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Abstract

Visible-light communication (VLC) is an enabling technology that exploits the light-

ing infrastructure to provide ubiquitous indoor broadband coverage via high-speed

short-range wireless communication links. On the other hand, physical-layer security

has the potential to supplement conventional encryption methods with an additional

secrecy measure that is provably unbreakable regardless of the computational power

of the eavesdropper.

The lack of wave-guiding transmission media in VLC channels makes the commu-

nication link inherently susceptible to eavesdropping by unauthorized users existing

in areas illuminated by the data transmitters. In this thesis, we study transmission

techniques that enhance the secrecy of VLC links within the framework of physical-

layer security.

Due to linearity limitations of typical light-emitting diodes (LEDs), the VLC

channel is more accurately modelled with amplitude constraints on the channel input,

rather than the conventional average power constraint. Such amplitude constraints

render the prevalent Gaussian input distribution infeasible for VLC channels, making

it difficult to obtain closed-form secrecy capacity expressions. Thus, we begin with

deriving lower bounds on the secrecy capacity of the Gaussian wiretap channel subject

to amplitude constraints.

We then consider the design of optimal beamformers for secrecy rate maximiza-

tion in the multiple-input single-output (MISO) wiretap channel under amplitude
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constraints. We show that the design problem is nonconvex and difficult to solve,

however it can be recast as a solvable quasiconvex line search problem. We also

consider the design of robust beamformers for worst-case secrecy rate maximization

when channel uncertainty is taken into account.

Finally, we study the design of linear precoders for the two-user MISO broadcast

channel with confidential messages. We consider not only amplitude constraints, but

also total and per-antenna average power constraints. We formulate the design prob-

lem as a nonconvex weighted secrecy sum rate maximization problem, and provide

an efficient search algorithm to obtain a solution for such a nonconvex problem. We

extend our approach to handle uncertainty in channel information.

The design techniques developed throughout the thesis provide valuable tools for

tackling real-world problems in which channel uncertainty is almost always inevitable

and amplitude constraints are often necessary to accurately model hardware limita-

tions.
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Chapter 1

Introduction

1.1 Background

1.1.1 Visible-Light Communication

Visible-light communication (VLC) is an enabling technology that exploits illumina-

tion devices, mostly high-brightness light-emitting diodes (LEDs), to establish high-

speed short-range wireless communication links [1, 2, 3, 4, 5, 6, 7]. In typical VLC

systems, information is relayed by the means of modulating the output intensity of

the LEDs, whereas at the receiver side, the data signal is recovered using simple

photodiodes (PDs). The use of laser diodes (LDs), rather than LEDs, can result

in higher data rates [8], however LDs are not popular for illumination purposes as

they are more expensive and have the potential to cause eye or skin injuries. Data

rates can also be improved by using imaging receivers [8, 9], however this comes with

increased complexity and cost.

VLC systems take advantage of the license-free light spectrum and immunity to

radio frequency (RF) interference. In addition, VLC transmitters can exploit the

existing lighting infrastructure where legacy incandescent and fluorescent lamps are

being replaced with LED-based luminaires that have longer lifespan, smaller size,

lower power consumption, higher energy-conversion efficiency, and improved color

rendering without using toxic chemicals [2, 5, 10]. Thus, the integration between
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power-line communication (PLC) and VLC systems has the potential to provide

ubiquitous indoor broadband coverage with seamless handover [11, 12]. Furthermore,

since typical lighting systems utilize multiple luminaires that are sufficiently separated

to provide uniform illumination, VLC systems can readily benefit from multiple-

antenna techniques to achieve higher data rates [9] and enhance the reliability [13]

and security [14] of VLC networks. Moreover, due to line-of-sight (LoS) propagation

and confinement of light waves by opaque surfaces, VLC links cause limited inter-

cell interference. Such advantages qualify VLC systems for realizing small-size cells,

termed as “LiFi attocells” [15], in fifth generation (5G) networks featuring cells with

coverage ranges on the order of a few meters [16].

The IEEE 802.15.7 standard [17], released in 2011, was a big step towards the

commercialization and widespread deployment of VLC networks [18, 19]. It defines

three physical layer modes, with the second and third modes, PHY II and PHY III,

respectively, supporting data rates up to 96 Mbit/sec [20, 21]. In fact, much higher

data rates have already been demonstrated in laboratory conditions. A prototype

VLC system utilizing high-power LEDs to achieve bidirectional real-time transmission

with a total rate of 500 Mbit/sec over a 2 m distance was implemented in [22]. In [23],

the authors demonstrated a 16-user multi-carrier code-division multiple access (MC-

CDMA) VLC system that achieves 750 Mbit/sec sum rate over a 1.5 m distance

using off-the-shelf LEDs. Furthermore, the use of µLEDs with smaller size (e.g.,

on the order of 50 µm) and lower junction capacitance allows higher modulation

bandwidth. The authors in [24] utilized a single gallium nitride (GaN) µLED to

establish a 3 Gbit/sec VLC link over a 5 cm distance.
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1.1.2 Physical-Layer Security

With the unprecedented increase in traffic volumes over wireless networks, data pri-

vacy and secrecy are becoming a major concern for users, as well as for network

administrators. Conventional security schemes are typically implemented at upper

layers of the network stack via access control, password protection, and end-to-end

encryption. Such schemes are deemed secure as long as the computational power of

potential eavesdroppers remains below certain limits. For example, the eavesdrop-

pers do not have sufficient computational power to perform an exhaustive search for

the password, or determine the prime factors of a large integer (to obtain the secret

key and decrypt the encrypted message), within a reasonable amount of time. Dur-

ing the past few years, however, physical-layer security has emerged as a promising

technique that can complement conventional encryption methods with an additional

secrecy layer that is provably unbreakable regardless of the computational power of

the eavesdroppers [25, 26, 27, 28, 29, 30, 31]. Moreover, physical-layer security has the

potential to provide lightweight standalone secrecy solutions in communication sys-

tems functioning under severe hardware or energy constraints such as machine-type

communication (MTC) devices in the Internet of Things (IoT) [32].

Physical-layer security refers to transmission schemes that exploit dissimilarities

among the channels of different receivers in order to hide information from unautho-

rized receivers, without reliance on upper-layer encryption techniques. The underly-

ing idea behind such a secrecy scheme is to sacrifice a portion of the communication

rate, that otherwise would be used for useful data transmission, in order to confuse

potential eavesdroppers and diminish their capability to infer information at any

positive rate, via carefully-designed signaling and coding schemes.

The innovative idea of quantifying secrecy via information-theoretic measures can

3
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be traced back to Shannon [33] who proposed equivocation1 as a quantitative measure

of the secrecy level of encrypted messages [26, Section 3.1]. Almost three decades

later, the foundations of information-theoretic security were laid down by Wyner in

his seminal paper [34] that studied the problem of secret communication over the

degraded broadcast channel. In that paper, Wyner introduced the so-called wiretap

channel model to describe the scenario in which the transmitter has one secret mes-

sage intended for one receiver, while the other receiver, whose channel is degraded,

acts as an eavesdropper. Wyner also introduced the notion of secrecy capacity as

a performance measure that specifies the maximum communication rate that guar-

antees reliable reception of the secret message by the intended receiver and entire

hiddenness from the eavesdropper. The work of Wyner motivated the characteriza-

tion of the secrecy capacity of the scalar, i.e., the single-input single-output (SISO),

Gaussian wiretap channel2 [36]. Wyner’s model was then extended to the (nonde-

graded) wiretap channel [37], where the eavesdropper’s channel need not be degraded.

Such an extension has ultimately led to the characterization of the secrecy capacity of

the multiple-input single-output (MISO) [38, 39] and multiple-input multiple-output

(MIMO) Gaussian wiretap channels [40, 41, 42, 43]. Furthermore, when the eaves-

dropper’s channel is not accurately known or entirely unknown to the transmitter,

the works in [44, 45, 46] proposed the transmission of jamming signals, i.e., artificial

noise, in conjunction with the information-bearing signal, in order to increase the

interference seen by the eavesdropper and diminish its capability to decode the secret

message.

The wiretap channel model was further extended to the two-user broadcast chan-

nel with confidential messages (BC-CM) [47]. Such a model studies the scenario in
1As defined in his paper [33, Section 11], equivocation is the conditional entropy of the trans-

mitted message after knowing the received signal.
2Recall that the scalar Gaussian broadcast channel is a degraded channel [35, Section 15.1.3].
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which the transmitter has two independent secret messages, one intended for each

receiver, and each message should be kept confidential from the other receiver. The

secrecy capacity regions of the two-user MISO BC-CM and the two-user MIMO BC-

CM were characterized in [48] and [49], respectively.

1.2 Motivation

1.2.1 Are VLC Links Secure?

VLC links are often deemed eavesdropping-proof, however this is not necessarily true,

especially in public areas or in multi-user scenarios. With the lack of optical fibers,

or any sort of wave-guiding transmission media, the VLC channel has a broadcast

nature. This makes VLC links inherently susceptible to eavesdropping by unintended

or unauthorized users having access to areas illuminated by the data transmitters.

Typical scenarios include public spaces such as classrooms, meeting rooms, libraries,

shopping centers, and aircrafts, to name a few.

Accordingly, our research efforts in this thesis are directed towards enhancing the

secrecy of VLC networks within the framework of physical-layer security.

Figure 1.1 depicts a typical VLC scenario in which physical-layer security is appli-

cable. The figure shows, for example, a governmental office utilizing a VLC network.

The shaded area (at the bottom of the figure) is open to the public, making sensitive

information vulnerable to overhearing by potential eavesdroppers. An interesting

design problem is to devise a physical-layer security scheme that maintains reliable

communication among the office personnel and prevents users located in the shaded

area from reliably decoding the transmitted messages.
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Figure 1.1: An example VLC scenario in which physical-layer security is applicable.

1.2.2 Amplitude Constraints

Typical VLC systems utilize LEDs for data transmission whereby the input current

signal modulates the output intensity of the LEDs. Typical LEDs, however, have

limited linear operation region beyond which electro-optical conversion becomes non-

linear (see, e.g., Figure 1.3). Such a nonlinearity can be partially compensated via

predistortion of the input current signal [50]. However, predistortion can be effec-

tive only within certain operation limits beyond which the output intensity saturates,

leading to clipping distortion of the transmitted signal. Thus, the modulating current

signal must satisfy certain amplitude constraints in order to maintain linear electro-

optical conversion and avoid undesirable nonlinear effects. As a consequence, inten-

sity modulation (IM) channels are typically modelled with amplitude constraints on

the channel input, rather than the conventional average power constraint [51, 52, 53].

In fact, all modern digital transmitters experience amplitude constraints because
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of the digital-to-analog converters (DACs) incorporated at the transmitter front-end.

Clearly, these DACs have finite ranges, and thus the transmitted signals are subject

to amplitude constraints. Therefore, taking amplitude constraints into account can

be crucial to model hardware limitations, not only in IM systems, but in fact in all

practical communication systems.

Now, an amplitude constraint on the channel input will render the prevalent Gaus-

sian input distribution infeasible. Unfortunately, this makes amplitude constraints

difficult to handle (in terms of obtaining analytic capacity expressions), and therefore

they are often overlooked in favor of the more convenient average power constraint.

Compared to the massive body of literature on the Gaussian wiretap channel un-

der the average power constraint, works that considered the amplitude-constrained

Gaussian wiretap channel are quite rare. Even in the absence of secrecy constraints,

characterization of the capacity of amplitude-constrained Gaussian channels is quite

challenging. In his seminal paper [54, Section 26], Shannon referred to the difficulty

of obtaining an analytic expression for the capacity of the peak-limited, i.e., the

amplitude-constrained, Gaussian channel. Instead, he derived a lower bound and an

asymptotic upper bound that is valid at high peak signal-to-noise ratio (SNR). Out

of his Ph.D. work [55, 51], Smith came up with the rather surprising result that the

capacity-achieving input distribution for the amplitude-constrained Gaussian chan-

nel is discrete with finite support, i.e., it has a finite number of mass points. Closed-

form lower and upper bounds on the capacity of the amplitude-constrained Gaussian

channel were derived in [53]. For the Gaussian wiretap channel, the authors in [56]

followed the approach devised in [51] and proved that the secrecy capacity-achieving

distribution under the amplitude constraint is also discrete with finite support.

In this thesis, we shall characterize the performance of amplitude-constrained
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Gaussian wiretap channels via closed-form secrecy rate expressions. We will also con-

sider the design of beamformers for the MISO wiretap channel and linear precoders

for the two-user MISO BC-CM when the beamformers or precoders are subject to am-

plitude constraints. In fact, it is fair to say that the novelty of many of the problems

considered in this thesis comes from taking amplitude constraints into account.

1.2.3 Uncertain Channel Information

Compared to conventional encryption techniques, the performance of physical-layer

security schemes is inherently sensitive to channel conditions, that is the secrecy

performance can be severely degraded if the designed scheme is based on inaccurate

channel information. In fact, this is a major drawback that may hinder any effort

to deploy practical physical-layer security systems as it is almost always unrealistic,

in real-world scenarios, to assume that the channel gain of the intended receiver or

the eavesdropper is accurately known to the transmitter. On one hand, information

regarding the intended receiver’s channel may suffer from estimation errors, aside

from inevitable quantization errors imposed by the finite rate of the feedback channel.

On the other hand, there is probably no feedback from the eavesdropper if it is an

unregistered user and shall remain silent to hide its presence. In such a case, the

transmitter may resort to less reliable information sources, such as possible locations

of the eavesdropper, in order to obtain an estimate of its channel gain. In all cases,

channel information available to the transmitter will never be accurate, and adopting

a physical-layer security scheme based on such inaccurate information may lead to a

secrecy outage with catastrophic consequences.

Based on the above discussion, it becomes clear that any practical physical-layer

security system must take channel uncertainty into account. In other words, we
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have to adopt the so-called robust transmission schemes. Among various possible

approaches to achieve robust secure transmission, we shall consider worst-case op-

timization. In such an approach, one chooses some uncertainty sets that are be-

lieved to contain all possible realizations of the channel gains for the receiver and

the eavesdropper. Then, the design problem is formulated to optimize the perfor-

mance measure, i.e., the secrecy rate, corresponding to the worst-case realization of

the uncertain channel gains. Now we have to face the question of how to choose rea-

sonable uncertainty sets. In fact, the validity of the worst-case optimization approach

depends mostly on such a choice. On one hand, unreasonably large (i.e., too con-

servative) uncertainty sets may render the design problem infeasible. On the other

hand, small uncertainty sets can lead to an overestimate of the achievable secrecy

rate and, consequently, secrecy outage may occur.

Typical works in the physical-layer security literature assume spherical uncertainty

sets for both the receiver’s and eavesdropper’s channels. For example, uncertainty in

the eavesdropper’s channel is typically modelled by

hE ∈
{
ĥE + e : ‖e‖2 ≤ ε

}
,

where ĥE is the transmitter’s erroneous estimate of the eavesdropper’s channel hE,

e is an unknown (but norm-bounded) error vector, and ε is some known constant

that quantifies the amount of uncertainty. This error model is well accepted to take

into account channel uncertainty caused by limited, i.e., finite-rate, feedback from the

receiver [57, Lemma 1]. In wiretap scenarios, however, such an uncertainty model

may become inapplicable if the eavesdropper is a passive receiver that remains silent

to hide its presence from the transmitter, i.e., there is no feedback, ĥE, regarding the

eavesdropper’s channel. Fortunately, in indoor VLC scenarios, it is often reasonable
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to assume that the transmitter has some uncertain information regarding the location

and/or orientation of the eavesdropper (recall, for example, the scenario in Figure 1.1,

wherein potential eavesdroppers can only exist within areas of the room that are open

to the public). Furthermore, the LoS path is typically dominant in VLC scenarios,

and thus the channel gain can be accurately approximated by a deterministic function

of the location and orientation of the receiver, as well as the emission pattern of the

LEDs (see Eq. (1.4) in Section 1.3.2). This is unlike the case of RF channels wherein

rich scattering environments typically give rise to significant multipath components,

which are usually unpredictable.

Therefore, in this thesis we develop the idea of choosing uncertainty sets for the

eavesdropper’s channel based on the uncertain parameters in the LoS channel gain

equation, i.e., based on uncertain information regarding the location and orientation

of the eavesdropper. Then, we use such uncertainty sets, along with spherical uncer-

tainty sets for the intended receiver’s channel, in order to formulate the worst-case

secrecy rate maximization problem and obtain a robust transmission scheme.

1.3 Preliminaries and Definitions

In this section, we present some of the key concepts and definitions used throughout

the entire thesis. We begin with describing the VLC channel model and the mod-

ulation scheme that we adopt. We then recall the generalized Lambert’s cosine law

used to model the emission pattern of typical LEDs. We also explain how transmit

beamforming can be implemented in IM channels. Furthermore, we review two fun-

damental constructs in physical-layer security, namely, the wiretap channel and the

two-user BC-CM, and recall the relevant definitions of achievable secrecy rates and

secrecy rate regions. Finally, we clarify what the term “secure transmission” precisely
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Figure 1.2: Simplified block diagram of a SISO PAM VLC system.

means in the context of physical-layer security.

1.3.1 The VLC Channel Model and Modulation Scheme

Typical VLC systems utilize illumination LEDs for data transmission. Such LEDs

are incoherent light sources3, and thus IM is the only feasible transmission scheme.

As a consequence, direct detection (DD) at the receiver using simple PDs is sufficient

for demodulation [5, 6, 58, 59].

In this thesis, we adopt the DC-biased pulse-amplitude modulation (PAM) scheme4

illustrated in Figure 1.2. The transmit element is an illumination LED driven by a

fixed bias current IDC ∈ R+ that sets the average radiated optical power Popt = ηIDC,

where η (mW/mA) is the electro-optical conversion efficiency of the LED. The

current-power response of a typical LED is depicted in Figure 1.3.

The PAM scheme is described as follows. Information symbols from a single-

stream data source are stochastically encoded5 into a zero-mean current signal x(t),
3Unlike LDs, LEDs emit photons with random phases.
4Note that PHY I and PHY II in the IEEE 802.15.7 standard use the OOK and (binary) VPPM

schemes [20, Tables I and II]. However, restricting the transmitted signal to such binary schemes
would not allow much room for optimization and performance enhancement, especially when secrecy
constraints are taken into account.

5Stochastic encoding adds randomization to confuse the eavesdropper. See, e.g., [26, Chapter 3].
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Figure 1.3: Current-power response of a typical LED.

t = 1, 2, . . .. The codewords are chosen such that E{X} = 0 and |x(t)| ≤ A ∀t,

where X is the random variable counterpart of x(t), A , µMIIDC, and µMI ∈ [0, 1] is

termed as the modulation index. The modulation index, in turn, is chosen such that

the LED maintains linear electro-optical conversion over the input current range

[IDC − A, IDC + A], as illustrated in Figure 1.3. If nonlinearity is severe, digital

predistortion of the input current signal x(t) may become necessary to linearize the

LED response around the DC bias point [50]. The codewords are then superimposed

on the DC bias, via a bias-T circuit, to imperceptibly modulate the output intensity

of the LED. Thus, the instantaneous emitted optical power PTX(t) can be expressed

as

PTX(t) = η(IDC + x(t)). (1.1)

Since E{X} = 0, the data6 signal x(t) does not alter the average radiated optical
6With slight abuse of notation, we shall use the term “data” to refer to the “codewords corre-

sponding to the secret message”. However, it is essential to keep in mind that x(t) is a sequence of
secrecy codewords rather than uncoded data symbols.
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power and, consequently, it has no effect on the illumination level.

We shall assume narrow-band transmission, that is the bandwidth of the trans-

mitted signal is well below the modulation bandwidth (or the cutoff frequency) of

the LED, and is also smaller than the inverse of the maximum excess delay of the

VLC channel. In other words, we shall ignore possible low-pass filtering caused by

the LED characteristics or multipath propagation. Consider, for example, a VLC

system in which phosphorus-coated blue LEDs are utilized for transmission, and blue

filtering is applied at the receiver. This setup allows 3-dB modulation bandwidth of

about 20 MHz [60, Figure 3], and the excess delay in a medium-sized room is about

10-20 nsec [61]. Thus, a transmitted signal whose bandwidth is limited to 10 MHz,

for example, should not suffer noticeable distortion from the frequency response of

the LEDs or the channel.

Thus, under the assumption of narrow-band transmission, the frequency response

of the VLC channel is almost flat near DC [58], and it is sufficient to characterize the

optical channel by its DC gain given by the ratio of transmitted to received optical

powers. From (1.1), the instantaneous received optical power is

PRX(t) = hoptPTX(t)

= hoptη(IDC + x(t)), (1.2)

where hopt ∈ R+ is the DC optical channel gain that shall be specified in the next

subsection. The received optical power, in turn, is converted by a PD into a propor-

tional photocurrent RPDPRX(t), where RPD (µA/mW) is the responsivity of the PD.

Then, the DC term RPDhoptηIDC is blocked, and the resulting signal is amplified by a

transimpedance amplifier with gain Ta (mV/µA) to produce a voltage signal y(t) ∈ R

that is a scaled, but noisy, version of the input signal x(t). Dominant noise sources in

13
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VLC channels are the thermal noise in the receiver electronic circuits, i.e., the ampli-

fier noise, and the shot noise caused by ambient illumination from sunlight or other

light sources. Both noise processes are well modelled as signal-independent additive

white Gaussian noise [52, 59]. Thus, the discrete-time VLC channel in Figure 1.2 can

be modelled by

y(t) = hx(t) + n(t), t = 1, 2, . . . , (1.3)

where h , ηhoptRPDTa is the DC channel gain, and n(t) denotes independent and

identically-distributed (i.i.d.) zero-mean Gaussian noise samples with variance σ2,

i.e., N ∼ N (0, σ2), where N is the random variable counterpart of n(t). The chan-

nel model in (1.3) is a scalar Gaussian channel whose input x(t) is subject to the

amplitude constraint |x(t)| ≤ A ∀t = 1, 2, . . ..

1.3.2 The Optical Channel Gain

Figure 1.4 illustrates the geometry of an LoS VLC link. The receiver is pointing

towards an arbitrary direction specified by the unit vector

u = [sin θ cosφ sin θ sinφ cos θ]T ,

where θ ∈ [0, π] is the zenith (or polar) angle, and φ ∈ [0, 2π] is the azimuth angle.

We shall refer to u as the orientation vector.

We assume that the LED has an azimuth-symmetric generalized7 Lambertian

emission pattern. We also assume that the LoS path is dominant over multipath com-

ponents caused by diffuse reflections from nearby surfaces8. Under these assumptions,
7In the case of (non-generalized) Lambertian emission pattern, the Lambertian order m is equal

to 1, which corresponds to a half-intensity angle ζ3-dB = 60◦.
8This assumption will be relaxed in Section 3.4.4 wherein non-line-of-sight (NLoS) components

are taken into account.
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Figure 1.4: Geometry of an LoS VLC link with arbitrary receiver orientation.

the DC optical channel gain hopt can be accurately approximated by [58, Eq. (10)]

hopt =
(m+ 1)APD

2π‖d‖2
2

(cos ζ)m Ts gc cosψ IΨ(ψ) (1.4a)

=
(m+ 1)APD

2π‖d‖m+3
2

dmz Ts gc d
Tu IΨ

(
cos−1 dTu

‖d‖2

)
, (1.4b)

where m is the Lambertian order, APD is the area of the PD, d = [dx dy dz]
T is the

displacement vector between the PD and the LED, ζ is the angle of irradiance from

the LED (measured w.r.t. the LED axis), Ts is the gain of the optical filter, gc is

the gain of the optical concentrator within its field-of-view (FoV), ψ is the angle of

incidence from the LED (measured w.r.t. the receiver axis), and IΨ(·) is an indicator

function defined as

IΨ(ψ) ,


1 |ψ| ≤ Ψ

0 |ψ| > Ψ

,
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Figure 1.5: Beamforming in conjunction with PAM for the MISO VLC Channel.

where Ψ is the semi-angle FoV of the concentrator. Assuming an idealized non-

imaging concentrator, the gain gc can be approximated by [58, Eq. (8)]

gc =
n2
r

sin2 Ψ
, (1.5)

where nr is the refractive index of the concentrator material. Furthermore, the Lam-

bertian order m is determined by

m =
−1

log2(cos ζ3-dB)
, (1.6)

where ζ3-dB is the half-intensity angle of the LED.

1.3.3 Beamforming for the MISO VLC Channel

When the transmitter has N > 1 LEDs that are sufficiently separated and can be

modulated independently of each other using separate drivers, we end up with a

MISO channel having N transmit elements. Figure 1.5 illustrates a MISO VLC
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system utilizing transmit beamforming along with PAM. Similar to the SISO case,

information symbols are stochastically encoded into codewords S such that E{S} = 0

and |s(t)| ≤ A ∀t. Then, the codewords are multiplied by a fixed vector w ∈ RN ,

‖w‖∞ ≤ 1, termed as the beamformer, resulting in the modulation current vector

x(t) = ws(t). (1.7)

Thus, after adding the DC bias to each LED, the vector of instantaneous optical

powers transmitted from the LEDs can be expressed as

PTX(t) = η(IDC1N + x(t))

= η(IDC1N + ws(t)). (1.8)

With multiple-LED transmission, the total received optical power, PRX(t), is the sum

of optical powers collected from individual LEDs, i.e., PRX(t) is given by

PRX(t) = hT
optPTX(t)

= ηhT
opt(IDC1N + ws(t)), (1.9)

where hopt ∈ RN
+ is the DC optical channel gain vector. Then, after removing the

DC component from the output of the PD, the received signal y(t) can be expressed

as

y(t) = hTws(t) + n(t), t = 1, 2, . . . , (1.10)

where h , ηhoptRPDTa is the DC channel gain vector, and n(t) denotes i.i.d. Gaus-

sian noise samples with variance σ2. Equation (1.10) specifies a Gaussian MISO

channel with transmit beamforming, and the transmitted signal vector is subject to
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Figure 1.6: A general wiretap channel.

the amplitude constraint

‖w‖∞ ≤ 1, (1.11a)

|s(t)| ≤ A ∀t = 1, 2, . . . . (1.11b)

1.3.4 The Wiretap Channel and the Secrecy Capacity

The wiretap channel is a broadcast channel model that was originally proposed by

Wyner [34], and later extended by Csiszár and Körner [37], to study the following

communication problem: The transmitter (Alice) aims to send a confidential mes-

sage M ∈ {1, 2, · · · , 2nRs} to the receiver (Bob) and keep the message entirely secret

from the eavesdropper (Eve) without using secret-key encryption. Figure 1.6 illus-

trates such a scenario, and the individual channels to Bob and Eve are specified by

the marginal transition probability density functions (PDFs) p(yB|x) and p(yE|x),

respectively.

In order to send the secret message M , Alice will stochastically encode M into a

codewordX(n) that is transmitted over the broadcast channel in n channel uses. Thus,

the information rate is
1

n
log2(2nRs) = Rs bits/channel use. Both Bob and Eve will

attempt decoding their received signals. Let M̂ denote the message decoded by Bob,

where M̂ ∈ {1, 2, · · · , 2nRs}. Then, decoding error happens when M̂ 6= M . Let P (n)
e
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denote the average probability of decoding error at Bob, then the communication

rate Rs is said to be achievable and secure, i.e., Rs is an achievable secrecy rate, if

there exists a sequence of (2nRs , n) codes such that

lim
n→∞

P (n)
e = 0, (1.12a)

lim
n→∞

1

n
I(M ;Y

(n)
E ) = 0. (1.12b)

The condition in (1.12a) requires the transmission rate Rs to be reliable, i.e., can be

reliably decoded by Bob. On the other hand, (1.12b) is the weak secrecy constraint

which requires the rate of information leaked to Eve to vanish [26, Section 3.3].

The secrecy capacity is defined as the maximum achievable secrecy rate. By

definition, any achievable secrecy rate is a lower bound on the secrecy capacity9.

