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Abstract

In recent years, extreme events, such as hurricanes, earthquakes, floods and
fires, occur more frequently and at a higher intensity. The growing com-
plexity and interdependence of modern infrastructure systems makes them
vulnerable to such events. Emergency response is the process of implement-
ing appropriate actions to reduce human and economic losses following these
events. Efficient response requires an understanding of the existing infras-
tructure systems and their interdependencies. In this thesis, we propose a
decision support system for helping emergency responders in making efficient
decisions during extreme events. Fires are chosen as an example of the ex-
treme events and firefighting operations as the emergency response to these
events. Everyday, fire managers are faced with making increasingly complex
manpower decisions; trying to minimize costs and risk levels. The effective-
ness of firefighting operations is crucial in minimizing both cost of suppres-
sion and economic losses. The contributions of this thesis focus on two
levels of fire management plans: operational and strategic. We first develop
a methodology to optimize the allocation process of firefighting resources in
multiple-fire incidents. The developed methodology employs reinforcement
learning, a machine learning algorithm that optimizes the allocation of fire-
fighting units to minimize the total economic losses in the long run. To
consider the concept of infrastructure interdependencies in evaluating the
economic impact of the incidents, we model a large petrochemical complex
using the Infrastructure Interdependency Simulator (i2Sim). In addition,
a capacity planning methodology is developed to investigate the impact of
manpower investment on the effectiveness of firefighting operations. The
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developed methodology aims at finding the optimal number of firefighters
to be recruited to contain fires and effectively extinguish them. It performs
an economic analysis to evaluate the efficiency fire management plans. Fi-
nally, we propose a methodology to evaluate the effectiveness of emergency
response plans in improving infrastructure resilience. This methodology fo-
cuses on two dimensions of resilience: resourcefulness and rapidity. These
dimensions are measured by the optimality of allocating firefighting units
and by minimizing economic losses. The proposed methodologies are tested
using a case study of a large petrochemical complex and promising results
are achieved.
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Chapter 1

Introduction

1.1 Motivation

In recent years, extreme events, such as hurricanes, earthquakes, floods and

fires, occur more frequently and at a higher intensity. The growing complex-

ity and interdependence of modern infrastructure systems, such as water,

electrical power and transportation, makes them vulnerable to such events.

Emergency response is the process of implementing appropriate actions to

help reduce human and economic losses following these events. During emer-

gency response, crucial decisions are taken among various organizations and

at different levels. Efficient response requires an understanding of the ex-

isting infrastructure systems and their interdependencies. In this thesis, we

propose a decision support system for helping emergency responders in mak-

ing efficient decisions during extreme events. Fires are chosen as an example

of the extreme events and fire fighting operations as the emergency response

to these events.
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Fires are very expensive to fight and may result in devastating human,

economic and environmental effects. Everyday, fire managers are faced with

making increasingly complex manpower decisions; trying to minimize costs

and risk levels. Figure 1.1 shows the total number of fires and the cost

of suppression for the period 1985-2014 as reported by the United States

National Interagency Fire Center (NIFC) [5]. Although the number of fires

has not changed so much over the last decade, the cost of fire suppression has

increased by 33.8 percent. In 2014, the cost of suppression was estimated

at more than $1.5 US billion [5]. Also, the estimated direct economic losses

in 2014, due to fires, was $11.6 US billion. These estimated losses do not

include indirect losses, such as business interruption [6]. The effectiveness of

firefighting operations is crucial in minimizing both cost of suppression and

economic losses. Therefore, there is a need to develop a Fire Management

Decision Support System (FMDSS) for fire managers to suppress fires in a

cost effective way.

One of the critical decisions facing fire mangers is how to assign firefight-

ing units to respond to multiple simultaneous fire incidents. The typical re-

sponse to a single fire incident is not always the best response to multiple fire

incidents, and the latter can be improved upon [7]. This type of special as-

signment requires deep understanding of the existing infrastructure systems

and their interdependencies. Current technologies can help build a decision

support system capable of planning better responses during multiple fire

incidents that affect critical facilities.

According to the National Fire Prevention Association (NFPA), the

number of assigned firefighting units to respond to a fire incident should

2



Figure 1.1: Total number of fires and the cost of suppression the
United States for the period 1985-2014.

be determined by either risk analysis, pre-fire planning or both [8]. Typi-

cally, experts make resource allocation decisions based on their experience

and available information about the incident. The size of the fire is usually

the major factor in assigning the number of units. Other important factors

such as economic impact or criticality of the site are not taken into account

by traditional decision-making procedures. Better responses are required in

the form of allocating an optimum number of firefighting units to minimize

the economic losses.

Identifying potential economic consequences of fires is crucial in the

decision-making process. Decision support systems based on economic mod-

els can help not only determine the most efficient allocation of limited re-

sources, but also with strategic fire management planning and budget re-

quest justification. The evaluation of economic consequences requires a deep
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understanding of the infrastructure systems’ behavior during fires. As in-

frastructure systems do not exist in isolation from one another, an incident

in one system may result in disruption to the functionality of other critical

infrastructure systems. As a result, the indirect losses far exceed the direct

property losses [9]. The evaluation of economic impact due to fires requires

methodologies that address the performance of infrastructure systems (e.g.,

the transportation system) and also the interdependencies between them

(e.g., the effect of electricity on communication). The proposed work uti-

lizes the concept of the infrastructure interdependencies in evaluating the

economic impact of the incidents.

This research project supports two levels of fire management plans: op-

erational and strategic. The operational level involves daily decisions about

allocating and scheduling firefighting resources to fire locations (e.g., the

number of firefighters assigned to a fire). The strategic level of planning in-

cludes medium to long term time horizons such as the evaluation of potential

benefits and consequences of alternative management plans (e.g., increasing

the number of firefighters). The proposed work in this thesis can be used

before an accident for training and planning, during an accident for decision

support, or after an accident for evaluating suppression strategies. The work

is also applicable for wildfires.

Recent incidents have highlighted the limitations of existing response

systems such as a lack of situational awareness and effective coordination be-

tween emergency response departments (e.g., fire, police) [10]. Increasingly

the emphasis has shifted from protection and prevention towards prepared-

ness and response [11]. This shift is realized by the concept of resilience. The
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effectiveness of the emergency preparedness and response plan has a high

impact on infrastructure resilience. In this thesis, we study the resilience of

infrastructure systems as affected by fire incidents. We propose a method-

ology to evaluate the impact of resources allocation decisions during fire

incidents in improving infrastructure resilience. This methodology can be

used for any type of hazards. It can also be used for other resource allocation

problems in any interdependent environment such as telecommunications,

transportation, electric power grids and water supply systems.

In the following, a literature review is provided on different topics covered

in this thesis.

1.2 Literature Review

1.2.1 Emergency Response

The concept of emergency management has received considerable atten-

tion in recent years. In the literature, it is common to define four phases

of emergency management: mitigation, preparedness, response and recov-

ery [12], [13], [14]. Figure 1.2 shows the four phases of emergency manage-

ment.

The mitigation phase involves the policies and measures that are taken

to reduce the probability of emergency situations or reduce the negative

impact of unavoidable situations. The preparedness phase includes all plan-

ning and training activities designed to minimize losses when an emergency

occurs. The response phase includes efforts that are taken immediately af-

ter a disaster strikes, such as saving lives and fighting fires. The recovery

5



phase involves all the operations to return life to normal and to restore basic

services [14].

Figure 1.2: Emergency Management Phases.

Even though all phases are overlapping, the focus of this thesis is on

the response phase. Whenever an emergency situation occurs, effective and

efficient emergency response can be deeply influenced by efficient alloca-

tion of the available resources. In this respect, many researchers have fo-

cused on developing approaches dealing with allocation and deployment of

emergency resources [15], [16]. Fiedrich et. al. [15] proposed a dynamic

optimization model for allocating emergency resources to operational areas

after an earthquake. The objective of the model is to minimize the total

number of fatalities during the Search-and-Rescue period. Similarly, math-

ematical programming models are proposed for allocating and scheduling

rescue units by Wex et. al. [17] and Schryen et. al. [18]. Barbarosoglu

et. al. [19] developed a hierarchical multi-criteria methodology for assigning

helicopters’ tasks during a disaster relief operation. The focus of this work

was to minimize the operational cost. Emergency response during multiple

hazard events have been also addressed in several recent publications Dillon

et. al. [20], Li et. al. [21] and Abkowitz et. al. [22]. Most of the decision

6



making process in these studies is based on risk prioritization.

The context of this thesis is emergency response during fire incidents

in which FMDSS are used. Fire management systems can be defined as

the set of processes and practices used to minimize the negative impacts

of fires. Several review articles have explored the most recent studies in

the development and use of FMDSS (e.g., Martell (2015) [23], Duff et. al.

(2015) [24], Pacheco (2015) [25] and Mavsar et. al.(2013) [26]). Most of

the reviewed systems do not take economic efficiency of fire activities into

consideration. Effective fire management systems should be able to evaluate

the cost and the damage for fire operations.

1.2.2 Resources Allocation in Firefighting Operations

The key challenge in firefighting operations during large incidents is how

to efficiently utilize the available resources to reduce the impact of the fire.

In the past decades, researchers have addressed this challenge by designing

FMDSS to model fire behavior, dispatch decisions, impact assessment and

processes optimization, e.g., LANIK [27], DEDICS [28] and WFDSS [29].

However, most of the existing work focuses on wildfires and lacks the ca-

pability of producing artificial intelligent (AI) decisions for allocating avail-

able resources [30]–[31]. A number of models have been developed for fire

behavior prediction, such as BEHAVE [32], FARSITE [33], HFire [34] and

Prometheus [35]. These models only focus on fire behavior simulation, using

heat and smoke sources [36]. Generally, optimization of firefighting resources

and simulation of firefighting operations are developed separately without

integration into a unifying framework [37]. Such integration is proposed in
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this thesis.

There is also some research available considering models for fire simu-

lations and firfighting resources allocation [38], [39], [40] and [41]. While

these models provide considerable insight into the interaction between fire

dynamics and resources allocation, they are limited to specific types of fires

(wildfires) and cannot be extended to fires in interdependent infrastruc-

ture systems. Also, they do not capture the effect of emergency responders

decisions on economic losses during the response efforts. The concept of

infrastructure systems resilience can assist emergency responders in allocat-

ing the optimal number of firefighting units during single or multiple fire

incidents in order to minimize both direct and indirect losses and the time

required to return to normal operation.

Most of the existing fire decision models focus on initial assignment of

the resources without dynamically changing the assigned amounts [42]. In

our work, assignment decisions are made dynamically and associated with

the final expected losses. This representation considers the long-term con-

sequences of fire incidents.

In recent literature, simulation and optimization models have been in-

tegrated for dispatching decisions in firefighting operations. A simulation-

based model using stochastic processes and queuing theory was developed

in Petrovic, Alderson and Carlson [41] to represent wildfire dynamics and

allocate limited resources during suppression. These models have been used

to evaluate the allocation of firefighter resources and evaluate the dispatch-

ing rules [43]. Integrated fire behavior simulation and optimization to al-

locate firefighting resources has also been addressed in [39], [38] and [40].
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Agent-based discrete event simulation models were developed by Hu and

Ntaimo [37] to simulate fire suppression based on dispatch plans using a

stochastic optimization model. Lee et. al. [44] developed a model that com-

bines an optimization model with a stochastic simulation model to assign

the number of resources by type that must arrive at the fire within a spec-

ified time limit and budget. An intelligent resource allocation system to

minimize the damage due to wildfire was introduced by Homchaudhuri [45],

who used a genetic algorithm optimization to determines the location of the

firefighting crews. However, this system and the other wildfire FMDSSs are

limited to this particular fire type and cannot be extended to interdependent

infrastructure systems.

