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Abstract

The Autoregressive Stochastic Volatility (ARSV) model is a discrete-time stochas-

tic volatility model that can model the financial returns time series and volatilities.

This model is relevant for risk management. However, existing inference methods

have various limitations on model assumptions. In this report we discuss a new in-

ference method that allows flexible model assumption for innovation of the ARSV

model. We also present the application of ARSV model to risk management, and

compare the ARSV model with another commonly used model for financial time

series, namely the GARCH model.
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Chapter 1

Introduction

Modeling financial returns time series data is an essential component in a wide

range of problems in finance, including risk management, portfolio optimization,

pricing and hedging of financial risks. In order to develop a realistic model for time

series of financial returns, it is important to first identify key features that such data

tend to exhibit. These key features are usually referred to as the stylized facts

(McNeil, Frey, and Embrechts, 2015a). The most widely acknowledged among

these stylized facts are the following:

1. The conditional expectation of financial returns is close to zero (see Fig. 1.1

(left panel));

2. The conditional standard deviation, known as the volatility, varies over time

and with large values having a tendency to cluster (see Fig. 1.1 (left panel));

3. The marginal distribution of return series has heavier tail than that of the

normal distribution (See Fig. 1.1 (right panel));

4. There is little serial correlation between returns (see Fig. 1.2 (left panel)).

However, the squared or absolute values of returns show strong correlation

(see Fig. 1.2 (right panel)).

As the conditional expectation is usually close to zero, it is the volatility that

has the dominant effect on the dynamics of financial return series. For this reason,

the models for financial returns are often called volatility models. Several types

1



Figure 1.1: The left panel shows the daily log-returns for the S&P 500 Index
from January 1, 2000 to October 26, 2016. Large values of log-returns
are clustered. The right panel shows the normal quantile plot of this log-
return series, which has heavier tails than that of a normal distribution.

of volatility models have been proposed in the literature. Among these models,

arguably the most famous and widely used one is the Generalized Autoregres-

sive Conditional Heteroskedasticity (GARCH) process (Engle (1982), Bollerslev

(1986)). However, in this report, we discuss another type of a volatility model

called Autoregressive Stochastic Volatility (ARSV) process. Both of these pro-

cesses can capture the above mentioned stylized facts, but they exhibit different

extremal dependence properties for consecutive observations. The returns modeled

by GARCH process have the property of tail dependence, while those modeled by

ARSV process are tail independent. Detailed discussion of tail dependence and

independence as well as these two volatility models is provided in Chapter 2.

There is empirical evidence (Drees, Segers, and Warchoł, 2015) suggesting that

for some financial time series, the returns over consecutive periods are likely to be

tail independent. That is, extreme values at consecutive time points are independent

and hence will tend not to co-occur. However, there should be a stronger depen-

dence among large but not extremal observations than the classic ARSV model

2



Figure 1.2: The left and right panel show the autocorrelation function (ACF)
for the log-return series and squared log-returns of the same dataset as
in Figure 1.1.

implies. Janssen and Drees (2016) propose a variation of the classic ARSV model,

and they show that this new class of ARSV model which has a special form of the

heavy-tailed second innovation, has stronger tail dependence than classic ARSV

model, while remains tail independent for extremal observations.

Inspired by their ideas, in this report we consider another extension of the clas-

sic ARSV model, which also has a heavy-tailed second innovation and light-tailed

first innovation. We conjecture that this model is also tail independent for extremal

observations, but has stronger dependence for sub-extremal observations than the

classic ARSV model. The conjecture is supported via simulations.

However, the inference for ARSV models is notoriously difficult. Most of the

current inference methods for ARSV models require the assumption that both in-

novations have normal distributions. Therefore, they can only be applied to the

classic ARSV models but not to the extended model we want to focus on in this

report. We propose a new inference method for ARSV models which allows arbi-

trary choices of distributions of both innovations. We show that this new inference

method works as good as traditional methods for the inference of the classic ARSV

3



model, while it can accurately estimate parameters when traditional methods fail.

This new approach is discussed in Chapter 3.

One of the most important applications for volatility models is to measure risk

for risk management purposes. It is also used by financial market regulators to

set capital requirements for financial institutes. A correctly specified and flexi-

ble volatility model can help both practitioners and regulators to accurately cap-

ture features of the market data, and hence to measure risk more precisely. This

is paramountly important for the stability of the financial system. In Chapter 4

we discuss two risk measures: Value-at-Risk (VaR) and Conditional Value-at-Risk

(CoVaR). The estimation methods for VaR under the GARCH model are already

well studied. In this report, we develop estimation methods for CoVaR under the

GARCH model as well as for VaR and CoVaR under the proposed ARSV model.

We then compare risk measure estimates under the GARCH and ARSV models.

In Chapter 5, we provide discussion of the results and an outlook for future

research.
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Chapter 2

Background

In this chapter, we first discuss the property of tail dependence. We also briefly

introduce two volatility models, namely the GARCH process and ARSV process.

Our project is motivated by the different tail dependence properties between these

two models.

2.1 Measures of Tail Dependence
A question for the practitioners of risk management would be that given a large

loss today, how likely it is to experience a large loss tomorrow or h days into the

future.

To answer this question, we need to understand the idea of tail dependence and

tail independence. Different models for financial time series would have difference

tail dependence properties, and it is important to choose the model with the tail

dependence property close to that of the real data.

Consider two random variables Y and Z with continuous distribution functions

FY and FZ , respectively. The upper tail dependent coefficient between Y and Z is

defined as (Joe, 1997)

χ = lim
u→1

P(Z > F−1
Z (u)|Y > F−1

Y (u))

= lim
u→1

P(Z > F−1
Z (u),Y > F−1

Y (u))
P(Y > F−1

Y (u))
, (2.1)

5



provided the limit exits. It is the limit of the ratio between the probability of the

occurrence of jointly extremal observations of Y and Z and the probability of the

occurrence of an extreme observation in one of the variables. The lower tail depen-

dence coefficient can be defined similarly.

If χ = 0, then Y and Z are said to be tail independent. On the other hand, when

0 < χ ≤ 1, Y and Z are called (upper) tail dependent. The value of χ measures how

strong the tail dependence is.

However, χ only provides us information about how strong the tail dependence

is when it is greater than zero. When χ = 0, we cannot tell how fast χ approaches

zero as u→ 1. We need a more refined measure to tell us the speed of χ approach-

ing zero.

First, we call a function L on (0,∞) slowly varying at ∞ if

lim
x→∞

L(tx)
L(x)

= 1, t > 0,

while a function h on (0,∞) is called regularly varying at ∞ with index p if

lim
x→∞

h(tx)
h(x)

= t p, t > 0.

Let us define p(t) = P(Z > F−1
Z (1− 1/t),Y > F−1

Y (1− 1/t)), and suppose

p(t) is regularly varying with index −1/η for some η ∈ (0,1]. Then η is called

the residual tail dependence coefficient (Ledford and Tawn, 1996).

Ledford and Tawn (1996) show that if η < 1, then χ = 0 and hence Y and Z are

tail independent, and η measures the speed of convergence to tail independence.

We can further define (Coles, Heffernan, and Tawn, 1999)

χ̄ = 2η−1,

where −1 < χ̄ ≤ 1. When 1/2 < η ≤ 1 or 0 < χ̄ ≤ 1, Y and Z are non-negatively

dependent, and when η = 1/2 or χ̄ = 0, Y and Z are exactly tail independent

(Coles, Heffernan, and Tawn, 1999; Ledford and Tawn, 2003).

Now we have the pair (χ, χ̄) to help us describe the extremal dependence.

When χ > 0 and χ̄ = 1 the two random variables are tail dependent, and the value

6



of χ measures the strength of the dependence of this pair. If χ = 0 and−1< χ̄ < 1,

the two random variables are tail independent, and the value of χ̄ measures the

strength of dependence of this pair.

Understanding the type of tail dependence structure is very important for choos-

ing good models. Let {Xt} denote a process of financial log-returns with losses in

the upper tail. As discussed in Chapter 1, financial data often suggests tail inde-

pendence between consecutive returns. In other words, although high volatilities

tend to be persistent, extremal levels of returns should be tail independent (Laurini

and Tawn, 2008) so that P(Xt > F−1
Xt

(u)|Xt−1 > F−1
Xt−1

(u))→ 0 as u→ 1. A tail de-

pendent process may lead to an overestimation of the potential loss. On the other

hand, Janssen and Drees (2016) suggest that a good model for returns should be tail

independent, while retaining stronger tail dependence at sub-extremal levels than

the exactly tail independent case. In other words, we are looking for a stochastic

volatility process such that that for the pair (Xt−1,Xt), χ = 0 and 0 < χ̄ < 1.

2.2 Volatility Models

2.2.1 GARCH Process

One of the most commonly discussed volatility models is the generalized autore-

gressive conditionally heteroscedastic (GARCH) model. GARCH family was first

proposed by Engle (1982) and Bollerslev (1986). A GARCH(p,q) process for

{Xt , t = 1,2, ...,T} is defined as follows:

Xt = σtεt

σ
2
t = α0 +

p

∑
i=1

αiσ
2
t−i +

q

∑
j=1

β jX2
t− j

where {εt} is a strict white noise process with zero mean and unit variance, α0 > 0,

αi ≥ 0, i = 1,2, ..., p, and β j ≥ 0, j = 1,2, ...q. In order to achieve stationarity, we

also assume ∑
p
i=1 αi+∑

q
j=1 β j < 1. In financial statistics, Xt is usually the return on

the financial asset observed at time t and σt is the conditional standard deviation,

or the volatility, at time t, which generally cannot be directly observed.

Let Ft denote the sigma algebra of all available information up to time t. Then,

7



for the GARCH model, volatility σt is Ft−1 measurable. In other words, given the

information up to t−1, σt is known.

