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Abstract

Fast and reliable communication between human workers and robotic assis-
tants (RAs) is essential for successful collaboration between these agents.
This is especially true for typically noisy manufacturing environments that
render verbal communication less effective. This thesis investigates the
efficacy of nonverbal communication capabilities of robotic manipulators
that have poseable, three-fingered end-effectors (hands). This work explores
the extent to which different poses of a typical robotic gripper can effec-
tively communicate instructional messages during human-robot collabora-
tion. Within the context of a collaborative car door assembly task, a series
of three studies were conducted. Study 1 empirically explored the type of
hand configurations that humans use to nonverbally instruct another per-
son (N=17). Based on the findings from Study 1, Study 2 examined how
well human gestures with frequently used hand configurations were under-
stood by recipients of the message (N=140). Finally, Study 3 implemented
the most human-recognized human hand configurations on a 7-degree-of-
freedom (DOF) robotic manipulator to investigate the efficacy of having
human-inspired hand poses on a robotic hand compared to an unposed hand
(N=100).

Contributions of this work include the presentation of a set of hand config-
urations humans commonly use to instruct another person in a collaborative
assembly scenario, as well as Recognition Rate and Recognition Confidence
measures for the gestures that humans and robots expressed using different
hand configurations. These experimental results indicate that most gestures
are better recognized with a higher level of confidence when displayed with
a posed robot hand. Guidelines and principles are provided based on these
results for the mechanical design of robotic hands.
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This thesis is submitted in partial fulfillment of the requirements for the
degree of Master of Applied Science in Mechanical Engineering at the Uni-
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Chapter 1

Introduction

In the past thirty years, robotics technology has become well-established in
the manufacturing industry for reducing worker ergonomic stress and work-
load by performing operations quickly, repetitively, and accurately [20, 25].
Robotics technology is approaching the point in which an industrial robotic
assistant (RA)—such as Baxter from Rethink Robotics—is mechanically safe
enough to be used outside of work cells, having minimum to no physical bar-
riers between it and human workers [16]. Other promising avenues for RA
hardware include lightweight robots designed specifically for safety [21] and
existing industrial robot platforms augmented with improved sensing and
control [17]. As we continue to integrate robots as versatile aids for indus-
try automation, it is important to develop human-robot interaction (HRI)
mechanisms that facilitate seamless cooperation and intuitive communica-
tion between humans and robots. The global robotics market is anticipated
to reach $67-billion (USD) by 2025, with industrial robotics representing the
largest segment of the market and growing at a compound annual growth
rate (CAGR) of 7.6% [36].

As robots become more adaptive and capable working alongside human
co-workers, it is imperative that intuitive HRI methods are designed to fa-
cilitate direct and physical human-robot collaboration (HRC) [38]. Such
collaboration would benefit productivity by effectively combining the capa-
bilities of each partner: the intelligence, experience, and responsiveness of
human co-workers, and the accuracy, repeatability, and speed of RAs [22].
Proximate HRI could be used extensively in manufacturing for tasks such
as assembly, inspection, box packing, and part delivery, among others. In
such scenarios, while there is ongoing direct interaction between human and
robot co-workers, it is important to allow human co-workers to focus their
attention on completing the task at hand, rather than controlling the robot
utilizing complex teaching pendants or other keyboard based interfaces.

1



Chapter 1. Introduction

However, the manufacturing assembly line environment has inherent re-
strictions and limitations that make implementation of human-robot collabo-
ration systems challenging. Ambient acoustic noise is one such factor. While
speech control has come to be useful for devices like the Amazon Echo and
speech interfaces to instruments such as global positioning system (GPS),
the denoising of speech presents significant signal processing challenges [10].
Further, in manufacturing environments, workers are often encouraged or
required to use earplugs; for those workers, spoken verbal communication
is unreliable and in some cases prohibited [7]. As an alternative, workers
often use hand gestures to communicate, motivating our investigation of
task-based gestural communication as a plausible HRI medium in industrial
settings.

Much of the related work on improving industrial HRI has focused on
interactions in which the human demonstrates or instructs a robot on how
to perform a task [44]; however, natural and balanced HRI must be bilateral
[12]—the robot must be able to react and respond to the given demonstra-
tions and instructions by its human co-worker(s). Future industrial scenarios
envision an ongoing human-robot interaction in which not only the human
instructs and communicates with the robot, but also the robot is capable
of responding and communicating back with its human coworker(s). The
broad goal of this work is to develop HRI methods that will facilitate more
intuitive and effective cooperation and collaboration between humans and
robots on industrial tasks.

Today, the predominant robotic form factor used in manufacturing is
that of single-arm robotic manipulators with no face or body. Since work-
ers are required to pay attention to the task in front of them, they may
be more likely to attend to the robot’s gripper than to a face, as it is po-
sitioned where they are already looking [28]. Therefore, to bridge the gap
between current systems and future robot embodiments, this thesis focuses
on the development and evaluation of communicative robot gestures on a
single-arm manipulator. Related work demonstrated human recognition of
gestures expressed by a single-arm RA [20]; while this related study was
successful in conveying information without articulation of the robot’s fin-
gers, the usefulness of robot fingers in gesturing has yet to be systematically
explored.

More specifically, this work develops and evaluates a cardinal set of user-
generated gestures applicable to industrial scenarios in which the robot is
providing a set of instructions to a co-located person while collaborating
on a shared task in an intuitive and effective manner. Three studies were
performed to explore the following interrelated research questions:

2



1.1. Thesis Outline

1. “What kind of hand gestures do humans commonly use to
nonverbally instruct one another in industrial assembly con-
texts?” This research question explores the lexicon of gestures natu-
rally generated and interpreted in human-human interactions situated
within a particular task context. Grounding these gestures within a
particular task is important, as the gestures might mean something
else in a different context (and, conversely, other gestures might mean
something else within this same context).

2. “How well do humans recognize the hand gestures presented
by another human?” This research question establishes a baseline
for human interpretation of naturally occurring gestures within the
task context to which robot gestures (inspired by the human gestures)
will be compared.

3. “How well do untrained human observers recognize robot hand
gestures that are accompanied by human-inspired hand poses
compared to those that are exhibited with an unposed robot
hand?” This research question investigates the novel generation of
human-inspired situated gestures on a non-anthropomorphic robotic
hand common in industrial settings, and the interpretation of these
gestures by human observers.

Answers to these question will help in designing a fluent HRI with reliable
sets of communicative gestures. This work extends the body of work in
nonverbal HRI, the key contributions of which are:

• a methodology for designing and implementing task-based communica-
tive gestures to be expressed by a robot in HRI;

• a cardinal set of user-generated task-based communicative hand ges-
tures and accompanying hand poses for human-robot collaborative
tasks;

• an evaluation and validation of the identified gesture set with respect to
human Recognition Rate and Recognition Confidence within a human-
robot collaboration scenario; and

• a set of guidelines for the mechanical design of robot hands.

1.1 Thesis Outline

This section describes the organization and contents of chapters in this thesis.

3



1.1. Thesis Outline

Chapter 2 highlights relevant works from the field of psychology, HRI,
and human-computer interaction (HCI). The chapter mainly focuses on stud-
ies that discuss the significance of human nonverbal communication with an
emphasis on hand gestures (Section 2.1), nonverbal human-robot communi-
cation within various contexts (Section 2.2), and the hardware limitations
of robot hands available in the industry compared to that of a human hand
(Section 2.3). There have been many research contributions addressing the
usefulness of human hand gestures, and their implementation in HRC con-
texts; however, the added value of having poseable fingers on a robot for
nonverbal communication purposes has yet to be explored in a systematic
manner. We address this knowledge gap by exploring how effectively an ar-
ticulated robot arm can communicate approximated human hand-gestures
to its human co-workers with and without hand poses.

Chapter 3 explores each of the aforementioned research equations in three
studies. Section 3.1 presents the first of three human-subject studies, Study
1, designed to empirically identify a sample of appropriate task-based human
hand gestures and hand poses used for expressing the gestures. In this study,
participants are asked to perform a collaborative assembly task, nonverbally
communicating their intentions to a human confederate. The motions that
they produce are analyzed to determine the gestures and hand poses they
used during the study answering the first research question, “What kind of
hand gestures do humans commonly use to nonverbally instruct one another
in industrial assembly context?”

Based on the findings from Study 1, Study 2 (Section 3.2) presents videos
of the identified human gestures with the selected hand poses to participants
within an analogous assembly context to analyze how well the gestures are
perceived by human observers, answering the second research question, “How
well do humans recognize the hand gestures presented by another human?”

Section 3.3 of Chapter 3 presents the third human-subject experiment,
Study 3, which empirically tests the efficacy of a mechanically limited robotic
hand in communicating the identified gestures in study 1 to human observers.
This study utilizes a commonly used robotic manipulator to approximate the
human gestures. Videos of the produced gestures are presented to partici-
pants to identify which gestures and hand poses are best understood when
implemented on the robotic system in this fashion. This study answers the
third and final research question, “How well do untrained human observers
recognize robot hand gestures that are accompanied by human-inspired hand
poses compared to those that are exhibited with unposed robot hand?”

4



1.1. Thesis Outline

Chapter 4 evaluates and analyzes the hypotheses that most gestures are
better recognized with a higher level of confidence when displayed with a
human-inspired posed robot hand than an unposed robot hand by examining
Recognition Rates (accuracy) and Recognition Confidence of human obser-
vations of the implemented robot hand gestures. Section 4.1 presents the
identified human hand gestures and accompanying hand poses from Study
1. Section 4.2 presents which human gestures and hand poses participants
recognize more confidently and evaluates how well the robot implementation
of the same hand gestures and hand poses performs.

Chapter 5 expands upon the results found in this thesis to provide a set
of guidelines for the mechanical design of individual regions and features of
robotic hands. Section 5.1 discuses these region and feature considerations.
Section 5.2 presents the application of these principles to the design of real
robot hands. Section 5.3 proposes further steps to formalize these guidelines.

Chapter 6 summarizes the thesis work. Section 6.1 reviews the key con-
tributions of this work. Limitations of the approaches employed are also
discussed and resolutions to these limitations proposed as future work (Sec-
tion 6.2), followed by concluding remarks (Section 6.3).
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Chapter 2

Background and Motivating
Literature

Section 2.1 highlights the significance of human nonverbal communication
with an emphasis on hand gestures in human-human interactions (HHI). Sec-
tion 2.2 provides an overview of the relevant work on the topic of human-like
nonverbal communication in human-robot interactions (HRI) within various
contexts, such as turn-taking, hesitation, and hand gestures. Section 2.3
further explores the different types of robot hands available in the industry,
discusses the hardware limitations of robot hands compared to that of a hu-
man hand, and highlights the challenges the kinematic differences pose in
robot hand gestural communication.

2.1 Nonverbal Communication in HHI

In HHI, people use both verbal and nonverbal communication to convey
information to one another. Different nonverbal signals—hand and arm
gestures, body movements, facial expressions, eye and head gaze, touch,
etc.—function in three distinct ways: (1) they regulate social situations and
communicate attitudes and emotions (e.g., anxiety, happiness, depression,
etc.) to others, (2) they strengthen speech by providing additional informa-
tion about the content of the speech, and (3) they replace spoken language to
convey meaning (e.g., sign language often used within communities of people
with hearing impairments) [1, 2, 19]. In summary, people use nonverbal sig-
nals to convey their internal states and intentions to other people, and they
have the ability to read and understand the internal states and intentions of
other people from these nonverbal signals [1, 13].

In particular, human hand gestures are one of the most vital nonverbal
channels; while the hands were evolved for grasping, they are also very useful
in social signaling [19]. For instance, conversational gestures—hand move-
ments that accompany and are often related to speech—tend to increase
speech fluency [34, 35]. Hand gestures can also be used alone (i.e., in the
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2.2. Nonverbal Communication in HRI

absence of speech) and deliver a clear communicative message. For example,
symbolic gestures—hand configurations and movements that can be directly
translated into words—are often used to send a particular message to others
[5, 26]. Contextual information can influence/modify the meaning of sym-
bolic gestures. For example, the “thumbs up” is a familiar symbolic gesture
that is often interpreted as “good/positive”; however, context information
can influence or add to its meaning—it can be used to greet someone, to in-
dicate understanding the point of a conversation, or as an insult [41]. Thus,
even though nonverbal gestures can convey messages without an accompa-
nied speech, their meanings are still influenced by context.

Harrison [23] explored gestural communication among workers in a noisy
production line of a salmon factory. This related work showed that workers
commonly use hand gestures to communicate with one another, and that the
workers often have to shout when speaking to be heard due to the high am-
bient noise. In industrial environments with high ambient noise, it has been
shown that gestural communication is preferred and has been well adapted
in different industries to replace verbal communication [3]. This thesis work
explores the efficacy of gestural communication in human-robot teams.

2.2 Nonverbal Communication in HRI

Just as how nonverbal communication can replace speech in environments
in which verbal communication is unreliable or undesirable, nonverbal com-
munication is expected to take a similar role in HRI. Various human-like
nonverbal cues—hand gestures in particular—have been explored as commu-
nication mechanisms between humans and robots during turn-taking [8, 11],
playing games [42], hesitation [30, 31], and hand gestures within collabora-
tive working processes [15, 18, 20, 33, 37].

Past research in human-robot turn-taking (e.g., selecting the role of
speaker vs. listener) has shown that vocal communication when accom-
panied with nonverbal cues, such as hand gestures and head nods, improves
task performance of human-robot teams by making the robot more under-
standable and predictable to the human teammate [8, 11]. However, the
focus of these works is often on situations in which nonverbal communica-
tion is used to support and strengthen speech. This thesis work considers
conditions in which only nonverbal communication is applicable (i.e., vocal
communication is not feasible).

Other HRI studies have investigated robots using gestures to play games
with people. For instance, Short et al. [42] performed an experiment involv-
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2.2. Nonverbal Communication in HRI

ing a robot playing the rock-paper-scissors game against a human partner;
however, due to mechanical limitations of the robot hand, a set of modified
rock-paper-scissors gestures were deployed for the robot to use. Thus, par-
ticipants had to be trained before the game to understand the meaning of
each robot hand pose. In contrast, this thesis work explores a set of gestures
that allows a mechanically limited robotic hand to communicate information
to untrained human observers.

