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ABSTRACT 

Urban cyclist’s physical characteristics are important for advanced modelling of 

bicycle speed and energy expenditure, with applications including infrastructure design, 

network analysis, and health and safety assessments. However, representative values for 

diverse urban travellers have not been established. This study investigates the physical 

characteristics of real-world urban cyclists, including rolling and drag resistance 

parameters, and bicycle and cargo masses. Relationships among physical characteristics 

socio-demographics and travel behaviour are also analysed, and a bicycle cruising speed 

model is derived to illustrate usefulness of the sought parameters.  

Firstly, a 12-sensor, 100-meter coast-down test setup is developed and indoor and 

outdoor validation tests are performed. Outdoor validation tests generate rolling resistance 

coefficient estimates of 0.0064 ±0.0013 and effective frontal area estimates of 0.63 ±0.11 

m2. 

Secondly, resistance parameters were measured utilizing the novel coast-down test 

for 557 intercepted cyclists in Vancouver, Canada.. The average (standard deviation) of 

coefficient of rolling resistance (𝐶𝑟), effective frontal area (𝐴𝑓𝐶𝑑), bicycle plus cargo mass, 

and bicycle-only mass were 0.0077 (0.0036), 0.559 (0.170) m2, 18.3 (4.1) kg, and 13.7 

(3.3) kg, respectively. The range of measured values is wider and higher than suggested in 

the literature. 

Thirdly, the sample of intercepted cyclists is categorised based on observed physical 

attributes of the bicycle and rider. Three typologies defined through cluster analysis were 

identified as Road (R), Hybrid (H) and Mountain (M) style urban cyclists. The analysis 

indicates that cycling efficiency, perceptions, preferences, and habits are related to physical 
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typology in a complex but consistent manner. M, H, and R cyclists are, in that order, 

increasingly more efficient, more comfortable in mixed traffic, more consistently year-

round cyclists, self-reportedly faster, and engage in more physical activity. Physical 

typologies might help unveil new motivations in active travel behaviour and encourage 

urban cycling by a wider range of people.  

Finally, a mathematical framework is derived from first principles to determine 

speed from cyclist characteristics (power output, gearing, resistance parameters) and 

roadway attributes. Application of the speed estimation framework to the problem of traffic 

signal clearance interval timing illustrates the utility for probabilistic, context-sensitive 

roadway design.  
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1. INTRODUCTION 

 

With the growth in bicycling as an urban transportation mode in cities around the 

world, there is increasing interest in and need for methods to model bicycle performance 

and cyclist behaviour in increasing detail. Bicycle performance, for example design speed, 

is a key input for safe, reliable, and attractive infrastructure design (Navin, 1994; Parkin & 

Rotheram, 2010). Since the 1970s, there has been growing interest in bicycle infrastructure 

planning and design techniques, with new guidelines being developed around the world, 

e.g. (CROW, 2007; National Association of City Transportation Officials, 2014). Also, 

bicycle speed is a key input for geometric and signal design (Parkin & Rotheram, 2010; 

Taylor & Mahmassani, 2000), and variability in bicycle speeds is essential for moving 

toward probabilistic, reliability-based infrastructure designs (Ismail & Sayed, 2009). An 

appropriate cyclists’ physical characterization would refine bicycle performance knowledge 

fundamental to providing bicycle infrastructure that is both safe and appealing, for example 

accommodating desired riding speeds, with the additional goal of incentivising bicycle 

travel. Furthermore, the increase use of microsimulation for operational performance 

analysis requires more refined ways to model bicycle travel, particularly speed (Twaddle, 

Schendzielorz, & Fakler, 2014). Better understanding of bicycle performances in terms of 

energy expenditure, power output and speed could also improve understanding of bicycle 

route and mode choices (Heinen, van Wee, & Maat, 2010; Iseki & Tingstrom, 2013; 

Mercat, 1999a). Speed and energy expenditure are also important factors for health effects 

through air pollution and physical activity, and better cyclists’ characterization could 

improve health assessments for transportation systems and projects (Bigazzi, 2016; Bigazzi 

& Figliozzi, 2014; Mueller et al., 2015a). 
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Bicyclist power output and energy expenditure are connected to travel (speed) and 

roadway (grade and pavement) conditions primarily through three physical parameters 

describing rolling, aerodynamic resistances and overall cyclist mass (i.e. including machine 

and cargo, if present) (Bigazzi & Figliozzi, 2015a; Olds, 2001; Wilson & Papadopoulos, 

2004). These parameters have been investigated mainly for sport and professional 

bicycling, while relatively little is known about their values for utilitarian urban bicyclists 

(Bigazzi & Figliozzi, 2015a; Faria, Parker, & Faria, 2005; Wilson & Papadopoulos, 2004). 

A better understanding of these physical parameters for real-world urban bicyclists, 

including their relationship with other non-physical factors, is needed to estimate speed and 

energy expenditure and to understand how they relate to travel and roadway conditions.  

This thesis addresses the lack of real-world urban cyclists’ rolling, aerodynamic 

resistances parameters as well as overall mass (gathered under the term “physical 

characterization”) and uses newly gathered knowledge towards cycling behavioural and 

speed modelling. To fill the lack, experimental research was carried out, comprising design 

and validation of an outdoor coast-down test to measure resistances parameters (chapter 4 

and 5, respectively), administration of the test in an intercepted survey (chapter 6), and 

analyses of physical characterization results, exploring how they relate to cyclists’ socio-

demographics and travel behaviour (chapter 7 and 8, respectively). Finally, a bicycle speed 

model is derived, using rolling, aerodynamic and mass parameters, to show the importance 

and usefulness of this research work in one practical example (chapter 9). 

This thesis, especially the coast-down test methodology, builds on past work, so a 

literature review is provided in the following chapter.  
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2. LITERATURE REVIEW 

This literature review is twofold. The first part exposes available body of 

knowledge regarding land vehicle resistances, with a focus on sport and professional 

cycling. The second part illustrates available methods to measure bicycle resistances.  

2.1. Resistance parameters in land vehicles 

Any real-world land vehicle is subject to resistances that must be exceeded to 

generate motion. Resistance forces are typically subdivided in those that are always present 

for any vehicle on any route (Rolling and Aerodynamic resistances) and those that might be 

present depending on route topography (Grade resistance) and vehicle type (Curve 

resistance in railroad vehicles) (Lupi, 2004). 

Rolling resistance 

Rolling resistance is mainly due to eccentricity of wheels’ pressure distribution along the 

contact patch (contact area between the wheel and the pavement). When the wheel is not 

moving, pressure distribution is symmetric so that the resultant perfectly balance out the 

weight the wheel is supporting. When the wheel is moving, the pressure distribution skews 

in the direction of travel, resulting in an imbalanced horizontal force (namely, rolling 

resistance) acting in the opposite direction of motion. Also, because the contact between 

wheel and pavement is inelastic, energy dissipation occurs when moving. 
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Generally, rolling resistance depends on contact patch area, which is influenced by tire 

type, pressure, weight. It also depends on pavement and wheel materials (railroad rolling 

resistance is much lower than automobiles) and temperature, as well as wheel bearings 

(in)efficiency. Lastly, it depends on wheel speed, because the eccentricity in contact patch 

pressure distribution grows with growing speed (Lupi, 2004; Wong, 2008). 

Aerodynamic resistance 

Aerodynamic (or drag) resistance, is mainly due to air overpressure at the front of the 

vehicle, depression at the rear of the vehicle, and for long vehicles (e.g. trains or trucks) 

friction along vehicle’s lateral surfaces (bottom included). Hence, drag resistance is 

proportional to vehicle’s external shape and area, as well as travelling speed (wide, non-

aerodynamic areas offer more surface, and higher speed generates higher pressure). Also, it 

is proportional to the medium density (Lupi, 2004; Wong, 2008). 

Grade resistance 

Grade resistance originates when a vehicle is moving vertically in the gravitational field. It 

is true that to gain height (i.e. go uphill) a vehicle must exert work so that part of it be 

transformed in potential energy. Grade resistance depends on the weight of the vehicle and 

on the road grade itself.  
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Curve resistance 

Curve resistance is usually negligible but for railroad vehicles (Lupi, 2004). The reason lies 

in the friction generated between wheel flanges and rail heads during a turn. When 

travelling on a horizontal curve railroad vehicle wheels, being rigidly connected, cannot 

steer so the flange/head friction is responsible for the turning movement. Also, railroad 

vehicles are not equipped with differentials (mechanical devices allowing the outer wheels 

to rotate faster than inner ones when travelling on a curve), generating slippage (Hay, 1982; 

Lupi, 2004). 

2.2. Resistance parameters in bicycles  

Major resistance forces for a bicycle can be categorized as the following (Olds et 

al., 1995; Wilson & Papadopoulos, 2004): 

(i) Rolling: due to inelastic deformation of the wheel and friction losses at the 

bearings; 

(ii) Aerodynamic drag: due to the bicycle moving in the medium air; 

(iii) Road grade: due to a gain (or loss) of height in the gravitational field. 

Other resistances (such as friction losses during turning) can be considered negligible for a 

bicycle (Wilson & Papadopoulos, 2004). At low speeds, rolling resistance is a main 

contributor to total resistance force and it can be approximated as independent of speed. 

Analogously to the Coulombian formulation of friction, the rolling resistance is 

𝑅𝑟 = 𝑚𝑔𝐶𝑟   ( 1 ) 

where 𝐶𝑟 is the unit-less rolling resistance coefficient, which depends on parameters such 
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as tire pressure, tire width, and pavement (roughness and material), and 𝑚𝑔 is the weight 

(in N) of the bicycle plus bicyclist. As speed grows, drag can become the main resistance 

force. The resistance of a body moving in a medium of density 𝜌 (kg/m3), at speed 𝑣𝑟𝑒𝑙 

relative to the wind, having frontal area 𝐴𝑓 and drag coefficient 𝐶𝑑, is modelled as (semi-

empirical equation, derived from Bernoulli’s theorem): 

𝑅𝑑 =
1

2
𝜌𝐴𝑓𝐶𝑑𝑣𝑟𝑒𝑙|𝑣𝑟𝑒𝑙| .  ( 2 ) 

The absolute value in Equation 2 allows for the condition 𝑣𝑟𝑒𝑙 < 0 – where the bicyclist has 

a tailwind that exceeds the travel speed (Knight, 2008). Grade resistance can be modelled 

as  

𝑅𝑔 = 𝑚𝑔
𝐺

√1+𝐺2
  ( 3 ) 

where 𝐺 is the road grade in direction of travel, expressed as a ratio of vertical to horizontal 

distance over a fixed length of road (unit-less). For small 𝐺 Equation 3 approximates 

𝑅𝑔 = 𝑚𝑔𝐺   ( 4 ) 

Total resistance force can then be written as 

𝑅 = 𝑚𝑔(𝐶𝑟 + 𝐺) +
1

2
𝜌𝐴𝑓𝐶𝑑𝑣𝑟𝑒𝑙|𝑣𝑟𝑒𝑙|.  ( 5 ) 

Mass 𝑚 can be inflated to 𝑚𝜇 according to the following  

𝑚𝜇 = 𝑚(1 + 𝜇)  ( 6 ) 
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where 𝜇 is a mass correction factor to account for the inertia of rotating parts. It is usually 

estimated enforcing an energy balance between the bicycle as a rigid body and the actual 

one (i.e. with rotating parts). Mass inflation in bicycles can be considered negligible for 

non-professional bicycling purposes (Burke, 2003a), so it was not accounted for in this 

study. As an example for an average bicycle (80 kg bicycle and cyclists; 0.9 kg per wheel, 

each having 0.34 and 0.36 m internal and external diameter, respectively) 𝜇 = 0.02 is 

found. 

2.3. Resistance parameters methods of assessment 

Aerodynamic drag and rolling resistances during bicycling have been investigated 

using wind tunnels, power meters, the dynamometric method, and the coast-down method, 

among others. Wind tunnel testing is a common approach, but relatively costly, difficult to 

apply to a wide range of travellers, and only able to measure drag resistance. Data from 

bicycles instrumented with power-meters to measure cyclist power output at different 

speeds can be used to estimate rolling and drag resistance parameters, but again this is 

difficult to apply to a wide range of travellers, and requires modifying the bicycle for which 

parameters are sought. Thirdly, the dynamometric method (towing the bicycle on flat 

ground at constant speeds using a cable paired in series with a dynamometer) can be used to 

estimate rolling and drag resistance parameters. Finally, coast-down or deceleration 

methods can be used to measure rolling and drag resistances exploiting Newton’s second 

law (Andersen, Larsen, Fraser, Schmidt, & Dyre, 2014; R. B. Candau et al., 1999; Debraux, 

Grappe, Manolova, & Bertucci, 2011; Kyle & Burke, 1984). 
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2.4. Coast-down tests review 

Among the methods enumerated previously, coast-down testing, also known as the 

deceleration method, is appealing for testing of real-world urban bicyclists because it can 

capture both rolling and drag resistance forces, has been successfully applied to a range of 

vehicles, and can be implemented in situ on bicycle facilities. A coast-down test consists of 

measuring a vehicle’s motion while coasting from a cruising speed to a stop without 

activating the brakes, and then extracting resistance parameters from the data by fitting a 

physical equation of motion (R. B. Candau et al., 1999; Debraux et al., 2011; Preda & 

Ciolan, 2010; White & Korst, 1972). While this method holds promise, most previous 

bicycle coast-down testing has been conducted indoors, and so the method must be revised 

for field application by accounting for wind and grade. 

In the absence of propulsion or braking forces, vehicle deceleration is primarily 

determined by rolling and aerodynamic resistance forces. For automobiles, the coast-down 

test is formalized as a velocity-time curve from the basic equations of motion, and on-board 

instruments (e.g. accelerometers, tachometers, odometers) can be used to measure 

instantaneous deceleration, speed, and distance over time (Preda & Ciolan, 2010; White & 

Korst, 1972). Coast-down deceleration can be represented as the differential equation 

𝑚 ∙
𝑑𝑣

𝑑𝑡
= 𝑐0 + 𝑐1𝑣 + 𝑐2𝑣

2   ( 7 ) 

where 𝑚 is the total mass of the vehicle, 𝑣 is the instantaneous speed over time 𝑡, and 𝑐𝑖 are 

resistance parameters. Typically, rolling resistance is considered to be independent of speed 

(contributing to 𝑐0) and drag proportional to 𝑣2 (contributing to 𝑐2); 𝑐1 is usually low, 

related to the rotational inertia, and sometimes assumed to be zero (di Prampero, Cortili, 
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Mognoni, & Saibene, 1979). 

On-board measurement is more difficult for bicycles (for example, using power 

meters or cycle computers) – particularly during a short field test with intercepted 

travellers. Waltham and Copeland (1999) manually recorded velocity over time with an 

audio recorder, while de Groot et al. (1995) logged cycle computer data and used Equation 

7 with 𝑐1 = 0 to develop the fitting equation for 𝑣(𝑡): 

𝑣(𝑡) = √
𝑐0

𝑘𝑚
𝑡𝑎𝑛 (𝑎𝑡𝑎𝑛 (𝑣0√

𝑘𝑚

𝑐0
) − √𝑐0𝑘𝑚 𝑡) ( 8 ) 

where 𝑣0 is the initial bicycle speed and 𝑘𝑚 is aerodynamic drag per unit mass (𝑐2/𝑚). 

Cycle computers to measure speed are problematic for a field survey because each bicycle 

would have to be instrumented before testing. In addition there are resolution errors at low 

speeds for most off-the-shelf cycle computers. 

As an alternative to direct speed measurements, time measurement at fixed locations 

has been used for bicycle coast-down test instrumentation. Kyle and Burke (1984) 

performed coast-down tests with bicyclists coasting down a hill and then slowing to a stop 

on flat land. Initial coasting speed was measured using time traps (two timing switches a 

short distance apart) and the total coasted distance was recorded. The equation developed 

for the test coasting distance was:  

𝑥 =
𝑚

2𝑐2
𝑙𝑛 (

−𝑚𝑔𝐺+𝑐0+𝑐2(𝑣0−𝑤)
2

−𝑚𝑔𝐺+𝑐0+𝑐2𝑤
2 ) +

𝑚𝑤

√𝑐2(−𝑚𝑔𝐺+𝑐0)
(−𝑎𝑡𝑎𝑛 (

−𝑤√𝑐2

√−𝑚𝑔𝐺+𝑐0
) + 𝑎𝑡𝑎𝑛 (

𝑐0−𝑚𝑔𝐺+𝑐2𝑣0
2

−𝑚𝑔𝐺+𝑐0
))  ( 9 ) 

where 𝑚 is the mass of rider and bicycle, 𝑐0 and 𝑐2 are rolling and drag resistance 

parameters, 𝑔 is gravitational acceleration, 𝐺 is road grade, and 𝑤 is wind speed. Results of 

the on-road testing were inconclusive, possibly due to lack of accounting for varying wind 
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and grade.  

