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Abstract 

 

A traditional wheat breeding program normally takes 7 to 12 years to develop a new cultivar to be 

eligible for commercial release. Genomic selection (GS), which uses single-nucleotide 

polymorphism (SNP) marker information to predict breeding values, has been proven to be an 

efficient method to accelerate the lengthy breeding process and increase the resultant gain in many 

animal and plant species. In this study, two GS algorithms, Genomic Best Linear Unbiased 

Prediction (GBLUP) and Reproducing Kernel Hilbert Space (RKHS) regression, were evaluated 

using grain yield data generated from a single hard red winter wheat (Triticum aestivum L.) full-

sib doubled-haploid (DH) population in two consecutive generations. In each generation, a total 

of 257 individuals were genotyped with 14,028 SNP markers using “Genotyping-by-Sequencing” 

(GBS). Due to the uniformity of genetic material across generations, year effect was considered as 

an environmental factor or replication for the analysis. Potential upward bias in model’s predictive 

accuracy was estimated by comparing the within-year cross-validation scheme with the cross-year 

prediction scheme. The effect of SNP marker number on the models’ predictive ability was also 

analyzed by creating SNP subsets filtered with absolute pairwise correlation (𝑡) value. In general, 

RKHS produced higher predictive ability than GBLUP for predicting grain yield in this population. 

A 32 and 38% decrease in predictive ability was observed for GBLUP and RKHS models, 

respectively, when comparing within-year cross-validation and cross-year prediction models’ 

results. A 𝑡 value of 0.4 could produce a similar predictive ability compared to using the unfiltered 

full SNP set, providing less computation- and time-consuming strategy. In the context of an 

ongoing breeding program, this study also demonstrated confidence of line selection based on GS 

results, advocating the implementation of GS in wheat variety development. 
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Introduction 

As the most widely planted cereal crop around the globe, wheat is one of the world’s most 

important food and protein resources, and has the greatest world trade among all crops (United 

States Department of Agriculture, 2016). In order to sustain the species’ vitality, it is pivotal to 

frequently update the list of high-yielding cultivars meeting the current breeding goals and adapted 

to the ever-changing environment. 

A traditional wheat breeding program normally requires at least 7 or 12 years for spring and winter 

wheat, respectively, before a developed cultivar is ready for commercial release (Baenziger & 

Depauw, 2009). Once the main objective is determined, for example, to improve grain yield and 

adaptability, the breeding program is initiated with the hybridization stage. In this stage, crosses 

are made between parental lines with the traits of interest. Based on the specificity of the parents, 

the most appropriate cross type is carried out to produce the F1 generation. Following 

hybridization, efforts are made to reduce among populations’ heterozygosity and heterogeneity, 

while concurrently selecting desirable progenies for further assessment. Since wheat is obligatory 

selfer, the proportion of heterozygous loci decreases by 50% after each generation. As the breeding 

program advances until reaching an acceptable level of homozygosity, a considerable amount of 

alleles contributing to the target traits could be lost. With this in mind, retaining high level of 

desired alleles in the population is a difficult task, yet it is a crucial matter for breeding practices. 

When the level of variability within a population is reduced to a manageable level, a round of 

selection is made to create new elite lines. The main objective of such breeding and selection 

programs is traits evaluation, including the physical characteristics of grain, lines endurance under 

biotic and abiotic stresses, as well as resistance to a suite of diseases. Before elite lines commercial 

release, the finalists from the selection stage must go through extensive evaluation in replicated 
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yield trails. Due to the highly correlated environmental effects within a specific year, three years 

of replicated yield evaluation is commonly practiced and this is considered as the minimal 

evaluation for variety release. Finally, after 7 to 12 years of hybridization, evaluation, and 

selection, often only a single cultivar is released. 

As the demand for wheat consumption is exceeding the current supply (United States Department 

of Agriculture, 2016b), an estimated 1.6% annual minimum increase in wheat production is 

required to fulfill the projected demand in 2020 of 760 million tons (Tadesse et al., 2016). Looking 

further ahead, Alexandratos (2009) predicted the world population to exceed nine billion by 2050, 

driving the demand to reach 900 million tons. Given the present average increase rate of 1.1% 

(Tadesse et al., 2016), the mismatch between the projected supply and demand is an obvious global 

challenge. As a result, it is imperative to incorporate emerging technologies into wheat breeding 

programs to ensure productivity meeting these challenges. 

Genomic selection (GS), which employs single-nucleotide polymorphism (SNP) markers across 

the entire genome to predict an individual’s performance in quantitative traits (Meuwissen, Hayes, 

and Goddard, 2001), is a proven method that can accelerate breeding process. Genomic selection 

has become a common practice in animal and plant breeding (Heslot, Jannink, & Sorrells, 2015; 

Bassi et al. 2016). The satisfying outcome surly inspired scientists in the field of agriculture; for 

example, Bernardo & Yu (2007) carried out a simulation study demonstrating the advantage of GS 

in comparison to marker-assisted selection in maize. Two years later, de los Campos et al. (2009) 

were the first to incorporate GS in wheat breeding by confirming that the inclusion of SNP markers 

resulted in improvement of GS model’s performance in predicting average grain yield. Since then, 

GS has gained increased acceptance in wheat breeding studies. Initial applications were focused 

on exploration of only additive genetic variation among individuals, until 2010 when de los 
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Campos et al. (2009) extended the work of Gianola & Kaam (2008) and utilized the Reproducing 

