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Abstract

Pairwise interactions between objects can be modeled as a graph, which is a set

of nodes and edges that each connect a pair of nodes. We consider the problem of

predicting whether edges exist between nodes based on other pairs of nodes that we

have observed. From a partially-observed graph we extract several neighbourhood

and path features, then evaluate several machine learning algorithms for predicting

whether edges will exist between unobserved nodes. K-Nearest Neighbours was

found to be the best classifier. We propose the novel use of path on a weighted

graph as a feature used for prediction.

We apply this abstraction to predicting collaboration between authors in an on-

line publication database. The unweighted graph contains an edge if two authors

collaborated and the weighted graph encodes the number of collaborations. Pre-

diction error rates were less than 3% under ten-fold cross-validation.

We also apply this abstraction to predicting whether processes running on the

same hardware will compete for resources. The unweighted graph contains an edge

if a process executed in more time than when running with another than by itself.

The weighted graph had an edge weight that was the increase in execution time.

Prediction error rates were less than 14% under ten-fold cross-validation.
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Preface

I designed the graph abstraction for the authorship identification. My supervisor

Sathish Gopalakrishnan prompted me to consider the process interference applica-

tion.

The work in Chapter 3 was part of a group project by Hootan Rashtian and

Rudolf Plesch. I performed the link prediction work presented in the chapter in its

entirety. Our project neatly divided between the link prediction component and a

text mining component. Hootan Rashtian contributed the text mining component.

The work in Chapter 4 is part of a group project with Naga Raghavendra Surya

and Rudolf Plesch. I identified the research problem, adapted the graph abstraction

to this purpose, and implemented the machine learning algorithm. He created the

data set and found some of the benchmarks. That project presented a different

method of creating the weighted graph, which I’ve since refined, improving the

results.

These works have not been published.
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Chapter 1

Introduction

A graph is an abstraction that can encode pairwise interactions between objects. It

is defined as a set of objects, called nodes, and a set a set of edges which link two

nodes together. Graphs can also be weighted, where a real-number is assigned to

each edge, known as a weight. A partially-observed graph is one where we have

observes a set of pairs of nodes and we know whether there are edges between

the nodes or not. Based on these observations, we extract some features from

the graph and attempt to predict whether edges exist between unobserved pairs of

nodes. This problem has been studied in the field of social networks, where it is

known as link prediction [18][8][16]. In this domain, the questions researchers

usually pose is whether two users of a social network who are not linked are likely

to become linked. These applications have only considered unweighted graphs.

In this work we propose building a weighted graph and using weighted paths as a

new feature for predicting these interactions. We also apply these methods to two

novel applications: authorship collaboration in a scientific publication database and

process interference on a multi-core system.

In each of the applications we encode the objects in the application as node

and the event we are trying to predict as an edge on a graph. We then observe

some interactions between objects and we construct two graphs: a weighted and an

unweighted one. We extract some topological features of the graph and attempt to

predict whether edges exist between the nodes we have not observed in the graph.

Using 10-fold cross-validation, we evaluate several machine learning algorithms
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for predicting the existence of edges. We also evaluate the topological graph fea-

tures we extracted to show which have the most predictive power.

The problem of predicting whether edges exist in a partially-observed graph

is closely related to the mathematical study of matrix completion, which seeks

to complete a matrix using only observations of a few entries[13]. While we do

not apply matrix completion methods to our problems, we discuss the how matrix

completion applies to our problem and give some directions for future research.

Our first application of link prediction is predicting collaborations in an on-

line publication database. The link prediction will be used to augment traditional

text mining methods in a system used to disambiguate author names in a database.

Ambiguous author names can exist because authors can sometime use full names,

sometimes initials, and inconsistent use of accents. They can also occur when mul-

tiple authors share a name. Disambiguating author names is an important problem

in online publication databases because it enables accurate accumulation of papers

by author.

Currently, authorship identification is preformed by mining the text of a work

for certain features. This does not apply, however, to scientific publications which

often have several authors, some of which may not have contributed to the paper

text. We encoded co-authored publications as edges on an unweighted graph and

recurring co-authorships as decreasing edge weights on a weighted graph. Our link

prediction error rate was less than 3%.

The second application is predicting whether two user processes that are run-

ning on one piece of hardware will interfere with each other. This is an important

industry problem because much of today’s computation is performed in large dat-

acentres instead of on dedicated hardware. For example, services like Amazon’s

AWS sell computation time to users and promise a number of cores and an amount

of memory, this may be less than the number of cores and memory of a unit of hard-

ware in the datacentre and the provider may choose to put several users’ jobs on

one piece of hardware. Running multiple processes on a single piece of hardware

can reduce the hardware needed for computations, but it risks that the processes

running on the hardware will compete for resources and the performance will de-

grade below an acceptable level. Using a method to predict which jobs can be

co-located on a piece of hardware would be valuable for the service provider. Sim-
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ilar benefits can be achieved in a distributed computation framework like Spark[31]

and MapReduce[7] which distribute parallel computations between hardware in a

datacentre.

