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Abstract 

Shake table test provides a feasible solution for evaluating structural performances in 

earthquake engineering. It can test structural system in real time. However, high fidelity shake 

table control remains a challenging issue due to several difficulties, such as hydraulic actuator 

nonlinearity and the control-structure interaction (CSI) effect. Conventional shake table control 

employs linear controllers such as proportional-integral-derivative (PID) or loop-shaping 

controller to regulate the actuator’s movement. However, it is difficult to tune a linear controller 

to accurately regulate the shake table when the payload and the hydraulic system are nonlinear. 

These challenges become more problematic when the payload mass is large relative to that of the 

table. Moreover, it is difficult to track a high frequency reference signal using a linear controller. 

The main objectives of this study are to illustrate the implementation of hierarchical control 

and to improve the performance and robustness of shake table test. This thesis consists of three 

parts. First, the system identification procedure was used to investigate the dynamic characteristics 

of a hydraulic shake table at the University of British Columbia. The results of the system 

identification were used to build a reliable simulation model of the hydraulic shake table system. 

Second, the developed system identification model was used to develop different low-level 

controllers to regulate the actuator’s movement. Third, advanced high-level control algorithms 

were implemented to increase tracking performance and control robustness. One nonlinear control 

algorithm named sliding mode control (SMC) and another optimal control algorithm named model 

predictive control (MPC) were presented in this thesis. The performance of the newly developed 

controllers was compared to that of the state-of-the-art linear controllers. The results show that the 

newly proposed hierarchical control architecture and the advanced high-level controller developed 

in this thesis can improve the tracking performance and robustness of shake table test. 
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Chapter 1: Introduction 

 

 

1.1 Overview 

Shake table test is a state-of-the-art experimental method used to evaluate structural 

performance in earthquake engineering. It can provide base excitation and examine structural 

behavior under extreme conditions, which allows researchers and engineers to investigate structure 

performance and validate its proposed design. The goal of shake table control is to reproduce 

selected time history data, which is typically an acceleration trajectory. With the development of 

technology in terms of sensors and actuators, the hardware setup and the testing capacity of the 

shake table has evolved significantly. However, technical issues have been raised up in shake table 

control concerning its complexity and nonlinearity. The hydraulic shake table system is usually 

composed of the hydraulic actuator, shake table and test specimen. The hydraulic actuator itself is 

a highly nonlinear system, which means that under different operating points, its dynamics can 

vary considerably. Moreover, the payload on the shake table also changes the hydraulic actuator 

dynamics, especially when nonlinear behavior occurs in the specimen. Therefore, the hydraulic 

shake table control issue can be regarded as a highly nonlinear control problem, with good 

acceleration tracking continuing to pose a challenge.  

To solve the control problem in the hydraulic shake table system, this thesis proposes a 

novel control architecture known as the hierarchical control framework. The hierarchical control 

system is a form of control system in which a set of devices and governing algorithms is arranged 

in a hierarchical tree. The architecture consists of a high-level controller along with one or more 
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low-level controller(s). The high-level controller, which takes into account the shake table system 

dynamics, is designed to control table movement so as to track the desired reference signal and 

guarantee global system stability, while the low-level controller(s) are used to regulate the output 

response of the actuator according to the commands generated by the high-level controller. The 

main advantage of the hierarchical control approach is it can separate and simplify complex system 

control problems into two levels of control tasks to be executed by the high-level and low-level 

controllers, respectively. The high-level controller governs shake table motion and handles the 

overall control system’s stability and reference signal-tracking requirements. On the other hand, 

the low-level controller functions as the actuator controller and simply regulates the actuator output 

to follow commands from the high-level controller.  

In this thesis, the hierarchical control framework, including the low-level and high-level 

controller designs, is demonstrated to solve the shake table control problem. The results reveal that 

the proposed strategy outperforms the traditional linear control in the tracking results and provides 

a feasible solution to the shake table control problem. 

1.2 Literature Review  

The development of the shake table can be traced back to the first hand-powered table 

created in the 19th century (Severn 2011). Through the years, the specification and functionality 

of the modern shake tables have greatly improved. In the past twenty years, high performance 

shake tables such as the large outdoor shake table at the University of California, San Diego, the 

E-Defense shake table in Japan, and the multi-function shake table array at the Tongji University 

in China have been successfully constructed.  

Although testing capacity and hardware quality have been greatly improved, high fidelity 

shake table control remains a challenging issue. The purpose of the shake table control systems is 
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to reproduce the reference input signal within a range of reasonable accuracy. Due to several 

difficulties, such as the inherent hydraulic actuator’s nonlinearity and control-structure interaction 

(CSI) effects (Dyke et al. 1995), achieving perfect tracking for the specimens on the shake table 

remains a challenging issue. The above challenges become even more problematic when the 

specimen exhibits nonlinear behaviour and when its mass is large relative to that of the table 

(Phillips et al. 2014). Tremendous work has been done to improve the shake table test’s control 

performance. The following sections summarize the development of the control strategy in the 

hydraulic actuator and shake table control.   

1.2.1 Proportional-Integral-Differential (PID) Control 

Proportional-Integral-Differential (PID) control is the most common industrial application 

(Bennett 1993). The control scheme is depicted in Figure 1-1. The input is the reference signal to 

be tracked, while the output is the physical measurable movement in the shake table. Feedback is 

obtained through the pre-installed sensor. The error term is the difference between the reference 

input and the measured output.  

 

Figure 1-1 PID feedback control structure 

PID control utilizes proportional, integral and differential gain to minimize the error term 

and achieve the tracking purpose. In hydraulic shaking table applications, the feedback usually is 

chosen as a displacement due to the stability issue. Under common scenario, PID controller can 

stabilize the system and achieve certain tracking performance. However, the PID controller is 

unable to achieve the requirements of earthquake engineering, including wide control bandwidth 
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and high tracking performance. Therefore, the following control technique has been developed to 

improve the performance. 

1.2.2 Three-Variable-Control 

To improve the control bandwidth, the three-variable-control (TVC) was developed and 

has been successfully implemented in hydraulic shaking tables(Tagawa and Kajiwara 2007; 

Nowak et al. 2000). The three variables in the TVC represent the displacement, velocity and 

acceleration of the shake table. TVC can extend the system’s frequency bandwidth and improve 

its stability; it is usually employed for acceleration control. The TVC can be separated into 

feedback and feedforward portions. In the feedback segment, there are three feedback loops, i.e. 

the displacement, velocity and acceleration feedback loops with three gains, respectively. There 

are also three gains in the feedforward portion in TVC, respectively. The feedback segment is 

responsible for robustness and the stability issue, while reference tracking performance is 

improved by adjusting the feedforward gains. By utilizing the six parameters in the TVC, it is 

feasible to manually tune a parameter set onsite. However, since the shake table and specimen 

form a nonlinear system and it is expected that the shake table’s dynamics will be influenced by 

the specimen, one parameter set might not be a universal solution for all scenarios. 

1.2.3 Iterative Control Method 

Since the shake table is coupled with the pre-installed specimen, the specimen is expected 

to influence the shake table’s dynamics, and the traditional control techniques including PID 

control and TVC are not expected to provide a universal solution to this control problem. 

Therefore, the iterative control method (Tagawa and Kajiwara 2007) is employed to compensate 

for control performance. Were one to consider the entire shake table system, including the 

controller, shake table, hydraulic actuator and specimen, as a single dynamic system, then the input 
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for this system would be the acceleration reference data, while the output would be the measured 

acceleration (Yao et al. 2014). Figure 1-2 shows the iterative control scheme. Since ( )G   contains 

the dynamics of the controller, hydraulic actuator, shake table and specimen, ( )G   is a highly 

nonlinear system.  

 

Figure 1-2 Hydraulic shake table control system scheme 

 The iterative control is essentially an offline feedforward method. First, a random reference 

acceleration input signal is implemented into the hydraulic shake table control system. The 

frequency response of the entire control system, i.e. ( )G  , can be calculated using the fast fourier 

transform (FFT) and presented in Equation 1-1. 

 ( ) ( ) ( )Y G X    Equation 1-1 

where ( )X   and ( )Y   are the FFT results of x and y, respectively. ( )G   is the frequency 

response model of the hydraulic shake table system. 

 It can be assumed that, for a given earthquake acceleration input ( )eX   , the following 

relationship can be obtained in Equation 1-2: 

 ( )( )) (e e eY G X    Equation 1-2 

where ( )eG   and ( )eY   are the frequency response and output of the hydraulic shake table system 

for a given input ( )eX   , respectively. 
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 If the system is linear, ( )eG   must be equal ( )G   and thus Equation 1-3 can be obtained. 

By using an inverse calculation, the relationship between the modified reference input and desired 

output can be obtained as Equation 1-4. 

 ( ) ( ) ( )e eY G X    Equation 1-3 

 1( ) ( ) ( )d dX G Y    Equation 1-4 

where ( )dX   is the modified reference input and ( )dY   is the desired output, which means the 

desired acceleration feedback on the shake table. 

The goal of the shake table test is to reproduce the reference acceleration signal on the 

shake table. It can be observed that the desired output, ( )dY  , can be realized by implementing the 

modified reference input, ( )dX  , and the relationship is presented in Equation 1-5. 

 
 

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

e e d

d d

Y G X G X

G G Y Y

    

   

 

 
 

 

Equation 1-5 

However, the system is highly nonlinear in the real laboratory. This means that the 

frequency response model in Equation 1-1 is different from the model in Equation 1-2. By 

separating the model into nominal and modelling error parts, Equation 1-2 can be rewritten as the 

following Equation 1-6. By repeating the above procedure, a similar equation can be obtained as 

Equation 1-7. 

 ( ) [ ( ) ( )]X ( )eeY G G      Equation 1-6 

 1( ) [1 ( ) ( ) ] ( )e dY G G Y      Equation 1-7 

where ( )G   is the modelling error part.  
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 It can be observed that an error term appears; to minimize this error, the user needs to tune 

the modified reference input iteratively to reduce the tracking error. The main problem in the 

iterative control method is that it requires many trials, meaning many shake table tests, to eliminate 

the error term and achieve acceptable tracking performance. The specimen can be damaged or 

even collapse through the iterations. The other problem is that if the specimen is highly nonlinear, 

the convergence of the iterative control method is not guaranteed. 

1.2.4 Other Control Schemes 

Nakata (2010) developed an acceleration trajectory tracking control method to improve the 

acceleration tracking ability of the shake table. The method consists of an acceleration feed-

forward, a system dynamics command shaping, an intentional time-delay, a Kalman filter to reduce 

the degree of noise in the measured actuator displacement, and an actuator displacement feedback 

to ensure stability. It was experimentally demonstrated that this approach improved tracking 

performance over the conventional displacement feedback controllers with command shaping. A 

block diagram for this method is shown in Figure 1-3. However, its payload contribution is not 

included in this framework. This scheme is highly dependent on the system’s dynamics, which can 

be altered by the payload effect. 

