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Abstract 

Transcription factors (TFs) can bind to specific regulatory regions to control the expression of 

target genes. Disruption of TF binding is regarded as one of the key mechanisms by which 

regulatory variants could act to cause disease. However predicting the functional impact of 

variants on TF binding remains a major challenge for the field, standing as a key obstacle to 

achieving the potential of clinical genome analysis. This thesis confronts this challenge from a 

bioinformatics perspective and addresses two unresolved problems.    

 

The first problem is the determination of which genetic variants alter TF binding. Only a small 

number of allele-specific binding (ASB) events, in which TFs preferentially bind to one of two 

alleles at heterozygous sites in the genome, have been determined. To study the impact of 

variants on TF binding, access to a large, gold standard collection of ASB events could facilitate 

the development of new predictive methods. In Chapter 2, we implemented a pipeline to identify 

ASB events from ChIP-seq data and applied it to produce one of the largest ASB datasets. We 

found that ASB events were associated with allelic alterations of TF motifs, chromatin 

accessibility and histone modifications. Using the available features, classifiers were trained to 

predict the impact of variants on TF binding. To improve ASB calling, Chapter 3 evaluated five 

statistical methods, ultimately supporting a method that pooled ChIP-seq replicates and utilized a 

binomial distribution to model allelic read counts. 

 

The second problem is to determine how altered TF binding events impact the expression of 

target genes. In Chapter 4, we implemented regression-based models to predict gene expression 

changes based on altered TF binding events across 358 individuals. The models showed 
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predictive capacity for 19.2% of genes, and the key TF binding events in the model provided 

mechanistic insights as to how these regulatory variants alter gene expression. 

 

In summary, this thesis both generated the largest, high-quality collection of ASB events, and 

developed algorithms to predict variant impact on TF binding and gene expression. The 

presented work advances the capacity of the field to interpret regulatory variants and will 

facilitate future clinical genome analysis. 
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Lay Summary 

The DNA in each human cell contains the complete instructions for producing RNA and proteins 

that are necessary for life. Within the DNA thousands of genes are present, each with its own set 

of On/Off switches that allow the genes to be active at the right moments and at the right levels.  

Every human’s DNA is slightly different, creating a rich diversity of characteristics. Some of 

these differences impact the activity of genes, often in subtle ways that can have impacts on 

health and disease. In this thesis the research explores the creation of computer methods that help 

identify which DNA sequence differences impact the activity of genes by altering the On/Off 

switches, and mathematical models that predict the gene activity based on these differences.  In 

the long-term, the research will help us understand how each person’s DNA protects them from 

or increases risk for health problems. 
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Chapter 1: Introduction 

The diploid human genome is composed of about 6 billion DNA base pairs, which are packaged 

in 23 pairs of chromosomes within the nucleus of each cell. With recent advances in DNA 

sequencing technology, comprehensive detection of the sequence variations present in individual 

genomes is becoming more affordable. For instance, the Novaseq sequencing platform launched 

by Illumina in 2017 is able to sequence the human genome within one day at the cost of US$100. 

Compared with the human reference genome, a typical human individual carries about five 

million variants, including single nucleotide variants (SNVs), small insertions and deletions 

(indels), and large structural variants [1]. Various human diseases are associated with genetic 

variations, such as type 2 diabetes [2], multiple types of cancer [3-6], and osteoarthritis [7]. In 

addition, the ClinVar database has archived ~26K variants of clinical significance (as of Dec 

2016) [8]. Deciphering the functional roles of these variants has been a main theme of molecular 

biology and medical genetics over the past decade. 

 

1.1 The challenge of interpreting regulatory variants in the human genome 

The human genome can be conceptually divided into protein coding regions and non-coding 

regions (DNA sequences that do not encode protein). Protein coding regions only account for a 

small portion of the genome (~2%), while non-coding regions, account for the remaining 98%. 

The non-coding portion harbors segments performing crucial functions, including regulating 

when and where genes are expressed (i.e. regulatory regions). To date, clinical approaches using 

DNA sequencing have focused on variants within protein-coding regions, which have been well 

characterized and are well understood relative to non-coding regions. In contrast, genome-wide 

association studies have identified that most disease-associated variations are situated within 
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non-coding regions [9, 10], especially enriched within regulatory regions [11]. In selected cases 

[6, 12-15], analysis of regulatory variations has led to the discovery of causal variations for 

genetic disorders. However, our understanding of these regulatory variants remains incomplete, 

making it difficult to predict the impact of individual variants on gene expression and disease. 

Hence, in the whole genome sequencing (WGS) era, there is an imperative need for informatics 

methods to predict both the locations and specific functions of regulatory variants.  

 

1.2 Basics of gene regulation and transcription factor binding 

Genes contain the instructions to synthesize proteins and functional RNAs that participate in the 

physiological activities of cells. These instructions direct gene expression at multiple levels, 

including: 1) transcriptional regulation, which controls when and to what extent DNA is 

transcribed to RNA; 2) post transcriptional regulation, which controls how RNAs are processed 

and transported; and 3) translational regulation, which controls how proteins are synthesized 

from mRNA. Additional gene expression-related mechanisms regulate the stability and activity 

of RNA or proteins within cells, but these will not be further addressed in this thesis. Each 

mechanism is important, but much of the global research effort has focused on the control of 

transcription, both because experimental methods are well developed and because transcription 

controls the inputs to downstream regulatory processes.   

 

Transcriptional initiation is coordinated by transcription factors (TFs), proteins that are involved 

in the production of RNA (including proteins that do not bind to DNA in a sequence specific 

manner). Gene transcription begins with sequential binding events of various TFs to promoters, 

DNA segments from which RNA transcripts will be initiated. The assembled TFs at a promoter 
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ultimately recruit RNA polymerase to initiate transcription (Figure 1.1). TF binding at regions 

distal to promoters (e.g. enhancers or silencers) can influence the transcription rate, for instance, 

by interactions with promoters in 3D space [16]. Spatial and temporal combinations of TFs 

provide the means for cells to exquisitely control gene expression at different cell developmental 

stages or in response to dynamic environmental conditions. 

 

TFs are the main regulators in transcriptional regulation. Subset of TFs contain DNA-binding 

domains, which recognize and bind to DNA in a sequence-specific manner (usually 6-19 bp in 

human). The DNA sequences bound by TFs are called TF binding sites (TFBSs). Beyond TFBS, 

TF binding is strongly influenced by chromatin accessibility, epigenetic marks, and chromatin 

3D architecture [17]. Various experimental technologies and computational approaches have 

been developed to identify TF binding activity, expanding our knowledge on transcriptional 

regulation. 
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Figure 1.1 Transcriptional regulation 

Gene transcription is initiated and coordinated by a series of TF binding events at promoter and distal regulatory 

regions. TF binding is a complex biochemical mechanism determined not only by DNA sequences, but also 

influenced by chromatin states, such as chromatin accessibility and histone modifications. (Figure modified from 

https://en.wikipedia.org/wiki/File:0321_DNA_Macrostructure.jpg licensed under the Creative Commons Attribution 

4.0 International license) 
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1.2.1 Experimental detection of TF binding 

TF binding can be detected by multiple experimental techniques in a high throughput manner, 

including protein binding microarrays (PBM) [18], bacterial one-hybrid screening [19], high 

throughput systematic evolution of ligands by exponential enrichment (HT-SELEX) [20], and 

chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) 

[21]. The first three approaches detect TF binding in vitro. For instance, PBM experiments can 

test the binding affinity of the target TF against all possible DNA sequences of a given length 

(e.g. 10bp), significantly expanding potential TF binding sequences not present in the genomes 

of living organisms. However, in vitro binding assays only measure the contribution of DNA 

sequences to TF binding, and cannot account for the in vivo properties such as chromatin 

accessibility, epigenetic marks and partner TFs.  

 

The development of ChIP-seq technology allows researchers to identify where a TF of interest 

binds to the DNA at genome-scale in vivo. In a ChIP-seq experiment [21], TF-DNA complexes 

are firstly cross-linked and then the chromatin in the nucleus is sheared to DNA fragments of 

several hundred base pairs. The targeted cross-linked TF-DNA complexes are captured and 

enriched by a TF-specific antibody in the immunoprecipitation process. Finally, the DNA 

fragments in the enriched complexes are sequenced. For a typical ChIP-seq experiment studying 

human sequence-specific DNA binding TFs (e.g. CTCF), 20 million sequenced reads are 

recommended for downstream analysis [22]. Proteins which interact with DNA more broadly 

(e.g. RNA Pol II or histone variants) require a larger number of reads (e.g. 60 million).  
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After sequencing, ChIP-seq experiments require downstream bioinformatics analysis to call 

potential TF-bound regions. Reads of ChIP-seq experiments are firstly mapped to a reference 

genome using read aligners, e.g. BWA [23], Bowtie [24], or Novoalign (http://novocraft.com/). 

Mapped reads are expected to be enriched in putative TF-bound regions, which are visualized as 

peaks of mapped reads across a chromosome. Peak-calling algorithms [25, 26] are used to 

identify putative TF-bound regions. Typical human sequence-specific TFs exhibit on the order of 

thousands of peaks, and the resolution of the width of called peaks is usually hundreds of base 

pairs. The real TF binding sites (6-19bp) are expected to be enriched around peakMax positions 

(the position with the highest number of mapped reads within a peak) for high quality ChIP-seq 

experiments [27]. More advanced ChIP-based techniques are emerging which provide higher 

resolution for TF-bound regions, such as ChIP-exo [28, 29]. 

 

The ENCODE project [30] provides over one thousand datasets to investigate the functional 

elements in the human genome, including ChIP-seq data for histone modifications and hundreds 

of TFs, DNase-seq data for DNase I hypersensitivity (DHS) sites (detecting accessible regions 

within the genome), and RNA-seq for gene expression. The ENCODE project found that up to 

19.4% of the genome is marked as regions of transcription factor binding or DHS at least in one 

cell type [30]. This suggests that a great portion of non-coding regions are involved in gene 

regulation, although such involvement may be limited to specific developmental or 

environmental contexts. These rich datasets create new opportunities for bioinformatics 

approaches to improve the prediction of TF binding. 
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1.2.2 Computational prediction of TF binding 

A subset of TFs bind to DNA in a sequence specific manner, and their binding sequences can be 

identified through any of the aforementioned experiments. Based on experimentally validated 

bound sequences, TF binding preferences can be computationally modeled using various 

approaches described below. 

 

1.2.2.1 Classic TF binding model: position weight matrix 

The most widely used predictive model for TF binding is the position weight matrix (PWM) 

(Figure 1.2) [31]. To build a PWM for a given TF, experimentally collected TFBSs are aligned 

to derive a position frequency matrix (PFM), which summarises the frequency of each nucleotide 

at each binding site position (Figure 1.2B). The PFM is then normalized per binding position and 

transformed to a PWM representing the binding preference at each position relative the 

background nucleotide distribution (Figure 1.2C). Given a candidate site, the binding score of the 

site is the sum of PWM values corresponding to the sequence nucleotide at each binding 

position. Sites with PWM scores above a certain threshold are regarded as predicted TFBSs 

(Figure 1.2D). PWM scores of TFBSs have been shown to correlate with the binding energy of 

TF-DNA interactions [31]. Compiled PWMs can be obtained from multiple open access 

databases, including JASPAR [32], HoCoMoCo [33], and CIS-BP [34]. 

 

PWMs assume that each TFBS position independently contributes to the overall TF binding [17]. 

This assumption simplifies the procedure of PWM score calculation, but it neglects dependencies 

between neighbor nucleotides within the TFBS. To address this issue, nucleotide dependency 

within the TFBS has been accounted in advanced models, such as ones using hidden Markov 
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models [35] or Bayesian networks [36]. While the advanced models achieved modest 

improvements in some cases, overall, the PWM remains a simple and powerful method for 

predicting TF binding.  

 

Figure 1.2 Position weight matrix and motif scoring 

(A) Align known binding sequences of the investigated TF. (B) The frequency of each nucleotide at each binding 

site position can be summarized into a PFM. (C) A PFM can be normalized and log-transformed to a PWM, which 
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can be represented as a motif logo. In the logo, large-size nucleotides indicate the key positions within the TF 

binding site. (D) Scan DNA sequence with PWM to identify potential TFBSs. The PWM is aligned to the sequence, 

and the score of matched DNA sequences (of same length as the PWM) is the sum of the corresponding nucleotide 

values at each column of the PWM. Only the sites with a score reaching the predefined threshold are regarded as 

predicted TFBSs. 

 

1.2.2.2 k-mer based approaches 

Instead of the traditional PWM approach, TF binding preference can also be modeled by a set of 

DNA sequences in a fixed-length of k (referred as k-mers). In k-mer approaches, the occurrences 

of every k-mer are input features for the model to distinguish between TF-bound and background 

regions [37, 38]. On top of the core motif of TF, the k-mer approach can capture other sequence 

patterns like redundant motifs or motifs of partner TFs, enhancing predictive performance [37, 

39]. In addition, k-mer approaches are able to predict regulatory regions like DHS and enhancers, 

which are composed of multiple TFBSs [38, 40]. 

 

1.2.2.3 Deep convolutional neural networks methods 

Deep convolutional neural networks are a special kind of multiple-layer neural network, which 

can model high-level abstraction and non-linear relationships in rich datasets [41]. They have 

been successfully applied to image and speech recognition, showing superior performance than 

previous methods [41, 42]. Deep convolutional neural networks usually require large amounts of 

training data to avoid over-fitting. Recent advances in sequencing technologies, including ChIP-

seq and DNase-seq, have identified thousands of TF-bound and open chromatin regions across 

the genome. Multiple deep learning methods have trained models based on these datasets to 

predict TF-bound regions, including DeepBind [43], DeepSEA [44] and DanQ [45]. Similar to 
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the task of image recognition, these methods usually treat the genomic sequence (up to 1000bp) 

as a one-dimension image composed of four colors. Then, the TF binding prediction problem is 

transformed to an image classification task. As expected, deep learning based models outperform 

most traditional models [43, 44]. 

 

1.3 Assessing the impact of variants on TF-DNA interactions 

After identifying TF-bound regions, the next challenge is to predict if variations within these 

regions are likely to alter TF binding. TF-DNA interactions arise from the interplay between 

DNA sequence motifs, chromatin accessibility, epigenetic marks, and interactions with other 

partner TFs. To develop methods to predict the subset of variants most likely to disrupt TF 

binding, one requires a set of reliable data and should consider multiple aspects of TF-DNA 

interactions. 

 

1.3.1 Collecting reliable reference data sets 

To access data that enables the creation of predictive models for the functional impact of 

variations within TFBS, it would be convenient to utilize the extensive body of ChIP-seq 

experimental data. A subset of cell lines have been studied by both the ENCODE and the 1000 

Genomes projects, providing the community with TF binding, epigenetic, and genotyping data 

from the same cellular context. The union of these data allows for in-depth analyses of the 

impact of variations within TFBSs [46-48].  

 

Allele-specific binding (ASB) events, in which a TF preferentially binds to one allele at 

heterozygous sites, provide a valuable capacity to study the impact of single nucleotide 
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variations on TF binding within the same cellular environment [47, 49] (Figure 1.3). Multiple 

pipelines are now available to detect ASB events based on TF ChIP-seq experiments and WGS 

data from the same cell [49-52] (Figure 1.4). In an ASB pipeline, using a single reference 

genome for the mapping of ChIP-seq reads will introduce reference bias; ChIP-seq reads with 

non-reference alleles of heterozygous sites are less likely to map to the correct site compared 

with the reads matching the reference allele [49, 53]. To address this issue, a personalized 

reference genome approach allows equal success in mapping ChIP-seq reads from both alleles in 

an individual. The significance of ASB events can be assessed using a binomial or beta-binomial 

test applied to the number of mapped reads for each of the two alleles [47, 49]. Detectable ASB 

events only represent a small portion of any ChIP-seq dataset––usually less than 1% of all peaks 

[49]. ASB events are enriched for disease-associated SNPs and when situated within 100bp of 

promoter TSSs are strongly associated with gene expression alteration [47]. 

  



12 

 

 

Figure 1.3 Allele specific binding and non-ASB events 

(A) ASB events can be derived from heterozygous loci where there is a strong preference for ChIP-seq reads to map 

to one allele. (B) Non-ASB events harbour reads mapping to both alleles similarly. It could be explained by the TF 

equally recognizing the two alleles or the variation not disrupting the active binding site. 
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Figure 1.4 Bioinformatics pipeline to identify ASB events 

This pipeline takes as input both ChIP-Seq and WGS data from the same cell. (A) The first step consists of mapping 

the WGS data to the reference genome, and calling the corresponding genotype. If genotype data are available, this 

step can be skipped. (B) The called genotypes are then used to create the associated personalized genome to map 

ChIP-Seq reads. (C) The final step is to extract the number of mapped reads for each allele at known heterozygous 

sites within ChIP-seq peaks, and then an ASB event is called if the number of mapped ChIP-seq reads on one allele 

is significantly different from the other allele. 
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1.3.2 Interpreting TF binding alteration 

Differential TF binding has been analyzed across individuals (in either tissue samples or cell 

strains) or at heterozygous sites in individual cell lines. Motif altering SNVs account for a subset 

of the observed binding differences [46, 54] (Figure 1.5AB). Alleles more similar to the 

consensus motif preferentially show more elevated binding [47, 48, 55]. In addition, altered 

motifs proximal to an experimental ChIP-seq peak max position are more associated with 

differential binding [54]. Most ASB do not overlap with the motif of ChIP’ed TF (the targeted 

TF of the ChIP-seq experiment), however, indicating that other mechanisms account for an 

important portion of observed ASB events [47, 48]. The presence (or absence) of cofactors (i.e. 

TFs acting cooperatively) binding nearby could account for a subset of these events (Figure 

1.5AC) [54, 56]. For instance, NF-kB binding differences between individuals are correlated 

with SNVs altering TFBSs of its cofactors [56]. Overall, the variation within the ChIP’ed TF 

motif or a cofactor motif can lead to altered TF-DNA interaction and explains a significant 

proportion (e.g. 37.5% in [48]) of ASB events. The relative impact of other potential 

contributory mechanisms remains to be evaluated.  
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Figure 1.5 Schematic view of TF binding alteration 

(A) TF binding events in a “normal” environment. Two TFs bind to their TFBSs and stabilize each other’s binding. 

(B) A variant in the TFBS disrupts the binding of the TF to DNA (light shading). (C) A variant in one TFBS 

disrupts the binding of both TFs to DNA. (D) Modification of the epigenetic environment represses the binding of 

the TF to DNA. 

 

1.3.3 Chromatin marks and TF binding 

TFs can show different binding preferences in the context of specific open chromatin and histone 

modifications, and this preference has been used to inform TFBS prediction [57]. However, the 

dependence between chromatin marks and TF binding is not always clear [58]. There are subsets 

of epigenetic marks linked to increased TF binding (active marks), and subsets linked to reduced 

binding (repressive marks) [59] (Figure 1.5D). From the opposite perspective, studies show the 
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contribution of TF binding to the specification of histone modifications [26, 60]. Moreover, 

SNPs are enriched in regions with variable epigenetic marks between individuals when 

compared to invariant regions [55]. Taken together, it is possible that some TF binding events 

depend on specific chromatin marks, whereas other TFs do not (such as the so-called pioneer 

factors, see [61]). Still, attributing differential TF binding to epigenetic alterations, cofactor 

binding, or canonical TFBS disruption, remains a challenge.  

 

1.3.4 TFBS redundancy 

Studies have shown that the presence of redundant binding sites in cis-regulatory regions helps 

maintain the pattern and level of expression, even in the event of sequence alterations [48, 62, 

63]. As reviewed in [63], TFBSs can be considered as incremental inputs to the transcriptional 

regulation with varying the degree of potency and redundancy. TFBS redundancy can be 

considered as a buffering mechanism, through which a disrupted TFBS can be compensated by 

another nearby binding site in the same cis-regulatory region [48, 62] . It may therefore be 

important to consider redundant TFBSs when interpreting the functional impact of variants on 

gene regulation. 

 

1.3.5 TFBS conservation 

Sequence conservation can inform the interpretation of variations within cis-regulatory elements 

(as it does for protein-coding sequence). Linking TFBS sequence conservation and functionality 

is not trivial. For instance, an early experimental study of regulatory elements in human and 

mouse estimates that about 32-40% of human functional regions are not functional in mouse 

[64]. Moreover, TF bound regions identified in large-scale ChIP-seq experiments show limited 
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conservation across species, with only 10-22% of peaks conserved [65]. While many ChIP-

identified regions are not conserved, the ones overlapping evolutionarily conserved sequences 

are associated with higher rates of functional roles [66, 67]. Moreover, genomic sequences under 

lineage specific selection have been used to filter cis-regulatory variations in cancer WGS 

analyses [68].  

