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Abstract

Analyzing test data of stochastic optimization algorithms under random
restarts is challenging. The data needs to be resampled to estimate the
behavior of the incumbent solution during the optimization process. The
estimation error needs to be understood in order to make reasonable in-
ference on the actual behavior of the incumbent solution. Comparing the
performance of different algorithms based on proper interpretation of the
estimator is also very important. We model the incumbent solution of the
optimization problem over time as a stochastic process and design an estima-
tor of it based on bootstrapping from test data. Some asymptotic properties
of the estimator and its bias are shown. The estimator is then validated by
an out-of-sample test. Three methods for comparing the performance of
different algorithms based on the estimator are proposed and demonstrated
with data from a road design optimization problem.
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Chapter 1

Introduction

1.1 Comparing Stochastic Optimization
Algorithms

Comparing the performance of different optimization algorithms is an
important task in modern research [VWD16]. Stochastic optimization algo-
rithms are algorithms designed to solve optimization problems with the use
of some random procedures. Since they rely on certain random procedures
to seek the solutions to optimization problems, their outputs are usually
random. Computational complexity is usually not sufficient for compari-
son between expensive algorithms, because they tend to belong to the same
complexity class. Hence, numerical experiments are commonly used to com-
pare the performance of expensive stochastic optimization algorithms. To
properly characterize a stochastic algorithm’s performance, test should be
conducted over a range of random restarts. Since test data is also random,
comparing the performance of different algorithms based on it is nontrivial,
especially when limited data is available due to the expensiveness of the
algorithm. In this thesis, a methodology is developed for comparing the
performance of expensive stochastic optimization algorithms when random
restarts are employed.

Researchers have proposed many comparison methods based on running
time or number of iterations, e.g., operating characteristics [Gri78], time-
to-target plots [FRS94], run-time distributions [HS98], performance profiles
[DM02] and data profiles [MW09]. However, none of the above methods ad-
dresses how the behavior of stochastic algorithms are influenced by random
parameters.

Some researchers have examined comparison methods for stochastic op-
timization algorithms. Since the performance of stochastic algorithms could
be sensitive to random inputs such as random seed [FRK+08], performance
tests without considering this issue could give misleading results. The op-
erational zone proposed by Sergeyev et al. [SKM16] handled this issue by
applying random restarts in the test and showing the best and worst case
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1.1. Comparing Stochastic Optimization Algorithms

performances along with the average performance. This approach is based
on the assumption that the end user will solve problems with a single al-
gorithm run. If a problem is solved with a single run, then it would be
reasonable to project the performance based on the probability distribu-
tions of the solution time and quality. However, in practice it is common
to employ multiple random restarts when an optimization problem is solved
by a stochastic algorithm [BHHR14, HJK96, KGB13, Spa03]. In particu-
lar, when the objective function is non-convex, multiple restarts will help
the algorithm find more local minima and thus achieve a better solution
[KG09].

For example, given different initial points, the algorithm may converge to
different local minima. For algorithms relying on random seeds to determine
search paths, different seeds will also result in different local minima. Even
if the objective function is convex, different parameter settings may lead
to different solutions or running times. For instance, a line search method
may return different solutions when different values are used as the step size
parameter. Alternatively, a pattern search algorithm using different random
seeds may have the same output but different running time, because the
pattern may move through different trajectories depending on the random
numbers generated by the seed.

In these situations, the probability distributions of the solution time and
quality alone cannot disclose sufficient information on the performance of
the algorithms. With different restarts, both the solution and the running
time can be different, which makes it nontrivial to compare the performance
of different algorithms. In addition, if the algorithms being compared are
expensive, only limited amount of test data is available for comparison and it
becomes more challenging to compare them. Therefore, statistical methods
need to be applied to process the test data and make inference about the
performance.

Truchet et al. [TRC12] proposed a statistical method to analyze the par-
allel speedup of Las Vegas Algorithms [Bab79], i.e., algorithms that always
give correct results but take random running times. This is the first work
to analyze the performance of stochastic algorithms under multiple restarts.
However, the method by Truchet et al. [TRC12] is not sufficient for han-
dling the problem of interest in this thesis. Firstly, it focuses on the analysis
of an algorithm’s speed under parallel rather than sequential restarts. In
addition, it is limited to a subclass of stochastic optimization algorithms.
A stochastic optimization algorithm in general may return different outputs
under different random restarts, thus a new approach is needed to analyze
both the speed and solution quality of the algorithms.

2



1.2. Road Design Optimization

Moreover, Truchet et al.’s work mainly relies on the assumption that the
running time distribution is exponential or lognormal. This is further based
on the assumption that both the solution in the search space and the search
speed are uniformly distributed, which is not always satisfied in reality. On
the contrary, the statistical method developed in this thesis does not impose
any assumption about the distribution of the the algorithm’s running time
or the output.

1.2 Road Design Optimization

The comparison methods developed in this thesis will be applied to an
optimization problem in road design. A good transportation system is es-
sential to the economic development of a country [RCS06, Don10]. Road
transportation forms a significant part of all forms of transportation. To
build and maintain the road network, governments all over the world need
to spend large amount of money. For example, in 2008 the Canadian gov-
ernment spent 20.9 billion dollars, which is 1.6% of the country’s GDP to
build and maintain 1 million kilometers of road [Can08]. When a road is
designed, it is important to take effort in reducing construction costs.

In particular, road design optimization is the problem of minimizing
the cost of building a road between two points given the ground profile
and design constraints [ABS05]. The geometric specification of the road is
called the alignment and is a curve in three-dimensional Euclidean space
connecting the start and the end of the road. Usually, road alignment is
modeled separately as the horizontal alignment and the vertical alignment
[HEAEH98]. Consequently, a complete road design optimization problem
is often defined as a bi-level optimization problem, of which the outer level
is the horizontal alignment optimization problem and the inner level is the
vertical alignment optimization problem [MLH15]. The algorithms tested
in this thesis are based on the horizontal alignment optimization model in
[MLH15] and the vertical alignment optimization model in [HHLR14]. A
brief introduction of the two models are in the next two subsections.

1.2.1 Horizontal Alignment Optimization

The horizontal alignment is the projection of the three-dimensional road
alignment onto the xy-plane, as shown in Figure 1.1. In particular, the x
and y coordinates represent the location of an alignment and the z coordi-
nate represents the elevation of points in the Figure 1.1. The blue curve is
the three-dimensional road alignment in the xyz-space connecting the two

3



1.2. Road Design Optimization

1.2. Road design optimization

Figure 1.1: A three dimensional alignment (blue curve) showing its projec-
tion onto the XY -plane. The projected red curve is the horizontal alignment.

– user cost, and

– social and environment cost.

Planning and administrative costs are not considered in the alignment
optimization because these costs are insensitive to alignment alternatives
[JSJ06]. In the study of Chew et al. [CGF89], construction costs are clas-
sified into six categories. Table 1.1 lists the cost components of the con-
struction costs and the associate approximate contributions toward the total
construction cost.

The percentage of each cost component in the total construction cost is
not fixed [JSJ06]. Depending on the road location, it could be significantly
di↵erent. For example, the land acquisition cost might be higher in urban
areas, whereas in mountainous areas, the earthwork cost is substantially
higher than other costs.

Maintenance costs have many classifications (at least eight) such as road-
way surface, bridges, tunnels, roadside features, drainage, shoulders and ap-
proaches maintenance, snow and ice control, and tra�c control devices. The
net maintenance cost over 30 years is about 5% of the total construction cost
[OEC73].

User costs (vehicle operating costs) consist of the cost of vehicle main-
tenance, the value of travel time and the cost of tra�c accidents. The net
user cost over 30 years varies approximately from 300% to 1000% of the
total construction cost [OEC73].

3

Figure 1.1: 3D road alignment. Picture from [Mon14], used with permission.

end points; the red line is defined on the xy-plane and is the projection of
the three-dimensional road alignment. The horizontal alignment consists of
straight lines and curves. The framework we present here models the curves
as arcs. For the smoothness of the road, the straight lines are tangent to the
arc(s) they connect to, so they are called tangents. To model a horizontal
alignment with n turns from its start S and end E, n arcs and n+1 tangents
are needed. Each arc is connected by two tangents. The first and the last
tangent respectively connect S to the first arc and E to the last arc. For
the ith turn, the radius of the arc is denoted as ri ∈ R+ and the intersection
point of the two tangents connecting the arc is denoted by Pi ∈ R2. An
example of horizontal alignment modeled by arcs and tangents is shown in
Figure 1.2. In particular, the red lines are tangents and the blue curves
are arcs. Given any horizontal alignment, a vertical alignment optimization
problem can be derived as shown in the next subsection. The cost of a hor-
izontal alignment is the minimum of the vertical alignment problem derived
from it.

In particular, the horizontal alignment optimization problem is a black-
box optimization problem, which is also known as derivative-free optimiza-
tion problem [CSV09]. In this problem, the vertical alignment solver is
treated as a black-box, which takes the data input and returns the min-
imum of the vertical alignment problem. A horizontal alignment with n
turns can be specified by {(ri, Pi)}ni=1. Given a vertical alignment opti-

4
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Figure 1.2: Horizontal road alignment

mization model, the cost of constructing a road can also be determined by
{(ri, Pi)}ni=1, therefore it is the collection of decision variables in the horizon-
tal alignment optimization problem. Three sets of constraints are imposed
to ensure that i) the road is continuous, ii) the location of the turns are de-
sired, and iii) the turning radius is large enough for safety. For more details,
please refer to [Mon14].