 

Figure 1-3 Block diagram of the acceleration trajectory tracking controller 
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Stehman and Nakata (2013) proposed a different acceleration control strategy using a dual 

control loop. It consisted of an acceleration feedback control loop to track acceleration and a force 

feedback control loop to prevent table drift. Possessing a pre-gain for each controller, the final 

command to the actuator was the sum of the commands from both control loops. When compared 

with a conventional displacement-based PID controller, the approach had improved acceleration 

tracking performance and was demonstrated using experimental data in both the time and 

frequency domains. The dual loop control’s architecture is shown in Figure 1-4. However, this 

technique still utilized linear controller and its performance is not guaranteed when the specimen 

is nonlinear. 

 

Figure 1-4 Dual loop control architecture 

 

1.3 Hierarchical Control Framework 

Divergent from the previously mentioned control scheme, a novel control structure termed 

hierarchical control is developed in this thesis. It consists of a high-level nonlinear controller 

deployed for tracking a desired reference signal, and a low-level controller for actuator control. 

The hierarchical control framework is shown in Figure 1-5. The low-level controller takes its 

commands from the high-level one to regulate the actuator’s output through feedback control. The 
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high-level controller governs the system’s overall tracking performance and deals with 

nonlinearities in the hydraulic actuator and shake table system. 

 

Figure 1-5 Hierarchical control framework 

A system identification procedure is applied to capture the system dynamics of the 

hydraulic actuator. The low-level controller is designed to regulate the hydraulic actuator based on 

the simulation model that is generated from the system identification process. For the high-level 

controller, two advanced control strategies are presented in this thesis. One is a nonlinear controller 

termed a sliding mode control (SMC), while the other one is a model-based optimal controller 

labelled a model predictive control (MPC). The advantage of the SMC is that it can provide 

robustness against nonlinearities in both the shake table dynamics and the specimen’s behaviour, 

while achieving good tracking performance despite the nonlinearities in the specimen. The MPC 

was investigated in the simulation mode; it subsequently displayed high quality tracking 

performance and the potential to outperform the existing linear controller in the laboratory. 

1.4 Thesis Scope 

Three main objectives are presented in this thesis. The first is to introduce the hierarchical 

control framework and its advantage for the shake table control system. Traditional shake table 

controls utilize linear control and only have one controller to handle both trajectory tracking and 

actuator movement, which is difficult for one linear controller to handle. The hierarchical control 
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framework separates the task into two levels, making it more feasible for solving the control 

problems extant in each layer. 

The second objective of the thesis is to introduce the concept of model-in-the-loop (MIL) 

simulation. Following this method, the system identification for the hydraulic actuator and shake 

table systems is performed, following which the precise simulation models are built. By 

constructing this simulation framework, the controller design and parameter tuning can be 

conducted in simulation rather than by using the actual hardware. 

The third intent is to present the advanced control algorithm design in the shake table test. 

Two control algorithms were chosen for demonstration. One is a nonlinear control algorithm 

termed the sliding mode control (SMC), while the other is an optimization control algorithm 

designated the model predictive control (MPC). Both controller designs possess the potential to 

replace the tradition linear control, proving the advantage of the hierarchical control framework. 

1.5 Organization of Thesis 

The hierarchical control framework, system identification, and low-level and high-level 

controller designs, with the high-level including the sliding mode and model predictive controls 

are presented in this thesis. 

 Chapter 2 comprises a detailed explanation of the system identification for the hydraulic 

actuator and shake table system. The physical equations of the hydraulic system are listed and the 

CSI effect discussed. Subsequently, the subspace system identification method is utilized to 

generate the precise simulation model for the hydraulic actuator, while the Gaussian Newton 

method (Nocedal and Wright 1999) is employed to ascertain a simulation model for the shake 

table. The simulation framework provides a reliable solution for controller tuning and design.  
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 Chapter 3 describes the low-level controller design based on the simulation model 

constructed in Chapter 2. The traditional PID controller, TVC and loop-shaping controller design 

are presented. The controller parameter tuning is performed in a simulated environment as opposed 

to the real hardware environment. This method is called MIL simulation, and has the potential for 

saving much expense and time, since the traditional means for controller tuning has been to change 

the parameters iteratively in real-time. 

 Chapter 4 presents a high-level controller design using a nonlinear control algorithm 

termed a sliding mode control (SMC). This controller design method utilizes the Lyapunov 

theorem and provides robust performance in dealing with system uncertainties and specimen 

nonlinearities. A comparison between the SMC and traditional linear controller is done. The 

experiment results reveal that the SMC outperformed the traditional linear controller in terms of 

tracking performance and system robustness. 

 Chapter 5 presents another high-level controller design using an optimization based 

strategy known as model predictive control (MPC). This controller design requires the 

employment of a precise model in a low-level control process, and then calculates the optimal 

control command based on the low-level system dynamics. Simulation results illustrate that the 

MPC has the potential to achieve high performance acceleration tracking results. 

 Chapter 6 provides a summary for the research findings, conclusions and recommendations 

for future work and research. 
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Chapter 2: System Identification for Shake Table 

System 

 

 

2.1 Overview 

Shake table testing is performed with the hydraulic servo system to provide base excitation 

to the structures under test. Its control algorithm design requires dynamic models of the structure 

as well as the hydraulic actuators, which both can potentially be highly nonlinear. Since the 

dynamic models and parameters of hydraulic systems are generally unknown to the users of their 

control systems, users can usually only blindly tune the parameters of actuator controllers via trial 

and error. However, the performance and stability of such controllers is not guaranteed and is 

unpredictable, since the actual operating points of the hydraulic system dynamics during the 

generally nonlinear experimental process can significantly deviate from the operating point at 

which the controller is tuned. Therefore, the system identification procedure needs to be performed 

prior to the controller design phase. 

Traditional system identification can be categorized into three methods (Ljung 1999). The 

first is the white box method, which involves constructing the model based on the known 

governing equations and parameters of the system. This approach is also called the physical 

modeling method. This method would be ideal except that it is generally impractical to obtain all 

the necessary parameters of the actual physical system. The second method is the black box, which 

is aimed at building a model for an unknown system based on experimental input and output data 
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without prior knowledge of the system’s design or detailed parameters. This method is usually 

more feasible for users of the hydraulic system to operate, and is less time-consuming since it does 

not require any background knowledge of the hydraulic system. However, the potential problem 

with this approach is that the obtained model cannot fully describe the dynamics of the system 

within its operating range if the system identification experiments are not conducted properly. The 

third approach is known as the grey box method, in which the model of the system is constructed 

based on a partial knowledge of the physical system model and experimental data. The 

experimental data are used to provide an estimation of the unknown parameters and subsystems of 

the system’s incomplete physical model. This approach is also labelled the semi-physical modeling 

method, since it combines physical insight with actual experiment data.  

In this chapter, the grey box modeling method for the hydraulic actuator and shake table is 

presented and the simulation model constructed for controller design purpose. The physical 

equations are discussed to demonstrate the preliminary insight into the hydraulic system, and 

experimental data is then collected to construct the entire model. The subspace system 

identification method is chosen to compute the state space model for the hydraulic system. The 

model for the shake table dynamics is also constructed using the same method. The entire model 

structure is presented to show the effects of the control structure interaction (CSI). In the end, the 

simulation and experimental results are compared to show the reliability and accuracy of the 

constructed simulation model. 
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2.2 Hydraulic System Dynamics 

2.2.1 Concept 

The hydraulic servo system can be considered an arrangement of individual components, 

interconnected to provide the desired form of hydraulic transfer (Jelali and Kroll 2012). Figure 2-1 

shows the basic hydraulic system’s structure, which consists of the following three levels: 

1. Power supply (pump, accumulator, cooler, filter…) 

2. Control elements (valve, sensor, controller…)  

3. Actuating elements (cylinder and/or motor) 

 

Figure 2-1 Basic hydraulic system structure (credits to Jelali and Kroll 2012)  
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The standard valve-controlled hydraulic system is used here as an example to briefly 

outline the physical operating concept of the hydraulic system. In the power supply stage, the pump 

converts mechanical power from the prime mover to hydraulic power at the actuator, and the fluid 

storage and conditioning equipment such as the filter, accumulator and cooler ensure the sufficient 

quality, quantity and cooling of the fluid. Valves are used to control the direction of pump flow, 

the level of the power produced, and the amount of fluid and pressure on the actuator. It should be 

noted that this is where the control algorithm comes in, since the valve is controlled by the voltage 

generated by the controller. A linear actuator (cylinder) or a rotary actuator (motor) converts the 

hydraulic power to usable mechanical power output at the point required. In the shake table 

application, the linear type actuator is used to implement movement. 

2.2.2  Physical Equations 

The physical equations for the hydraulic system are presented in this section and might 

provide some insight to facilitate the construction of the model from the experimental data. It 

should be noted that this depends on the type of hydraulic actuator employed, since the individual 

components might differ slightly, negating the possibility for creating a universal model for the 

hydraulic actuator.  

The input signal into hydraulic actuator system is the valve command generated by the 

controller, which is usually a direct current voltage signal. The linearized relationship between the 

oil flow, valve command and leakage can be represented in Equation 2-1 (Ozcelik 2008). 

 
q c

f
q k u k

A
   

Equation 2-1 

where u  is the valve command, qk  is the linearized flow gain, 
ck  is the leakage constant, f  is 

the actuator force and A  is the effective actuator piston area.  
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From the flow continuity equation, the flow can also be represented in Equation 2-2. 

 

2

V
q Ax f

A
    

Equation 2-2 

where x is the velocity of the actuator piston,  V  is the hydraulic fluid volume for the actuator, 

and ߚ is the bulk modulus of hydraulic fluid. 

Equating Equation 2-1 and Equation 2-2 and take Laplace transformation, the relationship 

between valve command, velocity of the actuator piston and the actuator force can be represented 

as Equation 2-3. 

 
( )

2
c

q

k Vs
k u Ax f

A A
    Equation 2-3 

where s  is the Laplace variable. 

By rearranging Equation 2-3, a simple relationship to represent the hydraulic actuator 

system can be formulated as Equation 2-4. 

 1 2( ) ( )f G s u G s x    Equation 2-4 

where 1

2
( )

2
q

c

Ak
G s

k Vs







and 
2

2

2
( )

2 c

A
G s

k Vs








. 

This equation implies that the actuator force is related to two inputs. The first is the voltage 

command and the second the actuator piston velocity, which is the so-called control-structure 

interaction (CSI) (Dyke et al. 1995). As mentioned in the previous discussion, the physical 

equations might alter from one actuator to the other, with a lack of universality between the 

coefficients and order of the transfer function. However, from the physical equations, the hydraulic 

actuator can be defined as a model with two inputs, the voltage and piston velocity, and a single 

output, the actuator force. The model’s parameters and order can be obtained from the 

experimental data by implementing the system identification algorithm.  
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It should be noted that since the actuator is attached to the shake table, the actuator piston’s 

velocity should be equal to the velocity of the shake table. Therefore, a dynamic model for the 

shake table is also required to provide velocity feedback to the actuator model. A mass-spring-

damper system can be used to describe the shake table’s dynamics. The second order transfer 

function that applies the actuator force as input and the shake table displacement as output is 

represented in Equation 2-5. The parameters for the shake table model can also be ascertained 

using the system identification algorithm and experimental data. Figure 2-2 is the model structure 

for the hydraulic actuator and shake table system. 