1.2.3 Fire Strategic Planning

Fire managers are faced with two types of decisions: strategic and opera-

tional (tactical). The strategic decisions involves making long term plan-

ning on budget allocation and the deployment or relocation of firefighting

resources before fires occur. A number of strategic fire management systems

have been developed in different countries and throughout the years. Ex-

amples of these systems are LEOPARDS [46], KITRAL [47], SINAMI [48]

and FPA [49].

The Level of Protection Analysis System (LEOPARDS) [46] is a Cana-

dian model developed in 1995. The model focuses on strategic fire man-

agement planning at a regional level. It uses historical data, such as fire

weather, fire incidence data, operational rules and infrastructure informa-

tion, to evaluate the fire pre-suppression and suppression activities under
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budget constraints.

In 1996, the University of Chile and the Chilean Forest Service intro-

duced a fire management tool called KITRAL ("fire" in indigenous Chilean

language) [47]. The objective of KITRAL is to improve the efficiency of

forest fire management at the national level. It evaluates different fire man-

agement plans at both strategic and operation levels. Based on fire behavior

simulation, it provides an optimal deployment of firefighting resources. Also,

it evaluates different strategic deployment plans by simulating future fires

and choosing the most effective plan. The LEOPARDS and KITRAL models

have the same limitation in that they do not consider the potential damage

to goods and services caused by fires [26].

SINAMI is another strategic fire management planning tool developed

in Spain. This model uses the historical data of the last 10-years to an-

alyze the relation among different budget levels and potential losses. An

economic analysis is used to determine the most efficient fire management

programs and budget [48]. This analysis considers the management costs

(pre-suppression and suppression costs) and the net value change of an array

of limited number of goods and services.

In 2006, the U.S. Department of Agriculture (USDA) Forest Service and

the US Department of Interior developed the Fire Protection Association

(FPA) system to evaluate the effectiveness of alternative fire management

programs [49]. It uses cost-effective analysis to find the optimal allocation

of pre-suppression resources, including numbers, types and locations of fire

stations. A goal programming model is used to decide the effectiveness of

alternative fire programs. The FPA model does not involve any theoretical
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economic foundation in their analysis [26].

Among the above FMDSSs, SINAMI model performs an economic analy-

sis based on the Cost-Plus-Net-Value Change (C+NVC) concept to evaluate

the efficiency fire management programs [26]. The C+NVC concept eval-

uates the fire operation costs and the related damage caused by fires. In

this thesis, the C+NVC concept is incorporated within the decision support

system.

Although earlier efforts have focused on strategic planning, economic

efficiency analysis is also important for operational decisions and activi-

ties [50]. Operational decisions (tactical decisions) are crucial for any fire

management system and its goal is to provide optimal decisions in order to

minimize the resulted damage by fighting fires in efficient ways. Operational

planning, such as evaluating alternative fire suppression strategies, has been

the focus of several recent research projects and papers. However, few re-

cent studies attempted to include economic tools in the design of efficient

fire management strategies such as Ntaimo et. al. [51, 52] and Arrubla et.

al. [53]. Mendes [54] stated that there is a clear need to incorporate eco-

nomic analysis in this area. In this thesis, we use economic analysis to help

fire managers to determine appropriate responses during daily operations.

1.3 Problem Statement and Research Objectives

Emergence response during fire incidents is a challenging problem. When

economic efficiency is considered, infrastructure interdependence makes this

problem more complex. An ineffective response can greatly impact the

resilience of the disrupted infrastructure. There is a need to incorporate
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economic efficiency into the decision making process, primarily during fire

suppression planning, capacity planning and to help improve infrastructure

resilience. Within this context, the following objectives are set for this re-

search project:

1. To formulate the fire management plans in the context of infrastructure

interdependencies.

2. To develop a resource allocation and dynamic scheduling algorithm for

emergency response during multiple fire incidents.

3. To develop an economic efficiency model and incorporate it within the

decision-making process.

4. To develop a methodology for evaluating the impact of resource allo-

cation decisions on infrastructure resilience.

5. To formulate the fire management problem as an optimization problem

and provide a solution algorithm for this problem.

6. To study the impact of human factors during fire incidents for improv-

ing the overall efficiency.

1.4 Thesis Contributions

The main contributions of this thesis are summarized as follows:

1. Development and implementation of a resource allocation and dynamic

scheduling algorithm for emergency response during multiple fire inci-

dents.
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2. Introduction of a methodology for evaluating the impact of infrastruc-

ture interdependencies on firefighting operations.

3. Evaluation of the impact of resources allocation decisions during fire

incidents on infrastructure resilience.

4. Development of an economic efficiency model to evaluate direct and

indirect losses during emergency responses.

5. Development of a planning model for capacity investment in firefight-

ing resources.

1.5 Thesis Organization

This thesis is organized as follows:

Chapter 1 introduces the main focus of the thesis and discusses the

motivation for the research project and its objectives.

Chapter 2 describes the developed system and provides a detailed case

study of multiple fire incidents in a large petrochemical complex.

Chapter 3 applies the developed system to allocate resources to mini-

mize economic losses resulting from fires. Linear and none-linear damage

functions are considered. Finally, the human performance factor is discussed

and evaluated.

Chapter 4 provides a description of the capacity planning problem in

a fire department. The concept of C+NVC is presented. This concept is

incorporated within the developed system to determine the most efficient

fire management plans.
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Chapter 5 describes the resilience of infrastructure systems under fire

incidents. The developed system is used to evaluate the impact of resources

allocation decisions during fire incidents for improving infrastructure re-

silience.

Chapter 6 summarizes the contributions of this thesis and makes recom-

mendations for future studies.
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Chapter 2

System Development

2.1 Introduction

This chapter presents the development of a fire management decision sup-

port system for assisting fire managers in making efficient decisions. This

system relates suppression operation costs to the reduction in expected dam-

ages. It is assumed that the goal of fire managers is to minimize the total

cost which consists of the fire operational costs and the net damage. The

main functions of the proposed system are: (a) resources allocation opti-

mization: this includes damage and economic impact analysis, optimization

of resources allocation and scheduling decisions during fire incidents, (b)

manpower capacity planning: this includes making decisions on planning

of manpower management over long-term planning and evaluating the cost

and consequences of alternative plans, and (c) improving resilience of inter-

dependent infrastructure systems: this includes the evaluation of resilience

of infrastructure systems and making effective decisions to strengthen re-
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Figure 2.1: Overall architecture of the proposed FMDSS.

silience. These functions are covered separately in Chapters 3 to 5.

Figure 2.1 presents the overall architecture of the proposed fire man-

agement decision support system. It has four main components: (i) a fire

simulation model for modelling fire behavior and evaluation of fire damage,

(ii) Infrastructure Interdependencies Simulator (i2Sim) for evaluating the in-

teraction among critical infrastructure systems, (iii) an economic model for

evaluating both operational costs (pre-suppression and suppression costs)

and damage (direct and indirect losses), and (iv) an optimization agent for

minimizing the sum of management costs and net damage.

The above main components are described in sections 2.2 through 2.5.

Finally, Section 2.6 describes a case study that is used throughout this thesis

to show the effectiveness of the various functions of the developed system.
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2.2 Fire Simulation Model

This section describes the fire simulation model. The objective of this model

is to assess the damage level produced by fires. In order to evaluate the

damage, we first introduce a fire severity measure to estimate fire duration.

This measure relates the required number of firefighters to the estimated

fire suppression time. Secondly, a damage function is used to associate the

fire duration with a particular level of damage. These are described in more

detail in the following subsections.

2.2.1 Fire Severity Measure

The fire simulation model starts with a definition of the Fire Severity Mea-

sure (FSM). This measure is used to describe the severity of fire. Examples

of potential severity measures include fire duration, peak fire temperature,

fuel load, heat release rate, etc. [55], [56]. Although these measures of fire

severity are often closely related, there is no standard quantitative measure

of fire severity [57]. In this thesis, FSM is defined as the total man-hours

needed to control a fire. This number can be estimated with the help of

firefighting experts. A large FSM value means that a large number of fire-

fighters is required to suppress the fire. For a given fire, different resources

allocation decisions can be made and each decision may result in different

fire durations which in turn results in different FSM values.

Fire duration has a strong positive correlation with damage and can form

a basis for design decisions. Thus the fire damage, d(T ), can be expressed

as a function of the fire duration time T . The fire duration time can be
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calculated by:

T = FSMi∑n
j xij

(2.1)

where

FSMi is the severity measure of fire i

n is the total number of fire stations

xij is the total number of firefighters assigned to fire i from fire station

j during the suppression process.

To capture the dynamics of fire, the damage assessment table, Table 2.1,

can be used to map the fire duration time into five damage levels. These

levels are: 1) minimal damage, 2) low damage, 3) intermediate damage, 4)

high damage, and 5) excessive damage. During simulation, the expected

damage level can change over time in the increasing direction. For example,

the level of damage in a burning building can change from low damage to

intermediate, but not in the opposite direction. Also, each level of damage

is associated with the repair or reconstruction period of time, as shown in

Table 2.1. For example, if the fire suppressed and resulting level of damage

is intermediate, then the recovery time is estimated to be three months.

2.2.2 Damage Function

In general, damage functions increase with the magnitude of the extreme

event such as a flood or a fire, and eventually exhibit saturation [58]. Here,
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Color Code Level of damage Recovery time Description

Green Minimal Minimal No damage but light maintenance is
required for safety.

Blue Low 1 Month
Heavy maintenance is required and
some equipment repair services are
needed.

Yellow Intermediate 3 Months May cause minor damage and some
equipment needs replacement.

Orange High 6 Months May cause major damage requiring
short-term reconstruction.

Red Excessive 12 Months May cause significant damage and
large reconstruction effort is required.

Table 2.1: Damage assessment table.

Figure 2.2: Illustration of the damage function.

a two-piece linear damage function is assumed with this form:

d(T )lin =


T

TC
if T < TC

1 if T ≥ TC

(2.2)

where

TC is the time for the fire damage to reach 100%. This function is

illustrated in Figure 2.2.
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The assumptions in the damage functions are conservative since the level

of damage is influenced by several other factors such as wind speed and

direction and fuel type and load. The case of considering non-linear damage

curves are discussed in section 3.4.1.

2.3 i2Sim Modeling and Simulation Framework

Understanding how interconnected infrastructure systems behave when sub-

jected to external events such as fires remains a major challenge for emer-

gency responders. Also, an effective emergency response requires considera-

tion of the interactions among the multiple layers of an effective emergency

response: decision layer, damage layer, finance layer, and production layer.

In order to understand this behavior, simulations can be used to model the

interactions between these dissimilar systems.

The infrastructure interdependencies simulator (i2Sim) introduced by

Marti [3] provides a simulation framework that captures the interactions

among these systems. i2Sim has been used in modeling infrastructure sys-

tems in different emergency response applications [59], [60], [61], [60]. In

this thesis, i2Sim is selected for five main reasons: (i) the ability to choose

the global simulation objective (e.g., economic, environmental or security),

(ii) the ability to simulate and produce reasonable results even when data is

limited, (iii) the ability to simulate multiple infrastructure interdependencies

(e.g., water, power and oil), (iv) the ability to simulate the effects of resource

allocation decisions in real time, and (v) the ability to integrate other simu-

lators and assess the impacts of decisions made in one infrastructure on the

other.
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The simulator provides an environment for representing multiple inter-

dependent infrastructure systems. To capture the interactions among these

systems, i2Sim defines a common ontology based on a cell-channel approach.

The i2Sim ontology is described in the following section.