Few studies have focused on the effectiveness of nonverbal communi-
cation of non-anthropomorphic robotic manipulators in industrial settings
[15, 18, 20, 30, 31]. In one such study, Moon et al. [30] studied the efficacy
of robot hesitation gestures as a means to convey robot planner uncertainty
in a human-robot resource conflict that arises when both the robot and the
person reach for the same object at the same time; results of this related
work showed that human observers can easily recognize the hesitation ges-
tures expressed by the robotic manipulator. This result demonstrates that
non-anthropomorphic robotic manipulators have the potential to effectively
convey communicative messages as well.

In the context of collaborative work processes, Sauppé and Mutlu [37]
evaluated the communicative effectiveness of a set of referencing (deictic)
gestures performed by a human-like robot in six diverse settings, including
one scenario replicating the noisy environment of industrial settings; this
related work discusses design implications for the use of gestures in different
settings. Ende et al. [15] explored which human-like nonverbal gestures are
communicative for robotic systems of different levels of anthropomorphism;
this related work found that referencing gestures—conveying “this one” and
“from here to there”—and terminating gestures—conveying “stop” or “no”—
are well recognized on various types of robots. In a study by Haddadi et al.
[20], a set of gestures from human dyads (pairs) performing an assembly task
was collected and implemented on a robotic arm with an unarticulated (i.e.,
not actuated) stuffed glove at the robot end-effector to provide anthropo-
morphic context; this related work found that, upon evaluating the human
recognition of the robotic gestures, the robot’s lack of hand pose articulation
tends to confuse rather than help human observers.

While many of the aforementioned studies extracted useful hand gestures
from HHI and implemented them in HRI contexts, to date, the added value
of having poseable fingers on a robot for nonverbal communication purposes
has yet to be explored in a systematic manner. This thesis work addresses
the knowledge gap by exploring how effectively an articulated robot arm can
communicate approximations of human hand-gestures to human coworkers
with and without articulated hand poses.
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2.3 A Review of Industrial Robotic Hands

Industrial applications are dominated by single-arm robotic manipulators
equipped with different end-effectors [20]. In a review paper, Tai et al. [43]
presented a recent survey on the applications and advancements of industrial
robotic grippers. Industrial robotic grippers are commonly used for mass
production purposes and are mounted on a robotic arm on a stationary
platform. Depending on the application, modern industrial robotic arms and
grippers can outperform humans in many tasks and are capable of lifting 1000
kg [32], are repeatable to 10µm [29], and are faster with accelerations up to
15 g [27]. Additionally, the cost of industrial robotic grippers is decreasing
while manual labor costs are increasing. This has encouraged industry and
academia to develop more advanced robotic arms and grippers addressing
the needs of industry.

An industrial robotic gripper can often be categorized into one of four
broad categories: vacuum grippers, pneumatic grippers, hydraulic grippers,
and servo-electric grippers [6]. Each category is described below.

1. Vacuum grippers have a high level of flexibility and have been the
standard gripper used in manufacturing. This type of robot gripper is
equipped with a rubber or suction cup to manipulate items. An exam-
ple of a vacuum gripper is the Schmalz Vacuum Gripper (FXC/FMC-
SG) gripper developed by Millsom Vacuum Handling1 for flexible han-
dling of non-rigid workpieces, such as cardboard boxes (Figure 2.1).

2. Pneumatic grippers have a compact and lightweight design. These
grippers can easily be incorporated into tight spaces, which can be
helpful in the manufacturing industry. Schunk’s Pneumatic parallel
grippers2 are commonly used for safe and precise handling of small- to
medium-sized workpieces. Figure 2.2 highlights an example of Schunk’s
MPG Series 2-finger pneumatic gripper.

3. Hydraulic grippers are most often used in applications that require
significant amounts of force and, thus, require specialized equipment
that has a hydraulic power source for actuation. Figure 2.3 illustrates
an example of a hydraulic gripper by Schunk.

4. Servo-electric grippers are highly flexible and allow for different mate-
rial tolerances when handling parts. As such, these grippers are start-

1http://www.millsom.com.au/
2http://us.schunk.com/usen/homepage/
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2.3. A Review of Industrial Robotic Hands

ing to appear more in industry. Baxter’s 1D gripper [16] and Robo-
tiq’s 3-finger gripper3 are examples of common servo-electric grippers.
Figure 2.4 shows the Robotiq’s 3-finger gripper which is capable of
manipulating a variety of object shapes and sizes.

Figure 2.1: Vacuum Gripper System FXC-FMC-SG
(http://www.millsom.com.au/products/vacuum-components/vacuum-
gripping-systems/fxc-fmc-sg).

In addition, various tools can be directly mounted on the tip of the
manipulator (e.g., welding tips or suction cups). These commonly used end-
effectors are highly non-anthropomorphic and are often limited in actuation.
This makes it challenging, if not impossible, to map onto these end-effectors
the communicative human hand configurations/poses (the articulation or
pose of the fingers, such as in finger-crossing) for expressing a gesture.

Robotic hands that more closely resemble human kinematics are able
to produce better approximations of human gestures (e.g., the GCUA Hu-
manoid Robotic Hand [9]); however, such hands are likely to be much more
expensive and less useful in industrial manufacturing.

Therefore, to maximize the applicability of our results, this thesis re-
search uses a commonly available non-anthropomorphic robotic hand that
balances capabilities between physical manipulation and social expressive-
ness. Approximations of human instructional hand gestures are programmed
on a 7-DOF Barrett Whole Arm Manipulator (WAM)4 equipped with a

3http://robotiq.com/
4WAMTM , Barrett Technologies, Cambridge, MA, USA
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Figure 2.2: Shunk’s 2-finger pneumatic parallel gripper MPG Series
(http://us.schunk.com/usen/gripping − systems/series/mpg − plus).

Figure 2.3: Shunk’s 2-finger hydraulic gripper HGN Series
(http://www.directindustry.com/prod/schunk/product-69812-
1283431.html).
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Figure 2.4: Robotiq’s 3-finger gripper (http://robotiq.com/products/).

three-fingered Barrett Hand5. The Barrett Hand is similar to (but not
actually used as) morphologies of robotic hands common in industry, see
Figure 2.5. This work focuses on evaluating (1) if approximations of hu-
man instructional hand gestures can be successfully generated on these non-
anthropomorphic robotic hands, and (2) the efficacy of these robotic hands
in communicating the gestures to human partners.

5Barrett HandTM , Barrett Technologies, Cambridge, MA, USA.
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Figure 2.5: The Barrett Hand
(http://www.barrett.com/products-hand.htm).

This chapter discussed nonverbal communication in both human-human
and human-robot interaction, and introduced categories of robotic grippers
commonly used in industry. Informed by this background literature, the
next chapter presents three studies designed to explore each of the research
questions introduced in Chapter 1:

1. “What kind of hand gestures do humans commonly use to nonverbally
instruct one another in industrial assembly context?”

2. “How well do humans recognize the hand gestures presented by another
human?”

3. “How well do untrained human observers recognize robot hand gestures
that are accompanied by human-inspired hand poses compared to those
that are exhibited with an unposed robot hand?”
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Chapter 3

Methodology

This chapter presents the three user studies conducted to address the three
interrelated research questions introduced in Chapter 1. In Study 1 (a pilot
study; Section 3.1), to identify appropriate task-based hand gestures and
hand poses used for expressing the gestures, participants were asked to use
single-handed gestures to instruct a human confederate in a collaborative car
door assembly task. In Study 2 (Section 3.2), videos of the identified gestures
with the selected hand poses were presented to participants within an anal-
ogous assembly context to analyze how well the gestures are perceived by
human observers. In Study 3 (Section 3.3), approximations of these gestures
were implemented on a robotic manipulator, and videos of the produced
gestures were presented to participants to identify which gestures and hand
poses were best understood when implemented on the robotic system. All
studies were approved by the UBC Behavioural Research Ethics Board.

3.1 Study 1 (Pilot): Identifying Human Hand
Gestures Based on Observations from
Human-Human Collaboration

To identify a sample lexicon of robot gestures that are both natural and ef-
fective in communicating instructions to human partners, a pilot study was
conducted involving human dyads collaborating on a vehicle door assembly
task—the goal was to generate a sample of gestures that would be appro-
priate and naturally occurring in the application domain, accepting that
this would not generate an exhaustive exploration of the space or cover the
cultural, regional, or other variations in gestures.

The experimental setup consisted of six car door parts, and an un-
assembled car door with seven spots to which the door parts could be at-
tached using VelcroTM strips. The participant stood in front of the car door
and the worker stood to the right of the car door, with the car door parts
placed on a table between them. This setup allowed the participant and the
confederate to easily access the vehicle door as well as the parts (Figure 3.1).
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3.1. Study 1 (Pilot): Identifying Human Hand Gestures

Figure 3.1: Assembly task designed for human-participants experiment.

First, participants were asked to use hand gestures to instruct a human
confederate—referred to henceforth as the “worker”—to assemble the parts
into specific locations on the car door according to a provided picture of the
completed assembly.

Next, a second picture of the vehicle door was given to the participants.
The picture contained changes in the orientation/location of three of the six
items already assembled on the door. The participants were asked to direct
the experimenter to rearrange the items on the door to achieve the new
assembly arrangement (see Appendix A for instructions and the car door
pictures provided to participants).

To provoke a wider range of intuitive gestures in each round of the ex-
periment, the worker would intentionally and as naturally as possible:

1. assemble/place the part at an incorrect location or orientation;

2. pick up an incorrect part from the table; and

3. maintain natural eye contact with the participant to get him/her to
either confirm or correct the ongoing task.
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3.1. Study 1 (Pilot): Identifying Human Hand Gestures

(See Appendix A, Section A.1 for instructions provided to the worker.)
Participants were requested to observe the following rules6:

1. not to speak/verbally communicate with the worker;

2. only use one hand to direct the worker;

3. only make one gesture and hold only one part at a time;

4. wait for worker task completion before making the next gesture; and

5. remain at the home position at all times.

In total, 17 participants (N = 17; 7 female, 10 male) between 19 and
36 years of age (M = 24.41, SD = 4.05) participated in the study; all but
two were right-handed. The results dataset came from video recordings of
the study and the observed hand gestures that participants naturally used
to convey common instructional commands to their partner. In executing
the assembly task, participants expressed an average of 20 gestures in total,
which was reduced to a lexicon of 14 gestures based on the following crite-
ria: gestures must be (1) understandable without trained knowledge of the
gesture, (2) critical to task completion, and (3) commonly used among all
participants. The selected gestures were classified into four categories based
on the nature of the gestures:

1. Directional Gestures, GD, indicating that the worker should move
(translate) a part in the specified direction, where:
GD = {Up, Down, Left, Right}.

2. Orientation Gestures, GO, indicating that the worker should rotate
(orient) a part the specified number of degrees, where:
GO = {< 45◦, 90◦, 180◦}.

3. Manipulation gestures, GM , indicating that the worker should ap-
ply the specified operation to a part or parts, where:
GM = {Install,Remove,PickUp,Place,Swap}.

4. Feedback gestures, GF , indicating approval or disapproval of worker
action, where: GF = {Confirm,Stop}.

6The implications of imposing these restrictions are discussed in Section 6.2.
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3.1. Study 1 (Pilot): Identifying Human Hand Gestures

All of the selected gestures—except for the Confirm gesture—involved
some sort of movement of the wrist/forearm. Many different hand configu-
rations were observed for expressing each gesture. The two most commonly
observed human-generated hand poses/configurations were selected for each
gesture. For instance, the “Move Part Up” gesture was most commonly
expressed using (1) an Open-Hand (OH) configuration, and (2) a Finger-
Pointing (FP) configuration (Figure 3.2). Section 4.1 provides the percent-
age of participants that used each of the two most commonly observed hand
poses for expressing each of the four types of identified gestures. The selected
hand gestures and their corresponding hand poses are depicted in Table 3.1
and Figure 3.2 for Directional Gestures, Table 3.2 and Figure 3.3 for Ori-
entation Gestures, Table 3.3 and Figure 3.4 forManipulation Gestures,
and Table 3.4 and Figure 3.5 for Feedback Gestures.
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3.1. Study 1 (Pilot): Identifying Human Hand Gestures

Table 3.1: Directional Gestures, GD, and frequently observed accompa-
nying hand poses found in Study 1.

Directional Gestures (GD)
indicate that the worker should move (translate)

a part in the specified direction
Gesture, g ∈ GD Hand Poses Figures

Up
OH 3.2a
FP 3.2b

Down
OH 3.2a
FP 3.2b

Left
OH 3.2c
FP 3.2d

Right
OH 3.2c
FP 3.2d

Hand Poses:
OH: Open-Hand
FP: Finger-Pointing

Table 3.2: Orientation Gestures, GO, and frequently observed accompa-
nying hand poses found in Study 1.

Orientation Gestures (GO)
indicate that the worker should rotate (orient)

a part the specified number of degrees
Gesture, g ∈ GO Hand Poses Figures
< 45◦ HOH 3.3a

90◦ HOH 3.3a
FP 3.3b

180◦ HOH 3.3a
FP 3.3b

Hand Poses:
HOH: Half Open-Hand
FP: Finger-Pointing
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Table 3.3: Manipulation Gestures, GM , and frequently observed accom-
panying hand poses found in Study 1.

Manipulation Gestures (GM)
indicate that the worker should apply the specified

operation to a part or parts
Gesture, g ∈ GM Hand Poses Figures

Install
OH 3.4a
FP 3.4b

Remove
OH 3.4c
HOH 3.4d

PickUp OH 3.4e
Place FP 3.4f

Swap
FP 3.4g
VS 3.4h

Hand Poses:
OH: Open-Hand
HOH: Half Open-Hand
FP: Finger-Pointing
VS: V-Sign

Table 3.4: Feedback Gestures, GF , and frequently observed accompanying
hand poses found in Study 1.

