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Abstract

We study the problem of determining optimal coordinated motions for two disc

robots in an otherwise obstacle-free plane. Using the total path length traced by

the two disc centres as a measure of distance, we give an exact characterization of

a shortest (but not necessarily unique) collision-avoiding motion for all initial and

final configurations of the robots. The individual paths are composed of at most

six (straight or circular-arc) segments, and their total length can be expressed as a

simple integral with a closed form solution depending only on the initial and final

configuration of the robots. Furthermore, the paths can be parametrized in such a

way that (i) only one robot is moving at any given time (decoupled motion), or (ii)

the angle between the two robots’ centres changes monotonically.
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Preface

This thesis is the expanded version of the paper D. Kirkpatrick, and P. Liu; Charac-

terizing minimum-length coordinated motions for two discs, published in the 28th

Canadian Conference on Computational Geometry. The thesis fills in and simpli-

fies many proofs that were omitted from the conference version, including a simple

NP-Hardness proof of minimum length motion planning of disc robots.

The ideas behind this thesis were the result of many fruitful discussions be-

tween Prof. David Kirkpatrick and myself over the past two years.
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Chapter 1

Introduction

Within robotics and computational geometry, the area of motion planning addresses

the problem of movement coordination of multiple machines. These machines are

often subject to certain movement constraints, such as obstacles, velocity bounds,

or curvature bounds. Over the last few decades, there has been increasing focus in

all areas of motion planning, in both academia and industry.

In this thesis, we consider one of the simplest settings of a motion planning

problem: the problem of planning collision-free motions for two disc robots of

arbitrary radius in an obstacle-free environment. Given two discs A and B in the

plane, with specified initial and final configurations, we seek a shortest collision-

free motion taking A and B from their initial to their final configurations. The

length of such a motion is defined to be the length sum of paths traced by the

centres of A and B.

1.1 Related work
The consideration of disc robots in motion planning has amassed a substantial body

of research, the bulk of which is focused on the feasibility, rather than optimality,

of motions. Schwartz and Sharir [18] were the first to study motion planning for k

discs among polygonal obstacles with n total edges. For k = 2, they developed an

O(n3) algorithm (later improved to O(n2) [19, 28]) to determine if a collision-free

motion connecting two specified configurations is feasible. When the number of
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robots k is unbounded, Spirakis and Yap [22] showed that determining feasibility

is strongly NP-hard for disc robots, although the proof relies on the robots having

different radii. For the analogous problem with rectangular robots, determining

feasibility is PSPACE-hard, as shown by Hopcroft et al. [11] and Hopcroft and

Wilfong [12]. This result was later generalized by Hearn and Demaine [10] for

rectangular robots of size 1×2 and 2×1.

On the practical side, heuristic and sampling based algorithms have been em-

ployed to solve motion planning problem for up to hundreds of robots [17, 23, 27].

These algorithms typically use standard search strategies such as A∗ coupled with

domain specific heuristics (see [14] and the references contained therein). While

efficient in practice, these algorithms are typically numerical or iterative in nature,

with no precise performance bounds. A variety of alternative cost measures for

our problem has also been considered, such as the minimum time motion under

velocity constraints [4, 5, 24] as well as the motion minimizing the total number of

continuous movements [1, 3, 6].

A variant of our problem is when the robots are homogeneous and unlabeled.

In this case, any robot is allowed to move to any final location, so long as each final

position is covered by exactly one robot. For k = 2 discs, the unlabeled case is triv-

ial as one can apply our labeled algorithm twice. However, when k is unbounded,

Solovey and Halperin [20] show that the unlabeled problem is PSPACE-hard, even

in the case of unit squares with polygonal obstacles. Surprisingly, when the robots

are located within a simple polygon with no obstacles, a polynomial time for check-

ing feasibility exists [2]. As in the labeled case, a variety of cost measures has been

explored for the unlabeled case. Solovey et al. [21] gives an Õ(k4 + k2n2) algo-

rithm that minimizes the length sum of paths traced by the centres of the discs

with additive error 4k. In work by Turpin et al. [24], an optimal solution is found

in polynomial time when the cost function is the maximum path length traversed

by any single robot. However, their algorithm requires that the working space is

obstacle free and the initial locations of the robots are far enough apart.
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1.2 Our contribution
This thesis makes several novel contributions to the understanding of minimum-

length coordinated motions. We first give a simple NP-hardness proof for the

problem of length-optimal obstacle-free motion planning for arbitrary disk robots.

For the case of two arbitrary discs, we characterize all initial and final configu-

rations that admit straight-line optimal motions; and for all other initial and final

configurations, the motion from initial to final configuration involves either a net

clockwise or counter-clockwise turn in the relative position of the discs. In this

case, our results describe either (i) a single optimal motion, or (ii) two feasible

motions, of which one is optimal among all net clockwise motions and the other is

optimal among all net counter-clockwise motions. The motions that we describe

have bounded curvature except at a constant number of isolated points; in fact, they

are composed of a constant number of straight segments and circular arcs, of ra-

dius s, the sum of the disc radii. The path length itself can be expressed as a simple

integral depending only on the initial and final positions of the discs. Moreover,

all paths that we describe can can be realized by two different kinds of coordinated

motion: coupled or decoupled. In the coupled motion, the angle formed by a vector

joining the two disc centres changes monotonically. Furthermore, the two discs are

in contact for a connected interval of time. That is, once the two discs move out of

contact, they are never in contact again. In the decoupled motion, only one of the

discs moves at any given time.

Our general approach is based on the Cauchy surface area formula, which was

first applied to motion planning by Icking et al. [13] to establish the optimality of

motions of a directed line segment in the plane, where distance is measured by the

length sum of the paths traced by the two endpoints of the segment. This problem

has a rich history, and was first posed by Ulam [25] and subsequently solved by

Gurevich [9]. Other approaches to that of Icking et al. [13] are quite different,

and use control theory to obtain differential equations that characterize the optimal

motion [9, 26]. Of course, the problem of moving a directed line segment of length

s corresponds exactly to the coordinated motion of two discs with radius sum s

constrained to remain in contact throughout the motion. Hence the coordinated

motion of two discs with radius sum s can also be seen as the problem of moving
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an “extensible” line segment that can extend freely but has minimum length s. As

such, our results also generalize those of Icking et al. [13]. Although we use some

of the same tools introduced by Icking et al., our generalization is non-trivial; the

doubling argument that lies at the heart of the proof of Icking et al. depends in an

essential way on the assumption that the rod length is fixed throughout the motion.

1.3 Organization
The rest of the thesis is organized as follows. In Chapter 2 we outline some basic

definitions as well as our tools for the problem. In Chapter 3 we present the main

proof and algorithm. Finally, we present some interesting open problems and a

simple proof of NP-Hardness for length-optimal disc coordinated motions in any

Lp norm in Chapter 4.
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Chapter 2

Background

2.1 Formal definitions
To describe the motion of a pair of disc robots between their initial and final con-

figurations, we first make precise several terms that have intuitive meaning. We

assume for concreteness that the radii of the two discs sum to s.

Definition 1 The (instantaneous) position of a disc is simply a point in ℜ2 speci-

fying the location of its centre. A placement of a disc pair (A,B) is a pair (A,B),

where A (resp. B) denotes the position of A (resp. B). A placement (A,B) is said

to be compatible if ||A−B|| ≥ s.

A pair of discs can move from placement to placement through a motion, which

we can now define:

Definition 2 A trajectory ξA of a disc A from a position A0 to a position A1 is

a continuous, rectifiable curve of the form ξA : [0,1]→ ℜ2, where ξA(0) = A0,

ξA(1) = A1.

