Characterizing minimum-length coordinated motions for two dises

by
Paul Liu
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
Master of Science
in
THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES
(Computer Science)
The University of British Columbia
(Vancouver)

April 2017
(C) Paul Liu, 2017

Abstract

We study the problem of determining optimal coordinated motions for two disc robots in an otherwise obstacle-free plane. Using the total path length traced by the two disc centres as a measure of distance, we give an exact characterization of a shortest (but not necessarily unique) collision-avoiding motion for all initial and final configurations of the robots. The individual paths are composed of at most six (straight or circular-arc) segments, and their total length can be expressed as a simple integral with a closed form solution depending only on the initial and final configuration of the robots. Furthermore, the paths can be parametrized in such a way that (i) only one robot is moving at any given time (decoupled motion), or (ii) the angle between the two robots' centres changes monotonically.

Preface

This thesis is the expanded version of the paper D. Kirkpatrick, and P. Liu; Characterizing minimum-length coordinated motions for two discs, published in the 28th Canadian Conference on Computational Geometry. The thesis fills in and simplifies many proofs that were omitted from the conference version, including a simple NP-Hardness proof of minimum length motion planning of disc robots.

The ideas behind this thesis were the result of many fruitful discussions between Prof. David Kirkpatrick and myself over the past two years.

Table of Contents

Abstract ii
Preface iii
Table of Contents iv
List of Tables vi
List of Figures vii
Acknowledgments ix
1 Introduction 1
1.1 Related work 1
1.2 Our contribution 3
1.3 Organization 4
2 Background 5
2.1 Formal definitions 5
$3 \quad L_{2}$-optimal Disc Motion 7
3.1 The general approach 7
3.2 Optimal paths for two discs 11
3.2.1 Examples of counter-clockwise optimal motions 15
3.2.2 Certifying non-optimality of counter-clockwise motions 18
3.3 Case analysis of counter-clockwise optimal motions 24
3.3.1 Case 1 24
3.3.2 Case 2 25
3.3.3 Case 3 32
3.4 Angle monotone motions 35
4 Additional Remarks 40
4.1 Proof of NP-hardness 40
4.2 Open problems 42
4.3 Concluding remarks 42
Bibliography 44

List of Tables

Table 3.1 All cases of possible motions. The $*$ entries mean that the specified condition is unconstrained, i.e. it can be either true or false. We leave some cases out due to symmetry.

List of Figures

Figure 3.1 Clockwise (yellow) and counter-clockwise (blue) motions sat- isfying the two properties of Lemma 1 9
Figure 3.2 The (two) support points and support line at angle α of a given curve. 10
Figure 3.3 The two generalized tangents of A with respect to B and u. 14
Figure 3.4 All of the ways in which two generalized tangents can inter- sect (not including symmetric counterparts obtained through reflection and rotation) 14
Figure 3.5 15
Figure 3.6 18
Figure 3.7 19
Figure 3.8 20
Figure 3.9 A case of Lemma 3. 21
Figure 3.10 A case of Lemma 3. 22
Figure 3.11 A case of Lemma 3. 23
Figure 3.12 The different zones of Case 2 when $s-\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$do not intersect. We have different optimal motions (dottedlines) depending on the zone in which A_{1} lies.25
Figure 3.13 Zone I , example of when A_{1} is below U. Zone I is outlined by the bolded tangents. 28

Figure 3.14 Positions of A_{1} in Zone IV, subcase 1 and subcase 2. Zone IV is outlined by the bolded tangents. The position of A_{1} right of $s-\operatorname{circ}\left(B_{1}\right)$ and above the horizontal tangent is forbidden due to our simplifications
Figure 3.15 The different zones of Case 2 when s - $\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$ intersect. We have different optimal motions (dotted lines) depending on the zone in which A_{1} lies.
Figure 3.16 Case 3, when s - $\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$ do not intersect. . . . 38
Figure 3.17 Case 3, when s - $\operatorname{circ}\left(B_{0}\right)$ and s - $\operatorname{circ}\left(B_{1}\right)$ intersect and both A_{0} and A_{1} are above the $s-\operatorname{circ}\left(B_{i}\right)$'s. 38
Figure 3.18 Case 3, when s - $\operatorname{circ}\left(B_{0}\right)$ and s - $\operatorname{circ}\left(B_{1}\right)$ intersect and both A_{0} and A_{1} are below the $s-\operatorname{circ}\left(B_{i}\right)$'s.
Figure 3.19 . 39

Acknowledgments

This research was supported by funding from the Natural Sciences and Engineering Research Council of Canada. I would like to thank Prof. David Kirkpatrick and Prof. Will Evans for their support and guidance throughout the years. This thesis would not have been possible without them.

Chapter 1

Introduction

Within robotics and computational geometry, the area of motion planning addresses the problem of movement coordination of multiple machines. These machines are often subject to certain movement constraints, such as obstacles, velocity bounds, or curvature bounds. Over the last few decades, there has been increasing focus in all areas of motion planning, in both academia and industry.

In this thesis, we consider one of the simplest settings of a motion planning problem: the problem of planning collision-free motions for two disc robots of arbitrary radius in an obstacle-free environment. Given two discs \mathbb{A} and \mathbb{B} in the plane, with specified initial and final configurations, we seek a shortest collisionfree motion taking \mathbb{A} and \mathbb{B} from their initial to their final configurations. The length of such a motion is defined to be the length sum of paths traced by the centres of \mathbb{A} and \mathbb{B}.

1.1 Related work

The consideration of disc robots in motion planning has amassed a substantial body of research, the bulk of which is focused on the feasibility, rather than optimality, of motions. Schwartz and Sharir [18] were the first to study motion planning for k discs among polygonal obstacles with n total edges. For $k=2$, they developed an $\mathscr{O}\left(n^{3}\right)$ algorithm (later improved to $\left.\mathscr{O}\left(n^{2}\right)[19,28]\right)$ to determine if a collision-free motion connecting two specified configurations is feasible. When the number of
robots k is unbounded, Spirakis and Yap [22] showed that determining feasibility is strongly NP-hard for disc robots, although the proof relies on the robots having different radii. For the analogous problem with rectangular robots, determining feasibility is PSPACE-hard, as shown by Hopcroft et al. [11] and Hopcroft and Wilfong [12]. This result was later generalized by Hearn and Demaine [10] for rectangular robots of size 1×2 and 2×1.

On the practical side, heuristic and sampling based algorithms have been employed to solve motion planning problem for up to hundreds of robots [17, 23, 27]. These algorithms typically use standard search strategies such as $A *$ coupled with domain specific heuristics (see [14] and the references contained therein). While efficient in practice, these algorithms are typically numerical or iterative in nature, with no precise performance bounds. A variety of alternative cost measures for our problem has also been considered, such as the minimum time motion under velocity constraints [4,5,24] as well as the motion minimizing the total number of continuous movements [1, 3, 6].

A variant of our problem is when the robots are homogeneous and unlabeled. In this case, any robot is allowed to move to any final location, so long as each final position is covered by exactly one robot. For $k=2$ discs, the unlabeled case is trivial as one can apply our labeled algorithm twice. However, when k is unbounded, Solovey and Halperin [20] show that the unlabeled problem is PSPACE-hard, even in the case of unit squares with polygonal obstacles. Surprisingly, when the robots are located within a simple polygon with no obstacles, a polynomial time for checking feasibility exists [2]. As in the labeled case, a variety of cost measures has been explored for the unlabeled case. Solovey et al. [21] gives an $\tilde{\mathscr{O}}\left(k^{4}+k^{2} n^{2}\right)$ algorithm that minimizes the length sum of paths traced by the centres of the discs with additive error $4 k$. In work by Turpin et al. [24], an optimal solution is found in polynomial time when the cost function is the maximum path length traversed by any single robot. However, their algorithm requires that the working space is obstacle free and the initial locations of the robots are far enough apart.

1.2 Our contribution

This thesis makes several novel contributions to the understanding of minimumlength coordinated motions. We first give a simple NP-hardness proof for the problem of length-optimal obstacle-free motion planning for arbitrary disk robots. For the case of two arbitrary discs, we characterize all initial and final configurations that admit straight-line optimal motions; and for all other initial and final configurations, the motion from initial to final configuration involves either a net clockwise or counter-clockwise turn in the relative position of the discs. In this case, our results describe either (i) a single optimal motion, or (ii) two feasible motions, of which one is optimal among all net clockwise motions and the other is optimal among all net counter-clockwise motions. The motions that we describe have bounded curvature except at a constant number of isolated points; in fact, they are composed of a constant number of straight segments and circular arcs, of radius s, the sum of the disc radii. The path length itself can be expressed as a simple integral depending only on the initial and final positions of the discs. Moreover, all paths that we describe can can be realized by two different kinds of coordinated motion: coupled or decoupled. In the coupled motion, the angle formed by a vector joining the two disc centres changes monotonically. Furthermore, the two discs are in contact for a connected interval of time. That is, once the two discs move out of contact, they are never in contact again. In the decoupled motion, only one of the discs moves at any given time.

Our general approach is based on the Cauchy surface area formula, which was first applied to motion planning by Icking et al. [13] to establish the optimality of motions of a directed line segment in the plane, where distance is measured by the length sum of the paths traced by the two endpoints of the segment. This problem has a rich history, and was first posed by Ulam [25] and subsequently solved by Gurevich [9]. Other approaches to that of Icking et al. [13] are quite different, and use control theory to obtain differential equations that characterize the optimal motion [9, 26]. Of course, the problem of moving a directed line segment of length s corresponds exactly to the coordinated motion of two discs with radius sum s constrained to remain in contact throughout the motion. Hence the coordinated motion of two discs with radius sum s can also be seen as the problem of moving
an "extensible" line segment that can extend freely but has minimum length s. As such, our results also generalize those of Icking et al. [13]. Although we use some of the same tools introduced by Icking et al., our generalization is non-trivial; the doubling argument that lies at the heart of the proof of Icking et al. depends in an essential way on the assumption that the rod length is fixed throughout the motion.

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2 we outline some basic definitions as well as our tools for the problem. In Chapter 3 we present the main proof and algorithm. Finally, we present some interesting open problems and a simple proof of NP-Hardness for length-optimal disc coordinated motions in any L_{p} norm in Chapter 4

Chapter 2

Background

2.1 Formal definitions

To describe the motion of a pair of disc robots between their initial and final configurations, we first make precise several terms that have intuitive meaning. We assume for concreteness that the radii of the two discs sum to s.

Definition 1 The (instantaneous) position of a disc is simply a point in \mathfrak{R}^{2} specifying the location of its centre. A placement of a disc pair (\mathbb{A}, \mathbb{B}) is a pair (A, B), where A (resp. B) denotes the position of \mathbb{A} (resp. \mathbb{B}). A placement (A, B) is said to be compatible if $\|A-B\| \geq s$.

A pair of discs can move from placement to placement through a motion, which we can now define:

Definition 2 A trajectory $\xi_{\mathbb{A}}$ of a disc \mathbb{A} from a position A_{0} to a position A_{1} is a continuous, rectifiable curve of the form $\xi_{\mathbb{A}}:[0,1] \rightarrow \mathfrak{R}^{2}$, where $\xi_{\mathbb{A}}(0)=A_{0}$, $\xi_{\mathbb{A}}(1)=A_{1}$.

A (coordinated) motion m of a disc pair (\mathbb{A}, \mathbb{B}) from a placement $\left(A_{0}, B_{0}\right)$ to a placement $\left(A_{1}, B_{1}\right)$ is a pair $\left(\xi_{\mathbb{A}}, \xi_{\mathbb{B}}\right)$, where $\xi_{\mathbb{A}}$ (resp. $\left.\xi_{\mathbb{B}}\right)$ is a trajectory of \mathbb{A} (resp. \mathbb{B}) from position A_{0} to A_{1} (resp. position B_{0} to B_{1}). A motion is said to be compatible or feasible if all of its associated placements are compatible.