The empirical evidence suggests that volatilities are clustered: when high volatil-

ity occurs at time t-1, it would be more likely to have large volatility again at time

t. For a GARCH(p,q) model, the conditional squared volatility is based on a linear

combination of previous squared returns and squared volatilities, so a large abso-

lute value in Xt−h,h = 1,2, ...q or a large value of σt−h,h = 1,2, ...p lead to a large

value of σt . Therefore, we can observe the clustered behavior of large volatility

from a GARCH model. For simplicity, we only consider the GARCH(1,1) pro-

cess, which in practice is believed to be sufficient to model the volatility process

most of the time.

Mikosch and Starica (2000) and Basrak, Davis, and Mikosch (2002) show that

for GARCH models,

lim
x→∞

P(Xh > x|X0 > x)> 0,

i.e., η = 1 or (Xh,X0) are tail dependent. Laurini and Tawn (2008) suggest declus-

tering returns over high threshold to remove the tail dependence. However, we can

also look for an alternative model such that the series of {Xt} is tail independent

while volatility clustering is preserved.

2.2.2 ARSV Process

An alternative to the GARCH model is the autoregressive stochastic volatility

model (ARSV). This model is first studied by Harvey, Ruiz, and Shephard (1994)

and Jacquier, Polson, and Rossi (1994), among many others. We focus on the

simplest ARSV(1) model, which is defined as

Xt = σtεt

log(σ2
t ) = β0 +β1 log(σ2

t−1)+δηt

where {εt} and {ηt} are two independent strict white noise processes with zero

mean and unit variance, and δ > 0 is a constant to adjust the standard deviation of

the second innovation. β0 and β1 are coefficients for the log-volatility process. For

ARSV(1) model, 0 < β1 < 1 is required for the process to be stationary.

8



The difference between a GARCH model and an ARSV model lies in the

volatility process. For a GARCH model, σt is Ft−1 measurable as mentioned

above. However, the volatility process of an ARSV model contains a second inno-

vation term ηt . Thus, after conditioning on all information up to t−1, σt is still a

random variable.

The tail dependence properties of ARSV(1) model are studied by Breidt and

Davis (1998) and Hill (2011). They show that for either normally distributed or

heavy-tailed εt , the extremes of Xt are independent. Liu and Tawn (2013) suggest

the difference comes from the source of clustering. For the GARCH model, the

components of previous volatilities have negligible effect on the current volatility

when αi’s (i≥ 1) are small. However, the return process and volatility process are

interconnected. Therefore, extremal return observed at time t−1 will lead to large

volatility value at time t, and hence a large probability of observing an extremal

return at time t. This is illustrated below.

Xt−1

σt−1

Xt

σt

Figure 2.1: Structure of GARCH process.

However, for the ARSV model, the process of the log-volatility is independent

from the observed values of return process, while the return is the realization of

current volatility times a noise term. Therefore, Xt−1 and σt are independent given

σt−1, and a large volatility value at time t− 1 does not necessarily lead to a large

return value at time t.

The tail behaviors of GARCH process and ARSV process can also be illus-

trated with the residual tail dependence coefficient η , or measures of tail depen-

9



Xt−1

σt−1

Xt

σt

Figure 2.2: Structure of ARSV process.

dence χ and χ̄ discussed in Section 2.1. In Figure 2.3 we present the estimate of

residual tail dependence coefficient, η , for the GARCH(1,1) process with α0 =

1×10−6, α1 = 0.8, and β1 = 0.1; classic ARSV(1) process with β0 =−0.5, β1 =

0.95, and δ = 0.35; and an extension of the classic ARSV(1) process with β0 =

−0.5, β1 = 0.95, δ = 0.35, and a standardized second innovation ηt which is Stu-

dent’s t distributed with 5 degress of freedom. The corresponding values of the

(χ, χ̄) pairs 1 are presented in Figure 2.4. Janssen and Drees (2016) suggest that an

ARSV(1) process with heavy-tailed second innovation distribution has a stronger

tail dependence at sub-extremal levels than classic ARSV model while remains tail

independent. Figure 2.3 and Figure 2.4 both support this suggestion. As we can see

from these two plots, when the quantile approaches 1 we have evidence to support

the claim η = 1 (i.e. tail dependent), η = 0.5 (i.e. exactly tail independent), and

0.5 < η < 1 (i.e. tail independent but not exactly tail independent) respectively for

the three scenarios. Similarly in Figure 2.4, for the GARCH(1,1) process, when

the quantile approaches 1 the empirical value of χ is significantly larger than 0,

which implies that (Xt−1, Xt) are tail dependent. For the classic ARSV(1) process,

both empirical values of χ and χ̄ are not significantly larger than 0, which implies

that (Xt−1, Xt) are exactly tail independent. For the extended ARSV(1) processes,

the empirical value of χ is not significantly larger than 0 but the empirical value

1Here the empirical values of χ and χ̄ are estimated using the evd package, which calculates
both values using approximation method.
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of χ̄ is significantly larger than 0, which implies that (Xt−1, Xt) have stronger tail

dependence than product of margins.

We further compare the simulated data with an actual financial time series. We

estimate volatilities of the S&P 500 Index from 2000-01-03 to 2016-10-26 with

some unbiased estimators, and then fit the log squared volatilities to an AR(1)

process. The top left panel of Figure 2.5 illustrates the quantile plot of residuals of

this AR(1) process against a normal distribution, and the top right panel illustrates

the quantile plot against a Student’s t distribution with 3 degrees of freedom. These

two plots hint that a heavy-tailed second innovation ηt might be a more suitable

choice. Also, we present the χ/χ̄ plots of the negative returns of this dataset.

Comparing the bottom two panels of Figure 2.5 with all panels in Figure 2.4, we

can also conjecture that the χ/χ̄ plots from extended ARSV(1) process with the

second innovation Student’s t distributed are the closest ones to those from the real

data. Thus we might prefer to model the financial return series using the extended

ARSV(1) model.

11



Figure 2.3: Plot of η for a simulated GARCH(1,1) process (top panel), a
simulated classic ARSV(1) process (middle panel), and a simulated ex-
tended ARSV(1) process with first innovation distribution normal and
second innovation distribution Student’s t (bottom panel).

12



Figure 2.4: χ/χ̄-plot for a simulated GARCH(1,1) process (top panels), a
simulated classic ARSV(1) process (middle panels), and a simulated
extended ARSV(1) process with first innovation distribution normal and
second innovation distribution Student’s t (bottom panels).
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Figure 2.5: Quantile plots and χ/χ̄ plots of the negative daily log-returns of
S&P 500 Index from 2000-01-03 to 2016-10-26.
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Chapter 3

Inference for Autoregressive
Stochastic Volatility Model

Many efforts have been made to develop inference methods for the traditional

ARSV model with both innovation distributions as normal. In this section, we

first briefly review the methods that inspire our new inference methods.

However, these existing methods cannot be used to estimate parameters for

the extension of the ARSV model discussed at the end of last section. Therefore,

we propose a new approach that allows flexible choices of both innovation distri-

butions of the ARSV model. This new method can work as well as the existing

methods for the traditional ARSV model, and can provide good parameter esti-

mates when existing methods fail. We describe the details of the new method in

this section. We also compare the results from this new method with those from

the existing inference method.

3.1 Review of Existing Methods
In this section we review inference methods implementing the full Bayesian ap-

proach with pre-specified prior distributions. Jacquier, Polson, and Rossi (1994)

propose a cyclic MCMC approach for the classic ARSV(1) model with both inno-
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vations normally distributed. Consider the model

Xt = σtεt

logσ
2
t = β0 +β1 logσ

2
t−1 +δηt

(εt ,ηt)∼ N(0, I2),

where I2 is a two-dimensional identity matrix. Let ω denote the set of parameters

(β0,β1,δ ). An inverse gamma distribution p(δ ) ∝ exp(−ν0s2
0/2δ 2)/δ ν0+1 is cho-

sen as the prior distribution for δ , where (ν0,s0) are two hyperparameters. The

prior distributions of β0 ∼N(0,100) and β1 ∼N(0,10) are independent and essen-

tially flat. The algorithm proposed by Jacquier, Polson, and Rossi (1994) includes

two stages:

1. Sample parameters ω: p(ω| logσ2
t ) is the posterior from a linear regression,

and therefore a direct draws can be made.

2. Sample σ2
t from

p(σ2
t |σ2

t−1,σ
2
t+1,ω,xt) ∝ fX(xt |σ2

t ) fa(σ
2
t |σ2

t−1) fb(σ
2
t+1|σ2

t )

∝
1
σt

exp
(−x2

t

2σ2
t

)
× 1

σ2
t

exp
(−(logσ2

t −µt)
2

2δ 2

)
,

where µt =(β0(1−β1)+β1(logσt+1+logσ2
t−1))/(1+β 2

1 ), and δ 2 = u2
η/(1+

β 2
1 ); fX is the probability density function of Xt conditioned on σ2

t ; fa and

fb are probability density functions of σ2
t conditioned on σ2

t−1 and σ2
t−1 con-

ditioned on σ2
t respectively; π is the posterior density function of σt .

Jacquier, Polson, and Rossi (2004) extend the method above to deal with the

case where the first innovation εt follows a Student t distribution with ν degrees of

freedom. They treat the heavy-tailed εt as a scale mixture of the inverse gamma

distribution and normal distribution. This allows us to write Xt as Xt = σt
√

λtZt ,

where Zt follows the standard normal distribution and λt follows an inverse gamma

distribution IG(ν/2,2/ν), or ν/λt ∼ χ2
ν . Let us denote X∗t = Xt/

√
λt . Then we

can replace {xt , t = 1,2, ...T} with {x∗t , t = 1,2, ...T}, and sample σ2 and ω in

the similar way as described above. Jacquier, Polson, and Rossi (2004) choose a
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uniform discrete prior on [3,40] for ν , and prior distributions of other parameters

are the same as above. The algorithm includes three stages:

1. Sample from the posterior distribution p(σ2,ω|λ ,ν ,x∗) using the algorithm

in Jacquier, Polson, and Rossi (1994).