 
2

1
( )tableG s x

ms cs k


 
 Equation 2-5 

where m  is the table mass, and c and k are the damping coefficient and stiffness coefficients for 

the shake table system, respectively. 

 

Figure 2-2 Model structure for hydraulic actuator and shake table system 

 From Equation 2-5 and Figure 2-2, it can be observed that the hydraulic actuator dynamics 

is influenced by the velocity feedback from the shake table. The main advantage of this model 

structure is that, once the actuator model is found (i.e. 1G  and 2G ), the user can adjust the 

parameters of the shake table portion to simulate the CSI effect after incorporating the payload and 
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implement controller into the simulation mode. This method is called model-in-the-loop (MIL) 

simulation, and it can efficiently save costs since it does not involve any direct installations into 

real hardware. 

2.3 System Identification Method  

In the hydraulic shake table control application, two models can be identified from the 

experimental data. One is the hydraulic actuator model and the other the shake table model. From 

Figure 2-2 and the formula derivation in Section 2.2, the hydraulic actuator model takes voltage 

and velocity as input data and force as output data. For the shake table model, it takes force as 

input data and displacement as output data. The scope of the system identification problem is to 

find a numerical model to provide precise fitting results from the experimental input and output 

data. Section 2.3.1 outlines the experimental setup for the uniaxial shake table in the structure 

laboratory at the University of British Columbia. In the Section 2.3.2, the subspace system 

identification method is chosen to postulate a state-space model to represent the hydraulic actuator 

from the experimental data; this model is then converted to a transfer function model to match the 

framework presented in Figure 2-2. In Section 2.3.3, the second order linear transfer function in 

Equation 2-5 is chosen to fit the experimental data while the instrumental variable (IV) and Gauss-

Newton methods are employed to ascertain the parameters.  

2.3.1 Experimental Setup 

A single degree of freedom shake table is constructed at the University of British Columbia 

(UBC) as shown in Figure 2-3. The linear variable differential transformer (LVDT) is employed 

to measure the displacement, and the load cell is installed to measure the actuator force applied by 

the MTS hydraulic actuator (Model Number 402.08). The actuator has a stroke of ±1.5 inches and 

capacity of 1.1 kips. Since there is no velocity sensor, the velocity is estimated by differentiating 
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the displacement measurement. The accelerometer is installed on the shake table to measure the 

base acceleration. If the specimen is installed on the shake table, another accelerometer will be 

installed on the specimen to measure the top acceleration. The experimental data is collected using 

ACTS control software and an ACTS data acquisition device. To prevent the pre-damage of the 

specimen, the equivalent mass is placed on the shake table to implement the system identification 

test. The system identification setup is presented in Figure 2-4. 

  

Figure 2-3 Experimental setup in UBC 

 

Figure 2-4 Equivalent mass on the shake table 
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2.3.2 System Identification for Hydraulic Actuator 

The subspace system identification method is chosen to build the state-space model for the 

hydraulic actuator. This does not require any iterative calculation and the numerical 

implementation is already proven to be reliable and well-developed. The method’s general theory 

will be presented in this section.  

A stochastic linear system can be formulated in the following state space form. 

 ( 1)  ( ) ( )x t Ax t Bu t    

( )  ( ) ( )y t Cx t Du t   

 

Equation 2-6 

where ( ), ( )x t u t and ( )y t are the system state, input and output, respectively. A , B , C  and D  are 

system matrices with appropriate dimensions.  

A  is called the dynamical system matrix. It describes the dynamics of the system; the 

eigenvalues of Matrix A  will capture all the dynamical modes and govern the stability. B  is the 

input matrix which represents the relationship that the deterministic inputs influence in the next 

state. C  is the output matrix, which describes the transformation of the internal state to the system 

output. The term with Matrix D  is known as the direct feedthrough term. In continuous time 

systems, this term is most often labelled “0”. It should be noted that the state space representation 

is not unique. For any invertible matrix T , same input-output relationship can be described by 

changing the basis 1( ) ( )x t T x t . 

 1 1( 1)  ( ) ( )x t T ATx t T Bu t      

( ) ( ) ( )y t CTx t Du t   

 

Equation 2-7 

Therefore, the goal of system identification is to identify the contents of , ,A B C  and D  

from the experimental data in a minimal realization of state space form. Here, the subspace system 
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identification method is chosen to solve this problem, since it can efficiently propose a suitable 

model without iterations whose order the user can define arbitrarily (Overchee and Moor 1996). 

The algorithms are based on the following observations: 

1. Supposing that the extended observability matrix in Equation 2-8 for the system are 

known, then the matrices C  and A  are obtainable. Extracting C  from the first block 

row of rO  and using the shift properties to solve A :  

 

1

r

r

C

CA
O

CA 

 
 
 
 
 
 


 

 

 

Equation 2-8 

 1 1( )r rCA CA A   Equation 2-9 

The latter step as shown in Equation 2-9 should be solved in least square sense since 

inevitable noise is present in the data. 

2. If A  and C  are known, B  and D  can be estimated using the predictor form 

presented in Equation 2-10 : 

 1( , ) ( ) ( ) ( )y t B D C qI A Bu t Du t    Equation 2-10 

                  where q  is the time shift operator. 

It can be observed that Equation 2-10 is clearly linear in B  and D , and therefore B  

and D  can be solved by using least square method. 

3. The extended observability matrix can be consistently estimated from the input-output 

data by direct least-square-like (projection) steps. 

The flow chart of the subspace system identification is presented in Figure 2-5 to illustrate 

the concept. First, the extended observability matrix is obtained by using the input-output data to 
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form a matrix that is related to rO , and then the singular value decomposition (SVD) is 

implemented to find out rO . It should be noted that, from the SVD, the user can choose model 

order (matrix size in Equation 2-6) suitable to retain the most significant values of the singular 

equivalencies to achieve the purpose of the model order reduction. QR decomposition is the 

numerical tool of choice to implement this step. After the extended observability matrix, rO , is 

constructed from the input-output data, C  can be directly obtained from rO , and A  can be 

calculated using Equation 2-9 in the least square sense. After A  and C  are known, B  and D  

can be calculated using the least square method shown in Equation 2-10. A detailed explanation 

can be found in Overchee and Moor (1996) and Ljung (1999). 

  

 

Figure 2-5 Subspace system identification flow chart 

The Hokkaido earthquake ground motion is used to conduct the system identification test. 

The input-output data are plotted in Figure 2-6 and the fitting result is plotted in Figure 2-7. The 

hydraulic actuator model in state space form is presented in Equation 2-11. 

 x Ax Bu    



23 

 

 y Cx Du    

 0.04231 2.193 0.1573 1.895 0.3166

1.876 29.21 125.1 , 22.12 5.854

1.674 100.2 26.93 87.13 13.63

A B

     
        
        

 

 

 [1881 3.858 0.5678], [0 0]C D     Equation 2-11 

It should be noted that the state space model can be converted to the transfer function model 

by using the transformation relationship in Equation 2-12. In other words, the state space model 

for the hydraulic actuator can be transformed into two transfer functions, since it requires two 

inputs and one output. This fact perfectly aligns with the model structure described previously. 

The two transfer functions are presented in Equation 2-13 and Equation 2-14, and these two 

transfer functions are identical to the two transfer functions, ( 1( )G s  and 2 ( )G s ), presented in 

Figure 2-2. 

 1( )
( ) ( * )

( )

Y s
G s C s I A B D

U s
     

Equation 2-12 

 2 4

1 3 2 4

3430 3.86*10 403.3
( )

56.18 1.333*10 178.2

s s
G s

s s s

 


    

Equation 2-13 

 2 5

2 3 2 4

565.1 1818 3.12*10
( )

56.18 1.333*10 178.2

s s
G s

s s s

 


    

Equation 2-14 
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Figure 2-6 Input and output data for hydraulic actuator model 

 

Figure 2-7 Simulation model fit for hydraulic actuator 
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2.3.3 System Identification for Shake Table 

The second order transfer function is used to describe shake table dynamics. Since the 

numerator and denominator order are known in this case, the identification problem is to ascertain 

the parameters for Equation 2-5. The method presented in this section utilizes the Gauss-Newton 

method (Nocedal and Wright 1999) to do the iterative parameter estimation. This method uses the 

gradient and Hessian matrix to determine the minimum point of the parameter estimation error. 

However, this method requires a good initial point to begin and, therefore, the instrumental 

variable (IV) method in conjunction with the state variable filter (SVF) is adopted to provide the 

initial guess for the Gauss-Newton method (Ljung 2009). The flow chart of the transfer function 

parameter estimation is shown in Figure 2-8. 

  

 

Figure 2-8 Transfer function parameters estimation procedure 

 Consider the following general transfer function form in Equation 2-15. By performing the 

inverse Laplace transformation, the input and output relationships can be formulated as Equation 

2-16: 

 1 2
1 2

1
1

...( )
( )

( ) ...

m m
m

n n
n

b s b s bY s
G s

U s s a s a

 



 
 

  
 

Equation 2-15 
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 ( ) ( 1) ( 1) ( 2)
1 1 2( ) ( ) ... ( ) ( ) ( )... ( )n n m m

n my t a y t a y t b u t b u t b u t         Equation 2-16 

where ( ) ( )ky t  denotes the kth derivative of ( )y t with respect to time and assume n m . 

It should be noted that ( )u t  and ( )y t are the input and output time history data, 

respectively. Equation 2-16 can be converted as a linear regression by implementing a continuous 

time filter ( )L s defined in Equation 2-17 to low pass the Equation 2-16. As performed in Equation 

2-18 and Equation 2-19, Equation 2-16 can be transformed as a perfect linear regression, as in 

Equation 2-20. ( )L s is called State Variable Filter (SVF).  

 
( ) ( )nL s

s







 
Equation 2-17 

 ( )( ) ( ) ( )k
kz t L s y t  Equation 2-18 

 ( )( ) ( ) ( )k
k t L s t   Equation 2-19 

 1 1 0 1 1 2 1 0( ) ( ) ... ( ) ( ) ( )... ( )n n n m m mz t a z t a z t b t b t b t           Equation 2-20 

The Equation 2-20 will have well-defined quantities, and can be reformulated, at the 

sampling instants jt t , as the standard linear regression form as presented in Equation 2-21.  

 
0( ) ( ) ( )T

nz t t t       

 
1 0 1 0( ) [ ( ) ... ( ) ( ) ... ( )]T

n mt z t z t t t        

  1 1... ...n ma a b b   Equation 2-21 

where 0 ( )t  is defined as the generalized equation error from the measurement noise. 

The general solution to Equation 2-21 is to use the least square method. However, the 

results of the least square method will be biased due to the existence of the measurement noise. 

Hence, the instrumental variable (IV) method is used to solve this linear regression problem and 
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provide an initial value for the parameters (Garnier et al. 2003). The IV estimate for the parameters 

is given in Equation 2-22. The detailed explanation can be found in Section 7.6 in Ljung (1999). 