Previous efforts towards solving this problem rely on complex instrumentation,

such as hardware counters to count cache misses, to predict whether they will in-

terfere when co-located on the same hardware. Some solutions propose modifying

the virtual memory system of the operating system[26]. Others propose chang-

ing hardware to split the processor cache between several processes[5][23]. Both

of these changes would be very difficult for a service provider to implement in a

data centre. In contrast to these complex solutions, the one we propose requires

only observations of interference between pairs of processes to make predictions

about which would interfere. Rather than using complex instrumentation to detect

interference, we used an easy-to-collect quality of service measure to detect inter-

ference: the increase of execution time of processes when co-located over when

running with no other processes on the hardware. To the best of our knowledge,

nothing like this method has been attempted.

We modeled the processes as nodes on a graph and we added edges to an un-

weighted graph if the co-located processes’ runtime increase was over a threshold.

We added the inverse of this increase as the weight of an edge in an unweighted

graph. For several levels of the interference threshold, we achieved good prediction

accuracy.

This algorithm can be used as a flexible framework for modeling interference.

For example, encoding a combination of slowdown and increase in Last-Level

Cache (LLC) misses as an edge on the graph may also potentially be effective as a

predictor of interference. This should be viewed as a tradeoff between prediction

accuracy and simplicity of gathering the data needed to build the graph. The novel

use of this graph abstraction for process interference allows the use of graph algo-

rithms to solve other problems. For example Xie and Loh consider clustering of

processes [29]. A minimum cut of the graph is a clustering of the processes.

We first present the partially-observed graph abstraction, showing the features

we extracted from the weighted and unweighted graphs. We also show how this

problem relates to matrix completion. Next we describe the application of the this

abstraction to the authorship collaboration network and show the prediction results
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and scatter plots of the features to show correlations and predictive power of the

features. Finally, we apply the graph abstraction to process interference prediction.

We show how we generated the data set and the resulting graphs and scatter plots

of the features.
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Chapter 2

Inference on Partially Observed
Graphs

A graph is described by a set of nodes and a set of edges, each of which connect

two nodes in the node set. This abstraction can be used to model interactions

between pairs of objects, denoted by the existence of an edge between them. If a

real-numbered weigh is assigned to an edge, then the edges can also encode the

degree that an interaction occurs. The former is referred to as a unweighted graph,

while the latter is referred to as a weighted graph.

A partially observed graph is a graph where we assume that we know whether

edges exist or not between only a subset of the pairs of nodes in the graph. Based

on this information we extract some topological features of the graph and attempt

to predict whether edges exist or not between pairs of edges that we have not ob-

served. This is also known in the literature, especially in the context of social net-

work graphs, as link prediction[18][8][16]. It is also closely related to the problem

of matrix completion.

This problem can be approached as a two-class classification problem, where

pairs of nodes are either classified as having an edge between them or not based

on topographical features of the graph. There are several satisfactory surveys on

this subject, including [9], and [18], however, to the best of our knowledge, it is a

novel contribution of this work to propose extracting path features from a weighted

graph.
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2.1 Feature Selection
We constructed two graphs to represent the problems of interest. The first is an

unweighted graph which encodes the only the interactions between the pairs of

object. We also constructed a weighted graph with positive real-numbered weights

assigned to each edge. The edge weights were assigned in a method specific to the

application. From these graphs, we extracted several computationally inexpensive

path and neghbourhood features commonly used for link prediction.

2.1.1 Neighbourhood Features

In the following descriptions, let Γ(n) denote the neghbourhood of node n, which

is the set of nodes that it is directly connected to with an edge.

Number of common neighbors For nodes n and m:

|Γ(n)∩Γ(m)|

Jaccard similarity of neighbors For nodes n and m:

|Γ(n)∩Γ(m)|
|Γ(n)∪Γ(m)|

Number of common neighbors of neighbors For nodes n and m:∣∣∣∣∣∣ ⋃x∈Γ(n)

Γ(x) ∩
⋃

y∈Γ(m)

Γ(y)

∣∣∣∣∣∣
Adamic/Adar For nodes n and m:

∑
z∈Γ(m)∩Γ(n)

1
log |Γ(z)|

The Adamic/Adar measure from the above list warrants some explanation. It was

proposed By Adamic and Adar in [1] as a computationally cheaper alternative to

the PageRank algorithm[21]. This is similar to common neighborhood, but weights
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common neighbors with a smaller degree more highly. The intuition behind this is

that a less popular common neighbour may carry more information than a popular

one.

2.1.2 Path Features

Path features are also used in literature to solve the link prediction problem, al-

though they are more computationally intensive. Shortest path on an unweighted

graph is commonly used[18][8]. However, to the best of our knowledge using

shortest path on a weighted graph is had not been considered. As described in Sec-

tion 3.1 and Section 4.2 this method lends itself well to both of our applications.

In the cases that there was no path between two nodes, we set the shortest path to

1,000,000,000, which is much larger than any path in the graph.

A family of more computationally intensive set of path features that have been

considered in literature are PageRank[21], SimRank[12], and Katz centrality[14].