2. Sample λ from the posterior distribution

p(λt |xt ,σ
2
t ,ν)∼ IG

(
ν +1

2
,

2
(x∗t 2/ logσ2

t )+ν

)
.

3. Sample ν from the posterior distribution

p(ν |σ2,x,ω) = p(ν)
T

∏
t=1

νν/2Γ(ν +1/2)
Γ(ν/2)Γ(1/2)

(ν + x2
t /σ

2
t )
−(ν+1)/2,

where p(ν) is the prior distribution of ν .

Kastner and Frühwirth-Schnatter (2014) propose another method based on logX2
t

instead of Xt . By taking square and then logarithm on Xt , we have

logX2
t = logσ

2
t + logε

2
t ,

where logε2
t can be approximated by a mixture of normal distributions. They

further implement the ancillary-sufficiency interweaving strategy to sample in the

[logX2, logσ2,ω] space. This method is implemented in the stochvol package.

Broto and Ruiz (2004) provide a more comprehensive and detailed review on

other approaches for the classic ARSV model.

3.2 New Inference Method
The methods discussed in the preceding section assume that the second innovation

distribution in the ARSV model is normal, and the first innovation distribution can

only be normal or Student t. However, when the second innovation in the ARSV

model is non-Gaussian, it would be very difficult to derive the corresponding poste-

rior distribution, and hence very difficult to sample from the posterior distribution.

In order to make model inference for the extension of the classic ARSV model we
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discussed earlier, we propose a new inference method which does not require pre-

sepcified prior distributions, and hence does not rely on the normality of innovation

distributions.

For the rest of the report, we consider the model

Xt = σtεt

logσ
2
t = β0 +β1 logσ

2
t−1 +δηt ,

where εt follows a standard normal distribution and ηt follows a standardized Stu-

dent t distribution with zero mean, unit variance, and νη degrees of freedom.

To start, we first need to make an initial guess of the volatilities and parameters.

Popular model-free methods for volatilities include a simple moving average of

squared returns, or the Exponentially Weighted Moving Average (EWMA) among

many others. Let us define ht := logσ2
t , t = 1,2, ...T . With estimated volatili-

ties {σ (0)
0 , ...,σ

(0)
T }, we can calculate ht , t = 1, ...,T and have an initial guess of

parameters θ
(1) by fitting an AR process as described in Section 3.2.4. In this re-

port, we choose the 5-day moving average of squared returns as our initial guess of

volatility.

Assume that after the (i− 1)th iteration, we have sampled the sequence of

h(i−1)
t , t = 1, ...,T and have updated parameters θ

(i) = [β
(i)
0 ,β

(i)
1 ,δ (i),ν

(i)
η ] in the

way discussed in Section 3.2.4. Then in the ith iteration, we sample {h(i)t , t =

2, ...,T −1} in the way described in the following sections.

3.2.1 Proposing Step

The sequence {h(i)t , t = 2, ...,T −1} is sampled sequentially. Suppose that after the

(t−1)th step in the ith iteration, we have already sampled h(i)t−1. Since the volatility

process is independent from the observed returns, the distribution of ht will only

depend on the value of ht−1 and the parameters θ = [β0,β1,δ ,νη ]. Therefore, by

plugging in the estimated parameters θ
(i) = [β

(i)
0 ,β

(i)
1 ,δ (i),ν

(i)
η ] and the sampled

h(i)t−1 from the previous step, we can sample h
′
t from the Student t distribution with

mean β
(i)
0 + β

(i)
1 h(i)t−1, standard deviation δ (i), and degrees of freedom ν

(i)
η . We

can continue this sequence by sampling h(i)t+1 based on h(i)t and θ
(i) for all t =

2,3, ...T −1.
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This step is similar to the commonly used technique in MCMC called Gibbs

sampler. However, Gibbs sampler is applied more often in the scenario when we

are only dealing with a smaller sampling space. Our case is different from the

regular setting as we want to sample a sequence of T −2 random variables, where

the T can be as large as 1000 to 2000. Also, ht only depends on ht−1 and this

process can be analogous to a random walk process. Therefore, the classic Gibbs

sampling method would be very inefficient in this case, as it would take a very long

time to explore all regions with high probability. In Figure 3.1 we show the values

of the estimated parameter β̂0 in each iteration when we only use the classic Gibbs

sampler with the parameters estimation method discussed in Section 3.2.4. The

true value is −0.5. However, we can see that the estimated values do not approach

the true value even after nearly 2000 iterations.

Figure 3.1: Path of β0 estimates when only implementing Gibbs sampler. The
red line represents the true value.

3.2.2 Classic Metropolis-Hastings Algorithm

To overcome the problem of slow convergence, we need to regulate the acceptance

rate of each new sample. Instead of accepting all newly proposed samples, we can
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adopt the Metropolis-Hastings’ algorithm to adjust our acceptance rate. For the

rest of this section, we consider sampling a generic sequence x(i) from distribution

π , where generally the functional form of π is known except for a normalizing

constant. The classic Metropolis-Hastings’ algorithm contains the following three

steps ((Murphy, 2012)):

First, in the ith iteration, we sample a new sample x′ from a proposal distribution

q(x(i)|x(i−1),D), where x(i−1) is the value we obtained in the previous iteration, and

D is the set of parameters.

Second, we calculate the acceptance rate, r, which is found by

r = min(1,α),

with α =
q(x(i−1)|x′)π(x′)

q(x′|x(i−1))π(x(i−1))
, (3.1)

where π(·) is known up to a normalizing constant.

The idea behind the acceptance rate is that in order to reveal the true distri-

bution of x, we want our algorithm to be able to explore the whole space without

stucking at one point, and to visit the regions with higher probability more often.

The q(x(i−1)|x′)
q(x′|x(i−1))

part ensures that the possibility of the sampler to revisit the previ-

ous point is reserved. At the same time, the π(x′)
π(x(i−1))

part ensures that regions with

higher probability would be more likely to be visited.

The final step is to reject or accept the proposal we make in the first step. We

accept this newly sampled proposal with the probability equals r. This is often

done by generating a uniformly distributed random variable u between 0 and 1.

Then

x(i) =

x′, u < r

x(i−1), u≥ r

3.2.3 Metropolis-within-Gibbs

However, the classic Metropolis-Hastings algorithm cannot be directly applied to

our problem. We need to know the full joint probability density function of the
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newly sampled h
′
t defined in Section 3.2.1 and that of h(i−1)

t from the previous

iteration, which could be very difficult to find. Instead, we could implement an

algorithm with the similar idea as the Metropolis-within-Gibbs algorithm (Roberts

and Rosenthal, 2006). The details of our algorithm are described as below.

In the first step, when t ≥ 2, we propose the new h
′
t conditioned on h(i)t−1 rather

than h(i−1)
t

1. As discussed in Section 3.2.1, the distribution of h(i)t is only deter-

mined by h(i)t−1 and θ
(i). Therefore, our proposal distribution would be a Student

t distribution with mean β
(i)
0 + β

(i)
1 h(i)t−1, standard deviation δ (i), and degrees of

freedom ν
(i)
η . We denote this distribution as G(i)

t .

In the second step, since h
′
t and h(i−1)

t are independent fixing the parameter

vector θ
(i), the first part of the acceptance probability is

q(h(i−1)
t |h′t ,θ (i))

q(h′t |h
(i−1)
t ,θ (i))

=
G(i)

t (h(i−1)
t )

G(i)
t (h′t)

.

The full joint density function of ht’s cannot be easily derived. However, the

Markovian structure of the process of {ht} suggests that we only need to focus on

the joint density functions in the Markov blankets of h
′
t and h(i−1)

t . A Markov blan-

ket is the smallest set of data that can grant ht conditional independence from all

other variables. The structure of ARSV process suggests that the Markov blanket

of ht includes {ht−1,ht+1,xt}. That is, conditioned on the observed return at time

t, xt , the log-volatility sampled from the previous step, ht−1, and the log-volatility

of the next step, ht+1, the ht is independent from all other observed return values or

volatility values. In our case, the Markov blanket of h
′
t includes {h(i)t−1,h

(i−1)
t+1 ,xt}.

These are the log-volatility sampled in the previous step of this iteration, the log-

volatility of the next step from the previous iteration, and the known return value.

1Note that in the Gibb’s sampling scheme, a new value is drawn by conditioning on the value
from the previous iteration. However, here we condition on the value from the previous time step in
the same iteration.
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Therefore,

π(h
′
t) = fht (h

′
t |xt ,h

(i)
t−1,h

(i−1)
t+1 ,θ (i))

∝ f1(h
′
t ,xt ,h

(i)
t−1,h

(i−1)
t+1 ,θ (i))

= fX(xt |h(i)t−1,h
′
t ,h

(i−1)
t+1 ,θ (i)) f2(h

(i)
t−1,h

′
t ,h

(i−1)
t+1 ,θ (i))

= fX(xt |h
′
t) fht+1(h

(i−1)
t+1 |h

′
t ,h

(i)
t−1,θ

(i)) f3(h
′
t ,h

(i)
t−1,θ

(i))

= fX(xt |h
′
t) fht+1(h

(i−1)
t+1 |h

′
t ,θ

(i)) fht (h
′
t |h

(i)
t−1,θ

(i)) fht−1(h
(i)
t−1|θ

(i)) fp(θ
(i))

where fX is the conditional probability density function of returns 2; fht and fht+1

are the conditional probability density functions of ht and ht+1 respectively; fht−1

and fp are the marginal probability density functions of ht−1 and θ respectively;

f1, f2, and f3 are joint probability density functions of {ht ,Xt ,ht−1,ht+1,θ},
{ht ,ht−1,ht+1,θ}, and {ht−1,ht ,θ} respectively.