Kernel Hilbert Spaces (RKHS) method to account for epistatic effect in addition to additive effect, 

and evaluated the method’s potential in wheat breeding. Subsequently, wheat breeders conducted 

several studies comparing the GBLUP model with the RKHS (Crossa et al., 2010; 2011; He et al., 

2016; Huang et al., 2016), without any conclusive advantage to either method. Ultimately, while 

traditional phenotypic selection is considered time-, resources-, and space-consuming, the use of 

GS with its genotypic information, made it possible to predict adult plants’ performance from 

information generated at the early seedlings stage, creating a paradigm shift where genomic 

information can be used to predict phenotypes to substitute the phenotype-dependent field 

evaluation, thus the effort and investment on field assessment for phenotypes are substantially 

reduced (Baenziger & Depauw, 2009). In addition, GS could contribute to replicated yield testing 

by considering the genotype by environment (G x E) effects in the prediction model and then select 

the best lines across several environments. 

It has been a decade since the first study of GS in plant breeding was published (Bernardo & Yu, 

2007). Substantial amount of evidence has shown the potential of GS in wheat, with most of them 

focusing on increasing models’ predictive accuracies. However, very few studies have considered 

the practical implications of these results in the context of a breeding program. To bring forth GS’s 

practicality, the objectives of the current study aimed to address: 1) GS algorithms performance in 

wheat grain yield across environments (represented by generations due to the uniformity of 

genotypes in both generations) in the line evaluation stage; 2) investigate the possible upward bias 

in predictive ability from within-year cross-validation compared to cross-year prediction; and 3) 

evaluate the effect of SNP marker information on GS predictive ability. 
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Materials and methods 

 

Phenotypic data 

The efficiency of genomic selection across successive generations was evaluated using a doubled 

haploid (DH) population derived from a single cross between two hard red winter wheat (Triticum 

aestivum L.) cultivars, ‘Duster’ (Edwards et al., 2012) and ‘Billings’ (Hunger et al., 2014). In total, 

282 DH lines were developed, among which 257 lines were evaluated for grain yield (bushels per 

acre) for 2014 and 2015 at the Agronomy Research Station in Stillwater, Oklahoma. In both year 

2014 and 2015, among these 257 lines, 239 lines were replicated twice, and the remaining 18 were 

screened for grain yield only once. When applicable, the mean of the two replications was taken 

to represent individual line’s phenotype. Since the genotypes evaluated were identical for 2014 

and 2015, the year effect was considered as environmental replication during data analysis. Days 

to heading (HD) were recorded for every individual plant for both 2014 and 2015, as the variability 

of HD (measured as the duration from planting to heading) in wheat is indicative of adaptability 

to its growing environment (Kiseleva et al., 2016). In addition, stripe rust (Puccinia striiformis) 

disease infection was observed in 2015’s field trial; the severity of strip rust was also recorded. 

Assessment of the rust infection was carried out in between May 5th and May 11th; at each time 

points, the severity (RS5, RS11) and incidence (RI5, RI11) of the disease were recorded for each 

individual line. Severity of infection was rated between 0 and 5, with 0 being no infection and 5 

being the highest level of infection. Incidence of infection was estimated by the percentage of 

affected area within each plot, ranging from 0 to 100%. 
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Genotypic data 

A next-generation sequencing technology, namely Genotyping-By-Sequencing (GBS, Elshire et 

al. 2011), was employed to generate genotypic data. The details of enzyme selection, library 

construction, and SNP data analysis could be found in Poland et al. (2012) and Li et al. (2015). In 

total, 14,028 SNP markers were generated for these Duster x Billings DH lines, prior to other data 

treatment like filtering and imputation. 

To investigate the impact of missing data on predictive ability, the SNP markers were grouped into 

5 subsets based on the call rate of 0.25, 0.4, 0.5, 0.6, and 0.75. Two imputation methods were 

employed to interpret missing data: mean imputation which uses average genotypic value of each 

SNP locus for all missing data, and the expectation maximization (EM) algorithm (Poland et al. 

2012). 

 

Statistical models 

The performance of genomic prediction on grain yield of the 257 DH lines was evaluated by two 

different types of model: 1) Genomic Best Linear Unbiased Prediction (GBLUP), a parametric 

model which utilized to only account for additive genetic effect, and 2) Reproducing Kernel 

Hilbert Space (RKHS) regression, a semi-parametric model that also considers correlations 

between markers, or epistatic effect. 

Let 𝒏 be the number of genotypes, and 𝒎 be the number of SNP markers. GBLUP model takes 

the form: 

 𝒚 = 𝑿𝜷 + 𝒈 + 𝜺 (1) 

where 𝒚  is a vector of phenotypic records of dimension 𝒏×𝟏 , 𝜷 is a vector of fixed effects 

containing the common intercept and other terms such as heading date and rust infection status, 
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and 𝑿 is its corresponding design matrix, 𝒈 is an 𝒏×𝟏 vector of genomic breeding values, which 

were assumed to follow a normal distribution 𝒈 ~ 𝑵(𝟎, 𝑮𝛔𝑨
𝟐), for which σ𝐴

2  is the additive genetic 

variance, and 𝑮 is the realized relationship matrix constructed following VanRaden (2008): 

