + h)/(δr).

When x1 < 2− (r + h)/(δr) < 1, we rewrite the expression of π′1(x1) as

π′1(x1) = [u′1(x1)− c](dy
R
1

dx1
− 1)− δ(r − c)e−λyR1 (x1) dy

R
1

dx1
(C.10)

We assume (r+h+δr)e−1− (h+c) > 0. Therefore, we have u′1(x1) ≥ u′1(1) = (r+h+δr)e−1−
(h+ c) ≥ 0. Because

dyR1
dx1

, we conclude from (C.10) that π′1(x1) < 0 in this case.

Combining the two cases, when x1 ≥ 2 − (r + h)/(δr), we know that π1 and π′1 cannot be

positive at the same time. When x1 < 2− (r+h)/(δr), we know π′1(x1) < 0 and thereby π1(x1)

is decreasing in x1. Now we claim that π1(x1) has only one root. We prove by contradiction.

Suppose π1 has at least two roots. One of them must happen when π1(x1) is crossing the

x-axis from negative to positive. In other words, there exists some x1 such that π1(x1) > 0

and π′1(x1) > 0. However, we have shown it will not happen. So we obtain a contradiction. In

conclusion, π1(x1) has only one root.

Proof of Lemma 4.5.5

yR1 (x1) strictly increases in x1 and yR1 (x1) > x1. Yet, yL1 (x1) strictly decreases in x1 when

yL1 (x1) > x1. Therefore, the solution of yR1 (x1) = yL1 (x1) must be unique.

Proof of Lemma 4.6.1

By definition, when x > 0, yR(x) satisfies

[b− r(1− δ)]e−λyR(x) +
h+ r(1− δ)

1− δ e−λy
R(x)(1−δ) =

h+ r(1− δ)
1− δ e−λx(1−δ)

We take derivative with respect to x on both sides which leads to

{[b− r(1− δ)]e−λyR(x) + [h+ r(1− δ)]e−λyR(x)(1−δ)}dy
R

dx
= [h+ r(1− δ)]e−λx(1−δ)
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Therefore,

dyR

dx
=

[h+ r(1− δ)]e−λx(1−δ)

[b− r(1− δ)]e−λyR(x) + [h+ r(1− δ)]e−λyR(x)(1−δ) > 0. (C.11)

i.e. yR(x) is strictly increasing in x.

Next, we consider d2yR

dx2 which satisfies

d2yR

dx2
{[b− r(1− δ)]e−λyR(x) + [h+ r(1− δ)]e−λyR(x)(1−δ)}/λ (C.12)

= {[b− r(1− δ)]e−λyR(x) + (1− δ)[h+ r(1− δ)]e−λyR(x)(1−δ)}(dy
R

dx
)2 − (1− δ)[h+ r(1− δ)]e−λx(1−δ)

Clearly, whether d2yR

dx2 is positive depends on the right-hand side of Equation (C.12). For the

sake of presentation, we shorten the notation by letting K1 = [b − r(1 − δ)]e−λy
R(x), K2 =

[h+r(1−δ)]e−λyR(x)(1−δ) and K3 = [h+r(1−δ)]e−λx(1−δ). We have dyR

dx = K3
K1+K2

from (C.11).

Moreover, by the definition of yR(x), we have K1 + K2
1−δ = K3

1−δ . The right-hand side of Equation

(C.12) can be simplified as

[K1 + (1− δ)K2](
K3

K1 +K2
)2 − (1− δ)K3

=
K3

(K1 +K2)2
{[K1 + (1− δ)K2]K3 − (1− δ)(K1 +K2)2}

=
K3

(K1 +K2)2
{[K1 + (1− δ)K2][(1− δ)K1 +K2]− (1− δ)(K1 +K2)2}

= δ2 K3

(K1 +K2)2
K1K2 > 0

As a result, we conclude d2yR

dx2 > 0, i.e yR(x) is convex in x.