 

1.3.6 Computational tools to predict variation impact on TF binding 

Tools have been developed to predict the impact of variants within TFBSs by integrating both 

experimentally derived and sequence-based features. Early methods focused mainly on the use of 

TF binding profiles to evaluate the impact of variants on TF-DNA binding interaction strength. 

RAVEN [69] uses phylogenetic footprinting information along with PWM score differences 

between reference and alternative alleles. Tools like is-rSNP [70] and regSNP [71] evaluate 

TFBS-altering events by the significance of PWM score change. The sTRAP program [72] and 

BayesPI-BAR [73] assess the binding affinity difference between wild-type and mutated 

sequences for TFBSs by using a biophysical model with available TF binding profiles. Advanced 

TF binding models (e.g. DeepSEA[44] and gkmSVM [40]) capture more complex patterns 

within broader TF regions beyond core TFBSs. Binding score differences of these models can be 

predictive for the variation impact on TF binding.  

 

Other approaches incorporate epigenetic data along with TF binding profiles to assess the impact 

of regulatory variants in genome-wide association studies (GWAS). GWAS3D [9] integrates 

chromosomal capture information along with epigenetic marks, binding affinity impacts based 

on scores from PWMs, and conservation to prioritize regulatory variants. The impact of variants 
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on TF-DNA affinity is assessed by comparing the log-odds binding probabilities between the 

reference and alternative alleles to a null empirical distribution. Funseq2 [74] prioritizes 

regulatory variants in cancer by incorporating the alteration of TFBSs, inter- and intra-species 

conservation, and gene networks, and the weights of non-coding features is estimated by 

mutation patterns across the 1000 Genomes SNPs. 

 

To predict the variant impact on TF binding, current progress is hampered by the limited number 

of variants which are known to alter TF binding. For instance, to verify BayesPI-BAR models, 

Wang et al. collected 67 variants which have been experimentally validated to alter TF binding 

[73]. This set is too small to train discriminative models which can learn the boundary between 

disruptive or non-disruptive variants directly. Alternatively, existing methods (e.g. BayesPI-BAR 

[73], is-rSNP [70]) score the binding potential of the two alleles based on DNA sequence and 

then evaluate the amount of difference. However, it is challenging for existing methods to justify 

a boundary (threshold) for disruptive variants. Recently, ASB events are emerging as gold-

standard datasets for altered TF binding events and can be compiled in high throughput way [47, 

49], representing future training data for new discriminative models. 

 

1.4 Assessing the impact of cis-regulatory variants on gene expression 

For the regulation of RNA transcript initiation, cis-regulatory regions include (but are not limited 

to) the non-coding DNA regions containing TFBSs, comprising promoters, enhancers and 

silencers. As introduced above, promoters are the regions from which RNA polymerase initiates 

production of RNA. Enhancers and silencers are distal cis-regulatory regions where TFs bind to 

fine-tune gene expression levels or patterns. Enhancers can be far from promoters in the 
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sequence space (up to 1Mb in some cases), but they can be close to a promoter region in the 3D 

space through chromatin interactions. Sequence variants can disrupt the function of cis-

regulatory regions, impacting the expression of the regulated genes. To predict the impact of cis-

regulatory variants on gene expression one needs to: 1) identify the cis-regulatory regions; 2) 

associate the cis-regulatory regions to the genes they regulate; and 3) evaluate the impact of cis-

regulatory variants on TF binding and gene expression. 

 

1.4.1 Identifying cis-regulatory regions in the human genome 

To infer the functional roles of cis-regulatory variants, a first step is to identify the locations of 

cis-regulatory regions for each gene. Although a comprehensive inventory of functional 

sequences and their activities across all cells and conditions is prohibitive, researchers have 

accumulated data to identify vast numbers of cis-regulatory regions. Table 1.1 succinctly 

introduces collections of data that are of particular value for the detection of cis-regulatory 

regions. 
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Features Description 

TF binding TF binding sites are the core elements of cis-regulatory regions [75] and TF 

binding events in regulatory regions would control the expression of the 

targeted gene [17]. 

Histone 

modifications 

Post-translational modifications at the N-terminal tail of histone proteins. 

Histone modifications affect the overall chromatin structure and are 

associated with cis-regulatory regions [30, 76]. 

Nucleosome Basic organizational unit of eukaryotic chromatin composed of an octamer of 

histone protein cores and a segment of DNA. Nucleosomes are usually 

depleted at promoters and enhancers [77, 78]. 

Open chromatin 

 

Highly accessible regions for TFs and other proteins. Open chromatin 

regions are usually associated with active genome activity [79-81]. 

DNA methylation Various roles in gene regulation and in different cell contexts. Methylation at 

promoter regions is usually associated with gene silencing [82]. 

Chromatin 

conformation 

Chromosomes are compacted in the nucleus of cells. Regions far-apart in the 

genome sequence can be close in the 3D space [83]. Chromatin conformation 

analyses identify genomic interactions in cells [16, 84]. 

Conservation Computation of the amount of conserved nucleotides across species through 

genome alignments. Conserved non-coding genomic regions are more likely 

to be functional [74, 85]. 

Nucleotide 

sequence 

properties 

The nucleotide composition of the genome. For instance, G+C content helps 

to identify nucleosome positioning [86], and CpG islands are over-

represented in promoters [87]. 

Table 1.1 Examples of features used for the identification of cis-regulatory regions 
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1.4.1.1 Properties and experimental data of cis-regulatory regions  

The activity of cis-regulatory regions is controlled through a complex interplay between 

epigenomic modifications, conformation of the chromatin, and binding of TFs (Table 1.1). While 

highly valuable, the range of histone marks and TF binding events that can be experimentally 

profiled remains limited by a number of high-quality specific antibodies. Active cis-regulatory 

regions are usually associated with open chromatin, which can be identified through DNase I 

hypersensitivity, FAIRE-seq [88], or ATAC-seq [89] experiments. In addition to experimentally 

derived data, one can use genomic sequence characteristics to define cis-regulatory regions, such 

as conservation (see [90] for a review) or dinucleotide composition for enhancer prediction [91].  

 

Experimental methods can now identify active cis-regulatory regions in bulk. For instance, the 

self-transcribing active regulatory region sequencing technology (STARR-seq) allows for the 

identification of active enhancers by assaying millions of candidate DNA sequences [92]. The 

FANTOM5 consortium [93, 94] screened RNA from hundreds of mammalian samples and cells 

lines for active promoters and enhancers using the cap analysis of gene expression (CAGE) 

technique [95]. These compilations provide a rich source of training data for new informatics 

methods. 

 

1.4.1.2 Identifying cis-regulatory regions through machine learning  

Drawing upon the growing body of genome-scale datasets, new machine learning-based methods 

have emerged for the annotation of cis-regulatory regions. Unsupervised models (in which 

observed data properties inform the classification of genome segments into groups) segment the 

genome into segments [96], of which some may be highly enriched for annotated regions such as 
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promoters or enhancers. For instance, the ENCODE project annotated the human genome into 

seven chromatin states based on histone marks, open chromatin marks, CTCF binding, and RNA 

Pol2 binding signals [96]. Experimental validation showed that only 26% of the predicted 

enhancers from the ENCODE project had regulatory activity in the targeted cell lines [97], 

suggesting the limited prediction power of the selected training marks for cis-regulatory 

activities. Meanwhile, supervised methods take advantage of annotated regions labelled by 

experimental data (e.g. enhancers from the FANTOM5 project) to train predictive algorithms 

[98]. As more experimentally derived data sets become available for training, supervised 

approaches will become increasingly powerful for delineating the locations of cis-regulatory 

regions.  

 

1.4.2 Associating regulatory regions to target genes 

Distal cis-regulatory regions (e.g. enhancer) regulate the target gene through chromatin loops, 

which can be detected by chromatin conformation capture-based technologies, such as 3C, 4C, 

5C, Hi-C, and ChIA-PET [99-103]. For instance, Hi-C data revealed that chromosomes are 

spatially partitioned into contact domains, within which chromosome regions interact more 

frequently than the rest of the chromosome regions. Chromatin loops connected with promoters 

have been found to link to known enhancers [83]. 

 

The target of cis-regulatory regions can also be inferred computationally. For instance, Funseq2 

considers two histone modifications and DNA methylation as activity markers of cis-regulatory 

regions. The method links cis-regulatory regions to genes if their activities correlate with the 

expression levels of the gene across 20 tissues [104]. Moreover, enhancer and promoter activities 
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can be directly measured by CAGE technology [95]. The FANTOM5 project associates 

enhancers to promoters based on their CAGE activity correlation across ~800 cell types and 

tissue samples [94]. However, the inferred associations do not guarantee real chromatin 

interactions or regulatory relationships. Alternatively, enhancer–promoter interactions in Hi-C 

data can be predicted based on genomic features, such as TF binding, DHS, epigenetic marks and 

gene expression [105]. 

 

1.4.3 Approaches to evaluate the impact of non-coding variants on gene expression 

High-throughput sequencing technologies have greatly improved our understanding of 

transcriptional regulation in multiple aspects, including sequence variation, gene expression 

levels, TF binding, active cis-regulatory regions and chromatin interactions. However, 

interpreting the functional roles of cis-regulatory variants is still challenging, both in 

computational and experimental scenarios. 

 

1.4.3.1 Experimental assessment of the impact of variants on gene expression 

Various experimental techniques have been developed to evaluate the impact of variants on gene 

expression. In massively parallel reporter assays (MPRAs) [106-108], mutated cis-regulatory 

regions are synthesized into constructs with reporter genes. The relative expression of the 

reporter gene from each construct provides a quantitative measure of the impact of the 

introduced mutations [109]. In one MPRA study, 4.6 million nucleotides were tested in 15,000 

putative cis-regulatory regions, revealing key mutations supported by regulatory motifs and 

evolutionary conservation [110]. Recently, the new genome editing method, CRISPR/Cas9, has 

been used to precisely introduce mutations in vivo [111]. For instance, mutations introduced by 
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the CRISPR/Cas9 system in the CArG box of a gene promoter greatly decreased the expression 

of that gene in mice, demonstrating that CRISPR/Cas9 is an efficient approach to test the role of 

individual variants [112]. High-throughput CRISPR-Cas9 approaches have been developed to 

screen the impact of mutations across cis-regulatory regions of target genes, representing an 

alternative approach to MPRA [113]. Taken together, current approaches are able to test the 

impact of mutations on gene expression, but inferring their molecular mechanisms still needs 

downstream computational analysis. 

 

1.4.3.2 Computational approaches to identify the impact of non-coding variants on gene 

expression 

WGS sequencing data has revealed that a typical individual’s genome harbors about five million 

variants [1]. The functional impacts of these variants are largely unknown, especially for non-

coding variants. A powerful approach to detect the impact of non-coding variants is the 

quantitative trait loci (QTL) test, which can identify SNPs associated with certain measurable 

molecular traits across multiple individuals, such as gene expression [114, 115], DHS [116] and 

DNA methylation [117]. Taking expression QTLs (eQTLs) for example, a QLT test is 

conventionally formulated as a linear regression model 

                

where    represents the expression vector of gene i across testing individuals,    is the genotype 

vector of      (encoded as the number of minor alleles) across testing individuals,    is a 

constant indicating the mean gene expression,    is the effect size of SNPk towards gene 

expression, and   is the error term following normal distribution with zero mean and constant 

variance [118, 119]. The significance of the association can be obtained by testing the null 
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hypothesis that    is zero. eQTL studies usually conduct thousands of tests between genes and 

SNPs, and multiple testing correction is required to control the false positives [120].  

 

Expression QTLs (eQTLs) are found to cluster around transcription start sites, and are enriched 

in cis-regulatory elements (e.g. TF ChIP-seq peaks, DHS regions, promoters, and enhancers) 

[121], supporting the contribution of cis-regulatory variants to gene expression. In addition, 

QTLs of regulatory traits showed a close relationship with eQTLs. For instance, a portion (16%) 

of DHS QTLs (dsQTLs) are associated with the expression of nearby genes, and up to 55% of 

eQTLs are estimated to be dsQTLs [116]. Lastly, dsQTL showed 3.6-fold enrichment in TF 

binding footprints, suggesting the contribution of TF binding to chromatin accessibility [116]. 

 

In QTL studies, it is still a challenge to infer causality of variants and their functional roles. 

Identified QTLs only indicate the existence of causal variants which can be in high linkage 

disequilibrium with the identified marker [122]. In addition, there might be multiple causal 

variants within the same linkage disequilibrium block [122]. Moreover, QTL approach often 

lacks sufficient statistical power to detect the impact of rare variants [114], which are responsible 

for many rare family genetic disorders [123]. 

 

Gene expression can be quantitatively predicted based on multiple local variants following 

multiple regression models [124, 125]. As the number of features can be larger than the size of 

training samples, penalized regression models have been widely used in model training [124-

126]. The performance of such models can be improved by assigning greater weights to variants 

overlapping with certain genomic features, such as TF binding, untranslated regions, etc. [125]. 
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These functional genomic features can also be integrated as priors in a Bayesian framework 

[127]. However, these models still focus on the relationship between genotype and gene 

expression, and the functional mechanism of identified variants remains elusive. 

 

1.5 Thesis overview and objectives 

Understanding the role of genetic variants in human disease is a fundamental question of medical 

genetics. Current clinical analyses focus on variants within protein coding regions, as 

interpreting the functional role of non-coding variants remains a challenge. However, the 

majority of disease-related variants identified in genome-wide association studies are located 

within non-coding regions, especially enriched in regulatory regions related to TF binding, DHS 

or histone modifications [11]. Disruption of TF binding has been regarded as the major 

mechanism for regulatory variants [128, 129]. Diseases and phenotypes caused by disrupted TF 

binding are being identified in experiments [6, 7, 15, 130, 131]. However it is still challenging to 

predict the functional impact of regulatory variants on TF binding and gene expression. My 

thesis addresses this challenge using computational approaches (Table 1.2). 

 

Chapter 2 introduced novel datasets and a new framework to understand the impact of regulatory 

variants on TF binding. When developing methods for regulatory variants analysis, it is 

fundamental to compile reliable examples of altered TF binding. However, only a few hundred 

of variants had been experimentally validated to alter TF binding [70, 73]; this was insufficient 

for statistical modeling of any TF. We improved the predictions by expanding the set of ASB 

events, which are bona fide TF binding alterations and compare the impact of two alleles at 

heterozygous sites within the same cellular context. We developed a pipeline to extract ASB 
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events from ENCODE ChIP-seq data sets. We found that ASB events were frequently associated 

with motif alterations of the ChIP’ed TF and potential partner TFs, and allelic differences of 

DHS and histone modifications. Classifiers were trained based on ASB datasets to predict the 

impact of variants. They showed a comparable performance to other state-of-the-art algorithms.  

 

In Chapter 3, we sought to evaluate different methods for ASB calling. Chapter 2 used the 

traditional binomial test to call ASB events based on the number of mapped reads on two alleles. 

New ASB calling approaches are emerging considering two characteristics of ChIP-seq datasets: 

1) greater variance in allelic read distribution than expected in the binomial distribution [132]; 

and 2) variance between ChIP-seq replicates [133, 134]. In Chapter 3, we benchmarked five 

ASB calling methods on the compiled ASB data and identified the most appropriate method 

based on the allelic DHS data. 

 

Chapter 4 addressed the key unanswered question of how altered TF binding impact gene 

expression. Current models [124, 125] used SNPs within the gene body and flanking regions 

(±1Mb) to predict the variation of gene expression. Due to the linkage between SNPs, the 

specific functional roles of individual SNPs are hard to distinguish. To address this problem, we 

built a quantitative model for the expression of each gene based on altered TF binding events in 

regulatory regions. Our models showed an acceptable performance for 19.2% of genes (R
2
 > 

0.05). Alteration of DHS, and RUNX3 and CTCF binding were the most frequently selected 

features. Though our models showed a comparable performance to existing SNP-based models, 

they provide a broader insight into the mechanisms by which non-coding variants impact gene 

expression.  
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Taken together, the three components of this thesis addressed the challenge of interpreting the 

impact of non-coding variants on transcriptional regulation. We developed pipelines and 

statistical models to call ASB events, and compiled ASB events in 45 ChIP-seq experiments. We 

built quantitative models to predict the impact of variants on TF binding, and their subsequent 

impact on gene expression, providing mechanistic insights into the role of regulatory variants.  

 

Chapter Objective 

2 Interpret the impact of SNVs on TF binding based on allele specific 

binding events 

3 Evaluate statistical models to call ASB events 

4 Predict the impact of altered TF binding on gene expression 

 Table 1.2 List of research objectives of this thesis 
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Chapter 2: Evaluating the impact of single nucleotide variants on 

transcription factor binding 

High quality data are important for statistical analysis and machine learning algorithms. In order 

to assess the impact of sequence variant on TF binding, this chapter compiled sets of reliable 

cases in which a subtle variation has a quantitative impact on TF binding. These datasets 

revealed key features for altered TF binding and enabled us to train predictive models for the 

impact of sequence variant on TF binding. 

 

2.1 Introduction 

With recent advances in DNA sequencing technology, comprehensive analysis of sequence 

variants in individual genomes is possible for the first time. The technology has enabled genetics 

researchers to systematically seek variations that contribute to disease phenotype. Up to now, 

clinical approaches using DNA sequencing have focused on about 2% of the human genome 

containing protein-coding exons. In contrast, most disease associated variants arising from 

genome-wide association studies are situated within non-coding regions [9]. These regions are 

enriched with transcription factor (TF) binding sites (TFBSs) [68], critical sequences for the 

regulation of gene expression. Thus, there is a pressing need to predict the impact of genetic 

variations on TF binding. 

 

The prediction of which DNA sequence alterations will alter TF binding is a long-standing 

challenge in bioinformatics. Progress is hampered by the limited number of reliable data sets for 

TF binding disruption. Although thousands of expression quantitative trait loci have been 
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identified, they are not suitable for the study of TF binding alteration because TF binding 

information is not available. Only a few hundreds of naturally occurring variations have been 

experimentally validated to alter the binding of TFs, with low depth for any specific TF [69, 70]. 

Thus, current studies cannot directly train a model on true alteration data. Instead, existing 

methods score the binding potential of the two alleles based on DNA sequence and then quantify 

the difference, with examples including is-rSNP [70], BayesPI-BAR [73], and deltaSVM [40]. 

However, many TF binding alterations do not arise from genetic difference within the TFBSs, as 

other influences can contribute, such as epigenetic variation and disrupted binding of cooperative 

TFs [46]. The lack of experimentally determined disruption data makes it difficult to capture 

multiple defining properties of disrupted TFBSs.  

 

The availability of large-scale data obtained through the chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) technique has transformed the annotation of regulatory 

elements [135-137]. Through the ENCODE project [30, 138], there is a widespread access to 

millions of positions at which TFs are assumed to be present in at least one tissue or cell-type. 

The analysis of ChIP-seq data for the purpose of regulatory variant discovery has been 

introduced. In short, by combining large-scale genotype data (such as whole genome sequencing, 

WGS) with ChIP-seq, it is now feasible to identify the TF binding preference between the two 

alleles at heterozygous sites within bound regions [49, 50, 132, 139, 140]. Heterozygous site 

binding events can be classified as allele specific binding (ASB) or non-ASB events specifying 

whether one allele is significantly preferred or not. The advantages of heterozygous site binding 

data are that: 1) it provides high-throughput compilation of altered TF binding data; and 2) it 
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compares TF binding at two similar sequences (one nucleotide difference) in the same cell 

context, reducing technical and biological noise [47].  

 

In this work, we focused on heterozygous site binding events to interpret the impact of variations 

on TF-DNA binding. Using genotype calls from WGS, we extracted heterozygous site binding 

events across 45 TF ChIP-seq experiments from the ENCODE project [30]. We identified a set 

of features correlated with TF heterozygous site binding events, including motif alterations of the 

ChIP’ed TFs and other potential partner TFs, allelic difference of DNase I hypersensitivity 

(DHS), and allelic difference of histone modifications. Finally, a classifier was trained to predict 

the variation impact on TF binding, revealing that combining DHS and WGS was an efficient 

approach to predict altered TF binding. Our results suggest that heterozygous site binding events 

provide a foundation to identify features that informed the detection of cis-regulatory variants. 