1.2.2 Vertical Alignment Optimization

Given a horizontal alignment, the vertical alignment represents the ele-
vation of the road along the horizontal alignment [Kan08]. Mathematically,
it is a function of the distance from the start of the road along its corre-
sponding horizontal alignment. In particular, the model used in this thesis
specifies the vertical alignment by quadratic splines, as shown in Figure 1.3.

In practice, terrain elevation data are sampled discretely, hence the costs
are calculated only at certain sample points. A vertical alignment is divided
into sections, of which each has a sample point for cost calculation. Accord-
ing to [HHLR14], the costs associated with road construction are usually
earth cutting, filling and movement costs. For example, to build the road
in Figure 1.3, earth needs to be filled to sections 0 to 3, cut from sections
4 to 6 and transported between the sections. Borrow pits and waste pits
can be used (at a cost) to deal with absent or excess earth. The objec-
tive function of this optimization problem is the sum of all the above costs
throughout the entire road. The decision variables are the coefficients of the

5
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Figure 1.3: Vertical road alignment

quadratic splines and the volume of earth moved between different sections,
borrow pits and waste pits. Constraints are imposed for smoothness of the
splines, curvature of the road for safety, balance of earth movements, maxi-
mum cut and fill volume, etc. This optimization problem is formulated as a
mixed-integer linear program. For more details, please refer to [HHLR14].

1.2.3 Implementation and Surrogate Cost Functions

The vertical and horizontal alignment problems are respectively imple-
mented in IBM ILOG CPLEX 12.5.1 (http://www.cplex.com) and NOMAD
3.7 [AAC+].

Figure 1.4(a) shows the relation between the horizontal and the vertical
alignment optimization problems.

In black-box optimization, surrogates, or surrogate functions, are cheaper
approximation functions for the actual objective function for the purpose of
speeding up the minimization process [VDHL17]. A framework for usage of
surrogates in black-box optimization can be found in [BDF+99]. Generally,
in each iteration the black-box solver would evaluate the surrogate on a set
of points and use the result to guide the evaluation of the actual objective
function afterwards. Ideally, the solver can quickly identify potential descent
directions with the surrogate and save time on the evaluation of the expen-
sive objective function. In the case of road design optimization, a surrogate
would be a function that can provide quick approximation for the minimal
cost of the vertical alignment optimization problem. The model framework

6



1.3. Challenges and Organization

(a) Original Model. (b) Surrogate Model.

Figure 1.4: 3D alignment optimization framework. HA and VA correspond-
ingly stand for horizontal alignment and vertical alignment.

of the road alignment optimization problem with surrogate is illustrated in
Figure 1.4(b).

Surrogates are usually categorized into two types [BDF+99]. One type is
functions built through interpolating or smoothing sample points of the ac-
tual objective function. The other is objective functions based on simplified
physical models. In addition, some surrogates are dynamic, i.e., able to ad-
just themselves according to the optimization results, and other surrogates
are static, i.e., remain the same during the optimization process. In this
thesis, all the surrogates designed are static surrogates based on simplified
physical models and described in Section 4.1.

When the surrogate model is implemented the user needs to provide two
objective functions, marking one as the true cost function and the other as
the surrogate. In the process of optimizing a road alignment with surrogates,
the use of the surrogate is managed internally by NOMAD. Specifically, NO-
MAD evaluates the surrogate function over points in the poll set and use the
results to decide the order that the true objective function is evaluated. Sec-
tion 6.2 of the NOMAD User Guide [ALT09] provides detailed instructions
on the implementation of surrogates.

1.3 Challenges and Organization

There are three challenges in analyzing the test data. The first challenge
is extracting meaningful information from the test data. During the test, we

7
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observe a particular path of solutions (path is formally defined in Section
2.3), but it is only one realization of many possible paths and does not
necessarily reflect the general case. Specifically, when different solutions
appear in different orders, the path evolves in different ways. To avoid the
bias of any single observation, in Chapter 2 a bootstrap [ET93] technique is
developed to simulate numerous solution paths based on the test data, and
thus to offer a more comprehensive view on the behavior of the solutions.

Another challenge is making proper use of the bootstrap result. Caution
should be taken when using bootstrap to estimate the minimum or maximum
of a statistical sample [Che07]. In our case, a point in the solution path
is the minimum of all previously generated solutions, therefore we need
to understand the limitations of our estimation to the incumbent solution.
In Section 2.4, the asymptotic correctness and the bias of the bootstrap
estimator are analyzed. In Chapter 3, the reliability of the estimator is
demonstrated with an out-of-sample test. To the author’s knowledge, this
work is the first to analyze the estimation error of the test result for the
performance of optimization algorithms.

The last challenge is interpreting the processed data for intuitive com-
parison of different algorithms. Many popular comparison methods [Gri78,
FRS94, HS98, DM02, MW09] successfully compared the performance of op-
timization algorithms through their speeds for solving certain problems or
solution qualities under a time budget. However, none of them are designed
for the case where multiple restarts are employed. When the algorithm’s out-
put may be different under different random restarts, the user may employ
multiple restarts to achieve better results. In this thesis, we analyze stochas-
tic optimization algorithm’s performance when multiple random restarts are
employed. The major challenge arises when both speed and solution quality
are simultaneously considered by modeling the solution path as a stochastic
process. In Chapter 4, three comparison methods are demonstrated along
with test data of 11 algorithms solving the road design optimization prob-
lem mentioned in the previous section. Before introducing the comparison
methods, the algorithms being compared are described in Section 4.1.

8



Chapter 2

Bootstrapping the
Incumbent Solution Process

In this chapter, we develop a bootstrap method to model the solution
paths of the stochastic optimization algorithms being compared. Since the
method will be applied to every algorithm in the same way, by “the algo-
rithm”, we mean a given stochastic optimization algorithm.

2.1 Preliminaries

The term incumbent solution usually means the best solution found so
far during the process of solving an optimization problem, but the exact
definition could be different under different scenarios. Below is a formal
definition of the incumbent solution as used in this thesis.

Definition 2.1. When an optimization problem is solved by a stochastic
algorithm with random restarts, the incumbent solution at a given time is
the optimal output of all existing outputs generated by the algorithm since
the first restart.

The cumulative distribution function is a very important concept in
probability and statistics, since a probability distribution can be fully char-
acterized by its cumulative distribution function.

Definition 2.2. The cumulative distribution function (CDF) of a real-
valued random variable Z is defined as

GZ(z) = P(Z ≤ z),

where z ∈ R.
The cumulative distribution function for a vector of real-valued random

variables (Z1, Z2, . . . , Zn) is defined as

GZ1,Z2,...,Zn(z1, z2, . . . , zn) = P(Z1 ≤ z1, Z2 ≤ z2, . . . , Zn ≤ zn),

where z1, z2, . . . , zn ∈ R.

9



2.2. Problem Definition

Definition 2.3. The indicator function of a set A is defined as

IA(x) =

{
1 if x ∈ A,
0 if x 6∈ A.

Definition 2.4. Let {Zi}ni=1 be independent, identically distributed (i.i.d.)
real-valued random variables with a common distribution function. Their
empirical cumulative distribution function (ECDF) is defined as

Ĝn(z) =
1

n

n∑
i=1

I(−∞,z](Zi) .

Definition 2.5. A set of real-valued random variables Z1, Z1, . . . , Zn are
conditionally independent given another random variable Z if

GZ1,Z2,...,Zn(z1, z2, . . . , zn|Z) =
n∏
i=1

GZi(zi|Z),

where G is the cumulative distribution function and z1, z2, . . . , zn ∈ R.

Definition 2.6. A sequence of random variables {Zn} converges in proba-
bility to the random variable Z, or Zn → Z in probability, if

lim
n→∞

P(|Zn − Z|≥ ε) = 0

for all ε > 0.

Definition 2.7. Let θ̂ be an estimator of a real number θ. The bias of θ̂ is
defined as

E[θ̂]− θ.

2.2 Problem Definition

The algorithm is used to solve the following problem with different ran-
dom restarts:

min f(x) : Rn 7→ R
subject to: x ∈ X ⊆ Rn.

(2.1)

Let (Ω,P) be a probability space, where Ω is the set of all possible restarts
and P is the probability of using certain restart(s). Given certain restart,

10



2.2. Problem Definition

the algorithm becomes deterministic, thus we can assume it returns a deter-
ministic output and spends a deterministic amount of CPU time under the
same test environment. We then define a random variable

(Y , T ) : Ω 7→ R× R++,

where Y (ω) is the output produced and T (ω) is the time spent if ω ∈ Ω
is employed. The unknown cumulative distribution function of (Y, T ) is
denoted by

GY,T (y, t).

To understand this framework better, we present the following example.

Example 2.1. Consider the following instance of Problem 2.1:

min f(x) : Rn 7→ R
subject to: x ∈ [0, 1]n.