Candau at al. (1999) developed an indoor coast-down test using three timing 

switches (pneumatic tubes) in a flat hallway, with spacing of 1 m and 20 m. Trigger times 

were recorded using computer chronometer with resolution of 30 µs. They developed a 

mathematical framework from Equation 7 with 𝑐1 = 0, similar to Equation 9 but without 

grade and wind effects. A first estimate of 𝑣0 was obtained from the first two timing 

sensors with spacing of 𝑥0 and initial time 𝑡0, and then the timing for the third switch 

estimated by  

𝑥(𝑡) =
𝑚

2𝑐2
ln

[
 
 
 
 
 
1+tan(𝑡√𝑐0𝑐2/𝑚2−atan(

cos(𝑡0√𝑐0𝑐2/𝑚
2)−𝑒

𝑐2
𝑚
𝑥0

sin(𝑡0√𝑐0𝑐2/𝑚
2)

))

2

1+
𝑐2
𝑐0
∙(√

𝑐0
𝑐2
∙
cos(𝑡0√𝑐0𝑐2/𝑚

2)−𝑒

𝑐2
𝑚
𝑥0

sin(𝑡0√𝑐0𝑐2/𝑚
2)

)

2

]
 
 
 
 
 

 . ( 10 ) 

Parameter estimates for 𝑐0 and 𝑐2 were generated by minimizing the squared difference 

between 𝑥(𝑡) from Equation 10 and the measured distance of 20 m.  
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3. OBJECTIVE 

The ultimate goal of this thesis it to provide transportation professionals with ready-

to-use physical characteristic distributions for real-world urban cyclists and illustrate 

associations with cycling behaviour. The goal is pursued by progressively investigating the 

followings: 

(i) Available methods to gather bicycle resistances parameters: comparison to find 

the most suitable methods to be administered in situ, during an intercept cyclists’ 

survey; 

(ii) Selection and validation of test methodology based on results variability of indoor 

testing; 

(iii) Coast-down testing expansion and validation to account for varying wind and 

grade conditions, typical of outdoor conditions; 

(iv) Design and administration of coast-coast tests in an intercept survey in 

Vancouver, BC in summer 2016; 

(v) Physical characteristics distribution illustration and correlation analysis among all 

measured parameters (physical, socio-demographic and behavioural). 

In addition, to demonstrate how bicycle travel models could benefit from cyclists 

physical characterization, a context-sensitive speed model is developed and an application 

in traffic operations is illustrated. 
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4. BICYCLE COAST-DOWN TEST DESIGN 

This section illustrates the process that led to the development of the final version of 

the coast-down test, eventually named the “12-switch” method. Trade-offs analysis was 

very important as the design had to consider the final usage in an intercept survey, so 

minimal imposition on cyclists and portability of instrumentation was paramount.  

4.1. Suitable coast-down equipment  

Measurement of bicycle motion when coasting (either, position, speed or 

acceleration) is required to model coast-down bicycle deceleration rate. Several 

technologies are available for such purpose. In general, motion-tracking devices can be 

installed on the vehicle (on-bicycle) or on the coast-down field (on-roadway). On-roadway 

devices are generally more laborious to install but they require less effort in gathering data 

when the coast down test is performed on intercepted cyclists. On the other hand, on-

bicycle devices don’t require any roadway installation, but they need to be of easy set-up 

and calibration on surveyed cyclists.  

On-Bicycle motion sensors 

Generally, on-bicycle devices provide a quasi-continuous tracking because they log 

bicycle motion with high frequency (<1Hz) to a memory slot. 

(i) Accelerometers and Gyroscopes 

Bicycle motion is described by accelerations collected with a certain selectable 

frequency. Smartphones often comprised of an Inertial Measurement Unit (IMU) 

including a three axial accelerometer and gyroscopes. Such technology could be 

easily and inexpensively provided to intercepted cyclists. However, such sensors 
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belong to the so-called MEMS (Micro Electro-Mechanical Systems) category. 

They are cheap and they are characterized by important errors. In particular, they 

have a systematic error component (bias, axis nonorthogonality, scale factor, 

thermal) and a random component (random noise), which can be potentially 

mitigated through calibration (Aggarwal, 2010). 

(ii) Cycling computers 

Bicycle motion is described by speed and distance collected with a relatively low 

frequency, usually of 1Hz for off-the-shelf devices, by measuring wheel 

revolutions. This method is inexpensive, but could perhaps generate reluctance in 

cyclists as it requires a non-trivial bicycle installation. 

(iii) GNSS (Global Navigation Satellite System) receiver 

Bicycle motion is described by geo-coordinates, collected with a certain 

frequency.  A GNSS receiver can provide an absolute positioning in a reference 

frame (e.g. WGS84) with a precision in the order of 5 m, and with augmentation 

systems (e.g. WAAS - Wide Area Augmentation System) can be further improved 

(De Agostino, 2009). It requires at least four visible satellites, potentially limiting 

available testing locations, such as urban canyons or tree-lined streets. 

(iv) Combined GNSS receiver + accelerometer and gyroscopes. 

GNSS and inertial measurement can be integrated to measure more reliably 

bicycle motion. Due to the complementarity of GNSS measurements and 

accelerometers, coupling the two technologies is a technique that has been often 

proposed for vehicle positioning (especially during brief GNSS outages periods) 

(De Agostino, 2009). It implies the use of Kalman filters or neuronal networks to 

compute enhanced bicycle positioning (De Agostino, 2009). 
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On-roadway motion sensors 

Generally, on-roadway devices provide a discrete tracking, because a finite number 

of sensors are installed on the coast down field. Sensors detect the movement of 

approaching bicycles. 

(i) Ultrasonic rangefinders 

Bicycle motion is described by proximity detection in time at finite locations 

along the coasting field. Ultrasonic sensors are used in many applications 

(presence, proximity or distance measurement). They work transmitting ultrasonic 

sound waves that, if reflected by an object, are returned and detected by the 

sensor itself. (Massa, 1999). For coast-down testing applications, there could be 

major concerns on detection of undesired objects, given the wide detection area of 

such sensors. Also, air temperature highly influence measurement accuracy. 

(ii) Piezoresistive sensors (Pressure sensors) 

Bicycle motion is described by detection in time at finite locations along the 

coasting field. Candau et al. (1999) used pressure sensors (in the form of 

pneumatic tubes) for coast-down testing. They are easy to install but they can 

interfere with the rolling resistance estimation as they introduce local energy 

losses. 
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(iii) Photoelectric sensors 

Bicycle motion is again described by proximity detection in time at finite 

locations along the coasting field. Photoelectric sensors can detect distance and 

presence of an object through transmission/reception of light. Detection, in 

particular happens through interruption or reflection of a light beam by a moving 

objects. An important factor to consider for coast-down application is that the 

bicycle tire moving at typical bicycle speed must be thick enough to obstruct the 

light source for enough time for receiver’s detection.  

4.2. Coast-down equipment selection 

It appears important to develop a coast-down method with minimal imposition on 

intercepted cyclists (i.e. nothing to be mount on bicycles). Therefore an “on-roadway” 

technology is preferred. Photoelectric (also called light-beam sensors) appears to be a good 

trade-off among “on-roadway” sensors because they do not affect the sought coefficients 

(as pressure sensors would) and because of small detection beam, it is unlikely that sensor 

will detect something that is not the targeted bicycle. In general there are three kinds of 

photoelectric sensors: 

(i) Diffuse 

Light receiver and emitter are located in the same sensor housing. Detection 

happens because the receiver is triggered by incoming object’s reflected radiation; 
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(ii) Retro-reflective (reflex) 

Light receiver and emitter are located in the same housing. A reflector, placed at a 

distance in front of the sensor itself, allows for the emitted light beam to be 

reflected into the receiver. Sensor is triggered when the light beam breaks (i.e. 

when the receiver does not see any light coming back); 

(iii) Through-beam 

Receiver and emitter are housed in two different boxes, installed one in front of 

the other, at a distance. As soon as the emitted radiation is not picked up by the 

receiver, the sensor registers detection (i.e. something obstructed the light beam). 

Categories are listed from the least to the most accurate. Accuracy is mostly influenced by 

beam angle, different for each model: a diffuse sensor has the largest beam angle, whereas 

through-beam has the smallest (down to 1.5 degrees). A “beam-through” IR (infrared) 

photoelectric sensor pair (model SKU: SE-020101, Figure 1) is purchased because of its 

easiness in orientation an alignment and detection accuracy (small beam angle). The sensor 

pair was tested with respected to the following conditions: 

 It must be compatible with a microcontroller (Arduino MEGA 2560), using a digital 

or analog pin (5V current); 

 It must be easy to position and align in the field; 

 It must be fairly insensitive to daylight (i.e. false triggering due to daylight 

contamination); 

 It must be able to detect the very first part of the wheel of a bicycle, i.e. the sensor 

must have a small reaction time. 
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The first two requirements were fulfilled by wiring up sensors with the microcontroller and 

by verifying that sensors have a led indicating “alignment” or not (i.e. if the receiver reads 

infrared light beam generated by the emitter). The last two requirements are tested in the 

following two chapters.  

 

 

Figure 1. Commercial-off-the-shelf, infrared photoelectric “beam-through” sensor 

pair (model SE-020101), utilized in the coast-down test. 

Daylight sensitivity analysis 

In order to verify daylight (that is comprised of an infrared component) sensitivity, IR 

receiver has been exposed to direct daylight, and the voltage output has been measured 

using analog pin with an Arduino microcontroller. The result of exposure to daylight over a 

few minutes, varying the exposure angle (i.e. inclination of sensor with respect to daylight 

source) led to the conclusions that IR sensors can be triggered by daylight. However, 

triggering happens only in case of perfect alignment with sunlight (i.e. only if receivers are 
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pointed towards the sun, or a surface that is reflecting sunlight towards the sensor). Since 

sensors in the field will be installed horizontally, risk of daylight-related false triggering is 

minimized. Also, as a precaution, receivers will be daylight-shielded using a washer, which 

will also serve as beam angle reduction for a better alignment. 

Response time analysis 

In order to perform a response time analysis an experiment was designed and developed. 

Such experiment aimed to see how fast could an object travel through the IR light-beam 

and being detected. A cylinder of hard paper, of diameter 4cm (comparable to bicycle tire + 

rim thickness) was repetitively dropped through the IR beam. This is to mimic a bicycle 

wheel travelling through the IR sensors in the field. The cylinder was dropped from a 

relative height ∆ℎ, with respect to the height of the IR beams. Energy conservation (in the 

simplified assumptions of no aerodynamic loss) is enforced according to 𝑚 𝑔 ∆ℎ =

 
1

2
 𝑚 𝑣𝑓

2, where using as ∆ℎ 2.15 m, a speed 𝑣𝑓= 6.5 m/s (23.4 km/h) is expected for the 

cylinder at sensor’s height. Such speed is deemed sufficient, as most cyclists do not ride at 

higher speeds. The test comprised ten cylinder drops and detection was checked using 

microcontroller’s voltage readings. All ten executed drops were detected, deeming the IR 

light beam (Figure 1) as selected technology in the coast-down experiment. 

Other pieces of equipment 

(i) Microcontroller 

The microcontroller chosen is illustrated in Figure 2. It is an Arduino MEGA 

2560, capable of reading both analog and digital input, in the range 0-5V. To 

allow experimenters checking that equipment worked properly, an LCD-keypad 
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shield is wired on top. Finally, a microSD breakout was connected to the 

microcontroller to let the bicycle motion measurements be logged in a .csv format 

and easily post-processed. 

(ii) Anemometer 

Outdoor coast-down testing requires dynamic wind measurement. On the market 

there are three main typologies of anemometer available, being “mechanical”, 

“hot wire” and “ultrasonic”. The latter measures the time of flight of sonic pulses 

between emitter and receiver to estimate wind speed and direction. Ultrasonic 

anemometers can usually achieve very high accuracy, at low wind speed. Also, 

some models can be interfaced with Arduino microcontroller as it has two 0-5V 

signal output, one for wind speed and one for direction. For the cost-down test 

design, a 2D Ultrasonic anemometer (R.M. Young Company, 2004) is selected. 

The selected model is depicted in Figure 2. 
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Figure 2. Left: 2D ultrasonic anemometer (Young ltd., model 85000). Right: 

Microcontroller (Arduino MEGA 2560) with LCD-keypad shield, and microSD 

breakout in an author’s custom-made wooden housing. 

 

4.3. Final equipment configuration: the “12-switch method” 

Figure 3 provides an illustration of the test setup and instrumentation. The paired 

sensors at the start of the test were used to make a comparison with the method in Equation 

10 (R. B. Candau et al., 1999). Infrared break-beam sensors were used as timing switches. 

The 15° default beam angle was reduced using washers on both the emitter and receiver. 

Response time and cross-interference of the sensors was tested during piloting and found to 

be sufficient to detect a 4cm diameter rod (approximatively the width of a bicycle tire) at 

6.5m/s. Beam-break times were recorded by a microcontroller (Arduino Mega 2560) 

reading at ≤17µs intervals and logging on a microSD card. For details about 

microcontroller coding see Appendix D. 
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Wind speed and direction were measured using an ultrasonic anemometer (R.M. 

Young Company, 2004) connected to the microcontroller and logged at 1 Hz. Grade was 

measured every ten meters with an optical level (Leica Jogger 24) and a stadia rod. Break-

beam sensors were aligned and positioned using a 100 m measuring tape and a five-point 

self-levelling laser. All beam heights were set at 0.31 m. For comparison to the 12-switch 

method, the bicycle was equipped with a cycle computer (Garmin Edge 500) recording 

distance and speed at 1 Hz (based on wheel revolutions).
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Figure 3. Illustration (top view) of coast-down test setup – not to scale.
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4.4. Mathematical Formulation 

Our field bicycle coast-down test builds on this past work by introducing dynamic 

wind and grade variables as well as multiple timing measurements over a longer coasting 

distance. The motivation for the additional measurements is to try to compensate for the 

noise expected to be introduced by varying on-road conditions (grade, wind, pavement) as 

well as to allow parameter estimation from a single test of an intercepted traveller (most 

previous coast-down testing involved dozens of runs for a single bicycle/rider, which would 

be a major burden for field intercept surveys). In addition, because the data are collected as 

𝑡(𝑥), new expressions are derived that provide residuals in the measurement dimension (as 

opposed to 𝑥(𝑡)). 

Following previous coast-down studies, for an indoor test without wind or grade 

effects, rolling resistance force 𝑅𝑟 is assumed to be independent of speed and drag 

resistance force 𝑅𝑑 is assumed to be proportional to the square of speed (R. B. Candau et 

al., 1999; de Groot et al., 1995; Kyle & Burke, 1984; Waltham & Copeland, 1999; Wilson 

& Papadopoulos, 2004): 

𝑅𝑟 = 𝐶𝑟𝑚𝑔   and  ( 11 ) 

𝑅𝑑 =
1

2
𝜌𝐴𝑓𝐶𝑑𝑣

2 ,  ( 12 ) 

where 𝐶𝑟 is a unit-less rolling coefficient, 𝑚 is mass of bicycle and rider in kg, 𝑔 is 

gravitational acceleration in m/s2, 𝜌 is air density in kg/m3, 𝐴𝑓 is frontal area in m2, 𝐶𝑑 is a 

unit-less drag coefficient, and 𝑣 is speed in m/s. The product 𝐴𝑓𝐶𝑑 is known as effective 

frontal area. Air density is a function of altitude (proxy for barometric pressure) and 
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temperature (di Prampero, 1986),  

𝜌 = 𝜌0 ∙ 𝑒
−0.127ℎ ∙ (

273

𝑇𝐾
)   ( 13 ) 

where 𝜌0=1.293 kg/m3, ℎ is the altitude above sea level (km) and 𝑇𝐾 is the absolute 

temperature (°K).  

Similar to Equation 7, coast-down resistance forces and deceleration can be formalized  

𝑚
𝑑𝑣

𝑑𝑡
= −𝑅𝑟 − 𝑅𝑑 = −𝐶𝑟𝑚𝑔 −

1

2
𝜌𝐴𝑓𝐶𝑑𝑣

2 . ( 14 ) 

Using the simplifying parameters 𝐴 = 𝑔𝐶𝑟 and 𝐵 =
1

2 𝑚
𝜌𝐴𝑓𝐶𝑑, Equation 14 becomes the 

differential equation: 

𝑑𝑣

𝑑𝑡
= −𝐴 − 𝐵𝑣2.  ( 15 ) 

Integration is performed by separating variables and enforcing boundary conditions 

𝑣(𝑡0) = 𝑣0, leading to 

𝑣(𝑡) =
𝑣0−√

𝐴

𝐵
tan(𝑡√𝐴𝐵)

𝑣0√
𝐵

𝐴
tan(𝑡√𝐴𝐵)+1

   ( 16 ) 

Then, using 𝑣
𝑑𝑣

𝑑𝑥
=

𝑑𝑣

𝑑𝑡
 and Equation 15, and integrating with the boundary condition 

𝑥(𝑣0) = 0, 

𝑥(𝑣) =
1

2𝐵
𝑙𝑛 (

𝐴+𝐵𝑣0
2

𝐴+𝐵𝑣2
)   ( 17 ) 

Finally, substituting Equation 16 in Equation 17 and rearranging,   



25 

 

𝑡(𝑥) =
1

√𝐴𝐵
𝑎𝑡𝑎𝑛 (

√𝐴𝐵𝑣0−√𝐴2𝑒2𝐵𝑥−𝐴2𝑒4𝐵𝑥+𝐴𝐵𝑣02𝑒2𝐵𝑥

𝐴𝑒2𝐵𝑥−𝐵𝑣02
) , ( 18 ) 

which is the indoor coast-down equation for multiple sensor locations (without wind and 

grade effects).  