 

2.2 Materials and methods 

2.2.1 Genotype data of investigated cell lines 

Genotype data for GM12878 and six other lymphoblastoid cell lines (Table 2.1) were obtained 

from the Complete Genomics website (as of June 2014, specific hyperlinks provided in 

Appendix Table A1) [141]. For HeLa-S3, NIH granted permission to access raw sequence data 

(accession number phs000640.v2.p1) [142]. Encrypted SRA files of HeLa-S3 were converted to 

raw reads using fastq-dump command from sratoolkit (https://github.com/ncbi/sratoolkit, 

Version 2.3.2). Raw reads were mapped to the hg19 reference genome using bwa (version 

0.7.10-r789) with the command bwa sampe with default parameters. The GATK tool (version 

2.7-4-g6f46d11) IndelRealigner [143] was used to realign reads around indels. Finally, samtools 

http://h
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(version 0.1.9-r783) mpileup [144] was used to call variations. Any variation with a quality of at 

least 30 was kept for subsequent analysis. 

 

2.2.2 ChIP-seq read alignment 

We downloaded ChIP-seq data for diverse TFs, DHS data, and histone modification data, from 

the ENCODE project [30] (Appendix Table A1). For each cell line, we built a personalized 

version of the hg19 reference genome in which the single nucleotide variation (SNV) sites were 

replaced with IUPAC degeneracy codes according to the genotype data. The downloaded ChIP-

seq reads were mapped to the personalized reference genome using Novoalign (version 3.01.00) 

with default parameters. We removed any reads with a mapping quality lower than 30.  

 

2.2.3 Mapping bias simulation 

Even though we used a personalized reference genome to improve the mapping sensitivity of 

alternative alleles, there remained a potential mapping bias towards certain alleles (e.g. reads 

with strong similarity to multiple genome regions) [49, 53, 132]. To address this issue, we 

performed a read mapping simulation to estimate the mapping bias at each heterozygous site. For 

each heterozygous site within the TF ChIP-seq peak regions, we generated all the possible 36-bp 

reads overlapping with the heterozygous sites for each allele and each strand. Then, the 

generated reads were mapped to the personalized reference genome using the same settings as 

for the real ChIP-seq data. Finally, we assessed the mapping bias and excluded the biased sites if 

the imbalance ratio of any allele was greater than 60%. This filter threshold is set according to 

the minimum imbalance ratio threshold for called ASB events (see below). 
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2.2.4 Retrieving heterozygous site binding events and calling ASB events 

Uniformly processed ChIP-seq narrowPeaks were downloaded from ENCODE [145]. In order to 

increase the confidence of TF-bound regions, we narrowed the peaks to the 100 base pairs (bp) 

core regions centered around the peak max positions [146, 147]. For each TF ChIP-seq data set, 

we retrieved the read counts of the two alleles at heterozygous site binding events within the 

ChIP-seq peak core regions. Replicates were pooled together to increase the overall read 

coverage [148]. Peak core regions on sex chromosomes or overlapping with copy number variant 

regions (Appendix Table A1) were filtered out. We excluded from the downstream analyses core 

peaks that harboured multiple heterozygous SNVs (8,311 out of the 79,565 heterozygous core 

peaks) to ensure that the two alleles differed by a single nucleotide. For the sites supported by at 

least 10 reads, an ASB event was called if the read count on one allele was significantly different 

from the other allele based on a binomial test (false discovery rate, or FDR, <0.05). As an aside, 

we explored the option of using replicate normalization (see Appendix A1and Appendix A2). 

The hypothesized probability of the binomial test was set as the mapping imbalance detected in 

the above-mentioned read mapping simulation at each heterozygous site. For ASB events, we 

further required the favored allele to show at least 60% allele imbalance (proportion of reads 

mapped to one allele over the total) following [148], to remove extreme p-values caused by small 

changes at high read depth loci. We labelled the allele with higher number of mapped reads as 

the favored allele, and the lower one as the unfavored allele; in non-ASB events, if the numbers 

of mapped reads on the two alleles were equal, the reference allele was labelled as favored.  
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2.2.5 TFBS identification in ChIP-seq peak regions 

TF binding motifs were downloaded from the JASPAR database (version 2014) [149]. The motif 

of each corresponding TF was scanned against the peak regions using the Biopython (version 

1.65) motifs module [149, 150]. For each scanned site, the motifs module provided the motif 

score (position weight matrix, PWM, score) and the p-value of the score against a null uniform 

distribution of the four nucleotides (referred to as motif p-value). Sites with scores above the 

false positive rate of 0.001 were predicted as TFBSs.  

 

2.2.6 Defining ASB frequency within TFBSs 

We defined the frequency of ASB events at each TF motif position as the proportion of ASB 

events observed at this position over the total number of ASB events observed across all motif 

positions considering the predicted TFBSs; the same definition was applied to non-ASB events. 

Only the TFs with at least 10 ASB and 10 non-ASB events in the predicted TFBS are considered 

to calculate the ASB frequency within TFBS. 

 

2.2.7 Identifying comotifs within ChIP-seq peak regions 

We used the findMotifsGenome.pl script from the HOMER [26] package (version 4.6) with 

default settings to identify enriched known motifs in ChIP-seq peak regions. The HOMER 

default analysis window of 200bp was applied. Among the enriched motifs reported by HOMER, 

we identified the five most enriched motifs according to the following criteria: 1) not similar to 

the motif of the ChIP’ed TF if available in JASPAR; and 2) no similar motifs within the five 

identified motifs. Motif similarity was based on the compare-matrices command provided in the 

RSAT toolset (version 2011) [151] with an information content correlation threshold of 0.8. For 
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the ASB SNVs not overlapping the predicted TFBSs of the ChIP’ed TF, we tested the correlation 

between motif alteration (log ratio of motif p-values between the two alleles as in [70]) and allele 

imbalance of TF binding within the predicted TFBSs of each of the five enriched motifs 

(Spearman correlation, FDR < 0.05). The significantly correlated enriched motifs were identified 

as comotifs. 

 

2.2.8 Association between cobound TFs and ASB events 

To identify the distribution of ASB events within binding regions of other TFs, we used all the 

available TF ChIP-seq peaks in the same cell line. Cobound TFs were identified if their peaks 

overlapped with the peaks of ASB TFs. For the heterozygous site binding events of each ASB 

TF, we investigated the association between the presence of ASB events and their overlap with 

the peaks of each cobound TF (two-sided Fisher’s exact test, FDR <0.05). Throughout the thesis, 

the minimum reported p-value is 2.2×10
-16

 which is based on floating point constraints. The odds 

ratio of Fisher’s exact test was used to interpret whether ASB events were enriched (odds ratio 

>1) or depleted (odds ratio <1) in cobound regions. 

 

2.2.9 Classification of heterozygous site binding events 

We used the randomForest package [152] and the recursive feature elimination function from the 

caret package [153] to train random forest classifiers (“ntree” parameter was set to 1000) and 

select key features. Since there were more non-ASB events than ASB events, non-ASB events 

were randomly downsampled to balance the training data set for each tree building process 

following the balanced random forest approach [154, 155]. We used a five-fold cross-validation 

approach to assess the predictive power of the classifiers. Specifically, the predictive power 
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corresponded to the average area under precision-recall curve (AUPRC) obtained through the 

five-fold cross-validation. For determining the importance of each feature in a classifier, we took 

the “MeanDecreaseAccuracy” (mean accuracy decrease over all trees) score reported by the 

random forest. 

 

The input features, listed in Appendix Table A5, spanned five categories: 1) motif-related 

features, for instance the motif scores of the two alleles, the best motif scores within the peak 

regions on two alleles; 2) positional information, such as SNV distance to the ChIP-seq peak 

max and SNV position within the predicted TFBS; 3) enriched-motif related features (log ratio of 

motif p-values between the two alleles); 4) cobound TFs, such as the overlapping of 

heterozygous site binding events with each available cobound TF peaks within the same cell line; 

and 5) chromatin features, for instance the read counts on the two alleles from DHS and 11 

histone modification data from the corresponding cell type. We combined features across the five 

categories and trained three models: 1) a Seq model based on sequence features, including 

categories 1-3; 2) a Seq+DHS model adding DHS data on top of the Seq model; and 3) a Full 

model trained using all features. 

 

We compared our classifiers to deltaSVM [40] and BayesPI-BAR [73]. The deltaSVM score was 

calculated as the gkmSVM score difference between two alleles [40]. For each TF, we trained a 

separate gkmSVM model (version 2.0) with default parameters using 5,000 randomly selected 

ChIP-seq peaks following [37] and the associated tutorial (http://www.beerlab.org/gkmsvm/). 

One TF (PRDM1) had only 4,577 peaks and we used all of them to train the gkmSVM model. 

http://www.beerlab.org/gkmsvm/
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The BayesPI-BAR package was downloaded from http://folk.uio.no/junbaiw/BayesPI-BAR/, and 

BayesPI-BAR scores were calculated with default parameters. 

 

2.3 Results 

2.3.1 Compile heterozygous site binding events 

We implemented a pipeline that combined ChIP-seq and genotype data from the same cell types 

to extract heterozygous site binding events (Materials and methods in Chapter2). Specifically, 

ChIP-seq (and DHS) reads were mapped to personalized reference genomes in which the 

variants reported in the genotype data were incorporated. In total, we retrieved 51,518 

heterozygous site binding events supported by at least 10 reads from 45 TF ChIP-seq data sets 

from eight cell lines. We also extracted read counts of 11 histone modifications and DHS on the 

two alleles of TF heterozygous site binding events in GM12878 and HeLa-S3 cell lines. We 

observed that 4.3% of the TF ChIP-seq peak regions contained a single heterozygous site (Table 

2.1 and Appendix data). ASB events were defined if the number of mapped TF ChIP-seq reads 

on one allele was significantly higher than the number of mapped reads on the other allele 

(Binomial test, FDR < 0.05) and with at least 60% allele imbalance for the favored allele as in 

[148]. We found that 20.9% of heterozygous site binding events were classified as ASB events; 

others were classified as non-ASB events. Among the compiled data of eight cell lines, 

GM12878 and HeLa-S3 (Tier 1 and Tier 2 cell lines from the ENCODE project) had data sets for 

all the investigated TFs, DHS, and histone marks; the remaining six cell lines were restricted to 

ChIP-seq data for CTCF. Therefore, we focused on GM12878 and HeLa-S3 for most of the 

study, using the additional cell lines for testing the classification models (see below).  

http://folk.uio.no/junbaiw/BayesPI-BAR/
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Cell TF DHS and 

Histones 

Peak Count Heterozygous 

binding sites 

events 

ASB 

GM12878 16 12 405,427 17,222 2,314 

HeLa-S3 23 12 518,558 18,481 5,533 

GM12872 1 0 47,151 2,496 488 

GM12873 1 0 51,005 2,575 552 

GM19238 1 0 49,938 2,909 500 

GM19239 1 0 41,085 2,473 282 

GM19240 1 0 46,036 2,972 573 

GM12864 1 0 46,798 2,390 523 

Total 45 24 1,205,998 51,518 10,765 

 

Table 2.1 Overview of heterozygous site binding data 

For each investigated cell line (first column), we report the number of compiled TF ChIP-seq experiments (second 

column) and DHS and histone modification data sets (third column). The corresponding total number of TF ChIP-

seq peaks is given in the fourth column. Finally, we provide the number of heterozygous sites supported by at least 

10 reads within the ChIP-seq peaks (fifth column) and the number of ASB events (sixth column). Note that the 

numbers are derived from the compilation of all the TF ChIP-seq data for each cell line. Details for each TF can be 

found in Appendix Table A2. 

 

2.3.2 TFBS alterations strongly correlate with ASB events 

To understand the underlying genetic mechanisms of ASB, we considered the subset of SNVs 

overlapping with the predicted TFBSs (Materials and methods in Chapter2). An initial analysis 

revealed that ASB SNVs were significantly enriched in predicted TFBSs compared with non-

ASB events (p-value < 2.2×10
-16

, odds ratio = 3.0, Fisher’s exact test). Next, we assessed the 

motif score alteration caused by the SNVs for ASB events. We found that motif scores of 
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favored alleles (allele with higher read count) were significantly higher than those of unfavored 

alleles in predicted TFBSs (Figure 2.1, p-value < 2.2×10
-16

, estimated median difference = 0.04, 

one-sided Wilcoxon signed-rank test), reflecting the contribution of motif score alteration to 

ASB events. In contrast, non-ASB events displayed a balanced score distribution between the 

two alleles. Our results agree with previous observations [47, 48] but are based on data for a 

much larger number of TFs and TFBSs. However, only a portion of ASB SNVs (19.3%) 

overlapped with the predicted TFBSs, indicating that additional mechanisms beyond TFBS 

alteration contribute to the observed ASB events. A plot showing the total set of ASB and non-

ASB events, including those outside the predicted TFBSs is provided in Appendix Figure A1. 

 

 

 

Figure 2.1 TFBS motif score analysis at heterozygous site binding events 

In each panel, we plot the motif score at heterozygous sites on the favored allele (harbouring higher amount of 

mapped ChIP-seq reads, x-axis) and unfavored allele (y-axis) at predicted TFBSs. ASB (left panel) and non-ASB 
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(right panel) events are plotted separately. The black diagonal lines indicate an identical motif score on the two 

alleles. Note that the figure was generated using all heterozygous site binding events for all compiled TFs in 

GM12878 and HeLa-S3.  

 

2.3.3 ASB events show different positional distribution within TFBS compared with 

motif information content 

We next examined whether specific positions within TF binding motifs were more sensitive to 

ASB events and how such impactful positions related to their information content (IC) in the 

TFBS motif profiles. IC has been correlated with the strength of binding site preference for 

individual nucleotides in TF binding models, and the maximum IC of a position is two bits when 

a certain nucleotide is consistently observed at that position in TFBSs [17]. Given a TFBS motif, 

the positional impact was measured as the frequency difference between ASB and non-ASB 

events at each position (Materials and methods in Chapter2). As expected, positional impact was 

significantly correlated with positional IC across motif positions of all investigated TFs 

(Spearman correlation coefficient = 0.38, p-value = 6.6×10
-12

; Figure 2.2A). But most motif 

positions did not strictly follow this trend in Figure 2.2A, revealing a large variance of positional 

impact that cannot be attributed to IC. 

 

The most extreme cases at the upper right corner of Figure 2.2A represented motif positions 

where TF binding was disproportionately impacted. We qualitatively observed that these 

positions tended to be centrally positioned within the TFBSs of the TFs which were dimers and 

bound symmetrically to DNA. When analyzing all four symmetric TF dimers in our data sets 

with known TF-DNA complex structures (CEBPB, MAX, TCF7L2, and USF1), we observed 
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that central positions significantly showed high positional impact compared with other positions 

with similar IC (p-value = 0.02, estimated median difference = 0.09, one-sided Wilcoxon rank-

sum test). As a specific example, CEBPB recognizes an 11bp motif containing four positions 

with an IC of two bits (positions 3, 4, 6, and 10), which, according to the motif, would be 

expected to be equally important for binding (Figure 2.2B). However, the positional impact was 

particularly high at position 6, at the center of the motif, indicating that this position could be 

more critical for the disruption of TF binding (Figure 2.2B). Further structural analysis of a 

DNA-CEBPB dimer interaction revealed that position 6 was contacted by both monomers 

(Figure 2.2B). The critical role of central positions suggests that mutations at these positions 

might potentially affect the binding of the two monomers. Recently, the same position of the 

CEBPD motif was reported to display more somatic mutations within the predicted TFBSs than 

other positions in human cancer genomes [156], which is concordant with our findings. Other 

cases included the PAX5 motif at position 15 (Appendix Figure A2), which was of low IC (0.4) 

but with high impact, suggesting that low IC positions could also be critical for TF binding 

[157]. Taken together, IC derived from motifs partially explained the distribution of ASB events 

across the motif, while positional impact from ASB events provided deeper insights into the 

binding properties of TFs. 
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Figure 2.2 Information content and positional impact of each position within TFBS 

(A) Correlation between positional impact and information content. Each point corresponds to a position within 

TFBSs associated to ChIP’ed TFs, and four positions are explicitly labeled in parenthesis for CEBPB. Positions are 

plotted with respect to their associated information content (x-axis) from the TF motif and positional impact (y-

axis). The trend line is drawn by the locally weighted scatterplot smoothing method. (B) Exceptional example of 

CEBPB motif with its positional impact distribution (upper), TF binding motif logo (middle), and TF-DNA interface 

(lower; Protein Data Bank ID: 2e42). 

 

2.3.4 Disruption of enriched comotifs can lead to ASB events 

Since most variations at ASB events were outside of the predicted TFBSs (80.7%), we assessed 

whether disrupted TFBSs of potential partner TFs could be responsible for the observed events. 

We retrieved the five most enriched, non-redundant motifs within the peak regions of each TF 

ChIP-seq experiment (Materials and methods in Chapter2). Within the predicted TFBS of each 

enriched motif, we tested the correlation between the motif score change and the allelic binding 
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imbalance of the ChIP’ed TF across all heterozygous site binding events (Materials and methods 

in Chapter2). We found fifteen significantly correlated enriched motifs for nine TF ChIP-seq 

experiments (based on the Spearman rank statistic, FDR < 0.05, Figure 2.3), hereafter referred to 

as comotifs. Decreased motif scores of comotifs were preferentially observed on unfavored 

alleles in ASB events, consistent with a cooperative binding model [56]. The comotifs lay in 

three categories (Appendix Table A3): 1) seven cases in which the TFs associated to the 

comotifs were known to interact with the ChIP’ed TF, for instance the comotif of P300 was 

CEBPB (P300-CEBPB); 2) one case (RUNX3-RUNX1) in which the TF of comotif belonged to 

the same TF family as the ChIP’ed TF; and 3) seven cases of novel relationships, from our 

knowledge, including CEBPB-BATF, and P300-NF-E2.  

 

Moreover, six out of the fifteen comotifs arose from the experiments in which the ChIP’ed TFs 

did not bind DNA directly, for example P300. For these non-sequence specific TFs, 33.5% of 

ASB-SNVs overlapped the TFBSs of comotifs, significantly enriched compared with 17.4% for 

non-ASB events (p-value < 2.2×10
-16

, odds ratio = 2.4, Fisher’s exact test, Appendix Figure A3). 

Overall, ASB overlapping comotifs comprised 9.4% of ASB events. 
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Figure 2.3 Alteration of comotif correlated with TF allelic imbalance 

The name of each panel specifies the ChIP’ed TF followed by the comotif name and the cell line in parentheses. 

Each dot represents one heterozygous site binding event (red for ASB and blue for non-ASB events) found within 

the predicted TFBSs of the comotif. The comotif alteration (x-axis) represents the log ratio of motif p-values 

between the reference and alternative alleles. The allelic binding imbalance (y-axis) indicates the fraction of reads 

mapped on the reference allele over the whole read coverage at that position. We test the correlation between the 
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two properties for each ChIP’ed TF and its enriched HOMER motifs, and only significantly correlated pairs are 

plotted (FDR < 0.05).  

 

2.3.5 ASB events are associated with cobound TFs 

Next we sought to understand how ASB events related to regions bound by additional TFs within 

the same cell using ChIP-seq data. It has been observed that TF binding in cobound regions 

(cases where ChIP-seq data for multiple distinct proteins have overlapping peaks) tends to be 

more conserved over evolution than isolated binding events [158]. We tested the distribution 

difference between ASB and non-ASB events in the ChIP-seq peaks of each cobound TF 

(Materials and methods in Chapter2), revealing 106 significant pairs (Appendix Table A4, 

Fisher’s exact test, FDR < 0.05). Of these, 47 were observed in GM12878 lymphoblastoid cells, 

and almost all (46 out of 47) displayed depletion of ASB (relative to non-ASB) in the cobound 

regions (odds ratio <1). This pattern is concordant with the concept of variant buffering effects in 

motif-rich DHS regions [148]. For instance, CTCF heterozygous site binding events were 

classified as ASB in 8.9% of cases where ZNF143 binding peaks were overlapping, while 18.3% 

of cases were classified as ASB if there were no overlapping ZNF143 peaks (p-value =3.6×10
-11

, 

odds ratio = 0.43, Fisher’s exact test). The ASB TF and cobound TF pairs included known TF-

TF interactions, such as CTCF-ZNF143, and RUNX3-YY1 [159], suggesting functional 

interactions for the pairs observed. In HeLa-S3, a cancer cell line, we observed a reversed pattern 

where ASB events were enriched in cobound regions (odds ratio >1, not depleted as in 

GM12878) for 35 out of 59 cases (such as CEBPB-P300 and MAX-CMYC). The opposing 

pattern between normal and cancer cells suggests that binding site alterations in cobound regions 
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of cancer cells may be functionally important for gene dysregulation. Further analyses would be 

required to test this hypothesis when more TF binding data become available. 