Similarly,

π(h(i−1)
t ) ∝

fX(xt |h(i−1)
t ) fht+1(h

(i−1)
t+1 |h

(i−1)
t ,θ (i)) fht (h

(i−1)
t |h(i)t−1,θ

(i)) fht (h
(i)
t−1|θ

(i)) fp(θ
(i))

We know that fht (h
′
t |h

(i)
t−1,θ

(i)) = G(i)
t (h

′
t), and we can assume that

2Note that in this example we are considering a simple case where εt ∼ N(0,1), therefore the
distribution of Xt only depends on the value of σt . If we have further assumptions about εt then
fX (xt |h

′
t) should be replaced with fX (xt |h

′
t ,θ

(i)).
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fht (h
(i−1)
t |h(i)t−1,θ

(i))≈ G(i)
t (h(i−1)

t ). Then, α in (3.2) can be written as

α =
q(h(i−1)

t |h′t)
q(h′t |h

(i−1)
t )

× π(h
′
t)

π(h(i−1)
t )

=
G(i)

t (h(i−1)
t )

G(i)
t (h′t)

×

fX(xt |h
′
t) fht+1(h

(i−1)
t+1 |h

′
t ,θ

(i)) fht (h
′
t |h

(i)
t−1,θ

(i)) fht−1(h
(i)
t−1|θ

(i)) fp(θ
(i))

fX(xt |h(i−1)
t ) fht+1(h

(i−1)
t+1 |h

(i−1)
t ,θ (i)) fht (h

(i−1)
t |h(i)t−1,θ

(i)) fht−1(h
(i)
t−1|θ

(i)) fp(θ
(i))

=
fX(xt |h

′
t) fht+1(h

(i−1)
t+1 |h

′
t ,θ

(i)) fht−1(h
(i)
t−1|θ

(i)) fp(θ
(i))

fX(xt |h(i−1)
t ) fht+1(h

(i−1)
t+1 |h

(i−1)
t ,θ (i)) fht−1(h

(i)
t−1|θ

(i)) fp(θ
(i))

=
fX(xt |h

′
t) fht+1(h

(i−1)
t+1 |h

′
t ,θ

(i))

fX(xt |h(i−1)
t ) fht+1(h

(i−1)
t+1 |h

(i−1)
t ,θ (i))

. (3.2)

Expression (3.3) can be evaluated easily for t = 2,3, ...,(T − 1) and i ≥ 1. It

can be understood intuitively as the ratio of partial conditional likelihoods between

h
′
t and h(i−1)

t . Instead of comparing the full likelihood times the inverse of proposal

kernel like the classic Metropolis-Hastings’ algorithm, the acceptance rate here is

determined by comparing the likelihood of observing the current return value and

the log-volatility value of the next step between the newly proposed h
′
t and the

value from the last iteration h(i−1)
t . The decision of either keeping the new value

or retaining the old value is made in the same way as classic Metropolis-Hastings

algorithm. However, when t = 1, h0 is unknown and therefore we cannot sample

h1, and need to make an arbitrary guess about it. Similarly, when t = T , hT+1 is

unknown and the method described above cannot be applied to sample hT . We

need to make an arbitrary guess about hT as well. One possible way to minimize

the impact of h1 and hT in the ith iteration is to discard a number of {h(i)t } for t < T1

and t > T2, and only retain a subset of {h(i)t } as {h(i)t : T1 ≤ t ≤ T2}, where T1 and

T2 are two arbitrary numbers to be selected prior to running the algorithm.

Note that we do not have theoretical proof for the convergence of this algo-

rithm. However, it is reasonable to believe that our method enjoys the same con-

vergence property as the classic Metropolis-Hastings’ algorithm from the empirical

results such as in Figure 3.2.
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3.2.4 Parameter Estimation

Previous methods implement the fully Bayesian approach to estimate the param-

eters of the ARSV model. With carefully chosen prior distributions for the pa-

rameters and the normality assumption of both innovations one can sample the

parameters from their posterior distributions. However, it would be very difficult

if the innovation distributions, especially the second innovation distribution of the

ARSV(1) model, are not conjugate with each other or the prior distribution chosen

for parameters.

In our approach, we estimate the parameters separately. After each itera-

tion we obtain the {h(i)t : T1 ≤ t ≤ T2}, and we want to estimate the parameters

(β0,β1,δ ,νη) of an AR(1) process

ht = β0 +β1ht−1 +δηt

where T1 ≤ t ≤ T2 and ηt is a strict white noise process with zero mean and unit

variance. Then the paramter estimation can be simplified to the problem of esti-

mating the parameters of an AR(1) process with non-Gaussian innovation, which

is well studied and can be easily applied (for example, (Grunwald, Hyndman,

Tedesco, and Tweedie, 2000)). In this study, we use the arfimafit function

in the rugarch package, which provides estimation of parameters for an autore-

gressive model with Student t distribution with an MLE approach. If there is no

available program for the parameter estimation, one can try different methods, such

as maximum likelihood method or Bayesian method, to estimate the parameters.

Figure 3.2 illustrates the distribution of estimated parameters. It can be seen that

with a starting value −1.2, the Markov chain values of β0 soon move close to the

true value −0.5 after a few hundred iterations, and remain around the true value as

the number iterations increases. Also notice that the Markov chain values of the

degrees of freedom is not very stable, however, most of the iterations will return

estimations that are reasonably close to the true value. Therefore, we could discard

the first K iterations as the burn-in period, where the K is determined by observa-

tion, and use some robust statistic such as the median of Markov chain values of

each parameter from remaining Markov chain values as our estimator of the param-
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eter3. This estimator will help us to obtain a good estimation of each parameter. In

Table 3.1 we present an example of the results of our algorithm. Here the length of

Markov chain is 3000 iterations, and the length burn-in period is 500 iterations. In

Figure 3.2 we also present the Markov values after each iteration.

Table 3.1: An example of estimating parameters of an ARSV(1) process with
εt ∼ N(0,1) and ηt ∼ standardized t5. Median of Markov chain values
after discarding the values from the first 1000 iterations. The values in
the parentheses are standard error of each estimator.

True Value β0 =−0.5 β1 = 0.95 δ = 0.35 νη = 5

estimation -0.544(0.080) 0.944(0.008) 0.360(0.039) 5.46(20.7)

Figure 3.2: Illustration of Markov chain values of parameters after each it-
eration. Each dot represents the estimated value of the corresponding
parameter after each iteration. The red lines represent the true value.

3For simplicity we use median as the estimator for all parameters. However, particularly for the
estimator for degrees of freedom, mode is also recommended.
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3.2.5 Discussion on the Flexibility

During the process of writing this report, we find a paper by Fridman and Harris

(1998) which also discusses a flexible inference method for ARSV process based

on the maximum likelihood approach. The new method discussed in this report

and their method achieve the flexibility of allowing arbitrary choices of innovation

distribution in a different way. For the method proposed by Fridman and Harris

(1998), inference for ARSV(1) process is simplified to finding a good numerical

approximation method to evaluate the integration on a given probability density

function. However, our new method simplifies the inference for ARSV(1) process

to inference for an AR(1) process with given distribution of error terms. Further-

more, it is easy for the method proposed by Fridman and Harris (1998) to include

the ARCH term in the volatility process, while increasing the lags in the volatility

process will lead to an exponential growth in the complexity of this method. Our

method, on the other hand, can handle the inference of ARSV(p) process with triv-

ial modifications. However, it might be more difficult for our method to estimate

parameters for the ARSV model with the ARCH term in the volatility process.

Therefore, these two methods can be complementary to each other. The choice

should be made depending on the assumption of underlying process.

3.2.6 Algorithm

The algorithm for our new method contains two layers of loops. Before starting

our iterations, first we need to get an initial estimation of {h(0)t } using some proxies

such as the moving average of squared returns. Then we initialize the parameter

set θ
(1) = [β

(1)
0 ,β

(1)
1 ,δ (1),ν

(1)
η ] based on methods discussed in Section 3.2.4. This

algorithm contains two layers of loops. In the ith iteration of the external loop,

we follow sampling method discussed in Section 3.2.1 and 3.2.3 to generate the

sequence of {h(i)t } for t = 1,2, ...N. After the internal loop ends, we update param-

eter set based on the newly sampled {h(i)t }, t = 1,2, ...N with methods discussed

in Section 3.2.4. Detailed algorithm is given below, and simulation results are

presented in the next section.
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Algorithm 1 Flexible Inference for ARSV Model Inference

1: initialize ite, {h(0)t }, θ
(1), T , T1, and T2

2: while i < ite do
3: for t from 2 to T-1 do
4: sample h

′
t from fht (·|h

(i)
t−1,θ

(i))

5: set α =
fX (xt |h

′
t ) fht+1 (h

(i−1)
t+1 |h

′
t ,θ

(i))

fX (xt |h(i−1)
t ) fht+1 (h

(i−1)
t+1 |h

(i−1)
t ,θ (i−1))

6: calculate acceptance rate A = min{1,α}
7: generate u from uni f (0,1)

8: if u < A then h(i)t = h(i−1)
t

9: else h(i)t = h
′
t

10: end if
11: end for
12: keep {h(i)t ,T1 ≤ t ≤ T2}
13: update θ

(i+1) by fitting an AR(1) process to {h(i)t ,T1 ≤ t ≤ T2}
14: end while

3.3 Comparison of Inference Methods
In this section we present the results of the model inference. We show that our

new method can estimate the parameters of the classic ARSV(1) model as well as

previous methods, and can be applied to the extension of classic ARSV(1) when

previous methods may fail.

3.3.1 Parameter Estimation for Simulated Data

First we want to show that our new approach works as well as previous methods.

The simulated data is generated from the following process:

Xt = σtεt (3.3)

logσ
2
t =−0.5+0.95logσ

2
t−1 +0.35ηt , (3.4)

where εt ∼ N(0,1), ηt ∼ N(0,1), and ηt and εt are independent.