2.3.1 i2Sim Ontology

The i2Sim ontology is based on a cell-channel approach. It represents the

functionality of each cell using input-output relationships. The i2Sim com-

ponents are defined as follow:

• Cell (Production Unit): A cell is used to model system components

such as hospitals, electrical substations and water stations.

• Token (Resource): A token represents the resources that circulate through-

out the system, such as, electricity, water or gas.

• Channel (Transportation Unit): A channel carries the tokens from

one cell to another. They represent the relationships between the

system components. Examples include roads, transmission lines and

water pipes.

• Distributor (Control Unit): Distributor is a decision point where ac-

tions can be taken to allocate the resources.

• Aggregator (Control Unit): Aggregator is another decision point. It

combines two outputs of the same token into one channel.

• Physical Mode: Physical Mode (PM) represents the level of physical

damage of the cells or channels.
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• Resource Mode: Resource Mode (RM) represents the availability of in-

put resources to the cells.

• Sources: These are the producers of the external tokens. Sources repre-

sent infrastructure systems that are not included in the i2Sim model.

• Reservoirs: These are the storage elements in the i2Sim model.

• Sinks: These are the components that send internal tokens to outside the

i2Sim model.

• Modifier (Affecter): Amodifier represents the external information that

is received as input into cells, channels, distributors and aggregators.

For each cell, there is one output (product) and one or more inputs

(resources). The operating state of each cell is influenced by the availability

of the tokens (resources), the level of the PM (physical damage of the cell)

and modifiers (external information) that are received as input into the cell.

Figure2.3 shows the possible operating states of cells and channels. The PM

are discretized into five possible color-coded levels. The five color-coded

levels are red=0%, orange=25%, yellow=50%, blue=75% and green=100%.

2.3.2 i2Sim Models

The i2Sim components can be used to model multiple dissimilar infrastruc-

ture systems. Infrastructure system components are defined as cells and

the connections between them, such as transmission lines and oil pipelines,

which are defined as channels. Resources and services, such as oil, water and

22



Physical Mode

Cell

Channel

Figure 2.3: Conceptual cell and channel models [3].

power, which are defined as tokens that move between cells (i.e., through

channels). The relationship between the inputs and the output is predefined

by a function which describes the operation of the cell. This function is also

known as a lookup table or Human Readable Table (HRT). The operability

of the cells is determined by the minimum available resources. An example

of an HRT representing an Emergency Room (ER) in a hospital is shown

in Figure 2.4. In this example, the operability of the unit is 50% due to the

lack of water. At this level, the ER can treat only 10 patients per hour. In

our case study, we use the HRT function to simulate the operability of the

petrochemical plants.

The combinations of cells and channels in the i2Sim model set up a math-

ematical formulation of the relationships between infrastructure systems. A

system of discrete time equations is created, which is solved simultaneously

for all components at every time step along the timeline to find the operating

point of each production cell. [3, 62]
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Figure 2.4: An example a Human Readable Table (HRT) for an Emer-
gency Room (ER) [3].

The interaction between these systems can be captured using the i2Sim

simulation layers. Figure 2.5 shows the basic i2Sim simulation layers. The

exchange of information between these layers is performed through the mod-

ifiers. The availability of this information assists emergency responders to

evaluate feasibility or effectiveness of different response plans to reduce the

risk to life and property in the event of an emergency.

2.4 Optimization Agent

Finding optimal decisions to control the behavior of interdependent infras-

tructure systems is crucial during extreme events. In some critical situations,

the dynamics of the systems are not completely predictable and it is nec-

essary to quickly find new optimal actions as incidents evolve. Simulation

gives decision makers the opportunity to evaluate the options for action. An

optimization agent, based on Reinforcement Learning (RL), is developed to

optimize the global objective by dynamically assigning firefighting units to
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hospitals)
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(flood, earthquake, sensors)

Strategic Decisions Layer
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procedures)

ICT Layer

(data, voice, video)

Figure 2.5: i2Sim simulation layers [3].

the most critical fire. This agent is integrated with the i2Sim model and the

fire simulation model.

2.4.1 Reinforcement Learning

RL is a machine learning technique which involves learning by taking actions

in a trial-and-error manner. It consists of an agent, a finite set of states S,

a set of available actions A, and a reward function R. The agent is the

learner and the decision maker and everything it interacts with is called the

environment.

Unlike supervised learning methods such as neural networks which re-

quire training data with input and expected output, RL can learn directly

from the interaction between the agent and its environment. By interacting
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with its environment, the RL agent learns to map its current state to the

best action (state-action pair) to maximize long-term rewards [63]. A key

advantage of the RL paradigm is in its ability to deal with delayed reward

situations [64]. This makes it suitable for emergency response operations,

where rewards are often obtained a long time after the action. For example,

the impact of a fire suppression plan will not be apparent immediately, but

rather at some point in the future. RL has been applied successfully to a wide

range of problems in a variety of disciplines, including scheduling in sensor

networks [65], resource allocation in business process management [66], opti-

mal allocation resource in water resource management systems [67], learning

user behavior in social networks [68], and spacecraft payload processing [69].

RL has five main components [63]:

1. An agent represents the learner and the decision maker that interacts

with the environment.

2. A policy is a function which defines the behavior of the agent. It

determines the proper action to take at each time-step based on the

state the agent is in.

3. A reward function maps each state-action pair to a scalar value and

reward, so that the performance can be evaluated in a mathematical

equation.

4. A value function calculates the accumulated reward over time of a

specific state-action pair. The agent’s goal is to maximize the collected

rewards it receives over time.
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5. A model of the environment represents the system which the agent

interact with.

A common algorithm for solving RL problems is Temporal Difference

Learning (TD). The TD algorithm is described in the following section.

2.4.2 Temporal Difference Learning (TD)

TD is the reinforcements learning algorithm that is most successful and

broadly applied algorithm to RL problems [63]. TD methods apply a value

function that estimates the future reward for taking a particular action in

a state. These methods can be classified based on the approach they follow

in search of the optimal action policy: on-policy and off-policy methods.

In on-policy methods, the agent follows a policy to explore the envi-

ronment. Simultaneously, the agent tries to find the optimal policy that

maintains exploration of possible actions. In other words, the policy that

is being optimized is also used to explore the environment. An example

of this type of methods is the State-Action-Reward-State-Action (SARSA)

algorithm. On the other hand, in off-policy methods, the agent has two dif-

ferent polices: a behavior policy and an estimation policy. The agent learns

the estimation policy from the actions performed by the behavior policy. An

example of this type of methods is the Q-learning algorithm [63].

Both methods can find the optimal policies. The main difference between

these methods is in the speed of convergence. The on-policy methods have

shown faster convergence than the off-policy methods in different fields of

application [70, 71].

During extreme events, such as fires, response time is critical. With this
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kind of situation, on-policy methods can help to assist emergency responders

to optimize the allocation of limited resources. In this thesis, SARSA is

utilized in our decision-making process.

2.4.3 SARSA Algorithm

SARSA is a learning algorithm for sequential decision making that learns

the value of applying an action in any state. In its simplest form, SARSA

is defined by the following equation [63]:

Q(st,at)←Q(st,at)+α[rt+1 +γQ(st+1,at+1)−Q(st,at)], (2.3)

where

at: is the action taken at time t

st: is the state assumed at time t

rt+1: is the reward at time t+1

Q(st,at): is the learned state-action value function at time t

0 ≤ γ ≤ 1: is a discount factor, which determines the importance of fu-

ture rewards

0 ≤ α ≤ 1: is the learning rate, where a factor of 0 will make the agent

not learn anything, while a factor of 1 would make the agent considers only

the most recent information.

The goal of the agent is to learn a policy π that maximizes the reward

over the agent’s lifetime. This policy maps the current state s into the most

desirable action a to be performed in s:
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Figure 2.6: Reinforcement Learning (RL) learning model.

π = {(s,a) | s ∈ S,a ∈A} (2.4)

The desirability of each state-action pair can be represented by a value

function, Q:

Q : S×A→R (2.5)

At each interaction with the environment, the agent observes the environ-

ment’s state st ∈ S. Then, it selects an action at ∈ A(st), where A(st) is

the set of all possible actions at state st. After taking an action, the agent

moves to a new state st+1 and receives from the environment a reward rt+1.

The value function Q(s,a) is then updated based on in Equation 2.3. This

procedure continues and the agent adjusts its policy until either the optimal

assignment is reached or the stopping criteria is met.
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2.4.4 Reinforcement Learning (RL) Model

Figure 2.6 shows the proposed RL model. It consists of an agent, a finite

set of states S, a set of available actions A, and a reward function R. The

agent is the learner, and the decision maker and everything it interacts with

is called the environment. The objective of the agent is to minimize the cost

of business interruption.

A state s ∈ S contains the PM and RM values in the i2Sim model.

For example, the state list for two simultaneous fire incidents at two dif-

ferent locations (x and y) is formatted as (PMx,RMx,PMy,RMy), where

PM and RM reflect the physical state and the functionality of each cell.

As mentioned in section 2.3, PM and RM are discretized into five lev-

els. Therefore, the total number of states considering two fire incidents is

(number of PM for location1)×(number of RM for location1)×(number of

PM for location2)× (number of RM for location2).

The set A of possible actions which can be taken when in a state s ∈

S consists of available resources that can be assigned. If it is assumed

that the number of available resources is 100 firefighters, this enables the

formation of 20 units of five firefighters each. Based on the number of fire

incidents, the fire simulation model creates a list of possible actions from

A= {0,20,40,60,80,100}. For example, the available actions for each state

in two simultaneous fire incidents are {(0,20), (0,40), (0,60), (0,80), (0,100),

(20,0), (20,20). . . }, corresponding to a total of 21 actions.

The reward r is based on the output of the economic model. It represents

the total value of all products produced by all production units (cells) in
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the i2Sim model. More details on how to calculate this value are provided

in the following sections.

The agent begins learning by sensing the current state st of the modeled

system reflected by the physical and resource modes of the i2Sim model.

It then searches for the best action at (action with the highest reward on

that state) in a look-up. This table stores state-action pairs (s,a) and their

current Q-values, Q(s,a). Table 2.2 shows a look-up table sample. The

Q-values are initialized randomly. Upon performing the best action, the

system transitions to state st+1 and receives a reward r. Next, the agent

updates Q(s,a) based on Equation 2.3. After consecutive runs, the agent

learns the best path with the help of the learned state-action value Q.

(state, action) Q(state,action)

(1,1,1,1,0,20) 51
(1,1,1,2,0,40) 620
(1,1,1,3,40,60) 422
(1,1,1,4,0,80) 911
(1,1,1,5,20,0) 1
(1,1,2,1,40,60) 37
(1,1,2,2,50,50) 8156

. . . . . .

. . . . . .
(5,5,5,5,20,80) 422

Table 2.2: Look-up table sample.

2.5 Economic Efficiency Model

Economic efficiency of fire management can be defined as the ability to

allocate limited resources in a way that minimizes the sum of management
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costs and net damage. A formalization of this concept was introduced in

the early 1916s by Headley [72] and Lovejoy (1916) [73]. It was assumed

that increasing the cost of management (pre-suppression, suppression) would

decrease the fire induced damage. Sparhawk (1925) [74] formulated this

concept into the Least Cost Plus Loss (LC+L) model. The objective of

this model is to find an optimal pre-suppression (protection plan) cost. The

model has been investigated and improved over time into the Cost-Plus-Net-

Value Change C+NVC model [75], [76] and [4].

In the (C+NV C) model, the cost (C) sums all firefighting expenditures,

such as purchasing equipment and wages for firefighting crews, as illustrated

in Figure2.7. The net value change (NV C) include both direct and indi-

rect losses induced by fire. The direct losses are the losses incurred due to

the immediate effects of fires. The indirect losses are the losses related to

a cascade of effects of fires due to functional or physical interdependence.