Feedback Gestures (GF )
indicate approval or disapproval

of a worker’s action
Gesture, g ∈ GF Hand Poses Figures
Confirm TU 3.5a

Stop
OH 3.5b
FP 3.5c

Hand Poses:
TU: Thumbs-Up
OH: Open-Hand
FP: Finger-Pointing
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Figure 3.2: Directional Gestures, GD, and frequently observed accom-
panying hand poses found in Study 1: Up [and Down] gesture with (a)
an Open-Hand pose, and (b) a Finger-Pointing pose; and Left [and Right]
gesture with (c) an Open-Hand pose and (d) a Finger-Pointing pose.
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Figure 3.3: Orientation Gestures, GO, and frequently observed accompa-
nying hand poses found in Study 1: 90◦ [and 180◦ and < 45◦] gesture with
(a) a Half-Open-Hand pose, and (b) a Finger-Pointing pose. Note: the HOH
pose was the only frequently observed pose for < 45◦ gesture
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(Figure continued on next page)

22



3.1. Study 1 (Pilot): Identifying Human Hand Gestures

(Figure continued on next page)
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Figure 3.4: Manipulation Gestures, GM , and frequently observed accom-
panying hand poses found in Study 1: Install gesture with (a) an Open-
Hand pose, and (b) a Finger-Pointing pose; Remove gesture with (c) an
Open-Hand pose, and (d) a Half Open-Hand pose; PickUp gesture with
(e) an Open-Hand pose; Place gesture with (f) a Finger-Pointing pose; and
Swap gesture with (g) a Finger-Pointing pose, and (h) V-Sign pose.
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(Figure continued on next page)
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Figure 3.5: Feedback Gestures, GF , and frequently observed accompany-
ing hand poses found in Study 1: Confirm gesture with (a) a Thumbs-Up
pose; and Stop gesture with (b) an Open-Hand, and (c) a Finger-Pointing
pose.
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3.2 Study 2: Human Perceptions of Human Hand
Gestures Based on Observations from
Human-Human Collaboration

The results of Study 1 yielded a collection of gestures that are intuitive and
commonly used in a human-human collaboration scenario. Study 2 involved
a video-based online survey to analyze how well human observers understand
these gestures when conveyed with the different hand configurations. The
survey consists of a randomly ordered set of video clips, each of a person
(referred to as the “director”) exhibiting one of the identified gestures with
a selected hand configuration to direct a “worker” in an assembly task anal-
ogous to Study 1. To avoid eliciting unintentional biases associated with
other bodily gestures (e.g., differences in posture), only the gesturing hand
and arm were shown in the videos.

In this between-participants study, each participant saw all of the 14
collected gestures; however, each gesture was shown with only one of the
two identified hand configurations for that gesture.

Each video clip (one video clip per gesture) consisted of a short lead-in
sentence instructing the respondents to watch the video with special at-
tention to the hand motions of the “director”. After each video clip, the
participants were instructed to answer the following questions7:

1. “What do you think the ‘worker’ should do with the part?” (partici-
pants were asked to respond “I don’t know” if they did not understand
a gesture);

2. “How easy was it for you to understand the meaning of this gesture?”
(on a semantic-differential scale from 1 (very difficult) to 7 (very easy));
and

3. “How certain are you of your answer to question 1?” (on a semantic-
differential scale from 1 (very uncertain) to 7 (very certain)).

Figure 3.6 shows a screen capture from the online survey with one of the
video clips. Appendix B Section B.1 shows the consent form for running this
online study.

7The use of open-ended questions for gesture identification was selected to avoid leading
answers; however, it might have resulted in some difficulty in assessing recognition as some
interpretation of the answer given.
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Figure 3.6: An example of one of the 14 pages of the Study 2 online survey.
All pages of the survey contained the same questions in the same order;
however, the video content of each page was randomly selected. Each video
clip contained one of the selected gestures. In this study, each participant
saw all of the 14 collected gestures; however, each gesture was shown with
only one of the two identified hand configurations for that gesture
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The semantic scale used for answering the three above questions was
treated as a continuous scale since each interval of the scale was of equal
proportion; therefore, the data collected from the second and third questions
were treated as continuous measures.

Answers to the first question were indicative of whether participants un-
derstood the gesture correctly (i.e., Recognition Rate). Answers to the second
and third questions had a high level of internal consistency and were com-
bined as a confidence measure (i.e., Recognition Confidence) of responses to
the first question (Cronbach’s α = 0.882).

Recruitment of survey respondents involved two social media platforms
(Twitter and Facebook) and distribution of advertisements to university stu-
dents (Appendix B, Section B.1). Survey respondents received no compen-
sation. In total, N = 120 participants responded to the survey. Two coders
analyzed participant responses with partial overlap, and had a high level of
internal consistency (Cronbach’s α = 0.905).

Analyses and results for this study can be found in Section 4.2.

3.3 Study 3: Human Perceptions of Robot Hand
Gestures Based on Observations from
Human-Robot Collaboration

Study 2 investigated whether robot hand gestures accompanied with human-
inspired hand configurations are better recognized by untrained observers
than the same gestures expressed with an unarticulated robot hand. Ap-
proximations of the gestures identified in Study 1 were programmed on a
7-DOF Barrett Whole Arm Manipulator (WAM)8 equipped with a three-
fingered Barrett Hand9. Each gesture was video recorded three times: once
with each of the two human-inspired hand configurations (Figure 3.7), and
once while the robot kept its hand closed (Figure 3.8); this latter Closed-
Hand (CH) configuration served as a baseline.

8WAMTM , Barrett Technologies, Cambridge, MA, USA
9Barrett HandTM , Barrett Technologies, Cambridge, MA, USA.
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Although it has more degrees of freedom than most industrial robot grip-
pers, the Barrett Hand is still relatively non-anthropomorphic in shape and
pose. To produce recognizable gestures, an iterative design approach was
employed similar to [20]. The robot arm was manually moved to imitate
each human gesture, and the resulting motion trajectories were recorded.
Next, the trajectories were played back and tuned until the gestures were
visually similar to the human gestures. A small pilot study (N = 4; two
naive participants and two expert participants) was conducted to get feed-
back on the produced gestures, and their feedback was applied to improve
the implementation of the gestures.

A video-based online survey was conducted consisting of randomly or-
dered videos of the robotic arm exhibiting one of the identified gestures with
one of the three robot hand configuration (two human-inspired hand con-
figurations, and one CH configuration) to direct a worker in an assembly
task analogous to Study 1 (Section 3.2). The questions used for this survey
were the same as in Study 2. Figure 3.9 shows a screen capture from the
online survey with the robot arm exhibiting one of the identified gestures.
Appendix B, Section B.2 shows the consent form for running this online
study.

Recruitment of survey respondents involved two social media platforms
(Twitter and Facebook) and distribution of advertisements to university stu-
dents (Appendix B, Section B.2). Survey respondents received no compen-
sation. A total of N = 100 participants responded to the survey. Two coders
analyzed participant responses with partial overlap, and had a high level of
internal consistency (Cronbach’s α = 0.877).

Analyses and results for this study can be found in Section 4.2.
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(Figure continued on next page)

31



3.3. Study 3: Human Perceptions of Robot Hand Gestures

Figure 3.7: Human hand poses observed in Study 1, and the correspond-
ing human-inspired robot hand poses: (a) Open-Hand, (b) Finger-Pointing,
(c) Half Open-Hand, (d) V-Sign, and (e) Thumbs-Up. Due to the limited
morphology of the hand, (e) was considered the best implementation of the
Thumbs-Up hand pose despite its unfortunate resemblance to an insulting
gesture; the hand has only three fingers and lacks a poseable thumb, so stick-
ing out one of the side fingers could be mistaken as a Finger-Pointing hand
pose.

Figure 3.8: Robot Closed-Hand Pose. The Closed-Hand Pose served as our
baseline for analysing participant Recognition Rates of robot gestures.
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Figure 3.9: An example of one of the 14 pages of the Study 3 online survey.
All pages of the survey contained the same questions in the same order;
however, the video content of each page was randomly selected. Each video
clip contained one of the selected gestures. In this study, each participant
saw all of the 14 collected gestures; however, each gesture was shown with
only one of the two identified hand configurations for that gesture
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Chapter 4

Results and Discussion

The aim of this work was to analyze whether people understand a set of
collected gestures correctly (Recognition rate), and how confident they are
in understanding the meaning of the gestures (Recognition Confidence). The
hypothesis for this work was that most gestures have a higher level of Recog-
nition Rate with a higher level of Recognition Confidence when displayed
with a human-inspired posed robot hand than an unposed robot hand. This
chapter evaluates and analyzes this hypothesis by examining Recognition
Rates and Recognition Confidence of human observations of the implemented
robot hand gestures. The identified human hand gestures and accompanying
hand poses from Study 1 are presented in Section 4.1. In Section 4.2, the
measures of Recognition Confidence and Recognition Rate from Study 2 and
Study 3 are used together to evaluate how well the robot implementation
of the same hand gestures and hand configurations perform with respect to
human-human gesture communication, followed by a summary of findings in
Section 4.3.

4.1 Study 1 (Pilot) Results: Identifying Human
Hand Gestures

From the observations of human interactions in Study 1 (Section 3.1), a lex-
icon of task-based hand gestures was developed, as well as the types of hand
poses that were frequently used for expressing the four types of gestures—the
Directional, Orientation, Manipulation, and Feedback Gestures—
which are shown in Tables 3.1 to 3.4 along with the top two most frequently
observed hand poses for those gestures (unless only one common hand pose
was observed).

The remainder of this section presents the percentage of participants who
used each of the two most commonly observed hand poses for expressing each
of the four types of identified gestures.
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4.1.1 Directional Gestures

Based on the observations from Study 1, four Directional Gestures were
identified: GD = {Up, Down, Left, Right}, Table 3.1. These Direc-
tional Gestures were most frequently expressed using the Finger-Pointing
(FP) and Open-Hand (OH) configurations (see Figures 3.7a and 3.7b for
exemplars of these hand configurations).

Figure 4.1 illustrates the percentage of participants that used either FP
or OH poses to express the Directional Gestures.

Figure 4.1: Most frequently observed hand poses for Directional Gestures
(GD) for Study 1 (N = 17).

4.1.2 Orientation Gestures

Another category of gestures identified in Study 1 included Orientation
Gestures, GO = {< 45◦, 90◦, 180◦}, Table 3.2. The < 45◦ gesture was
frequently expressed with the Half Open-Hand (HOH) configuration. The
90◦ and the 180◦ gestures were most frequently expressed using the Finger-
Pointing (FP) and HOH hand configurations (see Figures 3.7a and 3.7b for
exemplars of these hand configurations).

Figure 4.2 illustrates the percentage of participants who used the HOH
pose to express the < 45◦ gesture and either FP or HOH poses to express
the 90◦ and 180◦ gestures.
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Figure 4.2: Most frequently observed hand poses forOrientation Gestures
(GO) for Study 1 (N = 17).

4.1.3 Manipulation Gestures

Five of the gestures observed in Study 1 were categorized as Manipulation
Gestures, GM = {Install,Remove,PickUp,Place,Swap}. Table 3.3
lists the most frequently observed hand poses for each of these gestures (see
Figures 3.7 for exemplars of each of the identified hand configurations). Fig-
ure 4.3 shows the distribution of hand poses used to express the Manipu-
lation Gestures.

Figure 4.3: Most frequently observed hand poses for Manipulation Ges-
tures (GM ) for Study 1 (N = 17).
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4.1.4 Feedback Gestures

From the observations of human interactions in Study 1, two gestures were
identified and categorized as Feedback Gestures, GF = {Confirm,Stop}.
The Confirm gesture was most frequently expressed using a Thumbs-Up
(TU) hand configuration (shown in Figure 3.7e), and the Stop gesture was
most frequently expressed using the Open-Hand (OH) and Finger-Pointing
(FP) hand configurations (shown in Figures 3.7a and 3.7b, respectively).

Figure 4.4 shows the distribution of hand poses used to express the Feed-
back Gestures.

Figure 4.4: Most frequently observed hand poses for Feedback Gestures
(GF ) for Study 1 (N = 17).
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4.2 Study 2 and Study 3 Results: Analysing
Recognition Rate and Recognition Confidence
of Human and Robot Hand Gestures

Independent-samples t-tests were performed to the measures of Recognition
Confidence (collected in Study 2) across the two commonly observed hand
configurations for each human gesture. This analysis provides a comparison
of whether participant confidence in recognizing the human gestures signifi-
cantly varied across different hand configurations, as shown in Table 4.1.

For each robot gesture, one-way ANOVAs were applied to the measures
of Recognition Confidence (from Study 3) across the three robot hand con-
figurations: two human-inspired hand configurations for each gesture, and
the Closed-Hand (CH) configuration (Table 4.2). Further, a Bonferroni post-
hoc analysis was performed to determine whether participant confidence in
recognizing robot gestures varied significantly across the three robot hand
configurations. Exceptions to this analysis were gestures with only one com-
monly observed hand configuration; for those gestures, independent-samples
t-tests were conducted across the observed human-inspired hand configura-
tion and the CH configuration (Table 4.2).

The measures of Recognition Confidence and Recognition Rate from Study
2 and Study 3 are used together to evaluate how well the robot implemen-
tation of the same hand gestures and hand configurations/poses performed
with respect to human-human gesture communication.10

In addition, for participants who did not understand the intended mean-
ing of a robot gesture, other common interpretations of the gestures were
analysed to determine whether there were other unpredicted-but-accepted
meanings of the gestures. In this work, a misinterpretation was deemed
“common” if at least 15% of participants had the same misinterpretation of
the gesture, or if the same misinterpretation was repeated across different
gestures within a gesture category. See Figure 4.7 for exemplars of all the
other common misinterpretations of Directional Gestures.

Comprehensive analyses and results are presented throughout the re-
mainder of this chapter, followed by a discussion for each gesture type.

10Further, the results of participant confidence in recognizing human gestures compared
to robot expressions of the same gesture are provided in the Appendix C.
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Table 4.1: Measures of independent-samples t-tests on the Recognition Con-
fidence from Study 2.