 𝑮 =  
𝒁𝒁′

𝟐 ∑ 𝒑𝒊(𝟏 − 𝒑𝒊)
 (2) 

where 𝒁 is an 𝒏×𝒎 matrix whose elements are defined as 𝒂 − 𝟐(𝒑𝒊 − 𝟎. 𝟓) with 𝒂 denoting the 

marker value as -1 (homozygote), 0 (heterozygote), and 1 (other homozygote), and 𝒑𝒊  is the 

frequency of the second allele at locus 𝒊, 𝜺 is an 𝒏×𝟏 vector of residuals with 𝜺 ~ 𝑵(𝟎, 𝑰𝛔𝜺
𝟐), with 

𝑰 denoting an identity matrix of order 𝒏, and 𝛔𝜺
𝟐 denoting the residual variance. The GBLUP model 

was implemented using the R package “rrBLUP” (Endelman, 2011). 

The semi-parametric RKHS model was carried out using a single Gaussian kernel. It is represented 

as: 

 𝒚 = 𝑿𝜷 + 𝒖 + 𝜺 (3) 

which has a similar form to GBLUP, but with a different assumption of 𝒖 ~ 𝑵(𝟎, 𝑲𝛔𝒖
𝟐), where 𝑲 

is an positive definite kernel matrix of dimension 𝒏×𝒏, whose elements were the average squared-

Euclidean distance between genotypes evaluated using the Gaussian kernel: 

 𝑲(𝒙𝒋, 𝒙𝒌) = 𝐞𝐱𝐩 [−𝒉⨉
∑ (𝒙𝒋𝒍 − 𝒙𝒌𝒍)

𝟐𝒎
𝒍=𝟏

𝒎
] (4) 

where 𝒙𝒋𝒍  denotes the value of 𝒍 th marker of individual 𝒋 ,  𝒉  is the bandwidth parameter that 

determines the speed of decay of marker correlation as they get further apart in space. The RKHS 

model was implemented using the Bayesian approach in the R package “BGLR” (de los Campos 

et al., 2010). 



7 

 

The variables used to describe days to heading (HD) and rust infection (RS and RI), were 

incorporated into the genomic prediction models using two methods: either directly as covariates 

with fixed effects, or as correctors for the response variable, i.e. the phenotypes. The correction 

step was carried out using a simple linear model with the observed phenotypes as the response 

variable, and one of the HD, RS or RI as explanatory variable. Residuals from the models were 

obtained to serve as the response variable in the genomic prediction models as “corrected 

phenotypes”. We implemented these two methods for fixed-effect variables in order to explore the 

differences in model behavior. 

 

Within- and cross-year prediction 

Within-year cross-validation was performed for both 2014 and 2015 field evaluations separately. 

For each year, the data was randomly divided into ten folds, with nine folds as training set and one 

fold as validation set. Each run was repeated five times with different folding. Evaluation of model 

predictive ability was based on the Pearson product-moment correlation between the genomic 

estimated breeding value (GEBV) and the observed phenotype (Obs) value 𝑟𝐺𝑆 = 𝑟𝐺𝐸𝐵𝑉,𝑂𝑏𝑠  of 

individuals in the validation set. First, only the random marker effect was included in the genomic 

prediction models, then HD was added into the models either as a fixed covariate or as a phenotype 

corrector. In 2015, RS and RI initially underwent a pre-selection, where each of the variables was 

introduced into the same prediction model with only random marker effect. These models were 

assessed based on their predictive abilities to choose the best variable to represent rust infection, 

which later on was included in the cross-validation model in the same fashion as HD. 

In the case of cross-year prediction, each of the two years’ data was treated as the training 

population, which followed the same scheme with ten folds and five replicates as the within-year 
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cross-validation to obtain the GEBVs, to predict the performance in the other year. Since all 

genotypes remained the same between the field evaluations in two years, different years were 

considered as different environmental replications, and the predictive ability was estimated by the 

Pearson product-moment correlation between the GEBV obtained from the training cycle and the 

observed phenotype value in the predicted breeding cycle. 

For each scenario, both GBLUP and RKHS models were implemented for evaluation of 

predictability. Model assessment was conducted across the combinations of five gradients of 

marker missing data ratio and two imputation methods. A grid search was also carried out for the 

bandwidth parameter 𝒉 after the optimal composition of the RKHS model was acquired under each 

scheme. 

 

Marker selection 

To discuss the redundancy that might have been caused by the correlation and linkage of SNP 

markers, we examined the marker information most efficiently exploited for prediction. The 

evaluation of marker selection also followed a ten-fold cross-validation scheme. Starting with the 

marker matrix at the missing data ratio determined by the models having the highest predictive 

ability from within-year cross-validation and cross-year prediction, a matrix of marker pairwise 

correlation was then calculated using the R package “corpcor” (Opgen-Rhein & Strimmer, 2007; 

Schäfer & Strimmer, 2005). This matrix construction, along with the succeeding steps, was carried 

out within each fold using the marker information from the training population (TP) only. The set 

of markers were subsequently filtered by removing the ones with any absolute pairwise correlation 

higher than a threshold value 𝑡 (𝑡 = 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2). The resulting SNPs 
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were then used to construct the genomic relationship matrix for fitting the two best genomic 

prediction models in order to obtain predictive ability. 

