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Abstract

Kinetic studies were conducted on three unrelated reaction types using traditional and
modified reaction monitoring tools. Tiea-Piancatelli rearrangemewas studied through
ReactIR and HPL@/S to obtain a bett understanding of why tiseibstrate scope wémited.

It was found that the Lewiscal catalyzed reaction is often zeooder, dependéron the

lanthanide metal use@ff-cycle bindingof the nucleophil¢o the Lewis acid was proposed to
help explain the zerorder profile Differencesbetween Lewis anBrgnstedacid catalystsvere
found through subsequent experiments assessing catalyst deactivatibaedm@moselectivity

of the productsn the AzaPiancatelli rearrangememtn automated sampling system was created
for handsfree readabn monitoringand offline analysis by HPL®S to provide detailed
information about m@ complicated reactions.

The automated sampling system was modified for the study of microwave assisted
reactionsThis application allowed fomore information to belerived from the field opoorly-
understood microwave chemisthan allowed by previous technologyomparisons were made
between microwavassistecandconventionally heated reactions, using a Claisen rearrangement
as a model reactioAs expected, it wafound that th€laisen rearrangemeat allylphenyl
ethersdisplayedsimilar kineticsbetween the two heating mod@$ie technology was also used
briefly to search for thexéstence of nosthermal effectslt was shown that the sampling
apparatus couldebuseful forcollecting data observed fromicrowavespecific effects.

Mechanistic studies were also conduatedhe Kinugasa reaction tbt@in a better
understanding of why the reaction generally behaves poorégards tahe formation ob-
lactam productTo study the reaction, samples for HRMS analysis were taken manually, then

by a liquid handler, and then through diragection to the HPLCIt was found that its side



product formation was directly coupled to the desired productétion, suggesting that bate
product and imine sidproductstem from a common intermediafgother littleknown side
product was isolated, suggesting tenmon intermediate could be intercepted by select
nucleophilsto form an amideThis finding will direct futureattempts to find conditions to favor

eitherb-lactam or amide formation.
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Chapter 1: Introduction

Mechanistic studies organic chemistry encompas$road and nonspecific st
experiments that are done with the godiustherunderstanthg a reaction of interesin the
simplest sense, a chemist may predict the eftdathanging a reaction parameter or using a new
additive based on his or her current proposal of the oragtechanismChanging variables and
assessing the outcomes is common in the process of developing or optieantions.

However, more irdepthmechanistic studies are sometimes desked example,ihding the
ratedetermining or enantioselectiviggtermining step can be nontrivial. Tuninglectronic
propertieon a ligand in a catalytic system and quantifying the effects requires confidence in
measurements of rate and yidllepending on the reaction, traditional mechanistic studies such
asmeasurig initial rates or kinetic isotope effect calculations can be tedi@useto a great
variety of reaction typesiot all mechanistic studies or analytical methodspvdlide useful
information about every class of reactidm addition traditional methds of discermg
mechanisms can henamenable to reactisrthat do not already work well due to complicated
speciationThere is a need for increased access to tools that enable more complicated
mechanistic studies, as well as experimental methodologiessitiuce the number of
experiments necessary to derive pertinent information.

One ofthe central themesf thisdissertations studying organiceactions in great detail.
Mechanistic studiesanbe appliedo widely-known reactions to those that are gpo
understood and/drardly working.After a catalytic system and radietermining stps are
proposed, conditions can fmund to disrupt the catalyst or coax it into cooperafirige

philosophy to continually question tkralidity of a catalytic systens prevalent.



Alongside conducting mechastic studies, an auxiliargyoal is todevelop or altetoolsto
facilitatekinetic studiesand obtairmore detailed information. As a consequence of being limited
to the blind spots of thinstruments we have atyagiven time it has been necessaryrtwdify
and coupleools together to increasiee use ofiutomation and the quality of data obtained.
These tools should not be so convolutadhthat other researchers cannot easily use them, and
their parts shoulddccommercially availableAlso, similar experimental sefps should allow for
multiple types othemicalprocesses to be run, enablingygeeconfiguration for any user,
instead of having a sefp that is only useful for one reaction type.