Velocity vectors for outdoor test conditions are illustrated in Figure 4, where 

absolute wind speed 𝑤𝑎𝑏𝑠 and direction 𝛼 are measured by an anemometer. The apparent 

wind vector 𝑤𝑎𝑝𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is the vector difference between measured wind 𝑤𝑎𝑏𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and bicycle ground 

speed 𝑣⃗; 𝛽 is the yaw angle. For outdoor testing with varying wind and grade over 𝑥, 

Equation 12 is revised to 

𝑅𝑑 =
1

2
𝜌𝐴𝑓𝐶𝑑(𝑤𝑎𝑝𝑝 ∙ 𝑐𝑜𝑠 (𝛽 − 𝜋))|𝑤𝑎𝑝𝑝 ∙ 𝑐𝑜𝑠 (𝛽 − 𝜋)|. ( 19 ) 

Equation 19 can be rewritten 𝑅𝑑 =
1

2
𝜌𝐴𝑓𝐶𝑑(𝑣 − 𝑤)|𝑣 − 𝑤|, where 𝑤 is wind speed (𝑤𝑎𝑏𝑠) 

in the direction of travel. The absolute value in Equation 19 ensures that the drag force acts 

in the correct direction when a tailwind exceeds the travel speed, i.e. 𝑣 − 𝑤 < 0 (Knight, 

2008). 
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Figure 4. Illustration of speed vectors and angles 

 

Grade resistance is 𝑅𝑔 =
𝑚𝑔𝐺

√1+𝐺2
, which for small grades can be simplified to 

𝑅𝑔 = 𝑚𝑔𝐺 .  ( 20 ) 

Equation 14 is then revised to  

𝑚
𝑑𝑣

𝑑𝑡
= −𝑅𝑟 − 𝑅𝑔 − 𝑅𝑑 = −𝑚𝑔(𝐶𝑟 + 𝐺) −

1

2
𝜌𝐴𝑓𝐶𝑑(𝑣 − 𝑤)|𝑣 − 𝑤| . ( 21 ) 

Equation 15 becomes the differential equation: 

𝑑𝑣

𝑑𝑡
= −𝐴 − 𝑔𝐺 − 𝐵(𝑣 − 𝑤)|𝑣 − 𝑤|,  ( 22 ) 

which can be inverted to: 

𝑑2𝑡

𝑑𝑥2
= (

𝑑𝑡

𝑑𝑥
)
3

[𝐴 + 𝑔𝐺 + 𝐵 (( (
𝑑𝑡

𝑑𝑥
)
−1

− 𝑤) ∙ | (
𝑑𝑡

𝑑𝑥
)
−1

− 𝑤|)] . ( 23 ) 

For outdoor conditions, 𝐺, 𝑣, and 𝑤 all vary over 𝑡. Due to the time dependence of these 

variables and the presence of an absolute value function, no known indefinite integral exists 
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to generate an analytical solution to Equation 22. Therefore, a numerical, finite element 

method is used to generate 𝑡(𝑥) using Equation 23, starting from the boundary condition 

𝑡0 = 0, 𝑥0 = 0, and (
𝑑𝑡

𝑑𝑥
)
0
=

1

𝑣0
, along with measured data for 𝐺 and 𝑤. For further details 

about numerical integration of Equation 23 see Appendix D. 

Equations 18 and 23 provide methods for generating 𝑡(𝑥) from the parameters 𝐴, 𝐵, 

and 𝑣0. Parameter estimates 𝐴̂, 𝐵̂, and 𝑣0 are generated by minimizing the sum of square 

error between the predicted times 𝑡(𝑥) and observed times 𝜏(𝑥) at each measurement 

location 𝑥𝑖  

∑ [𝜏(𝑥𝑖) − 𝑡(𝑥𝑖)]
2

𝑖  .  ( 24 ) 

Equations 18 and 23 are both highly non-linear, and the solution space contains 

many local minima. Parameter estimates are generated using a genetic algorithm for 

floating-point values with local nonlinear search optimization implemented in the statistical 

software R with the package ‘GA’ (Scrucca, 2013). Bounds for 𝐴 and 𝐵 were set using 

measured 𝑚, 𝑔 = 9.81 m/s2, 𝜌 according to Equation 13, a 𝐶𝑟 range of 0.001 to 0.02, and a 

𝐴𝑓𝐶𝑑 range of 0.2 to 1.2 m2, based on the literature, especially (Wilson & Papadopoulos, 

2004). Bounds for 𝑣0 were set at 3 to 6 m/s, during validation testing based on protocol, 

whereas during intercepted survey based on field observations. The step size for the finite 

element method was set at 1 m to facilitate reasonable processing time; shorter step sizes 

were explored for individual tests and found to have no major impact on parameter 

estimates. The fitness function to maximize was the negative of Expression 24. Additional 

algorithm parameters were selected based on initial fitting trials: population size 50, 

maximum iterations 2,000, termination at 150 iterations without improved maximum 
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fitness, mutation probability 10%, and crossover probability 80%. As an alternative 

parameter fit for the simpler Equation 18 method, Expression 24 was minimized using a 

global nonlinear optimization search in MatLab (local solver ‘lsqcurvefit’ run from 

multiple starting points using ‘MultiStart’).  
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5. BICYCLE COAST-DOWN TEST VALIDATION 

5.1. Indoor and outdoor validation testing 

Validation testing was performed in three sessions. The first session was indoors to 

quantify test performance in a controlled environment (i.e. without wind and grade) and 

compare instrumentations (3 or 12-switch method, cycle computer). The second and third 

sessions were performed outdoors on relatively flat terrain in two different wind scenarios 

(crosswinds/tailwind and headwind) and on two different surfaces. 

Indoors testing 

Indoor tests were performed on May 29th, 2016 in a flat hallway with smooth 

concrete at the University of British Columbia. The hallway length limited the test setup to 

90 m. Hallway altitude of 81 m and indoor temperature of approximately 20°C yielded air 

density of 𝜌 = 1.192 kg/m3. An early-model Centurion LeMans road bicycle 

(approximately 30 years old) was used for the test, equipped with 3 cm commuter tires and 

two rear panniers. The rider was a 22-year-old male (78.1 kg, 183 cm). The weight of the 

rider and bicycle was 94.5 kg. Six different tests were performed, with 10-30 runs (coast-

downs) each. The tests for all sessions are summarized in Table 1: as an example, “ 

Baseline” test comprised 30 coasting runs, with tires inflated at 80 psi, our volunteer riding 

in “tops” position (hands on the handlebar top part, as opposed to the hooks; see Figure 5), 

and aiming to a target initial speed 𝑣0 of 4 m/s (the bicycle was equipped with a cycle 

computer, so the volunteer could target a speed before stop pedalling and entering the 

coasting field). The rider on the test bicycle in the test hallway is shown in Figure 5. 
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Table 1. Test protocols for indoor and outdoor sessions 

Test 
Number of 

runs 

Tire pressure 

(psi) 

Riding 

position 
Target 𝑣0 

(m/s) 
Other 

Baseline 30 80 Tops 4 - 

Mass 10 80 Tops 4 
10 kg added to 

panniers 

Tire 

Pressure 
10 40 Tops 4 - 

Riding 

Position 
10 80 Drops 4 - 

Low Speed 10 80 Tops 3 - 

High Speed 10 80 Tops 5 - 

 

 

                     

Figure 5. Indoor test rider and bicycle coasting in “tops” position 

 

Outdoors testing 

Outdoor tests were performed in two different sessions, the first (session “A”) on a 

running track and the second (session “B”) on an asphalt-paved bikeway. Session “B” was 
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designed to most closely represent typical riding conditions, on a real bikeway surface and 

with a dominant headwind. Session “A” represents less ideal test conditions, with a 

dominant tailwind and high-resistance riding surface.  

Tests in session “A”, were performed on June 24th, 2016 at Memorial South Park in 

Vancouver, British Columbia. The weather was cloudy, 18°C, with 75% relative humidity 

and track altitude of 98 m, leading to air density 𝜌 = 1.197 kg/m3. The track surface was a 

dry polyurethane, notably more rough and soft than the indoor test surface. The same rider, 

with same clothing and bicycle from the indoor test were used – see Figure 6. At the time 

of the test, the weight of the rider and bicycle was 95.1 kg. Grade was slightly negative in 

the first half of the test (minimum of –0.1%) and slightly positive in the second half of the 

test (maximum of 0.6%).  
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Figure 6. Rider coasting in “tops” position, outdoor session “A” (top) and “B” 

(bottom) 

 

Tests in session “B”, were performed on August 16th, 2016 on the “North Arm 

Trail” bikeway in Vancouver, British Columbia. The weather was sunny, 23°C, with 68% 

relative humidity and at an altitude of 41 m, leading to air density 𝜌 = 1.186 kg/m3. The 

same rider with similar clothing and a similar bicycle from indoor testing and outdoor 

testing session “A” were used – see Figure 6 (due to a crash, the LeMans was replaced with 

a Nishiki Rally road bicycle of similar age and condition, with 3 cm commuter tires and 

two rear panniers). At the time of the test, the weight of the rider and bicycle was 91.6 kg. 
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Grade was slightly negative in most of the test (minimum of –0.8%) and slightly positive at 

the end (maximum of 0.4%).  

5.2. Indoor test results 

Parameter estimation results for the indoor tests are given in Table 2. The results in 

the column “12-switch method” use the data from the infrared sensors illustrated in Figure 

3, the next column “Cycle computer data” uses the Garmin data as a comparison. Both of 

these columns were generated using Equation 18. The last column, “3-switch method”, 

applies Equation 10 to the timing switch data as a comparison with Candau et al. (1999). 

Only the first 70 m of sensors were used for most of the indoor tests.
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Table 2. Indoor test parameter estimates – mean (standard deviation) 

 12-switch method Cycle computer data 3-switch method 

TEST 
𝐶𝑟 𝐴𝑓𝐶𝑑 𝑣0 𝐶𝑟 𝐴𝑓𝐶𝑑 𝑣0 𝐶𝑟 𝐴𝑓𝐶𝑑 𝑣0 

[-] [m2] [m/s] [-] [m2] [m/s] [-] [m2] [m/s] 

Baseline 
0.0051 0.449 3.99 0.0053 0.407 3.98 0.0062 0.502 4.17 

(0.0001) (0.0285) (0.10) (0.0015) (0.200) (0.17) (0.0003) (0.0383) (0.10) 

Mass 
0.0051 0.465 3.86 0.0047 0.436 3.73 0.0058 0.546 3.99 

(0.0002) (0.0397) (0.14) (0.0015) (0.216) (0.14) (0.0005) (0.0675) (0.12) 

Tire Pressure 
0.0066 0.560 3.79 0.0057 0.6217 3.68 0.0073 0.604 3.94 

(0.0001) (0.0344) (0.08) (0.0015) (0.146) (0.06) (0.0004) (0.0716) (0.09) 

Riding Position 
0.0052 0.401 3.94 0.0055 0.333 3.82 0.0057 0.475 4.06 

(0.0003) (0.0497) (0.08) (0.0003) (0.0413) (0.08) (0.0010) (0.120) (0.08) 

Low Speed 
0.0046 0.415 2.77 0.0036 0.712 2.75 0.0053 0.596 2.94 

(0.0002) (0.0698) (0.08) (0.0005) (0.1250) (0.08) (0.0004) (0.118) (0.08) 

High Speed 
0.0054 0.473 4.90 0.0062 0.375 4.70 0.0078 0.402 5.04 

(0.0003) (0.0406) (0.10) (0.0013) (0.131) (0.13) (0.0012) (0.103) (0.12) 

Note: bold values significantly different from Baseline (two-tailed t-test with 𝑝 < 0.05)
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Parameter estimates are similar across the three methods in Table 2. Initial speed 

estimates are consistent with test protocols, and 𝐶𝑟 and 𝐴𝑓𝐶𝑑 values are in the range of 

literature values (Wilson & Papadopoulos, 2004). The 12-switch method provides the best 

results in terms of reproducibility, i.e. the lowest standard deviations. In addition, 

sensitivity analyses revealed that standard deviations decrease with test length and increase 

with sensor spacing.  

Parameter estimates are compared across tests for the 12-switch method data using 

two-tailed t-tests with a significance threshold of 𝑝 < 0.05. The test results reveal 

significantly higher rolling resistance due to tire deflation (𝑝 < 0.001 for Tire Pressure vs. 

Baseline tests) and significantly lower effective frontal area due to riding in a “drop” 

position (𝑝 = 0.017 for Riding Position vs. Baseline tests). Parameter estimates were not 

significantly affected by mass, which is expected (𝑝 = 0.87 and 𝑝 = 0.267  for 𝐶𝑟 and 

𝐴𝑓𝐶𝑑 respectively for Mass vs. Baseline tests). However, the 𝐶𝑟 estimates were 

significantly affected by initial speed (𝑝 < 0.001 for Low Speed vs. Baseline tests and 𝑝 =

0.028 for High Speed vs. Baseline tests), which could reflect a slight increase in 𝐶𝑟 with 

speed, as suggested in some previous research (Wilson & Papadopoulos, 2004). Moreover, 

𝐴𝑓𝐶𝑑 estimates were unexpectedly affected by tire deflation (𝑝 < 0.001 for Tire Pressure 

vs. Baseline tests), which could be related to a nonlinear positive speed dependence of 𝐶𝑟. 

Inspection of the residuals from the initial fit of the indoor validation test revealed 

spatial correlation across tests, which suggested small ~1 cm errors in the location data (i.e. 

sensor placement) – see Figure 7. Location correction was performed on the timing switch 

data according to: ∆𝑥𝑖 = 𝑣𝑖,𝑗 𝜀𝑖,𝑗̅̅ ̅̅ ̅̅ ̅̅ , where 𝑣𝑖,𝑗 and 𝜀𝑖,𝑗 are the speed and time residual at 

location 𝑖 in test 𝑗. Location corrections had a mean absolute value of 9 mm and a 
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maximum of 26 mm. The residuals from the parameter fits after location correction are 

shown in the right of Figure 7. The residual dispersion improved, but the parameter 

estimates were almost unchanged (<0.2% differences in 𝐶𝑟, 𝐴𝑓𝐶𝑑, and 𝑣0 estimates). The 

location correction was not applied to subsequent tests due to the negligible effect on 

parameter estimates and the doubling of the computational cost of fitting parameters 

(already ten min/test). Furthermore, inspection of residuals from the outdoor testing 

sessions did not reveal clear spatial correlation. 
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Figure 7. Time residuals before (top) and after (bottom) location correction 

 



38 

 

5.3. Outdoor test results 

Based on the indoor test results, the 12-switch method was used for parameter 

estimates in the outdoor tests. Parameter estimation results for the outdoor tests are given in 

Table 3. The parameter estimates in Table 3 show increased variability for the outdoor tests 

as compared to the indoor tests. Higher variability is expected, due to the influence of 

varying wind and grade. The outdoor timing switch standard deviations are comparable to 

those of the cycle computer and 3-switch methods for the indoor tests. The initial speed 

estimates are again consistent with test protocols and cycle computer data, though the 

variation is higher than the indoor tests. Both the rolling resistance and effective frontal 

area parameters are higher than the indoor test results but still in the range of past reported 

values (Wilson & Papadopoulos, 2004). The higher 𝐶𝑟 estimates can be expected from the 

rougher and softer surface on the running track in session “A” and the rougher asphalt-

paved surface in session “B”.  
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Table 3. Outdoor test parameter estimates – mean (standard deviation)  

 Outdoor session “A” Outdoor session “B” 

TEST 
𝐶𝑟 𝐴𝑓𝐶𝑑 𝑣0 𝐶𝑟 𝐴𝑓𝐶𝑑 𝑣0 

[-] [m2] [m/s] [-] [m2] [m/s] 

Baseline 
0.0102 0.692 4.25 0.0064 0.630 3.91 

(0.0011) (0.111) (0.12) (0.0013) (0.114) (0.19) 

Mass 
0.0116 0.654 4.28 0.0061 0.567 4.03 

(0.0008) (0.0815) (0.08) (0.0011) (0.0984) (0.14) 

Tire Pressure 
0.0098 0.793 4.24 0.0084 0.594 3.87 

(0.0011) (0.0839) (0.11) (0.0016) (0.109) (0.11) 

Riding Position 
0.0108 0.670 4.29 0.0063 0.539 3.96 

(0.0007) (0.152) (0.13) (0.0008) (0.0638) (0.16) 

Low Speed 
0.0099 0.736 3.37 0.0057 0.623 2.99 

(0.0006) (0.0638) (0.13) (0.0012) (0.163) (0.16) 

High Speed 
0.0107 0.676 4.90 0.0062 0.640 4.71 

(0.0012) (0.0726) (0.14) (0.0014) (0.105) (0.19) 

Note: bold values significantly different from Baseline (two-tailed t-test with 𝑝 < 0.05) 

 

The higher outdoor 𝐴𝑓𝐶𝑑 estimates are likely due to the influence of real-world 

wind conditions as compared to the relatively still-air hallway. Previous wind tunnel tests 

and computational fluid dynamics simulations showed that crosswinds can increase 

effective frontal area due to increased frontal exposure (Fintelman, Hemida, Sterling, & Li, 

2015; Fintelman, Sterling, Hemida, & Li, 2014). In addition, because the drag force is non-

linear with respect to relative air speed 𝑣 − 𝑤, wind speed and direction variability (within 

the 1 sec sampling frequency) would increase 𝑅𝑑 and 𝐴𝑓𝐶𝑑. Drag coefficient 𝐶𝑑 generally 

varies with Reynolds number, particularly when apparent wind speed is below 10 m/s 

(Debraux et al., 2011; Defraeye, Blocken, Koninckx, Hespel, & Carmeliet, 2011), which 

could also lead to higher 𝑅𝑑 and 𝐴𝑓𝐶𝑑 in outdoor wind conditions. Crosswinds can also 

lead to small movements by the bicyclist to adjust for varying lateral drag force (Fintelman 

et al., 2014), which could increase deceleration and estimated 𝐴𝑓𝐶𝑑.  
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To illustrate the wind direction differences between tests, Figure 8 shows the 

distribution of apparent wind speed and direction during the two outdoor sessions, 

separated into high (>3 m/s), medium (1.5-3 m/s), and low (<1.5) bicycle speed (𝑣) ranges. 