 

2.3.6 Allelic chromatin properties coordinate with ASB events 

To further shed light to the mechanisms associated with ASB events, we investigated the non-

genetic properties in proximity to ASB events. We extracted read counts from DHS and histone 

modification ChIP-seq experiments on the two alleles at heterozygous site binding events. Next, 

we assessed the correlation between allelic imbalance of each chromatin property (DHS and 11 

histone modifications) and TF binding. Overall, 196 significant correlations were observed 

(Pearson correlation, FDR < 0.05; Figure 2.4 and Appendix Figure A4). DHS signal was 

significantly correlated with TF binding for 35 out of 39 TF ChIP-seq experiments. DHS showed 

higher read counts on the TF favored allele for 73.4% of the ASB events compared with 52.5% 

for non-ASB events. Moreover, we found 161 TF-histone correlation pairs. Active histone 

modifications, such as H3K27ac, H3K4me2, and H3K3me3, exhibited positive correlation 

patterns with TF binding imbalance. Taken together, DHS and histone modifications widely 

correlated with ASB events, indicating their potential value for predictive modelling. 
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Figure 2.4 Allelic coordination between TFs and chromatin properties in HeLa-S3 

The heatmap represents the -log(p-value) of Pearson correlation between allele imbalance of TF ChIP-seq reads at 

heterozygous site binding events and chromatin properties (DHS and histone modifications).  
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2.3.7 DHS and sequence-derived properties are sufficient for cost-effective ASB event 

prediction  

Building upon the observed associations between ASB events and properties of both sequence 

and experimental data, we constructed computational models to determine our capacity to predict 

SNVs disruptive of TF binding (that is to distinguish between ASB events and non-ASB events). 

We took ASB events as the positive training data and non-ASB events as the negative set for 

model training. We constructed random forest classifiers using only DNA sequence information 

(that are the features derived from motif and comotifs, referred to as Seq model, see Materials 

and methods in Chapter2) and assessed their predictive performances. Consistent with past 

literature [69, 70, 73], the Seq model had predictive value but the performance was quite limited 

across all the investigated TFs (average AUPRC of 0.35, Figure 2.5A). The Seq models allowed 

consistent performance across data from multiple individuals within the same cell type 

(Appendix A3). 

 

We compared our classifiers against two existing sequence-based models, deltaSVM [40] and 

BayesPI-BAR [73]. Seq models outperformed BayesPI-BAR (p-value = 7.5×10
-9

, estimated 

median AUPRC difference = 0.18, Wilcoxon signed-rank test, Appendix Figure A6) and showed 

similar performance with deltaSVM (p-value = 0.33, Wilcoxon signed-rank test, Figure 2.5A) 

when predicting ASB events. The differences between deltaSVM and our Seq models are that 

deltaSVM uses k-mers to predict TF-bound regions while our Seq models allow for combining 

positional feature on top of motif features (Materials and methods in Chapter2). The ASB 

framework potentially can incorporate any features of two alleles into the discriminative model, 

for example, adding deltaSVM scores to cover the k-mer changes.  
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Next, we took into account all the features analyzed in the previous sections into the model 

(Materials and methods in Chapter2), which was hereafter referred to as the Full model. The Full 

model showed a mean AUPRC of 0.43 across all the tested TFs (Figure 2.5A). For those TFs 

with known binding motifs, the top ranked features highlighted two major categories 

contributing to the success of the model, DHS and motif sequence properties. Specifically, the 

top five features were DHS read count from the unfavored allele, DHS read count from the 

favored allele, motif score on the unfavored allele, motif score on the favored allele, and 

H3K27ac read count from the favored allele (Figure 2.5B). For TFs lacking a motif model, the 

feature set could not include motif sequence properties of the ChIP’ed TF. Consequently DHS, 

H3K4me2, and H3K27ac were important for the success of the classifiers (Appendix Figure A7). 

 

Given that ChIP-seq TF binding data were not available for most cell lines, while DHS was more 

likely to be available, we evaluated the performance of models limited to sequence-derived 

features and DHS (Seq+DHS model). Consistent with the number of features in the training sets 

for each model, results showed that the Full model outperformed the Seq+DHS model, which in 

turn outperformed the Seq model across all the tested TFs (p-values of 2.1×10
-8

 and 1.3×10
-5

, 

Wilcoxon signed-rank test) (Figure 2.5A). From a sequence-only baseline of 0.35 in terms of 

average AUPRC, the Seq+DHS model achieved 0.40, and the Full model achieved 0.43. 

Importantly, inclusion of DHS with sequence properties provided important value, representing 

62.3% of the average improvement of the Full model over the sequence-only baseline. These 

results highlighted that ASB prediction could be pursued with few laboratory generated features 

cost-effectively by coupling sequence analysis with experimental genotyping (WGS) and DHS 

data. 
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Figure 2.5 Performance of ASB classification models and key features 

(A) AUPRC of the deltaSVM, Seq, Seq+DHS and Full models across the 39 investigated TF ChIP-seq experiments. 

Seq models are based only on sequence-related features; Seq+DHS models include DHS data on top of the Seq 

model; and Full models further include histone marks and cobound TFs. Each dot represents the model performance 

of one TF ChIP-seq experiment in one model. Details on each model and features can be found in Materials and 

methods in Chapter2. (B) Top frequent key features in the Full models for all 27 TFs with known motifs. The suffix 

‘favor’ and ‘unfavor’ refer to the favored and unfavored alleles at heterozygous sites. The ‘motif_pvalue_ratio’ is 

the log ratio between two alleles in terms of motif score p-value. The ‘peak_dis’ indicates the distance of the SNV to 

ChIP-seq peak max position where the highest number of reads are mapped within the peak. 
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2.4 Discussion 

Predicting variant impact on TF binding is amongst the biggest current challenges for genome 

interpretation. One of the main obstacles is the lack of sufficient and reliable TFBS alteration 

data, which are critical for the development of bioinformatics methods. We compiled 10,765 

ASB events from 45 TF ChIP-seq experiments from eight cells lines. To the best of our 

knowledge, this is the largest experimentally defined ASB collection. While altered canonical 

TFBSs for the ChIP’d TFs were frequently observed (19.3%), most ASB SNVs did not overlap 

with the primary TF motif. When looking across positions within TFBS, we observed that central 

TFBS positions for symmetric TF dimers were more critical than other positions with similar 

information content. Alterations of comotifs, potentially bound by partner TFs, were observed 

for a portion of ASB events (9.4%). Taking the enlarged collection of data to train classification 

models, we demonstrated that baseline models using only genomic sequence data were improved 

by the incorporation of allelic DHS data, which provided 62.3% of the performance 

improvement achieved by models using all available features (~100 per cell type) from the 

ENCODE data. 

 

The applied thresholds in ASB calling were based on previous studies and justified in the context 

of our data. As we were interested in both ASB and non-ASB events, a moderate threshold (FDR 

< 0.05) was applied to strike a balance between the two types of events as in [47 , 148, 160]. To 

avoid heavy test burden, ASB studies also filtered low coverage sites that lack statistical power 

in the binomial test. However, the threshold for minimum read coverage differs across studies 

(e.g. 7 reads in [47], and 10-20 reads adjusted by library size in [48]). Based on our datasets, we 
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identified a threshold of 10 reads, which is the minimum read coverage for the most imbalanced 

heterozygous sites (all 10 reads on one allele) to reach ASB significance threshold. 

 

Our results suggest that positions of SNVs within TFBSs should be considered when 

investigating SNV impact on symmetric TF dimers. The observed impact of SNVs within these 

central positions was not fully reflected by the information content of classic motif (position 

weight matrix) models [31]. Classic PWM-based methods [69, 70, 72, 73] did not capture such 

characteristics when predicting TF binding alteration. The importance of these central positions 

was supported by structures of DNA-TF dimer interactions showing them to be dual-contact 

points for both protein subunits, highlighting that structural information can be important for 

understanding the impact of SNVs on TF binding. 

 

Our ASB classification model provides a novel supervised and integrative framework to model 

SNV impact on TF binding. To evaluate the impact of SNVs, most prior methods calculated 

binding score differences between altered alleles and reference alleles based on TF binding 

motifs [70, 72, 73] or enriched k-mers [38, 40]. Prediction of SNV impact was based on those 

cases where the difference exceeded a threshold. However, the selection of a threshold was 

difficult to justify. In contrast, our ASB model learned the optimal threshold (decision surface) 

from the data directly. Moreover, our method was not limited to sequence features (TF motifs 

and k-mers), with the capacity to incorporate diverse features (such as genetic features, DHS, and 

histone modifications). We anticipate that such features will become increasingly available in the 

near future. In addition, the relative importance of each feature in the classification models 

provided insights into the mechanisms contributing to TF binding.  
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Only ~30% of ASB events can be explained by motif or comotif alteration. Understanding how 

the altered binding arises in the remaining portion is likely to require advances in our knowledge 

and understanding of TF binding. First, the available TF binding models are insufficient. Most 

human TFs do not yet have binding models, although the coverage improves [39]. Second, the 

existing binding models can be improved. For instance, CTCF has been shown to recognize 

flanking motifs that stabilize binding, but these are not yet well represented in the model [161]. 

Moreover, there are properties outside the sequence-specific target that contribute to binding. 

Flanking sequences can influence binding strength [162-164], potentially involving the shape 

(topology) of DNA [165, 166]. As we advance our understanding, we can anticipate that the 

causally unexplained portion of ASB events will be decreased. Overall, we recognize that there 

is an upper limit for DNA sequence to explain ASB events as other features can also contribute 

to TF binding, such as chromatin accessibility and DNA methylation. 

  

The predictive power (AUPRC) of the ASB classification models is limited, particularly when 

considered on the scale of analyzing a full genome. The inadequate performance might be 

attributable to multiple causes. For instance, the classification model may be under-fitted because 

the number of ASB events available for training was not sufficient. Recently, two studies 

compiled new ASB datasets in other cell lines to investigate GWAS loci or the variant impact on 

gene expression [132, 167]. In the future, we anticipate a rapidly growing body of ASB data will 

be critical in training more reliable models. Alternatively, the set of features available for 

modeling may have missing components, e.g. the limited set of TF binding models. Lastly, ASB 

events could be caused by multiple SNVs or distal SNVs. In our data compilation, we excluded 
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the cases where multiple heterozygous SNVs situated within the same ChIP-seq core peak 

regions to simplify the analysis. However, the accumulated effect of multiple SNVs proximal or 

distal to a TFBS could alter local TF binding according to the TF-TF interaction and chromatin 

interaction models [128, 168]. Further efforts needs to be devoted to these areas. 

 

Identification of cis-regulatory variants is a critical need for understanding the genetic 

mechanisms contributing to diseases [27]. Our compilation of heterozygous site binding data and 

ASB classification models provide unique data sets and a novel framework for modeling the 

impact of SNVs on TF-DNA interaction. Future advances in sequencing technology and 

enlarged ASB database will enable the reliable identification of cis-regulatory variants.  
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Chapter 3: Evaluating five statistical methods to call allele specific binding 

events 

In Chapter 2, the assessment of candidate ASB events was performed using a statistic based on 

an assumption of a binomial distribution. As has been explored for determining the significance 

of RNA-seq differential expression [133, 169], there are a variety of approaches that could be 

considered. Recent studies suggest that the distribution of observed allelic reads might not 

conform to a binomial distribution, and it has been proposed that a beta-binomial distribution 

might be more appropriately used. In this chapter, using the ASB datasets from the previous 

chapter, diverse ASB calling methods are evaluated.  

 

3.1 Introduction 

Disease-associated variants identified using GWAS studies are enriched in regulatory regions 

which control the expression of genes [11, 121, 128], but functional roles of individual variants 

remain unclear. A potential mechanism for a subset of these regulatory region variants is through 

disruption of TF binding sites (and consequently the modulation of downstream gene expression) 

[129]. However, predicting which variants will disrupt TF binding is an ongoing challenge in 

bioinformatics. A promising approach is to investigate the TF binding difference between two 

alleles at heterozygous sites [47, 49]. These heterozygous site binding events can be classified as 

allele specific binding (ASB) or non-ASB events depending on a significance threshold. ASB 

events have become an increasingly important source to interpret regulatory variants, as they 

quantitatively measure the TF binding difference between two alleles within the same cellular 

context. 
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To date, various methods have been developed to call ASB events based on TF binding data (e.g. 

ChIP-seq) and genotyping data (e.g. WGS) [49, 140]. The first step is to extract TF binding 

signal (mapped ChIP-seq reads) of two alleles at known heterozygous sites. Allelic binding 

signal can suffer from mapping bias when the reads from one allele are not mapped as properly 

as the reads from the other allele (i.e. the reference allele) [49]. To address this challenge, 

personalized genomes containing the observed alleles from the genotyping data can be used to 

improve ChIP-seq read mapping [49, 132], followed by read simulation to detect any remaining 

mapping bias [48, 52]. After extracting the signal from the two alleles, statistical tests are applied 

to call significant ASB events. 

 

For the last step, assessing significance, key questions remain to be resolved. First, which 

statistical distribution is the most appropriate for the observed pattern of allelic reads? In the 

past, the binomial distribution has been widely used, but recent studies have reported an “over-

dispersion” problem because the observed variance of allelic read counts is larger than expected 

in a binomial distribution [132] (Figure 3.1A). To overcome this problem, the beta-binomial 

distribution has been introduced to model extra variance in binomial distribution [132]. 

However, a thorough comparison between performances of the two distributions has yet to be 

performed. The second question pertains to handling ChIP-seq biological replicates. The 

majority of current approaches pool replicates, but the impact of this approach and alternative 

approaches have not yet been investigated. Third, which benchmark data is most optimal for 

evaluation of alternative approaches, as no gold standard ASB dataset has been established.  
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In this chapter, we try to address these questions by comparing five different ASB calling 

methods using our previously compiled heterozygous site binding events from Chapter 2. The 

five investigated methods cover three different statistical distributions (binomial, beta-binomial 

and negative binomial), and three approaches for handling replicates (pooling, normalization and 

joint probability). Our results suggest that five methods differ mainly in their statistical 

stringency, but they all provide similar significance rankings for heterozygous site binding 

events. We benchmark five methods based on allelic imbalance of DHS signal, with the method 

applied in Chapter 2 performing best (an approach that uses a binomial distribution and pools 

replicates). We demonstrate that the over-dispersion problem could be due to mild TFBS 

alterations, supporting that the binomial distribution is appropriately used as a null distribution in 

ASB calling. 

 

3.2 Materials and methods 

3.2.1 Datasets for evaluating ASB calling methods 

We previously compiled 39 datasets of heterozygous site binding events by combining ChIP-seq 

and genotyping data from GM12878 and HeLa-S3 cells [52]. Each heterozygous site binding 

event includes: 1) the number of mapped reads on each allele from each ChIP-seq replicate of the 

investigated TF; 2) the number of DHS reads on each allele derived from DNase-seq experiment 

in the same cells as the ChIP-seq experiment; and 3) the estimated mapping bias by read 

simulation. Moreover, each heterozygous binding event contains at least 10 mapped reads 

between the two alleles. In total, we included 34,287 heterozygous binding events to benchmark 

the five different ASB calling methods. 
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3.2.2 Hypothesis testing for ASB calling 

Calling an ASB event is to test whether the TF significantly prefers to bind to one allele relative 

to the other. Under the null hypothesis, both alleles of a heterozygous site are equally bound by 

the TF. We define allelic imbalance as the ratio of mapped reads on one allele over the total of 

mapped reads at the heterozygous site. ASB calling can then be converted to hypothesis testing 

as follows: 

                                (1) 

where   is the allelic imbalance of the TF binding at the heterozygous site. By default,    is 0.5 

in the case of balanced TF binding.    can be adjusted according to the mapping bias estimated 

by read simulation. 

 

Under the above hypothesis testing framework, we compared five different methods (Table 3.1) 

to call ASB events. The five methods differ in two aspects: 1) the statistical distribution to 

represent allelic read counts (binomial, beta-binomial or negative binomial); and 2) the approach 

for handling ChIP-seq replicates (pooling, normalization or modeling the observed data with 

joint probability). 

 

3.2.3 Binomial distribution for allelic reads 

ASB events have been traditionally called based on the binomial distribution [47, 52, 148]. For a 

heterozygous site with k reads on one allele and a total of n reads, the probability of observing 

such event under the null hypothesis (balanced binding) is: 

 ( |       (
 
 
    

 (     
          (2) 
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An ASB event is called if the number of mapped reads on one allele significantly differs from 

the expected number under null hypothesis (FDR <0.05). 

 

3.2.4 Beta-binomial distribution for allelic reads 

Recent studies have revealed that allelic read counts do not strictly follow the binomial 

distribution, showing greater variance than expected by chance in a binomial distribution (Figure 

3.1A) [132, 170]. Some studies [132, 134] have used the beta-binomial distribution to model the 

observed over-dispersion in the data. Compared with the binomial distribution, the beta-binomial 

distribution uses an extra parameter to model the degree of dispersion. Ideally, this parameter 

should be estimated from the null distribution. In the following process, we used non-ASB 

events called with FDR >0.05 (binomial test) to represent the null distribution.  

 

Given the null distribution, the probability of observing k reads on one allele and n reads in total 

at a heterozygous site can be formulated as: 

 ( |                    ( |     
  (            (3) 

where p is the allelic imbalance of TF binding towards one allele, and   is the dispersion 

parameter. The beta-binomial distribution is as follows: 

             ( |        (
 
 
 
 (          

 (    
  

where a and b are called shape parameters, and B is the beta function: 

 (      ∫     (         
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In equation (3), both shape parameters are set according to the mapping bias obtained from the 

read simulation. For each TF ChIP-seq experiment, the dispersion parameter γ is estimated by the 

maximum likelihood approach across the null distribution using the VGAM package [171].  

 

3.2.5 Pooling replicates for ASB calling  

Each ChIP-seq experiment in our datasets usually has two or three biological replicates. In 

Binom+Pool and Beta+Pool methods, ChIP-seq replicates were pooled together to increase read 

coverage, and p-values for ASB calling were obtained based on pooled reads by testing the null 

hypothesis according to equations (2) or (3). 

 

3.2.6 Modeling replicates by joint probability 

To consider replicates independently, we introduced the joint probability scheme and likelihood 

ratio test from the methods of calling allele specific expression [134, 170]. Assume a TF ChIP-

seq experiment has R replicates, and that a heterozygous site has a total of nr reads and kr reads 

on one allele in replicate r. The joint probability of the observed data   (         
  is: 

 ( |     ∏   (  |        
 
        (4) 

where the p is the allelic imbalance of TF binding at the heterozygous site. Pr can be either the 

binomial (equation (2)) or beta-binomial distribution (equation (3)). In the case of applying the 

beta-binomial distribution, the dispersion parameter    is estimated from each replicate (it is 

omitted for the binomial distribution). Finally, the hypothesis testing can be formalized as a 

likelihood ratio test:  

{
    

 ( |  ̂  ̂ 

 ( |    ̂ 

     (       
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where  ̂ is the estimated dispersion parameter, and  ̂ is the maximum likelihood estimate at the 

heterozygous site. Significance can be obtained through the test statistic      (  , which is 

asymptotically distributed as a chi-square distribution with one degree of freedom. 

 

3.2.7 Negative binomial distribution to call ASB events with replicates 

ASB calling can be understood as a problem of identifying differentially expressed genes in two 

conditions. Here two conditions refer to the two alleles of heterozygous sites bound by TFs. We 

used edgeR [133], a popular package for differential expression analysis, for ASB calling. edgeR 

normalizes the number of reads in each replicate and then uses the negative binomial distribution 

to identify differential signal between two conditions. 

 

3.2.8 Using allelic imbalance of DHS signal to evaluate ASB calling methods 

We have shown that allelic DHS signal widely correlates with allelic imbalance of TF binding at 

heterozygous sites [52]. Here, we evaluate the performance of five ASB calling methods based 

on their correlation with the allelic imbalance of DHS signal. Allelic imbalance of DHS signal 

was calculated as the ratio between the TF-favored allele (the allele with more mapped reads 

than the other in TF binding data) and total read depth. For each ASB calling method, we 

calculated the correlation between the allelic imbalance of DHS signal and the p-values resulting 

from ASB calling at the same heterozygous site for every TF data set. We focused on the 

heterozygous sites with certain read coverage (10 < read coverage < 20; Appendix Figure B1) as 

sites with higher read coverage tended to generate extremer p-values than the sites with the same 

degree of TF binding imbalance. Coefficients of significant correlations (FDR<0.05) were used 

to compare ASB calling approaches (Figure 3.2). 
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3.2.9 Scoring DNA sequence using PWM 

Position weight matrices (PWMs) of TFs were derived from TF binding profiles in the JASPAR 

database (version 2014) [149]. The PWM of each corresponding TF was scanned against the 

candidate sequences using the Biopython (version 1.65) motifs module [149, 150]. For each 

scanned site, the motifs module provided the PWM score and sites with scores above the false 

positive rate threshold of 0.001 were predicted as TFBSs.  