Theoretically, as the fire operation costs increase, the net fire damage is

expected to decrease [48]. The result of this analysis is a U-shape function,

with a minimum point that represents the optimum fire management pro-

gram (i.e P* in Figure2.7). For a given level of pre-suppression cost, the

most efficient fire program is achieved where the summation of suppression

cost and net value change is minimized.

In this thesis, we used the C+NVC model to evaluate both strategic and

operational planning decisions faced by decision makers in a fire department.

The strategic planning, which we refer to as the strategic capacity planning,

involves making decisions about manpower management over a long-term

time line. Over the strategic time frame, the fire department must plan
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Figure 2.7: Illustration of the C+NVC model [4].

for recruiting to meet desired staffing levels. The objective is to find the

most efficient fire management program by minimizing the summation of

the fire operation costs (C) and net fire damage (NV C). This minimization

problem can be represented mathematically as:

MIN: C + NVC =
T∑

t=1
(Ct +NV Ct), (2.6)

where

Ct: fire operation costs (manpower and equipment) in period t

NV Ct: net loss due to fires in period t

T : planning periods
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Operational planning deals with the allocation and scheduling of a lim-

ited number of resources. Operational planning differs from strategic plan-

ning in that for operational planning the manpower capacity is considered

fixed which means that the cost component of C+NVC is not the incre-

mental cost between the different programs. As a result, the objective is to

develop efficient allocation and scheduling strategies that minimize net fire

damage NVC.

The net fire damage NVC can be expressed as the net loss in the value

of the overall production level. Mathematically, it can be calculated by

subtracting the value of the production level of all products pre-fire from

the value of production level of all products post-fire. Different allocation

strategies can be evaluated using the following equation:

NVC =
n∑

i=1

m∑
j=1

(Q1ij−Q2ij)Vj (2.7)

where

Q1: production without fires

Q2: production with fires

n: number of production units

m: number of product categories

Vj : market value of product j
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2.6 Case Study

In order to evaluate the effectiveness of the proposed FMDSS, a case study

of multiple fire incidents in a large petrochemical complex was conducted.

This case study is based on real data and aims at optimizing firefighting

resource management while considering operational and strategic decisions.

2.6.1 Petrochemical Industry

All experimental results in this thesis use a petrochemical complex as a case

study for this research, for the following reasons. Firstly, the petrochemi-

cal industry is considered to be one of the most important basic industries.

Petrochemicals are derived from oil and natural gas and incorporated into

a great variety of products in the food industry, medical industry, textile

industry, plastic industry, and fertilizer industry. The petrochemical indus-

try is a major contributor to the growth of the world economy. In 2011,

the global petrochemicals market was valued at $472.06 US billion and is

expected to reach $791.05 billion by 2018. The global petrochemicals con-

sumption is expected to reach 627.51 US million tonnes by 2018 [77].

Secondly, the operation of petrochemical plants involves very complex

processes of physical and chemical reactions. These processes often require a

wide variety of extreme operating conditions at high temperatures and pres-

sures and other complex technical operations. Due to the large amounts of

flammable gases and liquids involved, the petrochemical industry is contin-

uously exposed to the risk of fires, explosions and other accidents. One of

the safety measures to reduce this risk is to restrict the storage of flammable

materials. Therefore, petrochemical plants are most often grouped together
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into a single complex to transport products immediately into pipelines. As

the number of plants located in the complex increases, benefits increase due

to increase in efficiency, close access to specialized suppliers and reduction in

transportation costs. On the other hand, any additional plant may decrease

the overall safety of the complex [78].

Thirdly, the petrochemical industry is increasingly characterised by a

high degree of physical interdependence. An interruption in one plant can

be extremely disruptive to the operation in one or more other plants. This

phenomenon is called the "domino effect". Although the domino effect has

been reported in the technical literature since 1947, there is no agreed def-

inition of what constitutes domino effects in the context of accidents in

industrial plants [79]. Khan and Abbasi [80] defined domino effect as "a

chain of accidents, or situations when a fire, explosion, missile or toxic load

generated by an accident in one unit in an industry causes secondary and

higher order accidents in other units".

In this thesis, we generalize the definition of the domino effect by includ-

ing any distractions in production generated by a primary accident in one

or more plants. Also, we consider the bidirectional effects of accidents by

including the economic impacts on both the consumers’ side and the produc-

ers’ side. For example, if Plant A supplies Plant B with its raw materials,

any interruption in the production process of Plant A could result in an

interruption in Plant B. Conversely, if any interruption in the production

process of Plant B occurs, Plan A might suspend its operation.
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2.6.2 Case Study Data

The case study considered in this thesis is an industrial city that has a large

petrochemical complex. This complex consists of 12 petrochemical plants.

Each plant produces one or more petrochemical products as listed in Table

3.1.

The industrial city has 300 firefighters (100 firefighters per shift) forming

20 units deployed to five fire stations, where each station has four firefighting

units. Two simultaneous fire incidents, Fire 1 and Fire 2, were simulated

in Plant 10 and Plant 4, respectively. We assume that Fire 1 requires 600

man-hours to be suppressed, while Fire 2 requires only 200 man-hours. It

is assumed that this type of accident occurs once every ten years.

The simulations involved 15 hours of concurrent suppression operations

for the two fire incidents. New assignments of the firefighting units were

determined every hour.

2.6.3 Example of Interdependence in a Petrochemical
complex

Each plant in a petrochemical complex requires raw materials for produc-

tion. Oil refinery and upstream plants supply raw materials to production

plants. The relationship between the plants can be expressed according to

their position in the production chain as primary producer, primary con-

sumer, secondary consumer, and tertiary or higher-order consumer. The

primary producers are the plants that do not receive their raw materials

from other plants, mainly they receive raw materials from oil refinery. The

other plants receive some of their raw materials from primary producers and
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Figure 2.8: An example of interdependencies and relations between
petrochemical plants.

may supply other plants with raw materials or export. Due to this inter-

dependence, a single disruption to an upstream plant can impact the entire

complex.

Using this criterion, Figure 2.8 presents an example of interdependence

and the relations between the petrochemical plants during the production

process. Plant 4 is an example of a primary producer because it receives its

raw materials, Methane and Butane, from the oil refinery. It supplies Plant

3 and Plant 8 (primary consumers) with Methanol. Plant 7 and Plant 12

are considered as secondary consumers because they receive some of their

raw materials from primary consumers, Plant 3 and Plant 8. Plant 12 can

be also described as a tertiary consumer because it receives Ethylene from

a secondary consumer, Plant 7.

During the operation process, any disruption in the production process

in Plant 4 can lead to a shutdown in the production process in primary

consumers, Plant 3 and Plant 8. This shutdown has a domino effect that
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spreads to all secondary and tertiary consumers, Plant 7 and Plant 12.

Furthermore, any disruption to a secondary consumer (e.g., disruption in

Plant 7) might suspend the production process in the primary producer,

Plant 4, and all primary consumers, Plant 3 and Plant 8. As a result of this,

other secondary consumers, Plant 12, suspends its operation due to lack of

raw materials.

The previous example illustrates the high level of interdependence be-

tween petrochemical plants that need to be considered when developing

emergency response plans.

2.6.4 General Assumptions

While this thesis has focused its attention on the fire managements decisions

in line with the expected losses, the following assumptions were made in the

case study:

1. No humans were in danger during the incidents, otherwise saving them

would have been the highest priority.

2. The environmental impact, such as toxicity, was not taken into ac-

count.

3. All the plants had the same level of flammability.

4. No other organizations (e.g., police and ambulance services) were in-

volved.

5. The wind speed and wind direction were the same in both fire inci-

dents.
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6. During multiple-fire incidents, there has to be a minimum number

of firefighting units to be allocated to each incident because of the

presence of explosive chemicals in the petrochemical industry.

7. All the plants have the same level of fire safety over the planning

period.

2.7 Conclusion

In this chapter, we discussed the development of a fire management de-

cision support system. The system estimates the damage associated with

fire incidents, calculates the economic loss resulting from the damage and

then provides the optimal assignment of the available firefighting units. A

key novel addition is the consideration of infrastructure interdependencies

in the decision making process. The joint optimization of the number of

assigned firefighting units and the estimated damage significantly reduces

the economic loss.

A detailed case study of multiple fire incidents in a large petrochemi-

cal complex is described. The case study is used throughout this thesis to

study the issues of resource allocation, capacity planning, and improving

infrastructure resilience. Chapter 3 applies the developed system to allocate

resources to minimize economic losses resulting from multiple-fire incidents.

Linear and non-linear damage functions are considered. In chapter 4, the

developed system is used to evaluate the impact of hiring decisions on ef-

fectiveness of firefighting operations. Chapter 5 describes the resilience of

infrastructure systems under fire incidents. The developed system is used
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to evaluate the impact of resource allocation decisions during fire incidents

on improving infrastructure resilience.
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Name Product Ton/year

Plant 1 Methanol 1,007,400
Butanediol 75,000

Plant 2 Poly Propylene 438,000
Plant 3 MTBE (methyl tertiary-butyl ether) 613,200

Poly Propylene 1,500,000
Isopentene 1,460

Plant 4 Methanol 963,600
MTBE (methyl tertiary-butyl ether) 1,007,400
Isopentane 5,256

Plant 5 Polyethylene 744,600
Ethylene Glycol 1,489,200

Plant 6 Ammonia 438,000
Ethyl hexanol 171,550
Urea 700,800

Plant 7 Ethylene 2,102,400
Propylene 1,314,000
Butene 1,752,000

Plant 8 Ethylene 1,051,200
Sodium Hydroxide 175,200
Ethylene Dichloride 3,066,000

Plant 9 Fertilizer 4,818,000
Plant 10 Methanol 3,285,000
Plant 11 Ethylene 1,314,000

Mono-ethylene Glycol 569,400
Diethylene Glycol 613,200

Plant 12 Ethylene 700,000
Propylene 87,600
Polyethylene 1,095,000

Table 2.3: List of the petrochemical plants and their products covered
by this case study.
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Chapter 3

Resources Allocation and

Scheduling During

Multiple-Fire Incidents

3.1 Introduction

During fire incidents, the main duty of firefighters (after saving lives) is to

minimize the incidents’ losses. According to Hall [9], the total cost of a fire

is defined as the losses the fire causes, directly and indirectly, plus the cost

of provisions to mitigate these losses. The US NFPA reported that in 2011,

the estimated fire-related economic loss was $14.9 US billion. These losses

include both property damage (direct losses) and business interruption (in-

direct losses). Also, the report shows that 65% of the business interruption

cost ($9.7 US billion) was caused by fires in industrial properties [9]. Due
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to the difficulty in pre-calculating the indirect losses, the current firefighting

practices target the fires with larger size to reduce property damage. How-

ever, the analysis of the fires showed a low correlation between the property

damage cost and the business interruption cost [9]. In many cases, the cost

of business interruption far exceeds its direct property loss. Hall [9] stated,

“Sometimes, though, it can be difficult to determine what the true net loss

due to business interruption is.” In the method developed in this chapter,

the indirect losses, resulting from business interruption, will be estimated

and then used as a significant factor in allocating the firefighting resources.

In this study, we use propose a methodology to optimize the allocation

process of firefighting resources in multiple-fire incidents. This methodol-

ogy utilizes the concept of infrastructure interdependencies in evaluating the

economic impact of the incidents. It consists of three main parts. The first

part uses infrastructure interdependency modeling to represent the interac-

tions among different systems. The second part uses economic modeling to

evaluate the economic impact of the fire incidents. The third part deter-

mines the assigned number of firefighting units using an optimization agent

based on the RL algorithm. The proposed methodology can be used before

the fire occurs, for training and planning, during the fire for optimizing the

response or after the fire, for evaluating suppression strategies.