Due to a dominant absolute crosswind/tailwind direction (𝛼) during session “A”, as bicycle 

coasting speed decreased the apparent wind direction (𝛽) shifted away from a headwind. In 

contrast, session “B” had a dominant headwind direction (𝛼), which led to a more stable 

yaw angle (𝛽) around 180°. The influence of crosswind on effective frontal area is 

supported by higher 𝐴𝑓𝐶𝑑 estimates with greater yaw angle (crosswind) in session “A” than 

“B”. The still-air hallway had essentially no crosswind, and the lowest 𝐴𝑓𝐶𝑑 estimates.
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Figure 8. Apparent wind speed and direction (𝜷) for three bicycle speed intervals (left: 𝒗>3 m/s; centre: 1.5<𝒗≤3 m/s; right: 

𝒗≤1.5 m/s) in outdoor sessions "A" (top row) and "B" (bottom row)
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Outdoor parameter estimates are compared across tests using two-tailed t-tests with 

a significance threshold of 𝑝 < 0.05. Parameter comparisons across tests for Session “B” 

are all in line with expectations. Rolling resistance was significantly higher after tire 

deflation (𝑝 < 0.001 for Tire Pressure vs. Baseline tests), effective frontal area was 

significantly lower riding in a “drop” position (𝑝 = 0.031 for Riding Position vs. Baseline 

tests), and parameter estimates were not significantly affected by mass (𝑝 = 0.583, 𝑝 =

0.136 for 𝐶𝑟 and 𝐴𝑓𝐶𝑑  respectively in test Mass vs. Baseline) or initial speed (𝑝 = 0.158  

and 𝑝 = 0.891 for 𝐶𝑟 and 𝐴𝑓𝐶𝑑, respectively for Low Speed vs. Baseline tests, and 𝑝 =

0.720 and 𝑝 = 0.808 for 𝐶𝑟 and 𝐴𝑓𝐶𝑑, respectively in High Speed vs. Baseline tests). In 

contrast, session “A” generated the unexpected results that rolling resistance was 

significantly higher with added weight (𝑝 = 0.025 for Mass vs. Baseline tests) and 

effective frontal area was significantly higher after tire deflation (𝑝 = 0.012 for Tire 

Pressure vs. Baseline tests). These results are possibly due to the very soft riding surface, 

on which 𝐶𝑟 could vary with mass and speed. Another consequence of the softer riding 

surface was shorter coasting distances for session “A” (typically between 60 and 70 m) than 

for session “B” (consistently the full 100 m), which generated fewer observations per test. 

5.4. Validation summary 

The novel outdoor in situ field coast-down test expands on past methods by 

accounting for varying wind and grade and allowing for more measurement locations per 

test. The 12-sensor outdoor test achieves comparable precision to a 3-sensor indoor test 

method, thus partially offsetting the effects of increased variability in outdoor conditions 

with increased observations per test.  
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Rolling resistance coefficient estimates were 0.0051 ±0.0001, 0.0064 ±0.0013, and 

0.0102 ±0.0011 for tests on smooth concrete (indoors), asphalt pavement, and a 

polyurethane running track, respectively. Effective frontal area estimates were 0.45 ±0.03 

m2, 0.63 ±0.11 m2, and 0.69 ±0.11 m2 for tests in still air (indoors), in a headwind, and in 

varying crosswind/tailwind, respectively. The parameter estimates are in line with 

expectations, and demonstrate the importance of crosswind for aerodynamic drag 

resistance. The indoor test and the outdoor test on a hard surface with a dominant headwind 

were sufficiently sensitive to identify significant changes in resistance with tire pressure 

and riding position. The outdoor test in less ideal conditions (soft surface and varying 

apparent wind direction) was not sufficiently sensitive to these changes, revealing some 

limitations and constraints for outdoor testing.  

Ultimately, if the parameters will be used to estimate on-road bicyclist energy 

expenditure and speed, the outdoor estimates in a dominant headwind (e.g. session “B”) are 

expected to be the most representative. Indoor 𝐴𝑓𝐶𝑑 estimates will likely be too low due to 

still air test conditions. Parameter estimates from outdoor tests with varying apparent wind 

direction (e.g. session “A”) are less reliable and likely less representative of drag resistance 

at normal travel speeds.  

The findings in this chapter will be useful in experimental design and estimation of 

measurement error for implementing field coast-down tests in traveller intercept surveys. 

Parameters standard deviations of 0.001 for 𝐶𝑟 and 0.1 m2 for 𝐴𝑓𝐶𝑑 should be sufficient to 

characterize the broad range of urban bicyclists. Best estimates are expected if the tests are 

performed in headwind conditions that yield realistic yaw angles for normal travel speeds, 

and the riders start with enough speed to coast the full 100 m. Even if indoor testing is 
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possible, the resulting parameter estimates might not be representative of on-road cycling in 

varying wind conditions.  

For further validation, future work should compare measured power output on an 

instrumented bicycle with modelled power based on indoor and outdoor test results. In 

addition, outdoor test results should be compared with wind tunnel testing. Application of 

the field coast-down test is expected to generate new information about the physical 

characteristics of real-world bicyclists, which will improve operations and microsimulation 

models and yield better understanding of on-road bicycle performance as seen in the 

following chapters. 
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6. CYCLISTS INTERCEPTED SURVEY 

The objective of this chapter is to provide transportation researchers and 

practitioners with representative distributions of physical parameters for real-world urban 

cyclists that can readily be used in advanced bicycle travel modelling. Measured rolling and 

aerodynamic resistance parameter distributions for intercepted cyclists are presented, 

including fits to theoretical distributions. Additional measured physical parameters are also 

presented (tire pressure and width, bicycle and cargo weights, etc.), as well as an analysis 

of correlation among physical characteristics. 

6.1. Design 

The survey was designed so that socio-demographic and preferences of intercepted 

cyclists could be gathered to compare this study sample with other surveys in Vancouver, 

and to investigate relationships between resistance parameters and other physical 

characteristics as well as cyclist attributes, preferences and habits. To minimize the burden 

to intercepted cyclists and to make the study more appealing, the questionnaire (see 

Appendix B) was designed using user friendly Likert-scale and formulating questions as 

clearly as possible. Also, questions such as comfort on bicycle infrastructures were 

included to the benefit of cyclist classification according to a famous city of Portland, 

Oregon, classification (Dill & McNeil, 2013). As per UBC Ethics Board requirement, 

participants fulfilled a content form (see Appendix A) before taking part in the survey. 

Appendix C illustrates the sheet used by experimenters to note all the bicycles and cyclists 

related physical characteristics required by the study. 
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6.2. Field test administration 

The coast down-test was administered to intercepted cyclists over 18 days in 

summer 2016 at 9 locations in Vancouver, Canada. Table 4 and Figure 10 provide testing 

session details.  Locations were chosen based on flatness (grade approximatively null), 

uninterrupted length (at least 100 m long plus 20-30 m for acceleration), and accessing 

cyclists in a variety of contexts (university, downtown, waterfront paths, and residential 

areas). Data collection days were all weekdays (Monday-Friday), chosen based on 

experimenter availability and meteorological conditions (low probability of rain). Data 

collection times ranged from mid-day to early evening (approximately 12:00 to 19:00) to 

target peak and off-peak travellers. High-volume locations (over 3,000 bicycle trips per 

summer-weekday) were avoided during peak periods to minimise disruption on busy 

bicycle facilities and avoid participant queues (four experimenters together could process at 

most around 15 participants per hour). Figure 9 illustrates typical appearance of surveys 

stations. 
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Figure 9. Typical bicycle coast-down survey stations.  
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Table 4. Coast-down test location characteristics. 

Date Time Location 
Facility 

type 

Sample 

size 

Bicycle 

volume* 

Mean (range) of 

grade in % 

Tu 

6/28 

11:30-

15:00 
UBC Path 10 

not 

available 
0.6 (0.4;1) 

Th 

6/30 

11:30-

15:00 
UBC Path 12 

not 

available 
0.6 (0.4;1) 

We 

7/06 

13:00-

16:00 
York Ave 

Cycle-

track 
22 2,475 -0.4 (-0.9;0.2) 

We 

7/13 

12:00-

16:30 

Ontario 

North 
Path 48 5,464 -0.1 (-0.9;0.4) 

Fr 

7/15 

12:30-

17:00 

Science 

World 
Path 20 3,985 0.2 (-0.6;0.9) 

We 

7/20 

12:30-

16:00 

Ontario 

South 

Cycle-

track 
10 442 0.3 (-0.4;0.9) 

Th 

7/21 

12:00-

16:30 
Union St 

Cycle-

track 
38 3,558 0.5 (-0.6;2.7) 

Fr 

7/22 

12:00-

16:00 

Sunset 

Beach 
Path 38 1,650 -0.1 (-2.6;0.7) 

Mo 

7/25 

14:30-

17:00 

North 

Arm Trail 
Path 11 229 0.3 (-0.9;0.8) 

We 

7/27 

15:00-

19:00 

Ontario 

North 
Path 59 5,464 -0.1 (-0.9;0.4) 

Fr 

7/29 

15:00-

17:00 
York Ave 

Cycle-

track 
29 2,475 -0.4 (-0.9:0.2) 

Th 

8/04 

15:00-

19:00 
Union St 

Cycle-

track 
50 3,558 0.5 (-0.6;2.7) 

Fr 

8/05 

14:30-

18:00 
Expo Blvd 

Cycle-

track 
34 1,379 0.6 (0.1;1.6) 

We 

8/10 

16:00-

19:00 
Expo Blvd 

Cycle-

track 
19 1,379 0.6 (0.1;1.6) 

Th 

8/11 

15:00-

19:00 

Sunset 

Beach 
Path 44 1,650 -0.1 (-2.6;0.7) 

Fr 

8/12 

15:00-

18::30 

Science 

World 
Path 45 3,985 0.2 (-0.6;0.9) 

Tu 

8/16 

14:30-

17:00 

North 

Arm Trail 
Path 10 229 0.3 (-0.9;0.8) 

We 

8/17 

12:30-

16:00 

Ontario 

North 

Cycle-

track 
58 5,464 -0.1 (-0.9;0.4) 

* Bi-directional summer weekday average in 2012 (Acuere Consulting Inc., 2013). 
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Figure 10. Coast-Down test locations map. 

 

Cyclists were first contacted with signage one block in advance of the testing area, 

followed by research team members with university branding, juice, and snack bars. After 

providing consent (see Appendix A), participants completed a 3-page questionnaire (see 

Appendix B) with socio-demographic and trip-related questions. Simultaneously, 

participant bicycle characteristics were measured (see Appendix C) by the research team 

(make, model, and year, number of gears, tire pressure, tire width, weight, and cargo). 

Bicycle type was categorised as “road” (drop handlebars, thin smooth tires), “mountain” 

(flat handlebars, large knobby tires, suspension), “hybrid” (flat handlebars, medium tires), 
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“cruiser” (cruiser handlebars, large smooth tires, upright seating position), and “other” 

(including e-bikes, tandems, and cargo bikes). Bicycles were weighed with any attached 

cargo due to participant reluctance to remove cargo in pilot testing. Participants were next 

instructed in performance of the coast-down test as follows:  

(i) Accelerate up to a conformable, typical riding speed by the chalk-marked “stop 

pedalling line”;  

(ii) Coast, without pedalling or braking, along a dashed line chalk-marked every few 

meters throughout the coasting field;  

(iii) Stop in case coasting speed becomes too low to proceed safely, or upon reaching 

the chalk-marked “end line”.  

(iv) Participants who braked, pedalled, swerved, or had some other observed violation 

of the test protocol were asked to re-perform the test. 

6.3. Sample size and data filtering 

Of 648 cyclists who gave consent to participate in the study, resistance parameters 

were successfully estimated for 557 (86%). Of the 91 (41%) discarded, 3 reported 

insufficient time to complete the test, 13 tests failed because of instrumentation issues 

(sensor power loss), 11 tests had an insufficient coasting length (<50m), and 64 tests 

yielded poor parameter fitting results (sum of square error over 1 second, or resistance 

parameters at bounds). Poor fit results could have been due to unobserved violations of 

testing protocols (braking, swerving, etc.). Wind was not an issue for any of the tests 

because of high initial speeds (average 6.4 m/s, standard deviation 1.1 m/s) and relatively 
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low-wind days so that apparent wind was within ±45° of the direction of motion for all tests 

(Tengattini & Bigazzi, 2017). 
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7. PHYSICAL CHARACTERIZATION RESULTS 

7.1. Sample statistics and correlation analyses 

Figure 11 summarises age and sex for the sample. Of the 557 participants, 348 were 

male, 188 were female, and 21 preferred not to state their sex. Excluding who did not 

provide their sex, the sample comprised 65% males, and 35% females. The average 

participant age was 40 (standard deviation 15, range 6-80). Table 5 shows age and gender 

for the sample and for cyclists in the Vancouver metropolitan area based on a 2011 

household travel survey (TransLink, 2013). The sample is generally representative of the 

broader survey data, but with fewer youth under 18, and more females.  
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Figure 11. Participants by age and gender. N/A – Not Available. 
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Table 5. Age and sex in the study sample versus cyclists in a regional household travel 

survey. 

 Range Metro Vancouver, 2011* This Study 
 [-] [%] [%] 

A
g
e 

5-12 8 1.5 

13-17 8 1.2 

18-24 5 8.8 

25-44 47 51.2 

45-64 28 30.2 

65-79 3 5 

80+ 0 0.2 

Missing - 2 

S
ex

 Male 71 62 

Female 29 35.7 

Missing/Other - 2.3 
*(TransLink, 2013) 

 

Figure 12 shows the distributions of participant and bicycle masses. Female cyclists 

rode heavier bicycles with more cargo, despite lower body weight. Bicycles with cargo 

were on average 4.6 kg heavier than bicycles without cargo. The average (standard 

deviation) of cyclist and cyclist + bike + cargo masses were 74.7 (15.4) and 92.2 (16.2) kg, 

respectively. Participant height was used to calculate Body Mass Index (BMI), defined as 

𝑚𝑎𝑠𝑠/ℎ𝑒𝑖𝑔ℎ𝑡2, with an average of 24.4 in the upper range of normal (standard deviation 

of 3.8). 
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Figure 12. Boxplots illustrating participant, bicycle, and cargo mass by sex. Box height 

is the Inter Quartile Range (IQR), line in the box is median. 

 

Rolling resistance parameter 𝐶𝑟 averaged 0.0077 with a standard deviation of 0.0036 (95% 

Confidence Interval ±0.0003). Effective frontal area, 𝐴𝑓𝐶𝑑, averaged 0.559 m2 with a 

standard deviation of  0.170 m2 (95% Confidence Interval ±0.014 m2). 

Figure 13 shows resistance parameter distributions by gender, revealing wide ranges 

of values, but without significant differences by gender (further examined below). 

Summary statistics for measured physical characteristics are presented in Table 6. Sample 

sizes vary because not all participants consented to all questions or measurements.  
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Figure 13. Boxplots illustrating Rolling and Drag resistance parameters by sex. Box 

height is the Inter Quartile Range (IQR), line in the box is median. 
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Table 6. Physical Characteristics sample statistics. 