From these methods we chose to consider Katz centrality because it had an ex-

act, non-iterative algebraic formulation. Katz centrality considers all paths of a

given length between a pair of nodes and assigns more weights to shorter paths by

multiplying them with a decay coefficient β . The Katz centrality is computed as

∞

∑
l=1

β
l#(paths with length l between nodes).

Alternatively this can be computed by inverting the adjacency matrix A of the graph

(I−βA)−1− I, giving the Katz centrality of all pairs of nodes. Since the adjacency

matrix of our biggest graph was just on the border of being invertible on a powerful

PC, we chose to implement this matrix inversion method, setting β = 0.01 to give

a well-conditioned matrix.

2.2 Statistical Analysis
The prediction of edges emerging in a graph is a two-category classification prob-

lem: determining, given a set of graph characteristics, whether an edge will exist

between a pair of nodes or not. A common approach for evaluating models in ma-

chine learning is to withhold a part of the data set for testing, train the model on the
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remaining data, then evaluate the predictive performance of the model on the with-

held data. To evaluate our models, we used 10-fold cross-validation. We divided

the set of node pairs randomly into ten approximately equally-sized sets. We used

each set once as a test set while training the algorithm on the remaing sets. For

each training set, we build both the unweighted and the weighted graphs from only

those pairs in the set, then computed all the features for these observed graphs.

We evaluated several parametric and non-parametric models for predicting the

emergence of edges in the graph. Simple linear models like Linear Discriminant

Analysis and Generalized Linear Models do not work in this application because

some of the features we considered are highly, for example the Adamic/Adar score

and the number of common neighbours, are highly correlated. This causes the

matrices that these algorithms would have to invert are very ill-conditioned be-

cause the vectors representing two highly correlated features are nearly co-linear.

A parametric model that we applied to our problem is Stochastic Gradient De-

scent (SGD), which is not affected by these colinearity problems because it uses

gradients rather than matrix inversion. Non-parametric models that we considered

are K-Nearest Neighbours (KNN), Random Forests, Boosted Stumps, and Sup-

ported Vector Machiness (SVMS). For all the classifiers, we report the Classifica-

tion Error Rate (CER) averaged over all the folds of cross-validation.

We used the implementations of the machine learning models given in the

scikit-learn Python library[22].

2.3 Relationship to Matrix Completion
If one considers the representation of a graph as a symmetric adjacency matrix, then

predicting the existence of edges based on observations of some edges is a matrix

completion problem. This problem appears many fields including recommenda-

tion systems and signal processing or sparse sensing. The problem formulation,

described most clearly by Kalofolias at al.[13], is given a matrix M ∈ Rn×m which

is assumed to be low-rank and a set Ω of observations of entries of M such that

Mi, j : (i, j) ∈Ω⊆ {1, ...,n}×{1, ...,m},
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find

min
X∈Rn×m

rank(X) subject to Xi, j = Mi, j∀(i, j) ∈Ω. (2.1)

The problem in Equation 2.1 is NP-hard, so the minimization performed in practice

[3][24] is to instead minimize

min
X∈Rn×m

tr((XXT )1/2) subject to Xi, j = Mi, j∀(i, j) ∈Ω (2.2)

which is convex, but not smooth. The advantage of this approach is that efficient

algorithms for solving these optimizations exists and [3] gives a bound for the

number of observations needed to reconstruct the matrix and [24] slightly improves

on these bounds.

In the recommender systems application, the matrix M has m rows that rep-

resent users and n rows that represent items, for example items in a online store.

The entry of Mi, j represents user i’s rating of item j, whether explicitly observed

or inferred from the matrix completion. The recommended system completes this

matrix in the hope that it can then recommend users items that they will rate highly.

The low-rank assumption of the underlying matrix is justified by the assumption

that there exist similar users producing similar rows in M and similar items, pro-

ducing similar columns in M.

If we force M to be square and symmetric, we can adapt this method to in-

ferring the adjacency matrix of a graph. This has not been done, to the best of

our knowledge, likely because the low-rank assumption of the adjacency matrix

does not apply to general graphs. However, in both of the applications considered

below, our assumption on the outset is that the processes or authors behave simi-

larly meaning the underlying graph is structured into some clusters and suggesting

that the adjacency matrix may be low-rank. Király and Tomioka[15] also give

necessary and sufficient conditions for reconstructing matrices of arbitrary rank.

Applying these methods to reconstructing the adjacency matrix of a graph with

some structure would be an interesting direction for future work.
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Chapter 3

Application to Authorship
Identification

We first applied the partially observed graph abstraction to the graph formed by

authors collaborating on publications in an online publication repository. This was

some preliminary work towards the problem of disambiguating names of authors

that share names or initials. Applying the link prediction to disambiguation of

names was preformed by a colleague and is orthogonal to this work, but the link

prediction algorithm we developed is extremely effective and is presented below.

An intuitive solution to author name disambiguation is to use an author’s writing

style as proposed by De Vel et al.[6] and Stamatatos[25]. However these methods

don’t apply when a document is written by several authors, also some given authors

may not even have written any part of the document while still having a legitimate

contribution to the publication. Using link prediction for this task is attractive

because it can determine whether an author collaborated on a publication while

only considering past collaborations.