Proof of Lemma 4.6.2

Suppose the supplier implements yR(x) in each period. Notice that yR(x) is stationary and

does not depend on the supplier’s belief. In addition, we have seen as T → ∞, the retailer’s

profit-to-go U(y) exists and is unique. We can compute π iteratively by the following equation:

πn(z) = v(yR(z)) + δU(yR(z))− u(z)− cyR(z) + cz + δΠn−1(yR(z)) (C.13)

Πn−1(y(z)) =

∫ y(z)

−∞
πn−1(ξ)λe−λ(y(z)−ξ)dξ (C.14)

We use the Contraction Mapping Theorem. In other words, for any two functions πn−1 and π′n−1

which satisfy ||πn−1 − π′n−1|| := maxz |πn−1(z)− π′n−1(z)| < ε, we want to prove ||πn − π′n|| :=
maxz |πn(z)− π′n(z)| < δε.
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In fact, for any z,

|πn(z)− π′n(z)| = δ|Πn−1(z)−Π′n−1(z)|

= δ|
∫ yR(z)

−∞
[πn−1(ξ)− π′n−1(ξ)]λe−λ(yR(z)−ξ)dξ|

≤ δ

∫ yR(z)

−∞
|πn−1(ξ)− π′n−1(ξ)|λe−λ(yR(z)−ξ)dξ

< δ

∫ yR(z)

−∞
ελe−λ(yR(z)−ξ)dξ = δε

therefore, ||πn − π′n|| := maxz |πn(z) − π′n(z)| < δε. Therefore, the iteration (C.13)-(C.14) is

indeed a contraction mapping. By the Contraction Mapping Theorem, the sequence of πn con-

verges and its limit limn→∞ πn = π exists and is unique. In addition, Π(y) = limn→∞Πn(y) =

limn→∞
∫ y
−∞ πn−1(ξ)λe−λ(y(z)−ξ)dξ =

∫ y
−∞ π(ξ)λe−λ(y(z)−ξ)dξ also exists and is unique.

Proof of Proposition 4.6.3

We first consider the case z ≤ 0. Note that Π(z) =
∫ z
−∞ π(ξ)λe−λ(z−ξ)dξ. We assume the sup-

plier implements the quantity plan yR from the “next” period onwards, i.e. π(ξ) = v(yR(ξ)) +

δU(yR(ξ))−u(ξ)−cyR(ξ)+cξ+δΠ(yR(ξ)). We have shown yR(ξ) = yR(0) is a constant whenever

ξ ≤ 0. Therefore, π(ξ) = v(yR(0))+δU(yR(0))−u(ξ)−cyR(0)+cξ+δΠ(yR(0)) = π(0)−(r−c)ξ.
As a result, we have

Π(z) =

∫ z

−∞
π(ξ)λe−λ(z−ξ)dξ

=

∫ z

−∞
[π(0)− (r − c)ξ]λe−λ(z−ξ)dξ

= π(0)− (r − c)(z − 1

λ
)

When z ≤ 0, Π(z) is a linear function of z with slope −(r − c). Finally,

dJR(z|x)

dz
= −c+ b+ δr + δΠ′(z) = −c+ b+ δr − δ(r − c) = b+ δc− c > 0,

so JR(z|x) increases when z < 0.

Next we examine the case z > 0. Note Π(z) =
∫ z
−∞ π(ξ)λe−λ(z−ξ)dξ. We take derivative on
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both sides with respect to z and we get

Π′(z) = λπ(z)− λ
∫ z

−∞
π(ξ)λe−λ(z−ξ)dξ

= λ[π(z)−Π(z)]

= λ

∫ z

−∞
[π(z)− π(ξ)]λe−λ(z−ξ)dξ

= λ

∫ z

−∞
[

∫ z

ξ
π′(η)dη]λe−λ(z−ξ)dξ

=

∫ z

−∞
π′(ξ)λe−λ(z−ξ)dξ,

where the last equality holds by changing the order of integration. We use the equation Π′(z) =∫ z
−∞ π

′(ξ)λe−λ(z−ξ)dξ and prove the result by induction. Suppose−c− h
1−δ+δ h+r(1−δ)

1−δ e−λy(1−δ)+

δΠ′t+1(y) < 0. We want to show that similar inequality holds for Π′t(y). In fact,