Since we are interested in characterizing collision-free motions, we will assume that, unless otherwise specified, all placements and motions that arise in this paper are compatible.

Definition 3 The length $\ell\left(\xi_{\mathbb{A}}\right)$ of a trajectory $\xi_{\mathbb{A}}$ is simply the Euclidean arclength of its trace, that is,

$$
\ell\left(\xi_{\mathbb{A}}\right)=\sup _{k, T} \sum_{i=1}^{k}\left\|\xi_{\mathbb{A}}\left(t_{i-1}\right)-\xi_{\mathbb{A}}\left(t_{i}\right)\right\|
$$

where the supremum is taken over all subdivisions $T=\left\{t_{0}, t_{1}, \ldots, t_{k}\right\}$ of $[0,1]$ where $0=t_{0}<t_{1}<\cdots<t_{k}=1$.

The length $\ell(m)$ of a motion m is the sum of the lengths of its associated trajectories, i.e. $\ell(m)=\ell\left(\xi_{\mathbb{A}}\right)+\ell\left(\xi_{\mathbb{B}}\right)$. Finally, the (collision-free) distance $d\left(P_{0}, P_{1}\right)$ between two placements $P_{0}=\left(A_{0}, B_{0}\right)$ and $P_{1}=\left(A_{1}, B_{1}\right)$ is the minimum possible length over all compatible motions m from P_{0} to P_{1}. We refer to any compatible motion m between P_{0} and P_{1} satisfying $\ell(m)=d\left(P_{0}, P_{1}\right)$ as a shortest or optimal motion between P_{0} and P_{1}.

The fact that d is a metric on the set of placements is easy to check. Nevertheless, one may be concerned about the existence of a shortest motion under this notion of distance. The fact that a shortest motion exists is a consequence of the Hopf-Rinow theorem, for which details can be found in [8].

Chapter 3

L_{2}-optimal Disc Motion

3.1 The general approach

Suppose that the disc pair (\mathbb{A}, \mathbb{B}) has initial placement $P_{0}=\left(A_{0}, B_{0}\right)$ and final placement $P_{1}=\left(A_{1}, B_{1}\right)$, and let $m=\left(\xi_{\mathbb{A}}, \xi_{\mathbb{B}}\right)$ be any motion from P_{0} to P_{1}. Denote by $\widehat{\xi}_{\mathbb{A}}$ (resp. $\widehat{\xi}_{\mathbb{B}}$) the closed curve defining the boundary of the convex hull of $\xi_{\mathbb{A}}$ (resp. $\xi_{\mathbb{B}}$). Since $\xi_{\mathbb{A}}$ (resp. $\xi_{\mathbb{B}}$), together with the segment $\overline{A_{0} A_{1}}$ (resp. $\overline{B_{0} B_{1}}$), forms a closed curve whose convex hull has boundary $\widehat{\xi_{\mathbb{A}}}$ (resp. $\widehat{\xi_{\mathbb{B}}}$), it follows from convexity that:

$$
\begin{equation*}
\ell\left(\xi_{\mathbb{A}}\right) \geq \ell\left(\widehat{\xi_{\mathbb{A}}}\right)-\ell\left(\overline{A_{0} A_{1}}\right) \text { and } \ell\left(\xi_{\mathbb{B}}\right) \geq \ell\left(\widehat{\xi_{\mathbb{B}}}\right)-\ell\left(\overline{B_{0} B_{1}}\right) . \tag{3.1}
\end{equation*}
$$

When the inequality for $\xi_{\mathbb{A}}$ (resp. $\xi_{\mathbb{B}}$) is an equality, we say that the trace of $\xi_{\mathbb{A}}$ (resp. $\xi_{\mathbb{B}}$) is convex. When both $\xi_{\mathbb{A}}$ and $\xi_{\mathbb{B}}$ are convex, we say that motion $m=$ $\left(\xi_{\mathbb{A}}, \xi_{\mathbb{B}}\right)$ is convex.

Given a placement $P=(A, B)$, we refer to the angle formed by the vector from B to A with respect to the x-axis as the angle of the placement P. Let $\left[\theta_{0}, \theta_{1}\right]$ be the range of angles counter-clockwise between the angle of P_{0} and P_{1}.

Observation 1 Let m be any motion from P_{0} to P_{1}, and let I be the range of angles realized by the set of placements in m. Then $\left[\theta_{0}, \theta_{1}\right] \subseteq I$ or $S^{1}-\left[\theta_{0}, \theta_{1}\right] \subseteq I$, where $S^{1}=[0,2 \pi]$.

We use Observation 1 to categorize the motions we describe into net clockwise and net counter-clockwise motions. Net clockwise motions satisfy $S^{1}-\left[\theta_{0}, \theta_{1}\right] \subseteq I$ and net counter-clockwise motions satisfy $\left[\theta_{0}, \theta_{1}\right] \subseteq I$.

Since any motion is either net clockwise or net counter-clockwise it suffices to optimize over net clockwise and net counter-clockwise motions separately. The following lemma sets out sufficient conditions for net (counter-)clockwise motions to be optimal.

Lemma 1 Let $m=\left(\xi_{\mathbb{A}}, \xi_{\mathbb{B}}\right)$ be any net (counter-)clockwise motion from P_{0} to P_{1} satisfying the following properties:

1. (Convexity) $\widehat{\xi_{\mathbb{A}}}=\xi_{\mathbb{A}} \cup \overline{A_{0} A_{1}} \quad$ and $\quad \widehat{\xi_{\mathbb{B}}}=\xi_{\mathbb{B}} \cup \overline{B_{0} B_{1}} ; \quad$ and
2. (Minimality) $\ell\left(\widehat{\xi_{\mathbb{A}}}\right)+\ell\left(\widehat{\xi_{\mathbb{B}}}\right)$ is minimized over all possible net (counter-)clockwise motions.

Then m is a shortest net (counter-)clockwise motion from P_{0} to P_{1}.

Proof 1 Let $m^{\prime}=\left(\xi_{\mathbb{A}}^{\prime}, \xi_{\mathbb{B}}^{\prime}\right)$ be any net (counter-)clockwise motion from P_{0} to P_{1}. It follows from property 1 that $\ell(m)=\ell\left(\widehat{\xi_{\mathbb{A}}}\right)-\ell\left(\overline{A_{0} A_{1}}\right)+\ell\left(\widehat{\xi_{\mathbb{B}}}\right)-\ell\left(\overline{B_{0} B_{1}}\right)$. Furthermore, from 2 we know that $\ell\left(\widetilde{\xi_{\mathbb{A}}}\right)+\ell\left(\widetilde{\xi_{\mathbb{B}}}\right) \leq \ell\left(\widetilde{\xi_{\mathbb{A}}^{\prime}}\right)+\ell\left(\widetilde{\xi_{\mathbb{B}}^{\prime}}\right)$. Thus, using inequality (3.1), we have $\ell(m) \leq \ell\left(\widetilde{\xi_{\mathbb{A}}^{\prime}}\right)-\ell\left(\overline{A_{0} A_{1}}\right)+\ell\left(\widetilde{\xi_{\mathbb{B}}^{\prime}}\right)-\ell\left(\overline{B_{0} B_{1}}\right) \leq \ell\left(m^{\prime}\right)$.

When a net (counter-)clockwise motion satisfies the two properties of Lemma 1, we say it is (counter-)clockwise optimal. Figure 3.1 illustrates two motions from the placement $\left(A_{0}, B_{0}\right)$ to the placement $\left(A_{1}, B_{1}\right)$. The blue motion, where \mathbb{B} first pivots about A_{0} and moves to B_{1}, followed by \mathbb{A} moving from A_{0} to A_{1}, is counterclockwise optimal. The yellow motion, where \mathbb{A} first pivots about B_{0} and moves to A_{1}, followed by \mathbb{B} moving from B_{0} to B_{1}, is clockwise optimal (as one can check following the proofs of Section 3.2). However, only the yellow motion is globally optimal.

While property 1 of Lemma 1 is typically easy to verify, property 2 is less straightforward and relies indirectly on an application of Cauchy's surface area formula (Theorem 1) as well as lower bounds we derive below. Theorem 1 allows

Figure 3.1: Clockwise (yellow) and counter-clockwise (blue) motions satisfying the two properties of Lemma 1 .
us to translate the problem of measuring lengths of curves into a problem of measuring the support functions of $\widehat{\xi_{\mathbb{A}}}$ and $\widehat{\xi_{\mathbb{B}}}$ at certain critical angles. Our approach is to lower bound these support functions to get a lower bound on the optimal path length, and then find a motion matching the lower bound.

Definition 4 Let C be a closed curve. The support function $h_{C}: S^{1} \rightarrow \mathbb{R}$ of C is defined as

$$
h_{C}(\theta)=\sup \{x \cos \theta+y \sin \theta:(x, y) \in C\} .
$$

For an angle θ, the set of points that realize the supremum are called support points, and the line oriented at angle $\frac{\pi}{2}+\theta$ going through the support points is called the support line (see Figure 3.2).

Theorem 1 (Cauchy's surface area formula [7. Section 5.3]) Let C be a closed convex curve in the plane and h_{C} be the support function of C. Then

$$
\begin{equation*}
\ell(C)=\int_{0}^{2 \pi} h_{C}(\theta) d \theta \tag{3.2}
\end{equation*}
$$

As noted in [13], it follows from Theorem 1 that we can bound the length of two convex curves in the plane:

Figure 3.2: The (two) support points and support line at angle α of a given curve.

Corollary 1 Let C_{1} and C_{2} be closed convex curves in the plane. Then the sum of their lengths can be expressed as follows:

$$
\begin{equation*}
\ell\left(C_{1}\right)+\ell\left(C_{2}\right)=\int_{0}^{2 \pi}\left(h_{1}(\theta)+h_{2}(\pi+\theta)\right) d \theta \tag{3.3}
\end{equation*}
$$

where h_{i} is the support function of C_{i}.
In order to argue the optimality of our motions, we use the following observations that provide a bound on the support function of an arbitrary motion. Let $h_{\mathbb{A}}$ (resp. $h_{\mathbb{B}}$) denote the support function of $\widehat{\xi}_{\mathbb{A}}$ (resp. $\widehat{\xi_{\mathbb{B}}}$), and let $h_{\mathbb{A} \mathbb{B}}(\theta)$ denote the $\operatorname{sum} h_{\mathbb{A}}(\theta)+h_{\mathbb{B}}(\pi+\theta)$. Recall that s is the radii sum of the two disks.

Observation 2 Let P_{0} and P_{1} be two configurations and let $\left[\theta_{0}, \theta_{1}\right]$ be the range of angles counter-clockwise between the angles of P_{0} and P_{1}. Then, for all net counter-clockwise motions from P_{0} to P_{1}, and $\theta \in\left[\theta_{0}, \theta_{1}\right], h_{\mathbb{A} B}(\theta) \geq s$. Similarly, for all net clockwise motions and $\theta \in S^{1}-\left[\theta_{0}, \theta_{1}\right], h_{\mathbb{A B}}(\theta) \geq s$.

Observation 3 For all support angles, the support function $h_{\mathbb{A}}\left(\right.$ resp. $h_{\mathbb{B}}$) is lower bounded by the support function $H_{\mathbb{A}}$ (resp. $H_{\mathbb{B}}$) of $\overline{A_{0} A_{1}}\left(\right.$ resp. $\overline{B_{0} B_{1}}$), since $\overline{A_{0} A_{1}} \subset$ $\widehat{\xi_{\mathbb{A}}}$ (resp. $\overline{B_{0} B_{1}} \subset \widehat{\xi_{\mathbb{B}}}$). Together with Observation 2 the support function $h_{\mathbb{A} \mathbb{B}}$ is
bounded point-wise in the counter-clockwise and clockwise cases by

$$
\begin{array}{lr}
\max \left(H_{\mathbb{A}}(\theta)+H_{\mathbb{B}}(\pi+\theta), s \cdot \mathbb{1}_{\left[\theta_{0}, \theta_{1}\right]}\right) & \text { (net counter-clockwise) } \\
\max \left(H_{\mathbb{A}}(\theta)+H_{\mathbb{B}}(\pi+\theta), s \cdot \mathbb{1}_{S^{1}-\left[\theta_{0}, \theta_{1}\right]}\right) & \text { (net clockwise) }
\end{array}
$$

where $\mathbb{1}_{[a, b]}$ is the indicator function of the interval $[a, b]$.
In the next section we give explicit constructions of optimal motions for many initial-final configuration pairs. This includes, of course, all those whose associated trajectories correspond to two straight segments, what we refer to as straight-line motions. In other cases, we construct both the clockwise and counter-clockwise optimal motions, one of which must be optimal among all motions.