The workcontained in this dissertatiorenterson primarily organic, homogenous
reactions. Although our lab has some means of mongdreterogeneous reactiomsrk
concerningheterogeneous reactionssiieeenmostlyomitted. The specific reactions betwdée
various projects have no relation to each other; énmy, the r@asking of similatools used to

study thems common.

1.1 Currentin situ and exsitu analytical technology for the monitoring of homogenous
reactions
The first step to conducting a mechanistic study is finding an appropriate analytical tool

to monitor the progress of the reaction of interékere are several factors that need to be
considered. For exampleo the reaction conditions require mild orrexte heating? Is the
reaction particularly air or moistusensitive? What sort of functional groups are present in the
substrate(s) or product(s)? Which compounds are UV active? Is the substrate very expensive or
exhaustive to mak@otentiallylimiting how many experiments can be done? Are any solids or

gases produced in the reactiond &mow would theyotentially interfere with theesults from the
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andytical method? Would aonreactive additive be necessary to be used agernalstandard,
or can a inert compoundlready in the reaction function as an internal standard for kindsics?
the analytical technique suitable for a reaction run without an internal staridedfiowing
sectiors includea brief background on different spectroscopic teghas other groups have used
to trackorganicreactions, as well as ways in which they have modified standaupsed
accommodate more difficult conditions.
1.1.1 Nuclear magnetic resonanc§NMR) spectroscopy

Using NMRspectroscopyo monitor reactions in réame is a standard and widelysed
technique, especially fdH, 3P, and*°F nucki. As most organic chemists have access to a
spectrometeMMR spectroscopynay be thene of theeasiest reaction monitoring taofor
homogenous reactions, data collection is automatetihe setup may require few changes from
a benchtop reactiomaside from exchanging the reaction flasid stirbafor the NMR tube. It is
also convenient in that the NMR experiment can be set up without need for furthéorattent
Higherquality and pecision of data is correlated with longer delay ties to the relaxation
time of nuclei Unfortunately, this can also be a disadvantage, requiring longer acquisition times
on what is oftermshared instrument.he data analysis whichrequires convertig peak area
into concentratiof shouldalso require no calibration curves, possibly even without an internal
standard, if delay times are calculatésblvent suppression techniques have also allowed NMR
to be run on reactions without the use of expensive deuterated sélPents of interest may

also overlap or drift in chemical shift with changes in pH. Fortunately, some NMR processing

programs allow deconvolutionoépa ks i n arrays, such as MestreN

deconvolution function.



Forrelativelyfastorganicreactions (100 ms to a few minutetkle time betweemixing
the reactants and positioning the tube into the spectrophotometer is a detriment for good dat
acquisition, combined with infrequent acquisitiofs.allow acquisition of of kinetic data on
relatively rapid reactionstoppedflow NMR experiments using custemade probes allow for
two streams of reactants to be rapidly injected and mixed in thie tiéflection region. The
delay can then be varied to allow a fresh stream of reactants to meryanrg amountsf time
to see different timepoints. Thisethodcan reveal information about shdisted intermediates
andprovidea level of detail that wodlbe completely missed on a longer time scHhés
technique has proven useful by a few research groups, such as thadh@gdgroup However,
many research groups do not have access to such tools andinwdil@dumbersomand costly
to obtain them for only a few experiments.

For reactions that redre high temperatures (>120 Y 6r require an intake of gas, NMR
monitoring can be poor choice of instrumenExperiments run at high temperature can cause
boiling of the reaction solvent in the NMR tube, which may cause shimming problems or create
a mess at the NMR probe if theraiteak.The standard NMR tubes are also not vegjlipped
for continuous gas intake at the standard spectronféterLandis group has also created a set
up for high pressure NMR for gdiguid systems. A sapphire NMR tube with a titanium tube
holder (forpressures up to 68 atm) serves as the reactor. The reactor is connected to a gas
delivery system, a pressurized injection system, a circulator, and a wash Syghéithis
system is impressive, mostganic or inorganic chemssivould not put together such an
elaborate system without the need to use it several times.