Csiszár and Körner [37] have shown that the secrecy capacity of the (nondegraded)

wiretap channel illustrated in Figure 1.6 is [26, Corollary 3.4]

Cs = max
p(u,x)

(I(U ;YB)− I(U ;YE)), (1.13)

where U is an auxiliary random variable that satisfies the Markov chain U → X →

(YB, YE). Except for a few specials cases, the optimization problem in (1.13) is typi-

cally difficult to solve, and usually it is unclear how to choose the auxiliary variable U

in an optimal way. For the special case of the degraded wiretap channel, i.e., when

X → YB → YE forms a Markov chain, it can be shown that the choice U = X is

optimal (see [26, Corollary 3.5]), and thus (1.13) simplifies to

Cs = max
p(x)

(I(X;YB)− I(X;YE)). (1.14)

9Therefore, we use the terms “achievable secrecy rate” and “lower bound on the secrecy capacity”
interchangeably.
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Figure 1.7: A general two-user broadcast channel with confidential messages (BC-
CM).

1.3.5 The Two-User Broadcast Channel with Confidential

Messages (BC-CM)

The wiretap channel model was extended by Liu et al. [47] to the two-user BC-CM

illustrated in Figure 1.7. In such a model, the transmitter has two independent

confidential messages: M1 ∈ {1, 2, · · · , 2nR1} is intended for User 1 and should be

kept secret from User 2, and M2 ∈ {1, 2, · · · , 2nR2} is intended for User 2 and should

be kept secret from User 1.

The transmitter encodes the pair (M1,M2) into a codeword X(n) that is trans-

mitted in n channel uses. Similar to the wiretap channel, let P (n)
e,1 denote the average

probability of decoding error at User 1, i.e., the average probability that M̂1 6= M1,

where M̂1 is the decoded message, and P (n)
e,2 denote the average probability of decod-

ing error at User 2. Then, the rate pair (R1, R2) is said to be achievable and secure

if there exists a sequence of (2nR1 , 2nR2 , n) codes such that

lim
n→∞

P
(n)
e,1 = 0, lim

n→∞
P

(n)
e,2 = 0, (1.15a)

lim
n→∞

1

n
I(M1;Y

(n)
2 ) = 0, lim

n→∞

1

n
I(M2;Y

(n)
1 ) = 0, (1.15b)

where (1.15a) specifies the reliability requirements for both users, and (1.15b) is the

mutual confidentiality constraint using the weak secrecy measure.
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Compared to the wiretap channel, evaluating the secrecy performance of the two-

user BC-CM is obviously more challenging as it requires the characterization of a

secrecy capacity region rather than the secrecy capacity (which is just a scalar). Let

U1 and U2 be auxiliary random variables such that (U1, U2) → X → (Y1, Y2) forms

a Markov chain. Then, it was shown in [47, Theorem 4] that the secrecy rate pair

(R1, R2) satisfying

0 ≤ R1 ≤ I(U1;Y1)− I(U1;Y2|U2)− I(U1;U2), (1.16a)

0 ≤ R2 ≤ I(U2;Y2)− I(U2;Y1|U1)− I(U1;U2) (1.16b)

is achievable for the general two-user BC-CM illustrated in Figure 1.7.

1.3.6 What Does “Secure Transmission” Mean?

The term “secure transmission scheme” can be ambiguous to a reader not familiar

with the terminology used in the physical-layer security literature. Thus, it may be

useful to clarify what “secure transmission” literally means.

In the context of physical-layer security, transmission schemes, such as the beam-

formers proposed in Chapter 3 and precoders proposed in Chapter 4, are said to be

“secure” when they lead to positive secrecy rates. Thus, a typical problem of inter-

est is to find transmission schemes that maximize the achievable secrecy rate. Note,

however, that having a positive secrecy rate is a necessary but not sufficient condition

to achieve secure transmission. In other words, applying a transmission scheme that

leads to a positive secrecy rate does not immediately render the communication link

secure. Instead, it makes secure transmission possible provided that an appropriate

secrecy codebook is constructed and used to encode the transmitted messages. The
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secrecy codebook, which is revealed to all parties, should ensure reliable reception by

the receiver (like regular channel codes), and also have sufficient randomization to al-

low stochastic encoding and confuse the eavesdropper. In other words, the codebook

should satisfy the reliability and secrecy constraints in (1.12) for the wiretap chan-

nel, or the corresponding constraints in (1.15) for the two-user BC-CM. The design

of secrecy codebooks is an involved subject that is beyond the scope of this thesis.

The interested reader, however, can refer to [26, Chapter 6] or [31, Section VII] and

the references therein.

1.4 Contributions of the Thesis

We claim that this thesis is the first to consider enhancing the secrecy of VLC systems

within the framework of physical-layer security. By taking amplitude constraints

into account, we encounter a novel category of design problems in which closed-form

solutions usually cease to be possible. Furthermore, by taking channel uncertainty

into account, we help make physical-layer security schemes more applicable to real-

world scenarios in which the assumption of perfect channel information is almost

always impractical. Our contributions in the entire thesis are summarized as follows.

1. Achievable Secrecy Rates subject to Amplitude Constraints: With the

lack of analytic expressions for the secrecy capacity of amplitude-constrained

Gaussian wiretap channels, we resort to closed-form bounds. In Chapter 2,

we begin with deriving lower and upper bounds on the secrecy capacity of the

scalar channel under the amplitude constraint. We derive the lower bounds

using the uniform input distribution in conjunction with the entropy power

inequality. For the upper bound, we devise an approach to obtain upper bounds

on the secrecy capacity of degraded wiretap channels, and apply the devised
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approach to the scalar Gaussian wiretap channel. We then exploit the lower

bound along with transmit beamforming in order to obtain an achievable secrecy

rate for the MISO wiretap channel. This achievable rate will serve as the

design equation, i.e., the objective function, in all the optimization problems

encountered in Chapter 3 wherein the design of the beamformer is studied in

detail. We also consider in Chapter 2 the scenario in which the scalar channel

between the transmitter and intended receiver is aided by a friendly jammer

capable of sending jamming signals using multiple transmit elements. We derive

a closed-form secrecy rate expression when both the data and jamming signals

are subject to amplitude constraints. Our contributions in Chapter 2 were

published in [62, 14, 63, 64].

2. Optimal and Robust Beamforming for the MISO VLCWiretap Chan-

nel: In Chapter 3, we focus on the MISO VLC wiretap channel. In particular,

we study the design of transmit beamformers that maximize the achievable

secrecy rate, subject to amplitude constraints. Such constraints render the de-

sign problem nonconvex and difficult to solve. We show, however, that this

nonconvex problem can be transformed into a solvable quasiconvex line search

problem. Our approach to solve the optimization problem is generic in the sense

that it can handle general lp-norm constraints on the beamforming vector, i.e.,

for any p ≥ 1. We also consider the more realistic case of imperfect chan-

nel information regarding the receiver’s and eavesdropper’s links. We tackle

the worst-case secrecy rate maximization problem, again subject to amplitude

constraints. In our treatment, uncertainty in the receiver’s channel is due to

limited feedback, and is modelled by spherical uncertainty sets. On the other

hand, there is no feedback from the eavesdropper, and the transmitter shall uti-
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lize the LoS channel gain equation to map the eavesdropper’s nominal location

and orientation into an estimate of the channel gain. Thus, we derive channel

uncertainty sets based on inaccurate information regarding the eavesdropper’s

location and orientation, as well as the emission pattern of the LEDs. We also

consider channel mismatches caused by the uncertain NLoS components. The

work in Chapter 3 was published in [65, 66].

3. Linear Precoding for the Two-User MISO BC-CM: In Chapter 4, we

turn our focus to the more general two-user MISO BC-CM communication

model. We study the design of linear precoders for secure transmission on such

a channel subject to total and per-antenna10 average power constraints, and also

subject to amplitude constraints. In both cases, we tackle the design problem

by formulating a weighted secrecy sum rate maximization problem. The for-

mulated problem involves a fractional objective function, making it nonconvex

and difficult to solve. Nevertheless, we show that this nonconvex problem can

be transformed into an equivalent, but more tractable, problem. We propose a

subgradient-based search algorithm to obtain a solution, and characterize the

condition under which the obtained solution is guaranteed to be globally opti-

mal. Furthermore, we show that our problem formulation and solution approach

can be easily extended to handle the robust version of the design problem with

uncertain channel information regarding both receivers. Our work in Chapter 4

was submitted for possible publication [67].
10In Chapter 4, we generalize the channel model by considering different types of constraints

on the channel input. Accordingly, in that chapter, we use the general term “antenna” to denote
general transmit and receive elements. In a VLC system, for example, the transmit antenna would
be an LED and the receive antenna would be a PD.
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1.5 Organization of the Thesis

The structure of the thesis reflects the list of contributions in the previous section,

and is as follows.

In Chapter 2, we derive closed-form secrecy rate expressions for the Gaussian

wiretap channel subject to amplitude constraints. Three cases are considered, namely,

the scalar wiretap channel, the MISO wiretap channel, and the scalar channel aided by

a friendly jammer having multiple transmit elements. We provide numerical examples

from typical VLC scenarios in order to get insight into the secrecy performance of

VLC wiretap channels.

In Chapter 3, we consider the design of beamformers for the MISO VLC wire-

tap channel. The design equation is the secrecy rate expression derived in Chapter 2,

and the design parameter is the beamformer subject to amplitude constraints. Under

the premise of perfect channel information, we show that the nonconvex secrecy rate

maximization problem can be optimally solved using a simple line search algorithm.

We then extend our approach to the design of robust beamformers that maximize

the worst-case secrecy rate with imperfect channel information. In order to obtain

reasonable uncertainty models for the eavesdropper’s channel, we derive uncertainty

sets based on the uncertain parameters in the VLC channel gain equation. We use

numerical examples to compare the performance of the optimal and robust beam-

formers with conventional beamforming schemes, and also to illustrate the secrecy

performance in typical VLC scenarios.

In Chapter 4, we consider linear precoding for the two-user MISO BC-CM subject

to total and per-antenna average power constraints, and also subject to amplitude

constraints. We begin with deriving closed-form secrecy rate pair expressions. Then,

we provide a unified framework to tackle the design problem via weighted secrecy sum
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rate maximization. We also extend our approach to take channel uncertainty into

account. We use numerical examples to validate the solution method and compare the

performance of the proposed linear precoder with conventional precoding schemes.

Finally, in Chapter 5, we summarize our contributions and findings in the thesis,

and outline some topics for future research.

Appendices A, B, and C contain proofs and derivations relevant to Chapters 2,

3, and 4, respectively.
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Chapter 2

Achievable Secrecy Rates for VLC

Wiretap Channels

2.1 Introduction

Intensity modulation (IM) is the only feasible transmission scheme for VLC systems

that utilize LEDs. Due to linearity limitations of typical LEDs, the input current sig-

nal, i.e., the intensity-modulating signal, must satisfy certain amplitude constraints

in order to maintain linear electro-optical conversion and avoid nonlinear or clipping

distortion (see Figure 1.3). Therefore, IM channels are typically modelled with am-

plitude constraints on the channel input, rather than the conventional average power

constraint [52, 53]. Consequently, a proper characterization of the secrecy perfor-

mance of VLC links should involve the secrecy capacity of amplitude-constrained

Gaussian wiretap channels. In [56], it was shown that the secrecy capacity of the

scalar wiretap channel under the amplitude constraint is achieved by a discrete input

distribution having a finite number of mass points. For sufficiently-small amplitude

constraints, the symmetric binary input distribution has been shown to be opti-

mal [56, Section IV]. For the general case, however, it is difficult to explicitly solve

for the maximizing distribution, and thus the secrecy capacity can be only found via

numerical methods. Since closed-form expressions are typically crucial for system

design purposes, one might resort to lower bounds on the secrecy capacity.
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Accordingly, in this chapter, we derive closed-form secrecy rate expressions for

the wiretap channel subject to amplitude constraints. Three scenarios are considered,

namely, the scalar wiretap channel, the MISO wiretap channel, and the scalar wiretap

channel aided by a friendly jammer. In all scenarios, the data and jamming signals

(when applicable) are subject to amplitude constraints. For the scalar channel, we use

the uniform input distribution in conjunction with the entropy power inequality to

obtain lower bounds on the secrecy capacity. We also devise a technique to derive an

upper bound. Next, we leverage beamforming to obtain a lower bound on the secrecy

capacity of the MISO channel. We characterize the secrecy performance when simple

zero-forcing (ZF) beamforming is applied. Finally, we consider the scalar channel

when it is aided by a friendly jammer having multiple transmit elements, but does

not know the message that is being transmitted. We derive a closed-form secrecy rate

expression after restricting the jamming signal such that it causes no interference to

the intended receiver.

The remainder of this chapter is divided into three main sections, corresponding

to the three scenarios we consider, besides the conclusions section. The scalar and

MISO wiretap channels are considered in Sections 2.2 and 2.3, respectively, whereas

the scalar channel aided by a friendly jammer is considered in Section 2.4. In each

section, we begin with describing the problem scenario and system model, then we

derive closed-form secrecy rate expressions followed by a numerical example. We

conclude the chapter in Section 2.5.

2.2 The Scalar VLC Wiretap Channel

In this section, we consider the scalar VLC wiretap channel, i.e., the amplitude-

constrained scalar Gaussian wiretap channel. Because of the amplitude constraint,
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Figure 2.1: Problem scenario for the SISO case.

there is no analytic expression for the secrecy capacity, and thus we derive closed-form

lower and upper bounds.

2.2.1 System Model

We consider the simple VLC scenario illustrated in Figure 2.1. The service area, or

simply the room, is illuminated by a single light fixture that is also utilized by Alice

for data transmission. The fixture may have one LED, or multiple LEDs modulated

by the same current signal, e.g., all the LEDs are connected in series. The intended

receiver (Bob) and the eavesdropper (Eve) have a single photodiode (PD), each.

Utilizing the Gaussian channel model in (1.3), the signals received by Bob and

Eve, respectively, are given by

yB(t) = hBx(t) + nB(t), (2.1a)

yE(t) = hEx(t) + nE(t), (2.1b)

where x(t) ∈ [−A,A] is the transmitted signal, hB ∈ R+ and hE ∈ R+ are Bob’s

and Eve’s channel gains, respectively, and nB(t) and nE(t) are i.i.d. Gaussian noise

samples with variances σ2
B and σ2

E, respectively. For simplicity, and without loss of
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generality, we assume that σ2
B = σ2

E = σ2. Such an assumption can be simply fulfilled

by properly scaling yB or yE.

2.2.2 Achievable Secrecy Rates

Assuming hB > hE, the secrecy capacity of the scalar wiretap channel in (2.1) is [36]

CSISO
s = max

p(x)
(I(X;YB)− I(X;YE)) (2.2a)

s.t. |X| ≤ A, (2.2b)

where maximization is performed over all the input distributions p(x) that satisfy the

amplitude constraint |X| ≤ A. Now, because of the amplitude constraint, obtaining a

closed-form solution for (2.2) is a formidable task, if not unfeasible [56]. Nevertheless,

it was shown that the maximization problem in (2.2) is convex [56, Eq. (9)], and

the optimal distribution p?(x) that maximizes the difference I(X;YB)− I(X;YE) is

discrete with a finite number of mass points. Thus, the problem in (2.2) can be

efficiently solved via numerical methods. Nevertheless, closed-form expressions are

typically of great interest for system design purposes. Therefore, we provide closed-

form lower bounds on the secrecy capacity of the wiretap channel in (2.1), as follows.

Proposition 2.1. (Lower Bound on the Secrecy Capacity)

The secrecy capacity of the scalar Gaussian wiretap channel in (2.1) subject to the

amplitude constraint |x(t)| ≤ A ∀t is lower-bounded as

CSISO
s ≥ 1

2
ln

(
1 +

2A2h2
B

πeσ2

)
−
(

1− 2Q
(
δ + AhE

σ

))
ln

2(AhE + δ)√
2πσ2

(
1− 2Q

(
δ
σ

))
−Q

(
δ

σ

)
− δ√

2πσ2
e−

δ2

2σ2 +
1

2
, (2.3)
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where δ > 0 is a free parameter, and Q(·) is the Q-function.

Proof: The secrecy capacity in (2.2) can be lower-bounded by the difference between

the capacities of Alice-Bob and Alice-Eve channels, as follows.

CSISO
s = max

p(x)
(I(X;YB)− I(X;YE))

≥ max
p(x)

I(X;YB)−max
p(x)

I(X;YE)

= CB − CE, (2.4)

where the inequality follows from the fact that

max
u

(f1(u)− f2(u)) ≥ max
u

f1(u)−max
u

f2(u)

for arbitrary functions f1 and f2. Then, CB and CE, respectively, can be lower- and

upper-bounded as [53, Theorem 5]

CB ≥
1

2
ln

(
1 +

2A2h2
B

πeσ2

)
, (2.5a)

CE ≤
(

1− 2Q
(
δ + AhE

σ

))
ln

2(AhE + δ)√
2πσ2

(
1− 2Q

(
δ
σ

)) +Q
(
δ

σ

)
+

δ√
2πσ2

e−
δ2

2σ2 − 1

2
,

(2.5b)

where δ > 0 is a free parameter. Replacing CB and CE in (2.4) with the lower and

upper bounds in (2.5a) and (2.5b), respectively, yields the lower bound in (2.3). �

Proposition 2.2. (Lower Bound on the Secrecy Capacity)

The secrecy capacity of the scalar Gaussian wiretap channel in (2.1) subject to the
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amplitude constraint |x(t)| ≤ A ∀t is lower-bounded as

CSISO
s ≥ 1

2
ln

6A2h2
B + 3πeσ2

πeA2h2
E + 3πeσ2

. (2.6)

Proof: The secrecy capacity in (2.2) can be lower-bounded using the entropy-

maximizing uniform input distribution as follows.

CSISO
s

(a)
≥ I(X;YB)− I(X;YE)

= h(YB)− h(YB|X)− h(YE) + h(YE|X)

= h(YB)− h(YE)

= h(hBX +NB)− h(YE)

(b)
≥ 1

2
ln
(
e2h(hBX) + e2h(NB)

)
− 1

2
ln (2πevar{YE})

(c)
=

1

2
ln(4A2h2

B + 2πeσ2)− 1

2
ln

(
2πe

(
4A2h2

E

12
+ σ2

))
=

1

2
ln

6A2h2
B + 3πeσ2

πeA2h2
E + 3πeσ2

, (2.7)

where (a) follows from dropping the maximization over p(x), (b) from lower-bounding

h(hBX + NB) using the entropy power inequality [35, Theorem 17.7.3] and upper-

bounding h(YE) by the differential entropy of a Gaussian random variable having

variance var{YE}, and (c) from choosing X ∼ U [−A,A], i.e., p(x) is the uniform

distribution over the interval [−A,A], and substituting with

h(hBX) = ln(2AhB),

var{YE} = var{hEX}+ var{NE} =
(2AhE)2

12
+ σ2.

�
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Note that the uniform distribution p(x) = U [−A,A] is the maximum-entropy

distribution over the input range [−A,A] subject to the constraint E{X} = 0. Such

a constraint is necessary to ensure that the average radiated optical power, and

consequently the illumination level, is not altered by E{X} (recall the modulation

scheme described in Section 1.3.1).

2.2.3 Upper Bound on the Secrecy Capacity

In [68, 69, 53], the authors used the dual channel capacity expression in [70, The-

orem 8.4] to obtain upper bounds on the capacity of the Gaussian channel under

amplitude constraints. Here, we follow a similar approach in order to derive an up-

per bound on the secrecy capacity of the scalar Gaussian wiretap channel. First, we

note that, for the case hB > hE, the wiretap channel in (2.1) has the same secrecy

performance as that of the physically degraded wiretap channel characterized by [26,

Section 5.1]

yB(t) = x(t) + nB(t), (2.8a)

yE(t) = yB(t) + nE(t), (2.8b)

with NB ∼ N (0, σ
2

h2B
) and NE ∼ N (0, σ

2

h2E
− σ2

h2B
). Note from (2.8) that X → YB → YE

forms a Markov chain. Next, we introduce the following theorem.

Theorem 2.1. (Upper Bound on Conditional Mutual Information)

Let X, YB, and YE be three random variables with a joint distribution p(x, yB, yE) that

factors as p(x)p(yB|x)p(yE|yB), i.e. X → YB → YE forms a Markov chain. Then, the
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conditional mutual information I(X;YB|YE) is upper-bounded as

I(X;YB|YE) ≤ Ep(x){D(p(yB|X, yE)‖q(yB|yE))} , (2.9)

where D(·‖·) denotes the relative entropy, p(yB|x, yE) =
p(yB|x)p(yE|yB)

p(yE|x)
, and q(yB|yE)

is an arbitrary conditional distribution.

Proof: We begin with [71, Eq. (2.4.20)]

I(X;YB|YE) =

∫∫∫
p(x, yB, yE) ln

p(yB|x, yE)

p(yB|yE)
dx dyB dyE. (2.10)

We also have [35, Eq. (2.65)]

D(p(yB|yE)‖q(yB|yE)) =

∫∫
p(yB, yE) ln

p(yB|yE)

q(yB|yE)
dyB dyE

=

∫∫∫
p(x, yB, yE) ln

p(yB|yE)

q(yB|yE)
dx dyB dyE. (2.11)

Adding (2.10) to (2.11) yields

I(X;YB|YE) + D(p(yB|yE)‖q(yB|yE))

=

∫∫∫
p(x, yB, yE) ln

p(yB|x, yE)

q(yB|yE)
dx dyB dyE

= Ep(x)

{∫∫
p(yB, yE|X) ln

p(yB|X, yE)

q(yB|yE)
dyB dyE

}
= Ep(x){D(p(yB|X, yE)‖q(yB|yE))} . (2.12)

Then, the inequality in (2.9) follows since the relative entropy D(p(yB|yE)‖q(yB|yE))

is always nonnegative [35, Theorem 2.6.3]. �

Note from (2.12) that equality holds in (2.9) when D(p(yB|yE)‖q(yB|yE)) = 0, i.e.,
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when p(yB|yE) = q(yB|yE) ∀yB, yE. Note also that the inequality in (2.9) holds for any

input distribution p(x). Now, consider the specific distribution p?(x) that achieves

the secrecy capacity, i.e.,

p?(x) , argmax
p(x)

I(X;YB|YE), (2.13)

where maximization is over all the distributions that satisfy the constraints on the

channel input X. Using p?(x) in (2.9) results in the following upper bound on the

secrecy capacity.

Corollary 2.1. (Upper Bound on The Secrecy Capacity of the Degraded Wiretap

Channel)

An upper bound on the secrecy capacity of the degraded wiretap channel X → YB → YE

is given by

Cs ≤ Ep?(x){D(p(yB|X, yE)‖q(yB|yE))} , (2.14)

where p?(x) is as defined in (2.13), and q(yB|yE) is an arbitrary conditional distribu-

tion.

Now, we are ready to derive an upper bound on the secrecy capacity of the wiretap

channel in (2.1), as follows.

Proposition 2.3. (Upper Bound on the Secrecy Capacity of the Scalar Gaussian

Wiretap Channel)

The secrecy capacity of the scalar Gaussian wiretap channel in (2.1) subject to the

amplitude constraint |x(t)| ≤ A ∀t is upper-bounded as

CSISO
s ≤ 1

2
ln
A2h2

B + σ2

A2h2
E + σ2

. (2.15)
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Proof: Substituting for D(·‖·) in (2.14) yields

Cs ≤ Ep?(x)

{∫∫
p(yB, yE|X) ln

p(yB|X, yE)

q(yB|yE)
dyB dyE

}
= Ep?(x)

{∫∫
p(yB, yE|X) ln p(yB|X, yE) dyB dyE

}
︸ ︷︷ ︸

I1

−Ep?(x)

{∫∫
p(yB, yE|X) ln q(yB|yE) dyB dyE

}
︸ ︷︷ ︸

I2

. (2.16)

Now, we have to calculate the terms I1 and I2.

The first term I1 can be written as

I1 = Ep?(x)

{∫∫
p(yB, yE|X) ln p(yB|X, yE) dyB dyE

}
= Ep?(x){−h(YB|X = x, YE)}

= −h(YB|X, YE). (2.17)

Recall that for a Markov chain X → YB → YE, we have

h(X, YB, YE) = h(X) + h(YB|X) + h(YE|YB). (2.18)

In addition, for any random variables X, YB, and YE, we have

h(X, YB, YE) = h(X) + h(YE|X) + h(YB|X, YE). (2.19)

From (2.17)–(2.19), we can see that

I1 = − (h(YB|X) + h(YE|YB)− h(YE|X)) . (2.20)
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For notational convenience, define γ2
B and γ2

B, respectively, as

γ2
B ,

σ2

h2
B
, γ2

E ,
σ2

h2
E
.

Thus, we have

I1 = −1

2
ln

(
2πe

γ2
B(γ2

E − γ2
B)

γ2
E

)
. (2.21)

In order to calculate I2 in (2.16), we choose the conditional distribution q(yB|yE) as

q(yB|yE) =
1√

2πs2
e−

(yB−µyE)2

2s2 , (2.22)

where µ and s2 are constants to be determined in (2.25). Again, for a Markov chain

X → YB → YE, we have

p(yB, yE|x) = p(yB|x) p(yE|yB)

=
1√

2πγ2
B

e
− (yB−x)

2

2γ2B
1√

2π(γ2
E − γ2

B)
e
− (yE−yB)2

2(γ2E−γ
2
B) . (2.23)

Using (2.22) and (2.23), we get

I2 = −Ep?(x)

{∫∫
p(yB, yE|X) ln q(yB|yE) dyB dyE

}

= −Ep?(x)

 1√
2πγ2

B

∞∫
−∞

e
− (yB−X)2

2γ2B

∞∫
−∞

1√
2π (γ2

E − γ2
B)
e
− (yE−yB)2

2(γ2E−γ
2
B)×

(
−1

2
ln(2πs2)− (yB − µyE)2

2s2

)
dyB dyE


=

1

2
ln(2πs2) + Ep?(x)

 1√
2πγ2

B

∞∫
−∞

e
− (yB−X)2

2γ2B
1

2s2

(
µ2
(
γ2

E − γ2
B

)
+ (µ− 1)2 y2

B

)
dyB


=

1

2
ln(2πs2) + Ep?(x)

{
1

2s2

(
µ2
(
γ2

E − γ2
B

)
+ (µ− 1)2 (X2 + γ2

B

))}
≤ 1

2
ln(2πs2) +

1

2s2

(
µ2
(
γ2

E − γ2
B

)
+ (µ− 1)2

(
A2 + γ2

B

))
, (2.24)
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where the inequality follows from Ep?(x){X2} ≤ A2. In order to minimize the expres-

sion in (2.24), we differentiate w.r.t. µ and s2. After setting the resulting partial

derivatives to zero, we obtain the minimizers

µ =
A2 + γ2

B

A2 + γ2
E

and s2 =
(A2 + γ2

B)(γ2
E − γ2

B)

A2 + γ2
E

. (2.25)

Substituting from (2.25) back into (2.24) and adding the result to (2.21), we get

Cs ≤
1

2
ln

(A2 + γ2
B)γ2

E

(A2 + γ2
E)γ2

B

=
1

2
ln
h2

BA
2 + σ2

h2
EA

2 + σ2
, (2.26)

which is the upper bound in (2.15). �

It is worth mentioning that the upper bound in (2.26) can be simply obtained

by relaxing the amplitude constraint |X| ≤ A into the average power constraint

E{X2} ≤ A2 and noting that (2.26) is the secrecy capacity of the Gaussian channel

under the average power constraint. Nevertheless, the framework we proposed via

Theorem 2.1 and Corollary 2.1 can be used to derive upper bounds on the secrecy

capacity of degraded wiretap channels with arbitrary conditional distributions p(yB|x)

and p(yE|yB), i.e., the main and degraded channels need not be Gaussian.

2.2.4 Numerical Example

Figure 2.2 depicts the bounds in (2.3), (2.6), and (2.15). Three groups of these

bounds are shown using 20 log10 (hB/hE) = 10, 20, and 30 dB. The lower bound

in (2.3) is calculated using δ = σ ln (1 + 2AhE/σ) as proposed in [53]. As can be

seen, both (2.3) and (2.6) along with (2.15) tightly bound the secrecy capacity at

asymptotically low and high SNRB, where SNRB , h2
BA

2/σ2. Note that the lower
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Figure 2.2: Lower and upper bounds on the secrecy capacity of the scalar Gaussian
wiretap channel.

bound in (2.6) incurs a fixed gap ln
√
πe/6 = 0.1765 nats/sec/Hz at asymptotically

high SNRB. Nevertheless, since typical VLC links operate at SNR values below

40 dB (see, e.g., Figure 2.5), the lower bound in (2.6) is more appropriate for VLC

scenarios. Furthermore, (2.6) is more analytically-tractable, and therefore it will be

used to obtain secrecy rate expressions for the MISO wiretap channel.