A (coordinated) motion m of a disc pair (A,B) from a placement (A0,B0) to

a placement (A1,B1) is a pair (ξA,ξB), where ξA (resp. ξB) is a trajectory of A
(resp. B) from position A0 to A1 (resp. position B0 to B1). A motion is said to be

compatible or feasible if all of its associated placements are compatible.
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Since we are interested in characterizing collision-free motions, we will assume

that, unless otherwise specified, all placements and motions that arise in this paper

are compatible.

Definition 3 The length `(ξA) of a trajectory ξA is simply the Euclidean arc-

length of its trace, that is,

`(ξA) = sup
k,T

k∑
i=1

||ξA(ti−1)−ξA(ti)||

where the supremum is taken over all subdivisions T = {t0, t1, . . . , tk} of [0,1] where

0 = t0 < t1 < · · ·< tk = 1.

The length `(m) of a motion m is the sum of the lengths of its associated tra-

jectories, i.e. `(m) = `(ξA)+ `(ξB). Finally, the (collision-free) distance d(P0,P1)

between two placements P0 = (A0,B0) and P1 = (A1,B1) is the minimum possible

length over all compatible motions m from P0 to P1. We refer to any compatible

motion m between P0 and P1 satisfying `(m) = d(P0,P1) as a shortest or optimal
motion between P0 and P1.

The fact that d is a metric on the set of placements is easy to check. Never-

theless, one may be concerned about the existence of a shortest motion under this

notion of distance. The fact that a shortest motion exists is a consequence of the

Hopf-Rinow theorem, for which details can be found in [8].
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Chapter 3

L2-optimal Disc Motion

3.1 The general approach
Suppose that the disc pair (A,B) has initial placement P0 =(A0,B0) and final place-

ment P1 = (A1,B1), and let m = (ξA,ξB) be any motion from P0 to P1. Denote byõξA (resp. õξB) the closed curve defining the boundary of the convex hull of ξA (resp.

ξB). Since ξA (resp. ξB), together with the segment A0A1 (resp. B0B1), forms a

closed curve whose convex hull has boundary õξA (resp. õξB), it follows from con-

vexity that:

`(ξA)≥ `(õξA)− `(A0A1) and `(ξB)≥ `(õξB)− `(B0B1). (3.1)

When the inequality for ξA (resp. ξB) is an equality, we say that the trace of ξA

(resp. ξB) is convex. When both ξA and ξB are convex, we say that motion m =

(ξA,ξB) is convex.

Given a placement P = (A,B), we refer to the angle formed by the vector from

B to A with respect to the x-axis as the angle of the placement P. Let [θ0,θ1] be the

range of angles counter-clockwise between the angle of P0 and P1.

Observation 1 Let m be any motion from P0 to P1, and let I be the range of angles

realized by the set of placements in m. Then [θ0,θ1]⊆ I or S1− [θ0,θ1]⊆ I, where

S1 = [0,2π].
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We use Observation 1 to categorize the motions we describe into net clockwise

and net counter-clockwise motions. Net clockwise motions satisfy S1− [θ0,θ1]⊆ I

and net counter-clockwise motions satisfy [θ0,θ1]⊆ I.

Since any motion is either net clockwise or net counter-clockwise it suffices

to optimize over net clockwise and net counter-clockwise motions separately. The

following lemma sets out sufficient conditions for net (counter-)clockwise motions

to be optimal.

Lemma 1 Let m = (ξA,ξB) be any net (counter-)clockwise motion from P0 to P1

satisfying the following properties:

1. (Convexity) õξA = ξA∪A0A1 and õξB = ξB∪B0B1; and

2. (Minimality) `(õξA)+`(õξB) is minimized over all possible net (counter-)clockwise

motions.

Then m is a shortest net (counter-)clockwise motion from P0 to P1.

Proof 1 Let m′ = (ξ ′A,ξ
′
B) be any net (counter-)clockwise motion from P0 to P1. It

follows from property 1 that `(m) = `(õξA)− `(A0A1)+ `(õξB)− `(B0B1). Further-

more, from 2 we know that `(õξA)+ `(õξB)≤ `(õξ ′A)+ `(õξ ′B). Thus, using inequality

(3.1), we have `(m)≤ `(õξ ′A)− `(A0A1)+ `(õξ ′B)− `(B0B1)≤ `(m′).

When a net (counter-)clockwise motion satisfies the two properties of Lemma

1, we say it is (counter-)clockwise optimal. Figure 3.1 illustrates two motions from

the placement (A0,B0) to the placement (A1,B1). The blue motion, where B first

pivots about A0 and moves to B1, followed by A moving from A0 to A1, is counter-

clockwise optimal. The yellow motion, where A first pivots about B0 and moves to

A1, followed by B moving from B0 to B1, is clockwise optimal (as one can check

following the proofs of Section 3.2). However, only the yellow motion is globally

optimal.

While property 1 of Lemma 1 is typically easy to verify, property 2 is less

straightforward and relies indirectly on an application of Cauchy’s surface area

formula (Theorem 1) as well as lower bounds we derive below. Theorem 1 allows
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Figure 3.1: Clockwise (yellow) and counter-clockwise (blue) motions satis-
fying the two properties of Lemma 1.

us to translate the problem of measuring lengths of curves into a problem of mea-

suring the support functions of õξA and õξB at certain critical angles. Our approach

is to lower bound these support functions to get a lower bound on the optimal path

length, and then find a motion matching the lower bound.

Definition 4 Let C be a closed curve. The support function hC : S1 → R of C is

defined as

hC(θ) = sup{xcosθ + ysinθ : (x,y) ∈C}.

For an angle θ , the set of points that realize the supremum are called support

points, and the line oriented at angle π

2 + θ going through the support points is

called the support line (see Figure 3.2).

Theorem 1 (Cauchy’s surface area formula [7, Section 5.3]) Let C be a closed

convex curve in the plane and hC be the support function of C. Then

`(C) =

∫ 2π

0
hC(θ)dθ . (3.2)

As noted in [13], it follows from Theorem 1 that we can bound the length of

two convex curves in the plane:

9



Figure 3.2: The (two) support points and support line at angle α of a given
curve.

Corollary 1 Let C1 and C2 be closed convex curves in the plane. Then the sum of

their lengths can be expressed as follows:

`(C1)+ `(C2) =

∫ 2π

0
(h1(θ)+h2(π +θ))dθ , (3.3)

where hi is the support function of Ci.

In order to argue the optimality of our motions, we use the following observa-

tions that provide a bound on the support function of an arbitrary motion. Let hA
(resp. hB) denote the support function of õξA (resp. õξB), and let hAB(θ) denote the

sum hA(θ)+hB(π +θ). Recall that s is the radii sum of the two disks.

Observation 2 Let P0 and P1 be two configurations and let [θ0,θ1] be the range

of angles counter-clockwise between the angles of P0 and P1. Then, for all net

counter-clockwise motions from P0 to P1, and θ ∈ [θ0,θ1], hAB(θ) ≥ s. Similarly,

for all net clockwise motions and θ ∈ S1− [θ0,θ1], hAB(θ)≥ s.

Observation 3 For all support angles, the support function hA (resp. hB) is lower

bounded by the support function HA (resp. HB) of A0A1 (resp. B0B1), since A0A1 ⊂õξA (resp. B0B1 ⊂ õξB). Together with Observation 2, the support function hAB is

10



bounded point-wise in the counter-clockwise and clockwise cases by

max(HA(θ)+HB(π +θ),s ·1[θ0,θ1]) (net counter-clockwise)

max(HA(θ)+HB(π +θ),s ·1S1−[θ0,θ1]) (net clockwise)

where 1[a,b] is the indicator function of the interval [a,b].