A reason for concern in usirggstandard NMR saip as a reaction monitoring tool is the

lack of stirring, since the use ofr@agneticstirbar is impossible sidethe spectrometer. Kinetic
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studies were done by Foley et al. at Pfizer to compare reactions in stedWiiels (run as a
standard NMR experimeptoriine NMR (where samples are automatically withdrdwam a
mixed vessel and fed-lime to the NMR with a custom sap), and in a NMR tube that was

manually shken at specific interval®r periodic inversior{P.l., Figure1.1).>
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Figure 1.1: Model imine reaction monitored three different ways in the NMR

spectrometeP

For a model homogeneous reaction, periodic inversion evémiutes is still not
sufficient to mimic the online NMR experiment that has real stirring. The diffusion limited
processes in théagic NMR tube can change the kinetic analysis, and therefore have a large
effect on what conclusions may be drawn from comparing static NMR experiments. Although
static NMR experiments may be comparable to each other, the kinetic information we derive

from them may not transfer well to larger, stirred reactions that are more synthetically relevant.



Unfortunately,at presentiost people do not have the resources to use online NMR or stopped
flow NMR techniques.

Benchtop NMRs with less powerful field stgths (60, 80, 90 MHz) are commercially
available and have been used for monitoring reactions inflihis relatively inexpensive set
up can lessen the burden of booking large amounts of ingttume. It would also potentially
allow for stirred reactions to be monitored by NMR. Unfortunately, the resolution of peaks is
still not high, which can prohibit studying reactions more complex than a hydrolysis or

condensation.

1.1.2 Heat-flow calorimetry

A lesscommonly usedbut high throughputeaction monitoring technique is hdbw
calorimetry. Commercially available calorimetéssich as those fro@mnical)have multiple
slots in which reaction vials can be placed. The heat coming in or out of the reactor is recorded
throughout the reaction at a high data rate (3 Hz). Calorimetry is a useful technique if the heat
produced from the reactiatirectly corresponds to the c#ytic adivity, or is directly
proportional tathe rate of product formationHence, this involves aintegral method of
extractingreaction rate and then converting it to concentrgfiogure1.2). The heat ideally
corresponds to the rate of product formatiblme integral can be taken from the heat profile to
mathematicallyderive the conversion of starting material to prodiibts assumes 100% (or
near) convesion of starting material to product, and an endpsantpleshould be taken for

confirmation with analysis by another analytical method.
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Figure 1.2: Data processingof heat output (rate) from calorimetry into conversion of

starting material; a) zero order reaction, b) first order reaction

Advantages to this technique include the ability to run several reactions simultaneously,
allowing more reproducible experents and less wasted matehbglusing stock solutions.
Instead of determining order in a substrate by running experiments individually, a set of
experiments can be done on two substrates simultanéoDatplyst deactivation can quickly be
determined, as parallel runs can be conducteddess catalyst robustness. Calorimetry is also
useful for fast kinetic screens between different catalyBeause of the high resolution of data
collected, subd differences are more distinguishable. Microcalorimetry can also be used, with
detection limits nearing 1 n\VMAlthough microcalorimetry units are more frequently used

biochemical laboratorieshey also have a place in physical organic stutfies.



Unfortunately, if the heat evolved does not digecbrrespond to product formation, the
calorimetry esults must be interpretedrefullywith extra steps in the mathematical analysrs
the results may not be useful at’@lfhile the ratdimiting step for product formation may be
exothermic, ifother processes are not directly coupled but produce significant amounts of heat,
the overall heat generated may be too convoluted for worthwhile processing. Another reaction
monitoring technique (GC, HPLBIMR) must be used to cheek least a few singlpoint
samples to ascertain that the calorimetry data corresponds to product formation.

The majority of the projects in this thesis did not have reactions whose heat curves
corresponded to product formation. Some reactions were isothermalP {@zeatellj; others had
exothermic side reactions that did not relate to degireduct formation (Kinugasap¢heme

1.1). As a result, calorimetry was not used as a majatytical tool for these reactions.
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Schemel.l: The Aza-Piancatelli rearrangement (top) is isothermal. In the Kinugasa

reaction (bottom), the product formation did not match calorimetry heat output.