 

3.2.10 Code and data availability 

ASB calling methods in this work are implemented in R [172]. The code and data links used in 

this work can be found at www.github.com/wqshi/asb_call.  

 

3.3 Results 

3.3.1 ASB calling methods provide highly correlated p-values but differ in statistical 

stringency 

We implemented five different methods (Table 3.1) for calling ASB events and compared their 

called ASB events in 39 TF ChIP-seq experiments (see Materials and methods in Chapter3). We 

included a total of 34,287 events supported by at least 10 reads. Four of the evaluated ASB 

calling methods (Table 3.1) are combinations of two statistical models (binomial or beta-

binomial) and two approaches to handle replicates (pooling and joint probability). The last 

approach, edgeR [133], is a popular method to identify differential signal in gene expression or 

TF binding analyses.  

  

http://www.github.com/wqshi/asb_call
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Approach Statistical distribution Replicates 

 

Binom+Pool (traditional 

approach used in [52, 148]) 

Binomial Pool replicates together 

Beta+Pool [132] Beta-binomial Pool replicates together 

Binom+Rep Binomial Calculate the joint 

probability of the observed 

allelic read counts across 

replicates  

 

Beta+Rep ( mainly used in 

allele specific expression 

[134, 170]) 

Beta-binomial Calculate the joint 

probability of the observed 

allelic read counts across 

replicates  

 

edgeR [133] Negative binomial Normalize according to 

library size and then sum 

across replicates 

 

 

Table 3.1 Five investigated methods for calling ASB events 

The abbreviation of each approach is listed in the first column, followed by the statistical distribution (second 

column) and replicate processing method (third column). See Materials and methods in Chapter3 for more details on 

each method. 

 

The numbers of called ASB events varied widely across the five methods (Figure 3.1B). 

Beta+Pool was the most conservative method, only calling 3,566 ASB events; while Binom+Rep 

was the most permissive method, calling 8,940 ASB events. Methods based on the beta-binomial 
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distribution were more conservative than those based on the binomial distribution. In general, 

ASB events called by the conservative methods were called by the permissive methods. For 

instance, 81.9% of ASB events called by the most conservative method (Beta+Pool) were called 

by all of the other four methods. The most permissive method (Binom+Rep) called 99.3% of 

ASB events from the union of the five methods. For the methods with the same statistical 

distribution, pooling replicates resulted in more conservative calling compared to those that 

considered replicates independently. The resulting p-values from ASB calling were also highly 

correlated between the five methods (Figure 3.1B and Figure 3.2). Overall, approaches based on 

the beta-binomial or binomial distributions correlated more with each other (average spearman 

correlation coefficient of 0.95) than with edgeR (average spearman correlation coefficient of 

0.91). In summary, five evaluated methods mainly differed in their statistical stringency and the 

resulting p-values from ASB calling were highly correlated.  
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Figure 3.1 Evaluation of five ASB calling methods 

(A) The over-dispersion problem of allelic read counts. The histogram indicates the empirical distribution of allelic 

read counts for the heterozygous sites with read coverage of 20. The fitted curves represent the estimated binomial 

distribution (blue dash line) and beta-binomial distribution (red line). (B) Venn diagram of the ASB events called by 

five methods. The number in the parenthesis indicates the number of ASB events called by each method. (C) 

Averaged correlation of p-values between five methods across 39 TF datasets. 
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Figure 3.2 Compare the p-values of five ASB calling methods on one dataset 

In the scatterplot of the lower panels, each dot represents two p-values in negative log scale for two ASB calling 

methods at one heterozygous site binding event from EBF1 dataset in GM12878. The diagonal plots show the p-

value density of each ASB calling method. "Corr" in the upper panels indicates the correlation coefficient for the 

symmetric plot in the lower panel. 
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3.3.2 Traditional binomial-based models show higher allelic DHS correlations than other 

models 

To date, there is no gold standard dataset of ASB events to evaluate ASB calling methods. In this 

work, we introduce the metric “allelic DHS correlation”, which correlates the p-values of ASB 

calling with DHS allelic imbalances to evaluate ASB calling methods (Figure 3.3A; see 

Materials and methods in Chapter3). The rationale behind this metric is that the favoured allele 

in more significant ASB events will show higher allelic imbalance in DHS than in less 

significant ASB events of similar read coverage. 

 

We evaluated the five ASB calling methods based on allelic DHS correlation. Only 32 out of 39 

TF datasets showed significant allelic DHS correlations across the five methods, indicating a 

limitation of the allelic DHS correlation measure. Across 31 significantly correlated datasets, 

edgeR showed lower allelic DHS correlation compared to the other four methods (p-value = 5.9 

×10
-4

 and estimated median difference = -0.010 for Binom+Rep; p-value = 3.0 ×10
-2

 and 

estimated median difference = -0.008 for Beta+Pool; p-value = 1.9 ×10
-2

 and estimated median 

difference = -0.006 for Beta+Rep; p-value = 4.5 ×10
-5

 and estimated median difference = -0.013 

for Binom+Pool; Wilcoxon signed-rank test). Each of the two binomial-based methods showed 

higher DHS allelic correlations than the two beta-binomials based methods (p-value = 2.3 ×10
-4

 

and estimated median difference = 0.007 for Binom+Pool and Beta+Pool; p-value = 9.3 ×10
-3

 

and estimated median difference = 0.004 for Binom+Rep and Beta+Rep, one-sided Wilcoxon 

signed-rank test). Moreover, within the binomial-based methods, pooling replicates together 

(Binom+Pool), even though it was less permissive, resulted in a higher DHS allelic correlation 
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(p-value = 2.1 ×10
-2

, estimated difference=0.07, Wilcoxon signed-rank test). Overall, the 

Binom+Pool method delivered the highest performance in terms of allelic DHS correlation 

(Figure 3.3B), suggesting that the null distribution may be closer to the binomial distribution 

than a distribution estimated by the beta-binomial distribution.  
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Figure 3.3 Evaluate ASB calling methods based on allelic DHS correlation 

(A) An example of allelic DHS correlation. Each point represents the DHS imbalance on the favoured allele (x axis) 

and the resulting p-value from ASB calling (y-axis) for a heterozygous site in the EBF1 dataset from GM12878 



70 

 

cells. “Corr” indicates the coefficient of spearman correlation. (B) Comparing of Binom+Pool with the other four 

ASB-calling methods based on allelic DHS imbalance. Each dot represents the allelic DHS correlation coefficient 

for one TF dataset between the Binom+Pool (x-axis) and the indicated method (y-axis). The provided p-values 

indicate whether the two methods significantly differ in terms of allelic DHS correlation across the 32 tested TF 

datasets. 

 

3.3.3 The degree of over-dispersion is overestimated due to mild TFBS alterations  

As the binomial based methods perform better without considering over-dispersion, we sought to 

understand what contributes to the over-dispersion. Previous literature [132, 173, 174] has 

suggested that the over-dispersion could reflect technical variance or artifacts. We sought to 

assess if the observed over-dispersion may be more directly related to mild TF binding 

alterations. We divided non-ASB events (FDR > 0.05 in binomial test) into two groups: 1) TFBS 

alteration group, in which variants are situated within the best predicted TFBS of the peak and 

changed the PWM score at least by 0.02; and 2) the remaining non-ASB events. For each TF 

dataset, the dispersion parameters of the two classes were estimated according to the Beta+Pool 

method. We found that dispersion parameters were significantly higher in the TFBS alteration 

group (Figure 3.4; p-value = 1.3×10
-4

, estimated media difference = 0.07, Wilcoxon signed-rank 

test), suggesting that the observed over-dispersion in the data is in part due to mild TFBS 

alterations. Thus, the real null distribution is closer to the binomial distribution than estimated, 

supporting the use of binomial-based method and potentially explaining the superior 

performances. 
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Figure 3.4 TFBS alterations lead to higher degree of over-dispersion in non-ASB events 

Each dot represents a TF dataset, and the coordinates indicate the estimated over-dispersion parameters of non-ASB 

events with TFBS alterations (x-axis) and without TFBS alterations (y-axis). The provided p-value indicates the 

significance of the test whether the over-dispersion parameters are same for both axes. 

 

3.4 Discussion 

In this chapter, we evaluated five ASB calling methods derived from different statistical 

distributions and replicate processing approaches. Each method called a different number of 

ASB events based on a statistical threshold, but the ranks of the reported p-values from the ASB 

calling procedures were highly correlated across five methods. As there is no gold standard ASB 
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data for benchmarking, we introduced allelic DHS correlation as a measure to evaluate the 

methods. The Binom+Pool method produced the highest allelic DHS correlation, thus for this 

performance measure the binomial distribution is the most appropriate for ASB calling. While 

they have been useful for the study of RNA-seq, beta-binomial based methods appear to 

overestimate the degree of dispersion for the ASB data used here. 

 

The identification of characteristics of the null distribution is a key challenge for ASB calling as 

there is no gold standard dataset for non-ASB events. Skelly et al. proposed the use of read 

counts from DNA sequencing data to estimate the degree of over dispersion at heterozygous sites 

for allele specific expression [173]. This approach requires that the DNA and RNA-seq samples 

are subjected to the same sequencing and downstream processing procedures. However, this 

requirement is difficult to meet for most of the ChIP-seq datasets in our project. Alternatively, 

we might use the control of the ChIP-seq experiment to estimate the degree of over dispersion at 

heterozygous sites. However, we find that read coverage at heterozygous sites in control 

experiments is low within TF binding regions (e.g. mean read depth = 0.25 for CTCF in 

GM12878), such low coverage data might be inappropriate for the estimation of the degree of 

over dispersion. Future work is needed to create appropriate datasets to estimate the degree of 

over dispersion in the null distribution. 

 

As the Binom+Pool approach does not address over-dispersion, we explored the potential 

sources for over-disperson and found that the data suggested a contribution of mild TFBS 

alteration. The causes of observed over-dispersion has not been deeply explored in ASB events, 

with one ASB previous study postulating contributions from technical issues, such as sparse read 
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coverage [132]. As ASB events are associated with genetic or epigenetic alterations, we 

anticipate that epigenetic differences could also contribute to over-dispersion.  

 

In conclusion, the five ASB calling methods mainly differ in their statistical stringency, but the 

relative rankings remain highly similar. Until a more reliable gold standard is available to further 

assess the performance of the methods, we perceive the Binom+Pool method remains the 

preferred option for ASB calling. 

 

 



74 

 

Chapter 4: Predicting the impact of altered TF binding on gene expression 

based on sequence variants 

In Chapter 2 and 3, we compiled ASB events and trained classification models to predict the 

impact of sequence variants on TF binding. Next we asked whether the altered TF binding events 

would alter gene expression. In this chapter, we developed regression models to address this 

question and the developed models further provided mechanistic insights on how the sequence 

variants alter TF binding and influence gene expression. 

 

4.1 Introduction 

Understanding the role of genetic variants in human disease is a fundamental question in medical 

genetics. Whole genome sequencing has enabled genetics researchers to systematically seek 

variations that contribute to disease phenotype. Current clinical approaches using DNA 

sequencing focus primarily on the ~2% of the human genome containing protein-coding exons, 

as predicting the functional impact of non-coding variants remains a challenge. However, up to 

88% of the disease-related variants in genome-wide association studies (GWAS) located in non-

coding regions [175]. Non-coding regions are involved in multiple steps of gene regulation, 

indicating the regulatory roles of non-coding variants on gene expression. 

 

With high-throughput sequencing technology, expression quantitative trait loci (eQTL) studies 

conduct thousands of single-variant tests to identify the variant associated with gene expression. 

By overlapping with the genomic annotations, the identified eQTLs were found to be enriched in 

regulatory regions, e.g. TF-bound regions, suggesting their potential roles in gene regulation [30, 
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121]. Recently, multiple proximal SNPs have been integrated to predict gene expression levels in 

regression models [124, 125]. However, causal variants and their functional roles are still 

challenging to infer due to multiple reasons. First, causal variants are hard to infer in association 

studies due to the linkage disequilibrium between SNPs [176]. Second, rare variants are not 

considered in association studies but can lead to various diseases [114, 123]. Third, current 

approaches separate the SNP identification and functional interpretation into two steps, 

potentially missing the real functional variants in high linkage disequilibrium. 

 

Both GWAS and eQTL studies highlighted the importance of TF-bound regions, supporting their 

key roles in gene regulation [30, 121]. TF can bind in a sequence-specific manner to short DNA 

segments, named TF binding sites (TFBSs) [17]. Outside the core TFBS, flanking regions and 

binding of partner TFs also contribute to TF binding [52, 177]. The impact of variants on TF 

binding can be better predicted due to recent progress in machine learning and the availability of 

ChIP-seq binding data sets. For instance, deep learning models can detect various sequence 

patterns within broader ChIP-seq peak regions (e.g. 1,000bp), showing superior performance 

compared with traditional approaches [44, 45]. Alternatively, allele specific binding events, in 

which a TF significantly prefers one allele over another at heterozygous sites, providing high 

quality data to investigate the impact of single nucleotide variant in the same cell context [52, 

132]. However, the relationship between altered TF binding and gene expression levels is 

complex. TF binding events can be non-functional towards the expression of nearby genes [178], 

or the altered TF binding can be buffered by other TF binding events [63]. To further understand 

the function roles of regulatory variants, a key question is that which altered TF binding events 

would alter the expression output of the target gene. 
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Here we present TF2Exp to infer the potential impact of altered TF binding and suggest 

mechanisms by which regulatory variants act. We trained regression models to predict gene 

expression by considering altered TF binding events in associated regulatory regions across 358 

lymphoblastoid cell lines (LCLs). For 3,060 genes, TF2Exp has suitable predictive performance 

(R
2
 > 0.05), revealing 3.7 key altered TF binding events on average for each gene. We found that 

the selected TF-binding events in promoters showed higher effect sizes than events situated in 

distal regulatory regions. The TF2Exp models showed comparable performance to SNP-based 

models in cross validation. Taken together, for a subset of modeled genes, TF2Exp advanced our 

understanding on the functional roles of non-coding variants on gene expression in terms of 

altered TF binding. 

 

4.2 Materials and methods 

4.2.1 Quantification of gene expression levels from RNA-seq data 

RNA-seq and variant calling data for 358 LCLs (individuals) were downloaded from the 

GEUVADIS project [121] and the 1000 Genomes Project [1] (Appendix C.1). Individuals 

covered 4 populations, including 89 North-Europeans from Utah (CEU), 92 Finns (FIN), 86 

British (GBR) and 91 Toscani (TSI). For each population, we built sex-specific transcriptomes, 

in which SNP positions with a minor allele frequency (MAF) ≥ 0.05 were replaced by N 

(representing any of the four nucleotides A, C, G, T) using scripts from [179]. RNA-seq data 

were processed using Sailfish (version 0.6.3) [180], and the expression level of each gene was 

quantified as transcripts per million reads. The resulting expression data were normalized via 

multiple steps, including standardization, variation stabilization, quantile normalization and 
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batch effects removing (i.e. population and gender, and 22 hidden covariates) by PEER [181] ( 

Appendix Figure C1). Genes on sex chromosomes or with near zero variance expression levels 

were removed, leaving 16,354 genes for model training. 

 

4.2.2 Associating regulatory regions and TF-binding events to genes 

For GM12878, we downloaded Hi-C data [179], which measure putative physical interactions 

between DNA fragments by means of proximity scores. The average resolution of Hi-C data was 

3.7Kb [179]. Gene promoter was defined as the ±2Kb region centered at the gene start position 

(outermost transcript start position in ENSEMBL GRCh37) and flanking regions extended by 

overlapped Hi-C fragments (interacting DNA fragments in Hi-C data, Figure 4.1). Any other Hi-

C fragments within 1Mb of the gene body (region between the outermost transcript start and end) 

were defined as “distal regulatory regions” of the gene if they contacted the promoter region 

(proximity score > 0.4) [179]. We downloaded uniformly processed DNase I hypersensitivity 

(DHS) and ChIP-seq peaks for 78 distinct TFs in GM12878 from the ENCODE project [30]. 

Because DHS is a general indicator of TF binding [182], we would refer DHS peaks as TF ChIP-

seq peaks for convenience. We assumed that each ChIP-seq peak represent one TF binding 

event. TF binding events were associated to a gene if they overlapped either the promoter or 

distal regulatory region of a gene. 

 

4.2.3 Predicting sequence variation impact on TF binding events 

Variant calling data of each individual was downloaded from the 1000 Genomes project (release 

20130502) [1], and we only considered single nucleotide variants and small indels less than 

100bp. TF ChIP-seq peaks derived from GM12878 were used as the reference for all studied 



78 

 

individuals. The impact of a variant within a TF binding event was calculated as binding score 

difference between the altered and reference allele given by the corresponding DeepSEA (v0.93) 

TF binding model trained from GM12878 data [44]. In order to accommodate the analysis of 

multiple variants within a TF binding event, we modified DeepSEA code to calculate the binding 

score of each allele using the 1,100bp region centred at the ChIP-seq peak max position (the 

original code calculated the scores for the 1,100bp region centered at each variant). TF ChIP-seq 

peaks with multiple peak max, and overlapped peaks from the same experiment (e.g. from the 

same TF), were split at the center of each two neighbour peak max positions. At heterozygous 

positions, the binding score difference was multiplied by 0.5. Score differences of multiple 

variants within the same TF-binding event were summed as the overall alteration of the indicated 

binding event. 

 

4.2.4 Quantitative models of gene expression 

LASSO regression on gene expression: We developed regression models to predict the 

expression level of a gene using altered TF binding events associated with that gene based on the 

following equation:  

      ∑         
 
           (1) 

where    is the expression levels of gene i across studied individuals, n is the number of TF 

binding events of gene i ,       is the alteration of TF binding event k across studied individuals 

and    is the effect size of TF binding event k. In equation (1),    is the response and        is 

the input feature for the LASSO regression model, which is trained by the glmnet package [183] 

in R [172]. Model performance was evaluated by 10-fold nested cross-validation, in which the 

internal folds identified the optimal hyper-parameter lambda, and outer layers tested model 
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performance. Model performance was measured by R
2
 as the square of the correlation between 

predicted and observed expression levels. The trained models would select a subset of TF 

binding events as key features of which effect sizes were not zero. When Hi-C proximity scores 

were used as the prior to select features, the prior (penalty.factor in the glmnet function) was set 

to “1 – proximity score”.  

 

Defining interactions between two TF binding events: For TFs known to interact in the BioGrid 

database [184], we created interaction terms between pairs of TF binding events (one from each 

TF) if they satisfied one of the following conditions: 1) two binding events overlapped by at least 

200bp; or 2) their regulatory regions were reported to interact in the Hi-C data.  

 

SNP based models/Models with different input feature sets: Following the same procedures as 

described in the work of Gamazon et al. [124], for each gene, we trained regression models 

based on multiple SNPs to predict the expression level of each gene. The variant calling data of 

each individual were converted to allelic dosage by plink2 [185]. We only considered SNPs with 

MAF > 0.05 and within 1Mb of the gene body regions. The regression formula of SNP-based 

models was as follows: 

      ∑      

 

   

    

Where    is the expression levels of gene i, n is the number of SNPs, and    was the number of 

alternative alleles of       . 
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4.2.5 Gene ontology enrichment analysis for the top performance genes 

We used the GREAT web tool (http://bejerano.stanford.edu/great/public/html/) [186] to conduct 

gene ontology enrichment analysis for the top 400 performance genes with default settings. The 

gene ontology terms of each gene is obtained from UniProt database 

(http://www.uniprot.org/uniprot/P78410) [8].     

 

4.2.6 Analyzing selected features using FANTO M5 data 

FANTOM5 project associated enhancers to genes based on the activity correlation between the 

candidate enhancer and the gene promoter across multiple tissues or cell types [94]. For each 

predictable gene, we counted the overlap between the associated enhancers specified by 

FAMTOM5 and the selected (or unselected) TF binding events given by TF2Exp models. The 

overlap statistics were aggregated across all the predictable genes. The overall enrichment of 

selected features in enhancer regions was given by Fisher’s exact test. 

 

4.2.7 External validation 

We obtained microarray expression data in LCL from individuals of 3 populations, including 

CEU, Chinese (CHB), and Japanese (JPT) [187], for external validation of our models. The 

microarrays included expression data of 47,294 probes, which mapped to 15,997 unique 

Ensembl genes. 