3.2 Optimal paths for two discs

Our constructions of shortest (counter-)clockwise motions can be summarized by the following theorem:

Theorem 2 Let \mathbb{A} and \mathbb{B} be two discs with radius sum s in an obstacle-free plane with arbitrary initial and final placements $P_{0}=\left(A_{0}, B_{0}\right)$ and $P_{1}=\left(A_{1}, B_{1}\right)$. Then there is a shortest motion from P_{0} to P_{1} whose associated trajectories are composed of at most six (straight or circular arcs of radius s) segments.

We devote this entire section to the identification and exhaustive treatment of various cases of Theorem 2 . The paths that we identify in each case also allow us to provide the following unified characterization of the optimal path length, covering all cases:

Corollary 2 Let $H_{\mathbb{A}}$ and $H_{\mathbb{B}}$ be the support functions of the segments $\overline{A_{0} A_{1}}$ and $\overline{B_{0} B_{1}}$ respectively, $H_{\mathbb{A} B}(\theta):=H_{\mathbb{A}}(\theta)+H_{\mathbb{B}}(\pi+\theta)$, and m be an optimal motion between P_{0} and P_{1}. Let $\left[\theta_{0}, \theta_{1}\right]$ be the range of angles counter-clockwise between P_{0} and P_{1}. Then
$\ell(m)=\min \left(\int_{0}^{2 \pi} \max \left(H_{\mathbb{A B}}(\theta), s \cdot \mathbb{1}_{\left[\theta_{0}, \theta_{1}\right]}\right) d \theta, \int_{0}^{2 \pi} \max \left(H_{\mathbb{A B}}(\theta), s \cdot \mathbb{1}_{S^{1}-\left[\theta_{0}, \theta_{1}\right]}\right) d \theta\right)$

$$
-\left|\overline{A_{0} A_{1}}\right|-\left|\overline{B_{0} B_{1}}\right|
$$

where $\mathbb{1}_{[a, b]}$ is the indicator function of the interval $[a, b]$.
Though the expression in Corollary 2 looks daunting, the only difference between the two integrals is the indicator function used. The support functions themselves can be expressed in closed form and the integrals are clearly lower bounds on the path length by Corollary 1 and Observation 3. We emphasize that the integrals can be expressed in closed form if needed, albeit with some cases involved.

We now introduce some additional tools that will help us classify the initial and final placements into different cases.

Definition 5 Let p and q be arbitrary points in the plane.
(a) We denote by s - $\operatorname{circ}(p)$ the circle of radius s centred at point p.
(b) We denote by $s-\operatorname{corr}(p, q)$ the s-corridor associated with p and q, defined to be the Minkowski sum of the line segment $\overline{p q}$ and an open disc of radius s.
(c) We denote by s-cone (p, q) the cone formed by all half-lines from p that intersect s-circ (q).

If disc \mathbb{A} is centred at location A then s - $\operatorname{circ}(A)$ corresponds to the locations forbidden to the centre of disc \mathbb{B} in a compatible placement (see dotted circles in Figure 3.1). The corridors s - $\operatorname{corr}\left(A_{0}, A_{1}\right)$ and $s-\operatorname{corr}\left(B_{0}, B_{1}\right)$ play a critical role in partitioning initial and final placement pairs for which straight-line trajectories (which are clearly optimal) are possible. Specifically, if point $A \notin s$ - $\operatorname{corr}\left(B_{0}, B_{1}\right)$ then the line segment $\overline{B_{0} B_{1}}$ does not intersect s-circ (A); i.e. it is possible to translate \mathbb{B} from B_{0} to B_{1} without interference from disc \mathbb{A} with centre at point A. Similarly, if point $B \notin s$-corr $\left(A_{0}, A_{1}\right)$ it is possible to translate \mathbb{A} from A_{0} to A_{1} without interference from disc \mathbb{B} with centre at point B.

What follows is a case analysis of various scenarios for the initial and final placements. We first classify the cases by the containment of $A_{0}, A_{1}, B_{0}, B_{1}$ within $s-\operatorname{corr}\left(A_{0}, A_{1}\right)$ and $s-\operatorname{corr}\left(B_{0}, B_{1}\right)$ (cf. Table 3.1). While there might appear to be 16 cases - since each point is either contained within a corridor or not - they cluster into just three disjoint collections, referred to as Cases 1, 2 and 3. These are further reduced by symmetries which include (i) interchanging the initial and

Case	$A_{0} \in$ $s-\operatorname{corr}\left(B_{0}, B_{1}\right)$	$A_{1} \in$ s-corr $\left(B_{0}, B_{1}\right)$	$B_{0} \in$ s-corr $\left(A_{0}, A_{1}\right)$	$B_{1} \in$ s-corr $\left(A_{0}, A_{1}\right)$	Type of motion
1a	false	\star	\star	false	straight-line $\left(B_{0} \rightarrow B_{1}, A_{0} \rightarrow A_{1}\right)$
1b	\star	false	false	\star	
2a	true	\star	true	\star	See Section 3.3.2
2b	\star	true	\star	true	
3a	true	true	false	false	See Section 3.3.3
3b	false	false	true	true	

Table 3.1: All cases of possible motions. The $*$ entries mean that the specified condition is unconstrained, i.e. it can be either true or false. We leave some cases out due to symmetry.
final placements and (ii) switching the roles of \mathbb{A} and \mathbb{B}. For example, Case (1b) reduces to Case (1a) by symmetry (i).

In all cases our specified motion has a common form - with a possible interchange of the roles of \mathbb{A} and \mathbb{B}. We identify an intermediate position $A_{\text {int }}$ (possibly A_{0} or A_{1}) and perform the following sequence of (possibly degenerate) moves:

1. Move \mathbb{A} on the shortest path from A_{0} to $A_{\text {int }}$, avoiding $s-\operatorname{circ}\left(B_{0}\right)$;
2. Move \mathbb{B} on the shortest path from B_{0} to B_{1}, avoiding $s-\operatorname{circ}\left(A_{\text {int }}\right)$; then
3. Move \mathbb{A} on the shortest path from $A_{\text {int }}$ to A_{1}, while avoiding s - $\operatorname{circ}\left(B_{1}\right)$.

The main idea of partitioning into cases is to identify an appropriate $A_{\text {int }}$ for a given configuration. Within each case, we can identify a set of candidate intermediate points such that at least one of the candidates will produce an optimal $A_{\text {int }}$. As it turns out, $A_{\text {int }}$ is either A_{0}, A_{1}, or intersections between two generalized tangents.

Definition 6 Let A, and B be two points in the plane. Let u be a point on s-circ (B). A generalized tangent of A with respect to B and u consists of a tangent segment from A to a point p on $s-\operatorname{circ}(B)$ and the arc from p to u (see Figure 3.3).

Without loss of generality, assume that our initial and final configurations have been normalized as follows: B_{0} and B_{1} lie on the x-axis with B_{0} at the origin,

Figure 3.3: The two generalized tangents of A with respect to B and u.

Figure 3.4: All of the ways in which two generalized tangents can intersect (not including symmetric counterparts obtained through reflection and rotation).
B_{1} right of B_{0}. In our case analysis, u will only ever be one of the two tangent points of the B_{i} circles to the line $y=s$. Since there are only a small number of ways generalized tangents can cross, we can examine all of them directly (see Figure 3.4). This case analysis is embedded within Cases 1 to 3 of Table 3.1 with the machinery from Section 3.1 .

In all but a few special cases, we will only examine motions that are net counter-clockwise; net clockwise optimal motions can be obtained by reflecting the initial and final placements across the x-axis and then examining net counterclockwise motions.

The net counter-clockwise orientation of our proposed motion $m=\left(\xi_{\mathbb{A}}, \xi_{\mathbb{B}}\right)$ as well as the convexity of $\xi_{\mathbb{A}}$ and $\xi_{\mathbb{B}}$ will typically be straightforward to verify. To show the optimality of our motions, we show that the support function of our motions achieves the point-wise lower bound established in Observation 3.

3.2.1 Examples of counter-clockwise optimal motions

Before we attempt to identify optimal motions, it will be instructive to examine a special case, illustrated in Figure 3.5. This case will provide the simplest nontrivial example of an optimal motion as well as an illustration to the form of our proofs.

Figure 3.5

Consider the case shown in Figure 3.5, where the A_{i} 's are in $s-\operatorname{corr}\left(B_{0}, B_{1}\right)$, the $B_{i}^{\prime} s$ are on the x-axis, and the $A_{i}^{\prime} s$ are symmetric about the perpendicular bisector of $\overline{B_{0} B_{1}}$.

We define some points useful to our construction of the optimal motion. Let a_{0} and a_{1} be the upper tangents from A_{0} to $s-\operatorname{circ}\left(B_{0}\right)$, and A_{1} to $s-\operatorname{circ}\left(B_{1}\right)$ respectively. These two tangents intersect in a point $A_{\text {int }}$ on the perpendicular bisector of $\overline{B_{0} B_{1}}$. Let b_{0} and b_{1} be the lower tangents from B_{0} and B_{1} to s - $\operatorname{circ}\left(A_{\text {int }}\right)$ respectively, and let T_{0} and T_{1} be intersection points of b_{0} and b_{1} with s - $\operatorname{circ}\left(A_{\text {int }}\right)$. Note that by construction, a_{0} is parallel to b_{1} and a_{1} is parallel to b_{0}.

Claim 1 The following is a counter-clockwise optimal motion (see bolded outline in Figure 3.5):

1. Move \mathbb{A} from A_{0} to $A_{\text {int }}$;
2. Move \mathbb{B} from B_{0} to B_{1}, avoiding s-circ $\left(A_{\text {int }}\right)$. This involves translating \mathbb{B} from B_{0} to T_{0}, rotating around s-circ $\left(A_{\text {int }}\right)$ in a range of angles $\left[\beta_{0}, \beta_{1}\right]$, and finally translating from T_{1} to B_{1}; then
3. Move \mathbb{A} from $A_{\text {int }}$ to A_{1}.

Proof 2 It is easy to check that property 1 (convexity) of Lemma 1 is satisfied. To show that property 2 (minimality) holds as well we verify that $h_{\mathbb{A} \mathbb{B}}(\theta)$ matches its lower bound. By Observation 3, we may check that for all angles θ, either $h_{\mathbb{A} \mathbb{B}}(\theta)=s$ for θ in the range of angles counter-clockwise between the initial and final placement, or is determined by \mathbb{A} and \mathbb{B} in their initial or final position.

By construction, β_{0} is normal to the orientation of b_{0} (as well as a_{0}) and β_{1} is normal to b_{1} (as well as a_{1}). This ensures that for the range of angles $\left[\beta_{0}, \beta_{1}\right], A_{\text {int }}$ is the support point of $h_{\mathbb{A}}(\theta)$ while the support point of $h_{\mathbb{B}}(\theta+\pi)$ lies on the arc of the circle traversed by \mathbb{B}. Hence $h_{\mathbb{A} B}(\theta)=s$ for $\theta \in\left[\beta_{0}, \beta_{1}\right]$.