There has been ample work in the field of link prediction in social networks,

see [8], [16], and [18] for comprehensive surveys of the field. Because these tech-

niques have only been used to predict links emerging in social and other networks,

these authors have not considered a notion of recurring links. In our application,

however, recurring collaborations are also of interest. We encode multiple col-

laborations as parallel edges on a graph and show that the same link prediction
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methodology can be used to predict recurring interactions with very good accu-

racy.

3.1 Graph Construction
We built a graph from a snapshot of the arXiv high energy physics publications

database. This was used for a data mining competition in 2003 and is freely avail-

able from Cornell University. From the file containing the abstracts of all the pa-

pers, we extracted the names of the authors that collaborated on each paper. We

stripped all the accents and other special characters from the names and treated all

authors with the same surnames and initials as the same person. This approxima-

tion was necessary because there was no automatic way of resolving this ambiguity

and manual resolution was prohibitively difficult. In practice, few of these cases

occurred. We also ignored papers in the database with a single author, since they

were irrelevant to our analysis. After completing this process, our database con-

tained 9066 authors, forming 17390 collaborating pairs.

We constructed both an unweighted graph, where we added an edge if two

authors had collaborated at any point, and a weighted graph, which encoded how

many times a pair of authors had collaborated. Reasoning that more frequent col-

laboration between authors signaled a closer relationship, we modeled recurring

collaborations as parallel unit resistances in an electric circuit, each new collabora-

tion lowering the edge weight. The final edge weight was the inverse of the number

of collaborations. This means that shortest paths among frequently-collaborating

groups have smaller weights. Note that a pair of authors may have collaborated in

the test and training sets, in this case the training graphs will have edges between

these two authors and the test of the algorithm will attempt to predict whether this

pair of authors collaborated in the test set. This differs from the link prediction

problem on social networks, which doesn’t as whether a pair of people on the net-

work that are known to have a link will link again. The features were calculated

with these edges included and the prediction algorithm was queried for pairs that

already had edges between them. It is a novel contribution of this work to show

that predictions can be made accurately in this scenario.
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3.2 Results
We varied the parameters of all the classification algorithms under consideration

and present the best results, except in the case of KNN, where we present results

for both 10 and 50 neighbours, since both performed very well. The CER for all

the classifiers considered are given in Table 3.1.

Tree-based classifiers: Random forests and boosted stumps were the worst-performing

classifiers. Changing the number of trees and the depth of trees used did not

dramatically improve performance. An interesting observation is that in ev-

ery cross-validation fold, the error of boosted trees and random forests was

identical. They likely made errors on the same data points.

SVM: These classifiers showed consistently mediocre performance in all tests.

SGD: This algorithm showed very good classification error rate in many cross

validation tests, reaching as low as 4%. However, as sometimes happens

with this classifier, convergence problems in a few test led to 25% error rate.

KNN: This was by far the best classifier, using a single nearest neighbor produced

a classification error rate of 4%. Increasing the number of neighbor lowered

the classification error rate until to plateaued at 50 neighbors.

Classifier SVM SGD Random Boosted KNN 10 KNN 50
Forest Stumps

CER 0.09289 0.07244 0.1031 0.1031 0.04927 0.02975

Table 3.1: Average CER over several runs of cross-validation for all classi-
fiers.

3.2.1 Feature Distribution

Analyzing the distribution of features of the pairs of collaborating authors in the

data set shows which features were most important for predicting new collabora-

tions. The scatter plot in Figure 3.1 shows the distribution of Adamic/Adar score

and number of common neighbours. These two features are highly correlated. The
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Figure 3.1: Scatter plot of the Adamic/Adar score and number of common
neighbours for the authorship collaboration graph. Red points are col-
laborating pairs and blue points are non-collaborating pairs.

common neighbours of neighbours and the Jaccard similarity of the neighbours

are also correlated to these features. This suggests that eliminating all but one of

these features from the model would not affect its performance. It is also a prop-

erty of this data set that overwhelmingly nodes without common neighbours did

not collaborate. This is an important feature of the data set. It shows that is made

up of densely-connected communities, this is the main reason that prediction is so

accurate for this data set.

The Katz score is a very effective classifier. As can be seen in Figure 3.2,

exclusively pairs with a low Katz score did not collaborate in the test set. This

should be weighed against the computational complexity of inverting the adjacency

matrix of the graph, which is required for calculating the Katz score. Figure 3.2

shows a strange bimodal distribution of Katz scores. This it probably another quirk

of the data set, perhaps happening because of some densely-connected cliques. The

Katz score is also surprisingly uncorrelated to the weighted shortest path between

nodes.

Figure 3.3 shows the Scatterplot of weighted and unweighted shortest paths
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Figure 3.2: Scatterplot of Katz score and weighted shortest path for the
data set. Red points are collaborating pairs and blue points are non-
collaborating pairs.

between nodes. These features are unsurprisingly correlated, but there is a clear

trend that among pairs with the same unweighted shortest paths, ones with smaller

weighted shortest paths are more likely to collaborate, justifying the novel use of

unweighted shortest path as a feature.