Consistency of elite line selection 

For both years, the individuals were ranked based on their GEBVs from the best-performing 

models. There were four models within each year: best cross-validation models using GBLUP and 

RKHS, and the best cross-year prediction models using GBLUP and RKHS. Individual with the 

lowest GEBV was ranked the first, and individual with the highest GEBV was ranked the last 

(257th). As a result, each individual was assigned four ranking in each year. The mean of these 

four indexes was taken to represent each individual’s ranking within that year. The entire 

population was then sorted by their mean rank indexes in year 2014 from the highest to the lowest, 

and the ranking distance (𝑑) was calculated as the absolute difference between the individual’s 

mean rank index in 2014 and its corresponding mean rank index in 2015. Starting with the ranking 

distance of the highest-GEBV individual in 2014, by adding on the absolute difference of the next 

individual in the hierarchy (which is the second-highest-GEBV individual), the average ranking 

distance (�̅�) was estimated by the mean of this total, and so on: 

 𝒅𝒏
̅̅̅̅ = 

∑ 𝒅𝒏
𝒏
𝟏

𝒏
  (𝑛 = 1, 2, …, 257) (5) 

 

The final product was a vector of length 257, which allowed observing the change in the average 

ranking distance from the best-performing individual to the worst. 

In order to achieve consistent selection of elite lines from this population, a relatively shorter 

distance for highly-ranked individuals were expected, so that they are more likely to be chosen for 

further breeding regardless of the environmental differences. 
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Results 

 

Data description 

The average HD in 2014 was 170.37 (±1.93) days, slightly longer than that of 2015 (161.81±1.13 

days) (p < 0.0001). The severity and spread of rust infection had the same shift in heading date 

(Table 1). Grain yield in 2014 had a mean of 23.49 (±3.96) bushels acre-1, which was lower than 

the mean grain yield in 2015 (33.13±6.60 bushels acre-1) (p < 0.0001). Grain yield in 2014 and 

2015 had a positive correlation of 0.417. Before any data treatment, the overall SNP call rate 

averaged at ~0.6. Filtering for SNP’s call rate higher than 0.75, only 4010 GBS SNPs remained; 

however, 12,944 SNPs can be obtained if considering SNPs call rate higher than 0.25. The total 

number of SNPs in each missing data subgroup is shown in Table 2. 

 

Table 1  Summary of infection assessment statistics (mean and standard deviation) 

Time point 
Severity (RS) Incidence (RI) 

Mean SD Mean SD 

May 5th 3.08 2.010 8.38 12.193 

May 11th 3.32 1.933 12.68 18.846 

 

 

Table 2  Total number of SNPs in each subgroup 

SNP call rate threshold 

 0.25 0.4 0.5 0.6 0.75 

Total number of 

SNPs 
12,994 9,244 7,260 5,726 4,010 
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Genomic prediction model performance 

Effects of missing genotype data and imputation methods 

Two imputation methods, mean and EM, were evaluated by the within-year cross-validation 

models across a gradient of missing marker data ratio using 2014 and 2015 population, respectively 

(Figures 1 and 2). In the evaluation of SNPs call rate impact on predictive ability, only random 

marker effect was included in the tested models. In general, EM imputation outperformed the mean 

imputation in every scenario; effects of SNPs call rate was little in 2015, as using the 4,010 SNPs 

that have call rate higher than 0.75 generated similar results with the rest of SNP call rate categories 

for both imputation methods. However, the effect of SNP call rate was more significant in 2014, 

where the best predictability was observed when SNPs with call rates > 0.6 were used, and the 

difference in predictability can be as large as 3% (call rate 0.6 imputed with EM versus call rate 

0.25 imputed with Mean, see Figure 1). Also, due to its observable superiority, EM imputation 

was used for all the following analyses (Figures 1 and 2). 

 

GS predictability evaluation 

Given the considerable number of models tested in this study and for the purpose of simplifying 

their comparisons, models with the highest predictive abilities were chosen to represent the four 

tested model’s scenarios. In each scenario, the best-performing GBLUP and RKHS models were 

selected for each variable combination: SNP marker only, SNP marker + HD, SNP marker + rust 

rating, and SNP marker + HD + rust rating. The latter two combinations were only available to 

models that used 2015 as training population. 
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Within-year prediction using 2014 as training population 

With only the realized relationship matrix 𝑮  in the model, GBLUP and RKHS had similar 

performances when 2014’s grain yield was used as the training population for within-year cross-

validation: both models yielded the highest predictive ability of ~0.57 with the SNP dataset that 

had SNPs call rate higher than 0.6 and was imputed with EM algorithm (Figure 3). When HD was 

included in the model either directly as a covariate or indirectly as a corrector for the phenotype, 

the predictive ability decreased for GBLUP but increased for RKHS.  As for predictor variables 

included in predictive models, both GBLUP and RKHS performed better (i.e., produced higher 

prediction accuracies). However, GBLUP performed slightly better when the HD was used as a 

phenotype corrector; RKHS generated a better predictive ability when HD was included as a 

covariate. Both models required more SNPs to attain their highest predictive abilities (i.e., 

correlation between GEBV and Obs) (Table 3). 