Furthermore, $A_{\text {int }}$ is only a support point for angles in $\left[\beta_{0}, \beta_{1}\right]$, since \mathbb{A} moves along tangents a_{0} and a_{1}. Thus for angles in $S^{1}-\left[\beta_{0}, \beta_{1}\right]$, either A_{0} or A_{1} must be one support point, and either B_{0} or B_{1} must be the other.

Remark 1 Even if the positions of A_{0} and A_{1} were swapped in the motion above, the trace of the optimal counter-clockwise motion would remain the same. The proof of optimality would proceed as above, using instead the tangents from A_{0} to $s-\operatorname{circ}\left(B_{1}\right)$ and A_{1} to $s-\operatorname{circ}\left(B_{0}\right)$ as a_{1} and a_{0} respectively.

In the proof above, $A_{\text {int }}$ remains a support during the angles of \mathbb{B} 's rotation even if we shift it slightly vertically upwards. ${ }^{1}$ This motivates the following definition:

Definition 7 Let p be a point in $s-\operatorname{corr}\left(B_{0}, B_{1}\right)$. Let \mathscr{R} be the region below both upper tangents from p to B_{0} and B_{1}. We call \mathscr{R} the dominated region of p with respect to s-corr $\left(B_{0}, B_{1}\right)$. For any point $q \in \mathscr{R}$, we say that p dominates q.

[^0]Note that if p dominates A_{0} and A_{1}, then substituting p for $A_{\text {int }}$ in the proposed motion for Figure 3.5 would maintain the property that the support function $h_{\mathbb{A B}}(\theta)$ is exactly s in the angles of \mathbb{B} 's rotation. In fact, we have the following general lemma:

Lemma 2 Let p be any point that dominates A_{0} and A_{1}, and let m be any motion of the form:

1. Move \mathbb{A} from A_{0} to p in a motion m_{1}, staying entirely within the region dominated by p;
2. Move \mathbb{B} on the shortest path from B_{0} to B_{1} that travels below s - $\operatorname{circ}(p)$. This involves moving \mathbb{B} on a tangent segment b_{0} from B_{0} to s - $\operatorname{circ}(p)$, rotating around s-circ $\left(A_{\text {int }}\right)$ in a range of angles $\left[\beta_{0}, \beta_{1}\right]$, and moving on a tangent segment b_{1} from $s-\operatorname{circ}(p)$ to B_{1}; then
3. Move \mathbb{A} from p to A_{1} in a motion m_{2}, staying entirely within the region dominated by p.

For any such motion m, $h_{\mathbb{A B}}(\theta)=s$ for $\theta \in\left[\beta_{0}, \beta_{1}\right]$. Furthermore, if m_{1} and m_{2} form a convex trace when concatenated together, and the tangents of m_{1} and m_{2} at p are parallel to b_{1} and b_{0} respectively, then p is a support point iff the support angle is in the range $\left[\beta_{0}, \beta_{1}\right]$.

Proof 3 The proof follows exactly the same analysis as the argument for $A_{\text {int }}$ in the proof of Claim [] substituting the tangents of m_{1} and m_{2} at p for a_{0} and a_{1}.

Lemma 2 will allow us to exploit the commonality in many of the proofs we use in subsequent cases, as most motions will involve rotating around at least 1 pivot.

As an example, consider Figure 3.6, which shows an optimal counter-clockwise motion that we'll encounter in Case 2. In this motion, \mathbb{A} first moves from A_{0} to $A_{\text {int }}$, followed by \mathbb{B} rotating from B_{0} to B_{1}, and finished by moving $A_{\text {int }}$ to A_{1}. Lemma 2 allows us to immediately say that $A_{\text {int }}$ is a support point exactly when \mathbb{B} rotates from B_{0} to B_{1}, since the motions from A_{0} and A_{1} to $A_{\text {int }}$ stay within the region
dominated by $A_{\text {int }}$. The motion is also optimal, as the combined movement of \mathbb{A} is convex, and the tangents at $A_{\text {int }}$ are parallel to the tangents of $s-\operatorname{circ}\left(A_{\text {int }}\right)$ at B_{0} and B_{1}.

Figure 3.6

3.2.2 Certifying non-optimality of counter-clockwise motions

The proofs we use in our case analysis will largely resemble the special case discussed in Section 3.2.1. Nevertheless for certain configurations, the tools we've developed in the previous section seem unable to show the optimality of net counterclockwise motions. In such situations, we will show that the optimal net clockwise motion is shorter than any net counter-clockwise motion. In this section we analyse another special case, which will lead us to a set of placements for which we can prove that the optimal motion is net clockwise. This will help us deal with subcases for which the demonstration of net counter-clockwise optimal motions seems to be beyond the reach of our techniques.

Let us consider a variant of Figure 3.5 where the B_{i} 's are now closer together, as depicted in Figure 3.7 and the positions of A_{0} and A_{1} are swapped. Again, we may draw the appropriate upper-tangents from the A_{i} 's and compute an intermediate point $A_{\text {int }}$. By Lemma 2, the trace length of the "motion" m ' outlined in Figure 3.7 is no greater than that of any net-counterclockwise motion. However, the trace given in Figure 3.7 is not feasible, as it requires A_{0} to move through s - $\operatorname{circ}\left(B_{0}\right)$. In this case, we do not know of any counter-clockwise optimal motion for which optimality can be shown with Cauchy's surface area formula. As it turns out, we

Figure 3.7
may sidestep this apparent difficulty by considering clockwise optimal motions.
Claim 2 The optimal motion to Figure 3.7 is net clockwise.
Proof 4 Consider the trace shown in Figure 3.8 where $A_{\text {int }}^{\prime}$ is the point $A_{\text {int }}$ reflected vertically across the segment $\overline{B_{0} B_{1}}$. The following motion m is a feasible realization of this trace:

1. Move \mathbb{A} from A_{0} to the point A^{\prime} vertically below $A_{\text {int }}^{\prime}$, on the along the segment $\overline{A_{0} A_{1}}$;
2. Move \mathbb{B} from B_{0} to B_{1}, rotating across the top of s - $\operatorname{circ}\left(A_{\text {int }}^{\prime}\right)$; then
3. Move \mathbb{A} to A_{1}.

It is easy to see that $\ell(m)<\ell\left(m^{\prime}\right)$: the total distance traveled by \mathbb{B} is the same in m and m^{\prime}, whereas the total distance traveled by \mathbb{A} is strictly less in m. Since m^{\prime} was a lower bound for all counter-clockwise optimal motions, this implies that any clockwise optimal motion would be shorter than a counter-clockwise one. Thus we may restrict our attention to clockwise optimal motions only.

The intermediate point, A^{\prime} was not strictly necessary here as we could have also moved A_{0} straight to A_{1} on the first step. In constructing the lower bounds below however, we will make use of a judiciously chosen intermediate point.

Figure 3.8

In any case we shall encounter, the clockwise optimal motion is similar to counter-clockwise motions we've already considered. For this case, the optimal clockwise motion looks like a vertically reflected version of Figure 3.5. The intermediate pivot point $A_{\text {int }}$ is formed by using the intersection of lower tangents from the A_{i} 's to the s - $\operatorname{circ}\left(B_{j}\right)$'s, where $i \neq j$. In general, we have the following lemma:

Lemma 3 Suppose $A_{0}, A_{1} \in \operatorname{s-corr}\left(B_{0}, B_{1}\right)$ and let $H_{i j}$ denote the half space below the upper tangent from A_{i} to s-circ $\left(B_{j}\right)$. If $H_{i j}$ intersects s-circ $\left(B_{i}\right)$ for some $i \in$ $\{0,1\}, j=1-i$, and $A_{j} \in H_{i j}$, then the optimal motion must be net clockwise.

Proof 5 There are two major cases: (i) the case where s-circ $\left(B_{0}\right)$ does not intersect s-circ $\left(B_{1}\right)$ and (ii) the case where they do intersect. For both cases, we assume that A_{0} is under the line connecting B_{0} with B_{1}. The other cases are treated similarly with almost exactly the same proof.
s-circ $\left(B_{0}\right)$ does not intersect \boldsymbol{s}-circ $\left(B_{1}\right) \quad$ Let U_{0} be the upper tangent point of A_{0} to s-circ $\left(B_{1}\right)$. By our assumptions, A_{1} lies below $\overline{A_{0} U_{0}}$, and $A_{1} \in s-\operatorname{corr}\left(B_{0}, B_{1}\right)$. Let U_{1} be the upper tangent point of A_{1} to s-circ $\left(B_{0}\right)$. We first deal with the case where the tangent segments $\overline{A_{0} U_{0}}$ and $\overline{A_{1} U_{1}}$ intersect at a point $A_{\text {int }} \in s-\operatorname{corr}\left(B_{0}, B_{1}\right)$ (see Figure 3.9).

Consider the following "motion" $m^{\prime}=\left(\xi_{\mathbb{A}}^{\prime}, \xi_{\mathbb{B}}^{\prime}\right)$:

1. Move \mathbb{A} on a straight line from A_{0} to $A_{\text {int }}$.

Figure 3.9: A case of Lemma 3.
2. Move \mathbb{B} from B_{0} to B_{1} avoiding s-circ $\left(A_{\text {int }}\right)$. This involves moving \mathbb{B} to T_{0} (the lower tangent point of B_{0} and s-circ $\left(A_{\text {int }}\right)$), rotating \mathbb{B} counter-clockwise about $A_{\text {int }}$ to T_{1} (the lower tangent point of B_{1} and s-circ $\left(A_{\text {int }}\right)$) in a range of angles $\left[\beta_{0}, \beta_{1}\right]$, and then moving \mathbb{B} from T_{1} to B_{1}.
3. Move \mathbb{A} in a straight line from $A_{\text {int }}$ to A_{1}.

The "motion" outlined above is infeasible, as the position of B_{0} prevents the movement from A_{0} to $A_{\text {int }}$ in a straight-line. However, Lemmas 1 and 2 shows that $\ell\left(m^{\prime}\right)$ forms a lower bound on all net clockwise motions.

Now we construct a net clockwise motion whose length is no greater than that of m^{\prime}. Construct the point $A_{\text {int }}^{\prime}$ in Figure 3.9. which is the result of two reflections of $A_{\text {int }}$, first along the line from B_{0} to B_{1} and then along the perpendicular bisector of $\overline{B_{0} B_{1}}$. Consider the following motion m :

1. Move \mathbb{B} from B_{0} to B_{1} avoiding s-circ $\left(A_{\text {int }}^{\prime}\right)$ by rotating over the top of it. This involves traversing along the upper tangents from B_{0} and B_{1} to $s-\operatorname{circ}\left(A_{\text {int }}^{\prime}\right)$ and rotating over the top of s-circ $\left(A_{\text {int }}^{\prime}\right)$.
2. Move A_{0} to A_{1} in a straight line.

Clearly step 1 of m is the same length as step 2 of m^{\prime}, and step 2 of m is at most the length of steps 1 and 3 of m^{\prime}, so $\ell(m) \leq \ell\left(m^{\prime}\right)$. Furthermore m is a feasible motion. To see this, let ℓ be line through $A_{\text {int }}^{\prime}$ parallel to the segment $\overline{A_{0} A_{\text {int }}}$, and let

Figure 3.10: A case of Lemma 3.
q be the tangent point between s-circ $\left(B_{0}\right)$ and ℓ. Note that $A_{\text {int }}^{\prime}$ lies on the right of q and above ℓ and A_{0} is left of q and above ℓ, so A_{0} does not obstruct the movement of \mathbb{B} in step 1 .

Hence the optimal motion must be net clockwise in the case where $\overline{A_{0} U_{0}}$ and $\overline{A_{1} U_{1}}$ intersect.