 1ˆ ( ( ) ( )) ( ) ( )T
j j j n j

j j

t t t z t       Equation 2-22 

where ( )jt is the instrument vector and jt is the sampling instant.  

Once the initial value of the parameter set is obtained, the Gauss-Newton method (Wright 

and Nocedal 1999) can be applied to iteratively optimize the fitting error. The optimization 

problem can be formulated as the nonlinear least square problem, as shown in Equation 2-23: 

 2 2

1 1

1 1
( ) ( ) ( ( ) ( ) )

2 2

m m
T

j n
j j

f r z j j   
 

     
Equation 2-23 

 The Gauss-Newton method is a line search method facilitating discovery of the best  to 

achieve the minimum value for Equation 2-23. The standard form for the line search method is 

shown in Equation 2-24: 

 1k k k kp      Equation 2-24 

where k is the iteration, k  is the step length and kp  is the search direction. 

 In the Gauss-Newton method, the step length, k , is selected as 1 and the search direction 

is defined using the following procedure. First, the residual vector ( )r   is defined from Equation 

2-24 . The Jacobian matrix can be found in Equation 2-26. It should be noted that n  is the 

dimension of  . Next, the search direction can be found in Equation 2-27 

 
1 2( ) ( ( ), ( ),..., ( ))T

mr r r r     Equation 2-25 

 
1... , 1...( ) [ ]j

j m i n
i

r
J 

  





 
Equation 2-26 
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 1( ) ( )T T
k k k k kp J J J r   Equation 2-27 

The transfer function of the shake table with an equivalent mass is obtained and presented 

in Equation 2-28, which is identical to the ( )tableG s  presented in Figure 2-2. The input-output data 

and the fitting result are plotted in Figure 2-9 and Figure 2-10. 

 
2

8.248
( )

2.034 192.4tableG s
s s


 

 
Equation 2-28 

 

Figure 2-9 Input and output data for shake table model 
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Figure 2-10 Measured and simulated model output for shake table model 

2.4 Summary 

In this chapter, the system identification concept and procedure are introduced to construct 

the precise simulation model for control design purposes. The hydraulic actuator dynamics are 

investigated through physical equation derivation. From the results of the physical equations, it 

can be observed that the hydraulic actuator force is generated by the voltage input and actuator 

velocity feedback. Since the hydraulic actuator is attached to the shake table, the velocity of the 

actuator is equal to the velocity output of the shake table. This essentially demonstrates that the 

shake table and specimen dynamics will influence the hydraulic actuator dynamics; this 

phenomenon is termed the CSI effect. Therefore, the shake table and specimen dynamics should 

be considered for the controller design and tuning phase. 
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To obtain the precise simulation model for the hydraulic shake table system, the grey box 

modeling method is chosen. A scaled one degree of freedom hydraulic shake table platform is 

constructed in the structure lab at UBC. The experimental data are collected using the real-time 

control system provided by ACTS. The subspace system identification method is employed to fit 

the numerical state-space model obtained from the experimental data. The model for the hydraulic 

actuator and the shake table with its specimen are constructed separately. The fitting result shows 

the high fidelity of the proposed system identification method, and the controller design in the 

following chapters will utilize the model assembled in Chapter 2. 
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Chapter 3: Low-level Controller Design 

 

 

3.1 Overview 

 The dynamics for the hydraulic shake table system is investigated and the simulation model 

generated from the experimental data found in Chapter 2. To implement the hierarchical control 

strategy, a low-level controller is required to control the hydraulic actuator. In this chapter, the 

low-level controller design technique is introduced to design a controller to stabilize the hydraulic 

shake table and achieve basic tracking performance. The control techniques in this chapter include 

the proportional-integral-differential (PID), three-variable- (TVC) and loop-shaping control. The 

frequency response and experimental data are presented to prove that the model-based controller 

design can replace the traditional blind tuning method, while saving the time and expenditure 

required in the real laboratory.   

3.2 PID Control 

3.2.1 Theory 

 The PID control is the most popular and successfully applied technique in the control 

engineering field. Due to its simplicity and convenience, it has been considered a good solution 

for industrial applications. The block diagram for PID control is presented in Figure 3-1, where r  

is the reference input, e is the error term, u is the control signal and y  is the measured output. 

The error term is the difference between the reference signal and the measured output. 
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Figure 3-1 PID control block diagram 

 The PID controller utilizes a proportional, integral and derivative calculation to generate 

the control input signal, which is aimed to minimize the error term and achieve the tracking 

purpose. A typical PID controller can be formulated as the following expression: 

 
0

( )
t

P I D

de
u t k e k edt k

dt
    

Equation 3-1 

where Pk  , Ik , Dk  are the proportional, integral, derivative gain, respectively. 

 To decrease rise time, which means increasing the system response speed and bandwidth, 

the proportional gain can be raised, but this will decrease the system stability margin and reduce 

control robustness. The integral gain will eliminate steady state error and improve system 

accuracy. The non-zero value for the error term will be integrated over time until it is sufficiently 

large to move the plant output state to its final position. The derivative gain is used to decrease the 

overshoot problem, which improves the system’s stability at a higher proportional gain. In the 

hydraulic actuator control application, the P controller is usually implemented first to achieve basic 

close-loop control. Null shifts always occur on servo valve dynamics, so the integral action will 

appear to improve the tracking accuracy. The effects of the three gains in PID controller are listed 

in Table 3-1. 

Table 3-1 PID control gain effect 

Close Loop Response Rise Time Overshoot Settling Time Steady-state error 

Pk  Decrease Increase Small Change Decrease 

 



33 

 

Table 3-1 PID control gain effect 

Ik  Decrease Increase Increase Eliminate 

Dk  Small Change Decrease Decrease No change 

3.2.2 PID Controller Design 

In the traditional tuning procedure, the user needs to tune the gain based on the rules on 

site by trial and error illustrated in Table 3.1. Classical tuning methods include that of Ziegler-

Nichols. However, this method is time-consuming and inefficient, while lacking the mathematical 

proof to state its system stability and performance. 

 Therefore, in this chapter, the model constructed in Chapter 2 is utilized to provide a 

mathematical tuning solution. The block diagram for integrating the PID controller with the 

hydraulic shake table system is shown in Figure 3-2. From this figure, the velocity of the shake 

table can be presented, as shown in Equation 3-2. 

 3x G sF  Equation 3-2 

 

Figure 3-2 PID control in hydraulic shake table system 
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 Combining Equation 2-4 and Equation 3-2, the transfer functions for voltage to 

displacement and voltage to force can be calculated; the process is presented in Equation 3-3, 

Equation 3-4 and Equation 3-5: 

 

 1 2 3G u G G sF F   Equation 3-3 

 1

2 31uF

GF
G

u G G s
 


 

Equation 3-4 

 

 1 3

2 31ux

G Gx
G

u G G s
 


 

Equation 3-5 

 

where uFG is the voltage to force transfer function and uxG  is the voltage to displacement transfer 

function. 

 Since the high-level controller presented in Chapter 4 requires both the displacement and 

force controllers to be in the low-level control phase, the designs for both of these controllers are 

presented in this section. The frequency response plots for the displacement and force controller 

designs are presented in Figure 3-3 and Figure 3-4. The displacement and force controllers are 

listed in Equation 3-6 and Equation 3-7. 

 3 0.4
d

s
C

s


  

Equation 3-6 

 0.366 3.222
f

s
C

s


  

Equation 3-7 
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Figure 3-3 Displacement PID controller design 

 

Figure 3-4 Force PID controller design 
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3.3 Three Variable Control 

The displacement based control method using the PID controller introduced in Section 3.2 

is widely implemented on various shake tables worldwide. Nevertheless, the standard requirement 

for the shake table test is the high frequency tracking conducted in the acceleration trajectory, for 

which PID control is unable to achieve sufficient bandwidth. Therefore, the velocity and 

acceleration control loops are employed to increase the control bandwidth; this control technique 

is labelled three-variable-control (TVC). The full control structure for TVC is illustrated in Figure 

3-5. ,r r and r are the reference displacement, velocity and acceleration and ,x x  and x  are the 

measured displacement, velocity and acceleration of the shake table, respectively. TVC can be 

divided into two parts, those of feedback and feedforward control. The feedback control portion’s 

main issue is to guarantee control stability, while feedforward control aims to increase tracking 

performance. It should be noted that, in this chapter, the PID controller is used to replace 

displacement feedback gain to improve performance. 

 

Figure 3-5 Control structure for proposed TVC 
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The simulation framework is built in the Simulink environment and the model introduced 

in Chapter 2 is used to simulate plant dynamics. The gain setup for the TVC is presented in Table 

3-2. The time and frequency domains’ tracking responses for the 1980 Irpinia Italy earthquake 

record obtained from PEER are presented in Figure 3-6 and Figure 3-7. From both time and 

frequency domain observations, it can be clearly seen that the TVC can outperform the PID in 

acceleration trajectory tracking. In Chapter 5, the TVC is utilized as a low-level controller. 

Table 3-2 Gain setup for TVC 

Gain P  I  D  bvK  baK  
fdK  fvK  faK  

Value 6.15 0.161 0  0.005 0.0001 0.2 0.125 0 

 

 

Figure 3-6 Time domain comparison for TVC and PID control 
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Figure 3-7 Frequency domain comparison for TVC and PID control 

3.4 Loop-shaping Control 

Loop-shaping control is another commonly used linear control design technique. It utilizes 

the frequency response from the plant model and generates a controller to shape the open-loop 

frequency response to the desired shape and meet the design specifications. Figure 3-8 is the loop-

shaping control block diagram.  

 

Figure 3-8 Loop-shaping control block diagram 
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margins. In this section, the loop function ( )L s is designed as presented in Equation 3-8, with n  

representing the desired crossover frequency. With the loop function design in Equation 3-8, the 

close-loop transfer function can be calculated in Equation 3-9, which has the desired frequency 

response. From the transfer function of the plant ( )G s  obtained from Equation 3-5, the controller 

transfer function ( )C s can be calculated using H-infinity synthesis (McFarlane and Glover 1992), 

so that the desirable loop function ( )L s is realized. By changing the value of n , the bandwidth of 

the overall system can be adjusted and, therefore, higher quality frequency domain tracking can 

be achieved. The second order loop-shaping controller is presented in Equation 3-10: 

 
( ) ( ) ( ) nL s C s G s

s


   

Equation 3-8 

 
( )

1
n

n

L
T s

L s




 
 

 
Equation 3-9 

 26.986( 0.2975 0.5892)

( 0.01046)LS

s s
C

s s

 



 

Equation 3-10 

 Figure 3-9 presents the frequency response plot for the loop-shaping controller design. A 

comparison between the close-loop response of using the loop-shaping and PID controllers is 

presented in Figure 3-10; from this, it can be observed that the loop-shaping controller can achieve 

a better frequency response. It can thus be concluded that the loop-shaping controller design fully 

utilizes the information from the simulation model that obtained from Chapter 2, achieving better 

performance than the traditional PID controller. The loop-shaping controller is chosen as the 

benchmark controller in Chapter 4. 
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Figure 3-9 Loop-shaping controller design 

 

Figure 3-10 Close-loop response comparison between PID and loop-shaping controller 
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3.5 Summary 

Three low-level controller design methods are presented in this chapter. The PID control 

theory and the gain effect are introduced. The traditional method for tuning simply involved the 

user’s tuning the gain based on trial and error. The model-based design procedure which utilizes 

the model obtained from Chapter 2 is presented as a substitute for traditional tuning. The model-

based method can reduce costs, while performing feasible stability analysis. The TVC method is 

also presented in this chapter, with its advantage being that it achieves a higher bandwidth than 

the PID control, as is proven here through simulation result analyses in both the time and frequency 

domains. Finally, the loop-shaping control method is introduced as a frequency domain design 

method. It utilizes the frequency response of the plant model, and compensates it to the desired 

shape while achieving the design specifications. These controllers will be used in the following 

chapters to support the high-level controller design. 
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Chapter 4: Sliding Mode Control 

 

 

4.1 Theory Background 

Sliding mode control (SMC) originates from the Lyapunov theory, a commonly used 

theorem for conducting nonlinear stability analyses and controller designs. Two methods have 

been introduced in Lyapunov theory: the linearization and direct methods. The linearization 

method draws its conclusions about a nonlinear system’s local stability around an equilibrium 

point from the stability properties of its linear approximated model. In other words, the 

linearization method claims that the stability properties of a nonlinear system in the close area of 

an equilibrium point are essentially identical to those of its linearized approximation. This method 

provides the theoretical justification for implementing linear control in a nonlinear system. 