Directional Gestures, GD

Gesture, g ∈ GD Hand Poses t p
Up FP & OH t(86) = 2.34 < 0.05
Down FP & OH t(85) = 0.29 0.77
Left FP & OH t(51) = 1.01 0.32
Right FP & OH t(62) = 0.87 0.40

Orientation Gestures, GO

Gesture, g ∈ GO Hand Poses t p
< 45◦ HOH N/A N/A
90◦ FP & HOH t(89) = 1.88 0.06
180◦ FP & HOH t(82) = 3.36 < 0.01

Manipulative Gestures, GM

Gesture, g ∈ GM Hand Poses t p
Install FP & OH t(75) = 2.15 < 0.05
Remove OH & HOH t(91) = 0.32 0.75
PickUp OH N/A N/A
Place FP N/A N/A
Swap FP & VS t(57) = −1.29 0.20

Feedback Gestures, GF

Gesture, g ∈ GF Hand Poses t p
Confirm TU N/A N/A
Stop FP & OH t(94) = −0.28 0.78

p < 0.1
p < 0.05
p < 0.01
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Table 4.2: Measures of one-way (or Welch) ANOVA or independent-samples
t-test on the Recognition Confidence from Study 3

Directional Gestures, GD

Gesture, g ∈ GD Hand Poses F p
Up FP, OH & CH F (2, 40) = 4.50 < 0.05
Down FP, OH & CH F (2, 36) = 3.65 < 0.05
Left FP, OH & CH F (2, 31) = 0.53 0.59
Righta OH, FP & CH Welch’s F (2, 11.58) = 16.93 < 0.001

Orientation Gestures, GO

Gesture, g ∈ GO Hand Poses F or t p
< 45◦ HOH & CH t(40) = 1.49 0.14
90◦ FP, HOH & CH F (2, 68) = 5.33 < 0.01
180◦ FP, HOH & CH F (2, 72) = 5.14 < 0.01

Manipulative Gestures, GM

Gesture, g ∈ GM Hand Poses F or t p
Install FP, OH & CH F (2, 41) = 5.40 < 0.01
Remove OH, HOH & CH F (2, 56) = 2.77 0.07
PickUp OH & CH t(46) = 1.99 0.05
Place FP & CH t(72) = 0.39 0.70
Swap FP, VS & CH F (2, 28) = 0.88 0.42

Feedback Gestures, GF

Gesture, g ∈ GF Hand Poses t p
Confirm TU N/A N/A
Stop OH & FP t(60) = 0.24 0.81

p < 0.1
p < 0.05
p < 0.01

aIn Study 3, the Recognition Confidence of the Right gesture fails the assumption of
homogeneity of variances. Therefore, a Welch ANOVA (rather than a one-way ANOVA)
was performed.
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4.2.1 Directional Gestures

The combined results of the human-human and human-robot gesture recog-
nition studies (Study 2 and Study 3, respectively) forDirectional Gestures
(GD = {Up, Down, Left, Right}) are shown in Figures 4.5 and 4.6.
Figure 4.5 illustrates the percentage of participants who correctly identified
each Directional Gesture (Recognition Rate). Figure 4.6 highlights the mean
rating of confidence of interpretation for each Directional Gesture (Recogni-
tion Confidence). Figure 4.7 depicts the rates of common misinterpretations
of each Directional Gesture from Study 3.

4.2.1.1 Directional Gesture: Up

In Study 2, when humans expressed the Up gesture, both FP and OH con-
figurations were recognized accurately (82% and 96% respectively). In Study
3, when the robot expressed the Up gesture, people recognized the gesture
better in the OH configuration (72%) than in the FP (46%) or CH (40%)
configurations (Figure 4.5).

Participant Recognition Confidence of the Up gesture was significantly
affected by the human hand configuration (t(86) = 2.34, p < 0.05) (Table
4.1). Participants felt more confident in understanding the gesture when ex-
pressed with the OH configuration than the FP configuration (Figure 4.6).
Recognition Confidence was also significantly affected by robot hand con-
figuration (F (2, 40) = 4.50, p < 0.05) (Table 4.2). Participants recognized
the robot’s gesture significantly more confidently in the OH configuration
than in the FP configuration (p < 0.05). Statistical tests did not reveal a
significant difference between the FP and CH configurations (p = 1.00) or
the OH and CH configurations (p = 0.18) (Figure 4.6).

4.2.1.2 Directional Gesture: Down

When humans expressed the Down gesture, both FP and OH configurations
were recognized accurately (86% and 90% respectively). When the robot
expressed the Down gesture, people recognized the gesture better in the
OH configuration (61%) than in the FP (46%) or CH (29%) configurations.

The results did not indicate any significant difference in the Recognition
Confidence of the Down gesture expressed by a human using either the FP
or OH configurations (t(85) = 0.29, p = 0.77); however, the results did
reveal that Recognition Confidence was significantly affected by the robot
hand configuration (F (2, 36) = 3.65, p < 0.05). Participants recognized
the robot’s gestures significantly more confidently in the OH configuration
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than in the CH configuration (p < 0.05). The results did not indicate a
statistically significant difference between the FP and OH configurations
(p = 0.74) or the FP and CH configurations (p = 0.41).

4.2.1.3 Directional Gesture: Left

Only 50% and 57% of the participants recognized the human Left gesture in
the FP and OH configurations, respectively. When the robot expressed the
Left gesture, people recognized the gesture better in the OH configuration
(56%) than in the FP (43%) or CH (26%) configurations.

Human hand configuration had no statistically significant effect on par-
ticipant Recognition Confidence of the Left gesture (t(51) = 1.01, p = 0.32).
Likewise, the results did not reveal a statistically significant effect against the
robot hand configurations (FP, OH and CH) on the Recognition Confidence
of the gesture expressed by a robot hand (F (2, 31) = 0.53, p = 0.59).

4.2.1.4 Directional Gesture: Right

When humans expressed the Right gesture, both the FP and the OH config-
urations had moderate recognition rates (60% and 69% respectively). When
the robot expressed the Right gesture, people recognized the gesture better
in the FP configuration (55%) than in the OH (36%) or CH (43%) configu-
rations.

The Right gesture expressed by a human hand using either the FP or OH
configurations did not show a significant difference in participant Recogni-
tion Confidence (t(62) = 0.87, p = 0.39). Recognition Confidence was signifi-
cantly affected by the robot hand configuration (Welch′sF (2, 11.58) = 16.93,
p < 0.001). The Games-Howell post-hoc test revealed that participants rec-
ognized the robot gesture more confidently in the FP configuration than in
the CH configuration (p < 0.001). Tests did not reveal a statistically signifi-
cant difference between the FP and OH configurations (p = 0.12) or the OH
and CH configurations (p = 0.82).
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Figure 4.5: Human Recognition Rates for Directional Gestures (GD) for
both Study 2 (Human) and Study 3 (Robot). The error bars indicate the
margin of error for a 95% confidence interval.

Figure 4.6: Human Recognition Confidence forDirectional Gestures (GD)
for both Study 2 (Human) and Study 3 (Robot). The Right gesture failed
the assumption of homogeneity of variances; therefore, the Games-Howell
post-hoc test instead of the Bonferroni post-hoc test was performed for this
gesture.
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Figure 4.7: Common misinterpretations of Robot Directional Gestures,
GD.
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4.2.1.5 Discussion

The best and most confidently recognized human hand pose forDirectional
Gestures was the OH pose. Similarly, the OH pose also often corresponded
to the best and most confidently recognized robot hand pose. Comparing
the approach of this work with [20], these results suggest that articulated
fingers are not necessary for directional gestures, adding support to [15] that
referential gestures can be well-recognized by non-anthropomorphic robotic
hands; furthermore, it appears that fingers might not be needed at all, as
there was often no statistically significant difference between OH and CH
poses—a closed hand was just as effective as an open hand at communicating
directionality. The exception to these results was with the Right gesture
(Figure 4.6), for which an alternative robot hand pose (FP) outperformed the
OH configuration; this is believed to be due to the fact that pointing gestures
often anchor one referent (e.g., the car part) to another referent (e.g., the
car door) [37], so the relative angle of the camera biased the perception of
the gesture to relate these two referents in a rightward direction (i.e., the
car part—the only referent on the left—to the car door—the only referent
on the right).

As shown in Figure 4.7, many participants misinterpreted the intended
direction of robot Directional Gestures; this confusion could be because
the robot arm moved at a much slower speed than a human arm when repeat-
ing the motion for the gesture three times (to be consistent with observations
from Study 1). Also, Directional Gestures were commonly misinterpreted
as an Install gesture, which could be again due to the relative angle of the
camera showing the robot arm closer to the car door than it actually was.
Additionally, more than half of the participants misinterpreted a Down ges-
ture when expressed with CH pose as a PickUp gesture (Figure 4.7); this
could be because there were other parts on the table next to the car door
and the motion of the gesture might have anchored participant perceptions
to objects in the direction of motion (i.e., downward), resulting in a misin-
terpretation of the gesture as picking up those parts.

Based on these findings, the relationship between participant viewing
angle (perspective) of the robot gesture and participant recognition rates for
Directional Gestures deserves exploration in future work [28].
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4.2.2 Orientation Gestures

Results of the Recognition Rate and Recognition Confidence analyses from
both Studies 2 and 3 forOrientation Gestures (GO = {< 45◦, 90◦, 180◦})
are shown in Figure 4.8 and Figure 4.9, respectively. No common misinter-
pretations were observed for Orientation Gestures.

4.2.2.1 Orientation Gesture: < 45◦

In Study 2, when humans expressed the < 45◦ gesture, the HOH configura-
tion was recognized accurately (96%). When the robot expressed the < 45◦

gesture, people recognized the gesture better in the CH configuration (79%)
than in the HOH (73%) configuration (Figure 4.8).

Robot hand configuration had no statistically significant effect on partic-
ipant Recognition Confidence of the < 45◦ gesture (t(40) = 1.49, p = 0.14)
(Figure 4.9 and Table 4.2).

4.2.2.2 Orientation Gesture: 90◦

When humans expressed the 90◦ gesture, both the FP and HOH configu-
rations were recognized accurately (85% and 98% respectively). When the
robot expressed the 90◦ gesture, people recognized the gesture better in the
HOH and CH configurations (87% and 85% respectively) than in the FP
(79%) configuration.

Test results indicated a trend that the HOH configuration was more confi-
dently recognized than the FP configuration for the 90◦ gesture expressed by
a human, but this trend was marginally statistically significant (t(89) = 1.88,
p = 0.06) (Table 4.1); however, test results indicated that the robot hand
configuration had a statistically significant effect on how confidently partic-
ipants recognize the gesture (F (2, 68) = 5.33, p < 0.01) (Table 4.2). People
recognized the gesture significantly more confidently in the HOH configura-
tion than in the FP configuration (p < 0.01). The results did not reveal a
statistically significant difference between the FP and the CH configurations
(p = 0.30), or the HOH and CH configurations (p = 0.41).
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Figure 4.8: Human Recognition Rates for Orientation Gestures, GO, for
both Study 2 (Human) and Study 3 (Robot). The error bars indicate the
margin of error for a 95% confidence interval.

Figure 4.9: Human Recognition Confidence forOrientation Gestures (GO)
for both Study 2 (Human) and Study 3 (Robot).
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4.2.2.3 Orientation Gesture: 180◦

When humans expressed the 180◦ gesture, the HOH configuration was rec-
ognized accurately (92%); however, the FP configuration had a relatively
lower recognition rate (78%). When the robot expressed the 180◦ gesture,
all FP, HOH, and CH configurations were recognized accurately (82%, 87%
and 85% respectively).

Participant Recognition Confidence of the 180◦ gesture was significantly
affected by the human hand configuration (t(83) = 3.36, p < 0.01). Partic-
ipants recognized the gesture significantly more confidently when expressed
with the HOH configuration than the FP configuration. Recognition Confi-
dence was also significantly affected by the robot hand configuration (F (2, 72) =
5.14, p < 0.01). Participants recognized the robot gesture significantly
more confidently in the HOH configuration than in the FP configuration
(p < 0.01). The results did not reveal a statistically significant difference
between the HOH and CH configurations (p = 0.21), or the FP and CH
configurations (p = 0.56).

4.2.2.4 Discussion

Haddadi et al. [20] found that only 25% of people understood Orientation
Gestures when expressed by a robotic manipulator with an un-actuated
stuffed glove at the robot end-effector. In contrast, Orientation Gestures
were found to be recognized very accurately in both human (Study 2) and
robot (Study 3) studies (Figure 4.8). Haddadi et al. [20] utilized an Open-
Hand pose for communicating orientation information, however, such hand
poses were not observed in the human-human data collection (Sec. 3.1); thus,
it is suspected that an Open-Hand pose might not be a natural configuration
for this gesture. As shown in (Figure 4.8), the robot Closed-Hand (CH) pose
was recognized as well, in some cases better than the human-inspired hand
poses (i.e., Finger-Pointing and Half Open-Hand).

In both human and robot studies, the Recognition Rates of the 90◦ and
the 180◦ gestures were consistent with the Recognition Confidence of the
associated gestures, and both gestures were best and most confidently rec-
ognized with the Half Open-Hand (HOH) pose (Figures 4.8 and 4.9). Con-
versely, the robot < 45◦ gesture was best recognized with the Closed-Hand
(CH) configuration (Figure 4.8); however, within the participants who rec-
ognized the gesture correctly, they recognized it more confidently (though
not significantly) with the HOH configuration than CH configuration (Fig-
ure 4.9). It is suspected that the reason HOH was less recognized in ex-
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pressing the < 45◦ gesture is related to the angle of rotation, with smaller
rotations having a lower recognition rate. For example, for the < 45◦ ges-
ture, participants seemed to look confused about the intention of the robot,
and sometimes did not observe the rotation of the hand at all. This could
be because the Barrett Hand lacks an opposable thumb (discussed in Sec-
tion 2.3), which could serve as a visual anchor or reference point to an ob-
server [19, 2, 1]; thus, common non-anthropomorphic robot manipulators,
such as Baxter’s 1D gripper [16] and KUKA’s two-finger gripper [4], are
expected to be effective in communicating orientation information, though
human observers might not feel as confident and comfortable in their as-
sessments of the gesture’s meaning—in short, for gestures indicating small
changes in orientation, human coworkers will have to “trust their gut”.

4.2.3 Manipulation Gestures

The measures of Recognition Rate and Recognition Confidence from both
Study 2 and Study 3 forManipulation Gestures (GM = {Install,Remove,
PickUp,Place,Swap}) are shown in Figures 4.10 and 4.11, respectively.
Figure 4.12 displays the rates of common misinterpretations of each Manip-
ulation Gesture.

4.2.3.1 Manipulation Gesture: Install

In Study 2, when humans expressed the Install gesture, the Open-Hand
(OH) configuration had a perfect recognition rate (100%); however, the
Finger-Pointing (FP) configuration had a low recognition rate (57%). When
the robot expressed the Install gesture, people recognized the gesture better
in the CH configuration (68%) than in the OH (52%) or FP (35%) configu-
rations (Figure 4.10).