1.1.3 Fourier transform infrared s pectroscopy (FTIR)

FT-IR can be used as a reaction monitoring tool that is noninvasive, fast, and requires no
sampling. Peaks corresponding to characteristic singfcn bending frequencies in reactants,
products, and intermediates can be shown with time. Sampling can be dyaee by
chromatographyGC) or LC to check thaihvertedproduct formation and &strate consumption
trends overlay! Commercial FTIR instruments have alsecome available for the purpose of
reaction monitoring, such as the ReactIR. The standard ReactIR has an IR probe that is immersed
into the reaction vessel. The probe contains a fiber optic cable fitted with a gold sealed diamond
window. The ReactlIR flowell has also &come available, requirirgmall amounts of fluid so
that flow processes can be monitored instead of only immersing a probe in a batch t&action.
Aside from Mettler Toledob6s Reactl R, some cur

detector and flow cell for inline monitorin§igure1.3).1314

Figure 1.3: Flow cell for the ReactIR a) flow cell with inlet/outlet fittings on; b) fittings

taken off the flow cell; c) fittings head taken oft?

A disadvantage of using FTIR is that certain probes have differe i bl i ndspot 0 wi
where part of the spectra cannot be absorbed. The ReactIR diamond probe has a spectral window
of 650-1950 cm* and 22562500 cmit, with a blind spot around 195250 cm' with weak

absorbance due -Gbond stretehe@dguralm)o-dThed@emmercially available
9



flow cell widens the ranges to 6850 and2250-4000cm™. While the silicon probe does not

have the same blind spot, it is less chemically resitant.
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Figure 1.4: Window for a FTIR with diamond window*?

In addition, reactions that are strongly corrosive or produce iodide can etch pestas
or destroy the gold semlside the probheThe commercial ReactIR diamond probe is rated from
pH range 114, but the silicon probe has a smaller rapige-9.

Another disadvantage may be that a reaction doekave large or distinéR-active
pes that track with the formation pfoduct or disappearanceafbstratés). This isespecially
commonwith molecules without heteroatoms, or reactions that do not include bond forming or
breaking with those heteroatoms. Overlapping peaks may also heexrtobut often enough
mathematical processing and individually collected spectra of overlapping species can allow
deconvolution. In particular, principle component analysis may be included in software packages
to alow mathematical deconvolution.

Despitethe above disadvantages, reaction monitooymé TIR is still a common choice
Being relatively affordable and easy to maintain and transport, it is more likely for a research

group to own or borrow a ReactIR than some other spectroscopic instrumese ficr
10



experiments. The low barrier to using the instrument and processing the data, along with the
situ collection of data, makes FTIR a good choice for not only mechanistic studies but also for

monitoring reactions done in batch from a process stantf{y*"*®

1.1.4 Raman spectroscopy

Less popular than its complementary spectroscopic method FTIR, in situ Raman reaction
monitoring has also been used. An example by Leadbeater uses in situiRamaperflask
microwave reactol® Unfortunately, Raman spectra can require an extra processingefore
analysis due to large variances in the fluorescent background between expéfiidentsver,
Ramanspectroscopgan be a useful tool for monitoring largeale heterogeneous reactions with
inorganic solids, where taking samples for HPLC can lead to uncertainty of whether the sample
is representative of the whole reaction. Such was the case with an etherificatimmraun with
potassium carbonate, as shownAsyraZenecaAfter calibration with HPLC, in situ Raman was

enough to monitor the reaction on a 1500 L pilot stale.

1.1.5 High performance liquid chromatography (HPLC)

HPLC is lescommonly used as an in situ reaction monitoring technique. While it is
often used to give an estimate of conversion by way of taking and diluting a few afauots
analysis it is not often used as anmlingin-line monitoring technique for organic chetnys
HPLC (along with NMR) is one of the most commonly used techniquesfiore analysis,
although not necessarily for the construction of reaction progress curves. RatherfM3PEC
extremely widespread for inspectirgpctionprogress at a few timgoints and in the use of

searching for target masseshigh throughpuscreening experiments. Itadsooften used to
11