We generate 200 datasets with length T = 2500 based on (3.4) and (3.5) with
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different random seeds. We then run our new method for 5000 iterations and dis-

card the first 2000 runs. We compare our results with the stochvol package (Kast-

ner, 2016). This package is one of the latest packages for ARSV(1) model infer-

ence, and we regard it as the representative of existing methods. stochvol package

assumes the second innovation distribution {ηt} of ARSV(1) model to be normal,

and can work with both normal innovation distributions or a Student t first innova-

tion and a normal second innovation.

Figure 3.3: Distribution of estimated parameters based on simulated data
generated from (3.4) and (3.5) with εt ∼ N(0,1) and ηt ∼ N(0,1). Esti-
mates are from our new method and the stochvol package.

Table 3.2: Median of estimated parameters for simulated data in Figure 3.3
using our new method. The values in the parentheses are standard devia-
tions of the 200 estimated values of each parameter.

Method β0 =−0.5 β1 = 0.95 δ = 0.35

stochvol -0.527(0.113) 0.947(0.011) 0.359(0.033)

New Method -0.495(0.177) 0.950(0.017) 0.348(0.045)
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The example above illustrates that our new method works as well as previous

methods for the inference of the classic ARSV(1) model. Although the standard

deviations of our estimated parameters are slightly larger, in general two methods

are very close to each other.

Next we want to show that our method is more flexible than previous methods.

We consider two different scenarios: (1) εt ∼ N(0,1) and ηt ∼ standardized t5; (2)

εt ∼ standardized t5 and ηt ∼ standardized t5.

In the first scenario, 300 datasets with length T = 2500 are generated. We

compare the results in the same way as above.

Figure 3.4: Distribution of estimated parameters based on simulated data
generated from (3.4) and (3.5) with εt ∼ N(0,1) and ηt ∼
standardized t5. Estimates are from our new method and the stochvol
package.

Table 3.3: Median of estimated parameters for simulated data in Figure 3.4.
The values in the parentheses are standard deviations of the 300 estimated
values of each parameter.

Method β0 =−0.5 β1 = 0.95 δ = 0.35 νη = 5

stochvol -0.531(0.110) 0.947(0.011) 0.359(0.033) NA

New Method -0.506(0.138) 0.950(0.014) 0.357(0.045) 6.54(5.15)
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From Figure 3.4 and Table 3.3 we can see that estimated parameters from

both our new method and the stochvol package are very close. However, our new

method estimates the degrees of freedom of the second innovation distribution rea-

sonably well, while the stochvol package has to assume that the second innovation

is normally distributed.

We do similar simulation study for the second case, and the results are pre-

sented below. Note that we estimate the parameters of ARSV model using the

stochvol package with two different model specifications, namely assuming εt ∼
N(0,1) or εt ∼ standardized tνε

, to show how bad the performance can be when we

specify the model incorrectly. The results are presented in Table 3.4.

When both innovations follow Student t distribution, we can observe a much

better performance for our new method in comparison to the stochvol package.

The difference is significant especially for estimating the shape parameter of εt , as

the result from our method is less biased with a much smaller standard deviation.

We can also see that when the model specification is incorrect, the performance of

the method implemented in stochvol package could be very poor.

Next, we want to show that our new method is robust against the incorrect

model specification. First, let us consider the case when the true model has both

innovations normally distributed. We estimate the parameters by specifying both

innovations as Student t distributed. The results are presented in Table 3.5.

We also consider the case when the first innovation of the true model is nor-

mally distributed and the second innovation distribution is a skewed Student t dis-

tribution. The skewing parameter γ = 1.5, and to amplify the impact of the incor-

rect model specification we assume that the standard deviation of ηt equals 0.5. We

estimate the parameters by assuming that the first innovation distribution is normal

while the second innovation distribution is Student t. The results are presented in

Table 3.6.
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Table 3.4: Median of estimated parameters for simulated data with εt ∼ standardized t5 and ηt ∼ standardized t5. The
values in the parentheses are standard deviations of the estimated values of each parameter.

Method β0 =−0.5 β1 = 0.95 δ = 0.35 νε = 5 νη = 5
stochvol(t-Normal) -0.561(0.156) 0.946(0.015) 0.363(0.054) 5.44(4.58) NA

stochvol(Normal-Normal) -1.098(0.312) 0.893(0.031) 0.575(0.064) NA NA
New Method -0.502(0.154) 0.950(0.015) 0.357(0.059) 4.98(1.02) 5.37(4.78)

Table 3.5: Median of estimated parameters for simulated data with εt ∼N(0,1) and ηt ∼N(0,1). However, we estimate
the parameters by assuming that εt ∼ standardized tνε

and ηt ∼ standardized tνη
. The values in the parentheses are

standard deviations of the estimated values of each parameter.

True Value β0 =−0.5 β1 = 0.95 δ = 0.35 νε = ∞ νη = ∞

Estimated Value -0.493(0.139) 0.951(0.014) 0.344(0.042) 9.39(5.96) 92.22(44.6)

Table 3.6: Median of estimated parameters for simulated data with εt ∼N(0,1) and ηt ∼ skewed− t(0,1,5,1.5). How-
ever, we estimate the parameters by assuming that εt ∼ N(0,1) and ηt ∼ standardized tνη

. The values in the
parentheses are standard deviations of the estimated values of each parameter.

True Value β0 =−0.5 β1 = 0.95 δ = 0.5 νε = 5 γ = 1.5
Estimated Value -0.545(0.129) 0.946(0.013) 0.521(0.051) 4.93(5.19) NA
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The two examples above suggest that our new method is robust against the in-

correct model specification. Note that our method can work for arbitrary choices of

innovation distributions. Therefore, we can always “over-specify” our model with

more general innovation distributions to achieve robustness. For example, in the

example illustrated in Table 3.4, we estimate the degrees of freedom for ηt as 9.39

with standard deviation 5.96 and the degrees of freedom for εt as 92.22 with stan-

dard deviation 44.6 while these two innovations are actually normally distributed.

However, a Student t distribution with such a large degrees of freedom would prac-

tically behave very similar to a normal distribution. Therefore, our method allows a

more generalized model specification which brings robustness, while the previous

methods do not enjoy this flexibility.

3.3.2 Parameter Estimation for the S&P 500 Index

In Fridman and Harris (1998), results for the model inference are compared across

several methods utilizing a Bayesian approach, semi-maximum likelihood approach

and maximum likelihood approach. Here we compare the estimated parameters

from the three methods mentioned above with results from our proposed method

and results from the stochvol package.

We fit an ARSV(1) model to the daily log-return of the S&P 500 Index from

1980 to 1987. In total, 2022 observations are used for model inference. We esti-

mate the parameters following both the traditional model assumptions that the two

innovation distributions are Gaussian. The results are presented in Table 3.7. Due

to the difference approach in achieving flexible model assumption, in Fridman and

Harris (1998) the authors do not fit an ARSV(1) process with light-tailed first in-

novation and heavy tailed second innovation. They consider the scenario that the

first innovation is Student t distributed while the second innovation is normally dis-

tributed, which can also be fitted using the stochvol package. We fit the data with

the same model assumption as well as a more generalized model assumption that

both innovations are Student t distributed. The results are presented in Table 3.8.
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Table 3.7: Summaries statistics of estimated parameters with the model as-
sumption that both innovations are normally distributed. The “n” in
column names stands for “normal”. The values in the parentheses are
asymptotic standard deviations for SML and ML methods, posterior
standard deviations for Bayes method and the method implemented in
stochvol package, and interquartile range (IQR) for the new approach.

Bayes SML ML(n-n) stochvol New Method(n-n)

β0 -.002(.004) -.002(.004) -.002(.0004) -.270(.007) -.010(.022)

β1 .970(.008) .958(.014) .959(.005) .971(.001) .989(.003)

δ .150(.017) .161(.026) .159(.009) .153(.002) .071(.014)

Table 3.8: Summaries statistics of estimated parameters with the model as-
sumption that the first innovation distribution follows a Student t distribu-
tion. The values in the parentheses are asymptotic standard deviations for
ML methods, posterior standard deviations for the method implemented
in stochvol package, and interquartile range (IQR) for the new approach.

ML(t-n) stochvol New Method(t-n) New Method(t-t)

β0 -.0038(.0013) -.1384(.0108) -.1020(.0473) -.1718(.2979)

β1 .9813(.0056) .9855(.0011) .9897(.0054) .9821(.0312)

δ .0942(.0199) .1016(.0042) .0799(.01853) .1153 (.0958)

νε 10.39(5.88) 11.42(1.76) 10.11(1.07) 10.47(1.75)

νη NA NA NA 2.50(1.96)

Note that our new approach achieves the flexibility of arbitrary choices of in-

novations at the cost of stability and efficiency. Therefore, outliers appear a few

times when estimating the parameters. More robust summary statistics such as

median/IQR are preferred over mean/standard deviation. The results presented in

Table 3.7 and Table 3.8 show that the results from our method are close to those

from existing method, except that the estimated δ using our method in Table 3.7

is significantly lower than those using other methods. The reason requires further

study.
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Chapter 4

Conditional Risk Measurement
with the ARSV Model

One of the applications for volatility models is to estimate the potential risk given

known information. In general, there are two approaches to risk measures, namely

conditional risk measures and unconditional risk measures. When we are dis-

cussing GARCH process and ARSV process in Chapter 2, we assume that Ft−1,

the sigma algebra of all available information up to time t − 1, is known. If we

further assume that the distribution of the return Xt is conditioned on Ft−1, then

our measure of risk at time t should be conditioned on Ft−1. On the other hand, we

can also measure the unconditional risk from the unconditional distribution of Xt .

One can choose whether to use the conditional or unconditional distribution for risk

measure forecasting. In this chapter we adopt the conditional estimation approach,

and focus on the Value-at-Risk and Conditional Value-at-Risk risk measures under

the ARSV process.