Recognition Confidence of the Install gesture was significantly affected
by the human hand configuration (t(75) = 2.15, p < 0.05) (Table 4.1). Par-
ticipants felt more confident recognizing the gesture when expressed with
the OH configuration than the FP configuration (Figure 4.11). Similarly,
robot hand configuration significantly affected participant Recognition Con-
fidence of the gesture (F (2, 41) = 5.40, p < 0.01) (Table 4.2). Participants
recognized the robot’s gesture significantly more confidently in the OH con-
figuration than in the CH configuration (p < 0.01). No significant difference
was observed between the FP and OH configurations (p = 0.46), or the FP
and CH configurations (p = 0.65) (Figure ??).
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Figure 4.10: Human Recognition Rates for Manipulation Gestures, GM ,
for both Study 2 (Human) and Study 3 (Robot). The error bars indicate the
margin of error for a 95% confidence interval.

Figure 4.11: Human Recognition Confidence for Manipulation Gestures,
GM , for both Study 2 (Human) and Study 3 (Robot).
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Figure 4.12: Common misinterpretations of Robot Manipulation Ges-
tures, GM .

4.2.3.2 Manipulation Gesture: Remove

When humans expressed the Remove gesture, both the OH and HOH con-
figurations were recognized accurately (90% and 96%, respectively). When
the robot expressed the gesture, people recognized the gesture slightly bet-
ter in the CH configuration (68%) than in the OH (61%) or the HOH (65%)
configurations.

The human hand configurations—OH and HOH—had no statistically
significant effect on the Recognition Confidence of the Remove gesture
(t(91) = 0.32, p = 0.75). Likewise, the results did not reveal a signifi-
cant effect against the robot hand configurations (OH, HOH and CH) on
the Recognition Confidence of the gesture (F (2, 56) = 2.77, p = 0.07). The
results did not reveal a significant difference between the OH and HOH con-
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figurations (p = 1.00) or the OH and CH configurations (p = 0.30); however,
there was a trend that the gesture was better recognized when expressed with
the CH configuration than the HOH configuration (p = 0.09).

4.2.3.3 Manipulation Gesture: PickUp

When humans expressed the PickUp gesture, the OH configuration was
recognized accurately (90%). When the robot expressed the PickUp ges-
ture, the OH configuration was recognized more accurately than the CH
configuration (68% and 50%, respectively).

The results show a strong trend that the HOH configuration was more
confidently recognized than the FP configuration when the gesture is ex-
pressed by the robot, but this trend was only marginally significant (t(46) =
1.99, p = 0.05).

4.2.3.4 Manipulation Gesture: Place

When humans expressed the Place gesture, the FP configuration was rec-
ognized accurately (95%). When the robot expressed the gesture, both the
FP and the CH configurations were recognized accurately (89% and 86%,
respectively)

The Place gesture expressed by a robot hand using either the FP or
the CH configuration did not show a statistically significant difference in the
Recognition Confidence measure of the gesture (t(72) = 0.39, p = 0.70).

4.2.3.5 Manipulation Gesture: Swap

When the Swap gesture was expressed by a human, only 57% and 61% of
the participants recognized the gesture in the FP and V-Sign (VS) configu-
rations, respectively. Similarly, when the robot expresses the gesture, only
54%, 16%, and 43% of the participants recognized the gesture in the FP, VS,
and CH configurations, respectively.

The human hand configurations (FP and VS) had no statistically signif-
icant effect on the participant Recognition Confidence of the Swap gesture
(t(57) = −1.29, p = 0.20). Likewise, the results did not reveal a statistically
significant effect against the robot hand configurations (FP, VS and CH,
respectively) on the Recognition Confidence of the gesture expressed by the
robot hand (F (2, 28) = 0.88, p = 0.42).
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4.2.3.6 Discussion

Most of the human hand gestures were accurately recognized by the partici-
pants for all of the selected hand poses; the exceptions to this finding were the
Install gesture and the Swap gesture (Figure 4.10). The Install gesture was
perfectly recognized (i.e., the Recognition Rate was 100%) when expressed
with an Open-Hand (OH) configuration; however, it had a much lower recog-
nition rate (57%) when expressed with a Finger-Pointing (FP) configuration.
Some participants misinterpreted the Finger-Pointing as "poking or pressing
on the part" being installed on the car door (Figure 4.12). Overall, the Swap
gesture had one of the lowest recognition rates of all human gestures when
using either FP or V-Sign (VS) hand configurations with Recognition Rates
of 51% and 61%, respectively (Figure 4.10); in Study 1, some participants
indicated a preference to use two hands to execute a Swap gesture, stating
that a one-handed Swap gesture was not as intuitive to them, which could
explain the lower Recognition Rates of this one-handed Swap gesture.

As shown in Figure 4.10, no correlation was identified between the Recog-
nition Rates of the human hand-configurations and the imitated robot hand-
configurations. For example, the Swap gesture was best recognized in a VS
hand configuration for the human case, whereas it was best recognized in
a FP hand configuration for the robot case. This could have been par-
tially due to the mechanical limitations of the robot hand (e.g., the VS
pose did not look intuitive on the robot hand). In addition, two of the
robot hand gestures—Install and Remove—were better recognized when
expressed with an unposed, Closed-Hand (CH) configuration rather than
a posed hand configuration, rejecting the assumption that human-inspired
hand poses always outperform the unposed robot hand. As in the human
case, approximately 16% of participants misinterpreted the robot Install
gesture with a FP hand pose as "pressing on the part" (many thought the
part was a button) (Figure 4.12). Furthermore, as shown in Figure 4.12,
approximately 23% of participants misinterpreted the Install gesture with
an OH pose as the robot indicating to “stop”. For the Remove gesture,
a Half Open-Hand (HOH) pose was commonly misinterpreted as “rotating
the part”, and OH pose was commonly misinterpreted again as “pressing
on the part/button”. Collectively, these results add support to and elabo-
rate upon related work on differences in human anthropomorphic vs. robot
non-anthropomorphic nonverbal communication [15, 18].

Haddadi et al. [20] found that people had difficulty recognizing many of
the manipulation gestures investigated in Studies 1–3. In [20], the stuffed
glove at the end of the manipulator consistently presented an Open-Hand
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pose, which was not necessarily the best hand pose for expressing many of
the manipulation gestures, as identified by [20] and supported by the results
of this work (Figures 4.10 and 4.11).

Referring to Figures 4.10 and 4.11, better recognized hand poses also had
higher Recognition Confidence for both human and robot gestures, with the
exception of the robot Install gesture. Note that while both human and
robot expressions of the Swap gestures had low Recognition Rates, those
participants who recognized the gesture correctly also recognized it confi-
dently.

4.2.4 Feedback Gestures

Observations of human interactions in Study 1 yielded two gestures that were
identified and categorized as Feedback Gestures, GF = {Confirm,
Stop}. Feedback Gestures differed from other identified gesture cate-
gories in that they were symbolic gestures (discussed in Section 2.1) used
for reinforcing or interrupting the human movement rather than directing a
part movement. For this category, only the human-inspired hand configura-
tions identified in Study 1 were implemented on the robot; the Closed-Hand
(CH) configuration was not used as a baseline, as this work was primarily
interested in investigating if symbolic gestures could still deliver a clear com-
municative message when implemented on a non-anthropomorphic robotic
hand. The Confirm gesture was most frequently expressed using a Thumbs-
Up (TU) hand configuration shown in Figure 3.7e, and the Stop gesture was
most frequently expressed using Open-Hand (OH) and Finger-Pointing (FP)
hand configurations, shown in Figures 3.7a and 3.7b, respectively.

The combined results of Study 2 and Study 3 for Feedback Gestures
are shown in Figures 4.13 and 4.14; Figure 4.13 illustrates the measures
of Recognition Rate and Figure 4.14 illustrates the measures of Recognition
Confidence for Feedback Gestures.

4.2.4.1 Feedback Gesture: Confirm

In Study 2, when humans expressed the Confirm gesture, the Thumbs-Up
(TU) hand configuration was very accurately (98%) and confidently recog-
nized; however, when the robot expressed the Confirm gesture, only 25% of
participants recognized the gesture with a below average Recognition Con-
fidence (see Figure 4.13 for the Recognition Rate, and Figure 4.14 for the
Recognition Confidence measures of this gesture).
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4.2. Study 2 and Study 3 Results

Figure 4.13: Human Recognition Rates for Feedback Gestures (GF ) ges-
tures for both Study 2 (Human) and Study 3 (Robot). The error bars indi-
cate the margin of error for a 95% confidence interval.

Figure 4.14: Human Recognition Confidence for Feedback Gestures (GF )
gestures for both Study 2 (Human) and Study 3 (Robot).
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4.2.4.2 Feedback Gesture: Stop

When humans expressed the Stop gesture, both the Finger-Pointing (FP)
and Open-Hand (OH) configurations were recognized accurately (94% and
96% respectively). Similarly, when the robot expressed the Stop gesture,
both the FP and OH had high Recognition Rates (75% and 72%, respec-
tively), though these rates were lower than those of the human gestures
(Figure 4.13).

For both the human-human and human-robot cases, hand configuration
had no statistically significant effect on the participants Recognition Con-
fidence of the Stop gesture (t(94) = −0.28, p = 0.78 and t(60) = 0.24,
p = 0.81, respectively) (Figure 4.14).

4.2.4.3 Discussion

The selected feedback gestures—Confirm and Stop—are symbolic gestures
[1] and, as such, are strongly influenced by contextual factors [5, 26]. Dis-
cussed below are the results of human observations of these feedback gestures
and the contextual factors that might contribute to perceptual differences.

The robot’s Confirm gesture had a very low performance, which is sus-
pected to be due to the mechanical limitations of the robot hand—the robot
hand has no thumb, and the TU pose looked more like the robot was display-
ing an inappropriate “middle finger” (as repeatedly and humorously noted by
participants) [41]. As discussed in Section 2.3, related non-anthropomorphic
robot manipulators, such as Baxter’s 1D gripper [16] and KUKA’s two-finger
gripper [4], are expected to be interpreted in a similar manner; thus, it is
recommended that robotic manipulators used in collaborative environments
have a level of anthropomorphism such that there is a clear opposable thumb,
as confirmatory information conveyed through a TU pose was shown to be
one of the most important gestures for such a robot to communicate.

Recognition Confidence of the Stop gesture was consistent with the
Recognition Rate of the gesture for both human and robot gestures (Fig-
ure 4.14). These results add further evidence to the related work of [15],
which reported that terminating gestures, such as “Stop” or “No”, are well rec-
ognized on both anthropomorphic and non-anthropomorphic robotic hands.

Overall, the findings of this work suggest that even a mechanically limited
robotic hand can still express certain symbolic gestures [1, 5, 26], such as
the Stop gesture [15]; however, it is warned that presenting a Thumbs-Up
(TU) hand configuration without the use of an opposable thumb should be
used with caution or not at all, as it can be perceived as inappropriate [41].
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4.3 Summary

An objective of this work was to investigate a collection of intuitive and
human-recognizable hand gestures and accompanying hand poses that can
be implemented on industrial, non-anthropomorphic robotic hands to non-
verbally communicate with co-located human coworkers. The results indi-
cated that most of the human gestures were well recognized (Recognition
Rate greater than 90%) by the participants with at least one of the two se-
lected hand poses observed in a human-human nonverbal scenario discussed
in Study 1. Similarly, most of the robot gestures were relatively well recog-
nized (Recognition Rate greater than 60%) by the participants with at least
one of the three robot hand poses—two human-inspired hand poses and the
Closed-Hand (CH) pose.

However, the following gestures were exceptions to these results, yielding
lower Recognition Rates:

1. both human and robot expressions of Left and Right Direc-
tional Gestures, possibly due to the relative angle of the camera with
which the gestures were recorded, as well as the relative location of the
robot, the car part, and the car door in the work space;

2. both human and robot expressions of the Swap Manipulation
Gesture (Figure 4.10), possibly because Swap is a complex gesture
that participants indicated would be better performed when expressed
with two hands, unlike other identified gestures.

3. robot expressions of the Confirm Feedback Gesture, which was
likely due to the mechanical limitation of the robot hand and its lack
of having a thumb (Figure 4.13).

In the human-human study (Study 2, Section 3.2), participant Recogni-
tion Rates of human hand gestures were consistent with participant Recog-
nition Confidence of the gesture. In the human-robot study (Study 3, Sec-
tion 3.3), the best and most confidently recognized human hand poses typi-
cally corresponded to the best and most confidently recognized robot hand
poses forDirectional,Orientation, and Feedback Gestures, with the ex-
ception of the Right Directional Gesture and the < 45◦ Orientation Gesture
(though the differences were not statistically significant). For Manipula-
tion Gestures, robot hand poses imitated from human hand poses were not
always better recognized than non-posed (i.e., Closed-Hand (CH)) configu-
rations; for example, the robot Remove gesture had the highest Recognition
Rate and Recognition Confidence when expressed with the CH pose.
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4.3. Summary

Together, these studies provide insights into how humans produce and
perceive nonverbal communication to interact with other human co-workers
in assembly tasks, inform how robots should communicate to human co-
workers in the same settings, and how human co-workers might interpret
these nonverbal signals from their robot counterparts.

The next chapter expands upon these results to provide a set of guidelines
for the mechanical design of robotic hands.
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Chapter 5

Guidelines for the Design of
Expressive Robotic Hands

The results of this work combined with experimenter observations in Studies
1–3 yielded insights and guidelines for the design of individual regions and
features of a robotic hand. These region and feature considerations are
illustrated in Figure 5.1 and described below in Section 5.1. The application
of these principles to the design of real robot hands is presented in Section 5.2.
Further steps to formalize these guidelines are proposed in Section 5.3.

Figure 5.1: Significant regions for consideration when designing a robotic
hand, including the wrist, palm, fingers, pointer finger, and thumb.
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5.1 Regions and Features of a Robotic Hand

The analysis of Study 1 suggested a specific set of common hand gestures that
were represented by one or more hand configurations/poses (Section 4.1).
The implementation and subsequent analysis of these gestures on a robotic
hand provided insights on particular regions of the hand that would impact
human perceptions of the intended communicative meaning (Section 4.2).
Definitions and considerations for each of the regions shown in Figure 5.1
and discussed in the follow subsections.

5.1.1 Wrist

The wrist is the anchor point for the robot hand, and connects to the base of
the palm (Figure 5.1). The side of the hand opposite the wrist (i.e., the palm,
extended fingers, or the pointer finger) enables the robot to produce hand
gestures in the set of Directional Gestures, GD [37]. Furthermore, the
results of this thesis indicate benefit from the wrist providing or permitting
some form of tilt movement (side-to-side) and/or twist movement (forward-
and-backward), as all of the selected gestures (with the exception for the
Confirm gesture) involved some sort of movement of the wrist or forearm.
Tilting of the wrist allows the robot to better produce hand gestures in the
set of GD, as well as the Stop gesture (in the set of Feedback Gestures,
GF ; Figure 3.5bc). Twisting of the wrist allows the robot to better produce
hand gestures in the set of Orientation Gestures, GO.