When $\overline{A_{0} U_{0}}$ and $\overline{A_{1} U_{1}}$ do not intersect (see Figure 3.10), this means that U_{1} is below $\overline{A_{0} U_{0}}$. In this case, let $A_{\text {int }}$ be the right-most intersection point between $\overline{A_{0} U_{0}}$ and s-circ $\left(B_{0}\right)$ and the proof above will work without modification.
s-circ $\left(B_{0}\right)$ intersects s-circ $\left(B_{1}\right) \quad$ We now deal with case (ii), where s-circ $\left(B_{0}\right)$ intersects s-circ $\left(B_{1}\right)$ (see Figure 3.11). Let \mathscr{L} (resp. \mathscr{U}) denote the region within s-corr $\left(B_{0}, B_{1}\right)$ below (resp. above) the discs enclosed by s-circ $\left(B_{0}\right)$ and s-circ $\left(B_{1}\right)$. We will show that if both A_{0} and A_{1} are in \mathscr{L}, then the optimal motion must be net clockwise. The case for \mathscr{U} can be handled similarly.

As before, we will first lower bound the optimal net counter-clockwise motion by an infeasible motion, and then show a net clockwise motion that is at most the length of the lower bound.

Let t be the upper intersection point of s - $\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$. If A_{0} is left of the perpendicular bisector of $\overline{B_{0} B_{1}}$, then define the following: U_{0} is the upper tangent point of A_{0} to s - $\operatorname{circ}\left(B_{1}\right), U_{1}$ is the upper tangent point of A_{1} to s-circ $\left(B_{0}\right)$. If A_{0} is right of the perpendicular bisector, let U_{0} be the upper tangent point of A_{0}
to s-circ $\left(B_{0}\right)$, and let U_{1} be the upper tangent point of A_{1} to s - $\operatorname{circ}\left(B_{1}\right)$.
If U_{1} is counter-clockwise of ton s-circ $\left(B_{0}\right)$ or U_{0} is clockwise of ton s-circ $\left(B_{1}\right)$, one can check that the proof of the non-intersecting case works here as well. Otherwise, both U_{0} and U_{1} are vertically below t.

Figure 3.11: A case of Lemma 3 .
In this case, consider the following "motion" m ':

1. Move \mathbb{A} on a straight line from A_{0} to t. This involves possibly moving on a chord through s - $\operatorname{circ}\left(B_{0}\right)$ and s-circ $\left(B_{1}\right)$ in a range of angles $\left[\alpha_{0}, \alpha_{1}\right]$.
2. Move \mathbb{B} from B_{0} to B_{1} avoiding s - $\operatorname{circ}(t)$.
3. Move \mathbb{A} in a straight line from t to A_{1}. This involves possibly moving on a chord through s-circ $\left(B_{0}\right)$ and s-circ $\left(B_{1}\right)$ in a range of angles $\left[\alpha_{2}, \alpha_{3}\right]$.

We note that the m^{\prime} used here is almost the same as the m^{\prime} used for the nonintersecting case, using t in place of $A_{\text {int }}$. For the range of angles $\left[\alpha_{0}, \alpha_{1}\right]$ one support point will be B_{0} as $\left[\alpha_{0}, \alpha_{1}\right] \subset[-\pi / 2, \pi / 2]$. The other support point will either be t or one of the A_{i} 's. Note that when the other support point is t, the support function is at most s (and strictly less at all but 1 point) as m^{\prime} cuts through s-circ $\left(B_{0}\right)$. Hence $h_{\mathbb{A B}}(\theta)$ is at most its lower bound for $\theta \in\left[\alpha_{2}, \alpha_{3}\right]$ Similarly, for the range of angles $\left[\alpha_{2}, \alpha_{3}\right]$, one support point will be B_{1}, and the other support
point will either be t or one of the A_{i} 's. Again, a similar argument shows that $h_{\mathbb{A} B}(\theta)$ meets its lower bound in $\left[\alpha_{2}, \alpha_{3}\right]$ as well.

For all other angles, the argument proceeds exactly as in the the proof of Lemma 2

Now we construct a net clockwise motion whose length is no greater than that of m^{\prime}. Construct the point $A_{i n n}^{\prime}$, which is the vertical reflection of t across $\overline{B_{0} B_{1}}$. Now consider the same type of motion m that we used in the non-intersecting case:

1. Move \mathbb{B} from B_{0} to B_{1} avoiding s-circ $\left(A_{\text {int }}^{\prime}\right)$ by rotating over the top of it.
2. Move A_{0} to A_{1} in a straight line.

Clearly m is a feasible motion. As before, step 1 of m is the same length as step 2 of m^{\prime}, and step 2 of m is at most the length of steps 1 and 3 of m^{\prime}, so $\ell(m) \leq \ell\left(m^{\prime}\right)$.

3.3 Case analysis of counter-clockwise optimal motions

In this section we treat exhaustively each case of Table 3.1, beginning with Case 1. For Case 2 and onwards, the general form of the motion we construct will be similar to examples presented in Section 3.2. That is, the motion will be decoupled, consisting of at most two \mathbb{A} motions which meet at an intermediate point $A_{\text {int }}$ and one \mathbb{B} motion. The motions themselves are constructed from tangent segments and arcs of radius s circles. When an arc of a circle is part of a motion, the centre of the circle will be dominating in the sense of Definition 7.

3.3.1 Case 1

It suffices to treat Case 1a, as Case 1 b reduces to Case 1a by symmetry. In Case 1a, $A_{0} \notin s$-corr $\left(B_{0}, B_{1}\right)$, so on the first step we translate \mathbb{B} from B_{0} to B_{1} in a straight line without touching \mathbb{A}. At this point \mathbb{A} can move freely in a straight line from A_{0} to A_{1}, as $B_{1} \notin s$-corr $\left(A_{0}, A_{1}\right)$. As we shall see through examining the other cases, Case 1 is the only situation where a straight-line motion is possible.

3.3.2 Case 2

It suffices to treat Case 2 a since Case 2 b reduces to 2 a by symmetry; thus we assume that $A_{0} \in s-\operatorname{corr}\left(B_{0}, B_{1}\right)$ and $B_{0} \in s-\operatorname{corr}\left(A_{0}, A_{1}\right)$. In fact, we can relax this and assume that $A_{1} \in s$-cone $\left(A_{0}, B_{0}\right)$. This amounts to including the "wedge" between A_{0} and $s-\operatorname{circ}\left(B_{0}\right)$.

(a)

(b)

Figure 3.12: The different zones of Case 2 when s - $\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$ do not intersect. We have different optimal motions (dotted lines) depending on the zone in which A_{1} lies.

The motion we take in Case 2a depends on the zone in which A_{1} lies (cf. Figure 3.12 and 3.15). Each zone represents a locus of locations for A_{0} which give rise to a specific sequence of motions that are counter-clockwise optimal within that zone.

Let p be the upper tangent point from A_{0} to $s-\operatorname{circ}\left(B_{0}\right)$. The zones are defined by the following properties:

Zone I: The set of points $q \in s$-cone $\left(A_{0}, B_{0}\right)$ for which some tangent point from q to $s-\operatorname{circ}\left(B_{0}\right)$ lies on the arc of $s-\operatorname{circ}\left(B_{0}\right)$ from p to u.

Zone II: The set of points $q \in s$-cone $\left(A_{0}, B_{0}\right)$ where the tangent from q to s - $\operatorname{circ}\left(B_{1}\right)$ intersects the arc of $s-\operatorname{circ}\left(B_{0}\right)$ from p to u.

Zone III: The set of points $q \in s$-cone $\left(A_{0}, B_{0}\right)$ where the tangent from q to s - $\operatorname{circ}\left(B_{1}\right)$ intersects $\overline{A_{0} p}$.

Zone IV: The set of points $q \in s$-cone $\left(A_{0}, B_{0}\right)$ that are dominated by $t . t$ is A_{0} if $A_{0} \notin$ $s-\operatorname{circ}\left(B_{1}\right)$, is the intersection point of $\overline{A_{0} p}$ and $s-\operatorname{circ}\left(B_{1}\right)$ if $A_{0} \in s-\operatorname{circ}\left(B_{1}\right)$, and is the upper intersection point of s - $\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$ if the intersection point of the circles lie on the arc from p to u.

For concreteness, we also give constructive definitions in each subcase below.

Subcase 1: $s-\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$ do not intersect

We first discuss the constructions of zones I-IV in Figures 3.12a and 3.12b. We may construct zones I-IV explicitly through the following tangents and curves:

1. The horizontal tangent through the uppermost point u of s - $\operatorname{circ}\left(B_{0}\right)$. This tangent and the arc of s - $\operatorname{circ}\left(B_{0}\right)$ between u and p (where p is the upper tangent point between A_{0} and s - $\operatorname{circ}\left(B_{0}\right)$) separates zone I from zone II.
2. The tangent through p to s - $\operatorname{circ}\left(B_{1}\right)$. This tangent separates zone II from zone III.
3. If $A_{0} \notin s$ - $\operatorname{circ}\left(B_{1}\right)$, the tangent line from A_{0} to s - $\operatorname{circ}\left(B_{1}\right)$ (cf. Figure 3.12a). Otherwise, the tangent of $s-\operatorname{circ}\left(B_{1}\right)$ through t, where t is the intersection point of $\overline{A_{0} p}$ and s-circ $\left(B_{1}\right)$ (cf. Figure 3.12b). This tangent separates zone III from zone IV.

Note that zone III and IV may be empty, if the position of A_{0} lies below the line tangent to the bottom of $\operatorname{circ}_{s}\left(B_{0}\right)$ and the top of $\operatorname{circ}_{s}\left(B_{1}\right)$.

For each zone we specify the location of the intermediate point $A_{\text {int }}$ as follows:

Zone I: $A_{\text {int }}$ is the point A_{1}.
Zone II: $A_{\text {int }}$ is the rightmost point of intersection between the tangent from A_{1} to $\operatorname{circ}_{s}\left(B_{1}\right)$ and $\operatorname{circ}_{s}\left(B_{0}\right)$.

Zone III: $A_{\text {int }}$ is the point of intersection of the tangent from A_{1} to $\operatorname{circ}_{s}\left(B_{1}\right)$ and the tangent from A_{0} to $\operatorname{circ}_{s}\left(B_{0}\right)$.

Zone IV: $A_{\text {int }}$ is the point t (as defined above).
We define points T_{0} and T_{1} which are the lower points of tangency to $\operatorname{circ}_{s}\left(A_{\text {int }}\right)$ from B_{0} and B_{1} respectively. Our three-step generic motion involves:

1. Moving \mathbb{A} on the shortest path from A_{0} to $A_{\text {int }}$, avoiding $\operatorname{circ}_{s}\left(B_{0}\right)$. This may involve rotating \mathbb{A} counter-clockwise about B_{0} in a range of angles $\left[\alpha_{0}, \alpha_{1}\right]$.
2. Moving \mathbb{B} from B_{0} to B_{1} avoiding $\operatorname{circ}_{s}\left(A_{\text {int }}\right)$. This involves translating \mathbb{B} from B_{0} to T_{0}, rotating \mathbb{B} counter-clockwise about $A_{\text {int }}$ from T_{0} to T_{1} in a range of angles $\left[\beta_{0}, \beta_{1}\right]$, and then translating \mathbb{B} from T_{1} to B_{1}.
3. Translating \mathbb{A} from $A_{\text {int }}$ to A_{1} (collision-free by the disjointness of cone $\left(A_{0}, B_{0}\right)$ and $\operatorname{circ}_{s}\left(B_{1}\right)$).

From the descriptions above, one can see that there is some amount of symmetry between zone I and IV. For this reason, we first dispense with zones II and III, and then handle zone I and IV at the end of this section.

A_{1} is in zone II

If A_{1} is in zone II, then the tangent from A_{1} to B_{1} must intersect B_{0} in up to two points. Let $A_{\text {int }}$ be the rightmost intersection point.

