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Abstract 

Summary 

The growing burden of chronic disease like Type 2 Diabetes Mellitus (T2DM) raises concern about the sustainability 

of Canada’s health system. Consequently, greater emphasis is being placed on economic evaluation using 

computer simulation models to enhance decision making in health care. This research was initiated to assess if 

model output for a cost-effectiveness analysis (CEA) in T2DM would be generalizable to a diverse BC population. 

 

The thesis outline is as follows: 

 Chapter 1 overviews the epidemiology, risk factors and complications of T2DM, the role of model based 

economic evaluation and knowledge gaps used to guide the thesis objectives. 

 Chapter 2 assesses the methods of existing T2DM models and utilizes criteria to select a model for 

validation. 

 Chapter 3 describes an internal validation of a T2DM model by comparing the expected versus actual 

impact of changes to input parameters on output. 

 Chapter 4 describes an external validation comparing the predicted rate of vascular events to the 

observed rate by gender, age and ethnic sub-cohorts from a BC population based on the coefficient of 

determination (R
2
) and a 95% confidence interval (CI).  

 Chapter 5 summarizes the results, discusses limitations, and highlights future research to enhance the 

credibility of T2DM models. 

 

Results 

 The Ontario Diabetes Economic Model (ODEM) was selected and an internal validation demonstrated the 

simulated rate of vascular events responded as expected to changes in baseline variables in a 10 year simulation.  

The external validation in cohorts with no history of complications had a modest positive correlation (R
2
 = 0.68) 

and a tendency to over predict vascular events in older adults. Adding individuals with previous events improved 

the correlation (R
2
 > 0.99) and statistical accuracy of the ODEM. A higher correlation was observed in those of 

younger age, male gender (R
2
 = 0.71) and SA ethnicity (R

2
 = 0.77).  

 

Conclusion 

The ODEM was demonstrated to be a functional model with output considered generalizable for the economic 

evaluation of a diverse BC T2DM population.  There were trends in model to overestimate complications in cohorts 

with no previous vascular events and those of older age that require further research to validate. 
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Preface 

There is an important role for model-based economic evaluation to guide decision making and enhance the value 

of health interventions for our health system and community. Decision makers therefore must have confidence in 

the economic output from a decision model that it is relevant for their population of interest. In discussions on this 

topic with my co-supervisors, Dr. Larry Lynd, Director of UBC’s Collaboration for Outcomes Research (CORE) and 

Dr. Nick Bansback from UBC’s School of Population and Public Health (SPPH), it was decided that I would develop 

an MSc level course syllabus for directed study that would describe and compare existing decision model 

methodology, structures and design being used to perform economic evaluation in diabetes. As part of this 

project, I would appraise the current approaches used to validate existing models. 

 

From this directed study, I developed the objectives and methods for this MSc thesis with the intention to advance 

the critical appraisal and credibility of model based economic evaluation in a complex chronic disease using Type 2 

diabetes mellitus (T2DM).   I completed the initial search of the literature and applied methodology to define 

objective criteria to first a) identify a list of appropriate existing models for CEA, then b) to assess and compare the 

methods used in these T2DM models and finally c) to select a model suitable for cost effectiveness analysis (CEA) 

in a Canadian population for further validation.  My interest in maximizing the efficiency of resource allocation for 

chronic disease interventions led me to propose a validation project to determine the generalizability of the output 

of the existing model for use in a diverse BC population.  

 

This Ontario diabetes economic model (ODEM) was a T2DM model which met the criteria for performing 

comparative CEA and it was provided to UBC CORE with open access for further research by Dr. Daria O’Reilly, 

Associate Director of Programs for Assessment of Technology in Health (PATH) and Associate Professor at 

McMaster University.  I received guidance from Dr. Lynd and Dr. Bansback on the design of the internal and 

external validation exercises of the ODEM to assess the functionality of the model and the accuracy of the 

predicted rate of vascular events in a BC population. Further input on the methods and expert insights on T2DM 

were provided by my thesis committee members Dr. Mark Harrison and Dr. Nadia Khan. I then used this collective 

input to define the methods, identify appropriate data to populate the baseline input variables by cohort and 

identified the statistical assessment to be applied for assessment of model outputs. The implementation and 

interpretation of the ODEM validation exercises was completed as a core component of my thesis project.  
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 Introduction Chapter 1:

 

In response to the large and growing burden of chronic disease in Canada’s aging population, and the potential 

impact on the sustainability of the health system we are accustomed to, we must work efficiently and 

collaboratively to maximize the appropriate use of interventions to improve the health of our families, friends and 

communities to ensure we get maximum value from our health care spend.(1)
 
 It has been documented that 

globally the morbidity and mortality of non-communicable chronic disease is growing and has exceeded all other 

diseases combined in recent decades.(2) The increasing prevalence is attributed, in part, to poor lifestyle choices 

including physical inactivity, unhealthy diets and smoking.(3) These are all considered modifiable risk factors and 

are associated with an increase in cardiovascular disease, T2DM, some cancers, arthritis and chronic obstructive 

pulmonary disease among other diseases.(1) As a result of the growing burden, it is no longer sufficient to 

demonstrate to decision makers that health interventions are clinically effective or proven safe, but also these 

data must consider the cost of care and the impact on quality and/or quantity of life to facilitate a measure of cost 

effectiveness.(4)  This form of evidence, known as economic evaluation, often relies on the use of a decision model 

in order to compile evidence and data into a structured assessment of a potential intervention, intended to 

improve the outcomes related to a chronic disease, to provide an output measure of its value to the health care 

system.(5)   

 

This thesis focuses on T2DM, which is one such chronic disease with a large and growing prevalence in Canadians, 

that is known to increase the risk for a number of vascular events or diabetes related complications.(6,7)  There 

are many interventions including medicines, devices and services that have been developed to mitigate the risk of 

these long term complications due to T2DM which have increased the demand for economic evaluations  to 

support efficient resource allocation.(8) Over the last two decades dozens of decision models have been developed 

by researchers to provide output for decision makers for economic evaluation of primary, secondary and tertiary 

prevention of T2DM and its management. While a number of T2DM models have been designed for broad 

assessment of a number of interventions to address a range of T2DM related vascular complications, there are a 

number of the T2DM models in the literature which have been created for a one-time analysis of a specific 

intervention or to assess one specific vascular outcome (ie: retinopathy). Typically these single purpose models 

have not published methods or completed model validation exercises to allow a full transparency of the model 

structure. Therefore to enable an assessment of the most appropriate T2DM models this thesis focuses on models 

which have incorporated a broad assessment of T2DM and associated complications and which have been used in 

the economic evaluations of multiple interventions or have published model methods or validation exercises to 

demonstrate the functionality and/or validity of their model to predict T2DM complications. 
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This chapter begins with the background on the epidemiology and growing burden of T2DM that includes a 

breakdown of the risk factors for both developing T2DM and for experiencing subsequent diabetes related 

vascular events or complications. There are many risk factors that are relevant to T2DM and include modifiable 

risks, such as obesity and sedentary lifestyle, and non-modifiable risk factors such as age, gender and ethnicity.(9) 

Of these risk factors there are noted differences in British Columbia versus other regions in Canada and other 

countries which may impact the onset of T2DM and the rate of complications. In particular there is a lower rates of 

obesity and smoking, and a higher proportion of ethnic populations such as those of South Asian (SA), Aboriginal 

and Chinese descent that may impact the CEA of interventions in T2DM.(6, 9–11, 2) This overview of T2DM is 

followed by a summary of the growing importance of Health Technology Assessment (HTA) in Canada including the 

role of economic evaluation of health care interventions using decision models to generate measures of cost 

effectiveness to enhance the efficiency of allocating resources.(4)  The chapter concludes with an overview of 

identified knowledge gaps and potential areas of future research that were used to guide the development of the 

objectives of this thesis project.  

 

1.1 Diabetes in Canada 

1.1.1 Demographics and epidemiology 

The population of BC in 2015 is currently 4.6 million residents with growth projected to outpace the national 

average, reaching approximately 6.0 million residents or 14.2% of the Canadian population by 2038.  This 

population growth will be supported by an international and interprovincial migration that will be above the 

national average. The mean age in BC’s population is older than the average Canadian, aging faster due to 

interprovincial migration, with those over the age of 65 estimated to grow from approximately 23% to 34% of the 

BC population by 2041.(13,14) 

 

The BC population is becoming increasingly ethnically diverse with the largest and fastest growing ethnic 

populations being of South Asian and Chinese descent. Those identified as SA in the 2011 census in BC totaled 

313,440 or 7.2% of the population and those from China equaled 423,435 or 10.1%.(15) The predicted growth of 

the SA and Chinese population is projected to be greater than the general population growth due to the high 

immigration rates from these regions of the world.(13, 15)  

 

In the BC population, it is estimated that the prevalence of T2DM will continue to rise from 8.3% in 2013 to 10.3% 

by year 2020 and will comprise approximately 548,000 citizens.(16) This is growth in prevalence is believed to be 

due to a combination of a higher incidence of T2DM in older age groups, an aging population, increasingly 

sedentary lifestyles leading to higher rates of obesity, a growing  proportion of ethnic populations who have an 

increased prevalence of T2DM and an overall trend of people living longer with T2DM after diagnosis.(17)   
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1.1.2 Burden of disease 

In Canada, the cost of health care currently represents between one third and one-half of the annual provincial 

budgets and is increasing.(18) This trend has been recognized by the BC provincial Ministry of Health who have 

outlined strategies to enhance the quality, efficiency and value of spend in health care.(19) A significant 

contributor to the burden on health budgets are the direct costs attributable to the ongoing management and 

treatment of complications of T2DM. These costs have doubled across Canada between 2000 and 2010 and are 

estimated to increase from $294 million in 2010 to approximately $472 million by 2020 in BC alone.(17) These 

direct costs include the cost of medication and devices to manage blood glucose control and the vascular events 

directly attributed to T2DM such as amputation and renal dialysis, as well as the incremental cost of 

hospitalizations for vascular disease and physician visits (general practitioner and specialists) over those without a 

diagnosis of T2DM.(17) There are many long term complications from T2DM that occur as a result of micro and 

macro vascular disease including ischemic heart disease (IHD), myocardial infarction (MI), cerebrovascular disease 

(CVD), congestive heart failure (CHF), blindness, amputation and end stage renal disease (ESRD).(6,7) These 

vascular complications contribute to a higher direct cost in the year of the event and an increase in the direct costs 

of ongoing treatment in those who survive an event.(20) The growing burden of chronic disease in the aging 

Canadian population has led to the development of national and provincial strategies to identify the priorities 

which may reduce the long term impact of the risk factors associated with T2DM.(1, 17, 19)  

 

1.1.3 Risk factors  

An area of focus to reduce disease burden in T2DM is to identify and target interventions that mitigate the risk 

factors shown to either increase the onset of T2DM or are associated with increasing the rate of complications in 

people with T2DM.(6,9)  Importantly, in T2DM these include modifiable risks which create an opportunity to 

intervene and alter the course of the disease.(6,9)
  
It is widely recognized that T2DM is a complex chronic disease 

in which the increased rate of vascular events are due to more than elevated blood glucose levels alone but often 

include comorbid conditions such as high blood pressure and/or elevated blood lipid measures such as total 

cholesterol (TC), triglycerides and low density lipoprotein (LDL).(6) The presence of these multiple risk factors in an 

individual diagnosed with T2DM are referred to as metabolic syndrome, a condition which requires numerous 

interventions and aggressive management due to the high risk of complications.(21) Therefore, the economic 

evaluation of interventions in T2DM should account for these known modifiable and non-modifiable risk factors to 

ensure the output of diabetes decision models is reflective of the actual onset or progression of T2DM in the 

population of interest.  
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Non-modifiable risk factors 

Non-modifiable risk factors are considered as those which are not within the control of an individual to alter or 

reverse. The most widely recognized of these is the impact of age on the incidence of T2DM which rises rapidly 

after age 40 and essentially quadruples from 5.1/1000 individuals in the 40 to 45 age category to 20.3/1000 

individuals in the 70 to 75 age category.  In addition to the increased incidence of T2DM with age is the higher rate 

of diabetes related events which further compounds the impact of advancing age on the burden of T2DM.(22)  

Gender is another non-modifiable risk factor where there is a numerically higher incidence of T2DM in males 

(6.8/1000) than females (5.7/1000) in the overall Canadian population and remains consistently higher in males of 

all age categories starting from 35 years and continues to 85 years of age and older.(9) Another relevant non 

modifiable risk factor for the BC population is the higher proportion of certain ethnic populations in the province 

which are known to have a higher incidence of T2DM and potentially differing risk of vascular complications over 

time. These differences may be a reflection of biological and behavioral differences including diet and activity 

levels, type of body fat distribution, age of onset of T2DM and metabolic measures of disease control.(6,9,23)  For 

instance, there is a greater than two fold increase in the odds for developing T2DM in those of SA descent 

compared to Caucasians as well as differing rates of vascular complications in the SA population with T2DM.(9, 23)  

 

Modifiable risk factors 

There are also a number of modifiable risk factors which are known to impact both the incidence of onset of T2DM 

and the rate of complications related to T2DM. Importantly, an intervention that can delay the onset of T2DM has 

been shown to reduce the rate of cardiovascular disease and renal failure.(6) For example, a key modifiable risk 

factor for T2DM is obesity which is known to increase both the incidence of T2DM and the rate of complications in 

T2DM.(6) In Canada, obesity is defined as a person with a BMI of greater than 30, and overweight is considered as 

having a BMI in excess of 25.(9) Canadian data shows that the mean BMI in people with T2DM was 29 kg/m2, 

compared to 25kg/m2 for those without T2DM which results in three quarters (75.6%) of those with T2DM in 

Canada being considered either overweight or obese.(9)  Furthermore, Canadian studies shows self-reported 

obesity is higher in Caucasians than in those of other ethnic groups such as SA, Chinese and black which suggests 

the need for ethnic specific cut offs and the inclusion of other measures beyond BMI such as waist circumference 

to better assess cardiovascular risk.(6, 19, 20)  

 

Another key modifiable risk factor related to the risk of complication is smoking, as those with T2DM who smoke 

have a significantly higher risk of ESRD, MI, stroke and death.(25) The prevalence of smokers in Canada has 

declined a mean of 10.3% between 1985 and 1999 and 14.7% in adults between age 45 and 64 years of age 

however it remains higher in men and the Caucasian population.(12)  Of note, in 2005 the rate of current and 

occasional smokers in BC was approximately 20% (versus Canadian mean of 23%) and was the lowest rate in 

Canada for both males and females due to a combination of more people who had never smoked and a higher 



5 

 

proportion who had quit smoking. (26) The smoking rate clearly differs across the country by age, gender and 

ethnic group making it a relevant risk factor to consider in assessing interventions to reduce the burden of 

T2DM.(11, 23)  

 

In addition to lifestyle related increase in risk factors, the main metabolic measures of T2DM and metabolic 

syndrome such as elevated blood glucose, blood pressure and cholesterol increase the risk of vascular events over 

time and have become the primary focus of interventions aimed at reducing the complication of T2DM.  Of these 

metabolic measures, the level of blood glucose control is often measured as glycated hemoglobin (HbA1c) and is a 

primary focus when assessing the level of control of T2DM.(6)  There is evidence of statistically significant 

reductions in the rate of micro vascular events and major cardiovascular (CV) events with an improvement in blood 

glucose control and the associated reduction of HbA1c over a number of years.(27–29) In addition to long term 

control of blood glucose many with T2DM require additional treatment to improve blood pressure and blood lipids 

due to the greater risk of cardiovascular events in individuals with this metabolic condition, or syndrome, than 

those with elevated blood glucose alone.(21,25) A retrospective review of the results from a Canadian health 

survey predicted that the risk of fatal cardiovascular events would be more than fourfold higher in those with 

metabolic syndrome (4.1%) than those with T2DM alone (0.8%) over ten years. In addition, a recent survey found 

that only 13% of Canadians with T2DM had all three metabolic targets at or below target levels and the prevalence 

of metabolic syndrome was higher in the non-Caucasian population.(6)  Guidelines for T2DM management in 

Canada therefore appropriately include target levels for the control of blood glucose, blood pressure and blood 

lipids which vary depending on the individuals CV risk profile.(6)  

   

1.2 Health Technology Assessment (HTA)  

The pressure on health systems from the growing burden of chronic disease has led to increased use of economic 

evaluation to guide HTA and reimbursement recommendations of new technologies which include prescription 

medicine, diagnostic tests and devices for surgical, medical or dental procedures. The use of decision models to 

incorporate available clinical and economic data to provide a structured cost effectiveness analysis are central to 

the development of HTA reports in many countries.(4,8,30,31) In Canada, HTA is often provided to the federal, 

provincial and territorial drug plans by the Canadian Agency of Drugs and Therapeutics (CADTH) which developed 

guidelines in 2006 for economic evaluation which are currently in the process of being updated in 2017. These 

recent Canadian guidelines are intended to improve the consistency of approaches to complete economic 

evaluation with recommendations that include defining the decision problem, utilization of a reference case for 

better comparison of results, appropriateness of data sources and transparency of methods. This report also 

incorporates recommendations to reflect methodological advancements such as model validation and the 

incorporation of probabilistic analysis to enable analysis of the joint uncertainty of model parameter estimates on 
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model output. . These HTA reports generated by CADTH are used by provincial and federal Ministries of Health to 

guide their reimbursement decisions for their respective jurisdictions.  

 

1.2.1 Decision modelling   

The conducting of an economic evaluation can be trial-based or model-based and depends on the evidence 

available for the required analysis, the scope of the decision and perspective of the decision maker. A large scale 

clinical trial may be adequate to compare the cost and consequences in the population of interest however, in 

situations where evidence is captured from multiple sources there may be a need for a decision model to generate 

measurements of the incremental cost effectiveness of an intervention, policy or program.(32) These models are a 

simplification of a disease process and require a number of assumptions to reflect the risk factors, rate of events 

and progression of disease in a defined population over time.(5,32)  Decision models allow researchers to explicitly 

incorporate available evidence from disparate sources to incorporate the clinical and economic benefit of a single 

or multiple health interventions to inform the decision.(5,32) Decision models are therefore a credible tool with 

methods that can be critiqued and adjusted based on advancing knowledge, emerging evidence and model 

validation. There are often concerns about the credibility of the output of decision model which highlights the 

need for researchers to provide transparency of their model methods, which may be distinctive in structure and 

assumptions, to assist decision makers in the selection of an appropriate model for assessment of cost 

effectiveness in complex, chronic diseases such as T2DM. (33) 
 
  

 
 

 

The primary output measure in a CEA is the incremental cost effectiveness ratio (ICER) which can be compared to 

the cost effectiveness of other interventions in T2DM or, depending on how effectiveness was measured, other 

disease areas. This ICER compiles the incremental cost of the intervention, disease and event management, and 

then divides it by the incremental health gain which is most often measured using life years or quality adjusted life 

years (QALY).(34) The QALY is a measure derived from the assessment of patient preferences or health utility 

which can be multiplied by the life years gained to create a generic measure of the effectiveness of an 

intervention. The QALY is not a disease specific measure and therefore allows the CEA output to be compared 

within and across different disease states or health conditions. The ICER value generated by the model is then 

compared to a range of standard cost thresholds set by HTA bodies and health care decision makers to determine 

if an intervention can be deemed to be cost effective in the population of interest.(34)  In addition to an ICER, 

models are often designed by researchers to generate scatter plots on a cost effectiveness plane, cost 

effectiveness acceptability curves (CEAC) and measures of net monetary benefit (NMB) to provide more 

information for the decision maker to better interpret the uncertainty of the CEA output from the model.(4, 32)  
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1.2.1.1 Model uncertainty 

The level of uncertainty previously mentioned is an important consideration for those who use decision models to 

guide their decisions and is a reflection of the gaps in information for the estimates used to generate the CEA.(32) 

The methods and structure used to build the diabetes model can result in differing forms of uncertainty which may 

vary depending on the design, assumptions and quality of evidence.(32) For instance, a model designed to use 

individual microsimulation may have stochastic, or first order, uncertainty due to the variability between individual 

outcomes even when using the same probability of events and response to interventions.(35) Parameter, or 

second order, uncertainty is a reflection of the need to estimate parameters from the available evidence in the 

model such as the probability of an event or the effectiveness of an intervention. Finally there is inherent 

structural uncertainty due to assumptions in the model design to simplify the disease process which may not fully 

reflect the complex evolution of risk factors over time, progression of disease and its comorbidities or the side 

effects of treatment.(32,35) Methods such as PSA and/or deterministic sensitivity analysis (DSA) have been 

incorporated into decision models by researchers to enhance the ability to gauge the individual or joint uncertainty 

of estimated model parameters on the output of a CEA.(35)  

 

Deterministic Sensitivity analysis (DSA)  

A common approach researchers use to quantify the impact of parameter uncertainty is via DSA. This can be done 

by adjusting a single parameter at a time or by multiple parameters at once and observing the impact on the 

model CEA output. Instead of a random or subjective selection of the range for adjusting the model parameter it is 

recommended that the adjustment of the input parameter be based on evidence or a statistical measure to reflect 

an appropriate range of values that could be explained or justified for this model parameter.(34,35) For instance, if 

the mean and standard deviation of the treatment effect of an intervention is known these values can be used to 

calculate the upper and lower range of the 95% CI for input and model simulation. The resulting changes in model 

output in response to range of input variables provide decision makers with additional information to assess the 

level of uncertainty when using estimated model input variables or parameters.(35)  The results of one-way DSA 

using threshold values for input parameters is often presented graphically via a tornado plot to highlight which 

model input parameters have the greatest potential impact on the CEA output. This approach can also be used to 

assess structural uncertainty by capturing the impact of important structural changes on model outcomes such as 

whether to incorporate a specific risk factor into a T2DM model.(35)    

 

Probabilistic Sensitivity Analysis (PSA) 

Another technique which is useful in quantifying the joint uncertainty of decisions based on the model parameter 

and structure is PSA.(35) Instead of assessing the range of the impact on a point estimate as done in DSA, this 

approach enables the researcher to apply a probabilistic distribution to the key input parameters (ie: biologic 
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measures, treatment effect, cost, QALY) to quantify their joint uncertainty on the model CEA output. The selection 

of the probabilistic distribution around model input parameters (ie: normal, beta, gamma, logistic) is guided by the 

type of data (ie: continuous or binomial) and the type of distribution (ie: normal or skewed).(32,34) Therefore, 

probabilistic parameterization allows the assessment of the overall uncertainty even when simulating multiple, 

non-linear parameters and the range of potential outcomes over time which is very valuable when assessing a CEA 

for long term outcomes in a complex chronic disease such as T2DM.  The ability of a model to incorporate PSA 

allows researchers to compile and communicate uncertainty of model output in a way that improves 

comprehension with a visual overview of the results provided via a scatter plot of all outputs on a cost 

effectiveness plane or through the creation of a CEAC.(35)  Based on this, HTA bodies now recommend PSA as the 

base case to reference when reporting model output and the associated uncertainty to complement the point 

estimate of an ICER.(4,)   

 

1.2.1.2 Model development: sources of data 

The majority of the diabetes models are based, at least in part, on the landmark, long term, randomized clinical 

trial (RCT) known as the United Kingdom Prospective Diabetes Study (UKPDS).(36–43) Some models have been 

updated by incorporating results from other large scale RCTs including trials designed to assess interventions in 

non-diabetic populations who had elevated cholesterol and/or hypertension.(36,39,43) Other models have 

incorporated epidemiological datasets such as the United States Centre for Disease Control (CDC) (37), 

Framingham (36), Wisconsin Epidemiologic Data (38,42),  Kaiser Permanente diabetes registry (44) and Australian 

epidemiologic data (45).  