In the next section we give explicit constructions of optimal motions for many

initial-final configuration pairs. This includes, of course, all those whose associated

trajectories correspond to two straight segments, what we refer to as straight-line
motions. In other cases, we construct both the clockwise and counter-clockwise

optimal motions, one of which must be optimal among all motions.

3.2 Optimal paths for two discs
Our constructions of shortest (counter-)clockwise motions can be summarized by

the following theorem:

Theorem 2 Let A and B be two discs with radius sum s in an obstacle-free plane

with arbitrary initial and final placements P0 = (A0,B0) and P1 = (A1,B1). Then

there is a shortest motion from P0 to P1 whose associated trajectories are composed

of at most six (straight or circular arcs of radius s) segments.

We devote this entire section to the identification and exhaustive treatment of

various cases of Theorem 2. The paths that we identify in each case also allow us to

provide the following unified characterization of the optimal path length, covering

all cases:

Corollary 2 Let HA and HB be the support functions of the segments A0A1 and

B0B1 respectively, HAB(θ) := HA(θ)+HB(π + θ), and m be an optimal motion

between P0 and P1. Let [θ0,θ1] be the range of angles counter-clockwise between

P0 and P1. Then

`(m) = min
�∫ 2π

0
max(HAB(θ),s ·1[θ0,θ1])dθ ,

∫ 2π

0
max(HAB(θ),s ·1S1−[θ0,θ1])dθ

�
−|A0A1|− |B0B1|
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where 1[a,b] is the indicator function of the interval [a,b].

Though the expression in Corollary 2 looks daunting, the only difference be-

tween the two integrals is the indicator function used. The support functions them-

selves can be expressed in closed form and the integrals are clearly lower bounds on

the path length by Corollary 1 and Observation 3. We emphasize that the integrals

can be expressed in closed form if needed, albeit with some cases involved.

We now introduce some additional tools that will help us classify the initial and

final placements into different cases.

Definition 5 Let p and q be arbitrary points in the plane.

(a) We denote by s-circ(p) the circle of radius s centred at point p.

(b) We denote by s-corr(p,q) the s-corridor associated with p and q, defined to

be the Minkowski sum of the line segment pq and an open disc of radius s.

(c) We denote by s-cone(p,q) the cone formed by all half-lines from p that in-

tersect s-circ(q).

If disc A is centred at location A then s-circ(A) corresponds to the locations

forbidden to the centre of disc B in a compatible placement (see dotted circles

in Figure 3.1). The corridors s-corr(A0,A1) and s-corr(B0,B1) play a critical role

in partitioning initial and final placement pairs for which straight-line trajectories

(which are clearly optimal) are possible. Specifically, if point A 6∈ s-corr(B0,B1)

then the line segment B0B1 does not intersect s-circ(A); i.e. it is possible to trans-

late B from B0 to B1 without interference from disc A with centre at point A. Sim-

ilarly, if point B 6∈ s-corr(A0,A1) it is possible to translate A from A0 to A1 without

interference from disc B with centre at point B.

What follows is a case analysis of various scenarios for the initial and final

placements. We first classify the cases by the containment of A0, A1, B0, B1 within

s-corr(A0,A1) and s-corr(B0,B1) (cf. Table 3.1). While there might appear to be

16 cases — since each point is either contained within a corridor or not — they

cluster into just three disjoint collections, referred to as Cases 1, 2 and 3. These

are further reduced by symmetries which include (i) interchanging the initial and

12



Case A0 ∈
s-corr(B0,B1)

A1 ∈
s-corr(B0,B1)

B0 ∈
s-corr(A0,A1)

B1 ∈
s-corr(A0,A1)

Type of motion

1a false * * false straight-line (B0→ B1,A0→ A1)
1b * false false *
2a true * true * See Section 3.3.2
2b * true * true
3a true true false false See Section 3.3.3
3b false false true true

Table 3.1: All cases of possible motions. The ∗ entries mean that the specified
condition is unconstrained, i.e. it can be either true or false. We leave
some cases out due to symmetry.

final placements and (ii) switching the roles of A and B. For example, Case (1b)

reduces to Case (1a) by symmetry (i).

In all cases our specified motion has a common form – with a possible inter-

change of the roles of A and B. We identify an intermediate position Aint (possibly

A0 or A1) and perform the following sequence of (possibly degenerate) moves:

1. Move A on the shortest path from A0 to Aint, avoiding s-circ(B0);

2. Move B on the shortest path from B0 to B1, avoiding s-circ(Aint); then

3. Move A on the shortest path from Aint to A1, while avoiding s-circ(B1).

The main idea of partitioning into cases is to identify an appropriate Aint for a

given configuration. Within each case, we can identify a set of candidate interme-

diate points such that at least one of the candidates will produce an optimal Aint. As

it turns out, Aint is either A0, A1, or intersections between two generalized tangents.

Definition 6 Let A, and B be two points in the plane. Let u be a point on s-circ(B).

A generalized tangent of A with respect to B and u consists of a tangent segment

from A to a point p on s-circ(B) and the arc from p to u (see Figure 3.3).

Without loss of generality, assume that our initial and final configurations have

been normalized as follows: B0 and B1 lie on the x-axis with B0 at the origin,
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Figure 3.3: The two generalized tangents of A with respect to B and u.

Figure 3.4: All of the ways in which two generalized tangents can intersect
(not including symmetric counterparts obtained through reflection and
rotation).

B1 right of B0. In our case analysis, u will only ever be one of the two tangent

points of the Bi circles to the line y = s. Since there are only a small number

of ways generalized tangents can cross, we can examine all of them directly (see

Figure 3.4). This case analysis is embedded within Cases 1 to 3 of Table 3.1 with

the machinery from Section 3.1.

In all but a few special cases, we will only examine motions that are net

counter-clockwise; net clockwise optimal motions can be obtained by reflecting

the initial and final placements across the x-axis and then examining net counter-

clockwise motions.
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The net counter-clockwise orientation of our proposed motion m = (ξA,ξB)

as well as the convexity of ξA and ξB will typically be straightforward to verify.

To show the optimality of our motions, we show that the support function of our

motions achieves the point-wise lower bound established in Observation 3.

3.2.1 Examples of counter-clockwise optimal motions

Before we attempt to identify optimal motions, it will be instructive to examine

a special case, illustrated in Figure 3.5. This case will provide the simplest non-

trivial example of an optimal motion as well as an illustration to the form of our

proofs.

Figure 3.5

Consider the case shown in Figure 3.5, where the Ai’s are in s-corr(B0,B1), the

B′is are on the x-axis, and the A′is are symmetric about the perpendicular bisector of

B0B1.

We define some points useful to our construction of the optimal motion. Let

a0 and a1 be the upper tangents from A0 to s-circ(B0), and A1 to s-circ(B1) respec-

tively. These two tangents intersect in a point Aint on the perpendicular bisector of

B0B1. Let b0 and b1 be the lower tangents from B0 and B1 to s-circ(Aint) respec-

tively, and let T0 and T1 be intersection points of b0 and b1 with s-circ(Aint). Note

that by construction, a0 is parallel to b1 and a1 is parallel to b0.
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Claim 1 The following is a counter-clockwise optimal motion (see bolded outline

in Figure 3.5):

1. Move A from A0 to Aint;

2. Move B from B0 to B1, avoiding s-circ(Aint). This involves translating B from

B0 to T0, rotating around s-circ(Aint) in a range of angles [β0,β1], and finally

translating from T1 to B1; then

3. Move A from Aint to A1.

Proof 2 It is easy to check that property 1 (convexity) of Lemma 1 is satisfied. To

show that property 2 (minimality) holds as well we verify that hAB(θ) matches

its lower bound. By Observation 3, we may check that for all angles θ , either

hAB(θ) = s for θ in the range of angles counter-clockwise between the initial and

final placement, or is determined by A and B in their initial or final position.