2.3 The MISO VLC Wiretap Channel

In this section, we utilize one of the lower bounds we derived in the previous section

along with beamforming to obtain a secrecy rate expression for the MISO wiretap

channel subject to amplitude constraints on the channel input vector.
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Figure 2.3: Problem scenario for the MISO case.

2.3.1 System Model

We consider the MISO scenario illustrated in Figure 2.3. The room is illuminated by

N identical light fixtures utilized for data transmission. Using the vectorized version

of the channel model in (1.3), the signals observed by Bob and Eve, respectively, are

yB(t) = hT
Bx(t) + nB(t), (2.27a)

yE(t) = hT
Ex(t) + nE(t), (2.27b)

where x(t) ∈ RN is the transmitted signal vector subject to the amplitude constraint

‖x(t)‖∞ ≤ A ∀t, hB ∈ RN
+ and hE ∈ RN

+ are fixed channel gain vectors, and nB(t) and

nE(t) are i.i.d. Gaussian noise samples with variance σ2. Unlike the scalar wiretap

channel in (2.1), the MISO wiretap channel in (2.27) is nondegraded, provided that

hB and hE are linearly independent.
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2.3.2 Achievable Secrecy Rates

A single-letter characterization of the secrecy capacity of the nondegraded wiretap

channel in (2.27) was derived by Csiszár and Körner as [37]

CMISO
s = max

p(u,x)
(I(U ;YB)− I(U ;YE)), (2.28)

where U is an auxiliary random vector that satisfies the Markov chain

U →X → (YB, YE).

Unlike the scalar case, the optimization problem in (2.28) is nonconvex, in general.

Furthermore, it is unclear how to choose U . For the Gaussian MISO channel under

total average power constraint, it was shown in [39] that the secrecy capacity is

achieved via beamforming, i.e., the choice U = X = wS is optimum, where w is the

beamformer, i.e., a fixed vector, and S is a Gaussian random variable. Accordingly,

we propose the use of beamforming to obtain a lower bound on the secrecy capacity

of the MISO wiretap channel in (2.27) under the amplitude constraint, as follows.

Proposition 2.4. (Lower Bound on the Secrecy Capacity)

The secrecy capacity of the MISO wiretap channel in (2.27) subject to the amplitude

constraint ‖x(t)‖∞ ≤ A ∀t is lower-bounded as

CMISO
s ≥ 1

2
ln

6A2(hT
Bw)2 + 3πeσ2

πeA2(hT
Ew)2 + 3πeσ2

, (2.29)

where w ∈ RN is any beamforming vector that satisfies the constraint ‖w‖∞ ≤ 1.

Proof: The proof follows directly from combining beamforming and the lower bound
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in (2.6), as follows.

CMISO
s = max

p(u,x)
(I(U ;YB)− I(U ;YE))

(a)
≥ I(X;YB)− I(X;YE)

(b)
≥ I(wS;YB)− I(wS;YE)

(c)
≥ 1

2
ln

6A2(hT
Bw)2 + 3πeσ2

πeA2(hT
Ew)2 + 3πeσ2

, (2.30)

where (a) follows from dropping the maximization and setting U = X, (b) from

choosingX = wS such that ‖w‖∞ ≤ 1 and |S| ≤ A, i.e., restricting the transmission

scheme to beamforming, and (c) from choosing p(s) = U [−A,A] and utilizing the

lower bound in (2.6). �

Although suboptimal, beamforming is preferable as it is a linear scheme with low

implementation complexity. Furthermore, beamforming reduces the vector channel

into a scalar version which enables the use of scalar channel codes. Note that the

secrecy rate expression in (2.30) provides a design equation for the beamformer w.

2.3.2.1 Optimal Beamforming

The optimal beamformer w? that maximizes the secrecy rate in (2.30) is

w? = argmax
‖w‖∞≤1

1

2
ln

6A2(hT
Bw)2 + 3πeσ2

πeA2(hT
Ew)2 + 3πeσ2

. (2.31)

The optimization problem in (2.31) is nonconvex and difficult to solve, mainly because

of the amplitude constraint ‖w‖∞ ≤ 1. In fact, we shall devote a considerable portion

of Chapter 3 to solving (2.31).
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2.3.2.2 Zero-Forcing Beamforming

The secrecy rate expression in (2.30) can be simplified by restricting the beam-

former w to Eve’s null space. Then, the best ZF beamformer wZF is obtained by

wZF = argmax
‖w‖∞≤1

hT
Bw (2.32a)

s.t. hT
Ew = 0, (2.32b)

which yields the ZF secrecy rate

RZF
s =

1

2
ln

(
1 +

2A2(hT
BwZF)2

πeσ2

)
. (2.33)

Unlike (2.31), the problem in (2.32) is a linear program, and thus can be solved with

lower computational complexity. Furthermore, the ZF beamformer wZF makes it

unnecessary to use secrecy codebooks, i.e., secure transmission can be achieved with

regular channel codes.

2.3.3 Numerical Example from a VLC Scenario

Here we provide some numerical results to get insight into the secrecy performance

of the ZF beamformer in a typical indoor VLC scenario. The problem geometry is

illustrated in Figure 2.4, and the simulation parameters are provided in Table 2.1.

There exist 16 down-facing light fixtures attached to the ceiling. Each fixture encloses

4 LEDs, and each LED radiates 1 W optical power. The half-intensity angle is 60◦,

and the modulation index is set to 10%. Bob and Eve are located at height 0.85 m

above the floor level, e.g., on desks, and their receivers have a 60◦ FoV (semi-angle).

We use a Cartesian coordinate system (x, y) at the receivers height to specify their
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Figure 2.4: Layout of the LEDs for the MISO case.

locations. The origin (0, 0) corresponds to the room center, and all distances are

specified in meters. Noise power is calculated using [9, Eq. (6) and Table I] with

70 MHz receiver bandwidth, and the result is averaged over the entire room area.

The average electric noise power is −98.82 dBm.

Figure 2.5 shows the spatial distribution of the SNR at the receivers height without

beamforming, i.e., w = 1N . As can be seen, the SNR reaches its maximum value,

39.40 dB, at the room center, and decays to 24.97 dB at the corners.

Figure 2.6 shows the achievable communication rate RB, between Alice and Bob,

as a function of Bob’s location, without secrecy constraints. This rate is obtained

using (2.33) after replacing wZF with w = 1N .

In Figure 2.7, Bob’s location is fixed at (−0.9,−2.0) and the secrecy rate (2.33) is

depicted as a function of Eve’s location within the entire room area. As expected, the

secrecy rate significantly decreases when Eve is close to Bob. Once Eve is relatively

faraway, e.g., more than about 2.5 m apart, the secrecy rate is almost independent of

Eve’s exact location. It is also interesting to characterize the loss in communication
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Table 2.1: Simulation parameters for the MISO wiretap channel.
Problem geometry

Room dimensions (W × L×H) 5× 5× 3 m3

Light fixtures height (Alice) 3 m
Receivers height (Bob and Eve) 0.85 m
Number of light fixtures N 16

Transmitter characteristics
Number of LEDs per fixture 4
Average optical power per LED Popt 1 W
Modulation index µMI 10%
LEDs half-intensity angle ζ3-dB 60◦

Receiver characteristics
Receiver FoV Ψ 60◦

Refractive index of the concentrator nr 1.5
PD responsivity RPD 0.54 (A/W)
PD surface area APD 1 cm2

Average noise power σ2 −98.82 dBm
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Figure 2.5: Spatial distribution of the SNR at the receivers height (0.85 m above the
floor level) without beamforming.
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Figure 2.6: Achievable communication rate between Alice and Bob as a function of
Bob’s location without secrecy constraints.

rate caused by the secrecy constraint, i.e., RB − Rs, by comparing the secrecy rates

in Figure 2.7 with RB(−0.9,−2.0) = 3.2256 nats/sec/Hz from Figure 2.6.

Finally, in Figure 2.8, Eve’s location is fixed at (1.6,−0.7) and the secrecy rate

(2.33) is shown as a function of Bob’s location. As can be seen, even when Bob is

relatively faraway from Eve, the secrecy rate Rs still depends on Bob’s location, i.e.,

Rs exhibits stronger dependence on hB than hE.

2.4 The Scalar VLC Wiretap Channel Aided by a

Friendly Jammer

In this section, we study the secrecy performance of the scalar VLC wiretap channel

when it is aided by a friendly jammer having multiple transmit LEDs. A jamming
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Figure 2.7: Secrecy rate obtained with the ZF beamformer (2.32) as a function of
Eve’s location when Bob is located at (−0.9,−2.0).
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Figure 2.8: Secrecy rate obtained with the ZF beamformer (2.32) as a function of
Bob’s location when Eve is located at (1.6,−0.7).

47



Chapter 2. Achievable Secrecy Rates for VLC Wiretap Channels

hJB

hJE

Eve
Bob

hAE

Jamming

Data

Jammer

Alice
hAB

hJB

hJE

Eve
Bob

hAE

Jamming

Data

Jammer

Alice
hAB

Figure 2.9: Problem scenario for the scalar channel aided by a friendly jammer.

signal is transmitted to degrade Eve’s reception while causing no interference to Bob,

which leads to an increase in the achievable secrecy rate between Alice and Bob.

Both the data and jamming signals are subject to amplitude constraints.

After a formal description of the system model, we derive a closed-form expression

for the achievable secrecy rate. Then, we provide a numerical example to illustrate

the performance in a typical VLC scenario.

2.4.1 System Model

We consider the VLC scenario illustrated in Figure 2.9. The room is illuminated by

NJ + 1 identical light fixtures. Each fixture consists of a group of LEDs modulated

by the same current signal. Alice, the transmitter, sends her data via a single fixture.

On the other hand, the jammer utilizes the remaining NJ fixtures, but it does not

know the data transmitted by Alice. Bob and Eve have a single PD, each.

Without help from the jammer, securing the connection between Alice and Bob

is not possible unless Bob is closer to Alice than Eve. On the other hand, a jammer

equipped with multiple transmit elements, and without having access to the trans-

mitted data, can help secure the connection by transmitting a carefully-designed

jamming signal that increases the interference seen by Eve, i.e., degrades her signal-

to-interference-plus-noise ratio (SINR), while causing no interference to Bob.
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Utilizing the channel model in (1.3), the signals received by Bob and Eve, respec-

tively, are

yB(t) = hABx(t) + hT
JBxJ(t) + nB(t), (2.34a)

yE(t) = hAEx(t) + hT
JExJ(t) + nE(t), (2.34b)

where hAB ∈ R+ and hAE ∈ R+ are the channel gains from Alice to Bob and Eve,

respectively, hJB ∈ RNJ
+ and hJE ∈ RNJ

+ are the channel gain vectors from the jammer

to Bob and Eve, respectively, x(t) ∈ R is the data signal, xJ(t) ∈ RNJ is the jamming

signal, and nB(t) and nE(t) are i.i.d. Gaussian noise samples with variance σ2. The

data and jamming signals are subject to the amplitude constraints |x(t)| ≤ A ∀t

and ‖xJ(t)‖∞ ≤ A ∀t, respectively. Furthermore, both x(t) and xJ(t) are designed

such that E{X} = 0 and E{XJ} = 0. Thus, neither x(t) nor xJ(t) has an effect on

illumination. Finally, we assume that hJB and hJE are linearly independent, and all

the channel gains are accurately known to all the terminals.

In order to derive a secrecy rate expression for the wiretap channel in (2.34), we

have to simplify the expressions in (2.34) by imposing the following restrictions. First,

the jamming signal xJ(t) shall cause no interference to Bob, i.e., hT
JBxJ(t) = 0 ∀t.

Such a restriction is not necessarily optimal as it might well be the case that allowing

nonzero interference at Bob would permit higher interference at Eve and probably

higher achievable secrecy rate. Second, the jammer shall adopt a beamforming strat-

egy, i.e., the jamming signal is constructed as xJ(t) = wJj(t), where wJ ∈ RNJ ,

‖wJ‖∞ ≤ 1, is the jamming beamformer, and j(t) ∈ [−A,A] is a zero-mean ran-

dom jamming symbol. Beamforming is preferred as it allows simple implementation,

however it might be an inappropriate jamming strategy if there are many eavesdrop-

pers with probably orthogonal or near-orthogonal channels. Finally, to simplify the
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derivation of a closed-form secrecy rate expression, we assume that both X and J

have uniform distributions over the interval [−A,A]. After applying such restrictions,

the wiretap channel in (2.34) simplifies to

yB(t) = hABx(t) + nB(t), (2.35a)

yE(t) = hAEx(t) + hT
JEwJj(t) + nE(t). (2.35b)

We are now ready to derive an achievable secrecy rate expression for (2.35), which

will also be achievable for (2.34).

2.4.2 Achievable Secrecy Rate

Proposition 2.5. (Achievable Secrecy Rate)

An achievable secrecy rate, in (nats/sec/Hz), for the wiretap channel in (2.35) is

[Rs]
+, where Rs is given by

Rs =
1

2
ln

(
1 +

2A2h2
AB

πeσ2

)
−


ln

hAE

|hT
JEwJ|

+
|hT

JEwJ|
2hAE

|hT
JEwJ| ≤ hAE

hAE

2|hT
JEwJ|

otherwise

=
1

2
ln

(
1 +

2A2h2
AB

πeσ2

)
−min

{
ln

hAE

|hT
JEwJ|

+
|hT

JEwJ|
2hAE

,
hAE

2|hT
JEwJ|

}
, (2.36)

where wJ ∈ RN is any jamming vector that satisfies the constraints hT
JBwJ = 0 and

‖wJ‖∞ ≤ 1.

Proof: Without loss of generality, we assume in the following that hT
JEwJ is non-

negative. If hT
JEwJ < 0, then wJ can be replaced with −wJ without violating the

amplitude constraint or changing the secrecy rate results.

First, we recall our assumption in the previous subsection that X ∼ U [−A,A]
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and J ∼ U [−A,A]. Thus, we have

h(hABX) = ln(2AhAB), (2.37a)

h(hAEX) = ln(2AhAE), (2.37b)

h(hT
JEwJJ) = ln(2AhT

JEwJ). (2.37c)

Next, let the random variable VE be defined as

VE , hAEX + hT
JEwJJ. (2.38)

Then, VE has a trapezoidal distribution (see Appendix A), and its differential entropy

is

h(VE) = min

{
ln(2AhAE) +

hT
JEwJ

2hAE
, ln(2AhT

JEwJ) +
hAE

2hT
JEwJ

}
. (2.39)

Furthermore, it is clear from (2.35b) and (2.38) that X → VE → YE forms a Markov

chain. Now, the secrecy capacity of the wiretap channel in (2.35) can be lower-

bounded as follows.

Cs ≥ I(X;YB)− I(X;YE)

(a)
≥ I(X;YB)− I(X;VE)

= h(YB)− h(YB|X)− h(VE) + h(VE|X)

(b)
≥ 1

2
ln
(
e2h(hABX) + e2h(NB)

)
− h(NB)− h(VE) + h(hT

JEwJJ)

(c)
=

1

2
ln(4A2h2

AB + 2πeσ2)− 1

2
ln(2πeσ2)− h(VE) + ln(2AhT

JEwJ)

(d)
=

1

2
ln

(
1 +

2A2h2
AB

πeσ2

)
−min

{
ln

hAE

hT
JEwJ

+
hT

JEwJ

2hAE
,

hAE

2hT
JEwJ

}
, (2.40)
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where (a) follows from the data-processing inequality [35, Theorem 2.8.1], (b) from

lower-bounding h(YB) using the entropy power inequality [35, Theorem 17.7.3], (c) by

substituting from (2.37a) and (2.37c) for h(hABX) and h(hT
JEwJJ), respectively, and

(d) by substituting from (2.39) for h(VE). �

Figure 2.10 depicts Rs in (2.36) as a function of hT
JEwJ for different values of hAE.

Note that Rs is upper-bounded by
1

2
ln

(
1 +

2A2h2
AB

πeσ2

)
, which is the achievable rate

between Alice and Bob, without secrecy constraints, subject to |x(t)| ≤ A ∀t [53,

Theorem 5]. Note also that Rs is a nondecreasing function of hT
JEwJ for hT

JEwJ ≥ 0,

and a nonincreasing function of hAE. Thus, under the assumption that hJB and hJE

are perfectly known to the jammer, the optimal jamming beamformer that maximizes

Rs while causing no interference to Bob is obtained by

maximize
‖wJ‖∞≤1

hT
JEwJ (2.41a)

s.t. hT
JBwJ = 0, (2.41b)

which is a simple linear program and can be efficiently solved.

2.4.3 Numerical Example from a VLC Scenario

In this subsection, we provide a numerical example by simulating a typical indoor

VLC scenario. The problem geometry is illustrated in Figure 2.11, and the simulation

parameters are provided in Table 2.2. The room has a size of 5 × 5 × 3 m3, and is

illuminated by 9 identical light fixtures. Each fixture has 7 LEDs, and each LED

radiates 1 W optical power. The fixture at the center is used by Alice for data trans-

mission, while the remaining 8 fixtures are exploited for jamming. The modulation

index for all the LEDs is 10%. Bob and Eve are located at height 0.85 m above the
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Figure 2.10: Achievable secrecy rates (2.36) for the scalar channel aided by a friendly
jammer.

floor level, and their receivers have a 70◦ FoV and a single PD, each. We use a two-

dimensional coordinate system (x, y) to identify the receivers locations. The origin

(0, 0) corresponds to the room center at the receivers level. Noise power is calculated

using [9, Eq. (6) and Table I] with a receiver bandwidth of 70 MHz, and the result is

averaged over the entire room area. The average noise power is −98.39 dBm.

In Figure 2.12, we plot the secrecy rate (2.36) as a function of Eve’s location

when Bob is located at (−0.7,−0.9), while in Figure 2.13, we fix Eve’s location at

(0.3,−1.5) and plot (2.36) as a function of Bob’s location.

In both figures, the jamming beamformer wJ is obtained with (2.41). We note

that, when Eve is sufficiently close to Bob, jamming is restrained by the null space

of Bob, resulting in considerably reduced secrecy rates. On the other hand, when

Bob and Eve are faraway, the jammer is able to significantly degrade Eve’s reception,
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Figure 2.11: Layout of the LEDs for the scalar channel aided by a friendly jammer.

Table 2.2: Simulation parameters for the scalar channel aided by a friendly jammer.
Problem geometry

Room dimensions (W × L×H) 5× 5× 3 m3

Light fixtures height (Alice and the jammer) 3 m
Receivers height (Bob and Eve) 0.85 m
Total number of light fixtures NJ + 1 9

Transmitter characteristics
Number of LEDs per fixture 7
Average optical power per LED Popt 1 W
Modulation index µMI 10%
LEDs half-intensity angle ζ3-dB 60◦

Receiver characteristics
Receiver FoV Ψ 70◦

Refractive index of the concentrator nr 1.5
PD responsivity RPD 0.54 A/W
PD surface area APD 1 cm2

Average noise power σ2 −98.39 dBm
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Figure 2.12: Secrecy rate obtained with the jamming beamformer (2.41) as a function
of Eve’s location when Bob is located at (−0.7,−0.9).
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Figure 2.13: Secrecy rate obtained with the jamming beamformer (2.41) as a function
of Bob’s location when Eve is located at (0.3,−1.5).
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and the resulting secrecy rate is almost independent of Eve’s channel, but is upper-

bounded by the achievable rate between Alice and Bob.

2.5 Conclusions

Unlike RF channels, the VLC channel is more accurately modelled with amplitude

constraints on the channel input, making it difficult to obtain analytic secrecy ca-

pacity expressions even for the simple SISO case. Therefore, we derived closed-form

lower and upper bounds on the secrecy capacity of the amplitude-constrained scalar

wiretap channel. Then, we utilized beamforming to obtain an achievable secrecy rate

for the MISO channel. The numerical results revealed that ZF is an appropriate

strategy for secure transmission in VLC scenarios, provided that the transmitter has

accurate channel information. When feasible, ZF is a favorable transmission scheme

as it eliminates the need to use secrecy codebooks.

We also derived a closed-form secrecy rate expression for the scalar wiretap

channel when the signal received by the eavesdropper is degraded by amplitude-

constrained jamming signals transmitted from a helper node. In addition, we formu-

lated a simple linear program to optimize the jamming beamformer, assuming perfect

channel information.

In the next chapter, we will focus on the MISO channel and study the design of

beamformers for secrecy rate maximization subject to amplitude constraints.
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Chapter 3

Optimal and Robust Beamforming

for Secure MISO VLC Links

3.1 Introduction

In the previous chapter, we utilized the uniform input distribution to derive closed-

form secrecy rate expressions for the scalar wiretap channel under the amplitude

constraint. Then, we leveraged beamforming to obtain a closed-form secrecy rate

expression for the MISO wiretap channel. In this chapter, we focus on the design of

the beamformer itself. In particular, we study the design of transmit beamformers for

secure downlink transmission in indoor MISO VLC links in the presence of a passive

eavesdropper (Eve) attempting to overhear the message conveyed by light waves to

the intended receiver (Bob). Assuming uniform input distribution, our performance

measure is the secrecy rate expression (2.29) derived in the previous chapter for the

amplitude-constrained MISO wiretap channel.

Under the premise of perfect channel information, we first consider the design

of optimal beamformers that maximize the achievable secrecy rate subject to ampli-

tude constraints. Such constraints render the optimization problem nonconvex and

difficult to solve. Nevertheless, we show that this nonconvex problem can be recast

as a solvable quasiconvex line search problem. We then consider the more general

and more realistic case in which the transmitter (Alice) has uncertain information
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regarding Bob’s and Eve’s channels. We study the design of robust beamformers that

maximize the worst-case secrecy rate, again subject to amplitude constraints. The

resulting max-min optimization problem is more complex than its non-robust counter-

part, but still can be reformulated as a quasiconvex line search problem. Tractability

of the reformulated problem, however, depends on the geometries of the uncertainty

sets. For Bob’s channel, we consider uncertainty arising from quantization errors

imposed by the finite rate of the feedback channel. Such uncertainty is well mod-

elled with N -dimensional spherical sets centered at the nominal estimate available

to Alice, where N is the number of transmit elements. For Eve’s channel, however,

we do not assume any feedback because Eve is a passive eavesdropper. Instead, we

take advantage of the fact that the line-of-sight (LoS) path is typically dominant

in VLC channels. Moreover, the LoS channel gain can be accurately approximated

by a deterministic function of the receiver’s location and orientation, along with the

emission pattern of the LEDs (recall the LoS channel gain expression in (1.4)). In

typical VLC scenarios, it is sensible to assume that Alice has some knowledge of

Eve’s location and orientation (recall, for example, the scenario in Figure 1.1). Thus,

a reasonable estimate of Eve’s channel can be obtained from such information. Ac-

cordingly, we derive uncertainty sets that reflect Alice’s imprecise knowledge of Eve’s

location and orientation, as well as the emission pattern of the LEDs. We also con-

sider possible channel mismatches caused by non-line-of-sight (NLoS) components.

Such components are due to diffuse reflections from nearby surfaces, and they are not

taken into account by the channel gain equation in (1.4). All the derived uncertainty

sets are well structured in the sense that they lead to solvable worst-case secrecy rate

maximization problems.

The secrecy performance of the Gaussian MISO wiretap channel with perfect
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channel information, subject to a total average power constraint, was studied in [72,

38, 39, 43]. Lower bounds on the secrecy capacity were obtained in [72] and [38]. In

addition, it was shown in [38] that beamforming is the optimal transmission strategy

if the channel inputs are Gaussian. These results were generalized in [39] and [43]

where it was shown that Gaussian signaling, along with beamforming, is in fact

optimal, and closed-form secrecy capacity expressions were derived.

The design of robust transmission schemes with imperfect channel information,

based on worst-case secrecy rate maximization, was considered in [73, 74, 75, 76, 77,

78]. In [73], the authors observed similarities between the cognitive radio and wiretap

channel models, and considered the design of robust beamformers in conjunction with

spherical uncertainty sets for Eve’s channel. The authors in [74] studied robust beam-

forming along with discrete uncertainty sets corresponding to inaccurate information

regarding Eve’s location, under the assumption of LoS propagation for RF channels.

Worst-case secrecy rate maximization for the MISO channel wiretapped by multi-

ple eavesdroppers having multiple antennas was considered in [75] using spherical

uncertainty sets for the receiver’s and eavesdroppers’ channels. In [76], the authors

considered the use of artificial noise generated by a friendly jammer and studied the

design of robust data and jamming covariance matrices, under both individual and

global power constraints. The work in [77] considered the design of robust transmit

covariance matrices for the MIMO wiretap channel in the low SNR regime using a

linearized secrecy rate expression, i.e., the secrecy rate is approximated by a linear

function of the covariance matrix. A similar approach was utilized in [78] where

the data and jamming covariance matrices are alternatively optimized after lineariz-

ing the nonconcave term in the secrecy rate expression based on Taylor’s first-order

approximation.
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Compared to the previously mentioned works, our work in this chapter has the

following two key differences:

1) We design the beamformer w subject to a per-transmit-element amplitude

constraint, i.e., ‖w‖∞ ≤ 1. As mentioned in Section 1.2.2, amplitude con-

straints explicitly arise in VLC systems because of limitations on the linear

operation region of the LEDs. Furthermore, as a side advantage, our ap-

proach to solve the design problem is in fact applicable to general lp-norm

constraints, i.e., ‖w‖p ≤ 1, for any p ≥ 1. On the other hand, the works

in [72, 38, 39, 43, 73, 74, 75, 76, 77, 78] consider a total power constraint PTot

on the transmitted signal vector, that is ‖w‖2 ≤
√
PTot, or, more generally,

Tr(E{XXT}) ≤ PTot, where E{XXT} is the transmit covariance matrix.

2) We do not assume feedback from Eve regarding her channel information. In-

stead, we exploit Alice’s imprecise knowledge of Eve’s location and orientation

to obtain an estimate of Eve’s channel gain. Specifically, we derive uncertainty

sets for Eve’s channel based on the uncertain parameters in the LoS channel

gain equation in (1.4). We also consider uncertainty caused by the NLoS com-

ponents. On the other hand, the works in [73, 75, 76, 77, 78] assume spherical

uncertainty sets for Eve’s channel, that is ‖hE − ĥE‖2 ≤ εhE , where ĥE is Alice’s

erroneous estimate of hE, and εhE is some known constant. This model is well

accepted to take into account channel uncertainty caused by limited feedback

from the receiver [57, Lemma 1]. In wiretap scenarios, however, the spherical

uncertainty model becomes inapplicable if Eve is a passive eavesdropper and

not part of the communication network.

The remainder of this chapter is organized as follows. The system model is de-

scribed in Section 3.2. In Section 3.3, we consider the design of optimal and robust
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beamformers under the assumptions of perfect and imperfect channel information,

respectively. In Section 3.4, we derive uncertainty sets for Eve’s channel based on

the uncertain parameters in the LoS channel gain equation. In Section 3.5, we pro-

vide numerical examples to compare the performance of the proposed beamformers

with conventional schemes, and evaluate the worst-case secrecy rate performance in

a typical VLC scenario. We conclude the chapter in Section 3.6.

3.2 System Model

We consider secure downlink transmission from Alice to Bob over an indoor VLC link

in the presence of a passive eavesdropper, Eve (recall the scenario in Figure 2.3). The

service area is illuminated by NFix light fixtures attached to the ceiling. Each fixture

encloses NLED high-brightness LEDs that can be modulated independently of each

other using separate drivers. Thus, the total number of LEDs is N = NFix ×NLED.

Next, we recall the beamforming scheme described in Section 1.3.3 whereby the

transmitted signal vector x(t) ∈ RN is constructed as

x(t) = ws(t), (3.1)

where w ∈ RN is the beamformer and s(t) ∈ R is the data symbol. Due to linearity

limitations of the LEDs, the transmitted signal vector x(t) must satisfy the amplitude

constraint

‖x(t)‖∞ ≤ A ∀t. (3.2)

In order to satisfy (3.2), we let S ∼ U [−A,A], where S is the random variable

counterpart of the data symbol s(t), and choose the beamformer w such that it
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satisfies the constraint

‖w‖∞ ≤ 1. (3.3)

Thus, utilizing the MISO channel model in (1.10), the signals received by Bob and

Eve, respectively, are

yB(t) = hT
Bws(t) + nB(t), (3.4a)

yE(t) = hT
Ews(t) + nE(t), (3.4b)

where hB ∈ RN
+ and hE ∈ RN

+ are Bob’s and Eve’s channel gain vectors, respectively,

and nB(t) and nE(t) are i.i.d. Gaussian noise samples with variance σ2.