3.3 Conclusion
In this chapter we adapted link prediction on social networks to predict new and

recurring collaborations between authors in a snapshot of the arXiv high-energy

physics publication database. It is a novel contribution of this work to show that

the standard link prediction machinery can be used with no modifications to pre-

dict recurring interactions between agents in a network. We encoded publications

as edges of an unweighted graph and used standard link prediction methods to

extract features from this graph. It is also a novel contribution of this work to

encode repeated publications as decreasing edge weight in a weighted graph and

use weighted shortest path as a feature to predict edges. We show that weighted

and unweighted shortest path are only weakly correlated and that the addition of
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Figure 3.3: Scatterplot of unweighted and weighted shortest path for the
data set. Red points are collaborating pairs and blue points are non-
collaborating pairs.

weighted shortest path is justified for prediction accuracy.

We assessed several machine learning algorithms and determined that the rel-

atively computationally inexpensive KNN is most efficient for predicting new in-

teractions on this graph. Prediction error was less than 3%. Future work includes

finding better features and optimizing machine learning algorithms.

Such accurate link prediction can be used to disambiguate author names in

an online without mining the text of a publication. Our future work is combine

link prediction and textual features to build a complete solution to disambiguating

author names in a publication database.
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Chapter 4

Application to Process
Interference

Recent years have seen an increase in computation performed in large data centres

where heterogeneous computing jobs are scheduled on networked or otherwise

interconnected pieces of hardware, referred to as nodes. One application of this

system is distributed computation frameworks. For example many big data appli-

cations like Spark [31], Microsoft’s Dryad [11], and Google’s MapReduce [7] seek

to distribute parallel workloads over many computing nodes in a datacenter. An-

other family of example are systems like Amazon’s AWS and Microsoft’s Azure

which give users access to virtual machines which run on nodes in a data centre.

Finally, Amazon’s Lambda Serverless Compute architecture would be a good ap-

plication of this framework. It gives users a service which abstracts away the server

or container in which an application is running. The user simply provides a set of

callback that is triggerd by a set of events. Amazon automatically handles placing

the jobs that implement these callbacks on compute nodes in its datacentres.

It is tempting for service providers to schedule several independent jobs on one

node, since this would allow them to increase the number of jobs that can run in

the same data centre. However, scheduling several jobs on one node causes these

nodes to compete for resources. The jobs can compete for resources like network,

memory capacity, and hard drive I/O, all which are common to all processors and

cores on a node. In a multicore processor, even when all the threads required
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by the jobs can be placed on a processor simultaneously, there are still several

shared resources on the chip like LLC, memory bus, and pre-fetching hardware.

Scheduling applications on the same node that compete for resources can cause the

performance of these applications to degrade to an unacceptable level. Because of

the variety of resource requirements of different jobs predicting which jobs can be

co-located is not trivial, even with advanced profiling of jobs, because performance

of applications can decrease due to a complex interplay of resource contentions.

In this application we develop a completely novel algorithm that predicts slow-

down of co-located jobs using a graph model and the techniques developed above.

Our algorithm defines degradation as an increase in the execution time and encodes

it as an edge in a graph. This allows us to predict which jobs we can schedule on

the same node without modifying the operating system of the node or the users’

jobs to gather any profiling data. The algorithm can also be directly extended to

encode any performance degradation measure as an edge in a graph. The strength

of our algorithm is that it treats the user applications as a black box. A service

provider looking to use this method does not have to implement complex hardware

support for monitoring system events or complex resource management algorithms

at an operating system level to attempt to reduce resource contention. The service

provider would also not need to modify the users’ application to gather profiling

data.

4.1 Related Work
It is common in previous literature to consider contention on the LLC as the only

measure of contention. See [23] for an example where two applications are said to

interfere if any of them experience more LLC misses compared to when they are

not co-located. Note, however, that performance of an application can degrade for

more reasons than LLC contention. Note also that increase in LLC misses beyond

a threshold can also be used as the criterion for adding a edge into our graph and

all the same machinery can be used. Other researchers have attempted to clas-

sify applications using schemes like Stack Distance Completion [4] and Animal

Classes [29]. A partitioning of the interference graph also induces a clustering of

the applications.
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Previous work on addressing the problem of resource contention in multicore

systems has predominantly focused on partitioning the processor caches between

the threads that are running on the processors. The most complex solution to

this problem is to provide hardware support for partitioning the processor caches

[5][23]. This would be very difficult for a service provider to implement because

producing custom processors that support novel functionality if extremely difficult

and time-consuming. It would also be difficult to change cache partitioning algo-

rithm in hardware, which is problematic because a fixed partitioning may not be

optimal for all co-located process pairs.

An alternative to hardware-based cache management is to modify the operating

system to manage cache petitioning. The best investigated class of such algorithms

is memory page colouring, which attempts to allocate virtual memory pages to

physical pages in a reserved section of the cache [33][32][27]. Software-based

online cache management algorithms can rely on hardware counters to optimize

cache partitioning [26]. This is problematic because it requires modifying the vir-

tual memory system of the operating system, which is extremely difficult[33].