 

Within-year prediction using 2015 as training population 

Models trained with 2015’s grain yield data, for within-year cross-validation with only marker 

effect, RKHS resulted in a higher predictive ability (0.600±0.00412) than GBLUP 

(0.569±0.00669). Similar with year 2014, the inclusion of HD did not show improvement in model 

performance for GBLUP, while a modest improvement for RKHS was observed when fitting HD 

as a covariate. In addition to HD variation, the impact of the rust infection on year 2015 prediction 

models was evaluated in the same fashion as HD. Both models showed better predictive ability 

performance with rust infection variables included compared to models that had only HD. GBLUP 

and RKHS achieved their highest predictive abilities when RS11 and RI5 were included as 

covariates, respectively. Further, fitting both HD and RI5 as covariates resulted in the best model 
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performance for RKHS; interestingly, the GBLUP showed the worst model performance when 

including both HD and RS11 as covariates (Figure 4). 

 

Cross-year prediction using 2014 as training population 

Trained with grain yield data in 2014 to predict 2015’s grain yield resulted in approximate 42 and 

39% reduction in predictive ability for GBLUP and RKHS models, respectively. Using linear 

GBLUP, models with only SNP marker data produced the best cross-year predictive ability 

(0.350±0.00215); inclusion of covariates showed a negative impact on the model performance 

(Figure 3). On the contrary, RKHS prediction performed better when HD was included as a 

covariate, and this model, in fact, was the best predictive model among all cross-year predictions 

(0.423±0.00304). Overall, predictive ability for cross-year prediction for 2014 yield data was at 

0.354 (±0.037), significantly lower than within-year cross-validation (Figure 3). 
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Figure 1  Comparison of two missing data imputation methods, EM and Mean, based on the predictive ability from GBLUP 

cross-validation model (with SNP effect only) across a gradient of missing marker data ratio (Missingness); TP = training 

population. 
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Figure 2  Comparison of two missing data imputation methods, EM and Mean, based on the predictive ability from RKHS cross-

validation model (with SNP effect only) across a gradient of missing marker data ratio (Missingness); TP =  training population; 

bandwidth parameter was set to 0.1 for all models.
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Figure 3  GBLUP and RKHS prediction accuracies from the best-performing models using 

individuals from year 2014 as training population (TP). Within each model type, within-year 

cross-validation predictive ability was compared to cross-year predictive ability. G = only 

marker effect and G+HD = marker effect and heading date as models’ covariates. 
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Cross-year prediction using 2015 as training population 

In general, cross year prediction results showed higher consistency when 2015 was used to predict 

2014 (average predictive ability: 0.378±0.014). Also, to predict grain yield in 2014, RKHS 

consistently performed better; even in cross-year prediction without covariates, RKHS 

outperformed the linear GBLUP model, as opposed to the slightly higher accuracy estimate 

obtained from GBLUP in the 2014 within-year cross-validation (0.577 and 0.571 for GBLUP and 

RKHS respectively). The best performance was obtained when RI5 was included in the model as 

a covariate, though inclusion of both HD and rust ratings (RI5) produced comparable results 

(Figure 4). The use of flowering time (HD) as a covariate in the prediction model is not 

recommended, as this model resulted in the lowest predictive ability (0.352) and the highest 

standard error (0.00663) of all cross-year predictions. Overall, when using 2015 as training 

population to predict 2014’s yield data, decrease in the predictive ability of about 32 and 38% were 

observed for GBLUP and RKHS, respectively. 

To summarize the predictive ability performance for our two consecutive years’ yield data, results 

from RKHS, in general, produced higher accuracy than that of GBLUP (Figures 3 and 4). The 

RKHS also benefited considerably from the inclusion of covariates; GBLUP was at its best only 

when SNP markers were used, except for the very slight gain of predictive ability in the cross-year 

prediction when 2015’s data was used to predict 2014’s grain yield and HD was included as a 

covariate (0.374 versus 0.375). As a result, including covariates like HD and rust infection ratings 

was not recommended for GBLUP; in the case of within-year cross-validation using 2015 yield 

data, prediction performance for GBLUP was in fact at its lowest when covariates were included 

in the model (Figure 4). 
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Also, the conventional cross-validation used to evaluate model performance might result in an 

over-estimation of predictive ability; predictive ability for within-year cross-validation ranged 

from 0.533 (GBLUP, TP = 2015, SNP marker data + HD + rust rating) to 0.695 (RKHS, TP=2015, 

SNP marker data + HD + rust rating). Taking year effect into consideration, predictive ability was 

dramatically reduced, an evident decrease of 37% was observed. 

To investigate the factors affecting model performance, we also compared the numbers of SNP 

markers and the missing data ratio to determine the genetic information content required for 

predictive analysis. Cross-year prediction models required larger number of SNP markers for 8 

out of the 12 scenarios to achieve comparable prediction results, suggesting the complex genetic 

architecture of grain yield trait (Table 3). Finally, search for the optimal bandwidth parameter ℎ 

across models failed to identify a single bandwidth value. The pattern changed with the training 

population, model composition, and the number of markers employed (Appendix A). According 

to our results, ℎ values could vary between 0.1 and 1 is recommended for the acquisition of the 

highest predictive ability. 
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Figure 4  GBLUP and RKHS predictive ability from the best-performing models using 

individuals from year 2015 as training population (TP). Within each model type, within-year 

cross-validation predictive ability was compared to cross-year predictive ability. G = only 

marker effect; G+HD = marker effect and heading date as covariate; G+Rust = marker effect 

and disease index as covariate; G+HD+Rust = all three components in the model. 
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Marker selection 

The best model for within-year cross-validation was the RKHS with TP = 2015, SNP marker data 

+ HD + rust rating while the best model for cross-year prediction was also RKHS with TP = 2014, 

SNP marker data + HD and both models required the marker subset at call rate of 0.6, hence 5,726 

SNPs were considered to be a reasonable starting point of our investigation on marker selection. 