 

http://bejerano.stanford.edu/great/public/html/
http://www.uniprot.org/uniprot/P78410


81 

 

4.2.8 Code and data availability 

The code and data links used in this work can be found at www.github.com/wqshi/TF2Exp. 

Multiple packages have been used for data processing and model training, including BEDTools 

[188], vcftools [189], caret [153] and ggplot2 [190]. 

 

4.3 Results 

4.3.1 TF2Exp: regression models to predict the impact of altered TF binding on gene 

expression 

We developed TF2Exp, a gene-based computational framework to assess the impact of altered 

TF binding events on gene expression (Figure 4.1). Variant calling data (single nucleotide 

variants and small indels) and gene expression data of 358 LCLs were obtained from the 1000 

Genomes [191] and GEUVADIS projects [121]. TF binding events of the studied LCLs were 

inferred based on the available ChIP-seq data of one LCL, GM12878, for which the called ChIP-

seq peaks of 78 distinct TFs and DHS datasets were obtained from the ENCODE project [30]. 

Because DHS is a general indicator of TF binding [182], we referred DHS sites as TF binding 

events. Gene promoter region was defined as ±2Kb of gene start site and flanking regions 

extended by overlapped Hi-C fragments based on the Hi-C data from GM12878 [179] (Material 

and Methods, Figure 4.1). Distal regulatory regions of a gene are the Hi-C fragments interacted 

with its promoter regions suggested by Hi-C data. TF binding events were associated to a gene if 

they overlapped either the promoter or distal regulatory region of the gene. The impact of each 

single variant within a TF binding event was scored using DeepSEA [44], which provided 

precomputed model for the corresponding TF. The impact of multiple variants within the same 

TF binding event were summed to generate an overall alteration score of that TF binding event in 

http://www.github.com/wqshi/TF2Exp
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each individual. On average, each gene had 420.0 altered TF binding events within 36.6 

regulatory regions (promoter and distal regulatory region) across the collected samples. Based on 

alteration scores of TF binding events in each individual, regression models were trained by 

LASSO [183] to predict gene expression per individual and select key TF binding events. 
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Figure 4.1 The overview of the TF2Exp framework 

(A) Infer regulatory regions and TF binding events of each gene based on the reference cell line (GM12878). Distal 

regulatory regions were associated to the target gene according to the Hi-C data. All the TF binding events on the 

promoter or distal regulatory regions of a gene were associated to that gene. (B) Score the alteration of TF binding 
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events based on the overlapped variants in each individual. (C) Train regression models for each gene across the 

collected individuals. 

 

4.3.2 The expression of a subset of genes are predictable by TF2Exp 

TF2Exp models showed an average performance (R
2
) of 0.048 across 15,914 successfully trained 

models in 10-fold cross validation, with most models having low predictive power (Figure 4.2). 

To focus on predictable models and genes, we set an R
2
 threshold of 0.05 as in [125]. Above that 

threshold, predictable genes accounted for 19.2% of the investigated genes, a subset upon which 

we focused in later feature analysis. As in the work of Manor et al.[125], we observed a 

significant correlation between the variance of the gene expression and the TF2Exp performance 

for the predictable genes (Spearman correlation 0.25, p-value = 4.0×10
-43

, Appendix Figure C2). 

The top 400 genes are enriched in the genes related to diseases in immune system, such as graft-

versus-host disease, allograft rejection and autoimmune thyroid disease. For example, one of the 

highest performance gene is BT3A2 (R
2
=0.83, Appendix Figure C3), which is associated with T 

cell mediated immunity and interferon-gamma secretion. To assess the randomness in the model 

training process, we set up control models in which gene expression was shuffled across 

individuals but preserving TF binding features. Control models showed an average R
2 

of only 

1.9e-4 (Figure 4.2), supporting the non-random signal captured by TF2Exp models.  

 

We next sought to determine if additional information could substantially improve model 

performance. We assessed whether prior knowledge, such as the proximity score in Hi-C data 

and known TF-TF physical interactions, could improve TF2Exp models. We introduced the 

proximity score of Hi-C interactions to guide model fitting, so that TF binding events on highly-
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interacting regions were less regularized by LASSO (Materials and methods in Chapter4). We 

found that adding Hi-C proximity score generated little improvement of 9.4×10
-4

 for R
2
 on 

average (p-value = 4.1×10
-6

, Wilcoxon signed-rank test), suggesting that the original TF2Exp 

models had captured most of the signal from the highly-interacting regions. We also tested 

models that included interaction terms for known TF-TF physical interactions (see Materials and 

methods in Chapter4). Adding TF-TF interactions significantly reduced the model performance 

by 7.7×10
-6

 on average (p-value < 2.2×10
-16

, Wilcoxon signed-rank test, Figure 4.2), suggesting 

that TF-TF interaction terms did not add additional information beyond individual TF binding 

events. We therefore focused on the original (simpler) TF2Exp models in the next stages of our 

analysis. 
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Figure 4.2 Compare the performance of different TF2Exp based models 

The performances (R
2
) of all the investigated genes (y axis) are plotted in ascending order within each type of 

TF2Exp models, and x axis represents the cumulative percentage of each gene. The dashed line indicates the defined 

performance threshold of 0.05 for predictable genes. 

 

4.3.3 Alteration of DHS, RUNX3, and CTCF binding are the most frequently selected 

features 

We sought to identify frequently selected features in TF2Exp models (where a feature was the 

alteration score of a single TF binding event). On average, TF2Exp models selected 3.7 features 

(with a minimum of 1 and a maximum of 30) for predictable genes. The top five frequently 
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selected TFs included DHS, RUNX3, CTCF, EBF1 and PU.1, accounting for 34.2% of the 

selected features (Appendix Figure C4). DHS indicates accessible chromatin regions [192], and 

CTCF is a key regulator for chromatin structure [193]. The remaining three TFs perform 

important roles in tissue-specific regulation in LCL, e.g. RUNX3 for immunity and inflammation 

[194], EBF1 for B lymphocyte transcriptional network expression [195], and PU.1 for lymphoid 

development [196]. Consistent with their frequency in selected features, TFs with more genome-

wide binding events were selected more often in TF2Exp models (Pearson correlation 0.97, p-

value < 2.2×10
-16

). 

 

4.3.4 The contributions of promoter features are greater than distal regulatory regions 

We next examined the locations and effect sizes of selected features. We observed significant 

depletion of selected features in distal regulatory regions compared with promoter regions (p-

value < 2.2×10
-16

, odds ratio = 0.32, Fisher’s exact test). The selected features in promoters were 

mostly within 10Kb of gene start positions, while selected features in distal regulatory regions 

were distributed within ~500Kb. The effect sizes of the selected features decreased rapidly 

against their distances to gene start sites (Figure 4.3). The selected features in promoter regions 

exhibited significantly larger absolute effect sizes than in distal regulatory regions (p-value < 

2.2×10
-16

, estimated median difference = 0.02, Wilcoxon rank-sum test, Appendix Figure C5). In 

addition, TF binding events in promoters show more positive effect (59.3%) than in distal 

regions (54.4%) for gene regulation. 

 

The regulation pairs between selected distal features and genes were supported by other data, as 

48.8% of them overlapped with the enhancer-gene pairs specified by the FANTOM5 project [94] 
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(see Materials and methods in Chapter4). In addition, the selected distal features were 

significantly enriched in the enhancer regions associated the same gene compared with 

unselected distal features (p-value = 1.5×10
-9

, odds ratio = 1.3, Fisher's exact test), supporting 

the functional role of the selected distal TF binding events. 

 

Figure 4.3 The effect sizes of selected features decrease rapidly with their increasing distances to the gene 

start positions 

Each dot represents one selected feature (TF binding event) of predictable genes, and the coordinates indicate the 

feature distance to gene start site (x axis) and the feature effect size (y axis) obtained in TF2Exp models. The feature 

effect sizes are plotted separately for promoter regions (top panel) and distal regulatory regions (bottom panel). 
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4.3.5 TF2Exp models perform comparably to SNP-based expression models 

We compared the performance of TF2Exp against existing SNP-based models [124, 125]. 

TF2Exp models use altered TF binding events as predictors, which combine the impact of 

multiple variants within a single TF binding event using pre-trained TF binding models, while 

SNP-based models predict the alteration of gene expression based on the presence of SNPs (e.g. 

within 1Mb from the gene body) without consideration of potential functional roles (see 

Materials and methods in Chapter4). We trained both models on the same set of variants (SNPs 

in all the TF-binding events, SNPinTF), and named two models as TF2Exp-SNPinTF and SNP-

SNPinTF. Two models showed comparable performance among the shared predictable genes (p-

value = 0.10, Wilcoxon signed-rank test, Figure 4.4). In addition, the default SNP models 

outperform TF-SNPinTF models with moderate significance (p-value = 0.04, estimated median 

difference = 8.9×10
-4

, Wilcoxon signed-rank test), implying that SNPs outside of TF binding 

events are informative for predicting gene expression. 

 

Next, we compared the selected features in two models. Most of the selected SNPs (66.6%) in 

the SNP-SNPinTF models overlapped selected TF binding events (74.1%) in TF2Exp-SNPinTF 

for the same gene. A subset of the selected SNPs (21.1%) overlapped more than one selected TF 

binding events, revealing multiple roles of SNPs in gene regulation. Only 18.1% of the 

overlapped SNPs produced the highest impact in the selected TF binding events, highlighting the 

importance of other SNPs within the same TF binding event. Overall, TF2Exp models simplified 

the interpretation of SNPs considering their complex roles in multiple TF binding events. 
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Figure 4.4 TF2Exp models are comparable to SNP-based models 

The performance of SNP-based models (x axis) is compared against TF2Exp models (y axis) based on the same 

SNPinTF datasets (SNPs in the TF binding events). The labeled p-value indicates the significance of different 

predictive power between two kinds of models given by Wilcoxon signed-rank test.  

 

4.3.6 Uncommon variants improve model performance for a small portion of genes 

As TF2Exp models can distinguish the impact of variants in TF-binding events, we investigated 

the contribution of uncommon (MAF ≤ 0.05) variants to model performance. First, we train 
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TF2Exp models based only on uncommon variants. The uncommon-variants based models 

showed much lower average performance (R
2
) of 0.011 compared with models based on all the 

variants (R
2
 of 0.048), suggesting the main contribution of common variants in the TF2Exp 

models. Next we checked the model performance improvement after adding the uncommon 

variants on top of the common variants. We found that adding uncommon variants only 

improved a small portion (11.5%) of the models, and the improvements were positively 

correlated with the performance of uncommon variants models (Pearson correlation coefficient 

0.43, p-value < 2.2×10
-16

, Figure 4.5). The improvement can be negative if performances of 

uncommon variants models were near zero, suggesting the noise caused by the uncommon 

variants can dilute the information provided by common variants. 
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Figure 4.5 Uncommon variants improve the TF2Exp performance for a subset of genes 

Each dot represents one predictable gene in the TF2Exp models. The contributions of uncommon variants were 

measured in two ways: 1) model performance when trained only using uncommon variants (x axis); 2) performance 

improvement after adding common variants on top of common variants (y axis).  
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4.3.7 TF2Exp models exhibit robust performance in external validation datasets 

We sought to evaluate the models of predictable genes on external datasets. We obtained 256 

LCL microarray expression data [187], including 80 CEU, 87 Chinese (CHB) and 89 Japanese 

(JPT) LCLs (Materials and methods in Chapter4). First, we evaluated the agreement between 

microarray and RNA-seq data on the 79 shared CEU LCLs in our training data. Relative 

expression levels across all genes within each individual were concordant between microarray 

and RNA-seq experiments (average Spearman correlation of 0.76), supporting the overall 

consistency between the two data sets. However, when we considered a single gene across 

population, the correlation between the two platforms was low (average Spearman correlation of 

0.19). Therefore, we expected models trained on RNA-seq data to have an upper limit 

performance when applied to microarray data. Next, we used TF2Exp models to predict gene 

expression levels on the unshared CHB and JPT individuals in the microarray data. TF2Exp 

models showed an average correlation of 0.17 in CHB and 0.16 in JPT (similar to SNP models, 

which obtained an average correlation of 0.18 and 0.17 respectively).  

 

An example of a highly-performing gene in the external validation is illustrated in Figure 4.6, 

comparing the predicted and observed expression. TF2Exp identified 4 contributing TF binding 

events (Table 4.1), of which two events had greater weights: DHS (chr22:45711760-45711910, 

effect size: -0.325) and MEF2A (chr22:45771822-45772122, effect size: 0.334). Variant 

rs104664 in NA12874 increased the score of DHS, predicting lower expression levels of the 

gene, while rs5765304 in NA11809 increased MEF2A binding scores, resulting in a higher 

predicted expression. 
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Figure 4.6 Performance of TF2Exp for FAM105 gene in the external validation set 

Each point represents one CHB tested individual and its coordinates indicate the predicted expression given by 

TF2Exp model (x axis) and the observed expression (y axis). 
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Chr TF TF start TF end Effect size Variant Variant info  

 

MAF Impact Max 

indivi 

Min 

indivi 

chr22 

 

 

 

 

 

 

 

PU.1 45697931 

 

45698207 

 

 2.31e-02 

  

rs9615099 45698149:T:A 0.344900 -2.62e-3 0|0 0|0 

rs116548001 45698196:G:C 0.015730 -2.10e-2 0|0 0|0 

DHS 45711760 45711910 -3.25e-01 rs104664 45711854:G:A 0.115700  4.13e-2 0|0 1|1 

MEF2A 

 

45771822 

 

45772112 

 

 3.34e-01 

  

rs143026443 45771973:C:T 0.002247 -6.19e-3 0|0 0|0 

rs5765304 45771974:G:A 0.113500  9.78e-3 1|1 0|0 

RUNX3 

 

 

45771818 

 

45772188 

 

 

 1.47e-03 

  

rs143026443 45771973:C:T 0.002247 -1.16e-2 0|0 0|0 

rs5765304 45771974:G:A 0.113500  2.46e-2 1|1 0|0 

rs114074260 45772173:G:T 0.001124  9.59e-3 0|0 0|0 

 

Table 4.1 Selected TF binding events and overlapped variants for FAM118A gene 

TF2Exp models can illustrate the contribution of selected features (first four columns) in term of feature effect size (5
th

 column) given by LASSO. The 7
th

 

column (variant info) indicates the position, reference allele, and alternative allele of the variants, and 8
th

 column represents the minor allele frequency. The 

impacts of the variants on the overlapped TF binding events are given in the 9
th

 column. Last two columns indicate the genotypes of the individual with 

maximum and minimum expression across the population (0 indicates reference allele, and 1 means alternative allele). 
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4.4 Discussion 

Deciphering the functional role of regulatory variants is a critical challenge in the post-sequence 

era. Here we present TF2Exp to predict the functional impact of sequence variants in 

transcriptional regulation. Using data from LCL, we developed regression-based models for the 

expression level of each gene based on sequence alterations within TF binding events in 

associated regulatory regions. TF2Exp successfully modeled the expression of 3,060 genes, 

selecting 3.7 altered TF binding events on average. Alterations within DHS and RUNX3 binding 

events were the most frequently selected features. The known roles of RUNX3 are consistent 

with the LCL origin of the expression data. The selected TF binding events within promoters 

obtained greater weights in the models than the events situated in distal regulatory regions. The 

TF2Exp models showed comparable performance to SNP-based models, and inclusion of 

uncommon variants can improve TF2Exp performance for small portion of genes (11.5%). 

Importantly, the TF2Exp models provide mechanistic insights into how non-coding variants 

influence gene expression.  

 

Illuminating the functional roles of regulatory variants is a critical challenge for the 

interpretation of whole genome sequence data, which has motivated the creation of predictive 

models for gene expression based on DNA sequence. Several SNP-based approaches show 

potential to predict gene expression based on DNA sequence [124, 125]. However, such SNP-

based approaches have limited utility for the inference of causal or functional alterations, 

because the selected SNPs are usually strongly linked to other SNPs. By focusing on TF binding 

events as the functional unit in our model, we can evaluate all alterations within the TF binding 

events regardless of the linkage between SNPs. TF2Exp models determine the relative 
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importance of each TF binding event for the target gene, and further enable us to interpret the 

mechanistic impact of the variant within the TF binding event. 

 

Rare variants (MAF < 0.01) can cause large effects in human disease, but their impacts are hard 

to detect in association-based approaches like GWAS and QTL due to their infrequency [123]. 

Population analysis found that genes with outlier expression showed an enrichment of rare 

variants [197]. Such rare variants were strongly enriched in conserved promoter regions and 

weakly enriched in enhancers and TF binding sites [197]. Knowledge on the functional effects of 

the variants can help, such as whether a variant is within conserved regions, near a splicing site, 

or disrupt a TF binding site [114]. TF2Exp models can identify the impact of rare variants within 

key TF binding events. We found that considering rare variants only improved the performance 

of a small portion of genes. In the future, models that favor uncommon variants with large effect 

sizes should be explored. 

 

The predictive performance of the TF2Exp regression models is limited, showing utility for a 

subset (19.2%) of genes. The inadequate performance might be attributable to several reasons. 

First, the variance of gene expression attributed to common variants is quite low (e.g. 15.3% 

estimated in [124]), suggesting that models restricted to TF binding events could only account 

for a portion of variance in the gene expression. Second, TF2Exp models were limited to the 

available ChIP-seq datasets of 78 TFs in LCL cell lines, while the majority of human TFs 

(~1,500 TFs) are uncharacterized. The variant impacts on TF binding events were evaluated by 

the trained DeepSEA models, of which future improvements could benefit the TF2Exp 

performance. Third, TF2Exp models focused on TF binding events in transcriptional regulation, 
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and including post-transcriptional regulation components (e.g. splicing or microRNA-mediated 

regulation) might explain additional portion of variance for gene expression. Fourth, TF2Exp 

models are likely to be constrained by the small number of available training samples as adding 

new features (e.g. TF-TF interaction) decreased the model performance. We expect that new 

large reference transcriptome data will provide more samples for modeling, including family-

focused data that will allow greater clarity about the roles of rare variants. Alternatively, 

inaccurate prior knowledge could decrease performance of TF2Exp models, for example, TF-TF 

interactions supported by only single publication may result in elevated false positive 

interactions in BioGrid database [184]. 

 

Identifying the impact of cis-regulatory variants on gene expression is critical for understanding 

the genetic mechanisms contributing to diseases. TF2Exp models are able to predict the impact 

of altered TF binding on gene expression and provide mechanistic roles of selected TF-binding 

events and cis-regulatory variants. Future enlarged omics data in other cell types will greatly 

expand the application scope of TF2Exp models. 
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Chapter 5: Conclusion 

 

In the past decade, high throughput sequencing technologies have generated rich datasets 

allowing annotation of regulatory regions in the human genome, such as TF binding and open 

chromatin regions. As our understanding of the genome has increased, it has been noted that 

disease-associated variants arising from GWAS studies are enriched within these regulatory 

regions [198]. However, our understanding of regulatory variants remains limited, and 

interpretation of the functional impact of these variants is therefore a major challenge in current 

genetics research. This thesis focuses on an important subset of regulatory variants that might 

alter the binding of TFs. Through the thesis, we have 

 compiled a high-quality collection of DNA sequence variations associated with disrupted 

TF binding (ASB events), a collection that can serve as a gold standard for diverse 

research questions; 

 designed and trained models to predict the variant impact on TF binding; 

 evaluated five ASB calling methods; 

 developed algorithms to predict the impact of altered TF binding on gene expression. 

 

In this section, I will discuss the contributions of this thesis and how the findings and resources 

can be used in the near-term within the field. Lastly, I will discuss the broader research directions 

and opportunities that will contribute to future clinical genome analysis and healthcare. 
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5.1 Predicting variant impact on TF binding 

In order to assess the impact of sequence variation on TF binding, it is essential to define a set of 

reliable cases in which a subtle variation has a quantitative impact on TF binding. We compiled 

ASB and non-ASB events from 45 ChIP-seq experiments, greatly expanding the set of variants 

associated with altered TF binding for the community. Unlike other studies focusing on ASB 

events [132, 160], we also included non-ASB events in analysis as non-ASB events provide 

insights into the variants with little impact on TF binding. Multiple chromatin properties were 

associated with ASB events at allelic level, including DHS and several histone modifications, 

supporting the coordinated effects between TF binding and chromatin properties [48]. We 

developed a novel framework to predict variant impact on TF binding, allowing classification 

between ASB and non-ASB events. The trained models based on sequence features achieved 

comparable performance with state-of-the-art algorithm deltaSVM [40]. Building on the 

recognition of DHS data as a general indicator for TF binding [57], we incorporated these 

experimental properties into the model and achieved a significant improvement in ASB 

classification.  