Even if we don’t consider the difficulty of implementing cache partitioning

methods, they are still not a complete solution of eliminating contention between

threads. As noted by Lin et al.[17], cache partitioning methods can shift contention

away from the cache to memory bus. Also these methods do not consider other

sources of contention that can arise.

The method in the most similar to ours is proposed by Zhuravlev et al.[33],

which uses LLC miss rate of an application running by itself on a core to schedule

applications that experience high miss rates on separate cores. This is similar to our

because it gathers some a priori knowledge and uses it as a feature for predicting

interactions between unobserved pairs of applications.

Another interesting approach is proposed by Herdrich et al.[10]. This mecha-

nism simply suggests that to react to performance degradation that may be caused

by cache pressure, simply decrease the processor frequency of one of the threads

to reduce the cache pressure. This is clearly a suboptimal use of resources in the

scenario that we propose.

Another method for addressing this problem is proposed by Mars et al.[19][20].

The bubble up system the that they propose uses static analysis of memory ac-
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cess patterns of latency-sensitive applications to attempt to predict how sensitive

they would be to co-locating with another, non-latency-sensitive, application. Non-

time-critical candidates for pairing are co-located with another application whose

sensitivity is known and the amount of degradation they cause are called “bubble

scores” and are used to find safe parings. The disadvantage of this method is that it

requires profiling of applications to predict which pairs are safe to co-locate. Yang

et al.[30] propose a modification to this scheme which implements dynamic mea-

surements of co-location sensitivity. The authors also use use a dynamic method

of halting the non-time-critical appication when pressure on the latency-sensitive

one increases. This online monitoring and measurement uses hardware counters to

detect increased contention for shared resources.

Another method that uses static profiling to compute workload signature of

user workloads, then assign them to computational resources is given by Vasić[28].

Like our method, several others[19, 20, 28, 30] also assume that repeated runs of

the same applications will generate similar system loads and that reusing known

safe pairings can amortize the effort of finding these safe pairings.

To the best of our knowledge, our solution is the only one that treats the users

processes as black boxes and simply tries to find similarities based on observed in-

teractions. This avoids the complication of gathering metrics on where contention

occurs to make predictions. It also avoids modifications to operating system sched-

ulers and virtual memory systems and even more difficult and costly changes to

hardware.

4.2 Graph Construction
We crated the data set for this experiment by collecting several popular benchmark

suites, including PARSEC, METIS, the NAS benchmark suite provided by NASA.

To represent varied user applications, our list of benchmarks included also in-

cluded Java, MATLAB, and Python programs. The full list is given in Appendix A.

We considered both benchmarks that model modern big data applications such as

would commonly run in a distributed environment and more typical benchmarks.

We defined a degradation in performance as follows. Consider applications i

and j. Over several executions of application i with no other user process running

19



Figure 4.1: Process of creating unweighted contention graph. Red pairs were
classified as interfering, while green ones were not.

on the hardware, we measure the average execution time and call it “single-run(i)”.

Likewise, let “co-run(i, j)” be the average run time of application i over several runs

of while application j is also running on the hardware. Note that this is not equal

to “co-run( j,i)”. We define Slowdown Coefficient (SC) for applications i and j as

SC(i, j) =
co-run(i, j)

single-run(i)
(4.1)

and

SC( j, i) =
co-run( j, i)

single-run( j)
.

We set a threshold T as a limit to the SCS of two applications beyond which we

considered the slowdown to be unacceptable and the processes to interfere when

co-located. Varying T caused the density of the graph to vary, we investigated

several values of T to simulate various level of time-criticality of the jobs running

on the system.

The first graph that we constructed to encode the interaction between processes

was an unweighted graph. In this graph we simply added an edge if

max(SC(i, j),SC( j, i))> T. (4.2)

To clarify this, consider applications A, B, C, and D. We run all pairs on the same

hardware and calculate the SC according to Equation 4.1, we then insert an edge if

the condition in Equation 4.2. The resulting graph is shown in Figure 4.1.

20



Figure 4.2: Process of creating weighted contention graph. The edge weight
is the inverse of the SC.

We also constructed a weighted graph to encode the interference. The weight

of an edge between two nodes prepresenting applications i and j is given by

wi j =

 1
max(SC(i, j),SC( j,i)) if max(SC(i, j),SC( j, i))> T,

no edge otherwise
(4.3)

The intuition behind using the inverse of the maximum SC is that there should be a

smaller shortest path between processes that interfere with each other if they inter-

fere more. For the same group of application in Figure 4.1, the resulting weighted

graph is shown in Figure 4.2. Note that in most cases

SC(i, j) 6= SC( j, i).

This may seem strange, but asymmetrical interference has been noted previously

in literature. Xie and Loh[29] observed that the memory access patterns of some

applications made them insensitive to being paired, while others showed high sen-

sitivity to pairing. Co-locating these applications perturbs only one application in

the pair.