(2.2)

Suppose the problem above is approached by the Random Pursuit Algorithm

Algorithm 1: Random Pursuit

Input:
A problem of the form (2.2)
K ∈ N: number of iterations
x0 : an initial point
Output: approximate solution xK to (2.2)
for k ← 0 to K − 1 do

choose uk uniformly at random from {y ∈ Rn : ‖y‖2= 1}
set xk+1 ← xk + LS(xk, uk) · uk

end

[SMG13] shown in Algorithm 1, where LS(xk, uk) is a line search subroutine
(e.g., the golden-section search [Kie53]). Depending on the user’s strategy
for employing restarts, there are a few possible cases of random restarts as
discussed below.

Each case is characterized by (Ω,P). The probability measure P is some-
times much easier to describe in terms of probability distributions, especially
when Ω ⊂ R. However, the probability space (Ω,P) itself is not a random
variable. If we define the random variable

I(ω) : Ω 7→ Ω = w

11



2.2. Problem Definition

as the identity map, then I is a random variable on Ω with probability
measure P. In this way, the law of P can be shown via the probability distri-
bution of I with sufficient technical validity. For technical details of prob-
ability measure and random variable, please refer to any measure-theoretic
probability theory book, for example [JP03].

Next, we describe three cases of random restarts.
Case 1: The random seed. The random search directions {uk}K−1

k=0

depend on a sequence of pseudo-random numbers, which depend on the
random seed given to the algorithm. Therefore, the random seed affects the
result through search directions. If the algorithm accepts 32-bit unsigned
binary integer values as random seeds, then Ω = {0, 1, . . . , 232− 1}. Usually
random seeds are sampled uniformly from Ω and I ∼ U{0, 232 − 1}.

Case 2: Random initial point. Searching from different initial points
can also result in different solutions. Without any prior understanding of
the objective function, the user can uniformly sample initial points from
the feasible region [0, 1]n, then I follows a multi-variate continuous uniform
distribution between 0 and 1.

Case 3: Combination of multiple cases. For instance, when Case 1
and Case 2 are combined, the setup can be Ω = {0, 1, . . . , 232 − 1} × [0, 1]n

and I = (I1, I2), where I1 ∼ U{0, 232 − 1} and I2 follows a multi-variate
continuous uniform distribution between 0 and 1.

To compare the performance of different algorithms, we need to under-
stand how the incumbent solution evolves during the optimization process.
We model the incumbent solution by the following stochastic process.

Definition 2.8. Given a stochastic optimization algorithm, the incumbent
solution process is defined as

Γ(τ) = min

{
inf
k∈N

{
Yk :

k∑
i=1

Ti ≤ τ

}
, f(x0)

}
,

where τ ≥ 0 is the time since the start of the optimization process, the
sequence {(Yi, Ti)}∞i=1 are i.i.d. random variables following the distribution
of (Y, T ) and x0 is a given point in the feasible set X.

When τ < T1, the infimum in the above definition is +∞, because the
set it corresponds to is ∅. Thus, the value f(x0) is used to avoid ∞ when τ
is small. The value f(x0) can be considered as the minimal known value of

12



2.3. Bootstrap Estimation of the Incumbent Solution Process

f before the optimization process. Clearly, the choice of x0 in a particular
optimization problem should be the same for different algorithms for a fair
comparison of the solution quality.

We want to compare the performance of different algorithms by com-
paring their incumbent solution processes. Since the incumbent solution
process Γ(τ) is characterized by the unknown GY,T (y, t), we cannot fully
understand it. However, we can estimate it based on an observed sample
of (Y, T ) in the test. Next, we will develop an estimator for the incumbent
solution process’s cumulative distribution function,

GΓ(y; τ) = P (Γ(τ) ≤ y) , (2.3)

through bootstrapping from the sample.

2.3 Bootstrap Estimation of the Incumbent
Solution Process

We now introduce a theoretical framework for the bootstrap method. As
mentioned earlier, GY,T (y, t) characterizes Γ(τ) and thus GΓ(y; τ), but it is
unknown. In the test, we observe {(Yi, Ti)}Ni=1, which is a sample of (Y, T )
with size N . It follows that (Yi, Ti) has the same distribution as (Y, T ) for
all 1 ≤ i ≤ N .

Definition 2.9. Given a sequence {(Yi, Ti)}Ni=1 of i.i.d. random variables
following the distribution of (Y, T ), the theoretical approximator for the
incumbent solution process is a stochastic process defined as

Γ̂(τ ;N) = min

{
inf
k∈N

{
YUk :

k∑
i=1

TUi ≤ τ

}
, f(x0)

}
,

where x0 is a given point in the feasible set X and {Ui}∞i=1 are i.i.d. discrete
uniform random variables between 1 and N .

Given the above definition, {(YUi , TUi)}∞i=1 are i.i.d. random variables
and

P {(YUi , TUi) = (Yj , Tj)} =
1

N

for all i ≥ 1 and 1 ≤ j ≤ N . Resampled with replacement from {(Yi, Ti)}Ni=1,
the set {(YUi , TUi)}∞i=1 approximates {(Yi, Ti)}∞i=1. As a result, Γ̂(τ ;N) ap-
proximates Γ(τ) based on the observations {(Yi, Ti)}Ni=1.

13
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Next, we introduce the implementation of the bootstrap method. Given
{(Yi, Ti)}Ni=1, the cumulative distribution function of the theoretical approx-
imator is defined by

GΓ̂(y; τ,N) = P{Γ̂(τ ;N) ≤ y}, (2.4)

and is deducible analytically. However, it is difficult to compute, therefore
it is estimated by its empirical cumulative distribution function based on
a finite collection of {(YUi , TUi)}∞i=1. We simulate B random paths of the
theoretical approximator based on {(Yi, Ti)}Ni=1 for 0 ≤ τ ≤ τmax, where
τmax is the upper bound of the time horizon we focus on. To ensure data
sufficiency for each path, we generate

M =

 τmax
min

1≤i≤N
Ti

 (2.5)

sample outputs in each path. In particular, we generate only the first B ·M
elements of {(YUi , TUi)}∞i=1 and reindex them as

{(Y ∗i,j , T ∗i,j)}
i=B,j=M
i,j=1 .

Definition 2.10. Given resampled test data {(Y ∗i,j , T ∗i,j)}
i=B,j=M
i,j=1 , the ith

bootstrap path is defined as

Γ̂i(τ ;N,B) = min

 inf
1≤k≤M

Y ∗i,k :
k∑
j=1

T ∗i,j ≤ τ

 , f(x0)

 ,

where x0 is a given point in the feasible set X, 1 ≤ i ≤ B and 0 ≤ τ ≤ τmax.

Finally, our estimator is given by the following definition.

Definition 2.11. The bootstrap estimator for the cumulative distribution
function of the incumbent solution process is defined as the bootstrap paths’
empirical cumulative distribution function

ĜΓ̂(y; τ,N,B) =
1

B

B∑
i=1

I(−∞,y]

(
Γ̂i(τ ;N,B)

)
.

14
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2.4 Theoretical Analysis

In this Section, we will first show the bootstrap estimator proposed in
Section 2.3 is asymptotically consistent. The following fact provides a foun-
dation for the proof.

Fact 2.12. [BF81, Corollary 4.1] Let {Zi}Ni=1 be a sample from an unknown
cumulative distribution function G, which is estimated by {Zi}Ni=1’s empirical
cumulative distribution function GN . Given {Zi}Ni=1, let {Z∗i }Bi=1 be condi-
tionally independent, with common distribution GN . Let GNB be the empir-
ical cumulative distribution function of {Z∗i }Bi=1. Then, as N and B → ∞,
‖GNB −G‖→ 0 in probability.

Theorem 2.13. Given any τmax ∈ R+, ‖ĜΓ(y; τ,N,B)−GΓ(y; τ)‖→ 0 in
probability for all τ ∈ [0, τmax] as N →∞ and B →∞.

Proof. We first construct the elements needed for the use of Fact 3.1. Since
Γ̂(τ ;N) is based on a finite sample {(Yi, Ti)}Ni=1, given any τmax ∈ R+, it
has finitely many unique paths for τ ∈ [0, τmax]. Let this finite number be
denoted as N∗(τmax), then the collection of unique paths of Γ̂(τ ;N) can

be denoted as {Γ̂i(τ ;N)}N
∗(τmax)

i=1 . Each unique path has the same proba-
bility, thus GΓ̂(y; τ,N) is the empirical cumulative distribution function of

{Γ̂i(τ ;N)}N
∗(τmax)

i=1 .
Next, we apply Fact 3.1 to show the result. For any τ ∈ [0, τmax], the

set {Γ̂i(τ ;N)}N
∗(τmax)

i=1 is a sample from the unknown distribution GΓ(y; τ),

which is estimated by {Γ̂i(τ ;N)}N
∗(τmax)

i=1 ’s empirical cumulative distribu-

tion function GΓ̂(y; τ,N). Given the sample {Γ̂i(τ ;N)}N
∗(τmax)

i=1 , it follows

that {Γ̂i(τ ;N,B)}Bi=1 are conditionally independent with common distri-
bution GΓ̂(y; τ,N). The function ĜΓ(y; τ,N,B) is the empirical cumula-

tive distribution function of {Γ̂i(τ ;N,B)}Bi=1. As N → ∞ and B → ∞,
we also have N∗(τmax) → ∞ and B → ∞, then Fact 2.12 implies that
‖ĜΓ(y; τ,N,B)−GΓ(y; τ)‖→ 0 in probability for all τ ∈ [0, τmax].