However, this approach shows that linear controller implementation is a matter of consistency; 

namely, that the controller design must have the ability to restrict the system within its linear range. 

However, it is often difficult to precisely define the linear range, motivating the development of 

the direct method. 

The direct method is not restricted to local motion near the equilibrium point. It determines 

the stability properties from the viewpoint of the system’s total energy. The basic concept of the 

direct method arises from a fundamental physical observation that, if the total energy of a 

mechanical system is continuously dissipated, regardless of whether the system is linear or 

nonlinear, the system must eventually arrive at an equilibrium point. Considering the nonlinear 
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mass-spring-damper system in Figure 4-1 as an example, the equation of motion for the mechanical 

system can be listed in Equation 4-1. 

 3
0 1 0mx bx x k x k x       Equation 4-1 

where bx x  is the nonlinear damping term and 3
0 1k x k x  is the nonlinear spring term. 

 

Figure 4-1 Lyapunov theory example: nonlinear mass spring damper system 

It would be difficult to conduct a stability analysis for this system using the definitions of 

stability, since the general solution to this nonlinear equation is unavailable, but the alternative 

method using the system’s energy provides a feasible solution for this kind of nonlinear system. 

The total mechanical energy of this system is the sum of its kinetic and its potential energy, which 

can be written in Equation 4-2: 

 2 3
0 10

1
( ) ( )

2

x
V x mx k x k x dx    

 

 2 2 4
0 1

1 1 1

2 2 4
mx k x k x    

Equation 4-2 

By taking the derivative of Equation 4-2 and combing it with Equation 4-1, Equation 4-3 

can be derived, which shows the changing rate of the above system: 

 33
0 1( ) ( ) ( )V x mxx k x k x x x bx x b x              Equation 4-3 

The relationships between mechanical energy and stability can be observed from the above 

derivation and concluded in the following three points: 
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1. Zero energy corresponds to the equilibrium point ( 0, 0x x  ) 

2. Asymptotic stability means the convergence of mechanical energy to zero 

3. Instability is related to the growth of mechanical energy 

Equations 4.2 and Equation 4-3 imply the fact that the total mechanical energy of the above 

system begins from an initial value and is continuously dissipated by the damper until the mass 

halts its motion ( 0x  ), and that, even without an analytical solution, the system’s stability can 

be guaranteed. Lyapunov’s direct method is based on the generalization of this concept in the 

above case to more complex systems. The procedure of Lyapunov’s direct method is to generate 

a scalar “energy-like” function (i.e. positive definite) for the dynamic system, and examine the 

time variation of that scalar function. If the scalar function is decreasing, which means the 

derivative of the scalar function is negative definite, then the dynamic system is guaranteed to be 

globally stable. It should be noted that the Lyapunov theory can also be applied to controller 

designs, with one famous example being the sliding mode control (SMC) illustrated in this chapter. 

SMC is a nonlinear control technique featuring remarkable properties of accuracy, 

robustness, easy tuning and implementation (Utkin 1977). SMC systems are designed to drive the 

system states onto a designed surface in the state space termed the sliding surface. Once the sliding 

surface is reached, sliding mode control retains the states close to the sliding surface. Hence, the 

sliding mode control can be separated into two parts. The first involves the sliding surface design, 

such that the sliding motion satisfies the design specifications. The second is concerned with 

choosing a control law that will make the switching surface attractive to the system state. In the 

control law selection phase, the Lyapunov theory is used to guarantee stability and convergence 

(Slotine 1991).  
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There are two main advantages to sliding mode control. The first is that the dynamic 

behavior of a system may be tailored by the choice of the sliding function. Secondly, the closed 

loop response can become totally insensitive to uncertainties. From a practical point of view, the 

SMC allows for controlling nonlinear processes subject to external disturbances and heavy model 

uncertainties. This advantage makes SMC a preferable choice than other alternative linear control 

approaches for shake table control. Moreover, rapid asymptotical convergence can also be 

obtained with the SMC. 

4.2 Control Law Derivation 

Figure 4-2 shows a simplified unidirectional shake table model with a single degree of 

freedom (SDOF) specimen. The equations for the motion of the specimen and shake table are 

defined in Equation 4-4 and Equation 4-5. As will be explained later, the high-level controller will 

calculate force command signals based on the system’s dynamics. The low-level controller(s) will 

regulate the table based on the command signals. 

 

Figure 4-2 Schematic plot of the SDOF shake table model 
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 ( ) ( , ) 0s t s s s s s sm d d c d P d d        Equation 4-4 

 ( , ) 0t t s s s s s tm d c d P d d F kd        Equation 4-5 

The setup has a table mass of tm  and a specimen lump mass of sm . Two measured 

displacements are defined. td  represents the relative displacement of the table with respect to the 

ground, while sd represents the relative displacement at the top of the specimen with respect to the 

table. sc  is the damping constant of the specimen, and sd is the relative velocity of the specimen. 

td represents the acceleration of the table, while sd   denote the relative acceleration of the 

specimen. F represents the applied force to the system. To obtain force feedback, the table is 

connected to a reaction wall with linear springs whose stiffness is denoted as k .The resulting 

spring force experienced by the table is tkd . The specimen resisting force, sP , is typically 

nonlinear and will influence the control performance. 

Equation 4-4 and Equation 4-5 can be transformed into a state space representation as 

described by Equation 4-6.  
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Equation 4-6 

The SMC algorithm design should begin with the selection of a sliding surface in 

which the system exhibits its desired behavior. Next, a feedback control law should be 

determined such that the trajectory of the system in state space can intersect and be confined 

to the sliding surface. The sliding surface, S , shown in Equation 4-7, is defined as a linear 

combination of the displacement tracking error, in Equation 4-8, and the velocity tracking error, 

in Equation 4-9.  

 
1 1S x x    Equation 4-7 

 
1 1 1dx x x   Equation 4-8 

 
1 1 1dx x x    Equation 4-9 

where 1x  and 1x  denote displacement and velocity tracking errors, respectively, 1x  and 1dx  are 

the actual and desired displacements, respectively, 1x  and 1dx  represent the actual and desired 

velocities, respectively, and   is a tuning parameter that is a strictly positive constant.  

To prove the existence of a sliding mode, it is normally necessary to resort to the Lyapunov 

stability theorem introduced in Chapter 4.1. Consider a Lyapunov functional candidate, as shown 

in Equation 4-10. Taking the derivative of the Lyapunov functional candidate in Equation 4-10 

gives Equation 4-11: 
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 21
( ( )) ( )

2
V S x S x  

Equation 4-10 

 ( ( )) ( ) ( )V S x S x S x   Equation 4-11 

By selecting S  as Equation 4-12, Equation 4-11 will be negative definite as shown in 

Equation 4-13. Because V  is positive definite and V is negative definite, the Lyapunov stability 

theorem guarantees that ( )S x  will approach 0 asymptotically. K   is the tuning parameter that 

controls the convergence rate. 

 S KS   Equation 4-12 

 2V KS   Equation 4-13 

Equation 4-14 can be derived by taking the derivative of Equation 4-7. It should be noted 

that, since the resisting force of the specimen cannot be measured directly in the real experimental 

environment, then, by rearranging the form of Equation 4-4, Equation 4-15 can be obtained. The 

acceleration of the shake table and specimen can be measured directly by the accelerometers. By 

substituting Equation 4-15 into Equation 4-14, Equation 4-16 can be found. By equating Equation 

4-12 and Equation 4-16, the sliding mode control law can be derived, as shown in Equation 4-17:  

  1 1 4 1 1 2 1

1
( )s s d d

t

S x x P c x F kx x x x
m

                
Equation 4-14 

 ( )s s s s t sP c d m d d       Equation 4-15 

 ( )S CE x f bF     Equation 4-16 

where 2 1( ) ( )dCE x x x   , 2 4 1 1

1
( ( ) )s d

t

f m x x kx x
m

       , and 
1

t

b
m

  
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  
 

Equation 4-17 

4.3 Implementation 

Equation 4-17 can be rearranged as Equation 4-18, 

 
/disp v aF F F   Equation 4-18 

where 1 1 1( )disp t dF m K x x kx    and / 1 1 1 2 4( )( ) ( )v a t d t d sF m K x x m x m x x           

As shown in Equation 4-18, dispF  depends only on 1x , which is td  , while /v aF  depends on

1x , 2x , and 4x  which are td , td , and sd , respectively. The force command due to velocity, inertia 

of the mass, damping force, and specimen resistance force ( /v aF ) will be implemented through a 

force-based controller. On the other hand, the force command conducted solely due to 

displacement ( dispF ) will be implemented through a displacement-based controller. The 

displacement command is calculated by dividing dispF  by the table spring constant, k. It is noted 

that, since the force feedback include both forces /v aF and dispF , the total force command for the 

force-based controllers will be /v a dispF F  , as shown. Such an implementation strategy has 

significant benefit. Generally speaking, the satisfactory acceleration tracking performance would 

require an actuator with a high bandwidth to respond rapidly to the input signal variation. From 

fundamental physics and mathematics, force is equal to mass times acceleration, while 
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displacement is the double integral of acceleration, which means that the displacement control will 

theoretically possess a lower bandwidth. Therefore, the force controller should be adopted. 

However, it is well known that stability issues make it difficult to rely solely on a force controller 

to regulate the movement of the hydraulic actuator, and a certain kind of stabilization mechanism 

is required. Here, the stabilization mechanism is provided by the displacement-based controller.  

Figure 4-3 demonstrates the implementation of the low-level controllers in a series of high-

level controllers. The displacement and force controller are obtained from Equation 3-6 and 

Equation 3-7. It should be noted that the weighing factors of α and β are implemented to allow the 

user to select the contribution of each of the low-level controllers. In this research, α and β are both 

chosen as 0.5.  