By construction, β0 is normal to the orientation of b0 (as well as a0) and β1 is

normal to b1 (as well as a1). This ensures that for the range of angles [β0,β1], Aint

is the support point of hA(θ) while the support point of hB(θ +π) lies on the arc

of the circle traversed by B. Hence hAB(θ) = s for θ ∈ [β0,β1].

Furthermore, Aint is only a support point for angles in [β0,β1], since A moves

along tangents a0 and a1. Thus for angles in S1− [β0,β1], either A0 or A1 must be

one support point, and either B0 or B1 must be the other.

Remark 1 Even if the positions of A0 and A1 were swapped in the motion above,

the trace of the optimal counter-clockwise motion would remain the same. The

proof of optimality would proceed as above, using instead the tangents from A0 to

s-circ(B1) and A1 to s-circ(B0) as a1 and a0 respectively.

In the proof above, Aint remains a support during the angles of B’s rotation even

if we shift it slightly vertically upwards.1 This motivates the following definition:

Definition 7 Let p be a point in s-corr(B0,B1). Let R be the region below both

upper tangents from p to B0 and B1. We call R the dominated region of p with

respect to s-corr(B0,B1). For any point q ∈R, we say that p dominates q.
1However, the shifted Aint is a support outside of the angles of rotation as well, which means hAB

does not achieve its lower bound outside of [β0,β1].
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Note that if p dominates A0 and A1, then substituting p for Aint in the proposed

motion for Figure 3.5 would maintain the property that the support function hAB(θ)

is exactly s in the angles of B’s rotation. In fact, we have the following general

lemma:

Lemma 2 Let p be any point that dominates A0 and A1, and let m be any motion

of the form:

1. Move A from A0 to p in a motion m1, staying entirely within the region

dominated by p;

2. Move B on the shortest path from B0 to B1 that travels below s-circ(p). This

involves moving B on a tangent segment b0 from B0 to s-circ(p), rotating

around s-circ(Aint) in a range of angles [β0,β1], and moving on a tangent

segment b1 from s-circ(p) to B1; then

3. Move A from p to A1 in a motion m2, staying entirely within the region

dominated by p.

For any such motion m, hAB(θ) = s for θ ∈ [β0,β1]. Furthermore, if m1 and

m2 form a convex trace when concatenated together, and the tangents of m1 and m2

at p are parallel to b1 and b0 respectively, then p is a support point iff the support

angle is in the range [β0,β1].

Proof 3 The proof follows exactly the same analysis as the argument for Aint in the

proof of Claim 1, substituting the tangents of m1 and m2 at p for a0 and a1.

Lemma 2 will allow us to exploit the commonality in many of the proofs we

use in subsequent cases, as most motions will involve rotating around at least 1

pivot.

As an example, consider Figure 3.6, which shows an optimal counter-clockwise

motion that we’ll encounter in Case 2. In this motion, A first moves from A0 to Aint,

followed by B rotating from B0 to B1, and finished by moving Aint to A1. Lemma 2

allows us to immediately say that Aint is a support point exactly when B rotates

from B0 to B1, since the motions from A0 and A1 to Aint stay within the region
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dominated by Aint. The motion is also optimal, as the combined movement of A is

convex, and the tangents at Aint are parallel to the tangents of s-circ(Aint) at B0 and

B1.

Figure 3.6

3.2.2 Certifying non-optimality of counter-clockwise motions

The proofs we use in our case analysis will largely resemble the special case dis-

cussed in Section 3.2.1. Nevertheless for certain configurations, the tools we’ve de-

veloped in the previous section seem unable to show the optimality of net counter-

clockwise motions. In such situations, we will show that the optimal net clockwise

motion is shorter than any net counter-clockwise motion. In this section we analyse

another special case, which will lead us to a set of placements for which we can

prove that the optimal motion is net clockwise. This will help us deal with subcases

for which the demonstration of net counter-clockwise optimal motions seems to be

beyond the reach of our techniques.

Let us consider a variant of Figure 3.5 where the Bi’s are now closer together, as

depicted in Figure 3.7 and the positions of A0 and A1 are swapped. Again, we may

draw the appropriate upper-tangents from the Ai’s and compute an intermediate

point Aint. By Lemma 2, the trace length of the “motion” m′ outlined in Figure 3.7

is no greater than that of any net-counterclockwise motion. However, the trace

given in Figure 3.7 is not feasible, as it requires A0 to move through s-circ(B0).

In this case, we do not know of any counter-clockwise optimal motion for which

optimality can be shown with Cauchy’s surface area formula. As it turns out, we
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Figure 3.7

may sidestep this apparent difficulty by considering clockwise optimal motions.

Claim 2 The optimal motion to Figure 3.7 is net clockwise.

Proof 4 Consider the trace shown in Figure 3.8, where A′int is the point Aint re-

flected vertically across the segment B0B1. The following motion m is a feasible

realization of this trace:

1. Move A from A0 to the point A′ vertically below A′int, on the along the seg-

ment A0A1;

2. Move B from B0 to B1, rotating across the top of s-circ(A′int); then

3. Move A to A1.

It is easy to see that `(m)< `(m′): the total distance traveled by B is the same

in m and m′, whereas the total distance traveled by A is strictly less in m. Since m′

was a lower bound for all counter-clockwise optimal motions, this implies that any

clockwise optimal motion would be shorter than a counter-clockwise one. Thus we

may restrict our attention to clockwise optimal motions only.

The intermediate point, A′ was not strictly necessary here as we could have also

moved A0 straight to A1 on the first step. In constructing the lower bounds below

however, we will make use of a judiciously chosen intermediate point.
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Figure 3.8

In any case we shall encounter, the clockwise optimal motion is similar to

counter-clockwise motions we’ve already considered. For this case, the optimal

clockwise motion looks like a vertically reflected version of Figure 3.5. The inter-

mediate pivot point Aint is formed by using the intersection of lower tangents from

the Ai’s to the s-circ(B j)’s, where i 6= j. In general, we have the following lemma:

Lemma 3 Suppose A0,A1 ∈ s-corr(B0,B1) and let Hi j denote the half space below

the upper tangent from Ai to s-circ(B j). If Hi j intersects s-circ(Bi) for some i ∈
{0,1}, j = 1− i, and A j ∈ Hi j, then the optimal motion must be net clockwise.

Proof 5 There are two major cases: (i) the case where s-circ(B0) does not intersect

s-circ(B1) and (ii) the case where they do intersect. For both cases, we assume that

A0 is under the line connecting B0 with B1. The other cases are treated similarly

with almost exactly the same proof.

s-circ(B0) does not intersect s-circ(B1) Let U0 be the upper tangent point of A0 to

s-circ(B1). By our assumptions, A1 lies below A0U0, and A1 ∈ s-corr(B0,B1). Let

U1 be the upper tangent point of A1 to s-circ(B0). We first deal with the case where

the tangent segments A0U0 and A1U1 intersect at a point Aint ∈ s-corr(B0,B1) (see

Figure 3.9).