Proof 6 Since B_{0} dominates B_{1} with respect to s-corr $\left(A_{0}, A_{1}\right)$, we have by Lemma 2 that $h_{\mathbb{A} B}(\theta)=s$ for $\theta \in\left[\alpha_{0}, \alpha_{1}\right]$. Similarly, since $A_{\text {int }}$ dominates A_{0} and A_{1} with respect to $s-\operatorname{corr}\left(B_{0}, B_{1}\right), h_{\mathbb{A} B}(\alpha)=s$ for $\theta \in\left[\beta_{0}, \beta_{1}\right]$ by Lemma 2 .

For angles in $S^{1}-\left[\alpha_{0}, \alpha_{1}\right]-\left[\beta_{0}, \beta_{1}\right]$, one can check that A_{0} or A_{1} must be one support point, and either B_{0} or B_{1} must be the other.

A_{1} is in zone III

Proof 7 By construction, $A_{\text {int }}$ dominates A_{0} and A_{1} with respect to s - $\operatorname{corr}\left(B_{0}, B_{1}\right)$. Hence by Lemma 2, we have $h_{\mathbb{A} B}(\theta)=s$ for $\theta \in\left[\alpha_{0}, \alpha_{1}\right]$. For angles in $S^{1}-$ $\left[\alpha_{0}, \alpha_{1}\right]$, one can see that either A_{0} or A_{1} must be one support point, and either B_{0} or B_{1} must be the other.

A_{1} is in zone I

There are two cases for Zone I, the location of A_{1} with respect to the upper tangent from A_{0} to s - $\operatorname{circ}\left(B_{1}\right)$. Let U be the upper tangent of A_{0} and s - $\operatorname{circ}\left(B_{1}\right)$.

Figure 3.13: Zone I, example of when A_{1} is below U. Zone I is outlined by the bolded tangents.
A_{1} is above U.
Proof 8 In this case, A_{1} either dominates A_{0} or is outside of $s-\operatorname{corr}\left(B_{0}, B_{1}\right)$ and so by Lemma 2 choosing A_{1} as $A_{\text {int }}$ shows that $h_{\mathbb{A} B}(\theta)=s$ for $\theta \in\left[\beta_{0}, \beta_{1}\right]$ (where $\left[\beta_{0}, \beta_{1}\right]=\emptyset$ for $A_{1} \notin s-\operatorname{corr}\left(B_{0}, B_{1}\right)$). Furthermore, B_{0} dominates B_{1} with respect to s - $\operatorname{corr}\left(A_{0}, A_{1}\right)$, so Lemma 2 again shows that $h_{\mathbb{A} B}(\theta)=s$ for $\theta \in\left[\beta_{0}, \beta_{1}\right]$. Since there are no intermediate pivot points except for the A_{i} 's and B_{i} 's, it's clear that for all other angles, A_{0} or A_{1} must be one support and B_{0} or B_{1} must be the other.
A_{1} is below U. In this case (see Figure 3.13), the positions of A_{0} and A_{1} satisfy the conditions of Lemma 3. Thus we may look for a clockwise motion. In the clockwise zones, A_{1} is in Zone IV of A_{0}, which we handle below.

A_{1} is in zone IV

For configurations in Zone IV, we can make a further simplification by swapping the roles of \mathbb{A} and \mathbb{B} in certain configurations. Within Case 2a of Table 3.1, the case when $A_{1} \in s$ - $\operatorname{corr}\left(B_{0}, B_{1}\right)$ and $B_{1} \notin s-\operatorname{corr}\left(A_{0}, A_{1}\right)$ is symmetric to the case when $B_{1} \in s-\operatorname{corr}\left(A_{0}, A_{1}\right)$ and $A_{1} \notin s-\operatorname{corr}\left(B_{0}, B_{1}\right)$. Thus for these two cases, we can assume without loss of generality that both A_{0} and A_{1} are in s - $\operatorname{corr}\left(B_{0}, B_{1}\right)$. Note that this simplification forbids A_{1} to be right of s-circle $\left(B_{1}\right)$ and above the lower horizontal tangent of the B circles, as this would imply that $B_{1} \in s$ - $\operatorname{corr}\left(A_{0}, A_{1}\right)$.

Due to the complexity of Zone IV, we split it into two subcases.

Figure 3.14: Positions of A_{1} in Zone IV, subcase 1 and subcase 2. Zone IV is outlined by the bolded tangents. The position of $A_{1} \operatorname{right}$ of $s-\operatorname{circ}\left(B_{1}\right)$ and above the horizontal tangent is forbidden due to our simplifications.

Zone IV, subcase 1. We first handle the cases for which $A_{0} \notin s$ - $\operatorname{circ}\left(B_{1}\right)$ and the upper tangent point of A_{1} and s - $\operatorname{circ}\left(B_{1}\right)$ lies inside $s-\operatorname{corr}\left(B_{0}, B_{1}\right)$. By these assumptions, we must have $A_{1} \in s-\operatorname{corr}\left(B_{0}, B_{1}\right)$ or below the lower horizontal tangent of $s-\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$ (see Figure 3.14).

In this case, choosing $A_{\text {int }}$ to be A_{0} in our three-step generic motion yields a net optimal counter-clockwise motion.

Proof 9 By construction of Zone IV, A_{0} dominates A_{1} with respect to s - $\operatorname{corr}\left(B_{0}, B_{1}\right)$. Hence by Lemma $2: h_{\mathbb{A} B}(\alpha)=$ sfor $\alpha \in\left[\alpha_{0}, \alpha_{1}\right]$.

By our property that the upper tangent point of A_{1} and s - $\operatorname{circ}\left(B_{1}\right)$ lies inside s-corr $\left(B_{0}, B_{1}\right)$, we have that B_{1} dominates B_{0} with respect to s - $\operatorname{corr}\left(A_{0}, A_{1}\right)$.

For angles in $S^{1}-\left[\alpha_{0}, \alpha_{1}\right]-\left[\beta_{0}, \beta_{1}\right]$, either A_{0} or A_{1} must be one support point, and either B_{0} or B_{1} must be the other. This is due to the fact that all pivot points in our motion are either the initial or final positions, and all non-pivots were either circular arcs or tangents.

Zone IV, subcase 2. If subcase 1 does not apply, then $A_{0} \in s-\operatorname{circ}\left(B_{1}\right)$ (cf. Figure 3.12 b).

In this case the optimal motion is:

1. Move \mathbb{A} on a straight line from A_{0} to t.
2. Move \mathbb{B} from B_{0} to B_{1} avoiding $s-\operatorname{circ}(t)$. This involves moving \mathbb{B} to T_{0}, rotating \mathbb{B} counter-clockwise about $A_{\text {int }}$ to T_{1} in a range of angles $\left[\alpha_{0}, \alpha_{1}\right]$, and then moving \mathbb{B} from T_{1} to B_{1}.
3. Move \mathbb{A} on a shortest path from t to A_{1} while avoiding $s-\operatorname{circ}\left(B_{1}\right)$. This involves rotating possibly rotating \mathbb{A} in a range of angles $\left[\beta_{0}, \beta_{1}\right]$ around $s-\operatorname{circ}\left(B_{1}\right)$.

In this case, the motion is of the same type as the one given for zone II and the exact same proof applies.

Subcase 2: s - $\operatorname{circ}\left(B_{0}\right)$ and s - $\operatorname{circ}\left(B_{1}\right)$ intersects
When s - $\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$ intersect (cf. Figure 3.15), the zones are defined by the following curves:

1. The two tangents from A_{0} to $s-\operatorname{circ}\left(B_{0}\right)$.
2. The horizontal tangent from the top of $s-\operatorname{circ}\left(B_{0}\right)$.
3. The tangent from p to s - $\operatorname{circ}\left(B_{1}\right)$ where p is the upper tangent point from A_{0} to $s-\operatorname{circ}\left(B_{0}\right)$.
4. The tangent line from t to s - $\operatorname{circ}\left(B_{1}\right)$. Let v be the intersection point of the line from A_{0} to p and $s-\operatorname{circ}\left(B_{1}\right)$. If $A_{0} \notin s-\operatorname{circ}\left(B_{1}\right)$, then t is A_{0}. Otherwise, $A_{0} \in s$ - $\operatorname{circ}\left(B_{1}\right)$ and t is v when p lies outside of the s - $\operatorname{circ}\left(B_{1}\right)$ (Figure 3.15 b), and t is the upper intersection point between the $s-\operatorname{circ}\left(B_{i}\right)$'s otherwise (Figure 3.15c).

For the most part, the motions executed in Subcase 1 and Subcase 2 are the same, as are their intermediate points. However, for zone I and IV there are small differences, as we shall see.

A_{1} is in zone II or III

In these zones, the motion is the same as the non-intersecting case.

A_{1} is in zone I

By Lemma 3, if A_{1} is located in any portion of zone I which intersects the region below the s - $\operatorname{circ}\left(B_{i}\right)$'s, then the motion must be net-clockwise optimal (an example can be found in Figure 3.13, with the B_{i} 's pushed closer together). In this case, A_{1} is in zone IV of the clockwise zones, which we handle below. Otherwise, the motion for Zone I is the same as in Subcase 1, and the same proof applies.

A_{1} is in zone IV

Here we divide the motion into two different cases, depending on whether we are in Figure 3.15a, or 3.15b and Figure 3.15c. To be precise, denote \mathscr{U} to be the region of s-corr $\left(B_{0}, B_{1}\right)$ that is above the $s-\operatorname{circ}\left(B_{i}\right)$'s. We divide into two cases, depending on whether $A_{0} \in \mathscr{U}$ or not.

Zone IV, subcase 1. $A_{0} \in \mathscr{U}$ In this case, the motions are exactly the same as those for Zone IV of the non-intersecting case.

Zone $I V$, subcase 2. $A_{0} \notin \mathscr{U}$ This case is shown in Figures 3.15b and 3.15c First, if A_{1} is right of the upper tangent between A_{0} and s - $\operatorname{circ}\left(B_{1}\right)$ and left of the upper tangent between A_{0} and s - $\operatorname{circ}\left(B_{0}\right)$, then Lemma 3 shows that the optimal motion
must be clockwise. In this case, the optimal clockwise motion is:

1. Move \mathbb{B} from B_{0} to B_{1} rotating over the top of s - $\operatorname{circ}\left(A_{0}\right)$.
2. Move \mathbb{A} in a straight line from A_{0} to A_{1}.

Proof 10 The optimality of this motion can be see by reflecting the configuration vertically. Since A_{0} dominates A_{1}, Lemma 2 shows that $h_{\mathbb{A} B}(\theta)=s$ in the angles of rotation. For all other angles, the two support points are either A_{0} or A_{1} and B_{0} or B_{1}.

Now we assume that A_{1} is outside of the region handled above. Let T_{0} and T_{1} be the lower tangent points of B_{0} and B_{1} to $s-\operatorname{circ}(t)$ respectively. Let V_{0} be the upper tangent point between t and s - $\operatorname{circ}\left(B_{0}\right)$. In this case the optimal motion is:

1. Move \mathbb{A} on a shortest path from A_{0} to t while avoiding s - $\operatorname{circ}\left(B_{0}\right)$. If $V_{0} \notin$ s-circ $\left(B_{1}\right)$, this is simply a straight line and we define $\left[\beta_{0}, \beta_{1}\right]=\emptyset$. Otherwise, this involves moving \mathbb{A} to V_{0}, and rotating \mathbb{A} in a range of angles $\left[\gamma_{0}, \gamma_{1}\right]$ from V_{0} to t.
2. Move \mathbb{B} from B_{0} to B_{1} avoiding s - $\operatorname{circ}(t)$. This involves moving \mathbb{B} to T_{0}, rotating \mathbb{B} counter-clockwise about $A_{\text {int }}$ to T_{1} in a range of angles $\left[\alpha_{0}, \alpha_{1}\right]$, and then moving \mathbb{B} from T_{1} to B_{1}.
3. Move \mathbb{A} on a shortest path from t to A_{1} while avoiding s - $\operatorname{circ}\left(B_{1}\right)$. This involves rotating \mathbb{A} in a range of angles $\left[\gamma_{2}, \gamma_{3}\right]$ around $s-\operatorname{circ}\left(B_{1}\right)$.