5.1.2 Palm

The palm serves as the main region from which other regions of the hand ex-
tend (Figure 5.1). The palm of a robotic hand should take one of two forms:
planar or volumetric. A planar palm has two clear “sides”—the “back of the
hand” and the “front of the hand”—which allow it to produce hand gestures
with Open-Hand poses (e.g., Figure 3.7a); an example of a simple planar
palm design might be a semi-circular disk like a ping-pong paddle. A volu-
metric palm has no clear directionality—similar to a balled up fist—which
allows it to produce hand gestures with Closed-Hand poses (e.g., Figure 3.8);
an example of a simple volumetric palm design might be a sphere or cube.
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5.1.3 Fingers

The fingers—pointer, middle, index, and/or pinky—extend out from the
palm on the side opposite the wrist (Figure 5.1). These fingers can be spread
apart or closed (touching each other), and can be unarticulated or articulated
at the proximal knuckle point. While fingers that are spread apart might
allow the robot to produce a V-Sign hand pose (Figure 3.7d), the results
in Section 4.2.3.5 suggest that the V-Sign pose might not be as effective as
other hand poses in human-robot communication; thus, the design choice of
fingers spread apart or touching is not essential for the gestures identified in
this study. Based on the study results, unarticulated fingers are suggested
to be posed in one of three ways: Open-Hand, Half Open-Hand, or Closed-
Hand. Articulated fingers can permit transitional hand poses somewhere
between the range of Open-Hand and Closed-Hand poses, and can be artic-
ulated either separately (decoupled) or together (coupled); based on insights
from Study 1 (Section 4.1); however, the only recommended decoupling is
the pointer finger, discussed below. For both unarticulated and articulated
fingers, the selected hand pose dictates the effectiveness of hand gestures
as perceived by the human observer. Because the fingers might naturally
add “sides” to the palm, they will override any perceptions yielded by the
palm alone; furthermore, the number and layout of fingers might be aesthet-
ically linked to the size and shape of the palm, so at least three fingers are
suggested to establish clear “sides” of the palm.

5.1.4 Pointer Finger

An extended pointer finger separated from other fingers in a Closed-Hand
pose (either unarticulated or articulated) allows the robot to produce Finger-
Pointing poses (Figure 3.7b) to communicate very specialized hand gestures
(Figure 5.1). For example, as illustrated in Study 1, the Place gesture (in
the set of Manipulation Gestures, GM ; Figure 3.4f) was only expressed
using the Finger-Pointing pose in human-human interactions (Section 4.1).
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5.1.5 Thumb

The thumb often assists in one of two purposes: physical manipulation or
social expressiveness; each of these purposes often dictates the location of
the thumb on the robot hand (Figure 5.1). For effective physical manipu-
lation, the thumb on a robot hand is often located near the wrist and on
the “front” of the palm; this allows the robotic manipulator to apply forces
from opposing directions between the fingers and thumb (e.g., for grasping
an object). For effective social expressiveness, the results of this work sug-
gest that the thumb should be near the wrist and to the side of the palm
(i.e., as with a Thumbs-Up hand pose); this allows the robot to produce
unique symbolic hand gestures, such as the Confirm gesture (in the set of
Feedback Gestures, GF ; Figure 3.5a), and adds a reference point to hand
poses to improve the recognition of Orientation Gestures (GO), especially
for small orientations (i.e., < 45◦ gesture). Thus, to support both physical
and social purposes, it is recommended that the thumb be able to roll from
below the palm to the side of the palm.

5.2 Applications of Design Guidelines

The section reviews robotics hands that were used by, or related to, this
thesis work, and applies the design principles described above to evaluate
(for the Barrett Hand; Section 5.2.1), predict (for the Seed Robotics RH4D
Aries Hand; Section 5.2.2), and improve (for the Seed Robotics RH7D Eros
Hand; Section 5.2.3) the social expressiveness of robot hands.

5.2.1 Barrett Hand

The implementation challenges and subsequent Study 3 experimental results
using the Barrett Hand (Figure 5.2) revealed the foundational insights for
the design guidelines proposed above. The hand can be evaluated by the
regions and features proposed above, which dictate its social expressiveness.

The wrist of the Barrett Hand is fixed; however, it is mounted to a fore-
arm that can both tilt and twist at an elbow in the arm, enabling fundamen-
tal movements for the production of Directional Gestures (Section 4.2.1)
and Orientation Gestures (Section 4.2.2), respectively. The perception of
a palm is formed by the mechanism coupling the wrist to the fingers, which
forms two clear sides of the hand, classifying it as a planar palm. While
the fingers dictate the effectiveness of Open-Hand vs. Closed-Hand poses,
this planar palm is effective at communicating Orientation Gestures, as
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evidenced by the positive results of Study 3 (Section 4.2.2). The fingers
are separately articulated, enabling the robot to effectively produce hand
configurations in the range between Open-Hand and Closed-Hand poses. In
addition, the articulated pointer finger enables the Barrett Hand to produce
specialized hand gestures, such as the Place gesture (Figure 3.4f). However,
the lack of a thumb makes it impossible for the Barrett Hand to approximate
symbolic hand gestures, such as the Confirm gesture (Figure 3.5a) with the
Thumbs-Up pose, which is crucial for affirmative communication.

The Barrett Hand is similar to (but not actually used as) morphologies of
robotic hands common in industry (see Section 2.3), it follows that such robot
hands might not be sufficient for supporting fluent human-robot gestural
interactions. More anthropomorphic robotic hands that closely resemble
human anatomy might produce better approximations of human gestures;
however, such hands are typically much more expensive and less effective
in the industries. The next section describes an example of an inexpensive
and robust robotic hand designed to address the future industrial needs with
respect to social expressiveness.

Figure 5.2: The Barrett Hand.
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5.2.2 Seed Robotics RH4D Ares Hand

Seed Robotics (http://www.seedrobotics.com) designs and develops tendon-
based robotic hands for advanced manipulation. Their designs are highly cus-
tomizable using 3D printed modular components, and the developed product
tend to be significantly less expensive than other robotic manipulators on
the market. Currently, their robot hands are too small for manipulation in
industrial settings; however, the flexibility in design is appealing for purposes
of review in this thesis, as the design can be adapted for social expressiveness.
This section discusses their base model hand—the RH4D Ares (Figure 5.3)—
and predicts how well people might interpret gestures produced by it. The
next section presents a redesign of the hand informed by this thesis work.

The Ares robotic hand features four actuated degrees of freedom: two
in the wrist, one in the coupled fingers, and one in an opposable thumb.
The wrist enables both twist rotation (for Orientation Gestures) and
forward/backward rotation; however, the forward/backward wrist rotation
does not add much social expressiveness to the hand, as none of the gestures
identified in Study 1 (Section 4.1) or implemented in Study 3 (Section 3.3)
warranted this movement. Thus, as with the Barrett Hand (Section 5.2.1),
the Ares hand must be mounted to a higher-DOF arm to support the range
of motion necessary for Directional Gestures. The palm is formed by
the space between the two fingers and the thumb. The two fingers are
visibly separate, but actuated together (i.e., coupled); while this config-
uration could produce Closed-Hand poses and the less important V-Sign
pose (Figure 3.7d), the Ares is unable to produce the Finger-Pointing pose
(Figure 3.7b), which is beneficial for some Directional Gestures and the
Place Manipulation Gesture. The articulated opposable thumb is ide-
ally located for grasping objects; however, its range of motion is limited to
supporting only Half Open-Hand or Closed-Hand poses, and its positioning
suggests that any displays of a Thumbs-Up pose would be deemed inappro-
priate. In summary, the Ares hand is effective for physical manipulation of
small objects, but its effectiveness in socially expressivity is limited to ges-
tures expressed using Half Open-Hand poses (e.g., Orientation Gestures)
and Closed-Hand poses (e.g., some Manipulation Gestures).

Based on the above predictions, the Ares hand does not fully address
the needs identified in this thesis for gestural communication in HRI. These
predictions serve as hypotheses about how people might perceive hand ges-
tures with the Ares hand, which could be formally tested in future work.
For now, these predictions alone were enough for Seed Robotics, who subse-
quently worked with the thesis author to change the design of the Ares hand
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to better support social expressiveness (described in the next section).

Figure 5.3: The Seed Robotics RH4D Ares hand.
(http://www.seedrobotics.com/rh4d-ares-hand.html)
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5.2.3 Seed Robotics RH7D Eros Hand

To enhance the social expressiveness of the RH4D Ares hand (Section 5.2.2),
the founders of Seed Robotics met with the thesis author to discuss the
design considerations proposed in Section 5.1. This discussion informed the
development of a new Seed Robotics hand—the RH7D Eros (Figure 5.4).
This section presents the design characteristics that make the Eros one of the
most socially expressive robotic hands available, as illustrated in Figure 5.5.

The Eros hand features seven actuated degrees of freedom: three in the
wrist, two for the fingers, and two for the thumb. As with the Ares, the
Eros wrist features both twist rotation (for Orientation Gestures) and
forward/backward rotation; however, side-to-side tilting rotation has been
added and the forward/backward rotation has been moved to where the
wrist and palm meet, adding strong support for Directional Gestures. A
planar palm is very clearly formed between the recommended three fingers
and the thumb. To maximize expressivity while minimizing actuation costs,
two of the three fingers (the “non-pointer fingers”) are articulated together
and one of the fingers (the pointer finger) is articulated separately; this artic-
ulated configuration supports the full range of Open-Hand to Closed-Hand
poses (Figure 5.5ab), and allows the hand to produce Finger-Pointing poses
(Figure 5.5c) to support some Directional Gestures, the Place Manipu-
lation Gesture, and the Stop Feedback Gesture. The thumb has been
relocated from the front of the palm (Figure 5.3) to the side of the palm
(Figure 5.4). As with the Ares, the thumb can bend; however, the Eros adds
a rolling motion enabling the thumb to transition between the front of the
palm (for physical manipulation) and the side of the palm (for social ex-
pressiveness), supporting a strong Thumbs-Up pose for better Orientation
Gestures and the Confirm Feedback Gesture (Figure 5.5d).

Based on the experimental results (Section 4.2) and the proposed data-
driven design guidelines (Section 5.1) of this thesis work, the Eros hand
represents a significant improvement over both the Ares (Section 5.2.2) and
the Barrett Hand (Section 5.2.1) in terms of social expressiveness; however,
as with the Ares, these predicted improvements are as hypotheses to be
investigated in future studies. The Eros is currently too small for industrial
manipulation tasks, though its 3D-printable design suggests that it could
be made larger and stronger for manufacturing applications such as picking
and placing workpieces in assembly lines. In an ultimate combination of
physical and social, the Eros hands have been used for performing human-
robot handshakes, representing the synergy between anthropomorphism and
engineering for a future in which both humans and robots collaborate.
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Figure 5.4: The Seed Robotics RH7D Eros hand.
(http://www.seedrobotics.com/rh7d-eros-hand.html)
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5.3 Next Steps

The design guidelines proposed in Section 5.1 are informed by human-human
gestural communication (Section 4.1) and their subsequent implementations
for human-robot interactions (Section 4.2); however, these guidelines come
from a single robot hand (the Barrett Hand) within a particular scenario
(collaborative industrial manufacturing), so the significance and impact of
the principles is currently limited to these domains. Thus, further explo-
ration of the space of robot hands—as well as their associated regions, fea-
tures, and applications—is needed to formalize principles for the design of
physically and socially effective robotic hands. The formalization of these
guidelines will enable a researcher to quickly evaluate (Section 5.2.1), pre-
dict (Section 5.2.2), and improve (Section 5.2.3) a robot hand with respect
to requirements identified for both physical manipulation and social expres-
siveness in a target application domain.

The final chapter provides conclusions and future directions of this work.
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Figure 5.5: A selection of configurations/poses expressed by the Seed
Robotics RH7D Eros hand, including (a) Open-Hand, (b) Closed-Hand, (c)
Finger-Pointing, and (d) Thumbs-Up.
(http://www.seedrobotics.com/rh7d-eros-hand.html)
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Chapter 6

Conclusions

In noisy industrial settings, spoken communication is unreliable and even
impractical for human-robot coworkers. This work addressed nonverbal ges-
tural expressions as a means of reliable human-robot communication. The
aim of this work was (1) to study the communicativeness of a common
three-finger robotic hand in industrial scenarios, and (2) to investigate hu-
man recognition of robot hand gestures in a collaborative human-robot task.
The results highlight the efficacy of using a common non-anthropomorphic
robotic manipulator—the Barrett Hand—to communicate with human ob-
servers (e.g., coworkers) using hand gestures.

Humans generally recognize human hand gestures accurately and confi-
dently in human-human interactions (discussed in Section 2.1); however, hu-
man recognition of robot hand gestures has not been adequately explored in
human-robot interactions (Section 2.2). Although typical industrial robotic
grippers are non-anthropomorphic and have limited dexterity (Section 2.3),
the results demonstrate that such devices are capable of expressing Direc-
tional, Orientation, Manipulation, and Feedback gestures (defined in
Sections 3.1) in a human-recognizable manner. Three studies (Sections 3.1 –
3.3) were performed to explore and inform the use of such robot hands for
human-robot communication in collaborative settings, the results of which
are presented in Sections 4.1 and 4.2.

According to the results presented in this work, most gestures are better
and more confidently recognized when displayed with a posed robot hand
rather than an unposed, closed hand; however, hand poses used by humans
when expressing a gesture are not necessarily ideal for a robot to use when ex-
pressing the same gesture. These results suggest principles and guidelines for
the mechanical design of expressive robot hands and robot hand gestures in
co-present human-robot interactions, including human-robot collaboration;
these guidelines are presented in Section 5.1 and applied in Section 5.2.

An overview of the contributions of this work is summarized below in
Section 6.1. A discussion of limitations and future work are provided in
Section 6.2, followed by concluding remarks in Section 6.3.
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6.1 Contributions

This work developed and evaluated a cardinal set of user-generated gestures
applicable to industrial scenarios in which the robot must intuitively and
effectively provide a set of instructions to a co-located person while collabo-
rating on a shared task. The key contributions of this work are:

• a methodology for designing and implementing task-based communica-
tive gestures to be expressed by a robot in HRI;

• a cardinal set of user-generated task-based communicative hand ges-
tures and accompanying hand poses for human-robot co-working tasks;

• an evaluation and validation of the identified gesture set with respect to
human Recognition Rate and Recognition Confidence within a human-
robot collaboration scenario; and

• a set of guidelines for the mechanical design of robot hands.