Consider the following “motion” m′ = (ξ ′A,ξ
′
B):

1. Move A on a straight line from A0 to Aint.
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Figure 3.9: A case of Lemma 3.

2. Move B from B0 to B1 avoiding s-circ(Aint). This involves moving B to T0

(the lower tangent point of B0 and s-circ(Aint)), rotating B counter-clockwise

about Aint to T1 (the lower tangent point of B1 and s-circ(Aint)) in a range of

angles [β0,β1], and then moving B from T1 to B1.

3. Move A in a straight line from Aint to A1.

The “motion” outlined above is infeasible, as the position of B0 prevents the

movement from A0 to Aint in a straight-line. However, Lemmas 1 and 2 shows that

`(m′) forms a lower bound on all net clockwise motions.

Now we construct a net clockwise motion whose length is no greater than that

of m′. Construct the point A′int in Figure 3.9, which is the result of two reflections

of Aint, first along the line from B0 to B1 and then along the perpendicular bisector

of B0B1. Consider the following motion m:

1. Move B from B0 to B1 avoiding s-circ(A′int) by rotating over the top of it. This

involves traversing along the upper tangents from B0 and B1 to s-circ(A′int)

and rotating over the top of s-circ(A′int).

2. Move A0 to A1 in a straight line.

Clearly step 1 of m is the same length as step 2 of m′, and step 2 of m is at most

the length of steps 1 and 3 of m′, so `(m) ≤ `(m′). Furthermore m is a feasible

motion. To see this, let ` be line through A′int parallel to the segment A0Aint, and let
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Figure 3.10: A case of Lemma 3.

q be the tangent point between s-circ(B0) and `. Note that A′int lies on the right of q

and above ` and A0 is left of q and above `, so A0 does not obstruct the movement

of B in step 1.

Hence the optimal motion must be net clockwise in the case where A0U0 and

A1U1 intersect.

When A0U0 and A1U1 do not intersect (see Figure 3.10), this means that U1 is

below A0U0. In this case, let Aint be the right-most intersection point between A0U0

and s-circ(B0) and the proof above will work without modification.

s-circ(B0) intersects s-circ(B1) We now deal with case (ii), where s-circ(B0) in-

tersects s-circ(B1) (see Figure 3.11). Let L (resp. U ) denote the region within

s-corr(B0,B1) below (resp. above) the discs enclosed by s-circ(B0) and s-circ(B1).

We will show that if both A0 and A1 are in L , then the optimal motion must be net

clockwise. The case for U can be handled similarly.

As before, we will first lower bound the optimal net counter-clockwise motion

by an infeasible motion, and then show a net clockwise motion that is at most the

length of the lower bound.

Let t be the upper intersection point of s-circ(B0) and s-circ(B1). If A0 is left

of the perpendicular bisector of B0B1, then define the following: U0 is the upper

tangent point of A0 to s-circ(B1), U1 is the upper tangent point of A1 to s-circ(B0).

If A0 is right of the perpendicular bisector, let U0 be the upper tangent point of A0
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to s-circ(B0), and let U1 be the upper tangent point of A1 to s-circ(B1).

If U1 is counter-clockwise of t on s-circ(B0) or U0 is clockwise of t on s-circ(B1),

one can check that the proof of the non-intersecting case works here as well. Oth-

erwise, both U0 and U1 are vertically below t.

Figure 3.11: A case of Lemma 3.

In this case, consider the following “motion” m′:

1. Move A on a straight line from A0 to t. This involves possibly moving on a

chord through s-circ(B0) and s-circ(B1) in a range of angles [α0,α1].

2. Move B from B0 to B1 avoiding s-circ(t).

3. Move A in a straight line from t to A1. This involves possibly moving on a

chord through s-circ(B0) and s-circ(B1) in a range of angles [α2,α3].

We note that the m′ used here is almost the same as the m′ used for the non-

intersecting case, using t in place of Aint. For the range of angles [α0,α1] one

support point will be B0 as [α0,α1] ⊂ [−π/2,π/2]. The other support point will

either be t or one of the Ai’s. Note that when the other support point is t, the

support function is at most s (and strictly less at all but 1 point) as m′ cuts through

s-circ(B0). Hence hAB(θ) is at most its lower bound for θ ∈ [α2,α3] Similarly, for

the range of angles [α2,α3], one support point will be B1, and the other support
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point will either be t or one of the Ai’s. Again, a similar argument shows that

hAB(θ) meets its lower bound in [α2,α3] as well.

For all other angles, the argument proceeds exactly as in the the proof of

Lemma 2.

Now we construct a net clockwise motion whose length is no greater than that

of m′. Construct the point A′int, which is the vertical reflection of t across B0B1.

Now consider the same type of motion m that we used in the non-intersecting case:

1. Move B from B0 to B1 avoiding s-circ(A′int) by rotating over the top of it.

2. Move A0 to A1 in a straight line.

Clearly m is a feasible motion. As before, step 1 of m is the same length as step

2 of m′, and step 2 of m is at most the length of steps 1 and 3 of m′, so `(m)≤ `(m′).

3.3 Case analysis of counter-clockwise optimal motions
In this section we treat exhaustively each case of Table 3.1, beginning with Case

1. For Case 2 and onwards, the general form of the motion we construct will be

similar to examples presented in Section 3.2. That is, the motion will be decoupled,

consisting of at most two A motions which meet at an intermediate point Aint and

one B motion. The motions themselves are constructed from tangent segments and

arcs of radius s circles. When an arc of a circle is part of a motion, the centre of

the circle will be dominating in the sense of Definition 7.

3.3.1 Case 1

It suffices to treat Case 1a, as Case 1b reduces to Case 1a by symmetry. In Case 1a,

A0 6∈ s-corr(B0,B1), so on the first step we translate B from B0 to B1 in a straight

line without touching A. At this point A can move freely in a straight line from A0

to A1, as B1 6∈ s-corr(A0,A1). As we shall see through examining the other cases,

Case 1 is the only situation where a straight-line motion is possible.
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3.3.2 Case 2

It suffices to treat Case 2a since Case 2b reduces to 2a by symmetry; thus we

assume that A0 ∈ s-corr(B0,B1) and B0 ∈ s-corr(A0,A1). In fact, we can relax

this and assume that A1 ∈ s-cone(A0,B0). This amounts to including the “wedge”

between A0 and s-circ(B0).

(a)

(b)

Figure 3.12: The different zones of Case 2 when s-circ(B0) and s-circ(B1) do
not intersect. We have different optimal motions (dotted lines) depend-
ing on the zone in which A1 lies.

The motion we take in Case 2a depends on the zone in which A1 lies (cf. Figure

3.12 and 3.15). Each zone represents a locus of locations for A0 which give rise to

a specific sequence of motions that are counter-clockwise optimal within that zone.
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Let p be the upper tangent point from A0 to s-circ(B0). The zones are defined

by the following properties:

Zone I: The set of points q ∈ s-cone(A0,B0) for which some tangent point from q to

s-circ(B0) lies on the arc of s-circ(B0) from p to u.

Zone II: The set of points q ∈ s-cone(A0,B0) where the tangent from q to s-circ(B1)

intersects the arc of s-circ(B0) from p to u.

Zone III: The set of points q ∈ s-cone(A0,B0) where the tangent from q to s-circ(B1)

intersects A0 p.

Zone IV: The set of points q ∈ s-cone(A0,B0) that are dominated by t. t is A0 if A0 6∈
s-circ(B1), is the intersection point of A0 p and s-circ(B1) if A0 ∈ s-circ(B1),

and is the upper intersection point of s-circ(B0) and s-circ(B1) if the inter-

section point of the circles lie on the arc from p to u.