Π′t(z) =

∫ z

−∞
π′t(ξ)λe

−λ(z−ξ)dξ

=

∫ z

−∞
{[v′(yR(ξ) + δU ′(yR(ξ))− c+ δΠ′t+1(yR(ξ))]

dyR(ξ)

dξ
+ c− u′(ξ)}λe−λ(z−ξ)dξ

=

∫ 0

−∞
−(r − c)λe−λ(z−ξ)dξ

+

∫ z

0
{[v′(yR(ξ) + δU ′(yR(ξ))− c+ δΠ′t+1(yR(ξ))]

dyR(ξ)

dξ
+ c− u′(ξ)}λe−λ(z−ξ)dξ

= −(r − c)e−λz +

∫ z

0
{[v′(yR(ξ) + δU ′(yR(ξ))− c+ δΠ′t+1(yR(ξ))]

dyR(ξ)

dξ
+ c− u′(ξ)}λe−λ(z−ξ)dξ

We replace dyR(ξ)
dξ by [h+r(1−δ)]e−λx(1−δ)

[b−r(1−δ)]e−λyR(x)+[h+r(1−δ)]e−λyR(x)(1−δ) in the integrand which leads to

[v′(yR(ξ) + δU ′(yR(ξ))− c+ δΠ′t+1(yR(ξ))]
dyR(ξ)

dξ
+ c− u′(ξ)

= {[b− r(1− δ)]e−λyR(ξ) +
h+ r(1− δ)

1− δ e−λy
R(ξ)(1−δ) − h

1− δ − c+ δΠ′t+1(yR(ξ))}

× [h+ r(1− δ)]e−λξ(1−δ)
[b− r(1− δ)]e−λyR(ξ) + [h+ r(1− δ)]e−λyR(ξ)(1−δ) + c− h+ r(1− δ)

1− δ e−ξ(1−δ) +
h

1− δ

= c+
h

1− δ − δ
h+ r(1− δ)

1− δ e−ξ(1−δ) + {δh+ r(1− δ)
1− δ e−λy

R(ξ)(1−δ) − h

1− δ − c+ δΠ′t+1(yR(ξ))}dy
R(ξ)

dξ

For the first part,∫ z

0
{c+

h

1− δ − δ
h+ r(1− δ)

1− δ e−ξ(1−δ)}λe−λ(z−ξ)dξ = (c+
h

1− δ )(1− e−λz)− h+ r(1− δ)
1− δ (e−λz(1−δ) − e−λz)

For the second part, by the inductive assumption, for any ξ, δ h+r(1−δ)
1−δ e−λy

R(ξ)(1−δ)− h
1−δ − c+
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δΠ′t+1(yR(ξ)) < 0. However, Lemma 4.6.1 says dyR(ξ)
dξ > 0. Therefore, the whole integrand is

negative. As a result,∫ z

0
{δh+ r(1− δ)

1− δ e−λy
R(ξ)(1−δ) − h

1− δ − c+ δΠ′t+1(yR(ξ))}dy
R(ξ)

dξ
λe−λ(z−ξ)dξ < 0

Finally,

Π′t(z) =

∫ z

−∞
π′t(ξ)λe

−λ(z−ξ)dξ

= −(r − c)e−λz + (c+
h

1− δ )(1− e−λz)− h+ r(1− δ)
1− δ (e−λz(1−δ) − e−λz)

+

∫ z

0
{δh+ r(1− δ)

1− δ e−λy
R(ξ)(1−δ) − h

1− δ − c+ δΠ′t+1(yR(ξ))}dy
R(ξ)

dξ
λe−λ(z−ξ)dξ < 0

≤ (r − c)e−λz + (c+
h

1− δ )(1− e−λz)− h+ r(1− δ)
1− δ (e−λz(1−δ) − e−λz)

= c+
h

1− δ −
h+ r(1− δ)

1− δ e−λz(1−δ)

By rearranging the terms, we have

dJR(z|x)

dz
= −c− h

1− δ + δ
h+ r(1− δ)

1− δ e−λz(1−δ) + δΠ′t(z)

≤ −c− h

1− δ + δ
h+ r(1− δ)

1− δ e−λy(1−δ) + δ[c+
h

1− δ −
h+ r(1− δ)

1− δ e−λz(1−δ)]

= −(1− δ)(c+
h

1− δ ) < 0

i.e. dJR(z|x)
dz < 0 when z > 0.