Based on the whole population SNP marker data, number of SNPs remained after filtration by the 

absolute pairwise correlation value 𝑡 is shown in Table 4. Since the filtration step was carried out 

within each fold, the pairwise correlation value was estimated based on the training set rather than 

the whole population. The numbers in Table 4 could be seen as a reference, while the actual 

number of SNPs varied with the changing training population. 

Overall, a comparable pattern of predictive ability was observed for both within-year and cross-

year models (Figure 5), where predictive ability remained constant until 𝑡 = 0.4 and at 𝑡 =0.3, the 

prediction abilities from both within-year and cross-year models were reduced and showing a 

significant loss of information due to the sparse marker density. For the DH population, 

approximately 1,500 SNPs at the absolute pairwise correlation threshold of 𝑡 = 0.4 could result in 

a similar predictive ability when the full set of 5,726 SNPs was used. 
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Table 3  Best-performing models and the number of SNPs required (SE = standard error). 

Training 

population 
Algorithm Model 

Predictive ability (± SE) Number of SNPs (call rate)  

Within Cross Within Cross 

2014 

GBLUP 
G 0.577 (±0.0077) 0.350 (±0.0022) 5,726 (0.6) 7,260 (0.5) 

G+HD 0.570 (±0.0026) 0.327 (±0.0015) 7,260 (0.5) 5,726 (0.6) 

      

RKHS 
G 0.571 (±0.0045) 0.356 (±0.0034) 5,726 (0.6) 7,260 (0.5) 

G+HD 0.649 (±0.0053) 0.423 (±0.0030) 7,260 (0.5) 5,726 (0.6) 

2015 

GBLUP 

G 0.569 (±0.0067) 0.374 (±0.0025) 4,010 (0.75) 9,244 (0.4) 

G+HD 0.552 (±0.0036) 0.375 (±0.0024) 5,726 (0.6) 7,260 (0.5) 

G+Rust 0.558 (±0.0055) 0.366 (±0.0033) 5,726 (0.6) 4,010 (0.75) 

G+HD+Rust 0.533 (±0.0056) 0.370 (±0.0056) 4,010 (0.75) 7,260 (0.5) 

      

RKHS 

G 0.600 (±0.0041) 0.389 (±0.0034) 4,010 (0.75) 7,260 (0.5) 

G+HD 0.610 (±0.0031) 0.391 (±0.0034) 5,726 (0.6) 5,726 (0.6) 

G+Rust 0.677 (±0.0034) 0.396 (±0.0012) 5,726 (0.6) 7,260 (0.5) 

G+HD+Rust 0.695 (±0.0028) 0.394 (±0.0018) 5,726 (0.6) 7,260 (0.5) 
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Table 4  Number of SNP markers within each correlation group based on whole population 

data 

Absolute pairwise correlation threshold 𝑡 

 Full Set 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 

# of SNPs 5,726 4,976 4,506 4,241 3,883 3,338 2,595 1,473 267 27 

 

 

Figure 5  Predictive ability from the best within-year cross-validation model (Within: year 

2015 RKHS model with marker effect and both heading date and disease index as 

covariates), and the best cross year prediction model (Cross: year 2014 predicting 2015 

RKHS model with marker effect and heading date as covariate) across subsets of marker 

filtered by absolute pairwise correlation threshold t. 
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Consistency of elite line selection 

The trend of average ranking distance (�̅�) has shown some substantial fluctuation among the top 

30 lines, but the top 10% individuals produced consistent distance values under or close to 3, 

indicating that the selection of the best individuals was consistent across different environments 

(Figure 6). The number then gradually increased and plateaued at an average distance close to 6 

when about 80% of the population were included, suggesting that evaluating the majority of the 

population with moderate performances was less certain relative to the top individuals. There was 

also a slight decrease in the average distance with inclusion of the lowest-ranking individuals, 

showing a steady assessment for those poorly-performing lines. In summary, the models were 

more consistent in selecting individuals with extreme performances than evaluating average lines. 
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Figure 6  Trend of average ranking distance over the number of individuals considered. 

Analysis started with the ranking distance of the best-performing individual in the year 2014, 

proceeded by adding the next best individual’s ranking distance and taking the mean, until 

all 257 individuals in the population were included

0

1

2

3

4

5

6

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257

A
ve

ra
ge

 D
is

ta
n

ce



25 

 

Discussion 

Efficacy of genomic selection has been widely evaluated since its inception in 2001 (Meuwissen 

et al., 2001). Evidences for the method’s potential in wheat breeding programs were demonstrated 

by a number of studies (e.g. Crossa et al., 2010; 2011; Poland et al., 2012; He et al., 2016; Huang 

et al., 2016; Michel et al., 2016; Saint Pierre et al., 2016). Among these studies, only few focused 

on the inter-year performance of models or considered the application in actual breeding programs. 

In this study, we assessed the predictive ability of genomic selection models using grain yield data 

from two successive years of a hard red winter wheat DH population as an example. Cross-year 

prediction using RKHS algorithm was found to be the most reliable method among all tested 

alternatives; we also demonstrated that consistent selection of lines with extreme values is 

achievable for the practicality. 