6.2 Limitations and Future Work

These thesis investigations revealed considerations and limitations in the
methods utilized that could be addressed more exhaustively in related or
future work.

In Study 1, when identifying the gestures that were utilized in human-
human collaborative assembly scenario, the Up-and-Down and Left-and-
right Directional Gestures (GD) were analyzed together based on the
assumption that these gestures were symmetric; however, in subsequent anal-
yses, it was determined that these directional gestures were best recognized
with different hand poses—thus, the assumption of symmetry in the analysis
of Study 1 might not hold and requires further investigation. Informed by
this observation, Study 2 and Study 3 both treated the Up-and-Down and
Left-and Right gestures separately.

In this work, the Closed-Hand (CH) pose was utilised as a baseline for
analysing participant Recognition Rates and Recognition Confidence of robot
hand gestures. An extension to this work would be to have a person also
gesture with the CH pose to serve as a baseline for the human-human study
(Study 2), and to evaluate how well people perceive the human CH gesture
compared to the robot CH gesture (as with other gestures in Section 4.2).
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The objective of this work is to gain preliminary insights into the trans-
fer of natural human hand gestures to non-anthropomorphic robot hand
gestures; however, restrictions on participants in Study 1 (described in its
methodology, Section 3.1) might have resulted in human hand gestures that
were less natural than what would be observed in an actual assembly sce-
nario. Future work would investigate human hand gestures and speech utter-
ances produced in natural collaborative industrial settings, and model these
gestures for non-anthropomorphic robot hands common in these settings.

Sections 5.2.2 and 5.2.3 applied the design guidelines outlined in Sec-
tion 5.1 to predict how people would recognize robot gestures produced by
the Seed Robotics Ares and Eros hands, respectively. These predictions
serve as hypotheses to be tested in formal studies. Future work would em-
ploy the same procedure performed in Study 3 (Section 3.3), implementing
the same hand gestures and configurations/poses on both the Ares and Eros
hands. Participant Recognition Rates and Recognition Confidences for each
of these robotic hands could be compared to the Barrett Hand, as well as
the human-human production of the same gestures, as in Section 4.2. The
results of such a study would provide further insights and support for the
data-driven design of expressive robotic hands.

In future work, the implemented robot hand gestures could be compared
to other communication modalities—such as teaching pendants, touch inter-
faces, or speech (even though speech might not be an option in the target
domains)—with respect to common metrics in human-robot collaboration,
such as human response time and overall task performance. As noted in the
results (Section 4.2), the camera angle from which the studies were evaluated
might have impacted participant Recognition Rates and Recognition Confi-
dence; further studies will investigate how observer perspective influences
the clarity of gestural communication [14]. Finally, the gesture communica-
tion system will be integrated into a decision-making mechanism to enable
the robot to predict and select the most appropriate communicative action
to maximize interpretability by a human co-worker.

6.3 Concluding Remarks

Collaborative robots are transforming the way in which people work in indus-
trial settings, and will continue to disrupt manufacturing for years to come.
As such, it is important for robots to understand how to effectively commu-
nicate with their human co-workers. This thesis provides the groundwork
for these collaborative robots, upon which further work can be built.
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Appendix A

Study 1 Instructions

Study one presented in section 3.1 had two phases:

A.1 Study1-Phase1 Instructions

In phase 1 of Study 1 (Section 3.1), participants were asked to use hand
gestures to instruct a human confederate, referred to as the “worker”, to
assemble six car door parts on a car door. Figures A.1 shows the proper
location and orientation of each of the six parts.

As shown in Figure A.2, the participant stood in front of the car door (at
a distance of 2ft), and the experimenter stood to the right of the car door
(at a distance of 1ft). The car door parts were placed on a table between the
experimenter and the human volunteer. This setup allowed the experimenter
and the human volunteer to easily access the car door as well as the car door
parts.

To provoke a wider range of natural and intuitive gestures in each round
of the experiment, the worker would intentionally and as naturally as possible
make mistakes at assembling the parts on the car door. During assembling
each part, the worker would:

• part 1:

– Hold part 1 below and to the left of its final location on the door,
and slightly tilted to the right; and

– Rotate part 1 more than needed (to have it tilted to the left).

• part 2:

– Take part 5 instead of part 2 from the table; and
– Attach part 2 with a wrong orientation (90◦ clockwise).

• part 3:

– Attach part 3 to a wrong spot on the car door; and
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A.1. Study1-Phase1 Instructions

– Attach part 3 to its correct spot on the car door but with a wrong
orientation (180◦).

• part 4:

– Hold part 4 below its final location on the door and slightly tilted
to the left; and

– Rotate part 4 more than needed (to have it tilted to the right).

• part 5:

– Attach part 5 with a wrong orientation (90◦ counter-clockwise);
and

– Rotate part 5 180◦ clockwise (i.e. reattach part 5 in 90◦ clockwise
orientation with respect to its correct orientation).

• part 6:

– Hold part 6 above and to the left of its final location on the door;
and

– Attach part 6 with a wrong orientation (180◦).
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(Figure continued on next page)
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(Figure continued on next page)
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A.1. Study1-Phase1 Instructions

Figure A.1: Proper location and orientation of each of the six parts on the
car door
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A.1. Study1-Phase1 Instructions

Figure A.2: Experimental setup for human-participants pilot experiment
(Study1-Phase1).
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A.2 Study1-Phase2 Instructions

In this phase, a new picture of the assembled vehicle door containing changes
in the orientation or location of three of the six parts now assembled on the
vehicle door was given to the participants (Figure A.3). Participants are
asked to direct the worker to rearrange the parts on the door to achieve the
new assembly arrangement.

Similar to Study 1, Phase 1, the vehicle door was in front of the human
volunteer ( 2ft), and the experimenter stood to the right of the vehicle door
( 1ft) facing towards the human volunteer (Figure A.4).
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Figure A.3: Highlighted changes in the orientation or location of three of the
six parts assembled on the vehicle door
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A.2. Study1-Phase2 Instructions

Figure A.4: Experimental setup for human-participants pilot experiment
(Study1-Phase2).
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Appendix B

Advertisements, Online
Surveys, and Consent Forms

This appendix outlines the details of the online surveys used for Studies 2
and 3. Consent forms and advertisement materials used for the studies are
also presented in this appendix. This appendix is divided into two sections:
Section B.1 presents the consent form and the online survey used for Study
2; and Section B.2 presents the consent form and the online survey used used
for Study 3.

B.1 Study 2 Advertisements, Online Surveys, and
Consent Forms

In Study 2, two versions of the same online survey was used, each containing a
different pseudo-random order of video-clips, each of a person exhibiting one
of the identified hand gestures in Study 1 to direct a worker in an assembly
task analogous to Study 1 (Chapter 3, Section 3.1). All versions of the survey
used a single consent form. This consent form is presented in Figure B.1.
The study was advertised via online media tools including twitter, facebook,
and the Collaborative Advanced Robotics and Intelligent Systems (CARIS)
Laboratory website and distribution of advertisements to university students.
The advertised material is presented in Figure B.2 and Figure B.3.

Each survey contained 14 pages, each page containing a video and the
same three survey questions discussed in Study 2 (Chapter 3, Section 3.2).
A sample page is shown in Figure B.4.
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Last revised: July 31, 2013 Gesture Survey Consent Form.docx  

 
 

 
 

Gesture Survey 
 

Thank you for volunteering to participate in the  survey. 
 
 
 
 
 
 
 

The University of British Columbia 
Collaborative Advanced  Robotics  and  Intelligent Systems (CARIS) Laboratory 
Department of Mechanical  Engineering, UBC 
6250  Applied Science  Lane, Vancouver, BC V6T 1Z4 
Tel: (604) 822-3147 Fax: (604)  822-2403 
Web site:  http://caris.mech.ubc.ca 

 

Gesture Survey Consent Form 
 
Project Title:  Exploring the Effect of Robotic Articulated Hands in Task Based Gestures in 
Human-robot Interaction 
Principal Investigator:  Dr. Elizabeth Croft (604) 822-6614, ecroft@mech.ubc.ca 
Research assistant and contact person: Sara Sheikholeslami (604) 822 3147, 
sara_sheikholeslami@yahoo.ca 
Funding:  This research is funded by the Collaborative, Human-focused, Assistive Robotics 
for Manufacturing. 
 
Purpose: 
The purpose of this project is to evaluate hand and arm gestures as a communication 
medium in human-robot interaction. The ultimate goal of our research is to explore whether 
human-like gestures expressed using a poseable robot hand are better recognized by 
humans than those expressed with a non-poseable robot hand. Results from this study will 
help determine how robots can better communicate with humans using hand gestures.  

Procedures:  
The study is being conducted via an online survey. It consists of short videos of people 
assembling a car door with different parts to be placed/rearranged on the car door. You will 
be asked to answer short questions about each of the videos. The survey should take no 
longer than 15 minutes to complete.  

This project is part of an ongoing research in human-robot interaction which will be 
published in peer reviewed journals and conferences. You will not be compensated for your 
participation. 
 
Potential Risks:  None. 

Confidentiality: This online survey is hosted by the UBC subscribed Enterprise Feedback 
Management tool (EFM).  Enterprise Feedback Management (EFM) is a Canadian-hosted 
survey solution complying with the BC Freedom of Information and Protection of Privacy 
Act. All data is stored and backed up in Canada (Sydney BC).  No identifying information 

(Figure continued on next page)
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Last revised: July 31, 2013 Gesture Survey Consent Form.docx  

 
 

about your computer will be collected. 
 
This consent form is the first page of the survey. You are required to give your consent by 
pressing the “consent to participate” button below in order to participate in the study.  If 
you do not wish to participate, simply press the “no thank you” button below and you will be 
redirected out of the survey form. 
 
If you have any concerns about your treatment or rights as a research subject, you may 
telephone the Research Subject Information Line in the UBC Office of Research Services at 
the University of British Columbia, at (604) 822-8598.  
 

Revision 01 

 
Consent: By pressing this button, you consent to 
participate in this study, and acknowledge you have 
reviewed this consent form. Continue to survey.    

No thank you, I do not 
wish to participate in the 
survey.   

 

Figure B.1: Screen capture of the consent form used for the human-human
interaction online surveys conducted in Study 2 (Chapter 3, Section 3.2).
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Re: [Call for Volunteers] Robot becoming good teammates – A Human-Robot Interaction Study 
 
The CARIS lab is conducting a fascinating online survey in human-robot interaction to understand 
human robot relations better. With the rapid advancements and innovations in the realm of robotic 
technology, soon there will be robot assistants capable of supporting humans in their daily tasks. 
However, this requires effective and reliable human-robot communication. 
 
We aim to use non-verbal robot gestures that enable smooth flow of interaction between humans and 
robots. The primary criterion in selecting these gestures is their intuitiveness. We would like to invite 
you to participate in our fun human-human collaboration online survey. It will take no more than 15 
minutes of your time, and you will be asked to watch and comment on short videos of two people 
working together on a vehicle door assembly task. 
 
With your help, we will be able to design robots capable of having natural interaction with their 
human teammates in the near future. 
 
Visit http://bit.ly/caris_study to take the survey. You will be required to complete an online consent form 
in order to begin the survey. For information/concerns regarding the survey please contact: 
 
Sara Sheikholeslami  
 
Or visit: 
http://bit.ly/caris_study 
 
Thank you very much for your help. 
 
Sara Sheikholeslami, Undergrad Researcher, UBC Mechanical Engineering 	
  
AJung Moon, Ph.D. Student, UBC Mechanical Engineering   
Elizabeth Croft, Professor, UBC Mechanical Engineering  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Last Revised:  August 1, 2013 Call for Volunteers HH Interaction 

Figure B.2: Contents of the online advertisement used to recruit participants
for Study 2. The study was advertised on the CARIS Laboratory website.
Links to this advertisement was distributed via other online media tools,
including twitter and facebook.

90



B.1. Study 2 Advertisements, Online Surveys, and Consent Forms

 

T
he H

um
an-R

obot E
xperim

ent @
C

A
R

IS
 L

ab 
IC

IC
S

 x527 
sarash.ubc@

gm
ail.com

 
http://bit.ly/caris_study 

604-822-3147 
 

T
he H

um
an-R

obot E
xperim

ent @
C

A
R

IS
 L

ab 
IC

IC
S

 x527 
sarash.ubc@

gm
ail.com

 
 

http://bit.ly/caris_study 
604-822-3147 
 

T
he H

um
an-R

obot E
xperim

ent @
C

A
R

IS
 L

ab 
IC

IC
S

 x527 
sarash.ubc@

gm
ail.com

 
 

http://bit.ly/caris_study 
604-822-3147 
 

T
he H

um
an-R

obot E
xperim

ent @
C

A
R

IS
 L

ab 
IC

IC
S

 x527 
sarash.ubc@

gm
ail.com

 
 

http://bit.ly/caris_study 
604-822-3147 
 

T
he H

um
an-R

obot E
xperim

ent @
C

A
R

IS
 L

ab 
IC

IC
S

 x527 
sarash.ubc@

gm
ail.com

 
 

http://bit.ly/caris_study 
604-822-3147 
 

T
he H

um
an-R

obot E
xperim

ent @
C

A
R

IS
 L

ab 
IC

IC
S

 x527 
sarash.ubc@

gm
ail.com

 
 

http://bit.ly/caris_study 
604-822-3147 
 

T
he H

um
an-R

obot E
xperim

ent @
C

A
R

IS
 L

ab 
IC

IC
S

 x527 
sarash.ubc@

gm
ail.com

 
 

http://bit.ly/caris_study 
604-822-3147 
 

T
he H

um
an-R

obot E
xperim

ent @
C

A
R

IS
 L

ab 
IC

IC
S

 x527 
sarash.ubc@

gm
ail.com

 
 

http://bit.ly/caris_study 
604-822-3147 
 

T
he H

um
an-R

obot E
xperim

ent @
C

A
R

IS
 L

ab 
IC

IC
S

 x527 
sarash.ubc@

gm
ail.com

 
http://bit.ly/caris_study 

604-822-3147 
 

T
he H

um
an-R

obot E
xperim

ent @
C

A
R

IS
 L

ab 
IC

IC
S

 x527 
sarash.ubc@

gm
ail.com

 
http://bit.ly/caris_study 

604-822-3147 
 

 

 

Wishing to have robot partners?  