3.3 Optimal and Robust Beamformer Design

3.3.1 Problem Formulation

Utilizing the result of Proposition 2.4, an achievable secrecy rate, in (bits/sec/Hz),

for the MISO wiretap channel in (3.4) is

Rs =

[
1

2
log2

6A2(hT
Bw)2 + 3πeσ2

πeA2(hT
Ew)2 + 3πeσ2

]+

, (3.5)

where the beamformer w is subject to the amplitude constraint ‖w‖∞ ≤ 1. A typ-

ical problem of interest is to find the optimal beamformer w? that maximizes the

achievable secrecy rate, i.e.,

w? = argmax
‖w‖∞≤1

Rs. (3.6)

In fact, our main goal in this chapter is to solve the design problem in (3.6). To this

end, we have to overcome two major difficulties. Firstly, the optimization problem
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in (3.6) is clearly nonconvex, and the amplitude constraint ‖w‖∞ ≤ 1 makes it

different from the well-known Rayleigh quotient maximization problem. In the next

subsection, we introduce Proposition 3.1 to transform this nonconvex problem into a

solvable quasiconvex line search problem. Secondly, it is unrealistic to assume that

the channel gain vectors hB and hE are precisely known to Alice. Therefore, a more

appropriate design approach is to devise reasonable uncertainty sets, HB and HE,

that enclose all possible realizations of hB and hE, respectively, and solve the robust

counterpart [79] of (3.6) to maximize the secrecy rate corresponding to the worst-case

realization of (hB,hE) ∈ HB ×HE. That is to solve

maximize
‖w‖∞≤1

Rs ∀(hB,hE) ∈ HB ×HE, (3.7a)

or, equivalently,

maximize
‖w‖∞≤1

min
hB∈HB,
hE∈HE

Rs. (3.7b)

We will tackle the robust design problem (3.7) in Section 3.3.3 via Proposition 3.2,

whereas in Section 3.4, we shall discuss methods to model uncertainty in Eve’s chan-

nel, in VLC scenarios, without feedback from Eve.

3.3.2 Optimal Beamforming with Perfect Channel

Information

Our focus in this subsection is on solving the design problem in (3.6) under the

premise of perfect channel information. Although the constraint on the beamformer

is specified by ‖w‖∞ ≤ 1, i.e., an amplitude or l∞-norm constraint, we shall in fact

solve the problem subject to a general lp-norm constraint, i.e., for any p ≥ 1.
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Proposition 3.1. (Certain hB and hE) Let ‖w‖p, p ≥ 1, denote the lp-norm of w,

then the maximization problem

maximize
‖w‖p≤1

6A2(hT
Bw)2 + 3πeσ2

πeA2(hT
Ew)2 + 3πeσ2

(3.8)

is equivalent to the quasiconvex optimization problem (or quasiconcave maximization

problem)

maximize
α∈[αmin,

√
6/πe]

6A2(hT
Bwα)2 + 3πeσ2

πeα2A2(hT
Bwα)2 + 3πeσ2

, (3.9)

where αmin, the lower bound on α, is

αmin = min
w,α

α (3.10a)

s.t. hT
Bw = 1, (3.10b)

|hT
Ew| ≤ α, (3.10c)

and, for each α ∈ [αmin,
√

6/πe], wα is obtained by

wα = argmax
‖w‖p≤1

hT
Bw (3.11a)

s.t. |hT
Ew| ≤ αhT

Bw. (3.11b)

Proof: Our goal is to prove that the problem in (3.8) is equivalent to the line search

problem in (3.9), and the objective function in (3.9) is quasiconcave w.r.t. the search

variable α. The latter part, in particular, is not straightforward.
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Using the auxiliary variable τ ≥ 3πeσ2, the problem in (3.8) can be expressed as

maximize
‖w‖p≤1,τ

6A2(hT
Bw)2 + 3πeσ2

τ
(3.12a)

s.t. πeA2(hT
Ew)2 + 3πeσ2 ≤ τ, (3.12b)

or, equivalently,

maximize
τ

f(τ)

τ
, (3.13)

where f(τ) is defined as

f(τ) , max
‖w‖p≤1

6A2(hT
Bw)2 + 3πeσ2 (3.14a)

s.t. |hT
Ew| ≤

√
τ − 3πeσ2

πeA2
. (3.14b)

Note that the constraints in (3.12b) and (3.14b) are equivalent. In the following, we

show that the objective function in (3.13) is quasiconcave w.r.t. τ by establishing the

concavity of f(τ). For notational convenience, we introduce a new variable ε ≥ 0,

defined as

ε ,

√
τ − 3πeσ2

πeA2
. (3.15)

Then, we define the perturbation function ϕ(ε) as

ϕ(ε) , max
‖w‖p≤1

hT
Bw (3.16a)

s.t. |hT
Ew| ≤ ε. (3.16b)

It is clear that ϕ(ε) is nonnegative and nondecreasing for all ε ≥ 0. Furthermore, the

perturbed problem in (3.16) is convex, and thus ϕ(ε) is concave [80, Section 5.6.1].
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As a consequence, ϕ(ε) is continuous and its right and left derivatives11, ϕ′+(ε) and

ϕ′−(ε), exist for all ε > 0. These derivatives are nonincreasing in the sense that, for

any ε2 > ε1 > 0, we have [81, Theorem 1.6]

ϕ′−(ε1) ≥ ϕ′+(ε1) ≥ ϕ′−(ε2) ≥ ϕ′+(ε2) ≥ 0, (3.17)

where the last inequality holds since ϕ(ε) is nondecreasing. Moreover, for any ε0 ≥ 0

and any ε ∈ {ε : ε > 0, ϕ′+(ε) = ϕ′−(ε)}, i.e., any ε at which ϕ(ε) is differentiable, we

have [80, Section 3.1.3]

ϕ(ε0) ≤ ϕ(ε) + ϕ′(ε)(ε0 − ε). (3.18)

Substituting with ε0 = 0 into (3.18), we get

ϕ(ε) ≥ ϕ(0) + εϕ′(ε) ≥ εϕ′(ε), (3.19)

where the second inequality holds since ϕ(0) is nonnegative. We are now ready to

prove that f(τ) ≡ 6A2(ϕ(ε))2+3πeσ2 is concave w.r.t. τ ≡ πeA2ε2+3πeσ2. The right

and left derivatives of f(τ) can be written in terms of ϕ′+(ε) and ϕ′−(ε), respectively,

as

f ′+(τ) =
6

πe

ϕ(ε)

ε
ϕ′+(ε), f ′−(τ) =

6

πe

ϕ(ε)

ε
ϕ′−(ε). (3.20)

From (3.17) and (3.20), it is clear that

f ′−(τ) ≥ f ′+(τ) for any τ > 3πeσ2. (3.21)

11We resort to one-sided derivatives, rather than the ordinary two-sided derivative ϕ′(ε), because
ϕ(ε) is not necessarily smooth or differentiable over the whole interior of its domain. Particularly,
there exist, in general, some ε > 0 at which ϕ′+(ε) 6= ϕ′−(ε). These are the points where ϕ′+(ε) and
ϕ′−(ε) have jump discontinuities. Nevertheless, since ϕ(ε) is concave, there are only countably many
such jumps, i.e., the set {ε : ε > 0, ϕ′+(ε) 6= ϕ′−(ε)} has zero Lebesgue measure [81, Section 1.8].
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Furthermore, when ϕ(ε) is twice differentiable (and consequently f(τ) is twice differ-

entiable), we have

f ′′(τ) =
3

πeε2

((
ϕ′(ε)− ϕ(ε)

ε

)
ϕ′(ε) + ϕ(ε)ϕ′′(ε)

)
≤ 0, (3.22)

where the inequality holds since ϕ′(ε) ≤ ϕ(ε)/ε, ϕ′(ε) ≥ 0, ϕ(ε) ≥ 0, and ϕ′′(ε) ≤ 0

(the last inequality follows from (3.17) or the second-order condition of concavity [80,

Section 3.1.4]). Combining (3.21) and (3.22) yields

f ′−(τ1) ≥ f ′+(τ1) ≥ f ′−(τ2) ≥ f ′+(τ2), (3.23)

for any τ2 > τ1 > 3πeσ2. Hence, f(τ) is concave [82, Theorem 24.2]. Then, it

is straightforward to verify that f(τ)/τ is quasiconcave by noting that all the β-

superlevel sets {τ : τ ≥ 3πeσ2, f(τ)/τ ≥ β}, for all β ∈ R, are convex, i.e., intervals,

including the empty set and infinite intervals [80, Section 3.4.1].

Next, we define the new variable α ≥ 0 as

α ,
ε

ϕ(ε)
=

√
τ − 3πeσ2

πeA2(ϕ(ε))2
, ϕ(ε) 6= 0. (3.24)

Alternatively, for some given α ≥ 0, τ can be expressed in terms of α as

τ = g(α) , πeα2A2(hT
Bwα)2 + 3πeσ2, (3.25)
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where wα is defined as

wα , argmax
‖w‖p≤1

hT
Bw (3.26a)

s.t. |hT
Ew| ≤ αhT

Bw. (3.26b)

The problem in (3.26) is clearly equivalent to the perturbed problem in (3.16) when α

and ε satisfy (3.24), or, equivalently, when α and τ satisfy (3.25). Thus, hT
Bwα ≡ ϕ(ε).

Furthermore, we note from (3.26) that hT
Bwα is nondecreasing w.r.t. α (since increas-

ing α relaxes the constraint in (3.26b)). Thus, g(α), as defined in (3.25), is a strictly

increasing function of α. Substituting with τ = g(α) back into (3.13) and changing

the optimization variable into α, the problem in (3.13) can be written as

maximize
α

f(g(α))

g(α)
,

or, equivalently,

maximize
α

6A2(hT
Bwα)2 + 3πeσ2

πeα2A2(hT
Bwα)2 + 3πeσ2

, (3.27)

where wα is as defined in (3.26). Since f(τ)/τ is quasiconcave w.r.t. τ , and τ = g(α)

is strictly increasing w.r.t. α, we conclude that f(g(α))/g(α) is quasiconcave w.r.t. α,

and hence the problem in (3.27) is quasiconvex, i.e., a quasiconcave maximization

problem.

Finally, the search interval for optimal α can be lower-bounded by the smallest
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feasible α, given by

αmin = min
w,α

α (3.28a)

s.t. hT
Bw = 1, (3.28b)

|hT
Ew| ≤ α, (3.28c)

and the upper bound αmax =
√

6/πe is simply obtained by noting that f(g(α)) ≥

g(α), and thus Rs ≥ 0, only if α ≤
√

6/πe, which completes the proof. �

Remarks:

• Proposition 3.1 has a practical interpretation. It states that the achievable

secrecy rate is a quasiconcave function of the parameter α, which is the ratio

of the signal level at Eve to the signal level at Bob. This is provably true for

an arbitrary lp-norm constraint on the beamformer w.

• Setting α = 0 in (3.11) corresponds to ZF, i.e., wα=0 is the best ZF beamformer.

• If N ≥ 2, and hB and hE are linearly independent, then αmin = 0 and ZF is

feasible.

• The case of K > 1 colluding eavesdroppers, or, equivalently, a single eavesdrop-

per having K receiving elements, can be also handled using Proposition 3.1

after replacing the inequalities in (3.10c) and (3.11b) with ‖HT
Ew‖2 ≤ α and

‖HT
Ew‖2 ≤ αhT

Bw, respectively, whereHE , [hE1 . . . hEK ] and hEk , k = 1, . . . , K,

is the channel gain vector of the kth eavesdropper.

Proposition 3.1 involves two optimization problems; the outer problem (3.9) and

the inner problem (3.11). The outer problem is a quasiconvex line search problem

whose globally optimal solution can be found by performing a bisection search on
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α ∈ [αmin,
√

6/πe], on a logarithmic scale. In the next subsection, we propose Algo-

rithm 3.1 to solve (3.9), as well as the corresponding problem in the more general

case of uncertain channel information. In each iteration of the bisection search, the

inner problem (3.11) should be solved to obtain wα and calculate the objective func-

tion in (3.9). The inner problem is clearly convex for any p ≥ 1, and thus it can be

efficiently solved.

Using (3.9), the achievable secrecy rate, as a function of α, is

Rs(α) =

[
1

2
log2

6A2(hT
Bwα)2 + 3πeσ2

πeα2A2(hT
Bwα)2 + 3πeσ2

]+

. (3.29)

Let α? denote the global maximizer of (3.9), then the optimal beamformer w? is

the solution of (3.11) corresponding to α = α?, i.e., w? ≡ wα? , and the maximum

achievable secrecy rate is Rs(α
?).

3.3.3 Robust Beamforming with Imperfect Channel

Information

In this subsection, we extend Proposition 3.1 to take into account uncertainty in

channel information for both Bob and Eve.

Proposition 3.2. (Uncertain hB and hE) Given a convex set HB and an arbitrary

set HE, the max-min problem

maximize
‖w‖p≤1

min
hB∈HB,
hE∈HE

6A2(hT
Bw)2 + 3πeσ2

πeA2(hT
Ew)2 + 3πeσ2

, (3.30)
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for any p ≥ 1, is equivalent to the quasiconvex problem

maximize
α∈[αmin,

√
6/πe]

6A2t2α + 3πeσ2

πeα2A2t2α + 3πeσ2
, (3.31)

where αmin is

αmin = min
w,α

α (3.32a)

s.t. hT
Bw ≥ 1 ∀hB ∈ HB, (3.32b)

|hT
Ew| ≤ α ∀hE ∈ HE, (3.32c)

and, for each α ∈ [αmin,
√

6/πe], tα is obtained from

(wα, tα) = argmax
‖w‖p≤1,t

t (3.33a)

s.t. hT
Bw ≥ t ∀hB ∈ HB, (3.33b)

|hT
Ew| ≤ αt ∀hE ∈ HE. (3.33c)

Proof: The proof is mostly along the same line as that of Proposition 3.1. The

max-min problem in (3.30) can be expressed as

maximize
τ

f(τ)

τ
, (3.34)
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where f(τ) is defined as

f(τ) , max
‖w‖p≤1

min
hB∈HB

6A2(hT
Bw)2 + 3πeσ2 (3.35a)

s.t. |hT
Ew| ≤

√
τ − 3πeσ2

πeA2
∀hE ∈ HE. (3.35b)

Next, we define the perturbation function ϕ(ε) as

ϕ(ε) , max
‖w‖p≤1,t

t (3.36a)

s.t. |hT
Bw| ≥ t ∀hB ∈ HB, (3.36b)

|hT
Ew| ≤ ε ∀hE ∈ HE, (3.36c)

where ε is defined as in (3.15). Note from (3.35) and (3.36) that f(τ) ≡ 6A2(ϕ(ε))2 +

3πeσ2. Note also that, unlike (3.16), the perturbed problem in (3.36) is not convex

because of the constraint in (3.36b). This nonconvexity can be eliminated by imposing

the additional constraint

hT
Bw ≥ 0 ∀hB ∈ HB, (3.37)

or, equivalently, replacing (3.36b) with

hT
Bw ≥ t ∀hB ∈ HB. (3.38)

The additional constraint, however, may render the solution suboptimal. Let ϕ(ε)
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be defined as

ϕ(ε) , max
‖w‖p≤1,t

t (3.39a)

s.t. hT
Bw ≥ t ∀hB ∈ HB, (3.39b)

|hT
Ew| ≤ ε ∀hE ∈ HE. (3.39c)

Then, ϕ(ε) ≤ ϕ(ε), i.e., a nonzero gap may exist between the two optimal values. In

the sequel, we show that this gap actually disappears with an additional technical

assumption on HB.

Lemma 3.1. If HB is a convex set, then ϕ(ε) = ϕ(ε), i.e., the problems in (3.36)

and (3.39) are equivalent.

Proof: The proof is provided in Appendix B.1.

Following the same approach from the proof of Proposition 3.1, it can be shown

that f(τ) ≡ 6A2(ϕ(ε))2 + 3πeσ2 is concave w.r.t. τ , and thus f(τ)/τ is quasiconcave.

Next, we introduce the variable α ≥ 0 via the substitution

τ = πeα2A2t2α + 3πeσ2, (3.40)

where tα is obtained from

(wα, tα) = argmax
‖w‖p≤1,t

t (3.41a)

s.t. hT
Bw ≥ t ∀hB ∈ HB, (3.41b)

|hT
Ew| ≤ αt ∀hE ∈ HE. (3.41c)
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Note from (3.39) and (3.41) that tα ≡ ϕ(ε) whenever α and τ satisfy (3.40). Substi-

tuting (3.40) back into (3.34), the latter can be rewritten as

maximize
α

6A2t2α + 3πeσ2

πeα2A2t2α + 3πeσ2
. (3.42)

Similar to (3.27) in the proof of Proposition 3.1, we note from (3.40) and (3.41) that τ

is strictly increasing w.r.t. α. Thus, the objective function in (3.42) is quasiconcave

w.r.t. α. Finally, αmin can be obtained by modifying the problem in (3.28) to

minimize
w,α

α (3.43a)

s.t. hT
Bw ≥ 1 ∀hB ∈ HB, (3.43b)

|hT
Ew| ≤ α ∀hE ∈ HE, (3.43c)

which completes the proof. �

Remarks:

• αmin > 0 implies that ZF is not feasible.

• αmin ≥
√

6/πe implies that the max-min problem is not feasible and the worst-

case secrecy rate is zero (e.g., when HB ∩HE 6= ∅).

Similar to (3.9) in Proposition 3.1, the outer problem (3.31) is quasiconvex, and

thus it can be efficiently solved by performing a bisection search on α. We propose

Algorithm 3.1, provided in Table 3.1, to obtain a solution α? with accuracy εα (dB).

Assuming εα = 0.2 dB, Algorithm 3.1 shall converge in at most [80, Section 4.2.5]

⌈
log2

(
20 log10

√
6/πe

10−10

)
− log2 εα

⌉
= 10 iterations.
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Table 3.1: Bisection search to solve the maximization problem in (3.31).

Algorithm 3.1 Bisection search to solve (3.31) in Proposition 3.2
1: Solve (3.32) to obtain αmin

2: if αmin < 10−10, then αmin := 10−10

3: Initialize α = 20 log10

√
6/πe and α = 20 log10 αmin

4: given the required accuracy εα (dB), set the positive constant ∆α such that
0 < 20 log10 ∆α < εα

5: while α− α ≥ εα do

6: α(dB) :=
α + α

2
7: Solve (3.33) with α to obtain tα, where α = 10

α(dB)
20

8: Calculate the objective in (3.31), f(α) =
6A2t2α + 3πeσ2

πeα2A2t2α + 3πeσ2

9: Solve (3.33) with α + ∆α to obtain tα+∆α

10: Calculate f(α + ∆α) =
6A2t2α+∆α

+ 3πeσ2

πe(α + ∆α)2A2t2α+∆α
+ 3πeσ2

11: if f(α + ∆α)− f(α) > 0, then α := α(dB) else α := α(dB)

12: end while
13: return α? := α
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Note, however, that the inner problem (3.33) should be solved twice in each iteration.

Thus, although Proposition 3.2 is valid in principle for any convex set HB and an

arbitrary set HE, it is practically useful only when (3.33) is tractable, i.e., can be effi-

ciently solved. The inner problem (3.33) is a robust convex program whose tractability

depends solely on the geometries of HB and HE [79, 83, 84]. In Section 3.4, we use

a spherical set HB to accommodate quantization errors caused by limited feedback

from Bob. For Eve’s channel, we use discrete, interval, and ellipsoidal sets to model

different uncertainty sources that cause inaccurate estimates of hE in VLC scenarios.

Using a spherical set HB, and discrete, interval, or ellipsoidal sets HE, and assuming

that12 p ∈ {1, 2,∞}, the inner problem (3.33) can be expressed as a second-order

cone program, which can be efficiently solved.

From (3.31), the worst-case secrecy rate, as a function of α, is

Rwc
s (α) =

[
1

2
log2

6A2t2α + 3πeσ2

πeα2A2t2α + 3πeσ2

]+

. (3.44)

The best worst-case secrecy rate is equal to Rwc
s (α?), and is achieved by the robust

beamformer wα? .

3.4 Uncertainty Sets for the Eavesdropper’s

Channel in VLC Scenarios

Recall from Sections 1.3.1 and 1.3.2 that the LoS DC channel gain from the ith

transmit LED can be accurately approximated by
12We need the assumption p ∈ {1, 2,∞} merely to state that the resulting problem is a second-

order cone program. However, the problem is still convex and equally solvable, e.g., via the CVX
toolbox [85], for any p ≥ 1.
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hi = ηRPDTa
(m+ 1)APD

2π‖di‖2
2

(cos ζi)
m Ts gc cosψi IΨ(ψi) (3.45a)

= ηRPDTa
(m+ 1)APD

2π‖di‖m+3
2

dmz Ts gc d
T
i u IΨ

(
cos−1 dT

i u

‖di‖2

)
, (3.45b)

where all the terms in (3.45) are defined in Sections 1.3.1 and 1.3.2. Note that we

assume equal heights for all the LEDs, i.e., the vertical distance between the PD at

the receiver and each LED is dz regardless of the LED index (dz is independent of i).

Now, our focus in this section is on deriving uncertainty sets for Eve’s channel

based on the uncertain parameters in (3.45). Our motivation towards this approach

is the lack of feedback from Eve regarding her channel when Eve is a passive or

non-cooperative receiver. In particular, we take advantage of the fact that hE can be

predicted from Eve’s location and orientation using (3.45) if the LoS path is dominant

and the emission pattern of the LEDs is known. Such information can be mapped

into an estimate of hE surrounded by a reasonable uncertainty setHE. Unfortunately,

the channel gain expression in (3.45) is quite complex, and mapping such uncertain

parameters altogether into a useful HE that makes the inner problem (3.33) solvable

is quite difficult. Thus, we begin with studying uncertainty sets corresponding to one

uncertain parameter at a time. We also consider uncertainty caused by the NLoS

components in hE. Cases involving more than one uncertainty source will also be

briefly discussed.

Throughout the entire section, we assume an amplitude constraint on w, i.e.,

‖w‖∞ ≤ 1. Furthermore, we assume a spherical uncertainty set for Bob’s channel,

i.e., hB ∈ HB,

HB =
{
ĥB + ehB : ‖ehB‖2 ≤ εhB

}
, (3.46)

77



Chapter 3. Optimal and Robust Beamforming for Secure MISO VLC Links

where the nominal vector ĥB is known to Alice via limited feedback from Bob, and

the bounded error term ehB is due to quantization errors. Substituting (3.46) back

into (3.33b), the latter can be expressed as

ĥT
Bw − εhB‖w‖2 ≥ t. (3.47)

3.4.1 Uncertain Eavesdropper’s Location

In this subsection, we consider uncertainty caused by inaccurate information regard-

ing Eve’s location. We assume that Eve is located inside a three-dimensional rectan-

gular region (or box) B with dimensions (2lx, 2ly, 2lz). We also assume, without loss

of generality, that B is centered at the origin, i.e.,

B =
{
Lv : v ∈ R3, ‖v‖∞ ≤ 1

}
, (3.48)

where L , Diag(lx, ly, lz). Furthermore, we choose the origin (or the center of B) as

the nominal location of Eve.

Let δ = [δx δy δz]
T, δ ∈ B, denote the deviation of the actual location of Eve from

the origin. Using (3.45b), the channel gain hi, i = 1, . . . , N , anywhere inside B, as a

function of δ, is

hi(δ) = ηRPDTa
(m+ 1)APD

2π‖di − δ‖m+3
2

(dz − δz)m Ts gc (di − δ)Tu IΨE

(
cos−1 (di − δ)Tu

‖di − δ‖2

)
,

(3.49)

and the set of all possible channel realizations inside B can be written as

HBE = {h(δ) : δ ∈ B} . (3.50)
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If we substitute with HE = HBE back into (3.33c), we will end up with an intractable

semi-infinite optimization problem. Therefore, we shall discuss methods to approxi-

mate HBE, based on the volume of B, in order to make (3.33) solvable.

3.4.1.1 Small Uncertainty Region

For sufficiently-small B, e.g., max {2lx, 2ly, 2lz} ≤ 0.5 m, we can assume that the

subset of LEDs seen by Eve’s receiver at a particular location δ,

Iδ =

{
i : IΨE

(
cos−1 (di − δ)Tu

‖di − δ‖2

)
= 1, i ∈ {1, . . . , N}

}
,

is identical for all δ ∈ B. In other words, the output of the indicator function in

(3.49) is independent of δ for all the LEDs and is solely determined by the nominal

location of Eve. Under this assumption, the channel gain in (3.49) can be written as

hi(δ) = ci
(dz − δz)m(di − δ)Tu

‖di − δ‖m+3
2

, (3.51)

where

ci , ηRPDTa
(m+ 1)APD

2π
Ts gc IΨE

(
cos−1 dT

i u

‖di‖2

)
. (3.52)

Furthermore, with sufficiently-small B, h(δ) can be well approximated by its first-

order approximation around the center of B, that is

h(δ) ≈ h̄(δ) = h0 + J0δ, (3.53)
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where h0 ≡ h(0), J ∈ RN×3 is the Jacobian matrix (or matrix of partial derivatives),

defined as

J ,


∂h1(δ)

∂δx

∂h1(δ)

∂δy

∂h1(δ)

∂δz
...

...
...

∂hN(δ)

∂δx

∂hN(δ)

∂δy

∂hN(δ)

∂δz

 , (3.54)

and J0 ≡ J(0). The entries of h0 and J0 are provided in Appendix B.2. Using

the linearized channel gain expression in (3.53), the uncertainty set in (3.50) can be

approximated by

H̄BE =
{
h0 + J0Lv : v ∈ R3, ‖v‖∞ ≤ 1

}
. (3.55)

Substituting with H̄BE back into (3.33c), the inner problem (3.33) can be expressed as

maximize
‖w‖∞≤1,t

t (3.56a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (3.56b)

|hT
0w + vTLJT

0w| ≤ αt ∀v : ‖v‖∞ ≤ 1, (3.56c)

or, equivalently,

maximize
‖w‖∞≤1,t

t (3.57a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (3.57b)

hT
0w + ‖LJT

0w‖1 ≤ αt, (3.57c)

hT
0w − ‖LJT

0w‖1 ≥ −αt, (3.57d)
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which is a second-order cone problem. Similarly, the problem in (3.32) can be ex-

pressed as

minimize
w,α

α (3.58a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ 1, (3.58b)

hT
0w + ‖LJT

0w‖1 ≤ α, (3.58c)

hT
0w − ‖LJT

0w‖1 ≥ −α. (3.58d)

3.4.1.2 Large Uncertainty Region

If the uncertainty region B is relatively large, the first-order approximation in (3.53)

may become poor. Nevertheless, B can first be divided into K non-overlapping boxes,

Bk, k = 1, . . . , K, such that
⋃K
k=1 Bk = B. Then, the first-order approximation is

applied inside each box, around its center, and (3.56) is solved with the corresponding

K constraints.