validate another in situ technique (calorimetry, FTIR) offine analysisAmigo Chem is a
commercially available reactor unit witHiquid handler for automated sampling, although
researchers could potentially create their own unit. The samples are then suitaffleéor
analysis by HPLC or GC.
Most orline HPLC applications have been in bioprocesses, or with permanently installed
equipment for pilot plant$! A mobile, altin-one sampling unit with direct injection to HPLC
has been developed through a collaboration with Merck and Eksigent Technologies, Inc. in 2007
(Figure1.5).2! The unit was capable of collecting data on homogeneous samples, and used a frit
with limited success for reactions that contained solide 3&up was also able to monitor
enantiomeric excess of thecemizatiorof a drug with time, which instruments such as FTIR
and calorimetry cannot track. Later, the-sptwas used for sampling the exit sirefor a
reaction done in floww? However, the need for a close collaboration to work on the
instrumentation side to enable thainedirect injection is prohibitie for many researchers.
Anotheronlinesampling system has been made before without direct collaboration with
an instrumentation vendor. It utilized a pyahll capillary sampling system. Unfortunately, this
system had significant delay times between samplingpahie analysis, as well as pantial for
leaking into the reactiof?. Progress in this endeavor seems to have slowed since, as direct

injection for HPLGMS is largely limited to dedicated saps in process chemistry settings.
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Figure 1.5: Reaction progress from theMerck/Eksigent direct-injection HPLC. a) the

HPLC spectra stacked for display as a surface; b) The relative conversions correlating to

the indicated peaks from the HPLC surfacé!

Unfortunately, compounds without Uattive chromophores are invisible by HPLC
(unless coupled to an ELSD) and may be more suitable for analysis by GC. Many chemists lack
an automated method of taking reastgsamples for offline analysis, and manually taking
samples can be very tintdnsuming and can lead to scattered data. Especially for gas
chromatography, samples often need filtetm@void inorganic buildip, leading to degradation
of columns. Howeverfor reactions using volatile compounds with no4d&tive chromophore

and paramagnetic metals, GC can be one of the last remaining éftions.
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A disadvantage to both HPLC and GC is that vetfuire the useo take into account
response factors of each compound of interest. This usually requires making calibration curves
and ascertaining that the nsdsalance of the reaction makes sense. This can be tedious, as every
new compound put to the reaction (and correspondimgpduc({s)) requires an extra step t
appropriately account for thezobncentratioa

In this thesisHPLC was a vital tool, partidarly for the creation of reaction progress
tools. We hope to show that although it may be more labor intensive to analy#eLiGelata,
the richness of data is worth the effort. It can be possible to take samples of slurries for analysis
by HPLC followel by full dissolution in another solvent, although the representation of the
reaction as a whole can be still be questionaligh the column technology rapidly improving,
separation times decrease and the ability to separate more compounds increadsésonn

compounds that overlap B -NMR or FTIR can potentially be separated by HPLC.

1.1.6 Electrospray ionizationi mass pectrometry (ESI-MS)

ESHMS has been used without its HPLC counterpart as a reaction monitorirfg%sal.
While it was first used as an situtechnique in 1994, it has seen little use until the past decade
or so. Sincet is a soft ionization technique, many compounds of interest can be observed
without too much difftulty arising from fragmentation, astenobserved with electron
ionization (EI) For example, losses of ligands from an organometaliigpooind can be
predicted easily, making identification of compounds relatively intuitive.

Advantages to the technique include itsagiigensitivity to charged ionghich can be
made possible by the additionani external aqueous acid sourite need for only micromolar

concentrations allow catalytic intermediates to be sleatwould otherwise bieaselineby other

14



spectroscopic methods (NMR,,IRPLC). While nonpolasolvents may prove difficulppssibly
due to lack of conductividy ionic liquids can be added to tresaction solution that do not
interfere with the chemists? However, a control reaction without the additive should be
monitored by a different analytical towl ascertain that the additivedeedhas no effect on the
reaction.

As a reaction monitoring tool, great success has been seen by the Mcindoe group by
pressurizing a reaction flask with an inert gas and slowly cannulating the reaction mixture
through HPLCtubing into themassspectrometefFigure1.6). Unfortunately, this technique
requires reactions to be run at noierolar concentrations, which gererally not synthetically
relevant. Catalyzed reactions that can be studied under this technique would beedite
robust under ultrgilute conditions, which does apply to many palladium catalyzed-cross
coupling reactiong FTIR has also been used in tandem to analyze reactions at higher
concentrations, allowing FTIR detection of the major components whilkd/iSSletects

intermediates in lower concentratioiis.