4.1 Value-at-Risk forecasting under the ARSV Model
The Value-at-Risk (VaR) is arguably one of the most widely used risk measures,

and for a confidence level α ∈ (0,1) it is defined as:

VaRα(X) = inf{x : P(X ≥ x)≤ 1−α}, (4.1)
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and typically α is close to 1 (e.g., 0.9 or 0.95). For an ARSV(1) model, Xt = σtεt ,

where σt and εt are independent random variables. Since σt > 0 almost surely, we

have

P(Xt ≥ x|Ft−1) = P(σtεt ≥ x|Ft−1)

=
∫

∞

0
P(εt ≥ x/s) fσt |Ft−1(s|Ft−1)ds, (4.2)

where fσt is the conditional probability density function of σt given Ft−1 is the

information set at time t−1.

Since logσ2
t = β0 +β1 logσ2

t−1 +ηt ,

P(σt ≤ s|Ft−1) = P(logσ
2
t ≤ logs2|Ft−1)

= P(β0 +β1 logσ
2
t−1 +δηt ≤ logs2|Ft−1)

= P(ηt ≤ (logs2−β0−β1 logσ
2
t−1)/δ |Ft−1)

= Fη((logs2−β0−β1 logσ
2
t−1)/δ ),

where Fη is the cumulative distribution function of a standardized Student’s t dis-

tribution with zero mean, unit variance and νη degrees of freedom and assuming

that Ft−1 contains σt−1. Hence, the conditional density of σt is given by

fσt |Ft−1(s|Ft−1) = fη((logs2−β0−β1 logσ
2
t−1)/δ )

2
δ s

, s > 0..

Therefore, (4.2) can be written as

P(Xt ≥ x|Ft−1)

=
2
δ

∫
∞

0
P(εt ≥ x/s) fη((logs2−β0−β1 logσ

2
t−1)/δ )

1
s

ds. (4.3)

With estimated parameters θ̂ = [β̂0, β̂1, δ̂ , ν̂η ] and estimated volatility σ̂t−1, we

can plug (4.3) into (4.1) and solve for VaRα(Xt) using numerical methods. Param-

eters θ̂ can be estimated by the method we described in Chapter 3. The volatility

σ̂t−1 can be estimated separately using unbiased volatility estimators such as av-

erage squared returns or EWMA, or using inference methods for volatility models
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that provide volatility estimation.

4.2 CoVaR forecasting: GARCH Model vs ARSV Model
Adrian and Brunnermeier (2011) were first to define Conditional Value-at-Risk

(CoVaR) as:

CoVaR(1)
α (Xt+1) = inf{x : P(Xt+1 ≥ x)≤ 1−α|Xt = VaRα ′(Xt),Ft−1}, (4.4)

where both α and α ′ are two constants that are close to 1 and VaRα is defined in

Section 4.1. For simplicity, we assume α = α ′.

Girardi and Ergün (2013) modify the definition of CoVaR to:

CoVaR(2)
α (Xt+1) = inf{x : P(Xt+1 ≥ x)≤ 1−α|Xt ≥ VaRα(Xt),Ft−1}. (4.5)

The one-step ahead forecasts of VaRα are based on the estimate of α-quantile of

the distribution of Xt give the history Ft−1. CoVaRα forecasting, on the other hand,

makes a two-step forward estimation of the conditional quantile of the distribution

of Xt+1 conditioned on Xt and history Ft−1. So instead of measuring the potential

large loss or gain on the next day as VaR does, CoVaR measures the potential con-

secutive large gains for two days. In this section we discuss the CoVaR estimation

under both GARCH and ARSV models for both CoVaR definitions.

4.2.1 First Definition of CoVaR

For the GARCH(1,1) process, given all information up to time t−1 and σt−1, the

volatility at time t is fixed as
√

α0 +ασ2
t−1 +βX2

t−1. Suppose that Xt =VaRα(Xt)=:
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v , then σt+1 is also fixed and equals
√

α0 +ασ2
t +β v2. Then

P(Xt+1 ≥ x|Xt = v ,Ft−1)

= P(σt+1εt+1 ≥ x|Xt = v ,Ft−1)

= P(εt+1 ≥ x/σt+1|Xt = v ,Ft−1) (4.6)

= P(εt+1 ≥ x/
√

α0 +ασ2
t +β v2|Ft−1)

= P

εt+1 ≥
x√

α0(α +1)+α2σ2
t−1 +αβX2

t−1 +β v2

 . (4.7)

Substituting (4.7) into (4.4), we can solve for CoVaR(1)
α (Xt+1) numerically when

{Xt} follows a GARCH(1,1) process.

For the ARSV(1) process, given the same information and assuming Xt = v ,

the value of σt+1 is no longer fixed. Therefore, expression (4.6) becomes

P(Xt+1 ≥ x|Xt = v ,Ft−1)

=
∫

∞

0
P(εt+1 ≥ x/s|Xt = v ,Ft−1,σt+1 = s) fσt+1|Xt=v ,Ft−1(s|Xt = v ,Ft−1)ds

=
∫

∞

0
P(εt+1 ≥ x/s) fσt+1|Xt=v ,Ft−1(s|Xt = v ,Ft−1)ds, (4.8)

where fσt+1|Xt=v ,Ft−1 is the conditional probability density function of σt+1 given

Xt and Ft−1. In order to evaluate (4.8), we need to find this conditional probability

density function. Since for s > 0,

P(σt+1 ≤ s|Xt = v ,Ft−1) = P(logσ
2
t+1 ≤ logs2|Xt = v ,Ft−1),

we have

fσt+1|Xt=v ,Ft−1(s|Xt = v ,Ft−1) = fht+1|Xt=v ,Ft−1(logs2|Xt = v ,Ft−1)
2
s
, s > 0.

37



The conditional cumulative distribution function of ht+1 is

Fht+1|Xt=v ,Ft−1(u|Xt = v ,Ft−1) = P(ht+1 ≤ u|Xt = v ,Ft−1)

= P(β0 +2β1 log
Xt

εt
+δηt+1 ≤ u|Xt = v ,Ft−1)

(4.9)

= P(ηt+1 ≤ (u−β0−2β1 log
v
εt
)δ )

=
∫

∞

−∞

P(ηt+1 ≤ (u−β0−2β1 log
v
z
)/δ ) fε(z)dz.

Therefore,

fht+1|Xt=v ,Ft−1(logs2|Xt = v ,Ft−1)=
1
δ

∫
∞

−∞

fη((logs2−β0−2β1 log
v
z
)/δ ) fε(z)dz,

where fη is the probability density function of ηt .

Then, (4.8) can be expressed as

P(Xt+1 ≥ x|Xt = v ,Ft−1)

=
2
δ

∫
∞

0

∫
∞

−∞

P(εt+1 ≥ x/s) fη((logs2−β0−2β1 log
v
z
)δ ) fε(z)

1
s

dzds. (4.10)

Substituting (4.10) into (4.4), we can solve for CoVaR(1)
α (Xt+1) numerically when

{Xt} follows an ARSV(1) process.

4.2.2 Second Definition of CoVaR

We can also find the CoVaR under the second definition modified by Girardi and

Ergün (2013) (see eq. (4.5)) in a similar way as discussed in Section 4.2.1. How-

ever, we have a different conditioning event that Xt ≥ v instead of Xt = v .

For the GARCH(1,1) process, σt is still fixed as
√

α0 +α1σ2
t−1 +β1X2

t−1. How-
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ever, σt+1 now is a random variable
√

α0 +α1σ2
t +β1X2

t . We have

P(Xt+1 ≥ x|Xt ≥ v ,Ft−1)

= P(εt+1 ≥ x/
√

α0 +α1σ2
t +β1X2

t |Xt ≥ v ,Ft−1)

=
∫

∞

v
P(εt+1 ≥ x/

√
α0 +α1σ2

t +β1w2) fXt |Xt≥v ,Ft−1(w|Xt ≥ v ,Ft−1)dw. (4.11)

Notice that for w≥ v

P(Xt ≤ w|Xt ≥ v ,Ft−1) =
P(Xt ≤ w,Xt ≥ v |Ft−1)

P(Xt ≥ v |Ft−1)

=
1
α

P(v ≤ Xt ≤ w|Ft−1) by the definition of VaRα

=
1
α

P(v ≤ εtσt ≤ w|Ft−1)

=
1
α

P(v/σt ≤ εt ≤ w/σt |Ft−1)

=
1
α
(Fεt (w/σt)−Fεt (v/σt)). (4.12)

From (4.12) we obtain

fXt |Xt≥v ,Ft−1(w|Xt ≥ v ,Ft−1) =
1

ασt
fε(w/σt), w≥ v . (4.13)

With (4.13), (4.11) can be expressed as

P(Xt+1 ≥ x|Xt ≥ v ,Ft−1)

=
1

ασt

∫
∞

v
P
(

εt+1 ≥ x/
√

α0 +α1σ2
t +β1w2

)
fε(w/σt)dw. (4.14)

Substituting (4.14) into (4.5), we can solve for CoVaR(2)
α (Xt+1) numerically when

{Xt} follows a GARCH(1,1) process.

In order to find the CoVaR(2)
α (Xt+1) under an ARSV(1) process, we can start
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from (4.9). Under the condition that Xt ≥ v , (4.9) now becomes

P(ht+1 ≤ u|Xt ≥ v ,Ft−1)

= P(β0 +2β1 log
Xt

εt
+δηt+1 ≤ u|Xt ≥ v ,Ft−1)

= P(ηt+1 ≤ (u−β0−2β1 log
Xt

εt
)/δ |Xt ≥ v ,Ft−1)

=
∫

∞

v
P(ηt+1 ≤ (u−β0−2β1 log

w
εt
)/δ ) fXt |Xt≥v ,Ft−1(w|Xt ≥ v ,Ft−1)dw.

(4.15)

In (4.15), the conditional probability density function of Xt , fXt |Xt≥v ,Ft−1(w|Xt ≥
v ,Ft−1), is unknown. However,

fXt |Xt≥v ,Ft−1(w|Xt ≥ v ,Ft−1) =
1
α

fXt |Ft−1(w|Ft−1), w≥ v .