 

These various sources of data used to build the model parameters creates a potential for differences in the 

predicted vascular event rates such as MI, stroke and ESRD across different models used for CEA in a population 

treated in a clinical practice to present day standards. For example, the UKPDS assessed diabetes outcomes in a 

RCT environment in the United Kingdom between 1977 to 1997 and is unlikely to reflect the current metabolic 

targets or standard of care in Canada.(27) The use of Framingham data to measure cardiovascular risk, while 

extremely valuable, was based on a population of primarily non-diabetic patients.(46)  The Wisconsin 

Epidemiologic Study of Diabetes Retinopathy (WESDR)  used observational data from the early 1980’s and may not 

reflect the rate of retinopathy or blindness in today’s T2DM population.(47,48)  The models which have been 

designed based on large scale RCT’s often which have restrictive inclusion criteria raises the question of whether 

the rate of T2DM related events in these models are reflective of a heterogeneous population treated in a real 

world clinical practice.(44) A number of T2DM models have been tested using observational data to compare the 

predicted versus observed event rates in a broader population. Ideally, to consider a model output as valid for the 
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purpose of the CEA the model output should be compared with data reflective of the population in which the 

intervention is intended to be utilized.(34, 47–49)  

 

1.2.1.3 Model validation 

The variety of methods that have been used to create the models used in T2DM highlight the importance of 

assessing the ability of each model to generate relevant and credible output through ongoing validation exercises. 

There are different forms of validation that are recommended be utilized to test a model prior to its use by 

decision makers for economic evaluation.  For instance, comparison of model output against the data used to 

create the model may be done to determine if the model functions as expected is considered an internal 

validation. An assessment on whether the model has incorporated the relevant risk factors based on expert 

opinion on the progression of T2DM is known as face validation. An assessment of whether the model generates 

similar output to other diabetes models when inputting similar baseline variables is a form of cross validation. 

Finally, and considered most valuable for model validation, is how well the model accurately estimates or predicts 

T2DM in the real world such as the rate of diabetes complications observed in a study or a population of interest 

and is an external or predictive validation.(33,47,50) The limitations in the ability of a model to fully capture the 

risk factors, comorbid condition and progression of a complex, chronic disease like T2DM in the population 

highlights the value of ongoing validation of a decision model to increase the overall confidence in the CEA 

output.(33, 35)  

 

There have been significant efforts to create more standardized methods to guide modelling practices. For 

instance, the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) and Society for 

Medical Decision Making (SMDM) have recently published reports which identify a set of best practices which will 

be utilized to guide validation efforts.(5) These validation exercises can assess the model as a whole or focus on 

key components such as disease transition or event rates using data from similar, but different, populations.(33)  

Also, since 2000, computer modellers have participated in regular meetings, known as the Mount Hood Challenges 

to allow them to share ideas and increase the understanding of their models for use in diabetes. These meetings 

provide a venue for researchers to perform exercises to compare model output against clinical trials (external 

validation) or other T2DM models (cross validation).(47,50)  The results from these Mount Hood Challenges have 

been useful for researchers to identify methodological issues when comparing model output and for predicting the 

absolute benefit of a range of T2DM interventions. It is recommended that validations be performed in a similar 

population in which the model will be utilized to identify how well the predicted and observed rate of events 

correlate to further increase the credibility of output. These validation efforts are not typically intended to 

compare the components of a model which are expected to vary widely by jurisdiction, such as health resource 

utilization and associated health care costs.(53)  
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The development of a credible decision model relies on the availability of data to guide the design, assess model 

functionality and validate disease event and mortality rates.(33)  The availability of summary output of vascular 

events in a cohort of individuals from BC who were diagnosed with T2DM between 1993 and 2006 created an 

opportunity to perform an external validation exercise that would compare the observed rate of diabetes 

complications in a local population against the predicted output from an existing T2DM model.  

 

1.3 Knowledge gaps: economic evaluation in diabetes 

1.3.1 Model selection for economic evaluation 

There are many models that are available and in use for economic evaluation of T2DM in order to simulate the 

comparative numbers of diabetes related complications, with an intervention versus a standard care, to produce a 

CEA output. These models have been developed by researchers using differing methods and assumptions that 

should be considered in the selection of the most appropriate model depending on the scope and purpose of the 

model simulation. Some of these differences include whether the model is a dynamic population based or closed 

cohort structure, whether it incorporates individual or group simulation, and whether time varying risk factors 

have been incorporated into the simulation calculations over time. Furthermore, the guidelines for economic 

evaluation require that decision models utilize PSA in order to generate output that enables the assessment of 

uncertainty in model output and not all researchers may have incorporated this into their methods.  The decision 

problem for the economic evaluation, scope of the CEA and demonstration of model validation in the population 

of interest should all be considered in the selection of an appropriate model. 

 
1.3.2 Relevance for real world populations 

While most models have published internal and external validation, in the majority of cases these were based on 

comparing the simulated diabetes related event rates with the observed number of events from large RCT’s. For 

instance, the results of the RCT may not be reflective of a more diverse, real world cohort of people with T2DM 

who have differing ethnicity, differing levels of risk factors or mix of pre-existing conditions. Also, the observational 

data used to create or to validate diabetes models have often come from data that was captured in an era that 

may no longer reflect the standard of care, lifestyle or behaviors of today’s population of people with T2DM. 

External validation of a T2DM model using a population treated to a real world standard of care will provide 

valuable insights on the credibility of a diabetes model for its use in the economic evaluation of interventions in a 

more diverse population. 
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1.3.3 Generalizability for use in BC 

The data used to populate the T2DM models have almost exclusively been captured in patients and populations 

from the United Kingdom (UK) and United States. Of the numerous models identified as multi-use models for 

T2DM, none of these were created or validated based on a large scale RCT or observational datasets in a 

contemporary Canadian population. Considering there are notable differences in the proportion of baseline risk 

factors such as demographic, ethnic, lifestyle, BMI, smoking rates, and treatment options in different regions it is 

unclear whether existing models accurately predict the rate of vascular events in a BC population. Model validation 

in various populations demonstrate that the impact of risk factors and T2DM interventions on the relative rates of 

vascular complication are consistent across similar populations, however the absolute magnitude of the estimated 

outcomes have been shown to vary across different populations. Therefore, while external validations have been 

completed for many of these T2DM models, the overall predicted rate of events results can only be assumed to be 

applicable to a similar population as the one used for the assessment. Decision makers are likely to have a greater 

level of confidence in the credibility of model output and the generalizability of CEA results for models which have 

been validated for use in a BC T2DM population. 

 

1.4  Thesis objectives 

There is a growing demand for model-based economic evaluation, as a compliment to clinical evidence, to simulate 

the predicted impact of an intervention on the progression of T2DM and vascular outcomes experienced by people 

with T2DM. A key component to the relevance of diabetes model output is whether the simulated outcomes are 

reflective of outcomes in a real world clinical practice.  The methodological differences between T2DM models 

raises the question of which existing diabetes models will accurately reflect the diabetes trajectory and event rates 

experienced by people with T2DM in BC. As recommended by the ISPOR-SMDM it is important that model 

methods and validation results are transparently shared, appropriate for the decision problem being addressed 

prior to their selection and use for an economic evaluation.   

 

This overarching objective of this thesis is to assess if an existing T2DM model could provide credible and trusted 

output from a cost-effectiveness analysis (CEA) that would be considered generalizable to a diverse BC population. 

The initial aim is to overview the methodology of existing T2DM models to apply a set of selection criteria that 

would advise the choice of an appropriate model for further validation exercises. Once selected, the next aim of 

the thesis is to demonstrate the functionality of the T2DM model and the responsiveness of model output to 

differing demographic variables and risk factors via an internal validation exercise. This is designed to assess 

whether the changes in predicted vascular event rates corresponded with the actual change in response to 

changing each baseline input parameter one at a time. Finally, an external validation exercise is performed to 

compare the cumulative incidence of seven diabetes related vascular complications predicted by the model with 
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the observed rate of complications from a real world BC population dataset of people with T2DM. To allow a full 

interpretation of the generalizability of the T2DM model in BC’s diverse population the cohorts are separated into 

a general and a SA population, then further split into sub-cohorts based on gender and age.   

 

Completion of these objectives will provide an in depth overview of functionality and absolute predicted rate of 

vascular events for multiple cohorts to assess the validity of a T2DM model in the overall population and in sub-

groups based on gender, age and ethnicity. Economic evaluation using a T2DM model that is shown to provide 

credible output in a high burden, complex chronic disease will be valuable for guiding efficient resource allocation 

by decision makers in support of efforts to maintain a sustainable Canadian health care system. 
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 Assessment of diabetes decision models and methods Chapter 2:

2.1 Introduction 

 

The initial aim of this thesis was to implement a structured approach for the assessment and selection of a 

diabetes model based on a set of objective criteria which were deemed important for providing a CEA from the 

perspective of a BC health system. There are many models in use for economic evaluation of T2DM that range 

from broad epidemiological based dynamic models which incorporate incident and prevalent changes in the T2DM 

population, to more narrow closed cohort models that are designed to compare the value of an intervention to 

reduce the occurrence of a single complication of T2DM such as retinopathy. Some of these models have been 

created for a single analysis of a new intervention in specific population while others have been widely used for 

many evaluations in multiple populations.(54,55)  Therefore numerous factors must be considered when selecting 

a model for use in T2DM due to the complexity of the disease including the associated comorbidities and long term 

disease progression, the numerous risk factors impacting both incidence of disease and T2DM related events, as 

well as the range of potential vascular complications related to T2DM. In light of the many factors for developing a 

CEA in T2DM it is important that the methods for model screening, assessment and selection be based on a set of 

objective criteria to ensure the results remain relevant and credible for the purpose of the economic evaluation.  

 

Due to the large number of economic models available for evaluation of T2DM a maximum of ten were selected 

from the literature to allow the inclusion of differing model structures, methods and regional representation to 

provide a cross section of T2DM models for the more in-depth model assessment.  These methods were tabulated 

for comparison and five objective criteria were applied to identify which of the T2DM models were considered 

eligible for further validation exercises.  

 
2.1.1 Critical appraisal  

The structured approach used to identify appropriate selection criteria and applied to the model methods was 

based on consensus papers and reference texts for economic evaluation and decision modeling. The references 

selected to guide this critical appraisal were the “Decision Modelling for Health Economic Evaluation” by Briggs, 

Claxton and Sculpher (32) and the ISPOR-SMDM Task Force Reports.(5,33,35,56)  The definition in the Briggs et al 

describe decision modelling “as a systematic approach to decision making under uncertainty” which includes the 

variability of the patient population, estimates of disease related inputs and transition probabilities.(32) This 

definition and related points highlighted the inherent value of decision models to structure the large volume of 

available data to capture the complexity of the diseases for which they models are utilized to simulate. This insight 

demonstrated the need for identifying the standards used to guide the critical appraisal and selection of a model 

to minimize and measure the uncertainty of the results of model based CEA.  
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An overarching guideline outlined in these references is for researchers and decision makers to first define the 

scope of the evaluation that include the perspective of the decision maker (ie: drug plan, health system, societal) 

and health care setting (ie: community or institution). In the context of T2DM, these included the need to define 

the purpose of the intervention as it will depend on the intended use for CEA of a primary, secondary or tertiary 

intervention.(32)  

 

Next, decision makers should define the boundaries of the decision model to simplify the simulation of the disease 

while balancing the importance of including the relevant baseline input variables and risk factors to adequately 

capture disease progression.(5)  When decision makers are considering the use of a decision model they must 

define the time span for the economic evaluation, the target population and the desired model outputs prior to 

determining whether appropriate evidence is available to input into the model.(5)   Once these objectives have 

been decided, there are differing model structures to consider in order to balance the complexity of the disease 

input variables with the resources and data available for completing the analysis.  For instance, straight Markov 

models are structured to simulate a cohort of people with the same characteristics, providing decision makers with 

a more simplified simulation of a disease, which does not account for the complexity of tracking the disease history 

or the time in a particular health state for each individual. In contrast, individual microsimulation provides greater 

flexibility to incorporate each individual’s attributes that may influence model outputs such as time in a particular 

health state, unique patient baseline characteristics and influence of time varying risk factors.(56,57)  To allow this 

added level of complexity the models which use microsimulation require more data, time and computer 

processing power to simulate the progression of disease.(58)   

 

Once the scope, population and boundaries of the analysis are identified it is important to ensure that the model 

methods allow users the ability to generate the output to assess the overall uncertainty of the CEA output.(32,35)  

There is a growing consensus that researchers should incorporate a probabilistic distribution around the estimated 

parameter inputs such as  treatment effect, health costs and utility measures as a method to apply a PSA on model 

outputs.(34) This enables decision makers to better assess the level of parameter uncertainty that is inherent in 

model output, due to the need to estimate the model input parameters, and to better interpret the level of 

probability that an intervention will be cost effective.(32). Ideally these data outputs can be plotted by quadrant 

(scatter plot) or against willingness to pay threshold, using a cost effectiveness scatter plot or a CEAC, to 

demonstrate the joint uncertainty of the probability that an intervention is “cost effective”.(32) The inclusion of 

PSA has been endorsed by HTA bodies involved in developing standardized guidelines for economic 

evaluation.(4,30) 

 

These differences in the structure of decision models and their methods highlight the need for researchers to 

transparently share an adequate level of detail to allow decision makers to select an appropriate model for the 
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purpose of their economic evaluation.(33,35) These references and recommendations in the critical appraisal were 

used to set the criteria used to identify existing T2DM models that were considered most suitable for economic 

evaluation in a diverse, real world BC population with T2DM.  

 

2.2 Methods 

2.2.1 Identifying existing T2DM models  

In order to generate a list of models available for the economic evaluation of interventions in T2DM an electronic 

literature search was done in MEDLINE using ((computer simulation OR models, economic) AND (cost-benefit 

analysis OR Type 2 diabetes/economic) AND (Type 2 Diabetes)) then in EMBASE using (“diabetes AND (computer 

simulation OR economic model) AND (cost-effectiveness OR economic evaluation))”. To complement and enhance 

the search results the review articles and the “similar articles” function in MEDLINE were used to identify 

additional references that were not captured via the initial literature search. This search was not anticipated to be 

exhaustive, due to the variation of terminology used in economic evaluation and decision modelling, however it 

was intended to produce a snapshot of the various economic models most commonly utilized for T2DM. The 

search results were grouped by model name, lead authors or research institution to identify the available 

publications by T2DM model. The University of British Columbia (UBC) library website was used as a resource to 

access peer reviewed publications that enabled the deeper assessment of the methods used in identified models. 

 

2.2.2 Assessing methods of T2DM models 

Due to the large number of economic models available for evaluation of T2DM a maximum of ten (10) were 

selected for further assessment of their structure and methods. The selection of these T2DM models was intended 

to include various model structures and representation from different regions to provide a cross section of the 

methods used in economic evaluation.  The models which met the initial screening criteria were then further 

filtered to identify those which researchers or model developers have demonstrated transparency through the 

publication of their model methods or their participation in model comparison or validation efforts such as the 

Mount Hood Challenge.(47, 50)  Any model that was only designed for a single CEA, specific diabetes related 

complication or for which published methods could not be located was excluded from further consideration.  

 

This step to perform an in-depth assessment of the ten selected models was done by reviewing published 

literature, web sites and meeting reports to identify the methods used in each of these models that were then 

tabulated to enable this comparison. The methods identified to advise the selection of T2DM models for 

consideration for further validation exercises were as follows:  

a) Structure – individual or group simulation, dynamic versus closed cohort, type of baseline input variables.    

b) Validation - sources of evidence used for internal and external validation, methods for model calibration.  
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c) Risk Factors – incorporated to influence the rate of diabetes progression or incidence of events in T2DM such as 

time varying risk factors and pre-existing events. 

e) Uncertainty – the type of sensitivity analysis to enable measures of uncertainty in model output. 

f) Output – breadth of diabetes related complications, health related cost and QALY, discount and adherence rates 

and economic output measure provided in a CEA. 

 

2.2.3 Selection of a T2DM model for validation 

As per the critical appraisal, the selection of the T2DM was based on the perspective of the Ministry of Health for 

the comparative evaluation of an intervention to reduce the long term risk of complications in those already 

diagnosed with T2DM. The model baseline input parameters needed to include relevant demographic variables for 

simulation of T2DM such as age, gender and ethnicity. The model also needed to allow for the inclusion of known 

risk factors (BMI, smoking,) and the ability to reflect the changes over time of metabolic measures of disease 

control such as  blood glucose, blood pressure and cholesterol in people with T2DM.(27) The model output ideally 

included the early onset of vascular conditions such as albuminuria and neuropathy or at a minimum had 

incorporated the common diabetes related vascular events including IHD, MI, stroke, CHF, amputation, blindness 

and ESRD.  

 

There were some common methods identified in this process that were considered critical for performing a 

credible and relevant economic evaluation for use in BC. Considering the wide range of risk factors in people with 

T2DM the models which were designed to include individual microsimulation in the methods were preferred over 

a more simplistic cohort structure. Also, for the purpose of performing a comparative evaluation of an intervention 

versus a standard of care, a closed cohort model was selected as the appropriate structure as these types of 

analysis do not need to incorporate the epidemiological changes in the T2DM population. Finally, the T2DM model 

required the ability to incorporate probabilistic distribution and provide a PSA in the model output in the form of 

scatter plots and CEAC to ensure decision makers were able to assess the uncertainty in the CEA. Therefore the 

selection of an existing T2DM model for additional validation exercises was based on the following five criteria: 

  

1) The ability to perform micro-simulation to account for a wide range of risk factors in individuals. 

2) A closed cohort structure, which models a set number of subjects over time, with baseline input by age, gender 

and the ability to include ethnic populations known to have differing diabetes event rates. 

3) The inclusion of pre-existing events and time varying risk factors known to influence vascular events. 

4) The ability to provide economic output based on probabilistic sensitivity analysis including the ability to provide 

ICER, scatter plots and CEAC as model output for assessing joint uncertainty. 

5) Models identified that were available as open access for academic purposes. 
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2.3 Results  

2.3.1 Identifying existing T2DM models 

An electronic literature search using MEDLINE returned 482 results of articles containing economic data on the 

cost effectiveness of diabetes interventions. From these search results the T2DM models were screened further by 

selecting those used for multiple economic evaluations or had participated in validation exercises and had 

published model methods. The final selection of ten models was completed to ensure a wide geographical 

distribution of T2DM models from multiple regions which resulted in a number of models being excluded from the 

assessment exercise which may have been good candidates (Table 1). The IMS CORE, CDC Diabetes, Cardiff and IHE 

ECHO models were most widely referenced in this  literature search for economic evaluation in 

T2DM.(36,37,39,42) The reports from the Mount Hood challenges identified additional models including the MMD, 

UKPDS-OM1, ODEM, Archimedes and EBMI models.(37,40,43,47,48,50,59)  The Australia model was selected for 

inclusion of a dynamic population model, which incorporated epidemiologic changes over time, simply  to provide 

a comparison of the methods utilized in the more commonly available closed cohort models.(45)  

 

Table 1: Overview of selected models: country of origin, model source and references for methods 

Model Name Acronym Country Source Model References 

IMS CORE (Center for Outcomes 
Research) Diabetes Model 

CDM Switzerland 
 

Original – based on 
UKPDS RCT 

(22,36,50) 

US Centers for Disease Control and 
Prevention (CDC), Research Triangle 
Institute Diabetes Model 

CDC-RTI  USA Original – based on 
Framingham and 
UKPDS RCT 

(37,49) 

University of Michigan Model for 
Diabetes 

MMD USA Original based on 
UKPDS RCT and WESDR 

(38,48) 

Cardiff Diabetes Model Cardiff  UK Based on Eastman with 
updated UKPDS RCT 

(39,47,50,54) 

United Kingdom Prospective 
Diabetes Study – Outcomes Model 1 

UKPDS-OM1 UK Original based on 
UKPDS RCT 

(40,52,60,61) 

Ontario Diabetes Economic Model ODEM Canada Based on UKPDS-OM1 (41,59,62) 

Economic and Health Outcomes 
Model for type 2 diabetes mellitus 

ECHO-T2DM Sweden Based on the NIH data, 
CDM/ DiDACT models 

(42,63) 

Archimedes Diabetes Model Archimedes USA Original – Kaiser 
diabetes registry 

(43,44,53,64,65) 

The Evidence Based  Medicine 
Integrator Simulator 

EBMI USA Original – Kaiser 
diabetes registry 

(50) 

Australia Diabetes Model Australia DM Australia Original – Australian 
diabetes databases 

(31,45,51,66)  

UKPDS = United Kingdom Prospective Diabetes Study, RCT = randomized clinical trial, WESDR = Wisconsin Epidemiologic Study of Diabetes 
Retinopathy, NIH = National Institutes of Health, DiDACT = Diabetes Control and Complications Trial 

 
2.3.2 Assessing methods of T2DM models 

The methods of the ten models selected were listed and populated from publicly available data including meeting 

reports, model manuals and peer reviewed literature to source their methods (Table 2). These results were 
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compiled into five categories to allow further comparison of the model methods in terms of their structure, 

validation efforts, risk factors, measures of uncertainty and model outputs for the purpose of economic evaluation. 

Each of these five categories, further expanded upon in the following sections, are tabulated to allow a more in-

depth assessment of the similarities and differences of model methods to guide the final model selection for 

further validation exercises. 

 

Table 2: Methods for assessment of ten T2DM models used in economic evaluation  
Methods CDM CDC- 

RTI  
MMD 
 

Cardiff UKPDS 
OM1 

ODEM 
 

ECHO-
T2DM 
 

Archi-
medes 

EBMI 
(48)(47)   

Australia 

Structure: 1) Markov 2) Monte Carlo 3) hybrid 4) DES,  Cohort: dynamic/open (O) or closed (C),  
Input variables: 1) age 2) gender 3) ethnicity 

Structure 3 1 3 4 2 2 3 4 4 1 

Cohort C, O C, O C C  C C C C, O C,O O 

Demogra
phic input  

1-3 1-3 1-3 1-3 1-3 1-3 1,2 1-3 1-3 1-3 

Validation 1) RCT 2) observational N) none, Calibration (Y/N)  

Internal  1 1 1,2 1 1 1 1 1 2 2(?) 

Cross Y Y Y Y Y Y Y Y Y N 

External  1,2 1, 2 1,2 1,2 N N 1,2 1,2 N 2(?) 