Parameter 
Minimu

m 

1st 

Quartile 

Media

n 

3rd 

Quartile 

Maximu

m 
Mean 

Standard 

deviation 
N 

Cyclists+Bicycle+Cargo Mass 

[kg] 
35.4 82.0 90.9 100.9 154.7 92.2 16.2 552 

Bicycle+Cargo Mass[kg] 7.3 16.0 18.0 20.0 40.7 18.3 4.1 423 

Bicycle Mass [kg] 7.8 11.4 14.2 15.5 22.0 13.7 3.3 118 

Cyclist Mass [kg] 21.9 65.0 73.5 83.0 139.0 74.7 15.4 552 

BMI [kg/m2] 15.8 22.0 23.8 26.3 45.0 24.4 3.8 513 

Cr [-] 0.0012 0.0049 0.0076 0.0100 0.0189 
0.007

7 
0.0036 557 

𝐴𝑓𝐶𝑑 [m2] 0.209 0.434 0.539 0.655 1.128 0.559 0.170 557 

Front Tire Pressure [kPa] 55 234 317 431 872 347 154 553 

Back Tire Pressure [kPa] 48 234 317 445 876 352 157 553 

Front Tire Width [cm] 2.0 2.8 3.3 4.2 9.6 3.5 0.9 553 

Back Tire Width [cm] 2.0 2.8 3.3 4.2 9.6 3.5 0.9 553 

Bicycle Year [-] 1945 2005 2009 2014 2016 2006 10 505 

Bicycle Gears [-] 1 14 21 24 30 19 8 502 
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Resistance parameters are positive by definition, finitely bounded, and positively 

skewed (moment coefficient of skewness of 0.47 for 𝐶𝑟 and 0.58 for 𝐴𝑓𝐶𝑑), so Weibull and 

Gamma distributions were fit to observed data, using Maximum Likelihood estimation with 

the “fitdistrplus” software package in R (Delignette-Muller & Dutang, 2015). Visual 

inspection (Figure 14) and five test statistics (Kolmogorov-Smirnov, Cramer-von Mises, 

Anderson-Darling statistics; Aikake's Information Criterion and Bayesian Information 

Criterion) were used to select the most appropriate distributions. Measured rolling 

resistance coefficient, 𝐶𝑟, values were better approximated by a Weibull distribution (shape 

and scale parameters 𝑘𝑤 = 2.28, 𝜆𝑤 = 0.00874), while effective frontal area parameter, 

𝐴𝑓𝐶𝑑, values were better approximated by a Gamma distribution (shape and rate parameters 

𝛼Γ = 10.99 and 𝛽Γ = 19.68). 
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Figure 14. Resistance parameter observed and fitted distributions. 

 

Measured resistance parameters and masses are segmented by categorical variables 

in Table 7. Most cyclists rode in “tops” position (typical for flat handlebars); “drops” is the 

typical aerodynamic position, and “hoods” is a position in between the two. Fewer cyclists 

wore sport clothing (i.e. tight cycling shorts and jersey) than those who wore casual 

clothing. About half the participants had “commuter” tires, with a medium texture 

compared to smooth “slick” tires and “knobby” treaded tires.  
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Table 7. Measured resistance parameters and masses, segmented by categorical 

variables, with mean (standard deviation) and [Sample Size] *.  

Parameters Category  

 I II III IV V  

Gender 
Male 

[348] 

Female  

[188] 
   NA 

[21] 

𝐶𝑟 [-] 
0.0077 

(0.0038) 

0.0077 

(0.0033) 
    

𝐴𝑓𝐶𝑑 [m2] 
0.559 

(0.175) 

0.56 

(0.161) 
    

Cyclist+Bike+ 

Cargo Mass [kg] 

97.7 

(15.4) 

82.1I 

(13.2) 
    

Cyclist 

Mass [kg] 

80.5 

(14.3) 

63.9I 

(11.5) 
    

Riding Position Drops [22] 
Hoods 

[90] 

Tops 

[438] 
  NA 

[7] 

𝐶𝑟 [-] 
0.0056 

(0.0032) 

0.0061 

(0.0029) 

0.0081I,II 

(0.0036) 
   

𝐴𝑓𝐶𝑑 [m2] 
0.463 

(0.13) 

0.477 

(0.122) 

0.579I,II 

(0.173) 
   

Cyclist+Bike+ 

Cargo Mass [kg] 

92.9 

(13.8) 

89.8 

(14.6) 

92.5 

(16.6) 
   

Cyclist 

Mass [kg] 

76.8 

(12.8) 

75.3 

(13.3) 

74.5 

(16.3) 
   

Cyclist Apparel 
Sport 

[78] 

Casual 

[477] 
   NA 

[2] 

𝐶𝑟 [-] 
0.0063 

(0.0032) 

0.0079I 

(0.0036) 
    

𝐴𝑓𝐶𝑑 [m2] 
0.486 

(0.145) 

0.570I 

(0.170) 
    

Cyclist+Bike+ 

Cargo Mass [kg] 

87.5 

(13.9) 

92.9I 

(16.4) 
    

Cyclist 

Mass [kg] 

72.6 

(13) 

75.1 

(16.1) 
    

Tire type 
Slick 

[137] 

Commuter 

[273] 

Knobby 

[138] 
  NA 

[9] 

𝐶𝑟 [-] 
0.0070 

(0.0035) 

0.0074 

(0.0033) 

0.0092I,II 

(0.0039) 
   

𝐴𝑓𝐶𝑑 [m2] 
0.498 

(0.148) 

0.579I 

(0.172) 

0.576I 

(0.174) 
   

Cyclist+Bike+ 

Cargo Mass [kg] 

89.9 

(14.7) 

93.3 

(15.6) 

92.3 

(18.5) 
   

Cyclist 

Mass [kg] 

75.1 

(13.9) 

75.3 

(15.4) 

73.9 

(18.0) 
   

Bicycle type 
Road 

[225] 

Hybrid 

[181] 

Mountain 

[90] 

Cruiser 

[37] 

e-bike 

[7] 

NA 

[17] 

𝐶𝑟 [-] 
0.0070 

(0.0034) 

0.0079I 

(0.0035) 

0.0089I,II 

(0.0041) 

0.0078 

(0.0039) 

0.0103 

(0.0042) 
 

𝐴𝑓𝐶𝑑 [m2] 
0.505 

(0.135) 

0.579I 

(0.176) 

0.603I 

(0.187) 

0.64I 

(0.179) 

0.614I 

(0.210) 
 

Cyclist+Bike+ 

Cargo Mass [kg] 

91.5 

(14.5) 

91.1 

(15.9) 

93.3 

(18.3) 

93.7 

(16.0) 

106.3I,II,III 

(11.0) 
 

Cyclist 

Mass [kg] 

75.8 

(13.9) 

73.5 

(16.4) 

75.1 

(17.8) 

74.0 

(16.1) 

74.2 

(9.5) 
 

* Two-sample, two-sided, Kolmogorov-Smirnov tests for differences by category; Roman numeral 

superscripts indicate the comparison categories for which significant difference were found (𝑝 < 0.05). 
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Non-parametric Kolmogorov-Smirnov tests were used to examine differences in 𝐶𝑟, 

𝐴𝑓𝐶𝑑 and 𝑚 by category; results are included in Table 7 with Roman numerals indicating 

comparison categories for which significant difference were found (𝑝 < 0.05). Participants 

riding in tops position had significantly higher resistance parameters, likely due to the drag 

effect and correlation with other bicycle characteristics (such as larger, knobbier tires). 

Cyclists wearing casual clothing had significantly higher resistances and overall mass. As 

expected, knobby tires were associated with significantly higher in 𝐶𝑟. Cyclists with slick 

tires had significantly lower drag parameters, likely due to association with riding position. 

Bicycle type differences also reflect associations with other characteristics (riding position, 

tire type, etc.). E-bikes had significantly higher overall mass and 𝐴𝑓𝐶𝑑. Resistance 

parameters were not significantly different by gender. Presence of a helmet (for 79% of 

participants, not included in the Table 7) was not associated with any significant differences 

in 𝐶𝑟, 𝐴𝑓𝐶𝑑, or 𝑚. 

Figure 15 shows correlations significantly different from zero (at 𝑝 < 0.05) among 

continuous variable characteristics. The highest correlations are for front/back tire pressures 

and widths, which is expected because they are likely of the same type and inflated 

simultaneously. Tire pressures and widths are negatively correlated, also expected because 

thin tires (usually for sport cyclists) are inflated to higher pressures. Age is positively 

correlated with number of gears, mass, and BMI. Number of gears is also correlated with 

bicycle year, meaning that newer bicycles have more gears.  

As for resistance parameters, the correlations in Figure 15 indicate that rolling 

resistance coefficient decreases with tire pressure, as expected (Wilson & Papadopoulos, 

2004). An increase in tire width increases 𝐶𝑟 as well, probably due to negative correlation 
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between tire width and pressure. Aerodynamic drag depends on the frontal area and shape 

of the cyclist and bicycle. Effective frontal area was significantly positively correlated with 

overall mass (including cargo), age, and BMI, a measure of body “slenderness” of 

participants (Debraux et al., 2011). In addition, 𝐴𝑓𝐶𝑑 was negatively (positively) correlated 

with tire pressures (widths), likely due to the indirect effect of bicycle type, as seen in Table 

7.  A positive correlation between 𝐶𝑟 and 𝐴𝑓𝐶𝑑 (0.04) was not significant (𝑝 = 0.36). 

 

Figure 15. Correlation matrix (Pearson’s linear correlation) of measured physical 

characteristics. Values shown are significantly different from zero at 𝒑 < 𝟎. 𝟎𝟓. 
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7.2. Discussion of results  

The measured resistance values in this study show that real-world urban cyclists 

have a very wide range of physical characteristics. Two published sources report typical 

values for a range of vehicles, measured with different techniques, but no known study 

reports systematic measurements from a sample of real-world in-use bicycles. Gross et al. 

(1983, pp. 150–151) report ranges for 𝐶𝑟 of 0.003-0.014 and for 𝐴𝑓𝐶𝑑 of 0.31-0.56 m2 for 

“standard bicycles”, and 𝐶𝑟 = 0.006 and 𝐴𝑓𝐶𝑑 = 0.56 m2 for an “upright commuter” 

bicycle. Wilson & Papadopoulos (2004, pp. 188, 215) reports ranges for 𝐶𝑟 on smooth 

surfaces of 0.002-0.010 and for 𝐴𝑓𝐶𝑑 of bicycles ranging from recumbents to upright 

commuters of 0.04-0.63 m2. They also report 𝐶𝑟 = 0.006 and 𝐴𝑓𝐶𝑑 = 0.63 m
2 for a 

typical upright cyclist. The measured values in this study generally agree with the limited 

information available in the literature, but observed distributions are wider than previously 

suggested ranges, especially on the upper end of values. A summary is available in Table 8. 

Table 8. Resistance estimates comparison with available literature.  

Studies 

Ranges “Upright Commuter”* 

𝐶𝑟 𝐴𝑓𝐶𝑑 𝐶𝑟 𝐴𝑓𝐶𝑑 

[-] [m2] [-] [m2] 

Gross et al. (1983, pp. 150–

151) 
0.003-0.014 0.31-0.56 0.006 0.56 

Wilson (2004, pp. 188, 215) 0.002-0.010 0.04-0.63 0.006 0.63 

This study 0.002-0.02 0.2-1.2 0.008 0.56 
* “Upright commuter” is an estimate for a typical urban rider (Gross et al., 1983; Wilson & 

Papadopoulos, 2004). Mean values from this thesis survey are given for “This study”. 

 

Correlations among measured physical characteristics show consistency with 

expectations and literature. Tire pressure is negatively correlated with 𝐶𝑟, while tire width 

and knobby tire type are positively associated with 𝐶𝑟. More upright riding position, casual 

clothing, and BMI are positively associated with 𝐴𝑓𝐶𝑑. More generally, resistance 
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parameters are significantly higher for cyclists on non-road bikes (more than half the 

sample) than on road bikes.  

The results in this chapter can improve understanding of on-road bicycle 

performance for a realistic range of urban travellers. The main physical characteristics in 

this study, 𝐶𝑟, 𝐴𝑓𝐶𝑑, and 𝑚, can be used in advanced bicycle travel models to estimate 

speed, power, and energy expenditure of cyclists, applicable to geometric design, speed 

choice and route choice modelling, health and safety impact assessments, and more. Using 

the reported parameter distributions, these estimates can be applied in probabilistic designs 

and stochastic models. Simulations could sample from these distributions to generate 

synthetic travellers with realistic ranges of physical characteristics. The statistical 

comparisons above provide insights that could be used to select context-sensitive values for 

assumed cyclist parameters.  

Existing literature suggests narrower and lower ranges of cyclist parameter 

distributions. Applying lower ranges could lead to under-estimates of cyclist power and 

energy, and over-estimates of cyclist speeds, which would be non-conservative in many 

applications. Major studies including cyclist physical characteristics are encouraged to 

perform similar testing to determine the attributes of the sample or population of interest. 

This study characterised cyclists in Vancouver, Canada during summer and results 

may not be applicable in other contexts. Cities with significantly different bicycle mode 

shares would likely have different populations of cyclists. Other countries might have 

substantially different bicycle fleets, such as more cruiser-style bikes in Northern Europe or 

more mountain bikes in South America. Another limitation is that rolling resistance was 

only measured on dry pavement; effects of wet weather were not assessed. 
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The next chapter will investigate relationships between physical characteristics and 

other travel and traveller attributes, such as socio-demographics, trip type, and route 

preferences. Relationships between resistances and travel preferences (mode, route, speed) 

could reveal systematic differences relevant to policy, network, and infrastructure design. 

Other future work should conduct similar intercept studies in other locations for cross-city 

comparisons of cyclist physical characteristics.  
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8. THREE PHYSICAL URBAN CYCLIST TYPOLOGIES: ASSOCIATIONS 

WITH PREFERENCES AND HABITS 

This chapter aims to categorize the cohort of cyclists intercepted in the survey 

presented previously, by using cluster analysis to discern three physical-based typologies, 

to explore relationships with cycling preferences and habits. Typologies are based on 

observed physical attributes of the bicycle and cyclist (see Appendix C). The analysis 

indicates that cycling efficiency, perceptions, preferences, and habits are related, to 

physical typology in a complex but consistent manner. Usage of more efficient bicycles 

might result in higher cycling rates as a result of an internal feedback effect. Physical 

typologies might help unveiling active travel behaviour and encouraging urban cycling by a 

wider range of people. 

8.1. Motivation 

Cycling in urban environments has been fostered by many cities around the world 

because it benefits to individuals and the environment (de Hartog, Boogaard, Nijland, & 

Hoek, 2010; Fox, 1999; David Rojas-Rueda, Nazelle, Tainio, & Nieuwenhuijsen, 2011). As 

the number of cyclists grows, there is the need to develop more sophisticated bicycle travel 

models, comprising behavioural, safety, health, and microsimulation models. Cyclist 

energy expenditure and power output modelling is important for realistic bicycle travel 

modelling, because cycling is a physical activity (Bigazzi & Figliozzi, 2015b). 

In chapter 6 an extensive data collection in Vancouver, Canada, has been carried 

out, where distributions of cyclist physical characteristics were measured. Cyclist 

characterisation is manifold. Firstly, it comprises measurement of bicycle resistances, 

namely rolling resistance coefficient 𝐶𝑟 (unit-less), and aerodynamic resistance parameter 
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𝐴𝑓𝐶𝑑 (m2), often referred as effective frontal area. Secondly, it includes measurement of 

cyclist, bicycle and cargo masses, together with other parameters such as tire pressure and 

width, riding position, and cyclist apparel, all parameters that were observed to affect 

resistances. Lastly, other non-physical cyclist parameters, such as socio-demographics (e.g. 

sex, age, income, education), preferences (e.g. comfort on bicycle infrastructures), and 

habits (e.g. transport modes use, weekly physical activity) were collected as well. 

𝐶𝑟, 𝐴𝑓𝐶𝑑, and 𝑚 have an explicit role in modelling cyclists power output, whereas 

other cyclists physical characteristics (e.g. riding position, tire pressure, cargo, etc.) 

contribute implicitly as they affect either 𝐶𝑟, 𝐴𝑓𝐶𝑑, 𝑚, or a combination of them (Burke, 

2003b; Wilson & Papadopoulos, 2004). Socio-demographics, preferences and habits might 

be also correlated with physical characteristics. Investigating such correlations might be 

important to understand underlying systematic patterns among cyclists and be able to model 

power output from indirect sources (i.e. without actual measurement of mass and 

resistances). Also, it could be the ground for policy development aiming to foster cycling 

(Damant-Sirois & El-Geneidy, 2015; Dill & McNeil, 2013; Gatersleben & Haddad, 2010). 

This chapter explores weather within the cohort of urban cyclists, systematic 

typologies can be discerned based on simple cyclist and machine physical attributes (e.g. 

tire type or riding position). If so, also, significant relationships among cyclists typologies 

and (i) 𝐶𝑟, 𝐴𝑓𝐶𝑑, 𝑚 (and therefor power output); (ii) cycling preferences and (iii) habits 

will be explored. 

To pursue the objective, survey data collected in the previous chapter are used. 

Cluster analysis is employed to find cyclists physical typologies.  Cluster-to-cluster 
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comparisons determine significant differences in resistances parameters, habits and 

preferences. 

8.2. Method 

Measurable physical cyclist attributes are used as input parameters in a cluster 

analysis to determine whether such characteristics can be used to group the cohort of 

cyclists and to unveil latent systematic differences among groups of cyclists. The study 

follows this steps: 

(i) Determination of a physical typology of cyclists based on cluster analysis of 

observed physical attributes; 

(ii) Examination of relationships between cyclist types and:  

(a) Resistance parameters 𝐶𝑟, 𝐴𝑓𝐶𝑑, and equipment mass 𝑚 (bicycle + cargo), 

which relate to power output and energy expenditure; 

(b) Cyclist attitudes and preference, such as comfort on different types of 

facility; 

(c) Travel habits, such as cycling frequency and seasonality. 