Although the bootstrap estimator is asymptotically consistent by The-
orem 2.13, it has a bias when N and B are finite. Next we will show a
property of the bias.

The following assumption facilitates a step in the proof of Theorem 2.15.
It assumes the bootstrap method introduced in Section 2.3 can give an
unbiased estimation for the distribution of a counting process associated
with the incumbent solution process.
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Assumption 2.1. Let C(τ) be a random variable representing the count
of outputs generated by the algorithm at time τ , i.e., the maximal index i
satisfying the constraint in Definition 2.8. Let Ĉ(τ ;N) be a random variable
representing the count of outputs in the path of Γ̂(τ ;N) by time τ , i.e., the
maximal index j satisfying the constraint in Definition 2.9. Assume that the
expected distribution of Ĉ(τ ;N) is the same as the distribution of C(τ), i.e.,
for all i we have:

E
[
P(Ĉ(τ ;N) = i)

]
= P(C(τ) = i).

The following fact is a basic property of Order Statistics and is important
for the proof of the next theorem.

Fact 2.14. [DN05, (2.12)] Let Z1, Z2, . . . , Zn be independent and iden-
tically distributed random variables with cumulative distribution function
G(z). Then the cumulative distribution function of the smallest element
in Z1, Z2, . . . , Zn is given by

1− [1−G(z)]n.

Theorem 2.15. Given Assumption 2.1, the bootstrap estimator’s bias

E[ĜΓ̂(y; τ,N,B)]−GΓ(y; τ)

is non-positive.

Proof. The estimator ĜΓ̂(y; τ,N,B) has two sources of uncertainty: the
random sample

{(Yi, Ti)}Ni=1

and the random bootstrap paths

{(Y ∗i,j , T ∗i,j)}
i=B,j=M
i,j=1 .

We first eliminate the latter in the expectation:

E[ĜΓ̂(y; τ,N,B)]−GΓ(y; τ) (2.6)

=E
{
E
[
ĜΓ̂(y; τ,N,B)|{(Yi, Ti)}Ni=1

]}
−GΓ(y; τ) (2.7)

=E
{
GΓ̂(y; τ,N)

}
−GΓ(y; τ), (2.8)

where the last step is a result of the fact that ĜΓ̂(y; τ,N,B) is defined as an

empirical CDF of Γ̂(τ ;N) given any {(Yi, Ti)}Ni=1.
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Next, we will analyze

E
[
GΓ̂(y; τ,N)

]
−GΓ(y; τ)

as a proxy of E[ĜΓ̂(y; τ,N,B)]−GΓ(y; τ).
Case 1: 0 ≤ τ < min{Ti}Ni=1. In this case,

Γ(τ) ≤ f(x0) = Γ̂(τ ;N) (2.9)

⇒ GΓ(y; τ) ≥ ĜΓ̂(y; τ,N) ∀{(Yi, Ti)}Ni=1 (2.10)

⇒ GΓ(y; τ) ≥ E
[
ĜΓ̂(y; τ,N)

]
(2.11)

⇒ E
[
ĜΓ̂(y; τ,N)

]
−GΓ(y; τ) ≤ 0. (2.12)

Hence, we proved the non-positivity of the bias for the first case.
Case 2: τ ≥ min{Ti}Ni=1. Let GY (y) denote the marginal cumulative

distribution function of Y . Let Ĉ∗(τ ;N) be the count of unique outputs in

the path of Γ̂(τ ;N) by time τ , i.e., the number of unique values in {Yi}Ĉ(τ ;N)
i=1 .

We introduce Ĉ∗(τ ;N) to enable the use of Fact 2.14. Let C∗(i) be the
count of unique values in {Yj}ij=1. All of C(τ), Ĉ(τ ;N), Ĉ∗(τ ;N) and

C∗(i) are random. The process Ĉ(τ ;N) solely depends on the distribution
of {Ti}Ni=1, but C∗(i) is independent of {Ti}Ni=1. Therefore, Ĉ(τ ;N) and
C∗(i) are independent as needed in the proof below. Now, by Fact 2.14,

E
[
GΓ̂(y; τ,N)

]
−GΓ(y; τ) (2.13)

=E
[
1− (1−GY (y))Ĉ

∗(τ ;N)
]
− E

[
1− (1−GY (y))C(τ)

]
(2.14)

=1− E
[
(1−GY (y))Ĉ

∗(τ ;N)
]
− 1 + E

[
(1−GY (y))C(τ)

]
(2.15)

=E
[
(1−GY (y))C(τ)

]
− E

[
(1−GY (y))Ĉ

∗(τ ;N)
]

(2.16)

=E
[
(1−GY (y))C(τ)

]
− E

[
E
[
(1−GY (y))Ĉ

∗(τ ;N)|{(Yi, Ti)}Ni=1

]]
(2.17)

=
∞∑
i=1

P(C(τ) = i)(1−GY (y))i − E

[ ∞∑
i=1

P(Ĉ(τ ;N) = i)(1−GY (y))C
∗(i)

]
(2.18)

=

∞∑
i=1

P(C(τ) = i)(1−GY (y))i

−
∞∑
i=1

E
[
P(Ĉ(τ ;N) = i)

]
E
[
(1−GY (y))C

∗(i)
] (2.19)
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=
∞∑
i=1

P(C(τ) = i)(1−GY (y))i −
∞∑
i=1

P(C(τ) = i)E
[
(1−GY (y))C

∗(i)
]
(2.20)

=

∞∑
i=1

P(C(τ) = i)E
[
(1−GY (y))i − (1−GY (y))C

∗(i)
]
, (2.21)

where (2.20) is due to Assumption 2.1.
Since C∗(i) ≤ i is always true and 0 ≤ 1−GY (y) ≤ 1, then

(1−GY (y))i − (1−GY (y))C
∗(i) ≤ 0 (2.22)

is always true. Thus,

E
[
(1−GY (y))i − (1−GY (y))C

∗(i)
]
≤ 0. (2.23)

As P(·) ≥ 0, for all i ≥ 1 we have

P(C(τ) = i)E
[
(1−GY (y))i − (1−GY (y))C

∗(i)
]
≤ 0. (2.24)

It therefore follows that

E
[
GΓ̂(y; τ,N)

]
−GΓ(y; τ) (2.25)

=

∞∑
i=1

P(C(τ) = i)E
[
(1−GY (y))i − (1−GY (y))C

∗(i)
]

(2.26)

≤0, (2.27)

which shows the non-positivity of the bias for the second case.
In conclusion, E[ĜΓ̂(y; τ,N,B)]−GΓ(y; τ) = E

[
GΓ̂(y; τ,N)

]
−GΓ(y; τ) ≤

0.

As a consequence of the above theorem, we have E[Ĝ−1

Γ̂
(y; τ,N,B)] −

G−1
Γ (y; τ) ≥ 0, i.e., the expected estimations of the incumbent solution’s

quantiles are not less than their true values at any time τ .
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Chapter 3

Numerical Validation of the
Bootstrap Method

In the previous chapter, we introduced an estimator for the incumbent
solution process and analyzed its theoretical properties. In this section, we
numerically validate the estimator through an out-of-sample test.

3.1 Test Setup

In the test, we minimize five objective functions. In particular, we se-
lected five non-convex functions from [Ort12] and modified them in order
that they have more local minima. The objective functions are as follows:

f1(x) = exp

{
max {|cos (|sin(|xi|)|)| : i = 1, 2, . . . , n}

η[|tan(|cot(|x1|)|)|, |tan(|cot(|x2|)|)|, . . . , |tan(|cot(|xn|)|)|]

}
,

where η(x1, x2, . . . , xn) is the median of x1, xn, . . . , xn,

(3.1)

f2(x) = ln

(
m∑
i=1

m∑
j=i+1

sin2(3πxi) + (xi − 1)2
[
sin2(3πxj) + 1

]
+ (xj − 1)2

[
sin2(2πxj) + 1

])
,

(3.2)

f3(x) =

∣∣∣∣100− ‖x‖
π

∣∣∣∣+

n∑
i=1

log (|sin(xi)|) , (3.3)

f4(x) = ln

(∣∣∣∣∣
m∑
i=1

m∑
j=i+1

(xj + 47) sin

(√
|xi

2
+ xj + 47|

)

+ xi sin

(√
|xi − xj − 47|

) ∣∣∣∣∣
)
,

(3.4)
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f5(x) = −
m∑
i=1

m∑
j=i+1

∣∣∣∣sin(xi) cos(xj) exp

(∣∣∣∣1− 1

π

√
x2
i + x2

j

∣∣∣∣)∣∣∣∣. (3.5)

Each of the 5 objective functions is applied with 5, 10 and 50 variables,
resulting in 15 test functions. Setting the feasible set

X = {(x1, x2, . . . , xn) : −99 ≤ xi ≤ 99, i = 1, 2, . . . , n}

for all test functions, we have 15 test problems of the form (2.1).
The derivative-free optimization algorithm LTMADS [AD06] is used to

solve all of the test problems. The LTMADS algorithm is a direct search
method that uses random numbers to help determine poll directions. Fixing
a random seed can make the algorithm deterministic. We let Ω represent
the set of random seeds. For the purpose of numerical testing, we assume
that all positive integers not larger than 105 are used by the user as random
seeds, we can set Ω = {1, 2, . . . , 105}. In the test, we solve each test problem
with all ω ∈ Ω.