Our data set had 43 applications, which gives 903 possible pairs. All tests

were performed on a system with an Intel Core 2 Duo running at 2.33 GHz and 2

GB of RAM. The the machine was running a Fedora 23 Linux operating system.

The application were all single-threaded, meaning that there were always enough

cores available to run both applications. This is a simulation of running serveral
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Figure 4.3: The interference graph generated when setting T =2.5.

containers in which user applications run on one physical compute node and having

the sum of the cores reported by each container be the same as the number of cores

on the compute node.

The interference graph generated with T = 2.5 is shown in Figure 4.3. As we

can see, several applications interfere with almost all others, while many applica-

tions only interfere with a few and can easily be co-located.
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Figure 4.4: Slowdown Coefficients distribution of a typical application.

4.3 Results
After co-locating and running all the pairs of applications, we first wanted to see

the distribution of SCS. We chose a typical application, and plotted a histogram

of its SCS when co-located with all other applications in the data set in Figure 4.4.

For ease of exposition, we binned these slowdown coefficients into intervals of size

0.5.
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Studying many such histograms showed us that the SC values lay mostly be-

tween one and five. To simulate many real-world situations in which different

levels of slowdown may be acceptable, we tested our machine learning algorithm

on graphs created with the SC threshold T set to 1.5, 2, 2.5, and 3. Analyzing more

extreme values were not interesting because in the case of T < 1.5 nearly all edges

were present in the graph, while with T > 3 would result in a graph with nearly

no edges. In both of these cases, accurate prediction is trivially simple since in the

case of a very sparse graph a predictor that always predicts no edge can perform

very well. Similarly, in a very dense graph, a predictor that always predicts an edge

performs very well. Where our algorithm performs better than these predictors it

demonstrates that it is making useful predictions. As in the result in Section 3.2,

KNN was the best classifier. The results for all the values of T considered and the

number of edges that appeared in the graph are given in Table 4.1. As we can see,

the algorithm gives statistically significant predictions at T = 2 and T = 2.5. Ta-

SC Threshold Number of Edges Probability Prediction Prediction
in Graph of Edge Error Rate Error Rate

75% 90%
1.5 694 0.76 0.75 0.36
2 327 0.36 0.45 0.24

2.5 118 0.14 0.24 0.12
3 88 0.097 0.20 0.094

Table 4.1: Density of graph and CER for several choices of SC threshold T .
CER is the fraction of correct predictions over the test set.

ble 4.1 also shows that after observing 75% of the pairs the model does not perform

better that the trivial classifier. After observing 90%, however, it performs better.

4.3.1 Feature Distribution

As above, we can examine feature distributions to show which features were best

for predicting which processes will interfere when co-located. Figure 4.5 shows the

distribution of common neighbours and a Adamic/Adar score with red dots being

pairs that interfered and blue dots being pairs that did not. As in the collaboration

network in Section 3.2, the two features were highly correlated. An interesting in-
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Figure 4.5: Scatter plot of the Adamic/Adar score and number of common
neighbours for the process interference graph. Red points are pairs that
interfered and blue points are pairs that did not.

sight is that neither feature was a good predictor of interference unlike in the author

collaboration application where very few author pairs with common neighbours did

not go on to collaborate, compare Figure 3.1. The Katz score and unweighted path

also behaved as above.

In this application unweighted shortest path, which is a novel contribution of

this work, was a powerful classifier; more so than in the authorship collaboration

application. The distribution of unweighted and weighted shortest paths for the

graphs are shown in Figure 4.6. The pairs towards the left the image are more

likely to interfere than the nodes towards the bottom. This justifies the novel use

of the weighted shortest path as a predictor of interference between processes.

4.4 Conclusion
This work proposes a novel application of partially-observed graphs to modeling

interference between processes running on the same physical hardware. We ran a

collection of benchmarks on a computer singly and in pairs and modeled interfer-
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Figure 4.6: Scatter plot of the weighted and unweighted shortest path for the
process interference graph. Red points are pairs that interfered and blue
points are pairs that did not.

ence in pairs of processes as a large increase in the execution time of the process

when co-located. We used a machine learning algorithm to predict which edges

would appear in the interference graph, with promising results.

This method should be considered a framework for predicting interference be-

tween processes since the abstraction is general enough to encode any pairwise

interaction of processes as a graph, then use the machine learning algorithms to

predict the outcome of new interactions. For example increased LLC misses or

even a combination of LLC miss and execution time increases can be encoded as

an edge in the graph. This is a tradeoff between ease of implementing the required

instrumentation to detect contention and a potential increase in the accuracy of

predictions. Further research remains for finding good combinations of measure-

ments.

Using the interference graph as an abstraction also enables us to use graph

algorithms to interpret the observed interference data. For example, partitioning

the interference graph by using a minimum cutting algorithm induces a clustering
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of the applications into groups that interfere with each other. Bansal, Blum, and

Chawla [2] also propose a method of clustering items on a graph by partitions that

maximize similarity of items that inside the partitions. This would be a natural fit

for our graph abstraction of process interference. Likewise colourings of the graph

indicate the number of compute nodes required to simultaneously schedule a set of

processes with no interference.