Then, (4.15) becomes

P(ht+1 ≤ u|Xt ≥ v ,Ft−1)

=
∫

∞

v
P((ηt+1 ≤ u−β0−2β1 log

w
εt
)/δ )

1
α

fXt |Ft−1(w|Ft−1)dw

=
1
α

∫
∞

−∞

∫
∞

v
P(ηt+1 ≤ (u−β0−2β1 log

w
z
)/δ ) fXt |Ft−1(w|Ft−1) fε(z)dwdz.

Therefore,

fht+1|Xt+1≥v ,Ft−1(u|Xt+1 ≥ v ,Ft−1)

=
1

αδ

∫
∞

−∞

∫
∞

v
fη((u−β0−2β1 log

w
z
)/δ ) fXt |Ft−1(w|Ft−1) fε(z)dwdz. (4.16)

The conditional cumulative distribution function of Xt is

P(Xt ≤ w|Ft−1) = P(σtεt ≤ w|Ft−1)

=
∫

∞

0
P(εt ≤ w/r) fσt |Ft−1(r|Ft−1)dr,
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where fσt |Ft−1(r|Ft−1) =
2
r fη(logr2−β0−β1 logσ2

t−1) since for r > 0,

P(σt ≤ r|Ft−1) = P(logσ
2
t ≤ logr2|Ft−1)

= P(β0 +β1 logσ
2
t−1 +δηt ≤ logr2|Ft−1)

= P(ηt ≤ (logr2−β0−β1 logσ
2
t−1)/δ ).

So

fXt |Ft−1(w|Ft−1) =
1
δ

∫
∞

0
fε(w/r) fη(logr2−β0−β1 logσ

2
t−1)

2
r2 dr,

and (4.16) can be expressed as

fht+1|Xt+1≥v ,Ft−1(u|Xt+1 ≥ v ,Ft−1)

=
1

αδ 2

∫
∞

−∞

∫
∞

v

∫
∞

0
fη((u−β0−2β1 log

w
z
)/δ ) fε(w/r)

fη((logr2−β0−β1 logσ
2
t−1)/δ ) fε(z)

2
r2 drdwdz.

Now (4.8) becomes

P(Xt+1 ≥ x|Xt ≥ v ,Ft−1)

=
4

αδ 2

∫
∞

0

∫
∞

−∞

∫
∞

v

∫
∞

0
P(εt+1 ≥ x/s) fη((logs2−β0−2β1 log

w
z
)/δ ) fε(w/r)

fη((logr2−β0−β1 logσ
2
t−1)/δ ) fε(z)

1
r2s

drdwdzds. (4.17)

Substituting (4.17) into (4.5), we can solve for CoVaR(2)
α (Xt+1) numerically when

{Xt} follows an ARSV(1) process.

However, given the numerical complexity of the analytic expression, which

involves a 4-dimensional integral, we do not follow this approach. Instead, we

propose a simulation based computation that is introduced in the next section.

4.3 Simulation Methods to Find CoVaR
The tail dependence properties of different models have a strong impact on the

joint distribution of the (Xt ,Xt+1) pair. To illustrate the difference in the estimation
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of CoVaR under the GARCH model and ARSV model, we will only focus on

the second definition of CoVaR modified by Girardi and Ergün (2013). However,

it could be difficult to find the CoVaR using numerical method, especially under

the second definition of CoVaR. We introduce a simulation-based methods as an

alternative for find CoVaR. Since CoVaR can be seen as the conditional quantile

of Xt+1 given Ft−1, our goal here is to sample X̂t+1 with information up to time

t−1. Then it will be easy to find the empirical quantile of {X̂t+1} as our estimated

CoVaR.

For GARCH process, given Ft−1 and estimated volatility at time t− 1 σ̂t−1,

σ̂2
t = α0 +α1σ̂2

t−1 + β1X2
t−1 and X̂t = σ̂tεt ∼ N(0, σ̂2

t ). Therefore, the condition

that X̂t ≥VaRα(X̂t) suggests that εt ≥VaRα(εt). So we can sample εt first, and for

those εt’s that are greater than VaRα(εt) we further calculate σ̂t+1 as

σ̂t+1 =

√
α0 +α1σ̂2

t +β1X̂2
t

=
√

α0 +α1σ̂2
t +(β1σ̂2

t )ε
2
t .

Then X̂t+1 = σ̂t+1εt+1 can be calculated by sampling another εt+1 from the distri-

bution of {εt}. Details about estimating the CoVaR under the GARCH process as

described in Algorithm 2.

Algorithm 2 Estimation CoVaR Using Simulation under a GARCH(1,1) Process

1: initialize α̂0, α̂1, β̂1, σ̂t−1, Xt−1, N >> 1
1−α

, the cumulative distribution func-
tion of ε (Fε ), and α ∈ (0,1).

2: Calculate σ̂t as
√

α̂0 + α̂1σ̂2
t−1 + β̂1X2

t−1
3: for i from 1 to N do
4: Generate pt from Uniform(α,1)
5: Find ε ′t such that Fε(ε

′
t ) = pt

6: Let X̂t = σ̂tε
′
t

7: Let σ̂t+1 =

√
α̂0 + α̂1σ̂2

t + β̂1X̂2
t

8: Generate pt+1 from Uniform(0,1) and find εt+1 = F−1
ε (pt+1)

9: Calculate X̂t+1,i = σ̂t+1εt+1
10: Save X̂t+1,i
11: end for
12: Find CoVaRα(X̂t+1) as the α th quantile of {X̂t+1,i, i = 1, ...,N}
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For the ARSV(1) model, since the AR process of logσ2
t ’s does not depend

on the value of Xt , we need to simulate Xt+1 in a different way. The idea here is

to sample ηt and calculate the corresponding σ̂t following the AR process. Then

we sample εt to calculate X̂t = σ̂tεt . We repeat the two steps above until this X̂t

is greater than VaRα(Xt), which can be estimated based on a rolling window of

historical data. Then with this σ̂t and a newly sampled ηt+1 we can calculate the

σ̂t+1 and sample εt+1 to find X̂t+1. The details are described in Algorithm 3.

Algorithm 3 Simulating CoVaR under the ARSV Process

1: initialize β̂0, β̂1, distribution of εt (Fε ), distribution of ηt (Fη ), σ̂t−1, Xt−1,

α ∈ (0,1), v̂ = VaRα from historical data, and N >> 1
1−α

2: for i from 1 to N do
3: Initialize X̂t = 2|v̂ |
4: while X̂t < v̂ do
5: Sample ηt ∼ Fη

6: Let σ̂t =
√

exp(β̂0 + β̂1 log σ̂2
t−1 +ηt)

7: Sample εt ∼ Fε

8: Calculate X̂t = σ̂tεt

9: end while
10: Sample ηt+1 ∼ Fη

11: Let σ̂t+1 =

√
exp(β̂0 + β̂1 log σ̂2

t +ηt+1)

12: Sample εt+1 ∼ Fε

13: Calculate X̂t+1,i = σ̂t+1εt+1

14: Save X̂t+1,i

15: end for
16: Find CoVaRα(Xt+1) as the α th quantile of {X̂t+1,i : i = 1, ...,N}

The results of comparisons of estimated VaR and CoVaR under the second

definition are shown in the next section.
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4.4 Comparison of VaR and CoVaR Forecasts Under
GARCH and ARSV Processes

In this section we present the results of risk forecasts from both simulated data and

real data. There are two scenarios of data generating processes for the simulation

study:

1. An ARSV(1) process:

Xt = σtεt

logσ
2
t =−0.5+0.95logσ

2
t−1 +0.35ηt .

where εt ∼ N(0,1), ηt ∼ t5, and ηt and εt are independent.

2. A GARCH(1,1) process:

Xt = σtεt

σ
2
t = 5×10−6 +0.85σ

2
t−1 +0.1X2

t−1,

where εt ∼ N(0,1).

For the data example, we use the daily log-returns of the S&P 500 Index from

1980 to 1987 to estimate parameter to forecast risk measures of the daily log-

returns from 1988 to 2003.

4.4.1 Simulation Study

Value-at-Risk

In the simulation study, we generate the data from both scenarios. The length of

each generated dataset is 4500 after the burn-in period. We use the first 1000 obser-

vations to estimate parameters of the ARSV(1) process with normally distributed

first innovation and Student’s t distributed second innovation. Then we estimate the

VaR for the rest of the data using a rolling window of size 1000. Note that when

estimating VaR at time t, we need to know the volatility at time t−1 first. However,

our inference method cannot estimate σt−1 since we need to discard the last part of
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estimated volatilities in our algorithm. Therefore, we need to use some external es-

timators for σt−1 when estimating VaR. In this project we choose σt−1’s estimated

when fitting the data in the rolling window to the GARCH model. There are two

reasons for us to do so: first, it is more convenience since we are also estimating

the VaR under the GARCH process. Second, based on some empirical analysis, we

found that σt−1’s estimated by fitting a GARCH(1,1) model are more accurate than

those estimated by some unbiased but noisy model-free estimators. For example,

in this simulated dataset, the root MSE of estimated σt−1 from GARCH(1,1) model

is
√

3.7×10−5 compared with
√

5.0×10−5 which is the MSE of estimated σt−1

from the 5-day close-to-close estimator.

We first compare the estimated VaR based on both ARSV(1) model and

GARCH(1,1) model. The VaR forecasts under the GARCH(1,1) model are esti-

mated using model-based method (McNeil, Frey, and Embrechts, 2015b), while

the VaR forecasts under the ARSV(1) model are estimated by finding the numer-

ical solutions discussed in Section 4.1. The results are shown in Figure 4.1 and

Figure 4.2. From the plots it is hard to observe obvious differences between the

forecasts estimated under the ARSV(1) model and those under the GARCH(1,1)

model. We also present the results of traditional backtests in Table 4.1, and the

results of conditional predictive ability tests (Giacomini and White, 2006) in Table

4.2. The scoring function we use here is the piece-wise linear scoring function

suggested by Gneiting (2011). From Table 4.1 we can see that at both the 95%

level and the 99% level, the VaR forecasts estimated under the ARSV(1) model

and those under the GARCH(1,1) model can pass the traditional backtests no mat-

ter what the true underlying process is. However, in Table 4.2 we can find that at

the 99% level the GARCH(1,1) model has a stronger conditional predictive ability

than the ARSV(1) when the true data generating process is a GARCH(1,1) pro-

cess. Otherwise, there is no significant difference between the forecasts from an

ARSV(1) model and those from a GARCH(1,1) model.