Risk Factors: TVRF (Y/N), Pre-existing events (Y/N) 
TVRF Y N Y Y Y Y N Y Y Y 
Pre-
existing  

Y Y Y Y Y Y Y Y Y N 

Uncertainty: (Y/N) 

DSA Y Y Y Y Y Y Y Y ? Y 

PSA Y Y ? Y Y Y Y N ? N 

Output: Outcomes 1) micro 2) macro 3) adverse event  4) weight change 5) prevalence, Cost Y/N, QALY 1) HUI3 
2) EQ-5D 3) SF36 4) other, Discount 1) cost 2) QALY, Output 1) ICER 2) scatter plot 3) CEAC 4) NMB  

Outcomes  1,2 1,2,4 1,2,4 1-4 1,2 1,2 1-3 1-4 1,2 1,2,5 

Cost Y Y  Y  Y Y Y Y  Y Y Y 

QALY 2 3,4  4 2,3 2 2 2 2 Y ? 4  

Discount 1,2 1,2 1,2 1,2 N 1,2 1,2 1,2 ? 1, 2 
Adherence N N Y N N N N Y Y N 

Economic 
output  

1- 4 1 1,?,? 1,2,3 1,2,3 1- 4 1-4 1 1,?,? N 

DES = discrete event simulation; RCT = randomized clinical trial; TVRF = time varying risk factors; DSA = deterministic sensitivity analysis; PSA = 
probabilistic sensitivity analysis; QALY = quality adjusted life years; HUI = Health Utilities Index; EQ-5D = EuroQol Five Dimension; SF36 = Short 
Form 36; ICER = incremental cost effectiveness ratio; CEAC = cost effectiveness acceptability curve; NMB = net monetary benefit  
 

2.3.2.1 Structure  

The majority of these models have incorporated individual micro simulation into their methods however the 

approach used does vary. For instance the UKPDS-OM1 and ODEM models both describe their models as a Monte 

Carlo simulation using risk equations to determine whether an event occurs over a cycle. The CDM, MMD and 

more recently the ECHO-T2DM are based on a hybrid approach of Markov states that incorporate micro simulation 

to enhance the ability to reflect heterogeneity of the individuals with T2DM. In comparison, the Cardiff, EBMI and 
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Archimedes use a form of DES which allows an event to occur at any moment, as opposed to the number of event 

over a given time. While these approaches differ they all allowed the incorporation of individual differences over 

time with T2DM risk factors and greater flexibility in simulating individual progression of a complex chronic 

disease.  The remaining two models, the CDC-RTI and Australia DM were originally structured as straight Markov 

models have been utilized to measure interventions earlier in the disease process to assess primary prevention 

diabetes programs.(37,42,66)  While they can incorporate time since diagnosis, they treat the cohorts in each state 

as a homogenous group which does not reflect inter-patient variability or the complexity of diabetes in a diverse 

population.(57) 

 

Cohort: dynamic versus closed 

Further to the basic model structure is whether a model is designed as a dynamic “open” model to incorporate the 

changing incidence and prevalence of T2DM population over time or as a closed model which simulates T2DM as a 

set cohort over time. With the exception of the Australia DM, the majority of the models reviewed utilized a 

“closed-patient cohort” to assess the incremental cost and consequences for a set population.(56) Three of the 

models the CDC-RTI, Archimedes and the EBMI also allow an open model approach by incorporating epidemiologic 

data into the simulation.  While dynamic open models may be valuable for assessing the overall burden of disease, 

or the impact of primary prevention interventions in the population, the changing epidemiology of T2DM are not 

generally incorporated into an economic evaluation of a tertiary intervention versus a standard comparator.(37, 

49,61) 

 

Demographic inputs 

The key non-modifiable risk factors that impact disease transitions in diabetes, include age, gender and 

ethnicity.(32,62) All ten models reviewed included the stratification by age and gender as a baseline input 

parameter for the simulation of T2DM. In comparison, ethnicity was less clearly defined as a baseline input 

parameter and was only mentioned in the literature for seven of the models reviewed. For instance, the CDM, 

CDC-RTI and ECHO-T2DM models did not report ethnicity as a baseline input variable in their model design or 

validation and the Cardiff and Australia DM models mentioned race as a baseline variable however neither model 

specified the ethnic options for selection. Furthermore, in the MMD, UKPDS-OM1 and ODEM the ethnic inputs 

limited the selection to either Caucasian or black. The DES models such as Archimedes and EBMI suggested their 

models have the ability to incorporate race to create an ethnically diverse, simulated population. Archimedes is 

the most advanced T2DM model for incorporating ethnicity based on the ability to select whether an individual in 

Hispanic American, African American, Native American, Asian American or white in the baseline input variables.  

 

Overall, the models with methods that incorporated individual micro-simulation preferred due to their ability to 

better capture complexity and heterogeneity of people with T2DM  including pre-existing and time varying risk 
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factors. In addition, considering the objectives of this thesis was to select models for the economic evaluation of 

tertiary interventions, the T2DM models which used closed cohort simulation in people diagnosed with T2DM 

were selected as these provide the desired CEA output. Ideally, the T2DM model used in a diverse population like 

BC should also allow the inclusion of ethnic sub groups known to have a unique onset and progression of diabetes 

in a population to improve the generalizability of the model output. 

 

2.3.2.2 Validation 

Internal validation  

All the models in this review, with the exception of the Australian DM, had published the results of internal 

validation efforts to demonstrate the ability of the model to replicate the outcomes from the datasets used in their 

development. The majority of these diabetes models were based, at least in part, on RCT based vascular event 

rates from the landmark UKPDS study including the CDM, CDC-RTI, MMD, Cardiff, UKPDS-OM1, ODEM, ECHO-

T2DM and Archimedes models. Only the EBMI and Australia DM had no published data on internal validation 

against large scale RCT, but instead relied solely on observational datasets to create and verify model function such 

as the Kaiser Permanente diabetes registry and Australia epidemiologic datasets. A number of the T2DM models 

incorporated additional data from other large scale RCT’s including people with Type 1 and Type 2 diabetes 

(Archimedes, ECHO-T2DM) or from observational datasets such as the CDC database (CDC-RTI), Framingham 

(CDM) and WESDR (MMD). Further validation is required before it is known whether the comparison to 

observational data will improve the accuracy of T2DM models to predict diabetes related events in the real world.  

 

Cross validation  

All T2DM models reviewed, again with the exception of the Australia DM, have been compared by researchers 

using a reference dataset via the numerous Mount Hood challenges.(47,50)  In these organized events where a 

structured analysis of model performance has been completed, the researchers have input similar baseline 

characteristics into each model and the outcomes were simulated to determine how well the models reflected trial 

outcomes (external validity) and how well they correlated to each other (cross validity). While no reference model 

has been selected as a benchmark for other T2DM models in the cross validation exercises the results of these 

exercises show there are discrepancies between model outputs. This is in part due to differing definitions of 

diabetes related outcomes, uncertainty in parameter estimates and differences in the methods related to pre-

existing and time varying risk factors, which can all impact the absolute risk of predicted events over time between 

different models. 
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External validation 

It is relevant to note that the publication of external validation for these T2DM models increased markedly since 

2013.(36,38,39,42,52). There was however a lack of consensus on which correlation or statistical measures 

researchers should be used when assessing the quality or credibility of model output or to quantify the changes 

required to update the rate of vascular events or disease progression based on the results of the external 

validation.(69–71)  An assessment of the ten models selected showed that eight had evidence of external 

validation and were primarily compared against outcomes of large scale RCTs (Table 3). Seven of the models 

claimed that their external validation was performed against observational or registry data; however, not all these 

analyses have been published to allow transparency of review. Some models have been internally validated or 

calibrated to observational data, such as the ten year open label extension study of the UKPDS RCT (39,42,52) or a 

diabetes database, which may increase their credibility for real world economic evaluation.(49–51) At the time of 

the search, there was no literature referencing the use of observational datasets for the ODEM, UKPDS-OM1 and 

EBMI in an external validation exercise. There is therefore limited evidence that has assesses the vascular event 

rates in a Canadian sub populations that are known to have a higher prevalence of T2DM, or greater risk of 

complications, such as those of advancing age or ethnicity.  

 

In external validation exercises in the selected T2DM models there were a number of different methods that have 

been used to measure the goodness of fit of the predicted model output to the observed data (Table 3).(53,72)  

The approach was not consistent and varied depending on the model structure and type of output (IE: parametric, 

proportional hazards, survival curves, linear or log linear regression) to be used in comparison with the external 

data.(72)  The Coefficient of Determination (R
2
) was the method most consistently utilized to quantify the linear 

correlation of the observed versus predicted data in the external validation of these models. This R
2
 measure 

represents the proportion of the variance in the outcome which can be explained by the input parameters in the 

regression equation and is typically used as a relative measure of correlation and were not referenced with an 

absolute threshold to demonstrate model validity. To provide some guidance, one source suggests a correlation 

coefficient above 0.7, which when squared to equal R
2
 of 0.49, was set as a threshold to demonstrate positive 

linear correlation of the predicted versus observed model output.(73) Correlation Plots are often used in 

conjunction with the R
2
 to graph the observed versus predicted endpoints with a point falling on the 45 degree 

line, or an R
2
 of 1.0, was reflective of an exact match between the predicted and observed outcomes. While the R

2
 

provided an objective measure of the goodness of fit of model output these did not include or assess statistical 

significance of the model fit. Therefore, additional methods were included in the validations to assess the 

statistical significance of the output.     

 

There were a number of statistical measures used in the validation of the ten selected models however none were 

consistently used by all researchers. Another measure used in multiple model validations was the MAPE (mean 
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absolute percentage error) which provided a measure of the predictive accuracy of a model by calculating the sum 

of the differences between actual and forecasted values divided by the number of points fitted. The MAPE was 

used as a measure in the CDM, Cardiff and UKPDS-OM1 model validations as it was considered to be an easily 

interpretable measure of the percentage error. That said, the MAPE should be used with caution when 

interpreting low volume outcomes which occur infrequently, such as ESRD, as the calculation can produce widely 

variable extreme values in response to a small absolute changes in values which reduces its usefulness in this 

analysis. The associated RMSPE (root mean square percentage error), calculated by squaring the percentage 

errors, averaging and square rooting to create a measure of fit and was only used by the CDM. Only the CDM used 

the paired t-test, a statistical measure comparing two sets of output data in the same subjects, which was not a 

common measure used in external validations based on the validation exercises which were completed in these 

T2DM models. The UKPDS-OM1 used a variety of statistical measures including a C-statistic, described as a rank 

order statistic or measure of the area under the curve (AUC), to assess the goodness of fit of a logistic regression 

model. This test provides a measure between 0 (no fit) and 1 (perfect fit). The general interpretation is that a C-

statistic above 0.7 is required to demonstrate a model has value, and above 0.8 reflects a strong model. The C-

statistic provided a quantitative measure for comparison to other models but it did not provide an absolute 

measure of statistical validity of the model output. The validation of the UKPDS-OM1 also used a simple 

comparison of the predicted incidence of events from the model with the mean and CI of the observed events. 

This was an intuitive and quantifiable measure of statistical relevance of the model output for each of the diabetes 

related events predicted by the UKPDS-OM1. The UKPDS-OM1 and the Archimedes researchers also used a log 

rank test as a quantitative statistical measure of the predicted versus observed data. A key assumption for the log 

rank test, when comparing survival curves, is that there are proportional hazards over time and data can be from 

non-parametric distribution. The log rank tests the null hypothesis of no difference between the curves by utilizing 

hazard functions to calculate a test statistic (X
2
). Log rank tests were used to compare survival curves of predicted 

versus actual output, such as Kaplan-Meier curves, to test the statistical validity of the model. The ECHO-T2DM 

validation was the only model that utilized an F-test, which is a ratio of the explained (measured by R
2
) versus the 

unexplained variability (or 1 - R
2
), to quantify the usefulness of the model. A higher F-test score in the validations 

suggested greater fit of the model but were not considered a statistical measure of the models predicted events 

versus observed events.  

 

The selection and inclusion of an appropriate statistical measure of predicted versus actual model output was 

determined to be an important consideration to provide quantifiable measures of the model output to be 

considered validated for use in the population of interest. While no single measure or approach was used to 

demonstrate whether a model was considered as validated, the inclusion of a statistically based validation exercise 

in addition to measures of correlation added further confidence in the validity of model output.(53)  
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Table 3: Published T2DM model validations, source of evidence and statistical measures 

Model name Year of 
publication 

Source of 
evidence 

Measure for model validity 

CDM (36) 2014 RCT, Obs C of D (R
2
), paired T test, RMSPE, MAPE 

CDC-RTI (49) 2009 RCT, Obs C of D (R
2
) 

MMD (38) 2015 RCT, Obs C of D (R
2
),  

Cardiff (39) 2015 RCT, Registry C of D (R
2
), MAPE 

UKPDS-OM1 (52) 2013 10 year Obs C of D (R
2
), MAPE, C statistic, log rank test (X

2
), 

predicted versus the mean and CI of observed  

ODEM N/A None N/A 

ECHO-T2DM  (63) 2013 RCT, Obs C of D (R
2
), F test  

Archimedes (44) 2003 RCT C of D (R
2
), log rank test (X

2
),  

EMBI N/A None N/A 

Australia DM (66) N/A Obs  N/A 
RCT = randomized clinical trial; Obs = observational data; C of D (R2) = coefficient of determination; RMSPE = root mean squared error; 
MAPE = mean absolute percentage error; N/A = not available 

 
2.3.2.3 Uncertainty 

Deterministic sensitivity analysis were utilized and reported on by all T2DM models in this review with the 

exception of the EBMI. This is a common approach utilized by researchers and decision makers to assess the 

uncertainty of model input parameters. The ability to perform DSA was not a differentiating criterion in the 

analysis of model methods as it is a standard feature that can be applied to all T2DM models simply by adjusting 

model parameters and assessing the change in model output.  

 

Probabilistic sensitivity analysis requires the incorporation of probabilistic distribution of model parameters and 

was not commonly reported in CEA research or model validation studies. There was mention of PSA incorporated 

into the methods of the CDM, UKPDS-OM1, ODEM, ECHO-T2DM and Cardiff or reported in the CEA output. The 

user manual of the MMD described an ability to select probabilistic distributions for model parameters however 

PSA was not described in any of the published economic evaluations which utilized the MMD.  There were no 

published studies identified which had used the EBMI and therefore it could not be determined whether PSA was 

incorporated into the model methods. It was therefore unclear from the literature whether the MMD or the EBMI 

have incorporated PSA into their methods. The publications of the CDC-RTI, Archimedes, EBMI and Australia DM 

did not report the use of PSA in their methods or CEA outputs. 

 

There was limited information in the literature on the type of probabilistic distributions which were utilized for PSA 

in these T2DM models; however the ability to incorporate PSA into the output was a distinguishing feature in a 

number of the T2DM models. The inclusion of PSA in the model methods should be considered a standard 

requirement for any T2DM model used by decision makers to guide health resource allocation as it enables 

researchers to provide a measure -of the uncertainty of model output.  
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2.3.2.4 Risk factors 

Time varying risk factors (TVRF) 

The long term studies in T2DM demonstrated there was a gradual increase in biologic measures of disease control 

such as  HbA1c, systolic blood pressure (SBP) and TC levels observed over time.(27) This trend has been 

incorporated into the methods of these ten T2DM models with the exception of the CDC-RTI. The Cardiff, 

Archimedes and Australia DM models have also incorporated an increasing BMI over time in those with T2DM. In 

addition to CEA of a tertiary intervention, this change in BMI would also be relevant for an analysis of a primary 

prevention intervention due to the positive correlation between BMI and the incidence of T2DM.  It was not 

determined whether the T2DM models which incorporated BMI as a TVRF was better able to predict the risk of 

diabetes related vascular events over a longer term simulation. It would be insightful for future research to include 

an assessment to determine if TVRF’s lead to a statistical improvement in a model’s predictive accuracy versus 

observed events.    

 

Pre-existing risk factors 

The CDC-RTI and the Australia DM have not incorporated pre-existing risk factors into the disease transition 

calculations. All other models incorporated a standard range of pre-existing risk factors such as smoking and 

history of vascular events into the baseline input parameters. The UKPDS-OM1 and the ODEM specifically 

mentioned the inclusion of A-fib and PVD as baseline risk factors while the ECHO-T2DM mentioned the inclusion of 

A-fib. Other models may have included A-fib and peripheral vascular disease however these were not identified in 

the literature reviewed. 

 
2.3.2.5 Output 

Disease measures  

The comparison of model methods included an overview of which of the T2DM model outputs included the early 

signs and symptoms of disease (ie: albuminuria) or only the diabetes related vascular events (ie: ESRD).(55)  

Models that have captured the early signs of vascular disease, such as albuminuria, neuropathy or retinopathy, 

could be expected to provide a more complete picture of the absolute costs and quality of life, versus only 

capturing the vascular event; however it is unclear whether this would alter the relative comparative measures 

used in a CEA of an intervention. While the inclusion of these early signs of vascular disease may be desired for the 

purpose of completing a robust economic evaluation of T2DM this will also add complexity and require additional 

data to capture the early signs of vascular disease.(56) While these early signs of vascular disease will be relevant 

in an economic evaluation they can alternatively be captured as part of the ongoing cost and QALY measures 

associated with T2DM management (Table 4).(40) 
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Eight of the assessed T2DM models incorporated the main diabetes related micro vascular (ie: amputation, ESRD 

and blindness) and macro vascular events (ie: IHD, MI, stroke, CHF) with the exception of CDC-RTI and the Australia 

DM which have not included CHF in the vascular event output.  The CDM, ECHO-T2DM and Archimedes models 

captured the broadest range of diabetes related outcomes including the early signs of vascular disease which may 

offer an advantage to decision makers for the purpose of an economic evaluation. While the Cardiff, UKPDS-OM1, 

ODEM and EBMI models have not included measures of the early signs of vascular disease they all predict the 

seven main vascular events for the economic evaluation in T2DM.  

  

Table 4: Overview of T2DM related vascular outcomes predicted by the ten models  

Outcome CDM CDC-RTI MMD Cardiff UKPDS- 
OM1 

ODEM ECHO- 
T2DM 

Archime
des 

EBMI  Australia 
DM 

MI X X X X X X X X X X 

IHD X X X X X X X X X  

Stroke/CVD X X X X X X X X X X 

CHF X  X X X X X X X  

Amputation X X X X X X X X X X 

Blindness  X X X X X X X X X 

ESRD X X X X X X X X X X 

Albuminuria X X X    X X X X 

Proteinuria X X X    X X   

Neuropathy X X X    X   X 

Skin ulcers X      X X  X 

Retinopathy X X X    X  X  

Macular edema X  X    X X   

Cataracts X       X   

Hypoglycemia X   X   X X   
X = outcome predicted by model,                        = outcome not predicted by model,   
MI = myocardial infarction; IHD = ischemic heart disease; CVD = cerebrovascular disease; CHF = congestive heart failure; ESRD = end stage renal 
disease;  

 

Costs 

Costs associated with treatment of T2DM and related events were a core component of all T2DM with the 

exception of the initial version UKPDS-OM1 which only provided a predicted disease transition or vascular event 

rates in T2DM.(40) The UKPDS-OM1 has since been updated with revisions that incorporated costs to allow its use 

for economic evaluation.(60) While closed cohort decision models typically capture the “incremental cost” of an 

intervention presented as an ICER, scatter plot and CEAC, it was noted that the methods used to capture costs in 

these T2DM models varied depending on the structure of the model. For instance, the cohort based CDC-RTI, 

ECHO-T2DM and Australia DM models calculated costs based on the average cost of the resources used to manage 

each cohort over a cycle and included the cost of diabetes related event and the ongoing treatment of T2DM. The 

CDM, MMD, Cardiff and ODEM micro simulation models offered more flexibility in tracking and timing of resource 

utilization by per individual. Archimedes may have an advantage over other T2DM models when detailed health 

utilization and cost data is available as it was designed to simulate a highly customized path of the resources 

ot 
capt
ure
d  
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utilized for each individual.(43)  The models used for CEA must be updated to the costs in the currency of the 

region in which the model will be utilized to reflect the local standard of care and health resource utilization. 

 

Health utility 

The incorporation of health utility measures was used for the calculation of the QALY by multiplying a utility value 

to the life years gained or lost with an intervention. This is a critical component to the measure of the incremental 

effectiveness in the ICER. The use of utility measures allows model output measures of effectiveness to be 

compared across different health conditions as it is a generic measure of health outcomes.(34)   

 

Of the ten models reviewed, six have used the utility measures based (all or in part) on the EuroQol Five Dimension 

Questionnaire (EQ-5D) including the CDM, Cardiff, UKPDS-OM1, ODEM, Archimedes and ECHO-T2DM models. The 

Short Form 36 (SF-36) was the next most commonly utilized health utility measure that was incorporated into parts 

of the CDC-RTI and Cardiff models. The MMD and Australia DM models used their own version of health utility 

measures in the calculation of the CEA output from these models.  

 

The EQ-5D measures of health utility for diabetes related complications or events in these T2DM models were 

mostly based on data from the RCT portion of the UKPDS study which reflected utility measures in a UK population 

treated to standards prior to 1996. (74) The UK has since issued guidance that recommended the EQ-5D as the 

preferred instrument to measure health utility for the calculation of QALY in a CEA.(75)  There was research that 

validated the Health Utilities Index Mark 3 (HUI3) as a basis to measure QALYs in Canadians with a broad range of 

conditions, including diabetes, however it was not utilized in the QALY calculations in any of the T2DM models 

assessed.(76)  

 

There was not a standardized approach in the use of health utility measures in T2DM models for the calculation of 

QALY which could lead to differences in the ICER from CEA performed in similar populations.(77,78)  The T2DM 

models utilizing the EQ-5D measure of utility should be updated to reflect the Canadian utility measures when 

performing CEA in Canada and models using another utility measure should ideally be compared against the QALY 

measures using EQ-5D to assess uncertainty from differing sources of utility measures.      

 

Discount rate  

The discount rate has been incorporated into many of the model methods to reflect the present day value of an 

intervention measured over multiple years.(34) All models, with the exception of early versions of the UKPDS-

OM1, allowed the application of discount rates to both the measured cost and QALY. The UKPDS-OM1 has been 

updated to add costs and has included discount rate in the model. There was limited data available to fully assess 
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the EBMI on whether discount had been incorporated into the model. The models could not be differentiated 

based on whether their methods included an ability to apply discount rates in a CEA.  

 

Adherence 

The vast majority of models were designed and validated using data from RCT’s the relative benefit of treatment 

are likely to reflect adherence rates well above those demonstrated in real world studies.(79)  Of the ten models 

reviewed, only the MMD, Archimedes and EBMI have mentioned the ability to incorporate real world adherence 

rates into a model simulation. For the remaining T2DM models which do not have measures of adherence in their 

methods, the effectiveness of the intervention in the real world would have to be adjusted via a sensitivity analysis 

to assess the impact of lower adherence on the ICER output. 

 

Economic output  

For the purpose of providing output of an economic evaluation to HTA and decision makers it was recommended 

to provide at least a point estimate of the ICER and ideally include a cost effectiveness scatter plot and a CEAC to 

assess the probability an intervention is cost effective and the joint uncertainty of model output.(4)  All of the 

T2DM models, with the exception of the Australia DM, provided an ICER as a standard output in a CEA. Of the 

remaining nine models, the CDM, Cardiff, UKPDS-OM1, ODEM and ECHO-T2DM have scatter plots and CEAC 

included in the publications of model output. It could not be determined from the literature whether the MMD or 

the EBMI provided additional output measures beyond an ICER. These additional model outputs were determined 

to be important methods in the criteria for consideration for selecting a T2DM model for CEA.  

 

2.3.3 Selection of a T2DM for validation 

The criteria for screening these T2DM models was based on a perspective of the Ministry of Health for the 

comparative evaluation of tertiary interventions in a population already diagnosed with T2DM. It is important to 

highlight that the results of this screening exercise were based on what had been identified in the published 

literature at the time of the assessment these results may not be fully reflective of each model’s current 

capabilities.  

 

These analyses demonstrated that there were many T2DM models which have been developed and evaluated, in 

some cases over many years, using quality evidence and numerous model validations to evolve and enhance the 

T2DM model functionality and credibility. The methods used in the T2DM models were screened in this research 

by applying five objective criteria from the recommendations in the critical appraisal section which enabled the 

selection of appropriate T2DM models which were then considered for further validation as outlined below (Table 

5): 
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1) The model must be based on a closed cohort structure with age, gender and ethnicity as key baseline input 

variables for use in diverse T2DM populations: All models with the exception of the Australia DM had the methods 

to perform a closed cohort simulation. The requirement to allow the selection of ethnicity as a baseline input was 

not as clearly identifiable and there were limited ethnic options even in T2DM models which had included this in 

their methods. To apply this, models which did not have any ethnic options in the methods were excluded namely 

the CDM and ECHO-T2DM. After applying this initial criterion the CDM, CDC-RTI, MMD, Cardiff, UKPDS-OM1, 

ODEM, Archimedes and EBMI remained for further consideration. 