For concreteness, we also give constructive definitions in each subcase below.

Subcase 1: s-circ(B0) and s-circ(B1) do not intersect

We first discuss the constructions of zones I-IV in Figures 3.12a and 3.12b. We

may construct zones I-IV explicitly through the following tangents and curves:

1. The horizontal tangent through the uppermost point u of s-circ(B0). This

tangent and the arc of s-circ(B0) between u and p (where p is the upper

tangent point between A0 and s-circ(B0)) separates zone I from zone II.

2. The tangent through p to s-circ(B1). This tangent separates zone II from

zone III.

3. If A0 6∈ s-circ(B1), the tangent line from A0 to s-circ(B1) (cf. Figure 3.12a).

Otherwise, the tangent of s-circ(B1) through t, where t is the intersection

point of A0 p and s-circ(B1) (cf. Figure 3.12b). This tangent separates zone

III from zone IV.

Note that zone III and IV may be empty, if the position of A0 lies below the

line tangent to the bottom of circs(B0) and the top of circs(B1).

For each zone we specify the location of the intermediate point Aint as follows:
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Zone I: Aint is the point A1.

Zone II: Aint is the rightmost point of intersection between the tangent from A1 to

circs(B1) and circs(B0).

Zone III: Aint is the point of intersection of the tangent from A1 to circs(B1) and the

tangent from A0 to circs(B0).

Zone IV: Aint is the point t (as defined above).

We define points T0 and T1 which are the lower points of tangency to circs(Aint)

from B0 and B1 respectively. Our three-step generic motion involves:

1. Moving A on the shortest path from A0 to Aint, avoiding circs(B0). This may

involve rotating A counter-clockwise about B0 in a range of angles [α0,α1].

2. Moving B from B0 to B1 avoiding circs(Aint). This involves translating B
from B0 to T0, rotating B counter-clockwise about Aint from T0 to T1 in a

range of angles [β0,β1], and then translating B from T1 to B1.

3. Translating A from Aint to A1 (collision-free by the disjointness of cones(A0,B0)

and circs(B1)).

From the descriptions above, one can see that there is some amount of symme-

try between zone I and IV. For this reason, we first dispense with zones II and III,

and then handle zone I and IV at the end of this section.

A1 is in zone II

If A1 is in zone II, then the tangent from A1 to B1 must intersect B0 in up to two

points. Let Aint be the rightmost intersection point.

Proof 6 Since B0 dominates B1 with respect to s-corr(A0,A1), we have by Lemma 2

that hAB(θ) = s for θ ∈ [α0,α1]. Similarly, since Aint dominates A0 and A1 with

respect to s-corr(B0,B1), hAB(α) = s for θ ∈ [β0,β1] by Lemma 2.

For angles in S1− [α0,α1]− [β0,β1], one can check that A0 or A1 must be one

support point, and either B0 or B1 must be the other.

27



A1 is in zone III

Proof 7 By construction, Aint dominates A0 and A1 with respect to s-corr(B0,B1).

Hence by Lemma 2, we have hAB(θ) = s for θ ∈ [α0,α1]. For angles in S1 −
[α0,α1], one can see that either A0 or A1 must be one support point, and either B0

or B1 must be the other.

A1 is in zone I

There are two cases for Zone I, the location of A1 with respect to the upper tangent

from A0 to s-circ(B1). Let U be the upper tangent of A0 and s-circ(B1).

Figure 3.13: Zone I, example of when A1 is below U . Zone I is outlined by
the bolded tangents.

A1 is above U .

Proof 8 In this case, A1 either dominates A0 or is outside of s-corr(B0,B1) and

so by Lemma 2 choosing A1 as Aint shows that hAB(θ) = s for θ ∈ [β0,β1] (where

[β0,β1] = /0 for A1 6∈ s-corr(B0,B1)). Furthermore, B0 dominates B1 with respect

to s-corr(A0,A1), so Lemma 2 again shows that hAB(θ) = s for θ ∈ [β0,β1]. Since

there are no intermediate pivot points except for the Ai’s and Bi’s, it’s clear that

for all other angles, A0 or A1 must be one support and B0 or B1 must be the other.

A1 is below U . In this case (see Figure 3.13), the positions of A0 and A1 satisfy

the conditions of Lemma 3. Thus we may look for a clockwise motion. In the

clockwise zones, A1 is in Zone IV of A0, which we handle below.
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A1 is in zone IV

For configurations in Zone IV, we can make a further simplification by swapping

the roles of A and B in certain configurations. Within Case 2a of Table 3.1, the

case when A1 ∈ s-corr(B0,B1) and B1 6∈ s-corr(A0,A1) is symmetric to the case

when B1 ∈ s-corr(A0,A1) and A1 6∈ s-corr(B0,B1). Thus for these two cases, we can

assume without loss of generality that both A0 and A1 are in s-corr(B0,B1). Note

that this simplification forbids A1 to be right of s-circle(B1) and above the lower

horizontal tangent of the B circles, as this would imply that B1 ∈ s-corr(A0,A1).

Due to the complexity of Zone IV, we split it into two subcases.

Figure 3.14: Positions of A1 in Zone IV, subcase 1 and subcase 2. Zone IV is
outlined by the bolded tangents. The position of A1 right of s-circ(B1)
and above the horizontal tangent is forbidden due to our simplifica-
tions.

Zone IV, subcase 1. We first handle the cases for which A0 6∈ s-circ(B1) and the

upper tangent point of A1 and s-circ(B1) lies inside s-corr(B0,B1). By these as-

sumptions, we must have A1 ∈ s-corr(B0,B1) or below the lower horizontal tangent

of s-circ(B0) and s-circ(B1) (see Figure 3.14).

In this case, choosing Aint to be A0 in our three-step generic motion yields a net

optimal counter-clockwise motion.

Proof 9 By construction of Zone IV, A0 dominates A1 with respect to s-corr(B0,B1).

Hence by Lemma 2, hAB(α) = s for α ∈ [α0,α1].
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By our property that the upper tangent point of A1 and s-circ(B1) lies inside

s-corr(B0,B1), we have that B1 dominates B0 with respect to s-corr(A0,A1).

For angles in S1− [α0,α1]− [β0,β1], either A0 or A1 must be one support point,

and either B0 or B1 must be the other. This is due to the fact that all pivot points in

our motion are either the initial or final positions, and all non-pivots were either

circular arcs or tangents.

Zone IV, subcase 2. If subcase 1 does not apply, then A0 ∈ s-circ(B1) (cf. Figure

3.12b).

In this case the optimal motion is:

1. Move A on a straight line from A0 to t.

2. Move B from B0 to B1 avoiding s-circ(t). This involves moving B to T0,

rotating B counter-clockwise about Aint to T1 in a range of angles [α0,α1],

and then moving B from T1 to B1.

3. Move A on a shortest path from t to A1 while avoiding s-circ(B1). This

involves rotating possibly rotating A in a range of angles [β0,β1] around

s-circ(B1).

In this case, the motion is of the same type as the one given for zone II and the

exact same proof applies.