100 7,

10 equiv. NEt; (0 &
ArC,Ph J

80

<3 to ESIMS
60+
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40+

PdP,(Ar)(C,Ph)
(x100)

204

ArH septum ‘!

Arl
T T T T T 1 reaction
O 20 40 60 80 100 120 140 160 fask
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Figure 1.6: Right: Set-up for direct injection of a reaction to the ESFMS for reaction

monitoring. Left: percent conversion calculated from processed ESMS data?®
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An example of a processale reaction with online E®A1S was demonstrated in 1999.
The apparatus was able to take a sample, quench it, dilute #@8@0&nd add a buffer for
ionization and analysis. The data obtained atitine was noisy, but it showed detailed

speciation of the compounds of interest in the reacdfion.

1.1.7 Dual methods of reaction monitoring

The above mentioned tisoare often used imdustrial settingas part of Process
Analytical Technology (PAT), whichefers to the tools used for rapid analyses of processes.
PAT is used to improve efficiency of modifying reactions in batch and studying the stability of
potentially hazardous or transient intermediates and byproducts that may be prad¢hited.
most reseeh groups mighhot use more than one analytical tool for mechanistic studies,
pharmaceutical companies may have the resources to access several of them. Often, multiple
spectroscopic tools can be used simultaneously to monitor a reaction, allowingegherto
obtain more information than one tool could provide, or to more quickly decide which tool

would be the most useful for the process at hand.

1.1.7.1 MS, FTIR, FBRM used together in a batch reactor

In a successful example, four techniques were used toonartiteterogeneous batch
reaction of a sulfonyl chloride reacting with aqueous ammonia to form the corresponding
sulfonamide(Figure1.7).3! MS was used to assethe composition of gases in the headspace.
FTIR was used to see the product formation in the liquid phase, followed by a drop in

concentration when product precipitated out. Calorimetry was used to monitor the heat output
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and watch for exothermBocusé Beam Reflectance Measurem@BRM) was used to analyze

the solid phase, especially as crystallization occurred.
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R-S-CI > : » R-S—NH,
6 IPAc 2. Isolate solids A
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Figure 1.7: A batch reaction monitored by multiple methods FTIR, MS, FBRM 3!
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1.1.7.2 NMR and HPLC

Unfortunately, many analytical instruments use detectors that are not inherently
guantitative, such as HPLC (UV detector) and GC (FID). Because even structurally similar
compounds can have different relative respdastrs (RRF), samples of all the compounds of
interest must be prepared or obtained to construct calibration curves against a standard to
calculate RRF values. This can be tedious and-tioamsuming, especially compared to
inherently quantitative techniga such as NMR. Coupling two such instruments together can
account for the weaknesses in both. By creating-as#tat allows both #ine HPLC and in
line NMR through a flow cellFoley and coworkers at Pfizer were ableafculate RRF values
from oneexperiment by comparison to NMR, as well as monitor reactions by two orthogonal
analytical method#’ The reaction is stirred in batch, allowing monitoring using synthetically
relevant conditions. This sep seems to work well for rooftemperature, homogenous
reactions.

NMR and FTIR have also been coupled together in use to monitor batch reactions. While
in situ FTIR is widely accepted and used in PAT)ineNMR is used less frequently, albeit it is
becomimg more prevalent: Potentially, this may be becseiReactIR iselativelyeay to
incorporate into a batch reactor-sgt, whereas #ine NMR analysis can take a more dedicated
setup. In addition, taking samples for offine NMR analysis can be intrusive for unstable
intermediates of interes@nline NMR would be much more informige if it can show sensitive
species, unaltered by a quench. In contrast, FTIR is often unable to pick up all species in low
concentrations, whereas NMR often can. NMR can also be used to identify and validate peaks
observed by FTIR. Interestingly, in twecent examples of iiine NMR and FTIR, the progress

reaction curves between the instruments are not compared, and experimental data fit poorly to
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computationally optimized daf4>® While both projects could haveenmainly characteried
and monitored their reactions by NMR alone, the identification and validation of FTIR peaks by

tandem NMR allows subsequent experiments to be monitored by ReactIR alone.