 

Figure 4-3 Implementation of the hierarchical control architecture of the shake table test 

4.4 Experiment Result 

The performance of the proposed hierarchical controller is verified with earthquake time-

history records. The benchmark controller is designed by using the loop-shaping control technique 
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illustrated in section 3.4. Figure 4-4 shows the experimental results obtained using the 1980 Irpinia 

Italy earthquake record as the reference signal. The proposed controller denoted as SMC is 

compared with the loop shaping displacement-based controller developed in chapter 3. Although 

both the loop shaping and SMC controllers are able to track the reference displacement well as 

shown in Figure 4-4 (a), SMC has better tracking capability in velocity and acceleration as shown 

in Figure 4-4 (b) and Figure 4-4(c), respectively. Figure 4-4 (d) shows the Fourier amplitude plot 

of the table acceleration. Both controllers perform well at frequencies lower than 7Hz. SMC has 

better performance in mid to high frequency ranges. Figure 4-5 shows a photo of the damaged 

yielding plates after the test. Evidently, the system has high nonlinearity and forms plastic hinges 

at the top and bottom of the plates. The significant nonlinear behavior can also be observed from 

the specimen hysteresis as shown in Figure 4-6. 
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Figure 4-4 Comparison of the table performances 
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Figure 4-5 Photos of the damaged specimen 

 

 

Figure 4-6 Specimen hysteresis 

To confirm the effectiveness of the proposed hierarchical controller, seven additional 

earthquake time-history records are used to compare performances with the loop shaping 

displacement-based controller. Table 4-1 lists the root mean square of the error between the 

reference and measured table accelerations in the frequency and time domains. It should be noted 

that all errors are normalized against the maximum absolute value of the reference acceleration. 
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The results show that the the SMC can deal with the system nonlinearity and that it outperforms 

the loop shaping controller in both the time and frequency domains in terms of median and standard 

deviations. 

Table 4-1 Acceleration tracking error analysis in time and frequency domains 

Earthquake Name 
Frequency domain [-] Time domain [-] 

 Loop shaping  SMC Loop shaping SMC 

Nahanni, Canada (1985) 0.51 0.50 7.68 6.86 

Coalinga, USA (1983) 0.63 0.54 12.73 12.93 

Kobe, Japan (1995) 0.44 0.39 17.43 15.19 

Morgan Hill, USA (1984) 0.53 0.50 7.60 9.38 

Northridge, USA (1994) 0.63 0.73 11.31  11.09 

Irpinia, Italy (1980) 0.67 0.42 14.98 9.93 

Manjil, Iran (1990) 1.49 1.06 20.59 20.23 

Imperial Valley, US (1979) 2.21 1.61 13.64 10.31 

Median 0.65 0.52 13.19 10.70 

Standard Deviation 0.62 0.42 4.49 4.14 

4.5 Summary 

In this chapter, SMC is adopted as the high-level controller for reference signal tracking, and 

both the displacement-based and force-based linear controllers designed in Chapter 3 are employed 

as low-level controllers to regulate the hydraulic actuator to follow the command of the high-level 

controller. The real-time experiments were implemented on the scaled shake table at the University 

of British Columbia. Eight earthquake time-history records were used as reference signals. The 

experimental results show that the proposed hierarchical controller outperforms the single loop 
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shaping displacement-based controller designed in Chapter 3 when examining displacement, 

velocity and acceleration tracking. Although the individual low-level controller does not perform 

as well as the loop shaping controller, control allocation in the hierarchical framework with the 

SMC can compensate for such drawbacks in low-level controllers. 
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Chapter 5: Model Predictive Control 

 

 

5.1 Overview 

Model predictive control (MPC) originated in the late seventies and has developed 

considerably since then. The term “model predictive control” does not designate a specific control 

strategy. It essentially refers to a wide range of control methods which make explicit use of a model 

of the process to obtain the control signal by minimizing a cost function and obtain an optimal 

solution (Camacho, 2013). The various MPC algorithms only differ among themselves in the 

models used to represent the process and the noise and cost functions to be minimized. 

The optimal control concept can be traced back to the work of Kalman in the 1960’s. 

Kalman developed a linear-quadratic regulator (LQR) to minimize a quadratic objective function 

(Kalman 1960b). The plant to be controlled can be described by the discrete-time, deterministic 

linear state-space model in Equation 5-1: 

 
1k k k

k k

x Ax Bu

y Cx
  


 
 

Equation 5-1 

where vector ku  represents system input at time step k, vector kx  represents plant states at time 

step k and vector ky  represents plant output measurements at time step k.  

 The quadratic objective function to be minimized is defined in Equation 5-2. The squared 

input and state deviations are included, and the input weight matrices Q  and R are introduced to 

allow for tuning trade-off. 
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

 


   
 

Equation 5-2 

where the norm terms in the objective functions are defined in Equation 5-3: 

 2 T

Q
x x Qx  Equation 5-3 

 The optimal solution to the LQR problem was derived as a proportional control law with 

gain matrix K computed from the solution of a matrix Ricatti equation:  

 
k ku Kx  Equation 5-4 

 A dual state estimation theory termed Kalman Filter was developed to estimate the plant 

states from noisy input and output measurements (Kalman 1960a). The combination of LQR and 

Kalman Filter is called linear-quadratic-Gaussian (LQG) control, which provides a powerful 

solution to controlling linear system. Nevertheless, the constraints on the process inputs, states and 

outputs were not considered in the LQG control theory. Moreover, the process units to be 

controlled may have unique performance criteria that are difficult to address in the LQG control 

framework, which requires a time dependent weighting matrix, while the LQG control is not able 

to change the matrix content at every time step.  

This issue advances the question of solving the dynamic optimization problem online at 

each control step. The control input sent to the plant serves to optimize future plant behaviour over 

a time interval known as the prediction horizon. The plant dynamics are described by the process 

model, while the plant input and output constraints are included directly in the objective function 

formulation, so that future constraint violations are considered and prevented. The first input of 

the optimal control input sequence is implemented into the plant, and the optimization problem is 
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solved again at the next time interval using the updated measurement data. This methodology is 

labelled model predictive control (Qin and Badgwell 2003). 

Through the above literature review, the MPC has two main advantages compared to 

traditional linear control: 

1. It can include the constraints for plant input and output to provide user flexibility in 

adjusting thesafety bounds, which are based on the users’ physical experiment’s setup. 

2. It can predict the optimal control sequence based on process model prediction rather than 

on blindly tuning for the parameters; thus, it can efficiently utilize the plant dynamics. 

In this chapter, the MPC is employed as the high-level controller in the hierarchical control 

framework. The low-level control process is designed using the knowledge described in Chapters 

2 and 3. The displacement, velocity and acceleration trajectory tracking are considered in the cost 

function design. The controller validation and performance investigation are done in the Simulink 

environment, which reveals the potential of the MPC in shake table control. 

5.2 Theory 

Figure 5-1 shows the MPC strategy and the basic idea behind the MPC are listed below as 

three steps. 

1. Prediction: The future output for a determined horizon N, called the prediction horizon, are 

predicted at each time instant t using the process model. These predicted outputs y (t + k | t), k 

= 1. . . N depend on the known values up to time instant t, which involve past inputs and outputs 

and the future control signals u (t+k | t), k = 0. . . N-1, which are those to be sent to the system 

and calculated based on the optimization result. 

2. Optimization: The set of future control signals is calculated by optimizing a determined 

criterion to keep the process as close as possible to the reference trajectory r (t + k). This 



59 

 

criterion usually takes the form of a quadratic function of the errors between the predicted 

output signal and the predicted reference trajectory. Essentially, in every single time instant, 

the MPC will solve a quadratic programming (QP) problem and calculate the optimal control 

sequence. This control sequence will be sent to the process model to provide a prediction for 

the system’s behaviour.  

3. Receding strategy:  At each time instant t, only the control signal u (t | t) is sent to the process 

while the other control signals calculated are rejected, since the next sampling instant y (t + 1) 

is already known and Step 1 is repeated with this new value. All the sequences are brought up 

to date and the u (t + 1 | t + 1) is re-calculated, which in principle will be different from the u 

(t + 1 | t) because of the new measurement data available. The MPC is also called the receding 

horizon control (RHC) since, at each time instant t, the horizon is displaced towards the future, 

which involves the application of the first control signal of the sequence calculated at each 

time step. 

  

 

Figure 5-1 MPC schematic 
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In order to implement this strategy, the basic structure shown in Figure 5-2 is used. A 

process model is employed to predict the future plant output, based on past and current values and 

the proposed optimal future control sequence. These actions are calculated by minimizing the cost 

function, where the future tracking error and constraints are considered. The process model plays 

a decisive role in the controller. The chosen model must be able to capture the process dynamics 

to precisely predict the future output. Meanwhile, it is also required that it be simple enough to 

implement and understand. 

 

  Figure 5-2 MPC structure  

There are many types of models used in the various formulations. One of the most popular 

utilized in industry is the impulse response model. It is very simple to obtain since it only requires 

the measurement of the output when the process is excited with an impulse input. It is widely 

accepted in industrial practice because it is very intuitive and can also be used for multivariable 

processes. However, its main disadvantages are the large number of parameters needed and the 

fact that it can only describe open-loop stable processes. Similar to this model, the step response 

model can also be obtained when the input is a step.  
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The state space model is more widespread in the academic research community because of 

the simple way the controller can be derived even in multivariable cases. The state space 

description provides an easier expression of stability and robustness criteria. The transfer function 

model is also used in the academic research community. This type of model is better understood 

in industry than state space models, since some of the concepts used in the transfer function 

formula such as dead time, gains, and time constants are usually employed in industry.  

Another fundamental part of the strategy is the optimizer. It provides control actions based 

on the process model and cost function. If the cost function is quadratic, its minimum can be 

obtained as an explicit function (linear) of past inputs and outputs and the future reference 

trajectory, which can significantly reduce computation effort. In the presence of inequality 

constraints, the solution must be obtained by more computationally numerical algorithms. The size 

of the optimization problems depends on the number of variables and the prediction horizons used. 

It should be noted that the amount of time needed for the constrained and robust cases can be 

various orders of magnitude higher than that needed for unconstrained cases, and that the 

bandwidth of the process to which the constrained MPC can be applied is considerably reduced. 

5.3 Controller Design 

The design of the MPC can be divided into the following three segments: the prediction 

model design, state estimation and prediction and optimization. This section will present the entire 

design procedure. 

5.3.1 Prediction Model Design 

To provide predictions of future plant behaviour, constructing the prediction model is the 

first step towards designing the MPC. Figure 5-3 outlines the prediction model architecture for the 

MPC. The prediction model can be separated into two parts: the process and disturbance models. 
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The process model aims at predicting the future behaviour of the control process, while the 

disturbance model is designed to solve the CSI effect mentioned in Chapter 2.  

 

Figure 5-3 Prediction model architecture for MPC 

It should be noted that the process model includes the TVC design mentioned in Chapter 3 

and the hydraulic shake table model of Chapter 2. Figure 5-4 shows the process model block 

diagram for shake table applications. In other words, the process model here defines the entire 

low-level control process, rather than merely the dynamics of hydraulic actuators and shake tables.  