  

2) The model methods must have included an option to run individual micro-simulation: The T2DM models which 

have been developed using a Markov based cohort design, such as the CDC-RTI, were therefore excluded. The 

seven of the remaining models, the MMD, Cardiff, UKPDS-OM1, ODEM, ECHO-T2DM, Archimedes and EBMI were 

based on either a Monte Carlo, or a hybrid of Markov and Monte Carlo, or DES methods which were all considered 

adequate to allow individual microsimulation.     

 

3) The model methods must have allowed the inclusion of pre-existing events and TVRFs:  Of the remaining seven 

T2DM models, all were determined to include the pre-existing risk factors believed to influence the future risk of 

events, with the exception of the ECHO-T2DM, such as such as history of vascular complications and smoking. An 

important consideration to be included in the model methods was the ability to capture changes in TVRF’s such as 

blood glucose, blood pressure and blood lipids due to their known impact on the rate of future diabetes related 

events. Therefore, the remaining six T2DM models continued to be considered based on meeting these criteria.  

  

4) The researchers must have included PSA in model methods and the capability to generate a CEAC for assessing 

joint uncertainty of model output: There was no documentation in published literature of the MMD, Archimedes 

or the EBMI models that identified methods which included PSA or the creation of a CEAC as part of the model 

output in a CEA. Of the remaining T2DM models there was evidence of the use of PSA and the creation of CEAC in 

the literature for the CDM, Cardiff, UKPDS-OM1 and ODEM which resulted in these being the preferred models for 

follow up to request open access.  

 

5) The T2DM models needed to be available as open access for academic purposes: The CDM, Cardiff, the UKPDS-

OM1 and the ODEM were the only models which had documentation of methods which supported all of the four 

previous criteria. The research sites of these model developers were searched to determine whether their models 

were offered for academic research purposes at no charge. The UKPDS-OM1 and the ODEM were identified as 

open access models and the researchers at Oxford University (UKPDS-OM1) and McMaster University (ODEM) 

were contacted to request access to their T2DM model with an explanation of the intended validation exercises. 
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The ODEM was the only model which was provided as a fully functioning, open access T2DM model and was the 

therefore selected for further internal and external validation. 

 

Table 5: Model selection using five objective screening criteria 

Model name Cohort 
Closed/ Ethnic 

Individual 
simulation 

Risk Factors 
Pre/ TVRF 

PSA/ CEAC 
 

Open Access 

CDM      

CDC-RTI      

MMD      

Cardiff      

UKPDS-OM1      

ODEM      

ECHO-T2DM      

Archimedes      

EBMI      

Australia DM      
Red box – methods did not meet stated criteria, Green box – methods met stated criteria, Orange – model updated, depends on version used 
TVRF = time varying risk factors; PSA = probabilistic sensitivity analysis; CEAC = cost effectiveness acceptability curve 

 

2.4 Discussion 

The selection of a T2DM model was a result of a step wise approach to identify a list of available T2DM models. A 

preliminary screening was then applied to select group of ten T2DM models for deeper assessment of the model 

methods. Finally, five objective criteria were applied to identify which of these models were designed with the 

methods considered suitable for the economic evaluation of a closed cohort from the perspective of the Ministry 

of Health. These criteria were based on the guidance provided by the reference text and ISPOR-SMDM reports as 

an objective way to interpret the methods used in the T2DM model. This approach builds upon these 

recommendations for transparency in the selection of model methods and importance of ongoing validation 

against data from the population of interest to improve trust and confidence in the output of decision models used 

for Canadian HTA.(35,53)  

 

There were a number of models which have an appropriate structure and methods to justify their selection and 

use in a diverse BC population. Some of the models may also have new methods incorporated in more recent 

versions which were not identified in the available literature. While the ODEM met the five selection criteria there 

were some methods which could be enhanced with new evidence or revisions to the ODEM. For instance, the 

ODEM does not record the early sign of vascular disease, adverse events of treatment or provide a mechanism to 

adjust for lower adherence to treatment. The ODEM is a model which has been used for the economic evaluation 

of a number of T2DM interventions in a Canadian health care setting however the risk equations which determine 

the rate of events remain based on the original data from the UKPDS RCT. One distinguishing feature of the ODEM 

was that the health care utilization and associated costs have been updated by researchers, using a validated 
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Ontario Diabetes Database (ODD), to reflect the Canadian results for the ongoing management of T2DM.  To 

determine if the output of ODEM output can be considered generalizable for use in the BC health system requires 

an internal validation of its functionality and an external validation of its ability to predict diabetes related 

outcomes in a real world BC population with T2DM. These were the primary aims of the next steps of this thesis 

research. 
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 Internal validation of the ODEM Chapter 3:

3.1 Introduction 

The search of available models in T2DM, assessment of their methods and the eventual selection using a set of 

objective criteria resulted in gaining access to a model which met the needs for use in a Canadian HTA. In order to 

build trust and confidence in the output of an economic evaluation using the ODEM model required additional 

work on model validation. The ISPOR-SMDM report on “Model Transparency and Validation” highlighted the 

different internal validation techniques used to assess the models ability to reflect disease progression. These 

reports encouraged transparency for others to interpret methods and assess the uncertainty of the output of a 

decision model.(53)  

 

The first step in model validation was to perform an in-depth assessment of the performance of the ODEM. The 

ISPOR-SMDM recommendations highlighted different methods for internal validation either aimed to assess the 

mathematical functionality of the model with data used to build the model or as a verification of the impact of 

changes to input parameters on model output.(53) This analysis used the latter approach by observing changes in 

model output when adjusting individual input parameters. This model validation will centre on the performance of 

the risk equations in ODEM to determine model functionality and deepen the working comprehension of ODEM’s 

methods. 

 

3.1.1 Structure 

The ODEM is a probabilistic discrete-time, state transition, Monte Carlo micro simulation model based on the 

methods from the UKPDS-OM1.(27) The diabetes related events are generated each cycle using regression 

equations which are based on characteristics of each simulated individual. The ODEM uses parametric proportional 

hazards (Weibull) to incorporate demographic characteristics (age, gender and ethnicity), time varying and pre-

existing risk factors (HbA1c, SBP, cholesterol, A-fib, PVD) and history of diabetes related events to predict the 

cumulative incidence of events for up to a 40 year time horizon.(41) 

 

3.1.2 Model assumptions and validation 

The ODEM is designed as a closed-cohort simulation, meaning that it used a set number of individuals over the 

time span of the simulation, and does not account for changes in the incidence or prevalence of T2DM. The model 

simulates a control and treatment arm to compare the incremental cost and consequences of an intervention 

versus the existing standard of care using a Ministry of Health perspective. The methods of ODEM incorporated 

random number sampling, TVRFs and PSA on treatment effects, costs and QALYs to generate model output. This 

output included an ICER as a base case estimate of the cost effectiveness and a CEAC to provide a probability that 

an intervention is cost effective at different thresholds that are based on the maximum cost decision makers are 
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willing to pay for a year at full health. The scatter plot and CEAC are valuable as model outputs as they allow an 

assessment of the joint uncertainty of the ODEM input parameters for decision makers. 

 

A critical component to the credibility of the output from the ODEM for use in a real world population in BC 

depended on the relevance of the risk equations used in the model to determine the cumulative incidence of 

vascular events. These risk equations and predicted diabetes related events were a primary contributor to the cost 

and consequences in the economic output of the ODEM and were the methods assessed in this internal validation 

exercise. 

 

3.2 Methods 

This internal validation provided a comparison of the expected impact on the cumulative incidence of events from 

changing an input parameter, based on the coefficients in the ODEM risk equations, compared to the actual 

changes observed in events after changing the input parameter. The outputs of interest were the ten year 

cumulative incidence of seven diabetes related events, diabetes related mortality, and the associated QALYs. This 

step wise approach enabled a deeper understanding of the functionality of the ODEM and determined whether 

the risk equations in the ODEM were responsive and properly linked with the baseline input parameters.   

 

3.2.1 Development of a base cohort 

A base cohort was created by defining the base parameters for input into the ODEM to produce a benchmark of 

the cumulative incidence of diabetes related events, life years and QALYs over 10 years. The base cohort was 

defined as all Caucasian, male, with a mean age of 65 years and average duration of diabetes (DofD) of 5 years, 

with a mean BMI of 26.9 kg/m
2
. The surrogate measures of disease control were set at an estimated population 

average for those with T2DM and included HbA1c at 7.28%, mean SBP at 129 mm/Hg, TC of 4.95 mmol/l and high 

density lipoprotein (HDL) of 1.13 mmol/l. The percent with baseline risk factors of smoking, A-fib, PVD and history 

of previous vascular events were all set to zero.  These baseline input variables were added into the ODEM and  

simulated to capture the model output for diabetes related events, life years and QALYs for this base cohort.   

 

3.2.2 Statistical evaluation for validation  

There was a need for an objective measure to determine whether the magnitude of the difference in the output 

with each simulation was, due to the change of the baseline input variable or, in response to the natural variability 

in model output from the use of a random number generation to predict an event in the ODEM simulations. There 

was not a standardized approach identified in the literature to define an effect size or a statistical measure to 

compare output in validation or verification exercises.(71,80) The availability of cumulative incidence data for each 

vascular event data from the ten iterations over a ten year period in the ODEM simulation provided an mechanism 

to calculate a mean, variance and standard error of the mean (SE) for the seven vascular events in the baseline 
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cohort (Equations 1 – 3). These data were used to calculate a 95% CI to define an objective measure to assess 

whether differences in the incidence of the seven vascular events after changing a single input parameter was due 

to the natural variance of the simulation or if it exceeded the expected range.(70) This was a similar approach as 

one used to demonstrate the internal validation of the UKPDS risk engine to predict the risk of stroke.(81)  

 

Equation 1: Mean cumulative incidence for each vascular event  

𝜇𝑜 =  
1

𝑁
∑ 𝑥𝑖𝑜𝑡

𝑁
𝑖=1   

Equation 2: Calculation of the cumulative incidence standard error of the mean = σ 

𝜎𝑜 =  √
1

𝑁
∑ (𝑥𝑖𝑜𝑡 − 𝜇𝑜)2𝑁

𝑖=1    

Equation 3: Calculation of the cumulative incidence 95% CI  

95% 𝐶𝐼 =  𝜇𝑜 ± 1.96 𝜎𝑜/√𝑁 

where N = number of years with i = iteration, o = vascular outcome, t = year. 

  

3.2.3 Single parameter variation 

The initial step in the internal validation was a qualitative assessment to document the expected direction of 

change in diabetes related events, life years and QALY’s, versus the base cohort results, when adjusting each of the 

baseline variables. These input variables included the demographic characteristics (ethnicity, gender, age, BMI), 

the pre-existing and TVRF’s at baseline (A-fib, PVD, smoking, HbA1c, SBP, TC and HDL) and the history of diabetes 

related vascular events (IHD, MI, CHF, stroke, amputation, blindness and ESRD). The level that each variable was 

set at for each simulation was defined in the table of results, and the expected direction of change of the 

cumulative incidence of events was predicted based on the coefficients within the risk equations in the ODEM 

(Table 7). These included both the direct and indirect impact of a variable in the risk equations. A direct impact was 

an input variable that was included in the risk equation for that diabetes related event, while an indirect impact 

was defined as a variable that influenced the risk of an event indirectly by increasing one of the direct variables for 

that vascular outcome.  The expected direction of the direct impacts on the model output for each parameter 

change versus the base cohort were captured using arrows (↑, ↓), and the indirect impacts were captured with a 

positive (+) or negative (–) sign.  

 

The next step was to change a baseline input variable to an extreme value, run a simulation, and then record the 

actual cumulative incidence of diabetes related events, life years and QALY’s. The size of any differences in the 

actual events versus the events for the baseline cohort were assessed to determine if the magnitude of change fell 

within or outside of the lower and upper 95% CI limits of the base cohort simulation. The direction of the actual 

events was then compared to the expected direction that was recorded in the first step to provide an objective 
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assessment of the model functionality based on each individual baseline input parameter. These results were 

tabulated and color coded for ease of comparison.    

  

For the purpose of this validation exercise baseline patient variables were set as a constant so that the point 

estimate of the input variable was applied equally to all individuals. This approach was used instead of a random 

number generated range of input variables to reduce the statistical variability in the model input parameters that 

determined the cumulative incidence of events in the ODEM. Each cohort simulation was done for 1000 virtual 

patients simulated through the model ten times for a total of 10,000 patient level simulations for ten years. 

 

3.2.4 Expected direct and indirect impact of risk equations 

To ensure this assessment reflected the expected changes to baseline variable on model outputs, it was deemed 

relevant to incorporate both the direct and indirect impact of each variable based on the ODEM’s risk equations 

(Table 6).(40,41) The direct impacts were anticipated to have a greater and more immediate influence on the 

model outputs compared to indirect impacts, as these indirect variables must first cause a vascular event which is 

included in the risk equation for a different vascular event. For example, the ODEM the risk equations, an 

increasing BMI is not included in the risk equation for MI, however it can indirectly increase the rate of MI due to 

the increased incidence of CHF in those with high BMI. Therefore, an individual with a history of CHF has a direct 

impact, while BMI has an indirect impact, on increasing the risk of an MI in that individual.   

  
Table 6: The direct and indirect impacts included in the ODEM risk equations by vascular event 

Event Direct Impact Indirect Impact only 

IHD Gender, Age, TC:HDL, SBP, HbA1c none 

MI Ethnic, gender, age, smoking, TC:HDL, SBP, 
HbA1c, IHD, CHF 

BMI (via CHF) 

CHF Age, BMI, SBP, HbA1c none  

Stroke Gender, Age, A-fib, smoking, TC:HDL, SBP, HbA1c, 
CHF 

BMI (via CHF) 

Amputation PVD, SBP, HbA1c, Blind Age (via blindness) 

Blind HbA1c, Age none 

ESRD SBP, Blind HbA1c, Age (via blindness) 

Mortality MI, Stroke, ESRD, Amputation IHD, CHF, Blind (via MI, Stroke, Blind 
and Amputation) 

IHD = ischemic heart disease; MI = myocardial infarction; CHF = congestive heart failure; Blind = blindness in one eye; ESRD = end stage renal 
disease; TC/HDL = total cholesterol to high density lipoprotein ratio; SBP = systolic blood pressure; HbA1c = glycated hemoglobin A1c; BMI = 
body mass index; A-fib = atrial fibrillation; PVD = peripheral vascular disease; Age = age at diagnosis of diabetes 
 

3.3 Results 

This internal validation showed the ODEM performed as expected for the vast majority of diabetes outcomes. 

These positive results were represented by the grey boxes, in the right columns, where outputs directionally match 

and reflect a consistency between expected and actual cumulative incidence of events (Table 7). The yellow boxes 

highlighted the results where the actual outputs did not respond to changes to the input parameters that were 
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expected based on a direct or indirect impact. The cumulative incidence outputs, marked in orange and red boxes, 

highlight where the magnitude of the expected and actual output measures over and under exceeded the 95% CI 

of the vascular events predicted in the base cohort respectively. The unexpected results of the validation exercise, 

marked in yellow, orange and red boxes, were then further investigated to assess the reason for the discrepancy in 

the ODEM output.  

 

The expected impact of input variables on life years and QALY’s was also captured in the model to allow an 

assessment of the risk equations for mortality which included event mortality (death at the time of a vascular 

event), diabetes mortality, (increased risk of death due to a diabetes related event or complication) and other 

death (standard death rate for people without T2DM). The measure of QALY’s were included to determine if the 

decrease in health utility due to a diabetes related event was reflected in the calculation and compilation of the 

overall QALY in each cohort.   

 
3.3.1 Discrepancy between expected and actual model output 

a) Yellow boxes 

There was no change in the cumulative incidence of stroke in the cohort with a BMI of 36kg/m
2
 when compared to 

the base cohort. This was different than the expected impact as the risk equations in the ODEM reflected a direct 

increase on the incidence of CHF of approximately 7% for every unit of increase in BMI above 28kg/m
2
. In turn, 

every additional case of CHF resulted in a 5.7 fold increase in the risk of stroke per cycle. The actual output from 

the ODEM high BMI cohort did increase the rate of CHF however this did not lead to an increase in the rate of 

stroke over 10 years. The timing of these events was considered relevant as the model requires CHF to occur first 

before increasing the risk of stroke with elevated BMI. In the simulation, the mean time to a CHF event was 5.7 

years and the mean time to a stroke event was 5.9 years. Therefore, in a ten year simulation this left only 4 years 

for these additional cases of CHF to in turn increase the incidence of stroke. It is feasible to assume that the 10 

year time frame may not be adequate and a longer term simulation may be required for this to be assessed. 

 

There was also no change in the cumulative incidence of renal disease in the cohort with a mean elevated HbA1c 

of 11% when compared to the base cohort with a mean HbA1c of 7.28%. This was different than expected as the 

risk equations in the ODEM reflected a direct increase on the incidence of blindness of approximately 25% for 

every percent increase in HbA1c above 7.09%. Based on the coefficients in the model risk equations, every 

additional case of blindness was associated with an 8 fold increase in the risk of ESRD per cycle. In the ODEM 

simulation of the high HbA1c cohort, the rate of blindness was double the rate in the base cohort however this did 

not result in any increase in the rate of renal disease over 10 years. The timing of the event was again considered 

relevant as the model requires blindness to occur first before increasing the risk of renal disease as a result of 

elevated HbA1c. In the simulation, the mean time to an event of blindness was 5.2 years and the mean time to 
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ESRD was 5.9 years. Therefore, in a ten year simulation only 5 years remained for additional cases of blindness to 

increase the incidence of ESRD. Similar to the discussion on the indirect impact of BMI on stroke, it is feasible to 

assume that the 10 year time frame may once again not be adequate and a longer term simulation would allow 

this to be further assessed. 

 

The duration of diabetes (DofD) was a baseline input parameter that was not directly incorporated into the risk 

equations, but was used to calculate the age of diagnosis of T2DM which is included as part of the risk equations. 

The actual output of the simulation for the cohort with a DofD of 20 years aligned with what was expected based 

on the risk equations in the ODEM however the calculation of age of diagnosis in the risk equations meant that 

those with a longer duration of T2DM have a reduced risk of diabetes related events. This impact was considered 

counter intuitive to what would be assumed in a test of face validity of the ODEM and these boxes were marked in 

yellow for further investigation. Considering the ODEM was based on the risk equations from the UKPDS-OM1, the 

literature for the development of that model was reviewed and this approach was the same in both models. Upon 

further investigation, it was apparent that DofD was linked directly to age at diagnosis and current age, and 

therefore if one of these variables changed then others would automatically be adjusted. Therefore, the DofD was 

dependent on current age and age at diagnosis, which appeared in other parts of the model, including risk 

equations related to mortality calculations and was a baseline input variable that possibly should not be assessed 

in isolation. 

 

b) Orange boxes 

There was no consistent trend observed in the cases where the cumulative incidence of events was of a higher 

magnitude than expected and above the 95% CI. Most of these fell just outside of the statistical range set by the 

above equations and are most likely attributed to random variation in the model output.  

 

c) Red boxes  

A consistent trend was observed in cohorts who demonstrated a higher mortality rate, as measured by a 

decreasing number of life years in the ten year simulation, such as those with 100% MI, CHF, amputation and ESRD 

at baseline. The total life years in these cohorts were near or below 7 also resulted in a positive correlation with 

the predicted incidence of vascular events falling below the 95% CI for IHD, MI, CHF, stroke and blindness. This 

result is most likely due to competing events in the simulation, where more people who die in the ten years, the 

fewer who are alive to experience an event.  

 

3.3.2 Mortality 

The actual change in life years correlated positively with the expected direction of change in all cohorts included in 

this internal validation. There was a noticeable trend toward a lower cumulative incidence of diabetes related 
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events in the cohorts with high mortality, resulting in life years of less than seven over the ten year simulation, 

such as those with 100% CHF, amputation or ESRD at baseline. Upon further investigation, it was likely that the 

higher mortality rate in these cohorts reduced the incidence of diabetes related events as a result of death causing 

fewer individuals to be alive to experience an event. This was evident in the cohort of 100% of individuals with 

ESRD at baseline, which resulted in the lowest measure of life years of 6.0 in a ten year simulation, and the 

vascular event rate fell below the lower range of the 95% CI. There was an inverse correlation between higher 

mortality and lower incidence of events that became stronger with each subsequent year as more individuals in 

the cohort experienced a fatal event. 

 

3.3.3 Quality adjusted life year (QALY) 

The actual measures of QALYs also performed as expected based on the changes in each input parameter one at a 

time by cohort. The changes in QALYs were generally modest, and remained above 6.0 for the cohorts which had 

fewer incremental diabetes related events such as the high BMI, A-fib and PVD cohorts. The cohorts which had a 

higher risk of vascular events, such as those with a baseline of all smokers, elevated SBP, TC/HDL ratio and HbA1c 

had a corresponding decrease in QALY which fell below 6.0. As expected, the impact on QALY was the greatest in 

the cohorts with 100% baseline history of events as these events are all associated with a utility decrement in the 

ODEM methods. The impact of 100% CHF, stroke, amputation and ESRD at baseline also created the largest 

decrease in QALY’s, with all cohorts ten year total below 5.0, which is aligned with the larger utility decrements 

with these specific events in the ODEM QALY coefficients.  