Proof 11 The optimality of this motion is given by Lemma 2. with t as the dominating point with respect to s-corr $\left(B_{0}, B_{1}\right)$. Excluding the clockwise optimal region described above is essential here, as it forces A_{1} to be outside of the wedge formed by the upper tangents from A_{0} to $s-\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$ when A_{0} is below both of the B circles. This ensures that the path taken by \mathbb{A} is convex.

3.3.3 Case 3

As Case 3 is highly constrained, most of the motions for this case are particularly simple. Figures 3.16, 3.17, and 3.18 exhibit possible configurations of Case 3. As
before, we begin by defining the zones non-constructively, and then move on to more constructive descriptions.

Let p_{0} and p_{1} be the upper tangent points from A_{0} to $s-\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$ respectively. The zones are defined by the following properties:

Zone I: The set of points $q \in s$-corr $\left(B_{0}, B_{1}\right)$ that dominate A_{0}.
Zone II: The set of points $q \in s$ - $\operatorname{corr}\left(B_{0}, B_{1}\right) A_{0}$ dominates.
Zone III: The set of points $q \in s$-corr $\left(B_{0}, B_{1}\right)$ where the tangent from q to s - $\operatorname{circ}\left(B_{0}\right)$ intersects $\overline{A_{0} p_{1}}$

Zone IV: The set of points $q \in s$-corr $\left(B_{0}, B_{1}\right)$ where the tangent from q to s - $\operatorname{circ}\left(B_{1}\right)$ intersects $\overline{A_{0} p_{0}}$.

We do not handle situations which reduce to Case 2. For example, if $A_{1} \in$ s-corr $\left(B_{0}, B_{1}\right)$, is left of the tangent through $\overline{A_{0} p}$, and is above $s-\operatorname{circ}\left(B_{0}\right)$, then we would be in Case 2. Similarly, if $A_{1} \in s-\operatorname{corr}\left(B_{0}, B_{1}\right)$, is right of $\overline{A_{0} p_{1}}$, and above s - $\operatorname{circ}\left(B_{1}\right)$, then we would also be in Case 2.

Although Zone IV above is handled in Case 2, we keep it for symmetry. Zones I-IV of Figures 3.16 and 3.17 are defined by the following curves:

1. The two upper tangents from A_{0} to $\operatorname{circ}_{s}\left(B_{0}\right)$ and $\operatorname{circ}_{s}\left(B_{1}\right)$ (through tangent points p_{i}). These tangents separate zone I from the rest of the zones. The tangent from A_{0} to p_{1} forms the left boundary of zone II if A_{0} is below the tangent from the bottom of $\operatorname{circ}_{s}\left(B_{0}\right)$ to the top of $\operatorname{circ}_{s}\left(B_{1}\right)$. The tangent from A_{0} to p_{0} forms part of the right boundary of zone II.
2. The two horizontal tangents from $\operatorname{circ}_{s}\left(B_{0}\right)$.
3. The lower tangent from A_{0} to $\operatorname{circ}_{s}\left(B_{0}\right)$ and $\operatorname{circ}_{s}\left(B_{1}\right)$ (through tangent points q_{i}). The tangent from A_{0} to q_{1} (resp. q_{0}) form part of the right (resp. left) boundary for zone III (resp. zone IV). The tangent from A_{0} to $q_{0}\left(\operatorname{resp} q_{1}\right)$ forms the left (resp. right) boundary of zone II if A_{0} is above the tangent from below $\operatorname{circ}_{s}\left(B_{0}\right)$ to above $\operatorname{circ}_{s}\left(B_{1}\right)$ (resp. above $\operatorname{circ}_{s}\left(B_{0}\right)$ to below $\operatorname{circ}_{s}\left(B_{1}\right)$).
4. The arc of $\operatorname{circ}_{s}\left(B_{0}\right)\left(\right.$ resp. $\left.\operatorname{circ}_{s}\left(B_{1}\right)\right)$ from p_{0} to t_{0} (resp. p_{1} to $\left.t_{1}\right)$. If the tangent from A_{0} to p_{0} (resp. to p_{1}) does not intersect $\operatorname{circ}_{s}\left(B_{1}\right)\left(\right.$ resp. $\operatorname{circ}_{s}\left(B_{0}\right)$), then t_{0} is q_{0} (resp. t_{1} is q_{1}). Otherwise, t_{0} (resp. t_{1}) is the intersection point.
5. The arc of $\operatorname{circ}_{s}\left(B_{0}\right)$ (resp. $\left.\operatorname{circ}_{s}\left(B_{1}\right)\right)$ from t_{0} to q_{0} (resp. t_{1} to q_{1}). These arcs forms part of the left and right boundaries of zone II.

We now specify, for each zone, the location of $A_{\text {int }}$, and define T_{0} and T_{1} to be the lower tangent points of B_{0} and B_{1} to $\operatorname{circ}_{s}\left(A_{\text {int }}\right)$ respectively.

Zone I: $A_{\text {int }}$ is the point A_{1}.
Zone II: $A_{\text {int }}$ is the point A_{0}.
Zone III: $A_{\text {int }}$ is the intersection point of the tangent from A_{1} to the $\operatorname{circ}_{s}\left(B_{0}\right)$ and the tangent from A_{0} to $\operatorname{circ}_{s}\left(B_{1}\right)$.
Zone IV: $A_{\text {int }}$ is the intersection point of the tangent from A_{0} to the $\operatorname{circ}_{s}\left(B_{0}\right)$ and the tangent from A_{1} to $\operatorname{circ}_{s}\left(B_{1}\right)$.

Our generic three-stage motion then becomes:

1. Move \mathbb{A} on a straight line from A_{0} to $A_{\text {int }}$
2. Move \mathbb{B} from B_{0} to B_{1} avoiding $\operatorname{circ}_{s}\left(A_{\text {int }}\right)$. This involves moving \mathbb{B} to T_{0}, rotating \mathbb{B} counter-clockwise about A_{0} to T_{1} in a range of angles $\left[\beta_{0}, \beta_{1}\right]$, and then moving \mathbb{B} from T_{1} to B_{1}.
3. Move \mathbb{A} on a straight line motion from $A_{\text {int }}$ to A_{1}.

Note that in zone IV of Figure 3.16, all optimal counter-clockwise motions are of exactly the same from as zone III of Case 2 .

Case 3, subcase 1: s - $\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$ do not intersect.
Proof 12 In all cases (see Figure 3.16), applications of Lemma 2 will suffice. The proof of Zones III and IV are exactly the same as the proof for Case 2, Zone III. For Zones I and II, note that for all cases that Case 2 do not cover, A_{0} must be reachable from A_{1} by a straight-line. Hence there are no special cases and a single application of Lemma 2 with either A_{0} as the pivot (for Zone II) or A_{1} as the pivot (for Zone I) suffices.

Subcase 2: s - $\operatorname{circ}\left(B_{0}\right)$ and s - $\operatorname{circ}\left(B_{1}\right)$ intersects
When s - $\operatorname{circ}\left(B_{0}\right)$ and s - $\operatorname{circ}\left(B_{1}\right)$ intersect, observe that the constraints force either A_{0} and A_{1} to be both above the B circles, or both below. This is because if A_{0} was below the s - $\operatorname{circ}\left(B_{i}\right)$'s and A_{1} above, then we must be in Case 2 (after possibly swapping the initial and final positions).
A_{0} and A_{1} both above When A_{0} and A_{1} are both above the B circles, we get Figure 3.17. In this case, the same zones and proofs as the non-intersecting case apply.
A_{0} and A_{1} both below When A_{0} and A_{1} are both below the B circles, we get Figure 3.18. In this case, Lemma 3 shows that the motion must be net-clockwise. The clockwise zones have A_{0} and A_{1} in the "both above" case, which is handled above.

3.4 Angle monotone motions

Up until now, we've stated all of our motions as decoupled motions where only one of \mathbb{A} or \mathbb{B} is moving at a time. However, we can produce angle monotone motions (that is, motions where the vector joining the two robots changes monotonically throughout the motion) by coupling the optimal motions m given in the previous sections. We now roughly describe this coupling procedure, and note that a full proof would require going through the cases and verifying that the procedure works for each case.

To be precise, let m be a motion such that $m\left(t_{i}\right)$ and $m\left(t_{j}\right)$ has the same angle. Then by coupling the motion m, we mean that we replace the submotion $m\left(\left[t_{i}, t_{j}\right]\right)$ with a straight-line path between $m\left(t_{i}\right)$ and $m\left(t_{j}\right)$. This process produces coupled angle monotone motions from decoupled ones. Most of the motions described in the previous section are angle monotone. The only situation in which non-angle monotonicity occurs in our decoupled motions is when A_{1} is in Zone III of Case 3 above (see Figure 3.19). In all other cases, we have angle monotonicity for the decoupled motion as well, although the discs are possibly not in contact for a single connected interval of time.

One can also couple the motions to achieve both angle monotonicity and the
property that the two discs are in contact for a single connected interval. This is obtained by following the trace of optimal motions outlined in the previous sections while keeping \mathbb{A} and \mathbb{B} as close together as possible. The proof, although not difficult, is lengthy as it requires examining the motions of each case in the previous Section.

Figure 3.15: The different zones of Case 2 when $s-\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$ intersect. We have different optimal motions (dotted lines) depending on the zone in which A_{1} lies.

Figure 3.16: Case 3, when s - $\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$ do not intersect.

Figure 3.17: Case 3, when s - $\operatorname{circ}\left(B_{0}\right)$ and s - $\operatorname{circ}\left(B_{1}\right)$ intersect and both A_{0} and A_{1} are above the $s-\operatorname{circ}\left(B_{i}\right)$'s.

Figure 3.18: Case 3, when $s-\operatorname{circ}\left(B_{0}\right)$ and $s-\operatorname{circ}\left(B_{1}\right)$ intersect and both A_{0} and A_{1} are below the $s-\operatorname{circ}\left(B_{i}\right)$'s.

Figure 3.19

Chapter 4

Additional Remarks

Due to the simple setting of our problem, there are many easy extensions of the problem that remain open. Some natural generalizations include adding obstacles or increasing the number of discs. In the section below, we show a simple NPHardness reduction for the generalization of our problem when the number of discs is unbounded.

4.1 Proof of NP-hardness

In this section, we show that the following generalization of our problem is NPhard:

Problem 4.1.1 Given n discs \mathbb{D}_{i} on an obstacle-free plane with specified initial and final configurations A_{i} and B_{i} for $i=1 \ldots n$, what is the shortest collision-free motion taking each \mathbb{D}_{i} from their initial to their final locations?

Theorem 3 Problem 4.1.1 is NP-hard.

We show this via a simple reduction to the famous 15 -puzzle problem, and it's generalization, the $\left(n^{2}-1\right)$-puzzle problem. We use the minimum-move variant of the $\left(n^{2}-1\right)$-puzzle problem, which is defined as follows:

Problem 4.1.2 We are given $n^{2}-1$ numbered tiles arranged in an $n \times n$ grid (leaving one tile missing). Given an initial (solvable) configuration of the puzzle, the
aim is to return the puzzle to a given target configuration by repeatedly sliding an adjacent tile into the blank location. What is the minimum number of moves in order to return the puzzle to the target configuration?

Proof 13 Given an instance of the $\left(n^{2}-1\right)$-puzzle problem, we can construct an instance of Problem 4.1 .1 by arranging $n^{2}-1$ unit discs in the same formation as the $\left(n^{2}-1\right)$-puzzle, where we assume that the location of the top-left corner of the puzzle is at the origin, and each puzzle piece has unit width. The initial location of disc \mathbb{D}_{i} is set as location of puzzle piece i in the $\left(n^{2}-1\right)$-puzzle. The final location of disc \mathbb{D}_{i} is set as location of puzzle piece i in the solved $\left(n^{2}-1\right)$-puzzle.