The derivative-free optimization software NOMAD 3.7.2 [AAC+] is based
on LTMADS and used as the solver in the numerical experiments. All the
computer codes are programed in MATLAB 2014b. The MATLAB version
of NOMAD is called through OPTI Toolbox [CW12]. All of the numerical
experiments in this chapter are performed on an Apple iMac with a 3.5 GHz
Intel Core i5 processor, 8 GB of RAM and a 64-bit Windows 8 operating
system under Boot Camp.

3.2 Basic Test Results

We use the data set from the numerical experiments to demonstrate the
accuracy of the bootstrap estimator by comparing it with the incumbent so-
lution process. Since all the test functions are cheap, we are able to generate
the test result for all ω ∈ Ω. Therefore, we know the distribution of (Y, T )
and can deduce the distribution of Γ(τ) in theory. However, calculating the
CDF of Γ(τ) is not computationally tractable. Instead, we approximate the
CDF of Γ(τ) by its empirical CDF. In particular, we randomly generate 105

independent paths of Γ(τ) and derive their empirical cumulative distribution
function, which we call the “truth”.

To reflect its behavior when the objective functions are expensive and
only limited data is available, we generate the bootstrap estimator based on
small samples from the test data and call it the “estimate”. We test using
N ∈ {50, 100, 200, 400} and B ∈ {103, 104, 105}. To explore the variability of
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3.2. Basic Test Results

the estimator, for each combination of N and B, we generate 1000 random
samples of a subset of the test data, each of which has a size of N and
corresponds to a particular realization of {(Y ∗i,j , T ∗i,j)}

i=B,j=M
i,j=1 . In addition,

for each test problem we set

τmax = 400T̄ , (3.6)

where

T̄ =
1

|Ω|
∑
ω∈Ω

T (ω) (3.7)

normalizes the time unit and provides a convenient reference to the number
of restarts. For the rest of this chapter, τ is measured in the unit of T̄ .

We compare the estimator with the truth through various figures. For
all the figures in this section, we only show the test results with f1, R5 and
B = 105. The results are similar for different test functions and values of
B. The full results are summarized in Figure 3.7 and also available on the
Internet1.

Figure 3.1 gives an intuitive comparison between the estimate and the
truth for N = 100 and B = 105. The lines are the medians of the distri-
butions; the lower and upper bounds of the bands are the 10th and 90th

percentiles of the distributions. These represent three different samples (one
per row) and two different bootstraps for each sample (one per column). It
can be observed that the estimates look identical within each row, which
indicates the random error from different collections of bootstrap paths is
negligable if B = 105. Hence, for the rest of this chapter we only generate
one collection of bootstrap paths for each bootstrap estimate. We also set
B = 105 unless specified otherwise. On the contrary, the accuracy of the
estimate varies significantly with the test data sample it is constructed from.
Specifically, the instances (1a) and (1b) estimated the truth relatively well.
However, the bootstrap estimator may under-estimate or over-estimate the
performance of the algorithm when an “unlucky” or “lucky” random sample
is drawn as shown by (2a)/(2b) and (3a)/(3b).

Since the behavior of the estimate varies with different random samples,
there is a need to show the average case. Instead of showing special instances
of the estimate, Figure 3.2 shows the mean of all instances generated in the
test. It can be observed that the mean accuracy decays as time increases,
but the larger the sample size the slower the decay becomes. Among the

1https://www.dropbox.com/sh/gpldpjg1b7ahr8l/AADzOt5c1w4xC-UU1vGoY_Qua?dl=0
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Figure 3.1: Six instances of the estimate versus the truth for f1 on R5,
N = 100 and B = 105. Three rows of the subplot matrix are based on
three different test data samples. In each row, the two subplots are based
on the same test data sample, but generated by two different collections of
bootstrap paths.
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Figure 3.2: Mean of estimates for f1 on R5 and B = 105
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Figure 3.3: Mean and standard deviation of estimates for f1 on R5 and
B = 105

three quantiles, the 90th percentile has the best and the 10th percentile
has the worst match for the truth. Thus, the mean accuracy of the quan-
tile estimation tends to increase as its corresponding probability increases.
Generally, the estimations are not reasonably accurate when τ > N . For
example, the estimate stays relatively close to the truth only for τ ≤ 75
when N = 100 and for τ ≤ 300 when N = 400.

In addition to Figure 3.2, Figure 3.3 also shows the standard deviation
of all the estimates for different τ . In particular, the dotted and dashed lines

are one standard deviation away from the mean estimates of the 10th and

90th percentiles. It can be observed that the standard deviation increase
as time increases, but the larger the sample size the slower the increase

becomes. Moreover, the estimates of the 90th percentile have smaller stan-

dard deviations then those of the 10th percentile. Thus, the volatility of
the quantile estimation tends to decrease as its corresponding probability
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3.3. Reliable Time Interval and Quantiles

increases.
Even withB = 105, computing bootstrap estimators is still much cheaper

than solving expensive test problem under various random restarts. For in-
stance, in the project demonstrated in Chapter 4, the computation of the
bootstrap estimates only took a few minutes for B = 105, but the samples
took a month to generate for N = 100. Considering the negligible marginal
cost, we would recommend large values of B, e.g., 105 or 106, to avoid pos-
sible unknown flaws. It can be concluded that the bootstrap estimator can
accurately predict the incumbent solution process under certain conditions.
When used properly, it can save significant computer time.

3.3 Reliable Time Interval and Quantiles

Figures 3.1 to 3.3 intuitively show the accuracy of the bootstrap estima-
tor and it is obvious that the estimator suffers from significant error under
some conditions. Next, we will quantify the error and propose a method to
avoid excessive error by properly choosing time interval and quantiles.

Definition 3.1. Given a test problem, let Ĝ−1

Γ̂
(p; τ,N,B, i) be the estimate

based on the ith random sample and Ns be the number of total random sam-
ples drawn, then the relative error of the bootstrap estimator for probability
p (or the p-quantile) and time τ is defined as

1
Ns

∑Ns
i=1

∣∣∣Ĝ−1

Γ̂
(p; τ,N,B, i)−G−1

Γ (p; τ)
∣∣∣

f(x0)−G−1
Γ (p; τ)

.

The above definition characterizes the deviation of the estimator from the
truth. To accurately compare across different test problems, the deviation
is normalized relative to the decrease of the incumbent solution.

Figure 3.4 shows the relative error for f1 on R5. The observations are
consistent with those from previous figures since the relative error increases
as τ increases and p decreases. In addition, the increase of N also leads to
a decrease of the relative error. For other test problems, the relative errors
follow the same pattern and are results are available on the Internet2.

Figures 3.5 and 3.6 correspondingly show the average-case and worst-case
(maximal) relative errors of all test problems when N = 100 and B = 105

are set. It can be observed that the average-case and worst-case relative

2The results for other test problems or parameter configurations are available from
https://www.dropbox.com/sh/gpldpjg1b7ahr8l/AADzOt5c1w4xC-UU1vGoY_Qua?dl=0
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Figure 3.4: Relative error for f1 on R5 and B = 105

errors correspondingly stay below 10% and 20% for most of the probabilities
shown and τ ∈ [0, N ]. When N and B are set to other values, similar pattern
appears2.

Next, based on relative error we propose a method to determine time
intervals within which the bootstrap estimator remains reliable.

Definition 3.2. Given a test problem, a probability p (or a p-quantile), a
threshold δ and τmax, the reliable time interval is the largest subinterval of
[0, τmax] within which the corresponding relative error does not exceed δ.

Taking the subplot titled “N = 400” in Figure 3.4 for example, if we
set p = 10%, δ = 0.05 and τmax = 400, then there are only two groups
of subintervals of [0, τmax] in which the relative error appears to be lower
than δ. The first and second group are respectively subsets of [0, 33.6] and
[42.4, 98.8]. Since [42.4, 98.8] is larger than [0, 33.6], the largest subinterval
of [0, τmax] satisfying the conditions is approximately [42.4, 98.8]. Therefore,
the reliable time interval in this case is approximately [42.4, 98.8].
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Figure 3.5: Average-case relative error for N = 100 and B = 105

=
0 50 100 150 200 250 300 350 400

R
el

at
iv

e 
E

rr
or

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10%
30%
50%
70%
90%

Figure 3.6: Worst-case relative error for N = 100 and B = 105

27



3.3. Reliable Time Interval and Quantiles

From Figure 3.4, the reliable time intervals can be determined for only
one test problem and five quantiles. On the contrary, Figure 3.7 provides
an overview of the reliable time intervals for all test problems, quantiles
and values of N and B. Each color corresponds to one of the test problems.
Given a test problem and a value p, the interval between the dotted and solid
lines represents the reliable time interval for the threshold of 10%. It should
be noted that there are multiple vertical lines at τ = 0 and τ = 400 = τmax,
but only one of them is visible. Taking the subplot titled “N = 50 B = 1000”
for example, if we set p = 0.5, then the reliable time interval of the yellow
represented problem is approximately [5, 250], because the horizontal line at
p = 0.5 intersects with the dotted and solid yellow curves at about τ = 5
and τ = 250.