In the following, we want to show the virtual surplus JR(z|x) is concave. For the sake of

analysis, we define ϕ(z) = c + h
1−δ − δ

h+r(1−δ)
1−δ e−λz(1−δ) − δΠ′(z). In fact, ϕ(z) = −dJR(z|x)

dz .

Equivalently we want to prove ϕ(z) increases in z. We prove the result by induction. Suppose

ϕt+1(z) is an increasing function in z.

From the previous analysis, we have seen

ϕt(z) = c+
h

1− δ − δ
h+ r(1− δ)

1− δ e−λz(1−δ) − δΠ′t(z)

= c+
h

1− δ − δ
h+ r(1− δ)

1− δ e−λz(1−δ)

−δ{c+
h

1− δ −
h+ r(1− δ)

1− δ e−λz(1−δ)

+

∫ z

0
{δh+ r(1− δ)

1− δ e−λy
R(ξ)(1−δ) − h

1− δ − c+ δΠ′t+1(yR(ξ))}dy
R(ξ)

dξ
λe−λ(z−ξ)dξ}

= (1− δ)(c+
h

1− δ ) + δ

∫ z

0
ϕt+1(yR(ξ))

dyR(ξ)

dξ
λe−λ(z−ξ)dξ

123



Appendix C. Proofs of Results in Chapter 4

We consider its derivative

ϕ′t(z) = λδ{ϕt+1(yR(z))
dyR(z)

dξ
−

∫ z

0
ϕt+1(yR(ξ))

dyR(ξ)

dξ
λe−λ(z−ξ)dξ}

= λδ{ϕt+1(yR(z))
dyR(z)

dξ
e−λz +

∫ z

0
[ϕt+1(yR(z))

dyR(z)

dξ
− ϕt+1(yR(ξ))

dyR(ξ)

dξ
]λe−λ(z−ξ)dξ}

From the previous analysis, we have ϕt+1(yR(z)) > 0 and dyR(z)
dξ > 0. So ϕt+1(yR(z))dy

R(z)
dξ e−λz >

0. In addition, by the inductive hypothesis, ϕt+1 is an increasing function. For any ξ < z,

yR(ξ) < yR(z), thereby ϕt+1(yR(z)) > ϕt+1(yR(ξ)). Moreover, dyR(z)
dξ > dyR(ξ)

dξ because yR(z)

is convex. As a result,
∫ z

0 [ϕt+1(yR(z))dy
R(z)
dξ − ϕt+1(yR(ξ))dy

R(ξ)
dξ ]λe−λ(z−ξ)dξ > 0. Combining

these two terms, we conclude ϕ′t(z) > 0. Therefore, d2JR(z|x)
dz2 < 0, i.e. JR(z|x) is concave.

Proof of Proposition 4.6.4

We examine the first-order condition dJL(y|x)
dy 0. When y ≤ 0, we have seen in the main text

dJL(y|x)
dy = −c+ b+ δc > 0. We now consider the case y > 0.

−c− h

1− δ + δ
h+ r(1− δ)

1− δ e−λy(1−δ) + δΠ′(y) + {[b− r(1− δ)e−λy + [h+ r(1− δ)]e−λy(1−δ)}eλ(y0−x) = 0

By moving the terms, we end up with the following equation

c+ h
1−δ − δ

h+r(1−δ)
1−δ e−λy(1−δ) − δΠ′(y)

[b− r(1− δ)e−λy + [h+ r(1− δ)]e−λy(1−δ) = eλ(y0−x) (C.15)

Proposition 4.6.3 ensures that the numeration c+ h
1−δ−δ

h+r(1−δ)
1−δ e−λy(1−δ)−δΠ′(y) is increasing

in y. And the denominator [b−r(1−δ)e−λy+[h+r(1−δ)]e−λy(1−δ) is decreasing in y. Therefore,

the fraction as a whole is a increasing function of y. As a result, for any fixed x, the solution

of (C.15) is unique. What is more, the right-hand side of (C.15) is equal to eλ(y0−x) decreasing

in x. The solution yL(x) will also decrease in x.

Proof of Theorem 4.6.5

We apply a similar proof as the two-period case. We prove the theorem by contradiction.