The proposed resource allocation methodology is presented in Section

3.2. After that, we examine four different fire suppression methods in Section

3.4. Also, we discuss the impact of considering different non-linear damage

functions. Then, we evaluate the human performance factor on the resource

allocation decision in Section 3.4.2. Finally, a conclusion is presented in

44



Section 3.5.

3.2 Resource Allocation and Scheduling
Methodology

In terms of the operation planning of fire management systems, allocating

and scheduling available resources is one of the most challenging decisions

during multiple fire incidents. The direct and indirect economic losses in-

duced by fires should be carefully considered. Thus, it is extremely im-

portant to minimize the overall economic losses by optimally allocating and

scheduling firefighting units to each fire. In this section, we use the developed

system, described in Chapter 2, to propose a methodology for the optimal

allocation of firefighting resources during suppression operation. Figure 3.1

shows the main steps of the proposed methodology.

The proposed methodology starts by generating fire incident scenarios

using the fire simulation model. These scenarios can be single or multiple

fire incidents. After evaluating the required number of firefighters for each

fire, the fire duration time is calculated by Equation 2.1. Using a damage

function, the fire duration time is mapped into five Physical Modes (PMs)

described previously in Section 2.3.1, which form the input to the i2Sim

model. Figure 3.2 shows how fire duration is mapped to physical modes

using a simplified (linear) damage function.

Next, i2Sim simulates the effects of resources allocation decisions over

time. The production of each cell is degraded according to the damage as-

sessed by the fire simulation model described in Section 2.2. Simultaneously,

i2Sim simulates the functionality of the interdependent cells and computes
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Figure 3.1: Resource allocation methodology.

the outputs of all the production facilities. These outputs become the input

to the economic model, which calculates the estimated losses based on mar-

ket prices. The output of the economic model is the economic loss associated

with the current operating state of the cells.

The last step of the methodology is the determination of the optimal al-
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Figure 3.2: Mapping between fire duration and Physical Mode(PM).

location decisions. The optimization agent uses the economic loss as reward

or penalty. The objective of the agent is to learn the optimal decision for

assigning firefighters that minimizes the economic losses experienced in the

long run.
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Name Product Ton/year Raw Martials Ton/year Source
Plant 4 Menthol 959,000 Methane 210,240,000 Oil refinery

MTBE 985,000 Butane 876,000 Oil refinery
Plant 6 Ammonia 459,900 Methane 150,000 Oil refinery

Ethyl Hexanol 171,550 Propylene 300,000 Plant 7
Urea 693,500

Plant 7 Ethylene 2,000,000 Ethylene Dichloride 3,248,500 Plant 8
Propylene 1,000,000 Sodium Hydroxide 204,400 Plant 8
Butane 2,000,000 Propane 2,007,500 Oil refinery

Methane 2,007,500 Oil refinery
Ethane 1,000,000 Oil refinery

Table 3.1: Sample Data Format

3.3 Case Study Modeling

3.3.1 Data Description

The case study described in Section 2.6 considers an industrial city. The city

encompasses an area of about 100 square kilometres and has a petrochemical

complex consisting of 12 chemical plants. Theses plants produce 28 different

petrochemical products. These materials are transported through pipelines

between the plants. The petrochemical complex is modeled based on real

data. Sample data for three plants is shown in Table 3.1. The first column

represents the plant name. The second and the third columns show the

products and their annul production (Ton/year), respectively. The fourth

and the fifth columns show the raw martials and their total quantity con-

sumed per year (Ton/year), respectively. The last column shows the source

of each raw material which can be a product of another plant or received

directly from the oil refinery.
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3.3.2 i2Sim Model

The first step to build the i2Sim model is to define the production cells. Re-

call that an i2Sim production cell takes one or more inputs and produces an

output based on the defined HRT function as described in Section 2.3.Each

plant is presented by one or more production cells based on the number of

output products. For example, we use two production cells to model Plant

4 and use three production cells to model Plant 7. Figure 3.3 shows the

production cells used to model Plant 7.

Figure 3.3: Plant 7 production cells.

In total, we need 28 production cells to model the entire complex. Table

3.2 shows the number of production cells used to model each plant.

The second step is to create the HRT tables for the production cells. The

HRT tables model the input-output relationship in i2Sim cells as described
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Name Number of
products

Number of used
production cells

Plant 1 2 2
Plant 2 2 2
Plant 3 1 1
Plant 4 3 3
Plant 5 2 2
Plant 6 3 3
Plant 7 3 3
Plant 8 3 3
Plant 9 1 1
Plant 10 1 1
Plant 11 3 3
Plant 12 3 3

Table 3.2: Number of used production cells.

in Section 2.3. Table 3.3 shows the HRT table for Ethylene production

cell in plant 7. The first column represents the operability level of the

production cell. This level ranges from 0 to 100 %, where 0 % indicates no

functionality and 100 % indicates full functionality. Each level is associated

with a particular amount of production as shown in the second column.

There are two factors that can influence the plant functionality. One is the

availability of the necessary resources (plant inputs) required to operate the

plant, which are listed in the 3rd to the 5th column. The second factor is

the the physical integrity of the plant, which is given in the last column.
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Operability
Plant output
(Product)

Plant inputs
(Raw materials) Physical

integrityEthylene
[Tons/hour]

Ethy. Dich.
[Tons/hour]

Sod.Hydroxid
[Tons/hour]

Propane
[Tons/hour]

Methane
[Tons/hour]

Ethane
[Tons/hour]

100% 240 350 20 230 230 100 100%
75% 180 262.5 15 172.5 172.5 75 75%
50% 120 175 10 115 115 50 50%
25% 60 87.5 5 57.5 57.5 25 25%
0% 0 0 0 0 0 0 0%

Table 3.3: HRT table for Ethylene production cell in Plant 7.
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The third step is to identify the i2Sim sources model the external tokens.

As described in Section 2.3, sources represent infrastructure systems that are

not included in the i2Sim model. In this case study, we use sources to model

the tokens produced by the oil refinery. Seven sources are used to model the

production of the following tokens: Methane, Ethane, Propane, Propene,

Butane, Butene and Benzene. Figure 3.4 shows the sources that used to

model the oil refinery.

Figure 3.4: Oil refinery sources.
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The next step is to determine the distributors, the aggregators and the

sinks. The distributors are the allocation units in the i2Sim model. Each

distributer has one input and multiple outputs of the same token type. In

this case study, we use 14 distributers to distribute 14 petrochemical prod-

ucts among the plants. Also, we have 13 different petrochemical martials to

be aggregated in one channel for each one. We use 13 aggregators to com-

bine two similar products into one channel. The last stage of the production

process in this case study is the export which is modeled as a sink. Sinks

are the components that send internal tokens to outside the i2Sim model.

The last step of modelling the case study is to connect all the i2Sim

components via channels. Figure 3.5 shows the i2Sim model for the petro-

chemical complex.
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Figure 3.5: The i2Sim model for the petrochemical complex.
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3.4 Results and Discussion

In this section, we consider applying four different allocation methods to

the case study. Next, we examine the case of non-linear damage functions.

Two non-linear damage functions are considered to evaluate fast and slow

damage development. Finally, we extend the model to include the impact

of human performance factors on firefighting operations. The most critical

human performance factor in firefigting effectiveness is the degradation of

performance under stressful mental and physical conditions.

We tested four different allocation methods (operational plans) as listed

in Table 3.4. Methods 1 and 2 represent "business as usual" actions during

a multiple-fire incident, which means allocating firefighting units based on

fire size and giving more units to larger fires. In method 3, fires are treated

equally regardless of their size or their criticality. Method 4 corresponds to

a situation where the allocation and scheduling process of fire resources is

based on economic evaluation of losses.

Method Methodology Description Objective

Method 1 70%-30% 70% to the large fire,
30% to the other fire. Suppress large fire first

Method 2 60%-40% 60% to the large fire,
40% to the other fire. Suppress large fire first

Method 3 50%-50% 50% to each fire. Treat all fire accidents equally

Method 4 Optimized Assign units based on
optimization technique. Suppress fires to minimize losses

Table 3.4: Allocation methods.

Simulations were carried out for the four fire allocation methods men-
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tioned above. Each method produces a different assignment sequence of

firefighting units to each fire. The simulation results are shown in Table

3.5. The first column shows the simulating time in hour. The last column

reports the results obtained by the proposed the FMDSS. It shows the dy-

namic allocation of the firefighting units between the two fires, Fire 1 and

Fire 2. U represents the number of allocated firefighting units to each fire.

T represents the required man-hour to suppress each fire.

As shown in Table 3.5, the proposed FMDSS, Method 4, was able to

recognize the critical fire and suppress both fires with minimum time com-

pared to the other allocation methods. Also, the results show that Method

1 is the worst decision, since it requires the longest suppression time.

In order to evaluate the economic impact of using the four allocation

methods, we evaluate the annual production income of the petrochemical

complex. Using i2Sim, we simulates the functionality of the petrochemical

complex and compute the outputs of all the production cells. The annual

production income of the complex is calculated using the market value of

these outputs, which is $28,703 US million. Upon comparing this income

level with the income after the two fires are suppressed, it is clear that the

decision based on economic evaluation (Method 4) achieves the minimum

economic loss.
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Time (h)
Method 1 Method 2 Method 3 Method 4

Fire 1 Fire 2 Fire 1 Fire 2 Fire 1 Fire 2 Fire 1 Fire 2
U T U T U T U T U T U T U T U T

1 14 600 6 200 12 600 8 200 10 600 10 200 4 600 16 200
2 14 530 6 170 12 540 8 160 10 550 10 150 4 580 16 120
3 14 460 6 140 12 480 8 120 10 500 10 100 12 560 8 40
4 14 390 6 110 12 420 8 80 10 450 10 50 20 500 0 X
5 14 320 6 80 12 360 8 40 20 400 0 X 20 400
6 14 250 6 50 20 300 0 X 20 300 20 300
7 14 180 6 20 20 200 20 200 20 200
8 20 110 0 X 20 100 20 100 20 100
9 20 10 0 X 0 X 0 X
10 0 X
11
12
13
14
15

X: Fire suppressed.

Table 3.5: Results for the resource allocation methods (U: no. units; T: fire timer).
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Figure 3.6 shows that the total economic loss in Method 4 was just $558

US million compared with $3,525 US million for Method 1, $1,236 US million

for both Method 2 and Method 3. It is worth noting that the total economic

loss when no action is taken is a massive $ 21,006 US million.
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Figure 3.6: Total losses of different allocation methods.

3.4.1 Damage Functions

As we mentioned in Section 2.2.2, the level of damage is influenced by several

factors such as wind speed and direction, and fuel type and load. The more

convex the damage function, the faster the damage level increases. The more

concave this function, the slower the damage level grows. In this section

we evaluate the proposed methodology considering slow and fast damage

growth.
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Two non-linear damage functions are used to describe slow and fast dam-

age growth. We assume the form of the damage function for slow damage

growth as a square root form d(T )sqrt, where:

d(T )sqrt =


( T

TC
)1/2 if T < TC

1 if T ≥ TC

(3.1)

For fast damage growth, we assume the form of the damage function as

a quadratic form d(T )quad, where:

d(T )quad =


( T

TC
)2 if T < TC

1 if T ≥ TC

(3.2)

Both functions define level of damage as a function of the time duration of

the fire. Figure 3.7 illustrates the difference between the damage functions

in terms of damage level related to fire duration time. The first case (a)

represents the linear damage function described in Section 2.2.2. Case (b)

and (c) represent the slow damage growth (square root function) and fast

damage growth (quadratic function), respectively.