The observations reflect those from previous figures because of the fol-
lowing. It can be seen that all the reliable time intervals have a lower bound
close to 0, but not all of them have an upper bound close to τmax, indicat-
ing the reliability of the bootstrap estimator decays over time. Moreover,
except for extremely high quantiles and few cases, the higher the quantile
the larger the reliable time interval tends to be, indicating the higher the
quantile the higher the estimator’s predictability. In addition, the length of
the reliable time interval increases as N increases, indicating the larger the
sample the more reliable estimate can be generated. However, there is no
significant difference when B varies. Figure 3.7 provides a guidance for the
choice of the quantiles and the time interval to focus on when comparing
different algorithms with the bootstrap estimator. For example, if we set
N = 100 and want to limit the potential relative error to 10%, we can focus
on τ ∈ [0, 75] and p ∈ [10%, 95%] because most of the reliable intervals for
p ∈ [10%, 95%] cover [0, 75].
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problems
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Chapter 4

Methods to Compare
Algorithms

In Chapter 2, we introduced a resampling method to estimate the dis-
tribution of incumbent solutions over time. Once the estimate is generated,
the user can interpret the results in various ways. In this chapter we propose
three methods of interpreting the estimators along with numerical results
from a real-world case. In this chapter, we use α to index algorithms and
α = 0 particularly to index the baseline algorithm. Given an algorithm α
and fixing parameters N and B, we let

Gα(y; τ) = ĜΓ̂(y; τ,N,B). (4.1)

We solved the road alignment optimization problem introduced in Section
1.2 on 10 test problems with 11 algorithms including a baseline algorithm.
For each algorithm on each test problem we solved the problem withN = 100
subject to the constraint of about one month’s computer time for all the al-
gorithms and test problems. Although more test data would increase the
accuracy of the results, with a sample of size 100 the bootstrap estimator
can already provide considerable prediction for the performance of the algo-
rithms according to the numerical validation in Chapter 3. In addition, we
set B = 105 as justified by the results of Chapter 3. Based on the results of
Section 3.3, we also set

τmax = 75T̄
′
,

where

T̄
′

=
1

N

N∑
i=1

Ti,

and focus on
p ∈ [10%, 95%]

when comparing algorithms. Throughout this chapter, τ is in the unit of
seconds. In Sections 4.2 and 4.3, the figures only show the results of the
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4.1. Road Design Optimization Algorithms Compared

first test problem, but the results all follow a similar pattern across all test
problems and are available on the Internet3.

All of the experiments in this chapter were performed on a Dell work-
station with an Intel(R) Xenon(R) 2.40 GHz (2 cores) processor, 16 GB of
RAM and a 64-bit Windows 7 Enterprise operating system. NOMAD 3.7.3
was used as the solver. The program was coded in C++.

In Section 4.1, we introduce the road design optimization algorithms
being compared. Three comparison methods are introduced in the rest of
the chapter.

4.1 Road Design Optimization Algorithms
Compared

Next, we will describe the road design optimization algorithms being
compared. The parentheses after the name of an algorithm contains its
abbreviation.

Algorithm 0: the Original Model (org)

This is the algorithm based on the model proposed by Mondal, Lucet
and Hare [MLH15]. It is considered to be the best existing algorithm, so it
is also referred as the “baseline” algorithm. This algorithm only uses true
cost function, whereas all the other algorithms introduced below mix the use
of the true cost function and certain surrogate cost function, as described
in Section 1.2.

Surrogate 1: Constant (const)

The constant function

f(x) = 0 (4.2)

is used as the surrogate. This is designed to test the behavior of the solver
with the use of a surrogate that has extremely high speed, but extremely
low accuracy.

3https://www.dropbox.com/sh/gpldpjg1b7ahr8l/AADzOt5c1w4xC-UU1vGoY_Qua?dl=0
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4.1. Road Design Optimization Algorithms Compared

Surrogate 2: True Cost Function as Surrogate (=true)

This algorithm uses the true cost function to as the surrogate. This is
designed to test the behavior of the solver with the use of a surrogate that
has extremely low speed, but extremely high accuracy.

Surrogate 3: Preprocessor Off (preOff)

Preprocessing of a mixed-integer linear program is the process of manip-
ulating variables and constraints in the program before the solver starts to
solve the problem. It can make the actual solving process more effective,
but itself also consumes extra computational resources. Therefore, there is
a trade-off between effectiveness and efficiency in the use of preprocessors
[Sav94]. The solver for the vertical alignment problem in the original model
applies some preprocessor by default. In this surrogate, the preprocessor is
turned off in order to achieve a different balance between effectiveness and
efficiency for the problem. Compared to =true, this surrogate should have
the same level of accuracy but different speed. It can serve as a supple-
ment to Surrogate 2 for testing the behavior of the solver with the use of a
surrogate that has extremely high accuracy.

Surrogate 4 and 5: Skip Sections (skip2 and skip4)

Although terrain is a continuous surface, for computational practicality
its shape is sampled at discrete points as the input of the vertical alignment
problem. In this surrogate, some of the sample points are skipped to reduce
the problem size and therefore the time to solve the problem. In Surrogate
4, one section is skipped for every two consecutive sections. In Surrogate 5,
three sections are skipped for every four consecutive sections.

Surrogate 6 and 7: Early Termination (term2 and term4)

When the the vertical alignment problem is being solved, the cost func-
tion is evaluated at different points in the feasible set and the solver tracks
the incumbent solution. The increase of the solution quality usually slows
down as time elapses, therefore the final iterations make relatively less con-
tribution to the overall solution quality. In this surrogate, the vertical align-
ment solver is terminated early when the number of iterations reaches certain
proportion of the expected total number of iterations. We run the original
model for 10 times before early termination is applied and use the average
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4.1. Road Design Optimization Algorithms Compared

number of iterations as the expected total number of iterations. For Sur-
rogate 6 and 7 we terminate the solver at 1

2 and 1
4 of the expected total

number of iterations.

Surrogate 8: Delete Earth Movement (noEM)

The earth movement cost accounts only for a small portion of the to-
tal cost but makes the vertical alignment problem significantly larger and
more time-consuming. In this surrogate, variables and constraints related
to earth movement are deleted in order to speedup the algorithm. This
surrogate is implemented by deleting all the earth movement related vari-
ables, constraints and objective function terms in the original mixed-integer
linear program. After deleting the earth movement cost, the costs for non-
adjacent sections become independent, which allows for the use of the next
two surrogates.

Surrogate 9: Dynamic Programming (DP)

This surrogate is built upon Surrogate 8. In Surrogate 8, the vertical
alignment problem is still formulated as a mixed-integer linear program and
the cost function is evaluated at different feasible points. However, by ex-
ploiting the cost independence between different sections, we could avoid
some unnecessary evaluations by using the following dynamic programming
formulation.

Assume there are S sections in total and in each section there are L
levels. Let f̃i(v0, v1), where 2 ≤ i ≤ S, be the cost of section i if the road
elevations are at level v0 and v1 in sections i− 1 and i. Since the start and
the end of the road are fixed, only one level is needed for sections 1 and S.
Thus, we make all of their levels, except for level 1, infeasible by setting

f̃∗1 (v1) = f̃S(v0, v1) = +∞ for all v1 6= 0. (4.3)

Let f̃∗i (v1), where 1 ≤ i ≤ S, be the optimal total cost for all the sections 1
through i if the road elevation is at level v1 in section i. Since cost does not
occur in section 1, we set

f̃∗1 (0) = 0. (4.4)

Then, for all 2 ≤ i ≤ S, the principle of optimality is:

f̃∗i (v1) = min
1≤v0≤L

f̃∗i−1(v0) + f̃i(v0, v1). (4.5)
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Because of (4.3), the optimal total cost is

f̃∗S(0) = min
1≤v0≤L

f̃∗S−1(v0) + f̃S(v0, 0). (4.6)

The horizontal alignment problem only needs the minimum but not the
minimizer of the vertical alignment problem. Therefore, we simply need to
find the minimum by iterating through equation (4.5) without maintaining
the solution table and the value table in the standard implementation of
dynamic programming.

The level is formulated as a continuous variable in the original model, but
needs to be discretized in this surrogate for computational tractability. After
discretization, the algorithm will search for the optimum in a discrete subset
of X, thus the optimality of the vertical alignment optimization problem is
not guaranteed. However, it should approximate the true cost function
well as a surrogate. The number of discrete levels is a parameter of this
surrogate. More levels can make the surrogate more accurate but slower
and vice versa. Therefore there is a trade-off in the choice of the number of
levels. For testing, we set it equal to the number of vertical sample points
in the input data.