Survey and sample description 

In 2016, in Vancouver, Canada during 18 summer days, at 9 locations the physical 

characteristics of cyclists were measured in a survey presented in the previous chapter. The 

survey comprised four main parts. Firstly, an interested cyclist (usually enticed to 

participate in exchange of refreshments) was instructed about survey’s protocol and invited 

to sign a consent form. Upon signing, a cyclist became a survey’s participant. Overall, 648 

cyclists signed the consent form. Secondly, a participant was asked to fulfill a 
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questionnaire. The purpose was to gather socio-demographics, trip information, transport 

preferences and travel behaviour of participants. The second part usually happened 

simultaneously with the third one, which involved measurement of physical cyclists and 

bicycle characteristics, but for resistance parameters. For example, mass, cargo, tire 

pressure, tire width, riding position were measured/observed and recorded. Lastly, the 

participant was invited to take the coast-down test. The test involved coasting from a 

cursing speed to a stop over 100 m of a flat stretch of paved bikeway, while time sensors 

were recording bicycle motion. From the data collected by the sensors, resistances 

parameters could be extrapolated by fitting the coast-down equation (Tengattini & Bigazzi, 

2017). The questionnaire was administered in hard-copy. It comprised three main parts. 

The first one regarded trip information (i.e. origin, destination, purpose, trip 

length/distance). The second included both travel habits and preferences questions. The last 

part included socio-demographics like sex, age, income and gender. The majority of the 

answers were formulated in a “checkbox” form (Likert-type scale). For example, a level of 

comfort question would be answered using four checkboxes, with a gradually increasing 

meaning, such as “very uncomfortable”, “uncomfortable”, “comfortable”, “and very 

uncomfortable”. Other answers were left free, especially ones related to socio-

demographics questions. Figure 16 illustrates that the collected sample compares well with  

a Vancouver metropolitan area 2011 household travel survey (TransLink, 2013), in terms of 

age, sex and income, but with fewer youth, more females, and fewer high income (75k-

100k CAD) people. K-S tests for income and age, and 𝜒2for sex proved insignficant 

difference in the two samples (𝑝 > 0.9). 
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Figure 16. Sample size comparison with a Metro Vancouver survey in 2011 

(TransLink, 2013)  
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Cluster and statistical analyses 

Cluster-based grouping of riders is performed using only observed physical 

attributes assessed by experimenters during the survey, as opposed to other information that 

was stated by the participant, leading to more objectivity. Variables used are both 

categorical and continuous in nature. Categorical variables comprises Bicycle Type (Road, 

Hybrid, Mountain, Cruiser, and Other); Tire Type (Slick, Commuter, and Knobby); Cyclist 

Apparel (Sport, and Casual); and Riding Position (Drops, Hoods, and Tops). Continuous 

variables comprised Tire Pressure, Tire Width, Number of Cargo Pieces. 

Cluster analysis was performed in the environment R using “cluster” and “fcp” 

packages (Hennig, 2015; Maechler, Rousseeuw, Struyf, Hubert, & Hornik, 2016). Because 

of the heterogeneity of variables’ nature, a meaningful dissimilarity matrix cannot be 

computed using classic Euclidean metric. Instead, Gower metric (Gower, 1971) was used 

and 𝑘-medoid clustering was performed, where 𝑘 is the number of clusters. Maximization 

of the mean of average silhouette width for growing k (Reynolds, Richards, Iglesia, & 

Rayward-Smith, 2006) is used to reveal the optimum cluster number, which is found to be 

three. Each variable used to generate cluster will be examined as to characterize 

composition and attach physical meaning to the three clusters. 

Resistances parameters (𝐶𝑟, 𝐴𝑓𝐶𝑑, and 𝑚), cycling preferences, and habits, which 

are not used to generate clusters, will be analysed, so to see if there are systematic 

relationships between clusters (i.e. physical cyclists typologies) and all the aforementioned 

variables. Non-parametric Kolgoromov-Smirnov (K-S) and chi-squared (𝜒2) tests are used 

to test significant differences of continuous and categorical variables, respectively, among 

the three clusters. 
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8.3. Clustering results and associations 

Physical typologies 

As seen in Chapter 7, Of 648 participants, 91 coast-down tests were discarded 

(mainly due to poor fit), so resistance parameters for 557 participants were successfully 

computed. However, because not all participants consented to all measurements used in the 

cluster analysis, 531 data points were used. Figure 17 shows clusters data point 

membership along the first two principal components. 

 

Figure 17. 𝒌-medoids clustering output with respect to two principal components. 

Visible is cluster number and (name). 
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 To attach physical meaning to each cluster,  

Figure 18, Figure 19 show a cyclist’s physical characteristic share in each cluster. 

Statistical tests are used to check significant difference in parameters distribution among 

clusters. Tyre types, pressure and width ( 

Figure 18) are all significantly different among all clusters (p<0.001). In Figure 18, 

bicycle type is shown and it is significantly different among all clusters (p<0.001). Also, 

riding position is significantly different (p<0.05) among clusters. Cyclist apparel and 

number of gears are both significantly different (p<0.001) only among cluster 1-3, and 2-3. 

Number of cargo pieces is not significantly (p>0.6) different among clusters. 

In the interests of convenience and clarity, cluster number one, two, and three (as 

per Figure 17) are re-named Hybrid-styled cyclist (H), Mountain-styled cyclist (M), and 

Road-styled cyclist (R). Cluster size is 270, 133, and 128 for cluster H, M, and R, 

respectively. Cluster’s names are derived from the major (>50%) bike type per cluster, as 

seen in Figure 18. Generally speaking, bicycles are designed for different riding conditions 

and purposes, so it is expected to see systematic correlations among physical 

characteristics, hence the suitability for cluster analysis. For example, cluster M is 

comprised by more than half Mountain bikes, it is largely characterized by knobby, wide 

and low-pressure tires, and mainly ridden in tops positions. On the other hand, cluster R 

includes almost exclusively highly pressurized, slick, thin tires. Also, almost half of such 

cyclists rode in drops or hoods positions.   
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Figure 18. Bicycle characteristics by cluster. 
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Figure 19. Cyclist characteristics by cluster.  

 

Physical typology relationships with day or location of sample data collections were 

investigated, resulting in insignificant differences (𝑝≥0.1). Sex difference among physical 

typologies was also insignificant ( 𝑝>0.4), as well as cyclist body mass (𝑝>0.45). Other 

socio-demographic participant characteristics revealed significant differences among 

clusters, as illustrated in Table 9. In particular, in our sample, lower income are more likely 

to be M members. Not reported in Table 9 is a less significant (𝑝 ≤ 0.10) difference, for 

“level of education”, where M-type is significantly lower than R and H.  
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Table 9. Socio-demographics mean and (standard deviation) per cluster. Subscripts 

indicate the comparison categories for which significant difference were found with 

K-S tests (𝒑≤0.05) 

  R H M 

Age 
37.25 

(12.63) 

41.00R 

(14.95) 

38.65 

(15.63) 

Household income [CAD] 
92,415 

(51,039) 

93,879 

(54,182) 

78,491R,H 

(57,063) 

Household size  2.34 

(1.08) 

2.49 

(1.31) 

2.57 

(1.31) 

Number of motorized vehicle in household 
2.03 

(0.77) 

2.12 

(0.87) 

2.07 

(0.91) 

Level of education* 3.78 

(0.91) 

3.84 

(1.1) 

3.48 

(1.27) 
*1-“high school or less”, 5-“master’s or doctorate degree” 

Relationships with resistances parameters 

Typologies outlined in the previous chapter suggests there might be some difference 

in resistances parameters. As found in previous chapters and (Wilson & Papadopoulos, 

2004) rolling, drag and mass parameters were significantly correlated with physical 

characteristics such as tire pressure, width, and riding position. Figure 20 shows differences 

in resistances per physical typology (i.e. cluster). Table 10 illustrates that for 𝐶𝑟, 𝐴𝑓𝐶𝑑, and 

equipment mass significant (𝑝 ≤ 0.001) differences between R and M clusters are always 

found. 
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Figure 20. . Boxplots illustrating rolling, aerodynamic coefficients and equipment 

mass by cluster. Box height is the Inter Quartile Range (IQR), line in the box is 

median. 
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Table 10. Resistances mean and standard deviation per cluster. Superscripts indicate 

the comparison categories for which significant difference were found with K-S tests 

(𝒑 ≤ 𝟎. 𝟎𝟎𝟏). 

 R  H M 

𝐶𝑟 [-] 
0.0069 

(0.0035) 

 0.0074 

(0.0034) 

0.0092R,H 

(0.0039) 

𝐴𝑓𝐶𝑑 [m2] 
0.495 

(0.148) 

 0.577R 

(0.171) 

0.579R 

(0.178) 

Cargo+Bike mass [kg] 
14.6 

(4.1) 

 18.5R 

(6.2) 

18.4R 

(3.5) 

 

Relationships with cycling preferences and attributes 

Cycling preferences and attributes comprises variables presented in Table 11 and 

were obtained using a questionnaire filled by each participant. Interestingly, a clear trend, 

although not always significant, can be seen across physical typologies where R type 

cyclists seem less concerned about mixed-traffic cycling condition than M type. M-type of 

cyclists stated to be significant less comfortable than R-type when no physical separation is 

present on major streets. Also, the gain in comfort can be related to the perception of 

physical activity enjoyment that makes cycling a less stressful activity. “Would bike more” 

is short for the question “I would like to travel by bicycle more than I do now” and 

interestingly R type cyclists would bike more than others probably because they enjoy 

physical activity more and consider cycling as a physical activity. Not reported in Table 11 

is a less significant (𝑝 ≤ 0.10) difference for “stated bicycle maintenance conditions”, 

where M-type have a self-reportedly less maintained bicycles, if compared to R and H.  
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Table 11. Mean (standard deviation) preferences and perceptions responses per 

typology. Superscripts indicate the comparison categories for which significant 

difference were found with K-S tests (𝒑 ≤ 𝟎. 𝟎𝟓). 

  R H M 

 Stated bicycle 

maintenance conditions* 

3.02 

(0.89) 

3.02 

(0.75) 

2.8 

(0.81) 

 Would cycle more** 3.87 

(1.11) 

3.78 

(1.12) 

3.67 

(1.23) 

 Cycling is a form of 

exercise** 

4.63 

(0.75) 

4.56 

(0.8) 

4.33 

(1.07) 

 Physical Activity 

Enjoyment** 

4.75 

(0.6) 

4.68 

(0.71) 

4.54 

(0.99) 

C
o
m

fo
rt

*
*
*
 o

n
 

Path - away from motor 

vehicles 

3.9 

(0.31) 

3.89 

(0.39) 

3.8 

(0.51) 

Local st. - low traffic and 

speeds 

3.8 

(0.4) 

3.65 

(0.58) 

3.7 

(0.48) 

Major st. w/ physical 

separation 

3.57 

(0.68) 

3.46 

(0.68) 

3.39R 

(0.71) 

Major st. w/ painted 

separation 

3.29 

(0.69) 

3.03 

(0.79) 

2.94R 

(0.81) 

Major st. w/o any 

separation 

2.43 

(0.95) 

2.11R 

(1.02) 

2.06R 

(0.91) 
* 1-“poor”, 4-“excellent”. 

** 1-“strongly disagree”, 5-“strongly agree”. 
*** 1-“very uncomfortable”, 4-“very comfortable”.  
  

 

Relationships with cycling habits 

Table 12 illustrates habits participant responses per physical typology. None of the 

travel mode or bicycle by purpose habits revealed significant difference among typologies. 

Interestingly a significant difference is found in the type of cyclist, therefore we are able to 

link physical typology to cyclist behaviour. Findings show that R-type of cyclists (i.e. 

“efficient” riders) are significantly more likely to belong to “confident & enthused” or 

“strong and fearless” than if they were part of the M-type (i.e. “inefficient”). This 

relationship is probably a consequence of significantly higher comfort in mixed traffic of 
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R-type cyclists and them being significantly more “year-round” cyclists. This information 

it’s of primary importance as having a more efficient bicycle (like R type) can be related to 

more cycling and with more confidence.  

Self-reported intercepted-trip distance and time did not reveal any significant 

difference among physical typologies. Also, self-reported intercepted trip purpose did not 

show significant difference, however, R type had the highest share of commuters, whereas 

M were mostly recreational.  
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Table 12. Mean (standard deviation) habits responses per typology. Superscripts 

indicate the comparison categories for which significant difference were found with 

K-S tests (𝒑 ≤ 𝟎. 𝟎𝟓). 

  R H M 

M
o
d
e 

u
sa

g
e*

 

Private vehicle (driver or 

passenger) 

2.88 

(1.21) 

2.73 

(1.36) 

2.71 

(1.45) 

Car share (driver or 

passenger) 

1.68 

(0.87) 

1.56 

(0.9) 

1.39R 

(0.75) 

Taxi 
1.42 

(0.62) 

1.41 

(0.68) 

1.37 

(0.64) 

Public transit 
2.56 

(1.03) 

2.68 

(1.11) 

2.93 

(1.23) 

Bicycle and e-bikes 
4.56 

(0.73) 

4.34 

(1.06) 

4.23 

(1.01) 

Walk 
4.16 

(1.1) 

4.26 

(1.13) 

4.07 

(1.26) 

C
y
cl

in
g
 b

y
 

p
u
rp

o
se

 

[d
ay

/m
o
] 

Commuting 
14.5 

(10.35) 

13.79 

(10.84) 

12.48 

(10.67) 

Shopping 
11.12 

(8.55) 

10.51 

(8.86) 

10.17 

(9.72) 

Recreational 
10.18 

(8.66) 

8.83 

(8.5) 

11.15 

(9.47) 

O
th

er
 h

ab
it

s 

Year-round cyclist** 
3.94 

(1.32) 

3.72 

(1.42) 

3.42R 

(1.45) 

Typical self-reported 

speed*** 

2.56 

(0.57) 

2.18R 

(0.61) 

2.1R 

(0.68) 

Moderate Physical Activity 

[hrs/wk] 

4.86 

(1.87) 

4.63 

(1.91) 

4.7 

(1.9) 

Vigorous Physical Activity 

[hrs/wk] 

4.27 

(2) 

3.24R 

(2.15) 

3.27R 

(2.22) 

Equivalent Physical 

Activity [hrs/wk]**** 

12.46 

(2.69) 

11.15R 

(3.15) 

11.16R 

(3.29) 

Type of cyclist***** 
1.79 

(0.71) 

1.64 

(0.72) 

1.49R 

(0.69) 
* 1-“almost never”, 5-“almost daily”. 
** 1-“strongly disagree”, 4-“strongly agree”. 
*** 1-“slower than most cyclists”, 3-“faster than most cyclists”. 
**** Computed as (moderate physical activity) + 2(vigorous physical activity). 
*****  0-“no way, no how”, 1-“interested but concerned”, 2-“confident & enthused”, 3-

“strong and fearless”. Deduced from other responses according to Dill & McNeil (2013) 
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8.4. Discussion of findings 

This study explicates associations among purely physical grouping of cyclists and 

cyclists socio-demographics, resistance parameters, preferences and habits. Overall, 

considering R, H, and M typology, in order, a consistent shift in participants’ characteristics 

and responses can be seen, but not always significant as per Table 10, Table 11, Table 12. 

Firstly, resistance parameters are significantly lower for R members, if compared to 

H and M. Implications are mainly related to power output modelling which has uses in 

ventilation, speed, and route choice models (Bigazzi, 2017; Bigazzi & Figliozzi, 2015b; 

Mercat, 1999b; Mueller et al., 2015b). In fact, more fine-detailed analysis can be carried 

out because based on easily measurable physical characteristic cyclists typology can be 

deduced, and resistance parameters selected accordingly. 

Secondly, looking at cycling preferences and attributes R, H and M type 

participants, in order, consistently had a better bicycle maintenance perception (perhaps 

related to actual lower resistances), enjoyed more and were willing to do more physical 

activity and were less sensitive to a comfort loss on progressively less separated bicycle 

facilities. In particular, significantly difference were found in comfort levels in mixed 

traffic condition (no separation). Implications might be regarding facility usage and route 

choice. Because in most cities cycling network is still a very limited subset of the overall 

road network, mixed traffic routes can be distance/time/topographically-wise more 

convenient, and they would probably be chosen only by cyclists who feel comfortable on 

them, leading to systematic route choice depending on physical typology. 

Thirdly, cycling habits revealed that R, H and M members, in that order, cycled 

more often for commute and shopping purpose (but not significantly). However, 
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recreational/leisure cycling is mostly done by M-type of cyclists, perhaps indicating that 

because they commute less often by bicycle they are more willing to leisurely cycle. Mode 

share among typology interestingly revealed that R-cyclists do significantly more car 

sharing. This could potentially reflect a more sharing-economy mind-set of R typology of 

people. However, public transit was used more (but insignificantly) by M-type, perhaps 

correlated to their lower income. Time spent doing physical activity, cycling year-round, 

self-reported bicycle speed shows how R-types of cyclist are significantly more “dedicated” 

to cycling, to work out and possibly as a consequence they tend to ride faster. 