 

Figure 5-4 Process model block diagram 

  The modeling details for the hydraulic actuator and shake table are discussed in Chapter 2, 

while the TVC controller design is illustrated in Chapter 3. The overall low-level control process 

can be considered a control plant with three inputs and outputs including displacement, velocity 

and the acceleration control loop. The goal for the MPC is to calculate the optimized reference 

signal in displacement, velocity and acceleration for the low-level control process to track. Here, 
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the MPC uses a discretized model and a sampling frequency of 500 Hz. The process model is 

presented below in Equation 5-5. 

 

 [ 1] [ ] [ ]p p p px k A x k B u k     

 [ ] [ ] [ ]p p p py k C x k D u k    

5 5

1.003 0.004202 0.0008308 0.02242 0.000558 0.003639

0.1082 0.9194 0.2344 0.3925 0.01388 0.0636

0.1198 0.1882 0.9239 1.01 0.02332 0.164

0.03097 0.0001058 2.024*10 0.9994 0.002001 3.673*10

30.96 0.1263 0.0269 0.7

pA  

  


 


 
  

6 8 9 7

197 1.004 0.05459

3.325*10 1.024*10 1.841*10 0.0003219 3.22*10 1   

 
 
 
 
 
 
 
 
   

 

7

6

5

6 9

6

10 13

0.02311 0.0004731 3.639*10

0.4039 0.008268 6.36*10

1.041 0.02132 1.64*10

0.0002333 4.775*10 3.673*10

0.3466 0.007097 5.459*10

0.000322 3.865*10 2.973*10

pB







 



 

 
 
 
 

 
 
 
 

   

 

4

0 0 0 1 0 0

0 0 0 0 1 0

1.551*10 31.82 4.683 192.4 2.034 0
pC

 
  
     

 

 0 0 0

0 0 0

0 0 0
pD

 
   
  

 

 

Equation 5-5 

 

The first three states in Equation 5-5 are those of the hydraulic system model represented 

in Equation 2-11. The fourth and fifth states are the displacement and velocity of the shake table, 

respectively. The last is the integrator state in the TVC. 
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For the disturbance model, since there are three outputs including displacement, velocity 

and the acceleration feedback in the process model, a third order state space model is used to 

formulate the possible disturbances in the control process. The disturbance model is presented in 

Equation 5-6. 

 [ 1] [ ] [ ]d d d dx k A x k B d k     

 [ ] [ ] [ ]d d d dy k C x k D d k    

1 0 0

0 1 0

0 0 1
dA

 
  
  

 

0.002 0 0

0 0.002 0

0 0 0.008
dB

 
  
  

 

4

4

4

10 0 0

0 10 0

0 0 2.5*10
dC

 
  
  

 

 0 0 0

0 0 0

0 0 0
dD

 
   
  

 

 

Equation 5-6 

By combining Equation 5-5 and Equation 5-6, the entire prediction model can be 

constructed. 

 
0[ 1] [ ] [ ]c cx k Ax k Bu k   , [ ]T T T

c P dx x x   

 
0[ ] [ ] [ ]cy k Cx k Du k  , 0 [ ]T T Tu u d   

0

0
p

d

A
A

A

 
 
 
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0

0
p

d

B
B

B

 
 
 

 

p dC C C   

 
p dD D D     Equation 5-7 

Since some of the states in the prediction model are unmeasurable and must be estimated 

to complete the computations in the model prediction section, a state estimator is designed to obtain 

the values for the unmeasurable states and predict the future plant output based on Equation 5-7. 

5.3.2 State Estimation and Prediction 

A steady state Kalman filter is constructed to estimate the states in Equation 5-7. The 

Kalman filter is an optimal estimator design for state estimation (Kalman 1960a). The Kalman 

filter is a set of mathematical equations that can estimate the state of a process recursively and 

minimize the mean of the squared error. The original Kalman filter is an observer with time-

varying gain; however, the gain itself is typically rapid at reaching a constant value. This fact 

makes the steady state Kalman filter a good alternative to simplifying the implementations and 

calculations. The first step to designing the steady state Kalman filter is to solve the discrete 

algebraic Ricatti equation to get the a priori estimate error covariance M  in Equation 5-8. Next, 

the Kalman gain, which will be constant throughout the entire control process, can be calculated 

in Equation 5-9. 

 1[ ] 0T T T TAMA M Q AMC R CMC CMA      Equation 5-8 

 1( )T TK MC CMC R    Equation 5-9 

where A  and C  are defined in Equation 5-7, Q  is the process noise covariance matrix and R  is 

the measurement noise covariance matrix. 
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With the known Kalman gain, the Kalman filter estimation can be applied; the steps are 

presented in Equation 5-10 and Equation 5-11. It should be noted that Equation 5-10 is termed the 

measurement update and Equation 5-11 the time update. 

 [ ] [ 1] ( [ 1] )c c m cx k k x k k K y Cx k k Du       Equation 5-10 

 [ +1 ] [ ] [ ]c c ux k k Ax k k B u k   Equation 5-11 

   

where my  is the measured output and
0

p
u

B
B

 
  
 

.  

By using the states obtained from the steady state Kalman filter, the MPC can make 

predictions for the output variable, solve the optimization problem and generate the optimal control 

sequence. The optimization segment is discussed in the following section. With the control 

sequence known, the output prediction is performed by Equation 5-12 and Equation 5-13: 

 [ ] [ 1 ] [ 1 ], 2,3...,c c ux k i k Ax k i k B u k i k i p         Equation 5-12 

 y[ ] [ ]ck i k Cx k i k    Equation 5-13 

where p  is the prediction horizon. 

5.3.3 Optimization 

The optimizer solves the QP problem in each time interval and generates the optimal 

control input sequence. The cost function can be categorized as three terms: output reference 

tracking, constraint violation and control input change rate. The cost function design is presented 

in Equation 5-14. After the computation process, the MPC will generate displacement, velocity 

and the acceleration input sequence; the length of the sequence is the prediction horizon. As shown 

in Equation 5-15, kz  is the control sequence calculated by the MPC at time Step k and p is the 
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prediction horizon. dispu , velu  and accu are the control signals for the displacement, velocity and 

acceleration loop in the TVC, respectively. 

 ( ) ( ) ( ) ( )k y k u k kJ z J z J z J z    Equation 5-14 

 T =[ ( )  ( 1 ) ... ( 1 ) ]

( ) [ ( ) ( ) ( )]

T T T
k

disp vel acc

z u k k u k k u k p k

u k k u k k u k k u k k

  


 

 

Equation 5-15 

The first term of the cost function is the output refence tracking term. Since there are three 

control loop in TVC, the output reference tracking term puts weighting on the tracking 

performance of each control loop and it is presented in Equation 5-16. dispw , velw  and accw are the 

weighting for displacement, velocity and acceleration control loop, respectively. dispr , velr  and accr

are the reference input for displacement, velocity and acceleration, respectively. dispy , vely  and accy

are the predicted displacement, velocity and acceleration from the Kalman filter, respectively.  

2 2 2

1

( ) { [ ( ) ( )] [ ( ) ( )] [ ( ) ( )] }
p

y k disp disp disp vel vel vel acc acc acc
i

J z w r k i k y k i k w r k i k y k i k w r k i k y k i k


           

Equation 5-16 

The control input change rate is considered since in most of the process control application, 

it is preferable to have small control movement to prevent the sudden change in the entire process. 

Equation 5-17 shows the control input change rate term and dispw , velw  and accw are the 

weighting for displacement, velocity and acceleration input change rate, respectively. 

1
2 2 2

0

( ) { [ ( ) ( 1 )] [ ( ) ( 1 )] [ ( ) ( 1 )] }
p

u k disp disp disp vel vel vel acc acc acc
i

J z w u k i k u k i k w u k i k u k i k w u k i k u k i k


   


                

Equation 5-17 
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Considering the physical limitations in the laboratory, the constraints for the output are 

also established and, therefore, can provide safety protection for the experimental setup. The 

constraint violation term is presented in Equation 5-18. k  is the slack variable for constraint 

softening purposes and  is the weighting for constraint violation. 

 2( )k kJ z    Equation 5-18 

 After the cost function is defined, the optimizer utilizes the KWIK algorithm (Schmid and 

Biegler 1994) to solve Equation 5-14 and ascertain the optimal control input sequence. The 

parameters in the MPC are presented in Table 5-1. 

Table 5-1 MPC parameters setup 

Prediction horizon 15 

Weighting for output tracking [ dispw , velw , accw ] [5,3,1] 

Weighting for control input change rate [ dispw , velw , accw ] [0.1,0.1,0.1] 

Weighting for constraint violation   5000 

Displacement output limitation 1.5 [inch] 

5.4 Simulation Result 

The MPC design and validation are implemented in the Simulink environment (Bemporad 

et al. 2010). The simulation results including the bare table conditions and specimen installed 

conditions are presented in this section. The 1980 Irpinia, Italy earthquake record is used as the 

reference signal. Figure 5-5 shows the comparison results for bare table simulation between the 

MPC and the TVC.  
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Figure 5-5 Comparison result for shake table without specimen 

It can be observed that the phase response and tracking error are better in the MPC in 

time domain comparisons. Also, the frequency domain comparison reveals that the MPC has 

better tracking bandwidth and accuracy. 

  After validating the bare table simulation results, the linear specimen’s condition is 

simulated to prove the robustness of the MPC. A 100 lbf. specimen with a 1 second structure 

period and 5% damping ratio is designed to provide specimen behaviour as a disturbance for the 

shake table control. The specimen design and equation of motion are discussed in Appendix A. 

Figure 5-6 shows the comparison results between the MPC and TVC for the specimen installed 

conditions.  
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Figure 5-6 Comparison result for shake table with specimen 

From the time domain results, it can be concluded that the TVC is influenced by the 

disturbance and that gain setup tuning is needed if the payload on the shake table has altered. 

However, the MPC can successfully achieve the disturbance rejection, while the time domain 

results reveal that the performance and robustness of the MPC are superior to that of the TVC. The 

frequency domain results illustrate that, since the specimen is installed and the structure period is 

1 second, the tracking performance of the TVC was influenced in the low frequency area. 

However, the MPC can still achieve excellent tracking results in the frequency domain, which 

proves that the MPC has great potentiality in the industry to replace the existing linear controller 

design. 

5.5 Comparison between SMC 

Since the MPC and SMC are both high-level controllers in the hierarchical control 

framework, it is important to compare the pros and cons of these two controllers. Table 5-2 shows 

the acceleration tracking comparison for SMC and MPC. In both time domain and frequency 

domain, MPC has a better performance. Although MPC is still in simulation mode phase, the result 
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shows that MPC could potentially achieve better tracking performance than SMC in the real 

implementation. 