Surrogate 10: Greedy Algorithm (grd)

Similar to Surrogate 9, this surrogate is also built upon Surrogate 8.
Unlike Surrogate 9, which guarantees optimality in a discrete subset of X,
this surrogate only tries to achive optimality between two adjacent sections.
Another difference of this surrogate from Surrogate 9 is that it keeps the
level as a continuous variable.

To explain this surrogate, we still use f̃ and f̃∗ to represent the cost of
the current section and the total cost up to the current section, but define
them differently. Specifically, let f̃i(v0, v1), where 2 ≤ i ≤ S, be the cost of
section i if the elevation of section i− 1 is v0 and the elevation of section i
is v1. If v1 is infeasible given v0, then f̃i(v0, v1) = +∞. Let f̃∗i be the total
cost of sections 1 to i, then

f̃∗i =

 0 if i = 1,

f̃∗i−1 + min
v1

f̃i(v0
∗(i− 1), v1) otherwise,

(4.7)

where

v0
∗(i) = argmin

v1
f̃i(v0

∗(i− 1), v1) for i ≥ 2 (4.8)
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and v0
∗(0) is the fixed starting point of the road as an input. We calculate

the greedy optimal total cost f̃∗S based on both the original terrain data
and the reversed terrain data, which starts from the last section and move
backwards. Finally, the output returned by this surrogate is the average of
the two greedy optimal total costs for better accuracy.

The unconstraint version of (4.8) is a single variable convex problem
[HHLR14] and its minimizer is the elevation of the terrain. The minimizer
for the constraint version is either at the current terrain elevation or at one
bound of the feasible interval. Thus, there are a constant number (3) of
objective function evaluations in each section and the time complexity of
this algorithm is O(S), where S is the number of sections. Whereas the
time complexity of Surrogate 9 is O(SL2), where L is the number of levels,
because the algorithm needs to compare the costs of each pair of levels for
each section. Therefore, this surrogate should be much faster than Surrogate
9.

Although modeling the level as a continuous parameter may bring some
accuracy, this surrogate should still be less accurate than Surrogate 9 as it
only tries to achieve optimality between two adjacent sections.

4.2 Prediction Band with Median

Definition 4.1. Given p ∈ [0, 1], the p prediction band for Algorithm α is
the set {

(y, τ)

∣∣∣∣G−1
α

(
1− p

2
; τ

)
≤ y ≤ G−1

α

(
1− 1− p

2
; τ

)}
.

Intuitively, the p prediction band is the central region where the incum-
bent solution is estimated to appear with probability p. The edges of the p
prediction band are the quantiles with probability 1−p

2 and 1− 1−p
2 . It char-

acterizes the range of the incumbent solution distribution to some extent. A
straightforward way of comparison is to visualize the prediction band along
with the median.

In Figure 4.1, the 80% prediction band and the median are shown for two
algorithms on test problem A. This method gives an intuitive comparison
between two algorithms. It can be observed that =true underperforms org
in median, the 10% percentile and the 90% percentile for most of the time,
except for extremely small τ values.

A limitation of this approach is that it can only effectively compare two
algorithms as more overlapped prediction bands would be difficult to tell
apart.
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Figure 4.1: The 80% prediction band with median for two algorithms

One way to overcome this limitation is to keep the setup for the baseline
algorithm and only show one quantile for all the other algorithms. In Figure
4.2, the 80% prediction band with median of the baseline are compared with
the medians of other algorithms on test problem A. In terms of the median,
it can be observed that only const outperforms the baseline; noEM and grd
performed the worst as they stay outside the prediction band; the rest of the
algorithms had similar performance and they all stay within the prediction
band.

A limitation of this approach is that it can only show one quantile of all
the algorithms except for the baseline. Although it allows for simultaneous
comparison of multiple algorithms, limited information can be visualized.
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Figure 4.2: The 80% prediction band with median for ten algorithms
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4.3 Integrated P-P Plot

Although the prediction band with median method can provide a straight-
forward comparison, it has limited capability of comparing multiple algo-
rithms simultaneously. The method introduced in this section overcomes
this limitation by generalizing the P-P plot method in statistics, which is
used to compare two probability distributions by plotting their CDFs against
each other.

In our case, we want to compare Gα(y; τ) of different α over τ ∈ [0, τmax].
To generate graphs similar to the P-P plot, we need to eliminate the time
dimension by integrating G−1

α (p; τ) with respect to τ . Since G−1
α (p; τ) is

decreasing in τ , an unweighted integration would over amplify the estimate
when τ is small. In addition, different users may prefer different emphasis
over [0, τmax], thus an unweighted integration does not suffice. Let w(τ) :
[0, τmax] 7→ R+ be the weight imposed by the user to G−1

α (p; τ) at τ for all
α, we integrate the quantiles as follows:

G−1
α (p) =

∫ τmax

0
w(τ)G−1

α (p; τ)dτ. (4.9)

Although there could be various possible candidates for w(τ), here we sug-
gest

w(τ) =
1

G−1
0 (0.5; τ)

. (4.10)

This formulation of w(τ) is designed to impose similar levels of emphasis
over [0, τmax] by balancing the effect of decreasing G−1

α (p; τ) in τ . Since all
the algorithms are solving the same problem, the shape of G−1

α (p; τ) should
be similar for all α and formula (4.10) should present reasonable weighting
functions not only for algorithm 0 but also for all other algorithms.

We define the integrated CDF as

Gα(y) = P(G−1
α (p) ≤ y). (4.11)

By choosing one of the algorithms, which in our case is algorithm 0, as the
baseline, we can simultaneously show the performance of different algorithms
all against the baseline in an integrated P-P plot. For each alternative
algorithm α and for each p of interest we plot

G0(G−1
α (p)), (4.12)

which indicates the probability for algorithm 0 to return an output as good
as algorithm α’s best 100p% output.
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Figure 4.3: Integrated P-P plot

Considering an algorithm α 6= 0 for a minimization problem, small values
in the P-P plot are favorable to α, because it means the baseline has a low
chance of returning outputs as good as the output by α. The baseline’s
integrated CDF is also plotted against itself as a reference line, which is the
diagonal. If the P-P plot of an algorithm stays entirely below the reference
line, then its empirical solution distribution stochastically dominates the
baseline algorithm, indicating its performance is better than the baseline,
and vice versa.

Figure 4.3 is a demonstration of the integrated P-P plot with our test
data for test problem A. It can be observed that const outperforms the
baseline algorithm in most of the probability range, expect for the best
cases. All other algorithms are dominated by the baseline algorithm.
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4.4 Speed Quantification

The previous two comparison methods are both visualizations, and do
not disclose how much speedup or slowdown an algorithm has against an-
other. In this section, we introduce a method to quantify the relative speed
of multiple algorithms. When we compare algorithm α versus algorithm 0,
the method in general is to find λ ∈ R+ such that G−1

0 (p;λτ) best matches
G−1
α (p; τ). The value of λ can be interpreted as the relative speed of algo-

rithm α versus algorithm 0. Mathematically, λ is defined as a solution to
the following least squares integration problem:

λ = argmin
λ′∈R+

{
max{λ′, 1}

τmax

∫ τmax
max{λ′,1}

0

[
G−1

0 (p;λ′τ)−G−1
α (p; τ)

]2
dτ

}
,

(4.13)
where p is the probability corresponding to the quantile of interest. The
upper bound of the integral is designed in order to ensure that all the data
stays within the reliable time interval as λ′ changes. Specifically, let m be
the upper bound of the integral, then solving (4.13) requires the value of
G−1

0 (p; τ) and G−1
α (p; τ) for 0 ≤ τ ≤ λ′m and 0 ≤ τ ≤ m respectively. To

ensure data reliability, we need

max{λ′m,m} ≤ τmax. (4.14)

Solving this inequality, we have

m =
τmax

max{λ′, 1}
. (4.15)

The term max{λ′,1}
τmax

= 1
m before the integral normalizes the size of the inte-

gral, hence it is not affected by λ′ directly but through the effect of scaling
G−1

0 .
Since all the algorithms are used to solve the same problem, the incum-

bent solution paths should have similar shapes. As a result, this method
should closely match the scaled incumbent solution process of algorithm 0
with the incumbent solution process of algorithm α.

When a group of algorithms is tested over multiple problems, the har-
monic mean for λ1, λ2, . . . , λn,

λ̄ =
n∑n
i=1

1
λi

, (4.16)

is an appropriate method to calculate the average speedup.
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4.4. Speed Quantification

To see this, consider the case where there are n problems that require
the same amount of computation c and the speed of algorithm αi is λi for all
i = 1, 2, . . . , n. The harmonic mean calculates the speed λ̄ of an algorithm
α∗ that solves all the problem from the same problem set in the same amount
of total time as α1, α2, . . . , αn do. In particular, to equate the total times,
we have

n
c

λ̄
=

n∑
i=1

c

λi
, (4.17)

which leads to formula (4.16) by solving for λ̄.
For demonstration, we set p = 0.5 for the calculations of λ, i.e., we match

the median of different algorithms to that of the baseline algorithm. The
integral in (4.13) is evaluated numerically by equally discretizing [0, τmax]
into 1000 segments. Table 4.1 shows the speed quantifications for this setup.
All the values are solved using the fmincon function in MATLAB with initial
solution 1. According to the average relative speed, only =true and preOff
outperforms the baseline algorithm.