Figure 3.8 shows the results of applying these damage functions to the

petrochemical complex case study. These results show that the proposed

methodology, Method 4 (as described in Section 3.3), is capable of achieving

the minimum economic losses regardless of the damage function being used.

The results also show that Method 1 is the worst decision with the largest

amount of economic losses.

As expected, the faster damage growth results in more economic loss.
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Figure 3.7: Illustration of the difference between different damage
functions showing level of damage as a function of time duration
of fire for (a) Equation 2.2, linear function reflecting a constant
rate of fire damage growth; (b) Equation 3.1, non-linear damage
function reflecting fast damage growth; and (c) Equation 3.2,
non-linear damage function reflecting slow damage growth.

In the case of the slow growth damage function, the economic losses are the

minimal compared to the other damage functions. Slow damage growth al-

lows firefighters the time to control the fire before significant damage occurs.

Method 2, Method 3 and Method 4 yielded optimal minimal losses of $420

million compared with $1,099 million for the business-as-usual, Method 1.

In the case of the fast growth damage function, the economic losses

increase for all the allocation methods, however, Method 4 maintains the

best performance compared to the others. Using Method 4, the resulting

economic losses are $1,565 million compared with $3,853 million for the

other methods.

We conclude that the damage growth rate has a significant effect on the

time to control the fire and in the resulting economic losses. Also, regardless

of the damage growth rate, the proposed methodology is able to allocate
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Figure 3.8: Total losses of different allocation methods for three dam-
age functions.

resources efficiently to minimize the economic losses.

3.4.2 Human Performance Factor

In this section, we study the effect of Human Performance (HP) on resource

allocation decisions during fire incidents. The most important human perfor-

mance factor in firefighting effectiveness is the degradation of performance

under stressful mental and physical conditions, such as heat, smoke and

hydration.

As we discussed in Section 2.2, each fire is described by its severity mea-

sure, FSM. This measure estimates the required man-hours to suppress a

fire. For example, if a fire is described by FMS=100, then it means that al-

locating 50 firefighters can suppress the fire in two hours and 100 firefighters

can suppress it in one hour. During a long suppression process, the perfor-
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mance of the firefighters is degraded and the suppression process might take

more time.

To study this factor, we extend the model described in Section 3.3 by

considering the impact of the HP factor on the effectiveness of firefighting

operations. We apply the allocation methods in Table 3.4 to suppress two

simultaneous fire incidents, Fire 1 and Fire 2, occurring in Plant 10 and

Plant 4, respectively. Fire 1 requires 600 man-hours to be suppressed, while

Fire 2 requires only 200 man-hours. In order to consider the effect of the

HP, we assume that during fire incidents, the firefighters’ performance drops

by 20% every three hours. Also, every eight hours a new shift replaces the

current one.

Using the developed FMDSS in Chapter 2, the following cases are consid-

ered in comparing the impact of the HP on the resources allocation decisions.

• Case 1: represents the result obtained in Section 3.4.1 for the four allo-

cation methods in Table 3.4 without consideration of the HP factor.

• Case 2: represents the results obtained for these allocation methods with

consideration of the HP factor.

Figure 3.9 shows the results of applying these allocation methods to the

petrochemical complex case study. In general, the results show that the HP

factor has a considerable impact in the total loss. Also, the results show

that the proposed methodology, Method 4, is more efficient than the other

three methods.

There are 24 different combinations of four allocation methods for each

of the three damage functions with and without the HP factor. Figure 3.10,
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Figure 3.9: Total losses of different allocation methods for three dam-
age functions considering the human performance factor.

3.11, 3.12, and 3.13 correspond to Method 1, Method 2, Method 3 and

Method 4 (as described in Section 3.3), respectively. The results of this

comparison indicate that the human performance factor has a significant

impact on the development of fire damage and also on the economic losses.

The results in Figure 3.10 show that the total loss in Method 1 after

considering the HP factor increased by 126% to reach $1,236 US million

during the fast growth fire. For the other allocation methods, the impact

of this factor is in the same direction as on Method 1 but to a much lesser

degree.

3.5 Conclusion

In this chapter, we use economic analysis to help fire managers determine

appropriate responses during daily operations. We proposed a methodology
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Figure 3.10: Comparison of total losses of Method 1 between Case 1,
neglecting the human performance factor, and Case 2, consid-
ering the human performance factor.

to optimize the allocation process of firefighting. The concept of infras-

tructure interdependencies is incorporated into the decision making process.

The proposed methodology estimates the damage associated with a given

fire scenario, calculates the economic losses resulting from the damage, and

then provides the optimal assignment of available firefighters.

Different damage functions are considered to investigate different types

of damage behaviour. Also, we evaluate the human performance factor

that influences the firefighting operations. By considering these factors, the

results show that optimizing jointly the number of assigned firefighters with

the estimated damage reduces the economic losses greatly.

In the next chapter, we extend the study of the human factor to evaluate

the potential benefits and consequences of alternative manpower planning
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Figure 3.11: Comparison of total losses of Method 2 between Case 1,
neglecting the human performance factor, and Case 2, consid-
ering the human performance factor.

decisions.
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Figure 3.12: Comparison of total losses of Method 3 between Case 1,
neglecting the human performance factor, and Case 2, consid-
ering the human performance factor.
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Figure 3.13: Comparison of total losses of Method 4 between Case 1,
neglecting the human performance factor, and Case 2, consid-
ering the human performance factor.
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Chapter 4

Capacity Planning in the

Fire Department

4.1 Introduction

Fires are becoming more costly in terms of fire operational costs and eco-

nomic losses (direct and indirect losses). The increased interdependence

of existing infrastructure systems makes economic losses induced by fires

very severe and difficult to predict. With a limited budget and resources,

fire managers are faced with challenging decisions concerning how best to

allocate resources, in terms of minimizing costs and keeping risks at an ac-

ceptable level.

In the previous chapter, we discussed the allocation and scheduling de-

cisions of firefighting units during fire incidents. We showed how several

factors, including human factors, are able to influence the decision-making

process. The human factor is not only significant at the operational level
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planning, but also at the strategic planning level. The strategic planning

includes the most long- range decisions like capacity investment (e.g., in-

creasing the number of firefighters).

In this chapter, we propose an additional function to the developed sys-

tem in Chapter 2 to investigate the impact of capacity planning decisions

on the effectiveness of firefighting operations. The challenge to the deci-

sion maker is to determine the most cost-effective plan in terms of reducing

overall cost. The developed system is used to identify the optimal number

of firefighters to be recruited to contain the fires and minimize damage. In

Section 4.2, the proposed methodology to evaluate long-term planning de-

cisions is presented. In Section 4.3 the proposed methodology is applied to

the case study of the petrochemical complex. Finally, concluding remarks

are given in Section 4.4.

4.2 Proposed Methodology

In this section, we use the developed system described in Chapter 2 to de-

velop a manpower capacity planning methodology. The proposed method-

ology evaluates the impact of hiring decisions on effectiveness of firefighting

operations. It incorporates the C+NVC concept described in Section 2.5

to perform economic analysis to determine the most efficient strategic plan.

The objective is to minimize the cost of fire by minimizing the sum of the

operation cost (C) and the net value change (NVC). The key question is:

what is the optimal number of firefighters to be hired by minimizing the

C+NVC objective function?

Figure 4.1 illustrates the proposed manpower capacity planning method-
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Figure 4.1: Proposed methodology to evaluate long-term planning de-
cisions.
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ology. The first step in the proposed methodology is the plan development

which includes time frame and budget. The next step is to specify the re-

quirements of the developed plan, such as an estimate of manpower to be

recruited and trained, and the required equipment to be purchased such as

water pumps and fire trucks. The cost of these requirements represents the

fire operation costs (C) in the C+NVC concept.

In order to investigate the effectiveness of the developed plan, we use

the fire simulation model described in Section 2.2 to simulate multiple-fire

scenarios. These scenarios can be generated by simulation or taken from

historical data. For each scenario, different resource allocation decisions are

evaluated to find the minimum economic losses. i2Sim and the optimization

agent described in Section 2.3 and 2.4 respectively are used to estimate the

resulting physical damage and to calculate the expected economic losses

which represents the net value change (NVC) part of the C+NVC concept.

At this point, C+NVC can be calculated using the following equation:

C+NV C =
T∑

t=1
(LftCft +LqtCqt +NV Ct) (4.1)

where

Cft: cost of hiring one firefighter in period t

Lft: number of hired firefighters in period t

Cqt: cost of purchasing one unit of equipment in period t

Lqt: number of purchased one unit of equipment in period t

NV Ct: net loss due to fires in period t

T : control time (years)
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This process is repeated for all alternative plans. Once all of the costs

are calculated, a point of economic efficiency can be found where the sum

of the operation cost (C) and the net value change (NVC) is minimized.

In order to evaluate the effectiveness of each of plan, Equation 2.6 can be

rewritten as follows:

MIN: C + NVC =
T∑

t=1
(LftCft +LqtCqt +NV Ct), (4.2)

The control time T for the decision analysis is usually based on the

decision maker’s interest in evaluating alternative strategic plans. In general,

economic losses associated with large fire incident increase if longer control

periods are considered.

4.3 Results and Discussion

In order to evaluate the effectiveness of the proposed methodology, nine

strategic planning scenarios are considered in this study as shown in Table

4.1. Each plan has a number of firefighters to be hired and fire trucks to

purchased over the planned period. It is assumed that the control period is

10 years.

Plan 1 is taken as the base case scenario where the number of firefighters

is 300 (100 firefighters per shift) and the number of trucks is 20. Plan 2

to Plan 9 represent alternative plans with an increase of 40% in the num-

ber of firefighters over the base case for each plan. The annual cost of

hiring one firefighter is estimated to be $93,663 [81]. This cost includes
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Planning
scenario

Number of
firefighters (Lf )

Cost of hire
(Cf )

Number of
trucks (Lq)

Cost of trucks
(Cq)

Total cost
(C)

Plan 1 300 $280,989,000 20 $14,000,000 $294,989,000
Plan 2 420 $393,384,600 28 $19,600,000 $412,984,600
Plan 3 540 $505,780,200 36 $25,200,000 $530,980,200
Plan 4 660 $618,175,800 44 $30,800,000 $648,975,800
Plan 5 780 $730,571,400 52 $36,400,000 $766,971,400
Plan 6 900 $842,967,000 60 $42,000,000 $884,967,000
Plan 7 1020 $955,362,600 68 $47,600,000 $1,002,962,600
Plan 8 1140 $1,067,758,200 76 $53,200,000 $1,120,958,200
Plan 9 1260 $1,180,153,800 84 $58,800,000 $1,238,953,800

Table 4.1: Strategic planning scenarios costs (in US dollars).

the personnel salary and benefits such as health and dental benefits, life in-

surance, vacation and holiday time, average sick leave usage, uniforms and

safety equipment. The cost of purchasing a new industrial fully equipped

fire truck is approximately $700,000. The last column in Table 4.1 depicts

the total cost (C) of each plan.

To evaluate the expected economic loss NV C over the specified horizon,

two simultaneous fire incidents, Fire 1 and Fire 2, were considered in Plant

4 and Plant 10, respectively. We assume that Fire 1 requires 200 man-hours

to be suppressed, while Fire 2 requires 600 man-hours. To suppress these

fires, we use Method 4 described in Table 3.4.

Each plan is evaluated by testing its performance for different fire damage

growth functions, namely linear, square root and quadratic. The linear

damage function represents fire incidents that have a constant rate of damage

over time. Details of the linear damage function were presented in Section

2.2.2. The square root damage function represents all fire incidents that have
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Figure 4.2: C+NVC curves of three damage growth functions, linear,
slow and fast.

a slow rate of damage growth, as defined in Equation 3.1. The opposite is

observed with the quadratic damage function which represents fire incidents

that have a fast rate of damage growth, as already defined in Equation 3.2.