Alternatively, the region B can be discretized using a three-dimensional fine

grid
...
B , and the inner problem (3.33) is approximated by

maximize
‖w‖∞≤1,t

t (3.59a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (3.59b)

|hT(δ)w| ≤ αt ∀δ ∈
...
B , (3.59c)

where the entries of h(δ) are obtained with (3.49). Although discretization is a

straightforward approach that leads to linear constraints, the number of constraints

may grow up very quickly with large uncertainty regions.
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3.4.2 Uncertain Eavesdropper’s Orientation

In this subsection, we assume that Eve has the freedom to adjust the direction of

her receiver, (θE, φE), θE ∈ [θmin, θmax], φE ∈ [φmin, φmax], to her advantage. In other

words, the exact direction of Eve’s receiver is unknown to Alice. The uncertainty set U

containing all possible realizations of Eve’s orientation vector u (refer to Figure 1.4)

can be written as

U =
{
u = [sin θ cosφ sin θ sinφ cos θ]T : θ ∈ [θmin, θmax], φ ∈ [φmin, φmax]

}
, (3.60)

and the channel gain hi, i = 1, . . . , N , as a function of u, is given by

hi(u) = ci
dmz

‖di‖m+3
2

dT
i u, (3.61)

where ci is as defined in (3.52). For notational convenience, let D ∈ RN×3 be defined

as

D , dmz

[
c1d1

‖d1‖m+3
2

. . .
cNdN

‖dN‖m+3
2

]T

. (3.62)

Then, h(u) can be expressed as

h(u) = Du. (3.63)

Note from (3.52) and (3.62) that D depends on u via the indicator function in the

definition of ci, i = 1, . . . , N . Thus, the mapping from u to h in (3.63) is not linear,

in general. The set of all possible channel gains for Eve is given by

HUE = {Du : u ∈ U} . (3.64)
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Substituting with HUE back into (3.33c), the inner problem (3.33) can be written as

maximize
‖w‖∞≤1,t

t (3.65a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (3.65b)

max
u∈U
|uTDTw| ≤ αt. (3.65c)

In order to efficiently solve (3.65), we shall differentiate between two cases, as follows.

3.4.2.1 Small Angle Variations

In this case, we assume that Eve’s freedom to adjust her receiver’s orientation is lim-

ited in the sense that the subset of LEDs inside Eve’s FoV at a particular direction u,

Iu =

{
i : IΨE

(
cos−1 dT

i u

‖di‖2

)
= 1, i ∈ {1, . . . , N}

}
,

remains unchanged for all u ∈ U . Perhaps the most practical case in which the above

assumption may hold is when the permissible variations of the zenith angle θE is

relatively small and close to zero, i.e., θE ∈ [0, θmax], where θmax is relatively small

(e.g., θmax ≤ 30◦). If Iu is fixed for all u ∈ U , then D is independent of u, and h,

as given in (3.63), is a linear function of u. In this case, the left-hand side of the

inequality in (3.65c) can be upper-bounded as

max
u∈U
|uTDTw| ≤ max

‖u‖2≤1
uTDTw = ‖DTw‖2. (3.66)
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Then, the problem in (3.65) is replaced by

maximize
‖w‖∞≤1,t

t (3.67a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (3.67b)

‖DTw‖2 ≤ αt, (3.67c)

which is a second-order cone problem.

3.4.2.2 Large Angle Variations

With arbitrary zenith and/or azimuth angle variations for Eve’s receiver, D becomes

dependent on u, and linearity between h and u no longer holds. In this case, it

becomes difficult to obtain a mathematically-convenient uncertainty set HUE over the

continuum of θE and φE. Thus, we resort to sampling h(u) over U , and the inner

problem (3.33) is approximated by

maximize
‖w‖∞≤1,t

t (3.68a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (3.68b)

|hT(θ, φ)w| ≤ αt ∀(θ, φ) ∈
...
Θ ×

...
Φ, (3.68c)

where the components of h(θ, φ) are obtained with (3.45b), and
...
Θ and

...
Φ are fine

grids on the intervals [θmin, θmax] and [φmin, φmax], respectively.
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3.4.3 Uncertain LEDs Half-Intensity Angle

Assuming generalized Lambertian emission, the emission pattern of the LEDs is fully

determined by the Lambertian order

m = −1/log2(cos ζ3-dB), (3.69)

where ζ3-dB is the half-intensity angle of the LEDs. This angle is typically spec-

ified by the LED manufacturer as a nominal value in the datasheet. In practice,

however, the actual angle of each LED will deviate from the nominal value. In this

subsection, we study channel uncertainty caused by this deviation. In particular, we

assume an interval uncertainty model in which ζ3-dB ∈ [ζ3-dB
min , ζ

3-dB
max ], and allow inde-

pendent realizations of ζ3-dB for each LED. Then, we map the interval [ζ3-dB
min , ζ

3-dB
max ]

into independent interval uncertainties for each entry of hE.

We begin with rewriting the channel gain from (3.45a) as

hi(mi) = κi(mi + 1)(cos ζi)
mi , i = 1, . . . , N, (3.70a)

where

mi = −1/log2(cos ζ3-dB
i ), ζ3-dB

i ∈
[
ζ3-dB

min , ζ
3-dB
max

]
, (3.70b)

and

κi , ηRPDTa
APD

2π‖di‖2
2

Ts gc cosψi IΨE(ψi). (3.70c)

Next, we define mmin and mmax, respectively, as

mmin , −1/log2(cos ζ3-dB
max ), (3.71a)

mmax , −1/log2(cos ζ3-dB
min ). (3.71b)
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Then, in order to map the interval [mmin,mmax] into [hmin
i , hmax

i ], i = 1, . . . , N , we

first show that hi is a quasiconcave function of mi. Differentiating hi w.r.t. mi yields

h′i(mi) = κi(cos ζi)
mi(1 + (mi + 1) ln(cos ζi)). (3.72)

From (3.72), for κi 6= 0 and i = 1, . . . , N , we note that


h′i(mi) ≥ 0 for mi ≤ m?

i ,

h′i(mi) < 0 for mi > m?
i ,

where m?
i , −(1 + 1/ ln(cos ζi)). Thus, hi(mi) is a quasiconcave function with global

maximizerm?
i . Consequently, the uncertainty setHζ3-dB

E corresponding to the interval

[ζ3-dB
min , ζ

3-dB
max ] can be written as

Hζ3-dB

E =
{

[h1 . . . hN ]T : hi ∈ [hmin
i , hmax

i ], i = 1, . . . , N
}
, (3.73a)

where, for i = 1, . . . , N,

hmin
i =


hi(mmin) if m?

i > mmax,

min{hi(mmin), hi(mmax)} if m?
i ∈ [mmin,mmax],

hi(mmax) if m?
i < mmin,

(3.73b)

hmax
i =


hi(mmax) if m?

i > mmax,

hi(m
?
i ) if m?

i ∈ [mmin,mmax],

hi(mmin) if m?
i < mmin.

(3.73c)
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Define ĥ ∈ RN
+ and Ĥ ∈ RN×N

+ , respectively, as

ĥ ,
1

2
[hmax

1 + hmin
1 . . . hmax

N + hmin
N ]T, (3.74a)

Ĥ ,
1

2
Diag(hmax

1 − hmin
1 , . . . , hmax

N − hmin
N ). (3.74b)

Then, Hζ3-dB

E can be written as

Hζ3-dB

E =
{
ĥ + Ĥv : v ∈ RN , ‖v‖∞ ≤ 1

}
. (3.75)

Similar to (3.55)–(3.57), substituting withHζ3-dB

E into (3.33c), the inner problem (3.33)

can be expressed as

maximize
‖w‖∞≤1,t

t (3.76a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (3.76b)

ĥTw + ‖Ĥw‖1 ≤ αt, (3.76c)

ĥTw − ‖Ĥw‖1 ≥ −αt. (3.76d)

3.4.4 Uncertain NLoS Components

In this subsection, we consider channel uncertainty arising from the NLoS compo-

nents caused by diffuse reflections from nearby surfaces. Taking into account signal

contributions from both the LoS and NLoS paths, the channel gain can be written

as

hi = hLoS
i + hNLoS

i , i = 1, . . . , N, (3.77)
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where hLoS
i is the LoS component obtained with (3.45), and hNLoS

i is the unknown

NLoS component. We shall consider a simple multiplicative uncertainty model in

which hNLoS
i is an uncertain fraction, γi, of hLoS

i , that is

hNLoS
i = γih

LoS
i , 0 ≤ γi ≤ γmax, i = 1, . . . , N, (3.78)

where γmax , max
i

γi. The actual value of γmax depends mostly on the problem

geometry as well as the diffuse reflectivity of nearby surfaces. In practice, γmax can

be measured or predicted using numerical simulations. Simulation results reported

in [59] show γmax of about 12% (see the discussion after Figure 6 in [59]). Note,

however, that the multiplicative model in (3.78) is applicable only when the LoS

path between the ith LED and the PD exists, i.e., hLoS
i 6= 0, and is dominant. In

other words, (3.78) does not take into account the case in which the received signal

consists entirely of NLoS components, e.g., when the LoS path is blocked or outside

the receiver FoV.

From (3.77) and (3.78), the set of all possible channel gain vectors can be written

as

Hγmax

E =
{

[h1 . . . hN ]T : hi ∈ [hLoS
i , (1 + γmax)hLoS

i ], i = 1, . . . , N
}
, (3.79)

which is similar to Hζ3-dB

E in (3.73a), and thus we can proceed with the same steps

from the previous subsection.

3.4.5 Combined Uncertainties

So far we have derived separate sets corresponding to uncertainties in location, ori-

entation, half-intensity angle, and NLoS components. In practice, however, these
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uncertainties will mostly happen in combination with each other. Thus, more inclu-

sive sets that take into account the aggregate uncertainty are required. Unfortunately,

it is difficult, in general, to derive such sets or provide a unified treatment for differ-

ent combinations of uncertainties because, as we mentioned earlier, the channel gain

expression in (3.45) is a complex function of the uncertainty sources. Nevertheless,

one intuitive approach to circumvent such a difficulty is to sample the channel gain

vector over the variables with lower dimension or smaller uncertainty size. Consider,

for example, the case of uncertain location and LEDs half-intensity angle, that is

HB×ζ
3-dB

E = HBE ×H
ζ3-dB

E

=
{
h(δ, ζ3-dB) : δ ∈ B, ζ3-dB ∈ [ζ3-dB

min , ζ
3-dB
max ]N

}
,

where ζ3-dB = [ζ3-dB
1 . . . ζ3-dB

N ]T. If N > 3, i.e., the dimension of ζ3-dB is bigger than

the dimension of δ, then B can be discretized using a three-dimensional K-point grid,
...
B = {δ1, . . . , δK}, and the problem in (3.76) is modified to

maximize
‖w‖∞≤1,t

t

s.t. ĥT
Bw − εhB‖w‖2 ≥ t,

ĥT
kw + ‖Ĥkw‖1 ≤ αt, k = 1, . . . , K,

ĥT
kw − ‖Ĥkw‖1 ≥ −αt, k = 1, . . . , K,

where ĥk and Ĥk are obtained as in (3.74) using the components of hmin(δk) and

hmax(δk), for k = 1, . . . , K. The same idea can be applied to other combinations of

uncertainty sources.

Furthermore, there exist specific cases of combined uncertainties in which dis-
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cretization may not be necessary. Consider, for example, the special, but practically

relevant, case of small location and angle uncertainties. With such a combination,

the linear channel gain models considered in Sections 3.4.1.1 and 3.4.2.1 are both

applicable, and an explicit formulation of the optimization problem can be obtained

as follows. First, we rewrite the linearized channel gain expression from (3.53) as

h̄(δ,u) = h0 + J0δ

= Du + G0(I3 ⊗ u)δ

= Du + G0(δ ⊗ I3)u, (3.80)

where D is as defined in (3.62), and the entires of G0, G0 ∈ RN×9, can be in-

ferred from (B.2b)–(B.2d) in Appendix B.2. Then, the inner problem (3.33) can be

expressed as

maximize
‖w‖∞≤1,t

t (3.81a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (3.81b)

max
δ∈B,
‖u‖2≤1

|uTDTw + uT(δT ⊗ I3)GT
0w| ≤ αt. (3.81c)

The constraint in (3.81c) can be replaced by a set of second-order cone constraints,

given by

‖DTw + (vT
(k) ⊗ I3)GT

0w‖2 ≤ αt, k = 1, . . . , 8, (3.82)

where v(k) ∈ R3, k = 1, . . . , 8, are the vertices (or corners) of B.
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3.5 Numerical Examples

In this section, we provide numerical examples to verify the performance gains of

the beamformers proposed in Section 3.3 compared to conventional beamforming

schemes. We also demonstrate the design of robust beamformers in a typical VLC

scenario and investigate the resulting worst-case secrecy rate performance in conjunc-

tion with the uncertainty models devised in Section 3.4.

3.5.1 Performance Comparisons

All the results presented in this subsection are obtained under the following assump-

tions. The number of transmit elements is N = 4. The entries of hB and hE are

generated i.i.d. according to the uniform distribution over the interval [0, 1], and the

results are averaged over 1000 independent trials. The optimal and robust beam-

formers are obtained via Algorithm 3.1, where the outer maximization problem is

solved with accuracy εα = 0.2 dB and the inner problem is solved using the CVX

toolbox [85] along with the MOSEK solver [86].

3.5.1.1 Optimal versus Suboptimal Beamformers under Different

lp-norm Constraints

In this example, we compare the secrecy rate performance of the optimal beamformer

with the generalized eigenvalue (GEV) and ZF beamformers, under the premise of

perfect channel information.

Figure 3.1(a) depicts the secrecy rates (3.5) versus A/σ. These secrecy rates are

obtained with wα? , wGEV, and wα=0, corresponding to the optimal, GEV, and ZF

beamformers, respectively, subject to the constraint ‖w‖p ≤ 1, for p = 1, 2,∞. The

optimal beamformer wα? is obtained with Proposition 3.1, and the corresponding α?
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Figure 3.1: (a) Secrecy rates (3.5) obtained with the optimal, GEV, and ZF beam-
formers versus A/σ, subject to the constraint ‖w‖p ≤ 1, for p = 1, 2,∞. (b) α?
corresponding to the optimal beamformer wα? .

is shown in Figure 3.1(b). The beamformer wGEV is the generalized eigenvector of the

matrix pair (6A2hBh
T
B + 3πeσ2IN , πeA

2hEh
T
E + 3πeσ2IN) corresponding to its largest

generalized eigenvalue, where wGEV is scaled such that ‖wGEV‖p = 1, for p = 1, 2,∞.

The ZF beamformer wα=0 is obtained by solving (3.11) with α = 0.

As expected, we note from Figure 3.1(a) that the optimal beamformer provides the

best performance for all p = 1, 2,∞, however at the cost of increased computational

complexity. We also note that the secrecy rates of the optimal and GEV beamformers

coincide when p = 2. This is because GEV beamforming is optimal under the l2-norm

constraint [39]. Furthermore, we note that the ZF beamformer outperforms its GEV

counterpart under the l∞-norm constraint, and it approaches the performance of the
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Figure 3.2: Secrecy rates (3.83) of the optimal, GEV, and ZF beamformers under dif-
ferent lp-norm constraints, versus the number of eavesdroppers when 20 log10(A/σ) =
20 dB.

optimal beamformer as A/σ increases. Figure 3.1(b) shows that α? is nonincreasing

w.r.t. A/σ for all p = 1, 2,∞. Thus, the ZF beamformer is in fact asymptotically

optimal at high A/σ for all p. Moreover, it can be observed that α? decreases rapidly

as p increases. This reveals that the performance gap between the ZF and optimal

beamformers narrows quickly with increasing p at high A/σ.

Figure 3.2 shows the secrecy rate performance versus the number of eavesdrop-

pers K when 20 log10(A/σ) = 20 dB. Each eavesdropper has a single receive element,

and there is no collaboration among the eavesdroppers, i.e., centralized processing of

the received signals is not permitted. The secrecy rates are obtained with

Rs(w) =

[
1

2
log2

6A2(hT
Bw)2 + 3πeσ2

πeA2‖HT
Ew‖2

∞ + 3πeσ2

]+

, (3.83)
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where HE , [hE1 . . . hEK ]. The GEV beamformer is the generalized eigenvector of

the matrix pair (6A2hBh
T
B + 3πeσ2IN , πeA

2HEH
T
E + 3πeσ2IN) corresponding to the

largest generalized eigenvalue. The optimal beamformer is obtained with Proposi-

tion 3.1 after replacing the constraint in (3.11b) with ‖HT
Ew‖∞ ≤ αhT

Bw, and the ZF

beamformer is obtained by setting α = 0.

We note that the GEV beamformer is optimal when K = 1 and p = 2. We also

note that, as K increases, the GEV beamformer outperforms the ZF scheme even

when p 6= 2. Obviously, ZF becomes infeasible once K ≥ N .

3.5.1.2 Robust versus Non-Robust Schemes

In this example, we compare the worst-case secrecy rate performance of the robust

beamformer with non-robust schemes. We assume that the uncertainty sets for Bob’s

and Eve’s channels, respectively, are

HB =
{
ĥB + ehB : ‖ehB‖2 ≤ εhB

}
, (3.84a)

HE =
{
ĥE + ehE : ‖ehE‖∞ ≤ εhE

}
. (3.84b)

The entries of the nominal vectors ĥB and ĥE are generated at random, and the

results are averaged over 1000 trials.

In Figure 3.3, we plot the worst-case secrecy rate

Rwc
s (w) =

1

2
log2

min
hB∈HB

6A2(hT
Bw)2 + 3πeσ2

max
hE∈HE

πeA2(hT
Ew)2 + 3πeσ2

+

(3.85)

versus εhE , for εhB = 0, 0.2, 0.4, and 20 log10(A/σ) = 20 dB. We compare the perfor-

mance of the robust beamformer from Proposition 3.2 with its non-robust counterpart

from Proposition 3.1, as well as the GEV and ZF beamformers. All the beamformers
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Figure 3.3: Worst-case secrecy rates (3.85) of the robust, non-robust, GEV, and ZF
beamformers versus εhE with εhB = 0, 0.2, 0.4. All the beamformers are subject to
the amplitude constraint ‖w‖∞ ≤ 1, and 20 log10(A/σ) = 20 dB.

are subject to the amplitude constraint ‖w‖∞ ≤ 1. Substituting from (3.84a) and

(3.84b) into (3.33b) and (3.33c), respectively, the inner problem (3.33) is expressed

as

maximize
‖w‖∞≤1,t

t (3.86a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (3.86b)

ĥT
Ew + εhE‖w‖1 ≤ αt, (3.86c)

ĥT
Ew − εhE‖w‖1 ≥ −αt. (3.86d)

Then, the robust beamformer is obtained via Algorithm 3.1. On the other hand, the

non-robust, GEV, and ZF beamformers are obtained using the nominal vectors ĥB
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and ĥE.

As expected, we note from Figure 3.3 that the robust beamformer outperforms

its non-robust counterparts, and the performance gain becomes more evident with

increasing εhB and εhE .

3.5.2 Worst-Case Secrecy Rate Performance in VLC

Scenarios

In this subsection, we investigate the worst-case secrecy rate performance in a typical

VLC scenario using the robust beamformer from Proposition 3.2 along with the

uncertainty sets derived in Section 3.4.

We consider a room of size 5 × 5 × 3 m3 illuminated by 25 square-shaped

light fixtures uniformly distributed over 4 × 4 m2 of the ceiling area, as depicted in

Figure 3.4. Each fixture occupies 10× 10 cm2 and encloses 4 high-brightness 2.5-W

LEDs located at the corners of the fixture. Each LED radiates 570 mW optical power

(or radiant flux). Emitted light is “warm-white” (i.e., color temperature is between

2700 and 3000 K) with luminous efficiency 284 lm/W [10, Table 3.2]. The resulting

luminous flux is 0.570 × 284 ≈ 162 lm per LED. The nominal half-intensity angle

(measured from the center) is 60◦, and the peak (or center) luminous intensity is

51 cd. The resulting illuminance, averaged over a horizontal 4 × 4 m2 illumination

grid at height 0.85 m above the floor level, is 339 Lux. For convenience, all simulation

parameters are provided in Table 3.2.

All the following results are generated with Bob and Eve having PDs of area

APD = 1 cm2 and responsivity RPD = 100 µA/mW/cm2. The modulation index µMI

is set at 10%. The noise power is assumed to be equal everywhere with 20 log10 σ =

−114 dBm. This value is obtained with [9, Eq. (6)] using the average received DC
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Figure 3.4: Layout of the LEDs on the ceiling. There exist 25 light fixtures. Each
fixture has 10 × 10 cm2 surface area and encloses 4 LEDs located at the corners of
the fixture.

Table 3.2: Simulation parameters for the VLC scenario.
Simulation setup

Room size 5× 5× 3 m3

Number of fixtures NFix 25
Fixture size 10× 10 cm2

Number of LEDs per fixture NLED 4
Total number of LEDs N 100

LED electrical and optical characteristics
Forward voltage 3.6 V
Forward current IDC 700 mA
Input electric power 2.52 W
Optical power / electric current η 813.6 µW/mA
Output optical power (or radiant flux) Popt 569.52 mW
Luminous efficiency (warm-white color) 284 lm/W
Luminous flux 161.74 lm
Luminous efficacy 64.18 lm/W
Nominal half-intensity angle ζ3-dB 60◦

Peak (or center) luminous intensity 51.48 cd
Modulation index µMI 10%

Optical receiver characteristics
Gain of the optical filter Ts 1
Lens refractive index nr 1.5
PD responsivity RPD 100 µA/mW/cm2

PD surface area APD 1 cm2
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optical power (averaged over the horizontal plane at height 0.85 m) with FoV Ψ = 70◦

and receiver bandwidth of 10 MHz. All location coordinates are specified in meters

w.r.t. the room center at the floor level.

In all scenarios, we assume that Bob is located at (xB, yB, zB) = (1.7173, 0.7496, 0.85)

with orientation (θB, φB) = (15◦, 240◦) and FoV ΨB = 70◦. Furthermore, we use the

spherical set in (3.46) to model uncertainty in Bob’s channel, where the entries of ĥB

are obtained with (3.45), i.e., ĥB = h(xB, yB, zB, θB, φB,ΨB), and εhB = 0.1‖ĥB‖2.

The nominal estimate ĥB is fixed and assumed to be known to Alice via feedback

from Bob. Parameters relevant to Eve are provided in the caption of each figure.

In all cases, for the sake of illustration, we plot the worst-case secrecy rate versus α

using (3.44), where 20 log10 α = −50,−49, . . . , 0 dB. We also include the case of

certain Eve’s channel for comparison purposes. For each α, we use the CVX tool-

box [85], in conjunction with the MOSEK solver [86], to solve (3.33) using the relevant

uncertainty set HE from Section 3.4.

3.5.2.1 Uncertain Eavesdropper’s Location

Figure 3.5 shows the worst-case secrecy rate performance with uncertain Eve’s lo-

cation. We include three groups of curves corresponding to three uncertainty re-

gions, B, of different volumes. All the regions are rectangular and centered at

(x, y, z) = (−1.25, 0, 0.85). Four curves are generated for each B corresponding to

the combinations of two methods to approximate HBE and two methods to modulate

the LEDs. We refer to the case in which the affine approximation (3.53) is used

as “Linearized”, and to the case in which B is discretized as “Discretized”. For the

“Linearized” case, B is divided into identical boxes, each of volume 2lx × 2ly × 2lz =

0.5×0.5×0.25 m3, then (3.53) is applied to each box and wα is obtained with (3.57).

For the “Discretized” case, HBE is approximated by sampling the channel gain in the
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Figure 3.5: Worst-case secrecy rate (3.44) versus α with uncertain Eve’s location.
θE = 0 and ΨE = 70◦.

three-dimensional space using a 10×10 ×10 cm3 grid, and wα is obtained with (3.59).

Furthermore, we refer to the case in which each LED is modulated independently as

“LEDs”, and to the case in which all LEDs in one fixture are modulated with the

same current signal as “Fixtures”.

As expected, we note from Figure 3.5 that Rwc
s decreases as the uncertainty about

Eve’s location increases. For the case of certain Eve’s location, we can see that the ZF

beamformer is practically optimal. In addition, Figure 3.5 reveals that independent-

LED modulation does not provide much improvement, if any, compared to the more

practical and less expensive “Fixture” modulation scheme. This is also expected since

LEDs in the same fixture are relatively close to each other and have almost identical

channel gains. Figure 3.5 also validates the affine approximation in (3.53) when lx,

ly, and lz are chosen properly.
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3.5.2.2 Uncertain Eavesdropper’s Orientation

In Figure 3.6, we plot the worst-case secrecy rate performance with uncertain Eve’s

orientation. We also investigate the impact of Eve’s FoV on the secrecy rate. The

curve “Small θmax” is generated withwα obtained from (3.67), whereas all other curves

are obtained with (3.68) after discretizing the intervals Θ = [0, θmax] and Φ = [0, 360◦]

using ∆θ = ∆φ = 4◦.

For the case θmax = 0, i.e., no uncertainty about Eve’s orientation, we can see

that ZF is essentially optimal. We also note that the curve “Small θmax” almost

coincides with the curve corresponding to ΨE = 90◦ and θmax = 30◦. Thus, the

linear channel gain model that leads to the problem in (3.67) is indeed valid for small

angle variations and wide FoV. Figure 3.6 also reveals that reducing Eve’s FoV has a

negative impact on the secrecy rate performance, which can be explained as follows.

First, we recall from (1.5) that reducing the FoV of the concentrator increases its gain

(inside the FoV). Second, the limited FoV of Eve’s receiver, in conjunction with her

ability to adjust orientation, increases the space of her received signal as measured

by the number of nonzero singular values of the matrix H
...
U
E whose columns are the

elements of the discretized uncertainty setH
...
U
E . Obviously, increasing the signal space

available to Eve makes it more difficult for Alice to suppress Eve’s signal, i.e., more

of the degrees of freedom available to Alice are exploited, and thus the secrecy rate

is reduced.
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Figure 3.6: Worst-case secrecy rate (3.44) versus α with uncertain Eve’s orientation.

xE = −1.25, yE = 0, zE = 0.85, θE ∈ [0, θmax], and φE ∈ [0, 360◦].

3.5.2.3 Uncertain Eavesdropper’s Location and LEDs Half-Intensity

Angle

Figure 3.7 depicts the secrecy performance with uncertain Eve’s location and LEDs

half-intensity angle. We consider half-intensity angle uncertainties up to ±20◦ around

the nominal value of 60◦, and the location uncertainty region

{(xE, yE) : xE ∈ [−2.25,−0.25], yE ∈ [−2.5, 2.5]}

is discretized using ∆x = ∆y = 20 cm. As can be seen, even relatively small half-

intensity angle deviations, e.g., ±5◦, can significantly reduce the worst-case secrecy

rate.
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Figure 3.7: Worst-case secrecy rate (3.44) versus α with uncertain Eve’s location and

LEDs half-intensity angle ζ3-dB
i , i = 1, . . . , N . xE ∈ [−2.25,−0.25], yE ∈ [−2.5, 2.5],

zE = 0.85, θE = 0, and ΨE = 70◦.

3.5.2.4 Uncertain Eavesdropper’s Location and NLoS Components

In Figure 3.8, we show the worst-case secrecy rate performance with uncertain Eve’s

location and NLoS components. Similar to the results in Figure 3.7, the location

uncertainty region is discretized using ∆x = ∆y = 20 cm. We investigate the per-

formance when the strength of the NLoS components can go up to γmax = 60% of

the LoS path. Note that γmax = 60%, or even 40%, is a too pessimistic or too con-

servative assumption. In typical scenarios with only diffuse reflections, i.e., no large

windows or mirrors, γmax will probably be less than 20% (see, e.g., Figure 4 in [87]

or the discussion after Figure 6 in [59]).
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Figure 3.8: Worst-case secrecy rate (3.44) versus α with uncertain Eve’s location and

NLoS components. xE ∈ [−2.25,−0.25], yE ∈ [−2.5, 2.5], zE = 0.85, θE = 0, and

ΨE = 70◦.

3.6 Conclusions

In this chapter, we studied the design of transmit beamformers for secrecy rate max-

imization in MISO wiretap channels subject to amplitude constraints. Such con-

straints are typically difficult to handle and, because of that, they are often overlooked

in favor of the more convenient total power constraint.

We tackled the nonconvex secrecy rate maximization problem by transforming

it into an equivalent quasiconvex line search problem. Our approach is conceptu-

ally simple but provably optimal for general lp-norm constraints, and the equivalent

problem itself is practically meaningful. Furthermore, our approach proved helpful in
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tackling the more complex robust design problem with uncertain channel information.

We used the VLC scenario as a practical example in which reasonable estimates

of the eavesdropper’s channel can be obtained without feedback from the (passive)

eavesdropper. Numerical results show that the excess degrees of freedom provided by

the large number of LEDs in typical VLC transmitters can be effectively utilized to

compensate for the lack of accurate information regarding the eavesdropper’s channel.