Finally, using behavioural-related questions (comfort on facilities, willingness to 

cycle more and frequency of cycling in the past 30 days), each cyclist was labelled as one 

of the four types of cyclists (Dill & McNeil, 2013). Our physical typology showed 

significant difference in the “four type of cyclists” distribution among our “three physical 

types”. In particular, R type cyclists, if compared to M, were significantly more on the 

“enthused and confident” side than the “interested but concerned” one. Educating cyclist on 

bicycle maintenance (e.g. keep well-inflated pneumatics), and incentivising road or hybrid 

type of bicycle, might contribute to a cyclist transition from M type to R type meaning that 

they would be more likely to be “enthused and confident”, i.e. they would bike more and 

more confidently. Also, such relationship might help to physically identify “interested but 

concerned” cyclist, which, at least in Portland, OR, are the majority (Dill & McNeil, 2013) 

and should be the first targeted people to foster modal shift towards cycling. 

Overall, interesting and reasonable correlations among physical typologies and all 

the other parameters were found perhaps opening more questions than finding answers. The 

definition of R for Road, H for Hybrid, and M, for Mountain, purely physical could be 

mapped into an Efficient, Moderate and Inefficient type of cyclists because the three 
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typologies, in that order, systematically have lower resistances (energetic efficiency), they 

go faster (time efficiency), and their route set is wider because they are more comfortable in 

mixed traffic (route choice efficiency). 

It is true that correlation does not imply causation. However, a positive feedback 

effect seems to be present in the cohort of cyclist.  In fact, previous research investigated 

how leisure cycling (a form of physical activity) could positively affect commuting cycling 

and vice versa (Kroesen & Handy, 2014; Park, Lee, Shin, & Sohn, 2011). In this study we 

also see that more cycling could be fostered by a more efficient vehicle and equipment, and 

by more physical activity which will result in cyclists to cycle even more, making them 

more comfortable to mixed-traffic facilities as vulnerable user, also possibly going faster so 

to reduce speed differential with motorized vehicles and feel safer.  

All this is fascinating and may have important policies implication to increase 

cycling rates in cities. Because of the consistency in answers among the three physical 

typologies, and correlations with cycling behaviour and habits, it is believed that effective 

policies should aim to educate cyclist about bicycle types and efficiency (e.g. maintenance 

and equipment selection). For example, community bicycle shops should be built, and 

community centre should offer practical classes about bicycle maintenance, and proper 

usage for a more enjoyable ride. Also, policies aiming to reduce bicycle thefts should be 

simultaneously implemented (e.g. attended bicycle parking lots), as theft could be major 

factor restraining cyclists from purchasing a more efficient, road-style bicycle. Such efforts 

might accelerate the internal feedback effect that make cyclist progressively shifting to R 

type, meaning they will cycle more and come comfortably. Other incentives, such as 

distance-based bicycle commute reimbursement, could be used as to entice cyclist to cycle 

more while upgrading their bicycle. Also, as a possible consequence of more cycling there 
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is some evidence that more cycling could improve safety because of driver’s adaptation to 

cyclists presence in the road environment (Jacobsen, 2003; Phillips, Bjørnskau, Hagman, & 

Sagberg, 2011; Wegman, Zhang, & Dijkstra, 2012), showing again an internal feedback 

effect that could contribute a cyclist to feel more comfortable and therefore ride more. 

The study has several limitations. Although the clustering is performed with 

objective measures carried out by experimenters, all the questionnaire answers are self-

reported and might be biased.  For example, people tend not to answer in an extreme 

manner when using a Likert-type scale, or inflate their amount of exercise (Van de Mortel 

& others, 2008). Also, some question may have been unclear to some participants, leading 

to unintentional answers. However, the experimenters were always available for 

clarifications. This study was conducted in the summer and people may have been biased 

by the steady favourable weather of Vancouver during summer months. In particular in 

Table 12, three questions (“cycling by purpose”) explicitly referred to habit in the previous 

30 days (i.e. warm, summer days). 

Overall, further investigation need to be pursued. As an example, a longitudinal 

survey would help exploring if there is a natural cyclist’s growth and learning process that 

manifests as a physical typology shift over time. Also, further research needs to address the 

causality sequence in the physical typology shift, i.e. whether upgrading the equipment, 

bicycle, and better maintenance precede or follow behavioural and habits changes, and 

perhaps if there is any “novelty” or “guilt” effect, i.e. an owner invested money on a new 

bicycle, feeling the need to use it. Finally, further investigation should focus on mode 

substitution, because, as a cyclists type shift towards R type, it uses more private cars and 

less transit (although insignificantly). 
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9. CONTEXT-SENSITIVE, FIRST PRINCIPLE CRUISING SPEED MODEL, 

USING CYCLISTS CHARACTERIZATION 

This chapter addresses the non-trivial and practical problem of estimating bicycle 

free-flow cruising speed given a bicyclist’s physical characteristics, power output, and road 

conditions. The method described in this paper can be implemented to compute design 

speed on varying road grades or target/desired speed in microsimulation models. A 

“bottom-up” or mechanical perspective is used for speed estimation from first principles. A 

closed formula for speed is derived from equilibrium of traction and resistance forces, and 

applied using parameters from the literature and analysis of an observational data set. 

Results are compared to speed distributions in the literature. The method is extended to the 

problem of speed estimation for bicycles with a limited range of gearing and applied to the 

problem of clearance interval calculation. 

9.1. Bicycle speed modelling 

Currently, bicycle speeds are considered constant in many transportation analysis 

contexts, likely due to a lack of bicycle speed modelling tools. Travel time is a key factor in 

travel mode and route choices (Broach, Dill, & Gliebe, 2012; Sener, Eluru, & Bhat, 2009), 

and yet most travel models use constant-speed assumptions for bicyclists. Health impact 

assessment models assessing crash risk, pollution inhalation and physical activity also make 

assumptions about bicycle speeds based on limited information (Mueller et al., 2015a; D 

Rojas-Rueda, de Nazelle, Teixidó, & Nieuwenhuijsen, 2013).  

Several empirical studies have shown that observed bicycle speeds can vary 

systematically with factors such as facility type and topography (Bernardi & Rupi, 2015; 

El-Geneidy, Krizek, & Iacono, 2007; Parkin & Rotheram, 2010). Still, studies of bicycle 
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speeds and travel times are relatively rare, and the literature lacks tools for estimating 

bicycle speeds based on roadway and traveller conditions. Speed analysis for a 

transportation system can be performed from a “top-down” or “flow-constrained” 

perspective where speed is determined by facility conditions. For motorized vehicle speeds, 

this approach has led to development of classical traffic flow theory (May, 1989). The 

flow-constrained approach is less applicable to modelling bicycle speeds because many 

bicycle facilities carry volumes well below levels at which bicyclist interactions impede 

travel. Bicycle facility capacity is of growing interest, however, and as bicycle mode share 

grows, flow-constrained speed may become a more important issue (Jiang, Hu, Wu, & 

Song, 2016; Jin et al., 2015).  

9.2. Mechanical Speed Determination 

Bicycle speed results from a set of forces, 𝐹𝑖, applied to the bicycle,  

∑ 𝐹𝑖 = 𝑇 − 𝑅 = 𝑚
𝑑𝑣(𝑡)

𝑑𝑡𝑖   ( 25 ) 

where 𝑣(𝑡) is the linear speed of the bicycle (in m/s) as a function of time 𝑡 (in s), 𝑇 and 𝑅 

are traction and resistance forces respectively (in N), and 𝑚 is the mass of the bicycle and 

bicyclist (in kg). Resistance 𝑅 is the resultant of several forces acting against the forward 

motion while traction 𝑇 is the propelling force tangential at the wheel as a result of the 

power that the bicyclist is providing. Full traction force is successfully exploited if and only 

if it is less than the available adherence (otherwise slippage occurs). If 𝑇 > 𝑅 then the 

bicycle accelerates, and if 𝑇 < 𝑅 the bicycle decelerates. This paper examines bicycle 

steady-state cruising speed, where 𝑇 = 𝑅. 
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Resistance 𝑅 can be modelled according to Equation 5, rewritten for convenience 

here 

𝑅 = 𝑚𝑔(𝐶𝑟 + 𝐺) +
1

2
𝜌𝐴𝑓𝐶𝑑𝑣𝑟𝑒𝑙|𝑣𝑟𝑒𝑙|,      ( 26 ) 

which for 𝑣𝑟𝑒𝑙 > 0 is of the general parabolic form 

𝑅 = 𝐴 + 𝐵𝑣𝑟𝑒𝑙
2    ( 27 ) 

with parameters 𝐴 = 𝑚𝑔(𝐶𝑟 + 𝐺) and 𝐵 =
1

2
𝜌𝐴𝑓𝐶𝑑 fixed over a road section of 

homogenous grade and surface.  

Traction force is complex because it depends on energy expenditure and power 

output of the bicyclist, and the literature provides little guidance on modelling these factors 

for utilitarian bicyclists. Traction force 𝑇 is a function of the power applied at the traction 

wheel 𝑃𝑤 (in W) and bicycle speed 𝑣 as 

𝑇 =
𝑃𝑤

𝑣
   ( 28 ) 

Positive 𝑃𝑤 depends on the power input by the bicyclist at the crank 𝑃𝑐 (in W) and the 

drivetrain efficiency 𝜂: 𝑃𝑤 = 𝜂𝑃𝑐, leading to 𝑇 =
𝜂𝑃𝑐

𝑣
. Braking leads to negative values of 

𝑃𝑤 and 𝑇. 

Bicyclist power output is expected to vary with road conditions and across individuals. In 

particular, it has been observed that power increases with road grade. Previous research 

(Parkin & Rotheram, 2010) suggests the linear relationship: 

𝑃𝑐 = 127 + 2590 ∙ 𝐺.   ( 29 ) 
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As a comparison to Equation 29, we estimate a similar relationship using an observational 

data set from (Bigazzi & Figliozzi, 2015a). Assuming the same 𝜂 = 0.95 from (Parkin & 

Rotheram, 2010),  

𝑃𝑐 = 112 + 2441 ∙ 𝐺    ( 30 ) 

for observations with 𝐺 of -3% to 7% and power of 20 to 300 W (𝑅2 = 0.46). The power-

grade models compare well despite substantially different data sources. For the rest of this 

section, it is assumed that 𝑃𝑐 can be considered an exogenous choice of the bicyclist 

unconstrained by speed; limitations of power output at certain speeds due to gearing 

limitations are explored below. Investigation of power choices in more varying bicycling 

conditions is left for future work. 

Traction and resistance force equilibrium is illustrated in Figure 21, where cruising speeds 

are at the intersections of the traction (dashed) and resistance (solid) lines. Illustrative 

resistance parameters are shown in Table 13. Four equilibria speeds can be seen in Figure 

21: 21.5 km/h for 𝑅 at 𝐺 = 0% and 𝑇 at 127 W, 26.8 km/h for 𝑅 at 𝐺 = 0% and 𝑇 at 205 

W, 17.5 km/h for 𝑅 at 𝐺 = 3% and 𝑇 at 205W, and 12.1 km/h for 𝑅 at 𝐺 = 3% and 𝑇 at 

127 W. With no power adjustment, a rider at 𝑃𝑤 = 127 W on level ground would slow 

from 21.5 to 12.1 km/h at 3% grade, but only to 17.5 km/h if 𝑃𝑤 were increased to 205 W 

as a consequence of Equation 29. According to Equations 29 and 30 and 𝜂 = 0.95, 𝑃𝑤 is 

expected to increase by almost 80 W with a 3% increase in grade, which would lead to an 

equilibrium speed reduction from about 22 to 18 km/h at the higher grade. 
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Figure 21. Traction and resistance forces at varying grades and power. Power 

computed as a function of grade according to Equation 29. 
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Table 13. Sensitivity analysis for bicycle speed calculation* 

Parameter units Mean 
Standard 

deviation 

Speed range from +/- 1 standard deviation 

of parameter [km/h] 

𝑚 kg 90 20 ± 0.72 

𝐶𝑟 - 0.008 0.004 ± 1.61 

𝐺 - 0 0.03 ± 4.66 

𝐴𝑓𝐶𝑑 m2 0.6 0.2 ± 1.70 

𝑃𝑤
** W 127 78 ± 4.78 

𝐴*** N 7.06 38.23 ± 7.70 

𝐵*** kg/m 0.368 0.122 ± 1.70 
* Sources: (Bigazzi & Figliozzi, 2015a; Chowdhury & Alam, 2012; Faria et al., 2005; Gross 

et al., 1983; Launer & Harris, 1996; Martin, Milliken, Cobb, McFadden, & Coggan, 1998; 

Olds et al., 1995; Wilson & Papadopoulos, 2004); in addition, 𝑔 = 9.81 m/s2, 𝜌 = 1.225 

kg/m3, and 𝑚 includes bicycle mass. 
** calculated from 𝐺 and Equation 29, with 𝜂 = 0.95. 
*** calculated from other parameters. 

Setting Equation 25 equal to zero, 𝑇 = 𝑅 and from Equations 27 and 28, neglecting wind so 

that 𝑣𝑟𝑒𝑙|𝑣𝑟𝑒𝑙| = 𝑣
2,  

𝑃𝑤

𝑣
= 𝐴 + 𝐵𝑣2   ( 31 ) 

which rearranges to  

𝑣3 +
𝐴

𝐵
𝑣 −

𝑃𝑤

𝐵
= 0 .  ( 32 ) 

𝐵 is positive by definition and the sign of 𝐴 depends on 𝐺. Thus, from Descarte’s rule of 

signs, if 𝑃𝑤 > 0, exactly one positive solution to Equation 32 exists. If the discriminant  

𝑃𝑤
2

4𝐵2
+

𝐴3

27𝐵3
   ( 33 ) 

is non-negative, the solution to Equation 32 can be computed  
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𝑣 = √𝑃𝑤
2𝐵
+√

𝑃𝑤
2

4𝐵2
+

𝐴3

27𝐵3

3

+ √𝑃𝑤
2𝐵
−√

𝑃𝑤
2

4𝐵2
+

𝐴3

27𝐵3

3

 . ( 34 ) 

The discriminant will be negative if 𝐴3 < −
27

4
𝑃𝑤
2𝐵, which will only occur on 

negative grades (< −4%) with low 𝑃𝑤 where braking probably occurs. 

9.3. Sensitivity and Second Moment Analyses 

Second moment analysis is performed for Equation 34 to investigate the effects of 

variability of input parameters on cruising speed. Input parameter values are summarized in 

Table 13, along with data sources. Second moment analysis was performed using the 

reliability analysis software “Rt” (Mahsuli & Haukaas, 2013). Propagating the variability of 

all parameters of Table 13 together, the resulting mean (standard deviation) of speed is 21.5 

(8.1) km/h. In case of fixed, null grade, the mean (standard deviation) of speed is 21.5 (3.9) 

km/h which compares well with observed speed distributions reported in the literature 

(Bernardi & Rupi, 2015; El-Geneidy et al., 2007). The last column in Table 13 shows the 

range of speeds that results from ± 1 standard deviation of individual parameter values. 

Speed increases with 𝑃𝑤 and decreases with all other parameters. Grade can be a major 

factor for speed, as expected, as can bicyclist power, which is related to grade. Drag and 

rolling resistance parameters are somewhat less important factors, followed by mass. 

9.4. Constrained Power and Cadence 

The power at the crank 𝑃𝑐 (W) is the product of the torque applied at the crank 𝜏𝑐 

(Nm) and pedalling cadence 𝑐 (s-1). Cadence, in turn, is related to speed through the gearing 
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or “development” 𝐷 as 𝑐 = 𝑣/𝐷, where 𝐷 = 2𝜋𝑟𝑤𝑚𝑖, 𝑟𝑤 is the rear wheel radius, and 𝑚𝑖 is 

the gear conversion ratio at gearing 𝑖, defined as 
𝑓𝑟𝑜𝑛𝑡 𝑐ℎ𝑎𝑖𝑛𝑟𝑖𝑛𝑔 𝑡𝑒𝑒𝑡ℎ

𝑟𝑒𝑎𝑟 𝑐𝑜𝑔 𝑡𝑒𝑒𝑡ℎ
. Thus,  

𝑃𝑐 = 𝜏𝑐𝑐 = 𝜏𝑐
𝑣

𝐷
 .  ( 35 ) 

With an infinite range of 𝐷, a bicyclist can use a desired cadence at any speed (and 

similarly apply a preferred 𝑃𝑐 and 𝜏𝑐). Real bicycles have a limited range of 𝐷, which in 

turn limits the available 𝑐 at a given speed. At low cadences, 𝑃𝑐 could be constrained by 

maximum leg strength to apply force at the pedals or by the maximum available static 

friction between wheel and pavement; at high cadences, 𝑃𝑐 could be constrained by leg 

strength available at high leg speed. Previous work (Wilson & Papadopoulos, 2004) 

suggests a linear torque-cadence relationship,  

𝜏𝑐 = 𝛾 − 𝛿𝑐  ( 36 ) 

which leads to a second-order power-cadence relationship  

𝑃𝑐 = 𝛾𝑐 + 𝛿𝑐2  ( 37 ) 

with maximum 𝑃𝑐
∗ =

−𝛾2

4𝛿
 at 𝑐∗ = −

𝛾

2𝛿
. 