Participate in our online survey 

today! 
 

 
 
 
 
 

 

The UBC CARIS Lab is looking for 
volunteers to participate in a fun 
human-human collaboration online 
survey. (About 15 minutes). 
 
 
You will be asked to watch and comment on short videos of two people working 
together on a vehicle door assembly task. With your help, we will be able to 
design robots that can better communicate with their human teammates in the near 
future.  
 
Visit http://bit.ly/caris_study to read the instructions and watch the videos, OR 
Contact Sara at sarash.ubc@gmail.com to participate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Last revised: August 6, 2013 Call for Volunteers ICRA HHI tear.doc Page 1 of 1 

 

 

 

Come help me be 

a good teammate! 

 

Figure B.3: Contents of the paper advertisement used to recruit participants
for Study 2. The advertisement was distributed to university students.
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Figure B.4: An example of one of the 14 pages of the Study 2 online survey.
All pages of the survey contained the same questions in the same order;
however, the video content of each page was randomly selected.
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B.2 Study 3 Advertisements, Online Surveys, and
Consent Forms

In Study 3, two versions of the same online survey was used, each containing a
different pseudo-random order of video-clips, each of a person exhibiting one
of the identified hand gestures in Study 1 to direct a worker in an assembly
task analogous to Study 1 (Chapter 3, Section 3.1). All versions of the survey
used a single consent form. This consent form is presented in Figure B.5.
The study was advertised via online media tools including twitter, facebook,
and the Collaborative Advanced Robotics and Intelligent Systems (CARIS)
Laboratory website and distribution of advertisements to university students.
The advertised material is presented in Figure B.6 and Figure B.7.

Each survey contained 14 pages, each page containing a video and the
same three survey questions discussed in Study 3 (Chapter 3, Section 3.2).
A sample page is shown in Figure B.8.
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Last  revised:  June  25,  2014  Gesture  Survey  Consent  
Form.docx  

 

Gesture Survey 
 

Thank you for volunteering to participate in the survey. 
 
 
 
 
 
 
 

The University of British Columbia 
Collaborative Advanced Robotics  and Intelligent Systems ( CARIS) Laboratory 
Department of Mechanical Engineering, UBC 
6250 Applied Science Lane, Vancouver, BC V6T 1Z4 
Tel:  (604) 822-3147 Fax: (604) 822-2403 
Web site: http://caris.mech.ubc.ca 

 
 
 

Gesture Survey Consent Form 
 
Project Title: Exploring the Effect of Robotic Articulated Hands in Task Based Gestures in 
Human-robot Interaction 
Principal Investigator: Dr. Elizabeth Croft  
Research assistant and contact person: Alex Reddy  
 
Funding: This research is funded by the Collaborative, Human-focused, Assistive Robotics 
for Manufacturing. 

 
Purpose: 
The purpose of this project is to evaluate hand and arm gestures as a communication 
medium in human-robot interaction. The ultimate goal of our research is to explore whether 
human-like gestures expressed using a poseable robot hand are better recognized by 
humans than those expressed with a non-poseable robot hand. Results from this study will 
help determine how robots can better communicate with humans using hand gestures. 

 
Procedures: 
The study is being conducted via an online survey. It consists of short videos of a robot 
hand using communicative gestures to give instructions to a person to assemble a car door 
with different parts to be placed/rearranged on the car door. You will be asked to answer 
short questions about each of the videos. The survey should take no longer than 15 
minutes to complete. 

 
This project is part of an ongoing research in human-robot interaction which will be 
published in peer reviewed journals and conferences. You will not be compensated for your 
participation. 

 
Potential Risks: None. 

 
Confidentiality: This online survey is hosted by the UBC subscribed Enterprise Feedback 
Management tool (EFM). Enterprise Feedback Management (EFM) is a Canadian-hosted 
survey solution complying with the BC Freedom of Information and Protection of Privacy 
Act. All data is stored and backed up in Canada (Sydney BC). No identifying information

(Figure continued on next page)
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Last  revised:  June  25,  2014  Gesture  Survey  Consent  
Form.docx  

 

about your computer will be collected. 
 
This consent form is the first page of the survey. You are required to give your consent by 
pressing the “consent to participate” button below in order to participate in the study. If you 
do not wish to participate, simply press the “no thank you” button below and you will be 
redirected out of the survey form. 

 
If you have any concerns about your treatment or rights as a research subject, you may 
telephone the Research Subject Information Line in the UBC Office of Research Services at 
the University of British Columbia, at (604) 822-8598. 

 
Revision 02 

 

Consent: By pressing this button, you consent to  
participate in this study, and acknowledge you have 

reviewed this consent form. Continue to survey. 

 
 

No thank you, I do not 

 wish to participate in the 
survey. 

Figure B.5: Screen capture of the consent form used for the human-robot
interaction online surveys conducted in Study 3 (Chapter 3, Section 3.3.
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Re: [Call for Volunteers] Robot becoming good teammates – A Human-Robot Interaction Study 
	
  
The CARIS lab is conducting a fascinating online survey in human-robot interaction to understand 
human robot relations better. With the rapid advancements and innovations in the realm of robotic 
technology, soon there will be robot assistants capable of supporting humans in their daily tasks. 
However, this requires effective and reliable human-robot communication. 
	
  
We aim to use non-verbal robot gestures that enable smooth flow of interaction between humans and 
robots. The primary criterion in selecting these gestures is their intuitiveness.  We would like to invite 
you to participate in our fun human-robot collaboration online survey. It will take no more than 15 
minutes of your time, and you will be asked to watch and comment on short videos of a human and a 
robot arm working together on a vehicle door assembly task. 
	
  
With your help, we will be able to design robots capable of having natural interaction with their human 
teammates in the near future. 
	
  
Visit http://bit.ly/caris_study to take the survey. You will be required to complete an online consent form 
in order to begin the survey. For information/concerns regarding the survey please contact: 
	
  
Alex Reddy  
	
  
Or visit: 
http://bit.ly/caris_study 

	
  

Thank you very much for your help. 
	
  
Alex Reddy, Undergrad Researcher, UBC Mechanical Engineering  
Sara Sheikholeslami, MASc. Studet, UBC Mechanical Engineering  
AJung Moon, Ph.D. Student, UBC Mechanical Engineering  
Elizabeth Croft, Professor, UBC Mechanical Engineering  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Last Revised:  June 25, 2014 Call for Volunteers HR Interaction rev2.doc 

Figure B.6: Contents of the online advertisement used to recruit participants
for Study 3. The study was advertised on the CARIS Laboratory website.
Links to this advertisement was distributed via other online media tools,
including twitter and facebook.

96



B.2. Study 3 Advertisements, Online Surveys, and Consent Forms

The H
um

an-R
obot Experim

ent @
C

A
R

IS Lab 
IC

IC
S x527 

alexjreddy123@
gm

ail.com
 http://bit.ly/caris_study 
604-822-3147 

The H
um

an-R
obot Experim

ent @
C

A
R

IS Lab 
IC

IC
S x527 

http://bit.ly/caris_study 

The H
um

an-R
obot Experim

ent @
C

A
R

IS Lab 
IC

IC
S x527 

http://bit.ly/caris_study 

The H
um

an-R
obot Experim

ent @
C

A
R

IS Lab 
IC

IC
S x527 

http://bit.ly/caris_study 

The H
um

an-R
obot Experim

ent @
C

A
R

IS Lab 
IC

IC
S x527 

http://bit.ly/caris_study 

The H
um

an-R
obot Experim

ent @
C

A
R

IS Lab 
IC

IC
S x527 

http://bit.ly/caris_study 

The H
um

an-R
obot Experim

ent @
C

A
R

IS Lab 
IC

IC
S x527 

http://bit.ly/caris_study 

The H
um

an-R
obot Experim

ent @
C

A
R

IS Lab 
IC

IC
S x527 

http://bit.ly/caris_study 

The H
um

an-R
obot Experim

ent @
C

A
R

IS Lab 
IC

IC
S x527 

http://bit.ly/caris_study 

The H
um

an-R
obot Experim

ent @
C

A
R

IS Lab 
IC

IC
S x527 

http://bit.ly/caris_study 

 
 

Wishing  to  have  robot  partners?  
Participate  in  our  online  survey  

today!  
 
 

Come help me be 
a good teammate! 

 
 
 

The UBC CARIS Lab is looking for 
volunteers to participate in a fun 
human-robot collaboration online 
survey. (About 15 minutes). 

 
 
 
 

You will be asked to watch and comment on short videos of a human and a robot 
hand working together on a vehicle door assembly task. With your help, we 
will be able to design robots that can better communicate with their human 
teammates in the near future. 

 
 

Visit http://bit.ly/caris_study to read the instructions and watch the videos, OR 
Contact Alex at                                     to participate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Last  revised:  July  1,  2014                       Call  for  Volunteers  HRI  tear.doc                                                                                                      Page  1  of  1  

Figure B.7: Contents of the paper advertisement used to recruit participants
for Study 3. The advertisement was distributed to university students.
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B.2. Study 3 Advertisements, Online Surveys, and Consent Forms

Figure B.8: An example of one of the 14 pages of the Study 3 online survey.
All pages of the survey contained the same questions in the same order;
however, the video content of each page was randomly selected.
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Appendix C

Participants’ confidence in
recognizing human gestures
compared to robot expressions
of the same gestures

The following section provides the results of participant confidence in recog-
nizing human gestures compared to robot expressions of the same gesture.
While this analysis is beyond the scope and the objectives of this thesis, we
added this section for completeness.

Independent sample t-tests were applied to measures of Recognition Con-
fidence across the robot and human expressions of each hand configuration
for all gestures (Table C.1, and Figures C.1 for the Directional Gestures,
C.2 for theOrientational Gestures, C.3 for theManipulation Gestures,
and C.4 for the Feedback Gestures).

Most of the gestures were interpreted with higher Recognition Rates when
performed by a person rather than when performed by the robot. The ex-
ceptions to these results are:

1. Finger-Pointing (FP) configuration of the Right Directional Gesture
(t(43.99) = 1.97, p = 0.06) (Figure C.1),

2. both FP and Half Open-Hand (HOH) configurations of the 180◦ Orien-
tational Gesture (t(57) = −0.03, p = 0.98 and t(74) = 0.40, p = 0.69,
respectively) (Figure C.2), and

3. both FP and Open-Hand (OH) configurations of the Install Manip-
ulation Gesture (t(36) = 0.14, p = 0.89 and t(62) = 0.36, p = 0.72,
respectively) (Figure C.3),

though the differences were not statistically significant.
Gestures that are recognized significantly more accurately when per-

formed by a person rather than when performed by the robot include:
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Appendix C. Participants’ confidence in recognizing human gestures compared to robot expressions of the same gestures

1. both FP and OH configurations of the Up Directional Gesture (t(50) =
−3.36, p < 0.01 and t(65) = −2.04, p < 0.05, respectively),

2. FP configuration of the 90◦ Orientational Gesture (t(65) = −2.91,
p < 0.01),

3. both OH and HOH configurations of the Remove Manipulation Ges-
ture (t(62) = −4.21, p < 0.001 and t(63) = −5.02, p < 0.001, respec-
tively),

4. OH configuration of the PickUp Manipulation Gesture (t(116) =
−2.00, p < 0.05),

5. V-Sign (VS) configuration of the Swap Manipulation Gesture (t(34) =
−3.12, p < 0.01),

6. Thumbs-Up (TU) configuration of the Confirm Feedback Gesture
(t(116) = −11.17, p < 0.001), and

7. both FP and OH configurations of the Stop Feedback Gesture (t(66) =
−2.43, p < 0.05 and t(66.21) = −2.21, p < 0.05, respectively).

100



Appendix C. Participants’ confidence in recognizing human gestures compared to robot expressions of the same gestures

Table C.1: Measures of independent samples t-test on the to measures of
Recognition Confidence across the robot and human expressions of each hand
configuration for all gestures. Note that FP configuration of Right Direc-
tional Gesture and OH configuration of Stop Feedback Gesture failed the
assumption of equality of variances, and therefore, the reported results for
these two gestures do not assume equal variances.

Directional Gestures, GD

Gesture, g ∈ GD Hand Poses t p

Up
FP t(50) = −3.36 < 0.01
OH t(65) = −2.04 < 0.05

Down
FP t(54) = −1.22 0.23
OH t(60) = −0.27 0.78

Left
FP t(34) = −0.60 0.55
OH t(41) = −1.57 0.12

Right
FP t(43.99) = 1.97 0.06
OH t(42) = −1.86 0.07

Orientational Gestures, GO

Gesture, g ∈ GO Hand Poses t p
< 45◦ HOH t(115) = −1.50 0.14

90◦ FP t(65) = −2.91 < 0.01
HOH t(71) = −0.42 0.67

180◦ FP t(57) = −0.03 0.98
HOH t(74) = 0.40 0.69

Manipulative Gestures, GM

Gesture, g ∈ GM Hand Poses t p

Install
FP t(36) = 0.14 0.89
OH t(62) = 0.36 0.72

Remove
OH t(62) = −4.21 < 0.00
HOH t(63) = −5.02 < 0.00

PickUp OH t(116) = −2.00 < 0.05
Place FP t(118) = −1.31 0.19

Swap
FP t(40) = −0.71 0.48
VS t(34) = −3.12 < 0.01

Feedback Gestures, GF

Gesture, g ∈ GF Hand Poses t p
Confirm TU t(116) = −11.17 < 0.00

Stop
FP t(66) = −2.43 < 0.05
OH t(66.21) = −2.21 < 0.05
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Appendix C. Participants’ confidence in recognizing human gestures compared to robot expressions of the same gestures

Figure C.1: Measures of Recognition Confidence across the robot and human
expressions of each hand configuration for Directional Gestures, GD.

Figure C.2: Measures of Recognition Confidence across the robot and human
expressions of each hand configuration for Orientational Gestures, GO.
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Appendix C. Participants’ confidence in recognizing human gestures compared to robot expressions of the same gestures

Figure C.3: Measures of Recognition Confidence across the robot and human
expressions of each hand configuration for Manipulation Gestures, GM .

Figure C.4: Measures of Recognition Confidence across the robot and human
expressions of each hand configuration for Feedback Gestures, GF .
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