In the next chapter, we consider the more general two-user MISO BC-CM model.
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Chapter 4

Linear Precoding for the Two-User

MISO Broadcast Channel with

Confidential Messages

4.1 Introduction

In the previous chapter, we studied the design of transmit beamformers for the MISO

wiretap channel under the amplitude constraint. In such a scenario, the transmitter

had one secret message for the intended receiver (Bob), while the other receiver (Eve)

acted only as an eavesdropper. In this chapter, we consider the more general scenario

in which the transmitter has two independent secret messages, one intended for each

user, and each message should be kept confidential from the other user. Such a model

is referred to as the two-user broadcast channel with confidential messages (BC-CM).

Note that the two-user BC-CM reduces to the wiretap channel when the information

rate to one of the users is set to zero.

Extension of the wiretap channel to the two-user BC-CM was considered in [47]

wherein the authors derived inner and outer bounds on the secrecy capacity region

of the discrete memoryless BC-CM. Achievability of the secrecy capacity region of

the two-user MISO BC-CM was established in [48] using the so-called secret dirty-
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paper coding (S-DPC) scheme under the total (average) power constraint. This coding

scheme was extended in [49] to the MIMO BC-CM, and it was shown that the secrecy

capacity region is rectangular under the matrix power (or input covariance matrix)

constraint. Under the total power constraint, however, the secrecy capacity region can

be only found by performing an exhaustive search over the set of all input covariance

matrices that satisfy the total power constraint. Due to the complexity of S-DPC

and the lack of a simple solution to the practical case of total power constraint,

the authors in [88] proposed a low-complexity linear precoding scheme for the two-

user MIMO BC-CM based on generalized singular value decomposition. The work

in [89] also considered the secrecy rate region of the two-user MIMO BC-CM under

the total power constraint via formulating a nonconvex weighted secrecy sum rate

maximization problem. An iterative algorithm based on a block successive lower-

bound maximization method was proposed to solve such a nonconvex problem.

In this chapter, we study the design of linear precoders for the two-user MISO

BC-CM. Our treatment will not be limited to VLC channels in the sense that we

design the precoders not only subject to amplitude constraints, but also subject to

total and per-antenna power constraints. Note that, in this chapter, we use the term

“antenna” to designate general transmit and receive elements. In a VLC system, the

transmit antenna is an LED and the receive antenna is a PD.

Under amplitude constraints, the secrecy capacity region of the two-user MISO

BC-CM is unknown, and thus our motivation to find achievable secrecy rate regions

based on linear precoding is clear. However, we also consider linear precoding for

the cases of total and per-antenna power constraints, wherein S-DPC is known to be

optimal, for the following reasons:

1) Our approach to formulate and solve the problem of linear precoder design
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is equally applicable to all the aforementioned constraints. In other words,

total and per-antenna power constraints can be considered without additional

difficulty.

2) More importantly, the case of total power constraint is the only case in which

the secrecy capacity region is precisely known and has been characterized in

closed form. Therefore, it sets a benchmark that can be used to quantify the

performance loss incurred by using a suboptimal linear precoding scheme, and

also to validate our approach to solve the precoder design problem when the

total power constraint is considered.

3) Finally, for the case of per-antenna power constraint, it seems that the secrecy

capacity region can be only found via an exhaustive search over the set of all

input covariance matrices that satisfy the per-antenna power constraint, which

entails high computational complexity. Even when it is found, the S-DPC

scheme utilized to achieve the secrecy capacity region is difficult to implement.

Therefore, our proposed linear precoding scheme provides a viable solution with

lower implementation complexity for the case of per-antenna power constraint.

After fixing the input distribution, our goal in this chapter is to find linear pre-

coders that achieve the boundary points of the secrecy rate region. To this end, we

formulate the precoder design problem as a weighted secrecy sum rate maximization

problem, subject to any of the aforementioned constraints. The resulting problem,

however, has a fractional objective function, making it nonconvex and difficult to

solve. To circumvent such a difficulty, we first simplify the objective function using a

lower bound on the weighted secrecy sum rate. Then, we transform the problem into

an equivalent one having only two optimization variables. We show that the equiv-

alent problem is more tractable and can be solved iteratively using the subgradient
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method. In each iteration, we solve a convex inner optimization problem to update

the value of the outer problem, and also to obtain the subgradient vector that spec-

ifies the search direction for the next iteration. We provide a condition under which

the obtained solution is guaranteed to be globally optimal. Furthermore, we show

that the inner problem can be easily modified to take into account channel uncer-

tainty caused by limited feedback from both receivers. This leads us to the design of

robust linear precoders that guarantee a certain worst-case secrecy rate performance.

To the best of our knowledge, the work in this chapter is the first to consider

linear precoding for the two-user MISO BC-CM, subject to per-antenna power or

amplitude constraints. Furthermore, it is the first work to consider robust precoding,

for the same channel, by taking channel uncertainty into account.

The remainder of this chapter is organized as follows. The system model, pre-

coding scheme, and transmit constraints are described in detail in Section 4.2. In

Section 4.3, we solve the precoder design problem under the premise of perfect channel

information. In Section 4.4, we extend the design problem to its robust counterpart

by considering uncertainty in channel information. In Section 4.5, we provide our

numerical examples to illustrate the achievable secrecy rate regions of the proposed

precoder. We conclude the chapter in Section 4.6.

4.2 System Model

In this section, we describe the channel model, the linear precoding scheme, the

achievable secrecy rate regions, and the constraints imposed on the transmitted signal

vector.
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4.2.1 The Two-User MISO BC-CM

We study the problem of secret communication between one transmitter and two

independent receivers over the Gaussian MISO broadcast channel. The transmitter

has N ≥ 2 antennas, and each receiver has a single antenna. In each communication

session, the transmitter has two independent confidential messages, one intended for

each receiver. The two messages are simultaneously broadcasted, and the transmitter

shall ensure that each message can be reliably decoded by its intended receiver, and

is kept confidential from the other one.

We assume narrow-band transmission over a quasi-static, i.e., non-fading, Gaus-

sian broadcast channel. The transmitted and received baseband signals, as well as

the channel gain vectors, are real-valued, i.e., the carrier phase is not modulated.

This model is typical for intensity-modulation (IM) channels, including VLC chan-

nels, and is also applicable to RF systems utilizing amplitude modulation schemes,

such as amplitude-shift keying (where the baseband data symbols are real-valued).

Under these assumptions, the signals observed by the two receivers can be expressed

as

y1(t) = hT
1 x(t) + n1(t), (4.1a)

y2(t) = hT
2 x(t) + n2(t), (4.1b)

where x(t) ∈ RN is the transmitted signal vector, h1 ∈ RN and h2 ∈ RN are the

channel gain vectors, and n1(t) and n2(t) are i.i.d. Gaussian noise samples with

variance σ2. We assume that h1 and h2 are linearly independent to ensure that the

MISO broadcast channel in (4.1) is nondegraded.

Let X be an input random vector that satisfies the constraints on the channel
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input, and Y1 and Y2 be the output random variables. Also letU 1 andU 2 be auxiliary

random variables. Then, it was shown in [47, Theorem 4] (see also [48, Lemma 2])

that for any joint PDF p(u1,u2,x, y1, y2) that can be written as13

p(u1,u2) p(x|u1,u2) p(y1, y2|x),

the secrecy rate pair (R1, R2) satisfying

0 ≤ R1 ≤ I(U 1;Y1)− I(U 1;Y2|U 2)− I(U 1;U 2), (4.2a)

0 ≤ R2 ≤ I(U 2;Y2)− I(U 2;Y1|U 1)− I(U 1;U 2) (4.2b)

is achievable for the two-user MISO BC-CM in (4.1). Achievability of the rate pair

in (4.2) was proved based on a double-binning scheme [48, Section IV]. Thus, given

a joint PDF p(u1,u2,x), the achievable secrecy rate region can be determined us-

ing (4.2). On the other hand, given a certain constraint on the channel input X,

it remains unclear how to choose p(u1,u2,x) such that the secrecy rate region is

maximized. For the case of total power constraint, it was shown that the secrecy

capacity region of the MISO BC-CM in (4.1) can be characterized in closed form [48,

Theorem 1], and the boundary points are achievable with the S-DPC scheme. This

scheme, however, is difficult to implement in practice [88]. In addition, with per-

antenna power constraints, there is no closed-form characterization, and apparently

the secrecy capacity region can be only found via an exhaustive search over all in-

put covariance matrices that satisfy the per-antenna power constraint. Furthermore,

the S-DPC scheme proposed in [48] does not seem to be applicable to the case with

amplitude constraints. This motivates us to consider the linear precoding scheme
13In other words, (U1,U2)→X → (Y1, Y2) forms a Markov chain.
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described in the next subsection.

4.2.2 Linear Precoding

We study the secrecy performance of the two-user MISO BC-CM in (4.1) when the

transmitted signal vector is constructed as

x(t) = w1s1(t) + w2s2(t) = Ws(t), (4.3)

where w1 ∈ RN and w2 ∈ RN are fixed beamformers, s1(t) ∈ R and s2(t) ∈ R are

independent symbols (i.e., secrecy codewords) intended for Users 1 and 2, respec-

tively, W = [w1 w2] is termed as the precoding matrix, or simply the precoder, and

s(t) = [s1(t) s2(t)]T is the vector of transmitted symbols. Although suboptimal, the

precoding scheme in (4.3) is simple to implement. Furthermore, it will enable us to

handle per-antenna power or amplitude constraints.

Substituting (4.3) back into (4.1), the signals received at both users can be written

as

y1(t) = hT
1 w1s1(t) + hT

1 w2s2(t) + n1(t), (4.4a)

y2(t) = hT
2 w1s1(t) + hT

2 w2s2(t) + n2(t). (4.4b)

Let S1 and S2 denote the random variable counterparts of s1(t) and s2(t), respectively.

Then, the transmission scheme in (4.3) corresponds to choosing

U 1 = w1S1, U 2 = w2S2, and X = U 1 +U 2. (4.5)

Substituting from (4.5) into (4.2), the achievable secrecy rate pair in (4.2) can be
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written as

0 ≤ R1 ≤ I(S1;Y1)− I(S1;Y2|S2), (4.6a)

0 ≤ R2 ≤ I(S2;Y2)− I(S2;Y1|S1). (4.6b)

Note that joint encoding is not utilized in (4.5), i.e., S1 and S2 are independent, and

thus I(U 1;U 2) = I(S1;S2) = 0.

4.2.3 Transmit Constraints and Secrecy Rate Regions

In this subsection, we describe the transmit constraints considered in the chapter,

and derive closed-form expressions for the corresponding secrecy rate pairs (R1, R2).

4.2.3.1 Total Average Power Constraint

The most common constraint imposed on the input of Gaussian channels is the total

(or sum) average power constraint. It is mathematically convenient, and often leads

to closed-form solutions. Furthermore, it provides much insight into the performance

of the communication system for a given power budget. Mathematically, a total

average power constraint PTot requires the transmitted codewords X to satisfy the

inequality

Tr(E{XXT}) ≤ PTot, (4.7)

where E{XXT} is the transmit covariance matrix. An obvious way to comply with

the transmission scheme in (4.3) and satisfy the constraint in (4.7) is to choose S1

and S2 to be i.i.d. standard Gaussian random variables, that is

S1 ∼ N (0, 1), S2 ∼ N (0, 1), (4.8a)

112



Chapter 4. Linear Precoding for the Two-User MISO BC-CM

and to ensure that the precoder W satisfies the inequality

‖W‖2
F ≤ PTot. (4.8b)

Note that our choice of equal variances for the distributions of S1 and S2 (both have

unity variance) involves no loss of generality because the power allocated to each user

can still be adjusted from the entries of the precoding matrix W.

Now, for a given W, and with Gaussian codewords S1, S2 ∼ N (0, 1), the mutual

information terms in (4.6a) are simply calculated as

I(S1;Y1) =
1

2
log2

(
1 +

(hT
1 w1)2

(hT
1 w2)2 + σ2

)
, (4.9a)

I(S1;Y2|S2) =
1

2
log2

(
1 +

(hT
2 w1)2

σ2

)
, (4.9b)

where information is measured in (bits/sec/Hz). Similar expressions can be obtained

for the corresponding terms in (4.6b), and thus we end up with the achievable secrecy

rate pair

R1 =
1

2

[
log2

(
1 +

(hT
1 w1)2

(hT
1 w2)2 + σ2

)(
σ2

(hT
2 w1)2 + σ2

)]+

, (4.10a)

R2 =
1

2

[
log2

(
1 +

(hT
2 w2)2

(hT
2 w1)2 + σ2

)(
σ2

(hT
1 w2)2 + σ2

)]+

. (4.10b)

4.2.3.2 Per-Antenna Average Power Constraint

Despite its simplicity, the total average power constraint (4.7) is often not sufficient

to capture practical limitations that arise from implementation constraints. For ex-
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ample, the so-called digital beamforming14 scheme requires a dedicated transmit RF

chain for each antenna element15. Clearly, each of these chains has its own power

budget. Thus, a more realistic approach to model power limitations at the transmit-

ter is to impose an individual power constraint on each RF chain, or, equivalently,

on each antenna element, in addition to the total power constraint. A per-antenna

average power constraint Pi, i = 1, . . . , N, can be expressed as

E{X2
i } ≤ Pi, i = 1, . . . , N, (4.11)

where Xi is the ith entry of X. Depending on the values of PTot and P1, . . . , PN , one

of the constraints in (4.7) and (4.11) may become redundant. In particular:

i) If
∑N

i=1 Pi ≤ PTot, the per-antenna power constraint (4.11) becomes dominant

and (4.7) can be ignored.

ii) If Pi ≥ PTot for all i ∈ {1, . . . , N}, then (4.11) is obviously redundant and the

total power constraint (4.7) is sufficient.

iii) If neither of the above two cases holds, both (4.7) and (4.11) can be active, and

thus they should be taken into account.

Similar to the case of dominant total average power constraint, we let the code-

words S1 and S2 be i.i.d. standard Gaussian random variables. Then, in order to

satisfy the constraint in (4.11), the entires of W should be chosen such that

w2
1i + w2

2i ≤ Pi, i = 1, . . . , N, (4.12)
14In fact, all the transmission schemes considered in this thesis fall into the category of digital (or

baseband) beamforming.
15Such a constraint is relaxed in the so-called hybrid beamforming scheme where the number of

RF chains can be smaller than the number of antennas.
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where w1i and w2i are the ith entries of w1 and w2, respectively. Since S1 and S2

are Gaussian, the secrecy rate pair expressions in (4.10) remain valid for any W that

satisfies (4.12).

4.2.3.3 Per-Antenna Amplitude Constraint

By now, we already know that amplitude constraints typically arise in the design of

IM systems. In such a case, the input signal must satisfy the amplitude constraint

|Xi| ≤ Ai, i = 1, . . . , N. (4.13)

This constraint obviously renders the Gaussian distribution infeasible for the channel

input. Nevertheless, (4.13) can be fulfilled by choosing the codewords S1 and S2

according to the uniform distribution over the interval [−1, 1], i.e.,

S1 ∼ U [−1, 1], S2 ∼ U [−1, 1], (4.14a)

and choosing the entries of the precoder W such that they satisfy the constraint

|w1i|+ |w2i| ≤ Ai, i = 1, . . . , N. (4.14b)

Unlike the Gaussian input distribution in (4.8a), the uniform distribution in (4.14a),

along with Gaussian noise, do not immediately lead to closed-form expressions for

I(S1;Y1) − I(S1;Y2|S2) in (4.6a), or the similar terms in (4.6b). Nevertheless, we

can lower-bound these terms to obtain closed-form expressions for the secrecy rate

pair (R1, R2), as follows.
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First, we rewrite I(S1;Y1)− I(S1;Y2|S2) as

h(Y1)− h(Y1|S1)− h(Y2|S2) + h(Y2|S1, S2). (4.15)

Using the entropy power inequality [35, Theorem 17.7.3], the differential entropy

h(Y1) can be lower-bounded as

h(Y1) = h(hT
1 w1S1 + hT

1 w2S2 +N1)

≥ 1

2
log2

(
22h(hT

1 w1S1) + 22h(hT
1 w2S2) + 22h(N1)

)
=

1

2
log2

(
4(hT

1 w1)2 + 4(hT
1 w2)2 + 2πeσ2

)
. (4.16)

On the other hand, the conditional differential entropy h(Y1|S1) can be upper bounded

by the differential entropy of a Gaussian random variable having equal variance, that

is

h(Y1|S1) = h(hT
1 w2S2 +N1)

≤ 1

2
log2

(
2πe

(
1
3
(hT

1 w2)2 + σ2
))
. (4.17)

Similarly, we have

h(Y2|S2) ≤ 1

2
log2

(
2πe

(
1
3
(hT

2 w1)2 + σ2
))
. (4.18)

We also have

h(Y2|S1, S2) = h(N2) =
1

2
log2

(
2πeσ2

)
. (4.19)
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Substituting (4.16)-(4.19) back into (4.15) yields the secrecy rate expression

R1 =

[
1

2
log2

(
4(hT

1 w1)2 + 4(hT
1 w2)2 + 2πeσ2

)
σ2

2πe
(

1
3
(hT

1 w2)2 + σ2
) (

1
3
(hT

2 w1)2 + σ2
)]+

. (4.20a)

Similarly, we have

R2 =

[
1

2
log2

(
4(hT

2 w2)2 + 4(hT
2 w1)2 + 2πeσ2

)
σ2

2πe
(

1
3
(hT

2 w1)2 + σ2
) (

1
3
(hT

1 w2)2 + σ2
)]+

. (4.20b)

4.3 Precoder Design with Perfect Channel

Information

In this section, we focus on the design of the precoder W under the assumption of

perfect channel information. We begin with the case of total and per-antenna average

power constraints. Then, we show in Section 4.3.5 that the problem formulation and

solution method can be easily modified to handle per-antenna amplitude constraints.

4.3.1 Problem Formulation

By designing W we mean finding the set of precoding matrices that achieve the

boundary of the secrecy rate region characterized by (R1, R2). Assuming total and

per-antenna average power constraints, the design problem can be expressed by the
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two-objective optimization problem

maximize
W

(R1, R2) (4.21a)

s.t. ‖W‖2
F ≤ PTot, (4.21b)

w2
1i + w2

2i ≤ Pi, i = 1, . . . , N, (4.21c)

where partial ordering and maximization of the pair (R1, R2) are w.r.t. the nonnega-

tive orthant R2
+ [80, Section 4.7.5]. In the context of multi-objective optimization, a

feasible matrix W that achieves a secrecy rate pair on the boundary of the set of all

achievable rate pairs is referred to as Pareto optimal, and the corresponding secrecy

rate pair (R1, R2) is a Pareto optimal pair. Thus, solving (4.21) means finding Pareto

optimal matrices W.

The standard approach towards solving (4.21) is to scalarize the objective via a

weighted sum [80, Section 4.7.5], that is to replace (R1, R2) with ρ1R1 + ρ2R2, where

the weights ρ1 ≥ 0 and ρ2 ≥ 0 are free parameters. Different Pareto optimal points

can be obtained by adjusting the relative weight ρ1/ρ2 to different values between 0

and ∞. This can be carried out by choosing16 ρ1 = ρ and ρ2 = 1− ρ, where ρ is a

free parameter taking values in the interval [0, 1]. Thus, for any ρ ∈ [0, 1], we have

the weighted secrecy sum rate maximization problem

maximize
W

Rwsum(ρ) (4.22a)

s.t. ‖W‖2
F ≤ PTot, (4.22b)

w2
1i + w2

2i ≤ Pi, i = 1, . . . , N, (4.22c)

16Although constraining ρ1 and ρ2 to sum to 1 looks arbitrary here, we will need this restriction
in the proof of Proposition 4.2, particularly to ensure that the optimization problem in (C.6) is
convex.
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where

Rwsum(ρ) , ρR1 + (1− ρ)R2 (4.22d)

is the weighted secrecy sum rate. It is clear that solving (4.22) with ρ = 1 corresponds

to finding the maximum achievable secrecy rate for User 1 when User 2 is treated as

an eavesdropper, while ρ = 0 yields the maximum achievable secrecy rate for User 2.

Ideally we would like to solve (4.22) with the objective Rwsum calculated using the

rate expressions in (4.10). Using these expressions, however, would make (4.22) very

difficult to solve, except for the special cases ρ = 0 and ρ = 1. In order to make the

problem tractable, we will simplify the objective of (4.22) by replacing Rwsum with

the lower bound R̂wsum, given by

R̂wsum(ρ) = ρR̂1 + (1− ρ)R̂2, (4.23)

where, for hT
1 w1 6= 0 and hT

2 w2 6= 0, R̂1 and R̂2, respectively, are given by

R̂1 = log2

∣∣hT
1 w1

∣∣σ
((hT

1 w2)2 + σ2)
1
2 ((hT

2 w1)2 + σ2)
1
2

, (4.24a)

R̂2 = log2

∣∣hT
2 w2

∣∣σ
((hT

2 w1)2 + σ2)
1
2 ((hT

1 w2)2 + σ2)
1
2

. (4.24b)

From (4.10) and (4.24), it is clear that17 R̂1 < R1 and R̂2 < R2. Thus, for any

ρ ∈ [0, 1], we have the inequality R̂wsum < Rwsum. Substituting from (4.24) into (4.23),

we obtain

R̂wsum(ρ) = log2

∣∣hT
1 w1

∣∣ρ ∣∣hT
2 w2

∣∣1−ρ σ
((hT

2 w1)2 + σ2)
1
2 ((hT

1 w2)2 + σ2)
1
2

. (4.25)

Note that R̂wsum is a tight lower bound for Rwsum in (4.22d) when the SNR at both

17The inequality R̂1 < R1 results from dropping the term 1 in the logarithm in (4.9a) and dropping
the operator [·]+ from the rate expression in (4.10a). In a similar way, it can be shown that R̂2 < R2.
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receivers is sufficiently high. However, unlike Rwsum, whose nonnegativity is ensured

by the [·]+ operators in (4.10), R̂wsum can be negative since R̂1 and/or R̂2 can be

negative when the corresponding SNR is sufficiently low. Nonetheless, maximizing

R̂wsum is still beneficial even when its optimal value ends up to be negative because

the maximization problem is only used for the design of W. The achievable secrecy

rate pair, however, is obtained by substituting W into (4.10), i.e., the achievable rate

pair is guaranteed to be nonnegative. Now, we formulate our design problem as18

maximize
W

ln
(hT

1 w1)ρ(hT
2 w2)1−ρ

((hT
2 w1)2 + σ2)

1
2 ((hT

1 w2)2 + σ2)
1
2

(4.26a)

s.t. ‖W‖2
F ≤ PTot, (4.26b)

w2
1i + w2

2i ≤ Pi, i = 1, . . . , N. (4.26c)

Note that the formulation in (4.26) implicitly adds the two constraints hT
1 w1 ≥ 0

and hT
2 w2 ≥ 0. These additional constraints cause no loss in performance because

an optimal w1 that results in negative hT
1 w1 can always be replaced with −w1 with-

out reducing the optimal value or violating the constraints on W. In a similar way,

the implicit constraint hT
2 w2 ≥ 0 can be justified. Note also that, unlike the ex-

pressions in (4.24), the formulation in (4.26) does not exclude the cases hT
1 w1 = 0

and hT
2 w2 = 0 as the objective function remains well defined even when optimal W

leads to hT
1 w1 = 0 or hT

2 w2 = 0. For example, the solution w1 = 0 (which results in

hT
1 w1 = 0) would be optimal only when19 ρ = 0, resulting in (hT

1 w1)ρ = 00 = 1.

In the next subsection, we shall explain in detail our approach to solve (4.26).
18Using the natural logarithm in the objective of (4.26) (instead of the logarithm to base 2) will

slightly simplify the notation when differentiation becomes involved.
19This is true because we assume that h1 and h2 are linearly independent. On the other hand,

if h1 and h2 are collinear and ‖h1‖2 ≤ ‖h2‖2, then w1 = 0 would be optimal for all ρ ∈ [0, 1],
i.e., User 1 cannot achieve positive secrecy rates and should always be treated as an eavesdropper
because its channel h1 is degraded.
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4.3.2 The Outer Problem

Using the auxiliary variables δ1 ≥ 0 and δ2 ≥ 0, the problem in (4.26) can be expressed

as

maximize
W,δ1,δ2

ln
(hT

1 w1)ρ(hT
2 w2)1−ρ

(δ2
1 + σ2)

1
2 (δ2

2 + σ2)
1
2

(4.27a)

s.t. |hT
2 w1| ≤ δ1, |hT

1 w2| ≤ δ2, (4.27b)

‖W‖2
F ≤ PTot, (4.27c)

w2
1i + w2

2i ≤ Pi, i = 1, . . . , N. (4.27d)

Let f(δ1, δ2) denote the optimal value of the perturbed problem

maximize
W

ρ ln(hT
1 w1) + (1− ρ) ln(hT

2 w2) (4.28a)

s.t. |hT
2 w1| ≤ δ1, |hT

1 w2| ≤ δ2, (4.28b)

‖W‖2
F ≤ PTot, (4.28c)

w2
1i + w2

2i ≤ Pi, i = 1, . . . , N. (4.28d)

Then, the problem in (4.27) can be written as

maximize
δ1,δ2≥0

ϕ(δ1, δ2), (4.29a)

where

ϕ(δ1, δ2) , f(δ1, δ2)− 1

2
ln
(
(δ2

1 + σ2)(δ2
2 + σ2)

)
. (4.29b)

Now, we can see that solving the design problem in (4.26) entails solving (4.28)

and (4.29) iteratively. For obvious reasons, we shall refer to (4.29) as the outer
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problem, and to (4.28) as the inner problem.

The inner problem is clearly convex, and thus can be efficiently solved using

standard convex optimization packages. On the other hand, the outer problem is

nonconvex because the objective function ϕ(δ1, δ2) is not concave, in general. Nev-

ertheless, the following two propositions reveal that ϕ(δ1, δ2) has a special structure

that makes the outer problem solvable, i.e., its global maximum can be efficiently

obtained, when a certain condition is satisfied. Even when such a condition is not

satisfied, these propositions still give us guidelines for approaching the outer problem.

Proposition 4.1. The objective function of the outer problem (4.29) is concave when

restricted inside the region {(δ1, δ2) : 0 ≤ δ1 ≤ σ, 0 ≤ δ2 ≤ σ}.

Proof: The proof is fairly straightforward. The first term in (4.29b), i.e., f(δ1, δ2),

is concave for all δ1, δ2 ≥ 0 because the perturbed problem in (4.28) is convex [80,

Section 5.6.1]. On the other hand, the second term −1

2
ln ((δ2

1 + σ2)(δ2
2 + σ2)) is

concave only when 0 ≤ δ1 ≤ σ and 0 ≤ δ2 ≤ σ (this can be easily verified after writing

down the Hessian matrix). Thus, ϕ(δ1, δ2) is concave when δ1, δ2 ≤ σ. �

Proposition 4.2. The objective function of the outer problem (4.29) is quasiconcave

when restricted to any line (in the nonnegative orthant R2
+) passing through the origin.

The proof, which is provided in Appendix C.1, is based on the observation that

the first term in (4.29b) is nondecreasing (w.r.t. R2
+), while the second term is

monotonically decreasing20. Note that the condition in Proposition 4.2 is weaker

than stating that ϕ(δ1, δ2) is quasiconcave, as the latter condition would require ϕ to

be quasiconcave when restricted to any line in R2
+.

Combining Propositions 4.1 and 4.2 immediately yields the following conclusion:
20See [80, Section 3.6.1] for the notion of monotonicity w.r.t. a generalized inequality on the

nonnegative orthant.
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Corollary 4.1. For the outer problem (4.29), any local maximum inside the region

{(δ1, δ2) : 0 ≤ δ1 ≤ σ, 0 ≤ δ2 ≤ σ} is a global maximum.

Corollary 4.1 suggests that we start searching for the solution of (4.29) inside

the region δ1, δ2 ≤ σ. If the search algorithm terminates at δ? = (δ?1, δ
?
2) such that

δ?1, δ
?
2 ≤ σ, then δ? is guaranteed to be the (globally) optimal solution of (4.29). On

the other hand, if δ?1 > σ or δ?2 > σ, then we will accept δ? as a (possibly) suboptimal

solution. It is worth to mention that the numerical results show that ϕ(δ1, δ2) is a

unimodal function with only one maximum, for all δ1, δ2 ≥ 0, and no other stationary

points. However, it is difficult, in general, to rigorously prove that a multivariable

function is unimodal, beyond concavity or quasiconcavity. Therefore, we can only

conjecture that ϕ(δ1, δ2) is unimodal (for all δ1, δ2 ≥ 0), and consequently any local

maximum is global.