 

Table 7: Results of the ODEM internal validation of single parameter variation 
Revised 
baseline 
input 
parameter  

Direction of predicted output versus base 
case (based on risk equations)  

Actual output from the ODEM (10 year cumulative incidence) 
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Base case* − − − − − − − − − 0.058 0.160 0.042 0.046 0.006 0.039 0.004 7.93 6.12 

Lower CI          0.053 0.153 0.038 0.041 0.004 0.034 0.002 n/a n/a 

Upper CI          0.063 0.166 0.045 0.051 0.007 0.043 0.006 n/a n/a 

Ethnicity - 
100% Afro-
Caribbean 

0 ↓ 0 0 0 0 0 ↑ ↑ 0.064 0.048 0.045 0.048 0.007 0.037 0.005 8.13 6.28 

Gender –  
100% female 

↓ ↓
− 

0 ↓ 0 0 0 ↑ ↑ 0.041 0.081 0.045 0.028 0.006 0.036 0.006 8.21 6.37 

Mean Age - 
45 yrs 

↓ ↓
− 

↓ ↓ 0 ↓ 0 ↑ ↑ 0.041 0.057 0.006 0.010 0.006 0.010 0.005 8.67 6.75 

DofD - 20 yrs ↓ ↓
_ 

↓ ↓
_ 

_ ↓ _ ↑ ↑ 0.047 0.097 0.022 0.022 0.008 0.015 0.010 8.44 6.55 

Mean BMI – 
36 kg/m2 

0 + ↑ + 0 0 0 - ↓ 0.059 0.172 0.076 0.046 0.006 0.038 0.004 7.91 6.10 
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Revised 
baseline 
input 
parameter  

Direction of predicted output versus base 
case (based on risk equations)  

Actual output from the ODEM (10 year cumulative incidence) 
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% with A-fib 
(100%)   

0 0 0 ↑ 0 0 0 - ↓ 0.065 0.170 0.043 0.081 0.007 0.036 0.005 7.87 6.05 

% with PVD 
(100%) 

0 0 0 0 ↑ 0 0 ↓ ↓ 0.062 0.163 0.045 0.042 0.061 0.036 0.005 7.86 6.01 

Smoking rate 
(100%)  

0 ↑ 0 ↑ 0 0 0 ↓ ↓ 0.059 0.222 0.043 0.063 0.006 0.035 0.003 7.61 5.86 

TC: HDL @  
6/0.5mmol/l 

↑ ↑
+ 

0 ↑ 0 0 0 ↓ ↓ 0.217 0.470 0.038 0.096 0.005 0.034 0.003 7.05 5.32 

SBP @ 150 
mmHg 

↑ ↑
+ 

↑ ↑
+ 

↑ 0 ↑ - ↓ 0.082 0.228 0.059 0.101 0.008 0.035 0.014 7.72 5.89 

HbA1c @ 
 11% 

↑ ↑
+ 

↑ ↑
+ 

↑ ↑ + ↓ ↓ 0.092 0.254 0.073 0.070 0.030 0.078 0.004 7.59 5.78 

IHD (100%) 0 ↑ 0 0 0 0 0 - ↓ 0 0.354 0.042 0.043 0.007 0.036 0.004 7.50 5.1 

MI (100%) 0 0 0 0 0 0 0 ↓ ↓ 0.058 0 0.040 0.038 0.005 0.037 0.004 7.01 5.04 

CHF (100%) 0 ↑ 0 ↑ 0 0 0 - ↓ 0.048 0.524 0 0.080 0.004 0.029 0.004 6.76 4.42 

Stroke 
(100%) 

0 0 0 0 0 0 0 ↓ ↓ 0.058 0.159 0.042 0 0.005 0.034 0.005 7.59 4.63 

Amputation 
(100%) 

0 0 0 0 0 0 0 ↓ ↓ 0.053 0.144 0.034 0.040 0 0.027 0.003 6.70 3.32 

Blindness 
(100%) 

0 0 0 0 ↑ 0 ↑ - ↓ 0.062 0.164 0.042 0.044 0.030 0 0.033 7.88 5.46 

ESRD (100%) 0 0 0 0 0 0 0 ↓ ↓ 0.043 0.129 0.031 0.034 0.004 0.025 0 6.00 3.08 

Legend: expected ↑or ↓ is a direct effect, + or –  is an 
indirect effect, 0 is no effect 

Grey – observed and predicted fell within 95% CI of base cohort 
Yellow – not responsive to expected impact of input variable 
Orange – magnitude above expected and exceeded 95% CI 
Red – magnitude below expected and exceeded 95% CI 

IHD = ischemic heart disease; MI = myocardial infarction; CHF = congestive heart failure; Amp = amputation; Blind = blindness in one eye; ESRD 
= end stage renal disease; LY = life years; QALY = quality adjusted life years; CI = confidence interval; DofD = Duration of Diabetes; BMI = body 
mass index; A-fib = atrial fibrillation; PVD = peripheral vascular disease; TC/HDL = total cholesterol to high density lipoprotein ratio; SBP = 
systolic blood pressure; HbA1c = glycated hemoglobin A1c 
 
 

3.4 Discussion 

This internal validation exercise provides decision makers with an objective analysis and additional evidence that 

the risk equations in ODEM are functional and responsive to changes in a range input parameters one at a time 

which includes demographic variables such as age, gender and ethnicity, pre-existing and TVRF’s and a baseline 

history of seven different T2DM related vascular complications. This exercise also demonstrates that the ODEM is 

capable of creating a virtual population of thousands of individuals for microsimulation that is reflective of the 

mean and range of baseline input parameters in a cohort. There are other methods in the ODEM, used in the 

criteria for model selection which were not assessed in this internal validation, including the probabilistic 

distributions related to treatment effects, the relevance of the health costs and QALY’s for people with T2DM in 

BC, or the functionality of the ICER, scatter plots and CEAC output. 
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There were some potential concerns identified in the model functionality related to the lack of responsiveness of 

the indirect impacts of risk equation coefficients on diabetes related events over ten years. The issue raised is 

related to the face validity of the DofD which predicted a decreased risk of events with a longer time since 

diagnosis. Another trend observed was due to the lower than expected cumulative incidence of vascular events in 

populations with a high mortality rate which reflects the competing outcomes in a model simulation. These results 

show that mortality must be adjusted for in a comparison of the predicted versus observed outcomes in a model 

validation exercise. These findings can be assessed with longer term simulation, beyond ten years, and with an 

adjustment of the cumulative incidence by multiplying the incidence rate by the same number of life years to 

calculate a cumulative incidence for comparison to the observed events. Overall, this internal validation 

demonstrates a very positive correlation between the expected and actual changes in model output for all the 

model outcomes assessed including the diabetes related events, total mortality and QALY’s as measured in a 10 

year simulation. While valuable, this internal validation exercise does not demonstrate the generalizability of the 

ODEM for use in a real world BC population with T2DM.  
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 External validation of the ODEM  Chapter 4:

4.1 Introduction 

As described in Chapter 2, there were many models available for use in the economic evaluation of T2DM. The 

structure, methods and evidence used to create these models differs which influences the relevance of the model 

depending on the perspective of the decision makers, the intended population and purpose of the model output. 

The criteria used in the selection of a T2DM model was for providing a CEA, from the Ministry of Health 

perspective, of the comparative evaluation of tertiary interventions in a closed cohort, in individuals already 

diagnosed with T2DM. This process identified a number of potential models which met these criteria and led to the 

eventual selection of the ODEM. The internal validation of the ODEM demonstrated that the model’s risk 

equations are functional and responsive to changes in baseline input parameters based on observed changes in 

the cumulative incidence of diabetes related events, life years and QALY outputs.      

 

An important assumption in a model based economic evaluation is that the predicted rate of diabetes events and 

related mortality are reflective of the rate of events in the population of interest as these have the greatest 

influence on the costs and QALYs in T2DM. The ODEM was designed based on the methods and risk equations 

used in the UKPDS-OM1, which itself was developed using the baseline input parameters, risk factors and 

coefficients to match the rate of diabetes related events in the UKPDS RCT data.(27) A recent validation of the 

UKPDS-OM1, against the rate of events from the open label extension of the UKPDS trial, demonstrated that after 

10 years post UKPDS RCT that the UKPDS-OM1 predicted events were within the observed 95% CI for MI, IHD, 

blindness and renal failure. The UKPDS-OM1 model slightly over-predicted the probability of heart failure but 

under-predicted stroke and amputation in this UK population in the open label extension.(52) These results are 

encouraging and give confidence to policy makers in the UK that the output of an economic evaluation using the 

UKPDS-OM1 is relevant and credible for their T2DM population. These results in the UK however did not 

demonstrate that the ODEM was an externally validated model for predicting a rate of vascular events in BC, until 

it is also shown that these results are generalizable to a BC T2DM population. 

 

This external validation exercise included both a general cohort and a SA cohort, each further divided into sub-

cohorts based on gender and age (under 60 and 60 plus years of age)  to provide a more in-depth analysis of the 

impact of these important demographic variables on the predictive accuracy of the ODEM in the real world. These 

cohorts and sub cohorts were selected due to the differences in the onset and progression of T2DM by gender, age 

and ethnicity. The availability of aggregate data from a BC population with T2DM that tracks the observed rate of 

events by age, gender and ethnicity was used to complete this validation exercise and determine the correlation 

and statistical significance of the ODEM output for use in a BC T2DM population. 
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4.2 Methods 

4.2.1 Cohort structure 

To address the gap in the evidence for model output related to demographic risk factors, the external validation 

was completed for the total cohort, known as the “general” cohort, and a separate cohort of individuals identified 

of SA descent.  These 2 main cohorts were then further divided into sub-cohorts based on gender and age to 

account for the difference in the rate of vascular events in observed data with these two demographic variables 

(Figure 1). The age of 60 years was selected as an appropriate method to split in the BC data as it is an age where 

the prevalence rate and the rate of T2DM related vascular events markedly increase.(9) This allowed a deeper 

analysis of the results of the external validation to assess whether these demographic coefficients influenced the 

goodness of fit of the ODEM and to identify areas requiring additional evidence or to guide future calibration of 

the ODEM risk equations.     

  
Figure 1: Cohorts and sub cohorts from a T2DM population for the external validation 

 
4.2.2 BC diabetes cohort 

British Columbia has administrative data on all citizens who are registered for provincial health insurance including 

demographic, population health and health service utilization information. The BC data is a compilation of an 

individual’s data using their unique individual, depersonalized, health identification number. The BC data was not 

accessible for this project however summary results of the rate of vascular events was provided from a previous 

analysis of a linked, longitudinal and aggregated BC diabetes data of a cohort of 16,056 people with a diagnosis of 

T2DM and followed from 1993 to 2006. This aggregated results of the data included demographic data such as age 

and gender, pre-existing risk factors (A-fib and PVD) and the history of previous events as well as the rate of new 

vascular events over this time period. In this aggregated results there were 1839 people of SA descent (ie: from 

Pakistan, India, or Bangladesh) identified in the original data using a validated surname analysis. These results were 

also provided as an aggregate rate of events which enabled an analysis of this ethnic cohort.(82)  
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The BC diabetes results provided in summary were the actual, real world rate of events per 1000 person years and 

was organized and tabulated to reflect each sub cohort (Table 8 and Table 9). The BC diabetes data was provided 

for those who had no history of previous events (pre-event) as well as those who had a history of vascular events 

(post-event). The pre-event group had data for the incidence rate for six of the diabetes related vascular outcomes 

with the exclusion of amputation. For the post-event group the rate of incidence vascular events was only 

provided for those with a pre-existing event that was included in the ODEM risk equations. Therefore, the BC data 

was available for calculating the observed rate of MI in those with a previous history of IHD or CHF, the observed 

rate of stroke in those with baseline A-fib or previous CHF, and the observed rate of ESRD in those with a history of 

blindness. To assess the ability of the ODEM to predict diabetes related vascular events by cohort, two separate 

simulations were run that included the baseline history of events in a pre-event population and then a mixed pre 

and post event population. The observed incidence rate by each cohort from the BC data was then multiplied by 

the life years generated by the ODEM simulation for that cohort to convert this value to an observed cumulative 

incidence which enabled direct comparison with the ODEM predicted output (Equation 1). 

 
Equation 4: Rate of Events (observed)/1000 x Life Years (predicted) = Cumulative Incidence (observed)  

Table 8: BC data: observed incidence rate of vascular events per 1000 in the general population  

General 
Cohorts 

Pre-event only Pre and post event 

IHD MI CHF Stroke Blind ESRD MI  Stroke ESRD 

All  10.09 13.10 4.10 5.62 0.59 1.00 20.52 6.97 1.00 

Male 12.57 16.38 4.01 5.99 0.78 1.25 25.25 7.26 1.23 

Male <60 11.49 13.45 1.75 2.79 0.91 0.95 11.37 1.63 1.24 

Male 60+ 13.96 20.23 6.94 10.18 0.60 1.63 32.24 12.42 1.60 

Female 7.36 9.49 4.20 5.22 0.39 0.71 15.27 6.63 0.73 

Female <60 6.17 6.66 1.64 2.17 0.42 0.66 4.80 2.17 0.65 

Female 60+ 8.52 12.29 6.70 8.22 0.36 0.77 20.13 10.50 0.80 

 
Table 9: BC data: observed incidence rate of vascular events per 1000 in the SA population 

SA Cohorts 
 

Pre-event only Pre and post event 

IHD MI CHF Stroke Blind ESRD MI Stroke ESRD 

All 11.27 13.10 2.96 2.83 1.41 1.12 18.85 3.78 1.10 

Male 14.72 17.99 2.40 2.69 1.87 1.33 25.05 3.84 1.29 

Male <60 12.22 14.58 1.09 1.47 2.20 1.46 15.24 2.90 1.31 

Male 60+ 21.89 27.89 5.98 6.11 0.98 0.98 37.41 9.16 0.92 

Female 7.57 7.89 3.57 2.99 0.89 0.89 12.03 3.72 0.89 

Female <60 5.08 5.08 2.52 0.50 1.01 0.50 4.94 0.49 0.50 

Female 60+ 11.23 12.07 5.11 6.66 0.72 1.45 17.64 8.21 1.44 
IHD = ischemic heart disease; MI = myocardial infarction; CHF = congestive heart failure; Blind = blindness in one eye; ESRD = end stage renal 
disease 

 

Considering the fact that the BC diabetes results did not provide the required baseline input variables to populate 

the simulation of the cohorts in the ODEM, the missing baseline input data was estimated using the literature that 

was deemed to be most reflective of the characteristics of British Columbians with T2DM in the 1990’s and early 
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2000’s (Table 14 and Table 15). This resulted in the need to estimate the mean and a distribution around the mean 

for the baseline variables in order to create a virtual population for simulation in the ODEM. This estimation of 

baseline variables created additional stochastic uncertainty in the ODEM simulation that was assessed via 

sensitivity analysis to determine the potential impact on model outputs (see section 4.3.3).   

 

4.2.3 Diabetes related vascular outcomes  

The T2DM related vascular events that were included in the external validation of the ODEM were IHD, MI, CHF, 

stroke, ESRD and blindness over a 10 year period . This duration of the simulation was selected to match the 

duration of time in the linked, longitudinal BC diabetes data. The incidence of amputation was not assessed due to 

an absence of the code to measure the occurrence of this complication in the BC diabetes dataset. In order to 

identify the occurrence of these vascular events the International Classification of Disease (ICD) codes were used 

to identify an event in the BC data. This search required the inclusion of both ICD version 9 and 10 codes as BC 

transitioned from ICD9 to ICD10 in 2001/02 and the available data spanned from 1996 to 2003. The ICD codes used 

to identify vascular events from the BC data were compared to the codes used to identify vascular events in the 

UKPDS data which was used to develop the risk equations in the ODEM (Table 10). From this comparison it was 

noted that the ICD codes used in the UKPDS were very similar, but not identical, to the codes used in the BC data. 

Specifically the UKPDS data included additional codes for fatal MI (some which overlap with IHD) and fatal stroke 

however there were more codes used in the BC data to identify CHF and renal failure. 

 

Table 10: ICD9 and ICD10 codes to identify T2DM outcomes in the ODEM and the BC data 
Description UKPDS(40) BC ICD-9 BC ICD-10 

MI 410, Fatal  ≥410 
to≤414.9 

410 and 410.0  I21.0 to I21.9 

IHD ≥411 to ≤414.9 411to 414.9 I20, I22, I24, I25 

CHF ≥428 to ≤428.9 (if prior 
to MI) 

425.4 to 425.9, 428 I50 to I50.9, I099, I110, I130, I132, 
I255, I420, I425, I426, I427, I428, 
I429, I43, P290 

Stroke ≥430 to ≤434.9, 436 
(Fatal: ≥430 to ≤438.9) 

430 to 436 
 

I60, I61, I63, I64,  
G45, H341 

Renal 
Failure 
 

250.3, 585 to ≤586, Fatal  
≥580 to ≤593.9 

582 to 588.0, 403, 404, 
V420 , V451, V56 

N18, N19, N052 to N057, N250, 
I120, I131 to N037, Z490, Z491, 
Z492, Z940, Z992 

Blindness ≥369 to ≤369.9 369 to 369.9,  H54 (H54.0 to H54.9), E11.3 
UKPDS = United Kingdom Prospective Diabetes Study; BC = British Columbia; MI = myocardial infarction; IHD = ischemic heart disease; CHF = 
congestive heart failure; ICD = International Statistical Classification of Disease (9th and 10th revision) 

 

4.2.4 Baseline input variables by cohort 

The baseline input variables required to populate each of the ODEM cohorts for simulation include demographic 

characteristics (ethnicity, gender, age), duration of diabetes, weight and height, the percent with pre-existing A-fib 
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or PVD, current smokers and mean measures of TVRF’s including TC (mmol/l), HDL (mmol/l), SBP (mmHg) and 

HbA1c (%). The ODEM baseline input on the percent of individuals by cohort who had a history of each of the 

seven diabetes related events was only populated for simulations of a combined pre and post event population.  

 

As previously mentioned the BC diabetes results did not include many of the actual measures for the baseline 

input variables from the population with T2DM. The missing variables were the DofD, BMI, smoking rates and 

TVRF’s by cohort.  Therefore, these input variables were identified and extrapolated from available population 

data and published literature. Considering the BC diabetes data represented the incidence rate of diabetes related 

events from a real world population in the 1990’s and early 2000’s, the sources of data were selected which best 

reflected the traits of the BC population during this era.(53)  Therefore, the selection of missing input variables 

followed a step wise approach which placed the order of priority of data selection in order of a) observational data 

from the BC population post 1990, followed by b) observational data from Canadian data from 1990 onward and 

finally by c) identifying evidence from a Canadian RCT post 1990 onward (Table 11). The baseline input variables 

for the SA cohorts were extrapolated from the variables used for the general population cohorts when there was 

Canadian literature to quantify the difference for use in the SA cohorts. 

 

Table 11: Data sources for the ODEM baseline input variables for the general population cohorts 

PHAC = Public Health Agency of Canada; BMI = body mass index; A-fib = atrial fibrillation; PVD = peripheral vascular disease, HbA1c = glycated 
hemoglobin; SBP = systolic blood pressure; TC = total cholesterol; HDL = high density lipoprotein  

 
4.2.4.1 Demographic data 

The baseline input for the total number of individuals, their mean age and proportion by gender were calculated 

from the BC diabetes aggregate results. Considering the known influence of age on the rate of diabetes related 

events, an appropriate age distribution was required to be generated by cohort that approximated the age 

distribution from the BC diabetes data. Using Canadian public health data as a guide, and assuming a normal 

distribution, a cohort of 1000 virtual individual patients was generated in the ODEM using the minimum and 

maximum age with an estimated variance to recreate an approximate age distribution. This was based on 

Canadian population data which shows the age range for T2DM is typically between 30 years and 85 years, with 

the  greatest number of people in the 60 to 64 age category, and approximately 68% between the age of 49 and 77 

Data source Baseline input variable Timing 

BC diabetes results Demographic: age, gender, SA ethnicity 
Pre-existing risk factors – A-fib, PVD 
History of vascular events 

1993 to 2006 

National Population Health Survey 
(NPHS) 

BMI (Height and Weight) 
Smoking rate 

1996/97 

PHAC 2011 Diabetes in Canada Duration of diabetes 2008/09 

Canadian primary care chart audit and 
primary care registry 

HbA1c, SBP, TC and HDL 2002/03 and 
2005/06 
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years.(83) Therefore, a mean age of 63 years from the BC diabetes data and an SE of 13 years, with a minimum age 

of 30 and a maximum age of 85, were added to baseline input variables to create a virtual cohort of individuals 

reflective of the T2DM cohort. This approach was repeated for each sub cohort using the actual mean age 

calculated from the BC aggregated results. 

 

4.2.4.2 Duration of diabetes (DofD) 

There was no information on the DofD in the BC diabetes dataset or literature in the BC population. Therefore, the 

DofD for the general cohort and sub cohorts were calculated from Canadian population data using the prevalence 

and incidence of T2DM by gender and age category (Equation 5).(9) The Canadian population data included those 

with type 1 diabetes in the prevalence and incidence estimates and typically is diagnosed in people under the age 

of 20 years while T2DM is typically diagnosed over the age of 40 years.(83) Therefore based on expert 

recommendation, and to ensure the calculation of the DofD was primarily representative of individuals with T2DM, 

the prevalence rate for diabetes for the under 30 years of age category in the Canadian dataset were subtracted 

from the prevalence rate in each age category prior to calculating DofD. The removal of individuals under the age 

of 30 years represented a prevalence rate of 0.69/100 in the Canadian diabetes population and this value was used 

to adjust the prevalence in each age category prior to calculating the estimated DofD for each cohort.   

 

Equation 5: DofD by age category = [Prevalence (age category) – 0.69 / Incidence (age category) 

The DofD calculated for each age category based on estimated prevalence and incidence data in the Canadian 

population was separated into 10 year age groups by gender (Table 12). As there was no population data to 

calculate the DofD for the SA cohorts the estimated DofD from the general cohort was increased by 4.6 years to 

represent the estimated DofD for each SA cohort by gender and age.(82) 

 
Table 12: Canadian prevalence and incidence to calculate duration of diabetes by age and gender  

Age  
(years) 

Prev  Inc  
 

DofD 
(years) 

Prev  Inc  DofD 
(years) 

Prev  Inc  DofD 
(years)  

 Female Male Total 

30’s 2.35 0.29 5.46 2.21 0.32 4.86 2.23 0.31 4.95 

40’s 4.53 0.52 7.30 5.39 0.73 6.54 4.97 0.62 6.87 

50’s 9.22 0.98 8.63 11.99 1.36 8.33 10.56 1.17 8.45 

60’s 15.94 1.53 9.93 21.29 2.08 9.94 18.57 1.79 9.98 

70’s 22.18 1.78 12.01 27.74 2.31 11.73 24.76 2.02 11.94 

80+ 21.73 1.55 13.53 26.02 1.91 13.29 23.35 1.69 13.43 

All 6.40 0.57 9.92 7.20 0.68 9.64 6.80 0.63 9.70 

<60    7.13   6.58   6.76 

60+   11.82   11.65   11.78 
Prev = prevalence; Inc = incidence; DofD = duration of diabetes 
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4.2.4.3 BMI: using height and weight 

The data for BMI for each general cohort was derived from self-reported height and weight data from a Canadian 

health survey in the mid 1990’s.(84)  It was deemed important to gain an accurate estimate of the BMI in the BC 

population during this era due to the observed trend of an increasing mean BMI in the population over the last 3 

decades.(9) The Canadian survey data was from the general population and therefore it was adjusted to better 

reflect the BMI in those with T2DM by increasing the mean BMI by 4 kg/m
2
 above the average value for the 

population of Canadians without T2DM.(9)  

 

The ODEM baseline input did not use BMI but instead used the height and weight that was calculated from the 

estimated BMI in people with T2DM. The mean height was sourced from Canadian population data, and was used 

to calculate the mean weight by gender for the baseline input variables in the ODEM (Table 14). To do this, the 

mean BMI was divided by the average squared height (in meters) for each cohort (Equation 6). Furthermore, to 

generate the range of heights and weights that would be representative of a Canadian population for each cohort 

a normal distribution was created around the mean using the approximate range for the minimum and maximum 

height in order to estimate a SE of the mean. The mean height and weight for each cohort was then entered into 

the baseline parameters along with the estimated standard deviation (SD) minimum and maximums to generate a 

cohort of 1000 individuals with a height and weight distribution representative of the Canadian population with 

T2DM in the 1990’s. For example, this calculation for the general cohort used the mean height for the population 

of 1.71 meters and estimated a SD of 15 centimeters based on a range between 150 to 190 centimeters that was 

input into the baseline input variables to generate a distribution of height and weight for the microsimulation.  

 

Equation 6: Weight = BMI / Height
2
 

 

The literature for SA’s living in Canada showed they have a lower mean BMI and a lower prevalence of obesity (ie: 

BMI >30) than their Caucasian counterparts.(9)  This data was used to estimate a baseline mean BMI of 28 kg/m
2 

for the overall SA cohort.(85,86) The published data also reflected a BMI in SA men which was slightly higher than 

the BMI for SA women and this was used to adjust the BMI for the baseline input parameters of the SA cohorts by 

gender (Table 15). 