A natural direction for future work would be to attempt to determine an algo-

rithm for running applications against other to determine a co-location scheme with

minimal disruption, since users may not accept a datacenter running their applica-

tions with interference to determine an optimal scheme. Intuitively a hierarchical

clustering using a series of graph cuts may be a direction to explore since exploring

these clusters as a tree may yield a good co-location scheme in few tests. If the ma-

trix completion methods discussed in Section 2.3 are effective for this application

the accuracy of predictions could be bounded by the number of observations.

To the best of our knowledge, ours is the first method for predicting interfer-

ence that does not require modifications to the operating system scheduler, virtual

memory system, or hardware. Our method also does not require profiling of user

applications. This makes it easier to implement in an existing system and it would

make increasingly better predictions about which applications to co-locate.

27



Chapter 5

Conclusion

In this work we applied the partially-observed graph abstraction commonly used in

link prediction on social networks to two novel applications with good results. For

both applications we encoded interactions between objects as edges in weighted

and unweighted graphs. We extracted some topographical features from these

graphs and used them for a two-class classification problem in which we attempted

to predict whether unobserved pairs of nodes would interact. We used 10-fold

cross-validation to evaluate several model for this prediction task and found that

KNN was the best classifier.

The application is predicting whether authors in a online database would co-

author papers together. We modeled co-authorships as edges in a graph and pre-

dicted whether unobserved pairs of authors would interact. We achieved prediction

error rate of less than 3%. Our study showed that the neighbourhood features are

highly correlated and all but one can be removed without significantly changing

prediction accuracy. The Katz score is a very powerful predictor, but is compu-

tationally very expensive. The novel contribution of using weighted shortest path

is justified for this application. When the unweighted shortest path between pairs

of authors is the same, pairs that have a smaller weighted shortest path between

them are more likely to collaborate. The graph in this application is very sparse

and highly structured, making prediction effective.

The next application is predicting whether two processes running on the same

piece of hardware will interfere with each other by competing for shared resources.
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We modeled slowdown in the processes when co-located on the same hardware as

edges in a graph. The resulting predictions accuracy was also promising. This

model is flexible enough to encode other measures of slowdown as edges on the

graph, for example a combination of increased LLC misses and increased execution

time. Modeling the interactions between processes as a graph also allows us to use

graph algorithms for processing this data. For example, a minimum cut of this

graph is a clustering of processes that interfere. Unlike all previous methods for

predicting process inter-process interference, our method does not require complex

modifications to the operating system or the hardware to implement. This means

that it can be easily implemented in a datacenter without major modifications.

The prediction for the authorship collaboration was very effective because the

graph is made up of many densely connected communities. This means that the

underlying graph is sparse and highly structured. The process interference graph,

does not display this structure, which makes prediction more difficult. This can

also be seen in the feature scatter plots in Section 4.3, which are not as neatly

divided between conflicting and non-conflicting pairs as in Section 3.2. Making a

much larger process interference graph and varying the interference threshold to

investigate if this graph exhibits similar structure to the authorship collaboration

graph may reveal whether prediction accuracy can be improved.
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accelerating resource allocation in virtualized environments. In ACM
SIGARCH computer architecture news, volume 40, pages 423–436. ACM,
2012. → pages 19

[29] Y. Xie and G. Loh. Dynamic classification of program memory behaviors in
cmps. In the 2nd Workshop on Chip Multiprocessor Memory Systems and
Interconnects. Citeseer, 2008. → pages 3, 17, 21

[30] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: Precise online qos
management for increased utilization in warehouse scale computers. In
ACM SIGARCH Computer Architecture News, volume 41, pages 607–618.
ACM, 2013. → pages 19

[31] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
cluster computing with working sets. HotCloud, 10:10–10, 2010. → pages
3, 16

[32] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page
coloring-based multicore cache management. In Proceedings of the 4th
ACM European conference on Computer systems, pages 89–102. ACM,
2009. → pages 18

[33] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource
contention in multicore processors via scheduling. In ACM Sigplan Notices,
volume 45, pages 129–142. ACM, 2010. → pages 18

33



Appendix A

List of Benchmarks

The benchmarks suites used in the experiments in Chapter 4 can be found at:

• METIS https://pdos.csail.mit.edu/archive/metis/

• PARSEC http://parsec.cs.princeton.edu

• NAS Parallel https://www.nas.nasa.gov/publications/npb.html

• NAS OMP https://github.com/wzzhang-HIT/NAS-Parallel-Benchmark/tree/

master/NPB3.3-OMP

• NAS Java https://www.nas.nasa.gov/publications/npb.html

• HiBench https://github.com/intel-hadoop/HiBench

• LAPACK http://www.netlib.org/lapack

• Whetstone http://www.roylongbottom.org.uk/whetstone.htm

• Python 3 Benchmarks https://benchmarksgame.alioth.debian.org/u64q/python.

html

• Dhrystone https://github.com/Keith-S-Thompson/dhrystone/tree/master/v2.
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