Now, we have to choose a reasonable search algorithm to solve (4.29). Since the

objective function ϕ(δ1, δ2) is differentiable almost everywhere21, a natural choice

for the search algorithm is the subgradient method in which the subgradient vectors

are used as the search directions [90, 91]. Let the vector ∇subf(δ1, δ2) ∈ R2
+ be a

subgradient22 of f at (δ1, δ2), where the two entries of ∇subf are both nonnegative

since f is nondecreasing w.r.t. δ1 and δ2. Then, the corresponding subgradient of ϕ

is given by

∇subϕ(δ1, δ2) = ∇subf(δ1, δ2)−
[

δ1

δ2
1 + σ2

δ2

δ2
2 + σ2

]T

. (4.30)

Before we proceed to the details of the search algorithm, we need to find ∇subf

in order to calculate the search direction ∇subϕ at any (δ1, δ2). This will be our goal

in the next subsection.
21This is because f(δ1, δ2) is not necessarily differentiable (everywhere). Nevertheless, since

f(δ1, δ2) is concave, it is differentiable almost everywhere.
22The term “supergradient” is probably more appropriate here because f(δ1, δ2) is a concave

function.
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4.3.3 The Dual of the Inner Problem

The inner problem (4.28) is a convex problem whose constraints satisfy Slater’s con-

dition, and thus strong duality holds [80, Section 5.2.3]. As a consequence, the

optimal value of the inner problem, i.e., f(δ1, δ2), is identical to the optimal value of

its (Lagrange) dual. Furthermore, the optimal Lagrange multipliers associated with

the two constraints in (4.28b) provide a subgradient vector23 for f at (δ1, δ2) [92,

Section 8.5.6]. Therefore, our next task is to derive the dual problem for (4.28).

We begin with reformulating (4.28) as

maximize
W,z1,...,z4

ρ ln z1 + (1− ρ) ln z2 (4.31a)

s.t. |z3| ≤ δ1, |z4| ≤ δ2, (4.31b)

‖w1‖2
2 + ‖w2‖2

2 ≤ PTot, (4.31c)

w2
1i + w2

2i ≤ Pi, i = 1, . . . , N, (4.31d)

hT
1 w1 = z1, hT

2 w2 = z2, (4.31e)

hT
2 w1 = z3, hT

1 w2 = z4, (4.31f)

where we have introduced four new variables, z1, . . . , z4, and four associated equality
constraints (4.31e)-(4.31f). The Lagrangian associated with the reformulated problem

in (4.31) is

L(W, z1, . . . , z4, λ1, λ2, γ,µ, ν1, . . . , ν4)

= ρ ln z1 + (1− ρ) ln z2 − λ1 (|z3| − δ1)− λ2 (|z4| − δ2)

− γ
(
‖w1‖2

2 + ‖w2‖2
2 − PTot

)
−

N∑
i=1

µi(w
2
1i + w2

2i − Pi)

− ν1(hT
1 w1 − z1)− ν2(hT

2 w2 − z2)− ν3(hT
2 w1 − z3)− ν4(hT

1 w2 − z4), (4.32)

23Note that f has more than one subgradient at the points (δ1, δ2) where f is non-differentiable.
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where λ1 ≥ 0 and λ2 ≥ 0 are the Lagrange multipliers associated with the perturbed

constraints in (4.31b), γ ≥ 0 is the Lagrange multiplier associated with the total

power constraint (4.31c), µ = [µ1 . . . µN ]T, with entries µi ≥ 0, i = 1, . . . , N , is the

Lagrange multiplier vector associated with the per-antenna power constraint (4.31d),

and ν1, . . . , ν4 are the Lagrange multipliers associated with the equality constraints

in (4.31e)-(4.31f). Upon rearranging the terms in the Lagrangian (4.32), the dual

function g is obtained by maximization over the primary variables W, z1, . . . , z4,

that is

g(λ1, λ2, γ,µ, ν1, . . . , ν4) = λ1δ1 + λ2δ2 + γPTot +
N∑
i=1

µiPi

+
N∑
i=1

max
w1i

(
− (ν1h1i + ν3h2i)w1i − (γ + µi)w

2
1i

)
+

N∑
i=1

max
w2i

(
− (ν2h2i + ν4h1i)w2i − (γ + µi)w

2
2i

)
+ max

z1
(ν1z1 + ρ ln z1) + max

z2
(ν2z2 + (1− ρ) ln z2)

+ max
z3

(ν3z3 − λ1|z3|) + max
z4

(ν4z4 − λ2|z4|) , (4.33)

where h1i and h2i are the ith entries of h1 and h2, respectively. Now, we have to

solve all the maximization terms in (4.33) analytically. In fact, we have

max
w1i

(
− (ν1h1i + ν3h2i)w1i − (γ + µi)w

2
1i

)
=

(ν1h1i + ν3h2i)
2

4(γ + µi)
, γ + µi > 0, i = 1, . . . , N, (4.34a)

max
z1

(ν1z1 + ρ ln z1) = −ρ ln
−ν1

ρ
− ρ, ν1 < 0, (4.34b)
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max
z3

(ν3z3 − λ1|z3|) =


0 |ν3| ≤ λ1

∞ otherwise
, (4.34c)

where (4.34a) is a simple unconstrained quadratic concave maximization problem,

(4.34b) follows from the conjugate of the negative logarithm function (see [80, Ex-

ample 3.21]), and (4.34c) follows from the conjugate of the absolute value function

(see [80, Example 3.26]). Note that the condition γ + µi > 0 in (4.34a) is always

satisfied because, for each antenna, at least one of the constraints (i.e., the total

power constraint or the per-antenna power constraint) must be active. Thus, γ + µi

is strictly positive for all i = 1, . . . , N . Using the expressions in (4.34), the dual

problem can be formulated as24

minimize
λ1,λ2,γ,µ,τ1,
τ2,ν1,...,ν4

 δ1λ1 + δ2λ2 + PTotγ +
∑N

i=1(Piµi + τ1i + τ2i)

−ρ ln
−ν1

ρ
− (1− ρ) ln

−ν2

1− ρ

− 1 (4.35a)

s.t. ν1, ν2 < 0, |ν3| ≤ λ1, |ν4| ≤ λ2, (4.35b)

γ ≥ 0, µi ≥ 0, γ + µi > 0, i = 1, . . . , N, (4.35c) τ1i ν1h1i + ν3h2i

ν1h1i + ν3h2i 4(γ + µi)

 � 0, i = 1, . . . , N, (4.35d)

 τ2i ν2h2i + ν4h1i

ν2h2i + ν4h1i 4(γ + µi)

 � 0, i = 1, . . . , N, (4.35e)

where we have used Schur complement, in conjunction with the auxiliary variables τ1i

and τ2i, i = 1, . . . , N , to formulate the linear matrix inequality constraints in (4.35d)

and (4.35e). Two special cases of the dual problem (4.35) are worth mentioning.
24We maintain the fixed term −1 in the objective function in (4.35a) to have its optimal value

equal to the optimal value of the inner problem (4.28), i.e., equal to f(δ1, δ2).
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First, at the corner point ρ = 0, the Lagrange multipliers λ1, ν1, and ν3 are set to

zero, and the dual problem (4.35) simplifies to

minimize
λ2,γ,µ,
τ2,ν2,ν4

(
δ2λ2 + PTotγ +

N∑
i=1

(Piµi + τ2i)− ln(−ν2)

)
− 1 (4.36a)

s.t. ν2 < 0, |ν4| ≤ λ2, (4.36b)

γ ≥ 0, µi ≥ 0, γ + µi > 0, i = 1, . . . , N, (4.36c) τ2i ν2h2i + ν4h1i

ν2h2i + ν4h1i 4(γ + µi)

 � 0, i = 1, . . . , N, (4.36d)

where we have used the convention that 0 ln 0
0

= 0 while simplifying the objective.

A similar simplification can be obtained for the other corner point, i.e., at ρ = 1.

Second, for the case in which there is only a total power constraint, i.e., when

the per-antenna constraint in (4.31d) does not exist or is not active, the Lagrange

multiplier vector µ is set to 0, and (4.35) simplifies to

minimize
λ1,λ2,γ,τ1,
τ2,ν1,...,ν4

 δ1λ1 + δ2λ2 + PTotγ + τ1 + τ2

−ρ ln
−ν1

ρ
− (1− ρ) ln

−ν2

1− ρ

− 1 (4.37a)

s.t. ν1, ν2 < 0, |ν3| ≤ λ1, |ν4| ≤ λ2, (4.37b)

γ > 0, (4.37c) τ1 (ν1h1 + ν3h2)T

ν1h1 + ν3h2 4γIN

 � 0, (4.37d)

 τ2 (ν2h2 + ν4h1)T

ν2h2 + ν4h1 4γIN

 � 0. (4.37e)
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The dual problem (4.35) is, of course, convex and thus can be efficiently solved

to obtain f(δ1, δ2), as well as ∇subf(δ1, δ2). Let {λ?1, λ?2, γ?,µ?, τ ?1, τ ?2, ν?1 , . . . , ν?4} be

the optimal solution of (4.35) for given δ1 and δ2. Then, f(δ1, δ2) is equal to the

optimal value of the objective, and the vector [λ?1 λ
?
2]T is a subgradient of f at (δ1, δ2).

Consequently, the subgradient vector in (4.30) can be written as

∇subϕ(δ1, δ2) =

[
λ?1 −

δ1

δ2
1 + σ2

λ?2 −
δ2

δ2
2 + σ2

]T

. (4.38)

Having obtained ∇subϕ(δ1, δ2), we are now ready to use the subgradient method

to solve (4.29).

4.3.4 The Search Algorithm

In this subsection, we turn our focus to the search algorithm used to find a solution

for the outer problem (4.29), i.e., to find δ? = [δ?1 δ?2]T that maximizes ϕ(δ1, δ2).

A typical subgradient method uses the iteration [91]

δ(k+1) = δ(k) + α(k) ∇subϕ(δ(k)), k = 1, 2, . . . , (4.39)

where δ(k) is the start point at the kth iteration (with δ(1) being the initial point),

α(k) > 0 is the kth step size, and δ(k+1) is the end point after k iterations. The

numerical results in Section 4.5 reveal that, when the noise variance σ2 is equal to 1,

the values of δ?1 and δ?2 can be on the order of 10−4 up to 101. This several orders of

magnitude difference suggests that the search is better carried out on a logarithmic

scale, rather than the ordinary linear scale, in order to improve the accuracy and

maintain numerical stability (so convergence is achieved within a reasonable number

of iterations).
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Let δdB be defined as δdB , [20 log10(δ1) 20 log10(δ2)]T. Then, the subgradient

∇subϕ on the logarithmic scale, i.e., when differentiation is w.r.t. 20 log10(δ1) and

20 log10(δ2), is given by

∇subϕ(δdB) =
ln 10

20


δ1

(
λ?1 −

δ1

δ2
1 + σ2

)
δ2

(
λ?2 −

δ2

δ2
2 + σ2

)
 . (4.40)

Now, we proceed with the search algorithm as follows. First, we choose an initial

point δ(1)
dB, such that δ(1)

1 ≤ σ and δ(1)
2 ≤ σ. This point is iteratively updated by

δ
(k+1)
dB = δ

(k)
dB + αFix

dB

∇subϕ(δ
(k)
dB)

‖∇subϕ(δ
(k)
dB)‖2

, k = 1, 2, . . . , (4.41)

where αFix
dB is a fixed step size in dB. That is, for each iteration, we take a step αFix

dB

in the direction of the subgradient. This iteration shall continue until we overshoot

the peak, i.e., when ϕ(δ) starts to decrease. Once the peak is encountered, we reduce

the step size and use the iteration

δ
(K+l+1)
dB = δ

(K+l)
dB +

αFix
dB

l

∇subϕ(δ
(K+l)
dB )

‖∇subϕ(δ
(K+l)
dB )‖2

, l = 1, . . . , L, (4.42)

where K is the number of iterations using (4.41), i.e., with a fixed step size, and L

is the maximum number of iterations with a decreasing step size. Unlike K, L is

determined in advance according to the required accuracy of the solution. Therefore,

the search will terminate after K+L total iterations, and the solution δ?dB is obtained

with accuracy αFix
dB /L dB. For convenience, the algorithm is summarized in Table 4.1.

Upon solving the outer problem (4.29), we solve the inner problem (4.28) using δ?

to obtain the optimum precoding matrix W?. Then, the secrecy rate pair (R1, R2)
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Table 4.1: Subgradient-based search algorithm to solve the maximization problem
in (4.29).

Algorithm 4.1 Subgradient-based method to solve (4.29)
1: Set the initial (fixed) step size αFix

dB and the maximum number of iterations with
decreasing step size L

2: Set the binary switch REDUCE = false
3: Set the indexes k = 0 and l = 1
4: Choose an initial point δ(1)

dB such that δ(1)
1 ≤ σ, δ

(1)
2 ≤ σ

5: while l ≤ L do
6: Solve (4.35) to obtain f(δ

(k+l)
dB ), λ?1

(k+l), λ?2
(k+l)

7: Calculate ϕ(δ
(k+l)
dB ) using (4.29b)

8: Calculate ∇subϕ(δ
(k+l)
dB ) using (4.40)

9: if ϕ(δ
(k+l)
dB ) ≤ ϕ(δ

(k+l−1)
dB ), then

10: REDUCE = true
11: end if
12: if REDUCE = false, then
13: Update δ(k+l)

dB using (4.41)
14: k := k + 1
15: else
16: Update δ(k+l)

dB using (4.42)
17: l := l + 1
18: end if
19: end while
20: return δ?dB = argmax {ϕ(δ

(1)
dB), . . . , ϕ(δ

(k+L+1)
dB )}
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is calculated by substituting W? into (4.10). We repeat the entire procedure with

different values of ρ ∈ [0, 1] to obtain different points (R1, R2) on the boundary of

the secrecy rate region.

4.3.5 Per-Antenna Amplitude Constraint

In this subsection, we design the precoding matrix W subject to the per-antenna

amplitude constraint (4.14b). Fortunately, the problem formulation and solution

techniques developed in the previous subsections are immediately applicable. In fact,

we just need to modify the weighted secrecy sum rate expression (4.25) and the inner

problem (4.28), and consequently its dual (4.35), to take the amplitude constraint

into account.

Similar to (4.25), we need a weighted secrecy sum rate expression that is amenable

to optimization. From (4.20), the rate expressions R1 and R2, respectively, can be

lower-bounded by

R̂1 = log2

3
√

2
∣∣hT

1 w1

∣∣σ
√
πe ((hT

1 w2)2 + 3σ2)
1
2 ((hT

2 w1)2 + 3σ2)
1
2

, (4.43a)

R̂2 = log2

3
√

2
∣∣hT

2 w2

∣∣σ
√
πe ((hT

2 w1)2 + 3σ2)
1
2 ((hT

1 w2)2 + 3σ2)
1
2

. (4.43b)

Then, for any ρ ∈ [0, 1], we have the weighted secrecy sum rate

R̂wsum(ρ) = log2

3
√

2
∣∣hT

1 w1

∣∣ρ ∣∣hT
2 w2

∣∣1−ρ σ
√
πe((hT

2 w1)2 + 3σ2)
1
2 ((hT

1 w2)2 + 3σ2)
1
2

. (4.44)
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Similar to (4.28), we formulate the inner problem as

maximize
W

ρ ln(hT
1 w1) + (1− ρ) ln(hT

2 w2) (4.45a)

s.t. |hT
2 w1| ≤ δ1, |hT

1 w2| ≤ δ2, (4.45b)

|w1i|+ |w2i| ≤ Ai, i = 1, . . . , N. (4.45c)

Then, following the same procedure as in Section 4.3.3, it can be shown that the dual

problem for (4.45) is

minimize
λ1,λ2,µ,
ν1,...,ν4

 δ1λ1 + δ2λ2 +
∑N

i=1(Aiµi)

−ρ ln
−ν1

ρ
− (1− ρ) ln

−ν2

1− ρ

− 1 (4.46a)

s.t. ν1, ν2 < 0, |ν3| ≤ λ1, |ν4| ≤ λ2, (4.46b)

|ν1h1i + ν3h2i| ≤ µi, i = 1, . . . , N, (4.46c)

|ν2h2i + ν4h1i| ≤ µi, i = 1, . . . , N, (4.46d)

where the Lagrange multipliers λ1, λ2, ν1, . . . , ν4 are defined as in (4.35), and µ =

[µ1 . . . µN ]T is the Lagrange multiplier vector associated with the amplitude con-

straint (4.45c).

4.4 Robust Precoder Design with Imperfect

Channel Information

Our solutions in Section 4.3 were based on the assumption that the channel gain

vectors h1 and h2 are precisely known to the transmitter. In this section, we capitalize

on our approach and tackle the more general design problem in which the transmitter
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has only uncertain estimates of h1 and h2. We will see that the problem formulation

is very similar to its non-robust counterpart, and thus the solution approach will also

be similar. Therefore, our pace in this section will be relatively fast, and much of

the details and derivations encountered in the previous section will be omitted for

brevity.

4.4.1 Channel Uncertainty Model

We adopt the spherical uncertainty model (or norm-bounded error model) in which

the actual channel gain vectors, h1 and h2, respectively, are modelled by

h1 ∈ H1, H1=
{
ĥ1 + e1 : ‖e1‖2 ≤ ε1

}
, (4.47a)

h2 ∈ H2, H2=
{
ĥ2 + e2 : ‖e2‖2 ≤ ε2

}
, (4.47b)

where H1 and H2 are N -dimensional spherical sets, ĥ1 ∈ RN and ĥ2 ∈ RN are the

channel vector estimates available to the transmitter, e1 ∈ RN and e2 ∈ RN are un-

known (but norm-bounded) error vectors, and ε1 and ε2 are known constants that

quantify the amount of uncertainty for each channel. This error model is well ac-

cepted for representing channel uncertainty caused by quantization errors and finite-

rate feedback from each receiver to the transmitter [57, Lemma 1].

Given the uncertain channel information in (4.47), our goal in this section is

to design the precoding matrix W in order to optimize the performance in terms

of the worst-case secrecy rate pair (Rwc
1 , Rwc

2 ). That is to solve the two-objective

optimization problem

maximize
W

(Rwc
1 , Rwc

2 ) (4.48)

subject to power or amplitude constraints, where, for fixed W, the worst-case secrecy

133



Chapter 4. Linear Precoding for the Two-User MISO BC-CM

rates Rwc
1 and Rwc

2 are determined by

Rwc
1 = min

h1∈H1,
h2∈H2

R1, (4.49a)

Rwc
2 = min

h1∈H1,
h2∈H2

R2. (4.49b)

Similar to our approach in the previous section, we shall tackle (4.48) by solving a

weighted worst-case secrecy sum rate maximization problem, as we see in the following

two subsections.

4.4.2 Total and Per-Antenna Average Power Constraints

In this subsection, we solve the weighted worst-case secrecy sum rate maximization

problem subject to total and per-antenna power constraints. First, we need to sim-

plify the worst-case secrecy rate expressions in order to obtain a weighted sum rate

that is amenable to optimization. Substituting from (4.10a) into (4.49a), we obtain

Rwc
1 =

[
1

2
log2 min

h1∈H1

(
1 +

(hT
1 w1)2

(hT
1 w2)2 + σ2

)
+

1

2
log2 min

h2∈H2

(
σ2

(hT
2 w1)2 + σ2

)]+

≥ 1

2
log2

1 +
min
h1∈H1

(hT
1 w1)2

max
h1∈H1

(hT
1 w2)2 + σ2

+
1

2
log2

 σ2

max
h2∈H2

(hT
2 w1)2 + σ2

 (4.50a)

≥ log2

min
h1∈H1

∣∣hT
1 w1

∣∣σ
max
h1∈H1

((hT
1 w2)2 + σ2)

1
2 max

h2∈H2

((hT
2 w1)2 + σ2)

1
2

, (4.50b)

where the first inequality follows from dropping the [·]+ operator and applying the

inequality

min
x

f1(x)

f2(x)
≥

min
x

f1(x)

max
x

f2(x)
,
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which holds for arbitrary functions f1 and f2, and the second inequality follows from

dropping the term 1. We shall use (4.50b) to formulate the weighted secrecy sum rate

for the optimization problem, while we use the better bound in (4.50a) to calculate

the worst-case secrecy rate Rwc
1 after obtaining W. Similarly, we have

Rwc
2 ≥

1

2
log2

1 +
min
h2∈H2

(hT
2 w2)2

max
h2∈H2

(hT
2 w1)2 + σ2

+
1

2
log2

 σ2

max
h1∈H1

(hT
1 w2)2 + σ2

 (4.51a)

≥ log2

min
h2∈H2

∣∣hT
2 w2

∣∣σ
max
h2∈H2

((hT
2 w1)2 + σ2)

1
2 max

h1∈H1

((hT
1 w2)2 + σ2)

1
2

. (4.51b)

Next, we combine the rate expressions in (4.50b) and (4.51b) using the weights ρ and

1− ρ, for any ρ ∈ [0, 1], to formulate the robust design problem

maximize
W

ln
min
h1∈H1

(hT
1 w1)ρ min

h2∈H2

(hT
2 w2)1−ρ

max
h2∈H2

((hT
2 w1)2 + σ2)

1
2 max

h1∈H1

((hT
1 w2)2 + σ2)

1
2

(4.52a)

s.t. ‖W‖2
F ≤ PTot, (4.52b)

w2
1i + w2

2i ≤ Pi, i = 1, . . . , N. (4.52c)
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Problem (4.52), in turn, can be expressed as

maximize
W,z1,z2,δ1,δ2

ln
zρ1 z

1−ρ
2

(δ2
1 + σ2)

1
2 (δ2

2 + σ2)
1
2

(4.53a)

s.t. hT
1 w1 ≥ z1 ∀h1 ∈ H1, (4.53b)

hT
2 w2 ≥ z2 ∀h2 ∈ H2, (4.53c)

|hT
2 w1| ≤ δ1 ∀h2 ∈ H2, (4.53d)

|hT
1 w2| ≤ δ2 ∀h1 ∈ H1, (4.53e)

‖W‖2
F ≤ PTot, (4.53f)

w2
1i + w2

2i ≤ Pi, i = 1, . . . , N. (4.53g)

Utilizing the expressions of the uncertainty sets H1 and H2 in (4.47), the inequalities

in (4.53b), (4.53c), (4.53d), and (4.53e), respectively, can be replaced by

ĥT
1 w1 − ε1‖w1‖2 ≥ z1, (4.54a)

ĥT
2 w2 − ε2‖w2‖2 ≥ z2, (4.54b)

|ĥT
2 w1|+ ε2‖w1‖2 ≤ δ1, (4.54c)

|ĥT
1 w2|+ ε1‖w2‖2 ≤ δ2. (4.54d)

Similar to (4.28), let f(δ1, δ2) denote the optimal value of the perturbed problem

maximize
W,z1,z2

ρ ln z1 + (1− ρ) ln z2 (4.55a)

s.t. (4.54a), (4.54b), (4.54c), (4.54d), (4.53f), (4.53g). (4.55b)
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Then, the robust design problem (4.53) can be expressed as

maximize
δ1,δ2≥0

f(δ1, δ2)− 1

2
ln
(
(δ2

1 + σ2)(δ2
2 + σ2)

)
. (4.56)

Again, we shall refer to (4.56) as the outer problem, and to (4.55) as the inner prob-

lem. It is clear that the inner problem (4.55) is convex, and the outer problem (4.56)

is essentially identical to (4.29). Thus, it can be shown that Propositions 4.1 and 4.2

hold for the objective of (4.56) as well. Consequently, (4.56) can be solved iteratively

using Algorithm 4.1. In each iteration, the subgradient vector ∇subf(δ1, δ2) is ob-

tained by solving the dual of the inner problem (4.55). Such a dual problem can be

formulated as

minimize
λ1,λ2,γ,µ,

τ1,τ2,χ1,χ2,
η1,η2,ν1,ν2

 δ1λ1 + δ2λ2 + PTotγ +
∑N

i=1(Piµi + τ1i + τ2i)

−ρ ln
χ1

ρ
− (1− ρ) ln

χ2

1− ρ

− 1 (4.57a)

s.t. χ1, χ2 > 0, |ν1| ≤ λ1, |ν2| ≤ λ2, (4.57b)

‖χ1ĥ1 − η1 − ν1ĥ2‖2 ≤ λ1ε2 + χ1ε1, (4.57c)

‖χ2ĥ2 − η2 − ν2ĥ1‖2 ≤ λ2ε1 + χ2ε2, (4.57d)

γ ≥ 0, µi ≥ 0, γ + µi > 0, i = 1, . . . , N, (4.57e)τ1i η1i

η1i 4(γ + µi)

 � 0, i = 1, . . . , N, (4.57f)

τ2i η2i

η2i 4(γ + µi)

 � 0, i = 1, . . . , N, (4.57g)

where λ1 and λ2 are the Lagrange multipliers associated with the constraints (4.54c)

and (4.54d), respectively. Derivation of the dual problem (4.57) is provided in Ap-
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pendix C.2.

4.4.3 Per-Antenna Amplitude Constraint

With amplitude constraints, we use the definitions in (4.49) to obtain the worst-

case counterparts of the secrecy rate expressions in (4.20). Furthermore, the inner

problem (4.55) is modified to

maximize
W,z1,z2

ρ ln z1 + (1− ρ) ln z2 (4.58a)

s.t. (4.54a), (4.54b), (4.54c), (4.54d), (4.58b)

|w1i|+ |w2i| ≤ Ai, i = 1, . . . , N, (4.58c)

and it can be shown that its dual is given by

minimize
λ1,λ2,µ,χ1,χ2,
η1,η2,ν1,ν2

 δ1λ1 + δ2λ2 +
∑N

i=1(Aiµi)

−ρ ln
χ1

ρ
− (1− ρ) ln

χ2

1− ρ

− 1 (4.59a)

s.t. χ1, χ2 > 0, |ν1| ≤ λ1, |ν2| ≤ λ2, (4.59b)

‖χ1ĥ1 − η1 − ν1ĥ2‖2 ≤ λ1ε2 + χ1ε1, (4.59c)

‖χ2ĥ2 − η2 − ν2ĥ1‖2 ≤ λ2ε1 + χ2ε2, (4.59d)

|η1i| ≤ µi, |η2i| ≤ µi, i = 1, . . . , N. (4.59e)

Then, we proceed with the same steps from the previous subsection and use Algo-

rithm 4.1 to obtain the precoder W.
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4.5 Numerical Examples

In this section, we provide numerical examples to demonstrate the performance of the

proposed linear precoder, in terms of the achievable secrecy rate regions, subject to

power or amplitude constraints. We also show the performance of the robust precoder

under different channel uncertainty levels along with different constraints.

For simulation purposes, the elements of the channel gain vectors h1 and h2 (or ĥ1

and ĥ2 for the robust case) are generated randomly (i.i.d. random variables) according

to the standard normal distribution N (0, 1). To obtain the achievable secrecy rate

region, we generate 21 points, i.e., secrecy rate pairs (R1, R2), on the boundary of

the region by solving the weighted secrecy sum rate maximization problem using

ρ = 0, 0.05, 0.10, . . . , 1.00. The final results that we plot are obtained by averaging

over 1000 realizations of the channel gain vectors. In all cases, the noise variance σ2

is equal to 1 at both receivers.

We begin with the case of perfect channel information and total power constraint.

This case is particularly important as it is the only case for which the secrecy capacity

region is precisely known, and the boundary points can be calculated using a closed-

form expression. This capacity region sets a benchmark that enables us to quantify

the loss incurred by using a suboptimal linear precoding scheme, and also to validate

the algorithm we use to obtain the linear precoder.

In Figure 4.1, we plot the secrecy capacity region obtained with the optimal

S-DPC scheme [48, Theorem 1], along with the secrecy rate region of the linear

precoder proposed in Section 4.3, subject to a total power constraint specified by

PdB , 10 log10 PTot. We also include two other conventional linear precoding schemes,

namely, the generalized eigenvalue (GEV) and the zero-forcing (ZF) schemes, for

comparison purposes.
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Figure 4.1: The secrecy capacity region obtained with optimal S-DPC along with the

secrecy rate regions of the GEV precoder, the precoder obtained with Algorithm 4.1,

and the ZF precoder, subject to the total power constraint PdB = 10 log10 PTot. The

number of antennas N ∈ {2, 4}.