CoVaR

The difference is more obvious when we forecast CoVaR with different filters. We

first generate a dataset from the ARSV(1) process as specified in Scenario 1. at
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the beginning of Section 4.4. We then estimate CoVaR under the second definition

modified by Girardi and Ergün (2013) using the simulation methods described in

Algorithm 2 and Algorithm 3. The forecasted CoVaR under the GARCH process

and the ARSV process are shown in Figure 4.3 and Figure 4.4. It can be observed

that the CoVaR forecasts estimated from the GARCH(1,1) model are in general

higher that those from the ARSV(1) model. We can also see that the large differ-

ence between the two estimated CoVaR is highly correlated with the large return

squared.

Figure 4.1: Estimated 95% and 99% VaR forecasts for the simulated
ARSV(1) process. Black lines represent the simulated daily returns,
red lines represent the VaR estimated under the GARCH model, and
blue lines represent the VaR under the ARSV model. The left panel il-
lustrates the case of 95% level, while the right panel illustrates the case
of 99% level.

Figure 4.2: Estimated 95% and 99% VaR forecasts for the simulated
GARCH(1,1) process. Black lines represent the simulated daily returns,
red lines represent the VaR estimated under the GARCH model, and
blue lines represent the VaR under the ARSV model. The left panel il-
lustrates the case of 95% level, while the right panel illustrates the case
of 99% level.
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Table 4.1: Violation rates and corresponding p-values of likelihood-ratio tests for VaRα forecasts at 95% and 99%
levels for simulated Data. Column names are the underlying processes and corresponding risk levels 1−α , row
names are the models used to forecast the risk measures.

ARSV(1)-95% ARSV(1)-99% GARCH(1,1)-95% GARCH(1,1)-99%
ARSV(1) 4.35% (0.153) 1.19% (0.386) 4.24% (0.074) 0.64% (0.053)

GARCH(1,1) 5.35% (0.452) 1.05% (0.806) 5.24% (0.585) 1.04% (0.842)

Table 4.2: Mean piece-wise linear scores and corresponding p-values of conditional predictive ability tests for VaRα

forecasts at 95% and 99% levels for simulated Data. Column names are the underlying processes and correspond-
ing risk levels 1−α , row names are the models used to forecast the risk measures.

ARSV(1)-95% ARSV(1)-99% GARCH(1,1)-95% GARCH(1,1)-99%
ARSV(1) 9.93×10−4

0.835
2.85×10−4

0.237
1.03×10−3

0.144
2.763×10−4

0.001
GARCH(1,1) 9.97×10−4 2.95×10−4 1.033×10−4 2.756×10−4
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Figure 4.3: Estimated 95% and 99% CoVaR forecasts for the simulated
ARSV(1) process. In the left column, black lines represent the simu-
lated daily returns, red lines represent the CoVaR estimated under the
GARCH model, and blue lines represent the CoVaR under the ARSV
model. In the right column, the black lines represent squared return,
and blue beams indicate top 5% largest differences in the estimated Co-
VaR between GARCH(1,1) model and ARSV(1) model. The top panels
illustrate the case of 95% level, while the bottom panels illustrates the
case of 99% level.
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Figure 4.4: Estimated 95% and 99% CoVaR forecasts for the simulated
GARCH(1,1) process. In the left column, black lines represent the sim-
ulated daily returns, red lines represent the CoVaR estimated under the
GARCH model, and blue lines represent the CoVaR under the ARSV
model. In the right column, the black lines represent squared return,
and blue beams indicate top 5% largest differences in the estimated Co-
VaR between GARCH(1,1) model and ARSV(1) model. The top panels
illustrate the case of 95% level, while the bottom panels illustrates the
case of 99% level.

4.4.2 Data Example

To further compare the VaR and CoVaR forecasts under the GARCH model and

the ARSV model, we apply the forecasting methods to daily log-returns of S&P

500 Index from 1988 to 2003 with a rolling window of size 1000. The forecasting

process is the same as in Section 4.4.1, and the results are presented below.

For the VaR forecasts, we can find that there is no significant difference be-

tween the values estimated from the ARSV(1) model and those from the

GARCH(1,1) model from Figure 4.5. Both models can provide good forecasts
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Table 4.3: Violation rates and corresponding p-values of likelihood-ratio tests
for VaRα forecasts at 95% and 99% levels for daily log-returns of S&P
500 Index. Column names are the risk levels 1−α , row names are the
models used to forecast the risk measures.

S&P 500-95% S&P 500-99%
ARSV(1) 4.96% (0.929) 1.31% (0.109)

GARCH(1,1) 5.24% (0.345) 1.34% (0.077)

Table 4.4: Mean piece-wise linear scores and corresponding p-values for
comparison of two forecast methods of conditional predictive ability tests
for VaRα forecasts at 95% and 99% levels for daily log-returns of S&P
500 Index. Column names are the risk levels 1−α , row names are the
models used to forecast the risk measures.

S&P 500-95% S&P 500-99%
ARSV(1) 1.06×10−3

0.461
2.85×10−4

0.506
GARCH(1,1) 1.05×10−3 2.79×10−4

of VaR and pass the traditional backtests (Table 4.3). There is also no significant

difference in conditional predictive ability (Table 4.4).

In Figure 4.6 we show the estimated CoVaR forecasts from the ARSV(1) model

and GARCH(1,1) model. We can observe a more obvious difference between es-

timated CoVaR forecasts in the data example, as the values estimated under the

GARCH(1,1) model are consistently higher that those under the ARSV(1) model.

A possible explanation for this consistent difference could be that the GARCH(1,1)

process is asymptotically tail dependent. However, the ARSV(1) process with

heavy-tailed second innovation, although has stronger tail dependence than the

classic ARSV(1) model, is still asymptotically tail independent. Recall that CoVaR

is the conditional quantile of Xt+1. Therefore, when conditioned on Xt ≥VaRα(Xt)

for some α close to 1, Xt+1 is more likely to also be a large value under the GARCH

process than under the ARSV process. So the α th quantile of forecasted Xt+1 is

greater under the GARCH process than that under the ARSV process.
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Figure 4.5: Estimated 95% and 99% VaR forecasts for daily log-returns of
S&P 500 Index. Black lines represent the simulated daily returns, red
lines represent the VaR estimated under the GARCH model, and blue
lines represent the VaR under the ARSV model. The top panel illustrates
the case of 95% level, while the bottom panel illustrates the case of 99%
level.
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Figure 4.6: Estimated 95% and 99% CoVaR forecasts for daily log-returns
of S&P 500 Index. In the left column, black lines represent the simu-
lated daily returns, red lines represent the CoVaR estimated under the
GARCH model, and blue lines represent the CoVaR under the ARSV
model. In the right column, the black lines represent squared return,
and blue beams indicate top 5% largest differences in the estimated Co-
VaR between GARCH(1,1) model and ARSV(1) model. The top panels
illustrate the case of 95% level, while the bottom panels illustrates the
case of 99% level.
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Chapter 5

Discussion

Empirical evidence suggests that consecutive log-return values may be tail inde-

pendent. Thus the GARCH process might not be a suitable choice in modeling

consecutive losses, as it may over-estimate the potential risk at extremal levels.

However, the tail dependence should be stronger at sub-extremal levels than can be

modelled by the classic ARSV process with light-tailed second innovation. There-

fore, modelling log-returns using the classic ARSV process may lead to under-

estimation of the probability of consecutive large losses.

In this thesis report we propose an extension of an ARSV model by taking

the second innovation to be Student’s t distributed. We conjecture that this model

exhibits stronger tail dependence at sub-extremal levels than the classic ARSV

model with normally distributed second innovation. Our conjecture is supported

via simulation.

However, most existing inference methods for the ARSV process have limited

flexibility in the choice of innovation distributions. Most of these methods require

the second innovation to be normal, and the first innovation to be either normal

or Student’s t. There are only few methods allow the second innovation to be

heavy-tailed. In this report, we develop a new inference method for the extended

ARSV(1) process which also allows flexible distributional assumptions on both

innovations. This new method works as well as existing methods in estimating

parameters for the classic ARSV(1) model. It can also successfully estimate pa-

rameters of the extended ARSV(1) process we consider, which is out of the range
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of most existing methods. Furthermore, it has the potential for being adjusted to

other extensions of the classic ARSV(1) process. For example, the same scheme

can be applied to estimating parameters of an ARSV(p) process for any arbitrary

integer p ≥ 1 and non-Gaussian second innovation, as long as we know how to

estimate parameters of the AR(p) process with this desired non-Gaussian error dis-

tribution. We hope this new inference method will provide a useful tool for future

study of ARSV models.

We also study the VaR and CoVaR risk measures under the ARSV process and

compare them with those under the GARCH process. We show that there is no

significant difference between estimated VaR under GARCH process and ARSV

process. However, we can observe a large difference between the CoVaR estimated

under these two processes. This difference reveals the impact of tail dependence

properties implied by a chosen model.

For future work, we first need to prove that χ̄ covers the full spectrum of sub-

extremal tail dependence; i.e., 0 < χ̄ < 1, for the extended model. And with the

support of a more grounded theory, we also need to improve the computational effi-

ciency. Currently our new inference method is much slower than existing inference

methods that similarly require an MCMC scheme. In many cases, the computing

speed of the proposed method is up to 100 times slower. Another shortcoming of

the new method is that it only provides parameter estimates but volatility estimates

can only be obtained for a sub-period of the historical record.
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