Subcase 2: s-circ(B0) and s-circ(B1) intersects

When s-circ(B0) and s-circ(B1) intersect (cf. Figure 3.15), the zones are defined

by the following curves:

1. The two tangents from A0 to s-circ(B0).

2. The horizontal tangent from the top of s-circ(B0).

3. The tangent from p to s-circ(B1) where p is the upper tangent point from A0

to s-circ(B0).
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4. The tangent line from t to s-circ(B1). Let v be the intersection point of the

line from A0 to p and s-circ(B1). If A0 6∈ s-circ(B1), then t is A0. Other-

wise, A0 ∈ s-circ(B1) and t is v when p lies outside of the s-circ(B1) (Figure

3.15b), and t is the upper intersection point between the s-circ(Bi)’s other-

wise (Figure 3.15c).

For the most part, the motions executed in Subcase 1 and Subcase 2 are the

same, as are their intermediate points. However, for zone I and IV there are small

differences, as we shall see.

A1 is in zone II or III

In these zones, the motion is the same as the non-intersecting case.

A1 is in zone I

By Lemma 3, if A1 is located in any portion of zone I which intersects the region

below the s-circ(Bi)’s, then the motion must be net-clockwise optimal (an example

can be found in Figure 3.13, with the Bi’s pushed closer together). In this case,

A1 is in zone IV of the clockwise zones, which we handle below. Otherwise, the

motion for Zone I is the same as in Subcase 1, and the same proof applies.

A1 is in zone IV

Here we divide the motion into two different cases, depending on whether we are

in Figure 3.15a, or 3.15b and Figure 3.15c. To be precise, denote U to be the

region of s-corr(B0,B1) that is above the s-circ(Bi)’s. We divide into two cases,

depending on whether A0 ∈U or not.

Zone IV, subcase 1. A0 ∈ U In this case, the motions are exactly the same as

those for Zone IV of the non-intersecting case.

Zone IV, subcase 2. A0 6∈U This case is shown in Figures 3.15b and 3.15c. First,

if A1 is right of the upper tangent between A0 and s-circ(B1) and left of the upper

tangent between A0 and s-circ(B0), then Lemma 3 shows that the optimal motion

31



must be clockwise. In this case, the optimal clockwise motion is:

1. Move B from B0 to B1 rotating over the top of s-circ(A0).

2. Move A in a straight line from A0 to A1.

Proof 10 The optimality of this motion can be see by reflecting the configuration

vertically. Since A0 dominates A1, Lemma 2 shows that hAB(θ) = s in the angles

of rotation. For all other angles, the two support points are either A0 or A1 and B0

or B1.

Now we assume that A1 is outside of the region handled above. Let T0 and T1

be the lower tangent points of B0 and B1 to s-circ(t) respectively. Let V0 be the

upper tangent point between t and s-circ(B0). In this case the optimal motion is:

1. Move A on a shortest path from A0 to t while avoiding s-circ(B0). If V0 6∈
s-circ(B1), this is simply a straight line and we define [β0,β1] = /0. Other-

wise, this involves moving A to V0, and rotating A in a range of angles [γ0,γ1]

from V0 to t.

2. Move B from B0 to B1 avoiding s-circ(t). This involves moving B to T0,

rotating B counter-clockwise about Aint to T1 in a range of angles [α0,α1],

and then moving B from T1 to B1.

3. Move A on a shortest path from t to A1 while avoiding s-circ(B1). This

involves rotating A in a range of angles [γ2,γ3] around s-circ(B1).

Proof 11 The optimality of this motion is given by Lemma 2, with t as the domi-

nating point with respect to s-corr(B0,B1). Excluding the clockwise optimal region

described above is essential here, as it forces A1 to be outside of the wedge formed

by the upper tangents from A0 to s-circ(B0) and s-circ(B1) when A0 is below both

of the B circles. This ensures that the path taken by A is convex.

3.3.3 Case 3

As Case 3 is highly constrained, most of the motions for this case are particularly

simple. Figures 3.16, 3.17, and 3.18 exhibit possible configurations of Case 3. As
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before, we begin by defining the zones non-constructively, and then move on to

more constructive descriptions.

Let p0 and p1 be the upper tangent points from A0 to s-circ(B0) and s-circ(B1)

respectively. The zones are defined by the following properties:

Zone I: The set of points q ∈ s-corr(B0,B1) that dominate A0.

Zone II: The set of points q ∈ s-corr(B0,B1) A0 dominates.

Zone III: The set of points q ∈ s-corr(B0,B1) where the tangent from q to s-circ(B0)

intersects A0 p1

Zone IV: The set of points q ∈ s-corr(B0,B1) where the tangent from q to s-circ(B1)

intersects A0 p0.

We do not handle situations which reduce to Case 2. For example, if A1 ∈
s-corr(B0,B1), is left of the tangent through A0 p, and is above s-circ(B0), then we

would be in Case 2. Similarly, if A1 ∈ s-corr(B0,B1), is right of A0 p1, and above

s-circ(B1), then we would also be in Case 2.

Although Zone IV above is handled in Case 2, we keep it for symmetry. Zones

I-IV of Figures 3.16 and 3.17 are defined by the following curves:

1. The two upper tangents from A0 to circs(B0) and circs(B1) (through tangent

points pi). These tangents separate zone I from the rest of the zones. The

tangent from A0 to p1 forms the left boundary of zone II if A0 is below the

tangent from the bottom of circs(B0) to the top of circs(B1). The tangent

from A0 to p0 forms part of the right boundary of zone II.

2. The two horizontal tangents from circs(B0).

3. The lower tangent from A0 to circs(B0) and circs(B1) (through tangent points

qi). The tangent from A0 to q1 (resp. q0) form part of the right (resp. left)

boundary for zone III (resp. zone IV). The tangent from A0 to q0 (resp q1)

forms the left (resp. right) boundary of zone II if A0 is above the tangent

from below circs(B0) to above circs(B1) (resp. above circs(B0) to below

circs(B1)).
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4. The arc of circs(B0) (resp. circs(B1)) from p0 to t0 (resp. p1 to t1). If the tan-

gent from A0 to p0 (resp. to p1) does not intersect circs(B1) (resp. circs(B0)),

then t0 is q0 (resp. t1 is q1). Otherwise, t0 (resp. t1) is the intersection point.

5. The arc of circs(B0) (resp. circs(B1)) from t0 to q0 (resp. t1 to q1). These

arcs forms part of the left and right boundaries of zone II.

We now specify, for each zone, the location of Aint, and define T0 and T1 to be

the lower tangent points of B0 and B1 to circs(Aint) respectively.

Zone I: Aint is the point A1.

Zone II: Aint is the point A0.

Zone III: Aint is the intersection point of the tangent from A1 to the circs(B0) and the

tangent from A0 to circs(B1).

Zone IV: Aint is the intersection point of the tangent from A0 to the circs(B0) and the

tangent from A1 to circs(B1).

Our generic three-stage motion then becomes:

1. Move A on a straight line from A0 to Aint

2. Move B from B0 to B1 avoiding circs(Aint). This involves moving B to T0,

rotating B counter-clockwise about A0 to T1 in a range of angles [β0,β1], and

then moving B from T1 to B1.

3. Move A on a straight line motion from Aint to A1.

Note that in zone IV of Figure 3.16, all optimal counter-clockwise motions are of

exactly the same from as zone III of Case 2.

Case 3, subcase 1: s-circ(B0) and s-circ(B1) do not intersect.

Proof 12 In all cases (see Figure 3.16), applications of Lemma 2 will suffice. The

proof of Zones III and IV are exactly the same as the proof for Case 2, Zone III.