Figure 4.2 shows the obtained curves from the C+NVC model for the

three damage growth functions described in Section 3.4.1. The results in-

dicate that the most efficient allocation of funding for hiring is achieved by

plan 2 and plan 3 where the minimum of the C+NVC curves is reached.

Compared to the base case (300 firefighters), the recommended increase in

manpower is from 300 to 540 firefighters for both fast and linear growth

fires. This increase resulted in a saving of approximately $230 US million in

losses in cost of firefighters.

Tables 4.2, 4.3 and 4.4 show a comparison of the strategic planning

scenarios costs for different fire damage growth speeds. The last column in

73



Planning Scenario Cf Cq NV C C+NV C

................... ($ Millions)...................
Plan 1 $280 $14 $493.2 $787.2
Plan 2 $393 $19 $164.7 $576.7
Plan 3 $505 $25 $27.3 $557.3
Plan 4 $618 $30 $27.3 $675.3
Plan 5 $730 $36 $27.3 $793.3
Plan 6 $842 $42 $27.3 $911.3
Plan 7 $955 $47 $27.3 $1,029.3
Plan 8 $1,067 $53 $27.3 $1,147.3
Plan 9 $1,180 $58 $27.3 $1,265.3

Table 4.2: Comparison of strategic planning scenario costs for linear
damage growth.

each of these tables show C+NVC, the total fire operation costs and the

expected economic losses for different strategic plans.

Table 4.2 shows that Plan 3 is the most cost effective plan for linear

fire damage growth. Increasing the number of firefighters from 300 to 540

reduces the total losses by 30% (from 787.2 to $ 557.3 US million). We

can notice that NVC reached its minimum value at Plan 3. The increase

in C+NVC value for Plan 4 through Plan 9 comes from the cost of more

firefighters.

For slow fire damage growth, using Plan 2 can reduce the total losses

by 5% (from $458.7 to $439.3 US million) as shown in Table 4.3. The most

cost effective investment is to increase the number of firefighters from 300

to 420 as shown in Table 4.3. Although Plan 4 is able to suppress both fires

without any economic losses (NVC =0), its hiring cost is greater than the
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Planning Scenarios Cf Cq NV C C+NV C

................... ($ Millions)...................
Plan 1 $280 $14 $164.7 $458.7
Plan 2 $393 $19 $27.3 $439.3
Plan 3 $505 $25 $27.3 $557.3
Plan 4 $618 $30 $0 $648
Plan 5 $730 $36 $0 $766
Plan 6 $842 $42 $0 $884
Plan 7 $955 $47 $0 $1,002
Plan 8 $1,067 $53 $0 $1,120
Plan 9 $1,180 $58 $0 $1,238

Table 4.3: Comparison of strategic planning scenario costs for slow
damage growth.

Planning Scenarios Cf Cq NV C C+NV C

................... ($ Millions)...................
Plan 1 $280 $14 $1,171.8 $1,465.8
Plan 2 $393 $19 $1,171.8 $1,583.8
Plan 3 $505 $25 $843.3 $1,373.3
Plan 4 $618 $30 $843.3 $1,491.3
Plan 5 $730 $36 $843.3 $1,609.3
Plan 6 $842 $42 $843.3 $1,727.3
Plan 7 $955 $47 $843.3 $1,845.3
Plan 8 $1,067 $53 $843.3 $1,963.3
Plan 9 $1,180 $58 $705.9 $1,943.9

Table 4.4: Comparison of strategic planning scenario costs for fast
damage growth.
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total losses in Plan 3. Because we are dealing with slow fires, Plan 4 through

Plan 9 are able to suppress both fires with no economic losses.

In case of fast fire damage growth as shown in Table 4.4, Plan 3 can

reduce the total losses by 9% (from $1,465.8 to $1,373.3 US million) by

increasing the number of firefighters to 540. The high values in NVC column

is due to the fast damage growth resulting from this type of fires.

4.4 Conclusion

The methodology presented in this chapter has focused on integrating the

cost of fire damage within strategic planning. The strategic plans deal with

the optimal budget allocation and the deployment or relocation of firefight-

ing resources. The concept of the C+NVC was used to perform the economic

analysis to determine the most efficient strategic plan. i2Sim is used to model

the infrastructure systems in order to understand and evaluate the net value

change of goods and services due to the fires. The fire damages were eval-

uated using three different damage functions. The results have shown that

the proposed methodology can be used for more effective strategic planning

and better daily scheduling and allocation decisions.

In this chapter, we focused on human resources planning decisions from

the fire departments’ point of view. Overall, the increasing interdependence

of infrastructure systems makes economic losses induced by extreme events

very severe and difficult to predict. We believe that methods like ours that

address this problem will be a key component of future decisions support

systems. In the next chapter, we change our perspective and observe the

impact that resource allocation decisions during emergency response have
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on improving infrastructure resilience.
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Chapter 5

Improving Resilience of

Interdependent

Infrastructure Systems

5.1 Introduction

Modern infrastructure systems, such as water, electrical power and trans-

portation, become more and more interconnected and interdependent [82].

Due to such interdependence, these systems are inherently vulnerable to dis-

ruptions in other systems. Despite the fact that a lot of resources have been

invested in prevention, not all incidents can be averted. Increasingly, the

emphasis in emergency response has shifted from protection and prevention

towards preparedness and response [11]. This shift is realized by the concept

of resilience. The effectiveness of the emergency preparedness and response
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plans has a high impact on infrastructure resilience.

A resilient infrastructure is an infrastructure that can withstand sud-

den disturbances with minimum disruption and recovers within acceptable

losses and time [83]. One way to improve resilience is to consider the effec-

tiveness of the emergency preparedness and response plan. The effectiveness

of emergency response plans includes prioritization of responses and optimal

allocation of available limited resources.

In this chapter, we propose a methodology to evaluate the impact of re-

source allocation decisions during fire incidents in improving infrastructure

resilience. This methodology focuses on two dimensions: system resource-

fulness and system rapidity. The system resourcefulness is evaluated by the

ability to prioritize fire incidents and the optimality of mobilizing firefight-

ing units. The system rapidity is evaluated by containing economic losses

in production and by minimizing the recovery time. This methodology can

be used for any type of natural or man-made hazards. It can also be used

for other resource allocation problems in any interdependent environment

such as telecommunications, transportation, electric power grids, and water

supply systems. Section 5.2 of this chapter describes the problem formula-

tion. Section 5.3 provides background information infrastructure Resilience.

Section 5.4 presents the proposed methodology. Results and discussion are

provided in Section 5.5 and the conclusion is given in Section 5.6.

5.2 Problem Formulation

This research is mainly concerned with developing a methodology to evaluate

the impact of allocating firefighting units during fire incidents on infrastruc-
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ture resilience. Once a fire alarm signal is received, the response mobilization

is started by dispatching firefighting units from the fire stations. Emergency

responders must determine the optimal number of firefighters that should

be allocated to mitigate the potential disruptions resulting from extreme

events. The existing strong interdependence between infrastructure systems

remains a challenge in modeling the consequences of fire incidents. Because

such incidents and their cascading effects are becoming stronger, there is an

important need to evaluate this impact of the resources allocation process

on infrastructure resilience.

In the analysis of infrastructure systems and emergency response behav-

iors, two major problem exist, namely:

1. An infrastructure system, I, is a set of production units related to each

other, I = {P1,P2,P3, ...,Pn}, where Pn is the nth production unit, and

n is the total number of production units. Given a set of fire incidents

{f(P1),f(P2), ...,f(Pn)}, what is the impact on infrastructure system

I ?

2. Given a set of firefighting units {u1,u2,u3, ...,uq}, where uq is the qth

firefighting unit, q is the total number of available firefighting units,

and a desired level of resilience, R(I), what is the best allocation

scheme of the available firefighting units during suppression time [0,TS ]

such that Ts = {(u1,f(P1)), (u2,f(P2)), (u3,f(P2)), ...}, ∀ Ts ∈ [0,TS ]

to maintain a desired resilience level, R(I)?

These problems are discussed in the next section.

80



5.3 Infrastructure Resilience

Resilience was originally introduced as a property of systems by Holling in

1973 [84]. Since that time, the concept of resilience has been studied in a

large number of disciplines such as ecology, psychology, sociology, economics,

and engineering. Increasingly, resilience is recognized to be an important di-

mension of the sustainability of infrastructure systems. Bruneau et. al. [85]

emphasize that resilient systems reduce the probability of failure, the con-

sequences of failure such as economic losses and the time for recovery.

According to Bruneau, et. al. [85], there are four dimensions that can

improve resilience. These dimensions are as the following:

• Robustness: The inherent strength or resistance in any system to with-

stand a given level of stress or demand without degradation or loss of

functionality.

• Redundancy: The ability of a system to satisfy the functional require-

ments using alternate options, choices and substitutions in the event

of disruption, degradation or loss of functionality

• Rapidity: The speed with which losses are overcome and safety, service-

ability and stability are resumed.

• Resourcefulness: The ability to identify problems, establish priorities

and mobilize resources and services in emergencies to restore the sys-

tem performance.

Although many of these dimensions have been evaluated as technically-

based functions of the physical system, quantifying resourcefulness, as a
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property, remains challenging because it relies on human skills and their

abilities to respond and recover from disaster events [86]. The focus in this

chapter is on two of these dimensions, resourcefulness and rapidity, that

track the reaction during extreme events. The system resourcefulness is

evaluated by the ability to prioritize fire incidents and the optimality in

mobilizing firefighting units. The system rapidity is evaluated by containing

economic losses in production and by minimizing the recovery time.

Infrastructure resilience can be defined as the ability to reduce the mag-

nitude and the duration of disruptive events [87]. Resilience, as a property

of complex systems, can be measured in one of two ways: the amount of

disturbance a system can withstand without changing its original state [84]

and the time taken for a system to recover after a disturbance [88]. In this

sense and after analyzing the literature, the definition provided by Cimel-

laro et. al. in [86] has been adopted. Cimellaro et. al. define resilience (R)

as [86]:

“. . . a function indicating the capability to sustain a level of func-

tionality or performance . . . over a period defined as the control

time (TLC) that is usually decided by owners, or society. . . ”

Figure 5.1 shows a hypothetical system functionality curve after the

effects of an event, E. This figure provides a general overview of the time

dependent system functionality and illustrates the important times during

system response. As expected, system functionality under the effects of

the event degrades from the normal operating level. This functionality with

respect to the time of event occurrence can be divided into three stages: pre-
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event (t < tE0), recovery time (tE0 < t< tE0 +TRE) and post-event (t > tE0 +

TRE). In the pre-event stage, the system operates under normal conditions.

During the recovery period, the system operates under the influence of the

hazard. In the post-event stage, the system returns to normal operation.

Analytically, the resilience measure can be expressed by the following

equation [86]:

R= 1
TLC

∫ t0E+TLC

t0E

Q(t)dt (5.1)

where

Q(t) is the functionality of the system

t0E is the time of occurrence of event E

TLC is the control time of the system

Figure 5.1: Graphical representation of resilience.
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For infrastructure systems, the functionality can be expressed as eco-

nomic losses in production. These losses include losses in production due

to a disturbance (direct losses) plus business interruptions due to degrada-

tion in production (indirect losses). The analytical functionality Q(t) of the

infrastructure system can be expressed as follows:

Q(t) = 100− [LD(t)+LID(t)] (5.2)

where

LD is the direct losses function

LID is the indirect losses function

Both direct losses and indirect losses functions are expressed as a per-

centage of the total production.