Table 5-2 Acceleration tracking comparison for MPC and SMC 

Earthquake Name 
Frequency domain [-] Time domain [-] 

 MPC  SMC MPC SMC 

Nahanni, Canada (1985) 0.11 0.50 2.34 6.86 

Coalinga, USA (1983) 0.24 0.54 5.99 12.93 

Kobe, Japan (1995) 0.14 0.39 4.73 15.19 

Morgan Hill, USA (1984) 0.15 0.50 4.79 9.38 

Northridge, USA (1994) 0.10 0.73 3.22 11.09 

Irpinia, Italy (1980) 0.23 0.42 7.05 9.93 

Manjil, Iran (1990) 0.31 1.06 8.62 20.23 

Imperial Valley, US (1979) 0.24 1.61 3.89 10.31 

Median 0.19 0.52 4.76 10.70 

Standard Deviation 0.08 0.42 2.06 4.14 

 

The SMC utilizes the Lyapunov function and provides robustness to model uncertainties 

and nonlinearities, which is useful in shake table control. However, since its design lacks the 

information of the low-level control process, a command from the SMC may exceed the working 

range of the low-level controllers, potentially also contributing towards system instability. 

In contrast, the design of the MPC includes a model of the entire low-level control process. 

Therefore, a command from the MPC will not exceed the capacity of the low-level controller. In 

the simulation mode, the MPC also demonstrates robustness and tracking performance under the 
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influence of specimen dynamics.  Moreover, the limitations for the physical setup can also be 

considered in the MPC, which recommends this method for industrial purposes. However, since 

the model in this thesis is still linear, the tracking performance could be limited if the specimen is 

highly nonlinear. The nonlinear modeling technique should be investigated to improve the MPC 

performance. 

5.6 Summary 

In this chapter, the MPC is adopted as a high-level controller in the hierarchical control 

framework and then applied to the shake table control problem. In the low-level control stage, the 

simulation model built in Chapter 2 is used to provide hydraulic actuator dynamics in the 

prediction model. The TVC introduced in Chapter 3 is utilized as a low-level controller and 

provides the benchmark. The prediction model of the entire low-level control process is obtained 

by integrating the low-level controller and plant model and combining them with the disturbance 

model that was designed to solve the CSI effect issue. The state space model is presented in Section 

5.3.1. Based on the estimation model, the MPC utilizes the steady state Kalman filter to conduct 

the state estimation and predict the control process’s future behaviour. The cost function is defined 

in Section 5.3.3, while the weighting of the displacement, velocity, acceleration tracking and the 

changing rate of the control inputs are considered. The KWIK algorithm is used to solve the QP 

problem formulated in Section 5.3.3. The simulation results show that the MPC can successfully 

track the acceleration input signal, and that it provides sufficient robustness even the specimen 

dynamics is added to the simulation environment. This fact simply shows the potentiality of the 

MPC strategy in regulating hydraulic actuator dynamics and tracking the acceleration reference 

signal. 
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Chapter 6: Summary and Conclusion 

 

 

6.1 Conclusion 

Shake table control is a highly nonlinear control problem and in most of the existing 

research facilities, the linear control technique is applied to regulate the actuator and track the 

reference signal. Due to the existing nonlinearities in the hydraulic actuator, shake table and testing 

specimen, the traditional linear control method such as PID control cannot provide an universal 

solution to achieving the required performance for shake table control. The control-structure-

interaction (CSI) effect changes the plant dynamics, making the employment of only one controller 

unrealistic for achieving good performance.  

In this thesis, a novel hierarchical control framework has been introduced to solve this 

problem. A hierarchical control system is a form of control system in which a set of devices and 

governing algorithms is arranged in a hierarchical tree. The architecture consists of a high-level 

controller and one or more low-level controller(s). The advantage of the hierarchical control 

framework is that it can decompose the control problem into smaller sub-problems and then 

reassemble their solutions via a hierarchical tree. In this framework, high-level controller 

algorithms aim to regulate the overall structural dynamics, while low-level controllers focus on 

executing the commands from the high-level controller. The advantage of this framework is that 

it can simplify the control problem and provide a more efficient and effective solution.  A scaled 

hydraulic shake table is constructed in the structure laboratory at the University of British 

Columbia to validate the concept illustrated in this thesis. 
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To develop a high-performance control strategy, obtaining the plant system’s information 

is necessary. The hydraulic actuator dynamics is first investigated and, from the physical equation, 

the CSI effect can be well explained. It is critical to provide mathematical proof for tracking the 

performance and system stability in the controller design phase. Consequently, the system 

identification procedure is proposed to obtain a numerical model for the hydraulic shake table 

system. The grey box method is chosen to conduct the system identification, so the subspace 

system identification method is utilized to fit a precise model from the experimental data. The 

results of this conforming reveal that the numerical model can precisely capture the dynamics of 

the hydraulic shake table system. This method provides a positive approach to developing a control 

strategy and validating the control performance without implementing the real test in the 

laboratory; this can tremendously reduce costs. 

Three control methods are introduced in the low-level controller design phase, including 

the proportional-integral-differential (PID) control, three-variable-control (TVC) and the loop-

shaping control. The PID control is the algorithm most widely applied in industrial applications. 

It utilizes a combination of proportional, integral and derivative actions on the tracking error to 

generate the control output signal and send it the plant signal to minimize tracking error. It is 

already proven that the PID controller can successfully stabilize and regulate the hydraulic 

actuator; however, the control performance, including precision and bandwidth, are unable to meet 

the requirements for the shake table test. Therefore, the TVC has been developed to improve 

bandwidth control. Velocity and acceleration control loop are used to increase the bandwidth. Last, 

the state-of-the-art frequency domain design method labelled the loop-shaping control has been 

discussed. It makes use of the frequency response of the plant model and designs the controller to 

achieve the desired performance.    
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Two high-level controller examples are provided to solve the existing problems in the 

shake table test; these include the sliding mode control (SMC) and model predictive control 

(MPC). The SMC is a suitable solution to system uncertainties and the nonlinear control problem. 

It follows the Lyapunov theorem and provides robustness for handling nonlinearities. 

Experimental work was conducted on the scaled hydraulic shake table in the structure laboratory 

at the University of British Columbia to validate the feasibility of the SMC. The experimental 

results show that the SMC can compensate for the insufficient portions of the low-level controller 

and provide good tracking results for nonlinear specimen behaviour.  

On the other hand, the MPC follows a model-based approach and utilizes the plant model 

to solve the QP optimization problem at each time step. In the MPC design, the Kalman filter is 

used for state estimation and prediction of the low-level control process, and the cost function 

includes the tracking error in the displacement, velocity and acceleration control mode for the 

optimization purpose. In the simulation phase, the MPC demonstrates a high level of accuracy and 

robustness under specimen behaviour and should thus be considered a potential candidate for real-

time shake table control.  

In summary, the concepts and challenging problems of hydraulic shake table control have 

been well explained in this thesis. The hierarchical control strategy was developed to improve 

control performance. The system identification procedure was performed to obtain a reliable 

simulation model of the hydraulic actuator and shake table. Diverse control methods were 

presented at both the low-level and high-level control phases and the hierarchical control strategy 

was proven to be a feasible method for the hydraulic shake table control problem. More advanced 

control algorithms can be implemented under this architecture.   
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6.2 Future Work 

The following future work was planned based on the contents and control architecture 

illustrated in this thesis.   

1. The MPC has already been proven in the simulation phase as providing good 

tracking performance. Real-time control implementation should be conducted to 

further investigate the method’s tracking performance and robustness. Following 

real-time implementation, a more advanced version of the MPC can be further 

studied. For instance, the adaptive MPC could be a possible solution since it was 

shown to update the plant model, while the normal MPC simply used a consistent 

model throughout the experiment. 

2. In the system identification phase, the model for this thesis was still linear; this 

might not fully describe the system’s characteristics in diverse scenarios. A 

nonlinear modeling technique such as a neural network or machine learning method 

might be further studied to generate a precise, nonlinear model for the hydraulic 

shake table system.  

3. There still remain for study various modified versions of the sliding model control, 

such as the multiple sliding surface control (MSSC), dynamic surface control 

(DSC) and receding horizon sliding control (RHSC). The MSC and DSC have 

different manners for the sliding surface design, while the RHSC is actually a 

combination of the MPC and SMC. They all have the potentiality to outperform the 

existing version of SMC. 

4. After the SDOF shake table control system is fully studied, the control object 

should be extended to the multiple degrees of freedom (MDOF) shake table control 
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system.  

5. The experience of controller development in shake table tests should also be 

applicable to structure control. Both semi-active and active controls require 

hydraulic actuator control, system identification procedure and advanced control 

algorithm design, which are also challenging issues. 
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Appendices 

Appendix A  Simulation specimen design 

This section introduces the simulation model design of the linear specimen and the equation 

of motion for the SDOF shake table including specimen. Figure A-1 shows the schematic diagram 

of the SDOF shake table model.  

 

Figure A-1 Schematic Diagram of the SDOF Shake Table Model 

The equation of motion for this system can be listed in Equation A-1 and Equation A-2: 

 ( ) 0s t s s s s sm d d c d k d       Equation A-1 

 0t t t t t s s s sm d c d kd c d k d F        , Equation A-2 

where tm and sm are the mass for the shake table and specimen, respectively; tc and sc are the 

damping coefficient for the shake table and specimen, respectively; and  and sk are the stiffness 

for the shake table and specimen, respectively.  

Transforming Equation A-1 and Equation A-2 into a state space representation, 

Equation A-3 can be derived as follows: 



84 

 

1

2

3

4

t

t

s

s

dx

dx

dx

dx

  
  

      
   
      





 

 

   

2

1
3 4 1 2

2

3 4

4
3 4 1 2 3 4

1

1 1

s s t
t

s s t s s
t s

x

x
k x c x F kx c x

mx

x x

x
k x c x F kx c x k x c x

m m

 
               

   
            

 






 

  Equation A-3 

 Equation A-3 can be further converted into a matrix form in Equation A-4. The input of 

the system is the force from the hydraulic actuator, while the output is the displacement, velocity 

and acceleration of the shake table. 
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Equation A-4 

 Comparing Equation 2-5 and Equation 2-28, the parameters of the shake table can be 

obtained. The specimen is designed using 100 lbf. as the weight, 1 second as the structure period 

and 5% as the damping ratio. The Matlab code to calculate the matrix content in Equation A-4 is 

attached below. By using the generated state space model, the SDOF shake table with its specimen 

installed can be simulated in the Simulink environment. 

Matlab code: 

% shake table and specimen parameters 
% unit for length is inch and unit for force is lb 
mt = 0.1212; kt = 23.3189; ct = 0.2465; T = 1; 
ms = 100/386.4; ks = ms*4*pi^2/(T)^2; cs = 2*0.05*ms*2*pi; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Matrix content 
TA = [0 1 0 0; 
      -(kt/mt) -(ct/mt) (ks/mt) (cs/mt); 
      0 0 0 1; 
      kt/mt ct/mt (-ks/mt - ks/ms) -cs/mt-cs/ms] 
TB = [0; 
      1/mt; 
      0; 
      -1/mt] 
TC = [1 0 0 0; 
      0 1 0 0; 
      -(kt/mt) -(ct/mt) (ks/mt) (cs/mt);] 
TD = [0; 
      0; 
      1/mt] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