 

Model comparison 

In our study, the RKHS method showed equal or higher predictive ability than GBLUP, the linear 

additive alternative, for grain yield prediction of a winter wheat DH population. This observation 

corresponds to a number of previous studies that investigated genomic prediction model 

performance using grain yield components as targets. For example, Huang et al. (2016) reported 

similar accuracy differences of 0.33 between RKHS and GBLUP in predicting grain yield for 273 

elite soft winter wheat lines. With a larger collection of 2,325 European elite winter wheat lines, 

He et al. (2016) attained 5% higher predictive ability that was associated with 17% reduction in 

standard error for RKHS than GBLUP when evaluating grain yield in multiple sites. Additionally, 

RKHS outperformed GBLUP including other methods such as BayesCπ and artificial neural 

networks by 4% when predicting wheat grain yield (Heslot et al., 2012). Similar results were 
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reported by Crossa et al. (2010, 2011) where RKHS outperformed Bayesian LASSO (a similar 

algorithm to GBLUP but with marker-specific shrinkage) for grain yield prediction using 599 

wheat lines and 94 elite spring wheat lines. Our results are in line with previously studies, 

highlighting the advantage of RKHS and suggesting its broader application in predicting 

polygenic, complex traits like grain yield. 

The bandwidth parameter (ℎ) in RKHS is used to control the rate of decay of the co-variance 

between genotypes. For cross-year predictions of a single DH population, in theory a single value 

of ℎ could be expected, when there are no new recombination events between genotypes. Our 

results, however, found an inconclusive result for the bandwidth parameter (Appendix A). The 

unsuccessful search for a single optimal bandwidth parameter was also discussed in the original 

work that proposed the use of RKHS for genomic selection, as de los Campos et al. (2010) 

indicated that variation of the optimal value of ℎ is expected when distribution of observed genetic 

distances changes, which in part could be due to the different numbers of SNP markers used in our 

study. Other factors such as the genetic architecture of trait of interest and choice of kernel function 

also affect estimate of this parameter (de los Campos et al., 2010). Cross-validation is commonly 

used as independent evaluation to identify the optimal value for the bandwidth (Härdle & Linton, 

1994), alternatives like the Kernel Averaging method proposed by de los Campos et al. (2010) and 

Bayesian based selection of ℎ in Pérez-Elizalde et al. (2015) can also be considered without going 

through a large number of grid search. 

Although the superiority of RKHS diminished significantly (on average a 0.25 decrease in 

predictive ability) from within-year cross-validation to cross-year prediction, in our study, this 

decrease in accuracy was present in both parametric and non-parametric algorithms for all 

scenarios (Figures 3 and 4). Such inflation of predictive ability, plausibly disadvantageous for 
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evaluating GS applicability using cross-validation, as this could be the result of the common 

environmental variation (Lorenz et al., 2011). In most of the literatures that estimate predictive 

ability based on cross-validations, Pearson product-moment correlation between GEBV and true 

breeding value (TBV), r(GEBV, TBV), was used to reflect the confidence of how GEBV can be 

used to replace field evaluation. Since TBV is unknown, and we could only measure the observed 

phenotype (Obs), and evaluation of model performance is based on r(GEBV,Obs), which is 

assumed to be the product between r(GEBV,TBV) and r(Obs,TBV). This assumption is only valid 

when the common element between GEBV and Obs is just TBV, and, more importantly, the 

assumption of uncorrelated error terms between GEBV and Obs also needs to remain true. It can 

be expected that having both training and validation sets evaluated in the same environment in the 

same year constitutes a violation to the assumption of uncorrelated error terms, additionally the 

presence of G x E is expected to produce an upward bias in predictive ability for within year cross-

validation. 

On average, we found 32 and 38% decrease in accuracy when switching from within year cross-

validation to cross-year prediction using GBLUP and RKHS, respectively. Michel et al. (2016) 

also observed major decline in predictive ability for cross-year prediction in comparison to within-

year cross-validation in a 5-year study for 659 commercial winter wheat lines. Similarly, an 

average accuracy drop from 0.65 to 0.5 was found by He et al. (2016) when switching from within 

year cross-validation to cross-year prediction for European elite winter wheat tested in two 

successive years; also, a larger decrease of 50% in predictive ability was reported in a two-

generation sugar beet study (Hofheinz at al., 2012). When evaluating applicability of GS, all these 

studies, including the present research, reckon that cross-year prediction should be considered to 

reduce the upwards bias in prediction models. 



28 

 

Further, the RKHS method had on average higher degree of overfitting in within-year cross-

validation comparing to GBLUP (RKHS 0.253 vs. GBLUP 0.182). The higher degree of variability 

of RKHS was also observed by Heslot et al. (2012) and thought to likely be due to model over-

fitting. The strength of RKHS in capturing genetic effects, including the high-level interaction 

terms has been recognized by Gianola & Kaam (2008). In k-fold cross-validation, the evaluation 

of model performance can be broken down into bias and variance components. While un-

biasedness is cited as the beneficial quality of a model, low variance is just as important. The 

observed error in RKHS, at least in our winter wheat DH population, is suggestive that the kernel 

used to capture genomic relationship amongst individuals did not fully encompass Mendelian 

sampling term in between training and validation populations. Though overall predictability of 

GBLUP was slightly lower, the reduced errors in GBLUP model might be indicative of a common 

genetic architecture shared between training and validation in k-fold cross-validation preserved by 

the extensive linkage disequilibrium (LD) blocks in DH populations. 