5.4 Proposed Methodology

In this chapter, we use the developed system described in Chapter 2 to

evaluate the impact of resource allocation decisions during fire incidents in

improving infrastructure resilience. Figure 5.2 depicts the proposed method-

ology for assessing resilience of infrastructure systems.

The methodology starts with identifying the severity of the fire incident.

As discussed in Section 2.2, each fire is described by its severity. This mea-

sure defines the required number of man-hours to suppress a fire. Based on

this information, emergency responders generate the allocation decisions of

the available firefighting units. These decisions are evaluated by the damage
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Figure 5.2: Flowchart describing the proposed methodology for as-
sessing resilience of infrastructure systems.

function described in Section 2.2. After each decision, the physical state of

the infrastructure system components is evaluated using i2Sim described in

Section 2.3. The impact of this damage is translated into recovery time TRE .

At this point, the infrastructure performance can be evaluated before and

after the hazard. The functionality of this system Q is defined as the un-

realized production (compared to nominal) due to inoperability which can

be calculated using Equation 5.2. Both direct and indirect losses can be
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Allocation
Method

Plant 10 Plant 4

Level of damage Recovery time Level of damage Recovery time

Method 1 High 6 months Intermediate 3 months
Method 2 High 6 months Low 1 month
Method 3 High 6 months Low 1 month
Method 4 High 6 months Minimul Minimul

Table 5.1: Level of damage and recovery time for applied allocation
methods.

measured through i2Sim’s cells’ output. The final step is to evaluate the

resilience of the infrastructure system R using Equation 5.1.

5.5 Results and Discussion

The methodology described above has been applied to the case study intro-

duced in Section 2.6. Two simultaneous fire incidents, Fire 1 and Fire 2,

were simulated in Plant 4 and Plant 10, respectively. We assume that Fire

1 requires 200 man-hours to be suppressed, while Fire 2 requires 600 man-

hours. Four allocation methods listed in Table 3.4 were used to evaluate

the impact of resource allocation decisions on the petrochemical complex

resilience. For each method, the developed system evaluates the potential

damage based on fire duration. The severity of this damage is reflected

into a reduction in the production level and recovery time TRE . Recovery

time TRE given here is the time needed for repair and reconstruction as de-

scribed in Table 2.1. A 1-years control period is chosen for evaluating the

functionality of the petrochemical complex, TLC = 365 days.

Figure 5.1 shows the resulting level of damage for each allocation method

and the associated recovery time. Figures 5.3, 5.4, 5.5 and 5.6 show the
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functionality of the petrochemical complex using different allocation meth-

ods. It can be seen that robustness is extremely high for Method 4 (Figure

5.6), which represents the optimized allocation decision. Method 4 was able

to prioritize fire incidents and allocate more firefighters to the critical fire.

Method 1, which represents the "business as usual" decision, recorded the

lowest robustness at 55% as shown in Figure 5.3. It appeared that the rapid-

ity of the complex was the same for all the allocation methods (180 days).

The expected equivalent production losses for each allocation method are

shown in the third column of Table 5.2, along with the recovery period

considering an observation period TLC of 365 days.
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Figure 5.3: Functionality the of the case study after multiple-fire in-
cidents using Method 1.
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Figure 5.4: Functionality the of the case study after multiple-fire in-
cidents using Method 2.
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Figure 5.5: Functionality the of the case study after multiple-fire in-
cidents using Method 3.
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Figure 5.6: Functionality the of the case study after multiple-fire in-
cidents using Method 4.

Allocation Methods Recovery Time
TRE (days)

Production Losses
($ US Millions)

Resilience
R(%)

Method 1 180 $3,460 87.78%

Method 2 180 $1,171 95.86%

Method 3 180 $1,171 95.86%

Method 4 180 $493 98.26%

Table 5.2: Recovery time, losses and resilience of the case study for
different allocation methods (TLC = 365 days).

The complex resilience value is calculated according to Equation 5.1 for

control time TLC . Figures 5.7, 5.8, 5.9 and 5.10 show the calculated resilience

for Method 1, Method 2, Method 3 and Method 4, respectively.

The resilience values are summarized in Table 5.2. For this case study,

it is shown that the optimized allocation has the largest resilience value of
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95.86%, when compared with the other three methods, and it is the least

losses in production ($ 493 US million). However, if the common action

(Method 1) is taken, the complex resilience is reduced to 87.78%, and the

production losses increased drastically to $3,460 US million. For Method 2

and Method 3, the resilience values were the same at 95.86% and production

losses at $1,171 US million.

This means that the optimizing resource allocation process during fire

incidents improves the infrastructure resilience. We conclude that effec-

tiveness of the emergency response plan has a high impact on improving

infrastructure resilience.
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Figure 5.7: Resilience curve showing level of functionality of the case
study over time for Method 1.
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Figure 5.8: Resilience curve showing level of functionality of the case
study over time for Method 2.
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Figure 5.9: Resilience curve showing level of functionality of the case
study over time for Method 3.
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Figure 5.10: Resilience curve showing level of functionality of the case
study over time for Method 4.

5.6 Conclusion

In this chapter, we proposed a methodology to evaluate the impact of re-

source allocation decisions during fire incidents in improving infrastructure

resilience. Resourcefulness and rapidity revolve around the ability to max-

imize the utilization of available resources and to minimize the economic

losses by minimizing the recovery time.

A case study of a petrochemical complex was used to explore the impact

of allocating limited number of firefighters during multiple fire incidents. We

conclude that the decisions of allocating firefighting units are crucial for en-

suring an acceptable level of production after suppression. Furthermore, the

best retrofit method to improve the resilience measure of any infrastructure
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system should consider infrastructure interdependence for such decisions.

The proposed methodology allows exploration of how different resource

allocation decisions affect infrastructure resilience. It can be used for any

type of natural or man-made hazards, which might lead to the disruption of

any infrastructure system. It can also be used for other resource allocation

problems in any interdependent environment such as telecommunications,

transportation, electric power grids, and water supply systems.
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Chapter 6

Conclusion

This thesis focuses on the development of a decision support system for

assisting emergency responders in making efficient decisions during extreme

events. The novelty consists of addressing infrastructure interdependencies

in firefighting operation. It formulates the fire management problem as an

optimization problems and provides solution algorithms for this problem.

It also evaluates the impact of fire operation decisions on infrastructure

resilience.

The developed system can be used by fire department to minimize the

economic losses during fire incidents. It incorporates economic analysis

within the decision-making process and provides cost estimates for different

allocations methods. This can help decision-makers to better understand

the impact of their decision during emergency response.

In addition, presenting the results of this research as economic impact,

expressed in monetary values, can help to bridge the research gaps between

industry and academia. With results in this form, decision makers in indus-
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tries would be better able to understand the value of academic research.

In this chapter, we summarize our efforts to improve the emergency re-

sponse decisions during fire incidents and present future research directions.

6.1 Resource Allocation and Scheduling During
Multiple-Fire Incidents

We proposed and developed a methodology to evaluate resource allocation

decisions during multiple-fire incidents. The methodology uses infrastruc-

ture interdependency modeling to evaluate the interactions among different

systems. In this thesis, the economic impact of the fire incidents (direct and

indirect losses) was evaluated to find an optimized allocation with minimum

economic losses. Several factors such as fire damage growth rate and hu-

man factors were studied to determine their effects on the decision-making

process. The developed methodology was elaborated and implemented in a

case study of multiple-fire incidents in a petrochemical complex. Our results

show that the proposed methodology gives promising results to effectively

improve the resource allocation decisions in interdependent environments. It

performs better than other allocation methods in terms of economic losses.

6.2 Capacity Planning of Human Resources

We also presented a capacity planning methodology for fire managers to

investigate the impact of hiring decisions on effectiveness of firefighting op-

erations. In this thesis, we incorporated the concept on C+NVC to perform

an economic analysis to determine the most efficient strategic plans. i2Sim

is used to model infrastructure systems in order to understand and evaluate
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the net value change of goods and services due to fire. The fire damage

growth was evaluated using three different damage functions. The results

have shown that the proposed methodology can be used for more effective

strategic planning and better daily scheduling and allocation decisions.

6.3 Improving Resilience of Interdependent
Infrastructure Systems

Finally, we proposed a method to evaluate the impact of resource allocation

decisions during fire incidents in improving infrastructure resilience. Our

method focused on two dimensions of resilience: resourcefulness and rapid-

ity. Resourcefulness was evaluated by the ability to prioritize fire incidents

and the optimality in scheduling firefighting units. Rapidity was evaluated

by minimizing economic losses and recovery time. The results showed that

incorporating these dimensions into fire fighting decisions has a high impact

on improving infrastructure resilience.

6.4 Future Research Directions

In this section we present some of the on-going research and possible exten-

sions related to this thesis.

6.4.1 Improvement to the Fire Damage Assessment

Accurate assessment of fire damage is essential for developing effective emer-

gency response plans. The damage function developed in Section 2.2.2 uses

a deterministic value estimated from fire duration. Predicting fire damage

is a complex task and surrounded with considerable uncertainties. Some of
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these uncertainties are due to uncontrollable factors such as weather, fire

occurrence, and fire severity. The fire damage function can be extended to

consider these uncertainties. It can be modelled using a discrete set of fire

scenarios each of which can occur with some known or estimated probability.

6.4.2 Considering Multiple Owners During Multiple-Fire
Incidents

In this thesis, a single owner of infrastructure systems was considered during

the process of developing the emergency response plans. Multiple owners

of interdependent infrastructure systems make emergency repones decisions

during multiple fire incidents more challenging, especially if the different

fire places are owned by different parties, and insured by different insurer.

Further research is needed to study the situation of having multiple owners

during multiple-fire incidents.

6.4.3 Understanding the Impact of the Human Factor
During Emergency Response

This thesis found that human performance has a direct impact on the ef-

fectiveness of firefighting operations. Therefore, understanding firefighters

behaviour during the fire suppression process, and the impact on their phys-

ical and mental performance, is another important area for future research.

In general, there is a lack of data in human performance during emergency

situations [89]. Future research should explore human performance during

emergency conditions in harsh environments.
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6.4.4 Applications to Other Types of Emergency Response

Lastly, the developed system can be used as a decision support system for

other disastrous events, such as floods, wildfire, machine failures, industrial

accidents and terrorist attacks. In addition, it can be used for interdepen-

dent infrastructure risk and vulnerability analysis. Some examples of such

applications are summarized below.

• Wildfire Suppression: Wildfire is one of the most severe natural haz-

ards in the world. The developed system in Chapter 2 can be further

modified to optimize resources allocation for wildfire containment. Ge-

ographic Information Systems (GIS) can be integrated to the devel-

oped system to provide location information which can be used in

evaluating the economic efficiency of alternative wildfire management

plans.

• Evaluating Restoration Plans of Critical Services: During restora-

tion after a natural disaster, engineers are faced with a large number

of theoretical possibilities of how critical services, such as electrical

power, can be restored. The proposed methodology in Chapter 5 can

be modified to develop restoration strategies and restoration plans.

Different event scenarios can be modeled and their impact on the ser-

vices provided by critical infrastructure systems can be assessed. With

this knowledge, alternative restoration plans can be evaluated accord-

ing to their ability to achieve rapid restoration of critical services.

• Identifying and Ranking Critical Components: Identifying critical
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components for infrastructure systems provides important input for

valuing infrastructure investments and managing risks. The developed

system can be used to develop a model for risk analysis to identify and

rank critical components. By using i2Sim to model interdependent

infrastructure systems, the consequences when components within the

systems fail to perform properly can be simulated. These consequences

can be evaluated by several factors, such as economic losses, affected

sites or degradation in performance. Then, the components can be

ranked based on its criticality.
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