The proposed linear precoder is obtained using Algorithm 4.1 along with the dual

problem (4.37). The dual problem is solved using the CVX toolbox [85] in conjunction

with the MOSEK solver [86]. For Algorithm 4.1, we use δ(1) = (10−1, 10−1) or, equiv-

alently, δ(1)
dB = (−20 dB,−20 dB), as the initial point, and start searching with a fixed

step αFix
dB = 1 dB. The maximum number of iterations after encountering a peak is

L = 10, i.e., the final solution δ?dB is obtained with accuracy αFix
dB /L = 0.1 dB. For the

GEV precoder, the beamformers w1,GEV and w2,GEV are obtained as follows. Let v1

be the generalized eigenvector of the matrix pair (σ2IN + PToth1h
T
1 , σ

2IN + PToth2h
T
2 )
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corresponding to its largest generalized eigenvalue. Then,

w1,GEV =
√
ρPTot

v1

‖v1‖2

.

Similarly, we have

w2,GEV =
√

(1− ρ)PTot
v2

‖v2‖2

,

where v2 is the generalized eigenvector of the matrix pair (σ2IN + PToth2h
T
2 , σ

2IN +

PToth1h
T
1 ) corresponding to its largest generalized eigenvalue. The ZF precoder is

obtained by solving the inner problem (4.28), without the per-antenna power con-

straint (4.28d), using δ1 = δ2 = 0. For all three linear precoders, the achievable rate

pairs (R1, R2) are obtained by substituting with the precoder W into (4.10).

Several interesting conclusions can be drawn from Figure 4.1. First, we note

that the GEV precoder yields slightly better performance than our precoder from

Section 4.3, especially at low power levels. This is due to the fact that we use the

simplified lower bound in (4.25) as the objective function of the weighted secrecy sum

rate maximization problem, rather than the more complex expression in (4.22d). This

suggests that the GEV is probably a good linear precoder when there is only a total

power constraint (and channel information is accurately known to the transmitter).

Note, however, that there is no counterpart of the GEV scheme for cases involving

per-antenna power or amplitude constraints. Particularly, unlike the cases in Sec-

tion 3.5.1.1, where we simply scaled the beamformer wGEV to satisfy the lp-norm

constraint for all p = 1, 2,∞, scaling the precoder WGEV , [w1,GEV w2,GEV] to sat-

isfy the per-antenna power or amplitude constraints would significantly deteriorate

the performance. Instead, w1,GEV and w2,GEV should be scaled by different factors,

however it is unclear how to choose these factors in an optimal way. We also note
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Figure 4.2: Achievable secrecy rate regions of the proposed and ZF precoders subject
to total power constraint (TPC), per-antenna power constraint (PAPC), and ampli-
tude constraint (AmC). PTot = NPi = NA2

i , i = 1, . . . , N , PdB = 10 log10 PTot, and
N = 4. The secrecy capacity region with optimal S-DPC is included for the case of
total power constraint.

from Figure 4.1 that the ZF precoder has the worst performance among all other

precoders at all power levels. Performance gaps, however, significantly decrease as

the number of antennas or transmit power increases.

In Figure 4.2, we show the achievable secrecy rate regions of the proposed lin-

ear precoder, subject to the total power constraint (4.8b), the per-antenna power

constraint (4.12), and the per-antenna amplitude constraint (4.14b). The secrecy

capacity region obtained with optimal S-DPC (for the case of total power constraint)

and the secrecy rate regions of the ZF precoder (for all constraints) are also included.

The power level indicated in the figure specifies the total power constraint in dB,

i.e., PdB = 10 log10 PTot. For comparison purposes, we choose the per-antenna power
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Figure 4.3: Worst-case secrecy rate regions with different channel uncertainty levels,
ε1 and ε2, subject to total power constraint (TPC), per-antenna power constraint
(PAPC), and amplitude constraint (AmC). PTot = NPi = NA2

i , i = 1, . . . , N , PdB =
10 log10 PTot = 15 dB, and N = 4.

constraint as Pi = PTot/N , and the amplitude constraint as Ai =
√
PTot/N , for

i = 1, . . . , N . Thus, the per-antenna power constraint also implies the total power

constraint, and the amplitude constraint implies the total and per-antenna power

constraints. The number of antennas N is set to 4. As expected, the proposed linear

precoder outperforms the ZF precoder, under all constraints, however at the cost of

increased computational complexity.

Finally, in Figure 4.3, we plot the worst-case secrecy rate regions obtained with

the robust precoder considered in Section 4.4, subject to (4.8b), (4.12), and (4.14b),

separately. Similar to the previous example, we choose Pi = PTot/N and Ai =√
PTot/N , for all i = 1, . . . , N , where 10 log10 PTot = 15 dB and N = 4. The case

ε1 = ε2 = 0 designates perfect channel information, and is included for comparison
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purposes. As expected, we note from Figure 4.3 that increased uncertainty levels

have negative impact on the worst-case secrecy rate region.

4.6 Conclusions

In this chapter, we considered the design of linear precoders for the two-user MISO

BC-CM subject to total and per-antenna power constraints, and also subject to am-

plitude constraints. Per-antenna constraints are typically more difficult to handle, but

they are essential for modelling hardware limitations in practical systems employing

multiple transmit antennas. Although suboptimal, linear precoding is particularly

attractive because of low implementation complexity. On the other hand, the opti-

mal S-DPC scheme is difficult to implement, and can be only found via an exhaustive

search when per-antenna power constraints are taken into account. Furthermore, the

optimal scheme is unknown under amplitude constraints. Therefore, our proposed

linear precoding scheme provides a viable solution to an open problem that has not

been addressed in the published literature.

We formulated the linear precoder design problem as a weighted secrecy sum

rate maximization problem that is transformed into a more tractable problem having

only two optimization variables. We proposed a subgradient-based search algorithm

to obtain a solution, and provided a condition under which the obtained solution

is guaranteed to be optimal. Our approach is applicable to any combination of

the total power, per-antenna power, and per-antenna amplitude constraints. It is

also applicable to the robust design problem when channel uncertainty is taken into

account.

We used the total power constraint case, in which the secrecy capacity region is

precisely known, to validate our approach and compare the performance of the linear
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precoder with the optimal S-DPC scheme. Numerical results show negligible loss

when the SNR is sufficiently high. Compared to the idealistic case of total power

constraint and perfect channel information, the results show considerable reduction

in the achievable secrecy rate region when per-antenna constraints and channel un-

certainty are taken into account.
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Conclusions and Future Directions

5.1 Conclusions

Physical-layer security has the potential to complement existing encryption tech-

niques with an additional secrecy measure that is provably unbreakable regardless

of the computational power of the eavesdropper. It can also be a viable lightweight

secrecy solution under severe hardware or energy constraints. While physical-layer

security has been an active research area for more than a decade, it still has not

got much attention from practical system designers. Perhaps the main reason for

such a disregard is performance sensitivity to channel conditions. Particularly, the

performance of physical-layer security schemes can be severely degraded, and secrecy

outage may occur, if the design is based on inaccurate channel information.

In this thesis, we proposed the use of physical-layer security techniques to enhance

the secrecy of visible-light communication (VLC) systems. We had a twofold purpose

from such a proposal. First, the broadcast nature of the VLC channel makes an addi-

tional secrecy layer a sensible approach. Second, VLC links can be a reasonable plat-

form for the deployment of physical-layer security prototypes as realistic assumptions

regarding channel information can be made in typical VLC scenarios with dominant

LoS path. Furthermore, by adopting robust transmission schemes that take channel

uncertainty into account, performance sensitivity to channel estimation errors can be

significantly alleviated. Although in this thesis we mainly focused on VLC systems
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functioning in indoor environments, the techniques we developed are also applicable

to outdoor scenarios.

Existing physical-layer security schemes assume Gaussian input distribution and

total transmit power constraint, making them inapplicable to VLC channels wherein

amplitude constraints on the channel input are inherent due to linearity limitations

of typical LEDs.

Accordingly, in this thesis, we studied the design of physical-layer security schemes

for the Gaussian wiretap channel subject to amplitude constraints. Three major

contributions have been presented:

Firstly, with the lack of closed-form secrecy capacity expressions for the amplitude-

constrained Gaussian wiretap channel, we utilized the maximum-entropy uniform in-

put distribution, along with the entropy power inequality, to establish a closed-form

lower bound on the secrecy capacity. We also developed a method to derive an upper

bound on the secrecy capacity of degraded wiretap channels, and applied that method

to the scalar Gaussian wiretap channel. Then, we used the lower bound along with

beamforming to obtain a closed-form secrecy rate expression for the MISO wiretap

channel. We later used that expression as a performance metric for the beamformer

design. We also derived a closed-form secrecy rate expression for the amplitude-

constrained scalar wiretap channel when it is aided by a friendly jammer sending

artificial noise that is also subject to amplitude constraints.

Secondly, we studied the design of beamformers for the MISO wiretap channel

subject to amplitude constraints. Unlike the case of total power constraint, which

is readily solvable as a Rayleigh quotient maximization problem, the design problem

under the amplitude constraint is more difficult to solve. Nevertheless, we trans-

formed such a difficult problem into a quasiconvex line search problem that is easily
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solved with a bisection search. In addition, we showed that our solution technique

is applicable to arbitrary lp-norm constraints on the beamformer. We also solved

the worst-case secrecy rate maximization problem when channel uncertainties for the

receiver and eavesdropper are taken into account.

Thirdly, we studied the design of linear precoders for the two-user MISO broadcast

channel with confidential messages (BC-CM). We developed a general approach that

can handle the design problem subject to any combination of the total, per-antenna

power, or amplitude constraints. Although suboptimal, our linear precoding scheme

entails low implementation complexity. Furthermore, it provides a viable solution to

the cases of per-antenna power or amplitude constraints where there is no closed-form

characterization of the secrecy capacity region. We formulated the design problem as

a weighted secrecy sum rate maximization problem, then we transformed the problem

into a more tractable form that can be solved with an iterative search algorithm. We

used the case of total power constraint to quantify the performance loss incurred

by using a suboptimal linear precoding scheme and also to validate our approach to

solving the design problem. We also considered the design of robust linear precoders

to maximize the worst-case secrecy rate region when channel uncertainty is taken

into account.

The numerical results revealed considerable decline in the achievable secrecy rates

when channel uncertainty and amplitude constraints are taken into account as com-

pared to the idealistic case of perfect channel information and total power constraint.

Therefore, the design techniques we developed throughout the thesis provide valu-

able tools for tackling real-world problems in which channel uncertainty is almost

always inevitable and per-antenna constraints are essential for accurate modelling of

hardware limitations.
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Finally, it is worth mentioning that physical-layer security is a research area that

has its origins from information theory. On the other hand, the design of VLC sys-

tems is mostly treated as a practical engineering problem. By combining these two

research areas in one thesis, we aim to serve both communities and help narrow the

gap between information theory and practical system design. For example, amplitude

constraints impose an inherent practical limitation that is difficult to treat mathe-

matically, however we derived lower bounds on the secrecy capacity, subject to these

constraints, in order to circumvent such a difficulty. Furthermore, by using realistic

channel gain models from VLC scenarios and linking the physical sources of chan-

nel uncertainty (e.g., location or orientation uncertainty) with the uncertainty sets

used in robust optimization problems, we help make the techniques from information

theory and convex optimization more approachable to practical system designers.

5.2 Future Work

Secure Transmission with Discrete Input Distribution:

In Chapter 2, we derived closed-form secrecy rate expressions for the amplitude-

constrained Gaussian wiretap channel based on the (continuous) uniform input dis-

tribution. Then, we used the resulting expression for beamformer design in the MISO

wiretap channel. Similarly, we used a secrecy sum rate expression based on the uni-

form input distribution for linear precoder design in the two-user MISO BC-CM under

amplitude constraints. We note, however, that the codewords or signals transmitted

in practical communication systems cannot have a continuous distribution. Instead,

they must be drawn from a discrete constellation, i.e., a discrete distribution with

finite support. One practical reason for such a limitation is the finite resolution of
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the digital-to-analog converters (DACs) incorporated at the transmitter front-end.

Although we know that the optimal input distribution for the amplitude-constrained

scalar wiretap channel is discrete (and we conjecture that this is also the case for the

MISO wiretap channel and the two-user MISO BC-CM), there is no closed-form char-

acterization of these optimal distributions and they can only be found via numerical

techniques. Since closed-form expressions are required for beamformer or precoder

design, an interesting research direction is to find secrecy capacity-approaching dis-

crete input distributions which yield closed-form secrecy rate expressions that are

amenable to optimization.

Linear Precoding for the MIMO Wiretap Channel under

Amplitude Constraints:

In Chapter 3, we considered the design of beamformers for the MISO wiretap channel

under amplitude constraints. Our approach in Propositions 3.1 and 3.2 took advan-

tage of the fact that only one data stream is being transmitted (since the intended

receiver has one antenna), and the signal term in the numerator of the secrecy rate

expression (3.5) is a squared linear function of the beamformer. This ultimately led

to convex formulations of the inner problems (3.11) and (3.33). If the intended re-

ceiver, however, has multiple antennas, then simultaneous transmission of multiple

data streams should be considered. Consequently, equalization may become neces-

sary or desirable at the receiver as well as the eavesdropper. The resulting secrecy

rate expression, however, will become more difficult to handle, and the inner prob-

lems corresponding to (3.11) and (3.33) will no longer be convex. Thus, a natural

extension to the work presented in Chapter 3 is to consider linear precoding for the

MIMO wiretap channel subject to amplitude constrains.
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Similar remarks can be made about the design of linear precoders for the two-user

MIMO BC-CM when multiple data streams are simultaneously transmitted to each

user.

Linear Precoding for the Complex-Valued MISO Wiretap

Channel under Amplitude Constraints:

Throughout the entire thesis, we assumed real-valued transmitted signals and channel

gain vectors. Such an assumption is applicable to intensity modulation (IM) systems,

as well as RF systems utilizing only amplitude modulation, i.e., the carrier phase is

not modulated. Extension to the more general case of complex-valued transmission,

such as quadrature amplitude modulation (QAM), shall make the design problems

considered in Chapters 3 and 4 more difficult to handle. For example, with complex-

valued channel gain and beamforming vectors, the inner problem (3.11), as well as its

robust counterpart (3.33), would involve maximization of the magnitude of a complex-

valued quantity. Obviously, this is a nonconvex problem, and thus the techniques we

developed via Propositions 3.1 and 3.2 will have to be modified in order to deal with

nonconvexity of the inner problem.

Finally, the problem of deriving achievable secrecy rate expressions for the complex-

valued Gaussian wiretap channel subject to amplitude constraints can also be of great

interest. Among various feasible input distributions that can be utilized, the circular

uniform distribution sounds like a good candidate to begin with.
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Appendix A

The Trapezoidal Distribution

In this appendix, we introduce the trapezoidal distribution encountered in the proof

of Proposition 2.5, and provide the associated PDF and differential entropy.

The trapezoidal distribution arises from adding two independent random variables

having uniform distributions. Particularly, let a and b be two positive real numbers,

and X and Y be two independent random variables having the distributions pX(x) =

U [−a, a] and pY (y) = U [−b, b], respectively. Then, the PDF of the sum Z , X + Y

is obtained by the convolution

pZ(z) = (pX ∗ pY )(z)

=



z + a+ b

4ab
−a− b ≤ z ≤ −|a− b|,

min

{
1

2a
,

1

2b

}
−|a− b| ≤ z ≤ |a− b|,

−z + a+ b

4ab
|a− b| ≤ z ≤ a+ b,

0 otherwise,

(A.1)

as depicted in Figure A.1 for the case b < a. For obvious reasons, the distribu-

tion pZ(z) is referred to as the trapezoidal distribution. Note that the uniform distri-

bution U [−a, a] is a special case of the trapezoidal distribution (A.1) when b→ 0.
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1/2a 
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pZ(z) = (pX*pY)(z)

z

Figure A.1: The trapezoidal distribution in (A.1) with b < a.

The differential entropy of Z (in nats) is

h(Z) = −
∫
pZ(z) ln pZ(z)dz

=


ln(2a) +

b

2a
b ≤ a

ln(2b) +
a

2b
otherwise

= min

{
ln(2a) +

b

2a
, ln(2b) +

a

2b

}
. (A.2)

In Figure A.2, we plot the differential entropy (A.2) as a function of b when a = 2.

Note that h(Z) is differentiable for all b > 0, including the point b = a.
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Figure A.2: The differential entropy (A.2) as a function of b when a = 2.
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Appendix B

Proofs and Derivations for Chapter 3

B.1 Proof of Lemma 3.1

Let the pair (w?, t?) be an optimal solution of the nonconvex perturbed problem

in (3.36), where t? ≡ ϕ(ε). If HB is convex, then the linear function fw?(hB) , hT
Bw

?

maps HB into an interval with three possible outcomes:

i) If hT
Bw

? ≥ 0 for all hB ∈ HB, then t? ≥ 0.

ii) If hT
Bw

? ≤ 0 for all hB ∈ HB, then t? ≥ 0. This also implies that −hT
Bw

? ≥ 0

for all hB ∈ HB. Note that if (w?, t?) is a solution to (3.36), then (−w?, t?) is

also a solution.

iii) If there exist h1,h2 ∈ HB such that hT
1 w

? > 0 > hT
2 w

?, then t? = 0.

From the above cases, we see that hT
Bw

? ≥ 0, or hT
Bw

? ≤ 0, for all hB ∈ HB, is

a necessary condition to obtain nonzero t?. Thus, we lose nothing by imposing the

constraint in (3.37), provided that HB is a convex set. �

B.2 Components of h0 and J0 from (3.53)

From (3.51), for i = 1, . . . , N , ci 6= 0, we have

1

ci
hi(δ) =

(dz − δz)m(di − δ)Tu

‖di − δ‖m+3
2

, (B.1a)
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1

ci

∂hi(δ)

∂δx
=
−(dz − δz)meT

1 u

‖di − δ‖m+3
2

+
(m+ 3)(dx,i − δx)(dz − δz)m(di − δ)Tu

‖di − δ‖m+5
2

, (B.1b)

1

ci

∂hi(δ)

∂δy
=
−(dz − δz)meT

2 u

‖di − δ‖m+3
2

+
(m+ 3)(dy,i − δy)(dz − δz)m(di − δ)Tu

‖di − δ‖m+5
2

, (B.1c)

1

ci

∂hi(δ)

∂δz
=
−m(dz − δz)m−1(di − δ)Tu− (dz − δz)meT

3 u

‖di − δ‖m+3
2

+
(m+ 3)(dz − δz)m+1(di − δ)Tu

‖di − δ‖m+5
2

, (B.1d)

where ej, j = 1, 2, 3, is the jth column of the identity matrix I3. Substituting with

δ = 0 back into (B.1), we obtain

hi(0) = ci
dmz d

T
i u

‖di‖m+3
2

, (B.2a)

∂hi(0)

∂δx
= ci

(
−dmz eT

1

‖di‖m+3
2

+
(m+ 3)dx,id

m
z d

T
i

‖di‖m+5
2

)
u, (B.2b)

∂hi(0)

∂δy
= ci

(
−dmz eT

2

‖di‖m+3
2

+
(m+ 3)dy,id

m
z d

T
i

‖di‖m+5
2

)
u, (B.2c)

∂hi(0)

∂δz
= ci

(
−mdm−1

z dT
i − dmz eT

3

‖di‖m+3
2

+
(m+ 3)dm+1

z dT
i

‖di‖m+5
2

)
u. (B.2d)
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Appendix C

Proofs and Derivations for Chapter 4

C.1 Proof of Proposition 4.2

Consider the unit vector u = [u1 u2]T, u1 ≥ 0, u2 ≥ 0, ‖u‖2 = 1, and let ϕu(t), t ≥ 0,

denote the function ϕ from (4.29b) with its domain restricted to the line passing

through the origin along the direction u, i.e.,

ϕu(t) , ϕ(tu) = ϕ(tu1, tu2)

= fu(t)− 1

2

(
ln(u2

1t
2 + σ2) + ln(u2

2t
2 + σ2)

)
, (C.1)

where fu(t) , f(tu). Our goal here is to prove that, for each u, there exists one

point t? such that ϕu(t) is nondecreasing for t ∈ [0, t?] and nonincreasing for t ≥ t?,

i.e., ϕu(t) is quasiconcave.

Since f(δ1, δ2) is concave, its restriction to a line is also concave. As a consequence,

fu(t) is continuous and twice differentiable almost everywhere, meaning that there

are only countably many points where f ′′u(t) may not exist [93, Chapter 13]. In order

to simplify the notation, we will first restrict ourselves to the points at which fu(t)

is twice differentiable, then we will see that extension to all t > 0 is straightforward.

Differentiating (C.1) w.r.t. t, we obtain

ϕ′u(t) = f ′u(t)−
(

u2
1t

u2
1t

2 + σ2
+

u2
2t

u2
2t

2 + σ2

)
. (C.2)
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Further differentiation yields

ϕ′′u(t) = f ′′u(t) + u2
1

u2
1t

2 − σ2

(u2
1t

2 + σ2)2
+ u2

2

u2
2t

2 − σ2

(u2
2t

2 + σ2)2
. (C.3)

Let t? denote any point at which ϕ′u(t) = 0. Then, we need to show that there is

only one such point. Setting t = t? and substituting with ϕ′u(t?) = 0 in (C.2) yield

f ′u(t?) =
u2

1t
?

u2
1t
?2 + σ2

+
u2

2t
?

u2
2t
?2 + σ2

. (C.4)

Using (C.3) and (C.4), ϕ′′u(t?) can be written as

ϕ′′u(t?) = f ′′u(t?) + (f ′u(t?))
2 − 2u2

1u
2
2t
?2

(u2
1t
?2 + σ2)(u2

2t
?2 + σ2)

− u2
1σ

2

(u2
1t
?2 + σ2)2

− u2
2σ

2

(u2
2t
?2 + σ2)2

. (C.5)

Now we will show that the sum f ′′u(t?) + (f ′u(t?))2 is always nonpositive, and thus

ϕ′′u(t?) is also nonpositive. To do this, we first need to show that efu(t) is a concave

function. Let G(δ1, δ2) denote the optimal value of the perturbed problem

maximize
W

(hT
1 w1)ρ(hT

2 w2)1−ρ (C.6a)

s.t. |hT
2 w1| ≤ δ1, |hT

1 w2| ≤ δ2, (C.6b)

‖W‖2
F ≤ PTot, (C.6c)

w2
1i + w2

2i ≤ Pi, i = 1, . . . , N. (C.6d)

Since the objective function in (C.6a) is concave (see [80, Problem 3.16 (f)]), the

perturbed problem (C.6) is convex, and thus G(δ1, δ2) is a concave function. Next,

we note from (4.28) and (C.6) that G(δ1, δ2) = ef(δ1,δ2). Thus, Gu(t) , G(tu) = efu(t),
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and we have

G′′u(t) = Gu(t)
(
f ′′u(t) + (f ′u(t))2

)
. (C.7)

Since Gu(t) is concave, it holds that G′′u(t) ≤ 0 [80, Section 3.1.4]. Furthermore, since

Gu(t) is nonnegative, we must have

f ′′u(t) + (f ′u(t))2 ≤ 0. (C.8)

Thus, f ′′u(t?) + (f ′u(t?))2 ≤ 0 and, consequently, ϕ′′u(t?) ≤ 0. The last inequality tells

us that ϕ′u(t) can experience zero-crossing only from positive to negative. Since this

can happen only once, we conclude that there is only one point t? such that


ϕ′u(t) ≥ 0 for t ≤ t?,

ϕ′u(t) ≤ 0 for t ≥ t?.

Hence ϕu(t) is quasiconcave.

In order to extend the proof to include the points at which fu(t) is not differ-

entiable, we just need to replace the derivative of fu(t) with any element from its

subdifferential. Specifically, since fu(t) is concave, it is continuous and has right and

left derivatives over the whole interior of its domain (i.e., for all t > 0) [81, Theo-

rem 1.6]. Such derivatives are nonincreasing in the sense that, for any t2 > t1 > 0,

we have

f ′u(t−1 ) ≥ f ′u(t+1 ) ≥ f ′u(t−2 ) ≥ f ′u(t+2 ). (C.9)

Now, at the points where f ′u(t+) 6= f ′u(t−), i.e., fu(t) is non-differentiable, we will

allow f ′′u(t)→ −∞ and let f ′u(t) take any value in the interval [f ′u(t+), f ′u(t−)], mak-

ing (C.8) hold for all t > 0. Thus, ϕ′′u(t?) is always nonpositive including, possibly,
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ϕ′′u(t?)→ −∞. In other words, ϕ′u(t+) (or, equivalently, ϕ′u(t−)) can experience zero-

crossing only from positive to negative, even if ϕ′u(t+) has jump discontinuity at the

crossing point. Following the same argument for the differentiable case, we conclude

that ϕu(t) is quasiconcave for all t ≥ 0. �

C.2 Derivation of the Dual Problem (4.57)

The problem in (4.55) can be reformulated as

maximize
W,M,z1,...,z4

ρ ln z1 + (1− ρ) ln z2 (C.10a)

s.t. ĥT
1 w1 − ε1‖w1‖2 ≥ z1, (C.10b)

ĥT
2 w2 − ε2‖w2‖2 ≥ z2, (C.10c)

|z3|+ ε2‖w1‖2 ≤ δ1, (C.10d)

|z4|+ ε1‖w2‖2 ≤ δ2, (C.10e)

‖m1‖2
2 + ‖m2‖2

2 ≤ PTot, (C.10f)

m2
1i +m2

2i ≤ Pi, i = 1, . . . , N, (C.10g)

w1 = m1, w2 = m2, (C.10h)

ĥT
2 w1 = z3, ĥT

1 w2 = z4, (C.10i)

where we have introduced the new variables M, z3, and z4, along with the equality

constraints in (C.10h)-(C.10i).
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The Lagrangian associated with (C.10) is

L(W,M, z1, . . . , z4, χ1, χ2, λ1, λ2, γ,µ,η1,η2, ν1, ν2)

= ρ ln z1 + (1− ρ) ln z2

− χ1(−ĥT
1 w1 + ε1‖w1‖2 + z1)− χ2(−ĥT

2 w2 + ε2‖w2‖2 + z2)

− λ1 (|z3|+ ε2‖w1‖2 − δ1)− λ2 (|z4|+ ε1‖w2‖2 − δ2)

− γ
(
‖m1‖2

2 + ‖m2‖2
2 − PTot

)
−

N∑
i=1

µi(m
2
1i +m2

2i − Pi)

− ηT
1 (w1 −m1)− ηT

2 (w2 −m2)− ν1(ĥT
2 w1 − z3)− ν2(ĥT

1 w2 − z4). (C.11)

Rearranging the terms, and maximizing w.r.t. the primary variablesW,M, z1, . . . , z4,

we obtain the dual function

g(χ1, χ2, λ1, λ2, γ,µ,η1,η2, ν1, ν2)

= λ1δ1 + λ2δ2 + γPTot +
N∑
i=1

µiPi

+ max
w1

(
(χ1ĥ1 − η1 − ν1ĥ2)Tw1 − (λ1ε2 + χ1ε1)‖w1‖2

)
+ max

w2

(
(χ2ĥ2 − η2 − ν2ĥ1)Tw2 − (λ2ε1 + χ2ε2)‖w2‖2

)
+

N∑
i=1

max
m1i

(
η1im1i − (γ + µi)m

2
1i

)
+

N∑
i=1

max
m2i

(
η2im2i − (γ + µi)m

2
2i

)
+ max

z1
(−χ1z1 + ρ ln z1) + max

z2
(−χ2z2 + (1− ρ) ln z2)

+ max
z3

(ν1z3 − λ1|z3|) + max
z4

(ν2z4 − λ2|z4|) . (C.12)

The first maximization in the Lagrangian (C.12) is the conjugate of the l2-norm
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function [80, Example 3.26], and is solved as

max
w1

(
(χ1ĥ1 − η1 − ν1ĥ2)Tw1 − (λ1ε2 + χ1ε1)‖w1‖2

)
(C.13)

=


0 ‖χ1ĥ1 − η1 − ν1ĥ2‖2 ≤ λ1ε2 + χ1ε1

∞ otherwise.
(C.14)

Then, after solving the other maximization terms in (C.12), which are similar to

those in (4.34), the dual problem (4.57) follows.
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