For Zones I and II, note that for all cases that Case 2 do not cover, A0 must be

reachable from A1 by a straight-line. Hence there are no special cases and a single

application of Lemma 2 with either A0 as the pivot (for Zone II) or A1 as the pivot

(for Zone I) suffices.
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Subcase 2: s-circ(B0) and s-circ(B1) intersects

When s-circ(B0) and s-circ(B1) intersect, observe that the constraints force either

A0 and A1 to be both above the B circles, or both below. This is because if A0

was below the s-circ(Bi)’s and A1 above, then we must be in Case 2 (after possibly

swapping the initial and final positions).

A0 and A1 both above When A0 and A1 are both above the B circles, we get Figure

3.17. In this case, the same zones and proofs as the non-intersecting case apply.

A0 and A1 both below When A0 and A1 are both below the B circles, we get

Figure 3.18. In this case, Lemma 3 shows that the motion must be net-clockwise.

The clockwise zones have A0 and A1 in the “both above” case, which is handled

above.

3.4 Angle monotone motions
Up until now, we’ve stated all of our motions as decoupled motions where only one

of A or B is moving at a time. However, we can produce angle monotone motions

(that is, motions where the vector joining the two robots changes monotonically

throughout the motion) by coupling the optimal motions m given in the previous

sections. We now roughly describe this coupling procedure, and note that a full

proof would require going through the cases and verifying that the procedure works

for each case.

To be precise, let m be a motion such that m(ti) and m(t j) has the same angle.

Then by coupling the motion m, we mean that we replace the submotion m([ti, t j])

with a straight-line path between m(ti) and m(t j). This process produces coupled

angle monotone motions from decoupled ones. Most of the motions described in

the previous section are angle monotone. The only situation in which non-angle

monotonicity occurs in our decoupled motions is when A1 is in Zone III of Case

3 above (see Figure 3.19). In all other cases, we have angle monotonicity for the

decoupled motion as well, although the discs are possibly not in contact for a single

connected interval of time.

One can also couple the motions to achieve both angle monotonicity and the
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property that the two discs are in contact for a single connected interval. This is

obtained by following the trace of optimal motions outlined in the previous sections

while keeping A and B as close together as possible. The proof, although not

difficult, is lengthy as it requires examining the motions of each case in the previous

Section.
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(a)

(b)

(c)

Figure 3.15: The different zones of Case 2 when s-circ(B0) and s-circ(B1)
intersect. We have different optimal motions (dotted lines) depending
on the zone in which A1 lies.
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Figure 3.16: Case 3, when s-circ(B0) and s-circ(B1) do not intersect.

Figure 3.17: Case 3, when s-circ(B0) and s-circ(B1) intersect and both A0 and
A1 are above the s-circ(Bi)’s.

Figure 3.18: Case 3, when s-circ(B0) and s-circ(B1) intersect and both A0 and
A1 are below the s-circ(Bi)’s.
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Figure 3.19
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Chapter 4

Additional Remarks

Due to the simple setting of our problem, there are many easy extensions of the

problem that remain open. Some natural generalizations include adding obstacles

or increasing the number of discs. In the section below, we show a simple NP-

Hardness reduction for the generalization of our problem when the number of discs

is unbounded.

4.1 Proof of NP-hardness
In this section, we show that the following generalization of our problem is NP-

hard:

Problem 4.1.1 Given n discs Di on an obstacle-free plane with specified initial

and final configurations Ai and Bi for i = 1 . . .n, what is the shortest collision-free

motion taking each Di from their initial to their final locations?

Theorem 3 Problem 4.1.1 is NP-hard.

We show this via a simple reduction to the famous 15-puzzle problem, and it’s

generalization, the (n2−1)-puzzle problem. We use the minimum-move variant of

the (n2−1)-puzzle problem, which is defined as follows:

Problem 4.1.2 We are given n2−1 numbered tiles arranged in an n×n grid (leav-

ing one tile missing). Given an initial (solvable) configuration of the puzzle, the
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aim is to return the puzzle to a given target configuration by repeatedly sliding an

adjacent tile into the blank location. What is the minimum number of moves in

order to return the puzzle to the target configuration?

Proof 13 Given an instance of the (n2− 1)-puzzle problem, we can construct an

instance of Problem 4.1.1 by arranging n2−1 unit discs in the same formation as

the (n2−1)-puzzle, where we assume that the location of the top-left corner of the

puzzle is at the origin, and each puzzle piece has unit width. The initial location of

disc Di is set as location of puzzle piece i in the (n2−1)-puzzle. The final location

of disc Di is set as location of puzzle piece i in the solved (n2−1)-puzzle.

Suppose for now that Problem 4.1.1 allowed obstacles. Then we could addi-

tionally add four walls so that the discs cannot move outside of the puzzle. At this

point, the shortest collision-free motion of Problem 4.1.1 has length equal to the

minimum number of moves required for the (n2−1)-puzzle. Since Ratner and War-

muth [16] have shown the (n2−1)-puzzle to be NP-hard, Problem 4.1.1 would be

NP-hard as well.

To simulate the effect of an obstacle, we can add unit discs surrounding the

n2− 1 discs by extending the n× n grid to an (n+w)× (n+w) grid and placing

new discs in the unfilled grid squares outside of the n× n grid, with their initial

location equal to their final location. This creates a “wall” that is w units wide. By

making the wall thick enough, we can guarantee that these wall squares will not

move in any optimal solution. By the work of Parberry [15], the minimum number

of moves to solve the (n2− 1)-puzzle is at most 5n3. Hence by making w = 6n3,

we can guarantee that these wall squares will not move in any optimal solution.

Since creating the wall involves adding only a polynomial number of extra discs,

Problem 4.1.1 is NP-hard by reduction to the (n2−1)-puzzle.

Remark 2 The proof above works for generalizations of Problem 4.1.1 to any Lp

norm, such as the case when every disc is a square and only rectilinear motions

are allowed (i.e. the L1 norm).
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4.2 Open problems
As the previous section shows, even some simple generalizations can quickly make

our problem intractable. In this section, we present some interesting extensions of

our problem that we feel would be natural for further work.

The first extension is the version of our problem with three discs instead of

two:

Problem 4.2.1 Given three discs A,B, and C, with speficied initial and final lo-

cations, what is the shortest collision-free motion taking A,B, and C from their

initial to their final configurations?

This problem is interesting as it highlights a significant limitation of our approach.

Our lower bounds are derived from Cauchy’s surface area formula, and involves

looking at the support width formed using two antipodal support points.

Our second extension is the version of our problem when the two disk robots

are spheres in 3D. For this case, we are unsure of the optimal path even in some

seemingly obvious cases.

To make the problem simpler, we add the extra condition that the two spheres

A and B are touching each other in both the initial and final configuration and that

the radii sum of the two spheres is 1. This is equivalent to finding the shortest path

of a unit rod between two configurations in 3D. One simple open question is:

Problem 4.2.2 When the initial and final positions of A and B are all coplanar,

does there exist a shortest path that stays entirely within the plane?

4.3 Concluding remarks
Using the Cauchy surface area formula, we have presented and proved shortest

collision-avoiding paths for two disc robots in a planar obstacle free environment.

The path lengths are neatly characterized by a simple integral, and had the property

that they could be decoupled so that only one disc is moving at any given time, or

coupled so that the angle formed by a ray joining the two discs changes monoton-

ically throughout the motion. The coupled motion has the additional property that
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discs are in contact for a connected interval of time, that is, once the discs move

out of contact, they are never in contact again.

As far as we know, our tools are limited to the case when the robots are discs in

2D. Indeed, when the robots are spheres in 3D, even if the initial and final positions

of the robot are coplanar, we are unsure if the shortest path stays within the plane

(except in special cases). The 3D extension of the problem as well as the 2D

problem with obstacles remain subjects for future exploration.
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