The rust infection in 2015 might have caused a strong G x E effect to be picked up by cross-

validation, as the model (TP=2015, RKHS, G+HD+Rust) which produced the highest within-year 

predictive ability did not perform as well in the cross-year prediction, and the highest cross-year 

predictive ability was actually found using year 2014 as training population. This result is in 

accordance with Saint Pierre et al. (2016)’s finding that the highest predictive ability was from an 

environment without the presence of any dominant biotic or abiotic stresses. Hence we would 

advocate using individuals evaluated in a stable year in regard to environmental status as training 

population for genomic selection. 
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Missing data imputation 

The comparison between mean and EM imputation methods indicated that the latter consistently 

produced better model performance. Although our finding regarding EM method’s superiority 

agrees with Poland et al. (2012), their study found only lower imputation error from EM than 

population mean for the masked non-missing genotypes, with no advantage of EM imputation in 

predictive ability for yield was observed relative to mean imputation. Possible reasons for this 

discrepancy could be: 1) the relatedness between the training and validation population (Poland et 

al. (2012) study had no common full-sib lines between the training and validation set, while every 

individual in our analyses shared the same pair of parents); 2) the LD between the correctly 

imputed markers and the QTL; in other words, if the missing values of SNPs in high LD with QTL 

were imputed with precision, imputation would lead to improvement of the predictive ability of 

the model, which could likely be our case. Otherwise, this improvement might not be obvious 

when the majority of the imputed markers is distant from the underlying QTLs of the target traits. 

In summary, our results confirmed the superiority of EM over mean imputation for DH populations 

where progeny are in moderate to high correlation. 

 

Marker selection 

The unprecedented efficiency of next-generation sequencing technology has created a paradigm-

shift that changes genetic research from trait-driven science to genetic-driven discovery. 

Accompanied with this rapid advancement, issues in data-information inequality has become 

increasingly important as “information volume” is often smaller than “data volume”. A simulation 

study of dairy cattle and corn breeding showed that accuracies of prediction first increased with 

number of SNPs, then plateaued in spite of the growing quantity of markers (Habier et al., 2013). 
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In another study of a closely-related wheat population the authors postulated a comparable 

performance of 1,827 GBS SNP markers relative to 34,749 SNPs (Poland et al., 2012); similar 

predictability for wheat grain yield in Crossa et al. (2010) and de los Campos et al. (2009) was 

later achieved in 2011 with fewer genetic markers, showed in Crossa et al. (2011). Using a cross-

environment validation, our results support, to approach comparable level of predictive ability in 

grain yield of a winter wheat DH population, that only a moderate number of SNP markers are 

required. Such lack of improvement with additional data points is not only the resource for 

inefficiency, but also the underlying cause of correlated errors. The level of LD in the population 

and the relatedness among individuals are the two main contributors to when the plateau will take 

place (de los Campos et al., 2013). With our DH population, the long spans of LD in the genome 

and high relatedness within the training population and between training and validation 

populations, filtering the SNP markers based on their correlation coefficients could produce 

satisfactory predictive ability while requiring less computational effort and time. 
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Conclusion 

Over the last decade, a substantial amount of effort has been dedicated to exploring and evaluating 

the applicability of genomic selection for crop improvement. With a more realistic two-generation 

validation, our result verified the superiority of RKHS method over the whole-genome regression 

GBLUP; the observed slightly larger errors in RKHS is mainly due to model overfitting suggesting 

the presence of considerable Mendelian sampling terms even within a DH population. Model 

performance evaluation based on within-year cross-validation is likely to be biased, and when 

aiming to shorten breeding cycles in the line development stage of a wheat breeding program, a 

more ideal design like our two-generation validation should be considered with multi-location field 

data to handle correlated errors. 

Up to this date, only a few investigated the realized outcome from GS in the context of an ongoing 

breeding program. Among these, our study demonstrated that the confidence of line selection 

based on genomic selection could be achieved. Selection of lines encompassing high breeding 

values with precision is considered to be a prerequisite to selective breeding endeavor (Blondel et 

al., 2015). Given the considerable differences in the predictive abilities from the various models 

examined in the present, forward selection for high performer was consistent and the ranking 

differential was small, even with a moderate number of SNP markers. Though the differential was 

slightly larger, rankings of the low performers were also considered stable. In summary, the robust 

assessment in line selection advocates the advantage of implementing genomic selection in wheat 

variety development. 
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Appendices 

Appendix A  Effect of bandwidth parameter h on model predictive ability across training population, model composition, and 

number of markers employed 

 

Figure 7  Comparison of bandwidth parameter h based on predictive ability from RKHS (with year 2014 and 2015 as training 

population respectively) cross validation model (with SNP effect only) across marker missingness levels 
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Figure 8  Comparison of bandwidth parameter h based on predictive ability from RKHS cross year prediction model (with 

year 2014 and 2015 as training population respectively) across different model components: G=only marker effect in the 

model; G+HD(cor)=marker effect in the model with heading date-corrected phenotype as response variable; 

G+HD(cov)=marker effect and heading date as covariate in the model; G+Rust(cov)=marker effect and disease index as 

covariate in the model; G+HD+Rust(cov)=marker effect and both heading date and disease index as covariates in the model 
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