 

The ASB data can, and hopefully will, be used broadly within the field to better understand TF-

DNA interactions. In considering the distributions of ASB variations across and proximal to 

TFBS, we found that only 28.7% of the variants in ASB events were situated within TFBS 

motifs (or comotifs for cooperatively acting TFs). This is consistent with the idea that functional 

alterations outside the core motif can have importance for TF binding [46]. Though the core 

motif is critical for TF binding, flanking sequences of core motifs are increasingly a focus of 

research exploring the relationship between protein structure and TF-DNA binding [177]. Some 
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of the observations about these flanking regions include GC content preferences within the 10 bp 

on each side of a core motif for some TFs [199]. Alterations of the sequence 1-2 bp adjacent of 

the Pho4 motif have been demonstrated to alter the transcription rate of the targeted gene [200]. 

A potential explanation for the contribution of flanking sequences is related to the topology 

(shape) of DNA. TFs in different families prefer distinct patterns of DNA shape features [199], 

and the consideration of DNA shape can improve TFBS prediction both in vitro [166] and in vivo 

[201]. Future work could use ASB events to assess the contribution of flanking sequences and 

DNA shape in altered TF binding. 

 

Within a collaborative project, allelic binding data was used to investigate TFs potentially 

relevant to X-inactivation [202]. Within the nucleus of female cells, one copy of the X 

chromosome is silenced by X-chromosome inactivation to compensate for gene dosage. 

However, some genes escape the X-chromosome inactivation and are expressed from both 

copies. To identify TFs which may be key for escaping X-inactivation, enrichment analysis of 

TF motifs proximal to escapee transcription start sites was performed. As the YY1 TF emerged 

as a candidate, we assessed allelic binding data of YY1 across the X chromosome and 

determined that YY1 showed bi-allelic binding around bi-allelically transcribed genes, 

supporting the regulatory roles of YY1 in X-inactivation. This study demonstrates how access to 

high quality ASB data can be used to better understand regulatory mechanisms. 

 

An alternative approach for ASB classification is to model the whole continuum of allelic 

imbalance using regression models. It is important to recognize that ChIP-seq experiments 

produce a continuous spectrum of allelic imbalance, ranging from extreme unbalanced ASB 
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events to balanced non-ASB events. As we were focused on disrupted TF binding in Chapter 2, 

we discretized the continuous spectrum into ASB and non-ASB events, and then constructed a 

binary classifier to predict disruptive variants for TF binding. Compared with discretization 

approach, there are both advantages and challenges for regression approach. It circumvents 

potential biases arising from read coverage at heterozygous sites in ASB calling. The statistical 

significance of an ASB event is determined by a combination of the total read coverage at a 

position, and the imbalance between observations of the two alleles. The dependence on read 

coverage might cause inconsistent ASB calling, for instance, an ASB event called in a deeply 

sequenced ChIP-seq experiment might be classified as a non-ASB event with shallow depth. In 

the continuous perspective, regression models based on allelic imbalance are more independent 

of sequencing depth than ASB classification models. A challenge in implementing regression 

models is caused by imbalanced training data, as the majority of heterozygous sites in the DNA 

showed balanced binding between the two alleles. Such imbalances favor the majority cases 

(balanced binding), and the predictions thus are not optimal for detecting the minority class 

(unbalanced binding). Though multiple imbalanced learning techniques have been developed for 

classification problems [155] (e.g. up and down sampling), imbalanced learning for regression 

models is less mature in machine learning. Further regression models could incorporate 

imbalanced learning techniques used in machine learning methods for ASB analysis. 

 

Prioritizing regulatory variants may be improved by consideration of the variant buffer effect. 

Studies [48, 62, 203] have demonstrated that if one TFBS is disrupted by a variant, an alternative 

TFBS in proximity can be bound by the same TF to deliver the similar pattern of expression to 

the target promoter(s). Such buffer effect can involve homotypic clusters of TFBSs (HCT), 
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which are clusters of TFBS expected to be bound by the same TF within same region. HCT is a 

common feature in the human genome, with more than half of human gene promoters exhibiting 

at least one HCT [203]. Conceptually HCT provides several mechanism benefits, including 

buffer effect for variants, high-affinity cooperative binding and lateral diffusion of TF binding 

along a DNA segment [63, 177, 203]. HCT is particularly enriched in the promoters of 

transcription factor genes [203], which suggests functional importance of HCT in gene 

regulation. Our ASB classification models have explicitly incorporated the number of TFBSs 

within each ChIP-seq peak as an input feature, while other methods indirectly account for the 

contribution of HCT in TF binding, such as a k-mer approach [37] and deep learning approach 

[44]. To provide greater mechanistic insights, future ASB calling methods can explicitly consider 

the buffer effect. 

 

5.2 Evaluating five statistical methods to call ASB events 

We have assessed five ASB calling methods based on different underlying statistical 

distributions and replicate processing approaches. Not surprisingly, we found that the choice of 

ASB calling methods will greatly impact on the number of identified ASB events. Importantly, 

the methods produce highly consistent rank orders, which mean that the methods will produce 

similar results when thresholds are adjusted to produce similar numbers of calls.  Among five 

methods, we recommend the most widely used approach, binomial distribution coupled with 

replicates pooling, for ASB calling based on the metric of allelic DHS correlation. The 

recommendation of binomial distribution is further supported by the possibility that over-

dispersion in allelic read counts could arise from mild TFBS alterations. 
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Future studies are needed to determine whether this ASB-specific recommendation is applicable 

to allele specific expression (ASE) studies. The over-dispersion problem is well known in ASE 

studies, and the beta-binomial distribution has been widely used to correct for this problem [134, 

170]. Over-dispersion in ASE is more difficult to attribute to a specific cause, compared to ASB. 

It is possible that a portion of the over-dispersion of ASE could be caused by ASB events, which 

could be a focus for future studies.  

 

 

5.3 Predicting the impact of altered TF binding on gene expression based on cis- 

regulatory variants 

In Chapter 4, we explored which altered TF binding event would impact downstream gene 

expression. We developed TF2Exp, the first framework (to our knowledge) to predict the 

expression level of each gene by considering altered TF binding events based on sequence 

variants. Previous approaches could predict gene expression based on nearby SNPs [124, 125], 

but the functional roles of the incorporated SNPs were undefined. TF2Exp achieved similar 

prediction accuracy compared with previous approaches, but provided mechanistic insights as to 

how the non-coding variants altered TF binding and gene expression. SNP-based models 

generally lack sufficient statistical power to detect the impact of rare variants, which underlie 

most familial genetic disorders [114]. In contrast, TF2Exp provides predictions about the impact 

of rare variants, suggesting that TF2Exp or similar approaches will have wider utility for human 

genetic studies in the future.  
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TF2Exp offers a new way to identify the targeted genes of TFs. Previously, targeted genes of a 

TF has been inferred based on the location and strength of TF binding events [204, 205]. 

However, TF binding proximal to a gene does not ensure a regulation relationship [63]. For 

instance, across a set of TFs, silencing the expression of a TF will only impact the expression of 

a small portion of genes bound by that TF within 10kb of the TSS, suggesting that most TF 

binding events were not essential (or possibly even not functional) [178]. In TF2Exp, we used 

three criteria to identify the TF binding events of a target gene: 1) TF binding events located 

within 1MB of TSS for the targeted gene; 2) chromatin interaction data (Hi-C) supporting the 

interaction between a TF bound region and the promoter region; and 3) alterations of TF binding 

events were associated with the expression changes of the target gene. By bringing together 

chromatin interaction, TF binding, expression and genotype data, we bring a focus upon variants 

that are more interpretable. 

 

The TF2Exp models were trained based on available tissue-specific data in LCLs, including TF 

binding and gene expression. The generalization of trained models to other tissues remains to be 

explored. In previous reports, SNP-based models showed decreased predictive performance 

when validating trained models against other tissues [124]. We anticipate that TF2Exp models 

will be more likely to be tissue specific than SNP-based models, as the key TF binding events in 

TF2Exp models are specific to gene regulation in B-cells. As LCL has been considered as 

surrogate cells in the studies of primary B cells [206] and neurological disorders [207], TF2Exp 

models can be applied and tested in such tissues, but the utility of the models in more diverse 

tissues will be limited. The methods demonstrated within this thesis in building the TF2Exp 
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models, however, are general and should perform equally well when applied to similar data 

collections for other tissues.  

 

To apply TF2Exp models more broadly, we need multiple training datasets in the targeted tissue, 

including matched WGS and RNA-seq of multiple individuals, and binding regions of multiple 

TFs. Matched WGS and RNA-seq data across large number of individuals are accessible in 

multiple genomic projects, such as the GTEx project [208], the BLUEPRINT project [209] and 

TOPMed program (https://www.nhlbi.nih.gov/research/resources/nhlbi-precision-medicine-

initiative/topmed). However, at this time, extensive TF binding data are only available in several 

tissues or cell lines from the ENCODE project [30], which limits the application of TF2Exp 

models. Though we anticipate an increasing amount of ChIP-seq data in the future, a practical 

and more immediate solution could be computationally predicting TF-bound regions. To 

improve the TFBS prediction accuracy, multiple tools are able to incorporate DNA sequence and 

chromatin property data (e.g. DHS and histone modifications) of the target tissue [57, 210], and 

chromatin property data are available for various primary tissues from the ROADMAP project 

[211]. Thus, the search for functional regulatory variants with TF2Exp may be practical in the 

near future.  

 

Recent single cell RNA-seq data have shown extensive cell-to-cell variation in transcriptome 

even within genetically homogenous cell population, including expression levels and expression 

of specific transcript isoforms [212]. Such studies have highlighted that within populations of 

cells there may be cells in a variety of maturity states [212]. TF2Exp models are based on the 

traditional RNA-seq which might miss key characteristics of gene expression by averaging 
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expression levels across thousands of cells. The availability of cell-specific measurements will 

allow future development of TF2Exp (and related tools) to explore the relationship between 

genetic variation and the expression levels of individual isoforms (e.g. alternative promoters) and 

to assess if the variants influence the variance of expression at single cell level.  

 

5.4 Applications in future healthcare 

Affordable DNA sequencing technology is starting to transform healthcare by providing precise 

genetic information for each patient. The work in this thesis will facilitate future healthcare in 

two ways.  

 

The compiled data and algorithms in this thesis will facilitate future clinical genome analysis of 

regulatory regions. DNA sequencing has been widely used in clinical research for genetic 

disorders, and studies achieved modest diagnostic success (27-73%) depending on the 

investigated diseases and enrolment criteria of patients [213-215]. As current clinical analysis 

mostly focuses on variants in protein coding sequences, it is reasonable to assume that a subset 

of undiagnosed patients might have disorders caused by regulatory variants. The compiled ASB 

datasets and variant interpreting algorithms in this thesis allow for the identification of candidate 

variants in regulatory regions for the undiagnosed cases (where WGS data is available). In 

addition, the mechanistic insights revealed by the identified regulatory variants will be 

informative to understand the mechanism of the disease. As alterations in regulatory sites often 

suggest roles for upstream pathways, knowledge of regulatory variants may facilitate the design 

of personalised therapy for patients, with many therapies potentially tied to existing drugs or 

other treatments.  
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An interesting application area for the work of this thesis is the prediction of disease risk for 

healthy individuals based on WGS data. Companies like 23andMe (www.23andme.com) already 

provide personal genome services to interpret the disease risk of customers based on genomic 

testing. At present these services are limited to known high disease-risk loci, such as mutations 

in the BRCA1 gene for hereditary breast cancer [216]. Though the tested loci in the commercial 

services are far from complete compared with WGS, personal genome services represent the 

future direction for individuals to learn about and explore their DNA. Based on WGS data and 

pathway enrichment analysis, a recent study demonstrated that genes associated with disrupted 

conserved TFBS are predictive for medical history [217]. Similarly, we anticipate that 

integrating the interrupted genes predicted by TF2Exp might be able to predict future disease 

risk. While extensive research remains to be performed, which remains constrained by access to 

broad WGS and patient history data, the analysis of regulatory alterations offers great promise. 

Future advances may ultimately provide individuals with personalised guidance for diet, lifestyle 

and other preventative strategies.  

 

The work of this thesis is enabled by recent advances in multiple fields, such as next generation 

sequencing, chromatin biology, and machine learning. We believe that future union of multiple 

fields (e.g. genetics, medicine, and informatics) will create unprecedented possibilities to 

uncover the genetic mechanisms in human diseases and ultimately improve human healthcare. 
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Appendices 

Appendix A  Supplementary material for Chapter 2 

 

A.1 Replicate normalization method produces highly similar sets of ASB calls 

In Chapter 2, we used a direct sum approach in which we summed the read counts of each allele 

across the replicates, and then applied the binomial test on the derived sum of each allele. We 

also implemented a normalized approach regarding multiple replicates and compared the ASB 

calling between the two (direct sum and normalized). In the normalization approach, the read 

coverage at heterozygous positions is normalized between replicates following the scale factor-

based procedures used in DEseq [169]. The normalized count of each site is the original count 

divided by the scale factor. The normalized count values are thereafter processed using the same 

procedure as in direct sum approach. 

 

The normalized approach resulted in 10,121 called ASB events, while direct-sum approach 

called 10,711. Overall, 9,511 ASB events were called by both approaches, and on average, 92% 

of the called ASB events using the normalized approach overlapped with those called with the 

direct-sum approach across investigated TFs.  While a few datasets showed greater difference, as 

shown in Appendix Figure A8, most samples were clustered in the lower right corner reflecting 

high similarity between the results. 

 

As one would expect, we observed that the overlap ratio was anti-correlated with the scale factor 

of the larger replicate (Spearman correlation coefficient = -0.64; Appendix Figure A8), showing 

a large replicate library difference in depth (large scale factor) correlated with greater divergence 
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in ASB calling between the two approaches. However, the impact was modest, as there was still 

85-95% overlap for the larger scale factor cases. 

 

We explored the differences between methods, which confirmed our expectation that the 

normalized approach penalized those cases in which one replicate was strikingly lower than the 

other in terms of counts. This can be observed in Appendix Figure A9, in which we show the 

read coverage for the method-specific ASB calls for a TF experiment with high scale factor. 

 

A.2 Direct sum approach is used considering the characteristics of the data 

It is useful to recognize two key aspects of the ENCODE data prior to reviewing the findings. 

For the vast majority of TFs there are only two replicates (n=41), with only a few having three 

replicates (n=4). The second is a difference between standard RNA-seq and ASB identification 

in ChIP-seq. In standard RNA-seq (as most published methods address), each sample is prepared 

and processed separately. For ASB detection in ChIP-seq, two alleles are naturally controlled 

within the same single sample. These two aspects inform our decision about the selection of the 

ASB calling method. 

 

Based on our perspective, with only two replicates for the vast majority of cases, we prefer to use 

the direct-sum approach.  This reflects our view that the high coverage positions in a single 

ChIP-seq replicate are well controlled (two alleles coming from the same nuclei). We anticipate 

that replicate normalization will be an important issue and should be deeply considered in future 

ASB analysis (particularly when greater replicate numbers are available). 
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A.3 The sequence based classifier produces consistent predictions for lymphoblastoid 

cells across multiple individuals 

 

We tested the consistency of the random forest classifier in different individuals from the same 

cell type (that is lymphoblastoid cell line). Briefly, we collected CTCF ChIP-seq data from 

multiple ENCODE samples. We trained a sequence based classifier with N-1 samples (N is the 

number of collected samples), and tested each model on the remaining sample. Results showed 

similar performance between cross validation and testing (for instance, the mean AUPRC 

difference is equal to 0.02 and the standard deviation is 0.05, Appendix Figure A5). These results 

suggested that our sequence based model could be applied across individuals using a single 

training data set. 
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A.4 Supplementary figures and tables for Chapter 2 

 

 

 

Figure A1. Comparing motif score of two alleles for all the investigated heterozygous site binding events. Each dot 

represents the relative motif score for favored allele (allele with higher ChIP-seq read count) and unfavored allele. 

ASB and non-ASB events are plotted separately. The black diagonal line indicates the cases with equal scores of 

two alleles. Heterozygous site binding data of all the TFs with known motif are presented together. This figure 

presents the entire data set partially depicted in Figure 2.1.  
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Figure A2. The positional impact and information content at each position of TF motifs. 

For each TF, we plot the positional impact of each motif position derived from ASB events (red bar) and its 

corresponding information content (blue line). This figure presents a TF specific perspective of Figure 2.2A. 
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Figure A3. SNVs of ASB events are enriched in predicted TFBSs and comotifs.  

The ChIP-seq experiments are divided into TFs with comotif only (left panel; TFs with no known PWM), with both 

PWM and comotifs (middle panel), and with known PWMs only (right panel). ASB-SNVs are significantly enriched 

in the predicted TFBS of comotifs (p-value = 2.2×10
-16

, odds ratio = 2.4, Fisher's exact test), combination of comotif 

and primary motif (p-value = 2.2×10
-16

, odds ratio = 2.7, Fisher's exact test) and primary motif (p-value = 2.2×10
-16

, 

odds ratio = 3.0, Fisher's exact test).  
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Figure A4. Allelic coordination between TFs and chromatin properties in GM12878 cell line.  

The heatmap represents the -log(p-value) of Pearson correlation between allele imbalance of TF ChIP-seq reads at 

heterozygous site binding events and chromatin properties (DHS and histone modifications). 
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Figure A5. Testing the performance of sequence models for CTCF in seven individuals.  

The figure shows the accuracy of cross validation within any six samples (red bar) and testing accuracy of the 

remaining individual (blue bar).  
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Figure A6. Compare the performance of the Seq model and BayesPI-Bar. Only 27 TFs experiments with available 

BayesPI-Bar models are presented in the comparison.   
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Figure A7 The most frequently selected key features in the Full models for the TFs without known motif  

The suffix ‘favor’ (respectively ‘unfavor’) refers to the allele with higher (respectively lower) read counts at 

heterozygous sites. Details of each feature can be found in the Methods section and Appendix Table A5. 
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Figure A8 Scale factor and overlap ratio between the direct sum and the normalized approach.  

Each point represents one TF ChIP-seq dataset. 
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Figure A9 Read coverage distribution of approach-specific ASB events in the smaller replicate 

The data of CHD2 in HeLa-S3 are shown as it has a low overlap ratio (82.6%) and a high scale factor 2.1. In this TF 

experiment, direct sum approach called 129 ASB events and normalized approach called 92, of which 76 events are 

overlapped between two approaches.  

 

 

  



136 

 

 

Data Type Institution URL 

TF ChIP-seq 

raw reads 

Haib http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeHaibTfbs/ 

TF ChIP-seq 

raw reads 

Sydh http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeSydhTfbs/ 

TF ChIP-seq 

raw reads 

Uta http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeOpenChromChip/ 

TF ChIP-seq 

raw reads 

Uw http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeUwTfbs/ 

TF narrowPeak 

regions 

Awg http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeAwgTfbsUniform/ 

DNase-Seq raw 

reads 

Uw http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeUwDnase/ 

DNase-Seq raw 

reads 

Duke http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeOpenChromDnase/ 

Histone ChIP-

seq raw reads 

Broad http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeBroadHistone/ 

Genotype data 

of 

Lymphoblastoid 

cell lines 

Complete 

genomics 

ftp://ftp2.completegenomics.com/vcf_files/Build37_2.0.0/ 

Copy number 

variant region 

Haib http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeHaibGenotype/ 

(Available for GM12878, HeLa-S3, and GM19238) 

 

Table A1. Sources of the data used in ASB analysis.  