For advanced use of this method, problem (4.13) can be generalized to:

λ = argmin
λ′∈R+

Q∑
i=1

qi
max{λ′, 1}

τmax

∫ τmax
max{λ′,1}

0

[
G−1

0 (pi;λ
′τ)−G−1

α (pi; τ)
]2
dτ,

(4.18)
where Q is the total number of the quantiles to focus on, p1, p2, . . . , pQ are
their corresponding probabilities and q1, q2, . . . , qQ are their corresponding
weights.

There are many ways to specify Q depending on the user’s need and
the reliability of the quantiles, which is discussed in Section 3.3. For exam-
ple, assuming all the quantiles with 10% ≤ p ≤ 95% are reliable, then by
choosing

Q = 81,

and

pi = (i+ 9)%, qi =
1

Q
for all 1 ≤ i ≤ Q

the user imposes equal emphasis on each reliable percentile. This weight
distribution is more reasonable if the algorithm is used for a large number
of times in practice, because the overall outcome is closely related to the
average performance by the “Law of Large Numbers”. However, if the al-
gorithm is used only a few times, robustness becomes more important. The
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setup
Q = 1, p1 = 0.95 and q1 = 1

can be used when the user only concerns about the 5% value-at-risk. Alter-
natively,

Q = 2, p1 = 0.5, p2 = 0.95 and q1 = q2 = 0.5 (4.19)

can be used when the user takes both the median performance and the
robustness into consideration with equal emphasis.

For demonstration, we apply the advanced framework based on the con-
figuration in (4.19). Table 4.2 shows the speed quantifications for this setup.
The discretization and optimization are conducted the same way as those
for Table 4.1. The results in Table 4.2 are similar to those of Table 4.1,

indicating there is no significant difference in speedup between the 50th and

the 90th percentiles. Although only two of the algorithms outperforms the
baseline algorithm, all of them performed robustly when the 5% worst-case
scenario is taken into consideration.
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Chapter 5

Conclusion

5.1 Contribution

In this thesis, a methodology is proposed to compare the performance
of stochastic optimization algorithms through bootstrapping of test data.
The incumbent solution of a problem over multiple restarts is modeled as a
stochastic process. A bootstrap estimator of the incumbent solution process
given limited amount of test data is designed.

Then, various properties of the estimator are analyzed. From the theo-
retical aspect, the estimator is shown to be asymptotically consistent. Under
some assumptions, the estimator is shown to have a non-positive bias. From
the numerical aspect, an out-of-sample test is conducted to demonstrate the
reliability of the estimator when different parameters are varied. We find
that although the estimator tends to underestimate the probability distri-
bution function of the incumbent solution process, it can provide reliable
prediction when the time interval and quantiles to focus on is properly cho-
sen.

Finally, three methods to compare the performance of different stochas-
tic optimization algorithms are proposed and demonstrated with test data
from a road design optimization problem. Different methods have different
balances between showing more details on a single algorithm and simulta-
neously comparing more algorithms. The results are consistent across all
methods. Ten surrogate cost functions for the road design optimization
problem are designed and tested. Although two of the algorithms slightly
outperforms the baseline, none of them is considered as a significantly bet-
ter algorithm. A software package for the use of the comparison methods is
available online4.

5.2 Future Work

Several directions for future work present themselves.

4https://www.dropbox.com/sh/sq4xhz51qrkibwe/AACCtNF3HT9A-hZ_8LQlWXE0a?dl=0
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First, the estimator might be improved through bias correction. Since
the incumbent solution is the minimum of a collection of solutions, its dis-
tribution highly depends on the left tail of the individual solutions’ distri-
bution. However, the empirical CDF has a limited ability to estimate the
tails of the true distribution. The bias could be suitably corrected by better
estimating the left tail of the individual solutions’ distribution. Smoothing
techniques [Sim96] or the parametric bootstrap method [Che07] could be
explored for bias correction.

Second, it is important to investigate whether Assumption 2.1 can be
relaxed. According to Andersen et al. [ABGK93], the bootstrap estimator
for the counting process is unbiased for the first and second order moments,
but it still remains to verify whether it is also unbiased for the whole distri-
bution.

In addition, the uniqueness of the speed quantification λ as defined in
equation (4.13) needs to be investigated. Figure 5.1 shows the normalized
objective function values of the least-square integration problem in equation
(4.13) for λ ∈ [0.01, 100]. For easy comparison, the function values are
shifted and scaled to span [0, 1]. According to Figure 5.1, it seems that the
least squares integration problem regarding λ is convex near 1 and the global
minimizer can be found by searching from λ = 1. A rigorous proof is still
required to formally address the issue.

Another direction to which this thesis could be extended is to analyze
the solution time distribution over different objective function values. Since
both speed and solution quality of algorithms are analyzed, there are two
variables: time and function value. By defining the incumbent solution
process, we treat time as the independent variable and function value as
the dependent variable. It would be interesting to explore the alternative
setting, in which the distribution of the time for an algorithm to reach
different values of the objective function is studied. However, a challenge
is data inconsistency across different values of the objective function. For
the methodology in this thesis, any finite time horizon can be covered by a
bootstrap path since time accumulates as multiple restarts are drawn from
the sample. However, certain range of function values may not be able to be
covered by all the algorithms being compared as some of them never reach
certain function values.

Researchers could also explore how the resampling method might be
generalized to the case of non-independent restarts. One possible case is
random sampling without replacement. By using bootstrap, i.e., resampling
with replacement, we consequently assumed the user also applies multiple
restarts with replacement. However, once a particular restart has been em-

46



5.2. Future Work

-5 0 5
0

0.2

0.4

0.6

0.8

1
Problem A

-5 0 5
0

0.2

0.4

0.6

0.8

1
Problem B

-5 0 5
0

0.2

0.4

0.6

0.8

1
Problem C

-5 0 5
0

0.2

0.4

0.6

0.8

1
Problem D

-5 0 5
0

0.2

0.4

0.6

0.8

1
Problem E

-5 0 5
0

0.2

0.4

0.6

0.8

1
Problem F

ln(6)
-5 0 5
0

0.2

0.4

0.6

0.8

1
Problem G

ln(6)
-5 0 5
0

0.2

0.4

0.6

0.8

1
Problem H

ln(6)
-5 0 5
0

0.2

0.4

0.6

0.8

1
Problem I

Figure 5.1: Uniqueness of λ

47



5.2. Future Work

ployed, rerunning it will not increase the solution quality but will decrease
the overall speed of the optimization process. Therefore, it would be more
reasonable to assume the user resamples without replacement and to model
the incumbent solution process accordingly. Another group of cases is when
adaptive sampling methods, such as those in the scatter search [Glo98] or
the genetic algorithm, are applied in multiple restarts. The incumbent so-
lution process needs to be modified to model the incumbent solution when
certain adaptive sampling methods are used.

Moreover, more work can be done to study the use of surrogate cost
functions in the road design optimization problem. Based on the test re-
sults, none of the surrogates significantly outperforms the original model.
The absence of improvement may be due to the way NOMAD uses the sur-
rogate cost functions and the way the surrogates are designed. NOMAD
assumes the surrogate cost function is close to free but not necessarily gives
an accurate output. As a result, the surrogate cost function is evaluated in
numerous points before the true cost function is evaluated. The surrogates
designed in this thesis may be too expensive for NOMAD to effectively uti-
lize. One way to overcome this issue is to design surrogates that cooperate
better with NOMAD’s surrogate usage approach. A more promising way is
to develop a new framework for black-box optimization algorithms to use
the type of surrogates designed in this thesis. A good starting point can be
found in [TY11].

Finally, the framework proposed in this thesis might be extended to ana-
lyze the speedup from parallelization of stochastic optimization algorithms.
Emphasis should be put on the relationship between solution quality, speed
and number of processing units.

48



Bibliography

[AAC+] M. A. Abramson, C. Audet, G. Couture, J. E. Dennis, Jr.,
S. Le Digabel, and C. Tribes. The NOMAD project. Software
available at https://www.gerad.ca/nomad/. → pages 6, 20

[ABGK93] P. K. Andersen, O. Borgan, R. D. Gill, and N. Keiding. Statis-
tical models based on counting processes (ISBN 0387978720).
Springer-Verlag Inc, Berlin; New York, 1993. → pages 46

[ABS05] A. Akay, K. Boston, and J. Sessions. The evolution of
computer-aided road design systems. International Journal of
Forest Engineering, 16(2), 2005. → pages 3

[AD06] C. Audet and J.E. Dennis, Jr. Mesh adaptive direct search al-
gorithms for constrained optimization. SIAM Journal on Op-
timization, 17(1):188–217, 2006. → pages 20

[ALT09] C. Audet, S. Le Digabel, and C. Tribes. NOMAD user guide.
Technical Report G-2009-37, Les cahiers du GERAD, 2009. →
pages 7

[Bab79] L. Babai. Monte-Carlo algorithms in graph isomorphism test-
ing. Technical Report, Université de Montréal, D.M.S. No.
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