 

4.2.4.4 Time varying risk factors (TVRF’s) 

The levels of control of the biomarkers relevant for T2DM, HbA1c, SBP and TC/HDL are important coefficients in 

the long term risk of diabetes related events.(6) The baseline HbA1c, SBP and cholesterol levels were not available 

from the BC diabetes data and therefore this needed to be extrapolated from Canadian primary care data from 

T2DM patients who had a similar mean age, DofD and history of diabetes related events. Two studies, that were 
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considered reflective of the BC T2DM population in the era of the BC data capture, were selected and the results 

were used to populate the baseline HbA1c, SBP and TC/HDL input variables by cohort.  A 2005/06 study of a 

Canadian primary care diabetes registry of 3002 patients was the source the baseline input for SBP, TC and HDL 

and a Canadian primary care chart audit from 2002/03 was selected to source the baseline HBA1c (Table 

13).(87,88)  

 

The primary care chart audit included data that guided the estimation of the baseline HbA1c by age cohort as it 

provided a breakdown of the measures of HbA1c that varied with the DofD. In this data from the chart audit the 

percent of patients with optimal (<7%), sub optimal (7.0 to 8.4%) and inadequate (>8.4%) control of their HbA1c 

were split into five categories based on their DofD (<2 years, 3 to 5 years, 6 to 9 years, 10 to 14 years and 15+ 

years). There was an observed trend which showed a decreasing proportion of patients with optimal HbA1c 

control as the duration of T2DM increased. These data allowed the mean HbA1c to be calculated for each DofD 

category using the proportion of people that were identified at ideal, sub-optimal or inadequate levels of control 

(Equation 7). The mean HbA1c value that was assigned by level of control was 6.0 in the ideal, 7.7 in the 

suboptimal and 9.4 in the inadequate and each was then multiplied by the proportion of people at each level of 

control. This was repeated based on the changing proportion of people at the various levels of control by DofD 

category. This calculated level of HbA1c by DofD category was then matched to the estimated DofD in each cohort 

for the ODEM simulation. This resulted in an estimated baseline HbA1c in the under 60 years of age cohort of 

7.2%, and in the 60 plus cohort of 7.6% (Table 13). These appeared to be reasonable estimates when cross 

referenced to the mean HbA1c of 7.3% from Canadian primary care registry.(76,77)  

 
Equation 7: Calculation of mean HbA1c using level of control and duration of diabetes by cohort: 

Mean A1c = [6.0 *(% ideal] + [7.7 *(% suboptimal)] + [9.4 *(% inadequate)](87)  
 

There was no literature identified to estimate the baseline HbA1c level for the SA cohorts versus a comparable 

group in the general population, which had been adjusted for confounding variables, and therefore no 

adjustments were made to the baseline HbA1c for the SA cohorts. There were comparative data that showed a 

slight increase in the mean SBP by 1 mmHg and a higher proportion of SA adults with hypertension.(85) The TC 

used for the SA cohorts were the same as the general cohort however the HDL was lowered by 0.19 mmol/l to 

reflect the literature that resulted in an increase in the TC/HDL ratio for the SA cohort.(23,85) 
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Table 13: Comparison of baseline characteristics for the estimation of HbA1C, SBP, TC and HDL 

Source of 
evidence 

Patient 
Demographics 

Gender/ BMI Pre-existing 
events (%) 

Comments: 

BC diabetes data N = 16056   
Age = 63 yrs  
DofD= 9.7 yrs 

54% male 
BMI 29 
 

PVD = 2.7 
IHD = 20.3 
MI = 24.4 
CHF = 6.5 
Stroke = 6.1 

Actual HbA1c, SBP and 
cholesterol were not 
available  

Canadian Primary 
care registry  
2005/06 (87) 

N = 3002  
Age =  64 yrs 
DofD =  6 yrs  

59% male, 
BMI 30 kg/m2  

PVD = 9 
CAD = 23  
CHF = 5 
CVD = 8  

HbA1c = 6.9%  
SBP = 130 mmHg  
TC = 4.3 mmol/l 
HDL = 1.2 mmol/l 

Canadian Primary 
care chart audit 
2002/03 (88) 

N = 2473  
Age = 63 yrs   
DofD = 7.8 yrs 

54% male, 
BMI 31  

PVD = 6 
Angina = 11 
MI = 11,  
CHF = 7  
Stroke = 5 

Mean HbA1C = 7.3%, with 
breakdown based on level 
of control based on DofD 

DofD = duration of diabetes; BMI = body mass index; PVD = peripheral vascular disease; IHD = Ischemic heart disease; MI = myocardial 
infarction; CHF = congestive heart failure; CVD = cerebrovascular disease; CAD = coronary artery disease; HbA1c = glycated hemoglobin; SBP = 
systolic blood pressure; TC = total cholesterol; HDL = high density lipoprotein  

 
4.2.4.5 Pre-existing risk factors: A-fib, PVD and smoking 

The aggregated BC diabetes results included a measure of the proportion of individuals with an ICD9 code for A-fib 

or PVD in their records at baseline. The numbers for PVD were consistent with recent literature using BC data that 

captured a number of pre-existing risk factors in people with T2DM (Table 14 and Table 15).(82) These were used 

in the baseline input for the simulations in the ODEM output that was done in those with a history of pre-existing 

events. 

 

It has been documented that smoking rates in Canada were higher in the 1990’s and has decreased over the last 

three decades.(12) Data from the 1996/97 National Population Health Survey (NPHS) were used to estimate the 

mean smoking rate by age and sex. Those included in the baseline percent were “current smokers”, defined as 

those who smoked occasionally or were daily smokers. It has been observed that BC has the lowest overall 

smoking rate in Canada therefore using Canadian data may have overestimated the actual prevalence of smoking 

in BC’s diabetes population in the simulation.(12,26) The rate of smoking also differed by gender with male rates 

approximately 10% higher and women 10% lower than the population mean. These estimated differences were 

applied to the smoking rate used for the simulation of the general cohort to reflect the gender differences in 

smoking rate for each cohort (Table 14).(12) In the SA cohorts the baseline input for the percentage of smokers 

was based on pooled data of a number of Canadian health surveys showing a smoking rate in the Canadian SA 

population of 8.6% which was well below the smoking rate in a general Canadian population of a similar age.(Table 

15).(11) 
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4.2.4.6 Pre-existing diabetes related events 

The baseline proportion of people with pre-existing vascular events was captured directly from the aggregated BC 

Diabetes results and stratified by age, sex and ethnicity (Tables 14 and 15). These data were compared with other 

published data on prevalence rates which confirmed the estimates were within a reasonable range.(87–89) The 

rates of amputation was not available from the BC diabetes data and therefore the percent of people with an 

amputation in the T2DM population was instead estimated from the Canadian literature.(87,88) 

 

Table 14: General Population: baseline input variables for T2DM cohort by gender and age 

Cohort  
Parameters* 

All  
general  

All male  Male < 60 
yrs 

Male 60+ 
yrs 

All female  Female 
<60 yrs 

Female 
60+ yrs 

Mean age (yrs) 63.0 62.0 50.9 71.2 64.1 50.9 72.4 

% female 46 0 0 0 100 100 100 

DofD (yrs) 9.7  9.6 6.8 11.8 9.9 7.1 11.8 

BMI (kg/m2) 29  30 30 30 29 29 29 

Weight (kg)  85  93  93 93 77 77 77 

Height (m) 1.70  1.76 1.76 1.76 1.63 1.63 1.63 

TC (mmol/l) 4.3  4.3  4.3 4.3 4.3  4.3 4.3 

HDL (mmol/l) 1.2  1.2  1.2 1.2 1.2 1.2 1.2 

SBP (mmHg) 130   130  130 130 130  130 130 

HbA1c (%) 7.3  7.3  7.2  7.6  7.3  7.2  7.6  

% Smoker 24.5 27.0  26.2  13.5  22.1  21.6  11.2  

% PVD  2.7  3.0 0.9 4.6 2.5 1.3 3.2 

% A-fib  2.5  3.2 0.9 5.1 6.3 0.3 10.0 

History IHD 20.3 21.4 13.4 27.9 19.0 10.4 24.4 

History MI 24.4 25.6 17.2 32.4 22.8 13.52 28.6 

History CHF 6.5 6.5 2.3 9.9 6.6 1.3 10.0 

History Stroke 6.1 6.1 2.3 9.2 6.1 1.6 8.9 

History Amp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

History blind 0.7 0.7 0.4 0.9 0.8 0.4 1.0 

History Renal  1.7 1.9 1.1 2.5 1.4 0.9 1.7 
*SE input into the ODEM to generate a simulated population has not been included in the table 
DofD = duration of diabetes; BMI = body mass index; TC = total cholesterol; HDL = high density lipoprotein; SBP = systolic blood pressure; HbA1c 
= glycated hemoglobin; PVD = peripheral vascular disease; A-fib = atrial fibrillation; IHD = ischaemic heart disease; MI = myocardial infarction; 
CHF = congestive heart failure; Amp = amputation; Blind = blindness  
 

Table 15: South Asian: baseline input variables for T2DM cohort by gender and age 

Cohort  
Parameters* 

All SA  
 

All SA 
male  

SA male 
<60 
years 

SA male 
60+ 
years 

All SA 
female  

SA female 
< 60 years 

SA female 
60+ years 

Mean age (yrs) 58.0 56.8 50.2 69.1 59.4 51.1 69.1 

% female 45 0 0 0 100 100 100 

DofD (yrs) 14.3 14.2 11.4 16.4 14.5 11.7 16.4 

BMI (kg/m2) 28 28.5 28.5 28.5 27.5 27.5 27.5 

Weight (kg)  82 88 88 88 73 73 73 

Height (m) 1.71 1.76 1.76 1.76 1.63 1.63 1.63 

TC (mmol/l) 4.3 4.3 4.3 4.3 4.3 4.3 4.3 

HDL (mmol/l) 1.0  1.0 1.0 1.0 1.0 1.0 1.0 
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Cohort  
Parameters* 

All SA  All SA 
male  

SA male 
< 60 yrs 

SA male 
60+ yrs 

SA female  SA female 
<60 yrs 

SA female 
60+ yrs 

SBP (mmHg) 131 131 131 131 131 131 131 

HbA1c (%) 7.3  7.3 7.2  7.6 7.3  7.2  7.6  

% Smoker   8.6  13.8  14.4  7.4  3.6  3.2  1.7  

% PVD  0.7 0.9 0.3 2.0 0.4 0.4 0.7 

% A-fib  1.0 1.0 1.1 1.0 1.1 0.8 1.4 

History IHD 16.6 18.4 13.6 27.2 14.3 10.2 19.2 

History MI 20.4 21.9 17.1 30.7 18.6 14.9 22.8 

History CHF 4.0 4.3 2.1 8.4 3.6 1.2 6.4 

History Stroke 2.8 3.3 0.8 7.9 2.1 0.4 4.1 

History Amp 0.5 1.0 0.0 1.0 1.0 0.0 0.5 

History blind 0.9 1.4 1.1 2.0 0.2 0.0 0.9 

History Renal  1.5 2.1 0.2 3.0 0.8 0.4 1.4 
*SE input into the ODEM to generate a simulated population has not been included in the table 
SA = South Asian; DofD = duration of diabetes; BMI = body mass index; TC = total cholesterol; HDL = high density lipoprotein; SBP = systolic 
blood pressure; HbA1c = glycated hemoglobin; PVD = peripheral vascular disease; A-fib = atrial fibrillation; IHD = ischaemic heart disease; MI = 
myocardial infarction; CHF = congestive heart failure; Amp = amputation; Blind = blindness in one eye 
 

4.2.5 Design of the simulation  

In addition to the effort to identify appropriate baseline input parameters for the external validation, it also 

required the selection of the number of individuals to include in each simulation, the number of iterations on each 

individual in the cohort, and the number of cycles (years) to run the simulation.  Therefore, each simulation was 

based on creating a virtual cohort whose individual characteristics varied to reflect the baseline input parameters 

for each cohort. The baseline patient characteristics for continuous variables including age, DofD, height and 

weight, TC, HDL, SBP and HbA1c were randomly selected from a distribution based on the mean, SD, minimum and 

maximum values that were input into the ODEM. The baseline input variables to determine whether an individual 

had a pre-existing risk factor such as A-fib, PVD, smoking or history of a vascular event were identified from a 

random number generator that assigned a discrete number (0 or 1) based on whether the random value exceeded 

the cohort mean. The model simulation was designed to utilize the probabilistic distribution and the progression of 

TVRF’s functions to calculate the cumulative incidence of vascular events in 1000 individuals run through ten 

iterations over ten years, to equal 10,000 individual micro simulations. This external validation exercise focused on 

comparing the diabetes related vascular events predicted by the ODEM’s risk equations and did not include any 

assessment of cost or QALY’s in BC’s population.  

 
4.2.6 Correlation and statistical analysis 

The predicted cumulative incidence of diabetes related events from the ODEM simulation was compared against 

the observed incidence of events from the aggregated BC diabetes results for each cohort (Tables 16 to 19). The 

objective measures used to assess the accuracy of the ODEM predicted events were the coefficient of 

determination (R
2
) and whether the predicted incidence were under, within or overestimated versus the mean and 

95% CI of observed data as a measure of the statistical significance of the output. A goodness of fit measure of R
2
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above 0.49 was considered as the threshold to assess whether the validation reflects a correlation between 

predicted and observed events at 10 years. The R
2
 for each cohort was then complemented by a correlation plot to 

provide a further visual assessment of the absolute cumulative incidence of each vascular outcome and how 

closely they correlated with the BC diabetes data. The 95% CI of the observed data was provided as part of the 

aggregate results from the BC cohorts similar to the approach used in the validation of the UKPDS-OM1.  The use 

of MAPE was not incorporated into the comparison of the 10 year cumulative incidence of predicted versus 

observed data due to the wide skewing of the output measures when assessing low volume data such as the 

incidence of ESRD and blindness. Other measures such as RMSPE, 2 sided T-test and C statistic were not included 

based on their infrequent use in external validations of T2DM models. The log rank test (X2) could not be 

considered as the data provided was not sufficient enough to create a survival curve of the events over time that is 

required for this measure. 

 

4.3 Results 

The external validation results of the ODEM simulation for the general population were first completed and 

assessed and then followed by a similar approach by cohort for the SA population. The analysis included each sub 

cohort and a separate simulation based on presence or absence of previous diabetes related events, gender and 

age. This approach was taken as it provided an in-depth evaluation of the generalizability of the ODEM for use in 

CEA of a diverse, real world BC population with T2DM.    

 

4.3.1 General population cohort 

This cohort represented a full mix of people with T2DM in the BC population regardless of gender, age or ethnic 

descents in adults aged 40 and over. The results in this cohort were therefore the considered the most relevant for 

decision makers as it represents the T2DM population of interest for an economic evaluation T2DM interventions. 

The simulation was first run only for those who were identified as having no previous history of events which 

showed the ODEM predicted incidence of events were equal to or higher than the incidence of all observed 

vascular events with the exception of IHD (Figure 2a, Table 16). The correlation of determination in this pre-event 

group was positive and resulted in a R
2
 of 0.62 and the estimated events for stroke and ESRD falling within the 

statistical bounds of the 95% CI of the actual events. Of note, the occurrence of blindness estimated by the ODEM 

was more than 7 fold higher than actual in the overall population while all other outcomes were modestly above 

or below the observed rate. Considering blindness is included as an indirect coefficient in the ODEM risk equations 

for ESRD, this could in theory have indirectly increased the predicted incidence of ESRD, however the internal 

validation found that these indirect coefficients had little impact on the predicted rate of events in a ten year 

simulation. Similar to the finding of the internal validation, the ten year time span for this simulation may have 

been too short to allow the increase in blindness to result in an increase in ESRD.  
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Considering that any real world T2DM population is likely to include those who have experienced a diabetes 

related event, a further simulation was done for the general cohort that combined results for those who were pre 

and post-event. These observed results were only available for comparing the incidence of three of the vascular 

events namely MI, stroke and ESRD (Figure 2b, Table 17). In this combined pre and post-event cohort the ODEM 

predicted incidence of events were highly correlated with an R
2
 at 0.9997 and all three outcomes predicted within 

the 95% CI range of the observed events. Upon further investigation the increased correlation was not due to 

changes in the values from the predicted incidence of events in ODEM but due to an increase in the observed 

incidence of events in the BC results. These results support the use of the ODEM as a model for consideration for 

future economic evaluations in a general BC T2DM population that include a mix of individuals with a history of 

T2DM related complications.  

 
Figure 2: General cohort: Plot of the cumulative incidence (%) of vascular events, predicted versus observed  
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4.3.1.1 General population sub-cohorts by gender 

The next step in the external validation was to run simulations by gender to determine if the female coefficient in 

the ODEM risk equation influenced the models predictive performance. This simulation included all vascular 

outcomes however only IHD, MI and stroke included a specific coefficient to influence outcomes for a female 

cohort. Therefore, any differences in the predicted incidence of events by gender could have been either due to 

the gender coefficient in the risk equation or differences in the female versus male baseline risk factors. A look at 

the results in the pre event male cohort showed a similar overall trend as the general population with the ODEM 

again over estimating the incidence of MI, CHF and blindness and under estimating the incidence of IHD (Figure 3a, 

Table 18). As with the general population the incidence of stroke and ESRD were within the 95% statistical bounds 

of the observed rate for the male cohort with the R
2
 improving to 0.71. The results for the pre event female cohort 

resulted in a similar trend for each of the six outcomes with a noted improvement in the estimated versus 
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observed outcomes for MI. This resulted in the MI, as well as stroke and ESRD, also falling within the 95% statistical 

bounds of the observed rate for female (Figure 3b, Table 19). The ODEM again underestimated the predicted 

incidence of IHD for the female cohort however it moved closer to the lower bound of the 95% CI of the observed 

rate.  While the predicted incidence of MI and IHD improved in the female versus the male cohort, the ODEM over-

estimation of the incidence for CHF and blindness for females was greater than in males which resulted in an 

overall decrease in the R
2
 to 0.45. Considering there was not a coefficient for female gender in the risk equations 

for CHF and blindness, the greater over estimation of predicted events must have a result of the lower incidence of 

observed event in the aggregated BC results. Overall, the separation of the cohorts by gender did not directionally 

change the results of the predicted versus observed outcomes but did impact the magnitude of these differences 

based on gender for the vascular events of MI, IHD, CHF and blindness. 

 

Figure 3: General cohort, by gender (pre-event): Plot of the cumulative incidence (%) of vascular events, 
predicted versus observed      
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Next, the proportion of individuals identified as post-event were once again included in the baseline input 

parameters for the male and female cohorts and simulated in the ODEM. The results for these two gender specific 

cohorts of a mixed pre and post event were consistent, and showed that the ODEM predicted and observed rate 

for MI, stroke and ESRD were again highly correlated with an R
2
 above 0.99 in both the male and female plots 

(Figure 4a and 4b). Furthermore, statistically speaking, all of the predicted outcome measures fell within the 95% 

CI of the actual incidence in both cohorts with the exception of MI in the female cohort where the model slightly 

underestimated the observed events (Table 20 and 21). The ODEM demonstrated a high predictive ability of the 10 

year incidence of MI, stroke and ESRD in both men and women when compared to the results in a BC T2DM 

population that included those with a history of vascular events in the baseline data. 
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Figure 4: General cohort, by gender (pre and post -event): Plot of the cumulative incidence (%) of vascular 
events, predicted versus observed 
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4.3.1.2 General population gender sub-cohorts by age 

To assess the influence of age on the predictive ability of the ODEM the male and female gender cohorts were 

further divided into those under 60 years and another 60 years plus. The baseline input variables were adjusted to 

reflect differences in age, DofD, baseline HbA1c and a percent of smokers in the age cohorts by gender. The results 

of these simulations were insightful and demonstrated that both the predicted and observed results appropriately 

reflected an age dependant difference in the rate of vascular complications (Figure 5a and b). As expected the 

younger cohorts had fewer vascular events than the older cohort in both the predicted and observed data. This 

demonstrated the responsiveness of the ODEM to the age and DofD variables that will become more relevant 

when conducting future CEA in an aging population. It was also clear that the over estimation of the predicted rate 

of events from the ODEM for MI, CHF and blindness was essentially a result of the high predicted rate of events in 

the age 60 years plus cohort for both genders, while the under 60 age results were close to, or within, the 95% CI 

range of observed events for MI, CHF and blindness (Table 18 and 19). Interestingly, an older age at baseline did 

not result in an over estimation of the predicted versus observed outcomes for IHD, stroke or ESRD.  As previously 

outlined, the risk equations for vascular events in the ODEM did not include coefficients for current age or the 

DofD but only included the age at the diagnosis of diabetes. The coefficient for current age was however used in 

the equations which calculated the changes in time varying risk factors of HbA1c and SBP. It can therefore be 

determined that the higher predicted rate of vascular events in the older age cohort was likely a result of 

increasing HbA1c and SBP with older age and the longer DofD. This was an assumption in the ODEM methods 

based on the data from the UKPDS RCT on the natural progression of T2DM over time.(40) Of the TVRFs in the 

ODEM, only HbA1c was included in all of the risk equations for MI, CHF and blindness while SBP was included in 

the calculation of MI and CHF. The coefficients of the progression of HbA1c, SBP, TC and HDL should be validated in 

the ODEM to ensure these are reflective of the real world changes with age and the DofD in the population.  
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Figure 5: General cohort, by gender and age (pre-event): Plot of the cumulative incidence (%) of vascular events, 

predicted versus observed (with 95% CI)  
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As a final assessment of the ODEM for predicting the incidence events in the general population the baseline input 

variables were once again revised, using the proportion of the T2DM population with history of complications in 

the aggregated results of the BC data, to include those who were post event at baseline. Once again, the 

simulation of a cohort with the mixed history events in the ODEM resulted in a high correlation between the 

predicted and actual incidence of MI, stroke and ESRD (Figures 6a and 6b). Furthermore, the over estimation by 

the ODEM in the 60 plus age cohort that was apparent in the pre event cohort were no longer evident and all 

predicted outcomes fell within the statistical range of the observed incidence of events (Table 20 and 21). This 

higher correlation of the ODEM and BC data, particularly in these 60 plus age cohorts, was mainly as a result of an 

increase in the rate of observed events in individuals who have a history of a vascular event and was not due to 

major changes in the absolute predicted rate of events in the ODEM output.  