1.1.7.3 Comparison of reaction monitoring methods

A chart comparing disadvantages andaadages between the aforementioned reaction
tracking methods mentioned in this thesis has been constructed for convéhadrieé.1).
Unsurprisingly, NMR has a uniguset of advantages that make it an extremely desirable tool for
reaction monitoring; unfortunately, paramagnetic metals can make the process more difficult. In

addition, there are several faster techniques listed.

Fast Acquisition | Automated data Inherently Low Characterization | Parallel reactions
(1 Hz or more) collection Quantitative concentrations data can be run
detectable
NMR " 4 v v v
HPLC v v it ms v
attached
Be \/ \/ if split with EI c/
ESI-MS % v "3 "
FTIR / /
Raman ‘/ ‘/
Calorimetry ¥ 4 v ” 4

Table 1.1: Comparison of multiple reaction monitoring techniques

1.2 Methods of mechanistic aalysis
Many reactions used in organic chemistry today have generalized mechanisms or
catalytic cycles that include wedthown elementary stepspwever, reactions will often differ in
their catalyst resting states, rditaiting steps, and oftycle processes. Most chemists focus on

the productive oitycle processes that afford them their desired produttto@dgih robust
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reaction are appreciateequally interesting iBow the catalyst spends its time-aoffcle, as well
as how the selectivity between desired products and potential side products maywgtiange
time (Schemel.2).

By-product A

Substrate-catalyst Additives

complex
Substrate A,

Substrate B\\ kg >

Pre-Catalyst <g—= Catalyst Intermediate —» Decomposition

/ W
Product-catalyst BN

complex =< Product Substrate B

By-product B
Schemel.2: A generalized catalytic cycle with several oftycle processes

Somechemists screen catalysts with thndset to find onehiat gives at least a traoé
the desired product, and then further optimizesitmms with the same catalyst. Although many
chemists will mix precatalyst and ligand pairings according to what they intuit would work for
their reactionjdentifying optima conditions might only be possibley testing more possibilities
and then working backward&. mor e compl ete picture of the
the reaction progress of the entire reaction, could help provide insight into how the reaction
be improved before disregarding potentially cheaper and more selective catalyst and ligand
combinations. As the possibilities arearly limitless, high througiut screening armealith
some mechanistic insighbuld be much efficient thasetting up nmerous screens.

Rather than only studying by any single analytical technique or methodology, we were
more interested in applying a plethora of tools to look at a reaction and then narrowing down to

the most informative tools for the specific reaction.e@ftsimply looking at the kinetic
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speciation throughout the entire reaction by a different analytical method allowed us to know
something about the reaction that evaded those who originally developed the reaction.

Figurel1.8 shows examples of kinetic profiles of chemical species exhibiting different
roles within a catalytic reaction. These prof

role in a complicated web of reactioffs.

catalyst
added

reactant

product Speciation is useful, but
dynamics indicate what role that
species is most likely playing:
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Rretadlys is often linked to the initiation period
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Other impurities are present before
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constant over course of reaction

reaction impurity
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\ 2 5 c
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\

——
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abundant catalyst-containing species
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Figure 1.8: Examples of kinetic profiles of species with different roles in the reactics
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1.2.1 Michaelis-Menten kinetics

One of the simplest and widelysed models for catalytic reactiosshe Michaelis
Menten modelAlthough t is described in terms of catalysis with enzymes, its principles are
used in mechanistic organic chemistry. While its models may oversimplify catalytic cycles, it
provided a preliminary methodology to model catalyzed reactions.

The model utilizes a simplcatalytic system where the substrate (S) and catalyst (E for
enzyme) form a substratatalyst complex (E:S)Schemel.3) This complex undergoesrate
limiting step to form a produatatalyst complex (E:P), which then releases the product. This
model assumes that the Hitaiting step is the transformation from the substrate to the product
(with rate kca)); the MichaelisMenten will not work if he ratelimiting step refers to another

step.

Schemel.3: Michaelis-Menten catalytic system
Because the ratiémiting step is from E:S to E:P, the rate law for product fation can

be expressed as:

bT
?I’ = kcat [ES]

The steady state approximation can be used for [E:S]:

22 Ku(([Elo - [E:S]IS] T KA[E:S] - keal E1S] = 0

Solving for [E:S] and substituting into the equation for product formation prothées

MichaelisMenten equation:

bT_ ke {:B[]S]
br [ S]m+ K
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