Suppose for now that Problem 4.1.1 allowed obstacles. Then we could additionally add four walls so that the discs cannot move outside of the puzzle. At this point, the shortest collision-free motion of Problem 4.1.1 has length equal to the minimum number of moves required for the $\left(n^{2}-1\right)$-puzzle. Since Ratner and Warmuth [16] have shown the $\left(n^{2}-1\right)$-puzzle to be NP-hard, Problem 4.1.1 would be NP-hard as well.

To simulate the effect of an obstacle, we can add unit discs surrounding the $n^{2}-1$ discs by extending the $n \times n$ grid to an $(n+w) \times(n+w)$ grid and placing new discs in the unfilled grid squares outside of the $n \times n$ grid, with their initial location equal to their final location. This creates a "wall" that is w units wide. By making the wall thick enough, we can guarantee that these wall squares will not move in any optimal solution. By the work of Parberry [15], the minimum number of moves to solve the $\left(n^{2}-1\right)$-puzzle is at most $5 n^{3}$. Hence by making $w=6 n^{3}$, we can guarantee that these wall squares will not move in any optimal solution. Since creating the wall involves adding only a polynomial number of extra discs, Problem 4.1.1 is NP-hard by reduction to the $\left(n^{2}-1\right)$-puzzle.

Remark 2 The proof above works for generalizations of Problem 4.1.1 to any L_{p} norm, such as the case when every disc is a square and only rectilinear motions are allowed (i.e. the L_{1} norm).

4.2 Open problems

As the previous section shows, even some simple generalizations can quickly make our problem intractable. In this section, we present some interesting extensions of our problem that we feel would be natural for further work.

The first extension is the version of our problem with three discs instead of two:

Problem 4.2.1 Given three discs \mathbb{A}, \mathbb{B}, and \mathbb{C}, with speficied initial and final locations, what is the shortest collision-free motion taking \mathbb{A}, \mathbb{B}, and \mathbb{C} from their initial to their final configurations?

This problem is interesting as it highlights a significant limitation of our approach. Our lower bounds are derived from Cauchy's surface area formula, and involves looking at the support width formed using two antipodal support points.

Our second extension is the version of our problem when the two disk robots are spheres in 3D. For this case, we are unsure of the optimal path even in some seemingly obvious cases.

To make the problem simpler, we add the extra condition that the two spheres A and B are touching each other in both the initial and final configuration and that the radii sum of the two spheres is 1 . This is equivalent to finding the shortest path of a unit rod between two configurations in 3D. One simple open question is:

Problem 4.2.2 When the initial and final positions of \mathbb{A} and \mathbb{B} are all coplanar, does there exist a shortest path that stays entirely within the plane?

4.3 Concluding remarks

Using the Cauchy surface area formula, we have presented and proved shortest collision-avoiding paths for two disc robots in a planar obstacle free environment. The path lengths are neatly characterized by a simple integral, and had the property that they could be decoupled so that only one disc is moving at any given time, or coupled so that the angle formed by a ray joining the two discs changes monotonically throughout the motion. The coupled motion has the additional property that
discs are in contact for a connected interval of time, that is, once the discs move out of contact, they are never in contact again.

As far as we know, our tools are limited to the case when the robots are discs in 2D. Indeed, when the robots are spheres in 3D, even if the initial and final positions of the robot are coplanar, we are unsure if the shortest path stays within the plane (except in special cases). The 3D extension of the problem as well as the 2D problem with obstacles remain subjects for future exploration.

Bibliography

[1] M. Abellanas, S. Bereg, F. Hurtado, A. G. Olaverri, D. Rappaport, and J. Tejel. Moving coins. Computational Geometry, 34(1):35-48, 2006. ISSN 0925-7721. doi:http://dx.doi.org/10.1016/j.comgeo.2005.06.005. URL //www.sciencedirect.com/science/article/pii/S0925772105000799. Special Issue on the Japan Conference on Discrete and Computational Geometry 2004Japan Conference on Discrete and Computational Geometry 2004. \rightarrow pages 2
[2] A. Adler, M. de Berg, D. Halperin, and K. Solovey. Efficient Multi-robot Motion Planning for Unlabeled Discs in Simple Polygons, pages 1-17. Springer International Publishing, Cham, 2015. ISBN 978-3-319-16595-0. doi:10.1007/978-3-319-16595-0_1. URL
http://dx.doi.org/10.1007/978-3-319-16595-0_1 \rightarrow pages 2
[3] S. Bereg, A. Dumitrescu, and J. Pach. Sliding Disks in the Plane, pages 37-47. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN 978-3-540-32089-0. doi:10.1007/11589440_4. URL http://dx.doi.org/10.1007/11589440_4. \rightarrow pages 2
[4] Y.-B. Chen and D. Ierardi. Optimal motion planning for a rod in the plane subject to velocity constraints. In Proceedings of the Ninth Annual Symposium on Computational Geometry, SCG '93, pages 143-152, New York, NY, USA, 1993. ACM. ISBN 0-89791-582-8.
doi:10.1145/160985.161012, URL
http://doi.acm.org/10.1145/160985.161012. \rightarrow pages 2
[5] Z. Chen, I. Suzuki, and M. Yamashita. Time-optimal motion of two omnidirectional robots carrying a ladder under a velocity constraint. IEEE T. Robotics and Automation, 13(5):721-729, 1997. doi:10.1109/70.631233
URL http://dx.doi.org/10.1109/70.631233. \rightarrow pages 2
[6] A. Dumitrescu and M. Jiang. On Reconfiguration of Disks in the Plane and Related Problems, pages 254-265. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-03367-4. doi:10.1007/978-3-642-03367-4_23. URL http://dx.doi.org/10.1007/978-3-642-03367-4_23 \rightarrow pages 2
[7] H. G. Eggleston. Convexity. Cambridge Tracts in Mathematics and Mathematical Physics, No. 47. Cambridge University Press, New York, 1958. \rightarrow pages 9
[8] M. Gromov. Metric structures for Riemannian and non-Riemannian spaces. Modern Birkhäuser Classics. English edition, 2007. ISBN 978-0-8176-4582-3; 0-8176-4582-9. \rightarrow pages 6
[9] A. B. Gurevich. The "most economical" displacement of a segment (in russian). Differentsial'nye Uravneniya, 11(12):2134-2143, 1975. \rightarrow pages 3
[10] R. A. Hearn and E. D. Demaine. Pspace-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theoretical Computer Science, 343(1):72 - 96, 2005. ISSN 0304-3975. doi:http://dx.doi.org/10.1016/j.tcs.2005.05.008, URL http://www.sciencedirect.com/science/article/pii/S0304397505003105. \rightarrow pages 2
[11] J. Hopcroft, J. Schwartz, and M. Sharir. On the complexity of motion planning for multiple independent objects; pspace- hardness of the "warehouseman's problem". The International Journal of Robotics Research, 3(4):76-88, 1984. \rightarrow pages 2
[12] J. E. Hopcroft and G. T. Wolfong. Reducing multiple object motion planning to graph searching. SIAM J. Comput., 15(3):768-785, Aug. 1986.
ISSN 0097-5397. doi:10.1137/0215055, URL http://dx.doi.org/10.1137/0215055 \rightarrow pages 2
[13] C. Icking, G. Rote, E. Welzl, and C. Yap. Shortest paths for line segments. Algorithmica, 10(2-4):182-200, 1993. doi:10.1007/BF01891839, URL http://dx.doi.org/10.1007/BF01891839 \rightarrow pages 3, 4, 9
[14] S. M. LaValle. Planning algorithms. Cambridge University Press, Cambridge, 2006. ISBN 978-0-521-86205-9; 0-521-86205-1. doi:10.1017/CBO9780511546877. URL http://dx.doi.org.ezproxy.library.ubc.ca/10.1017/CBO9780511546877, \rightarrow pages 2
[15] I. Parberry. A real-time algorithm for the ($\left.n^{2} 1\right)$-puzzle. Information Processing Letters, 56(1):23-28, 1995. ISSN 0020-0190.
doi:http://dx.doi.org/10.1016/0020-0190(95)00134-X. URL http://www.sciencedirect.com/science/article/pii/002001909500134X \rightarrow pages 41
[16] D. Ratner and M. Warmuth. The ($n^{2} 1$)-puzzle and related relocation problems. Journal of Symbolic Computation, 10(2):111-137, 1990. ISSN 0747-7171. doi:http://dx.doi.org/10.1016/S0747-7171(08)80001-6. URL http://www.sciencedirect.com/science/article/pii/S0747717108800016. \rightarrow pages 41
[17] G. Sánchez-Ante and J. Latombe. Using a PRM planner to compare centralized and decoupled planning for multi-robot systems. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation, ICRA 2002, May 11-15, 2002, Washington, DC, USA, pages 2112-2119, 2002. doi:10.1109/ROBOT.2002.1014852. URL http://dx.doi.org/10.1109/ROBOT.2002.1014852. \rightarrow pages 2
[18] J. T. Schwartz and M. Sharir. On the piano movers' problem: III. coordinating the motion of several independent bodies: the special case of circular bodies moving amidst polygonal barriers. The International Journal of Robotics Research, 2(3):46-75, 1983. \rightarrow pages 1
[19] M. Sharir and S. Sifrony. Coordinated motion planning for two independent robots. Ann. Math. Artif. Intell., 3(1):107-130, 1991. doi:10.1007/BF01530889. URL http://dx.doi.org/10.1007/BF01530889 \rightarrow pages 1
[20] K. Solovey and D. Halperin. On the hardness of unlabeled multi-robot motion planning. In Robotics: Science and Systems XI, Sapienza University of Rome, Rome, Italy, July 13-17, 2015, 2015. URL http://www.roboticsproceedings.org/rss11/p46.html \rightarrow pages 2
[21] K. Solovey, J. Yu, O. Zamir, and D. Halperin. Motion planning for unlabeled discs with optimality guarantees. CoRR, abs/1504.05218, 2015. URL http://arxiv.org/abs/1504.05218 \rightarrow pages 2
[22] P. G. Spirakis and C. Yap. Strong NP-hardness of moving many discs. Inf. Process. Lett., 19(1):55-59, 1984. doi:10.1016/0020-0190(84)90130-3. URL http://dx.doi.org/10.1016/0020-0190(84)90130-3 \rightarrow pages 2
[23] T. Standley. Finding optimal solutions to cooperative pathfinding problems.
In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI' 10, pages 173-178. AAAI Press, 2010. URL http://dl.acm.org/citation.cfm? $\mathrm{id}=2898607.2898635 \rightarrow$ pages 2
[24] M. Turpin, N. Michael, and V. Kumar. Trajectory Planning and Assignment in Multirobot Systems, pages 175-190. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-36279-8. doi:10.1007/978-3-642-36279-8_11, URL http://dx.doi.org/10.1007/978-3-642-36279-8_11 \rightarrow pages 2
[25] S. M. Ulam. A Collection of Mathematical Problems: Problems in Modern Mathematics. Science Eds., 1964. \rightarrow pages 3
[26] E. I. Verriest. On Ulam's problem of path planning, and "How to move heavy furniture". IFAC Proceedings Volumes, 44(1):14562-14566, 2011. \rightarrow pages 3
[27] G. Wagner and H. Choset. M*: A complete multirobot path planning algorithm with performance bounds. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2011, San Francisco, CA, USA, September 25-30, 2011, pages 3260-3267, 2011. doi:10.1109/IROS.2011.6095022, URL http://dx.doi.org/10.1109/IROS.2011.6095022 \rightarrow pages 2
[28] C. Yap. Coordinating the motion of several discs. Robotics Report. Department of Computer Science, New York University, 1984. \rightarrow pages 1

[^0]: ${ }^{1}$ However, the shifted $A_{\text {int }}$ is a support outside of the angles of rotation as well, which means $h_{\mathbb{A B}}$ does not achieve its lower bound outside of $\left[\beta_{0}, \beta_{1}\right]$.