 
Figure 6: General cohort, by gender and age (pre and post-event): Plot of the cumulative incidence (%) of 
vascular events, predicted versus observed (with 95% CI)   
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Table 16: Comparison of the cumulative incidence of vascular events from observed (BC data with 95% CI) versus 
the predicted (ODEM) in a pre-event general cohort   

Type of 
vascular event 
 

Observed 
incidence  
(BC data) 

Lower bound of 
the 95% CI 
 

Upper bound of 
the 95% CI 

Predicted 
incidence 
(ODEM) 

Predicted versus 
observed 

IHD 0.080 0.066  0.098 0.053 under 

MI 0.104 0.088 0.120 0.132 over 

CHF 0.032 
 

0.024 0.044 0.066 over 

Stroke 0.045 0.034 0.058 0.052 within 

Blindness 0.005 0.002 0.010 0.038 over 

ESRD 0.008 0.004 0.015 0.009 within 

 
Table 17: Comparison of the cumulative incidence of vascular events from observed (BC data with 95% CI) versus 
the predicted (ODEM) in a post-event general cohort   

Type of 
vascular 
event 
 

Observed 
incidence  
(BC data) 

Lower bound of 
the 95% CI 
 

Upper bound of 
the 95% CI 

Predicted 
incidence 
(ODEM) 

Predicted 
versus 
observed* 

MI 0.155 0.128 0.188 0.142 within 

Stroke 0.053 0.038 0.074 0.047 within 

ESRD 0.008 0.004 0.015 0.008 within 

 
Table 18: Comparison of the cumulative incidence of vascular events from observed (BC data with 95% CI) versus 
the predicted (ODEM) in males by age for pre-event only   

Type of 
vascular event 

Male cohort 
by age 

Observed 
incidence  
(BC data) 

Lower bound 
of the 95% CI 
 

Upper bound 
of the 95% CI 

Predicted 
incidence 
(ODEM) 

Predicted 
versus 
observed* 

IHD All Age 0.098 0.083 0.117 0.058 under 

< 60 0.098 0.084  0.114 0.048 under 

60+ 0.104 0.087 0.126 0.073 under 

MI All Age 0.128 0.110 0.150 0.168 over 

< 60 0.114 0.099 0.132 0.096 under 

60+ 0.151 0.129 0.176 0.226 over 

CHF All age 0.031 0.023 0.043 0.062 over 

< 60 0.015 0.01 0.022 0.019 within 

60+ 0.052 0.039 0.068 0.088 over 

Stroke All Age 0.047 0.037 0.060 0.055 within 

< 60 0.024 0.017 0.032 0.021 within 

60+ 0.076 0.060 0.095 0.080 within 

Blindness All Age 0.006 0.003 0.011 0.035 over 

< 60 0.008 0.005 0.013 0.016 over 

60+ 0.004 0.002 0.010 0.046 over 

ESRD All Age 0.010 0.006 0.017 0.008 within 

< 60 0.008 0.005 0.014 0.007 within 

60+ 0.012 0.007  0.021 0.010 within 
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Table 19: Comparison of the cumulative incidence of vascular events from observed (BC data with 95% CI) versus 
the predicted (ODEM) in females by age for pre-event only 

Type of 
vascular event 

Female 
cohort by 
age 

Observed 
incidence  
(BC data) 

Lower bound 
of the 95% CI 
 

Upper bound 
of the 95% CI 

Predicted 
incidence 
(ODEM) 

Predicted 
versus 
Observed* 

IHD All Age 0.059 0.047 0.075 0.041 under 

< 60 0.053 0.042  0.067 0.034 under 

60+ 0.067 0.053   0.085 0.048 under 

MI All Age 0.076 0.061  0.095 0.086 within 

< 60 0.057 0.045  0.072 0.044 under 

60+ 0.096 0.079  0.118 0.119 over 

CHF All age 0.034 0.025  0.046 0.075 over 

< 60 0.014 0.009  0.022 0.018 within 

60+ 0.053 0.040  0.069 0.103 over 

Stroke All Age 0.042 0.032  0.056 0.046 within 

< 60 0.019 0.013  0.028 0.013 within 

60+ 0.064 0.050  0.083 0.059 within 

Blindness All Age 0.003 0.001  0.008 0.042 over 

< 60 0.004 0.001  0.009 0.012 over 

60+ 0.003 0.001  0.008 0.056 over 

ESRD All Age 0.006 0.003  0.013 0.008 within 

< 60 0.006 0.003  0.012 0.008 within 

60+ 0.006 0.003  0.014 0.011 within 

 
Table 20: Comparison of the cumulative incidence (%) of vascular events from observed (BC data with 95% CI) 
versus the predicted (ODEM) in males by age for combined pre and post-event 

Type of 
vascular event 

Male cohort 
by age 

Observed 
incidence  
(BC data) 

Lower 
bound of the 
95% CI 
 

Upper 
bound of the 
95% CI 

Predicted 
incidence 
(ODEM) 

Predicted 
versus 
Observed* 

MI All Age 0.190 0.160 0.227 0.175 within 

< 60 0.095 0.080 0.114 0.100 within 

60+ 0.226 0.191 0.270 0.201 within 

Stroke All Age 0.055 0.040 0.076 0.049 within 

< 60 0.014 0.010 0.021 0.024 over 

60+ 0.087 0.065 0.119 0.070 within 

ESRD All Age 0.009 0.005 0.016 0.008 within 

< 60 0.010 0.003 0.008 0.008 within 

60+ 0.011 0.007 0.020 0.009 within 
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Table 21: Comparison of the cumulative incidence of vascular events from observed (BC data with 95% CI) versus 
the predicted (ODEM) in females by age for combined pre and post-event  

Type of 
vascular event 

Female 
cohort by age 

Observed 
incidence  
(BC data) 

Lower 
bound of the 
95% CI 
 

Upper 
bound of the 
95% CI 

Predicted 
incidence 
(ODEM) 

Predicted 
versus 
Observed* 

MI All Ages 0.118 0.094 0.151 0.091 under 

< 60 0.041 0.031 0.054 0.043 within 

60+ 0.146 0.117 0.184 0.123 within 

Stroke All Ages 0.051 0.037 0.072 0.039 within 

< 60 0.018 0.012 0.030 0.011 under 

60+ 0.076 0.055 0.104 0.057 within 

ESRD All Ages 0.005 0.002 0.011 0.011 within 

< 60 0.006 0.003 0.012 0.010 within 

60+ 0.006 0.002 0.012 0.010 within 

*Captures whether the ODEM underestimated, overestimated or were within the 95% CI (confidence interval) of the observed BC data. IHD = 

ischemic heart disease; MI = myocardial infarction; CHF = congestive heart failure; ESRD = end stage renal disease. 
 
4.3.2 South Asian cohort 

The SA population had a differing epidemiology, level of baseline risk factors and rate of vascular events in T2DM 

and therefore it was not known whether the predicted outcomes from the ODEM were applicable to the observed 

incidence in a SA population. First, the BC diabetes aggregated results of observed events showed that those of SA 

descent had higher rates of IHD, MI and blindness however a lower rate of CHF and stroke compared to the 

general population (Table 8 and 9). It is important to note that, while the ODEM was designed to allow a baseline 

input variable for ethnicity, the coefficient in the risk equations used to identify an individual as SA was the same 

coefficient used for a Caucasian cohort.  Therefore, as shown in tables 14 and 15, the differences in predicted 

outcomes for the SA cohort in the ODEM simulation were due to differences in the baseline input parameters for 

the SA cohorts such as a younger mean age (58 years versus 63 years), longer duration of T2DM (14.3 versus 9.7) 

and lower smoking rates (8.6% versus 24.5%). This meant that the increased correlation of the ODEM’s predicted 

outcomes versus actual events was not a reflection of a coefficient for SA ethnicity in the risk equations.  

 

The predicted outcomes from the ODEM in the SA cohort showed an increased correlation with an R
2
 of 0.77 with 

the predicted rate of vascular events were within the statistical range of the observed rate with the exception of 

IHD (Figure 7a, Table 22). The ODEM’s lower predicted incidence of MI and stroke in the SA cohort was not 

unexpected based on the lower proportion of smokers versus the general population and the coefficient for 

smoking in the ODEM risk equations for these two vascular complications.  
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Figure 7: South Asian cohort: Plot of the cumulative incidence (%) of vascular events, predicted versus observed 
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Similar to what was demonstrated in the general cohort, the addition of individuals to the SA cohort who were 

post event at baseline increased the correlation between the predicted and observed outcomes for MI, stroke and 

ESRD to an R
2
 above 0.98 (Figure 7b). In the SA cohort, all three measures were within the wider 95% statistical 

range of the observed rate of vascular events (Table 23). There was a noticeable decrease in the predicted 

incidence of MI in the SA simulation compared to the general cohort which was most likely reflected the reduced 

smoking rate in the baseline input parameters. This higher correlation of predicted and observed events in the SA 

cohorts was considered a promising indication for the use of the ODEM in a BC T2DM population which includes 

people of SA descent and a history of T2DM related events. 

 

4.3.2.1 South Asian sub-cohorts by gender 

Generally the predicted outcomes from the ODEM were consistent for both male and female cohorts (Figure 8a 

and 8b). The simulation slightly overestimated the incidence of CHF, stroke and blindness while it underestimated 

the incidence of IHD, in particular in males. The predicted rate of MI in the male and female SA cohorts were  much 

more closely correlated with the observed rate and both were well within the 95% CI statistical range of observed 

events (Table 24 and 25). Overall, the enhanced correlation between predicted and observed in the male SA 

cohort, with an R
2
 of 0.82, was due to a combination of a higher observed rate of IHD, MI and blindness in the SA 

cohorts and a lower predicted rate from the ODEM. The enhanced correlation in the SA female cohort (R
2
 of 0.69), 

versus the general female cohort (R
2
 of 0.45), was a reflection of the lower predicted rate of CHF and blindness 

from the ODEM simulation in SA women compared to the general female cohort while the observed rate remained 

similar. This enhanced correlation in the female SA cohort was therefore attributed to the longer DofD and a 

younger mean age used in the risk equations. 
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Figure 8: South Asian cohort, by gender (pre-event): Plot of the cumulative incidence (%) of vascular events, 
predicted versus observed       
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As observed in the general cohort simulation, adding those with a history of pre-existing events by gender into the 

simulation once again resulted in a high correlation of the predicted versus observed rate of MI, CHF and ESRD for 

both the male and female, with the predicted measures of all vascular events being within the 95% CI statistical 

range set by the BC results (Figure 9a and 9b, Table 23 and 24). There is a noticeable decrease in the ODEM’s 

predicted rate of MI in the SA cohorts compared to the general cohorts which again was determined to be due to 

lower estimated smoking rate and the younger mean age of SA with T2DM. While there is a slight increase in the 

observed incidence of MI in the aggregated BC results for SA males, the difference in the predicted and observed 

smoking rate and younger mean age at diagnosis of T2DM in the baseline input parameters.   

 

Figure 9: South Asian cohort, by gender (pre and post -event): Plot of the cumulative incidence (%) of vascular 
events, predicted versus observed        
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4.3.2.2 South Asian sub-cohorts by age 

The next analysis compared the ODEM predicted versus observed events in the SA gender based sub cohorts 

separated by age, starting with only those with no history of a T2DM related complication (Figures 10a and 10b).  

The results demonstrated that there were few statistical outliers for any of the vascular events in the SA sub 

cohorts except for the under estimation of IHD in the SA males (Table 24 and 25). Furthermore, the impact of age 

in the predicted rate of events in the general population age cohorts that resulted in large over-estimation of the 

rate of MI, CHF and blindness was not demonstrated in the results of the SA cohort simulation. By contrast, the 

relative impact of older age in the SA cohorts for all predicted vascular events closely mirrored the relative changes 

in the observed rate of events. This difference in these age results were in part due to an increase in the actual 

event rates of MI and blindness combined with a lower predicted event rate for MI, CHF and blindness.  These 

results were showed there was a strong correlation in the ODEM predicted versus observed events by gender and 

age for a SA population in BC even when there was no history of T2DM related complications at baseline. 

 

 Figure 10: South Asian cohort, by gender and age (pre-event): Plot of the cumulative incidence (%) of vascular 
events, predicted versus observed (with 95% CI)      
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A final simulation included those with a history of T2DM events by gender and age demonstrated similar results as 

the SA cohort of only pre event comparison (Figure 11a and 11b). The predicted events for MI, stroke and ESRD 

were highly correlated with the observed rate and within the statistical range set by the 95% CI of the BC results. 

The ODEM simulation once again showed the model risk equations were responsive to changes to the baseline 

input variables and the output by age and gender closely mirrored the overall and relative rate of events from the 

BC real world results (Tables 26 and 27).       

 

 

 



62 

 

Figure 11: South Asian cohort, by gender and age (pre and post-event): Plot of the cumulative incidence (%) of 
vascular events, predicted versus observed (with 95% CI)  
 

    

M
I 

M
I <

6 0

M
I 6

0 +

S
tr

o
k e

S
tr

o
k e  <

6 0

S
tr

o
k e  6

0 +

E
S

R
D

E
S

R
D

 <
6 0

E
S

R
D

 6
0 +

0

2 0

4 0

6 0

1
0

 Y
e

a
r

C
u

m
u

la
ti

v
e

 I
n

c
id

e
n

c
e

 (
%

)

P re d ic te d O b s e rv e d  (9 5 %  C I)

a ) S A  m a le

     

M
I 

M
I <

6 0

M
I 6

0 +

S
tr

o
k e

S
tr

o
k e  <

6 0

S
tr

o
k e  6

0 +

E
S

R
D

E
S

R
D

 <
6 0

E
S

R
D

 6
0 +

0

2 0

4 0

6 0

1
0

 Y
e

a
r

C
u

m
u

la
ti

v
e

 I
n

c
id

e
n

c
e

 (
%

)

P re d ic te d O b s e rv e d  (9 5 %  C I)

b )  S A  fe m a le

 

Table 22: Comparison of the cumulative incidence of vascular events from observed (BC data with 95% CI) versus 

the predicted (ODEM) in a SA population pre-event cohort   

Type of vascular 
event 
 

Observed 
incidence  
(BC data) 

Lower bound 
of the 95% CI 
 

Upper bound 
of the 95% CI 

Predicted 
incidence 
(ODEM) 

Predicted 
versus 
Observed* 

IHD 0.093 0.053 0.182 0.051 under 

MI 0.109 0.063 0.200 0.102 within 

CHF 0.025 0.007 0.090 0.045 within 

Stroke 0.023 0.007 0.082 0.032 within 

Blindness 0.012 0.003 0.055 0.024 within 

ESRD 0.009 0.002 0.044 0.011 within 

 
 
Table 23: Comparison of the cumulative incidence of vascular events from observed (BC data with 95% CI) versus 
the predicted (ODEM) in a SA population post-event cohort   

Type of 
vascular event 
 

Observed 
incidence  
(BC data) 

Lower bound 
of the 95% CI 
 

Upper bound 
of the 95% CI 

Predicted 
incidence 
(ODEM) 

Predicted 
versus 
Observed* 

MI 0.151 0.079 0.318 0.114 within 

Stroke 0.030 0.008 0.124 0.037 within 

ESRD 0.009 0.002 0.042 0.011 within 
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Table 24: Comparison of the cumulative incidence of vascular events from observed (BC data with 95% CI) versus 
the predicted (ODEM) in SA males by age for pre-event only   

Type of events SA male 
cohort by 
age 

Observed 
incidence  
(BC data) 

Lower 
bound of 
the 95% CI 
 

Upper 
bound of 
the 95% CI 

Predicted 
incidence 
(ODEM) 

Predicted 
versus 
observed* 

IHD All Age 0.121 0.073 0.222 0.064 under 

< 60 0.104 0.064 0.170 0.052 under 

60+ 0.172 0.100 0.369 0.078 under 

MI All Age 0.148 0.091 0.255 0.135 within 

< 60 0.125 0.080 0.195 0.096 within 

60+ 0.220 0.128 0.429 0.197 within 

CHF All age 0.020 0.006 0.074 0.036 within 

< 60 0.009 0.003 0.029 0.016 
 

within 

60+ 0.047 0.013 0.192 0.060 within 

Stroke All Age 0.022 0.007 0.077 0.040 within 

< 60 0.013 0.003 0.050 0.017 within 

60+ 0.048 0.016 0.149 0.060 within 

Blindness All Age 0.015 0.005 0.058 0.024 within 

< 60 0.019 0.007 0.060 0.012 within 

60+ 0.008 0.001 0.055 0.030 within 

ESRD All Age 0.011 0.002 0.050 0.010 within 

< 60 0.012 0.003 0.029 0.010 within 

60+ 0.008 0.001 0.055 0.015 within 

 
Table 25 : Comparison of the cumulative incidence of vascular events from observed (BC data with 95% CI) 
versus the predicted (ODEM) in SA females by age for pre-event only   

Type of events SA female 
cohort by 
age 

Observed 
incidence  
(BC data) 

Lower 
bound of 
the 95% CI 
 

Upper 
bound of 
the 95% CI 

Predicted 
incidence 
(ODEM) 

Predicted 
versus 
Observed* 

IHD All Age 0.063 0.031 0.137 0.041 within 

< 60  0.044 0.020 0.105 0.035 within 

60+ 0.092 0.048 0.186 0.052 within 

MI All Age 0.066 0.033 0.141 0.072 within 

< 60 0.044 0.020 0.105 0.042 within 

60+ 0.098 0.052 0.195 0.096 within 

CHF All age 0.030 0.009 0.108 0.046 within 

< 60 0.022 0.007 0.077 0.017 within 

60+ 0.042 0.013 0.155 0.068 within 

Stroke All Age 0.025 0.008 0.087 0.028 within 

< 60 0.004 0.001 0.031 0.012 within 

60+ 0.054 0.018 0.169 0.039 within 

Blindness All Age 0.007 0.001 0.053 0.026 within 

< 60 0.009 0.001 0.061 0.013 within 

60+ 0.006 0.001 0.042 0.040 within 

ESRD All Age 0.007 0.002 0.037 0.014 within 

< 60 0.004 0.001 0.031 0.010 within 

60+ 0.012 0.003 0.047 0.013 within 
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Table 26: Comparison of the cumulative incidence of vascular events from observed (BC data with 95% CI) versus 
the predicted (ODEM) in SA males by age for combined pre and post-event 

Type of events SA male 
cohort by 
age 

Observed 
incidence  
(BC data) 

Lower 
bound of 
the 95% CI 
 

Upper 
bound of 
the 95% CI 

Predicted 
incidence 
(ODEM) 

Predicted 
versus 
observed* 

MI All Age 0.199 0.114 0.384 0.137 within 

< 60 0.129 0.077 0.224 0.088 within 

60+ 0.273 0.147 0.589 0.190 within 

Stroke All Age 0.030 0.009 0.118 0.038 within 

< 60 0.0245 0.0025 0.0515 0.019 within 

60+ 0.0668 0.0203 0.2340 0.056 within 

ESRD All Age 0.010 0.002 0.047 0.010 within 

< 60 0.0111 0.0022 0.0355 0.011 within 

60+ 0.0067 0.0009 0.0478 0.012 within 

 
Table 27: Comparison of the cumulative incidence of vascular events from observed (BC data with 95% CI) versus 
the predicted (ODEM) in SA females by age for combined pre and post-event 

Type of events SA female 
cohort by 
age 

Observed 
incidence  
(BC data) 

Lower 
bound of 
the 95% CI 
 

Upper 
bound of 
the 95% CI 

Predicted 
incidence 
(ODEM) 

Predicted 
versus 
observed* 

MI All Age 0.098 0.0422 0.2590 0.075 within 

< 60 0.042 0.0175 0.1208 0.042 within 

60+ 0.137 0.0604 0.3459 0.100 within 

Stroke All Age 0.030 0.0083 0.1311 0.030 within 

< 60 0.004 0.0006 0.0298 0.014 within 

60+ 0.064 0.0183 0.2617 0.042 within 

ESRD All Age 0.007 0.0015 0.0362 0.012 within 

< 60 0.004 0.0006 0.0304 0.010 within 

60+ 0.011 0.0008 0.0396 0.013 within 

*Captures whether the ODEM underestimated, overestimated, or were within the 95% CI (confidence interval) of the observed BC data. IHD = 

ischemic heart disease; MI = myocardial infarction; CHF = congestive heart failure; ESRD = end stage renal disease. 
 
4.3.3 Uncertainty analysis 

The ODEM was selected in part due to the ability to incorporate probabilistic analysis in the economic evaluations 

to assist measures of uncertainty and enable creation of relevant model output. The components of the ODEM 

which utilize PSA are treatment effects, QALY and costs which were not assessed in this external validation 

exercise. This research focused on assessing the credibility of the risk equations and predicted event rates from the 

ODEM which do not utilize probabilistic distributions or PSA. Therefore PSA output while an important component 

in an economic evaluation could not be utilized in this sensitivity analysis. 

 

To assess the influence of estimated baseline input parameters on the predicted incidence of T2DM related events 

a deterministic sensitivity analysis was completed on the baseline input variables included in the risk equations for 

the vascular events that were under or overestimated by the ODEM simulation. This DSA was therefore based on 
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adjusting the baseline inputs for BMI, smoking rate and level of HbA1c and the duration of diabetes to reflect 

possible alternative input values for the general, pre-event BC cohort with T2DM in the mid 1990’s.  

 

The BMI was a coefficient in the ODEM’s risk equation for estimating CHF which was a vascular event that was 

overestimated in the model simulations. The baseline input for BMI were estimated using self-reported measures 

in the 1996 NPHS survey in the general Canadian adult population. To adjust the baseline BMI to reflect the higher 

measure in those with T2DM the estimate from the survey was increased by 4 kg/m
2
 based on the literature. There 

is evidence that BMI may be underestimated in self-reported measures, however Canadian data may overestimate 

the actual BMI in a BC T2DM population due to evidence of lower provincial BMI rates. Therefore a DSA analysis 

adjusted the mean BMI up or down by 3 kg/m
2 

(Table 28). As anticipated from the risk equations the changes to 

the baseline BMI was correlated with changes in the predicted incidence of CHF. If the BMI for the general cohort 

was in actuality lower than the BMI estimated in the ODEM simulation the predicted incidence of CHF would 

decrease from 0.66 to 0.54 however this was still an overestimation of CHF versus the observed incidence in the 

BC data of 0.032 (95% CI of 0.024 - 0.044) 

 
Table 28: Sensitivity analysis for BMI (kg/m

2)
 

ODEM output  by 
event 

@ BMI of 29  @ BMI of 26 @ BMI of 32 Correlation 

CHF 0.066 0.054 0.083 yes 
CHF = congestive heart failure 

 

Smoking is a coefficient in the risk equation for predicting MI in the ODEM which was a vascular event that was 

consistently overestimated in the model simulation. The smoking rate used as baseline input parameters in the BC 

population was also estimated from the NPHS survey in 1996 and captured the national smoking rate in the adult 

population. The baseline smoking rate was not adjusted to reflect the potential lower smoking rate in BC 

population due to a lack of BC data identified on smoking in adults from the 1990’s. In addition the smoking rates 

in Canada dropped significantly for both genders from the early 1990’s into the mid 2000’s. There is a risk equation 

in the ODEM to reflect a reduced smoking rate with increasing age and increasing duration of T2DM however the 

link to this time varying smoking rate in the risk equations for stroke could not be located in the ODEM. Based on 

this, it is probable that the smoking rate in the BC population with T2DM in the 1990’s was actually lower than the 

baseline rate input into the ODEM simulation and did not decrease over time in the simulation. A sensitivity 

analysis was done which adjusted the smoking rate up or down by an absolute rate of 10% to assess the impact on 

the predicted incidence of MI (Table 29). Surprisingly the predicted incidence of MI did not decrease in response to 

the 15% smoking rate at baseline however it did increase with higher smoking rates of 36%. Therefore if the 

smoking rates in the BC population were in fact lower than estimated for the ODEM simulation it would not have 

resolved the over-estimation of MI versus the observed incidence in the BC data of 0.104 (95% CI of 0.088 to 

0.120). 
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Table 29: Sensitivity analysis for smoking rate 

ODEM output  by 
event 

@ base rate of 24.5% @ rate of 15% @ rate of 36% Correlation 

MI 0.132 0.134 0.148 mixed 
MI = myocardial infarction 

 

A time varying measure of T2DM control, HbA1c, was included as a coefficient in the risk equations used to 

estimate IHD, MI, CHF and blindness. The actual baseline measures of these TVRF’s were not available in the 

aggregated BC diabetes results and required extrapolation from Canadian primary care data in the early 2000’s. 

These data were anticipated to be a reasonable estimate of the HbA1c in the BC diabetes population in the mid 

1990’s, however due to selection bias of physicians well versed and motivated to control T2DM in their patients; it 

is possible that the measure of HbA1c in reality could have been higher. The HbA1c estimates from two Canadian 

primary care databases were used in this sensitivity analysis. One study showed a mean HbA1c in a primary care 

registry of 6.9% while another from an observational  Ontario dataset from 2000/01 had a mean HbA1c of 8.14% 

(Table 30).(41) This sensitivity analysis showed the changes in HbA1c positively correlated with the predicted 

incidence of IHD, MI, CHF and blindness and therefore further highlighted the importance of an accurate mean 

baseline HbA1c. Therefore, if the actual HbA1c levels in the BC T2DM population at baseline were lower than the 

mean HbA1c of 7.3% level used in the ODEM simulation the correlation of the predicted and observed events for 

MI, CHF and blindness from the ODEM would improve but would still not have been statistically within the 95% CI. 