Rearranging, 𝛾 = 2
𝑃𝑐
∗

𝑐∗
 and 𝛿 =

−𝑃𝑐
∗

𝑐∗2
, which leads to a constrained power model for a 

bicyclist that must depart from 𝑐 ≠ 𝑐∗ due to limited gearing: 

𝑃𝑐 = 2
𝑃𝑐
∗

𝑐∗
𝑐 −

𝑃𝑐
∗

𝑐∗2
𝑐2 ,  ( 38 ) 

or equivalently,  
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𝑃𝑐 =
2𝑃𝑐

∗

𝑐∗𝐷
𝑣 −

𝑃𝑐
∗

(𝑐∗𝐷)2
𝑣2 .  ( 39 ) 

For a single-geared bicycle, 𝑃𝑐 < 𝑃𝑐
∗ at speeds higher and lower than 𝑐∗𝐷. Traction force 

for a single-geared bicycle can be modeled from 𝑇 =
𝜂𝑃𝑐

𝑣
 and Equation 39 

𝑇 =
𝜂𝑃𝑐

∗

(𝐷𝑐∗)2
(2𝐷𝑐∗ − 𝑣)  ( 40 ) 

which is a linear function of speed, as opposed to the inverse relationship in Equation 28. 

A more flexible definition for a bicycle with a limited and continuous range of gears 

from 𝐷𝑚𝑖𝑛 to 𝐷𝑚𝑎𝑥 is: 

𝑃𝑐 =

{
 
 

 
 

2𝑃𝑐
∗

𝑐∗𝐷𝑚𝑖𝑛
𝑣 −

𝑃𝑐
∗

(𝑐∗𝐷𝑚𝑖𝑛)
2 𝑣

2 𝑣 < 𝑐∗𝐷𝑚𝑖𝑛

𝑃𝑐
∗ 𝑜/𝑤

2𝑃𝑐
∗

𝑐∗𝐷𝑚𝑎𝑥
𝑣 −

𝑃𝑐
∗

(𝑐∗𝐷𝑚𝑎𝑥)2
𝑣2 𝑣 > 𝑐∗𝐷𝑚𝑎𝑥

 ( 41 ) 

In this model, 𝑃𝑐 = 𝑃𝑐
∗ where 𝑣 is between 𝑐∗𝐷𝑚𝑖𝑛 and 𝑐∗𝐷𝑚𝑎𝑥, and drops off at higher and 

lower speeds. Again in terms of traction power, we have a continuous and differentiable 

function of 𝑣: 

𝑇(𝑣) =

{
 
 

 
 

𝜂𝑃𝑐
∗

(𝐷𝑚𝑖𝑛𝑐
∗)2
(2𝐷𝑚𝑖𝑛𝑐

∗ − 𝑣) 𝑣 < 𝑐∗𝐷𝑚𝑖𝑛

𝜂𝑃𝑐
∗

𝑣
𝑜/𝑤

𝜂𝑃𝑐
∗

(𝐷𝑚𝑎𝑥𝑐∗)2
(2𝐷𝑚𝑎𝑥𝑐

∗ − 𝑣) 𝑣 > 𝑐∗𝐷𝑚𝑎𝑥

 ( 42 ) 

which yields the following equilibrium equations from 𝑇 = 𝑅 = 𝐴 + 𝐵𝑣2: 
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0 = 𝐴 −
2𝜂𝑃𝑐

∗

𝑐∗𝐷𝑚𝑖𝑛
+

𝜂𝑃𝑐
∗

(𝑐∗𝐷𝑚𝑖𝑛)
2 𝑣 + 𝐵𝑣

2 𝑣 < 𝑐∗𝐷𝑚𝑖𝑛

0 = −𝜂𝑃𝑐
∗ + 𝐴𝑣 + 𝐵𝑣3 𝑜/𝑤

0 = 𝐴 −
2𝜂𝑃𝑐

∗

𝑐∗𝐷𝑚𝑎𝑥
+

𝜂𝑃𝑐
∗

(𝑐∗𝐷𝑚𝑎𝑥)2
𝑣 + 𝐵𝑣2 𝑣 > 𝑐∗𝐷𝑚𝑎𝑥

 ( 43 ) 

These equilibrium equations can be solved as for Equation 32 and by using the quadratic 

formula as: 

𝑣 =

−
𝜂𝑃𝑐

∗

(𝑐∗𝐷𝑚𝑖𝑛)
2+√

(𝜂𝑃𝑐
∗)2

(𝑐∗𝐷𝑚𝑖𝑛)
4+

𝜂8𝐵𝑃𝑐
∗

𝑐∗𝐷𝑚𝑖𝑛
−4AB

2𝐵
  ( 44 ) 

for 𝜂𝑃𝑐
∗ < 𝐴𝑐∗𝐷𝑚𝑖𝑛 + 𝐵(𝑐

∗𝐷𝑚𝑖𝑛)
3; 

𝑣 =

−
𝜂𝑃𝑐

∗

(𝑐∗𝐷𝑚𝑎𝑥)
2+√

(𝜂𝑃𝑐
∗)2

(𝑐∗𝐷𝑚𝑎𝑥)
4+

𝜂8𝐵𝑃𝑐
∗

𝑐∗𝐷𝑚𝑎𝑥
−4AB

2𝐵
  ( 45 ) 

for 𝜂𝑃𝑐
∗ > 𝐴𝑐∗𝐷𝑚𝑎𝑥 + 𝐵(𝑐

∗𝐷𝑚𝑎𝑥)
3; and as per Equation 34 otherwise. 

The data from (Bigazzi & Figliozzi, 2015a) (with 𝑃𝑐 > 0, 𝑐 > 0 and −1 < 𝐺 <

1 %) are again used to examine the relationship between 𝑃𝑐 and 𝑐 on level terrain, by fitting 

a second-order polynomial for 𝑃𝑐(𝑐) with robust standard errors. The fitted equation is 𝑃𝑐 =

80 + 108𝑐 − 58𝑐2; all three parameters are significant at 𝑝 < 0.01, supporting the 

hypothesis that power falls at high and low cadences. Peak power (here 𝑃𝑐
∗ = 132 W) is at 

𝑐∗ = 0.93 rps (56 rpm) and compares well with power at 𝐺 = 0 in Equation 29. 

A visualization of the model is provided in Figure 22, which illustrates 𝑃𝑐 (Equation 

41) and 𝑇 (Equation 40) for a bicycle equipped with unlimited gears (equivalent to case in 

Figure 21), limited range of gears (from 𝐷𝑚𝑖𝑛 = 2.78 m to 𝐷𝑚𝑎𝑥 = 8.56 m, corresponding 

to gear ratios 𝑚𝑖 of 34/23 and 50/11, respectively and wheel radius assumed 𝑟𝑤 = 0.3m) and 



96 

 

single speed (𝐷 = 5.67 m, the midpoint between 𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥). Even on level ground, 

both traction and power are reduced at high and low speeds due to the gearing constraint. 

For any given value of 𝑇, unlimited-gear bicycles allow the highest speeds. All else equal, a 

wider range of gearings increases the speed that a bicyclist will attain for a preferred power 

output.  
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Figure 22. Crank power (𝑷𝒄) and traction (𝑻) as a function of bicycle speed, for single 

gear, limited gear and unlimited gear bicycle at preferred power output 𝑷𝒄
∗ of 127 W 

and 𝒄∗ = 𝟎. 𝟗𝟑. 

 

Figure 23 and Figure 24 illustrate the potential importance of accounting for gear 

limitations in speed modelling, particularly at high power and on hills.  Figure 23 shows 

equilibrium speed at different grades and gearings. At higher positive grades, lower gearing 

allows for higher speeds, and vice-versa. Equilibrium speeds for limited and unlimited gear 



98 

 

bicycles are equivalent at these grades due to the wide gearing range in the example. 

Gearing becomes more important for bicycles with narrower gear ranges, such as found in 

many bike-share systems. Figure 24 shows equilibrium speed at different preferred powers 

and gearings, and illustrates that a single gearing can limit the attainment of high speeds, 

whereas limited but wide gearing has little impact on speed (similar to Figure 23). 
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Figure 23. Bicycle speed as a function of grade for four different gearing cases, with 

𝑷𝒄
∗, according to Equation 29, 𝒄∗ = 𝟎. 𝟗𝟑 rps and other parameters as per mean values 

in Table 13. 
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Figure 24. Bicycle speed as a function of 𝑷𝒄
∗ for single (𝑫 = 𝟓. 𝟔𝟕 m), limited (𝑫𝒎𝒊𝒏 =

𝟐. 𝟕𝟖 m to 𝑫𝒎𝒂𝒙 = 𝟖. 𝟓𝟔 m), and unlimited gears with 𝒄∗ = 𝟎. 𝟗𝟑 rps and other 

parameters as per mean values in Table 13 

 

9.5. Application of the Method 

This bicycle speed calculation framework is suitable for many applications in 

intelligent transportation systems design, operations, and management. In particular, it can 
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be easily implemented in microsimulation models to determine target cruising speeds for 

bicyclists based on their personal characteristics and road grade. Furthermore, it can be 

used to generate context-specific bicycle design speeds for advanced traffic management 

systems. For example, signal timing design according to the NACTO Urban Bikeway 

Design Guide (National Association of City Transportation Officials, 2014) requires 

calculation of the clearance interval 𝐶𝑖 (sec) according to 

𝐶𝑖 = 3 + 3.6
𝑤𝑖

𝑣
   ( 46 ) 

where 𝑤𝑖 is the width of the intersection in meters and 𝑣 is in km/h. The guide 

suggests assuming 𝑣 = 15 km/h on level ground, if no local bicycle speed data are 

available (which is commonly the case).  
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Figure 25. Clearance interval 𝑪𝒊 for crossing a 25 m wide intersection (𝒘𝒊) at different 

grades; grey area gives the 15th to 85th percentile 𝑪𝒊 values, propagating 𝒎, 𝑪𝒓, and 

𝑨𝒇𝑪𝒅 uncertainty as per Table 13. 

 

Figure 25 illustrates how the method can be used to estimate context-sensitive and 

probabilistic design speeds by propagation of parameter uncertainty in the equilibrium 

speed model (𝑚, 𝐶𝑟, and 𝐴𝑓𝐶𝑑 as in Table 13 and 𝑃𝑤 from Equation 29). The 85th percentile 

clearance interval exceeds the mean by up to 0.8 sec, and the mean varies from the default 

value by up to 2.6 sec. At 𝐺 = 3%  𝐶𝑖 85th percentile exceeds the default value, possibly 
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leading to unsafe clearance interval for higher grades and inefficient for level ones. More 

specific information about local bicyclist characteristics (e.g. high bike-share usage with 

heavier bicycles and a more limited gear range) can be applied for optimized and safer 

designs, especially in hilly terrain. 

9.6. Discussion and limitations 

This chapter presented a novel, first principles approach to estimating bicycle 

cruising speed from cyclist power output, bicycle resistance parameters, and road grade, 

including a sophistication for limited-gearing bicycles. Closed-form solution equations are 

presented which can be easily integrated into various analysis tools, including spreadsheet 

software. This framework allows for implementation of more refined microsimulation and 

travel models that are sensitive to resistance characteristics (road grade, rolling and drag 

parameters), gearing characteristics and power output of bicyclists. The framework with 

second moment analysis can be used for probabilistic geometric design, reliability and 

safety analysis, as bicycle speed variability is the results of the propagation of all the others 

context-related parameters variability. Finally, the framework can be applied to stochastic 

route choice modelling. The methodology can also be expanded to include other factors 

potentially affecting bicycle speed such as power assistance and wind.  

The framework presented is steady-state, and does not address start and stop phases 

or interactions with other road users. Moreover, power is an exogenous input only affected 

by road grade and without consideration of crash risk or stress due to motor vehicle traffic. 

Another limitation of the method is that application requires knowledge of bicycle 

parameters and power output, for which there is limited information in the literature. The 

linear relationship between power and grade presented in this paper is a start, and future 
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work will further investigate the determinants of on-road power output by utilitarian 

bicyclists. The recent proliferation of moderate-cost bicycle power meters enables large-

scale collection of power data from urban bicyclists. Additional next steps include 

modelling of speed dynamics and electric-assist bicycles.  
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10. CONCLUSION AND THE FUTURE 

10.1. Contributions to the body of knowledge 

Nowadays cycling is not only a sport or recreational activity, as it represents the 

principal mode of transportation for growing shares of travellers. Transportation 

professionals recognise the trend, but lack of proper and reliable bicycle travel models and 

data. 

This thesis contributes to fill the knowledge gap represented by elementary urban 

cyclists’ physical characteristics quantification, such as bicycle resistance parameters. 

These parameters can be used in health, and ventilation models, but can also be used for 

sophisticated bicycle speed modelling, which is in turn important for infrastructure and 

geometric design, mode and route choice modelling. Also, results found in this thesis can 

be used by policy makers to foster cycling in urbanized environments, as systematic cycling 

behavioural associations were found with physical characteristics.  

Firstly, the lack of real-world bicycle rolling and drag resistance is addressed by 

development and validation of a novel outdoor coast-down test. The method expands on 

previous methods found in the literature by accounting for wind and grade variation. 

Results revealed that the test significantly detects changes in resistances for a tire pressure 

or riding position change. It was noted that only those test sessions performed in head-wind 

conditions (most representative of cycling conditions) could revel significant differences. 

Also the novelty of this outdoor coast down-test technique lies in the fact that indoor testing 

(wind tunnels) might not be representative of on-road condition especially because of the 

dependence of effective frontal area from relative wind speed (Reynolds number) and 

direction. For further details, please refer to Chapter 4 and 5. 
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Secondly, the validated outdoor method has been implemented in an intercept 

bicycle survey in Vancouver, BC in summer 2016. Testing sessions were conducted during 

18 different days at 9 different location so to obtain a representative sample of the cyclists’ 

population. Detail of testing sessions are outlined in Chapter 6. For the first time, a 

significant sample of real-world urban cyclists contributed to the estimation of in-use 

bicycle resistances parameters distribution (rolling, aerodynamic resistance and mass, 

comprising cyclist, bicycle and cargo). The estimated distribution seems to agree with 

resistances estimates available in the literature (mostly for sport cycling) but the measured 

range found in this study is wider, possibly because of the wide range of bicycle types and 

conditions involved in the survey.  

By clustering cyclists using physical characteristics, particularly bicycle type, tire 

conditions, and riding position, systematic behavioural pattern were found in the cohort of 

cyclists. In particular, more frequent cyclists used more efficient bicycles, and also enjoyed 

and practised more physical activity. This suggests that policy makers might effectively 

develop cycling-friendly strategy by education on bicycle efficiency and the importance of 

physical activity. Physical-behavioural relationships might also be important for a better 

modelling of cyclist power output, having implications for health studies and speed 

modelling.  

Lastly, a context-sensitive speed model shows the applicability of cyclist physical 

characterization process undertaken in this thesis. Making use of power-grade trade-off 

relationships, bicycle resistances parameters and road topography, speed distributions are 

obtained so that enhanced bicycle transportation designed can be pursued. 
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10.2. Limitations to look forward 

This study has a few limitations, consequences of the methodology used. Firstly, the 

bicycle coast-down test validation phase could involve comparison with other resistances 

methodologies such as wind tunnels, towing method and comparison with power-meters 

measurements. Also, physical characterization was obtained for a sample in Vancouver, 

Canada, in summer 2016. As such, only a picture of cyclists’ physical conditions is 

provided and it is not known how it would change if the survey was carried out in other 

times of the year or in other cities. Therefore, repeating the study in different cities with 

different bicycle fleets and mode shares could significantly affect this study’s results. Also, 

we did not do testing in wet, cold weather conditions, a factor that could significantly affect 

results as well. Longitudinal studies, involving panels of cyclists, and cross-sectional 

studies (in different cities and different seasons), should be therefore carried out in the 

future. The questionnaire used is a stated preference survey methodology and, as such, 

response biases could be present (e.g. misinterpreting questions, tendency to answer in a 

non-extreme manner). Finally, the speed model should use more refined power-cadence 

and power-grade relationships, especially with the rising of e-bicycles. For micro-

modelling, non steady-state cycling condition should be explored by investigating and 

accounting for acceleration and decelerations rates. Interaction with other road users and 

comfort/safety perceptions, likely to affect bicycle speed were not modelled as well. 
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APPENDIX C: BICYCLE MEASUREMENTS FORM 
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APPENDIX D: CODES 

For convenience and accessibility, coding implemented by the author are freely 

available on the GitHub author’s account. In particular, repository /BCDT comprises the 

Arduino IDE sketch (.ino) loaded in the microcontroller, used during the data collection. 

Also, an R Script (.R) illustrates main functions and algorithms used in the data post-

processing phase. 

 

https://github.com/stengattini
https://github.com/stengattini/BCDT
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