Suppose under the optimal contract, there exists “bump” at [x−, x+] in the retailer’s profit-to-

go function. We focus our attention on the sub-interval and construct the subproblem as an
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optimal control problem.

(P[x−, x+]) max
y(x)

∫ x+

x−
J(y(x)|x)g(x)dx

s.t.


u′(x) = v′(y(x)) + δU ′(y(x)), x ∈ [x−, x+]

u(x−) = u(x−) and u(x+) = u(x+)

y(x) ≥ x and y′(x) ≤ 1 x ∈ [x−, x+]

where J(y|x) is the virtual surplus anchoring at the bottom endpoint x−.

J(y|x) = cx− cy + v(y) + δU(y) + δΠ(y)− [v′(y) + δU ′(y)]
G1(x+

1 )−G1(x1)
g1(x1)

Similar as before, the subproblem P[x−, x+] can be translated into an optimal control problem

with two fixed endpoints and two constraints on the control variable y′(x) ≤ 1 and y(x) ≥ x.

The corresponding Hamiltonian should be H(y|x, η) = J(y|x)g(x) + η(x)[v′(y) + δU ′(y)] and

the Lagrangian should be L(y|x, η, ρ) = H(y|x, η) + ρ1(y − x) + ρ2(y′(x) − 1). Furthermore,

the adjoint parameter η should satisfy

η′(x) = ∂L
∂u = 0

η(x+) = β for some constant β
. So η should be a

constant, i.e. η(x) = β for all x ∈ [x−, x+].

We first investigate the first-order derivative of the Hamiltonian:

∂H

∂y
(y|x) =


g(x){b+ δc− c} > 0, y < 0

g(x){−c− h
1−δ + δ h+r(1−δ)

1−δ e−λy(1−δ) + δΠ′(y)

+eλ(y0−x)(G(x+)− β){[b− r(1− δ)]e−λy + [h+ r(1− δ)]e−λy(1−δ)}}, y > 0

=

g(x){b+ δc− c} > 0, y < 0

g(x){−ϕ(y) + eλ(y0−x)(G(x+)− β){[b− r(1− δ)]e−λy + [h+ r(1− δ)]e−λy(1−δ)}}, y > 0

As a result, the corresponding first-order condition should be

ϕ(y)

[b− r(1− δ)]e−λy + [h+ r(1− δ)]e−λy(1−δ) = eλ(y0−x)(G(x+)− β) (C.16)

Proposition 4.6.3 guarantees that the left-hand side of (C.16) is increasing in y whereas the right-

hand side of (C.16) is decreasing in x. Therefore, (C.16) has at most one solution. Besides,

the solution (if exists) must strictly decrease in x. In conclusion, when x ≤ 0, the optimal

control y∗(x) is either 0 or the solution of (C.16). When x > 0, the optimal control y∗(x) is

the maximum between x and the solution of (C.16).

Suppose for all x ∈ [x−, x+], the optimal control y∗(x) is the solution of (C.16), we clearly

have y∗(x−) > y∗(x+). Now we need to take care about the other two cases y∗(x) = 0 and

y∗(x) = x. Notice that y′∗(x) ≤ 1, i.e. the order quantity q∗(x) = y∗(x) − x decreases in x.
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Once there is a point x̂ < x+ such that y∗(x̂) = x̂, we must have y∗(x) = x for all x > x̂. On

the other hand, recall that ∂H
∂y (y|x), as a function of y, is decreasing in x. We can easily argue

that if there is a point x̂ < x+ such that y∗(x̂) = 0, we must have y∗(x) = 0 for all x̂ < x < 0.

No matter what cases it is, we always end up with y∗(x−) ≤ y∗(x+). However, one necessary

condition for the existence of “bump” is y∗(x−) ≤ yR(x−) < yR(x+) ≤ y∗(x+). The necessary

condition cannot be satisfied, and thereby the IR constraint will be violated at some point

between [x−, x+]. We obtain a contradiction. So there cannot exist “bump” in the retailer’s

profit-to-go function under the optimal contract.

Proof of Lemma 4.6.6

As the two-period case, because yR(x) > x strictly increases in x and yL(x) strictly decreases

in x. The solution of yR(x) = yL(x) must be unique.
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