  

Table 30: Sensitivity analysis for baseline HbA1c 

ODEM output  by 
event 

Base = 7.3% Lower = 6.9% Higher = 8.14% Correlation 

IHD 0.053 0.051 0.054 yes 

MI 0.132 0.132 0.143 yes 

CHF 0.066 0.060 0.071 yes 

Blind 0.038 0.034 0.039 yes 
IHD = ischemic heart disease; MI = myocardial infarction; CHF = congestive heart failure; Blind = blindness in one eye 

 
The DofD in the baseline input variables is directly linked to calculating the age in years at the diagnosis of diabetes 

and the current age used in the ODEM simulation. Therefore a change to one of these variables automatically 

influences the others. The internal validation exercise (Chapter 3) demonstrated that increasing the DofD 

decreased the estimated incidence of all T2DM related complications. Considering the duration of T2DM was 

estimated from Canadian population data using the prevalence and incidence by age it is possible that the mean 

estimated DofD (Table 12) differed from the actual mean duration in the BC population from the early 1990’s. To 

assess this, the mean DofD was adjusted up and down by 3 years, based on the differences seen between the 9.7 

year mean calculated for baseline versus the mean duration of 6 to 7.8 years in the Canadian primary care data 

used to capture HbA1c in the baseline and sensitivity analysis (Table 31).(87,88)  The longer DofD of 12.7 years 

reduced the predicted incidence of MI, CHF and blindness and put these results closer to the observed incidence of 
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events however this did not result in the predicted being within the 95% CI of the observed rate of MI, CHF or 

blindness. Therefore, if the mean duration in the BC T2DM data was longer than 9.7 years, the correlation of the 

predicted events from the ODEM and the observed events from the BC data would have improved but would still 

be within the statistical range. 

 

Table 31: Sensitivity analysis for duration of diabetes 

ODEM output  by 
event 

DofD = 9.7 years DofD = 6.7 years DofD – 12.7 years Correlation 

IHD 0.053 0.049  0.050  no 

MI 0.132 0.146  0.130  yes 

CHF 0.066 0.069  0.063  yes 

Blind 0.038 0.039  0.034  yes 
IHD = ischemic heart disease; MI = myocardial infarction; CHF = congestive heart failure; Blind = blindness in one eye 

 

The sensitivity analysis raised a number of insights when considering the results of this external validation. While 

the literature was searched to identify the most relevant data to estimate the baseline input variables it was likely 

that the actual baseline variables in the BC population in the 1990’s did differ somewhat from these estimated 

baseline values. Considering the complexity of the ODEM methods, input variables and risk equations it was 

possible that changes to one variable at a time in the sensitivity analysis would not have a large impact on the 

predicted results. Therefore a multivariate sensitivity analysis which adjusted all three of the estimated baseline 

BMI, HbA1c and DofD input parameters to determine if all baseline inputs adjusted at once would reduce the over 

estimation of the predicted incidence of MI, CHF, stroke and blindness. This multivariate sensitivity analysis 

showed that the correlation of the predicted and observed measures of MI, CHF and blindness improved to the 

point that the predicted incidence of MI was no longer overestimated but within the statistical range of the BC 

data (Table 32). This multivariate sensitivity analysis supported the need for an external validation to be ideally 

performed with real world data which includes the actual baseline input parameters from the population in which 

the observed rate of T2DM vascular events had been captured. 

 

Table 32: Multivariate DSA of three input parameters  

Type of Event:  
 

Observed 
incidence  
(BC data) 

Lower bound of 
the 95% CI 
 

Upper bound of 
the 95% CI 

Predicted 
incidence 
(ODEM) 

Multivariate  
DSA  
(ODEM) 

IHD 0.080 0.066  0.098 0.053 0.047 

MI 0.104 0.088 0.120 0.132 0.117 

CHF 0.032 
 

0.024 0.044 0.066 0.050 

Stroke 0.045 0.034 0.058 0.052 0.044 

Blindness 0.005 0.002 0.010 0.038 0.031 

ESRD 0.008 0.004 0.015 0.009 0.010 

IHD = ischemic heart disease; MI = myocardial infarction; CHF = congestive heart failure; Blind = blindness in one eye; ESRD = end stage renal 
disease 
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4.4 Discussion 

The external validation of the ODEM demonstrates a strong overall correlation of the predicted and observed rate 

of vascular events when including the overall total population of all individuals in the T2DM cohort. These results 

alone would provide researcher and decision makers with a high level of confidence in the model output for the 

purpose of an economic evaluation of T2DM in a BC population. It is important to recognize that the predicted 

output in cohorts that included individuals with a history of events at baseline would be more reflective of a 

diverse, real world BC population of people with T2DM. Additional positive outcomes highlighted in the validation 

results include the high predictive correlation of the absolute incidence of stroke and ESRD in all cohorts regardless 

of gender or age, as well as the predicted rate of MI and CHF in the younger age cohorts that is within, or close to 

within, the statistical range.  The model also was sensitive to gender and age inputs parameters that changed the 

relative rate of events between male and female, younger and older, in a way that mirrored the relative change in 

the observed rates from the BC results.  

 

Interestingly, a clear trend that led to the lower correlation in ODEM versus BC results was due almost solely to the 

over prediction of MI, CHF and blindness in the older age cohort.  This is an encouraging result of the external 

validation as it narrows the potential need for model calibration to a few potential risk variables and associated 

coefficients in the ODEMs risk equations. This trend toward an over estimation of vascular events has been noted 

in other external and cross validation studies in T2DM models which utilize the UKPDS risk equations. 

(36,42,49,50,52,63). This could be a reflection of improved treatment standards which, over a longer term of 

treatment, lead to a significant improvement in the rate of vascular events in an older cohort which may not be 

evident in the younger population. This theory is supported by an identified trend toward a lower rate of MI and 

the decreased age standardized mortality from heart disease and stroke, noted in data from the Canadian Institute 

for Health Information and Statistics Canada, with BC consistently showing it has the lowest rate in the country. As 

previously stated, this over prediction of events could also be due to the influence of time varying increases in 

metabolic measures of control which are not reflective of dynamic treatment programs and incremental 

interventions over time in the real world T2DM population. The use of progressive time varying risk factors in the 

ODEM should be validated upon the availability of a linked and longitudinal BC dataset which includes actual 

metabolic measures over time.  

 

In the validation studies of all of the T2DM reviewed there was no threshold of the measure of correlation defined, 

between predicted and observed events, for a model to be considered validated for use in the population of 

interest. However, if a correlation coefficient of 0.7 which calculates to an R
2
 of 0.49 was set as a threshold to 

determine a positive correlation, then the cohorts assessed in the ODEM by gender and ethnicity would exceed 

these requirements with the exception of the female only cohort with no previous history of events (R
2
 = 0.45). Of 
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note in this female cohort the predicted rate of MI was within the 95% CI of the observed data, which was an 

improvement compared to a similar male only cohort, however measure of correlation of the predicted versus 

observed events was lower in women due primarily to the over prediction in the rate of CHF.  

 

Finally, this inclusion of the SA cohorts was meant to provide greater insight on the predictive ability of the ODEM 

in an ethnic sub population that had evidence of a differing epidemiology, risk factors and progression of T2DM. 

There were some important differences noted in the baseline input parameters, including a younger mean age, 

longer duration of diabetes and lower smoking rate which would influence the predicted rate of events.  This 

external validation of the ODEM in the SA population was quite encouraging and somewhat surprisingly resulted in 

a higher correlation between the predicted and observed incidence of vascular events versus the general 

population (R
2
 of 0.77 versus 0.68 respectively). In the SA cohort the predicted incidence of all of the vascular 

events were within the statistical bounds of the observed BC data with the exception of an under estimation of IHD 

in SA males. A partial reason for the improvement in the correlation of the ODEM in the SA cohort was due to a 

higher incidence of IHD, MI and blindness and a decreased rate of CHF and stroke in the real world results for 

those of SA descent in BC. In summary, while the results of the validation in the SA cohorts should be interpreted 

with caution due to the reduced number of individuals and fewer absolute number of T2DM related events, the 

ODEM demonstrated the methods used in this model effectively incorporated the differing baseline input variables 

to predict the absolute and relative changes in vascular events in an SA population.     

 

Table 33: Summary of the external validation results by event, gender, ethnicity and age cohorts 

Cohort Coefficient of 

determination = R
2
 

Overestimated  

by the ODEM 

Underestimated  

by the ODEM 

# predicted  within 

95% CI of observed  

All pre event 0.68 MI, CHF, blindness IHD 2/6 

All - Pre and post 0.99 none none 3/3 

Male 0.71 MI, CHF, blindness IHD 2/6 

Female 0.45 CHF, blindness IHD 3/6 

SA – all pre 0.77 none IHD 5/6 

SA – all pre/post 0.99 none none 6/6 

Male under 60 N/A blindness IHD, MI 3/6 

Female under 60 N/A blindness IHD, MI 3/6 

Male 60+ N/A MI, CHF, blindness IHD 2/6 

Female 60+ N/A MI, CHF, blindness IHD 2/6 

SA = South Asian, MI = myocardial infarction, CHF = congestive heart failure, IHD = ischemic heart disease, N/A = not calculated 
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 Summary Chapter 5:

 

The growing prevalence of T2DM and its associated vascular complications has led to greater interest from 

decision makers on the role of economic evaluation to enhance decisions and the appropriate allocation of our 

finite health care resources. The development of credible and trusted CEA requires access to validated decision 

models to measure the incremental cost and effectiveness of new interventions versus an existing standard of 

care. There are multiple existing T2DM models available which meet the criteria for the comparative evaluation of 

T2DM interventions in Canada and researchers continue to revise their models to incorporate new evidence and to 

improve the functionality and validity of output. There is a trend toward developing models with the ability to run 

individual micro-simulation and probabilistic analysis to allow researchers to measure the joint uncertainty of 

model output. These models should be screened and selected based on their perspective, scope, methods and 

structure that are considered to be most suitable for the purpose of the economic evaluation. The availability of a 

validated model provides local decision makers with a valuable tool in their efforts to support a sustainable health 

system. 

 

The selection and internal validation of the ODEM demonstrates that this is a highly functional model that is 

sensitive to individual changes to the model input parameters. This internal validation exercise supports the use of 

risk equations in the ODEM as an effective method to capture a wide range of individual characteristics including 

time varying and pre-existing risk factors required for modelling a complex, chronic disease such as T2DM. While 

this internal validation increases the confidence in the functionality of the ODEM as a simulation tool it does not 

provide insight on how well the model replicates reality in T2DM.  

 

The overarching objective of this thesis is to identify and assess an existing T2DM model using an external 

validation against real world data to enhance the credibility of CEA output for use in British Columbians. Of the ten 

T2DM models selected for further analysis of their methods none were created or validated using large scale RCT 

or observational data from a contemporary Canadian population. The availability of real world aggregate results 

from a BC T2DM population provides a unique opportunity to address two previously identified knowledge gaps. 

These include the ability to assess whether the ODEM’s absolute predicted rate of vascular events are reflective of 

the real world rate of vascular events and to assess the generalizability to a BC T2DM population. For this reason 

the external validation of the ODEM incorporates a number of sub cohorts based on gender, age and ethnicity to 

enable an in-depth analysis of populations with unique risk factors and differing rates of vascular events. 
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5.1 Strengths and limitations of this research 

Model based economic evaluation is intended to provide a valuable tool to measure and enhance the efficient 

allocation of resources. Therefore, it is relevant that decision makers understand the strengths and limitations of 

the decision model being used and the uncertainty of output provided in order to properly interpret the results. 

The ODEM is one of the T2DM models with methods which meet the criteria outlined as optimal for developing 

model based CEA for use in a diverse, Canadian population. Additionally, a primary strength of the ODEM is that 

the predicted rates of vascular events are based on the risk equations from the UKPDS RCT. The UKPDS is 

recognized as a landmark study which has provided invaluable, high quality evidence of the impact of pre-existing 

and time varying risk factors on the rate of vascular events in T2DM. These risk equations are now utilized in many 

existing T2DM models and therefore have been assessed via numerous internal and external T2DM model 

validations. The use of the UKPDS-OM1 risk equations in the ODEM is considered the best available evidence for 

predicting T2DM, however these equations may require revision or recalibration to reflect today’s standard of care 

and the resultant improvement in the prevention of vascular complications related to T2DM.  

 

Another strength of the ODEM is that the costs of T2DM have been updated based on a large, validated Ontario 

diabetes database that has captured the health resource utilization associated with treating T2DM in Canada. This 

data includes the costs associated with the management of T2DM for individuals with no previous complications, 

the cost of a fatal or non-fatal vascular event and the incremental cost of management of the complications of 

T2DM after a vascular event. This is an important enhancement for the ODEM and provides a measure of 

incremental cost in a CEA based on data from a Canadian health system. 

 

Many of the limitations of the ODEM and the results of this external validation are a reflection of the limited data, 

methods and assumptions required to simplify the complexity of T2DMwhich results in uncertainty in the model 

output. These limitations may not be completely overcome however they can be mitigated with greater access to 

more robust, real world datasets to enable ongoing validation and calibration of the ODEM risk equations.  

 

Several limitations are related to the structure and methods used in the ODEM which are typical of decision 

models created for use in T2DM. Firstly, as the ODEM is a closed cohort model it does provide valuable evidence 

for the comparative evaluation of T2DM interventions, however the model methods do not account for the 

epidemiological trends such as increasing prevalence of T2DM over time. Secondly, the ODEM does not explicitly 

capture the early signs of the onset of vascular disease such as neuropathy, cataracts and albuminuria. These 

events are likely to reduce QALY and increase costs of care and can be indirectly captured in the general cost and 

QALY measures for the ongoing management of T2DM. A third limitation in the ODEM methods is that the model 

was not designed to capture subsequent events beyond the first event and therefore may underestimate the 
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cumulative incidence of events. This has been previously identified as a limitation of the UKPDS-OM1 however 

further analysis shows this does not have a major impact on validation results. (40) Finally, with respect to the 

ODEM methods, there are potential limitations in the use of the UKPDS-OM1 risk equations, as previously 

outlined, to calculate the rate of vascular events and the progression of time varying risk factors in a different 

population with a different standard of care. These risk equations require calibration against larger, more recent 

data which have captured a larger number of less common events such as ESRD and longer follow up to ensure 

these calculations are reflective of today’s management of T2DM.  

 

A number of limitations of this thesis are due to the limited data availability to design and run this external 

validation. Firstly, the available BC data only included the aggregate results of the mean rate, and associated 

confidence intervals, of vascular events by cohort. In addition a number of baseline input variables were not 

available from the aggregate BC results including the DofD, weight, height, HbA1c, SBP, TC, HDL or smoking rate 

and therefore are estimated and extrapolated from available public data and published literature. The estimation 

of mean and random number distribution of baseline input variables to create a virtual cohort of individuals for 

each micro simulation adds to the first order uncertainty in the ODEM’s predicted rate of vascular events. Based 

on the results of a sensitivity analysis, this uncertainty with the input variables could be partially responsible for 

the over estimation of MI, CHF and blindness if the estimated baseline mean BMI, smoking rate and HbA1c were in 

reality lower, and the duration of diabetes was in reality longer, in the BC T2DM cohort. Secondly, there may also 

be limitations in interpreting the results due to differing definitions of vascular complications used in the formation 

of the risk equations in the ODEM and the definitions to compile the aggregate BC data. For instance, the ICD9 

codes described in the UKPDS RCT differ slightly from the ICD9 codes used to identify events in the BC diabetes 

data based on the comparison (Table 10). It is possible that misallocation of ICD9 codes could contribute to the 

under prediction of IHD and the over prediction of MI however this scenario appears unlikely as the ODEM over 

estimation of the incidence of MI was only evident in an older cohort and not pervasive in all cohorts. Thirdly, a 

limitation of the available data is due to the impact of competing events such as mortality on the incidence of 

subsequent vascular events, as mortality rates could not be directly compared. It is feasible that a lower predicted 

mortality in the ODEM output could be in part responsible for the higher incidence of MI and CHF versus the 

observed data. This outcome was not consistently observed across vascular events, for instance with IHD or stroke, 

which limits the likelihood that mortality difference impact the accuracy of the ODEM. Finally, there is limitation in 

the interpretation of the results for the SA cohorts due to the fewer number of individuals and low number of 

certain vascular events which results in a wide 95% CI. The wider 95% CI may overstate the predictive accuracy of 

the ODEM in the SA T2DM population. Finally, the baseline input parameters for the SA population which are 

required to be extrapolated from the estimated baseline inputs of the general population also potentially increases 

the first order uncertainty of the model output. This should be further assessed using an observational dataset 

with the actual baseline input values for all sub-cohort simulations.   
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The structure of this external validation also presents some limitations on the interpretation of the ODEM output. 

Firstly, while the ODEM is designed to allow the application of probabilistic distributions to treatment effects, costs 

and QALY’s to produce a PSA on model outputs, these variables are not assessed in this external validation. 

Therefore, the validation does not provide a measure of the joint uncertainty of the economic output of the 

ODEM. Secondly, the external validation of the ODEM utilized the methods to calculate the progression of HbA1c, 

SBP and cholesterol over time which may contribute to the over-prediction of vascular complications. To measure 

the potential impact of non-progressive time varying risk factors, the general cohort was re-simulated in the ODEM 

to determine if this would improve the predictive ability of the ODEM (Table 34). Of note, the over prediction of MI 

is no longer above the 95% CI of observed data and the over prediction of CHF is not as extreme in the results of 

this simulation when based on non-progressive metabolic risk factors. 

 

Table 34: Comparison of progressive vs non progressive TVRF’s on predicted versus observed events 

Vascular 

outcome 

Predicted, 

progressive TVRF 

Predicted, non-

progressive TVRF 

Observed  

(BC Data)  

Predicted vs 

Observed 

IHD 0.053 0.041 0.080 below  

MI 0.132 0.108 0.104 within 

CHF 0.066 0.057 0.032 above 

Stroke 0.052 0.038 0.045 within 

Blindness 0.038 0.034 0.005 above 

ESRD 0.009 0.007 0.008 within 

TVRF = time varying risk factor, IHD = ischemic heart disease, MI = myocardial infarction, CHF = congestive heart failure, ESRD = end stage renal 
disease 

 
5.2 Questions for future research  

There are a few additional components to assess and to update in the ODEM prior to broad use in BC for the 

economic evaluation.  

1) Will a second validation using real world BC data confirm under estimation of the rate of IHD, and an over 

estimation in the rate of MI, CHD and blindness to support re-calibration of the ODEM risk equations? 

2) Do the actual measures of the TVRF’s, specifically HbA1c and SBP, reflect the actual progression of these 

metabolic measures in a real world, BC T2DM population?  

3) Do the cost inputs used in the ODEM reflect BC health system costs for the ongoing treatment of T2DM, 

vascular events and subsequent management of complications post vascular event including a fatal and 

non-fatal outcome?  
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4) Do the EQ-5D measures currently used to calculate the QALY in the ODEM provide the same measure of 

incremental effectiveness as the updated EQ-5D Canadian based utility measures? Do other utility 

measures, such as HUI3 in the ODEM impact the economic output of the ODEM?  

5) Does a recalibration of the ODEM’s risk equations, based on this external validation of the absolute 

incidence of vascular events, impact the results of a CEA which measures the incremental cost and 

effectiveness based on the relative change in the incidence of vascular outcomes in response to a T2DM 

intervention? 

   

5.3 Next steps 

This is the first known validation of the ODEM using real world data from a Canadian population with T2DM. The 

cohorts that include all pre and post-event individuals by age, gender and ethnicity demonstrate a very high 

correlation and statistical accuracy however sub cohort results identified some notable trends. There is a weaker 

correlation, and lower statistical accuracy of the ODEM predicted events versus the BC observed events, in the 

older cohort and in those without a history of vascular events that must be confirmed or resolved via calibration of 

the model risk equations.  

 

While the overall external validation results are supportive of the generalizability of the ODEM for use in a BC 

population these assessments should be replicated using another observational dataset prior to adjusting or re-

calibrating the risk equations in the ODEM. Ideally, this next dataset would include greater access to actual 

baseline metabolic measures, time varying risk factors and pre-existing conditions of the individuals in each cohort 

to reduce first and second order uncertainty in the ODEM baseline input variables. If the trends identified from this 

real world external validation remain consistent, adjustment of the ODEM risk equations to reflect the BC T2DM 

population would provide a highly credible decision model for local decision makers responsible for resource 

allocation in the BC population diagnosed with T2DM. 

 

This external validation of the predicted absolute rate of vascular events for a real world BC T2DM population is an 

important first step toward the creation of a BC Diabetes Economic Model (BCDEM). Next, the model parameters 

which incorporate probabilistic distribution and enable a PSA in the model output should be validated and revised 

as follows. The results of a contemporary RCT could be used to update the treatment effects, including the time 

varying changes in metabolic measures, to validate the model’s ability to predict the relative rate of vascular 

events as a result of a T2DM intervention. To ensure the economic output is reflective of a BC environment, the 

health utilization and associated costs of diabetes management, vascular events and post event management 

could be updated to represent BC health care costs in 2017 Canadian dollars. Next, the QALY decrements in the 

ODEM could be revised to reflect EQ-5D and /or HUI3 health utility measures which have been measured or 

validated for use in a contemporary Canadian population. Finally, this newly formed BCDEM model could be 
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utilized as a reference model for BC researchers and decision makers to provide economic evaluation of new 

intervention or to cross validate the CEA generated by other T2DM models. 

 

5.4 Conclusion 

The growing concern with the sustainability of the current Canadian health care system is leading to an increased 

role for economic evaluation of health interventions to guide the allocation of our finite resources. Model based 

economic evaluation is an efficient and effective mechanism to enhance the ability of decision makers to utilize an 

evidence based, systematic approach to enhance their decision making under uncertainty.  It is critical that 

decision makers have trust and confidence in these decision models to provide economic output that is relevant 

for their population. This requires greater transparency on behalf of the researchers who develop these models, to 

allow others full insight into the current methods used and to enable greater access for ongoing validation of the 

models relevance.  

 

A number of observations became increasingly evident during this research project. Firstly, T2DM is a very complex 

condition that can be effectively replicated, using a mathematical representation, to predict vascular events over 

time. Considering the complexity of T2DM, the consistency and quality of the results of these long term 

simulations were impressive and demonstrate the credibility of models used in economic evaluation of T2DM. That 

said, there are other conditions related to elevated blood glucose and cardio metabolic disease which are not 

captured in T2DM models, including a higher rate of infections and malignancy, which may need to be 

incorporated to assess the overall value of interventions as more evidence emerges. Secondly, model methods 

used in T2DM are becoming more aligned over time, with trends toward increasing use of microsimulation and 

PSA. This will be further supported by new Canadian HTA guidelines which recommend more consistency in 

describing the decision problem and use of a reference case to enhance the trust and credibility in model 

performance as approaches to model based economic evaluation become more standardized.  

 

As for model validation, it was evident in these analyses that a standard approach to comparing the predicted 

output to observed events needs to be adopted. There are many statistical approaches and goodness of fit 

measures used to assess the correlation of the events. The use of the coefficient of determination (R
2
) was the 

most widely utilized; however, this may not provide the most relevant result and can possibly be misleading for 

non- linear output. There is a growing interest in intra-class correlation (ICC) as a measure of agreement, which 

was not used in the validation of assessed T2DM models, for comparing continuous outputs which may be worthy 

of consideration for future analyses.(90)   
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In summary, to continue to build trust and confidence in the role of decision modeling methods, output and 

overall utilization for guiding efficient resource allocation, model developers are required to allow greater access 

to their models. In this analysis of ten T2DM models, and application of objective criteria for the selection of an 

appropriate model for CEA, only the ODEM was provided in response to our request for full access for in depth 

analysis and model validation. While the general understanding of the model methods can be gathered from 

published literature, it was only with greater access to full model functionality that we could fully appreciate the 

models capabilities. It is understandable that model developers require some proprietary protection for the time, 

energy and resources invested in developing a credible model; however, this needs to be balanced with greater 

transparency and access to advance the role of model-based economic evaluation. Ideally, these high quality 

models would be provided as open access models for research purposes to deepen the understanding of the 

methods used, allow broader comparison of model performance and enhance the generalizability of model output 

for use in contemporary, diverse, real world populations.  
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