Our analysis integrated multiple types of data, including ChIP-seq, DNase-Seq, and genotype calling data. The 

categories, source institution, and URL of these data were listed in the table. 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromChip/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromChip/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwTfbs/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwTfbs/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromDnase/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromDnase/
ftp://ftp2.completegenomics.com/vcf_files/Build37_2.0.0/
ftp://ftp2.completegenomics.com/vcf_files/Build37_2.0.0/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibGenotype/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibGenotype/
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Cell TF Peak 

Count 

Heterozygous binding 

sites events 

ASB 

GM12878 BATF   32427  1314   201 

GM12878 BCL11A   17876   678    60 

GM12878 BCL3   15455   653    60 

GM12878 BHLHE40   13986   661    66 

GM12878 CTCF   55551  2614   396 

GM12878 EBF1   33410  1445   327 

GM12878 EGR1   16331   718    69 

GM12878 ELF1   23008  1047    58 

GM12878 MEF2A   17605   574    55 

GM12878 NFYB   13295   355    77 

GM12878 PAX5   19740   657    43 

GM12878 RAD21   40019  1963   281 

GM12878 RUNX3   67965  3304   471 

GM12878 SRF    8544   164    31 

GM12878 TCF12   20437   770    82 

GM12878 USF1    9778   305    37 

HELA-S3 TFAP2C   25452   561    84 

HELA-S3 BRCA1    8114   274    47 

HELA-S3 CEBPB   61004  2491   922 

HELA-S3 CHD2   20500   696   129 

HELA-S3 CTCF   58806  2506  1076 

HELA-S3 GABPA    6761   224    72 

HELA-S3 JUND   31633   641   118 

HELA-S3 MAFK   14185   431    84 

HELA-S3 MAX   29647  1111   132 

HELA-S3 NFYB    7156   149    47 

HELA-S3 NRSF   10247   372   179 
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Cell TF Peak 

Count 

Heterozygous binding 

sites events 

ASB 

HELA-S3 P300   25854   661   160 

HELA-S3 POL2   25332  1284   570 

HELA-S3 PRDM1    4577   134    50 

HELA-S3 RAD21   43420  1883   708 

HELA-S3 RFX5   19284   664    80 

HELA-S3 SMC3   39567  1860   565 

HELA-S3 STAT3   13834   325    56 

HELA-S3 TAF1   16100   514    83 

HELA-S3 TBP   18489   466    87 

HELA-S3 TCF7L2   19242   600   124 

HELA-S3 USF2   12306   373   108 

HELA-S3 ZNF143    7048   261    52 

GM12872 CTCF   47151  2496   488 

GM12873 CTCF   51005  2575   552 

GM19238 CTCF   49938  2909   500 

GM19239 CTCF   41085  2473   282 

GM19240 CTCF   46036  2972   573 

GM12864 CTCF   46798  2390   523 

Total 45 1205998 51518 10765 

 

Table A2. Processed heterozygous site binding data.  

For each TF ChIP-seq experiment, we listed the number of ChIP-seq peaks (Peak count), heterozygous site binding 

events, and called ASB events. 
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Cell TF Comotif 

GM12878 BATF IRF1.IRF, BZIP.IRF[218] 

GM12878 BHLHE40 RUNX1.RUNT 

GM12878 RAD21 CTCF.ZF[184] 

GM12878 RUNX3 BATF.BZIP, RUNX1.RUNT, ETS1.ETS, FLI1.ETS 

HeLa-S3 CEBPB BATF.BZIP 

HeLa-S3 P300 NF-E2.BZIP, CEBP.BZIP[184], ATF3.BZIP[219, 220] 

HeLa-S3 RAD21 CTCF.ZF[184] 

HeLa-S3 SMC3 CTCF.ZF[184] 

HeLa-S3 TCF7L2 ATF3.BZIP 

Total 9 15 

 

Table A3. Discovered comotifs from heterozygous site binding events.  

HOMER motifs were considered as comotifs when their motif change correlated with TF allelic binding imbalance 

in heterozygous site binding events (see Materials and methods in Chapter2). The cell line, ChIP’ed TF, and 

correlated comotifs are provided respectively.TF-comotif pairs supported by external literature are given the 

corresponding references. 
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Cell ASB-TF TF -log(p-value) Odd ratio 

GM12878 BATF TBP  4.50  0.25 

GM12878 BATF CDP  3.94  0.49 

GM12878 BATF POL24H8  3.51  0.29 

GM12878 BATF STAT3  3.36  0.31 

GM12878 CTCF ZNF143 10.45  0.43 

GM12878 CTCF YY1  7.42  0.48 

GM12878 CTCF POU2F2  4.83  0.37 

GM12878 CTCF FOXM1  3.76  0.49 

GM12878 CTCF SMC3  3.36  0.68 

GM12878 EBF1 TBP  3.78  0.42 

GM12878 EBF1 NFKB  3.76  0.54 

GM12878 EBF1 IKZF1  3.75  0.41 

GM12878 EBF1 MXI1  3.52  0.48 

GM12878 MEF2A PML  3.83  0.28 

GM12878 MEF2A MAX  3.51  0.00 

GM12878 MEF2A BCLAF1  3.46  0.13 

GM12878 RAD21 ZNF143  9.04  0.42 

GM12878 RAD21 RUNX3  5.61  0.47 

GM12878 RAD21 PAX5  4.69  0.37 

GM12878 RAD21 YY1  4.08  0.57 

GM12878 RAD21 FOXM1  3.43  0.51 

GM12878 RUNX3 POL2 12.31  0.34 

GM12878 RUNX3 ZNF143  9.73  0.29 

GM12878 RUNX3 POL24H8  9.29  0.37 

GM12878 RUNX3 ELF1  8.16  0.42 

GM12878 RUNX3 SMC3  7.86  0.37 

GM12878 RUNX3 YY1  7.71  0.48 

GM12878 RUNX3 CTCF  7.55  0.36 
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Cell ASB-TF TF -log(p-value) Odd ratio 

GM12878 RUNX3 MAZ  6.71  0.46 

GM12878 RUNX3 PML  6.08  0.49 

GM12878 RUNX3 ELK1  5.65  0.28 

GM12878 RUNX3 EGR1  5.34  0.42 

GM12878 RUNX3 GR  5.34  0.42 

GM12878 RUNX3 RAD21  5.12  0.49 

GM12878 RUNX3 SIN3A  5.12  0.39 

GM12878 RUNX3 CMYC  5.01  0.17 

GM12878 RUNX3 ZEB1  5.01  0.17 

GM12878 RUNX3 MAX  4.82  0.47 

GM12878 RUNX3 GABP  4.61  0.31 

GM12878 RUNX3 TAF1  4.47  0.49 

GM12878 RUNX3 CHD2  4.45  0.54 

GM12878 RUNX3 BATF  4.05  1.52 

GM12878 RUNX3 TCF3  3.90  0.56 

GM12878 RUNX3 TBP  3.80  0.56 

GM12878 RUNX3 SRF  3.62  0.41 

GM12878 RUNX3 MXI1  3.56  0.58 

GM12878 USF1 SIN3A  4.26  0.06 

HeLa-S3 CEBPB P300 16.61  2.07 

HeLa-S3 CEBPB STAT3  6.52  1.68 

HeLa-S3 CEBPB CTCF  4.56  0.50 

HeLa-S3 CEBPB CJUN  3.58  1.41 

HeLa-S3 CEBPB JUND  3.56  1.38 

HeLa-S3 CEBPB TCF7L2  3.40  1.45 

HeLa-S3 CTCF SMC3  7.44  1.59 

HeLa-S3 CTCF RAD21  6.59  1.58 

HeLa-S3 MAX CMYC  6.77  3.31 
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Cell ASB-TF TF -log(p-value) Odd ratio 

HeLa-S3 MAX USF2  4.59  2.27 

HeLa-S3 P300 ELK4  3.20  3.10 

HeLa-S3 POL2 TAF1 10.46  2.14 

HeLa-S3 POL2 HCFC1  8.65  1.98 

HeLa-S3 POL2 TBP  6.50  1.80 

HeLa-S3 POL2 E2F4  5.36  2.43 

HeLa-S3 POL2 GCN5  4.76  2.95 

HeLa-S3 POL2 P300  3.89  0.50 

HeLa-S3 POL2 CJUN  3.72  0.52 

HeLa-S3 POL2 NRF1  3.24  2.11 

HeLa-S3 RAD21 CTCF 16.29  2.58 

HeLa-S3 RAD21 CJUN 10.37  0.35 

HeLa-S3 RAD21 P300  9.96  0.38 

HeLa-S3 RAD21 CFOS  9.38  0.28 

HeLa-S3 RAD21 COREST  7.49  0.48 

HeLa-S3 RAD21 REST  7.49  0.48 

HeLa-S3 RAD21 CHD2  7.42  0.46 

HeLa-S3 RAD21 TCF7L2  7.15  0.44 

HeLa-S3 RAD21 SMC3  6.33  1.94 

HeLa-S3 RAD21 STAT3  5.60  0.47 

HeLa-S3 RAD21 TBP  4.84  0.50 

HeLa-S3 RAD21 POL2  4.11  0.49 

HeLa-S3 RAD21 TAF1  4.01  0.44 

HeLa-S3 RAD21 BAF155  3.97  0.47 

HeLa-S3 RAD21 MXI1  3.97  0.47 

HeLa-S3 RAD21 MAX  3.78  0.65 

HeLa-S3 RAD21 CEBPB  3.66  0.66 

HeLa-S3 RAD21 JUND  3.22  0.65 
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Cell ASB-TF TF -log(p-value) Odd ratio 

HeLa-S3 RFX5 SMC3  3.96  0.38 

HeLa-S3 SMC3 CTCF 17.47  3.03 

HeLa-S3 SMC3 RAD21  7.77  2.36 

HeLa-S3 SMC3 CJUN  6.45  0.41 

HeLa-S3 SMC3 P300  6.09  0.44 

HeLa-S3 SMC3 POL2  6.00  0.46 

HeLa-S3 SMC3 TCF7L2  5.68  0.48 

HeLa-S3 SMC3 CFOS  4.97  0.37 

HeLa-S3 SMC3 TBP  4.82  0.51 

HeLa-S3 SMC3 TAF1  4.71  0.46 

HeLa-S3 SMC3 COREST  3.68  0.62 

HeLa-S3 SMC3 REST  3.68  0.62 

HeLa-S3 SMC3 CHD2  3.58  0.62 

HeLa-S3 SMC3 STAT3  3.37  0.53 

HeLa-S3 TBP BDP1 10.37 13.79 

HeLa-S3 TBP RPC155 10.18 11.92 

HeLa-S3 TBP BRF1  3.77  8.57 

HeLa-S3 ZNF143 HCFC1  5.02  7.40 

HeLa-S3 ZNF143 RAD21  4.32  0.21 

HeLa-S3 ZNF143 BAF170  3.54  5.35 

HeLa-S3 ZNF143 SMC3  3.23  0.31 

HeLa-S3 ZNF143 CTCF  3.21  0.27 

 

Table A4 Presence of ASB events was associated with cobound TFs.  

For each ASB dataset, we tested the association between ASB events and binding peaks of its cobound TFs (Fisher 

test, FDR < 0.05). The p-value and odds ratio of the significant pairs are listed.  
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Category Feature Name Description Used in 

model(s) 

Motif of the 

ChIP’ed TF 

motif_favor, 

motif_unfavor 

 

Motif score of two alleles  

 

 

Full, 

Seq+DHS, 

Seq 

Motif_pvalue_ratio The log ratio of two alleles’ binding 

potential 

(the p-value of the PWM score 

against random genome background) 

 

Peak_motif_favor, 

Peak_motif_unfavor, 

Peak_TFBS_num 

Best motif scores within the peak 

regions for two alleles. The number 

of predicted TFBS in the peak region 

 

Position 

information 

Peak_dis SNV distance to the peak max 

position 

 

Full, 

Seq+DHS, 

Seq 

PWM_position SNV position in the motif 

 

Enriched motifs  

 

 

comotif1_pavlue_ratio, 

comotif2_pavlue_ratio, 

… 

For each of the five enriched motifs, 

the log ratio of two alleles’ binding 

potential  

(the p-value of the enriched motif 

score against random genome 

background). We ranked the 

enriched motifs based on their 

enrichment within the peak regions. 

 

 

 

 

 

Full, 

Seq+DHS, 

Seq 

DHS and 11  The read count at each allele for  
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Category Feature Name Description Used in 

model(s) 

histone 

modifications 

DHS_favor, 

DHS_unfavor, 

H3K27ac_favor, 

… 

each feature. Full, 

Seq+DHS 

(DHS only) 

Cobound TFs  

Cobound1, 

Cobound2, 

… 

 

Whether the SNV overlap with other 

TF binding peak regions. We ranked 

the cobound TFs based on the 

overlap ratio with heterozygous site 

binding events. 

 

 

 

Full 

 

Table A5.  Input features used in three classification models (Seq, Seq+DHS, and Full).  

The features are summarized into five categories based on the source or the nature of the data. “Feature names” 

refers to the features used in Figure 2.5(B) and Appendix Figure A7. Features are explained in the ‘Description’ 

column. The last column indicates the models which included corresponding features for training. 
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A.5 Supplementary data 

The compiled heterozygous site binding data can be found in the published paper [52] of Chapter 

2. The WGS data of HeLa-S3 cell line used in this research were derived from a HeLa cell line 

(http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000640.v2.p1). 

Henrietta Lacks, and the HeLa cell line that was established from her tumor cells without her 

knowledge or consent in 1951, have made significant contributions to scientific progress and 

advances in human health. We are grateful to Henrietta Lacks, now deceased, and to her 

surviving family members for their contributions to biomedical research. This study was 

reviewed by the NIH HeLa Genome Data Access Working Group.  
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Appendix B  Supplementary material for Chapter 3 

 

 
Figure B1. Total read coverage of the heterozygous sites across all the heterozygous site binding events. The sites 

within read coverage from 10 to 20 represent 41.4% of the sites. 
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Appendix C  Supplementary material for Chapter 4 

C.1 Downloading data for LCLs 

RNA-seq data for 462 LCLs (individuals) were initially downloaded from the GEUVADIS 

project [121]. For 445 of them, genotype information was obtained from the 1000 Genomes 

Project [1]. The individuals covered five populations, including 89 North-Europeans from Utah 

(CEU), 92 Finns (FIN), 86 British (GBR), 91 Toscani (TSI) and 87 Yoruba (YRI). Because 

African subjects (YRI) differ substantially from the four European sets, they were excluded from 

the analysis. The reasons for exclusion included: 1) African individuals exhibit significantly 

more sequence variations than Europeans [1]; 2) they also exhibit more population-specific 

differentially expressed genes [121]; and 3) the reference DHS and TF-binding events used in 

this study are derived from GM12878 cells (an LCL from a European individual).  
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C.2 Supplementary figures for Chapter 4 

 

Figure C1. Determine the number of hidden factors in the expression data. We used PEER package to detect the 

impact of known covariates (four population and one gender factors) and forty potential hidden factors. The natural 

choice for the number of hidden factors is usually observed as the converged point in the factor variance plot [181]. 

We chose to remove first 27 factors (The first five known covariates and additional 22 hidden factors) in our 

expression data. 
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Figure C2. The performances of TF2Exp models are correlated with the variance of gene expressions. Each 

dot represents one predictable gene. The dot coordinates indicate TF2Exp model performance (x axis) and the 

variance of gene expression (y axis). We test the correlation between the two axes, and the spearman correlation 

coefficient and p-value are given on the plot. The blue line shows the general trends drawn by the locally weighted 

scatterplot smoothing method across all the dots. 
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Figure C3. Performance of TF2Exp for BTN3A2 gene in cross validation 

Each point represents one CHB tested individual and its coordinates indicate the predicted expression given by 

TF2Exp model in cross validation (x axis) and the observed expression (y axis). 
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Figure C4 Top 10 TFs whose binding events are the most frequently selected features in TF2Exp models across all 

the predictable genes. 
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Figure C5. Compare the absolute feature effect sizes of selected TF-binding events at promoter and distal regulatory 

regions across the all the predictable genes. The labeled p-value indicates the significance for the difference of two 

groups (Wilcoxon rank-sum test). 

 

 


	Abstract
	Lay Summary
	Preface
	Table of contents
	List of tables
	List of figures
	List of abbreviations
	Acknowledgements
	Dedication
	Chapter 1: Introduction
	1.1 The challenge of interpreting regulatory variants in the human genome
	1.2 Basics of gene regulation and transcription factor binding
	1.2.1 Experimental detection of TF binding
	1.2.2 Computational prediction of TF binding
	1.2.2.1 Classic TF binding model: position weight matrix
	1.2.2.2 k-mer based approaches
	1.2.2.3 Deep convolutional neural networks methods


	1.3 Assessing the impact of variants on TF-DNA interactions
	1.3.1 Collecting reliable reference data sets
	1.3.2 Interpreting TF binding alteration
	1.3.3 Chromatin marks and TF binding
	1.3.4 TFBS redundancy
	1.3.5 TFBS conservation
	1.3.6 Computational tools to predict variation impact on TF binding

	1.4 Assessing the impact of cis-regulatory variants on gene expression
	1.4.1 Identifying cis-regulatory regions in the human genome
	1.4.1.1 Properties and experimental data of cis-regulatory regions
	1.4.1.2 Identifying cis-regulatory regions through machine learning

	1.4.2 Associating regulatory regions to target genes
	1.4.3 Approaches to evaluate the impact of non-coding variants on gene expression
	1.4.3.1 Experimental assessment of the impact of variants on gene expression
	1.4.3.2 Computational approaches to identify the impact of non-coding variants on gene expression


	1.5 Thesis overview and objectives

	Chapter 2: Evaluating the impact of single nucleotide variants on transcription factor binding
	2.1 Introduction
	2.2 Materials and methods
	2.2.1 Genotype data of investigated cell lines
	2.2.2 ChIP-seq read alignment
	2.2.3 Mapping bias simulation
	2.2.4 Retrieving heterozygous site binding events and calling ASB events
	2.2.5 TFBS identification in ChIP-seq peak regions
	2.2.6 Defining ASB frequency within TFBSs
	2.2.7 Identifying comotifs within ChIP-seq peak regions
	2.2.8 Association between cobound TFs and ASB events
	2.2.9 Classification of heterozygous site binding events

	2.3 Results
	2.3.1 Compile heterozygous site binding events
	2.3.2 TFBS alterations strongly correlate with ASB events
	2.3.3 ASB events show different positional distribution within TFBS compared with motif information content
	2.3.4 Disruption of enriched comotifs can lead to ASB events
	2.3.5 ASB events are associated with cobound TFs
	2.3.6 Allelic chromatin properties coordinate with ASB events
	2.3.7 DHS and sequence-derived properties are sufficient for cost-effective ASB event prediction

	2.4 Discussion

	Chapter 3: Evaluating five statistical methods to call allele specific binding events
	3.1 Introduction
	3.2 Materials and methods
	3.2.1 Datasets for evaluating ASB calling methods
	3.2.2 Hypothesis testing for ASB calling
	3.2.3 Binomial distribution for allelic reads
	3.2.4 Beta-binomial distribution for allelic reads
	3.2.5 Pooling replicates for ASB calling
	3.2.6 Modeling replicates by joint probability
	3.2.7 Negative binomial distribution to call ASB events with replicates
	3.2.8 Using allelic imbalance of DHS signal to evaluate ASB calling methods
	3.2.9 Scoring DNA sequence using PWM
	3.2.10 Code and data availability

	3.3 Results
	3.3.1 ASB calling methods provide highly correlated p-values but differ in statistical stringency
	3.3.2 Traditional binomial-based models show higher allelic DHS correlations than other models
	3.3.3 The degree of over-dispersion is overestimated due to mild TFBS alterations

	3.4 Discussion

	Chapter 4: Predicting the impact of altered TF binding on gene expression based on sequence variants
	4.1 Introduction
	4.2 Materials and methods
	4.2.1 Quantification of gene expression levels from RNA-seq data
	4.2.2 Associating regulatory regions and TF-binding events to genes
	4.2.3 Predicting sequence variation impact on TF binding events
	4.2.4 Quantitative models of gene expression
	4.2.5 Gene ontology enrichment analysis for the top performance genes
	4.2.6 Analyzing selected features using FANTO M5 data
	4.2.7 External validation
	4.2.8 Code and data availability

	4.3 Results
	4.3.1 TF2Exp: regression models to predict the impact of altered TF binding on gene expression
	4.3.2 The expression of a subset of genes are predictable by TF2Exp
	4.3.3 Alteration of DHS, RUNX3, and CTCF binding are the most frequently selected features
	4.3.4 The contributions of promoter features are greater than distal regulatory regions
	4.3.5 TF2Exp models perform comparably to SNP-based expression models
	4.3.6 Uncommon variants improve model performance for a small portion of genes
	4.3.7 TF2Exp models exhibit robust performance in external validation datasets

	4.4 Discussion

	Chapter 5: Conclusion
	5.1 Predicting variant impact on TF binding
	5.2 Evaluating five statistical methods to call ASB events
	5.3 Predicting the impact of altered TF binding on gene expression based on cis- regulatory variants
	5.4 Applications in future healthcare


	Bibliography
	Appendices
	Appendix A   Supplementary material for Chapter 2
	A.1 Replicate normalization method produces highly similar sets of ASB calls
	A.2 Direct sum approach is used considering the characteristics of the data
	A.3 The sequence based classifier produces consistent predictions for lymphoblastoid cells across multiple individuals
	A.4 Supplementary figures and tables for Chapter 2
	A.5 Supplementary data

	Appendix B   Supplementary material for Chapter 3
	Appendix C   Supplementary material for Chapter 4
	C.1 Downloading data for LCLs
	C.2 Supplementary figures for Chapter 4



